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Preface

Who Should Read This Book

In the summer of 2008, I gave a talk at an international conference in Brighton. The talk was about construc-
tions involving multiple hedging in American English (e.g., I’m gonna have to ask you to + VP). I remember
this talk because even though I had every reason to be happy (the audience showed sustained interest and a
major linguist in my field gave me positive feedback), I remember feeling a pang of dissatisfaction. Because
my research was mostly theoretical at the time, I had concluded my presentation with the phrase “pending
empirical validation” one too many times. Of course, I had used examples gleaned from the renowned Cor-
pus of Contemporary American English, but my sampling was not exhaustive and certainly biased. Even
though I felt I had answered my research questions, I had provided no quantitative summary. I went home
convinced that it was time to buttress my research with corpus data. I craved for a better understanding of
corpora, their constitution, their assets, and their limits. I also wished to extract the data I needed the way I
wanted, beyond what traditional, prepackaged corpus tools have to offer.

I soon realized that the kind of corpus linguistics that I was looking for was technically demanding,
especially for the armchair linguist that I was. In the summer of 2010, my lab offered that I attend a
one-week boot camp in Texas whose instructor, Stefan Th. Gries (University of Santa Barbara), had just
published Quantitative Corpus Linguistics with R. This boot camp was a career-changing opportunity. I
went on to teach myself more elaborate corpus-linguistics techniques as well as the kinds of statistics that
linguists generally have other colleagues do for them. This led me to collaborate with great people outside
my field, such as mathematicians, computer engineers, and experimental linguists. While doing so, I never
left aside my research in theoretical linguistics. I can say that acquiring empirical skills has made me a better
theoretical linguist.

If the above lines echo your own experience, this book is perfect for you. While written for a readership
with little or no background in corpus linguistics, computer programming, or statistics, Corpus Linguistics
and Statistics with R will also appeal to readers with more experience in these fields. Indeed, while presenting
in detail the text-mining apparatus used in traditional corpus linguistics (frequency lists, concordance tables,
collocations, etc.), the text also introduces the reader to some appealing techniques that I wish I had become
acquainted with much earlier in my career (motion charts, word clouds, network graphs, etc.).
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viii Preface

Goals

This is a book on empirical linguistics written from a theoretical linguist’s perspective. It provides both
a theoretical discussion of what quantitative corpus linguistics entails and detailed, hands-on, step-by-step
instructions to implement the techniques in the field.

A Note to Instructors

I have written this book so that instructors feel free to teach the chapters individually in the order that they
want. For a one-semester course, the emphasis can be on either:

• Methods in corpus linguistics (Part I)
• Statistics for corpus linguistics (Part II)

In either case, I would recommend to always include Chaps. 1 and 2 to make sure that the students are
familiar with the core concepts of corpus-based research and R programming.

Note that it is also possible to include all the chapters in a one-semester course, as I do on a regular
basis. Be aware, however, that this leaves the students less time to apply the techniques to their own research
projects. Experience tells me that the students need sufficient time to work through all of the earlier chapters,
as well as to accommodate to the statistical analysis material.

Supplementary Materials

Through the chapters, readers will make extensive use of datasets and code. These materials are available
from the book’s Springer Extra’s website:

http://extras.springer.com/2017/978-3-319-64570-4

I recommend that you check the repository on a regular basis for updates.
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Chapter 1
Introduction

Abstract In this chapter, I explain the theoretical relevance of corpora. I answer three questions: what
counts as a corpus?; what do linguists do with the corpus?; what status does the corpus have in the linguist’s
approach to language?

1.1 From Introspective to Corpus-Informed Judgments

Linguists investigate what it means to know and speak a language. Despite having the same objective,
linguists have their theoretical preferences, depending on what they believe is the true essence of language.
Supporters of transformational-generative grammar (Chomsky 1957, 1962, 1995) claim that the core of
grammar consists of a finite set of abstract, algebraic rules. Because this core is assumed to be common to
all the natural languages in the world, it is considered a universal grammar. The idiosyncrasies of language
are relegated to the periphery of grammar. Such is the case of the lexicon, context, elements of inter-speaker
variation, cultural connotations, mannerisms, non-standard usage, etc.

In generative grammar, pride of place is given to syntax, i.e. the way in which words are combined to
form larger constituents such as phrases, clauses, and sentences. Syntax hinges on an opposition between
deep structure and surface structure. The deep structure is the abstract syntactic representation of a sentence,
whereas the surface structure is the syntactic realization of the sentence as a string of words in speech.
For example, the sentence an angry cow injured a farmer with an axe has one surface structure (i.e. one
realization as an ordered string of words) but two alternative interpretations at the level of the deep structure:
(a) an angry cow injured a farmer who had an axe in his hands, and (b) an angry cow used an axe to injure a
farmer. In other words, a sentence is generated from the deep structure down to the surface structure.

More generally, generative grammar is a “top-down” approach to language: a limited set of abstract rules
“at the top” is enough to generate and account for an infinite number of sentences “at the bottom”. What gen-
erative linguists truly look for is the finite set of rules that core grammar consists of, in other words speakers’
competence, as opposed to speakers’ performance. This is to the detriment of idiosyncrasies of all kinds.

Conversely, theories such as functional linguistics (Dik 1978, 1997; Givón 1995), cognitive linguistics
(Langacker 1987, 1991; Goldberg 1995), and contemporary typology (Greenberg 1963) advocate a “bottom-
up” approach to language. It is usage that shapes the structure of language (Bybee 2006, 2010; Langacker
1988). Grammar is therefore derivative, not generative. There is no point of separating competence and
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2 1 Introduction

performance anymore because competence builds up on performance. In the same vein, grammar has no
core or periphery: it is a structured inventory of symbolic units (Goldberg 2003). Therefore, any linguistic
unit is worth being taken into consideration with equal attention: morphemes (un-, -ness), words or phrases
(corpus linguistics), ritualized or formulaic expressions (break a leg!), idioms (he snuffed it), non-canonical
phrasal expressions (sight unseen), semi-schematic expressions (e.g. just because X doesn’t mean Y), and
fully schematic expressions (e.g. the ditransitive construction).

Like biologists, who apprehend life indirectly, i.e. by studying the structure, function, growth, evolution,
distribution, and taxonomy of living cells and organisms, linguists apprehend language through its manifes-
tations. For this reason, all linguistic theories rely on native speakers acting as informants to provide data.
On the basis of such data, linguists can formulate hypotheses and test them.

Generative linguists are known to rely on introspective judgments as their primary source of data. This is
a likely legacy of de Saussure, the father of modern linguistics, who delimited the object of study (langue)
as a structured system independent from context and typical of an ideal speaker. However, the method can
be deemed faulty on at least two accounts. First, there is no guarantee that linguists’ introspective accept-
ability judgments always match what systematically collected data would reveal (Sampson 2001; Wasow
and Arnold 2005). Second, for an intuition of well-formedness to be valid, it should at least be formulated
by a linguist who is a native speaker of the language under study.1 If maintained, this constraint limits
the scope of a linguist’s work and invalidates a significant proportion of the research published worldwide,
judging from the number of papers written by linguists who are not fluent speakers of the languages they
investigate, including among generativists. This radical position is hardly sustainable in practice. Some
generativists working on early language acquisition have used real performance data to better understand the
development of linguistic competence.2

Because of its emphasis on language use in all its complexity, the “bottom-up” approach provides fertile
ground for corpus-informed judgments. It is among its ranks that linguists, dissatisfied with the practice
of using themselves as informants, have turned to corpora, judging them to be a far better source than
introspection to test their hypotheses. Admittedly, corpora have their limitations. The most frequent criticism
that generative linguists level against corpus linguists is that no corpus can ever provide negative evidence.
In other words, no corpus can indicate whether a given sentence is impossible.3 The first response to this
critique is simple: grammar rules are generalizations over actual usage and negative evidence is of little
import. The second response is that there are statistical methods that can either handle the non-occurrence
of a form in a corpus or estimate the probability of occurrence of a yet unseen unit. A more serious criticism
is the following: no corpus, however large and balanced, can ever hoped to be representative of a speaker,
let alone of a language. Insofar as this criticism has to do with the nature and function of corpora, I address
it in Chap. 3.

Linguists make use of corpus-informed judgment because (a) they believe their work is based on a psy-
chologically realistic view of grammar (as opposed to an ideal view of grammar), and (b) such a view can be
operationalized via corpus data. These assumptions underlie this book. What remains to be shown is what
counts as corpus data.

1 In fact, Labov (1975) shows that even native speakers do not know how they speak.
2 See McEnery and Hardie (2012, p. 168) for a list of references.
3 Initially, generativists claim that the absence of negative evidence from children’s linguistic experience is an argument in favor
of the innateness of grammatical knowledge. This claim is now used beyond language acquisition against corpus linguistics.
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1.2 Looking for Corpus Linguistics

Defining corpus linguistics is no easy task. It typically fills up entire textbooks such as Biber et al. (1998),
Kennedy (1998), McEnery and Hardie (2012), and Meyer (2002). Because corpus linguistics is changing
fast, I believe a discussion of what it is is more profitable than an elaborate definition that might soon be
outdated. The discussion that follows hinges on three questions:

• what counts as a corpus?
• what do linguists do with the corpus?
• what status does the corpus have in the linguist’s approach to language?

Each of the above questions has material, technical, and theoretical implications, and offers no straightfor-
ward answer.

1.2.1 What Counts as a Corpus

A corpus (plural corpora) is a body of material (textual, graphic, audio, and/or video) upon which some anal-
ysis is based. Several disciplines make use of corpora: linguistics of course, but also literature, philosophy,
art, and science. A corpus is not just a collection of linguistically relevant material. For that collection to
count as a corpus, it has to meet a number of criteria: sampling, balance, representativeness, comparability,
and naturalness.

1.2.1.1 A Sample of Samples

A corpus is a finite sample of genuine linguistic productions by native speakers. Even a monitor corpus such
as The Bank of English, which grows over time, has a fixed size at the moment when the linguist taps into it.
Usually, a corpus has several parts characterized by mode (spoken, written), genre (e.g. novel, newspaper,
etc.), or period (e.g. 1990–1995), for example. These parts are themselves sampled from a number of
theoretically infinite sources.

Sampling should not be seen as a shortcoming. In fact, it is thanks to it that corpus linguistics can be very
ambitious. Like astrophysics, which infers knowledge about the properties of the universe and beyond from
the study of an infinitesimal portion of it, corpus linguists use finite portions of language use in the hope that
they will reveal the laws of a given language, or some aspect of it. A corpus is therefore a sample of samples
or, more precisely, a representative and balanced sample of representative and balanced samples.

1.2.1.2 Representativeness

A corpus is representative when its sampling scheme is faithful to the variability that characterizes the target
language. Suppose you want to study the French spoken by Parisian children. The corpus you will design
for this study will not be representative if it consists only of conversations with peers. To be representative,
the corpus will have to include a sizeable portion of conversations with other people, such as parents, school
teachers, and other educators.
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Biber (1993, p. 244) writes: “[r]epresentativeness refers to the extent to which a sample includes the full
range of variability in a population.” Variability is a function of situational and linguistic parameters. Situa-
tional parameters include mode (spoken vs. written), format (published, unpublished), setting (institutional,
public, private, etc.), addressee (present, absent, single, interactive, etc.), author (gender, age, occupation,
etc.), factuality (informational, imaginative, etc.), purposes (information, instruction, entertainment, etc.), or
topics (religion, politics, education, etc.).

Linguistic parameters focus on the distribution of language-relevant features in a language. Biber (1993,
p. 249) lists ten grammatical classes that are used in most variation studies (e.g. nouns, pronouns, preposi-
tions, passives, contractions, or WH-clauses). Each class has a distinctive distribution across text categories,
which can be used to guarantee a representative selection of text types. For example, pronouns and contrac-
tions are interactive and typically occur in texts with a communicative function. In contrast, WH-clauses
require structural elaboration, typical of informative texts.

Distribution is a matter of numerical frequencies. If you are interested in the verbal interaction between
waiters and customers in restaurants, unhedged suggestions such as “do you want fries with that?” will
be overrepresented if you include 90% of conversations from fast-food restaurants. Conversely, forms of
hedged suggestion such as “may I suggest. . . ?” are likely to be underrepresented. To guarantee the repre-
sentation of the full range of linguistic variation existing in a specific dialect/register/context, distributional
considerations such as the number of words per text, the number of texts per text types must be taken into
account.

Corpus compilers use sampling methodologies for the inclusion of texts in a corpus. Sampling techniques
based on sociological research make it possible to obtain relative proportions of strata in a population thanks
to demographically accurate samples. Crowdy (1993) is an interesting illustration of the demographic sam-
pling method used to compile the spoken component of the British National Corpus The British National
Corpus (2007). To fully represent the regional variation of British English, the United Kingdom was di-
vided into three supra-regions (the North, the Midlands, and the South) and twelve areas (five for the North,
three for the Midlands, and four for the South). Yet, as Biber (1993, p. 247) points out, the demographic
representativeness of corpus design is not as important to linguists as the linguistic representativeness.

1.2.1.3 Balance

A corpus is said to be balanced when the proportion of the sampled elements that make it representative
corresponds to the proportion of the same elements in the target language. Conversely, an imbalanced
corpus introduces skews in the data. Like representativeness, the balance of a corpus also depends on the
sampling scheme.

Corpus-linguistics textbooks frequently present the Brown Corpus (Francis and Kučera 1979) and its
British counterpart, the Lancaster-Oslo-Bergen corpus (Johansson et al. 1978) as paragons of balanced cor-
pora. Each attempts to provide a representative and balanced collection of written English in the early
1960s. For example, the compilers of the Brown Corpus made sure that all the genres and subgenres of the
collection of books and periodicals in the Brown University Library and the Providence Athenaeum were
represented. Balance was achieved by choosing the number of text samples to be included in each category.
By way of example, because there were about thirteen times as many books in learned and scientific writing
as in science fiction, 80 texts of the former genre were included, and only 6 of the latter genre.

Because the Brown Corpus and the LOB corpus are snapshot corpora, targetting a well-delimited mode
in a well delimited context, achieving balance was fairly easy. Compiling a reference corpus with spoken
data is far more difficult for two reasons. Because obtaining these resources supposes that informants are
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willing to record their conversations, they take time to collect, transcribe, and they are more expensive.
Secondly, you must have an exact idea of what proportion each mode, genre, or subgenre represents in the
target language. If you know that 10% of the speech of Parisian children consists of monologue, your corpus
should consist of about 10% of monologue recordings. But as you may have guessed, corpus linguists have
no way of knowing these proportions. They are, at best, educated estimates.

1.2.1.4 An Ideal

Sampling methods imply a compromise between what is theoretically desirable and what is feasible. The
abovementioned criteria are therefore more of an ideal than an attainable goal (Leech 2007).

Although planned and designed as a representative and balanced corpus, the BNC is far from meeting this
ideal. Natural languages are primarily spoken. Yet, 90% of the BNC consists of written texts. However, as
Gries (2009) points out, a salient written expression may have a bigger impact on speakers’ linguistic systems
than a thousand words of conversation. Furthermore, as Biber (1993) points out, linguistic representativeness
is far more important than the representativeness of the mode.

1.2.1.5 The Materiality of Corpora

The above paragraphs have shown that a lot of thinking goes on before a corpus is compiled. However,
the theoretical status of a corpus should not blind us to the fact that we first apprehend a corpus through
the materiality its database, or lack thereof. That materiality is often complex. The original material of a
linguistic corpus generally consists of one or several of the following:

• audio recordings;
• audio-video recordings;
• text material.

This material may be stored in a variety of ways. For example, audio components may appear in the forms of
reel-to-reel magnetic tapes, audio tapes, or CDs, as was the case back in the days. Nowadays, they are stored
as digital files on the web. The datasets of the CHILDES database are available in CHAT, a standardised
encoding format. The files, which are time aligned and audio linked, are to be processed with CLAN
(http://childes.psy.cmu.edu/). In general, multimodal components include both the original
audio/video files and, optionally, a written transcription to allow for quantification.

As a corpus linguist working mainly on the English language, I cannot help paying tribute to the first
“large-scale” corpus of English: the Survey of English Usage corpus (also known as the Survey Corpus). It
was initiated by Randolph Quirk in 1959 and took thirty years to complete. The written component consists
of 200 texts of 5000 words each, amounting to one million words of British English produced between 1955
and 1985. The Survey Corpus also has a spoken component in the form of now digitized tape recordings of
monologues and dialogues. The corpus is originally compiled from magnetic data recordings, transcribed
by hand, and typed on thousands of 6-by-4-inch paper slips stored in a filing cabinet. Each lexical item is
annotated for grammatical features and stored likewise. For examples, all verb phrases are filed in the verb
phrase section. The spoken component is also transcribed and annotated for prosodic features. It still exists
under the name of the London-Lund Corpus.

http://childes.psy.cmu.edu/
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The Survey Corpus was not computerized until the early 1980s.4 With a constant decrease in the price
of disk storage and an ever increasing offer of tools to process an ever increasing amount of electronic data,
all corpus projects are now assumed to be digital from stage one. For this reason, when my students fail to
bring their laptop to their first corpus linguistics class, I suggest they take a trip to University College London
and browse manually through the many thousands of slips filed in the cabinets of the Survey Corpus. Al-
though the students are always admirative of the work of corpus linguistics pioneers (Randoph Quirk, Sidney
Greenbaum, Geoffrey Leech, Jan Svartvik, David Crystal, etc.), they never forget their laptops afterwards.

1.2.1.6 Does Size Matter?

Most contemporary corpora in the form of digital texts (from either written or transcribed spoken sources)
are very large. The size of a corpus is relative. When it first came out, in the mid 1990s, the BNC was
considered a very big corpus as it consisted of 100 million words. Compared to the Corpus of Contemporary
American English (450 million words), the Bank of English (45 billion words), the ukWaC corpus of English
(2.25 billion words),5 or Sketch Engine’s enTenTen12 corpus (13 billion words), the BNC does not seem
that large anymore.

What with the availability of digital material and a rich offer of automatic annotation and markup tools,
we are currently witnessing an arms race in terms of corpus size. This is evidenced by the increasing number
of corpora that are compiled from the web (Baroni et al. 2009). On the one hand, a large corpus guarantees
the presence of rare linguistic forms. This is no trifling matter insofar as the distribution of linguistic units
in language follows a Zipfian distribution: there is a large number of rare units. On the other hand, a very
large corpus loses in terms of representativeness and balance, unless huge means are deployed to compile it
with respect to the abovementioned corpus ideal (which, in most cases, has an unbearable cost). Finally, no
corpus extraction goes without noise (i.e. unwanted data that is hard to filter out in a query). The larger the
corpus, the more the noise.

Depending on your case study and the language you investigate, using a small corpus is not a bad thing.
For example, Ghadessy et al. (2001) show that small corpora can go a long way in English language teaching.
Unless you study a macrolanguage (e.g. Mandarin, Spanish, English, or Hindi), it is likely that you will not
be able to find any corpus. The problem is even more acute for endangered or minority languages (e.g.
Breton in France, or Amerin languages in the Americas) for which you only have a sparse collection of texts
and sometimes punctual recordings at your disposal. Once compiled into a corpus, those scarse resources
can serve as the basis of major findings, such as Boas and Schuchard (2012) in Texas German, or Hollmann
and Siewierska (2007) in Lancashire dialects.

Small size becomes a problem if the unit you are interested in is not well represented. All in all, size
matters, but if it is wisely used, a small corpus is worth more than a big corpus that is used unwisely.

1.2.2 What Linguists Do with the Corpus

Having a corpus at one’s disposal is a necessary but insufficient condition for corpus linguistics. Outside
linguistics, other disciplines in the humanities make use of large-scale collections of texts. What they gener-

4 Transcriptions of the spoken component of the Survey Corpus were digitized in the form of the London-Lund Corpus.
5 Ferraresi (2007).
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ally do with those texts is known as text mining. Corpus-linguists may use text-mining techniques at some
point (for instance when they make frequency lists). However, the goal of text mining techniques is to obtain
knowledge about a text or group of texts (Jockers 2014), whereas the goal of corpus-linguistics techniques
is to better understand the rules governing a language as a whole, or at least some aspect of that language
(e.g. a specific register or dialect).

1.2.2.1 Generalization

You do not suddenly become a corpus linguist by running a query in a digital text database in search of a
savory example.6 You investigate a corpus because you believe your findings can be extended to the target
language or variety. This is called generalization.

Generalization implies a leap of faith from what we can infer from a finite set of observable data to the
laws of the target language. Outside corpus linguistics, not everyone agrees. In an interview (Andor 2004,
p. 97), Chomsky states that collecting huge amounts of data in the hope of coming up with generalizations
is unique in science. He makes it sound like it is a pipe dream. To reformulate Chomsky’s claim, a corpus
should not be a basis for linguistic studies if it cannot represent language in its full richness and complexity.
Most corpus linguists rightly counter that they do not aim to explain all of a language in every study (Glynn
2010) and that the limits of their generalizations are the limits of the corpus. Furthermore, even if no corpus
can provide access to the true, unknown law of a language, a corpus can be considered a sample drawn from
this law. As you will discover in the second part of the book, there are ways of bridging the gap between
what we can observe and measure from a corpus, and what we do not know about a language. Ambitious
statistics is needed to achieve this. I am specifically referring to the statistics used in biostatistics, where
scientists commonly bridge the gap between what they can observe from a group of patients and what they
can infer about a disease, contra Chomsky’s intuition.

1.2.2.2 Quantification

Corpus linguistics is quantitative when the study of linguistic phenomena based on corpora is systematic
and exhaustive. Gries (2014, p. 365) argues that corpus linguistics in the usage-based sense of the word
is a distributional science. A distributional science infers knowledge from the distribution, dispersion, and
co-occurrence of data. For this reason, quantitative corpus linguists typically focus on corpus frequencies
by means of frequency lists, concordances, measures of dispersion, and co-occurrence frequencies.

All linguists aim at some form of generalization, but not all of them engage in some form of quantification
to meet this aim. This means that you can make a qualitative and quantitative use of a corpus. Qualitative
corpus analysis may consist in formulating a hypothesis and testing it by looking for potential counterex-
amples in the corpus. It may also consist in using the corpus to refine the hypothesis at some stage. The
concordancer is a corpus tool par excellence meant for qualitative inspection. It is used to examine a word
in its co-text regardless of any form of quantification.

An oft-heard misconception about corpus linguistics is that the quantitative methods involved are sus-
piciously too objective and miss some information that only the linguist’s expert subjectivity can bring.
Nothing is further from the truth. First, you should never start exploring a corpus, let alone quantify your
findings, if you do not have a research question, a research hypothesis, and a clear idea as to how the corpus

6 The practise is known as “chasing butterflies”.
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will help you answer the question and test the hypothesis. Second, you should never consider the quantified
corpus findings as the final stage in your research project. Uninterpreted results are useless because they do
not speak for themselves: “quantification in empirical research is not about quantification, but about data
management and hypothesis testing” (Geeraerts 2010).

1.2.3 How Central the Corpus Is to a Linguist’s Work

Some linguists believe that using a corpus is but one of several steps in a research project (although a
significant one). For example, a linguist might generate a working hypothesis regarding a linguistic form
and then decide to test that hypothesis by observing the behavior of that linguistic form in a corpus and by
generalizing over the findings. Other linguists adopt a more radical stance. They claim that the corpus is the
only possible approximation we have of a speaker’s linguistic competence. It is therefore a linguist’s job to
investigate corpora.

1.2.3.1 The Corpus as a Step in the Empirical Cycle

To most corpus linguists, corpora and quantitative methods are only a moment in what the cognitive se-
manticist Dirk Geeraerts calls “the empirical cycle” (Geeraerts 2010).7 Empirical data are of two kinds:
observational and experimental. Observational data are collected as they exist. In contrast, elicited data
have to be obtained experimentally. Corpus data are observational, as opposed to elicited data, which are
experimental.

The flowchart in Fig. 1.1 is a representation of D. Geeraerts’s empirical cycle, adapted to quantitative
corpus linguistics. The corpus, which appears in green is but a moment, albeit a central one, of the empirical
cycle. The left part of the chart (where the steps are connected by means of dashed arrows) is iterative. The
cycle involves several rounds of hypothesis formulating/updating, operationalizing, corpus data gathering,
and hypothesis testing. If the empirical testing is satisfactory, the findings can inform back theory (see the
right part of the chart), which in turn helps formulate other hypotheses, and so on and so forth.

Those who reject corpus linguistics on the basis that it is too objective should notice that nearly all the
blocks of the flowchart involve subjective appreciation from the linguist. This is valid also for the block “test
hypotheses” with quantification and statistics insofar as you cannot quantify or run statistics blindly. The
choice of quantitative methods depends largely on what the corpus gives you.

1.2.3.2 The Corpus as the Alpha and Omega of Linguistics

Some linguists adopt a much stronger stance on the place of corpora in their work. They consider that the
grammar of speakers takes the form of a mental corpus.

The idea of grammar being represented as a mental corpus originates from outside corpus linguistics
per se. Cognitive Grammar, an influential usage-based theory of language, defines grammar as a structured
inventory of symbolic linguistic units (Langacker 1987, p. 57). In this theory, grammar is the psychological
representation of linguistic knowledge. A unit is symbolic because its formal component and its semantic

7 In case it is not clear enough, this paper is a must-read if you plan to do corpus-based semantics.
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Fig. 1.1: The empirical cycle (adapted to quantitative corpus linguistics)

component are linked by conventions. This is reminiscent of Ferdinand de Saussure’s “arbitrariness of the
sign”. Unlike generative linguistics, which separates form and meaning, Cognitive Grammar advocates a
uniform representation that combines both. Central in Cognitive Grammar, and of major interest to corpus
linguistics because of its roots in frequency, is the concept of entrenchment: “[w]ith repeated use, a novel
structure becomes progressively entrenched, to the point of becoming a unit [. . . ]” (Langacker 1987, p. 59).
Each time a unit (a phoneme, a morpheme, a morphosyntactic pattern, etc.) is used, it activates a node or
a pattern of nodes in the mind. The more the unit occurs, the more likely it is to be stored independently.
In other words, linguistic knowledge is a repository of units memorized from experiences of language use.
Each experience leaves a trace in the speaker’s memory and interacts with previously stored units. This
dynamic repository is what Taylor (2012) calls a mental corpus.

In line with the above, some linguists consider that the closest approximation of a mental corpus is a
linguist’s corpus. Tognini-Bonelli (2001) distinguishes between corpus-based and corpus-driven linguistics.
Corpus-based linguistics is the kind exemplified in Sect. 1.2.3.1. Corpus-driven linguistics is the radical
extension of corpus-based linguistics: the corpus is not part of a method but our sole access to language
competence. According to McEnery and Hardie (2012), this idea has its roots in the works of scholars
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inspired by J.R. Firth, such as John Sinclair, Susan Hunston, Bill Louw, Michael Stubbs, or Wolfgang
Teubert. Studies in this tradition typically focus on collocations and discourse effects. Let me zoom in on
collocation, as it is a concept we shall come back to later.

According to Firth (1957), central aspects of the meaning of a linguistic unit are lost if we examine the
unit independently from its context.8 For example, a seemingly vague word such as something acquires
a negative meaning once it precedes the verb happen, as in: [. . . ] a lady stopped me and she said has
something happened to your mother? And I said, yes, she died [. . . ] (BNC-FLC). A unit and its context
are not mere juxtapositions. They form a consistent network whose nodes are bound by mutual expectations
(Firth 1957, p. 181). Firth was not concerned with corpora but by the psychological relevance of retrieving
meaning from context. Firth’s intuitions were translated into a corpus-driven methodology through the work
of “neo-Firthians”, such as Sinclair (1966, 1987, 1991), Sinclair and Carter (2004), Teubert (2005), or Stubbs
(2001).

As always, even though radical ideas are often theoretically challenging, the middle ground is preferable
in practice. This is why most quantitative corpus linguists consider that a corpus is a central part of research,
but not the alpha and omega of linguistics. You can still do corpus-based linguistics and make use of popular
corpus-driven methods such as concordances or association measures.
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If you are an absolute beginner, there is a chance that coding will be frustrating at first. The good news is that
it will not last. An excellent reason for being optimistic is that you will never code alone. R is maintained,
developed, and supported by a big community of friendly users. Before you know it, you will be part of
that community and you will be writing your own R scripts. You will find below a list of helpful online
ressources.

Getting help from the online community

• Stack Overflow: a question and answer site on a variety of topics, including R
http://stackoverflow.com/questions/tagged/r

• R-bloggers: a compilation of bloggers’ contributions on R
http://www.r-bloggers.com/

• inside-R: a community site dedicated to R
http://www.inside-r.org/blogs

• GitHub: a collaborative code repository (not limited to R)
https://github.com/
type #R in GitHub’s search engine

• The R mailing list
https://stat.ethz.ch/mailman/listinfo/r-help

The most frequently asked question from my students is “how long does it take to master R?”. There is
no straight answer because several variables are involved.

First of all, you do not need to master all of R’s features to start using it in corpus linguistics. As you will
realize in the next chapter, generating a frequency list does not require an engineer’s skills.

Secondly, even though your programming experience does make a difference in how fast you learn the
R language, it does not teach you how to select the appropriate tool for the appropriate task. This means
that your learning of the R language is a direct function of what you need to do with it. The best R learners
among my students also happen to be the best linguists.

Thirdly, over and above your programming experience, your level of motivation is key. Every time I teach
a course on corpus linguistics and statistics with R, it is only a matter of days until I receive my first emails
from students asking me for advice regarding some advanced task that we have not covered yet and whose
code they are eager to crack.

You can take advantage of this book in two ways. The most basic use is to treat it like a recipe book
because you do not want to invest time in learning the inner logic of a programming language. In this case,
you just need to adapt the scripts to suit your needs. A more advanced (and far more beneficial) use is to
take the book as an opportunity to learn corpus techniques along with a new programming language, killing
two birds with one stone. From my experience, the asset of the second option is that learning R will help
you become a better quantitative corpus linguist. In any case, just like learning how to play the piano, it is
only through regular practice that you will get familiar with R commands, R objects, R scripts, functions,
and even learn to recognize R oddities (Burns 2011).

http://stackoverflow.com/questions/tagged/r
http://www.r-bloggers.com/
http://www.inside-r.org/blogs
https://github.com/
https://stat.ethz.ch/mailman/listinfo/r-help


Chapter 2
R Fundamentals

Abstract This chapter is designed to get linguists familiar with the R environment. First, it explains how
to download and install R and R packages. It moves on to teach how to enter simple commands, use ready-
made functions, and write user-defined functions. Finally, it introduces basic R objects: the vector, the list,
the matrix, and the data frame. Although meant for R beginners, this chapter can be read as a refresher
course by those readers who have some experience in R.

2.1 Introduction

If you are new to R, this chapter is the place to start. If you have some experience with R or if you are too
impatient, feel free to skip those pages. You can still come back to them if you get stuck at some point and
hit the wall.

There are many other books that do a great job at introducing R in depth. This chapter is not meant to
compete with them. Nevertheless, because I firmly believe that getting familiar with R basics is a prerequisite
to understand what we can truly do as corpus linguists, I have designed this chapter to provide an introduction
to R that both covers the bare necessities and anticipates the kind of coding and data structures involved in
corpus linguistics.

2.2 Downloads and Installs

R is an interpreted language: the user types and enters the commands from a script and the system interprets
the commands. Most users run R from a window system: the commands are entered via the R console.

© Springer International Publishing AG 2017
G. Desagulier, Corpus Linguistics and Statistics with R, Quantitative Methods in the Humanities
and Social Sciences, DOI 10.1007/978-3-319-64572-8_2
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2.2.1 Downloading and Installing R

First, visit the Comprehensive R Archive Network (CRAN, https://cran.r-project.org/) and
download the most recent release of R.1

• If you are a Windows user, click on “Download R for Windows”, then on “base”. Download the setup
file (.exe) by clicking on “Download R 3.X.X for Windows” (where 3.X.X stands for the identification
number of the most recent release) and run it. The installation program gives you step by step instruc-
tions to install R in the default directory of your system. R should appear in the usual Programs folder.
Double click the icon to launch the R graphical user interface (GUI).

• If, like me, you are a Mac OS or macOS user, click on “Download R for (Mac) OS X” and select the
release that corresponds to your OS version (i.e. Snow Leopard, Lion, Moutain Lion, Mavericks, or
Yosemite). The file takes the form of an Apple software package whose name ends with .pkg. The
installer guides you until R is installed on your system. You should find it in the usual Applications
folder. Double click the icon to launch the R GUI.

• Finally, if you are a Linux user, click on “Download R for Linux”, open the parent directory that corre-
sponds to your distribution (Debian, Red Hat, SUSE, or Ubuntu), and follow the instructions until you
have the base installation of R on your system. To start R, type “R” at the command line.

You now have the base installation of R on your system. You may want to visit the CRAN website once
in a while to make sure you have the most updated release, which includes bugfixes. However, before you
upgrade, I advise you to make sure that all your packages (see Sect. 2.5 below) are compatible with that
version. Most of the time, packages are tested on beta versions of the most recent R release, but it pretty
much depends on how much time the authors have until the official version is released. Note that you can
always easily come back to older releases if incompatibility issues arise.

2.2.2 Downloading and Installing RStudio

RStudio is an Integrated Development Environment (IDE) for R. In other words, R must be installed first for
RStudio to run. RStudio has many added values, the main one in my view being a nice windowing display
that allows you to visualize the R console, scripts, plots, data, packages, files, etc. in the same environment.

Although I appreciate RStudio, as long as it remains free, open source, and faithful to the initial spirit of
those who created R, my own preference goes to the basic console version of R. I do not have any objective
reason for this, except that I did my first steps in R using the R console. My workflow is now based on the
console. In the remainder of the book, all instructions and illustrations will be relative to the console version
of R and entirely compatible with RStudio.

To download and install RStudio Desktop (Open Source Edition), visit https://www.rstudio.
com/ and follow the instructions.

1 At the time of writing, the latest R release is 3.3.1, “Bug in Your Hair”.

https://cran.r-project.org/
https://www.rstudio.com/
https://www.rstudio.com/
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2.2.3 Downloading the Book Materials

Now that R and/or RStudio are installed, it is time to download the book materials. You can download
a zipped archive (CLSR.zip for “Corpus Linguistics and Statistics with R”) from http://extras.
springer.com/2018/978-3-319-64570-4. The archive contains:

• the code for each chapter;
• input files.

Unzip the archive and place the resulting CLSR folder at the root of your hard drive, i.e. C: on Windows
and Macintosh HD on a Mac. One obvious reason for this location is that you will not have to type long
pathnames when you want to access the files in the folder.

2.3 Setting the Working Directory

Before proceeding further, you must set the working directory. The working directory is a folder which you
want R to read data from and store output into. Because you are probably using this book as a companion
in your first foray into quantitative linguistics with R, I recommend that you set the CLSR folder as your
working directory.

You are now about to enter your first R command. Commands are typed directly in the R console, right
after the prompt >. To know your default working directory, type getwd() and press ENTER.

> getwd()

Set the working directory by entering the path to the desired directory/folder:

> setwd("C:/CLSR") # Windows
> setwd("/CLSR") # Mac

Finally, make sure the working directory has been set correctly by typing getwd()again.2

2.4 R Scripts

Simple operations can be typed and entered directly into the R console. However, corpus linguistics gener-
ally involves a series of distinct operations whose retyping is tedious. To save you the time and trouble of
retyping the same lines of code and to separate commands from results, R users type commands in a script
and save the script in a file with a special extension (.r or .R). Thanks to this extension, your system knows
that the file must be opened in R.

To create a script file, there are several options:

• via the drop-down menu: File > New Document;
• via the R GUI: click on the blank page;

2 Note that if you have a PC running on Windows, you might be denied access to the C: drive. The default behavior of that
drive can be overridden.

http://extras.springer.com/2018/978-3-319-64570-4
http://extras.springer.com/2018/978-3-319-64570-4
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• via a text editor3: create a new text file and save it using the .r or .R extension.

R users store their scripts in a personal library for later use so that they can reuse whole or bits of scripts
for new tasks. I cannot but encourage you to do the same.

2.5 Packages

R comes equipped with pre-installed packages. Packages are external community-developed extensions in
the form of libraries. They add functionalities not included in the base installation such as extra statistical
techniques, extended graphical possibilities, data sets, etc. As of November 2016, the CRAN package
repository displays 9442 available packages.4 Like R releases, package versions are regularly updated. Over
time, some packages may become deprecated, and R will let you know with a warning message.

2.5.1 Downloading Packages

Packages can be downloaded in several ways. One obvious way is to use the drop-down menu from the R
GUI: Packages & Data > Package Installer. Another way is to enter the following:

> install.packages()

When you download a package for the first time, R prompts you to select a mirror, i.e. a CRAN-certified
server, by choosing from a list of countries. Select the country that is the closest to you. R then displays the
list of all available packages. Click on the one(s) you need, e.g. ggplot2. Alternatively, if you know the
name of the package you need, just enter:

> install.packages("ggplot2") # make sure you do not forget the quotes!

Finally, if you want to install several packages at the same time, type the name of each package between
quotes, and separate the names with a comma inside c():

install.packages(c("Hmisc", "FactoMineR"))

Note that R will sometimes install additional packages so that your desired package runs properly. These
helping packages are known as dependencies. You do not need to install your packages again when you
open a new R session.

In RStudio, the above works, but you may also want to use the drop-down menu: Tools > Install Packages
in the pop-up window, type the package name under Packages and check the box Install dependencies.

3 Free text editors abound. I recommend Notepad++ (https://notepad-plus-plus.org/) or Tinn-R (http://
www.sciviews.org/Tinn-R/) for Windows users, and TextWrangler (http://www.barebones.com/products
/textwrangler/) for Mac users.
4 See https://cran.r-project.org/web/packages/ for an updated count.

https://notepad-plus-plus.org/
http://www.sciviews.org/Tinn-R/
http://www.sciviews.org/Tinn-R/
http://www.barebones.com/products
/textwrangler/
https://cran.r-project.org/web/packages/
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2.5.2 Loading Packages

Downloading a package means telling R to store it in its default library. The package is still inactive.

> find.package("ggplot2")
[1] "/Library/Frameworks/R.framework/Versions/3.3/Resources/library/ggplot2"

You cannot use a package unless you load it onto R. This is how you do it:

> library(ggplot2) # this time, you do not need the quotes!

You will need to load the desired package(s) every time you start a new R session. Although this may
seem tedious at first, it is in fact a good thing. After spending some time using R, you will have accumulated
an important collection of packages, whose size would make R much slower if all were always active.

2.6 Simple Commands

The simplest task that R can do is probably a simple arithmetic calculation such as an addition,

> 3+2
[1] 5

a subtraction,

> 3-2
[1] 1

a multiplication,

> 3*2 # note the use of the asterisk *
[1] 6

a division,

> 3/2
[1] 1.5

or an exponentiation.

> 3^2 # 3 to the power of 2, note the use of the caret ^
[1] 9

The second line is R’s answer. The comment sign # tells R not to interpret what follows as code. It is very
convenient for commenting your code, as I have done twice above. The number between square brackets
before the result is R’s way of indexing the output. In the above example, the output consists of only one
element. When the result is long, indexing becomes more useful:

> 1:30 # a sequence of numbers from 1 to 30 by increment of 1.
[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
[16] 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Here, [1] indicates that 1 is the first element of the output, [16] that 16 is the sixteenth element.
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Like any pocket calculator, R gives priority to multiplications and divisions over additions and subtrac-
tions. Compare:

> 10*3-2
[1] 28

and

> 10*(3-2)
[1] 10

Interestingly, R has some built-in values and mathematical functions, many of which we will return to:

> abs(-13) # absolute value
[1] 13
> pi # the ratio of the circumference of a circle to its diameter
[1] 3.141593
> sqrt(8) # square root
[1] 2.828427
> round(7.23125)
[1] 7

You can nest these built-in functions:

> round(sqrt(pi))
[1] 2

As will soon appear, R is not just a powerful calculator. It is equally good at many other things such as
processing text, data structures, generating elaborate graphs, doing statistics, etc.

2.7 Variables and Assignment

Without a way of storing intermediate results, no programming language could work. This is why all pro-
gramming languages use variables. A variable is a named data structure stored in the computer’s working
memory. It consists of alphanumeric code to which some programming data is assigned. For instance, you
may store someone’s age (e.g. 40) in a variable named age.

> age <- 40

From now on, each type you type age, the language interprets the variable as standing for its value, i.e. 40.

> age
[1] 40

Like all programming languages, R stores programming data in variables via assignment. In the example
below, R assigns the numeric value 3 to the variable a and the numeric value 2 to the variable b thanks to
<-. The assignment operator <- is a combination of the “less than” symbol followed by the hyphen with no
space between them. The result is a left-facing arrow.5

> a <- 3 ; a
[1] 3
> b <- 2 ; b
[1] 2

5 Even though I do not use it in this book to avoid confusion, the equal sign = can also be used for assignment instead of <-.
Note that you can separate two or more commands with a semi-colon ;.
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From now on, each variable stands for and behaves like its value.

> a+1
[1] 4
> a/b
[1] 1.5

Variables must follow a specific syntax. You are free to choose the variable name, providing there is no
space in it. For example, example_sum is ok, but example sum is not. Also, you had better keep the
variable names short, to save time in case you need to retype them later. R is case-sensitive, which means
the variable a is different from the variable A. Regarding the assignment operator, it does not matter if you
place a space before and after <-. However, < and - should never be separated with a space.

2.8 Functions and Arguments

In R, you can use ready-made functions or create your own user-defined functions. Let us start with ready-
made functions.

2.8.1 Ready-Made Functions

Functions are preset instructions to R. You recognize a function by its name followed by a pair of brackets,
e.g. somefunctionname(). A function takes arguments, i.e. elements to which the instruction will be
applied and specifications as to how to apply these instructions. Arguments appear between the brackets of
the function. How many and what kinds of arguments a function takes depends on the function. To access
that information, just type help() and the name of the function in the brackets or just a question mark ?
followed by the function name with no space and no brackets (e.g. ?mean).6 All functions validated by
CRAN have a help page.

In the example below, mean is a function for the arithmetic mean. When you type ?mean, R opens a help
window for the function. You see that it minimally takes three arguments expressed in the form mean(x,
trim = 0, na.rm = FALSE, ...). The first argument (x) is an R object such as a numeric vector
of n observations. The second argument (trim) is “the fraction (0–0.5) of observations to be trimmed from
each end of x before the mean is computed”. The third argument (na.rm) is “a logical value indicating
whether NA values should be stripped before the computation proceeds”. In the example below, we ask R to
compute the arithmetic mean of a sequence of numbers from 1 to 20 incremented by one, with no trimming
and no removal of NA values (since there aren’t any). Arguments are specified explicitly:

> mean(1:20, trim = 0, na.rm = FALSE)
[1] 10.5

When the argument names are unspecified, R processes the arguments in the default order it expects them to
appear:

> mean(1:20, 0, FALSE)
[1] 10.5

6 When you type the function name and the first bracket, R recognizes the function and displays the list of all possible arguments
at the bottom of the console.
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Here, R understands that the first argument is numeric, the second argument is the value of trim, and the
third argument is the logical value of na.rm. As seen above, the default value of trim is 0 and the default
value of na.rm is FALSE. Since we do not change the default settings of these last two arguments, we do
not even need to include them:

> mean(1:20)
[1] 10.5

2.8.2 User-Defined Functions

In R, you can create your own user-defined function. A function involves three steps:

• defining the function;
• loading the function;
• running the function.

You may add a fourth step: fine-tuning the function.

2.8.2.1 Defining the Function

All functions follow this format:

> function_name <- function(arg1, arg2, ... ){
+ statements # some code
+ return(object) # the value returned by the function, i.e. the result
+ }

Here, function_name is the name of your function, which you are free to choose as long as it is not the
name of a preset function (e.g. sum, function, mean, plot, etc.). The function function_name()
takes arguments, here arg1, arg2. Use as many arguments as your function needs to run. You can
specify a default value for a given argument. For instance, arg3=piwould stipulate that the third argument
takes the default value 3.141593 unless specified otherwise. If you do not specify a default value, R expects
you to specify one when you run the function. The dots (...) allow for other arguments to be passed to
your function or from other functions or methods. For example, it is a convenient way of embedding other
functions in your own function. The curly brackets ({ }) delimit the code that the body of your function
consists of. Finally, the last line of code is the return value, that is to say the result of the function.

Suppose you want to create a very simple function that determines what percentage a given value x is of
another value y. As you may have guessed, this function takes two arguments: the value whose percentage
you want to determine (the numerator) and the value used as a reference point (the denominator). Let us call
this function percentage(). This is how you write it:

> percentage <- function(x, y, ...){
+ result <- (x*100)/y
+ result
+ }

If you want to reuse the function, copy and paste it in a text file and save the file using the following name
and extension: function_name.r. Right now, I advise you to store the function percentage() in a
file named mypercentage.r in CLSR/chap2.
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2.8.2.2 Loading the Function

Now that your function is defined, it is time to load it. You have two options: you can either copy and paste
the code of your function into the R console or you can source your function from a file using source().
If you adopt the second option, you have two more options. The first option is to prompt R to open a window
so as to select the file interactively. Note that there is a slight difference between Windows users and Mac
users. Where Windows users write choose.files() to open an interactive window, Mac users must
write file.choose():

> source(file=choose.files()) # Windows
> source(file=file.choose()) # Mac

The second option is to enter the path of your function file as an argument of source() with quotes:

> source("C:/CLSR/function_name.r") # Windows
> source("/CLSR/function_name.r") # Mac

These two options are available whenever a function has a file argument.

2.8.2.3 Running the Function

Now that your function is loaded into R, you can run it. Suppose you want to know what percent 24 is
of 256. Given how you assigned arguments in your function, 24 should be the first argument (x) and 256
should be the second argument (y). These arguments should follow this order in the function’s bracket:

> percentage(24, 256)
[1] 9.375

2.8.2.4 Fine-Tuning the Function

Your function works fine, but now that it is stored safely on your computer, I suggest we fine-tune it so that
its output looks nicer. First, let us reduce the number of decimals to two with round(). Minimally, this
function takes two arguments. The first argument is the numeric value you wish to round, and the second
argument is the number of decimal places. All we need to do is take the result, which is already saved in the
named data structure result, place it in first-argument position in round(), and set the second argument
to 2 to tell R we only want two decimals:

> rounded_res <-round(result, 2) # reduce the number of decimals to 2

Next, let us embed the result in some explanatory text, such as “x is X.XX percent of y”. To do it, we
can use the function cat(), which prints multiple objects, one after the other. As the argument sep=" "
indicates, each object is separated by a space.

> cat(x, "is", rounded_res,"percent of", y, sep=" ")

Because x, rounded_res, and y are named data structures, cat() will print their respective val-
ues. On the other hand, "is" and "percent of" are character strings, as signaled by the quotes
(see Sect. 2.9.1.1 below). The values and the text elements are separated by a space, as specified in the
sep argument (i.e. there is a space between the quotes). Now, the function looks like this:
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percentage <- function(x, y, ...){
result <- (x*100)/y
rounded_res <-round(result, 2)
cat(x, "is", rounded_res,"percent of", y)

}

Let us run it again to see the changes:

> percentage(24,256)
24 is 9.38 percent of 256

The output is definitely more user friendly. This fine-tuned function is already stored in your CLSR folder.
User-defined functions are interesting to corpus linguists because they can save a lot of time when it

comes to repeating identical operations. We will write functions on some occasions throughout the book.

2.9 R Objects

There are four main kinds of R objects: vectors, lists, matrices, and data frames. I will present each of them
in turn. I will also introduce a fifth object (factors) when I discuss data frames.

2.9.1 Vectors

The vector is the most basic R object. It is an ordered sequence of data elements. There are three types of
vectors: character vectors, numeric vectors, and logical vectors. Vectors also have a length.

2.9.1.1 Vector Modes

Vectors come in three modes: character, numeric, and logical vectors. Character vectors are strings of
characters. They are delimited by single or double quotes. In this book, I use double quotes:

> char_vec <- "a character vector" ; char_vec
[1] "a character vector"

Outside linguistics and text analysis, character vectors are mostly used for labels (e.g. in plots). Linguists
exploit character vectors more systematically in corpus compiling and corpus exploration. An interesting
property of character vectors that contain alphabetic characters is that you can easily convert the strings
between lower case and upper case. This is done with two functions: toupper() and tolower().

> char_vec <- toupper(char_vec) ; char_vec # converting char_vec from lower case to upper case
[1] "A CHARACTER VECTOR"
> char_vec <- tolower(char_vec) ; char_vec # converting char_vec back to lower case
[1] "a character vector"

Obviously, numeric vectors contain numbers, without quotes.

> num_vec <- 10 ; num_vec
[1] 10
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Logical vectors contain Boolean values, namely the strings TRUE and FALSE, without quotes.

> logi_vec <- FALSE ; logi_vec
[1] FALSE

When there are no quotes, R recognizes FALSE as a logical value. This value can be abbreviated to F:

> logi_vec <- F ; logi_vec
[1] FALSE

2.9.1.2 Vector Mode Conversion

One interesting feature regarding vectors (and parts of other R objects) is mode conversion thanks to three
functions: as.numeric(), as.character(), and as.logical(). A character vector can be con-
verted into a numeric vector if it contains elements that can be treated as numeric values. Below, three
vectors are concatenated into the vector v by means of the function c() (see Sect. 2.9.1.3).

> v <- c("3", "2", "1") ; v
[1] "3" "2" "1"

You can verify that v has indeed been recognized as a character vector by displaying its structure with either
mode(),

> mode(v)
[1] "character"

class(),

> class(v)
[1] "character"

or, better, str() (for “structure”).

> str(v) # display the vector mode of v + its internal structure
chr [1:3] "3" "2" "1"

You may also ask R if v is a character vector with is.character():

> is.character(v)
[1] TRUE

As you may have guessed from its syntax, this question is actually a function. R answers TRUE, which is its
way of saying “yes” (and FALSE means “no”). You may now proceed to the conversion and store it in R’s
memory by assigning as.numeric(v) to the vector v:

> v <- as.numeric(v) ; v
[1] 3 2 1

The functions str(v) and is.numeric(v) confirm that the conversion has been successful.

> str(v)
num [1:3] 3 2 1
> is.numeric(v)
[1] TRUE
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If the vector contains a mix of numeric and non-numeric values, the conversion will only apply to those
elements that can be converted into numeric values. For the other elements of the vector, NA values will be
generated (NA stands for “Not Applicable”), and R will let you know:

> v2 <- c("3","2","d", "f")
> v2 <- as.numeric(v2) ; v2
[1] 3 2 NA NA

A character vector can also be converted into a logical vector if it contains the following character strings:
“TRUE”, “FALSE”, “T”, “F”, “true”, “false”, “NA”, or “na”. R can easily recognize these character strings
and convert them into their Boolean equivalents.

> v3 <- c("TRUE", "FALSE", "T", "F", "true", "false", "NA", "na")
> v3 <- as.logical(v3) ; v3
[1] TRUE FALSE TRUE FALSE TRUE FALSE NA
[8] NA

Since you want to check if the vector is logical, use the is.logical() function.

> is.logical(v3)
[1] TRUE

A numeric vector can be converted into a character vector:

> v4 <- c(3, 2, 1)
> str(v4)
num [1:3] 3 2 1
> v4 <- as.character(v4)
> str(v4)
chr [1:3] "3" "2" "1"

The numbers now appear between quotes, which means they have been transformed into characters. A
numeric vector can also be transformed into a logical vector. In this case, 0 will be interpreted as FALSE
and all the other numbers as TRUE:

> v5 <- c(0,1,2,3,10,100,1000)
> str(v5)
num [1:7] 0 1 2 3 10 100 1000
> v5 <- as.logical(v5)
> str(v5)
logi [1:7] FALSE TRUE TRUE TRUE TRUE TRUE ...

When a logical vector is converted into a character vector, the Boolean values TRUE and FALSE are
transformed into character strings, as evidenced by the presence of quotes. NA remains unchanged because
R thinks you want to signal a missing value:

> v6 <- c(TRUE, TRUE, T, F, FALSE, NA)
> str(v6)
logi [1:6] TRUE TRUE TRUE FALSE FALSE NA
> v6 <- as.character(v6)
> str(v6)
chr [1:6] "TRUE" "TRUE" "TRUE" ...

When a logical vector is converted into a numeric vector, TRUE becomes 1 and FALSE becomes 0. NA
remains unchanged for the same reason as above:

> v7 <- c(TRUE, TRUE, T, F, FALSE, NA)
> str(v7)
logi [1:6] TRUE TRUE TRUE FALSE FALSE NA
> v7 <- as.numeric(v7)
> str(v7)
num [1:6] 1 1 1 0 0 NA
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Before running a concatenation, the function c() coerces its arguments so that they belong to the same
mode. When there is a competition between several modes, the character mode is always given the highest
priority,

> v8 <- c(0, 1, "sixteen", TRUE, FALSE) # numeric, character, and logical values
> str(v8)
chr [1:5] "0" "1" "sixteen" "TRUE" ...

and the numeric mode has priority over the logical mode.

> v9 <- c(0,1,16,TRUE, FALSE) # numeric and logical values
> str(v9)
num [1:5] 0 1 16 1 0

2.9.1.3 Vector Lengths

Vectors have a length, which you can measure with the function length(). It takes as argument a vector
of any mode and length and returns a numeric vector of length 1.7 All the vectors seen in Sect. 2.9.1.1 are of
length 1 because they consist of one element.

> length(char_vec)
[1] 1
> length(num_vec)
[1] 1
> length(logi_vec)
[1] 1

If you are new to R, you may find the result surprising for char_vec because the vector consists of
three words separated by spaces. You may expect a length of 3. Yet, length() tells us that the vector
consists of one element. This is because R does not see three words, but a single character string. Because R
does not make an a priori distinction between spaces and word characters (or letters), we are going to have
to tell R what we consider a word is at some point.8

R has a function to count the number of characters in a string: nchar(), which minimally takes the
vector as an argument. If R treated only word characters as arguments, nchar() would do the count as
follows. . .

a c h a r a c t e r v e c t o r
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

. . . and nchar(char_vec) would return 16. Since nchar() treats spaces as characters, it counts char-
acters as follows. . .

a c h a r a c t e r v e c t o r
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

. . . and nchar(char_vec) returns 18.

7 Its argument can also be any R object, under conditions. See ?length.
8 The question of what counts as a word is not trivial. Haspelmath (2011) argues that a word can only be “defined as a language-
specific concept”. Corpus linguists must therefore provide the computer with an ad hoc definition for each language that they
work on.
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> nchar(char_vec)
[1] 18

To sum up, char_vec is a vector of length 1 that consists of 18 characters. For char_vec to be one
vector of length 3, it would have to be the combination of three vectors of length 1. Let us create these
vectors:

> vector1 <- "a"
> vector2 <- "character"
> vector3 <- "vector"

To combine n vectors of length 1 to one vector of length n, use the function c() (for “combine”):

> vector4 <- c(vector1, vector2, vector3) ; vector4
[1] "a" "character" "vector"

Here is an alternative:

> vector4 <- c("a","character","vector") ; vector4
[1] "a" "character" "vector"

This time, the length of vector4 is 3:

> length(vector4)
[1] 3

The c() function also works with numeric and logical vectors:

> vector5 <- c(1,2,3,4,5,10,100,1000) # a numeric vector of length 8
> length(vector5)
[1] 8
> vector6 <- c(TRUE, TRUE, FALSE, FALSE, NA) # a logical vector of length 5
> length(vector6)
[1] 5

The function paste() is specific to character vectors. Its first argument is one or more R objects to be
converted to character vectors. Its second argument is sep, the character string used to separate the vector
elements (the space is the default). To merge several character vectors of length 1 into a single character
vector of length 1, sep must have its default setting, i.e. a space.

> paste("now", "is", "the", "winter", "of", "our", "discontent", sep=" ")
[1] "now is the winter of our discontent"

The third, optional, argument of paste() is collapse, the character string used to separate the elements
when you want to convert a vector of length n into a vector of length 1. In this case, you must set collapse
to a space because the default is NULL.

> richard3 <- c("now", "is", "the", "winter", "of", "our", "discontent")
> paste(richard3, collapse=" ")
[1] "now is the winter of our discontent"

2.9.1.4 Manipulating Vectors

Creating a vector manually is simple, and you already know the drill:

• for a vector of length 1, enter a character/numeric/logical value and assign it to a named vector with <-;
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• for a vector of length n > 1, concatenate character/numeric/logical values with c() and assign them to
a named vector with <-.

Let me show you a few more functions that come in handy when you create or manipulate vectors.
The function seq() allows you to create a numeric vector that contains a regular sequence of numbers.

Minimally, it takes two arguments. The first argument (from) is the starting point of the sequence. The
second argument (to) is the endpoint of your sequence. By default, the increment is 1. For example,
seq(1,10) generates a sequence of ten integers comprised between 1 and 10:

> seq(1,10)
[1] 1 2 3 4 5 6 7 8 9 10

When the increment is 1, there is a shortcut version of seq():

> 1:10
[1] 1 2 3 4 5 6 7 8 9 10

Optionally, you can change the increment by adding a third argument (by). Let us set it to 2:

> seq(1,10,2)
[1] 1 3 5 7 9

The function rep() replicates the value(s) in its first argument, which can be a vector. The second
argument specifies how many times the first argument is replicated.

> rep("here we go", 3)
[1] "here we go" "here we go" "here we go"

Above, the character vector of length 1 "here we go" is replicated three times in a vector of length 3.
Do you see what happens when a sequence is embedded into a replication?

> rep(1:3, 3)
[1] 1 2 3 1 2 3 1 2 3

The sequence 1 2 3 is replicated three times in a row.
Vectors can be sorted with sort().9 Suppose you have a vector containing the names of some major

linguists.

> linguists <- c("Langacker", "Chomsky", "Lakoff", "Pinker", "Jackendoff", "Goldberg")

To sort the names in ascending alphabetical order, just place linguists in argument position.

> sort(linguists)
[1] "Chomsky" "Goldberg" "Jackendoff"
[4] "Lakoff" "Langacker" "Pinker"

If you want to sort the names in descending alphabetical order, add decreasing=TRUE.

> sort(linguists, decreasing=TRUE)
[1] "Pinker" "Langacker" "Lakoff"
[4] "Jackendoff" "Goldberg" "Chomsky"

Suppose now that you have a vector with the years of birth of the participants in a psycholinguistic
experiment.

9 In linguistics, you generally sort character and numeric vectors.
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> years <- c(1990, 1995, 1988, 1961, 1937, 1992, 1976, 1977)

Again, use sort() to sort the years in ascending or descending order.

> sort(years) # ascending order
[1] 1937 1961 1976 1977 1988 1990 1992 1995
> sort(years, decreasing = TRUE) # descending order
[1] 1995 1992 1990 1988 1977 1976 1961 1937

When a vector is of length n > 1, you can easily extract one or several elements from the vector. Extrac-
tion is made possible thanks to how R indexes the internal structure of vectors. It is done thanks to square
brackets []. Let us first create a character vector of length 6:

> v10 <- c("I", "bet", "you", "already", "like", "R")

Each element of the vector is indexed as follows:

I bet you already like R
[1] [2] [3] [4] [5] [6]

To extract the fourth element, which we expect to be "already", all we need to do is specify the index:

> v10[4]
[1] "already"

To extract several parts of the vector, embed c() and make your selection:

> v10[c(1, 5, 6)]
[1] "I" "like" "R"
> v10[c(3, 5, 6)]
[1] "you" "like" "R"

You can also rearrange a selection of vector elements:

> v10[c(1, 5, 3)]
[1] "I" "like" "you"

The same techniques also allows for the substitution of vector elements:

> v10[c(2,5)] <- c("know", "love"); v10
[1] "I" "know" "you" "already"
[5] "love" "R"

An interesting property of vector elements is that you can name them with the function names(). This
function does not appear to the right of <- but to its left. Its argument is the vector whose elements you want
to name.

> v11 <- c("thank you", "merci", "danke", "grazie", "gracias")
> names(v11) <- c("English", "French", "German", "Italian", "Spanish")

Now, each element of v11 is named,

> v11
English French German Italian

"thank you" "merci" "danke" "grazie"
Spanish

"gracias"

and you may use the names to extract vector elements.
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> v11[c("French", "Spanish")]
French Spanish

"merci" "gracias"

When two vectors of different lengths are involved in an operation, R recycles the values of the shorter
vector until the length of the longer vector is matched. This is called recycling. Do you understand what
happens below?

> c(1:5)*2
[1] 2 4 6 8 10

The shorter vector 2 is recycled to multiply each element of the sequence vector by 2. Here is another
example where the length of the shorter vector is greater than 1. Again, do you understand what R does?

> c(1:5)*c(2,3)
[1] 2 6 6 12 10

R multiplies each element of the sequence by either 2 or 3, in alternation: 1× 2, 2× 3, 3× 2, 4× 3, and
5× 2.

2.9.1.5 Logical Operators

Thanks to logical operators, you can tell R to decide which vector elements satisfy particular conditions.10

Tab. 2.1 displays the most common logical operators.

Table 2.1: Logical operators in R

operator what it means

< less than
<= less than or equal to
> greater than
>= greater than or equal to
== exactly equal to
!= not equal to
!x Not x

x | y x OR y
x & y x AND y

Often, logical operators are used as arguments of the function which(), which outputs the positions of
the elements in the vector that satisfy a given condition.

> v12<-seq(0,20,2) ; v12 # a sequence from 0 to 20 with increment 2
[1] 0 2 4 6 8 10 12 14 16 18 20
> which(v12>=6) # which element is greater than or equal to 6?
[1] 4 5 6 7 8 9 10 11

10 Logical operators are not specific to R. They are found in most programming languages.
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Bear in mind that which outputs the positions of the elements that satisfy the condition “greater than or
equal to 6”, not the elements themselves.

> which(v12 < 4 | v12 > 14) # which elements of v12 are less than 4 OR greater than 14?
[1] 1 2 9 10 11
> which(v12 > 2 & v12 < 10) # which elements of v12 are greater than 2 AND less than 10?
[1] 3 4 5
> which(v12!=0) # which elements of v12 are not 0?
[1] 2 3 4 5 6 7 8 9 10 11

Logical operators also work with character vectors.

> which(v11!="grazie") # which elements of v11 are not "grazie"
English French German Spanish

1 2 3 5
> which(v11=="danke"|v11=="grazie") # which elements of v11 are "danke" or "grazie"
German Italian

3 4

Each time, the names are preserved. They appear on top of the relevant vector positions.

2.9.1.6 Loading Vectors

If the vector is saved in an existing file, you can load it using scan(). In the example below, we assume
the vector to be loaded is a character vector.

> load_v <- scan(file=choose.files(), what="char", sep="\n") # Windows
> load_v <- scan(file=file.choose(), what="char", sep="\n") # Mac

As you already know, choose.files() and file.choose() open a window to select the file inter-
actively. The argument file can also be a path. The code below opens an example character vector stored
in the text file named example_character_vector.txt in your CLSR folder:

> load_v <- scan(file="C:/CLSR/chap2/example_character_vector.txt", what="char", sep="\n") # Windows
> load_v <- scan(file="/CLSR/chap2/example_character_vector.txt", what="char", sep="\n") # Mac

The argument what is set to "char", which stands for “character strings”. Finally, sep is set to "\n" for
“new line”. This means that R uses line breaks to delimit vector elements. In other words, scan() expects
to read new-line delimited vector elements. Given this specification, the vector load_v has three elements
(= load_v is of length 3):

> length(load_v)
[1] 3

Other common separators are: " " (a space) and "\t" (a tab stop). If you set sep to a space " ". . .

> load_v2 <- scan(file="C:/CLSR/chap2/example_character_vector.txt", what="char", sep=" ") # Windows
> load_v2 <- scan(file="/CLSR/chap2/example_character_vector.txt", what="char", sep=" ") # Mac

. . . the length of the vector changes accordingly.

> length(load_v2)
[1] 19
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2.9.1.7 Saving Vectors

To save a vector, use the cat() function seen above (Sect. 2.8.2.4).

> cat(... , file, sep = " ", append = FALSE)

• ...: an R object (here the vector you want to output);
• file: the file to print to (if you do not provide it, the vector is printed onto the R console);
• sep: the separator to append after each element (because generally you want each vector to have its

own line, it is best to set sep to "\n");
• append: whether you want to append the output to pre-existing data in a file.

Let us save v11 in a plain text file named my.saved.vector.txt in your CLSR folder. The file does
not exist yet, but R will create it for you because you have provided the .txt extension.

> cat(v11, file="C:/CLSR/chap2/my.saved.vector.txt", sep="\n") # Windows
> cat(v11, file="/CLSR/chap2/my.saved.vector.txt", sep="\n") # Mac

Open your CLSR folder to check if the vector has been saved properly.

2.9.2 Lists

Many R functions used in corpus linguistics and statistics return values that are lists. A list is a data structure
that can contain R objects of varying modes and lengths. Suppose you have collected information regarding
six corpora.11 For each corpus, you have the name, the size in million words, and some dialectal information
as to whether the texts are in American English. You also have the total size of all the corpora. Each item is
stored in a separate vector.

> corpora <- c("COCA", "COHA", "TIME", "American Soap", "BNC", "Strathy")
> size <- c(450, 400, 100, 100, 100, 50)
> us_english <- c(TRUE, TRUE, TRUE, TRUE, FALSE, FALSE)
> total_size <- 1200

All these vectors can be stored in a list using the list() function.

> yourlist <- list(corpora, size, us_english, total_size)

List components can be named as you create the list.

> yourlist <- list(corpora=corpora, size_in_M_words=size, is_dialect_us=us_english,
+ total_size=total_size)
> yourlist
$corpora
[1] "COCA" "COHA"
[3] "TIME" "American Soap"
[5] "BNC" "Strathy"

$size_in_M_words
[1] 450 400 100 100 100 50

$is_dialect_us

11 All of them can be accessed here: http://corpus.byu.edu/.

http://corpus.byu.edu/
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[1] TRUE TRUE TRUE TRUE FALSE FALSE

$total_size
[1] 1200

Components can be accessed by name using $, or by position using double square brackets [[]].

> yourlist$size # the second element accessed by name
[1] 450 400 100 100 100 50
> yourlist[[2]] # the second element accessed by position
[1] 450 400 100 100 100 50

Sometimes, you will want to extract individual components from the list so as to manipulate them. This
is done with unlist().

> unlist(yourlist[[2]])
[1] 450 400 100 100 100 50

The output is a vector containing the values of the second list component.

2.9.3 Matrices

A matrix is a two-dimensional table. Tab. 2.2 is a good example of what can be loaded into R in the form
of a matrix. Its entries are the frequency counts of three patterns (<each + N>, <every + N>, and <each and
every + N>) in three corpora of English: the British National Corpus, the Corpus of Contemporary American
English, and the Corpus of Web-Based Global English.12

Table 2.2: An example matrix (<each + N>, <every + N>, and <each and every + N> in three corpora of
English)

BNC COCA GloWbE

each + N 30708 141012 535316
every + N 28481 181127 857726
each and every + N 140 907 14529

To create a matrix, use the matrix() function.

> matrix(data = NA, nrow = 1, ncol = 1, byrow = FALSE,
+ dimnames = NULL)

• x: a vector of values
• nrow: the number of rows
• ncol: the number of columns
• byrow: how you enter the values in the matrix
• dimnames: a list containing vectors of names for rows and columns

12 http://corpus.byu.edu/.

http://corpus.byu.edu/
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To make a matrix from Tab. 2.2, start with the vector of values. By default, the matrix is filled by columns
(from the leftmost to the rightmost column, and from the top row to the bottom row).

> values <- c(30708, 28481, 140, 141012, 181127, 907, 535316, 857726, 14529)

Embed the vector in the matrix() function.

> mat <- matrix(values, 3, 3); mat
[,1] [,2] [,3]

[1,] 30708 141012 535316
[2,] 28481 181127 857726
[3,] 140 907 14529

The data is indexed in a [row, column] fashion. To access the value in the second row of the third column
(i.e. 857726), enter:

> mat[2,3]
[1] 857726

This allows you to perform calculations. For example, if you want to know what percentage the fre-
quency of each + N in the BNC is of the frequency of the same pattern in the GloWbE, you may reuse
the percentage() function from Sect. 2.8.2.

> percentage(mat[1,1], mat[1,3])
30708 is 5.74 percent of 535316

You may calculate row sums and column sums with rowSums() and colSums() respectively.

> rowSums(mat)
[1] 707036 1067334 15576
> colSums(mat)
[1] 59329 323046 1407571

You can sum the whole matrix with sum()

> sum(mat)
[1] 1789946

The result is the sum of all row totals or column totals.
Optionally, you can add the row names and the column names with the argument dimnames. These

names should be stored in two vectors beforehand.

> row_names <- c("each + N", "every + N", "each and every + N")
> col_names <- c("BNC", "COCA", "GloWbE")

Bear in mind that dimnamesmust be a list of length 2.13 The vectors row_names and col_namesmust
therefore be placed in a list.

> mat<-matrix(values, 3, 3, dimnames=list(row_names, col_names))
> mat

BNC COCA GloWbE
each + N 30708 141012 535316
every + N 28481 181127 857726
each and every + N 140 907 14529

13 If dimnames is of length 1, it is assumed that the list contains only row names.
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2.9.4 Data Frames (and Factors)

In quantitative corpus linguistics, analyses involve a set of related observations which are grouped into a
single object called a data set. For example, you might collect information about two linguistic units so as
to compare them in the light of descriptive variables (qualitative and/or quantitative).

2.9.4.1 Ready-Made Data Frames in Plain Text Format

For illustrative purposes, let me anticipate on a case study that we will come back to: quite and rather in
the British National Corpus. Typically, you extract observations containing the units and you annotate each
observation for a number of variables. With regard to quite and rather, these variables can be:

• the name of the corpus file and some information about it,
• the intensifier in context (quite or rather),
• the intensifier out of context,
• the syntax of the intensifier (preadjectival or pre-determiner),
• the intensified adjective co-occurring with the intensifier and the NP modified by the adjective,
• the syllable count of the adjective and the NP.

The above translates into a data set, sampled in Tab. 2.3. If you store the data set in a matrix, with observa-
tions in the rows and variables in the columns, you will benefit from the rigorous indexing system to access
the data, but the matrix will find it difficult to accommodate different modes. It will for instance coerce nu-
meric variables such as syllable count ADJ and syllable count NP into character variables,
which we do not necessarily want (don’t forget, you decide and R executes). This is where the data frame
steps in: it combines the ease of indexing of a matrix with the accommodation of different modes, providing
each column displays variables of a single mode.

Table 2.3: A sample data frame (quite and rather in the BNC)

corpus_file corpus_file_info exact match intensifier syntax adjective syllable_count_adj NP syllable_count_NP

KBF.xml S conv a quite ferocious mess quite preadjectival ferocious 3 mess 1
AT1.xml W biography quite a flirty person quite predeterminer flirty 2 person 2
A7F.xml W misc a rather anonymous name rather preadjectival anonymous 4 name 1
ECD.xml W commerce a rather precarious foothold rather preadjectival precarious 4 foothold 2
B2E.xml W biography quite a restless night quite predeterminer restless 2 night 1
AM4.xml W misc a rather different turn rather preadjectival different 3 turn 1
F85.xml S unclassified a rather younger age rather preadjectival younger 2 age 1
J3X.xml S unclassified quite a long time quite predeterminer long 1 time 1
KBK.xml S conv quite a leading light quite predeterminer leading 2 light 1
EC8.xml W nonAc: humanities arts a rather different effect rather preadjectival different 3 effect 2

The sample data set is available in your CLSR folder in a file named sample.df.txt. As its extension
indicates, it is a text file.14 Open it with your regular text editor and make sure that it shows invisibles such
as spaces and tab stops (for example, in TextWrangler: View > Text Display > Show Invisibles).

14 Beside .txt, .csv (for “comma separated file”) is a common extension for data frames stored in plain text format.
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You should see something like Fig. 2.1, where triangles represent tab stops and the symbol “¬” new lines.
Each column is separated by a tab stop. The text file is hardly legible as such, but if you import the file into
a spreadsheet software, each element delimited with a tab stop will be assigned its own column. As you can
see in Fig. 2.2, the spreadsheet display is more user friendly.

Fig. 2.1: The sample data frame stored in plain text format when tab stops and new lines are made visible

Fig. 2.2: The sample data frame displayed in a spreadsheet software

When you export corpus observations into a data frame for later treatment in R or in a spreadsheet
software, or when you load a ready-made data frame into R, you must specify a delimiter, as you will see
below. Beside tab stops, common delimiters are: the comma, the semicolon, the space, and the whitespace.

To load a data frame, you may use read.table(). Because it has a large array of argument options,
it is very flexible (type ?read.table to see them), but for the same reason, it is sometimes tricky to use.
The essential arguments of read.table() are the following:

> read.table(file, header = TRUE, sep = "\t", row.names=NULL)

• file: the path of the file from which the data set is to be read;
• header=TRUE: your dataset contains column headers in the first row; R sets it to TRUE automatically

if the first row contains one fewer field than the number of columns;
• sep="\t": the field delimiter (here, a tab stop);
• row.names=NULL: by default, R numbers each row.

The tricky part concerns the compulsory attribution of row names. If you specify row.names, you must
provide the row names yourself. They can be in a character vector whose length corresponds to the number
of rows in your data set. The specification can also be the number of the column that contains the row names.
For example, row.names=1 tells R that the row names of the data frame are in the first column. When
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you do this, you must be aware that R does not accept duplicate row names or missing values. Imagine
you collect 1000 utterances from 4 speakers, each speaker contributing 250 utterances. You cannot use the
speakers’ names as row names because each will be repeated 250 times, and the data frame will not load.
Because sample.df.txt does not have a column that contains row names, we stick to the default setting
of row.names. To load it, we just enter the following:

> df <- read.table("C:/CLSRchap2/sample.df.txt", header=TRUE, sep="\t") # Windows
> df <- read.table("/CLSR/chap2/sample.df.txt", header=TRUE, sep="\t") # Mac

In my experience, specialized implementations of read.table(), such as read.csv() or read.
delim(), are easier to use. My favorite is read.delim().

> read.delim(file, header = TRUE, sep = "\t", quote = "\"",
+ dec = ".", fill = TRUE, comment.char = "", ...)

When your text file is formatted as in Fig. 2.1, loading a data frame always works with read.delim()
and its default argument settings.

> df <- read.delim("C:/CLSR/chap2/sample.df.txt") # Windows
> df <- read.delim("/CLSR/chap2/sample.df.txt") # Mac

You may now inspect the structure of the data frame by entering str(df).

> str(df)
'data.frame': 10 obs. of 9 variables:
$ corpus_file : Factor w/ 10 levels "A7F.xml","AM4.xml",..: 9 3 1 6 4 2 7 8 10 5
$ corpus_file_info : Factor w/ 6 levels "S conv","S unclassified",..: 1 3 5 4 3 5 2 2 1 6
$ match : Factor w/ 10 levels "a quite ferocious mess ",..: 1 7 2 5 10 4 6 9 8 3
$ intensifier : Factor w/ 2 levels "quite","rather": 1 1 2 2 1 2 2 1 1 2
$ construction : Factor w/ 2 levels "preadjectival",..: 1 2 1 1 2 1 1 2 2 1
$ adjective : Factor w/ 9 levels "anonymous","different",..: 3 4 1 7 8 2 9 6 5 2
$ syllable_count_adj: int 3 2 4 4 2 3 2 1 2 3
$ NP : Factor w/ 10 levels "age","effect",..: 5 8 6 3 7 10 1 9 4 2
$ syllable_count_NP : int 1 2 1 2 1 1 1 1 1 2

The function outputs:

• the number of observations (rows),
• the number of variables (columns),
• the type of each variable.

The data set contains two integer type variables15 and seven factor type variables. A factor variable contains
either nominal or ordinal values (the factors in this data set has only nominal variables). Nominal values
are unordered categories whereas ordinal variables are ordered categories with no quantification between
them.16 By default, R converts all nominal and ordinal variables into factors. Factors have levels, i.e. unique
values. For example, the factor corpus_file_info has six unique values, three of which appear twice
(S conv, W biography, and S unclassified).

Because a data frame is indexed in a [row, column] fashion (like a matrix), extracting data points is easy
as pie. For instance, to extract the adjective restless, which is in the fifth row of the sixth column, enter:

15 Integer is a subtype of numeric.
16 If you grade people’s language proficiency on a scale from 0 to 5, you have an ordinal variable containing ordered values (5
is higher than 4, which is higher than 3, etc.), but the difference between these values is not proportional. For example, someone
whose proficiency level is graded as 3 is not necessarily three times as proficient as someone whose proficiency level is graded
as 1.
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> df[5,6]
[1] restless
9 Levels: anonymous different ... younger

or use the variable name between quotes.

> df[5,"adjective"]
[1] restless
9 Levels: anonymous different ... younger

To extract a variable from the data frame, use the $ symbol.17

> df$adjective
[1] ferocious flirty anonymous precarious
[5] restless different younger long
[9] leading different
9 Levels: anonymous different ... younger

To extract the adjective restless, just add the row number between square brackets.

> df$adjective[5]
[1] restless
9 Levels: anonymous different ... younger

2.9.4.2 Generating a Data Frame Manually

When your data frame is small, you can enter the data manually. Suppose you want to enter Tab. 2.4 into R.
Four corpora of English are described by three variables:

• the size in million words,
• the variety of English,
• the period covered by the corpus.

Table 2.4: Another example data frame

corpus size variety period

BNC 100 GB 1980s-1993
COCA 450 US 1990-2012
Hansard 1600 GB 1803-2005
Strathy 50 CA 1970s-2000s

First, generate four vectors, one for each column of the data frame.

> corpus <- c("BNC", "COCA", "Hansard", "Strathy")
> size <- c(100, 450, 1600, 50)
> variety <- c("GB", "US", "GB", "CA")
> period <- c("1980s-1993", "1990-2012", "1803-2005", "1970s-2000s")

17 As seen in Sect. 2.9.2, the dollar symbol $ is also used to access list elements. This is because a data frame is similar to a list
(enter mode(df) to see that the data frame is recognized as a list with regards to its mode).



40 2 R Fundamentals

You may now combine these four vectors into a data frame with the data.frame() function. If you want
to use the values in the first column as row names, add the argument row.names to the function.

> df.manual <- data.frame(size, variety, period, row.names = corpus)
> df.manual

size variety period
BNC 100 GB 1980s-1993
COCA 450 US 1990-2012
Hansard 1600 GB 1803-2005
Strathy 50 CA 1970s-2000s

If you want the values in the first column to be treated as data points, not as row names, do not provide
row.names.

> df.manual.2 <- data.frame(corpus, size, variety, period)
> df.manual.2 # R numbers the rows

corpus size variety period
1 BNC 100 GB 1980s-1993
2 COCA 450 US 1990-2012
3 Hansard 1600 GB 1803-2005
4 Strathy 50 CA 1970s-2000s

To export your data frame, use the write.table() function.18 Just like read.table(), write.
table() is elaborate and flexible (enter ?write.table to see all the arguments that the function can
take). For the task at hand, the following arguments will do:

> write.table(... , file, quote=FALSE, sep="\t", row.names=F)

• ...: the R object to be exported as a data frame;
• file: the file to print to (if you do not provide it, the data frame is printed onto the R console);
• quote: whether you want character or factor columns to be surrounded by double quotes (TRUE) or

not (FALSE);
• sep: the separator to append after each row element (here, a tab stop);
• row.names: if your first column contains data points (not row names), set row.names to FALSE.

To export df.manual, provide col.names=NA for a proper column alignment because corpus is used
for row names.

> write.table(df.manual, file="C:/CLSR/chap2/my.saved.df.txt", quote=FALSE,
+ sep="\t", col.names=NA) # Windows
> write.table(df.manual, file="/CLSR/chap2/my.saved.df.txt", quote=FALSE,
+ sep="\t", col.names=NA) # Mac

To export df.manual.2, you have two options. If you want to preserve row numbering, provide col.
names=F. Row numbers have a separate column.

> write.table(df.manual.2, file="C:/CLSR/chap2/my.saved.df.2a.txt", quote=FALSE,
+ sep="\t", col.names=NA) # Windows
> write.table(df.manual.2, file="/CLSR/chap2/my.saved.df.2a.txt", quote=FALSE,
+ sep="\t", col.names=NA) # Mac

If you do not want row numbering, provide row.names=FALSE.

> write.table(df.manual.2, file="C:/CLSR/chap2/my.saved.df.2b.txt", quote=FALSE,
+ sep="\t", row.names=FALSE) # Windows
> write.table(df.manual.2, file="/CLSR/chap2/my.saved.df.2b.txt", quote=FALSE,
+ sep="\t", row.names=FALSE) # Mac

18 Although write.csv() exists, there is no write.delim() equivalent.
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Your data frames are now saved in tab-delimited text format in your CLSR folder. Open my.saved.
df.txt, my.saved.df.2a.txt, and my.saved.df.2b.txt with your spreadsheet software for
inspection.

2.9.4.3 Loading and Saving a Data Frame as an R Data File

If you do not need to process or edit your data frame with a spreadsheet software, it is faster to load and
save the data frame as an R data file with the .rds extension. To save df.manual.2 as an R data file
use saveRDS(). The first argument is the named data structure containing the data frame. The second
argument is the path to the file to save the data frame to.

> saveRDS(df.manual.2, file="C:/CLSR/chap2/df.manual.2.rds") # Windows
> saveRDS(df.manual.2, file="/CLSR/chap2/df.manual.2.rds") # Mac

The R data file is now saved in your CLSR folder. To load the file, use the readRDS() function. Its
argument is the path of the file from which to read the data frame.

> readRDS("C:/CLSR/chap2/df.manual.2.rds") # Windows
> readRDS("/CLSR/chap2/df.manual.2.rds") # Mac

corpus size variety period
1 BNC 100 GB 1980s-1993
2 COCA 450 US 1990-2012
3 Hansard 1600 GB 1803-2005
4 Strathy 50 CA 1970s-2000s

2.9.4.4 Converting an R Object into a Data Frame

Some R objects can easily be converted into a data frame thanks to the as.data.frame() function. The
only requirement is that the R object be compatible with the structure of a data frame. Let us convert the
matrix mat into a data frame.

> mat.as.df <- as.data.frame(mat)
> str(mat.as.df)
'data.frame': 3 obs. of 3 variables:
$ BNC : num 30708 28481 140
$ COCA : num 141012 181127 907
$ GloWbE: num 535316 857726 14529

2.10 for Loops

A loop iterates over an object n times to execute instructions. It is useful when the R object contains a very
large number of elements. The general structure of a for loop depends on whether you have one instruction
(one line of code) or more than one. With one instruction, the structure is the following.

> for (i in sequence) instruction
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When there are several instructions, you need curly brackets to delimit the code over which the loop will
work.

> #for (i in sequence) {
> # instruction 1 # first line of code
> # instruction 2 # second line of code
> # ... # etc.
> #}

The loop consists of the keyword for followed by a pair of brackets. These brackets contain an identifier,
here i (any name is fine). The identifier is followed by in and a vector of values to loop over. The vector of
values is a sequence whose length is the number of times you want to repeat the instructions. The identifier
i takes on each and every value in this vector. The instructions are between curly braces. The closing brace
marks the exit from the loop.

Because the above paragraph is quite a handful, let us use a minimal example. Take the set of the first
five letters of the alphabet.

> letters[1:5]
[1] "a" "b" "c" "d" "e"

The for loop in the code below

> for (i in letters[1:5]) print(i)
[1] "a"
[1] "b"
[1] "c"
[1] "d"
[1] "e"

is equivalent to the following:

> i <- "a"
> print(i)
[1] "a"
> i <- "b"
> print(i)
[1] "b"
> i <- "c"
> print(i)
[1] "c"
> i <- "d"
> print(i)
[1] "d"
> i <- "e"
> print(i)
[1] "e"

Obviously, the for loop is more economical as i takes on the value of “a”, “b”, “c”, “d”, and “e” succes-
sively. With an additional line of code, the curly brackets are required.

> for (i in letters[1:5]) {
+ i <- toupper(i)
+ print(i)
+ }
[1] "A"
[1] "B"
[1] "C"
[1] "D"
[1] "E"

Loops are commonly used to cycle over rows of matrices or data frames (especially if there are many of
rows). They also come in handy when you need to process a high number of files. The identifier is used to
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take on each and every value in a vector that contains the names of the corpus files. As with almost anything
in R, for loops can be nested.

One known issue with loops is that they get slower as the number of iterations increases. If the object to
loop over is very large, make sure that you keep as many instructions outside the loop as you can. Because
of this, loops have a bad reputation among R users. Indeed, you will sometimes have to look for alternatives
to for loops: e.g. the iterators package, or the functions apply(), lapply(), tapply(), or
sapply().

There are two other kinds of loops: while loops and repeat loops. To know more about them, enter
?Control in R.

2.11 if and if...else Statements

If you want to express a condition in R, use if statements. There are two kinds of if statements: simple
if statements and if...else statements. Of course, if statements can be nested.

2.11.1 if Statements

The general structure of an if statement depends on the number of statements. If there is a unique statement,
the structure is the following.

> if (condition) statement

If there are several statements, you need to use curly brackets.

> # if (condition) {
> # statement 1 # first statement
> # statement 2 # second statement
> # ...
> #}

The vector integer contains negative and positive integers.

> integer <- c(-7, -4, -1, 0, 3, 12, 14)

Suppose you want to tag each negative integer in the vector with the character string “-> negative”. Using
a for loop, this is how you can do it.

> for (i in 1:length(integer)) {
+ if (integer[i] < 0) print(paste(integer[i], "-> negative"))
+ }
[1] "-7 -> negative"
[1] "-4 -> negative"
[1] "-1 -> negative"

The instructions in the loop are repeated as many times as there are elements in the vector integer, that is
to say length(integer) times. The identifier i takes on each and every value in this vector from 1 to 7
(7 being the length of the vector). The if statement is placed between the curly braces of the for loop. The
condition is delimited with brackets after if. It can be paraphrased as follows: “if the integer is strictly less
than 0. . . ”. The statement that follows can be paraphrased as “print the integer, followed by the character
string “-> negative” ”. The tag is appended only if the condition is true.
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2.11.2 if...else Statements

When you want R to do one thing if a condition is true and another thing is the condition is false—rather
than do nothing, as above—use an if...else statement. Suppose you want to tag those elements of the
vector integer that are not negative with the character string “-> positive”. All you need to do is add a
statement preceded by else to tell R what to do if the condition is false.

> for (i in 1:length(integer)) {
+ if (integer[i] < 0) print(paste(integer[i], "-> negative"))
+ else print(paste(integer[i], "-> positive"))
+ }
[1] "-7 -> negative"
[1] "-4 -> negative"
[1] "-1 -> negative"
[1] "0 -> positive"
[1] "3 -> positive"
[1] "12 -> positive"
[1] "14 -> positive"

A similar result is obtained with ifelse(). The structure of this function is more compressed than an
if...else statement. It is also a more efficient alternative to for loops.

> # ifelse(condition, what to do if the condition is true, what to do if the condition is false)

> ifelse(integer < 0, "-> negative", "-> positive")
[1] "-> negative" "-> negative" "-> negative"
[4] "-> positive" "-> positive" "-> positive"
[7] "-> positive"

The main difference between the for loop and the ifelse() function is the output. The former outputs as
many vectors as there are iterations. The latter outputs one vector whose length corresponds to the number
of iterations.

Because zero is neither negative nor positive, you should add a specific condition to make sure that 0 gets
its own tag, e.g. “-> zero”. That second if statement will have to be nested in the first if statement and
appear after else.

> for (i in 1:length(integer)) {
+ if (integer[i] < 0) print(paste(integer[i], "-> negative")) # first if statement
+ else if (integer[i] == 0) print(paste(integer[i], "-> zero")) # second (nested) if statement
+ else print(paste(integer[i], "-> positive"))
+ }
[1] "-7 -> negative"
[1] "-4 -> negative"
[1] "-1 -> negative"
[1] "0 -> zero"
[1] "3 -> positive"
[1] "12 -> positive"
[1] "14 -> positive"

Once nested, ifelse() allows you to do the same operation (although with a different vector output) in
one line of code.

> ifelse(integer < 0, "-> negative", ifelse(integer == 0, "-> zero", "-> positive"))
[1] "-> negative" "-> negative" "-> negative"
[4] "-> zero" "-> positive" "-> positive"
[7] "-> positive"

The nested ifelse statement is in fact what R does if the condition of the first ifelse statement is false.



2.12 Cleanup 45

2.12 Cleanup

Right now, R is full of data structures, as you can see by typing ls():

> ls()
[1] "a" "age" "b"
[4] "char_vec" "col_names" "corpora"
[7] "corpus" "df" "df.manual"
[10] "df.manual.2" "i" "integer"
[13] "linguists" "load_v" "load_v2"
[16] "logi_vec" "mat" "mat.as.df"
[19] "num_vec" "percentage" "period"
[22] "richard3" "row_names" "size"
[25] "total_size" "us_english" "v"
[28] "v10" "v11" "v12"
[31] "v2" "v3" "v4"
[34] "v5" "v6" "v7"
[37] "v8" "v9" "values"
[40] "variety" "vector1" "vector2"
[43] "vector3" "vector4" "vector5"
[46] "vector6" "years" "yourlist"

If you want to get rid of only one data structure, just type rm() or remove() and include the name of the
structure you want to clear between the brackets:

> rm(a) # remove a
> ls() # a has been removed from the list
[1] "age" "b" "char_vec"
[4] "col_names" "corpora" "corpus"
[7] "df" "df.manual" "df.manual.2"
[10] "i" "integer" "linguists"
[13] "load_v" "load_v2" "logi_vec"
[16] "mat" "mat.as.df" "num_vec"
[19] "percentage" "period" "richard3"
[22] "row_names" "size" "total_size"
[25] "us_english" "v" "v10"
[28] "v11" "v12" "v2"
[31] "v3" "v4" "v5"
[34] "v6" "v7" "v8"
[37] "v9" "values" "variety"
[40] "vector1" "vector2" "vector3"
[43] "vector4" "vector5" "vector6"
[46] "years" "yourlist"

If you need to remove several data structures, separate the names of the data structures with a comma:

> rm(char_vec, num_vec, logi_vec) # remove char_vec, num_vec, and logi_vec
> ls() # char_vec, num_vec, and logi_vec have been removed from the list
[1] "age" "b" "col_names"
[4] "corpora" "corpus" "df"
[7] "df.manual" "df.manual.2" "i"
[10] "integer" "linguists" "load_v"
[13] "load_v2" "mat" "mat.as.df"
[16] "percentage" "period" "richard3"
[19] "row_names" "size" "total_size"
[22] "us_english" "v" "v10"
[25] "v11" "v12" "v2"
[28] "v3" "v4" "v5"
[31] "v6" "v7" "v8"
[34] "v9" "values" "variety"
[37] "vector1" "vector2" "vector3"
[40] "vector4" "vector5" "vector6"
[43] "years" "yourlist"
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Before each new task, it is recommended that you clean up R’s memory by entering:

> rm(list=ls(all=TRUE)) # cleans up R's memory

It is common practice to include the above line at the beginning of all your saved scripts. R’s memory is
now empty:

> ls()
character(0)

2.13 Common Mistakes and How to Avoid Them

Coding mistakes are common. Even experienced R users make them. Because R’s error messages are rather
cryptic, you need to review your code with a trained eye. Often, their resolution is straightforward. Here is
a tentative checklist to help you out:

• R is unforgivingly case sensitive: the interpreter understands three different things when you type
mean(), Mean(), and MEAN(). If you try the latter two, you are in for a cryptic error message.

> Mean(c(2,5,10)) # wrong
> MEAN(c(2,5,10)) # wrong

Only the first option works.

> mean(c(2,5,10))

• In the same vein, omitting compulsory quotes makes R unhappy.

> install.packages(Hmisc) # it should be install.packages("Hmisc")

R is more lenient regarding spaces.

> mean(c( 2, 5,10 ))
[1] 5.666667
> mean (c(2,5,10))
[1] 5.666667

• If you omit brackets when you call a function, R will print the function’s code.

> install.packages # hang in there!

If you omit something that R can predict (e.g. the closing bracket or the argument of a known function),
it will let you know that it wants more by means of a + sign. Give R what it wants to solve the problem.

> install.packages(
+ )

• When you enter a path on Windows (e.g. setwd("C:\CLSR")), the backslash \ has a differ-
ent meaning in R, which generates an error. You should use / (setwd("C:/CLSR")) or //
(setwd("C:\\CLSR")) instead.

• In a script, all the lines of code are interdependent. Make sure you do not forget to store the relevant
programming data in a named variable if you need to reuse it later on in your code.
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2.14 Further Reading

• Albert and Rizzo (2012)
• Burns (2011)
• Crawley (2012)

Exercises

2.1. Vectors
a. Without using the R console, say what z contains after the following assignments:

> x <- c(3, 8)
> y <- 2
> z <- c(x,y)

> x <- c(3, 7, 9)
> y <- x[3]-x[2]
> z <- y + x[1]

b. Explain the error message that you obtain when you enter the following command:

> x <- c("3", "7", "9")
> x[1]+x[2]

c. Without using the R console, say what R outputs after the following two lines of code.

> y <- c(1,3,5,5)
> y[c(1,3)]

d. Without using the R console, say what g contains.

> i <- rep(1,5)
> j <- rep(6,7)
> k <- rep(i, 3)
> g <- c(i,j,k)

e. Without using the R console, give the type and length of each vector.

> ww <- 1+3
> xx <- c(ww,4)
> yy <- c(xx,8)

What contains z?

> z <- rep(yy,3)

f. Break down the complex vector i using smaller intermediate vectors.

> i <- rep(c(seq(1,3), mean(c(2,5,9))), 3)

g. Assign the names “a”, “b”, “c”, “d” and “e” to a sequence of integers from 1 to 5 with increment 1.

h. Create the following vectors.
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1. "a" "b" "c" "a" "b" "c"
2. TRUE FALSE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE

i. Without using the nchar() function, say how many characters the following vector contains.

> character_vector <- "R is great!"

2.2. Matrices
Tab. 2.5 is a matrix that displays the frequency distribution of sure and hell in A as NP in the British National
Corpus (Desagulier 2016).

Table 2.5: Co-occurrence table for sure and hell in the BNC

hell other NPs

sure 33 17
other adjectives 65 3638

a. Enter this table into R in a matrix format. Include row names and column names.
b. Calculate the row sums and the column sums.
c. Calculate what percentage the frequency of sure as hell is of the total number of A as NP constructions.

2.3. Data frames
Tab. 2.6 displays the top five covarying collexemes of A as NP in the BNC according to the log-likelihood
ratio score (also known as G2). For example, the strongest attraction between the adjective and the NP in the
construction is between good and gold in good as gold (Desagulier 2016).

Table 2.6: The top five pairs of covarying collexemes of A as NP in the BNC

rank A NP G2

1 good gold 288.82
2 quick flash 189.29
3 right rain 175.98
4 large life 164.55
5 safe houses 148.32

a. Enter this data set into R in a data frame format. Make sure the values in the first column are treated as
data points, not as row names.
b. Calculate the mean G2 score of all five pairs.
c. Calculate the mean G2 score of the top three pairs.
d. Sort the adjectives alphabetically in ascending order.
e. Sort the NPs alphabetically in descending order.
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Chapter 3
Digital Corpora

Abstract A corpus is a digital text or collection of texts. After presenting a tentative typology of corpora,
this chapter provides guidelines as to making your own corpora before presenting the characteristics of
ready-made, annotated corpora.

3.1 A Short Typology

Because comprehensive typologies of existing corpora have been proposed elsewhere (e.g. McEnery and
Hardie 2012, pp. 1–22; Gries 2009a, Sect. 2.1.2; Hunston 2002, pp. 14–16), I will just briefly summarize
the key features that corpus typologies usually integrate.

A corpus may be general or specific. A general corpus aims at representing a whole language, regardless
of a specific dialect or time span. Such is the case of the BNC or the COCA. A specific corpus is repre-
sentative only of a particular span of time or variety. The Brown Corpus is specific because it is based on
a selection of publications restricted to a time frame. The Bergen Corpus of London Teenage Language is
also specific because it is restricted to spoken registers among London teenagers.

A corpus may be static or dynamic. A static corpus has a fixed size, which will not change. For example,
the Corpus of Contemporary American English (1990–2015) started as a dynamic corpus and grew in size
until its compiler stopped adding more text materials 2015. Although the BNC covers a span of time (from
the 1980s to 1993), it was static from the moment it came out in 1993. A dynamic corpus is also known as a
monitor corpus, i.e. a corpus designed to keep track of current changes in a language. The Bank of English
The Bank of English (1980s–present), which has increased progressively since its creation in the 1980s, is a
paragon example of a dynamic corpus.

A corpus may be synchronic or diachronic. A diachronic corpus is mostly used for the corpus-based study
of language change. A diachronic corpus does not need to cover a wide time span. A synchronic corpus is
mostly used for the study of a synchronic state of a language, including variation.

As you realize now, corpora come in a wide variety of flavors. To show you the broad diversity of
corpora, I have carried out a tentative typology of seventeen of the most widely used corpora in English.
These corpora are:

© Springer International Publishing AG 2017
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• The Bank of English (BoE)
• The British National Corpus (BNC)
• The Brown Corpus (BROWN)
• The English component of the Child Language

Data Exchange System (CHILDES)
• The Corpus of Contemporary American English

(COCA)
• The Corpus of Historical American English

(COHA)
• The Bergen Corpus of London Teenage Lan-

guage (COLT)
• enTenTen12
• The Freiburg-LOB Corpus of British English

(FLOB)

• The Freiburg-Brown corpus of American En-
glish (FROWN)

• The Corpus of Global Web-Based English
(GloWbE)

• Helsinki Corpus of English Texts (Helsinki)
• the British component of the International Cor-

pus of English (ICE-GB)
• The Lampeter Corpus of Early Modern English

Tracts (Lampeter)
• The Lancaster-Oslo/Bergen Corpus (LOB)
• The London-Lund Corpus of Spoken English

(LLC)
• the Santa Barbara Corpus of Spoken American

English (SBCAE)

Each corpus was described with respect to seven variables:

• the variety of English represented in the corpus
(British, American, or international),

• whether the corpus is general or specific,

• whether the corpus is static or dynamic,

• whether the corpus is synchronic or diachronic,

• the format in which the data is stored (as text, as
audio files, as video files, or as a combination of
several formats),

• the mode (spoken, written, or both),
• the size of the corpus (from very small to

largest).

The data is summarized in Tab. 3.1. The table itself is hardly interpretable because, although it is rea-
sonably small, it contains too much information for the naked eye. To whet your appetite, let me anticipate
on the clustering methods that you will discover in a later chapter. To explore the table and represent it
graphically I used a method known as multiple correspondence analysis (MCA). MCA takes as input tables
that contain nominal categorical variables, such as Tab. 3.1. It computes the distances between the variables
and transposes those distances to a two-dimensional plot such as Fig. 3.1. Each row and each column of the
table is thus represented as a point in the Euclidean space.

If all corpora had the same profile, they would cluster at the center of the plot, where the horizontal and the
vertical axes intersect. Such is not the case as evidenced by how much the corpora are spread across the plot.
Small corpora cluster to the left of the plot. Diachronic corpora concentrate in the top-left corner, whereas
other synchronic, small corpora cluster in the bottom-left corner. Large, dynamic corpora of international
English cluster in the top-right corner of the plot, whereas other large, general, static corpora cluster in the
bottom-right corner. One tendency that the plot does not show, but which we can guess easily is that the
most recent corpora cluster in the right part of the plot. This is an illustration of the abovementioned arms
race with respect to size.

3.2 Corpus Compilation: Kennedy’s Five Steps

Kennedy (1998, pp. 70–85) claims that five steps are necessary to compile a corpus. The first step is the
corpus design. The design of a corpus depends on two factors: (a) the compiler’s research goals, and (b)
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Table 3.1: Seventeen corpora described by seven variables

corpus variety general vs. specific static vs. dynamic synchronic vs. diachronic stored data format mode size

Bank of English var: international general dynamic synchronic text spoken + written largest
BNC var: GB general static synchronic text spoken + written large
BROWN var: US general static synchronic text written small
CHILDES-English var: international specific dynamic synchronic text + audio + video spoken + written large
COCA var: US general static synchronic text spoken + written large
COHA var: US specific static diachronic text written large
COLT var: GB specific static synchronic text spoken very small
enTenTen12 var: international general static synchronic text written very large
FLOB var: GB general static synchronic text written small
Frown var: US general static synchronic text written small
GloWbE var: international general static synchronic text written very large
Helsinki var: GB specific static diachronic text written small
ICE-GB var: GB general static synchronic text + audio spoken + written small
Lampeter var: GB specific static diachronic text written small
LOB var: GB general static synchronic text written small
London Lund Corpus var: GB general static synchronic text spoken very small
SBCSAE var: US specific static synchronic text + audio spoken very small
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Fig. 3.1: A two-dimensional representation of corpora according to defining features (as obtained with
multiple correspondence analysis)
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whether the queries made from the corpus can be compared to the same queries made from another corpus.
The research goals influence the choice of text types in the broad sense (e.g. spoken vs. written, synchronic
vs. diachronic), content, architecture and size of the corpus. Designing a corpus is a long process that
involves making one or several pilot corpora beforehand.

The second step is the planning of a neatly organized storage system. Generally, spoken corpora take
up more space than written corpora because of the inclusion of sound files. In a not-so-remote past, most
corpora were stored on CD-roms. Nowadays, they are stored on servers. Part of planning storage is the
question of the metadata: whether they are part of the corpus files or placed in external metadata files is
for you to decide. Finally, make sure that your architecture of folders and subfolders allows for efficient
information retrieval.

The third step consists in obtaining permissions. Make sure that you have the legal right to use the texts
that you include in your corpora. This is an essential step if you plan to share your corpus in whatever format
you see fit. Be careful, copyright laws differ from one country to another.

The fourth step is text capture. For the compilation of a written corpus, you may have to manually tran-
scribe handwritten documents, process text images (scanned text or pdf) via Optical Character Recognition
(OCR). You may also be luckier and simply have to copy and paste character strings from an electronic
document.

The fifth step is the choice of a markup convention, if your corpus is annotated. One such convention is
the Text Encoding Initiative (TEI, http://www.tei-c.org/). It is originally based on the Standard
Generalized Markup Language (SGML) and has integrated the more elaborate Extensible Markup Language
(XML). The TEI is not limited to corpus compilation. It is a collection of norms used in the current effort to
preserve texts in digital form. Its large tagset allows the user to indicate such text features as line numbers,
line breaks, pauses, paragraphs, chapters, book parts, authors, speakers, date of recording, etc. The BNC is
probably the best example of TEI implementation in corpus linguistics.

3.3 Unannotated Corpora

Any text can be used as a corpus as long as you can convert it into character strings. If your textual data are
digital, the good news is that they are already encoded as character strings.

3.3.1 Collecting Textual Data

Collecting data is far less difficult than it used to be thanks to the Internet. Unless you are working on an
endangered language, the amount of data that you can hope to get is not an issue. What is going to be worth
serious thinking is selecting the kind of data that will help you answer your research question.

Project Gutenberg is a good place to start. It is a free online collection of more than 40000 books in
electronic format in more than 40 languages.

http://www.tei-c.org/
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3.3.2 Character Encoding Issues

Computer information is stored in units, such as bits, or bytes. A bit takes one of two values (0 and 1)
and a byte equals eight bits. A byte can therefore encode 28 = 256 possibilities. Text information is coded
thanks to character sets. In a given character set, each character is assigned a digital profile. In other words,
where we see a character, a computer sees a number, namely a string of digits for the representation of that
character. To display and process a text correctly, it is necessary to know the character set that was used to
encode the text.

Originally, most corpora were encoded in ASCII (American Standard Code for Information Interchange)
because it was based on English characters, and because most corpus linguistics was done in English. The
original ASCII table is encoded on seven bits. Therefore it has 27 = 128 character possibilities. Each char-
acter is encoded on a single byte. Some characters that were not part of the original ASCII inventory, such
as accented characters (é, è, ê, etc.), were encoded as “special” characters. That was not a viable approach as
some non alphabetical character sets specific to written East Asian languages (Chinese, Japanese, and Ko-
rean) required far more “special” characters than single bytes could handle and were initially encoded with
language-specific double-byte character sets. Whole sets were therefore designed to this aim: ISO 8859-1
(also known as latin1) for languages using the Latin alphabet in Western Europe, ISO/IEC 2022 for East
Asian languages, KOI for languages written in Cyrillic script, etc.

Because modern corpus linguistics involves electronic data interchange in an increasingly globalizing
environment, ASCII is being replaced by Unicode (“Unification Code”). Unicode has three main assets.
First, it is platform-independent, which means it is usable on all computers, regardless of the operating
system or locale. Second, it is not language-specific, which means that a single text may be multilingual (try
processing a novel by James Joyce and you will see what I mean). Third, not only does Unicode define the
numeric identity of each character, but it also handles how this value is translated into bits when the character
is stored in a file or transferred electronically into another system. This is done via Unicode Transformation
Formats (UTF). Among the three formats that have been proposed—UTF-32, UTF-16, and UTF-8—the
latter is becoming the norm in corpus linguistics. One reason for this is that UTF-8 maximizes backward
compatibility with ASCII. For more details on the assets of UTF-8 and why it is becoming a standard in text
processing, see McEnery and Xiao (2005).

Despite efforts to unify character codes, encoding issues may occur when you load a corpus in the form
of a character vector into R. The nature of these issues depends on how your operating system and its native
encoding handle the native encoding of your corpus file. To minimize the risk of such encoding issues, it is
recommended to set the locale to UTF-8. To know your locale, enter Sys.getlocale().

> Sys.getlocale()
[1] "en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8"

On my Mac, the default language of the system if English, and the default encoding is UTF-8. Here,
LC stands for “locale category”. To obtain the list of all locale categories, and learn what they mean, enter
?locales.

To change the locale settings, use the Sys.setlocale() function. Suppose the default language of
your system is French and you want to set the locale to American English and UTF-8. You can do it in two
steps.

> Sys.setlocale("LC_ALL", 'en_US.UTF-8') # step 1
[1] "en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8"
> Sys.setlocale("LC_MESSAGES", 'en_US.UTF-8') # step 2; might not work on Windows :-(
[1] "en_US.UTF-8"
> Sys.getlocale()
[1] "en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8"
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For other languages, see Tab. 3.2.

Table 3.2: Languages and corresponding locale settings

language locale setting

Chinese – Simplified zh_CN.UTF-8
Chinese – Traditional zh_TW.UTF-8
English – American en_US.UTF-8
French fr_FR.UTF-8
German de_DE.UTF-8
Italian it_IT.UTF-8
Japanese ja_JP.UTF-8
Korean ko_KR.UTF-8
Portuguese - Brazilian pt_BR.UTF-8
Spanish es_ES.UTF-8

Ideally, your corpus files should be encoded in UTF-8, in which case no issue should arise. In practice,
there is some chance that you will process corpus files that were not originally encoded in UTF-8. What you
should do is convert the corpus file from its native encoding into UTF-8. Let us see how this is done.

The file hugo.txt contains an excerpt from Victor Hugo’s pamphlet Napoléon le Petit. The text is in
French and natively encoded in latin1. When we load the file,

> hugo <- scan(file="C:/CLSR/chap3/hugo.txt", what="character", sep="\n") # Windows
> hugo <- scan(file="/CLSR/chap3/hugo.txt", what="character", sep="\n") # Mac
> head(hugo)

we see that the native encoding clashes with the locale, as evidenced by the strange rendition of accented
characters.

[1] "Ce moment eut quelque chose de religieux. L'assembl\xe9e n'\xe9tait plus"
[2] "l'assembl\xe9e, c'\xe9tait un temple. Ce qui ajoutait \xe0 l'immense"
[3] "signification de ce serment, c'est qu'il \xe9tait le seul qui f\xfbt pr\xeat\xe9"
[4] "dans toute l'\xe9tendue du territoire de la r\xe9publique. F\xe9vrier avait"
[5] "aboli, avec raison, le serment politique, et la constitution, avec"
[6] "raison \xe9galement, n'avait conserv\xe9 que le serment du pr\xe9sident. Ce"

There are two solutions to this problem. The first solution is to convert the character vector into UTF-8
by using the iconv() function. The first argument is your character vector. The second argument is the
native encoding of the text file. The third argument is the target encoding.

> hugo.utf8 <- iconv(hugo, from="latin1", to="UTF-8")
> head(hugo.utf8)
[1] "Ce moment eut quelque chose de religieux. L'assemblée n'était plus"
[2] "l'assemblée, c'était un temple. Ce qui ajoutait à l'immense"
[3] "signification de ce serment, c'est qu'il était le seul qui fût prêté"
[4] "dans toute l'étendue du territoire de la république. Février avait"
[5] "aboli, avec raison, le serment politique, et la constitution, avec"
[6] "raison également, n'avait conservé que le serment du président. Ce"
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The second solution consists in declaring the native file encoding as you load the corpus file into a character
vector.

> # Windows
> hugo.utf8.2 <- scan(file="C:/CLSR/chap3/hugo.txt", what="char", sep="\n", fileEncoding="latin1")
> # Mac
> hugo.utf8.2 <- scan(file="/CLSR/chap3/hugo.txt", what="char", sep="\n", fileEncoding="latin1")
> head(hugo.utf8.2)

R will do the rest, assuming the locale is set to UTF-8.

[1] "Ce moment eut quelque chose de religieux. L'assemblée n'était plus"
[2] "l'assemblée, c'était un temple. Ce qui ajoutait à l'immense"
[3] "signification de ce serment, c'est qu'il était le seul qui fût prêté"
[4] "dans toute l'étendue du territoire de la république. Février avait"
[5] "aboli, avec raison, le serment politique, et la constitution, avec"
[6] "raison également, n'avait conservé que le serment du président. Ce"

Note that in order to convert a corpus file, you must know its native encoding. To know what encodings
R can convert from, enter iconvlist().

Unfortunately, I cannot address all encoding issues here, for reasons of space. If you encounter such
issues, given the high number of potential causes (especially on Windows), your safest bet is to search Stack
Overflow preferably using the hashtags #R, #encoding, and #UTF-8 in the search box. If you are dealing
with non-English, non-ASCII texts, I advise you to read Gries (2009a, excursus 4.5).

3.3.3 Creating an Unannotated Corpus

Creating a plain-text, unannotated corpora is not difficult in the digital age. If you plan on working from old
manuscripts, as is trendy in the digital humanities, you may want to check digital archives before compiling
your own corpus. For example, if you work on English from a diachronic perspective, Early English Books
Online is worth considering (EEBO, http://eebo.chadwyck.com/home). If you work on French,
the Gallica catalogue of the Bibliothèque Nationale de France is a good place to start (http://gallica.
bnf.fr/). These resources are in full digital facsimile from microfilm or scanned collections. If you are
lucky, the documents that you are interested in will be processed with OCR (Sect. 3.2). If not, it will be your
job to do it if you intend to conduct a large-scale quantitative study. The bad news is that OCR works best
with contemporary print characters in alphabetic languages and not so well with old or non-alphabetic fonts
or handwriting. The good news is that OCR is offered all over the Web and in some software suites such as
Adobe Acrobat.

Although much easier now than in the good old days, compiling a digital corpus should not dispense
from paying due respect to the issues of representativeness (Sect. 1.2.1.2) and balance (Sect. 1.2.1.3). For
this reason, it is primordial that you determine a sampling scheme that matches your objectives prior to
collecting texts.

http://eebo.chadwyck.com/home
http://gallica.bnf.fr/
http://gallica.bnf.fr/
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3.4 Annotated Corpora

A corpus is annotated when it consists of more than the actual words in the document (which is generally
known as plain text). Annotation is a multilayered term that includes (but is not limited to) markup, POS-
tagging, and semantic tagging.

3.4.1 Markup

Markup refers to the conventions used to annotate a corpus. With respect to written corpora, SGML and
XML are the most widely used conventions (the norm is now XML). SGML and XML place tags between
angled brackets < >. The tags follow an attribute-value format: e.g. <teiHeader>...</teiHeader>
delimits the header of a BNC XML corpus file, and <w ...>...</w> delimits a word. For spoken
corpora, such as the database of child language CHILDES, the CHAT format (Codes for the Human Analysis
of Transcripts) is preferred.

Annotations can be metalinguistic and linguistic. Metalinguistic annotations—also known as structural
markup—are generally placed in the header of the corpus file. Each corpus file in the XML edition of the
BNC contains a TEI-compliant header that describes its contents whose details are described on the BNC
homepage: http://www.natcorp.ox.ac.uk/docs/URG.xml?ID=cdifhd.

3.4.2 POS-Tagging

Above all, POS-tagging is used to annotate the words (and sometimes morphemes or more complex morpho-
syntactic units) for grammatical categories in a text file (preposition, noun, adjective, verb, etc.). It is a
prerequisite if you want to conduct large-scale yet in-depth queries.

Here is a simple example. The text below is POS-tagged using a simplified format. The tags are appended
to the words (and punctuation).

Linguistics_NN1 makes_VVZ you_PPY want_VVI to_TO stay_VVI
up_RP late_RR at_II night_NNT1 and_CC gives_VVZ you_PPY
a_AT1 reason_NN1 to_TO wake_VVI up_RP in_II the_AT
morning_NNT1 ._.

As you can see, each word is assigned a tag. For example, Linguistics is a singular noun (NN1), makes is
the -s form of the lexical verb (VVZ), you is the 2nd person personal pronoun (PPY), etc. The example below
is a sentence from the BNC in plain text format and its equivalent with POS tags in the far more elaborate
XML format.

a sentence from the British National Corpus

This virus affects the body’s defence system so that it
cannot fight infection.

http://www.natcorp.ox.ac.uk/docs/URG.xml?ID=cdifhd
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the same sentence, with POS tags (XML)

<s n="3"><w c5="DT0" hw="this" pos="ADJ">This </w><w c5="NN1"

hw="virus" pos="SUBST">virus </w><w c5="VVZ" hw="affect"

pos="VERB">affects </w><w c5="AT0" hw="the" pos="ART">the </

w><w c5="NN1" hw="body" pos="SUBST">body</w><w c5="POS" hw="’s"

pos="UNC">’s </w><w c5="NN1" hw="defence" pos="SUBST">defence </

w><w c5="NN1" hw="system" pos="SUBST">system </w><mw c5="CJS"><w

c5="AV0" hw="so" pos="ADV">so </w><w c5="CJT" hw="that"

pos="CONJ">that </w></mw><w c5="PNP" hw="it" pos="PRON">it </

w><w c5="VM0" hw="can" pos="VERB">can</w><w c5="XX0" hw="not"

pos="ADV">not </w><w c5="VVI" hw="fight" pos="VERB">fight </w><w

c5="NN1" hw="infection" pos="SUBST">infection</w><c c5="PUN">.</

c></s>

I will come back to the meaning of the attributes later on. Each annotation scheme comes with a tagset.
The tagset used in the BNC XML is known as C5. It consists of about 60 tags and it is available here:
http://www.natcorp.ox.ac.uk/docs/c5spec.html.1

3.4.3 POS-Tagging in R

POS-tagging is generally done by means of an automatic tagger such as CLAWS, the Constituent Like-
lihood Automatic Word-tagging System (Garside 1987),2 the Stanford Log-linear Part-Of-Speech Tagger
(Toutanova et al. 2003),3 or the very powerful TreeTagger (Schmid 1994).4

Most POS taggers claim a very high accuracy (e.g. 96–97% for CLAWS). However, automatic tagging
should always be reviewed afterwards. This step is made necessary by the potentially high number of
ambiguous words, which automatic taggers might find hard to disambiguate (e.g. pretty as an adjective vs.
pretty as an adverb).5 Smith (1997) gives an example of the kind of sentence that the best programs find
hard to tag:

(1) what’s he want to prove?

The uncontracted equivalent of what’s is what does. Yet, because most of the time ’s is a present-tense
enclitic form of the copula be in the third person of the singular, chances are that most taggers will get
it wrong. To circumvent this issue, the CLAWS tagger has context-sensitive rules that correct previously
tagged problematic cases. Despite this patch, there is a remaining 2% of errors.

1 Its successor, C7, contains 140 tags.
2 http://ucrel.lancs.ac.uk/claws/.
3 http://nlp.stanford.edu/software/tagger.shtml.
4 http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/.
5 Although, nowadays, state-of-the-art probabilistic taggers would do quite a great job at disambiguating these uses in context.

http://www.natcorp.ox.ac.uk/docs/c5spec.html
http://ucrel.lancs.ac.uk/claws/
http://nlp.stanford.edu/software/tagger.shtml
http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/
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Several R packages offer POS-tagging. I will focus on koRpus and openNLP, which are based on
TreeTagger. Before using these packages, TreeTagger should be installed on your system. The good
news is that TreeTagger is very efficient and supports a wide variety of languages. The bad news is
that it is not as easy to install as an R package, depending on the distribution of your operating sys-
tem. Having said that, TreeTagger is not that hard to install if you follow the instructions listed on its
dedicated website. If you are a Windows user, instructions for download and install can be found here:
http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/#Windows. If you are
a Mac or Linux user, just follow the download and install instructions at the top of Treetagger’s homepage:
http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/. If you encounter is-
sues, here are some more installation hints: http://www.cis.uni-muenchen.de/~schmid/
tools/TreeTagger/installation-hints.txt.

Let us start with koRpus. First, create a file with some text in it for tagging, e.g. example.text.
to.be.tagged.txt. Your text should be encoded in UTF-8. You can set the encoding with your text
editor when you save the file or with R (see Sect. 3.3.2). Our example text will be doi.txt. Download,
install, and load koRpus.

> rm(list=ls(all=TRUE))
> install.packages("koRpus")
> library(koRpus)

Define a pathname for the textfile that contains the text to annotate. In the example below, I created a
subfolder named koRpus in /CLSR/chap3, hence the path /CLSR/chap3/koRpus/doi.txt.

> pathname <- "/CLSR/chap3/koRpus/doi.txt"

It is now time to perform POS-tagging with TreeTagger (which, at this stage, should be installed on
your system). In the next line of code pay attention to the following: TT.options=list(path="/
TreeTagger", preset="en")). In path="/TreeTagger", "/TreeTagger" is the path to
my TreeTagger files. As you may have guessed from the path, I installed TreeTagger on my root drive. If
you are a Windows user, the path should look like "C:/TreeTagger". Windows users should there-
fore enter something like path="C:/TreeTagger" if TreeTagger has been installed on the root drive.
lang="en" means that the text you want to annotate is in English. In the TreeTagger world, each lan-
guage has an ISO 639-1 code. The ISO 639-1 code is "en" for English, "fr" for French, "sv" for
Swedish, "he" for Hebrew, etc. Here is a link to the full list of ISO codes: http://www-01.sil.org/
iso639-3/codes.asp?order=639_1&letter=%25. Make sure TreeTagger handles the language
that you are studying. Mind you, if you plan to annotate a text in a language other than English, down-
load and install in your TreeTagger folder: (a) the parameter file (UTF-8) that corresponds to the language,
and (b) the chunker parameter file (UTF-8) of your language. These files are available from http://
www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/. Depending on the language, you
may have to browse the web to find the parameter file and the chunker parameter file (e.g. Hebrew and
Swedish). In any case, you need at least one parameter file per language. For example, if your text is
in Spanish, download and install Spanish parameter file (UTF8) and, because the chunking
function is also available for Spanish, download and install Spanish chunker parameter file.
Both files should be placed unzipped in your TreeTagger folder. In TT.options=list(path="/

http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/#Windows
http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/
http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/installation-hints.txt
http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/installation-hints.txt
http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/
http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/
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TreeTagger", preset="en")), preset="en" refers to the corpus that served for the training of
TreeTagger. Here, TreeTagger has been trained on an English reference corpus.

> tagged.text <- treetag(pathname, treetagger="manual", lang="en",
+ TT.options=list(path="/TreeTagger", preset="en"))

tagged.text is a complex object that contains all kinds of POS-related summary statistics regarding the
input text. The output can be inspected by calling the TT.res object.

> tagged.text@TT.res

Thanks to this object, you can easily plot the distribution of the parts of speech in your text (Fig. 3.2).

> barplot(sort(table(tagged.text@TT.res$wclass), decreasing=TRUE,
+ main="distribution of word classes"))

determiner noun preposition verb adjective pronoun name comma to conjunction adverb fullstop modal number

distribution of word classes

0
5

10
15

Fig. 3.2: The distribution of word classes according to koRpus

Although very useful as a tool for text analysis, koRpus does not readily give access to the tagged text.
This is where a combination of openNLP and several NLP and text analysis packages step in. openNLP
relies on the probabilistic Apache OpenNLP Maxent Part of Speech tagger and pre-trained models (one
model for each language).6 Using pre-trained models is fine as long as your text files do not show too much
deviation (spelling- or register-wise) from the language on which the pre-training has been done. For your
information, pre-training is based on contemporary news language.

POS-tagging requires a series of steps that may be slightly too ambitious if you are new to R. Feel free to
come back to this code once your are more familiar with character string processing (Chap. 4). Fortunately,

6 https://opennlp.apache.org/documentation/manual/opennlp.html.

https://opennlp.apache.org/documentation/manual/opennlp.html
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Martin Schweinberger, from Hamburg University, Germany (http://www.martinschweinberger.
de/blog/), has written a function that combines all these steps into a single function. Before you load the
function, download and install the following packages: stringr, NLP, and openNLP.

> install.packages("NLP", "openNLP", "stringr")

You also need a pre-trained model. The model should be installed from a specific repository, namely
http://datacube.wu.ac.at/. The suffix of the model’s name is the language’s ISO code. The
models for Spanish, Italian, and Dutch end with es, it, and nl respectively. The model for English is
named openNLPmodels.en. It should be installed as follows. You will not need to repeat this step.

> install.packages("openNLPmodels.en", repos = "http://datacube.wu.ac.at/", type = "source")

You may now enter the function.

> POStagging <- function(path = path) {
+ library(stringr)
+ library(NLP)
+ library(openNLP)
+ library(openNLPmodels.en)
+ corpus.files = list.files(path = path, pattern = NULL, all.files = T,
+ full.names = T, recursive = T, ignore.case = T,
+ include.dirs = T)
+ corpus.tmp <- lapply(corpus.files , function(x) {
+ scan(x, what = "char", sep = "\t", quiet = T) } )
+ corpus.tmp <- lapply(corpus.tmp, function(x){
+ x <- paste(x, collapse = " ") } )
+ corpus.tmp <- lapply(corpus.tmp, function(x) {
+ x <- enc2utf8(x) } )
+ corpus.tmp <- gsub(" {2,}", " ", corpus.tmp)
+ corpus.tmp <- str_trim(corpus.tmp, side = "both")
+ Corpus <- lapply(corpus.tmp, function(x){
+ x <- as.String(x) } )
+ sent_token_annotator <- Maxent_Sent_Token_Annotator()
+ word_token_annotator <- Maxent_Word_Token_Annotator()
+ pos_tag_annotator <- Maxent_POS_Tag_Annotator()
+ lapply(Corpus , function(x){
+ y1 <- annotate(x, list(sent_token_annotator ,
+ word_token_annotator))
+ y2<- annotate(x, pos_tag_annotator , y1)
+ y2w <- subset(y2, type == "word")
+ tags <- sapply(y2w$features , "[[", "POS")
+ r1 <- sprintf("%s/%s", x[y2w], tags)
+ r2 <- paste(r1, collapse = " ")
+ return(r2) } )
+ }

The function POStagging() takes one argument: the path to the folder that contains your corpus
file(s). The function will POS-tag all the text files in the folder. Windows users should enter

> POStagging(path = "C:/CLSR/chap3/koRpus/") # Windows

and Mac users should enter

> POStagging(path = "/CLSR/chap3/koRpus/") # Mac

Each word is assigned a POS tag after a slash.

http://www.martinschweinberger.de/blog/
http://www.martinschweinberger.de/blog/
http://datacube.wu.ac.at/
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When/WRB in/IN the/DT Course/NNP of/IN human/JJ events/
NNS it/PRP becomes/VBZ necessary/JJ for/IN one/CD
people/NNS to/TO dissolve/VB the/DT political/JJ bands/
NNS which/WDT have/VBP connected/VBN them/PRP with/IN
another/DT and/CC to/TO assume/VB among/IN the/DT powers/
NNS of/IN the/DT earth/NN ,/, the/DT separate/JJ and/CC
equal/JJ station/NN to/TO which/WDT the/DT Laws/NNP of/
IN Nature/NNP and/CC of/IN Natures/NNP God/NNP entitle/
VBP them/PRP ,/, a/DT decent/JJ respect/NN to/TO the/
DT opinions/NNS of/IN mankind/NN requires/VBZ that/IN
they/PRP should/MD declare/VB the/DT causes/NNS which/WDT
impel/VBP them/PRP to/TO the/DT separation/NN ./. We/PRP
hold/VBP these/DT truths/NNS to/TO be/VB self-evident/JJ
,/, that/IN all/DT men/NNS are/VBP created/VBN equal/JJ
,/, that/IN they/PRP are/VBP endowed/VBN by/IN their/
PRP$ Creator/NN with/IN certain/JJ unalienable/JJ Rights/
NNS ,/, that/WDT among/IN these/DT are/VBP Life/NN ,/,
Liberty/NNP and/CC the/DT pursuit/NN of/IN Happiness/NNP
./. (...)

The tags used by openNLP come from the tagset of the Penn English Treebank (Tab. 3.3).

3.4.4 Semantic Tagging

Semantic tagging is a very challenging task and certainly not one that will be resolved anytime soon, despite
the recent advances in deep learning. Some semantic taggers exist, outside R, but they work only for some
word classes and propose rather broad semantic categories.

The UCREL Semantic Analysis System (USAS)7 is based on 21 semantic categories, some of which are
subdivided into finer-grained discourse fields. Below is an example of a simple sentence—Linguistics is an
empirical science—annotated thanks to the USAS online tagger8:

Linguistics_Q3 is_A3+ an_Z5 empirical_X2.4 science_Y1
._PUNC

A semantic tag is appended to each word. The USAS tagset9 tells you what semantic category each word
belongs to:

• Q3: “Language, speech and grammar”;
• A3: “Being”;
• Z5: “Grammatical bin”;
• X2.4: “Investigate, examine, test, search”;
• Y1: “Science and technology in general”.

7 http://ucrel.lancs.ac.uk/usas/.
8 http://ucrel.lancs.ac.uk/usas/tagger.html.
9 http://ucrel.lancs.ac.uk/usas/USASSemanticTagset.pdf.

http://ucrel.lancs.ac.uk/usas/
http://ucrel.lancs.ac.uk/usas/tagger.html
http://ucrel.lancs.ac.uk/usas/USASSemanticTagset.pdf
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Table 3.3: The University of Pennsylvania (Penn) Treebank Tagset

POS tag POS category

CC Coordinating conjunction
CD Cardinal number
DT Determiner
EX Existential there
FW Foreign word
IN Preposition or subordinating conjunction
JJ Adjective
JJR Adjective, comparative
JJS Adjective, superlative
LS List item marker
MD Modal
NN Noun, singular or mass
NNS Noun, plural
NNP Proper noun, singular
NNPS Proper noun, plural
PDT Predeterminer
POS Possessive ending
PRP Personal pronoun
PRP$ Possessive pronoun
RB Adverb
RBR Adverb, comparative
RBS Adverb, superlative
RP Particle
SYM Symbol
TO to
UH Interjection
VB Verb, base form
VBD Verb, past tense
VBG Verb, gerund or present participle
VBN Verb, past participle
VBP Verb, non-3rd person singular present
VBZ Verb, 3rd person singular present
WDT Wh-determiner
WP Wh-pronoun
WP$ Possessive wh-pronoun
WRB Wh-adverb

Although interesting as a first approach, this kind of semantic tagger is at bay when it comes to poly-
semous words. For instance, hot in he was a rather hot seller and in it was a rather hot morning will be
assigned the same tag, namely O4.6+ (“temperature +”). Semantic tagging is currently moving towards
vector semantics (Mikolov et al. 2013a,b,c; Pennington et al. 2014).
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3.5 Obtaining Corpora

Unless you need a corpus for a specific research purpose, chances are that you will find what you need among
the vast inventory of available annotated corpora (Tab. 3.4). Here is a tentative list of publicly available POS-
tagged corpora based on a survey conducted by Tobias Horsmann (University of Duisburg, Germany) on the
Corpora mailing list in July 2016.10

Table 3.4: Free, publicly available, POS-tagged corpora

language corpus name size URL

Coptic Coptic scriptorium corpora N/A (several corpora) http://data.copticscriptorium.org/
Croatian SETimes.HR Croatian dependency treebank 8000 sentences http://nlp.ffzg.hr/resources/corpora/setimes-hr/
Danish Copenhagen Dependency Treebank 100000 tokens https://github.com/mbkromann/copenhagen-dependency-treebank
Dutch The Alpino Treebank 150000 tokens https://www.let.rug.nl/vannoord/trees/
English The Georgetown University Multilayer Corpus 44079 tokens https://corpling.uis.georgetown.edu/gum/
English The NAIST-NTT Ted Talk Treebank 23158 tokens http://ahclab.naist.jp/resource/tedtreebank/
Finnish FinnTreeBank 162000 types (incl. punctuation) http://www.ling.helsinki.fi/kieliteknologia/tutkimus/treebank/
French Deep-sequoia 67038 tokens https://deep-sequoia.inria.fr/corpus/
French MULTITAG 370197 tokens https://perso.limsi.fr/pap/free_multitag.tgz
German TIGER corpus 900000 tokens http://www.ims.uni-stuttgart.de/forschung/ressourcen/korpora/tiger.html
German The Hamburg Dependency Treebank 261821 sentences https://corpora.uni-hamburg.de/drupal/en/islandora/object/treebank:hdt
Icelandic Icelandic Parsed Historical Corpus 1002390 tokens http://linguist.is/icelandic_treebank/Download
Icelandic Tagged Icelandic Corpus 25000000 tokens http://www.malfong.is/index.php?lang=en&pg=mim
Italian Turin University Treebank N/A (several corpora) http://www.di.unito.it/~tutreeb/corpora.html
Italian PAISÀ 250000000 tokens http://www.corpusitaliano.it/
Norwegian The Norwegian Dependency Treebank 300000 tokens http://www.nb.no/sprakbanken/show?serial=sbr-10
Polish The National Corpus of Polish (NKJP) 1000000 tokens http://nkjp.pl/index.php?page=0&lang=1
Portuguese (Brazilian) MAC-MORPHO 3013904 tokens http://nilc.icmc.usp.br/macmorpho/
Russian Russian Open Corpus 1344456 tokens http://opencorpora.org/?page=downloads
Slovene–English Slovene-English Parallel Corpus 1000000 tokens http://nl.ijs.si/elan/
Spanish IULA Spanish LSP Treebank 590000 tokens https://www.iula.upf.edu/recurs01_tbk_uk.htm
Swedish Swedish Treebank 350000 + 1200000 tokens http://stp.lingfil.uu.se/%7Emojgan/UPDT.html

The Oxford Text Archive (http://ota.ox.ac.uk) lists resources that are available for free as long
as you can prove that you belong to an academic institution and attest that you will not make a commercial
use of the corpora. All versions of the British National Corpus are available from the OTA. In the remainder
of this book, you will need the BNC Baby. Go to http://ota.ox.ac.uk/desc/2553 and click on
“Download zip”.

Exercise

3.1. POS-Tagging a Text in German

The text file Brot.txt contains a few sentences of contemporary German from the Wikipedia article on
bread (https://de.wikipedia.org/wiki/Brot). The file can be found at the following location:
(C:)/CLSR/chap3/exercise/Brot.txt. Your task is to POS-tag the text.

The code chunk below is a generic function (tagPOS()) for POS-tagging with TreeTagger. Use the
function to POS tag Brot.txt.

> library(NLP)
> library(openNLP)

10 http://clu.uni.no/corpora/.

http://data.copticscriptorium.org/
http://nlp.ffzg.hr/resources/corpora/setimes-hr/
https://github.com/mbkromann/copenhagen-dependency-treebank
https://www.let.rug.nl/vannoord/trees/
https://corpling.uis.georgetown.edu/gum/
http://ahclab.naist.jp/resource/tedtreebank/
http://www.ling.helsinki.fi/kieliteknologia/tutkimus/treebank/
https://deep-sequoia.inria.fr/corpus/
https://perso.limsi.fr/pap/free_multitag.tgz
http://www.ims.uni-stuttgart.de/forschung/ressourcen/korpora/tiger.html
https://corpora.uni-hamburg.de/drupal/en/islandora/object/treebank:hdt
http://linguist.is/icelandic_treebank/Download
http://www.malfong.is/index.php?lang=en&pg=mim
http://www.di.unito.it/~tutreeb/corpora.html
http://www.corpusitaliano.it/
http://www.nb.no/sprakbanken/show?serial=sbr-10
http://nkjp.pl/index.php?page=0&lang=1
http://nilc.icmc.usp.br/macmorpho/
http://opencorpora.org/?page=downloads
http://nl.ijs.si/elan/
https://www.iula.upf.edu/recurs01_tbk_uk.htm
http://stp.lingfil.uu.se/%7Emojgan/UPDT.html
http://ota.ox.ac.uk
http://ota.ox.ac.uk/desc/2553
https://de.wikipedia.org/wiki/Brot
http://clu.uni.no/corpora/
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>
> tagPOS <- function(x, ...) {
+ s <- as.String(x)
+ word_token_annotator <- Maxent_Word_Token_Annotator(language="de", probs=FALSE, model=NULL)
+ a2 <- Annotation(1L, "sentence", 1L, nchar(s))
+ a2 <- annotate(s, word_token_annotator, a2)
+ a3 <- annotate(s, Maxent_POS_Tag_Annotator(language="de", probs=FALSE, model=NULL), a2)
+ a3w <- a3[a3$type == "word"]
+ POStags <- unlist(lapply(a3w$features, `[[`, "POS"))
+ POStagged <- paste(sprintf("%s_%s", s[a3w], POStags), collapse = " ")
+ list(POStagged = POStagged, POStags = POStags)
+ }

Before running the code and using the function, you will need to:

• install the required parameter files for German from
http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/;

• install and load the German model’s name as a package for R from http://datacube.wu.ac.at;
• add some arguments to

Maxent_Word_Token_Annotator() and
Maxent_POS_Tag_Annotator()

so that TreeTagger understands that the text to process is in German and does not use the default settings
for English.
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Chapter 4
Processing and Manipulating Character Strings

Abstract In this chapter, you will learn techniques to handle text material with R. Some of these techniques
involve regular expressions, i.e. patterns that describe a set of strings. After presenting individual functions,
this chapter teaches you how to combine them.

4.1 Introduction

Typical R users come from the hard sciences and seldom think of character strings as data that are worth
analyzing. Their basic material is numbers or anything that can be converted into numeric values. Character
strings are secondary because they involve nothing more than labels such as names for observations, variable,
units, bins, etc. Admittedly, only a handful of basic functions are needed to edit labels in a data set.

In contrast, because their main material is textual, linguists appreciate R for its powerful character-string
processing features. It is one thing to edit labels sporadically, but another to load vast quantities of texts and
process them in a systematic way to be able to observe linguistic tendencies.

After reading this chapter, you will hopefully have all the linguist’s tools you need to handle and process
character strings with R. These tools are a prerequisite for what the next chapter will cover, namely tabulating
and quantifying your findings.

4.2 Character Strings

I assume that you are already familiar with character strings as they were introduced in from Chap. 2. The
paragraphs below examine the properties of character strings in more details and discuss some useful tech-
nicalities.

© Springer International Publishing AG 2017
G. Desagulier, Corpus Linguistics and Statistics with R, Quantitative Methods in the Humanities
and Social Sciences, DOI 10.1007/978-3-319-64572-8_4
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4.2.1 Definition

As you already know, R objects can handle three main kinds of data: character, numeric, and logical. Corpora
are made of text strings. The R objects that contain such strings belong to the character class. You recognize
a character string in R thanks to the presence of quotes. To create a character vector, make sure to include
them.

> a_numeric_vector <- 3.14
> class(a_numeric_vector)
[1] "numeric"
> from_numeric_to_character <- as.character(a_numeric_vector)
> class(from_numeric_to_character)
[1] "character"

Once converted into a character vector, a_numeric_vector displays "3.14" between quotes. You can
no longer use that number for calculation.

4.2.2 Loading Several Text Files

Section 2.9.1.6 explains how to load a single text file into a character vector. For the sake of illustration,
let us load whitman.txt from your CLSR/chap4 folder. The text file contains Walt Whitman’s poem
“When I heard the learn’d astronomer”.

> whitman <- scan("C:/CLSR/chap4/whitman.txt", what="char", sep="\n") # Windows
> whitman <- scan("/CLSR/chap4/whitman.txt", what="char", sep="\n") # Mac
> head(whitman) # inspect

Because you have set sep to a new line ("\n"), each line is an element of the character vector whitman.
Because most corpora consist of several files, you need to know how to load several files into a character

vector. For example, the BNC (XML Edition) consists of 4049 text files. If R runs on Windows, this is pretty
easy. All you need to do open an interactive window with choose.files() and select all the text files
you need in the corpus directory. If R runs on Mac OS, you need to embed scan() in two other functions:
dir() and select.list().

> corpus.files<-select.list(dir(scan(nmax=1, what=character(0)), full.names=TRUE), multiple=TRUE)

Then, assuming that all of them are in the same directory, enter the path to said directory.
Another option that works for both Windows and Unix-based operating systems is to use list.

files(). This function outputs a character vector of the file names in a given directory. Its first argument
is the path to the directory containing the text files. Three more arguments may be used: pattern, all.
files, and full.names. Thanks to the pattern argument, you can use a regular expression to retrieve
those file names that match the regular expression. For example, if your directory contains corpus files in
.txt and .xml format and you are exclusively interested in the latter, pattern="\\.xml" will make
sure that only those files that end with the .xml extension are retrieved. The all.files argument has to
be set to TRUE if you want to retrieve all the corpus files in the corpus directory. Finally, the full.names
argument has to be set to TRUE if you want the full path name of the corpus files.
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4.3 First Forays into Character String Processing

It is now time to learn how to do the most basic tasks in character string processing: splitting, matching,
and replacing. In this section, you will familiarize yourself with the three corresponding functions to split,
match, and replace, namely strsplit(), grep(), and gsub(). In the next section, we will return to
those functions and see how powerful they are once combined with regular expressions.

4.3.1 Splitting

You already know from Chap. 2 (Sect. 2.9.1.3) how to merge several vectors of one element or one vector
of several elements into one vector of one element with paste(). Yet, you often need to do the exact
opposite, that is to say split the corpus vector into as many elements as there are words. This comes in
handy to know how many words your corpus sample consists of and to make frequency lists. R has a built-in
function for splitting character strings: strsplit(). Its simplified argument structure is the following.

> strsplit(x, split)

The first argument x is the character vector to be split, and the second argument specifies what you want to
split the character vector with.

Given the vector r3, the simplest way to extract the words that make up the sentence is to split at each
space.

> richard3 <- "now is the winter of our discontent"
> strsplit(richard3, " ") # the second argument specifies the space
[[1]]
[1] "now" "is" "the"
[4] "winter" "of" "our"
[7] "discontent"

As evidenced by the double bracketing prefixing the output, strsplit() outputs a list. To obtain a vector
containing the words, just prefix the function call with unlist():

> unlist(strsplit(richard3, " "))
[1] "now" "is" "the"
[4] "winter" "of" "our"
[7] "discontent"

Counting the number of words in the string is now easy as pie, just like counting the number of characters
per words.1

> length(unlist(strsplit(richard3, " "))) # number of words
[1] 7
> nchar(unlist(strsplit(richard3, " "))) # number of characters per words
[1] 3 2 3 6 2 3 10

1 Note that where we see “words”, R still sees character strings.
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4.3.2 Matching

Another basic character string operation is to find strings. In R parlance, “finding as string” is called “match-
ing a string”. This is done with the grep() function, whose simplified argument structure is the following.

> grep(pattern, x, ignore.case = FALSE, value = FALSE)

The first argument (pattern) is the character string you want to match. The second argument x is
the character vector where the matches are sought. The third argument ignore.case specifies whether
the pattern matching is case sensitive or not (it is case sensitive by default). The fourth argument specifies
whether grep outputs the position of the match in the vector (value is set to FALSE by default) or the
vector element containing the match (value=TRUE).

The vector grep.ex consists of three sentence. Each sentence is an element of the vector.

> grep.ex <- c("some linguists like Python", "some linguists prefer R", "some linguists like both")
> grep.ex
[1] "some linguists like Python"
[2] "some linguists prefer R"
[3] "some linguists like both"

Compare:

> grep("both", grep.ex)
[1] 3
> grep("both", grep.ex, value=TRUE)
[1] "some linguists like both"

The first instance of grep() returns 3, which is the position of the vector element containing the match:
"both" is the third vector element. The second instance of grep() returns the vector element that corre-
sponds to the match.

4.3.3 Replacing and Deleting

The functions sub() and gsub() functions search and replace character strings with something else.
Their respective simplified argument structures are the following:

> sub(pattern, replacement, x, ignore.case = FALSE)
> gsub(pattern, replacement, x, ignore.case= FALSE)

The first argument is the pattern you search for, the second argument is what you want to replace it with, and
the third argument specifies whether the search is case sensitive (the search is case sensitive by default).

In the vectorr_and_j, we want to match “Romeo” and replace it with “Superman” (sorry, Shakespeare).

> r_and_j <- "O Romeo, Romeo, wherefore art thou Romeo?"
> sub("Romeo", "Superman", r_and_j, ignore.case = FALSE)
[1] "O Superman, Romeo, wherefore art thou Romeo?"
> gsub("Romeo", "Superman", r_and_j, ignore.case = FALSE)
[1] "O Superman, Superman, wherefore art thou Superman?"

As you can see, sub() matches and replaces only the first instance of Romeo, whereas gsub() matches
and replaces all instances.2 For this obvious reason, sub() is hardly ever used by corpus linguists.

2 The g in gsub() stands for “global”.
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If you set ignore.case = TRUE, then you do not need to care about uppercase or lowercase:

> gsub("romeo", "Superman", r_and_j, ignore.case = TRUE)
[1] "O Superman, Superman, wherefore art thou Superman?"
> gsub("ROMEO", "Superman", r_and_j, ignore.case = TRUE)
[1] "O Superman, Superman, wherefore art thou Superman?"

In R, you do not delete anything per se. Instead, you replace what you want to delete with nothing, or
more precisely with an empty string. If you want to delete the commas in r_and_j, just replace ","
with "".

> gsub(",", "", r_and_j)
[1] "O Romeo Romeo wherefore art thou Romeo?"

4.3.4 Limitations

The above is just the tip of the iceberg with respect to what grep() and gsub() can do. In fact, these
functions soon reach their limits if they are not combined with regular expressions.

Suppose you want to match all verbs ending in ’d in your whitman vector. This won’t work unless you
find a way to tell R to look for a sequence of characters ending in ’d. The only way to do it is to translate “a
sequence of characters ending in ’d” by means of a regular expression.

Suppose you now want to delete all punctuation except the apostrophe before making a frequency list.
One option is to look for every type of punctuation mark (the comma, the colon, the semi-colon, etc.), with
one line of code per punctuation type. A second, far more efficient method is to use one regular expression
that covers all punctuation types.

4.4 Regular Expressions

Regular expressions are patterns that perform the same functions but in a more powerful way. Suppose you
want to retrieve all proper names from a document. In a commercial word processor, you will not be able to
do it unless you find a way of telling the processor to match all words that start with a capital letter, ignoring
those words that appear in sentence-initial position. The easiest way to do it is to use a regular expression,
i.e. a pattern that abstracts away from the specificities of each proper name and retains only what these
names have in common: a capital letter followed by several word characters. If you do not use a regular
expression, several steps are needed. If you use a regular expression, one step is enough.3

4.4.1 Overview

Regular expressions (also known as regexes) are not specific to R. They are found in all computer languages.
In fact, even though R has all the regexes you need, other scripting languages such as Perl or Python offer
a wider range of possibilities. Good text editors such as Notepad++ or TextWrangler understand regular
expressions.

3 Of course, you will have to deal with proper names that appear in sentence-initial position.
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Concretely, regexes are expressions that combine characters to form a pattern. The pattern is a generic
expression denoting one or several character strings to be matched.

Resources on regular expressions

• Regular expressions in R:
?regex
https://stat.ethz.ch/R-manual/R-devel/library/base/html/regex.
html

• Regular expressions in general:
http://www.regular-expressions.info/
http://regexone.com/
http://www.rexegg.com/

4.4.2 Literals vs. Metacharacters

A literal is a character that receives a normal, literal interpretation when it is part of a regular expression.
For example, the pattern "5" matches the digit character “5” and the pattern "dog" matches the character
string “dog”.

On the other hand, a metacharacter is a character that receives a special interpretation in a regular expres-
sion. If you want a metacharacter to be used literally, you need to escape it. In most scripting languages,
escaping is done with one backslash \. However, in R, you have to double the backslash: \\.

For example, the dollar sign $ does not match the monetary unit but, as you will learn below (Sect. 4.4.3),
the end of a string. The vector dollar has three elements. The dollar sign matches all three elements even
though the currency symbol is present only in the first two. This is because all three elements have a string
end, each of which is matched.

> dollar <- c("I paid $15 for this book.", "they received $50,000 in grant money", "two dollars")
> grep("$", dollar)
[1] 1 2 3

If you want to match the currency symbol, you need to escape it.

> grep("\\$", dollar)
[1] 1 2

Tab. 4.1 lists some characters that need escaping to be used literally. The sections below will explain what
each metacharacter means.

4.4.3 Line Anchors

The line anchors ˆ and $ match the beginning and the end of a string respectively. For example, the regular
expression "sh" will match the character "s", followed by the character "h". The regular expression

https://stat.ethz.ch/R-manual/R-devel/library/base/html/regex.html
https://stat.ethz.ch/R-manual/R-devel/library/base/html/regex.html
http://www.regular-expressions.info/
http://regexone.com/
http://www.rexegg.com/
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Table 4.1: Some metacharacters and how to escape them

name metacharacter how to escape it

dot . \\.
pipe | \\|
opening bracket ( \\(
closing bracket ) \\)
opening square bracket [ \\[
closing square bracket ] \\]
opening brace or curly bracket { \\{
closing brace or curly bracket } \\}
caret or hat ˆ \\ˆ
dollar sign $ \\$
asterisk ∗ \\∗
plus sign + \\+
question mark ? \\?

"ˆsh" will match the same sequence of characters, but only at the beginning of a string, and "sh$" will
match it at the end of a string.

> grep("sh", c("ashes", "shark", "bash"), value=TRUE) # matches all three vector elements
[1] "ashes" "shark" "bash"
> grep("^sh", c("ashes", "shark", "bash"), value=TRUE) # matches only "shark"
[1] "shark"
> grep("sh$", c("ashes", "shark", "bash"), value=TRUE) # matches only "bash"
[1] "bash"

Line anchors do not consume characters because their length is null.

4.4.4 Quantifiers

Quantifiers are placed right after a regular expression. They are meant to repeat the regular expression a
given number of times. Tab. 4.2 lists the quantifying expressions available in R.

The vector quant.ex contains five elements.

> quant.ex <- c("gaffe", "chafe", "chalk", "encyclopaedia", "encyclopedia")

You want to match both "gaffe" and "chafe" (and only these two character strings) in one go. This
is fairly easy because "gaffe" and "chafe" are the only strings that contain the "f" character. Because
"chafe" has one "f" and "gaffe" has two, all you need to do is look for a character string that contains
at least one letter "f". Using quantifiers, this can be done in several ways.

> grep("f+", quant.ex, value=TRUE) # one or more "f"
[1] "gaffe" "chafe"
> grep("f{1,2}", quant.ex, value=TRUE) # one or two "f"
[1] "gaffe" "chafe"
> grep("f{1,}", quant.ex, value=TRUE) # at least one "f"
[1] "gaffe" "chafe"
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Table 4.2: Quantifiers in R

quantifier interpretation

∗ zero or more occurrence(s) of the preceding regex
+ one or more occurrence(s) of the preceding regex
? zero or one occurrence of the preceding regex
{n} n occurrence(s) of the preceding regex
{n,} at least n occurrences of the preceding regex
{,n} up to n occurrences of the preceding regex
{n,m} between n and m occurrences of the preceding regex

The same vector contains both the British and American spellings "encyclopaedia" and "encyclo
pedia". We want to retrieve both variants. Both spelling are identical except for one difference: “ae” vs.
“e”. The British spelling has one letter that the American spelling does not have. All we need to do is make
the letter “a” optional in the regex by means of a quantifier. The most obvious option is to match a string that
contains the word character "p" followed by zero or one instance of the word character "a", followed by
one "e". Including "p" guarantees that the expression will not match any other string of the vector because
"gaffe", "chafe", and "chalk" do not contain a "p". The expression can be formulated in several
ways, using equivalent quantifying expressions.

> grep("pa?e", quant.ex, value=TRUE) # "p" followed by zero or one "a", followed by "e"
[1] "encyclopaedia" "encyclopedia"
> grep("pa{0,1}e", quant.ex, value=TRUE) # "p" followed by zero or one "a", followed by "e"
[1] "encyclopaedia" "encyclopedia"
> grep("pa*e", quant.ex, value=TRUE) # "p" followed by zero or more "a", followed by "e"
[1] "encyclopaedia" "encyclopedia"

4.4.5 Alternations and Groupings

The vector some.verbs contains some random verbs. For two of them, the British and American spelling
variants are included.

> some.verbs <- c("italicize", "highlight", "italicise", "emphasise", "underline",
+ "emphasize", "insert", "place")

Suppose that, for the purpose of a study, you want to retrieve only those verbs that display a spelling
alternation with respect to the -ize vs. -ise ending. You must tell R to look for character strings that end
in "ise" or "ize". Because the endings are identical except for the "s"/"z" contrast, just tell R to match
character strings whose endings alternate between "z" and "s".

> grep("i[sz]e", some.verbs, value=TRUE)
[1] "italicize" "italicise" "emphasise"
[4] "emphasize"

Square brackets subdivide a regular expression into alternative characters. For instance, the regular ex-
pression [abcd] means “a or b or c, or d”.
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In R, the pipe symbol (|) subdivides a regular expression not just into alternative characters but into
alternative patterns. For instance, the regular expression "oo|ee"means a sequence of two o characters or
a sequence of two e characters. In the vector some.words, the regular expression matches foot, food,
and feet.

> some.words <- c("foot", "food", "fork", "flask", "feet")
> grep("oo|ee", some.words, value=TRUE)
[1] "foot" "food" "feet"

Sometimes, you need to embed alternating subpatterns within a regular expression. In the vector verb.
forms below, you want to match the -ing forms of the verbs, namely being, having, and doing. All
three verb forms have the -ing ending in common. The alternative patterns are the character strings that
precede the ending: be-, hav-, and do-. These alternative patterns must be grouped within brackets.

> verb.forms <- c("do", "been", "had", "does", "did", "being",
+ "done", "has", "were", "doing", "was", "having")
> grep("(be|hav|do)ing", verb.forms, value=TRUE)
[1] "being" "doing" "having"

The regex "(be|hav|do)ing" matches the string "be" or "hav" or "do" followed by the string
"ing". If you omit the brackets, the regex matches vector elements that contain be, hav, or doing,
which is not what you want.

> grep("be|hav|doing", verb.forms, value=TRUE)
[1] "been" "being" "doing" "having"

This is because the match encompasses all that appears on either side of the pipe symbol. Brackets are
needed to delimit the alternating patterns.

4.4.6 Character Classes

In R, all alphanumeric characters are defined as [a-zA-Z], which can be interpreted as any lowercase or
uppercase letter. Any lowercase letter can be obtained with [a-z] or letters. Any uppercase letter
can be obtained with [A-Z] or LETTERS. Common character ranges can also be specified using special
character sequences (Tab. 4.3).

To make each character class explicit, let us use an example sentence and replace each class in turn with
an asterisk.

> ex.sentence <- "Act 3, scene 1. To be, or not to be, that is the Question:"

When we replace "." with "∗", all characters are replaced, including spaces and punctuation.

> gsub(".", "*", ex.sentence)
[1] "**********************************************************"

When we replace "\\w"with "∗", all word characters are replaced. As expected, spaces and punctuation
are not replaced.

> gsub("\\w", "*", ex.sentence)
[1] "*** *, ***** *. ** **, ** *** ** **, **** ** *** ********:"
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Table 4.3: Essential character sequences in R

anchor interpretation

. any character except a newline
\\w any word character
\\W anything but a word character
\\d any digit character
\\D anything but a digit character
\\b a word boundary
\\B anything but a word boundary
\\s any space character
\\S anything but a space character

When we replace "\\W" with "∗", only non-word characters are replaced. In the vector, this concerns
spaces and punctuation.

> gsub("\\W", "*", ex.sentence)
[1] "Act*3**scene*1**To*be**or*not*to*be**that*is*the*Question*"

When we replace "\\d" with "∗", only the two digit characters in the vector are replaced. When the
substitution involves "\\D", it is the other way around.

> gsub("\\d", "*", ex.sentence)
[1] "Act *, scene *. To be, or not to be, that is the Question:"
> gsub("\\D", "*", ex.sentence)
[1] "****3********1********************************************"

When we replace "\\b" with "∗", all word boundaries are replaced. An asterisk marks the beginning
and the end of each word. Pay attention to the string "be∗,". The word boundary is after "be" and before
the comma. As you can see, word boundaries have no length.

> gsub("\\b", "*", ex.sentence, perl=TRUE)
[1] "*Act* *3*, *scene* *1*. *To* *be*, *or* *not* *to* *be*, *that* *is* *the* *Question*:"

Like word boundaries, non-word boundaries have no length either. When we replace "\\B" with "∗",
an asterisk is inserted between word characters.

> gsub("\\B", "*", ex.sentence)
[1] "A*ct 3,* s*ce*ne 1.* T*o b*e,* o*r n*ot t*o b*e,* t*ha*t i*s t*he Q*ue*st*io*n:"

When "\\s" is replaced with "∗", an asterisk is substituted for each space.

> gsub("\\s", "*", ex.sentence)
[1] "Act*3,*scene*1.*To*be,*or*not*to*be,*that*is*the*Question:"

When "\\S" is replaced with "∗", asterisks are substituted for all characters, except space characters.

> gsub("\\S", "*", ex.sentence)
[1] "*** ** ***** ** ** *** ** *** ** *** **** ** *** *********"

Other common character ranges can be specified using character sequences of the form [:keyword:],
as shown in Tab. 4.4. The inner brackets indicate a class name, whereas the outer brackets indicate a range.
These character classes are based on the POSIX family of standards, POSIX being an acronym for the
Portable Operating System Interface.
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Table 4.4: Essential POSIX character classes

character class what it means

[[:alpha:]] alphabetic characters
[[:digit:]] digits
[[:punct:]] punctuation
[[:space:]] space, tab, newline, etc.
[[:lower:]] lowercase alphabetic characters
[[:upper:]] uppercase alphabetic characters

4.4.7 Lazy vs. Greedy Matching

As you saw in Chap. 3, annotated corpus files contain tags delimited by angle brackets < > or appended
to each word by means of an underscore symbol (_). The character vector annotated.v contains an
annotated corpus sentence. Each word is tagged in a XML fashion, following the CLAWS5 tagset.

annotated.v <- "<w c5=\"DT0\" hw=\"this\" pos=\"ADJ\">this </w><w c5=\"VBZ\" hw=\"be\"
pos=\"VERB\">is </w><w c5=\"AT0\" hw=\"an\" pos=\"ART\">an </w><w c5=\"AJ0\" hw=\"annotated\"
pos=\"ADJ\">annotated </w><w c5=\"NN1\" hw=\"sentence\" pos=\"SUBST\">sentence</w><c
c5=\"PUN\">."

Each item is marked by a start tag and a closing tag. The start tag contains:

• a code letter for the nature of the item (w if it is a word, c if it is a punctuation mark);
• a POS tag based on the CLAWS5 tagset;
• the head word (hw), or lemma;
• the value of the CLAWS5 wordclass.

The closing tag signals the end of a word unit.
While tags are useful for POS-based corpus queries, they are generally not required for lexeme-based

frequency lists and should therefore be removed after use. You already know that there is no function
dedicated to deleting, but that gsub() does the job quite well by replacing what is to be deleted with an
empty string. The difficulty here is that we want to delete both the brackets and what is inside them. The
problem is that what is inside each brackets changes from an item to the next.

If we apply what we have learned above about quantifiers and character classes, we might think that <.∗>
would do the trick. The expression means: look for an opening bracket, followed by zero or more characters
except a newline, and a closing bracket. Yet look what happens when we substitute that expression for an
empty string.

> gsub("<.*>", "", annotated.v)
[1] "."

By default, R matches the first opening bracket (<w c5=\"DT0\") and then chooses the longest possible
match, i.e. up to the last closing bracket in the vector (c5=\"PUN\">). This is known as greedy matching.

We must instead tell R to match an opening bracket until it finds the nearest closing bracket. To do this,
just add a question mark after the regex for greedy matching: .∗?.
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> gsub ("<.*?>" , "" , annotated.v)
[1] "this is an annotated sentence."

This procedure is known as lazy matching. R iterates until it can no longer match an occurrence of an
opening bracket.

4.4.8 Backreference

Backreference allows you to match a substring (i.e. a part of a character string), save it, index it, and do
whatever you want with it. In the toy vector letters.digits, letters from a to i are paired with their
respective positions in the alphabet. Each pair is separated by a space. Suppose you want to switch letters
and positions. What you need to do is: (a) match each letter, (b) match each digit, (c) save both, (d) switch
them. Backreferencing will do the trick in one go.

> letters.digits <- "a1 b2 c3 d4 e5 f6 g7 h8 i9"
> gsub("(\\w)(\\d)", "\\2\\1", letters.digits)
[1] "1a 2b 3c 4d 5e 6f 7g 8h 9i"

The regular expression in the first argument of gsub()—"(\\w) (\\d)"—matches any word character
followed by any digit character. The first pair of brackets tells R to store \\w in memory. The second pair of
brackets tells R to do the same for \\d. Each set of brackets is numbered according to the order of opening
brackets. Therefore, the first pair is numbered 1 and the second pair is numbered 2. This makes what is
matched between the brackets available for further processing, providing you escape the numbers as follows:
\\1 and \\2. In the replacement argument of gsub(), the regular expression "\\2\\1" instructs R to
switch letters and digits for each letter–digit pair.

Here is an example that is more relevant to corpus linguists. Suppose you want to simplify the annotation
in annotated.v. Instead of XML annotation, you want a simpler scheme involving the POS tag appended
to the word with an underscore. The pattern you want to match is defined as a generic tag:

"<w c5=\"(\\w+)\" hw=\"\\w+\" pos=\"\\w+\">(\\w+) ?</w>"

where \\w+ (“one or more characters”) stands for the specific values of the tag’s attributes (c5, hw, and
pos). The quotes must be escaped to be recognized as characters, not as character string boundaries. An
optional space is added after the last occurrence of \\w+ (that is where the word token would be) thanks
to the quantifying expression " ?". This guarantees that you will match all word tokens, including those
that are not followed by a space but by punctuation marks. The elements that we are interested in are the
c5 tag and the word token, which is right between the starting tag and the end tag. Both elements should
be placed between brackets for backreferencing. Because the c5 tag is the first bracketed element, it is
assigned number 1, and because the word token is the second bracketed element, it is assigned number 2.
In the replacement argument, the word token (\\2) is followed by an underscore and the c5 tag (\\1).

> annotated.v <- "<w c5=\"DT0\" hw=\"this\" pos=\"ADJ\">this </w><w c5=\"VBZ\" hw=\"be\"
pos=\"VERB\">is </w><w c5=\"AT0\" hw=\"an\" pos=\"ART\">an </w><w c5=\"AJ0\"
hw=\"annotated\" pos=\"ADJ\">annotated </w><w c5=\"NN1\" hw=\"sentence\"
pos=\"SUBST\">sentence</w><c c5=\"PUN\">."
> annotated.v2 <- gsub("<w c5=\"(\\w+)\" hw=\"\\w+\" pos=\"\\w+\">(\\w+) ?</w>", "\\2_\\1",
annotated.v)

> annotated.v2
[1] "this_DT0 is_VBZ an_AT0 annotated_AJ0 sentence_NN1 <c c5=\"PUN\">."
> gsub("<c c5=\"(PUN)\">(\\.)", "\\2_\\1", annotated.v2)
[1] "this_DT0 is_VBZ an_AT0 annotated_AJ0 sentence_NN1 ._PUN"
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Note that the punctuation tag was not captured by the regular expression. Again, backreferencing comes
in handy.

4.4.9 Exact Matching with strapply()

The matching function grep() returns the vector element containing the match. Generally, when you load
a corpus file, the separator is set to a newline (sep="\n"). When there is one corpus sentence per line,
grep() returns not just the exact match but the whole sentence containing the match. This may not be
what you always need.

To do exact matching, strapply() is the function you need. It is part of the gsubfn package, which
you must obtain from CRAN and load beforehand (via library(gsubfn)). The simplified argument
structure of strapply() is the following:

> strapply(X, pattern, backref, ignore.case=FALSE, perl = FALSE)

The X argument is the character vector where the matches are sought. The pattern argument is the
character string you want to match. The ignore.case argument specifies whether the pattern matching
is case sensitive or not. As you can see, it is case sensitive by default. The perl argument specifies whether
the R engine should be used with perl-compatible regular expressions. By default, perl is set to FALSE,
so do not forget to switch it to TRUE if you are using perl regular expressions. The function has a backref
argument for backreference. Even though you already know from Sect. 4.4.8 what it can do, the way it
is implemented in strapply() is slightly more complex and requires further explaining by means of a
working example.

Your CLSR folder contains the BNC Baby. After loading the first corpus file (A1E.xml), we want to
extract all the verbs from this file. This is easy as pie because the corpus is annotated with XML (see
Sect. 4.4.8). Here is what a verb looks like in XML:

<w c5="VVZ" hw="reveal" pos="VERB">reveals </w>

All we need to do is (a) tell R to match all the tags that contain the string pos="VERB", and (b) keep the
actual verb in memory. With strapply(), these two steps can be done in one go. First, we load the
gsubfn package.

> rm(list=ls(all=TRUE))
> library(gsubfn)

Loading required package: proto

Next, we load the corpus file into the vector A1E.xml.

> A1E.xml <- scan(file="C:/CLSR/BNC_baby/A1E.xml", what="char", sep="\n") # Windows
> A1E.xml <- scan(file="/CLSR/BNC_baby/A1E.xml", what="char", sep="\n") # Mac

Then, we ask R to match pos="VERB" followed by a closing angle bracket (>), one or more word char-
acters (\\w+) and a word boundary (\\b). The POS tag is used only to retrieve the verb. It is not needed
in the returned match. To tell R to keep only the verb token, we must tag it as a backreference by enclosing
it between brackets and call the match using the backreference argument (backref) of the strapply()
function.
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> verbs <- unlist(strapply(A1E.xml, "pos=\"VERB\">(\\w+)\\b", perl=TRUE, backref=-1))
> head(verbs, 30) # display the first thirty verbs
[1] "reveals" "is" "leading"
[4] "SEEMS" "appear" "has"
[7] "made" "has" "investigated"
[10] "is" "being" "mounted"
[13] "says" "is" "had"
[16] "taken" "would" "have"
[19] "found" "has" "are"
[22] "has" "investigated" "would"
[25] "keep" "was" "launched"
[28] "faced" "regards" "is"

The backref argument of strapply() is set to -1. This means that R remembers the string enclosed
within the first set of brackets. Understanding how backref works is no easy task, all the more so as it is
subject to change. You should therefore always check the gsubfn manual written by Gabor Grothendieck
for changes.4 If backref is set to zero, the entire match is returned. If backref is set to a positive integer
n, the match and the first n backreferences are returned. If backref is set to a negative integer -n, only the
first n backreferences are returned.

To obtain the number of verbs in the corpus file, use length().

> length(verbs)
[1] 1497

The corpus file contains 1497 verbs.
Althoughstrapply() does its job quite well, it is particularly slow when the character strings are long,

even more so if it is used multiple times in a script or inside a loop. Chances are that if you work on a large
corpus (such as the full BNC), you script will consume a lot of memory and take hours to run. Fortunately,
Gabor Grothendieck has written a dramatically faster version of strapply(): strapplyc().

4.4.10 Lookaround

If you are comfortable enough with the techniques seen above, it is likely that you will not be using
lookaround very often. Lookaround comes in two flavors: lookahead and lookbehind. Lookahead constrains
the match regarding what immediately follows or what does not immediately follow, whereas lookbehind
constrains the match regarding what immediately precedes or does not immediately precede. Each subdi-
vides into a positive and a negative version.

Suppose you have the vector words.with.q.

> words.with.q <- c("Iraq", "Iraq.", "Qatar", "Aqaba", "quest", "query", "aquatic")

You want to match both instances of “Iraq”. You cannot simply use grep() and look for "q$", hoping the
regular expression will match words that end in “q” because in the second instance, the character is not final
but followed by a period.

> grep("q$", words.with.q, ignore.case=TRUE, value=TRUE)
[1] "Iraq"

4 https://cran.r-project.org/web/packages/gsubfn/gsubfn.pdf.

https://cran.r-project.org/web/packages/gsubfn/gsubfn.pdf
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We could try using positive lookahead to ask R to match a word that contains a “q” followed by a non-
word character. The construct for positive lookahead is a pair of parentheses, with the opening parenthesis
followed by a question mark, and an equals sign: (?=text). For the assertion to be recognized, make sure
that you specify perl=TRUE.

> grep("q(?=\\W)", words.with.q, ignore.case=TRUE, perl=TRUE, value=TRUE)
[1] "Iraq."

Unfortunately, only one match is returned: “Iraq.”. This is because “Iraq” is not followed by a character or
anything visible. The good news is that R sees a word boundary before and after each character string (see
Sect. 4.4.6). What you can do is use positive lookahead to ask R to match a word that contains a “q” if the
character is followed by a word boundary (\\b), i.e. in word-final position.

> grep("q(?=\\b)", words.with.q, ignore.case=TRUE, perl=TRUE, value=TRUE)
[1] "Iraq" "Iraq."

At this stage, it is important to remember that lookaround expressions are zero-length assertions. In the
above line of code, \\b is not consumed. Technically, you are not looking for “a q followed by a word
boundary” but for “a q as long a it is followed by a word boundary”. If you replace “q” with its uppercase
equivalent, it becomes clear that the word boundary is not replaced, because it is not consumed in the match.

> gsub("q(?=\\b)", "Q", words.with.q, ignore.case=TRUE, perl=TRUE)
[1] "IraQ" "IraQ." "Qatar" "Aqaba"
[5] "quest" "query" "aquatic"

Now suppose you want to match all words that contain an Arabic “q” in one go. You cannot simply use
grep() and look for "q[^u]", hoping the regular expression will match “Iraq”, “Qatar”, and “Aqaba”
just because [^u] excludes the character “u”.

> grep("q[^u]", words.with.q, ignore.case=TRUE, value=TRUE)
[1] "Iraq." "Qatar" "Aqaba"

Here, “Iraq.”, “Qatar”, and “Aqaba” are matched, but not “Iraq”. This is because in the pattern q[ˆu], [ˆu]
has a length and R expects a character after “q”. This does not apply to “Iraq”, which has no character after
“q”. One easy option is to use negative lookahead, which matches a string if it is not followed by something
else. We ask R to match the character “q” only if it is not followed by the character “u”. The construct for
positive lookbehing is a pair of parentheses, with the opening parenthesis followed by a question mark and
an exclamation mark: (?!text).

> grep("q(?!u)", words.with.q, ignore.case=TRUE, perl=TRUE, value=TRUE)
[1] "Iraq" "Iraq." "Qatar" "Aqaba"

Finally, all matches are returned.
Lookbehind is not as flexible and not used as often as lookahead. It also suffers from serious limitations,

as you will see below. In my experience, there is almost always an alternative to lookbehind. Consider the
vector prefix.

> prefix <- c("incomplete", "complete", "illogical", "logical",
+ "irresponsible", "responsible","impossible", "possible")

You want to extract only those adjectives that have a prefix meaning ‘not’ or ‘the converse of’. This can be
done with positive lookbehind: look for a word (\\w+\\b) if a word boundary followed by the character
“i” and one word character (\\bi\\w) immediately precede it.
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> grep("(?<=\\bi\\w)\\w+\\b", prefix, perl=TRUE, value=TRUE)
[1] "incomplete" "illogical"
[3] "irresponsible" "impossible"

You obtain the same result more elegantly without positive lookbehind.

> grep("\\bi\\w+\\b", prefix, perl=TRUE, value=TRUE)
[1] "incomplete" "illogical"
[3] "irresponsible" "impossible"

Positive lookbehind is faster and perhaps more useful with gsub() if you want to isolate the prefixes.

> gsub("(?<=\\bi\\w)\\w+\\b", "-", prefix, perl=TRUE) # with positive lookbehind
[1] "in-" "complete" "il-"
[4] "logical" "ir-" "responsible"
[7] "im-" "possible"
> gsub("(\\bi\\w)\\w+\\b", "\\1-", prefix, perl=TRUE) # without positive lookbehind
[1] "in-" "complete" "il-"
[4] "logical" "ir-" "responsible"
[7] "im-" "possible"

Suppose you have the vector plural.singular, which contains the singular and plural forms of
a few words and an oddity: the genitive form “John’s”. The construct for positive lookbehind is a pair of
parentheses, with the opening parenthesis followed by a question mark, the "less than" symbol, and an equals
sign: (?<=text).

> plural.singular <- c("car", "cars", "book", "books", "cap", "caps", "John's")

You want to match singular nouns. “John” is one of them, but you do not want to match “’s”. One option
involves looking for a word (\\b\\w+\\b) and adding a constraint before the closing word boundary: [
ˆs] (not the character “s”). Another option involves negative lookbehind, which matches a string is it is not
preceded by something else. The construct for negative lookbehind is (?<!text): a pair of parentheses,
with the opening parenthesis followed by a question mark, the “less than” symbol, and an exclamation mark.
With lookaround, we can match a word if there is no “s” immediately preceding the closing word boundary:
\\b\\w+(?<!s)\\b. Apparently, both options yield the same output.

> # without lookaround
> grep("\\b\\w+[^s]\\b", plural.singular, ignore.case=TRUE, perl=TRUE, value=TRUE)
[1] "car" "book" "cap" "John's"
> # with lookaround
> grep("\\b\\w+(?<!s)\\b", plural.singular, ignore.case=TRUE, perl=TRUE, value=TRUE)
[1] "car" "book" "cap" "John's"

Yet, remember that lookaround assertions have no length. In other words, what is between the parentheses is
not returned. The difference between the regular expressions with and without negative lookbehind becomes
obvious when you replace the singular nouns with, say, one asterisk.

> # without lookaround
> gsub("\\b\\w+[^s]\\b", "*", plural.singular, ignore.case=TRUE, perl=TRUE)
[1] "*" "cars" "*" "books" "*"
[6] "caps" "*s"
> # with lookaround
> gsub("(\\b\\w+(?<!s)\\b)", "*", plural.singular, ignore.case=TRUE, perl=TRUE)
[1] "*" "cars" "*" "books" "*"
[6] "caps" "*'s"

Without lookaround, the match is “John”’, with the apostrophe. With lookaround, the match is what you
really want: “John”, without the apostrophe.
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A known issue with lookbehind is that the assertion must be “fixed length”. In the vector birds below,
we want to match only those birds that have a prefix, e.g. black in blackbird, as opposed to the adjective
black in black bird.

> birds <- c("black bird", "blackbird", "hummingbird", "cowbird",
+ "mousebird", "king bird-of-paradise")
> grep("\\b(?<=\\w+)bird\\b", birds, perl=TRUE, value=TRUE)

Warning in grep("\\b(?<=\\w+)bird\\b", birds, perl = TRUE, value = TRUE): PCRE pattern compilation
error
’lookbehind assertion is not fixed length’
at ’)bird\b’

R issues a warning because in the positive lookbehind assertion "\\b(?<=\\w+)bird\\b", "\\w+"
matches character strings of various lengths.

> nchar(c("black", "humming", "cow", "mouse"))
[1] 5 7 3 5

Because of that serious limitation, lookbehind is seldom convenient for the kind of character string process-
ing involved in corpus linguistics.

Tab. 4.5 summarizes the lookaround assertions and how each assertion is prefixed and used.

Table 4.5: Summary table for lookaround assertions

lookaround assertion prefix usage

positive lookahead ?= (?=text)
negative lookahead ?! (?!text)
positive lookbehind ?<= (?<=text)
negative lookbehind ?<! (?<!text)

Exercises

4.1. Exact matching
Consider the following vector:

> catmat <- c("the", "cat", "sat", "on", "the", "mat")

Find two ways of matching cat, mat, but not sat.

4.2. Word count
The text file gnu.txt, available in CLSR/chap4, is an excerpt from the preamble to the GNU General
Public License (https://www.gnu.org/licenses/gpl-3.0.en.html). Count the number of
times that the definite article the occurs in the text.

https://www.gnu.org/licenses/gpl-3.0.en.html


86 4 Processing and Manipulating Character Strings

4.3. Exact matching with an annotated file
Load the corpus file 102CTL002_annotated.txt from CLSR/chap4 into a vector named corp.
file. The corpus file is a letter from the Open American National Corpus. The text is annotated for part of
speech according to CLAWS7. In this exercise, you have to retrieve verb forms thanks to the POS tags using
regular expressions. The tags should not be part of the output. Don’t forget to inspect the CLAWS7 tagset
before writing the code. It is available from http://ucrel.lancs.ac.uk/claws7tags.html

(a) retrieve the past participle forms of all lexical verbs;
(b) retrieve all the verb forms of be;
(c) retrieve the 3SG forms of be, do, and have in the simple present.

The tags should not be retrieved.

http://ucrel.lancs.ac.uk/claws7tags.html


Chapter 5
Applied Character String Processing

Abstract In this chapter, you will learn how to handle text material by combining the R techniques that you
have learned in the previous chapter.

5.1 Introduction

You are now all set for digging corpora and extracting linguistic data in textual form. The sections below
walk you through basic corpus linguistics operations. All of them involve the functions described above.

5.2 Concordances

A concordance table displays a word or a pattern of words in context. The context is a window of words to
the left of the pattern (known as the preceding context or left context) and another window of words (known
as the following context). In corpus linguistics lingo, a concordance is also known as a KWIC display, where
the acronym stands for ‘Key Word(s) In Context’.

A classic example involves a comparison of -ic and -ical adjectives (Gries 2001). Tab. 5.1 is a sample
concordance of alphabetic and alphabetical in the British National Corpus. A cursory look at the concor-
dance confirms that alphabetic refers to the use of letters of the alphabet, whereas alphabetical relates to the
use of an alphabet as an ordering system.

5.2.1 A Concordance Based on an Unannotated Corpus

First, let us make a concordance of words based on blood in Bram Stoker’s Dracula: blood, bloody, blood-
ied, bleed, bleeding, etc. The text file can be downloaded from Project Gutenberg: https://www.
gutenberg.org/files/45839/45839-0.txt. Save the text file in the CLSR/chap5 folder.
Name this file dracula.txt. If you encounter an encoding issue when you open the file in your text
editor, please refer to Sect. 3.3.2.

© Springer International Publishing AG 2017
G. Desagulier, Corpus Linguistics and Statistics with R, Quantitative Methods in the Humanities
and Social Sciences, DOI 10.1007/978-3-319-64572-8_5
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Table 5.1: A sample concordance of alphabetic and alphabetical in the BNC

# left context word right context

1 specify the equation press the end key which is between the alphabetic and the numeric key pads , that will then submit that request
2 an integer between 0 and 9 , and A is an alphabetic character . # NISS No issue has been specified for the referenced
3 particular the notion that a word is a contiguous sequence of alphabetic characters . Amsler shows that this notion ignores important
4 ... It was only in the days of the first widespread alphabetic culture that the idea of ’ logic ’ appears to have arisen
5 records than for signs . In most languages with writing systems alphabetic fingerspelling has been available for over two hundred years .
6 of icebreakers when she noticed that the control panel had an alphabetic keyboard. Can’t hurt to try , she thought , unjacking
7 for the widespread development of the particular form of alphabetic literacy evident in Greece must clearly be sought in the social
8 Retrieval from a conventional filing system relies on either alphabetic or numeric indexation but the use of a computer enables data to
9 on . Fingerspelling as it exists today consists of a direct alphabetic representation of the language as it would be written down . In
10 describe . According to Goody and Watt , the development of alphabetic script and its wide diffusion throughout society – the two
11 individuals or items which can be symbolized by a number or alphabetical abbreviation . For example , 929 Schil Biography of Schiller 820
12 Filofax – but you probably do need a college diary or alphabetical address book with space for telephone numbers , etc . Finally ,
13 A to Z OF FISH HEALTH # JERZY GAWOR continues his alphabetical advice on fish health problems . # Top : Tablet food forms
14 this context . Abish ’s use of arbitrary formal limits in Alphabetical Africa ( 1974 ) ’ becomes the vehicle for an adventurous plot
15 index to post code directories. # 5. # Telephone directories – alphabetical and classified . # 6. # Telephone Dialling Codes – an essential
16 in order to arrange it . A classified rather than an alphabetical approach was necessary in the index because an internationally
17 jazz titles from early this and late last year , in alphabetical artist order . Old faces mix with the new but all have
18 when I sell it again I can put the type in alphabetical ascending order (SP:PS0H9) Mm (SP:PS0H9) so it ’ll be
19 . These six should ideally be selected at random from an alphabetical class list . The observer must ensure that the six named in
20 brother , Master Richard of Stainby , author of a revised alphabetical concordance to the Bible , and the great scholar , Alexander of

5.2.1.1 First Try

First, load the text file into a character vector, and inspect.

> rm(list=ls(all=TRUE)) # clear memory
> dracula <- scan(file="C:/CLSR/chap5/dracula.txt", what="char", sep="\n") # Windows
> dracula <- scan(file="/CLSR/chap5/dracula.txt", what="char", sep="\n") # Mac
> head(dracula)

Electronic texts from Project Gutenberg come with a header and a footer, a table of contents and editorial
information, which we do not want. We have to tell R to ignore those by pointing at the relevant interval in
the file where the novel is located. We could open the file in a text editor and manually delete the unwanted
text. However, for expository reasons, let me show you how to do it in R.

When you loaded the text file, you specified the newline as a separator. This means that each line is
indexed as a vector element. We can use the index to tell R that the novel is located between the first novel
line and the last. The novel proper starts at “CHAPTER I.” and ends at “/Jonathan Harker./”. We retrieve the
line numbers with grep() and tell R that the novel spans between these two landmarks.

> start <- grep("^CHAPTER I.$", dracula) ; start
[1] 132
> end <- grep("^\\/Jonathan Harker.\\/$", dracula) ; end
[1] 13014
> novel <- dracula[start:end] #join the beginning and the end of the novel
> head(novel) # inspect
[1] "CHAPTER I."
[2] "/Jonathan Harker's Journal./"
[3] "(Kept in shorthand.)"
[4] "3 May. Bistritz.--Left Munich at 8.35 p.m. on 1st May, arriving at"
[5] "Vienna early next morning; should have arrived at 6.46, but train was"
[6] "an hour late. Buda-Pesth seems a wonderful place, from the glimpse"
> tail(novel) # inspect
[1] "said, with our boy on his knee:--"
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[2] "We want no proofs; we ask none to believe us! This boy will some day"
[3] "know what a brave and gallant woman his mother is. Already he knows her"
[4] "sweetness and loving care; later on he will understand how some men so"
[5] "loved her, that they did dare much for her sake."
[6] "/Jonathan Harker./"

One aspect of the text file that corpus linguists dislike is that the line breaks do not correspond to anything
linguistically tangible (such as a clause or a sentence for instance). They correspond to the line breaks of
the original 1897 edition of Dracula. To get things organized, the next step is to convert the vector novel,
which contains as many elements as there are line breaks into a character vector that contains one element
(or, in R parlance, a character vector of length 1). With paste() and the collapse argument, it is a
piece of cake.

> novel.vector <- paste(novel, collapse=" ")

Normally, the next step is to convert the text into individual words by splitting at non-word characters:
unlist(strsplit(novel.vector, "\\W+")). This process is known as tokenization. Yet, we
should not rush to this step because it removes all punctuation, and we need some of it. Indeed, some blood-
based lexemes may be compound words: e.g. blood-curdling, cold-blooded. See what happens when we
split the toy vector blood.sentence at non-word characters and then look for all blood-based lexemes,
including compounds.

> blood.sentence <- "a sentence with the words blood, blood-curdling, cold-blooded)"
> blood.words <- unlist(strsplit(blood.sentence, "\\W+"))
> grep("blood", blood.words, value=TRUE)
[1] "blood" "blood" "blooded"
> grep("(\\w+)?-?blood-?(\\w+)?", blood.words, value=TRUE)
[1] "blood" "blood" "blooded"

Only simple lexemes are returned. If you inspect the vector blood.words, you will see that all hyphens
have been consumed by strsplit(). Therefore, they are not available anymore, and compounds have
been split into distinct lexemes.

There are two kinds of hyphens in the text file, as transcribed by the Project Gutenberg volunteers: double
hyphens and single hyphens. The double hyphens stand for an en dash or em dash.1 Double hyphens can be
replaced by a space. Single hyphens can be deleted for the purpose of the concordance (you can put them
back later).

> # remove hyphens
> novel.vector <- gsub("--", " ", novel.vector)
> novel.vector <- gsub("-", "", novel.vector)

You may now split the text at non-word characters.

> # split at non word characters
> novel.vector.words <- unlist(strsplit(novel.vector, "\\W+"))
> head(novel.vector.words) # inspect
[1] "CHAPTER" "I" "Jonathan" "Harker"
[5] "s" "Journal"
> tail(novel.vector.words) # inspect
[1] "much" "for" "her" "sake"
[5] "Jonathan" "Harker"

It is now time to look for the desired character strings with grep(). Rather than use the function to
extract the matches by specifying value=TRUE, we will set the argument to FALSE so as to retrieve the

1 See http://www.thepunctuationguide.com/en-dash.html.

http://www.thepunctuationguide.com/en-dash.html
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positions of the matches. Since we do not have a clear idea of what words we will find, we had better make
a wide search. The pattern

\\b\\w∗bl(oo|ee?)d\\w∗\\b

is broad enough to capture a wide variety of blood-based expressions like blood, bloodless, cold-blooded,
bloody, bleed, bleeding, or bled. Make sure you delimit the match with word boundaries (\\b) and not non-
word characters (\\W), otherwise you will miss matches that are at the beginning or the end of a character
string. The part bl(oo|ee?)d is designed to match blood, bleed, or bled (the question mark in ee? makes
the second “e” optional). The prefix \\b\\w∗ and the suffix \\w∗\\b match these lexemes when they are
parts of compounds.

In general, it is best to test an expression on a toy vector that includes potential matches and mismatches.

> toy.vector.1 <- c("blood", "coldblooded", "bloodless", "bleed", "bleeding", "bled", "mumbled")
> grep("\\b\\w*bl(oo|ee?)d\\w*\\b", toy.vector.1, value=TRUE)
[1] "blood" "coldblooded" "bloodless"
[4] "bleed" "bleeding" "bled"
[7] "mumbled"

Unfortunately, the regular expression is too broad: it matches mumbled (which also contains the string bled)
as it would grumbled or fumbled. This is because mum- is matched by \\b\\w∗ in

\\b\\w∗bl(oo|ee?)d\\w∗\\b.

The solution is to use line anchors so that nothing precedes or follows bled: ^bled$. Rather than complex-
ify the pattern further, it is best to run two separate queries and concatenate them afterwards.

> # retrieve word positions
> node.positions.1 <- grep("\\b\\w*bl(oo|ee)d\\w*\\b", novel.vector.words) # first query
> node.positions.2 <- grep("^bled$", novel.vector.words) # second query
> node.positions <- c(node.positions.1, node.positions.2) # concatenate both queries
> head(node.positions) # inspect
[1] 8954 10851 12075 12172 12203 12343

We are now going to ask R to iterate over the text file to match the positions with their corresponding
nodes by means of a for loop (see Sect. 2.10). More precisely, the loop will tell R to:

• access each match;
• get the left context of each match;
• get the right context of each match;
• print the results into a text file.

Beforehand, prepare an empty text file named dracula_conc.txt in the chap5 subfolder.

> output.conc <- "C:/CLSR/chap5/dracula_conc.txt" # Windows
> output.conc <- "/CLSR/chap5/dracula_conc.txt" # Mac

Prepare a tab-delimited header with cat(). Store the path to the file in a vector (output.conc).

> cat("LEFT CONTEXT\tNODE\tRIGHT CONTEXT\n", file=output.conc) # tab-delimited header

Create a vector where you specify a value (in word numbers) for the left and right contextual windows.

> context <- 10 # specify a window of ten words before and after the match
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At this stage, it is essential that you understand how this value will be used. Each match is assigned a position
in the form of a numeric value (all positions are contained in node.position). By setting context to 10,
you want to retrieve a window of ten words to the left and to the right of each match.

Finally, enter the loop.

> for (i in 1:length(node.positions)){ # access each match...
+ # access the current match
+ node <- novel.vector.words[node.positions[i]]
+ # access the left context of the current match
+ left.context <- novel.vector.words[(node.positions[i]-context):(node.positions[i]-1)]
+ # access the right context of the current match
+ right.context <- novel.vector.words[(node.positions[i]+1):(node.positions[i]+context)]
+ # concatenate and print the results
+ cat(left.context,"\t", node, "\t", right.context, "\n", file=output.conc, append=TRUE)
+ }

When you open dracula_conc.txt with your spreadsheet software, you will see that the script seems
to have worked fine in this case.

5.2.1.2 Potential Issues

Before congratulating yourself, you need to tackle two potential issues if you are to run the script on a
different text file. The first issue arises if the node is among the very first/last words of the text file and the
contextual window exceeds the boundaries of the text file. Let us use another toy vector to illustrate this and
see how we can handle it.

> rm(list=ls(all=TRUE))
> toy.vector.2 <- c("The blood of snakes is toxic. Vampires drink the blood of animals.")

In the first sentence, blood is in second position. If we ask R to go back three words before it, this is bound to
be a problem. Indeed, if we start from position 2 and go back three positions, we obtain a negative position
(−1). In the second sentence, blood is in tenth position. The whole vector has only twelve word positions.
If we ask R to go forth three words after the tenth position, it will not be able to find the 13th word position
of the vector because there is none. In its current state, our script does not take this situation into account. If
you run it, R issues an error message.

> split.tv2 <- unlist(strsplit(toy.vector.2, "\\W+"))
> node.positions <- grep("blood", split.tv2, ignore.case=TRUE)
> context <- 3
> for (i in 1:length(node.positions)){ # access each match...
+ # access the current match
+ node <- split[node.positions[i]]
+ # access the left context of the current match
+ left.context <- split[(node.positions[i]-context):(node.positions[i]-1)]
+ # access the right context of the current match
+ right.context <- split[(node.positions[i]+1):(node.positions[i]+context)]
+ # print the results
+ cat(left.context,"\t", node, "\t", right.context, "\n", append=TRUE)
+ }
> # you're in for an error message...

The second issue is a specific instance of the first issue. It arises if the match is the first or the last word
of the text file.

> rm(list=ls(all=TRUE))
> toy.vector.3 <- c("Blood is the red liquid that flows through the bodies of people and animals.
+ Vampires drink blood.")
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In the first sentence of this vector, blood does not have a left context. The same word does not have a
right context in the second sentence. The above script will output something strange because it will ask R to
provide a left/right context for the node, but that context does not exist.

> split.tv3 <- unlist(strsplit(toy.vector.3, "\\W+"))
> node.positions <- grep("blood", split.tv3, ignore.case=TRUE)
> context <- 3
> for (i in 1:length(node.positions)){ # access each match...
+ # access the current match
+ node <- split.tv3[node.positions[i]]
+ # access the left context of the current match
+ left.context <- split.tv3[(node.positions[i]-context):(node.positions[i]-1)]
+ # access the right context of the current match
+ right.context <- split.tv3[(node.positions[i]+1):(node.positions[i]+context)]
+ # print the results
+ cat(left.context,"\t", node, "\t", right.context, "\n", append=TRUE)
+ }
the red liquid that flows through the bodies of people and animals Vampires drink blood Blood is
the red animals Vampires drink blood NA NA NA

5.2.1.3 Addressing Issues

To tackle these issues, we have to tell R what to do if such situations arise. Each issue will therefore be
accounted for by means of an if statement (see Sect. 2.11).

Let us address the first issue. The if...else statement below prevents R from going too far back to
retrieve context if the difference between the position of the node and the context is negative. The context is
reset to a sequence between the first position available in the vector and the position right before the node.
If the condition is not true, R proceeds normally.

> #if (node.positions[i] < context) left.context <- split.tv2[1:(node.positions[i]-1)]
> #else left.context <- split.tv2[(node.positions[i]-context):(node.positions[i]-1)]

A second if...else statement prevents R from going too far ahead to retrieve context if the sum of
the position of the node and the context exceeds the length of the vector. The context is reset to a sequence
between the position right after the node and the last position available in the vector.

> #if ((node.positions[i] + context) > length(split.tv2))
> # right.context <- split.tv2[(node.positions[i]+1):length(split.tv2)]
> #else right.context <- split.tv2[(node.positions[i]+1):(node.positions[i]+context)]

Let us check the validity of the script with toy.vector.2.

> rm(list=ls(all=TRUE))
>
> toy.vector.2 <- c("The blood of snakes is toxic. Vampires drink the blood of animals.")
> split.tv2 <- unlist(strsplit(toy.vector.2, "\\W+"))
> node.positions <- grep("blood", split.tv2, ignore.case=TRUE)
>
> context <- 3
>
> for (i in 1:length(node.positions)){ # access each match...
+
+ # access the current match
+ node <- split.tv2[node.positions[i]]
+
+ # access the left context of the current match
+ if (node.positions[i] < context) left.context <- split.tv2[1:(node.positions[i]-1)]
+ else left.context <- split.tv2[(node.positions[i]-context):(node.positions[i]-1)]
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+
+ # access the right context of the current match
+ if ((node.positions[i] + context) > length(split.tv2))
+ right.context <- split.tv2[(node.positions[i]+1):length(split.tv2)]
+ else right.context <- split.tv2[(node.positions[i]+1):(node.positions[i]+context)]
+
+ # print the results
+ cat(left.context,"\t", node, "\t", right.context, "\n", append=TRUE)
+ }
The blood of snakes is
Vampires drink the blood of animals

Let us now address the second issue. The if...else statement below assigns a NULL value to left.
context if the node is in first position. If that condition is not true, R proceeds normally.

> #if (node.positions[i]==1) left.context <- NULL
> #else left.context <- split.tv2[1:(node.positions[i]-1)]

We need another if...else statement to assign a NULL value to right.context if the node is in last
position. If the condition is not true, R proceeds normally.

> #if (node.positions[i]==length(split.tv2)) right.context <- NULL
> #else right.context <- split[(node.positions[i]+1):length(split)]

Let us now check the validity of the script with toy.vector.3.

> rm(list=ls(all=TRUE))
>
> toy.vector.3 <- c("Blood is the red liquid that flows through the bodies of people and animals.
+ Vampires drink blood.")
> split.tv3 <- unlist(strsplit(toy.vector.3, "\\W+"))
> node.positions <- grep("blood", split.tv3, ignore.case=TRUE)
>
> context <- 3
>
> for (i in 1:length(node.positions)){ # access each match...
+
+ # access the current match
+ node <- split.tv3[node.positions[i]]
+
+ # access the left context of the current match
+ if (node.positions[i]==1) left.context <- NULL
+ else left.context <- split.tv3[(node.positions[i]-context):(node.positions[i]-1)]
+
+ # access the right context of the current match
+ if (node.positions[i]==length(split.tv3)) right.context <- NULL
+ else right.context <- split.tv3[(node.positions[i]+1):(node.positions[i]+context)]
+
+ # print the results
+ cat(left.context,"\t", node, "\t", right.context, "\n", append=TRUE)
+ }

Blood is the red
animals Vampires drink blood

Problem solved.

5.2.1.4 The Full Script

Because the second issue is a subcase of the first one, the if...else statement that addresses it will have
to be nested in the if...else statement that addresses the first issue.
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> rm(list=ls(all=TRUE)) # clear memory
>
> dracula <- scan(file="/CLSR/chap5/dracula.txt", what="char", sep="\n", fileEncoding="UTF-8")
>
> start <- grep("^CHAPTER I.$", dracula) ; start
> end <- grep("^\\/Jonathan Harker.\\/$", dracula) ; end
> novel <- dracula[start:end]
>
> novel.vector <- paste(novel, collapse=" ")
> novel.vector <- gsub("--", " ", novel.vector)
> novel.vector <- gsub("-", "", novel.vector)
>
> split <- unlist(strsplit(novel.vector, "\\W+"))
>
> node.positions.1 <- grep("\\b\\w*bl(oo|ee)d\\w*\\b", split) # first query
> node.positions.2 <- grep("^bled$", split) # second query
> node.positions <- c(node.positions.1, node.positions.2)
>
> output.conc <- "/CLSR/chap5/dracula_conc.txt" # Mac
> cat("LEFT CONTEXT\tNODE\tRIGHT CONTEXT\n", file=output.conc)
>
> context <- 10
>
> for (i in 1:length(node.positions)){ # access each match...
+
+ # access the current match
+ node <- split[node.positions[i]]
+
+ # access the left context of the current match
+ if (node.positions[i] < context)
+ if (node.positions[i]==1) left.context <- NULL
+ else left.context <- split[1:(node.positions[i]-1)]
+ else left.context <- split[(node.positions[i]-context):(node.positions[i]-1)]
+
+ # access the right context of the current match
+ if ((node.positions[i] + context) >= length(split))
+ if (node.positions[i]==length(split)) right.context <- NULL
+ else right.context <- split[(node.positions[i]+1):length(split)]
+ else right.context <- split[(node.positions[i]+1):(node.positions[i]+context)]
+
+ # print the results
+ cat(left.context,"\t", node, "\t", right.context, "\n", file=output.conc, append=TRUE)
+ }

Fig. 5.1 is what the file looks like when you open it with a spreadsheet software. Blood is used figuratively
more than it is used literally. Someone doing a literary study of the status of blood in Dracula will find a
concordance useful to compare the distribution of blood-based words across the whole novel.

Fig. 5.1: A snapshot of a concordance of blood-based words in Dracula
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5.2.2 A Concordance Based on an Annotated Corpus

We want to make a concordance of almost and nearly in the BNC Baby. The procedure is similar to what
you need to do for the concordance of an unannotated corpus. I assume you have read Sect. 3 and know how
to obtain the corpus. The BNC Baby consists of 182 XML text files. The texts are classified with respect to
four genres: academic, fiction, newspaper and conversation. Each genre is a one-million-word sample. Each
word is annotated for lemma information and POS-tags.

TEI-compliant corpora make it easier for corpus linguists to make concordances. Chances are that you
will not have to worry about the kind of issues that we dealt with in the previous section because each
sentence has its own line. Unless you want to specify a window of words before and after the match, as we
did above, all you need to do is to look for the desired word or expression, and delimit your match with tab
stops. Thus, if the match is in first or last position, it will not be a problem. The main difficulty occurs when
there is more than one match per corpus line/sentence.

The procedure breaks down into the following steps:

• select the corpus files;
• prepare an empty character vector to store the results;
• access each corpus file with a for loop;
• isolate the corpus sentences from the rest of the corpus file;
• check if the sentences in the corpus file contain matches;
• if they do, extract each match and its context;
• extract information about the match (e.g. the name of the corpus file, the mode, etc.) and append that

information to the match;
• customize the output;
• export the output into a tab-delimited text file.

5.2.2.1 The Naive Way

To load the corpus files faster, I have modified the native hierarchy of the directories of the BNC Baby. More
specifically, I have moved the corpus files from the fours subdirectories aca, dem, fic, and news into a
single directory named BNC_baby, which I have placed in the CLSR folder, as shown in Fig. 5.2.

In Sect. 4.2.2, you learned how to load several text files into R at the same time. Let us do it using the
list.files() function, after clearing R’s memory.

> rm(list=ls(all=TRUE))
>
> corpus.files <- list.files(path="C:/CLSR/BNC_baby", pattern="\\.xml$", full.names=TRUE) # Windows
> corpus.files <- list.files(path="/CLSR/BNC_baby", pattern="\\.xml$", full.names=TRUE) # Mac OS

The pattern argument contains the regular expression "\\.xml$" to make sure that no hidden files such
as those that your operating system might store without your knowledge are retrieved. When you inspect
corpus.files, you see that it contains the full path to all 182 corpus files.

> head(corpus.files)
[1] "/CLSR/BNC_baby/A1E.xml"
[2] "/CLSR/BNC_baby/A1F.xml"
[3] "/CLSR/BNC_baby/A1G.xml"
[4] "/CLSR/BNC_baby/A1H.xml"
[5] "/CLSR/BNC_baby/A1J.xml"
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<CLSR>

BNC baby

2553.xml

2553

download

bncHdr.xml

Texts

aca

A6U.xml

ACJ.xml

...

dem

KB5.xml

KB7.xml

...

fic

AB9.xml

AC2.xml

...

news

A1E.xml

A1F.xml

...

(a)

<CLSR>

BNC baby

A1E.xml

A1F.xml

A1G.xml

A1H.xml

A1J.xml

A1K.xml

A1L.xml

A1M.xml

A1N.xml

A1P.xml

A1U.xml

A1X.xml

A2D.xml

A31.xml

A36.xml

A38.xml

A39.xml

A3C.xml

A3E.xml

A3K.xml

...

(b)

Fig. 5.2: Modifying the native hierarchy of the BNC Baby directories. (a) Original; (b) simplified

[6] "/CLSR/BNC_baby/A1K.xml"
> length(corpus.files)
[1] 182

Now we need to create an empty character vector to collect all the matches.

> all.matches <- character() # create an empty character vector

Thanks to a for loop, we will access each corpus file and collect all that we need.
Before we do, let us look briefly at the structure of a BNC Baby corpus file. Open A1E.xml with your

text editor. The first line contains the TEI header, which is between the tags <teiHeader> and </teiHeader>,
and specific information about the source and the structure of the corpus file. The second line begins with
the start tag for a written text element (<wtext>), which bears a type attribute, the value of which is NEWS,
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the code used for texts derived from newspapers. Next comes the <div> elements, which has two attributes:
level and n. The n attribute supplies an identifying number and a name used in the text for a given division
(a page number in this case). The level attribute is an indication of what the text is part of, i.e. a chapter,
a chapter part, a chapter subpart, etc. The <head> element contains the name of the <div> element. Line 3
marks the beginning of the body of the corpus material that we are interested in. Originally, <s> stands for
a segment. For convenience’s sake, we can say that it also stands for a sentence. The n attribute assigns a
number to the sentence to which it is attached. This means that sentences are indexed sequentially.

We want R to access each file in turn, i.e. from the first corpus file to the 182th corpus file. The for loop
will therefore be introduced by the following code: for (i in 1:length(corpus.files)). The
identifier will take on the values between 1 and 182.

Once inside the loop, R will load the current corpus file,

> current.corpus.file <- scan(corpus.files[i], what="char", sep="\n", quiet=TRUE)

and keep only the corpus sentences from this file.

> current.sentences <- grep("<s n=", current.corpus.file, value=TRUE)

The next step is to grab the matches with grep(). We are looking for two function words, each and
every which, in XML/CLAWS5 format, look like this:

<w c5="DT0" hw="each" pos="ADJ">each </w>
<w c5="AT0" hw="every" pos="ART">every </w>

Of course, we could run two queries (one for each and one for every) and concatenate them afterwards but,
thanks to regular expressions, and because the tags are similar, we just need to make one query for both
forms.

<w c5=\"(DT0|AT0)\" hw=\"(each|very)\" pos=\"(ADJ|ART)\">(each|every) ?</w>

Note that all double quotes are escaped, so that R does not mix them up with character string delimiters.
Here is the detail of what each part of the expression means:

• (DT0|AT0): “DT0 or AT0”;
• (each|every): “each or every”;
• (ADJ|ART): “ADJ or ART”;
• (each|every) ?: “each or every followed by one optional space”.

The space after (each|every) is made optional because if the match is followed by a comma or a period,
there will be no space between the last character of the match and the punctuation mark. The regular
expression could be less specific, e.g.

<w c5=\"\\w{2}\\d" hw=\"(each|every)\" pos=\"\\w{3}\">(each|every) ?</w>

but this is risky as you do not know what exception the corpus has in store for you. Furthermore, the point
of using an annotated corpus is precisely to use the annotation. I advise you to use the tags as much as you
can. Once you are happy with your regular expression, store it in a vector so that it can be called easily from
inside the loop.

> regex.match <- "<w c5=\"(DT0|AT0)\" hw=\"(each|every)\" pos=\"(ADJ|ART)\">(each|every) ?</w>"

The next line in the loop looks like this:



98 5 Applied Character String Processing

> current.matches <- grep(regex.match, current.sentences, ignore.case=TRUE, value=TRUE)

Next, insert a condition in case the query returns no match in the current corpus file:

> if (length(current.matches)==0) { next }

If there are matches, prefix the name of the corpus file to each match and store the results in a vector:

> current.matches.all <- paste(basename(corpus.files[i]), current.matches, sep="\t")

Finally, collect all the matches in the empty character vector that you prepared beforehand and exit the
loop.

> all.matches <- c(all.matches, current.matches.all)

Here is what the full loop looks like.

> for (i in 1:length(corpus.files)) { # enter the for loop
+
+ # load the current corpus file
+ current.corpus.file <- scan(corpus.files[i], what="char", sep="\n", quiet=TRUE)
+
+ # keep only the corpus sentences from the current file
+ current.sentences <- grep("<s n=", current.corpus.file, value=TRUE)
+
+ # retrieve the matches from the current file
+ current.matches <- grep(regex.match, current.sentences, ignore.case=TRUE, value=TRUE)
+
+ # check whether there are any matches
+ if (length(current.matches)==0) { next }
+
+ # if yes, prefix the name of the corpus file to each match and store the results in a vector
+ current.matches.all <- paste(basename(corpus.files[i]), current.matches, sep="\t")
+
+ # collect all the matches in the character vector
+ all.matches <- c(all.matches, current.matches.all)
+
+ } # exit the for loop

At this stage, all the matches are stored in all.matches. They are in raw format, which we need to
process. First, we insert tab stops before and after each match with gsub() and backreferencing.

> all.matches.tab <- gsub(regex.match, "\t\\4\t", all.matches, ignore.case=TRUE)

Second, we insert a tab after the sentence number, so that each sentence number has its own column.

> all.matches.tab.2 <- gsub("<s n=\"(\\d+)\">", "sentence \\1\t", all.matches.tab,
+ ignore.case=TRUE)

Third, we remove all tags with lazy matching (Sect. 4.4.7).

> all.matches.tab.3 <- gsub("<.*?>", "", all.matches.tab.2, ignore.case=TRUE)

Finally, we remove unwanted spaces before and after the tabulations.

> all.matches.tab.4<-gsub(" *(\t) *", "\\1", all.matches.tab.3)

All that is left to do is store the results in a blank text file: conc_each_every_bnc_baby.txt,
which you have created beforehand and stored in CLSR/chap5.
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> path.to.file <- "C:/CLSR/chap5/conc_each_every.txt" # Windows
> path.to.file <- "/CLSR/chap5/conc_each_every.txt" # Mac OS
> cat("file name\tsentence\tleft context\tnode\tright context", all.matches.tab.4, sep="\n",
file=path.to.file)

Once more, you should wait before congratulating yourself. When you open the text file with a spread-
sheet software, the output is disappointingly messy. This is because there are sometimes several matches
per line. For example, line 58 of A39.xml has two matches for every. The second match is appended at
the end of the row. Ideally, the second match should have its own line. This is conceptually easy to fix: we
need to repeat each sentence as many times as it has matches and delimit each match in turn. Technically,
this is complex because it requires that we identify the position of each match in the sentence and tell R the
beginning and the end of the match to insert tabulations accordingly.

5.2.2.2 Locating Substrings

We need to locate the position of identical matching patterns in a string. Gries (2009, pp. 138–140) offers
a solution that involves a base R function: gregexpr(). This solution has been turned into a function:
exact.matches(). Let me show you how it works.

Store sentence 58 from A39.xml in a character vector.

> A39s58 <- "Not every print, or every print-maker, is suitable for the purpose, however"

The first argument of gregexpr() is the pattern you want to match. The second argument is the string
where the match is found. The remaining two arguments make the search case insensitive and compatible
with regular expressions.

> gregexpr("every", A39s58, ignore.case=TRUE, perl=TRUE)
[[1]]
[1] 5 21
attr(,"match.length")
[1] 5 5
attr(,"useBytes")
[1] TRUE

The function outputs a list. The top-level index [[1]] indicates that the vector contains at least one match.
The first lower-level index [1] indicates that we have two matches, whose starting character-wise positions
are 5 and 21 respectively. The second lower-level positions indicate the length of each match: five characters.
We can use this information to calculate the end position of each match.

Other functions from additional packages retrieve both the starting and ending positions of the matches.
Such is the case of stri_locate_all() from the stringi package, str_locate_all() from the
stringr package, and substring.location() from the Hmisc package. First, install and load the
packages.

> # stringi
> install.packages("stringi")
> library(stringi)
>
> # stringr
> install.packages("stringr")
> library(stringr)
>
> # Hmisc
> install.packages("Hmisc")
> library(Hmisc)
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Each function has its own argument order and specifications.

> # stringi
> stri_locate_all(pattern="every", A39s58, fixed = TRUE)
[[1]]

start end
[1,] 5 9
[2,] 21 25
> # stringr
> str_locate_all(pattern="every", A39s58)
[[1]]

start end
[1,] 5 9
[2,] 21 25
> # Hmisc
> substring.location(A39s58, "every")
$first
[1] 5 21

$last
[1] 9 25

All these functions output a list. To understand why this is relevant, let us load the whole corpus file
A3C.xml.

> corpus.file <- scan("C:/CLSR/BNC_baby/A3C.xml", what="character", sep="\n") # Windows
> corpus.file <- scan("/CLSR/BNC_baby/A3C.xml", what="character", sep="\n") # Mac OS

Then we vectorize the search expression. . .

> expr.match <- "<w c5=\"(DT0|AT0)\" hw=\"(each|every)\" pos=\"(ADJ|ART)\">(each|every) ?</w>"

we isolate the sentences in the corpus file. . .

> sentences <- grep("<s n=", corpus.file, value=TRUE)

and we select those sentences that contain at least one match.

> sent.with.matches <- grep(expr.match, sentences, ignore.case=TRUE, perl=TRUE, value=TRUE)

For the remainder of the demonstration, we shall use the stringi package, which offers more options than
stringr and is a nice alternative to Hmisc or base R gregexpr(). Thanks to stri_locate_all(),
we can now retrieve the starting and ending positions of each match. We specify regex=TRUE for the
function to understand the pattern of the match. We also specify

opts_regex=stri_opts_regex(case_insensitive=TRUE)

to make the search case insensitive.

> match.positions <- stri_locate_all(pattern=expr.match, sent.with.matches, regex=TRUE,
+ opts_regex=stri_opts_regex(case_insensitive=TRUE))
> length(match.positions) # find how many sentences contain at least one match
[1] 13
> head(match.positions, 3) # display the first 3 list elements (pay attention to the 2nd element)
[[1]]

start end
[1,] 478 520

[[2]]
start end

[1,] 325 365
[2,] 649 689
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[[3]]
start end

[1,] 637 677

A list is output (instead of a matrix or a data frame) because lines.with.matches is a thirteen-element
vector. The function stri_locate_all() returns a result for each element in the vector. Since matches
can be found several times in a same vector element (as is the case for the second sentence, which contains
two matches), the output is more conveniently stored in a list.

Let us proceed with this file. In Sect. 5.2.2.1, our problem was that we obtained several tab-delimited
matches in the same row when there were several matches per corpus line. To avoid this, we must repeat
the corpus line as many times as it contains matches. The number of matches per line can be obtained with
another stringi function: stri_count().

> matches.per.sent <- stri_count(sent.with.matches, regex=expr.match,
+ opts_regex=stri_opts_regex(case_insensitive=TRUE))
> matches.per.sent
[1] 1 2 1 1 1 1 1 1 1 1 1 1 1

The second line contains two matches. Use rep() to repeat the lines as many times as needed.

> sent.per.match <- rep(sent.with.matches, matches.per.sent)
> length(sent.per.match)
[1] 14

The vector sentences.per.match now contains fourteen lines, because the corpus file contains four-
teen matches.

The next step consists in iterating over the list elements to extract the starting and ending positions of each
match thanks to a for loop. Once inside the loop, convert the list into a data frame so that each list element
becomes a mini data frame. This makes the extraction much easier. Before you enter the loop, create two
empty numeric vectors. They will be used to collect all the starting and ending positions at the end of the
loop.

> # create two empty numeric vectors
> all.starts <- numeric()
> all.ends <- numeric()
>
> # enter the loop
> for (j in 1:length(match.positions)){
+
+ # convert the list into a data frame
+ match.positions.df <- as.data.frame(match.positions[[j]])
+
+ # extract the current starting positions
+ starts <- match.positions.df$start
+
+ # extract the current ending positions
+ ends <- match.positions.df$end
+
+ # collect all the starting and ending positions
+ all.starts <- c(all.starts, starts)
+ all.ends <- c(all.ends, ends)
+ } # exit the loop

When you inspect all.starts and all.ends, you can see that all fourteen starting and ending positions
have been collected. The positions can be used as coordinated to retrieve exact matches from sentences.
per.match with substr(). This function is used to extract or replace susbtrings in character strings.
Its first argument is the string, its second argument is the starting position of the substring, and its third
argument is the ending position of the substring.
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> exact.matches <- substr(sent.per.match, all.starts, all.ends)
> exact.matches
[1] "<w c5=\"AT0\" hw=\"every\" pos=\"ART\">every </w>"
[2] "<w c5=\"DT0\" hw=\"each\" pos=\"ADJ\">each </w>"
[3] "<w c5=\"DT0\" hw=\"each\" pos=\"ADJ\">each </w>"
[4] "<w c5=\"DT0\" hw=\"each\" pos=\"ADJ\">each </w>"
[5] "<w c5=\"DT0\" hw=\"each\" pos=\"ADJ\">each </w>"
[6] "<w c5=\"DT0\" hw=\"each\" pos=\"ADJ\">each </w>"
[7] "<w c5=\"AT0\" hw=\"every\" pos=\"ART\">every </w>"
[8] "<w c5=\"DT0\" hw=\"each\" pos=\"ADJ\">each </w>"
[9] "<w c5=\"DT0\" hw=\"each\" pos=\"ADJ\">each </w>"
[10] "<w c5=\"DT0\" hw=\"each\" pos=\"ADJ\">each </w>"
[11] "<w c5=\"DT0\" hw=\"each\" pos=\"ADJ\">each </w>"
[12] "<w c5=\"AT0\" hw=\"every\" pos=\"ART\">every </w>"
[13] "<w c5=\"AT0\" hw=\"every\" pos=\"ART\">every </w>"
[14] "<w c5=\"AT0\" hw=\"every\" pos=\"ART\">every </w>"

Although the output of substr() is neat, it is decontextualized and therefore not what we want. Tab-
delimited matches are obtained by pasting five elements:

• the character string from the first position in sentences.per.match to the position right before the
starting match position;

• a tabulation "\t";
• the character string of the match (between the starting position and the ending position);
• a tabulation "\t";
• the character string between the position right after the ending match position and the last position in
sentences.per.match.

> delimited.matches <- paste(
+ substr(sent.per.match, 1, all.starts-1), "\t",
+ substr(sent.per.match, all.starts, all.ends), "\t",
+ substr(sent.per.match, all.ends+1, nchar(sent.per.match)),
+ sep="")

Time for cleanup.

> delimited.matches.clean <- gsub("<.*?>", "", delimited.matches, ignore.case=TRUE, perl=TRUE)
> delimited.matches.clean <- gsub(" *(\t) *", "\\1", delimited.matches.clean, perl=TRUE)

Inspect delimited.matches.clean. Even though the same sentence is repeated across the second
and third elements of the vector, a distinct occurrence of each is tab-delimited each time.

5.2.2.3 The Full Script

To repeat the above steps with all the files of the BNC Baby, you need another for loop, referred to below
as the first for loop. In this loop, make sure you tell R to go to the next corpus file if there is no match in a
given corpus file.

> # clear R's memory
> rm(list=ls(all=TRUE))
>
> # load the stringi package
> library(stringi)
>
> # load the paths to all the corpus files
> corpus.files <- list.files(path="/CLSR/BNC_baby", pattern="\\.xml$", full.names=TRUE)
>
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> # vectorize the search expression
> expr.match <- "<w c5=\"(DT0|AT0)\" hw=\"(each|every)\" pos=\"(ADJ|ART)\">(each|every) ?</w>"
>
> # prepare an empty vector to collect all matches at the end of the first for loop
> all.matches <- character()
>
> for (i in 1:length(corpus.files)){
+ # select the current corpus file (from 1 to 182)
+ corpus.file <- scan(corpus.files[i], what="char", sep="\n", quiet=TRUE)
+ # select the sentences in the current corpus file
+ sentences <- grep("<s n=", corpus.file, value=TRUE)
+ # select the sentences that contain at least one match
+ sent.with.matches <- grep(expr.match, sentences, ignore.case=TRUE,
+ value=TRUE)
+ # get the number of matches per sentences
+ matches.per.sent <- stri_count(sent.with.matches, regex=expr.match,
+ opts_regex=stri_opts_regex(case_insensitive=TRUE))
+ # repeat the sentences as many times as there are matches
+ sent.per.match <- rep(sent.with.matches, matches.per.sent)
+ # locate the match positions
+ match.positions <- stri_locate_all(pattern=expr.match, sent.with.matches, regex=TRUE,
+ opts_regex=stri_opts_regex(case_insensitive=TRUE))
+
+ # if there are no matches, go the next corpus file
+ if (length(match.positions)==0) { next }
+
+ # if there are, prepare empty numeric vectors to store all match positions
+ all.starts <- numeric()
+ all.ends <- numeric()
+
+ # enter the second loop
+ for (j in 1:length(match.positions)){
+ match.positions.df <- as.data.frame(match.positions[[j]])
+ starts <- match.positions.df$start
+ ends <- match.positions.df$end
+ all.starts <- c(all.starts, starts)
+ all.ends <- c(all.ends, ends)
+ } # exit the second for loop
+
+ # tab-delimit the matches
+ delimited.matches <- paste(
+ substr(sent.per.match, 1, all.starts-1), "\t", # the left context
+ substr(sent.per.match, all.starts, all.ends), "\t", # the node
+ substr(sent.per.match, all.ends+1, nchar(sent.per.match)), # the right context
+ sep="") # an empty separator
+
+ # clean the delimited matches
+ delimited.matches.clean <- gsub("<.*?>", "", delimited.matches, ignore.case=TRUE)
+ delimited.matches.clean <- gsub(" *(\t) *", "\\1", delimited.matches.clean)
+
+ # prefix the name of the corpus file
+ delimited.matches.clean <- paste(basename(corpus.files[i]), delimited.matches.clean, sep="\t")
+
+ # collect all the cleaned-up tab-delimited matches
+ all.matches <- c(all.matches, delimited.matches.clean)
+ } # exit the second for loop

Once R has finished running the loop, store the results in a text file.

> cat("corpus file\tleft context\tnode\tright context", all.matches,
+ sep="\n", file="/CLSR/chap5/conc_bnc_baby.txt")

You may now congratulate yourself. The above script can be fine-tuned using a contextual window, as seen
in Sect. 5.2.2.1.
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5.3 Making a Data Frame from an Annotated Corpus

Once you have asked a theory-informed question and you have formulated and operationalized hypotheses,
it is time to gather data. It is a good idea to include exact matches, i.e. concrete realizations in the corpus of
the linguistic phenomenon that you study. You might recall Tab. 2.3 from Chap. 2, whose column exact
match contains concrete uses of quite and rather in the BNC corpus. Let us learn how to make a similar
data frame from the BNC Baby.

5.3.1 Planning the Data Frame

Let us keep things simple and retrieve only the following variables:

• the name of the corpus file;
• some information about the corpus file, namely the mode (written vs. spoken) and the genre (news,

fiction, academic prose, etc.);
• the exact match (each or every in context);
• the determiner;
• the NP;
• the specific POS tag of the NP.

5.3.2 Compiling the Data Frame

To compile the data frame, we shall use the strapplyc() function from Gabor Grothendieck’s gsubfn
package, which you might recall from Sect. 4.4.9. Let us see how it works using a single file from the BNC
Baby.

After clearing R’s memory, we load the gsubfn package.

> rm(list=ls(all=TRUE))
> # install.packages("gsubfn")
> library(gsubfn)

Loading required package: proto

We need to find a search expression for the matches. This expression has two parts, one that matches all
instances of each and every,

<w c5="(DT0|AT0)" hw="(each|every)" pos="(ADJ|ART)">(each|every) ?</w>

and another that matches all noun phrases

<w c5="N[NP][012](-...)?" hw="\\w+" pos="SUBST">\\w+ ?</w>.

The BNC Baby tagset2 tells you that four kinds of NPs are found in the corpus:

• common nouns, neutral for number, such as aircraft or committee (NN0),

2 http://www.natcorp.ox.ac.uk/docs/c5spec.html.

http://www.natcorp.ox.ac.uk/docs/c5spec.html
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• singular common nouns, such as pencil or goose (NN1),
• plural common nouns, such as pencils or geese (NN2), and
• proper nouns, such as Kim or Elizabeth (NP0).

The expression N[NP][012], meaning “N followed by N or P, followed by 0 or 1 or 2”, captures all kinds
of NP tags. Also, bear in mind that the corpus contains ambiguity tags, such as "NN1-VVB" in A3M.xml:

<w c5="NN1-VVB" hw="stop" pos="SUBST">stop </w>.

The double tag indicates that the automatic tagger was unable to decide confidently which was the correct
category of stop, NN1 (a singular common noun) or VVB (the finite base form of a lexical verb), and left two
possibilities for the users to disambiguate. Appending (-...) to N[NP][012] guarantees that ambiguity
tags are taken into account for all NPs.

Once you are happy with the search expression, vectorize it.

> expr.match <- "<w c5=\"(DT0|AT0)\" hw=\"(each|every)\" pos=\"(ADJ|ART)\">(each|every) ?</w>
+ <w c5=\"N[NP][012](-...)?\" hw=\"\\w+\" pos=\"SUBST\">\\w+ ?</w>"

Load the corpus file.

> corpus.file <- scan("/CLSR/BNC_baby/A1E.xml", what="char", sep="\n")

Retrieve the classcode element from the corpus file as it contains all the information we need.

> classcode <- unlist(strapplyc(corpus.file, "<classCode scheme=\"DLEE\">(.*?)</classCode>"))

Retrieve the corpus file information.

> info <- unlist(strapplyc(corpus.file, "<[ws]text type=\"\\w+\">", backref=1))

From the info vector, extract the mode. . .

> mode <- unlist(strapplyc(info, "[ws]text"))

and the type.

> type <- unlist(strapplyc(info, "[ws]text type=\"(\\w+)\""))

It is now time to proceed with the search per se. Isolate the corpus sentences.

> sentences <- grep("<s n=", corpus.file, perl=TRUE, value=TRUE)

Get the matches with strapplyc(). Set backref=0 to retrieve the full match.

> matches <- unlist(strapplyc(sentences, expr.match, ignore.case=TRUE, backref=0))

From the matches vector, extract the occurrences of each and every. . .

> determiner <- unlist(strapplyc(matches, "hw=\"(each|every)\""))

and the occurrences of NPs.

> NP_token <- unlist(strapplyc(matches, "pos=\"SUBST\">(\\w+) ?</w>"))
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When you do not specify the backref argument of strapplyc(), you let the function determine the
backreference automatically. Because only one element is bracketed above, the function returns the only
available backreference. Regarding the POS tags of NPs, you cannot let strapplyc() decide automati-
cally what to return because of the optional double tag between brackets. Enclose the part of the expression
that you need between brackets and set backref to 1.

> NP_tag <- unlist(strapplyc(matches, "<w c5=\"(N[NP][012](-...)?)\"", backref=1))

It is now time to clean up the matches vector.

> # remove xml tags
> matches.clean <- gsub("<.*?>", "", matches, perl=T)
> # remove trailing spaces
> matches.clean <- gsub("< +$>", "", matches.clean, perl=T)

Finally, paste all the relevant elements in one row. The elements are separated by a tab so that each gets
its own column.

> matches.row <- paste("A1E.xml", mode, type, matches.clean, determiner, NP_token, NP_tag, sep="\t")
> head(matches.row) # inspect
[1] "A1E.xml\twtext\tNEWS\teach nation\teach\tnation\tNN1"
[2] "A1E.xml\twtext\tNEWS\teach other\teach\tother\tNN1"
[3] "A1E.xml\twtext\tNEWS\teach other\teach\tother\tNN1"
[4] "A1E.xml\twtext\tNEWS\teach country \teach\tcountry\tNN1"
[5] "A1E.xml\twtext\tNEWS\teach type \teach\ttype\tNN1"
[6] "A1E.xml\twtext\tNEWS\tevery problem \tevery\tproblem\tNN1"

Upon inspection, the output is what we are looking for. We may run the script on all the corpus files in
the BNC Baby thanks to a loop.

5.3.3 The Full Script

To repeat the above steps with all the files of the BNC Baby, you need a for loop. In this loop, make sure
you tell R to go to the next corpus file if there is no match in a given corpus file. You also need to create an
empty character vector to collect all matches at the end of the loop.

> # clear R's memory
> rm(list=ls(all=TRUE))
>
> # load the gsubfn package
> library(gsubfn)
>
> # load the paths to all the corpus files
> corpus.files <- list.files(path="/CLSR/BNC_baby", pattern="\\.xml$", full.names=TRUE)
>
> # vectorize the search expression
> expr.match <- "<w c5=\"(DT0|AT0)\" hw=\"(each|every)\" pos=\"(ADJ|ART)\">(each|every) ?</w>
+ <w c5=\"N[NP][012](-...)?\" hw=\"\\w+\" pos=\"SUBST\">\\w+ ?</w>"
>
> # prepare an empty vector to collect all matches at the end of the first for loop
> all.matches <- character()
>
> # enter the loop
> for (i in 1:length(corpus.files)) {
+ # load current corpus file
+ corpus.file <- scan(corpus.files[i], what="char", sep="\n")
+ classcode <- unlist(strapplyc(corpus.file, "<classCode scheme=\"DLEE\">(.*?)</classCode>"))
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+ # retrieve corpus file info
+ info <- unlist(strapplyc(corpus.file, "<[ws]text type=\"\\w+\">", backref=1))
+ # look for mode
+ mode <- unlist(strapplyc(info, "[ws]text"))
+ # look for type
+ type <- unlist(strapplyc(info, "[ws]text type=\"(\\w+)\""))
+
+ # isolate corp sentences and discard header
+ sentences <- grep("<s n=", corpus.file, perl=TRUE, value=TRUE)
+ # get matches (full pattern)
+ matches <- unlist(strapplyc(sentences, expr.match, ignore.case=TRUE, backref=0))
+ # if there are no matches, go to next corpus path ...
+ if (length(matches)==0) { next }
+
+ # collect the relevant elements
+ determiner <- unlist(strapplyc(matches, "hw=\"(each|every)\""))
+ NP_token <- unlist(strapplyc(matches, "pos=\"SUBST\">(\\w+) ?</w>"))
+ NP_tag <- unlist(strapplyc(matches, "<w c5=\"(N[NP][012](-...)?)\"", backref=1))
+
+ # clean up
+ matches.clean <- gsub("<.*?>", "", matches, perl=T) # remove xml tags
+ matches.clean <- gsub("< +$>", "", matches.clean, perl=T) # remove trailing spaces
+
+ # paste the collected elements
+ matches.row <- paste(basename(corpus.files[i]), classcode, mode, type, matches.clean,
+ determiner, NP_token, NP_tag, sep="\t")
+
+ # collects all results
+ all.matches <- c(all.matches, matches.row)
+ } # exit the loop

Once R has finished running the loop, store the results in a text file.

> cat("corpus file\tinfo\tmode\ttype\texact match\tdeterminer\tNP\tNP_tag", all.matches, sep="\n",
+ file="C:/CLSR/chap5/df_each_every_bnc_baby.txt") # Windows
>
> cat("corpus file\tinfo\tmode\ttype\texact match\tdeterminer\tNP\tNP_tag", all.matches, sep="\n",
+ file="/CLSR/chap5/df_each_every_bnc_baby.txt") # Mac

Fig. 5.3 is what the file looks like when you open it with a spreadsheet software.

Fig. 5.3: A snapshot of a data frame compiled from the BNC Baby
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5.4 Frequency Lists

You generate a frequency list when you want to know how often words occur in a corpus. A frequency list
is a two-column table with all word types occurring in the corpus in one column and their type frequency in
the other column. A frequency list is useful when you want to know what a text is mostly about.

The principle of frequency lists is rooted is the distinction between type and token. The sentence The
cat is on the mat contains six word tokens but five word types. This is because the sentence has six word
occurrences, but only five different words. The word the occurs twice.

5.4.1 A Frequency List of a Raw Text File

Let us make a frequency list of Bram Stoker’s Dracula. The good news is that we can recycle some of the
code that we used in Sect. 5.2.1.

> # clear R's memory
> rm(list=ls(all=TRUE))
>
> # load the text
> dracula <- scan(file="/CLSR/chap5/dracula.txt", what="char", sep="\n")
> # you might need to add fileEncoding="UTF-8"
>
> # find the novel
> start <- grep("^CHAPTER I.$", dracula) ; start
[1] 132
> end <- grep("^\\/Jonathan Harker.\\/$", dracula) ; end
[1] 13014
> novel <- dracula[start:end]
>
> # collapse into a one-line text
> novel.vector <- paste(novel, collapse=" ")

What is new is the need to switch the whole novel to lowercase. If we do not, R is going to treat some
words that we perceive as belonging to the same type (i.e. The and the) as two distinct types.

> novel.vector <- tolower(novel.vector)

Next, we split the vector at non-word characters with strplit().

> split <- unlist(strsplit(novel.vector, "\\W+"))

Thanks to the table() function, we generate a table of frequencies and see how many times each word
type occurs in the novel.

> table.split <- table(split)
> head(table.split)
split
000 1 10 11 12 12th

1 16 9 8 8 1

The point of making a frequency list is to see the most frequent items. Because the table() function sorts
the values in alphabetic order, we should use sort() to sort the table in decreasing order.

> sorted.table.split <- sort(table.split, decreasing=TRUE)
> head(sorted.table.split, 15)
split
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the and i to of a he in that it
7876 5910 4843 4645 3612 2949 2583 2506 2486 2174
was as we for is
1880 1592 1551 1533 1506
> tail(sorted.table.split, 15)
split
yawing yearn yelling yellowed yelpin

1 1 1 1 1
yelping yews yielding yoke york

1 1 1 1 1
z zeal zealous zoo zoophagy
1 1 1 1 1

The fifteen most frequent words are not that interesting because they consist of closed-class words, i.e.
words that serve a grammatical function. You have to go far down the list to find the first interesting open-
class words: time and (van) helsing. This is bound to be the case whenever you make a frequency list from a
natural language sample. Getting rid of grammatical words would have the advantage of focusing on open-
class words (lexical words). The bottom of the list consists of unusual characters, rare words, or figures.
These items tend to occur only once in the whole corpus. Word types illustrated by only one token are called
hapax legomena. Often, corpus linguists get rid of them. However, depending on your research topic, they
can bring useful information. I advise you to think twice before removing them.

5.4.1.1 Addressing Issues

We need to address three issues. First, although strsplit() does its job well, it does not tokenize the
string well. Because we split at non-word characters, a string like “can’t” was split into “can” and “t”.
Another option would have been to split at spaces. Although this would have worked well for “can’t”
(the negation marker would not stand on its own as t), that would leave us with strings like “journal.”,
“whirlpool;”, “paprika,”, or “letter:–”, which include punctuation. This is not a limitation of strsplit()
but rather an effect of the many rules and exceptions that you have to deal with when working with natural
languages. You may of course address this issue in base R, but that requires recreating the rules and excep-
tions in a heuristic manner. Needless to say that this is a tedious procedure. A faster alternative is to use
well-tested libraries to tokenize your character strings such as Stanford CoreNLP (Arnold and Tilton 2015,
pp. 132–134).3 Other tokenizers exist—e.g. scan_tokenizer() and MC_tokenizer() from the tm
package—but they are subject to the same limitations as strsplit().

The second issue is the presence of empty strings once you have split the text into words. Although
unseen in this text file, it may arise depending on how you tokenize your character strings. For example, if
you use the MC_tokenizer() function from the tm package on novel.vector, you will notice two
empty character strings between i and jonathan. This is because the regular expression used to split the
string ignored the punctuation in the text, but left blanks instead.

> library(tm)
> tokens <- MC_tokenizer(novel.vector)
> head(tokens)
[1] "chapter" "i" "" ""
[5] "jonathan" "harker"

3 See also http://stanfordnlp.github.io/CoreNLP/.

http://stanfordnlp.github.io/CoreNLP/
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If you encounter this situation, you can easily get rid of empty strings by telling R to select those strings that
are not blank thanks to which() and a logical operator.

> # get the positions of non empty strings
> tokens.not.empty <- which(tokens!="")
> #
> tokens <- tokens[tokens.not.empty]
> head(tokens)
[1] "chapter" "i" "jonathan" "harker"
[5] "s" "journal"

Once this is done, you can proceed with table() and sort() to make the frequency list.
The third issue has to do with unwanted closed-class words. To get rid of them, it is customary to use a

stoplist. A stoplist is a text file that contains those words that you do not want. You will find a stoplist for
English in CLSR/chap5. The stoplist should match the language of your corpus and the period considered.
Feel free to add or remove words from the stoplist as you see fit. Let us apply the stoplist to sorted.
table.split. First, load the stoplist

> stoplist <- scan("/CLSR/chap5/english_stoplist.txt", what="character", sep="\n") # Windows
> stoplist <- scan("/CLSR/chap5/english_stoplist.txt", what="character", sep="\n") # Mac

Technically, sorted.table.split is a numeric array. The words can be obtained via the function
names(). Knowing this, you can get rid of closed-class words contained in the stoplist by telling R to
subset sorted.table.split and retain only those words that are not in the stoplist

> sorted.table.split.2 <- sorted.table.split[!names(sorted.table.split) %in% stoplist]
> head(sorted.table.split.2)
split

time helsing van night lucy back
386 322 322 316 299 262

The last step consists in converting the array into a tab-delimited frequency list that your spreadsheet
software can display.

> freqlist <- paste(names(sorted.table.split.2), sorted.table.split.2, sep="\t")

You may now store the frequency list in a text file, e.g. freqlist.dracula.txt.

> # Windows
> cat("WORD\tFREQUENCY", freqlist, file="C:/CLSR/chap5/freqlist.dracula.txt", sep="\n")
> # Mac
> cat("WORD\tFREQUENCY", freqlist, file="/CLSR/chap5/freqlist.dracula.txt", sep="\n")

5.4.2 A Frequency List of an Annotated File

Frequency lists do not need to include all the words in a corpus. If you do not want grammatical words in
the list, you can focus on nouns, general adjectives, and lexical verbs. Working with a POS-tagged corpus
allows you to do it without a stoplist.

Before you start writing your search expressions to extract the nouns, the adjectives, and the verbs from
the corpus, you should (again) consult the BNC Baby’s tagset. Also, make sure you take the possibility of
an ambiguity tag into account. Because we are interested in all kinds of nouns, we should write a regular
expression that encompasses common nouns that are neutral for number (NN0), singular common nouns
(NN1), plural common nouns (NN2), and proper nouns (NP0). Do not forget to escape the quotes.
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<w c5=\"N[NP][012](-...)?\" hw=\"\\w+\" pos=\"SUBST\">\\w+ ?</w>

The regular expression that matches all general adjectives (AJ0), as opposed to comparative (AJC) or su-
perlative adjectives (AJS), is much simpler.

<w c5=\"AJ0(-...)?\" hw=\"\\w+\" pos=\"ADJ\">\\w+ ?</w>

Finally, because all the tags of lexical verbs start with VV, the regular expression should match all tags that
start with two V and one word character.

<w c5=\"VV\\w(-...)?\" hw=\"\\w+\" pos=\"VERB\">\\w+ ?</w>

You are now ready to run the script, the first part of which is familiar to you (see Sect. 5.3.3).

> # clear R's memory
> rm(list=ls(all=TRUE))
>
> # load the gsubfn package
> library(gsubfn)
>
> # load the paths to all the corpus files
> corpus.files <- list.files(path="/CLSR/BNC_baby", pattern="\\.xml$", full.names=TRUE)
>
> # prepare an empty vector to collect all matches at the end of the first for loop
> all.matches <- character()

With a for loop, iterate over all the corpus files, look for the matches and collect the results. Nouns,
adjectives and verbs being very frequent, you do not need the line of code that tells R what to do if no match
is found.

> # enter the loop
> for (i in 1:length(corpus.files)) {
+ # load current corpus file
+ corpus.file <- scan(corpus.files[i], what="char", sep="\n")
+ # isolate corp sentences and discard header
+ sentences <- grep("<s n=", corpus.file, perl=TRUE, value=TRUE)
+ # collect the relevant elements
+ adjectives <- unlist(strapplyc(sentences,
+ "<w c5=\"AJ0(-...)?\" hw=\"\\w+\" pos=\"ADJ\">\\w+ ?</w>",
+ backref=0))
+ nouns <- unlist(strapplyc(sentences,
+ "<w c5=\"N[NP][012](-...)?\" hw=\"\\w+\" pos=\"SUBST\">\\w+ ?</w>",
+ backref=0))
+ verbs <- unlist(strapplyc(sentences,
+ "<w c5=\"VV\\w(-...)?\" hw=\"\\w+\" pos=\"VERB\">\\w+ ?</w>",
+ backref=0))
+ # collect all matches
+ all.matches <- c(all.matches, adjectives, nouns, verbs)
+ } # exit the loop

The clean-up phase consists in removing the tags.

> # remove xml tags
> all.matches.clean <- gsub("<.*?>", "", all.matches, perl=T)
> head(all.matches.clean)
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When you remove the tags, you preserve the spaces before or after the word. You should remove them.

> # remove leading and trailing spaces
> all.matches.clean <- gsub("(^ +| +$)", "", all.matches.clean, perl=TRUE)
> head(all.matches.clean)

You are now ready to tabulate,

> all.matches.table <- table(all.matches.clean)
> head(all.matches.table)

sort the results,

> all.matches.sorted.table <- sort(all.matches.table, decreasing=TRUE)
> head(all.matches.sorted.table)

and convert the array into a tab-delimited frequency list.

> tab.table <- paste(names(all.matches.sorted.table), all.matches.sorted.table, sep="\t")
> head(tab.table)

You may now save the frequency list in a text file, which your spreasheet software will display nicely.

> # Windows
> cat("WORD\tFREQUENCY", freqlist, file="C:/CLSR/chap5/freqlist.bnc.baby.txt", sep="\n")
> # Mac
> cat("WORD\tFREQUENCY", freqlist, file="/CLSR/chap5/freqlist.bnc.baby.txt", sep="\n")

Fig. 5.4 is what the file looks like when you open it in a spreasheet software. The top of the list consists
of general verbs and nouns.

Fig. 5.4: A snapshot of a frequency list of nouns, verbs, and adjectives in the BNC Baby

The frequency list you have just made consists of word tokens. The list is therefore crowded with a myriad
of inflected forms. If you want a less crowded frequency list but do not want to compromise its lexical
richness, you can modify the search expressions so that they return only lemmas. By way of illustration, find
is the verbal lemma for verb forms such as finds, finding, and found; car is the nominal lemma for the noun
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cars. To achieve this, just add a supplementary line when you collect nouns and verbs (English adjectives
being invariable, no extra line of code is needed). Each time, select the head-word part of the tag that is
prefixed by “hw=” (i.e. the lemma) and enclose the value between brackets. Setting backref to 0 will
ensure that strapplyc() returns this value.

> # collect the relevant elements
> adjectives <- unlist(strapplyc(sentences,
+ "<w c5=\"AJ0(-...)?\" hw=\"\\w+\" pos=\"ADJ\">\\w+ ?</w>",
+ backref=0))
> nouns <- unlist(strapplyc(sentences,
+ "<w c5=\"N[NP][012](-...)?\" hw=\"\\w+\" pos=\"SUBST\">\\w+ ?</w>",
+ backref=0))
> noun.lemmas <- unlist(strapplyc(nouns, "hw=\"(\\w+)\"", backref=1))
> verbs <- unlist(strapplyc(sentences,
+ "<w c5=\"VV\\w(-...)?\" hw=\"\\w+\" pos=\"VERB\">\\w+ ?</w>",
+ backref=0))
> verb.lemmas <- unlist(strapplyc(verbs, "hw=\"(\\w+)\"", backref=1))
> # collect all matches
> all.words <- c(all.words, adjectives, noun.lemmas, verb.lemmas)

Exercises

5.1. A concordance of an unannotated text
David Robinson has written the gutenbergr package which downloads and processes the public domain
works in the Project Gutenberg database (Robinson 2016). The gutenberg() function allows you to kill
two birds with one stone, namely (a) download one or more books by ID from the online database, and
(b) strip out the header and footer. The package comes with an extensive data set of Project Gutenberg
metadata. Use the package to make a concordance of London in Charles Dickens’s Great Expectations (ID:
1400), Bleak House (ID: 1023), and David Copperfield (ID: 766). Choose a window of ten words before and
after the match. It is a good idea to read the documentation first: https://cran.r-project.org/
web/packages/gutenbergr/gutenbergr.pdf.

5.2. Making a data frame from an annotated corpus
Make a data frame, each line of which is an observation of the construction it BE ADJ to V that in the BNC
Baby. The construction is exemplified in (2) and (3) below.

(2) It is important to note that these criteria are not intended to be an exhaustive definition of the
public interest. (BNC–FRN)

(3) It is plausible to assume that case and thematic systems in these simple examples and also in more
complicated cases are interrelated (. . . ). (BNC–HJ1)

Each observation should be described by the following variables:

• corpus file the name of the file from the BNC Baby where the construction is observed;
• info: the information tag about the text (e.g. W newsp brdsht nat: sports or W
ac:polit law edu);

• mode: wtext for written text or stext for spoken text;
• type: the text genre (ACPROSE, NEWS, FICTION, etc.);
• exact match: the construction in context;
• ADJ: the adjectival constituent of the construction;

https://cran.r-project.org/web/packages/gutenbergr/gutenbergr.pdf
https://cran.r-project.org/web/packages/gutenbergr/gutenbergr.pdf
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• V_inf: the verbal constituent of the construction.

You are welcome to reuse the script from Sect. 5.3.3 and change only what is necessary.

5.3. Making a frequency list of bigrams in Melville’s Moby Dick
An n-gram is a continuous sequence of n words from a character string. A unigram is an n-gram of size 1, a
bigram is an n-gram of size 2, a trigram is an n-gram of size 3, etc. Let us take a simple example sentence:

There is a cat on the mat.

We find:

• Seven unigrams: There, is, a, cat, on, the, and mat.
• Six bigrams: There is, is a, a cat, cat on, on the, and the mat.
• Five trigrams: There is a, is a cat, a cat on, cat on the, and on the mat.

N-grams have a wide range of applications in NLP, the main one being probability models. Such models
can be used to predict the probability of word sequences in a text. Such probabilities are commonly used
in tasks like speech recognition, spelling correction, automatic completions, or machine translation, where
words or word sequences have to be recognized from ambiguous inputs.

The purpose of this exercise is somewhat less ambitious. Your task is to:

• download Herman Melville’s Moby Dick from Project Gutenberg using the gutenbergr package;
• make a frequency list of bigrams in the novel using the ngram package4;
• use a stoplist to filter out unwanted bigrams.
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Chapter 6
Summary Graphics for Frequency Data

Abstract In this chapter, you will learn how to process frequency data and represent your findings
graphically.

6.1 Introduction

Now that you know most of the character-string processing techniques, you are ready to extract data from
corpora and obtain frequencies. The paragraphs below will show you how to summarize frequency data.

6.2 Plots, Barplots, and Histograms

In Chap. 4, you learned how to make a frequency list. You may want to see what the distribution of these
words looks like. After loading the file freqlist.bnc.baby.txt, which you created previously, plot
the frequencies with plot(). This generic function is one of the most widely used in R. It comes with
many options, which I advise you to explore by entering ?plot.

> rm(list=ls(all=TRUE)) # clear R's memory
> freqlist <- read.table("/CLSR/chap5/freqlist.bnc.baby.txt", header=TRUE) # load the freqlist
> str(freqlist) # inspect
> plot(freqlist$FREQUENCY, xlab="index of word types", ylab="frequency", cex=0.6)

Here, the xlab and ylab arguments specify the names of the horizontal and vertical axes respectively. The
cex argument specifies the size of the circles that signal data points: 0.6 represents 60% of the default size
(1). A title can also be added to the plot with title. Fig. 6.1a shows the resulting plot. Instead of circles,
you may want to join the points with a line (Fig. 6.1b). If so, add the argument type and specify "l". The
argument lwd=2 specifies the width of the line (1 is the default).

> plot(freqlist$FREQUENCY, type="l", lwd=2, xlab="index of word types", ylab="frequency", cex=0.6)

Another option is to plot the words themselves. It would not make sense to plot all the words in the
frequency list, so we subset the 20 most frequent words (Fig. 6.1c). First, create a new plot and specify

© Springer International Publishing AG 2017
G. Desagulier, Corpus Linguistics and Statistics with R, Quantitative Methods in the Humanities
and Social Sciences, DOI 10.1007/978-3-319-64572-8_6
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col="white" so that the data points are invisible. Next, plot the words with text(). Technically, the
words are used as labels (hence the argument labels). These labels are found in the first column of the
data frame: freqlist$WORD. To keep the labels from overlapping, reduce their size with cex.

> plot(freqlist$FREQUENCY[1:20], xlab="index of word types", ylab="frequency", col="white")
> text(freqlist$FREQUENCY[1:20], labels = freqlist$WORD[1:20], cex=0.7)

You can combine the labelling with the line by specifying type="l" in the plot() call.

> plot(freqlist$FREQUENCY[1:20], xlab="index of word types", ylab="frequency", type="l",
+ col="lightgrey")
> text(freqlist$FREQUENCY[1:20], labels = freqlist$WORD[1:20], cex=0.7)

Fig. 6.1: Plotting a frequency list of the BNC Baby. (a) Points; (b) lines; (c) words; (d) words and line
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The distribution at work is known as Zipfian. It is named after Zipf’s law (see Sect. 8.8): many rare
events coexist with very few large events. The resulting curve continually decreases from its peak (although,
strictly speaking, this is not a peak). It is typical of the distribution of words in natural languages. If you
plot the frequency list of any corpus of natural language, the curve will look invariably the same providing
the corpus is large enough. Let us repeat the above with freqlist.dracula.txt.

> freqlist <- read.table("/CLSR/chap5/freqlist.dracula.txt", header=TRUE, row.names=1)
> plot(freqlist$FREQUENCY, type="l", lwd=2, xlab="index of word types", ylab="frequency", cex=0.6)
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Fig. 6.2: Plotting a frequency list of Bram Stoker’s Dracula

Again, the curve in Fig. 6.2 decreases steeply at first, and then slowly and continuously. A large number
of rare (mostly lexical) words coexist with a few number of frequent (function) words.

Another way of plotting the data is by means of a barplot with the barplot() function. Fig. 6.3 plots
the ten and twenty most frequent lexical words in the BNC Baby.

> barplot(freqlist$FREQUENCY[1:10],names.arg = freqlist$WORD[1:10], las=2)
> barplot(freqlist$FREQUENCY[1:20],names.arg = freqlist$WORD[1:20], las=2)

The heights of the bars in the plot are determined by the values contained in the vector freqlist
$FREQUENCY. The argument las allows you to decide if the labels are parallel (las=0) or perpendic-
ular (las=2) to the x-axis. Each bar represents a word type. The space between each bar indicates that
these word types are distinct categories.

Histograms are close to barplots except that the bars do not represent distinct categories (therefore, there
is no space between them). They represent specified divisions of the x-axis named “bins”. Their heights
are proportional to how many observations fall within them. As a consequence, increasing the number of
observations does not necessarily increase the number of bins by the same number, as Fig. 6.4 shows.
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Fig. 6.3: Barplots of the most frequent words in the BNC Baby. (a) The ten most frequent lexical words in
the BNC Baby. (b) the 20 most frequent lexical words in the BNC Baby

> hist(freqlist$FREQUENCY[1:10], xlab="frequency bins", las=2, main="") # 10 observations
> hist(freqlist$FREQUENCY[1:100], xlab="frequency bins", las=2, main="") # 100 observations

6.3 Word Clouds

Word clouds offer a trendy, user-friendly way of representing frequency lists graphically. A combination of
two packages will do the trick: tm (see Sect. 5.4.1.1), and wordcloud. You should therefore install them
before you proceed.1 In the paragraphs below, you will learn how to make a word cloud based on Herman
Melville’s Moby Dick and another one based on the BNC Baby.

> install.packages("tm", repos = "http://cran.us.r-project.org")
> install.packages("wordcloud", repos = "http://cran.us.r-project.org")

The first step consists in placing the text which you want a word cloud of into a dedicated directory
(e.g. C:/CLSR/wordcloud/yourprojectname/yourtext.txt for Windows users, or /CLSR/
wordcloud/yourprojectname/yourtext.txt for Mac users). The directory (C:)/CLSR/
chap6/wordcloud/moby_dick contains a text-file version of Moby Dick. The text file has been
stripped of its line breaks.

1 It is also a good idea to read the documentation of each package because the functions and their arguments are subject to
change.
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Fig. 6.4: Histograms of the most frequent words in the BNC Baby. (a) The ten most frequent lexical words
in the BNC Baby. (b) The 100 most frequent lexical words in the BNC Baby

The second step consists in converting the text into a corpus so that the tm package can process it. In
tm parlance, a corpus is a collection of documents, but it can also be a one-text corpus. This operation is
done with the functions Corpus() and DirSource(). The argument of DirSource() is the path to
the directory that contains the documents. Make sure that the directory contains only the files that you want
the word cloud to be based on.

> rm(list=ls(all=TRUE))
> library(tm)

Loading required package: NLP

> moby <- Corpus(DirSource("/CLSR/chap6/wordcloud/moby_dick"))
> # enter inspect(moby) to inspect

The tm_map function from the tm package contains a list of features meant to clean up the text. Most of
these features should be familiar to you because they have been introduced in Chap. 4.

> moby <- tm_map(moby, stripWhitespace) # remove unnecessary white space
> moby <- tm_map(moby, content_transformer(tolower)) # convert everything to lower case
> moby <- tm_map(moby, removeNumbers) # remove digits
> moby <- tm_map(moby, removePunctuation) # remove punctuation
> moby <- tm_map(moby, removeWords, stopwords("english")) # use a built-in stoplist

You may now plot a word cloud of Moby Dick thanks to the wordcloud() function from the
wordcloud package. The max.words argument is used to set the maximum number of words that you
want to see plotted. The list of arguments to fine-tune the word cloud is large (see ?wordcloud), so let me
focus on the most important ones. The min.freq argument is used to select the minimal threshold below
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which words are not plotted (here, the words whose frequency is below 50 do not appear in the cloud). In a
word cloud, the size of a word is a function of its frequency: the more frequent a word, the larger its size.
The words are plotted in decreasing frequency, the more frequent words being at the center of the plot, and
the less frequent at the periphery. Likewise, the color scheme is based on frequency levels.

> library(wordcloud)
> moby <- Corpus(VectorSource(moby))
> wordcloud(moby, scale=c(5,0.5), max.words=100, min.freq=50, random.order=FALSE,
+ rot.per=.35, use.r.layout=FALSE, colors=brewer.pal(8, "Dark2"))
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Fig. 6.5: A word cloud of Herman Melville’s Moby Dick

In case you do not know what the novel is about, the word cloud in Fig. 6.5 offers a straightforward
answer. The tm_map function has done a good job at making room for interesting lexical words to emerge
(whale(s), Ahab, ship, sea, etc. Note that such a good result is not always obtained, despite preprocessing
the text prior to plotting the word cloud. This, I believe, is an effect of Herman Melville’s careful planning
and writing of the novel.

Frequency lists can also serve as input for word clouds. You do not need to run tm_map over the text
to clean it up because the frequency list is based on a text that has already been preprocessed. However,
the format of the frequency list needs to be altered slightly so that tm accepts it. You need to convert the
two-column data frame where each word is assigned a numeric value denoting its frequency into a character
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vector (space-separated, with no line break) in which each word is repeated as many times as it appears in
the corpus. With respect to freqlist, this means that said will be repeated 12704 times, know 10202
times, got 8825 times, etc.

> rm(list=ls(all=TRUE)) # clear R's memory
> freqlist <- read.table("/CLSR/chap5/freqlist.bnc.baby.txt", header=TRUE) # load the freqlist
> head(freqlist)

WORD FREQUENCY
1 said 12704
2 know 10202
3 got 8825
4 get 6756
5 go 6427
6 think 5961

The code below shows you how to do it. Only the 1000 most frequent words are kept.

> # repeat the word as many times as it appears in the corpus
> all.words <- as.vector(rep(freqlist$WORD, freqlist$FREQUENCY))
> # store the results in a text file
> cat(all.words, file="/CLSR/wordcloud/bncbaby/wcbnc.txt", sep=" ")

The resulting text file is stored in a dedicated directory whose path we use as input for the DirSource()
function inside the Corpus() function.

> library(tm)
> bncbaby <- Corpus(DirSource("/CLSR/chap6/wordcloud/bncbaby"))
> inspect(bncbaby)

It is now time to run wordcloud() and plot the word cloud (Fig. 6.6).

> library(wordcloud)
> bncbaby <- Corpus(VectorSource(bncbaby))
> wordcloud(bncbaby, scale=c(5,0.5), max.words=150, min.freq=50,
+ random.order=FALSE, rot.per=.35, use.r.layout=FALSE,
+ colors=brewer.pal(8, "Dark2"))

Word clouds are useful when it comes to visualizing the output of topic modeling. Topic modeling
consists in applying a statistical model to uncover the “hidden, abstract” concepts at work in a text (Jockers
2014, Chap. 13). In linguistics, however, word clouds are only as good as the frequency lists that they are
based on. One major issue with frequency lists, and therefore word clouds, is that they give no indication
as to the relationships between the words (antonymy, synonymy, hyponymy, etc.). I once plotted a word
cloud based on the declarations of faith of the two remaining contenders in the second round of the French
presidential election in 2012. The word cloud of the right wing contender gave pride of place to the word
"socialist" (a left wing term). Anyone not knowing that the word was placed in the mouth of a right-wing
contender would have believed, wrongly, that he was a socialist. The word cloud offered no way of knowing
that, in fact, the right-wing contender’s program hinged on attacking the opposing side (the Socialist Party).

Having said that, word clouds have some relevance in the framework of Frame Semantics. According
to George Lakoff, if a political commentator asks a congressperson “Are you for or against tax relief?”,
she is framing taxes as an affliction. A liberal will not equate taxes with physical or moral pain since the
more money a government obtains from taxes, the more they can spend on public services. When you use
the phrase “tax relief”, whether you are for or against it does not challenge the initial equation “taxes =
affliction”. Consequently, word clouds may be used to see how a text or corpus is framed, regardless of the
semantic relationship between the words.
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Fig. 6.6: A word cloud of the 150 most frequent words in the BNC Baby

6.4 Dispersion Plots

Frequency lists or word clouds aggregate the raw frequencies of linguistic units. As such, they provide a
global measure of central tendencies at work across a corpus as a whole. While frequency lists are useful in
many respects, they do not take into account the fact that tokens may be distributed unevenly in a corpus.
The distribution of a linguistic unit across a corpus is known as its dispersion.

If you want to know exactly where different linguistic units tend to occur in a corpus or corpus file (for
example to determine if a unit is equally spread throughout the corpus or occurs predominantly in one or
more parts of the corpus), a dispersion plot is an obvious option. The paragraphs below explain how to
plot the dispersion of a linguistic unit across a corpus file. Although dispersion plots are featured in ready-
made software such as Wordsmith, I believe that it is a good thing to know how to make your own plots,
so that you can fine-tune them and suit them to your needs. Below, I follow a solution proposed by Jockers
(2014, Section 4.1) to study lexical dispersion in literary works. I adapt the proposal to plot the dispersion
of linguistic units in an annotated corpus.

Our objective is to compare the dispersion of the noun types in one annotated file from the BNC Baby,
namely A1E.xml. As you may remember from Sect. 5.3.2, there are four kinds of nouns in the BNC:
common nouns, neutral for number (NN0), singular common nouns (NN1), plural common nouns (NN2),
and proper nouns (NP0). We want one dispersion plot per noun type. I suggest we start with NN0. First,
load the corpus file and isolate the sentences.
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> # clear R's memory
> rm(list=ls(all=TRUE))
> # load the corpus file
> corpus.file <- scan("C:/CLSR/BNC_baby/A1E.xml", what="character", sep="\n") # Windows
> corpus.file <- scan("C:/CLSR/BNC_baby/A1E.xml", what="character", sep="\n") # Mac
> # select only corpus sentences and ignore the rest
> corpus.file.sentences <- grep("<s n=", corpus.file, perl=TRUE, value=TRUE)

To get the matches (and only the matches, not the full sentences), we use the strapply() function, from
the gsubfn package.2

> # load the library which strapply() is part of
> library(gsubfn)

Loading required package: proto

> # get all proper nouns
> tagged.NN0 <- unlist(strapply(corpus.file.sentences,
+ "<w c5=\"NN0(-...)?\" hw=\"\\w+\" pos=\"SUBST\">\\w+ ?</w>",
+ perl=T, backref=1))
> # inspect
> head(tagged.NN0)
[1] "<w c5=\"NN0\" hw=\"697m\" pos=\"SUBST\">697m </w>"
[2] "<w c5=\"NN0\" hw=\"headquarters\" pos=\"SUBST\">headquarters</w>"
[3] "<w c5=\"NN0\" hw=\"staff\" pos=\"SUBST\">staff </w>"
[4] "<w c5=\"NN0\" hw=\"staff\" pos=\"SUBST\">staff </w>"
[5] "<w c5=\"NN0\" hw=\"staff\" pos=\"SUBST\">staff </w>"
[6] "<w c5=\"NN0\" hw=\"perch\" pos=\"SUBST\">perch </w>"

Now that you have collected all proper nouns in the file, it is time for cleanup.

> NN0 <- gsub("<.*?>", "", tagged.NN0, perl=T) # remove xml tags
> NN0 <- gsub("(^ | +$)", "", NN0, perl=T) # remove leading and trailing spaces
> head(NN0) # inspect
[1] "697m" "headquarters" "staff" "staff" "staff" "perch"

To generate a dispersion plot, we convert the corpus sentences into a linear flow of untagged words. We
split up the character vector corpus.file.sentences at every occurrence of a tag with lazy matching,

> untagged.words <- unlist(strsplit(corpus.file.sentences, "<.*?>", perl=TRUE))
> head(untagged.words)
[1] "" "" "Latest " "" "corporate " ""

and we clean up the sentences.

> # remove selected punctuation
> untagged.words <- gsub("[,;:.?!-]", "", untagged.words)
> # remove leading and trailing spaces
> untagged.words <- gsub("(^ +| +$)", "", untagged.words, perl=TRUE)
> # get rid of empty character strings\index{character string}
> untagged.words <- untagged.words[nchar(untagged.words)>0]
> # inspect
> head(untagged.words)
[1] "Latest" "corporate" "unbundler" "reveals" "laidback" "approach"

The x-axis denotes the sequence of untagged words. We create those values with seq() and store them
in the numeric vector seq.corpus.

> seq.corpus <- seq(1:length(untagged.words))

Next, we determine the position of every occurrence of a number-neutral common noun in the vec-
tor untagged.words. We use the function which() (see Chaps. 2 and 4) to locate those words in

2 If the corpus is large, and if there is a potentially high number of matches, I advise you to use strapplyc() instead or
regular strapply().
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untagged.words that meet the condition “is a NN0 noun”, and store them in a new numeric vector called
NN0.positions. If we were looking for one specific noun (e.g. cheese), things would be easy because
we would only need to type noun.positions <- which(untagged.words=="cheese"). Be-
cause the vector NN0 contains many different nouns, that will not work. We need a for loop. For each
noun in the vector NN0, the loop retrieves the position of the noun in the untagged corpus file and stores the
position in a vector. Then, it stores all positions of all nouns in the vector NNO.positions.

> # create an empty character vector to collect all results
> NN0.positions <- integer()
> # for each noun in the vector NN0...
> for (i in 1:length(NN0)) {
+ # get the position of the current NN0 in the untagged corpus file
+ NN0.position <- which(untagged.words==NN0[i])
+ # store the result in NN0.positions and start again
+ NN0.positions <- c(NN0.positions, NN0.position)
+ }
> # inspect
> head(NN0.positions)
[1] 13 97 1845 2106 2417 3909

Next, we need to address the issue of the values on the y-axis. We are not really counting number-neutral
nouns, but merely assessing their presence or absence at each word position in the corpus file. Let 1 denote
the presence of a NN0 noun and 0 its absence. We create a new vector named NN0.corpus where we will
collect the matches later on. Right now, we fill this vector with as many NA values as there are positions in
seq.corpus.3

> NN0.count <- rep(NA, length(seq.corpus))

Where a number-neutral noun is found, we replace NA with 1. We do this by selecting the positions in
NN0.count that correspond to a NN0 noun. We use square brackets to do the subsetting.

> NN0.count[NN0.positions] <- 1

We know the positions where all number-neutral nouns are found. Each of these positions is assigned a
value of 1. All the remaining positions are assigned a value of NA. We can finally plot the distribution of
number-neutral common nouns across A1E.xml.

> plot(NN0.count, xlab="corpus file", ylab="common nouns", type="h", ylim=c(0,1), yaxt='n')

1000080006000400020000
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Fig. 6.7: Dispersion plot of number-neutral nouns in A1E.xml

This dispersion plot in Fig. 6.7 shows that the distribution of number-neutral nouns is extremely uneven
across the whole corpus file. If you inspect the original corpus file, you see that NN0 is often used to code
nouns that denote monetary values, as in (4):

3 Depending on your experiment, NA stands for “not applicable”, “not available”, or “no answer”.
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(4) We have made a bid of nearly £700m for a company with a book value of £200m.

These values often appear in clusters, which explains their sporadic concentrations in the plot. After
repeating the above steps for the three remaining noun types, we obtain Fig. 6.8.4

The distribution of common nouns in the singular (NN1) contrasts with that of number-neutral nouns.
NN1 nouns are so frequent that their dispersion is homogeneous throughout the corpus file. Although com-
mon nouns in the plural and proper nouns are very frequent, their dispersions reveal concentrations (patches
of black) and dilutions (patches of white).

6.5 Strip Charts

When you make a dispersion plot, each line represents one occurrence of the match. Strictly speaking, we
are not so much counting occurrences as we are acknowledging their presence or absence. Most of the time,
however, quantitative corpus linguistics consists in summing up frequencies and comparing frequency sums.
When you compare frequency sums, you are interested in their distribution and, somehow, their dispersion.
These can be visualized by means of a strip chart. Like dispersion plots, strip charts plot the data along an
axis. Unlike dispersion plots, strip charts plot data sorted by value rather than by order of appearance.

The split infinitive is characterized by the insertion of an adverb between the infinitive marker to and
the base form of the verb. The most famous example of a split infinitive is Captain Kirk’s “To boldly go
where no man has ever gone before”, which was part of the original Star Trek introduction from 1966
onwards. The insertion of the adverb boldly between the marker to and the verb go caused quite a stir among
prescriptivists at the time (ironically, the sexism of “no man” caused no such uproar). This usage is still
branded as incorrect.

To illustrate the relevance of strip charts, load the split_unsplit.rds data frame.

> rm(list=ls(all=TRUE))
> data <- readRDS("/CLSR/chap6/split_unsplit.rds") # Windows
> data <- readRDS("/CLSR/chap6/split_unsplit.rds") # Mac

The data frame compares the frequencies of two patterns in the Corpus of Historical American English
(Davies 2010): <to ADV-ly VINF> and <to VINF ADV-ly> (ADV-ly stands for an adverb with a -ly ending).
The former pattern illustrates the split infinitive whereas the second pattern illustrates the unsplit infinitive.
The corpus is diachronic. Each line represents a decade, from 1810 to 2000. The two columns provide the
frequencies per decade for the split and unsplit variants. It is these two variables that we want to plot.

> str(data)
'data.frame': 20 obs. of 3 variables:
$ DECADE : int 1810 1820 1830 1840 1850 1860 1870 1880 1890 1900 ...
$ SPLIT_INFINITIVE : int 1812 1821 1836 1857 1875 1909 1991 2037 1999 2046 ...
$ UNSPLIT_INFINITIVE: int 1851 2295 2726 2875 2931 2907 3157 3185 3180 3228 ...

Base R has a stripchart() function. If you plot one vector, specify this vector as the sole argument
of the function (Fig. 6.9).

> stripchart(data$SPLIT_INFINITIVE)

4 See Sect. A.1.1 for the full script.
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Fig. 6.8: Dispersion plots of noun types in A1E.xml
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Fig. 6.9: A strip chart of the split infinitive in COHA

If you want to plot two or more vectors, you should group them in a list beforehand. When you do so, the
name that you provide for each variable will be used to identify each strip chart in the final plot.

> x <- list("split"=data$SPLIT_INFINITIVE, "unsplit"=data$UNSPLIT_INFINITIVE)

You may now plot the two strip charts in the same plotting window (Fig. 6.10).

> stripchart(x, xlab="frequencies", ylab="construction")

You may want to customize the plot with graphic parameters such as the specification of one color per
variable (col = c("magenta", "darkblue")). Because several data points overlap, you can add a
small amount of noise to each variable to tease them apart with jitter() in the method argument of the
function (Fig. 6.11).
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Fig. 6.10: A strip chart of <to ADV-ly VINF> in COHA
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Fig. 6.11: The same strip chart with jitter()

> stripchart(x,
+ xlab = "frequencies",
+ ylab = "construction",
+ col = c("magenta", "darkblue"),
+ method = "jitter",
+ )

The respective frequency distributions of the split and unsplit infinitives differ. Not only is the unsplit
infinitive more frequent than its split counterpart, but its frequencies also spread more along the range of
values on the horizontal axis.

6.6 Reshaping Tabulated Data

So far, we have seen how to extract data from text-file corpora. Nowadays, however, online corpora abound.
Not all of them allow you to easily export the data into a format that can be processed in R or a spreadsheet
format. This is a shame because there is little point in designing powerful search engines and making them
available on the Web if the user cannot further process the data. Fortunately, there are workarounds.

In Sect. 6.7 below, you will learn how to plot a motion chart of the split vs. unsplit infinitives
in COHA across 20 decades with the googleVis package. This package requires that the fre-
quency data be shaped in a specific format, as shown in Tab. 6.1. Because the corpus offers no
easy way of exporting the frequency data, you have to reshape them so that they fit the package’s
requirements.
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Table 6.1: Input frequency table for GoogleVis

adverb decade split infinitive unsplit infinitive total

actually 1810 0 0 0
actually 1820 0 0 0
actually 1830 0 18 18
actually 1840 0 63 63
actually 1850 0 18 18
actually 1860 0 18 18
actually 1870 0 27 27
actually 1880 1 9 10
actually 1890 0 45 45
actually 1900 1 36 37
actually 1910 2 27 29
actually 1920 1 72 73
actually 1930 2 0 2
actually 1940 0 18 18
actually 1950 2 45 47
actually 1960 3 36 39
actually 1970 4 0 4
actually 1980 8 0 8
actually 1990 29 0 29
actually 2000 37 27 64
. . . . . . . . . . . . . . .

First, retrieve the data from COHA, which consists of about 400 million word tokens and 115000 texts.
The corpus is balanced by genre across twenty decades from the 1810s to the 2000s. It is ideal to see
how American English has changed in the last two centuries. If you have not done it yet, visit http://
corpus.byu.edu/, register (it is free), and login. Then, go to http://corpus.byu.edu/coha/
and enter the corpus. This takes you to the query interface.

You have to run two queries. One for split infinitives and another for unsplit infinitives. To make
the search easier, we shall restrict the extraction to adverbs in -ly (e.g. boldly, really, absolutely, etc.).
A split infinitive will be defined as to followed by any -ly adverb, followed by the base form of any
verb. An unsplit infinitive will be defined as to followed by the base form of any verb, followed by
any -ly adverb. Now, we need to translate these definitions into something that the query form recog-
nizes.

Queries made via the interface at http://corpus.byu.edu/ follow a specific syntax.5 Each part of
speech has a code. To retrieve all kinds of adverbs, you should enter [r∗]. To retrieve all adverbs that end in
-ly, add ∗ly as a prefix (∗ stands for a wildcard, i.e. ‘one or more word characters’). This gives you ∗ly.[r∗].
To retrieve the base form of any verb, you should enter [v?i∗]. When you combine these codes, you obtain
the following:

• syntax for split infinitives: to ∗ly.[r∗] [v?i∗]
• syntax for unsplit infinitives: to [v?i∗] ∗ly.[r∗]

5 http://corpus.byu.edu/coha/help/syntax_e.asp.

http://corpus.byu.edu/
http://corpus.byu.edu/
http://corpus.byu.edu/coha/
http://corpus.byu.edu/
http://corpus.byu.edu/coha/help/syntax_e.asp
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Fig. 6.12: Query on COHA

Fig. 6.13: Query results

Let us start with the split infinitive. The pattern to ∗ly.[r∗] [v?i∗] should be entered in the blank
search box (Fig. 6.12). You should also click “Options” and set “# HITS” to 1000 instead of 100. Tick
the “Sections” box and click on “Find matching strings”. Leave the other options unchanged. After a few
seconds, the results are displayed (Fig. 6.13). You want to copy and paste the data from the online output
into a spreadsheet. Here is a quick and dirty way: click somewhere in the upper left part of the window and
drag down to the bottom right part. Press CONTROL + A (or CMD + A if you are on a Mac). Paste the
selection into a spreasheet (CONTROL + V or CMD + V). As you can see from Fig. 6.14, the ouput of cut
and paste is messy and there is some manual clean-up to do. Note that the output depends on what browser
you use.
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In your spreadsheet software, delete unwanted rows and columns (do not forget to delete the row total
at the bottom of the table) and shift the column header to the right so that each decade is on top of its
own column. Replace each empty cell with 0. Assign the name WORD to the column that contains the
matches. In this column, we only want the adverb, so we have to delete TO and the verb. This can be done
easily in a text editor that implements regular expressions (Notepad++ for Windows or BBedit/TextWrangler
for Mac). Copy and paste the whole table into your text editor. Activate the find-and-replace function by
entering CONTROL/CMD + F and make sure the grep option is active. To remove TO and the verb, replace
TO (\w+LY) \w+ with \1.6 When you deal with the unsplit infinitive, replace TO \w+ (\w+LY) with
\1. To remove all remaining spaces (including trailing spaces), replace |ˆ\s with an empty character, i.e.
nothing. Note that there is a space before the pipe symbol |.

Fig. 6.14: What the output looks like in Excel (snapshot)

Once you are satisfied with the clean-up, save the text file using an obvious filename, e.g. split_inf.
txt. Repeat the above steps for the unsplit infinitive. Once you are done, you should have two distinct text
files: split_inf.txt and unsplit_inf.txt.

There are two remaining issues:

• your data consists of two data frames instead of one;
• your two data frames do not have the format of Tab. 6.1.

In other words, you must go from two data frames in which each decade is a variable to a single data frame
where decades are the factors of a single variable. Two R packages come to the rescue: reshape and
plyr.

Install and load the reshape package.

> install.packages("reshape")
> library(reshape)

Load split_infinitive.txt, which is available from your CLSR folder.

> split <- read.delim("/CLSR/chap6/split_infinitive.txt", header=TRUE, check.names=FALSE)
> str(split) # inspect
'data.frame': 1000 obs. of 21 variables:
$ WORD: Factor w/ 202 levels "ABRUPTLY","ABSOLUTELY",..: 67 125 125 67 125 125 125 139 67 5 ...
$ 1810: int 0 0 0 1 0 0 0 0 0 0 ...
$ 1820: int 0 0 0 0 0 0 0 0 0 0 ...
$ 1830: int 0 0 0 0 0 0 0 0 0 0 ...
$ 1840: int 1 0 0 0 0 0 0 0 0 0 ...
$ 1850: int 1 0 0 0 0 0 0 0 1 0 ...
$ 1860: int 3 0 1 1 0 0 0 1 0 0 ...
$ 1870: int 2 0 1 1 0 0 0 1 2 0 ...
$ 1880: int 4 0 0 4 2 0 0 1 4 0 ...

6 In most programming languages other than R, one backslash is enough to escape characters.
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$ 1890: int 4 1 4 3 0 0 0 0 1 0 ...
$ 1900: int 2 1 2 2 9 2 2 2 2 1 ...
$ 1910: int 1 1 5 2 1 0 1 0 1 0 ...
$ 1920: int 1 1 4 0 0 0 0 0 0 0 ...
$ 1930: int 1 0 3 0 0 1 0 0 1 0 ...
$ 1940: int 1 1 4 0 0 0 0 0 0 0 ...
$ 1950: int 0 3 1 0 1 2 1 1 0 0 ...
$ 1960: int 3 5 3 1 2 2 2 0 0 0 ...
$ 1970: int 0 4 1 2 0 1 1 4 0 1 ...
$ 1980: int 5 4 1 2 2 2 1 2 0 0 ...
$ 1990: int 16 3 8 3 2 6 7 5 2 7 ...
$ 2000: int 7 18 4 11 3 5 6 4 2 7 ...

With reshape, we “melt” the data so that each row is a unique word-decade-frequency combination. This
is done with the melt() function.

> split.melt <- melt(split, id="WORD")
> str(split.melt) # inspect
'data.frame': 20000 obs. of 3 variables:
$ WORD : Factor w/ 202 levels "ABRUPTLY","ABSOLUTELY",..: 67 125 125 67 125 125 125 139 67 5 ...
$ variable: Factor w/ 20 levels "1810","1820",..: 1 1 1 1 1 1 1 1 1 1 ...
$ value : int 0 0 0 1 0 0 0 0 0 0 ...

We make the names of the second and third columns more explicit.

> colnames(split.melt)[2] <- "DECADE" # change name of 2nd column
> colnames(split.melt)[3] <- "SPLIT_INF"# change name of 3rd column
> head(split.melt, 10) # inspect

WORD DECADE SPLIT_INF
1 FULLY 1810 0
2 REALLY 1810 0
3 REALLY 1810 0
4 FULLY 1810 1
5 REALLY 1810 0
6 REALLY 1810 0
7 REALLY 1810 0
8 SERIOUSLY 1810 0
9 FULLY 1810 0
10 ACTUALLY 1810 0

We repeat the above steps with unsplit_infinitive.txt

> unsplit <- read.delim("/CLSR/chap6/unsplit_infinitive.txt", header=TRUE, check.names=FALSE)
> unsplit.melt <- melt(unsplit, id="WORD") # melt
> colnames(unsplit.melt)[2] <- "DECADE" # change name of 2nd column
> colnames(unsplit.melt)[3] <- "UNSPLIT_INF" # change name of 3rd column
> head(unsplit.melt, 10) # inspect

WORD DECADE UNSPLIT_INF
1 ONLY 1810 0
2 ENTIRELY 1810 6
3 PERFECTLY 1810 5
4 FULLY 1810 2
5 REALLY 1810 1
6 MERELY 1810 0
7 ABSOLUTELY 1810 2
8 EASILY 1810 0
9 WHOLLY 1810 1
10 EQUALLY 1810 3

Next, merge the two data frames into a unique data frame with merge(), a function from base R.

> df <- merge(split.melt, unsplit.melt, by=c("DECADE","WORD")) # merge
> str(df)
'data.frame': 111100 obs. of 4 variables:
$ DECADE : Factor w/ 20 levels "1810","1820",..: 1 1 1 1 1 1 1 1 1 1 ...
$ WORD : Factor w/ 202 levels "ABRUPTLY","ABSOLUTELY",..: 2 2 2 3 3 3 3 3 3 3 ...
$ SPLIT_INF : int 0 0 0 0 0 0 0 0 0 0 ...
$ UNSPLIT_INF: int 2 0 0 0 0 0 0 0 0 0 ...
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Upon inspection, we see that DECADE is not numeric. We convert the factor into a numeric vector.

> df$DECADE <- as.numeric(as.character(df$DECADE)) # set DECADE to numeric

The last step is to summarize the merged data frame with Hadley Wickham’s plyr package.

> install.packages("plyr")
> library(plyr)

The ddply() function applies functions for each subset of the data frame and combines the results into a
new data frame. Inside the ddply() call, the summarise function performs group-wise summaries.

> df <- ddply(df, c("WORD","DECADE"), summarise, SPLIT_INF=sum(SPLIT_INF),
+ UNSPLIT_INF=sum(UNSPLIT_INF)) # summarize
> head(df) # inspect

WORD DECADE SPLIT_INF UNSPLIT_INF
1 ABSOLUTELY 1810 0 2
2 ABSOLUTELY 1820 0 3
3 ABSOLUTELY 1830 0 13
4 ABSOLUTELY 1840 0 11
5 ABSOLUTELY 1850 0 5
6 ABSOLUTELY 1860 0 6

Finally, we add a total column for combined frequencies.

> df$TOTAL_FREQ <- df$SPLIT_INF + df$UNSPLIT_INF
> head(df, 10) # inspect

WORD DECADE SPLIT_INF UNSPLIT_INF TOTAL_FREQ
1 ABSOLUTELY 1810 0 2 2
2 ABSOLUTELY 1820 0 3 3
3 ABSOLUTELY 1830 0 13 13
4 ABSOLUTELY 1840 0 11 11
5 ABSOLUTELY 1850 0 5 5
6 ABSOLUTELY 1860 0 6 6
7 ABSOLUTELY 1870 0 22 22
8 ABSOLUTELY 1880 3 20 23
9 ABSOLUTELY 1890 3 26 29
10 ABSOLUTELY 1900 0 26 26

6.7 Motion Charts

In 2006, Hans Rosling gave a TED talk on social and economic developments in the world over the past 50
years.7 The talk was a landmark in the TED talks series not only because of its contents, but also because of
the clarity with which the data was visualized. Rosling used animated bubble charts. Inspired by Rosling’s
presentation (and other similar talks) Gesmann and de Castillo (2011) developed the googleVis package.
The package allows R and the Google visualization API to communicate to create interactive charts.

In diachronic linguistics, the best known of these charts is the motion chart, popularized by Martin Hilpert.
Hilpert (2011) compares motion charts to flipbooks that allow you to see how a given process of language
change deploys over time.8

7 https://www.ted.com/talks/hans_rosling_shows_the_best_stats_you_ve_ever_seen.
8 http://members.unine.ch/martin.hilpert/motion.html.

https://www.ted.com/talks/hans_rosling_shows_the_best_stats_you_ve_ever_seen
http://members.unine.ch/martin.hilpert/motion.html
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Thanks to the googleVis package, we can plot a motion chart based on the data frame that we compiled
in the previous section (df) with only two lines of code (four if you count the lines used to install and load
the package).

> install.packages(googleVis)
> library(googleVis)

First, prepare a motion chart object with the gvisMotionChart() function. The variable that we are
interested in is WORD (i.e. the adverbs that split or do not split the infinitive). The time variable is DECADE.
We provide these variables via the function’s arguments idvar and timevar.

> motionc.object <- gvisMotionChart(df, idvar="WORD", timevar="DECADE")

Finally, we plot the motion chart with plot().

> plot(motionc.object)

The above line opens up a window in your browser displaying the motion chart (Fig. 6.15). Before you
click on play, you may want to adjust playback speed (it is the button to the right of the main play button).
You may also want to change the display from raw frequencies (Lin) to log-transformed values (Log): this
has the effect of spreading the data points and making tendencies easier to spot (Fig. 6.15c and 6.15d).

Each bubble stands for an adverb. The size of the bubble depends on the adverb’s combined frequency in
both split and unsplit infinitive constructions. The position of the adverb indicates how frequently it occurs
in the split (x axis) or unsplit (y axis) infinitive. The closer an adverb gets to the diagonal from the lower-left
corner to the upper-right corner of the plot, the more compatible it is with both constructions. The further
right an adverb goes, the stronger its preference for the split construction. The further up an adverb goes, the
stronger its preference for the unsplit construction (Fig. 6.15b).

Unsurprisingly, the unsplit infinitive is far more frequent than its split counterpart. Nevertheless, a handful
of adverbs (such as really, fully, only, and carefully) make occasional inroads into split constructions (e.g.
1860s–1890s). The years around 1900 are the most conservative. The situation changes slightly after World
War II. Disappointingly, the airing of Star Trek does not seem to have any visible impact around 1966.
Really and fully stand out as the boldest adverbs: they lead the trend from the 1980s onwards. Boldly, on
the other hand, does not bulge. The toy dataset that I used has limitations (small size, only one adverb type,
etc.), and the corpus is certainly biased with respect to genre. Therefore, we should be wary of making final
conclusions based on this motion chart alone. Having said that, motion charts work great as a first approach.
For more details regarding the code behind each motion chart, see this Google Developers page https://
developers.google.com/chart/interactive/docs/gallery/motionchart.

Exercises

6.1. Barplots
The data file for this exercise is modals.by.genre.BNC.rds. You will find it in (C:)/CLSR/chap6.
The data table shows the distribution of ten English modals across eight text genres in the BNC. Write a loop
that makes a barplot for each modal in the table.

https://developers.google.com/chart/interactive/docs/gallery/motionchart
https://developers.google.com/chart/interactive/docs/gallery/motionchart
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6.2. Dispersion plots
Make a dispersion plot for each of the following place names in Dickens’s Oliver Twist, whose Project
Gutenberg ID is 730: Clerkenwell, Snow Hill, Holborn, Jacob’s Island, Southwark, London Bridge, New-
gate, Pentonville, and Smithfield. Arrange the eight plots should in five rows and two columns.

6.3. Strip charts
The data file for this exercise is the same as for Exercise 6.1, namely: modals.by.genre.BNC.rds.
Compare the distribution of modals across the eight text genres with a strip chart. To do so, you will need to
transpose the data frame. The modals should be on the y-axis and their frequencies on the x-axis.

Fig. 6.15: A motion chart of the split vs. unsplit infinitive in COHA. (a) Initial state (raw frequencies);
(b) 1964 (raw frequencies); (c) 1964 (logged); (d) 1992 (logged)
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Just like not all corpus linguists engage in some form of quantification, not all corpus linguists engage in
statistics. Often, I hear colleague confess that they would like to use statistics in their research, but they
refrain from doing it for lack of training in the field and for fear of an insuperable learning curve. Admit-
tedly, linguists tend to receive very little training in statistics, and learning these techniques is challenging.
However, let us face it: contemporary linguistics is at yet another quantitative turn in its history. Graduate
programs throughout the world dramatically improve their offers in statistical training. Massive data sets are
piling up. To achieve far-reaching results, the discipline needs robust statistical tools.

Some other colleagues also fear that, by doing statistics, they will be perceived as a mathematicians or
“language engineers”, not as linguists anymore. This is a blunt misconception. Doing statistics is useless
unless driven by solid theory. In other words, you cannot make a good use of statistics in linguistics if you
do not have a strong background in theoretical linguistics.

There are, obviously, wrong reasons for doing statistics when you are a linguist: tables, charts, plots, and
p-values look nice in a paper; you want your research to be 100% objective; it is trendy. Most statistics
are used for a main reason: you want to determine whether your observations are due to chance or not. If
they are not, congratulations, you may have discovered something significant. While subjectivity is the key
component of a linguist’s job, a certain dose of objectivity is beneficial at certain steps of a linguist’s work
(see Fig. 1.1 from Sect. 1).



Chapter 7
Descriptive Statistics

Abstract Descriptive statistics summarize information. In this chapter, we review two kinds of descriptive
statistics: measures of central tendency and measures of dispersion. Measures of central tendency are meant
to summarize the profile of a variable. Although widespread, these statistics are often misused. I provide
guidelines for using them. Measures of dispersion are complementary: they are meant to assess how good a
given measure of central tendency is at summarizing the variable.

7.1 Variables

A variable is a property that varies from one individual to another. An individual may be just anything, such
as a person (a speaker, an informant) or a linguistic unit or phenomenon (modal auxiliaries, transitivity, etc.).
Here is an open-ended list of variables for linguistic phenomena:

1. the number of modal auxiliaries per sentence,
2. the number of syllables per word,
3. vowel lengths in milliseconds,
4. pitch frequencies in hertz,
5. ranked acceptability judgments,
6. the text types represented in a corpus,
7. the verb types that occur in a construction.

The first five of these variables provide numerical information and are known as quantitative variables. The
last two variables provide non-numerical information and are known as qualitative or categorical variables.

Quantitative variables break down into discrete and continuous variables. Typically, discrete quantitative
variables involve counts (integers). Such is the case of the number of modal auxiliaries per sentence and the
number of syllables per word. Continuous quantitative variables involve a measurement of some kind within
an interval of numbers with decimals. Such is the case of vowel lengths in milliseconds and pitch frequencies
in hertz. There is a special type of quantitative variables: ordinal variables. Ordinal variables are numerical
and take the form of rankings. An example of ordinal variable is the ranking of agentivity criteria: “1” high
agentivity, “2” mild agentivity, “3” low agentivity. Acceptability judgments in psycholinguistic experiments
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may also be ordinal variables. The specificity of ordinal variables is that you cannot do arithmetic with them
because the difference between each level is not quantitatively relevant.1

Qualitative variables are nominal or categorical. They are usually coded with a label. For example, a verb
type may be coded using POS tags, such as VVI for the infinite form of lexical verbs in the BNC or VVN for
the past participle form. Although they are sometimes coded with numbers (e.g. “1” for infinitives, and “2”
for past participles), you cannot do arithmetic with them. In R, you should always declare these numbers as
characters (in vectors) or factors (in data frames).

7.2 Central Tendency

Measures of central tendency summarize the profile of a variable. There are three measures of central
tendency: the mean, the median, and the mode. All three measures can summarize a large data set with just
a couple of numbers.

7.2.1 The Mean

The mean (also known as the arithmetic mean) gives the average value of the data. The data must be on
a ratio scale. The arithmetic mean (μ), is the sum (∑) of all the scores for a given variable (x) in the data
divided by the number of values (N):

μ =
∑x
N

. (7.1)

Let us go back to the data set split_unsplit.rds.

> rm(list=ls(all=TRUE))
> data <- readRDS("/CLSR/chap6/split_unsplit.rds") # Windows
> data <- readRDS("/CLSR/chap6/split_unsplit.rds") # Mac

Upon inspection, the variable DECADE is recognized as a numeric vector. Strictly speaking, it should be a
factor because its values are nominal. Although not a crucial step with respect to the statistics that follow,
conversion is advised.

> str(data)
'data.frame': 20 obs. of 3 variables:
$ DECADE : int 1810 1820 1830 1840 1850 1860 1870 1880 1890 1900 ...
$ SPLIT_INFINITIVE : int 1812 1821 1836 1857 1875 1909 1991 2037 1999 2046 ...
$ UNSPLIT_INFINITIVE: int 1851 2295 2726 2875 2931 2907 3157 3185 3180 3228 ...
> data$DECADE <- as.factor(data$DECADE)

R has a built-in function to compute the mean of a numeric vector: mean(). To know the mean number
of split and unsplit infinitives across the whole period, we apply the function to each vector.

> mean(data$SPLIT_INFINITIVE)
[1] 2049.4
> mean(data$UNSPLIT_INFINITIVE)
[1] 3018.35

1 It would make little sense to say that mild agentivity is twice as less as high agentivity.
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On average, there are 2049.4 occurrences of the split infinitive and 3018.35 occurrences of the split
infinitive. These values represent only a summary of the data. No decade displays either figure. To visualize
where the mean stands in your data, plot the numeric vectors and position the mean as a horizontal line with
abline(). The h argument specifies where the horizontal line that corresponds to the mean should be
plotted on the y axis. You obtain Fig. 7.1.2

> par(mfrow=c(1,2))
> plot(data$SPLIT_INFINITIVE)
> abline(h = mean(data$SPLIT_INFINITIVE), col="blue")
> text(5, mean(data$SPLIT_INFINITIVE)+15, "mean", col="blue")
> plot(data$UNSPLIT_INFINITIVE)
> abline(h = mean(data$UNSPLIT_INFINITIVE), col="green")
> text(5, mean(data$UNSPLIT_INFINITIVE)+20, "mean", col="green")
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Fig. 7.1: Plotting the means of SPLIT_INFINITIVE and UNSPLIT_INFINITIVE

Interestingly, the median corresponds to the mean of the two middle values if the data consists of an even
number of values.

> a <- 1:12; a
[1] 1 2 3 4 5 6 7 8 9 10 11 12
> median(a)
[1] 6.5
> mean(c(6,7))
[1] 6.5

Although very popular among linguists, the mean is far from reliable. Consider the two vectors below.

2 With par(), you can set up graphical parameters. A layout with two plots side by side is specified using mfrow(). The line
par(mfrow=c(1,2)) means “multiframe, row-wise, 1 line × 2 columns layout”. As a result, the two plots are organized
in one row and two columns.
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> b <- c(10, 30, 50, 70, 80)
> c <- c(10, 30, 50, 70, 110)

The vectors b and c are identical except for one value. In corpus linguistics, this might be caused by a word
whose frequency is abnormally high. This minor difference translates into a large difference in the mean
because of the few data that we have.3

> mean(b)
[1] 48
> mean(c)
[1] 54

To address this problem. The mean() function has an optional argument, trim, which allows you to
specify a proportion of outlying values that are removed from the computation of the mean. Each vector
contains five values. If you want to remove the top and bottom values, you need to set trim to 0.2 (i.e.
20%). Because 5× 0.2 = 1, setting trim to 0.2 will remove two values in each vector: the highest value
and the lowest value.

> mean(b, trim = 0.2) # = mean(c(30, 50, 70))
[1] 50
> mean(c, trim = 0.2) # = mean(c(30, 50, 70))
[1] 50

The resulting trimmed means are equal. Trimming means makes sense if the data set is large. If it is not,
you should reconsider calculating the mean, whether trimmed or not.

7.2.2 The Median

The median is the value that you obtain when you divide the values in your data set into two “equal” parts.
When your data set consists of an uneven number of values, the median is the value in the middle. In the
vector b, this value in the middle is 50. We can verify this with the median() function.

> median(b)
[1] 50

there is an equal number of values on either part of the median. When the vector consists of an even number
of values, the value in the middle does not necessarily correspond to a value found in the vector.

> median(c(b, 100))
[1] 60

As opposed to the mean, the median is not affected by extreme values. What the median does not tell you
is the behavior of the values on either side of it.

> par(mfrow=c(1,2))
> plot(data$SPLIT_INFINITIVE)
> abline(h = mean(data$SPLIT_INFINITIVE), col="blue")
> abline(h = median(data$SPLIT_INFINITIVE), col="blue", lty=3)
> text(5, mean(data$SPLIT_INFINITIVE)+15, "mean", col="blue")
> text(5, median(data$SPLIT_INFINITIVE)+15, "median", col="blue")

3 As a rule, the smaller the data set, the more sensitive it is towards extreme values.
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> plot(data$UNSPLIT_INFINITIVE)
> abline(h = mean(data$UNSPLIT_INFINITIVE), col="green")
> abline(h = median(data$UNSPLIT_INFINITIVE), col="green", lty=3)
> text(5, mean(data$UNSPLIT_INFINITIVE)+20, "mean", col="green")
> text(5, median(data$UNSPLIT_INFINITIVE)+20, "median", col="green")

As Fig. 7.2 shows, the median does not necessarily correspond to the mean.
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Fig. 7.2: Plotting the medians of SPLIT_INFINITIVE and UNSPLIT_INFINITIVE

7.2.3 The Mode

The mode is the nominal value that occurs the most frequently in a tabulated data set. You obtain the mode
with which.max(). With respect to data$SPLIT_INFINITIVE or data$SPLIT_INFINITIVE, it
does not make sense to determine the mode because each frequency value occurs once,

> tab <- table(data$SPLIT_INFINITIVE); tab

1812 1821 1836 1857 1875 1909 1986 1990 1991 1997 1999 2016 2037 2044 2046 2095 2169 2232 2536 2740
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

so let us come back to df_each_every_bnc_baby.txt, a data frame that we compiled in Chap. 4.

> df.each.every <- read.delim("C:/CLSR/chap5/df_each_every_bnc_baby.txt", header=TRUE) # Windows
> df.each.every <- read.delim("/CLSR/chap5/df_each_every_bnc_baby.txt", header=TRUE) # Mac

We want to know the mode of the variable NP_tag, so that we know which value is most often observed
among the four possible options (NN0, NN1, NN2, and NP0). We isolate and tabulate the variable of interest
with table().
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> str(df.each.every)

'data.frame': 2339 obs. of 8 variables:

$ corpus.file: Factor w/ 159 levels "A1E.xml","A1F.xml",..: 1 1 1 1 1 1 1 1 1 2 ...

$ info : Factor w/ 22 levels "S conv","W ac:humanities arts",..: 10 10 10 10 10 10 10 10 10 11 ...

$ mode : Factor w/ 2 levels "stext","wtext": 2 2 2 2 2 2 2 2 2 2 ...

$ type : Factor w/ 5 levels "ACPROSE","CONVRSN",..: 4 4 4 4 4 4 4 4 4 4 ...

$ exact.match: Factor w/ 912 levels "each action ",..: 252 267 267 97 449 785 136 207 819 592 ...

$ determiner : Factor w/ 2 levels "each","every": 1 1 1 1 1 2 1 1 2 2 ...

$ NP : Factor w/ 597 levels "act","action",..: 334 356 356 127 554 407 173 275 463 147 ...

$ NP_tag : Factor w/ 6 levels "NN0","NN1","NN1-AJ0",..: 2 2 2 2 2 2 2 2 2 2 ...

> tab.NP.tags <- table(df.each.every$NP_tag)

We run which.max() on the tabulated data. The function returns the mode and its position.

> which.max(tab.NP.tags)
NN1
2

The mode of NP_tag is NN1. The mode is the tallest bar of a barplot (Fig. 7.3).

> barplot(tab.NP.tags)
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Fig. 7.3: A barplot showing the mode of NP_tag

The corresponding frequency of the mode is given by max().

> max(tab.NP.tags)
[1] 2242
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7.3 Dispersion

Dispersion is the spread of a set of observations. If many data points are scattered far from the value of a
centrality measure, the dispersion is large.

7.3.1 Quantiles

By default, the quantile() function divides the frequency distribution into four equal ordered subgroups
known as quartiles. The first quartile ranges from 0% to 25%, the second quartile from 25% to 50%, the
third quartile from 50% to 75%, and the fourth quartile from 75% to 100%.

> quantile(data$SPLIT_INFINITIVE, type=1)
0% 25% 50% 75% 100%

1812 1875 1997 2046 2740
> quantile(data$UNSPLIT_INFINITIVE, type=1)
0% 25% 50% 75% 100%

1851 2907 3157 3185 3334

The type argument allows the user to choose from nine quantile algorithms, the detail of which may be
accessed by entering ?quantile. By default, R uses the seventh type.

The interquartile range (IQR) is the difference between the third and the first quartiles, i.e. the 75th and
the 25th percentiles of the data. It may be used as an alternative to the standard deviation to assess the spread
of the data (see Sect. 7.3.3 below).

> IQR(data$SPLIT_INFINITIVE, type=1) # = 2046 - 1875
[1] 171
> IQR(data$UNSPLIT_INFINITIVE, type=1) # = 3185 - 2907
[1] 278

The IQR values confirm what we already know: the frequency distribution of the split infinitive is less
dispersed than the frequency distribution of the unsplit infinitive.

In base R, the summary() function combines centrality measures and quantiles (more precisely quar-
tiles).

> summary(data$SPLIT_INFINITIVE)
Min. 1st Qu. Median Mean 3rd Qu. Max.
1812 1900 1998 2049 2058 2740

> summary(data$UNSPLIT_INFINITIVE)
Min. 1st Qu. Median Mean 3rd Qu. Max.
1851 2925 3162 3018 3188 3334

The same function can be applied to the whole data frame.

> summary(data)
DECADE SPLIT_INFINITIVE UNSPLIT_INFINITIVE

1810 : 1 Min. :1812 Min. :1851
1820 : 1 1st Qu.:1900 1st Qu.:2925
1830 : 1 Median :1998 Median :3162
1840 : 1 Mean :2049 Mean :3018
1850 : 1 3rd Qu.:2058 3rd Qu.:3188
1860 : 1 Max. :2740 Max. :3334
(Other):14
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7.3.2 Boxplots

In Sects. 6.4 and 6.5, dispersion plots and strip charts have given us the opportunity to appreciate dispersion
graphically. In practice, a boxplot provide a more elaborate graphic representation of the spread of the values
around a central point (Fig. 7.4). A boxplot is the graphic equivalent of summary().
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Fig. 7.4: A generic boxplot

You obtain Fig. 7.4 with the boxplot() function.

> boxplot(rnorm(1000), col="grey")

Note that the boxplot will look different each time you enter the code because rnorm(1000) generates
1000 random values of the normal distribution (enter ?Normal for further information). The center of the
plot consists of a box that corresponds to the middle half of the data. The height of the box is determined
by the interquartile range. The thick horizontal line that splits the box in two is the median. If the median
is centered between the lower limit of the second quartile and the upper limit of the third quartile, as is the
case in Fig. 7.4, this is because the central part of the data is roughly symmetric. If not, this is because the
frequency distribution is skewed. Whiskers are found on either side of the box. They go from the upper and
lower limits of the box to the horizontal lines of the whiskers. These two lines are drawn 1.5 interquartile
ranges above the third quartile or 1.5 interquartile ranges below the first quartile. If whiskers have different
lengths, it is also a sign that the frequency distribution is skewed. The data values beyond the whiskers are
known as outliers. They are displayed individually as circle dots. Although connoted negatively, outliers
can be interesting and should not be systematically ignored.
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Regarding the split_unsplit.rds data set, we use boxplots to compare the dispersion of the fre-
quency distributions of split and unsplit infinitives. There are two ways of doing it. The first way consists in
selecting the desired columns of the data frame (Fig. 7.5a). Here, this is done via subsetting.

> boxplot(data[,c(2,3)])

The second way consists in plotting each variable side by side as two separate vectors (Fig. 7.5b). The
variables are not labeled.

> boxplot(data$UNSPLIT_INFINITIVE, data$SPLIT_INFINITIVE)
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Fig. 7.5: Boxplots for SPLIT_INFINITIVE and UNSPLIT_INFINITIVE. (a) Plotting columns; (b)
plotting vectors

If we were to superimpose these two boxplots, they would not overlap. This shows that their distri-
butions are radically different. The boxplot for SPLIT_INFINITIVE is shorter than the boxplot for
UNSPLIT_INFINITIVE because the frequency distribution of the former variable is less dispersed than
the frequency distribution of the latter. The boxplot for UNSPLIT_INFINITIVE shows that the frequency
distribution for this variable is skewed: the whiskers do not have the same length, and the median is close to
the upper limit of the third quartile.

7.3.3 Variance and Standard Deviation

The variance and the standard deviation use the mean as their central point. The variance (σ2) is calculated
by (a) subtracting the mean (x̄) from each data point (x), (b) squaring the difference, (c) summing up all
squared differences, and (d) dividing the sum by the sample size (N) minus 1.
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σ2 =
∑(x− x̄)2

N − 1
(7.2)

Fortunately, R has a built-in function for the variance: var().

> var(data$SPLIT_INFINITIVE)
[1] 53799.94
> var(data$UNSPLIT_INFINITIVE)
[1] 132495.1

The standard deviation (σ ) is the most widely used measure of dispersion. It is the square root of the
variance.

σ =

√
∑(x− x̄)2

N − 1
(7.3)

In R, you obtain the standard deviation of a frequency distribution either by first calculating the variance
of the vector and then its square root

> sqrt(var(data$SPLIT_INFINITIVE))
[1] 231.9481
> sqrt(var(data$UNSPLIT_INFINITIVE))
[1] 363.9987

or by applying the dedicated function: sd().

> sd(data$SPLIT_INFINITIVE)
[1] 231.9481
> sd(data$UNSPLIT_INFINITIVE)
[1] 363.9987

As expected, the variance and the standard deviation of UNSPLIT_INFINITIVE are larger than the vari-
ance and the standard deviation of SPLIT_INFINITIVE.

Exercises

7.1. Central tendency
The data file for this exercise is modals.by.genre.BNC.rds, to be found in CLSR/chap6. Write a
for loop that prints (with cat()):

• the mean number of modals per text genre;
• the median number of modals per text genre;
• the frequency of the mode, i.e. the modal that occurs the most in the given text genre.

The for loop should output something like the following:

ACPROSE 20940.1 18399.5 44793
CONVRSN 6361.8 3934 23161
FICTION 21789.5 14480 56934
NEWS 11476.8 7517 37476
NONAC 29072.6 29272.5 59211
OTHERPUB 23729.9 20303.5 66980
OTHERSP 9967.2 6178.5 26262
UNPUB 6684.5 6293 19258
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7.2. Valley speak
A sociolinguist studies the use of the gap-filler ‘whatever’ in Valleyspeak. She records all conversations
involving two Valley girls over a week and counts the number of times each girl says ‘whatever’ to fill a gap
in the conversation. The (fictitious) data is summarized in Tab. 7.1.

Table 7.1: Data on Valleyspeak

Monday Tuesday Wednesday Thursday Friday Saturday Sunday
Valley girl 1 314 299 401 375 510 660 202
Valley girl 2 304 359 357 342 320 402 285

For each girl:

1. summarize the data in a plot such as Fig. 7.6;
2. compute the mean and the standard deviation;
3. summarize the data in a boxplot;
4. interpret the results.
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Chapter 8
Notions of Statistical Testing

Abstract In this chapter, you will learn the basics of statistical thinking, namely inferential statistics and
statistical testing. These fundamentals will serve as a basis for the following chapters.

8.1 Introduction

The previous chapter introduced descriptive statistics, which are a prerequisite to the kinds of statistics
introduced in the present chapter, namely inferential statistics and statistical testing. Inferential statistics
consists in generalizing what happens in a sample to the whole population of your data. Before we proceed
further, let us review the key concepts implied in statistical thinking. These concepts will be used from this
chapter onwards.

8.2 Probabilities

When you say that an event is unlikely, likely, or certain to happen, you make a probability judgment. English
has lots of expressions related to probability judgments: “what are the odds?”, “odds/chances are that. . . ”,
etc. In this section, I will show you the relevance of probabilities in the quantitative study of language.

8.2.1 Definition

In baseball, if you bet that the Oakland A’s will beat the Texas Rangers, it is because you consider this
outcome (an Oakland A’s win) to be more likely than the others (an Oakland A’s defeat or a draw). A
probability is expressed on a continuous scale from 0 to 1: 0 means that the outcome has no chance to occur,
0.5 that it has one chance out of two to occur, and 1 that it is certain to occur. You may also express a
probability by means of a percentage: 0%, 50%, and 100% mean that the outcome has no chance to occur,
one chance out of two to occur, or is certain to occur respectively. Let X be the event that the Oakland A’s
will win. If you consider that the A’s have three chances out of four to win, you express this probability as

© Springer International Publishing AG 2017
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follows: P(X) = 0.75. Suppose that a draw is impossible because this is the last game in the World Series.
You know that the outcome ‘win’ and the outcome ‘lose’ are mutually exclusive. The probability that the
A’s will lose (X̄) is therefore:

P(X̄) = 1− 0.75= 0.25. (8.1)

If you bet that the Oakland A’s will win, you certainly assume that P(X̄)< 0.5 < P(X). If a friend bets that
the Texas Rangers will win, she certainly assumes that P(X̄)> 0.5 > P(X). The only way to know for sure
which is the winning bet is to wait until the baseball game has ended.

8.2.2 Simple Probabilities

Let us turn to a linguistic example. We draw uniformly (i.e. completely at random) a word from one BNC
Baby file, namely A1J.xml. Let A be the event “the word drawn from the corpus file is a noun”, and P(A)
the probability of that event. We want to calculate P(A).

The code below is used to make a frequency list of the tags contained in the corpus file.

> rm(list=ls(all=TRUE))
> library(gsubfn)
> # load the corpus file
> corpus.file <- scan("/CLSR/BNC_baby/A1J.xml", what="char", sep="\n")
> # select the sentences in the corpus file
> sentences <- grep("<s n=", corpus.file, value=TRUE)
> # look for the tags
> tags <- unlist(strapplyc(sentences, "w c5=\"(.*?)\""))
> # tabulate and sort
> table_tags <- sort(table(tags), decreasing=TRUE)
> # convert the array into a tab-delimited table
> freqlist_tags <- paste(names(table_tags), table_tags, sep="\t")

The table itself is available from your CLSR folder.

> freqlist <- readRDS("C:/CLSR/chap8/freqlist.A1J.rds") # Windows
> freqlist <- readRDS("/CLSR/chap8/freqlist.A1J.rds") # Mac

Thanks to the frequency list, you know that there are 13663 words in the corpus file.

> W <- sum(freqlist$FREQUENCY); W
[1] 13663

According to the BNC tagset, nouns are coded NN0, NN1, NN2, or NP0 (see Sects. 5.3.2 and 6.4). Thanks to
this information, you can calculate the total number of nouns by subsetting the data frame and apply sum()
to FREQUENCY.

> nouns <- c("NN0", "NN1", "NN2", "NP0")
> freqlist.nouns <- freqlist[freqlist$TAG %in% nouns, ]
> NP <- sum(freqlist.nouns$FREQUENCY); NP
[1] 4047

There are 4047 nouns in A1J.xml. The probability of drawing a noun from A1J.xml is P(A) = NP
W =

4047
13663 = 0.296.

> P_A <- NP/W; P_A
[1] 0.2962014
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In other words, there is a 29.6% chance of drawing a noun from the corpus file. The probability of drawing
a word that is not a noun is P(Ā) = 1−P(A) = 0.704 (70.4%).

> 1-P_A
[1] 0.7037986

A more complex, though more instructive, way to obtain the probability of drawing a noun is to calculate
the probability to draw each type of noun separately from the corpus file.

> # subset the data frame
> freqlist.NN0 <- freqlist[freqlist$TAG %in% "NN0", ]
> freqlist.NN1 <- freqlist[freqlist$TAG %in% "NN1", ]
> freqlist.NN2 <- freqlist[freqlist$TAG %in% "NN2", ]
> freqlist.NP0 <- freqlist[freqlist$TAG %in% "NP0", ]
>
> # calculate the probability for each type of noun
> P_NN0 <- sum(freqlist.NN0$FREQUENCY)/W
> P_NN1 <- sum(freqlist.NN1$FREQUENCY)/W
> P_NN2 <- sum(freqlist.NN2$FREQUENCY)/W
> P_NP0 <- sum(freqlist.NP0$FREQUENCY)/W

Now, all you need is to sum up these probabilities.

> P_NN0 + P_NN1 + P_NN2 + P_NP0
[1] 0.2962014

As expected, you get the same result. This is known as the additive principle. It is at work when the variables
are mutually exclusive (hence not independent). If you draw a common noun, neutral for number such as
aircraft (NN0), you cannot draw a singular common noun, such as pencil. If we sum up the probabilities of
all tags in the data frame, we obtain 1.

8.2.3 Joint and Marginal Probabilities

Now, suppose that three corpus files are involved instead of just one: A1J.xml, A1K.xml, and A1L.xml.
Tab. 8.1 groups frequency counts from two variables: the type of noun (rows) and the corpus file (columns).
This two-way table is an example of a contingency table.

Table 8.1: The distribution of nouns in three BNC Baby corpus files

A1J.xml A1K.xml A1L.xml row totals

NN0 136 14 8 158
NN1 2236 354 263 2853
NN2 952 87 139 1178
NP0 723 117 71 911
column totals 4047 572 481 5100

The row totals reveal that there are 158 common nouns, neutral for number, 2853 singular common nouns,
1178 plural common nouns, and 911 proper nouns in the three corpus files. The column totals reveal that
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there are 4047 nouns in A1J.xml, 572 nouns in A1K.xml, and 481 nouns in A1L.xml. The number 5100
in the lower right corner gives the total number of nouns in the three corpus files, regardless of the type. This
total is found by summing up the row totals, the column totals, or the 12 cells of the contingency table.

Tab. 8.1 is available in your /CLSR/chap8 subfolder.1

> cont.table <- readRDS("C:/CLSR/chap8/cont.table.rds"); cont.table # Windows
> cont.table <- readRDS("/CLSR/chap8/cont.table.rds"); cont.table # Mac

A1J.xml A1K.xml A1L.xml Total
NN0 136 14 8 158
NN1 2236 354 263 2853
NN2 952 87 139 1178
NP0 723 117 71 911
Total 4047 572 481 5100

Let NN1 be the event: “the word that is drawn is a singular common noun” and A1K the event “the
word that is drawn is from A1K.xml”. The event that the word that is drawn is a singular common noun
from A1K.xml is a joint event. Let NNO&A1K denote this joint event for now. It is realized 354 times in
Tab. 8.1, which contains 12 such joint events, all of which are mutually exclusive.

The total number of nouns in all three corpus files (N) allows us to calculate the probabilities of the events
NN1 and A1K.

> N <- sum(cont.table[1:4, 1:3])
> P_NN1 <- cont.table[2,4]/N; P_NN1
[1] 0.5594118
> P_A1K <- cont.table[5,2]/N; P_A1K
[1] 0.1121569

These are known as marginal probabilities because they are calculated on the basis of events found in the
margins of the contingency table. N also allows us to calculate joint probabilities, such as P(NN1&A1K),
the probability of drawing a word that is a singular common noun from A1K.

> P_NN1_and_A1K <- 354/N; P_NN1_and_A1K
[1] 0.06941176

P(NN1&A1K)≈ 0.069, which means that there is a 6.9% chance of drawing a singular common noun from
corpus file A1K.xml. All the joint probabilities in the table can be calculated in one go by dividing the
whole table by N.

> probs <- cont.table/N; probs
A1J.xml A1K.xml A1L.xml Total

NN0 0.02666667 0.002745098 0.001568627 0.03098039
NN1 0.43843137 0.069411765 0.051568627 0.55941176
NN2 0.18666667 0.017058824 0.027254902 0.23098039
NP0 0.14176471 0.022941176 0.013921569 0.17862745
Total 0.79352941 0.112156863 0.094313725 1.00000000

Tab. 8.1 displays a joint frequency distribution, whereas the table stored in probs displays a joint prob-
ability distribution.

1 The code to generate the table is available from Sect. A.2.1.
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8.2.4 Union vs. Intersection

When we are interested in the probability of drawing a word that is both a singular common noun and from
A1K, we are talking about the intersection of two events. That which we expressed above by means of the
symbol “&” is in fact denoted by means of the ∩ symbol from set theory. This probability is conventionally
written in the form: P(NN1 ∩ A1K).

Coming back to Tab. 8.1, suppose that we are now interested in the probability of drawing either a
singular common noun or a noun from A1K. This is an illustration of the union of two events, which is
denoted by means of the ∪ symbol from set theory. This probability is written in the form: P(NN1 ∪ A1K).
It is calculated as follows:

P(NN1 ∪ A1K) = P(NN1)+P(A1K)−P(NN1 ∩ A1K)

We have all the information that we need to calculate this probability in R.

> P_NN1_or_A1K <- P_NN1 + P_A1K - P_NN1_and_A1K ; P_NN1_or_A1K
[1] 0.6021569

P(NN1 ∪ A1K) = 0.602 (60.2%).

8.2.5 Conditional Probabilities

Computing the probability of a joint event is not the same as computing the probability of an event assuming
that another event occurs. The latter is known as a conditional probability. For example, we might want
to know the probability that a word is a singular common noun given that A1K.xml is selected. This
conditional probability is denoted P(NN1|A1K). Using Tab. 8.1, we divide the frequency of singular common
nouns in A1K.xml (354) by the total of column A1K (572).

> P_NN1_given_A1K <- cont.table[2,2]/cont.table[5,2]; P_NN1_given_A1K
[1] 0.6188811

When A1K.xml is selected, there is a 61.89% chance of drawing a singular common noun. There is a
formula to compute conditional probabilities. Let A and B be any two events with P(A)> 0, then:

P(A|B) = P(A ∩ B)
P(A)

. (8.2)

Therefore,

P(NN1|A1K) =
P(NN1 ∩ A1K)

P(A1K)
. (8.3)

In R, we compute P(NN1|A1K) thanks to the information we already have.

> P_NN1_and_A1K/P_A1K
[1] 0.6188811
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Finally, let us compare P(NN1|A1K) to P(A1K|NN1), i.e. the probability that the word is drawn from A1K.
xml given that the word is a noun.

P(A1K|NN1) =
P(NN1 ∩ A1K)

P(NN1)
(8.4)

> P_A1K_given_NN1 <- P_NN1_and_A1K/P_NN1; P_A1K_given_NN1
[1] 0.1240799

When a singular common noun is selected, there is a 12.4% chance that this word is drawn from A1K.xml.

8.2.6 Independence

Two events can be statistically dependent or independent. If two events are dependent, the occurrence of one
event affects the probability of the other event. If two events are independent, the occurrence of one event
does not affect the probability of the other event.

As a rule, you prove that two events A and B are independent if

P(B|A) = P(B) (8.5)

or if
P(A|B) = P(A). (8.6)

Let us apply the first formula to see if

P(NN1|A1K) = P(NN1) (8.7)

and decide if NN1 and A1K are independent.

> P_NN1_given_A1K
[1] 0.6188811
> P_NN1
[1] 0.5594118

Event NN1 is not independent of event A1K because the probability of NN1 given A1K (0.618) is not the
same as the probability of NN1 among all the corpus files (0.559). Events NN1 and A1K are therefore
dependent. When two events A and B are dependent, another rule applies:

P(A&B) = P(A)×P(B|A). (8.8)

This rule is verified with respect to NN1 and A1K:

P(NN1 &A1K) = P(NN1)×P(A1K|NN1). (8.9)

> P_NN1_and_A1K
[1] 0.06941176
> P_NN1*P_A1K_given_NN1
[1] 0.06941176
> # alternatively, use the function identical()
> identical(P_NN1_and_A1K, P_NN1*P_A1K_given_NN1)
[1] TRUE
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Suppose now that instead of drawing one word uniformly, we successively draw two words uniformly
with replacement regardless of the corpus file. “With replacement” means that the word drawn first is not
removed from the total sample of nouns before drawing the second word. Let NN1 be the event “the (first or
second) word is a singular common noun” and NP0 the event “the (first or second) word is a proper noun”.
Given the above rule (8.8), NN1 and NP0 are independent if

P(NN1|NP0) = P(NN1), (8.10)

or if
P(NP0|NN1) = P(NP0). (8.11)

You do not need to make any calculation. Drawing one type of noun does not affect the probability of
drawing another type of noun, therefore both events are independent. The probability of an event given the
other is therefore the same as the probability of the former event. Things would be different if the word was
removed from the total sample.

When two events A and B are independent, the multiplication principle applies:

P(A&B) = P(A)×P(B). (8.12)

The probability of drawing a singular common noun and a plural common noun is calculated as follows:

P(NN1&NP0) = P(NN1)×P(NP0). (8.13)

> P_NP0 <- probs[4,4]
> P_NN1_and_NP0 <- P_NN1*P_NP0; P_NN1_and_NP0
[1] 0.0999263

The probability of drawing a singular common noun and a plural common noun is approximately 0.1 (10%).

8.3 Populations, Samples, and Individuals

Suppose you investigate a linguistic phenomenon such as cleft sentences in English. An ideal experiment
would consist in using descriptive statistics to summarize the distribution of all the cleft sentences found in
an immense library gathering all spoken and written English documents produced by native English speakers
during a period of interest. Of course, this kind of study is not feasible because the immense library does not
exist. If it were possible, perhaps it would not be practical because of the amount of observations involved.

What corpus linguists do instead is a less ideal but more practical experiment that consists in drawing
conclusions about the language based on a sample of that language. This method is inferential. In statistics
parlance, the collection of all possible observations in the study is known as the population. The population
may be finite or potentially infinite. The part of the population from which information is actually obtained
is called a sample. In Fig. 8.1, all the dots represent the population. The red dots represent the sample drawn
from the population.

These concepts are relative. For example, if you investigate a subcorpus hoping to make an inference on
the whole corpus that it belongs to based on information from the subcorpus, the subcorpus is your sample
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and the whole corpus your population. Following the same demographic metaphor, each observation of the
case study is an individual. In Sect. 1.2.1.1, we saw that a corpus could also be considered a sample of
samples, a sample drawn from the population of utterances in a given language. In this sense, a reference
corpus such as the British National Corpus could be considered a sample to make inferences about the
population, namely British English.

Fig. 8.1: A population and a sample

8.4 Random Variables

In Sect. 7.1, we defined the variable. At this stage, let me refine the definition a little by introducing a central
(and perhaps foundational) concept in statistics: randomness. A random phenomenon occurs by chance. A
random variable is like a variable except that the values that it may take depend on chance. Mathematicians
feel comfortable with random phenomena because it is something that they can model.

If you have read books on statistics, you must have realized that statisticians love tossing coins or throwing
dice. My own preference goes to dice rolling for an etymological reason. “Hasard” is the French word for
“chance”. It derives from “al-zahr”, which is Arabic for “dice”. Here is a classical example. You play a
gambling game with a friend: each of you rolls a die 100 times in a row. If the outcome is an even number
( , , or ), you win. If the outcome is an odd number ( , , or ), you lose. Each roll is a trial. Trials
are independent from each other (i.e. the outcome of a trial does not affect the outcome of another event).
The outcome of the roll of the die is either an even number or an odd number. The probability p for either
event is: peven = podd = 3/6 = 1/2 = 0.5.
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Linguists, however, hardly ever see language phenomena as random. The lines below are from Kilgarriff
(2005, p. 264), a landmark paper I believe all linguists should read before embarking on quantitative corpus
linguistics.

The problem for empirical linguistics is that language is not random (. . . ). Language is not random because we speak or
write with purposes. We do not, indeed, without computational help are not capable of, producing words or sounds or
sentences or documents randomly.

Like Kilgarriff, not all linguists find drawing linguistic units at random from a sample natural. Some even
find this practice irrelevant. They will rightly argue that a linguistic sample is not just a bag of words and a
sentence is not the random sum of the N words it is made of. The order of linguistic units is primordial, and
linguistics is precisely the study of the constraints that govern this order. However, statistics tells you that
by comparing what happens in your sample to what a theoretical model based on probabilities posits is what
allows you to measure precisely the effect of linguistic constraints at work in the sample. For this reason,
quantitative linguists claim that, even though inferential statistics relies largely on the use probability models
whose randomness assumptions are never met in language, these models are in fact useful, providing that
you take their limitations into account.

8.5 Response/Dependent vs. Explanatory/Descriptive/Independent Variables

As seen in Sect. 1.2.3.1, you do not collect corpus data at random. You do it because you are interested in
a linguistic phenomenon. More precisely, your prime objective is to investigate the effects of descriptive
variables on the variable of interest. By convention, this variable of interest, whose investigation is the true
goal of your study, is called the response variable or the dependent variable. A variable used to describe
the response/dependent variable is called a descriptive variable, an independent variable, or an explanatory
variable.

How your data are organized in a data frame should be planned before the corpus extraction (see Sect. 5.3).
As a rule, and also to facilitate further processing in R, each observation should have its own row. In the con-
text of corpus linguistics, an observation corresponds to a match. Each variable (response and descriptive)
should have its own column. Tab. 8.2 is what you should aim at. This format allows you to further annotate
each observation easily (the column “semantic class” was annotated manually).

Table 8.2: A conventional data frame (excerpt)

case corpus file construction intensifier text mode text type text info match adjective semantic class

1 KBP.xml PREDETERMINER QUITE SPOKEN CONVRSN S conv quite an able chap able Able/intelligent
2 H9C.xml PREADJECTIVAL RATHER WRITTEN FICTION W fict prose a rather clever pupil clever Able/intelligent
3 A7Y.xml PREDETERMINER QUITE WRITTEN NEWS W newsp brdsht nat: social quite a clever move clever Able/intelligent
4 FAJ.xml PREDETERMINER QUITE WRITTEN FICTION W fict prose quite a deft touch deft Able/intelligent
5 HR9.xml PREDETERMINER RATHER WRITTEN FICTION W fict prose rather a shrewd point shrewd Able/intelligent
6 AHC.xml PREADJECTIVAL QUITE WRITTEN NEWS W newsp brdsht nat: misc a quite different class different Comparison_Different
7 J10.xml PREADJECTIVAL QUITE WRITTEN FICTION W fict prose a quite different direction different Comparison_Different
8 J10.xml PREADJECTIVAL QUITE WRITTEN FICTION W fict prose a quite different tack different Comparison_Different
9 CTY.xml PREADJECTIVAL RATHER WRITTEN ACPROSE W ac:humanities arts a rather different critique different Comparison_Different

10 H9D.xml PREADJECTIVAL RATHER WRITTEN FICTION W fict prose a rather different kind different Comparison_Different
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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8.6 Hypotheses

Before you collect corpus data, you must ask a theory-informed question, which you convert into a research
hypothesis. Basically, you make a statement about something that you suppose to be the case and then
collect corpus evidence based on this statement.

The data frame overviewed in Tab. 8.2 is based on Desagulier (2015), a study of the pre-adjectival vs.
pre-determiner alternation in the context of adjectival intensification with quite and rather in the BNC (we
shall return to it in the next chapter). Previous literature suggests that the choice of pre-determiner position
over the default pre-adjectival position depends on style or formality. This simple claim can be easily
turned into a hypothesis. A hypothesis breaks down into two parts: the alternative hypothesis and the null
hypothesis. The alternative hypothesis (H1) posits a relation of dependence between the response variable
and the explanatory variables. The null hypothesis (H0) posits a relation of independence between them.
If the syntax of the intensifier (preadjectival vs. predeterminer) is our response/dependent variable and
stylistic/contextual features our explanatory/descriptive/independent variables, H1 and H0 may look like the
following:

H1: The choice of pre-determiner position over the default pre-adjectival position depends on style or
formality;
H0: The choice of pre-determiner position over the default pre-adjectival position does not depend on
style or formality.

What remains to determine is how style and formality are operationalized. Operationalization is the
conversion of your textual hypotheses into something that can be observed, measured, or counted. There are
two choices to make. The first choice concerns how to convert abstract concepts such as “style or formality”
into tangible variables. This is where your linguist’s expertise comes in. For convenience sake, let us assume
that written texts are more formal than spoken transcripts.2

The second choice has to do with quantification. The trick is to collect your data so that they are amenable
to quantification (see the previous chapter) and statistics (see below). The data frame quite.rather.
rds has been planned so that the variables “text mode” and “text type” capture style and formality. Also
part of the original design of the data frame is the fact that the nominal variables can yield frequency counts.
Let us see how this works.

> rm(list=ls(all=TRUE))
> data <- readRDS("C:/CLSR/chap8/quite.rather.rds") # Windows
> data <- readRDS("/CLSR/chap8/quite.rather.rds") # Mac

Next, subset the data frame to select the desired variables and summarize the data frame with summary().

> data <- data[,c(2:5)] # subset
> summary(data) # summarize the data frame

construction intensifier text_mode text_type
PREADJECTIVAL: 59 QUITE :103 SPOKEN : 57 ACPROSE:31
PREDETERMINER:104 RATHER: 60 WRITTEN:106 CONVRSN:57

FICTION:47
NEWS :28

As you can see, nominal data converted easily into frequency counts. Thanks to the count() function
from the plyr package, you can turn a whole table of nominal data into a frequency table in just one
line of code. The variables to be summarized should be combined with c() in the vars argument of the
count() function.

2 Admittedly, every linguist knows that some written texts (such as emails, text messages, or songs) can be far less formal than
some spoken transcripts (like official speeches). Furthermore, there are several degrees of formality per mode.
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> library(plyr)
> freq.table <- count(data, vars = c("construction", "intensifier", "text_mode", "text_type"))
> freq.table

construction intensifier text_mode text_type freq
1 PREADJECTIVAL QUITE SPOKEN CONVRSN 2
2 PREADJECTIVAL QUITE WRITTEN ACPROSE 3
3 PREADJECTIVAL QUITE WRITTEN FICTION 4
4 PREADJECTIVAL QUITE WRITTEN NEWS 2
5 PREADJECTIVAL RATHER WRITTEN ACPROSE 21
6 PREADJECTIVAL RATHER WRITTEN FICTION 21
7 PREADJECTIVAL RATHER WRITTEN NEWS 6
8 PREDETERMINER QUITE SPOKEN CONVRSN 52
9 PREDETERMINER QUITE WRITTEN ACPROSE 5
10 PREDETERMINER QUITE WRITTEN FICTION 17
11 PREDETERMINER QUITE WRITTEN NEWS 18
12 PREDETERMINER RATHER SPOKEN CONVRSN 3
13 PREDETERMINER RATHER WRITTEN ACPROSE 2
14 PREDETERMINER RATHER WRITTEN FICTION 5
15 PREDETERMINER RATHER WRITTEN NEWS 2

The most obvious form of quantification consists of frequency counts.3

There are several descriptive variables whose interaction might give you a headache at this stage.4 To keep
things simple, we restrict the study (and the data set) to one response variable (the choice of the preadjectival
vs. predeterminer construction) and one descriptive variable (text mode). We want to know if the choice of
the preadjectival vs. predeterminer construction depends on whether the mode is written or spoken. Through
operationalization, H1 and H0 become:

H1: predeterminer and preadjectival constructions are not equally distributed across text modes;
H0: predeterminer and preadjectival constructions are equally distributed across text modes.

H1 can be directional (“one-tailed”) or non-directional (“two-tailed”). As formulated above, the alterna-
tive hypothesis is non-directional: although it postulates that the choice of the construction depends on text
mode, it does not assume a direction. More specifically, the alternative hypothesis does not tell you that one
construction is overrepresented in a text mode. Suppose that you have read somewhere that predeterminer
constructions are restricted to written texts. If you want to test that assumption, you formulate a directional
alternative hypothesis and the corresponding null hypothesis,5 which may look like one of the following:

H1: the predeterminer construction occurs more often in written contexts;
H0: the predeterminer construction occurs less often in written contexts; or
H0: the predeterminer construction occurs equally often in written and spoken contexts;

or

H1: the predeterminer construction occurs less often in written contexts;
H0: the predeterminer construction occurs more often in written contexts; or
H0: the predeterminer construction occurs equally often in written and spoken contexts.

How you formulate the alternative hypothesis depends on what you want to show. What you want to show
depends on your review of the literature on the topic and your qualitative assessment of the case study prior
to corpus extraction.

Once you have determined H1 and H0 in textual form, you turn them into a statistically relevant form. Let
f denote the frequency of a construction, and f̄ the mean frequency. The alternative hypotheses become:

3 Some tendencies emerge, such as the high frequencies of predeterminer quite in spoken conversation, and preadjectival rather
in two written contexts: academic prose and fiction. The statistical significance of these tendencies remains to be shown.
4 In Chap. 10, we see how to handle the simultaneous interaction of multiple variables with multivariate statistics.
5 Often, there are two corresponding null hypotheses. Proving that one of them is false is enough to prove that H1 is correct.
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H1 (directional): f̄ predeterminer_written > f̄ predeterminer_spoken;
H0: f̄ predeterminer_written � f̄ predeterminer_spoken;

or

H1 (directional): f̄ predeterminer_written < f̄ predeterminer_spoken;
H0: f̄ predeterminer_written � f̄ predeterminer_spoken.

Your hypotheses can now be tested. Out of scientific integrity, you can change neither H1 nor H0 once
you have selected a set of hypotheses and obtained results.

8.7 Hypothesis Testing

In hypothesis testing, you do not prove that your alternative hypothesis is true. You prove that the null
hypothesis is false. This principle, known as hypothesis falsification, was laid out by Ronald Fisher in 1935:

The null hypothesis is never proved or established, but is possibly disproved, in the course of experimentation. Every
experiment may be said to exist only in order to give the facts a chance of disproving the null hypothesis. (Fisher 1935)

Once you have formulated H1 and H0 in textual and statistical forms, and before collecting your data, you
define a threshold below which you will reject the null hypothesis. This threshold is known as the alpha
level (α), the significance level, or the critical p-value. If you set α to 0.1, you consider that there is a 10%
chance for the null hypothesis to be true. If you set it to 0.01, you consider that there is a 1% chance for the
null hypothesis to be true. There is no real objective basis for setting α . Fisher (1935) himself admits that
it is “situation dependent”. If you are assessing the side effects of a medication, you will want to go with
α = 0.01 or lower. In linguistics and the humanities in general, where the stakes are not that high, the α
level is generally set to 0.05, meaning that we can reject the null hypothesis at the 5% level of significance.
Note that if your p-value is greater than α , this does not mean that the null hypothesis should be accepted
(remember, you never prove that either H1 or H0 is true, you always reject its counterpart).

After defining the significance level, you compute the effect observed in your data using a statistic that
is compatible with your operationalization (see previous section). This statistic should be paired with the
probability of error p, which tells you how likely it is to find the effect observed in your data if H0 is true.
You can make two kinds of errors (Tab. 8.3). If you reject the null hypothesis when it is true, you are making
a Type I error. This is known as a false positive. If you fail to reject the null hypothesis when it is false, you
are making a type II error. This is known as a false negative.

Table 8.3: Type I and type II errors

the truth
your decision H0 is true H0 is false

you reject H0 TYPE I error no error
you fail to reject H0 no error Type II error
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Finally, you come back to your hypothesis and make a decision. If p < α , you reject H0 and congratulate
yourself. If p > α you reject H1. Rejecting H1 is not necessarily bad news. It can be quite meaningful with
respect to the specificities of your data.

8.8 Probability Distributions

So far in this book we have worked with frequency distributions. The outcome of a counting experiment is
always specific to the sample that it was computed from. If we replicate a word count on other samples, it is
very likely that we will not get the same results. Tab. 8.4 shows the top ten words that you obtain when you
make a frequency list of the eight text types in the BNC. Although we find roughly the same words at the
top of each frequency list, the rankings and the frequency scores differ.

Table 8.4: Frequency lists for each of the 8 text types in the BNC

ACPROSE FICTION NEWS NONAC
word frequency word frequency word frequency word frequency

the 2559 the 2349 the 254 the 315
of 1860 of 1183 of 129 to 208
a 1342 to 1170 a 116 and 201
in 1036 and 1160 and 104 of 198
to 918 he 1048 in 84 a 134

and 909 wrote 911 to 80 in 132
is 725 I 803 is 65 for 94

art 455 it 786 s 56 with 87
be 415 in 657 that 43 is 69
as 411 is 646 with 43 I 67

OTHERPUB UNPUB CONVRSN OTHERSP
word frequency word frequency word frequency word frequency

the 156 the 1418 the 2004 and 306
to 115 and 763 I 1353 the 267

and 109 of 734 and 1231 of 189
of 95 to 676 to 1203 to 185
in 94 in 522 that 1099 a 139
a 59 a 480 of 1038 in 125

with 53 for 368 you 920 was 121
aids 48 is 314 a 893 were 103
is 43 at 191 it 860 that 102

are 41 on 186 in 760 you 97

However, many of the things that we study and measure are assumed to come from a predictable popu-
lation of values that are distributed a certain way. If we plot the eight abovementioned frequency lists, we
see that all the curves have the same shape (Fig. 8.2). It is the effect of the Zipfian distribution, alluded to in
Sect. 6.2. The Zipfian distribution is an instance of the power law distribution. This distribution is character-
ized by a continuously decreasing curve, implying that a large number of rare events coexist with a handful
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of large events. If you plot frequency lists based on samples of naturally occurring languages that are large
enough, you will obtain curves that are shaped likewise. Thanks to the predictability of known distributions,
we can calculate the probabilities that certain events or combinations of events will occur.

Fig. 8.2: Word distribution for each of the eight text types in the BNC

Like random variables, distributions subdivide into discrete and continuous distributions. The probability
distribution of a discrete variable (such as word counts) can be used to indicate the probability of the outcome
on an interval/ratio scale. Likewise, the probability distribution of a continuous variable (such as vowel
length in millisecond, pitch in hertz) can be used to indicate the probability of the outcome on a continuous
scale.
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8.8.1 Discrete Distributions

In Sect. 8.4, I mentioned the classical experiment that involves two players who roll a die a hundred times
in a row. If the outcome is an even number, one player wins. If the outcome is an odd number, the other
player wins. We saw that each time, the probability for either event is p = 0.5. In other words, each outcome
has one chance out of two to occur. The discrete probability distribution of the number of outcomes in a
sequence of n dichotomous experiments is binomial.

Let me illustrate the binomial distribution with a linguistic example. You want to study the respective
distributions of vowel and consonant letters in a text. You naively assume that vowels and consonants are
used independently and randomly in a collection of poems. Each type of letter has one chance out of two
to occur. We want to check if vowels are overrepresented. We set α to 0.05. We formulate hypotheses in
textual form,

H1: vowels are overrepresented,
H0: vowels are not overrepresented.

Vowel and consonant letters lend themselves to counting. Taking into account the selected operationaliza-
tion, the hypotheses become:

H1: there are more vowels than expected by chance,
H0: there are no more vowels than expected by chance.

Finally, we formulate the statistical hypotheses:

H1: pV > 0.5,
H0: pV = pC = 0.5.

H1 is directional because you assume that the effect goes in one direction (vowels are overrepresented). In
statistical terms, you are looking for one-tailed p-values from discrete probability distributions. This will
become clearer below. Now that you have formulated your hypotheses, you need to know how many times
you draw vowels in a word before you can confidently say that they are overrepresented, i.e. before you can
confidently reject H0 and accept H1.

Suppose you draw a four-letter word (not the one you are thinking about). There are 16 possible outcomes,
which are summarized in Tab. 8.5. Because the events are independent, the multiplication principle applies
and each has a probability of 0.5×0.5×0.5×0.5= 0.625 (see Eq. 8.8). Under the naive assumption, vowels
have no reason to occur less or more than twice in a four-letter word. Suppose that we find four vowels in the
four-letter word, i.e. twice as more as expected. The probability associated with this outcome is pV = 0.625,
as the last line of the table indicates (in grey). Since pV > α , we reject H1: finding four vowels in a four-
letter word does not mean that the vowels are overrepresented. However, we should refrain from making
definitive conclusions based on such a small number of trials. As you demultiply the number of trials, pV

drops dramatically. Compare the probability of finding a vowel all the time when we have 4, 10, 20, 30, 50,
and 100 trials (Fig. 8.3).6,7

The shape of the curve is symmetric. We are only considering one portion of the curve (the “tail” to
the right) because H1 is directional. The properties of the binomial distribution are well known, and make it
possible to estimate how much variability we may expect for the frequencies of vowels and consonants, given

6 Admittedly, finding a 30-, 50- or 100-letter word is far from likely. As we will see below, the distribution of words based on
the number of letters that they consist of is not a negligible fact.
7 The code for generating Fig. 8.3 is available in Sect. A.2.2.
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Fig. 8.3: Binomial probability distribution
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Table 8.5: Possible outcomes

letter 1 letter 2 letter 3 letter 4 vowel count consonant count p

C C C C 0 4 0.0625
C C C V 1 3 0.0625
C C V C 1 3 0.0625
C C V V 2 2 0.0625
C V C C 1 3 0.0625
C V C V 2 2 0.0625
C V V C 2 2 0.0625
C V V V 3 1 0.0625
V C C C 1 3 0.0625
V C C V 2 2 0.0625
V C V C 2 2 0.0625
V C V V 3 1 0.0625
V V C C 2 2 0.0625
V V C V 3 1 0.0625
V V V C 3 1 0.0625
V V V V 4 0 0.0625

the naive assumption. In R, you obtain the probability of the first row in Tab. 8.5 thanks to the dbinom()
function.8

> dbinom(4, size=4, prob=0.5)
[1] 0.0625

The first argument is the number of successes (finding four vowels), size is the number of trials, and prob
is the probability of success on each trial (each letter type has a 0.5 chance of success). The probability of
the first row in Tab. 8.5 is obtained likewise.

> dbinom(0, size=4, prob=0.5)
[1] 0.0625

If you want to know the cumulative probability of finding two, three, or four vowels in a four-letter word,
you sum the respective probabilities of all trials.

> sum(dbinom(2:4, 4, 0.5))
[1] 0.6875

To understand better how this works, compute the cumulative probability of finding zero, one, two, three, or
four vowels in a four-letter word. Because all possible outcomes are covered, you obtain 1. This corresponds
to the total of the p column of Tab. 8.5.

> sum(dbinom(0:4, 4, 0.5))
[1] 1

Suppose that you draw 50 letters. How many vowels can you draw until you decide that they are overrep-
resented in the text? You can answer this question heuristically. Vowels are overrepresented if they appear

8 In dbinom, d stands for “density”. As far as concrete distributions are concerned, the density of x is the probability of getting
exactly the value x.
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more than 25 times. Let us calculate the cumulative probability of drawing 26 vowels or more out of 50
draws.

> sum(dbinom(26:50, 50, 0.5))
[1] 0.4438624

The p-value is larger than α (0.05) and does not allow us to accept H1. This means that if you draw 26
vowels, it does not mean that vowels are overrepresented. We need to raise the number of times we draw a
vowel until we find a cumulative probability that yields a p-value that is below 0.05.

> sum(dbinom(27:50, 50, 0.5))
[1] 0.3359055
> sum(dbinom(28:50, 50, 0.5))
[1] 0.2399438
> sum(dbinom(29:50, 50, 0.5))
[1] 0.1611182
> sum(dbinom(30:50, 50, 0.5))
[1] 0.1013194
> sum(dbinom(31:50, 50, 0.5))
[1] 0.05946023
> sum(dbinom(32:50, 50, 0.5))
[1] 0.03245432

Only when we draw 31 or more vowels out of 50 draws can we reject H0 with a 5% level of significance and
conclude that vowels are represented. R offers a non-heuristic way of getting this threshold number thanks
to the qbinom() function.9

> qbinom(0.05, 50, 0.5, lower.tail = FALSE)
[1] 31

The first argument is α , the second argument is the number of trials, and the third argument is the probability
of success on each trial. The fourth argument lower.tail is set to FALSE because H1 is directional, i.e.
one tailed.

Suppose now that we want to check if one letter type is overrepresented (either vowels or consonants).
We leave α at 0.05. Because we do not focus on a single letter type (either type may be overrepresented),
we formulate non-directional hypotheses, first in textual form,

H1: one letter type is overrepresented,
H0: no letter type is overrepresented,

next in operationalized form,

H1: there are more letters of the same type than expected by chance,
H0: there are no more letters of the same type than expected by chance,

and finally in statistical form:

H1: pV > 0.5 or pC > 0.5,
H0: pV = pC = 0.5.

Suppose that we draw again a four-letter word. The probability of finding four letters of the same type is
obtained by adding the probability of finding four consonants (the first row in Tab. 8.5) and the probability
of finding four vowels (the last row in Tab. 8.5): 0.0625+0.0625= 0.125. Again, p > α , and H1 is rejected.
Again, the number of trials is too small to make a significant conclusion.

9 In qbinom, q stands for “quantile”. The quantile function is the inverse of the cumulative distribution function. See Dalgaard
(2008, pp. 63–64) for more explanations.



8.8 Probability Distributions 169

Let us ask the same question as above, this time with a non-directional H1, namely: how many letters of
the same type can you draw until you decide that the type is overrepresented in the text? We use qbinom()
again, but we leave out the lower.tail argument and divide α by two because H1 is two-tailed.

> qbinom(0.05/2, 50, 0.5)
[1] 18

Only when we draw 18 or more letters of the same type out of 50 draws can we reject H0 with a 5% level of
significance and conclude that the letter type is overrepresented.

8.8.2 Continuous Distributions

The most famous continuous distribution is the normal distribution. It is the distribution that characterizes
most biological phenomena such as people’s heights, IQ scores, the gestation period of mammals, the size of
potatoes, the duration of lightning, etc. The normal distribution is far from being the norm in corpus linguis-
tics (as opposed to, say, psycholinguistics). I will therefore only outline the key aspects of this continuous
distribution.

When a variable is normally distributed, its distribution has the shape of a bell curve (Fig. 8.4). The main
reason for this shape is the so-called “central-limit theorem”. According to this theorem, random variables
formed by adding many random effects will be approximately normally distributed.
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Fig. 8.4: A normal density curve

The normal distribution (and its associated curve) has mathematical properties. It is completely deter-
mined by the mean (μ) and the standard deviation (σ ). A normal curve is symmetric about and centered at
the mean, mode, and median of the variable. Its spread is indexed on σ : the larger σ , the more spread out
the distribution, and the flatter the curve. Almost all the observations of the variable are found within 3σ on
either side of the mean.
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The data set cars.rds contains the length measurements (in inches) of 387 cars.10

> rm(list=ls(all=TRUE))
> data <- readRDS("/CLSR/chap8/cars.rds")
> str(data)
'data.frame': 387 obs. of 1 variable:
$ length: int 167 153 183 183 183 174 174 168 168 168 ...

We want to see if the data are normally distributed. We plot a histogram of the frequency distribution. We
obtain Fig. 8.5a.

> hist(data$length, xlab="length of cars", main="")

Roughly speaking, the bins display a certain symmetry on either side of the highest bin. In Fig. 8.5b, we
plot probability densities instead of frequencies. This is done by adding an argument: prob=TRUE (or
freq=FALSE). With lines(), we fit a density curve. With adjust=2, the approximation of the density
curve is “smoother” than if you leave the default setting (adjust=1). The result is a neat bell-shaped curve.

> hist(data$length, prob=TRUE, xlab="length of cars", main="") # or freq=FALSE instead of prob=TRUE
> lines(density(data$length, adjust=2), col="blue", lwd=2)

The area delimited by the normal density curve is used to determine if an observed value falls within the
acceptance region (p < 0.05). The whole area under the density curve represents 100%. If α is set to 0.05,
this area is amputated from 2×0.025 (0.025 at each tail). The acceptance region represents 95% of the total
area under the curve.11 Let us visualize this area. First, we define the starting point and the end point of the
area on the horizontal axis with quantile().

> q025 <- quantile(data$length, .025)
> q975 <- quantile(data$length, .975)

Next, we vectorize the density of the data.

> dens <- density(data$length, adjust = 2)

This allows us to find the x-axis coordinates with respect to density. With which(), we find those points
on the curve that are above 0.025 and below 0.975 (we exclude α , i.e. 0.05).

> x1 <- min(which(dens$x > q025))
> x2 <- max(which(dens$x < q975))

Finally, we plot the density curve,

> plot(density(data$length, adjust = 2), col="blue", lwd=2)

and add (with()) shading to color the defined region of acceptance with polygon().

> with(dens, polygon(x = c(x[c(x1, x1:x2, x2)]), y = c(0, y[x1:x2], 0), col="grey"))

10 I am using just one part of a data set posted by Roger W. Johnson (Department of Mathematics and Computer Science, South
Dakota School of Mines and Technology) on the Journal of Statistics Education Data Archive (http://www.amstat.
org/publications/jse/jse_data_archive.htm). For more information on the data set, please go to http://
www.amstat.org/publications/jse/datasets/04cars.txt.
11 95% of the data points are in this area.

http://www.amstat.org/publications/jse/jse_data_archive.htm
http://www.amstat.org/publications/jse/jse_data_archive.htm
http://www.amstat.org/publications/jse/datasets/04cars.txt
http://www.amstat.org/publications/jse/datasets/04cars.txt


8.8 Probability Distributions 171

(a)
lengths of cars

F
re

qu
en

cy

140 160 180 200 220

0
20

40
60

80
10

0

lengths of cars

D
en

si
ty

140 160 180 200 220

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

0.
03

0

(b)

Fig. 8.5: Plotting the normally distributed population of car lengths. (a) Frequency
(hist(data$length)); (b) density (hist(data$length, prob=TRUE))

We obtain Fig. 8.6.
However, even when the shape looks normal, you should refrain from assuming normality based on the

sole observation of a curve. For a better assessment, you should also make a so-called Q-Q plot (for “quantile
versus quantile”). The observed values (y-axis) are plotted against the theoretical values (x-axis). If the data
are normally distributed, the data points are distributed along a straight line in a Q-Q plot. Such is the case
with our data (Fig. 8.7a).

> qqnorm(data$length)

Sometimes, even a Q-Q plot will be tricky to interpret. You will see a straight line, but might be mislead
to interpret the data as normally distributed because of the presence of outliers. In Fig. 8.7a, believe it or not
but the data are not normally distributed because of the extreme data points at both tails.12

Ultimately, you should use a test of normality such as the Shapiro-Wilk test. You formulate two hypothe-
ses:

H0: the data are normally distributed,
H1: the data are not normally distributed.

In R, this test is carried out by means of the shapiro.test() function.

> shapiro.test(data$length)

Shapiro-Wilk normality test

data: data$length
W = 0.99394, p-value = 0.1256

12 The data set consists of 2000 observations of one variable (the weight of euro coins in gram). See http://www.amstat.
org/publications/jse/datasets/euroweight.dat.txt.

http://www.amstat.org/publications/jse/datasets/euroweight.dat.txt
http://www.amstat.org/publications/jse/datasets/euroweight.dat.txt
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Fig. 8.6: 95% confidence interval for the length (in inches) of cars in cars.rds

The test outputs a statistic (W ) and a p-value. Here, because p > 0.05, you reject H1 and accept H0. The
data are normally distributed.

In the cars.rds example, we have enough data to observe a bell-shaped density curve. This is not
always the case. Let us turn to a more linguistic case study. Isel et al. (2003) investigate the auditory
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Fig. 8.7: Q-Q plots. (a) A Q-Q plot of data$length. (b) A Q-Q plot of non normally distributed data
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processing of German compound words consisting of two nominal constituents. The compound words
break down into four categories, depending on the semantic link between the constituents:

• transparent-transparent (T-T): e.g. Kerkorgel (church organ),
• opaque-opaque (O-O): e.g. Klokhuis (apple core),
• opaque-transparent (O-T), e.g. Fliegenpilz (fly mushroom, i.e. toadstool),
• transparent-opaque (T-O): e.g. Drankorgel (booze organ, i.e. boozer).

The authors carried out a lexical decision task. Twelve participants were asked to decide if a sequence of
letters was a German compound word. The reaction times in milliseconds were recorded. The data set is
available from the chap8 folder: german.compounds.rds.

> rm(list=ls(all=TRUE))
> data <- readRDS("C:/CLSR/chap8/german.compounds.rds") # Windows
> data <- readRDS("/CLSR/chap8/german.compounds.rds") # Mac

There are four experimental conditions (one condition per compound category).

> str(data)
'data.frame': 12 obs. of 4 variables:
$ TT: int 519 532 511 617 540 626 549 531 539 517 ...
$ OO: int 517 536 537 592 558 567 520 524 554 480 ...
$ OT: int 509 541 541 604 566 623 535 530 535 505 ...
$ TO: int 520 509 547 625 575 567 553 524 514 493 ...

By means of a for loop, we plot the histogram and density curve of each variable. We obtain Fig. 8.8.

> par(mfrow=c(2,4))
> for (i in 1:ncol(data)) {
+ hist(data[,i], prob=TRUE, xlab="reaction times", main=colnames(data)[i])
+ lines(density(data[,i], adjust=2), col="blue", lwd=2)
+ }
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Fig. 8.8: Histograms and density curves for the four variables in german.compounds.rds
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Fig. 8.9: Q-Q plots of the four variables in german.compounds.rds

Upon inspection, we see that density curves of TT and OT deviate from what we expect from a normal
distribution (no bell-shaped curve). We suspect that OO and TO are normally distributed, even though we do
not have enough data to see the full bell-shaped curve. Outliers are easy to spot in the Q-Q plots of TT and
OT (Fig. 8.9)

> par(mfrow=c(2,2))
> for (i in 1:ncol(data)){
+ qqnorm(data[,i], main=colnames(data)[i])
+ }

This is confirmed when we run a Shapiro-Wilk test for each of the four variables by means of a for loop.

> for (i in 1:ncol(data)) {
+ print(shapiro.test(data[,i]))
+ }

Shapiro-Wilk normality test

data: data[, i]
W = 0.77683, p-value = 0.005169

Shapiro-Wilk normality test
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data: data[, i]
W = 0.97351, p-value = 0.9439

Shapiro-Wilk normality test

data: data[, i]
W = 0.85482, p-value = 0.04212

Shapiro-Wilk normality test

data: data[, i]
W = 0.89843, p-value = 0.1514

For TT and OT, p < 0.05 (0.005169 and 0.04212 respectively). We reject H0 and conclude that these vari-
ables are not normally distributed. For OO and OT, p > 0.05 (0.9439 and 0.1514 respectively). We accept
H0 and conclude that these variables are normally distributed.

Knowing whether a variable is normally distributed is important because you can conduct some tests
that are specifically designed for normal data. One of these tests is the t-test. The t statistic follows a t
distribution. It is very similar to the normal distribution (Fig. 8.10). The t distribution is determined by its
degrees of freedom (see Sect. 8.9).
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Fig. 8.10: A comparison of the t distribution (with two, five, and ten degrees of freedom) and the normal
distribution

Suppose you focus on opaque-opaque compounds. The mean reaction time for this variable is 534.25 ms.

> mean(data$OO)
[1] 534.25
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Suppose also that the study replicates a previous experiment in similar conditions where the linguist found
that the mean reaction time was 524.25 ms. One question you might ask is whether the mean you observed is
significantly different from the mean that your colleague observed. Given that the two samples are indepen-
dent you can use a two-tailed one-sample t-test to answer this question with t.test(). Its first argument
is the vector of reaction times for OO and the second argument (mu) is the mean observed in the previous
study.

> t.test(data$OO, mu=524.25)

One Sample t-test

data: data$OO
t = 1.1587, df = 11, p-value = 0.2711
alternative hypothesis: true mean is not equal to 524.25
95 percent confidence interval:
515.2542 553.2458
sample estimates:
mean of x

534.25

The hypotheses that you are testing are the following:

H0: the mean you have obtained is equal to 524.25;
H1: the mean you have obtained is not equal to 524.25.

The test statistic follows a t distribution with 11 degrees of freedom. The p-value associated with the statistic
is above 0.05. It tells you that H0 should be rejected. The mean that you have observed is not equal to 524.25
(of course, you know that already) but it does not differ significantly from the mean of the previous study.
The 95% confidence interval specifies a range of values for which no significant difference with the mean
observed in the previous study can be stated.13

If we compare the means observed in data$OO and data$OT, we are comparing two sets of data from
the same group, i.e. scores from the same group under two conditions. The data sets are normally distributed,
dependent, and paired. In this case, we use a paired t-test.14

> t.test(data$OO, data$OT, paired=TRUE)

Paired t-test

data: data$OO and data$OT
t = -1.8446, df = 11, p-value = 0.09216
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-22.297323 1.963989
sample estimates:
mean of the differences

-10.16667

The paired t-test outputs the difference between the two means. The p-value is above 0.05 and the confidence
interval includes 0, which reflects an insignificant result. The two means are not significantly different.

13 If the two independent variables have differing variances, you should consider running Welch’s t-test.
14 If the data are not normally distributed and the samples dependent, run a Wilcoxon-test for independent samples (wilcox.
test()).
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There are other continuous distributions: the F distribution (Fig. 8.11a) and the χ2 distribution
(Fig. 8.11b). The F distribution has two defining parameters, namely two degrees of freedom. The χ2

distribution takes one parameter: one degree of freedom. The above will become clear when we mention
each distribution later on.
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Fig. 8.11: The F and χ2 distributions. (a) F distributions with three different combinations of degrees of
freedom. (b) χ2 distributions with four different degrees of freedom
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8.9 The χ2 Test

Now that you are familiar with hypothesis testing and distributions, it is time to become acquainted with
one of the most important tests in statistics and quantitative corpus linguistics: the χ2 test. It is named after
the Greek letter χ (pronounced [kai]). The χ2 test of independence is used to determine whether there is a
significant association between two categorical variables from a single population.

8.9.1 A Case Study: The Quotative System in British and Canadian Youth

Tagliamonte and Hudson (1999) compare the quotative systems of contemporary British and Canadian
youth. Quotatives are verbs used to report segments of dialogues subjectively. Here are three examples
from the Strathy corpus (Corpus of Canadian English: 50 million words, 1920s-2000s).

(5) She’s like, I guess I have to. (Strathy—2002-SPOK-CBC-TV)

(6) I said ’Why did you move?’, and she goes ’Didn’t you hear?’ (Strathy—2004-ACAD-
TheCanGeographer)

(7) ’You’ve got to let us get a picture with you,’ and he says, ’Absolutely.’ (Strathy—2007-NEWS-
CBCnews.ca)

The personal-experience narratives of 44 British speakers and 23 Canadian speakers were recorded in
1995 and 1996. The informants are university students between 18 and 28 years of age. Tab. 8.6 is adapted
from Tagliamonte and Hudson (1999, p. 158). It shows the respective overall distribution of quotatives found
in the British and Canadian corpora. The British corpus contains 665 quotatives, and the Canadian corpus
612 quotatives. The category “misc” groups various verbs such as decide, tell, yell, ask, scream, etc.

Table 8.6: The distribution of quotatives in a British corpus and a Canadian corpus (adapted from Taglia-
monte and Hudson 1999, 158)

quotatives British English Canadian English

say 209 219
go 120 135
be like 120 79
think 123 27
zero 66 123
be (just) 11 5
misc 16 24

In the original article, the table was interpreted on the basis of raw frequencies and percentages. Our
goal is twofold. Firstly, we want to check whether the use of a quotative is independent from the variety of
English with a type I error set to 5%. Secondly, if the use of a quotative depends on the variety of English,
we wish to know which quotatives depend the most on the variety of English.
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In your chap8 subfolder, you will find Tab. 8.6 in R data file format (quotatives.rds). After
clearing R’s memory, import the data set into R, and inspect it.

> rm(list=ls(all=T))
> data <- readRDS("/CLSR/chap8/quotatives.rds")
> data

British_English Canadian_English
say 209 219
go 120 135
be_like 120 79
think 123 27
zero 66 123
be_just 11 5
misc 16 24

Because the table contains frequency counts, with which we are going to perform calculations, let us
convert the data frame into a matrix.

> data <- as.matrix(data)

You may want to visualize the contingency table by means of a barplot. To compare British English and
Canadian English more easily, let us make two separate plots on top of each other. With par(), we can
combine them.

> par(mfrow=c(2,1)) # prepare an empty plotting window with 2 rows and 1 column
> barplot(data[,1], main="British English") # plot the first column of the table
> barplot(data[,2], main="Canadian English") # plot the second column of the table

You obtain Fig. 8.12. The stacked barplots reveal some similarities with respect to the choice of say, go, be
just, and misc. They also reveal some differences with respect to the choice of be like, think, and zero. We
should refrain from interpreting these plots further because (a) we do not know yet whether the choice of
quotatives and the variety of English are interdependent, and (b) these plots are based on raw frequencies,
regardless of the marginal totals (i.e. the sum totals of rows and columns) and cannot tell us how surprised
or not surprised we should be when assessing each number.

To determine whether the occurrence of quotatives depends on the variety of English, you compute a χ2

test of independence, whose assumptions are identical to the χ2 test of goodness-of-fit.
Because we are interested in researching if two categorical variables are interdependent, we formulate

the hypotheses as follows:

H0: the choice of quotatives and the variety of English are independent;
H1: the choice of quotatives and the variety of English are interdependent.

One calculates the χ2 value of a cell in the ith row and the jth column as follows:

χ2
i, j =

(Ei, j −Oi, j)
2

Ei, j
(8.14)

where Ei, j is the expected frequency for cell i, j and Oi, j is the observed frequency for cell i, j. The χ2

statistic of the whole table, χ2 is the sum of the χ2 values of all cells.

χ2 =
n

∑
i=1

(E −O)2

E
(8.15)

Thanks to chisq.test(), you do not need to calculate χ2 manually. This function outputs a list. The
first element of the list contains the χ2 value (statistic).
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Fig. 8.12: Two barplots showing the distribution of quotatives with respect to the variety of English

> chisq.test(data)$statistic
X-squared
89.99905

The test tells us that χ2 = 89.999, which does not say much in itself. We want to know whether the asso-
ciation is statistically significant. Back in the old days, the statistical significance of the χ2 value had to be
infered from a χ2 distribution table such as Tab. A.1 (Sect. A.2.3). In this table, you have the critical χ2

values for six levels of significance: p = 0.1, p = 0.05, p = 0.025, p = 0.01, p = 0.005, and p = 0.001.
The smaller the p-value, the higher the level of significance. The critical values for the χ2 statistic are the
values that we can accept for a given significance level. To use this table, you need to know the degree(s) of
freedom of your data table (see the leftmost column). The degree(s) of freedom is the number of values that
you need to know in order to complete a data table in which only the marginal totals are given. For example,
given the marginal totals only, you cannot infer the cell values in Tab. 8.7. You can only infer some values if
you are given the marginal totals and one cell value. However, given the marginal totals plus two cell values
you can infer the values of all the other cells. For example, if you know that c = 12 and f = 11, you can
derive the values of the other cells very easily:

d = 27− c = 27− 12= 15
e = 14− f = 14− 11= 3
b = 19− f = 19− 11= 8
a = 18− b = 18− 8 = 10
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Because you need two cell values to complete the table, the table has two degrees of freedom. Rather than
finding df heuristically, which is tedious for large tables, you obtain the number of degrees of freedom with
the following formula:

df = (number of rows− 1)× (number of columns− 1). (8.16)

Table 8.7: An example table with marginal totals only

column 1 column 2 total

row 1 a b 18
row 2 c d 27
row 3 e f 14
total 40 19 59

In R, we obtain df thanks to nrow() and ncol():

> df <- (nrow(data)-1)*(ncol(data)-1)
> df
[1] 6

There are six degrees of freedom in Tab. 8.6. With this information, you may now turn to Tab. A.1, partly
reproduced in Tab. 8.8. You test your observed χ2 value for significance by comparing it to the critical χ2

value observed at the intersection of the number of degrees of freedom in your data table and the desired
level of significance. If you set the level of significance to p = 0.05 (i.e. 5%), then χ2

critical = 12.5916. Your
observed χ2 value is larger than χ2

critical with a significance level of p = 0.05. In fact, it is also larger than
χ2

critical for p = 0.001. This means that a χ2 value of 89.999 is very unlikely to be observed in a comparable
sample if the choice of a quotative were independent from the variety of English. We can safely reject the
hypothesis of independence and conclude that the choice of a quotative depends on the variety of English or
that the variety of English is characterized by different choices of quotatives.

Table 8.8: Finding the critical value of χ2

degrees of freedom p = 0.1 p = 0.05 p = 0.025 p = 0.01 p = 0.005 p = 0.001

. . . . . . . . . . . . . . . . . . . . .
4 7.7794 9.4877 11.1433 13.2767 14.8603 18.4668
5 9.2364 11.0705 12.8325 15.0863 16.7496 20.515
6 10.6446 12.5916 14.4494 16.8119 18.5476 22.4577
7 12.017 14.0671 16.0128 18.4753 20.2777 24.3219
8 13.3616 15.5073 17.5345 20.0902 21.955 26.1245

. . . . . . . . . . . . . . . . . . . . .
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Thanks to the chisq.test() function in R, you do not need to use a χ2 distribution table anymore.

> test <- chisq.test(data)
> test

Pearson's Chi-squared test

data: data
X-squared = 89.999, df = 6, p-value < 2.2e-16

The function indicates that the p-value is close to zero. We have no doubt about the significance level of the
χ2 value.

We know that the row and column variables are associated. We also know that this association is statisti-
cally significant. Yet, we have no idea about the intensity of this association. Unfortunately, we cannot use
the χ2 value to assess the magnitude of the association because χ2 depends on the sample size. Indeed, if
we multiply each cell by ten, this will affect the value of χ2 accordingly, but it will not increase the intensity
of the association.

> chisq.test(data*10)

Pearson's Chi-squared test

data: data * 10
X-squared = 899.99, df = 6, p-value < 2.2e-16

Fortunately, several measures can capture the intensity of the association. The most common measures
are: Phi (φ ), Pearson’s contingency coefficient, and Cramér’s V . All these measures are derived from χ2.
They ranges from 0 (no association) to 1 (perfect association). They have the desirable property of scale
invariance: if the sample size increases, the output of these measures does not change as long as values in
the table change the same relative to each other.

φ is generally used for 2× 2 matrices (i.e. matrices with two rows and two columns). It is computed by
taking the square root of the χ2 statistic divided by the sample size (N):

φ =

√
χ2

N
(8.17)

The χ2 value is in the test object, under statistic. N is the sum of all observations. It is obtained by
applying sum() to the matrix.

> chisq <- as.vector(test$statistic)
> N <- sum(data)

With this information at hand, φ is very easy to calculate. It is not recommended to calculate the φ statistic
when the matrix is larger than 2×2 because you may get φ > 1, thus going beyond the desired range between
0 and 1. For this reason, let us not display the result of φ here.

> phi <- sqrt(chisq/N)

Pearson’s contingency coefficient C is obtained by taking the square root of the χ2 statistic divided by the
sum of the sum of all observations and χ2.

Pearson’s coefficient =

√
χ2

N + χ2 (8.18)
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Again, it is very easy to compute in R.

> PCC <- sqrt(chisq/(sum(data)+chisq))
> PCC
[1] 0.2565871

C is generally used when the matrix has an equal number of rows and columns, which is not the case here.
When a matrix is larger than 2×2 and when the number of row variables differs from the number of column
variables, Cramér’s V is preferred. V is very close to φ . It is computed by taking the square root of the χ2

statistic divided by the product of the sum of all observations and the number of columns minus one

Cramér’s V =

√
χ2

N(k− 1)
. (8.19)

Take the number of possible values of the row variables and the column variables: k is the smaller of the
two numbers. Because our matrix is a 7× 2 table, k = 2. For larger tables, you obtain k with the min()
function.

> k <- min(ncol(data), nrow(data))
> k
[1] 2

You may now compute Cramér’s V as follows.

> V <- sqrt(chisq/(N*(k-1)))
> V
[1] 0.2654749

The value of V in this case indicates a not-so-strong yet non-negligible association between the rows and the
columns. A high value of V would be surprising given the nature of the phenomenon under investigation.
Because V is very simple to calculate, it does not have a base-R function. If you do not want to calculate
it yourself, custom-made functions are available from a bunch of packages: e.g. CramerV() from the
DescTools package or cramersV() from the lsr package. Cramér’s V is calculated automatically
when you run a χ2 test of independence with assocstats() from the vcd package.

Having answered the first question, let us now turn to the second one. The content of the test object
is revealed thanks to str(test). It contains several kinds of useful information. The expected frequency
for each cell is obtained as follows:

> test$expected
British_English Canadian_English

say 222.881754 205.118246
go 132.791699 122.208301
be_like 103.629601 95.370399
think 78.112764 71.887236
zero 98.422083 90.577917
be_just 8.332028 7.667972
misc 20.830070 19.169930

This line of code outputs the matrix we would have if there were no association between the choice of quo-
tative and the variety of English but still the same marginal totals. By comparing the matrix of expected
frequencies to the original matrix of raw frequencies, we can make an informed judgment as to what quota-
tive occurs more or less often than expected in each variety of English.

Because comparing matrices manually is tedious, a much quicker way to find this out involves the Pearson
residuals. If a Pearson residual is positive, then the corresponding observed frequency is greater than its
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expected frequency. If a Pearson residual is negative, then the corresponding observed frequency is smaller
than its expected frequency. Second, the more the Pearson residual deviates from 0, the stronger the effect.
For a cell in the ith row and the jth column, you calculate Pearson residuals as follows:

Pearson residuals =
Oi j −Ei j√

Ei j
(8.20)

Fortunately, with the chisq.test() function, you do not need to calculate Pearson residuals for all cells.

> test$residuals
British_English Canadian_English

say -0.9298376 0.9692643
go -1.1100506 1.1571186
be_like 1.6081160 -1.6763028
think 5.0788087 -5.2941589
zero -3.2680947 3.4066675
be_just 0.9242849 -0.9634762
misc -1.0582983 1.1031719

R allows you to visualize the table of Pearson residuals by means of a Cohen-Friendly association plot
(Cohen 1980; Friendly 2000). You can generate this plot with assocplot() in base R (Fig. 8.13).

> assocplot(data)

say go be_like think zero be_just misc

C
an

ad
ia

n_
E

ng
lis

h
B

rit
is

h_
E

ng
lis

h

Fig. 8.13: Association plot made with assocplot(), from base R

Each cell of data is represented by a tile whose height is proportional to the corresponding Pearson
residual and whose width is proportional to the square root of the expected counts. The area of the box
is therefore proportional to the difference between observed and expected frequencies. The dotted line is
the baseline. It represents independence. If the observed frequency of a cell is greater than its expected
frequency, the tile appears above the baseline and is shaded black. If the observed frequency of a cell is
smaller than its expected frequency, the tile appears below the baseline and is shaded red. The two largest
tiles (think and zero) are easy to discern, but assessing the status of the third biggest tile is trickier.
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Judging that the relative size of the tiles is insufficient to assess association intensity, Zeileis et al. (2007)
improved assocplot() by proposing a selective color shading based on Pearson residuals. Fig. 8.14 is
obtained with the function assoc(), from the vcd package. Note that this plot is obtained by transposing
the rows and columns of data, so as to facilitate the comparison with the plot in Fig. 8.13.

> library(vcd)
> assoc(t(data), shade=TRUE)
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say go be_like think zero be_justmisc

Fig. 8.14: Association plot made with assoc(), from the vcd package

No tile whose residual is lower than 2 or higher than −2 is shaded. This association plot confirms what the
inspection of test$residuals shows: the quotatives that contribute the most to the non-independence
between the quotatives and the variety of English are think and zero.

8.10 The Fisher Exact Test of Independence

Unlike the χ2 test of independence, which calculates the p-value from the asymptotic χ2 distribution of the
test statistic, the Fisher exact test computes exact p-values (as its name indicates). For this reason, this test
is computationally expensive for large tables (larger than 2×2), and may even crash if the frequency values
are too large.

> fisher.test(data)

Error in fisher.test(data): FEXACT error 7.
LDSTP is too small for this problem.
Try increasing the size of the workspace.
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In this case, rather than calculate all the exact p-values, you may simulate them by means of what is known
as Monte Carlo simulations by setting the simulate.p.value argument to TRUE.

> fisher.test(data, simulate.p.value = TRUE)

Fisher's Exact Test for Count Data with simulated p-value (based on 2000 replicates)

data: data
p-value = 0.0004998
alternative hypothesis: two.sided

By default, the number of replicates is 2000. You may change this number via the B argument.

> fisher.test(data, simulate.p.value = TRUE, B = 5000)

Fisher's Exact Test for Count Data with simulated p-value (based on 5000 replicates)

data: data
p-value = 2e-04
alternative hypothesis: two.sided

Even if fisher.test() allows for simulations, bear in mind that when the sample size is large, a
parametric test will work just fine. The fisher.test() function outputs a p-value that can be interpreted
as the likelihood of obtaining a table with significantly larger differences.

8.11 Correlation

Correlation is the association between two random variables (x and y). It is measured with a correlation
coefficient that is comprised between −1 and +1. If the correlation coefficient is equal to −1 or 1, the
correlation is perfect (Fig. 8.15a, b): knowing the value of x (or y) allows you to predict the exact value of
y (or x). In linguistics, very few, if any, variables are perfectly correlated with each other. This means that
you cannot predict the exact value of one variable given the other (you can estimate it, however). If the
coefficient is equal to 0, there is no correlation (Fig. 8.15g). It is rare to find a correlation coefficient equal to
0. Just because you are very likely to find a correlation between variables almost all the time does not mean
that the correlation is significant or meaningful.

The closer the coefficient is to −1 or 1, the stronger the correlation. A positive coefficient means that the
more x, the more y or the less x, the less y (Fig. 8.15c, e). A negative coefficient means that the more x, the
less y, or the less x, the more y (Fig. 8.15d, f). The closer the coefficient is to 0, the weaker the correlation.

Below, I present three correlation measures: Pearson’s r, Kendall’s τ , and Spearman’s ρ . All three
measures are computed thanks to one function: cor(). Because the formulas are intimidating, and not
particularly helpful to non statisticians, I will not discuss them.

8.11.1 Pearson’s r

To see to what extent British English and American English were different, Hofland and Johansson (1982)
compared word frequencies in the Brown corpus (American English) and the LOB corpus (British En-
glish).15 Following Leech and Fallon (1992) and Oakes (2009), who replicated the experiment, we compare

15 Chapter 8 of Hofland and Johansson’s book contains a frequency list. The list is restricted to the most frequent words.



8.11 Correlation 187

x

y

(a)
x

y

(b)

x

y

(c)
x

y

(d)

x

y

(e)
x

y

(f)

x

y

(g)

Fig. 8.15: Plotting correlated variables. (a) A perfect positive correlation (= 1); (b) a perfect negative
correlation (=−1); (c) a strong positive correlation (= 0.9); (d) a strong negative correlation (= −0.9); (e)
a mild positive correlation (= 0.5); (f) a mild negative correlation (=−0.5); (g) no correlation (= 0)



188 8 Notions of Statistical Testing

the word frequency distributions of the eight text types represented in the BNC (XML Edition). The hy-
potheses underlying the data set are the following:

H0: the word distribution in a text type does not correlate with the word distributions in other text types;
H1: the word distribution in a text type correlates with the word distributions in other text types.

These hypotheses are perhaps too general, but we will specify them afterwards.
The data set wordfreq_bnc_genres.rds is available from your chap5 subfolder. It consists of 33

rows, one for each of the 33 most common words and 8 columns: ACPROSE (academic writing), FICTION
(published fiction), NEWS (news and journalism), NONAC (published non-fiction), OTHERPUB (other pub-
lished writing), UNPUB (unpublished writing), CONVRSN (conversation), and OTHERSP (other spoken).

> rm(list=ls(all=TRUE))
> data <- readRDS("/CLSR/chap5/wordfreq_bnc_genres.rds")
> str(data)
'data.frame': 33 obs. of 8 variables:
$ ACPROSE : int 2559 1860 1342 1036 918 909 725 415 411 363 ...
$ CONVRSN : int 2004 1038 893 760 1203 1231 424 348 244 101 ...
$ FICTION : int 2349 1183 563 657 1170 1160 646 265 322 101 ...
$ NEWS : int 254 129 116 84 80 104 65 23 25 36 ...
$ NONAC : int 315 198 134 132 208 201 69 49 40 42 ...
$ OTHERPUB: int 156 95 59 94 115 109 43 24 19 21 ...
$ OTHERSP : int 267 189 139 125 185 306 14 35 31 27 ...
$ UNPUB : int 1418 734 480 522 676 763 314 181 127 80 ...

With plot(), we can visualize the pairwise correlations between variables (Fig. 8.16).

> plot(data)
> plot(data, pch=21, bg="cyan", cex=0.6) # a better-looking output

Fig. 8.16 is a matrix of scatterplots. Each scatterplot corresponds to the intersection of two variables. The
labels are given in the diagonal of the plot. All correlations are positive. Some are quite strong (NONAC and
OTHERPUB, NONAC and UNPUB, UNPUB and OTHERPUB). The detail of these correlations is found is a
correlation matrix, which you obtain by running cor() on the whole data set.

> cor(data)
ACPROSE CONVRSN FICTION NEWS NONAC OTHERPUB OTHERSP UNPUB

ACPROSE 1.0000000 0.8373300 0.8882179 0.9655391 0.9165912 0.8802978 0.8086054 0.9345967
CONVRSN 0.8373300 1.0000000 0.9299834 0.8915428 0.8669503 0.8456329 0.9006008 0.8929438
FICTION 0.8882179 0.9299834 1.0000000 0.9135481 0.9076236 0.8848384 0.8626348 0.9453973
NEWS 0.9655391 0.8915428 0.9135481 1.0000000 0.9243687 0.8899582 0.8365828 0.9490039
NONAC 0.9165912 0.8669503 0.9076236 0.9243687 1.0000000 0.9775495 0.9042527 0.9763550
OTHERPUB 0.8802978 0.8456329 0.8848384 0.8899582 0.9775495 1.0000000 0.8855048 0.9482751
OTHERSP 0.8086054 0.9006008 0.8626348 0.8365828 0.9042527 0.8855048 1.0000000 0.8975791
UNPUB 0.9345967 0.8929438 0.9453973 0.9490039 0.9763550 0.9482751 0.8975791 1.0000000

By default, the correlation matrix is calculated using Pearson’s r (also known as “the Pearson product-
moment correlation”), which is rooted in the normal distribution. Therefore, it comes with a major restric-
tion: the data must be normally distributed. Because we are dealing with natural-language word distribu-
tions, we are likely to find that the data are not normally distributed. As expected, if you plot each column
variable of the data, you will see that the data follows a Zipfian distribution (see Fig. 8.17). Pearson’s r is
therefore not appropriate in this case.
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Fig. 8.16: Pairwise correlations between text types in the BNC

8.11.2 Kendall’s τ

Fortunately, Kendall’s τ (“tau”) offers a non-parametric alternative. The τ coefficient is obtained by counting
the numbers of concordant and discordant pairs. A pair of points is concordant if the sign of the difference
in the x coordinate is the same as the sign of the difference in the y coordinate. It is discordant if the sign of
the difference in the x coordinate and the sign of the difference in the y coordinate are different. This method
is computationally expensive and should be avoided if your data set contains more than 5000 observations
(Dalgaard 2008, section 6.4.3).
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Fig. 8.17: Word distributions for the eight text types in the BNC (33 most frequent common words)

Its main difference is that it takes ranks as input instead of the observations themselves. The
input data set is therefore slightly different, as you can see for yourself by loading the data set
wordfreq_bnc_genres_ranks.rds into R.

> data_ranks <- readRDS("/CLSR/chap5/wordfreq_bnc_genres_ranks.rds") # Windows
> data_ranks <- readRDS("/CLSR/chap5/wordfreq_bnc_genres_ranks.rds") # Mac
> str(data_ranks)

'data.frame': 33 obs. of 8 variables:
$ ACPROSE : int 6 1 2 5 3 4 12 11 14 32 ...
$ CONVRSN : int 2 1 5 3 6 8 4 13 7 18 ...
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$ FICTION : int 4 1 2 3 9 6 8 13 5 31 ...
$ NEWS : int 4 1 2 6 3 5 9 15 12 31 ...
$ NONAC : int 3 1 4 2 5 6 20 7 19 31 ...
$ OTHERPUB: int 3 1 4 2 6 5 19 10 15 21 ...
$ OTHERSP : int 1 2 3 4 5 6 7 8 9 10 ...
$ UNPUB : int 1 2 3 4 5 6 7 8 9 10 ...

You obtain the correlation matrix based on Kendall’s τ by specifying method="kendall".16

> cor(data_ranks, method="kendall")
ACPROSE CONVRSN FICTION NEWS NONAC OTHERPUB OTHERSP UNPUB

and 6 2 4 4 3 3 1 1
the 1 1 1 1 1 1 2 2
of 2 5 2 2 4 4 3 3
to 5 3 3 6 2 2 4 4
a 3 6 9 3 5 6 5 5
in 4 8 6 5 6 5 6 6
that 12 4 8 9 20 19 7 7
for 11 13 13 15 7 10 8 8
it 14 7 5 12 19 15 9 9
they 32 18 31 31 31 21 10 10
on 20 15 14 21 14 20 11 11
s 15 9 26 8 12 18 12 12
or 18 26 20 23 21 23 13 13
with 19 20 15 10 8 7 14 14
one 28 23 21 22 30 25 15 15
be 8 12 16 18 13 13 16 16
as 9 19 11 14 17 16 17 17
have 25 14 17 26 15 12 18 18
this 21 17 23 19 24 27 19 19
by 10 30 27 11 16 14 20 20
all 33 21 19 28 29 31 21 21
from 22 27 25 24 23 28 22 22
can 24 25 29 30 22 24 23 23
but 26 11 12 13 27 30 24 24
which 16 29 32 25 32 32 25 25
at 27 22 18 16 11 11 26 26
an 13 31 33 17 18 22 27 27
more 29 32 24 29 33 26 28 28
is 7 10 7 7 9 8 29 29
are 17 16 30 20 10 9 30 30
will 30 28 22 32 26 29 31 31
not 23 24 10 27 25 33 32 32
been 31 33 28 33 28 17 33 33

In general, the correlation coefficients based on Kendall’s τ are smaller than those based on Pearson’s r.
Remember that a correlation matrix does not tell you whether the correlation coefficients are statistically
significant. The statistical significance of correlation coefficients makes sense in the context of hypothesis
testing. Suppose you want to see to what extent the spoken variables are correlated. You formulate two
hypotheses:

H0: the spoken variables are not correlated;
H1: the spoken variables are correlated.

Once you have operationalized your research question, the hypotheses are converted into the following:

H0: the word distributions of CONVRSN and OTHERSP are not correlated;
H1: the word distributions of CONVRSN and OTHERSP are correlated.

To obtain the correlation coefficient and its statistical significance, use cor.test() and specify method
= "kendall". The setting of the alternative argument of the function depends on whether your

16 If your data are normally distributed, leave out this argument which, by default, selects Pearson’s r.
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hypotheses are directional. If alternative="two.sided" (default), your hypotheses do not postu-
late a specific direction. If alternative="greater", you postulate a positive association in H1. If
alternative="less", you postulate a negative association in H1. Because we have no reason to as-
sume that the association is positive or negative, H1 is non-directional. We can therefore leave the default
argument setting of alternative.

> cor.test(data_ranks$CONVRSN, data_ranks$OTHERSP, method="kendall")

Kendall's rank correlation tau

data: data_ranks$CONVRSN and data_ranks$OTHERSP
T = 422, p-value = 1.678e-07
alternative hypothesis: true tau is not equal to 0
sample estimates:

tau
0.5984848

It turns out that the correlation is not very high but highly significant. In other words, there is a mild but
significant positive correlation between the word distribution of CONVRSN and OTHERSP (τ = 0.6, T = 422,
and p = 1.678e-07).

8.11.3 Spearman’s ρ

The third correlation coefficient is Spearman’s ρ (“rho”). It is non parametric and therefore very close to
Kendall’s τ .

The correlation matrix is obtained by specifying Spearman’s ρ in the method argument.

> cor(data_ranks, method="spearman")
ACPROSE CONVRSN FICTION NEWS NONAC OTHERPUB OTHERSP UNPUB

ACPROSE 1.0000000 0.6470588 0.5989305 0.8589572 0.7984626 0.7149064 0.6096257 0.6096257
CONVRSN 0.6470588 1.0000000 0.7854278 0.7703877 0.6985294 0.6527406 0.7593583 0.7593583
FICTION 0.5989305 0.7854278 1.0000000 0.6981952 0.6199866 0.5661765 0.6096257 0.6096257
NEWS 0.8589572 0.7703877 0.6981952 1.0000000 0.8121658 0.7389706 0.6664439 0.6664439
NONAC 0.7984626 0.6985294 0.6199866 0.8121658 1.0000000 0.9070856 0.5875668 0.5875668
OTHERPUB 0.7149064 0.6527406 0.5661765 0.7389706 0.9070856 1.0000000 0.5909091 0.5909091
OTHERSP 0.6096257 0.7593583 0.6096257 0.6664439 0.5875668 0.5909091 1.0000000 1.0000000
UNPUB 0.6096257 0.7593583 0.6096257 0.6664439 0.5875668 0.5909091 1.0000000 1.0000000

To obtain correlation coefficients between specific variables, such as CONVRSN and OTHERSP, we proceed
as follows:

> cor.test(data_ranks$CONVRSN, data_ranks$OTHERSP, method="spearman")

Spearman's rank correlation rho

data: data_ranks$CONVRSN and data_ranks$OTHERSP
S = 1440, p-value = 1.325e-06
alternative hypothesis: true rho is not equal to 0
sample estimates:

rho
0.7593583

Note that the magnitude of the correlation is different from what we obtain with Kendall’s τ .
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8.11.4 Correlation Is Not Causation

Mind you, just because two variables are correlated does not imply that one causes the other. Let me take
a non-linguistic example. Like me, you may have come across countless articles reporting a correlation
between coffee drinking and lung cancer. Although I am no expert in medicine, I find it hard to believe
that coffee may impact your lungs. Yet, most scientific articles confirm the correlation.17 Despite what the
correlation suggests, scientists are wary of not jumping to the conclusion that coffee drinking causes lung
cancer. Other confounding factors are certainly at play, especially the fact that coffee drinking often goes
together with smoking.

As linguists, observing strong and statistically significant correlations between variables should not blind
us to the fact that other factors which we may not have taken into account may be at work. Not many
predictive techniques manage to bridge the gap between correlation and causation. You should therefore
interpret your results with caution.

If you are not convinced by the above warning, I suggest that you visit http://www.tylervigen.
com/spurious-correlations, a website dedicated to spurious correlations. You will learn that the
number of people who drowned by falling into a pool correlates positively with the number of films that
American actor Nicolas Cage appeared in (r = 0.67).

Exercises

8.1. Simple probabilities
Calculate the probability of finding a consonant and the probability of finding a vowel in Walt Whitman’s
poem “When I heard the learn’d astronomer” (/CLSR/chap4/whitman.txt). Treat the letter “y” as a
consonant.

8.2. Simple, joint, and conditional probabilities
Tab. 8.9 shows the distribution of quite and rather based on whether the adverbs occur in a preadjecti-
val/predeterminer pattern. The table is available at /CLSR/chap8/ct.rds.

Table 8.9: The syntactic distribution of quite and rather in the BNC (XML)

preadjectival predeterminer

quite 453 1749
rather 1423 370

(a) Calculate the following probabilities: P(quite), P(rather), P(pread jectival), and P(predeterminer).
(b) Calculate the probability of drawing rather in predeterminer position.

17 See the interesting meta-analysis proposed by Tang et al. (2009). The authors searched PubMed and EMBASE databases
between 1966 and January 2009, extracted the data, and found that “combined results indicated a significant positive association
between highest coffee intake and lung cancer [relative risk (RR) = 1.27, 95% confidence interval (CI) = 1.04–1.54]”.

http://www.tylervigen.com/spurious-correlations
http://www.tylervigen.com/spurious-correlations
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(c) Calculate the probability of drawing either an adverb in predeterminer position or the adverb rather.
(d) Compare the probability of predeterminer position when it is conditional on the use of rather and the

probability of rather when it is conditional on predeterminer position.
(e) Calculate the following conditional probabilities and explain them briefly: P(pread jectival|quite) and

P(predeterminer|quite).

8.3. The distribution of words per line in a tragedy
The case study for this exercise is borrowed from (Muller 1973). Rodogune is a seventeenth-century tragedy
in five acts by French dramatist Pierre Corneille. At the time, tragedies were highly codified. Use a histogram
to determine whether the distribution of words per line is normal. Run a Shapiro-Wilk normality test to
confirm your first impression. The text is available here: /CLSR/chap8/rodogune.txt.

8.4. Statistical significance
Examine Tab. 8.10. Compare the frequency of word 1 in context 1 to the frequency of word 2 in the same
context. Decide if this difference is statistically significant.

Table 8.10: A fictitious contingency table

context 1 context 2 row totals

word 1 353 (74%) 124 (26%) 477
word 2 157 (78.89%) 42 (21.11%) 199
column totals 510 166 676

8.5. Correlation
The file stance.rds is a contingency table that summarizes the distribution of adjective categories across
eight text genres in the BNC (XML) (/CLSR/chap8/stance.rds). Modify the contigency table with
rank() and compute the entire matrix of correlations between all variables using Kendall’s τ . Determine
whether the global correlation is significantly different from zero for the following pairs of variables:

• ACPROSE vs. NEWS
• ACPROSE vs. NONAC
• NEWS vs. CONVRSN
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Chapter 9
Association and Productivity

Abstract This chapter covers association measures and productivity measures with respect to lexico-
grammatical patterns.

9.1 Introduction

In Sect. 1.2.3.1, we have seen that, because of its theoretical status, frequency has a place of choice in most
usage-based theories of language. Before we proceed to measuring association and productivity, let us pause
a little and reflect on what these measures are based on: frequency. This concept should not be taken for
granted for reasons that I explain below.

Remember that the goal of the mentalist approach to language (Chomsky 1957, 1962) is to uncover
the abstract rules that allow speakers to generate an infinity of sentences. This is known as a “top-down”
approach, the “top” being the rules, and the “bottom” the generated sentences. In contrast, usage-based
approaches to language proceed from the bottom to the top, i.e. inferentially (Bybee 2006, 2010).

Central to the opposition between “top-down” approaches and “bottom-up” approaches is what deter-
mines whether an expression is grammatical. Usage-based theories posit that grammaticality is a matter of
degree. They have also argued that acceptability judgments with respect to a given expression should be
based on the frequency of that expression.1

Although the focus on frequency is certainly enticing to corpus linguists, the initial definition of this
concept given by first-generation usage-based linguistics is problematic in two respects: it is ambiguous
and it is too readily paired with entrenchment, that is to say the moment when a sequence of phonemes,
morphemes, or words acquires the status of linguistic units. As Langacker (1987, p. 59) puts it:

[e]very use of a structure has a positive impact in its degree of entrenchment [. . . ]. With repeated use, a novel structure
becomes progressively entrenched, to the point of becoming a unit; moreover, units are variably entrenched depending
on the frequency of their occurrence (driven, for example, is more entrenched than thriven).

According to first-generation usage-based linguistics, frequency is not something tangible that you can em-
pirically apprehend and measure, but something perceived by speakers. Originally, deciding what is en-
trenched and what is not does not require any form of quantification:

1 I am using the present perfect deliberately because this view has been toned down recently, as will appear below.
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[i]s there some particular level of entrenchment, with special behavioral significance, that can serve as a nonarbitrary
cutoff point in defining units? There are no obvious linguistic grounds for believing so. (Langacker 1987, p. 59)

It is not until recently, with the rise of quantitative corpus linguistics, that first generation usage-based
linguists have realized that frequency could be measured:

[. . . ] in principle the degree of entrenchment can be determined empirically. Observed frequency provides one basis for
estimating it. (Langacker 2008, p. 238)

Under the impulsion of modern quantitative corpus linguistics, second-generation usage-based linguistics
has operationalized frequency and updated its theoretical status. This paradigmatic change is now visible
and ready to be applied to areas of linguistics, such as morphological semantics:

With large samples and appropriate statistical techniques, for example, speaker judgments could help determine whether
ring ‘circular piece of jewelry’ and ring ‘arena’ represent alternate senses of a polysemous lexical item [. . . ], or whether
computer is in fact more analyzable than propeller. (Langacker 2008, p. 86).

The second issue pertains to the link between high frequency and cognitive entrenchment. This link
is not systematic, as shown by Schmid (2010), who claims that salience is also a factor of entrenchment.
Orson Welles’s Citizen Kane provides a good illustration of how salience works. The film opens on the main
character, Charles Foster Kane, at the end of his life. Kane dies calling for “Rosebud”. It is the job of a
reporter to discover who Rosebud is. It appears that Rosebud is (spoiler alert) the trademark of eight-year-
old Kane’s sled. Although the word is never uttered by Kane in his lifetime as a newspaper magnate, it is
heavily entrenched in his mind. Linguistically speaking, the token frequency of a word does not need to be
high for the word to be entrenched.

To sum up, frequency should be handled with care. In the paragraphs below, we shall discuss the concept
and see how each interpretation should be operationalized.

9.2 Cooccurrence Phenomena

Cooccurrence is the simultaneous occurrence of two linguistic phenomena. Whether the phenomena are just
contiguous or meaningfully associated is for association measures to show. Co-occurrence breaks down into
collocation, colligation, and, more recently, collostruction.

9.2.1 Collocation

In Chap. 1, I mentioned the Firthian principle according to which “you shall know a word by the company
it keeps” (Firth 1957). This is the theoretical foundation of collocation analysis: the meaning of a target
word is based on the meaning of the words that surround it. The target word and its context are not merely
juxtaposed. Collocates are linked by what Firth calls “mutual expectations” (Firth 1957, p. 181).

In the broad sense, collocation analysis consists in examining the left and/or right contexts of a node word.
This is the kind of analysis that motivates a concordance (Sect. 5.2). This sort of collocation analysis works
well when it comes to teasing apart homonymous lexemes such as the textbook case: bank as a financial
institution vs. bank as the edge of a river. If bank denotes a financial institution, you are very likely to find
such collocates as money, crisis, or credit. If bank denotes the edge of a river, you are likely to find river,
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mud, or fishing nearby. Of course, collocates do not tell you everything. If a money bank is located by a
river, you are in for trouble if you stick to collocation analysis (but this is an extreme case).

In a restricted sense, collocation analysis examines words in specific positions such as the NP position
determined by each and every. Let us see if we can spot semantic differences between each and every based
on their nominal collocates. Let us load the data frame that we compiled in Sect. 5.3.

> rm(list=ls(all=TRUE))
> data <- read.delim("C:/CLSR/chap5/df_each_every_bnc_baby.txt", header=TRUE) # Windows
> data <- read.delim("/CLSR/chap5/df_each_every_bnc_baby.txt", header=TRUE) # Mac

We extract only the columns that we need with subsetting.

> str(data)
'data.frame': 2339 obs. of 8 variables:
$ corpus.file: Factor w/ 159 levels "A1E.xml","A1F.xml",..: 1 1 1 1 1 1 1 1 1 2 ...
$ info : Factor w/ 22 levels "S conv","W ac:humanities arts",..: 10 10 10 10 10 10 10 10
10 11 ...
$ mode : Factor w/ 2 levels "stext","wtext": 2 2 2 2 2 2 2 2 2 2 ...
$ type : Factor w/ 5 levels "ACPROSE","CONVRSN",..: 4 4 4 4 4 4 4 4 4 4 ...
$ exact.match: Factor w/ 912 levels "each action ",..: 252 267 267 97 449 785 136 207 819 592 ...
$ determiner : Factor w/ 2 levels "each","every": 1 1 1 1 1 2 1 1 2 2 ...
$ NP : Factor w/ 597 levels "act","action",..: 334 356 356 127 554 407 173 275 463 147 ...
$ NP_tag : Factor w/ 6 levels "NN0","NN1","NN1-AJ0",..: 2 2 2 2 2 2 2 2 2 2 ...
> each.every.np <- data[, c(6,7)] # determiner + NP
> str(each.every.np)
'data.frame': 2339 obs. of 2 variables:
$ determiner: Factor w/ 2 levels "each","every": 1 1 1 1 1 2 1 1 2 2 ...
$ NP : Factor w/ 597 levels "act","action",..: 334 356 356 127 554 407 173 275 463 147 ...

We convert the nominal data in each.every.np$determiner and each.every.np$NP into count
data with the count() function from the plyr package.

> library(plyr)
> freqlist <- count(each.every.np, c("NP", "determiner"))
> str(freqlist)
'data.frame': 706 obs. of 3 variables:
$ NP : Factor w/ 597 levels "act","action",..: 1 2 2 3 4 5 6 6 7 7 ...
$ determiner: Factor w/ 2 levels "each","every": 2 1 2 2 1 1 1 2 1 2 ...
$ freq : int 2 4 1 1 1 1 2 1 2 3 ...

We reorder the resulting frequency list (whose class is data frame) by its columns with arrange(). The
frequency column is further sorted in descending order with desc().

> freqlist <- arrange(freqlist, determiner, desc(freq))

To obtain the top collocates of each, we subset freqlist with a condition: the level of
freqlist$determinermust be each.

> head(freqlist[which(freqlist$determiner=="each"),])
NP determiner freq

1 other each 419
2 year each 48
3 case each 30
4 time each 28
5 day each 25
6 side each 19

Because each is alphabetically anterior to every, the top of freqlist contains the most frequent nouns
determined by each, so conditional subsetting is unnecessary.
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> head(freqlist)
NP determiner freq

1 other each 419
2 year each 48
3 case each 30
4 time each 28
5 day each 25
6 side each 19

To obtain the top collocates of every, we subset freqlist with the relevant condition.

> head(freqlist[which(freqlist$determiner=="every"),])
NP determiner freq

376 day every 139
377 time every 134
378 year every 51
379 week every 34
380 night every 26
381 man every 15

Each and every have several top collocates in common (day, time, year). Both determine nouns that
denote time periods. If we want to tease apart each and every, we are going to have to focus on what nouns
are truly specific to each of them. Temporal nouns aside, each specifically determines other, side, and case
and every determines man. It seems that each focuses on the parts of a whole (other as opposed to ego, one
side out of two sides, one case out of several) whereas every focuses on the whole (man as a group). Having
said that, we should refrain from interpreting the results further because of the low number of collocates that
we have taken into account, and because of the choice of raw frequencies used to quantify collocation (see
Sect. 9.3.1 below).

9.2.2 Colligation

Colligation is like collocation except that it has a grammatical component. It is therefore the statistically sig-
nificant co-occurrence of a surface phenomenon (a linguistic form) with a deeper, grammatical phenomenon.

Well known to linguists is the dative alternation, which consists of the prepositional dative (henceforth
PD) and the ditransitive constructions (or double-object construction, henceforth DO), as exemplified in (8)
and (9) respectively:

(8) John
SAGENT

gave
V

the book
OTHEME

to Mary.
ORECIPIENT

(PD)

(9) John
SAGENT

gave
V

Mary
ORECIPIENT

the book.
OTHEME

(DO)

Let us focus on DO. Like PD verbs, DO verbs can take a non-pronominal theme (11) or a pronominal
theme (10).

(10) John gave his ex wife
THEME

all his money.

(11) John gave her
THEME

all his money.
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We want to know which DO verbs prefer pronominal themes and which prefer non-pronominal themes.
We use the dative dataset from Harald Baayen’s languageR package (Baayen 2009).

> rm(list=ls(all=TRUE))
> install.packages("languageR")
> library(languageR)
> data(dative)

The data set contains 3263 observations consisting of 15 variables. The variables divide into:

• speaker, a categorical variable with 424 levels, including NAs;
• modality, a categorical variable with two levels: spoken vs. written;
• verb, a categorical variable with 75 levels: e.g. accord, afford, give, etc.;
• semantic class, a categorical variable with five levels: abstract (e.g. give in give it some thought), transfer

of possession (e.g. send), future transfer of possession (e.g. owe), prevention of possession (e.g. deny),
and communication (e.g. tell);

• length in words of recipient, an integer valued variable;
• animacy of recipient, a categorical variable with two levels: animate vs. inanimate;
• definiteness of recipient, a categorical variable with two levels: definite vs. indefinite;
• pronominality of recipient, a categorical variable with two levels: pronominal vs. nonpronominal;
• length in words of theme, an integer valued variable;
• animacy of theme, a categorical variable with two levels: animate vs. inanimate;
• definiteness of theme, a categorical variable with two levels: definite vs. indefinite;
• pronominality of theme, a categorical variable with two levels: pronominal vs. nonpronominal;
• realization of recipient, a categorical variable with two levels: PD vs. DO;
• accessibility of recipient, a categorical variable with three levels: accessible, given, new;
• accessibility of theme, a categorical variable with three levels: accessible, given, new.

First, we restrict the data frame to those observations that illustrate DO (dative$Realization
OfRecipient == "NP")

> DO <- dative[which(dative$RealizationOfRecipient=="NP"),]; str(DO)
'data.frame': 2414 obs. of 15 variables:
$ Speaker : Factor w/ 424 levels "S0","S1000","S1001",..: NA NA NA NA NA NA NA
NA NA NA ...
$ Modality : Factor w/ 2 levels "spoken","written": 2 2 2 2 2 2 2 2 2 2 ...
$ Verb : Factor w/ 75 levels "accord","afford",..: 23 29 29 29 42 29 44 12 68
29 ...
$ SemanticClass : Factor w/ 5 levels "a","c","f","p",..: 5 1 1 1 2 1 5 1 1 1 ...
$ LengthOfRecipient : int 1 2 1 1 2 2 2 1 1 1 ...
$ AnimacyOfRec : Factor w/ 2 levels "animate","inanimate": 1 1 1 1 1 1 1 1 1 1 ...
$ DefinOfRec : Factor w/ 2 levels "definite","indefinite": 1 1 1 1 1 1 1 1 1 1 ...
$ PronomOfRec : Factor w/ 2 levels "nonpronominal",..: 2 1 1 2 1 1 1 2 2 2 ...
$ LengthOfTheme : int 14 3 13 5 3 4 4 1 11 2 ...
$ AnimacyOfTheme : Factor w/ 2 levels "animate","inanimate": 2 2 2 2 2 2 2 2 2 2 ...
$ DefinOfTheme : Factor w/ 2 levels "definite","indefinite": 2 2 1 2 1 2 2 2 2 2 ...
$ PronomOfTheme : Factor w/ 2 levels "nonpronominal",..: 1 1 1 1 1 1 1 1 1 1 ...
$ RealizationOfRecipient: Factor w/ 2 levels "NP","PP": 1 1 1 1 1 1 1 1 1 1 ...
$ AccessOfRec : Factor w/ 3 levels "accessible","given",..: 2 2 2 2 2 2 2 2 2 2 ...
$ AccessOfTheme : Factor w/ 3 levels "accessible","given",..: 3 3 3 3 3 3 3 3 1 1 ...

Next, we restrict the resulting data frame to two variables: Verb and PronomOfTheme.

> verb.theme <- DO[,c(3,12)]; str(verb.theme)
'data.frame': 2414 obs. of 2 variables:
$ Verb : Factor w/ 75 levels "accord","afford",..: 23 29 29 29 42 29 44 12 68 29 ...
$ PronomOfTheme: Factor w/ 2 levels "nonpronominal",..: 1 1 1 1 1 1 1 1 1 1 ...
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Like above, we create an ordered frequency list with count() and then arrange() from the plyr
package.

> library(plyr)
> freq <- count(DO, c("Verb","PronomOfTheme"))
> sorted.freq <- arrange(freq, PronomOfTheme, desc(freq)); head(sorted.freq, 15)

Verb PronomOfTheme freq
1 give nonpronominal 1379
2 cost nonpronominal 158
3 pay nonpronominal 121
4 send nonpronominal 95
5 tell nonpronominal 62
6 offer nonpronominal 50
7 teach nonpronominal 49
8 charge nonpronominal 41
9 show nonpronominal 40
10 do nonpronominal 30
11 bring nonpronominal 25
12 sell nonpronominal 24
13 owe nonpronominal 23
14 feed nonpronominal 14
15 allow nonpronominal 12

By far, give is the DO verb that occurs the most with a non-pronominal theme. The same verb also occurs
with pronominal themes, but not as much as tell.

> sorted.freq[which(sorted.freq$PronomOfTheme=="pronominal"),]
Verb PronomOfTheme freq

53 tell pronominal 60
54 give pronominal 31
55 teach pronominal 12
56 cost pronominal 11
57 sell pronominal 10
58 show pronominal 9
59 owe pronominal 6
60 send pronominal 6
61 pay pronominal 4
62 allow pronominal 1
63 bet pronominal 1
64 charge pronominal 1
65 feed pronominal 1
66 promise pronominal 1
67 serve pronominal 1

All in all, the DO construction prefers nonpronominal themes, based on raw frequencies.

9.2.3 Collostruction

In the Construction Grammar framework, Stefanowitsch and Gries have developed a family of methods
known as collostructional analysis. Collexeme analysis measures the mutual attraction of lexemes and con-
structions (Stefanowitsch and Gries 2003). Distinctive collexeme analysis contrasts alternating constructions
in their respective collocational preferences (Gries and Stefanowitsch 2004b). To measure the association
between the two slots of the same construction, a third method known as covarying-collexeme analysis is
used (Gries and Stefanowitsch 2004a; Stefanowitsch and Gries 2005).
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9.3 Association Measures

Association measures measure the attraction or repulsion between two cooccurring linguistic phenomena.
Although the basis of association measures, raw/observed frequency cannot serve to measure association by
itself.

9.3.1 Measuring Significant Co-occurrences

Association measures are designed to capture statistically significant attractions or repulsions between two
units. Raw/observed frequencies are not suited for the purpose of measuring significant associations. They
should only serve as the basis for association measures, not for making conclusions in this regard.

Suppose you are comparing two words in five different contexts. The frequency distribution of both
words is summarized in Tab. 9.1.

Table 9.1: A fictitious contingency table

context 1 context 2 context 3 context 4 context 5

word 1 23 10 173 361 10
word 2 4 1 6 87 1

Comparing the contexts where the two words occur, we see that the observed frequency of word 1 in
context 4 is higher than the observed frequency of word 2 in the same context. We might be tempted to
conclude that word 1 prefers context 4. This is simply not the case. Let us see why.

First, we gather the results in a matrix.

> rm(list=ls(all=TRUE))
> r1 <- c(23, 10, 173, 361, 10)
> r2 <- c(4, 1, 6, 87, 1)
> matrix <- matrix(c(r1,r2), nrow=2, ncol=5, byrow=TRUE); matrix

[,1] [,2] [,3] [,4] [,5]
[1,] 23 10 173 361 10
[2,] 4 1 6 87 1

Next, we run a χ2 test on the matrix and display the expected frequency of each cell.2

> chisq.test <- chisq.test(matrix)
> round(chisq.test$expected, 0)

[,1] [,2] [,3] [,4] [,5]
[1,] 23 9 153 382 9
[2,] 4 2 26 66 2

The expected frequency of word 1 in context 4 is 382, i.e. larger than the observed frequency (361). This
means that word 1 disprefers context 4. Expected frequencies are computed on the basis of the marginal

2 R issues a warning because the conditions for the χ2 test are not met, strictly speaking. Indeed, the frequencies are smaller
than 5 in three cells.
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totals of the table. If you interpret observed frequencies regardless of the marginal totals, you are running
the risk of jumping to the wrong conclusion. Admittedly, there are fewer instances of word 2 in context 4
than there are instances of word 1 in the same context, but there are fewer instances of word 2 than word 1
in the whole table. Marginal totals allow you to take this into account.

Proportions in the form of percentages or normalized frequencies (such as the number of tokens per n
words) are often proposed to account for distributional differences and allow for a fair comparison. Suppose
you want to compare the distribution of a linguistic unit in two corpus samples, CORP1 and CORP2. CORP1
consists of 7543 words and CORP2 consists of 12714 words. All other things being equal, you are very likely
to find more instances of the linguistic unit in CORP2 because it is larger. Suppose you find a count of 124
in CORP1, and 210 in CORP2. The frequencies normed to a basis per 10000 words is obtained by dividing
the verb count by the number of words in the sample and multiplying the result by 10000.

> count1 <- 124 # number of instances of the linguistic unit in corpus 1
> count2 <- 210 # number of instances of the linguistic unit in corpus 2
> corp1 <- 75055 # size of corpus 1
> corp2 <- 127140 # size of corpus 2
> basis <- 10000 # normalization basis
> norm.freq1 <- (count1/corp1)*basis
> round(norm.freq1,2) # normalized frequency
[1] 16.52
> norm.freq2 <- (count2/corp2)*basis
> norm.freq2 <- round(norm.freq2,2); norm.freq2
[1] 16.52

The normalized frequencies tell you that the distributions of the linguistic unit across the two samples are
similar. However, normalized frequencies do not tell you whether the observed distribution is significantly
different from chance.

9.3.2 The Logic of Association Measures

Most association measures are computed on the basis of a contingency table such as Tab. 9.2.

Table 9.2: An input contingency table for the measure of association between two words (¬: “other than”)

W2 ¬W2 row totals

W1 a b a+b
¬W1 c d c+d
column totals a+c b+d a+b+c+d

Cell a denotes the number of times W1 and W2 co-occur, cell b the number of times W1 co-occurs with
words other than W2, cell c the number of times W2 co-occurs with words other than W1, and cell d the
number of times that words other than W1 and W2 co-occur.

The point of Tab. 9.2 is to compare the observed occurrences of two forms with their expected frequencies
to determine which collocations are noteworthy, i.e. statistically significant. In this respect, the important
parts are the row totals, the column totals, and the table totals, as you know from Sect. 9.3.1.
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9.3.3 A Quick Inventory of Association Measures

The inventory of association measures is vast. They are extensively reviewed in Church et al. (1991), Evert
(2005, 2009), and Pecina (2010).3 The sections below will guide you through four popular association
measures: mutual information, Fisher’s exact test, χ2, and log-likelihood ratio.

9.3.3.1 Mutual Information

A product of information theory, pointwise MI determines to what extent the occurrences of a word W1

influence the occurrences of another word W2. Because it is intuitively and methodologically simple, British
lexicographers have made pointwise MI a standard association measure (see Kennedy 2003).

Church and Hanks (1990, p. 23) define I(W1,W2), the mutual information I of two words W1 and W2, as
follows:

I(W1,W2) = log2
P(W1,W2)

P(W1)P(W2)
, (9.1)

where P(W1) and P(W2) are the respective probabilities of W1 and W2, P(W1,W2) is the probability of ob-
serving W1 and W2 together, and P(W1)(W2) the probability of observing W1 and W2 independently, i.e. by
chance.4 The underlying assumption is that W1 and W2 are independent. I(W1,W2) = 0 if and only if W1 and
W2 are independent.

P(W1) and P(W2) are obtained by counting the occurrences of W1 and W2 in the corpus and normalizing
the frequency by the corpus size. Take the compound noun computer scientist in the Corpus of Contemporary
American English (Davies 2008–2012).

Let W1 denote computer and W2 denote scientist. The compound noun occurs 316 times in the corpus.
The corpus contains 533788932 words (as of July 4, 2016). We compute P(W1,W2) by dividing 316 by the
corpus size.

> P_W1_W2 <- 316/533788932
> P_W1_W2
[1] 5.919943e-07

There are 63135 instances of computer and 12068 occurrences of scientist. We compute P(W1) and P(W2)
likewise.

> P_W1 <- 63135/533788932
> P_W1
[1] 0.0001182771
> P_W2 <- 12068/533788932
> P_W2
[1] 2.260819e-05

All we need now is to compute P(W1)P(W2).

> P_W1_P_W2 <- P_W1*P_W2
> P_W1_P_W2
[1] 2.674031e-09

3 See also Stefan Evert’s comprehensive inventory of existing association measures: http://www.collocations.de/
AM/ (last accessed on July 1, 2016).
4 The symbol log2 means “the logarithm to the base 2”. The binary logarithm is the favored expression of the amount of
self-information and information entropy in information theory.

http://www.collocations.de/AM/
http://www.collocations.de/AM/
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We may now calculate I(W1,W2).

> I <- log2(P_W1_W2/P_W1_P_W2)
> I
[1] 7.790424

Although the hypothesis of independence is rejected if I(W1,W2)> 0, Church and Hanks (1990, p. 24) have
observed that the most interesting pairs are observed when I(W1,W2)> 3. Here, I = 7.79, which indicates a
significant attraction between computer and scientist.

Mutual information is sensitive to data sparseness and invalid for low-frequency word pairs (Evert 2009;
Kilgarriff 2001; Manning and Schütze 1999). Consequently, pointwise MI favors low-frequency collocates
(Church et al. 1991, p. 133). I do not recommend that you use it, unless you are familiar with more recent
versions of mutual information such as MI2 or MI3 (not covered in this book).

9.3.3.2 Fisher’s Exact Test

Fisher’s exact test, which we know from Sect. 8.10, can be used to measure the association between two
lexemes. The fisher.test() function takes as input a matrix such as Tab. 9.3.

Table 9.3: An input contingency table for the measure of association between computer and scientist in
COCA

scientist ¬ scientist

computer 316 62819
¬ computer 11752 533714045

First, we make the matrix,

> m <- matrix(c(316, 62819, 11752, 533714045), nrow=2, ncol=2, byrow=TRUE)

and then we run the fisher.test() function specifying alternative="greater". Like mutual
information, Fisher’s exact test assumes the null hypothesis that the two words are independent from each
other. We are hoping to see a p-value that is as close to zero as possible so as to reject the null hypothesis.

> fisher.test(m, alternative = "greater")

Fisher's Exact Test for Count Data

data: m
p-value < 2.2e-16
alternative hypothesis: true odds ratio is greater than 1
95 percent confidence interval:
206.5396 Inf
sample estimates:
odds ratio
228.9237

Because the p-value is very small, we reject the null hypothesis of independence. The association between
computer and scientist is beyond doubt.

The test computes the odds ratio to quantify the association between the presence or absence of W1 and
the presence or absence of W2. The null hypothesis of independence is equivalent to the hypothesis that the
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odds ratio equals 1. The alternative for a one-sided test is based on the odds ratio, so alternative =
"greater" is a test of the odds ratio being greater than 1.

In a 2× 2 contingency table with joint distributions such as Tab. 9.3, the odds of success within the first
row are

Ωcomputer =
P(computer, scientist)

P(¬computer, scientist)
, (9.2)

and the odds of success within the second row are

Ω¬computer =
P(scientist, ¬computer)

P(¬computer, ¬scientist)
. (9.3)

The odds ratio is the ratio of the odds Ωcomputer and Ω¬computer:

θ =
Ωcomputer

Ω¬computer
. (9.4)

If θ = 1, then W1 and W2 are independent. The further θ is from 1, the stronger the association (Agresti
2002, pp. 44–45).

> omega_computer <- (m[1,1]/sum(m))/(m[2,1]/sum(m))
> omega_not_computer <- (m[1,2]/sum(m))/(m[2,2]/sum(m))
> odds.ratio <- omega_computer/omega_not_computer
> odds.ratio
[1] 228.4509

Here, θ = 228.45, indicating that we have a strong association between computer and scientist. Because
we have cell counts, we can compute what is known as the sample odds ratio θ̂ , which is:

θ̂ =
ncomputer scientist n¬computer ¬scientist

n¬computer scientist n¬computer scientist
. (9.5)

> sample.OR <- (m[1,1]*m[2,2])/(m[1,2]*m[2,1]); sample.OR
[1] 228.4509

We obtain the same result. Note that the θ score we obtain (228.45) differs very slightly from what
fisher.test() returns (228.92). This is because the function estimates the odds ratio via conditional
maximum likelihood estimate instead of the unconditional maximum likelihood estimate (i.e. the sample
odds ratio).

Because this association measure is symmetric, it does not change if you transpose the table and declare
scientist as the response variable instead of computer.

> fisher.test(t(m), alternative="greater")

Fisher's Exact Test for Count Data

data: t(m)
p-value < 2.2e-16
alternative hypothesis: true odds ratio is greater than 1
95 percent confidence interval:
206.5396 Inf
sample estimates:
odds ratio
228.9237
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9.3.3.3 The χ2 Test

We normally use χ2 to test the null hypothesis that two lexemes are independent. We pit H0 against the
alternative hypothesis that they are associated. We can also use χ2 to measure the association between two
lexemes. Using Tab. 9.2 as a reference point, χ2 is defined as follows:

χ2 = ∑
i j

(Oi j −Ei j)
2

Ei j
, (9.6)

where Oi j is the observed value for the cell in row i and column j, and Ei j is the expected value under the
null hypothesis. Once applied to Tab. 9.2, formula (9.6) becomes:

χ2 =(
(O11 −E11)

2

E11
)

+ (
(O12 −E12)

2

E12
)

+ (
(O21 −E21)

2

E21
)

+ (
(O22 −E22)

2

E22
).

(9.7)

The expected frequency for a cell in row i and column j of a contingency table is found using the formula:

Ei j =
NiNj

N
, (9.8)

where Ei j denotes the expected frequency of cell i, j, Ni is the sum total of the ith row, Nj the sum total of the
jth column, and N the sum total of the contingency table. First, we compute a matrix m.exp of expected
frequencies.

> N_row1 <- rowSums(m)[1] # sum total of row 1
> N_row2 <- rowSums(m)[2] # sum total of row 2
> N_col1 <- colSums(m)[1] # sum total of column 1
> N_col2 <- colSums(m)[2] # sum total of column 2
> N <- sum(m) # sum total of the contingency table
> E11 <- (N_row1*N_col1/N) # expected freq of cell in row 1 col 1
> E12 <- (N_row1*N_col2/N) # expected freq of cell in row 1 col 2
> E21 <- (N_row2*N_col1/N) # expected freq of cell in row 2 col 1
> E22 <- (N_row2*N_col2/N) # expected freq of cell in row 2 col 2
> m.exp <- matrix(c(E11, E12, E21, E22), nrow=2, ncol=2, byrow=TRUE)
> m.exp

[,1] [,2]
[1,] 1.427368 63133.57
[2,] 12066.572632 533713730.43

Next, we compute the χ2 score using the indices of the cells in m and m.exp.

> chi <- ((m[1,1]-m.exp[1,1])^2/m.exp[1,1]) + ((m[1,2]-m.exp[1,2])^2/m.exp[1,2]) +
+ ((m[2,1]-m.exp[2,1])^2/m.exp[2,1]) + ((m[2,2]-m.exp[2,2])^2/m.exp[2,2])
> chi
[1] 69337.33
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The χ2 value is 69337.88. Looking up the χ2 distribution table in Sect. A.2.3, we find that the critical value
of χ2 is 3.8415 when there is one degree of freedom (because we have a 2× 2 table) and α is set to 0.05.
We cannot reject the null hypothesis that computer and scientist are independent.

Of course, a faster solution is to use the chisq.test() function from base R.

> chisq.test(m)$statistic
X-squared
69117.09

The score is different from what we obtain when we do the calculation manually. This is because the
chisq.test() function applies Yate’s continuity correction by default (enter ?chisq.test() to know
more about the correction).5 To override the default setting, specify correct=FALSE, and you obtain the
same χ2 score as above.

> chisq.test(m, correct=FALSE)$statistic
X-squared
69337.33

9.3.3.4 The Log-Likelihood Ratio Test

The log-likelihood ratio (Dunning 1993), abbreviated G2, is often used as an alternative to the χ2 test (see
below). It is preferred when the samples are small.6 According to Stefan Evert,7 G2 gives an excellent
approximation of the exact p-values of the Fisher exact association measure.

Like the tests above, G2 is used to test two textual hypotheses:

H0: the probability of observing W2 given W1 is the same as the probability of observing W2 when W1 is
absent;
H1: the probability of observing W2 given W1 is different from the probability of observing W2 when W1

is absent.

Once operationalized, these translate into the following:

H0: P(W2|W1) = P(W2|¬W1);
H1: P(W2|W1) �= P(W2|¬W1).

For a contingency table with i rows and j columns, G2 is defined as follows:

G2 = 2∑
i

Oi jlog(
Oi j

Ei j
), (9.9)

where Oi j stands for an observed count at row i and column j and Ei j an expected count at row i and column
j. Thanks to the matrix of expected frequencies that we made in the previous section (m_exp), we can now
apply formula (9.9) to Tab. 9.3:

5 It is assumed that the binomial frequencies observed in a contingency table follow a continuous χ2 distribution. Stricly
speaking, this gap may introduce some error. The continuity correction is meant to correct the error. It substracts 0.5 from
the absolute value of all O−E differences. It is generally applied when the conditions of validity of the test are not met (for
example when one cell count is smaller than 5). Consequently, it reduces the χ2 score and increases its corresponding p-value.
6 http://www.collocations.de/AM/section4.html.
7 http://www.collocations.de/AM/section4.html#s4.3.

http://www.collocations.de/AM/section4.html
http://www.collocations.de/AM/section4.html#s4.3
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G2 =2((316× log(
316

1.427368
))+

(62819× log(
62819

63133.57
))+

(11752× log(
11752

12066.572632
))+

(533714045× log(
533714045

533713730.43
))).

(9.10)

In R, we compute G2 as follows.

> G2 <- 2*(m[1,1]*log(m[1,1]/m.exp[1,1]) +
+ m[1,2]*log(m[1,2]/m.exp[1,2]) +
+ m[2,1]*log(m[2,1]/m.exp[2,1]) +
+ m[2,2]*log(m[2,2]/m.exp[2,2]))
> G2
[1] 2793.441

According to Manning and Schütze (1999, p. 172), the G2 statistic is more interpretable than χ2 scores
because the user does not need to use a table of critical values. In practice, however, because G2 has an
asymptotic χ2 distribution, we can use the χ2 distribution table to assess the significance of the association
(Kotze and Gokhale 1980; Read and Cressie 1988; Cressie and Read 1989). A G2 score of 3.8415 or higher
is significant at the level of p < 0.05, and a score of 10.8276 is significant at the level of p < 0.001. The
magnitude of the G2 score that we obtain (2793.441) leaves no doubt as to the significance of the association
between computer and scientist. We can safely reject H0.

9.3.4 A Loop for Association Measures

In the examples above, the computations are based on a single contingency table. Suppose that, like most
corpus linguists, you work with a large data set such as computer.NP.rds in your chap9 folder. The
data set ranks nouns based on how often they co-occur with computer in COCA. Tab. 9.4 provides an
overview of the data set.

For each collocate of computer, you need to make a contingency table such as Tab. 9.2. To make the table,
you use the frequency information provided in the data set and do the maths to obtain the missing cells. Let
us see how it works for the first line of the data set (screen). You start from four numbers: the corpus size
(533788932), the frequency of computer scientist in the corpus (1633), the frequency of computer in the
corpus (63135), and the frequency of screen in the corpus (36510). The data set gives you two of these
numbers. The corpus size and the frequency of computer can be obtained by respectively looking at the
corpus documentation and by making a simple corpus query. Tab. 9.5 shows where to insert these figures in
a contingency table.

You now have everything you need to fill in the blanks. As a rule, start with the easy calculations (cells b
and c in Tab. 9.2) and finish with the cell at the intersection of ¬computer and ¬screen (cell d in Tab. 9.2).
Tab. 9.6 shows one way of filling in the blanks.

We want a script that computes the association between computer and all the collocates in the table using
χ2. First, we load the data.

> rm(list=ls(all=T))
> data <- readRDS("C:/CLSR/chap9/computer.NP.rds") # Windows
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Table 9.4: An input data set for the measure of the association between computer and its right nominal
collocates in COCA

rank W2 freq_W1_W2 corp_freq_W2

1 screen 1633 36510
2 science 1375 80786
3 systems 1145 63837
4 system 1023 192311
5 software 895 30765
6 program 861 168218
7 technology 754 79997
8 games 616 65210
9 programs 610 93327
10 models 569 37398
11 industry 504 76517
12 networks 401 17283
13 simulations 381 2215
14 programmer 372 1130
15 lab 369 17851
. . . . . . . . . . . .
3507 states 1 246428
3508 american 1 278556
3509 president 1 318222
3510 us 1 522829

Table 9.5: An input contingency table to measure the association between computer and screen in COCA

screen ¬ screen row totals

computer 1633 63135
¬ computer
column totals 36510 533788932

Table 9.6: Filling in the blanks in Tab. 9.2

screen ¬ screen row totals

computer 1633 63135−1633 63135
¬ computer 36510−1633 (533788932−63135)− (36510−1633) 533788932−63135
column totals 36510 533788932−36510 533788932

> data <- readRDS("/CLSR/chap9/computer.NP.rds") # Mac

Next, we vectorize some fixed values, namely the frequency of W1 in the corpus and the corpus size.

> freq_W1 <- 63135
> corp.size <- 533788932

Since we are going to loop over the data data frame, we create an empty character vector to collect all the
χ2 scores.



212 9 Association and Productivity

> all.chi <- character()

It is time to enter the loop. For each W2 (i.e. each row in the data frame), we want to:

• compute the a, b, c, and d cells of the input contingency table;
• combine these values into a 2× 2 matrix;
• compute a matrix of expected frequencies under the null hypothesis of independence;
• calculate χ2 for each contingency table.

This is how we do it.

> for (i in 1:nrow(data)){ # enter the loop
+ a <- data$freq_W1_W2[i] # cell a
+ b <- freq_W1 - a # cell b
+ c <- data$corp_freq_W2[i] - a # cell c
+ d <- (corp.size - freq_W1) - c # cell d
+ m <- matrix(c(a, b, c, d), nrow=2, ncol=2, byrow=TRUE) # make the 2x2 matrix
+ N <- sum(m) # sum total of the contingency table
+ N_row1 <- rowSums(m)[1] # sum total of row 1
+ N_row2 <- rowSums(m)[2] # sum total of row 2
+ N_col1 <- colSums(m)[1] # sum total of column 1
+ N_col2 <- colSums(m)[2] # sum total of column 2
+ E11 <- (N_row1*N_col1/N) # expected freq of cell in row 1 col 1
+ E12 <- (N_row1*N_col2/N) # expected freq of cell in row 1 col 2
+ E21 <- (N_row2*N_col1/N) # expected freq of cell in row 2 col 1
+ E22 <- (N_row2*N_col2/N) # expected freq of cell in row 2 col 2
+ m.exp <- matrix(c(E11, E12, E21, E22), nrow=2, ncol=2, byrow=TRUE) # matrix of expected freqs
+ current.chi <- ((m[1,1]-m.exp[1,1])^2/m.exp[1,1]) +
+ ((m[1,2]-m.exp[1,2])^2/m.exp[1,2]) +
+ ((m[2,1]-m.exp[2,1])^2/m.exp[2,1]) +
+ ((m[2,2]-m.exp[2,2])^2/m.exp[2,2])
+ current.chi <- round(current.chi, 2) # round the score
+ current.chi <- paste(data$W2[i], current.chi, sep="\t") # append word 2
+ all.chi <- c(all.chi, current.chi) # collect all scores
+ } # exit the loop

Upon inspection, we see that the script has done its job.

> head(all.chi)
[1] "screen\t614385.64" "science\t195177.04" "systems\t171393.56" "system\t44007.2"
[5] "software\t218386.77" "program\t35572.49"

We save all.chi in a text file so that it can be read with a spreadsheet software.

> cat(all.chi, sep="\n", file="/CLSR/chap9/chisq.scores.txt")

Tab. 9.7 is a snapshot of what you see when you sort the data table according to the χ2 score with the
spreadsheet software.8 For large data sets, manual calculations are tedious and unproductive. The point of
the above script is to use it as a basis for the computation of other association measures.

8 Strangely, the corpus frequencies of W2 that you obtain with individual corpus queries via http://corpus.byu.edu/
coca differ slightly from those that you obtain in bulk. This is a bug, which might alter your χ2 scores minimally.

http://corpus.byu.edu/coca
http://corpus.byu.edu/coca
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Table 9.7: Top 10 collocates of computer in COCA

W2 χ2 score

screen 614385.64
software 218386.77
science 195177.04
systems 171393.56
models 72074.01
technology 58602.49
games 47985.15
system 44007.2
program 35572.49
programs 32510.02

9.3.5 There Is No Perfect Association Measure

Parametric tests select a statistical test so that its distribution converges to a well-known distribution when the
null hypothesis is true. These tests are powerful and easy to compute, but they suppose that the data is similar
to one of these known distributions. Since co-occurrence data do not always satisfy these distributional
assumptions, exact tests may be more appropriate. Exact tests compute the p-value of all possible outcomes
that are similar to or greater than the observed frequencies of a contingency table.

Neither parametric tests nor exact tests are without problems. The χ2 test presupposes that the linguistic
phenomenon under scrutiny is distributed randomly across a corpus, but “language is never, ever, ever,
random” (Kilgarriff 2005). Fisher’s exact test (Yates 1984) is considered more appropriate than parametric
tests in the identification of dependent word pairs because it is not affected by the skewed and sparse nature
of data samples typical of natural-language corpora (Pedersen 1996). In contrast to the above tests, mutual
information does not depend on distributional assumptions and can be computed at minimal computational
cost.

All things considered, no association measure is fully satisfactory, and the choice of one over another
depends on what aspects of collocativity one wishes to reveal (Evert 2005; Wiechmann 2008). For all the
above, one should always interpret ranked lists with caution.

9.3.6 Collostructions

In the context of lexico-grammatical patterns, Stefanowitsch and Gries have developed a family of three
methods known as collostructional analysis. These methods are: collexeme analysis (Stefanowitsch and
Gries 2003), distinctive collexeme analysis (Gries and Stefanowitsch 2004b), and co-varying collexeme
analysis (Gries and Stefanowitsch 2004a; Stefanowitsch and Gries 2005).

Collostructional analysis starts from contingency tables and applies an association measure (Tab. 9.8). It
is highly consonant with the lexicometric traditions of Britain (see Sect. 1.2.3.1) and France (Lafon 1980,
1981, 1984; Lebart et al. 1998; Muller 1964, 1973, 1977).
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Table 9.8: Association measures involved in collostructional analysis

methods association measures

collexeme analysis Fisher’s exact test, odds ratio, G2, MI, χ2

distinctive collexeme analysis Fisher’s exact test, G2

distinctive collexeme analysis (3+ alternants) multinomial test
co-varying collexeme analysis Fisher’s exact test, odds ratio, G2

The nice thing about collostructional analysis is that Stefan Gries has written an interactive R script:
coll.analysis.r (Gries 2014a). The script guides you throughout the process. All you need to do is
download it once from Stefan Gries’s homepage.

> source("http://www.linguistics.ucsb.edu/faculty/stgries/teaching/groningen/coll.analysis.r")

In the sections that follow, I briefly describe what each method does. Hilpert (2014) and to the collostruc-
tional analysis instruction page (http://www.linguistics.ucsb.edu/faculty/stgries/
teaching/groningen/readme.txt) show how the data sets should be formatted and how additional
data should be entered.

9.3.6.1 Collexeme Analysis

Collexeme analysis measures the mutual attraction of lexemes and constructions. This requires that Tab. 9.2
be formatted so that it accommodates the construction as one of its two variables. In Tab. 9.9, the construction
is the response variable.

Table 9.9: Input contingency table for collexeme analysis (L: lexeme, C: construction)

L j ¬L j row totals

Ci a b a+b
¬Ci c d c+d
column totals a+c b+d a+b+c+d

Tab. 9.10 is a sample of the input table that I used in a study of quite (among three other adverbs) when it
intensifies adjectives (Desagulier 2014, p. 159). One of the purposes of the study was to see what adjectives
were significantly associated with each intensifier. The data frame consists of three columns: the adjectives,
the frequencies of the adjectives in the corpus, and the frequencies of the adjectives in the quite + ADJ
construction.

Tab. 9.10 was submitted to coll.analysis(). G2 was chosen as an association measure. Tab. 9.11
was output. Here is what the column headers stand for:

• word.freq: the frequency of each adjective in the corpus;
• obs.freq: the observed frequency of each adjective in <quite + A>;
• exp.freq: the expected frequency of each adjective in <quite + A>;
• faith: the percentage of how many instances of the adjective occur in <quite + A>;

http://www.linguistics.ucsb.edu/faculty/stgries/teaching/groningen/readme.txt
http://www.linguistics.ucsb.edu/faculty/stgries/teaching/groningen/readme.txt
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Table 9.10: Input data set for collexeme analysis (quite + A)

adjective frequency of adjective in corpus frequency of adjective in construction

different 17012 2247
sure 137372 1347
clear 81553 805
good 378826 578
right 4558 548
possible 88919 458
similar 60967 328
ready 55338 300
common 63239 278
simple 48134 271
. . . . . . . . .

• relation: the relation of the adjective to quite (attraction vs. repulsion);
• delta.p.constr.to.word: ΔP, i.e. how much the construction <quite + A> helps guess the

adjective;
• delta.p.word.to.constr: ΔP, i.e. how much the adjective helps guess the construction <quite

+ A>;
• coll.strength: the index of collocational/collostructional strength based on G2.

Table 9.11: Output table for collexeme analysis (quite + A)

words word.freq obs.freq exp.freq relation faith delta.p.constr.to.word delta.p.word.to.constr coll.strength

different 170210 2247 29.849509 attraction 0.013201 0.030487 0.013031 15082.42588
sure 137372 1347 24.090751 attraction 0.009805 0.018191 0.009633 8231.3208
clear 81553 805 14.301845 attraction 0.009871 0.010872 0.009697 4923.956471
possible 88919 458 15.593611 attraction 0.005151 0.006083 0.004976 2216.176977
similar 60967 328 10.691705 attraction 0.00538 0.004363 0.005205 1614.270513
good 378826 578 66.43423 attraction 0.001526 0.007034 0.001352 1482.015768
ready 55338 300 9.704554 attraction 0.005421 0.003992 0.005247 1480.807683
simple 48134 271 8.441198 attraction 0.00563 0.00361 0.005455 1357.461688
remarkable 12161 186 2.132659 attraction 0.015295 0.002528 0.01512 1297.761456
common 63239 278 11.090142 attraction 0.004396 0.00367 0.004221 1259.479394
. . . . . . . . . . . . . . . . . . . . . . . . . . .

The data frame input.ca.rds compares the raw frequencies and the G2 scores. The code below
generates Fig. 9.1, which helps you visualize this comparison.

> rm(list=ls(all=TRUE))
> data <- readRDS("C:/CLSR/chap9/input.ca.rds") # Windows
> data <- readRDS("/CLSR/chap9/input.ca.rds") # Mac
> plot(data$obs.freq~data$coll.strength, xlab="log-likelihood ratio", ylab="observed frequency",
+ col="white", type="n")
> text(data$obs.freq~data$coll.strength, labels=row.names(data), cex=0.8)
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Fig. 9.1: A comparison of observed frequency and G2 scores in collexeme analysis

Although both measures are strongly correlated for the adjectives that have both high observed frequencies
and high G2 scores,

> cor(data$obs.freq, data$coll.strength)
[1] 0.9713854

we see that such items as good or right are not as attracted to <quite + A> as their observed frequencies
suggest.

9.3.6.2 Distinctive Collexeme Analysis

Distinctive collexeme analysis (henceforth DCA) contrasts alternating constructions in their respective col-
locational preferences. Tab. 9.12 is the kind of contingency table that is used as input in DCA.

Table 9.12: Input contingency table for DCA

L j ¬L j row totals

C1 a b a+b
C2 c d c+d
column totals a+c b+d a+b+c+d
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Gries and Stefanowitsch (2004b) use DCA to show which verbs exhibit a strong preference for which
variant of the dative alternation in the ICE-GB corpus. They find that the most distinctive verb of DO is
give, along with verbs that express a transaction (literal or figurative) involving a direct contact between
agent and recipient (tell, teach, ask, show, offer, promise, deny). The most distinctive verb of PD is bring,
along with verbs involving some distance between agent and recipient (take, pass, make, sell, do, etc.).

Let us replicate Gries and Stefanowitsch’s experiment on the dative data set from Harald Baayen’s
languageR package. Tab. 9.9 is what the input data set for coll.analysis() looks like. For each
row, the script computes a contingency table such as Tab. 9.12.

You obtain Tab. 9.13 from the original data set by selecting the two variables of interest: Realization
OfRecipient, and Verb.

> rm(list=ls(all=TRUE))
> library(languageR)
> data(dative)
> data <- dative[, c(13, 3)]
> head(data)
RealizationOfRecipient Verb

1 NP feed
2 NP give
3 NP give
4 NP give
5 NP offer
6 NP give

The resulting data frame is available from the chap9 folder (input.dca.rds).

Table 9.13: Input data set for DCA

construction verb

DO give
PD send
DO teach
PD sell
DO give
DO give
DO tell
PD take
DO give
DO give
. . . . . .

Once you have submitted the data frame to DCA with coll.analysis() and followed the required
steps, you obtain Tab. 9.14.9 Here is what the column headers stand for:

• obs.freq.double.object: the observed frequency of the verb in the double object construction;
• obs.freq.prep.dative: the observed frequency of the verb in the prepositional dative construc-

tion;
• exp.freq.double.object: the expected frequency of the verb in the double object construction;
• exp.freq.prep.dative: the expected frequency of the verb in the preposition dative construction;
• pref.occur: the construction to which the verb is attracted;

9 Again, the collostructional strength is based on G2.
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• delta.p.constr.to.word: ΔP, i.e. how much the construction helps guess the verb;
• delta.p.word.to.constr: delta p: ΔP, i.e. how much the verb helps guess the construc-

tion;
• coll.strength: index of distinctive collostructional strength based on G2.

To compare PD and DO more easily, I have reformatted the table so as to display the distinctive collex-
emes of each construction side by side (Tab. 9.15).

The data frame pd.do.rds compares the raw frequencies and the G2 scores. The code below generates
Fig. 9.2, which helps you visualize this comparison.

Table 9.14: Output table for DCA

verbs pref.const obs.freq.double.object obs.freq.prep.dative exp.freq.double.object exp.freq.prep.dative delta.p.constr.to.word delta.p.word.to.constr coll.strength

give DO 1410 256 1232.5234 433.4766 0.2826 0.2177 204.6726
cost DO 169 0 125.0279 43.9721 0.07 0.2744 105.0698
tell DO 122 6 94.6957 33.3043 0.0435 0.222 42.4776
teach DO 61 3 47.3478 16.6522 0.0217 0.2176 20.9271
charge DO 42 1 31.8118 11.1882 0.0162 0.2401 18.6752
. . . . . . . . . . . . . . . . . . . . . . . . . . .
make PD 3 3 4.4389 1.5611 -0.0023 -0.2403 1.5718
hand PD 9 6 11.0971 3.9029 -0.0033 -0.1405 1.3973
extend PD 2 2 2.9592 1.0408 -0.0015 -0.2401 1.0471
grant PD 9 4 9.6175 3.3825 -0.001 -0.0477 0.1476
allot PD 2 1 2.2194 0.7806 -3.00E-04 -0.0732 0.0791

Table 9.15: Top 10 collexemes distinguishing between PD and DO based on the dative dataset in
languageR

PD DO
collexemes distinctiveness collexemes distinctiveness

sell 323.7443 give 204.6726
take 137.3388 cost 105.0698
bring 20.4579 tell 42.4776
send 20.0388 teach 20.9271
pay 19.5323 charge 18.6752
issue 16.1876 do 12.0191
loan 12.0077 owe 8.092
write 11.2308 allow 7.8537
lease 10.7847 wish 5.4333
award 8.6362 show 3.7647

> rm(list=ls(all=TRUE))
> data <- readRDS("C:/CLSR/chap9/pd.do.rds") # Windows
> data <- readRDS("/CLSR/chap9/pd.do.rds") # Mac
> plot(data$obs.freq~data$coll.strength, xlab="log-likelihood ratio", ylab="observed frequency",
+ type="n")
> text(data.total$obs.freq~data.total$coll.strength, labels=row.names(data), cex=0.8)

The conclusions of Gries and Stefanowitsch (2004b) are partly verified. In particular, the profiles give
and sell stand out. Interestingly, give has the highest observed frequency in the table, but not the highest
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G2 score. Conversely, sell does not have the highest observed frequency in the table, but the highest G2

score. This time, the linear relationship between observed frequencies and collostructional strength is far
from perfect.

> cor(data$obs.freq, data$coll.strength)
[1] 0.5986189
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Fig. 9.2: A comparison of observed frequency and G2 scores in DCA

9.3.6.3 Covarying Collexeme Analysis

Finally, co-varying collexeme analysis (henceforth CCA) measures the association between the two lexical
slots of the same construction. Tab. 9.16 is the kind of contingency table that is used as input in CCA.

Table 9.16: Input contingency table for CCA

Lslot 1 ¬Lslot 1 row totals

Lslot 2 a b a+b
¬Lslot 2 c d c+d
column totals a+c b+d a+b+c+d

In Desagulier (2016), I use CCA using G2 as an association metric to measure the association between
the lexemes that instantiate the adjective and NP positions in A as NP in the BNC, e.g. right as rain, cool as
a cucumber, etc. (Desagulier 2016). CCA determines for each potential adjective occurring in the first slot
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which potential NPs in the second slot co-occur with it more often than expected. Tab. 9.17 is a sample of
the input table that I submitted to CCA.

Table 9.17: Input data set for CCA

A NP

big football
safe houses
large life
steady rock
sure hell
bold brass
old hills
gentle lamb
silent grave
bright sun
. . . . . .

Once you have submitted the data frame to DCA with coll.analysis() and followed the required
steps, you obtain Tab. 9.18. Here is what the column headers stand for:

• words1: words in the adjective slot of A as NP;
• words2: words in the NP slot of A as NP;
• freq.w1: frequency of the adjective in A as NP;
• freq.w2: frequency of the NP in A as NP;
• obs.w1_2.in_c: observed frequency of both A and NP in both slots of A as NP;
• exp.w1_2.in_c: expected frequency of both A and NP in both slots of A as NP;
• relation: relation between observed and expected frequency;
• coll.strength: index of co-varying collexeme strength: G2.

Table 9.18: Output table for CCA

words1 words2 freq.w1 freq.w2 obs.w1_2.in_c exp.w1_2.in_c relation coll.strength

good gold 29 30 29 0.48 attraction 288.8138
quick flash 27 20 20 0.3 attraction 189.2885
right rain 20 20 18 0.22 attraction 175.9832
large life 18 21 17 0.21 attraction 164.5468
safe houses 17 14 14 0.13 attraction 148.3236
sure hell 50 98 33 2.69 attraction 141.9763
old hills 31 15 15 0.26 attraction 130.8729
pretty picture 16 12 12 0.11 attraction 126.4332
bold brass 12 10 10 0.07 attraction 113.2006
solid rock 22 26 15 0.31 attraction 110.9541
. . . . . . . . . . . . . . . . . . . . . . . .
sharp hell 36 98 1 1.94 repulsion 0.5895
hard hell 23 98 1 1.24 repulsion 0.0527
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The data frame a_as_np.rds compares the observed frequencies and the G2 scores. The code below
generates Fig. 9.3, which helps you visualize this comparison. This time, we plot a regression line in red
thanks to the last line of code.

> rm(list=ls(all=TRUE))
> data <- readRDS("C:/CLSR/chap9/a_as_np.rds") # Windows
> data <- readRDS("/CLSR/chap9/a_as_np.rds") # Mac
> plot(data$obs.w1_2.in_c~data$coll.strength, xlab="log-likelihood ratio",
+ ylab="observed frequency", col="white", type="n")
> text(data$obs.w1_2.in_c~data$coll.strength, labels=row.names(data), cex=0.8)
> abline(lm(data$obs.w1_2.in.c~data$coll.strength), col="red", lwd=2) # plot a regression line

The two measures are strongly correlated.

> cor(data$obs.w1_2.in_c, data$coll.strength)
[1] 0.9117879

Nevertheless, some profiles stand out, especially good as gold and sure as hell. This is made visible by
their respective positions vis-à-vis the regression line. To a lesser extent, the profiles of cold as ice, white as
snow, solid as a rock, and white as a sheet also stand out because their observed frequencies do not allow to
predict their degrees of association accurately.
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Fig. 9.3: A comparison of observed frequency and G2 scores in CCA
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9.3.7 Asymmetric Association Measures

9.3.7.1 Associative Learning

All the association measures that we have seen above posit a bidirectional dependency between the collo-
cates. Therefore, given the pair collocate1-collocate2, collocate1 attracts or repels collocate2 as much as
collocate2 attracts or repels collocate1.10

Yet, given facto, the probability of obtaining ipso is high, but given facto, the probability of obtaining
ipso is not as high because of other words compete for the same slot (e.g. de or post). In other words, the
collocation between ipso and facto is directional because one word is a better cue of the other than vice
versa.

The idea that collocations are directional has been put forth by Gries (2013). It is inspired by studies
on language acquisition which draw from a rejection of classical conditioning in the field of associative
learning.11 In classical conditioning, learning occurs when a “cue” (or conditioned stimulus) is temporally
paired with an “outcome” (or unconditioned stimulus). Pavlov (1927) presents a cue (ringing a bell) to a
dog just before an outcome (food). After several identical experiments, the dog emits the conditional reflex
of salivating upon being presented with the cue alone. Pavlov concludes that the outcome reinforces the
conditioned reflex of salivating to the cue. According to classical conditioning, it is the temporal pairing of
the cue and the outcome that associates the two and therefore strengthens the conditioned reflex. Rescorla
(1968) contends that rats do not emit a conditioned reflex when trials involving the outcome alone are added
to trials where the temporal pairing between cue and the outcome is preserved. He concludes that it is in fact
contingency, not temporal pairing, that generates the conditioned response.

According to Ellis (2006) and Baayen (2011), Rescorla’s revision of Pavlovian conditioning is at the root
of contemporary inferential methods in animal and human learning. In line with Bayesian reasoning, the
Rescorla-Wagner equations state that learners predict an outcome from the cues available in their environ-
ment if such cues have a value in terms of outcome prediction, information gain, and statistical association
(Wagner and Rescorla 1972). Drawing a parallel with the automatic completion feature of smartphones,
whose algorithms take into account recency of prior usage, frequency of prior usage, and context of usage
to perform automatic completion, it is now assumed that the association between a cue and an outcome is
directional.

9.3.7.2 Asymmetric Collocations

When an event comprises a cue and an outcome, it can summarized in a contingency table such as Tab. 9.19.

Table 9.19: Contingency table involving a cue (C) and an outcome (O)

O ¬O

C a b
¬C c d

10 To verify this, we have seen that transposing the contingency table with t() did not change the score of the association
measure.
11 In particular Ellis (2006); Ellis and Ferreira Junior (2009).
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To measure the asymmetric dependency between C and O, Ellis relies on ΔP, a one-way-dependency
statistic developed by Allan (1980):

ΔP = P(O|C)−P(O|¬C)

=
a

a+ b
− c

c+ d

(9.11)

The closer ΔP is to 1, the more C increases the likelihood of O. Conversely, the closer ΔP is to −1, the more
C decreases the likelihood of O. If ΔP = 0, there is no covariation between C and O.

Gries (2013) has transposed the above to the study of bigrams. Given a bigram involving two words, W1

and W2, the frequencies can be gathered in a contingency table such as Tab. 9.20.

Table 9.20: Contingency table involving a cue (W1) and an outcome (here, W2)

W2: present W2: absent

W1: present a b
W1: absent c d

Two ΔP values must be computed, depending on whether the cue is W1 and the outcome is W2 or whether
the cue is W2 or and the outcome is W1:

ΔP(W2|W1) = P(W2|W1)−P(W2|¬W1)

=
a

a+ b
− c

c+ d

(9.12)

ΔP(W1|W2) = P(W1|W2)−P(W1|¬W2)

=
a

a+ c
− c

b+ d

(9.13)

If ΔP(W2|W1) − ΔP(W1|W2) is positive, then W1 is a better predictor of W2 than vice versa. Conversely, if
ΔP(W2|W1)−ΔP(W1|W2) is negative, then W2 is a better predictor of W1 than vice versa. If ΔP(W2|W1)−ΔP(W1|W2)

is null, then no word is a good predictor of the other.
Let us apply formulas (9.12) and (9.13) to computer screen. Let computer be the cue (W1) and screen the

outcome (W2). We obtain Tab. 9.21.

Table 9.21: A contingency table for computer screen in COCA

screen: present screen: absent

computer: present 1633 61502
computer: absent 34877 533690920
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On the basis of the contingency table, we compute the two ΔP values as follows:

ΔP(Wscreen|Wcomputer) = P(Wscreen|Wcomputer)−P(Wscreen|¬Wcomputer)

=
a

a+ b
− c

c+ d

=
1633

1633+ 61502
− 34877

34877+ 533690920
,

(9.14)

ΔP(Wcomputer|Wscreen) = P(Wcomputer|Wscreen)−P(Wcomputer|¬Wscreen)

=
a

a+ c
− c

b+ d

=
1633

1633+ 34877
− 34877

61502+ 533690920
.

(9.15)

We now calculate the two values in R.

> m <- matrix(c(1633, 61502, 34877, 533690920), nrow=2, ncol=2, byrow=TRUE)
> delta.W2.W1 <- (m[1,1]/(m[1,1]+m[1,2])) - (m[2,1]/(m[2,1]+m[2,2]))
> delta.W1.W2 <- (m[1,1]/(m[1,1]+m[2,1])) - (m[2,1]/(m[1,2]+m[2,2]))
> delta.W2.W1 - delta.W1.W2
[1] -0.01886227

Because ΔP(W2|W1) −ΔP(W1|W2) is negative, W2 is a better predictor of W1 than vice versa. This is easy to
understand. Although both words are paired with many other words than each other, Tab. 9.21 shows that
screen occurs in fewer word pairs (1633+ 34877= 36510) than computer (1633+ 61502 = 63135). What
ΔP does is quantify this asymmetry. Although negative, the ΔP difference is very close to 0, suggesting
a near equilibrium. Comparatively, there is a much bigger asymmetry between computer and programmer
(ΔPdi f f =−0.3233), suggesting that programmer is a much better predictor of computer than screen is.

Below is a script that computes all the ΔP differences in computer.NP.rds.

> rm(list=ls(all=T))
> data <- readRDS("C:/CLSR/chap9/computer.NP.rds") # Windows
> data <- readRDS("/CLSR/chap9/computer.NP.rds") # Mac
> str(data)
> freq_W1 <- 63135 # frequency of computer in corpus
> corp.size <- 533788932
> all.delta.diff <- character() # empty character vector to collect the results
> for (i in 1:nrow(data)){ # enter the loop
+ a <- data$freq_W1_W2[i] # cell a
+ b <- freq_W1 - a # cell b
+ c <- data$corp_freq_W2[i] - a # cell c
+ d <- (corp.size - freq_W1) - c # cell d
+ m <- matrix(c(a, b, c, d), nrow=2, ncol=2, byrow=TRUE) # make the 2x2 matrix
+ current.delta.W2.W1 <- (m[1,1]/(m[1,1]+m[1,2])) - (m[2,1]/(m[2,1]+m[2,2])) # first delta
+ current.delta.W1.W2 <- (m[1,1]/(m[1,1]+m[2,1])) - (m[2,1]/(m[1,2]+m[2,2])) # second delta
+ current.delta.diff <- current.delta.W2.W1 - current.delta.W1.W2 # delta difference
+ current.delta.diff <- round(current.delta.diff, 4) # round
+ current.delta.diff <- paste(data$W2[i], current.delta.diff, sep="\t") # append word 2
+ all.delta.diff <- c(all.delta.diff, current.delta.diff) # collect all delta differences
+ } # exit the loop

The results are vectorized in all.delta.diff.

> head(all.delta.diff, 15)
[1] "screen\t-0.0189" "science\t0.0048" "systems\t2e-04" "system\t0.0109"
[5] "software\t-0.0149" "program\t0.0085" "technology\t0.0025" "games\t3e-04"
[9] "programs\t0.0031" "models\t-0.0062" "industry\t0.0014" "networks\t-0.0169"
[13] "simulations\t-0.166" "programmer\t-0.3233" "lab\t-0.0148"
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9.3.7.3 Asymmetric Collostructions

In Desagulier (2016), I transposed Tab. 9.20 and formulas (9.12) and (9.13) to the study of multiple-slot
constructions, and more specifically A as NP. The input for the measure ΔP is a contingency table (Tab. 9.22)
that is similar to those that we have used so far. The choice of Wslot1 as the cue and Wslot2 as the outcome is
arbitrary.

Table 9.22: Contingency table involving a cue (Wslot1) and an outcome (Wslot2 )

Wslot2 : present Wslot2 : absent

Wslot1: present a b
Wslot1: absent c d

On the basis of the contingency table, we compute the two ΔP values like above:

ΔP(Wslot2|Wslot1)
= P(Wslot2|Wslot1)−P(Wslot2|¬Wslot1)

=
a

a+ b
− c

c+ d
(9.16)

ΔP(Wslot1|Wslot2) = P(Wslot1|Wslot2)−P(Wslot1|¬Wslot2)

=
a

a+ c
− c

b+ d

(9.17)

If ΔP(Wslot2|Wslot1)
−ΔP(Wslot1|Wslot2)

is positive, then Wslot1 is a better predictor of Wslot2 than vice versa. Con-
versely, if the difference is negative, then Wslot2 is a better predictor of Wslot1 than vice versa. If the differ-
ence is null, then neither Wslot1 nor Wslot2 is a good predictor. For the sake of illustration, let us now apply
Tab. 9.22 and formulas (9.16) and (9.17) to one concrete example of A as NP: mad as a March hare. We
obtain Tab. 9.23 and formulas (9.18) and (9.19):

Table 9.23: Co-occurrence table for mad and March hare in mad as a March hare in the BNC

March hare: present March hare: absent

mad: present 2 7
mad: absent 0 98363774

ΔP(March hare|mad) = P(March hare|mad)−P(March hare|¬mad)

=
2

2+ 7
− 0

0+ 98363774
≈ 0.22

(9.18)
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ΔP(mad|March hare) = P(mad|March hare)−P(mad|¬March hare)

=
2

2+ 0
− 0

7+ 98363774
= 1

(9.19)

ΔP(March hare|mad)−ΔP(mad|March hare) ≈−0.78 (9.20)

Unsurprisingly, March hare is a much better predictor of mad than vice versa. This is because mad co-occurs
with other NPs such as hatter or hell. On the other hand, March hare co-occurs exclusively with mad in
the BNC. In other words, because mad is far more productive than March hare in A as NP, the former is
much less of a good predictor than the other in the corpus. All in all, asymmetric association measures tell
us something that symmetric association measures do not.

9.4 Lexical Richness and Productivity

In Desagulier (2016), I investigate whether association measures have some bearing on the study of pro-
ductivity. They do, to some extent. However, association measures do not replace the range of established
measures of lexical richness and productivity.

Historically, the reflection on the quantification of linguistic productivity stems from morphology. Most
of the techniques that we use in lexicology are therefore influenced by works on morphological productivity.
Plag (2003) provides a theoretical definition of morphological productivity. It is the property of an affix
or a word-formation rule to generate new units systematically. The more an affix is available to form new
words, the more productive it is. In practice, just because a coinage is rare does not mean that it should
not be accounted for Bauer (2001). At a quantitative level, measures have been developed to capture the
productivity of morphological processes in corpora. For reasons of space, I can present but the tip of the
iceberg. In the sections below, I apply the measures of lexical richness and productivity to the lexicon.

9.4.1 Hapax-Based Measures

Baayen (1989, 1993) and Baayen and Lieber (1991) inter alia have developed a set of measures based on the
idea that the number of hapax legomena (words that occur only once in a corpus) of a given morphological
category is correlated with the number of neologisms in that category, and therefore with the productivity of
the rule at work.

P∗ measures “expanding productivity”, that is to say the “hapax-conditioned degree of morphological
productivity”’. It is the number of hapax legomena in the category V (1,C,N) divided by the number of
hapax legomena in the corpus V (1,N):

P∗ =
V (1,C,N)

V (1,N)
. (9.21)

P∗ does not account for whether a productive morphological process is saturated and is not used that much.
On the other hand, P measures “potential productivity” by calculating the probability of encountering new
types. It is the ratio of the number of hapax legomena with a given affix and the sum of all tokens that
contain the affix:
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P =
V (1,C,N)

N(C)
. (9.22)

The larger P , the larger the number of hapax legomena and the productivity of the affix. Conversely, the
larger the sum of all tokens, the smaller P and the productivity of the affix. One mathematical property of
P is that it is the slope of the tangent to a vocabulary growth curve at its endpoint. It indicates the rate at
which vocabulary increases at the end of a vocabulary growth curve (see below). Baayen (1993) explores
further the correlation between productivity and frequency and observes that P captures only the probability
of possible types to the detriment of observed types. He advocates a measure of global productivity (P∗)
which evaluates P in terms of type frequency (i.e. actual use):

P∗ =
V
P

. (9.23)

In Desagulier (2016), I found 217 adjectives that appear only once in A as NP for a total of 402 types. I
found 665 NPs that appear only once in the construction for a total of 877 types. There are 1819 instances
of A as NP in the BNC. These figures serve as input for the computation of P and P∗ as follows.

> P_potential_adj <- 217/1819
> P_potential_adj
[1] 0.1192963
> P_potential_NP <- 665/1819
> P_potential_NP
[1] 0.3655855
> P_global_adj <- 402/P_potential_adj
> P_global_adj
[1] 3369.76
> P_global_NP <- 877/P_potential_NP
> P_global_NP
[1] 2398.892

In the construction, the NP slot is more productive than the adjective slot in terms of potential productivity.
This is due to a greater variety in the choice of NPs. This variety is strengthened by the fact that NPs
vary with respect to the singular/plural agreement, the determiner, and optional pre- and post-modifiers.
Comparatively, the formal variability of adjectives is more limited. Yet, the potential for intrinsic variability
of NPs remains to be seen beyond the data set, as shown by the lower P∗ score when compared to the score
of adjectives. Potentially, fewer adjectives than NPs can appear in the first slot of the construction, yet more
adjectives types than NP types are observed.

The decisive feature of hapax-based measures is that they show how complex productivity is. Depending
on the measure that you use, you reveal a specific facet of the productivity of a linguistic phenomenon.

9.4.2 Types, Tokens, and Type-Token Ratio

Type frequency is perhaps the most basic productivity measure. In Sect. 5.4, we saw that the sentence The
cat is on the mat contains six word tokens but five word types. In this sentence the token frequency is the
total number of words (6). The type frequency is the total number of unique words (5). Type is commonly
abbreviated V (for vocabulary) or V (C,N), i.e. the type count of the members of a linguistic category C in a
corpus of N tokens. V (C,N) measures what Baayen (2009) calls “realized productivity”.
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Type-token ratio (henceforth TTR) is a very popular measure of lexical richness. It is obtained by dividing
the number of types in a corpus by the number of tokens. A high TTR (close to 1) suggest that the corpus is
characterized by lexical diversity.12 A low TTR (close to 0) suggests that there are lexical repetitions.

Although you can calculate TTR manually from the frequency lists that you have learned to make in
Chap. 4,13 several text-mining packages have functions for the calculation of TTR. One that is simple to use
is type_token_ratio() from the qdap package.

> install.packages("qdap")
> library("qdap")

First, vectorize the text file whose TTR you want, namely the Declaration of Independence, from chap9.

> text <- scan("C:/CLSR/chap9/doi.txt", what="char", sep="\n") # Windows
> text <- scan("/CLSR/chap9/doi.txt", what="char", sep="\n") # Mac

Next, run the type_token_ratio() function.

> type_token_ratio(text.var = text)
all wc ttr

1 all 1321 0.475

Type-token ratio for entire text: 0.475

The score suggests that the text is not so productive because there are repetitions.
TTR should be handled with care because it fails to account for two facts:

• the distribution of types across a corpus is not homogeneous;
• the larger your corpus, the harder it becomes to find new types as you progress into the text.

Consequently, TTR cannot be used to compare the productivity of two corpora of different sizes because
you do not know how types are distributed in each corpus, and the larger corpus may end up having a lower
TTR because of the increasing repetition of grammatical words.

9.4.3 Vocabulary Growth Curves

One solution to the abovementioned issue is to compute the standardized TTR for each corpus. Each corpus
is split into equal chunks and the TTR is calculated for each chunk. The mean TTR of all chunks gives you
the standardized TTR. In a similar vein, Baayen (1993, 2001, 2008) suggests that V be plotted against the
number of tokens at multiple intervals to keep track of vocabulary development across a corpus. The result is
a vocabulary growth curve (henceforth VGC). The VGC in Fig. 9.4 displays the productivity of Cervantes’s
Don Quijote at the level of V (types) and V1 (hapax legomena).14

Underlying Baayen’s hapax-based measures is the following principle: productivity is a factor of both a
large number of low-frequency words and a low number of high-frequency words. Zipf (1949) showed that
even the largest collection of text in a given language does not contain instances of all types in that language.
Therefore, type count and distribution in a corpus cannot reliably estimate type count and distribution in a
language.

12 If TTR = 1, this means that the number of types equals the number of token. In other words, all the word tokens are different.
13 For a given frequency list with r rows, simply divide r by the sum of the token frequencies. That will give you the TTR of
the file from which the frequency list was made.
14 It was obtained with the code in Baayen (2008, Sect. 6.5).
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To circumvent this issue and predict the vocabulary size in a larger corpus based on a much smaller
corpus, Baayen (2001) uses LNRE models (the acronym stands for “large number of rare events”). First,
one converts the data into a frequency spectrum (i.e. a table of frequencies of frequencies). Next, one fits a
model to the spectrum object. Once a satisfactory LNRE model has been fitted to the frequency spectrum,
one obtains expected values for the vocabulary size and the spectrum elements within the range of the
corpus/sample size (interpolation) and beyond (extrapolation). One can then plot the results on an enhanced
VGC. In Fig. 9.5, the VGC is extrapolated to twice the size of the novel.
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Fig. 9.4: Empirical VGCs of Don Quijote

Zeldes (2012) shows that Baayen’s family of hapax-based measures and LNRE models apply equally
well to morphosyntactic constructions. In Desagulier (2016), I show the relevance of plotting VGCs in the
productivity assessment of A as NP. Let us compare the productivity of each slot of the construction.

The data is in prod.a.as.np.rds in the chap9 folder.

> df <- readRDS("/CLSR/chap9/prod.a.as.np.rds") # Windows
> df <- readRDS("/CLSR/chap9/prod.a.as.np.rds") # Mac

We have just loaded a data frame. Normally, VGCs are plotted on the basis of a text. Here, we are working
with two “texts”: ADJ and NP, which we extract and vectorize.

> adj<-as.character(df$ADJ)
> np<-as.character(df$NP)

We are going to process each of them in turn, starting with adjectives. In the preamble, we load two packages.

> library(languageR)
> library(zipfR)
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First, we use the growth.fnc() function from Harald Baayen’s languageR package. The text is
divided into 20 chunks (nchunks = 20), each of which consists of 90 tokens. For each chunk, a range of
lexical measures is calculated.15
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Fig. 9.5: Empirical, interpolated, and extrapolated VGCs of Don Quijote

> df.growth = growth.fnc(text = adj, size=90, nchunks = 20)
....................
> str(df.growth)
Formal class 'growth' [package "languageR"] with 1 slot
..@ data:List of 1
.. ..$ data:'data.frame': 20 obs. of 13 variables:
.. .. ..$ Chunk : int [1:20] 1 2 3 4 5 6 7 8 9 10 ...
.. .. ..$ Tokens : num [1:20] 90 180 270 360 450 540 630 720 810 900 ...
.. .. ..$ Types : num [1:20] 65 103 136 163 190 215 232 247 266 282 ...
.. .. ..$ HapaxLegomena : num [1:20] 48 68 89 104 123 134 143 150 158 163 ...
.. .. ..$ DisLegomena : num [1:20] 12 17 18 17 15 23 24 26 29 37 ...
.. .. ..$ TrisLegomena : num [1:20] 3 7 9 16 16 17 18 22 24 20 ...
.. .. ..$ Yule : num [1:20] 91.4 103.7 102.1 98.9 94.9 ...
.. .. ..$ Zipf : num [1:20] -0.377 -0.468 -0.499 -0.564 -0.515 ...
.. .. ..$ TypeTokenRatio: num [1:20] 0.722 0.572 0.504 0.453 0.422 ...
.. .. ..$ Herdan : num [1:20] 1.109 0.986 0.903 0.85 0.808 ...
.. .. ..$ Guiraud : num [1:20] 6.85 7.68 8.28 8.59 8.96 ...
.. .. ..$ Sichel : num [1:20] 0.1846 0.165 0.1324 0.1043 0.0789 ...
.. .. ..$ Lognormal : num [1:20] 0.225 0.362 0.418 0.473 0.497 ...

The function outputs a growth object which we will need when we plot the empirical growth curve.

> df.vgc.a = growth2vgc.fnc(df.growth)

15 Yule’s K, the Zipf slope, TTR, Herdan’s C, Guiraud’s D, Sichel’s S, the mean of log frequency (Baayen 2008, p. 224).



9.4 Lexical Richness and Productivity 231

Next, we convert the data into a frequency spectrum thanks to spc(), from the zipfR package. This is a
two-step process.

> df.table = table(table(adj))
> df.spc = spc(m = as.numeric(names(df.table)), Vm = as.numeric(df.table))

Thanks to this spectrum, you obtain the number of types and the number of tokens.

> sum(df.spc$Vm) # number of types
[1] 402
> sum(df.spc$m * df.spc$Vm) # number of tokens
[1] 1819

It is time to fit an LNRE model with the lnre() function which takes the spectrum object as its second
argument. The first argument is chosen from a range of LNRE models available in the zipfR package
(Evert and Baroni 2006, 2007), namely the Zipf-Mandelbrot model (zm), the finite Zipf-Mandelbrot model
(fzm), or the Generalized Inverse Gauss-Poisson model (gigp). The goodness of fit of the model to the
empirical distribution of each configuration is evaluated with a multivariate χ2 test (Baayen 2001, Sect. 3.3).
According to Baayen (2008, p. 233), “[f]or a good fit, the χ2-value should be low, and the corresponding
p-value large and preferably well above 0.05”. With respect to our data, it is the finite Zipf-Mandelbrot
model that provides the best fit. The lnre() function fits the model to the frequency spectrum.

> df.lnre.fzm.a = lnre("fzm", df.spc)
> df.lnre.fzm.a
finite Zipf-Mandelbrot LNRE model.
Parameters:

Shape: alpha = 0.4980175
Lower cutoff: A = 7.445123e-09
Upper cutoff: B = 0.02975264

[ Normalization: C = 2.931993 ]
Population size: S = 65711.95
Sampling method: Poisson, with exact calculations.

Parameters estimated from sample of size N = 1819:
V V1 V2 V3 V4 V5

Observed: 402 217.00 59.0 26.00 15.0 13.00 ...
Expected: 402 216.64 54.6 27.33 17.1 11.98 ...

Goodness-of-fit (multivariate chi-squared test):
X2 df p

7.038904 6 0.3172644

The model can therefore provide reliable interpolated and extrapolated expected values for the vocabulary
size and the spectrum elements. Thanks to the lnre.vgc() function, we use the model to obtain expected
values for the data at smaller sample sizes (this is know as interpolation), and at larger sample sizes (this is
known as extrapolation).

> # interpolation
> df.int.fzm.a = lnre.vgc(df.lnre.fzm.a, seq(0, N(df.lnre.fzm.a), length = 20), m.max=3)
> # extrapolation
> df.ext.fzm.a = lnre.vgc(df.lnre.fzm.a, seq(N(df.lnre.fzm.a), N(df.lnre.fzm.a)*2,
+ length = 20), m.max = 3)

With respect to interpolation, the first argument of the function is the model. The second argument is a
sequence from 0 to the “text” size (1819) with 20 intervals.16 With respect to extrapolation, the second
argument is a sequence from 0 to twice the “text” size (3638), because we want to see what would happens
if we had twice as much data of the same kind.

16 The third argument m.max includes VGCs for spectrum elements up to the selected integer.
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We proceed likewise for NPs.

> df.growth = growth.fnc(text = np, size=90, nchunks = 20)
....................
> df.vgc.np = growth2vgc.fnc(df.growth)
> df.table = table(table(np))
> df.spc = spc(m = as.numeric(names(df.table)), Vm = as.numeric(df.table))
> df.lnre.fzm.np = lnre("fzm", df.spc) # fzm provides the best fit
> df.lnre.fzm.np
finite Zipf-Mandelbrot LNRE model.
Parameters:

Shape: alpha = 0.7234165
Lower cutoff: A = 3.05174e-20
Upper cutoff: B = 0.01538211

[ Normalization: C = 0.8775525 ]
Population size: S = 1.591057e+14
Sampling method: Poisson, with exact calculations.

Parameters estimated from sample of size N = 1819:
V V1 V2 V3 V4 V5

Observed: 877 665.00 81.00 39.00 20.00 16.00 ...
Expected: 877 652.42 90.23 38.39 21.85 14.32 ...

Goodness-of-fit (multivariate chi-squared test):
X2 df p

8.349324 6 0.2136115
> df.int.fzm.np = lnre.vgc(df.lnre.fzm.np, seq(0, N(df.lnre.fzm.np), length=20), m.max=3)
> df.ext.fzm.np = lnre.vgc(df.lnre.fzm.np, seq(N(df.lnre.fzm.np),
+ N(df.lnre.fzm.np)*2, length = 20), m.max = 3)

We may now plot the VGCs. The code below plots the empirical VGCs of A and NP in A as NP (Fig. 9.6).

> plot(df.vgc.np, df.vgc.a, add.m=1, col=c("red", "coral3"), lty=c(3,3),
+ lwd=c(3,3), main="", ylab="")
> # add.m=1 allows to plot the VGC for hapax legomena
>
> ylab_name=expression(paste("V"," and"," V"[1],sep="")) # label of y axis
> title(ylab=ylab_name) # plot the label of y axis
>
> text(1750, 890, expression("V"[NP]), cex=0.8) # plot annotations
> text(1750, 680, expression("V1"[NP]), cex=0.8) # plot annotations
> text(1750, 430, expression("V"[A]), cex=0.8) # plot annotations
> text(1750, 240, expression("V1"[A]), cex=0.8) # plot annotations
>
> legend<-legend("topleft", inset=.025,c("NP slot (empirical)", "A slot (empirical)"),
+ lty=c(3,3), lwd=c(3,3), col=c("red", "coral3"),
+ bg="white", cex=0.7) # plot the legend

The code below plots the empirical and interpolated VGCs of A and NP in A as NP (Fig. 9.7).

> plot(df.int.fzm.np, df.vgc.np, df.int.fzm.a, df.vgc.a, add.m=1,
+ col=c("black","red", "black", "coral3"), lty=c(1,3,2,3),
+ lwd=c(2,2,2,2), main="", ylab="")
>
> ylab_name=expression(paste("V"," and"," V"[1],sep=""))
> title(ylab=ylab_name)
>
> text(1750, 890, expression("V"[NP]), cex=0.8)
> text(1750, 680, expression("V1"[NP]), cex=0.8)
> text(1750, 430, expression("V"[A]), cex=0.8)
> text(1750, 240, expression("V1"[A]), cex=0.8)
>
> legend<-legend("topleft", inset=.025,c("NP slot (interpolated)", "NP slot (empirical)",
+ "A slot (interpolated)","A slot (empirical)"),
+ lty=c(1,3,2,3), lwd=c(2,2,2,2),
+ col=c("black","red","black","coral3"), bg="white", cex=0.7)
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Fig. 9.6: Empirical VGCs of A and NP in A as NP
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Fig. 9.8: Empirical, interpolated, and extrapolated VGCs of A and NP in A as NP

Finally, the code below plots Fig. 9.8. We include a vertical line to signal the limit of the “text”, i.e. the
starting point of the model’s extrapolation.

> plot(df.int.fzm.np, df.ext.fzm.np, df.vgc.np, df.int.fzm.a, df.ext.fzm.a, df.vgc.a,
+ add.m=1, col=c("black", "grey60","red", "black", "grey60","red"),
+ lty=c(1,1,3,2,2,3), lwd=c(2,2,2,2,2,2), main="", ylab="")
>
> ylab_name=expression(paste("V"," and"," V"[1],sep=""))
> title(ylab=ylab_name)
>
> abline=abline(v=1819, lty=5,lwd=0.5, col="grey60")
>
> text(1600, 1200, "N(C)=1819", cex=0.7, col="grey60")
> text(3500, 1470, expression("V"[NP]), cex=0.8)
> text(3500, 1100, expression("V1"[NP]), cex=0.8)
> text(3500, 610, expression("V"[A]), cex=0.8)
> text(3500, 330, expression("V1"[A]), cex=0.8)
>
> legend<-legend("topleft", inset=.025,c("NP slot (interpolated)","NP slot (extrapolated)",
+ "NP slot (empirical)", "A slot (interpolated)",
+ "A slot (extrapolated)","A slot (empirical)"),
+ lty=c(1,1,3,2,2,3), lwd=c(2,2,2,2,2,2),
+ col=c("black", "grey40","red","black", "grey60","red"),
+ bg="white", cex=0.7)

The VGCs confirm the hapax-based measure P (Sect. 9.4.1). This is far from surprising. One mathe-
matical property of P is that it is the slope of the tangent to a VGC at its endpoint. It indicates the rate at
which vocabulary increases at the end of a vocabulary growth curve. As expected the slope is steeper for
NPs, which have more potential for variability, than for adjectives.
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Exercise

9.1. Writing a function for association measures

Using what you have learned from Sect. 2.8.2, write a function named assoc.chi() to automatize the
loop in Sect. 9.3.4. More advanced users should try to write an interactive function that prompts the user to:

• choose from two input file formats: .rds or .txt;
• enter the input file;
• input the frequency of the target word;
• input the corpus size in word tokens;
• select an output text file in which the results are saved;
• provide the path to the output file.

To write this interactive function, you will need to refer to the R documentation with regards to the following
functions:

• switch();
• menu();
• readline();
• normalizePath().
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Chapter 10
Clustering Methods

Abstract In this chapter, I introduce clustering techniques Their aim is to form clusters of objects so that
similar objects are grouped in the same clusters and different objects are grouped in different clusters. I also
introduce the concept of a network graph which, although not a clustering technique, is a useful, related
addition to your corpus linguistics tool repository.

10.1 Introduction

The inventory of clustering techniques is vast. This chapter covers five methods: principal component
analysis, t-distributed Stochastic Neighbor Embedding, correspondence analysis, multiple correspondence
analysis, and ascending hierarchical cluster analysis. A section on networks is appended to this chapter.
Although not part of cluster analysis, graph theory (which networks are a product of) combines the assets of
cluster plotting with information about how the group members are related.

Clustering is done thanks to unsupervised clustering techniques. They are used to help find structure in
multivariate data thanks to the groupings of observations. They are exploratory (as opposed to predictive or
explanatory) because the researcher makes no assumption as to what groupings are to be found. This is why
they are said to be hypothesis-generating techniques.

10.1.1 Multidimensional Data

In Sect. 5.3, you learned how to compile a data frame from an annotated corpus. In the resulting data frame,
each line corresponds to an observation. In statistical parlance, the observations are called “individuals”
because the tables were originally based on surveys aimed at characterizing real people. They are also often
referred to as “row variables”. Each column is a variable describing the observations. Extra variables are
generally added. The choice of these variables depends on what the linguist intends to show.
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When several variables are summoned to characterize observations, and when you take into account the
pairwise relationships between these variables, the resulting table is called “multivariate”, “multifactorial”,
or “multidimensional”.1 You conduct a multifactorial study because you want to generalize over the profiles
of (a) the observations, (b) the variables, or (c) both. Just about anything in language is influenced by several
factors at the same time. As a result, multifactorial methods have become quite popular in linguistics.

10.1.2 Visualization

Multifactorial data sets are complex objects of which we want to get a synthetic view. We do it by finding
clusters in the data. This is no trivial task because we need to make sure the clusters are valid. The reward is
a graphic representation of the data set in terms of neat clusters.

In hierarchical cluster analysis, clusters are visualized in dimensionless dendrograms, the kinds of which
pullulate in museums of natural history. Dendrograms, which are shaped like trees, can be read from bottom
to top or from top to bottom. Fig. 10.1 shows a (famous) dendrogram.

Eigenvector-based methods output Euclidean maps that allow a graphic, pairwise interpretation of the
dimensions of the multidimensional table. To understand the logic that underlies visualization in principal
component analysis, correspondence analysis, and multiple correspondence analysis, consider Fig. 10.2. It
provides four plane representations of the Eiffel Tower. These representations are two-dimensional projec-
tions of a three-dimensional object. Because the complexity of the represented object greatly surpasses any
of its 2D projections, not all representations are equally satisfactory. Figs. 10.2a, b would not be adequate
if you wanted to show the Eiffel Tower to someone who has never seen it before. Indeed, in these represen-
tations the distances are distorted: we have the impression that the highest observation deck at the center of
Fig. 10.2b is close to the base of the each pillar when in fact they are separated by about 900 feet. In this
respect, Fig. 10.2c is more satisfactory, but you have no indication as to the depth of the tower. Fig. 10.2d
is probably the best 2D snapshot you could make of this 3D object. Although it is a partial projection, it
captures the most important dimensions of the Eiffel Tower in an economical way.

The challenges that underlie the visualizations obtained with eigenvector-based methods are similar ex-
cept that you do not seek to explore a 3D object in real space, but a cloud of points from a data set in the
form of a rows×columns table with as many dimensions as there are columns. Even though the dimensions
of a data table are eventually projected in a Euclidean space, they should not be mixed up with spatial di-
mensions. A table with K variables has K dimensions. The cloud of data points is positioned in a space R of
K dimensions: RK . To allow for easier interpretation, eigenvector-based methods decompose the cloud into
orthogonal planes.

1 Experience tells me that a unified definition for each term is hard to find. I have come to use the term “multidimensional”
to describe a data set, and “multifactorial” to describe a statistical method that handles multidimensional data. Not every
statistician will agree, but many will.



10.1 Introduction 241

Fig. 10.1: A phylogenetic tree by Darwin (1859, p. 117)

A successful projection selects a viewpoint that manages to represents the cloud of data points with K
dimensions on a low-dimensional plane while remaining as faithful as possible to R

K . This is achieved by
rotating the cloud of data points axially so as to minimize the distortion of distances between the individuals,
just like you would rotate a 3D model of the Eiffel Tower so as to achieve a satisfactory 2D snapshot.

However, the kinds of data sets that we use in multifactorial linguistics are generally far more complex.
In this respect, even though eigenvalue-based methods try to reduce the gap between the actual and projected
distances between points, the visualizations that you obtain are often closer to a night sky map than the Eiffel
Tower. Two stars may appear close on a 2D plane but one of them may actually be several lightyears behind
the other in the universe. This means that you will often need more than one planes to describe your data
accurately.
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Fig. 10.2: The Eiffel Tower viewed from different angles. (a) A view from below; (b) a view from above;
(c) a front view; (d) a three-quarter view

10.2 Principal Component Analysis

Principal component analysis (henceforth PCA) appeared in the early twentieth century (Pearson 1901) and
has since acquired a name and fame in the field of data analysis. For this reason, PCA is given pride of place
in most publications on clustering by being introduced before the other methods that it conceptually inspired,
such as correspondence analysis and multiple correspondence analysis (see Sects. 10.4 and 10.5 below). I
will make no exception here. However, even though the principles of PCA are simple to understand, its
mathematical foundations are, I find, more demanding than those of (multiple) correspondence analysis. I
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will therefore not dwell upon these foundations and focus instead on what is important to know to interpret
the output of PCA.2

10.2.1 Principles of Principal Component Analysis

PCA it takes as input a data table T of I individuals or observations (rows) and K variables (columns).
This table consists of ratio-scale data (such as means, reaction times, formant frequencies, etc.) and may
also contain categorical/nominal data. The method consists in reducing the dimensionality of the table by
decomposing the total variance of the table into a limited number of components.3 More precisely, PCA
extracts the important information from the table and expresses this information in the form of a handful of
new orthogonal variables called principal components.

There are three reasons why you want to run a PCA on a data table: (a) you want to compare the profiles of
individuals so that similar individuals cluster together, (b) you want to compare the profiles of the variables,
so that correlated variables cluster together, and/or (c) you want to explore the link between the individuals
and the variables.

There are several packages and functions dedicated to PCA in R: e.g. princomp() and prcomp()
from the stats package, ggbiplot() from the ggbiplot package (which is itself based on
ggplot2), dudi.pca() from the ade4 package, and PCA() from the FactoMineR package (Husson
et al. 2015).4

In this chapter, I will use FactoMineR because its functions and arguments are simple to understand,
and because it is widely documented and supported. Also, functions from this package will be used to
perform PCA, correspondence analysis, and multiple correspondence analysis. You should therefore install
FactoMineR now.

> install.packages("FactoMineR")

10.2.2 A Case Study: Characterizing Genres with Prosody in Spoken French

What follows is based on Lacheret et al. (to appear a). The data set presented here was compiled from
Rhapsodie, a corpus of spoken French annotated for syntax and prosody (Lacheret et al. to appear b). The
motivation for building the data set is to characterize spoken samples in terms of prosodic features and
stylistic categories.

The data set is available in your chap10 subfolder.

> rm(list=ls(all=TRUE))
> data <- readRDS("C:/CLSR/chap10/spoken_french.rds") # Windows
> data <- readRDS("/CLSR/chap10/spoken_french.rds") # Mac

2 Readers who want to know more about the mathematical underpinnings of PCA should read Baayen (2008, section 5.1.1),
Abdi and Williams (2010), and Husson et al. (2011, chapter 1).
3 The variance is the mean square deviation around the average value. It measures the dispersion of values around the mean.
4 Be careful, these functions are not identical. Some of them perform PCA based on “loadings” whereas others perform PCA
based on the inspection of correlations between the variables and the principal components. The latter are more flexible because
they allow for the introduction of supplementary variables. This will become clearer in a few paragraphs.
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It consists of 57 observations and 12 variables. The variables break down into six quantitative variables and
six qualitative (nominal) variables. The quantitative variables are the following:

• pauses: the mean number of pauses per second;
• overlaps: the mean number of conversational overlaps per second;
• euh: the mean number of gap fillers per second (“euh” is the French equivalent of “er” or “um”, when

the speaker is not sure what to say);
• prom: the mean number of prosodic prominences per second;
• PI: the mean number of periods per second;
• PA: the mean number of intonation packages per second.

The qualitative variables provide information as to the following elements:

• genre: what genre the speech sample represents;
• interactivity: how interactive the speech sample is;
• social_context: whether the speech sample public or private;
• event_structure: whether the speech sample is part of a dialogue or a monologue;
• channel: whether the speech sample is part of a broadcast or a face-to-face conversation;
• planning_type: whether the speech sample is planned, semi-spontaneous, or spontaneous.

The above information is available when you examine the structure of data.

> str(data)
'data.frame': 57 obs. of 12 variables:
$ pauses : num 0.264 0.42 0.354 0.277 0.286 ...
$ overlaps : num 0.1242 0.1066 0.0981 0.1127 0.0664 ...
$ euh : num 0.1353 0.1032 0.0323 0.119 0.2336 ...
$ prom : num 1.79 1.8 1.93 2.29 1.91 ...
$ PI : num 0.278 0.326 0.335 0.303 0.219 ...
$ PA : num 1.54 1.75 1.76 1.79 1.69 ...
$ subgenre : Factor w/ 5 levels "argumentation",..: 1 1 2 2 2 1 5 5 2 5 ...
$ interactivity : Factor w/ 3 levels "interactive",..: 1 1 3 1 3 1 2 2 1 2 ...
$ social_context : Factor w/ 2 levels "private","public": 1 1 1 1 1 1 1 1 1 1 ...
$ event_structure: Factor w/ 2 levels "dialogue","monologue": 1 1 1 1 1 1 1 1 1 1 ...
$ channel : Factor w/ 2 levels "broadcasting",..: 2 2 2 2 2 2 2 2 2 2 ...
$ planning_type : Factor w/ 3 levels "planned","semi-spontaneous",..: 2 2 3 2 3 2 3 3 3 3 ...

The motivation for this data frame is twofold. We want to compare (a) the profiles of the corpus samples
based on the variables, and (b) the variables.

The shape of the cloud of points will be based on the quantitative variables. At this stage, we shall ignore
the qualitative variables so as to focus on the construction of the cloud. We shall return to them to describe
the shape of the cloud.

To understand why PCA is useful, let us examine the pairwise relationships between the quantitative
variables. With cor(), you obtain a correlation matrix (the correlation coefficients are rounded to two
decimal places with round()).

> round(cor(data[,1:6]), 2)
pauses overlaps euh prom PI PA

pauses 1.00 -0.07 -0.18 0.05 0.56 0.57
overlaps -0.07 1.00 -0.16 0.11 0.23 0.25
euh -0.18 -0.16 1.00 -0.26 -0.46 -0.24
prom 0.05 0.11 -0.26 1.00 0.13 0.60
PI 0.56 0.23 -0.46 0.13 1.00 0.44
PA 0.57 0.25 -0.24 0.60 0.44 1.00
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A positive figure indicates a positive correlation, whereas a negative figure indicates a negative correlation.
All the measures are correlated, but not all correlations are significant. In some cases, the correlation is
statistically significant (p < 0.05),

> cor.test(data$PA, data$prom)

Pearson's product-moment correlation

data: data$PA and data$prom
t = 5.5774, df = 55, p-value = 7.666e-07
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.4037142 0.7449510
sample estimates:

cor
0.6010541

whereas in some other cases it is not (p > 0.05).

> cor.test(data$pauses, data$euh)

Pearson's product-moment correlation

data: data$pauses and data$euh
t = -1.3234, df = 55, p-value = 0.1912
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
-0.41714324 0.08897032
sample estimates:

cor
-0.1756699

To visualize the pairwise correlations between variables, use the function pairs() (Fig. 10.3).

> pairs(data[,1:6], cex=0.6)

In Fig. 10.3, each scatterplot corresponds to the intersection of two variables. The labels are given in the
diagonal of the plot. Because there are six variables, and because the row and column vectors are symmetric,
there are 6×5

2 = 15 pairwise relationships to inspect, which is cumbersome.

10.2.3 How PCA Works

PCA offers an alternative by reducing the dimensionality of the data table so that you do not need to review
each pairwise correlation. It does so by computing the total variance of the table and decomposing this vari-
ance into a few meaningful components. The principal components are linear combinations of the original
variables turned into new variables.

Before you run PCA(), you should consider standardizing (i.e. centering and scaling) the variables.
If your table contains measurement in different units (for example hertz, seconds, and percentages), stan-
dardizing is compulsory. By default, PCA() standardizes the variables. In our table, all the measurements
are in the same unit (relative frequency per second). Although we could dispense with standardizing the
variables, I recommend that you do. This prevents variables with a high standard deviation from having
too strong an influence relative to the variables with a lower standard deviation. Thus, the same weight is
given to all the quantitative variables. If you choose not to standardize your variables, include the argument
scale.unit=FALSE in your PCA() call.
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Fig. 10.3: Pairwise correlations between quantitative variables

By default, the PCA() function produces two graphs based on the first two components: the graph
of variables and the graph of individuals. For the time being, I recommend that you block these plots by
specifying graph=FALSE. We will plot each graph individually later, once we know how to interpret them.

> library(FactoMineR)
> pca.object <- PCA(data[,1:6], graph=FALSE) # remove graph=FALSE to display the default plots
> pca.object # inspect
**Results for the Principal Component Analysis (PCA)**
The analysis was performed on 57 individuals, described by 6 variables
*The results are available in the following objects:

name description
1 "$eig" "eigenvalues"
2 "$var" "results for the variables"
3 "$var$coord" "coord. for the variables"
4 "$var$cor" "correlations variables - dimensions"
5 "$var$cos2" "cos2 for the variables"
6 "$var$contrib" "contributions of the variables"
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7 "$ind" "results for the individuals"
8 "$ind$coord" "coord. for the individuals"
9 "$ind$cos2" "cos2 for the individuals"
10 "$ind$contrib" "contributions of the individuals"
11 "$call" "summary statistics"
12 "$call$centre" "mean of the variables"
13 "$call$ecart.type" "standard error of the variables"
14 "$call$row.w" "weights for the individuals"
15 "$call$col.w" "weights for the variables"

The object contains several elements, the first of which (eig) is worth inspecting because it helps you
determine which components are important. The importance of a component corresponds to the proportion
of the total variance of the table that it explains (this total variance is called inertia).

> round(pca.object$eig, 2)
eigenvalue percentage of variance cumulative percentage of variance

comp 1 2.51 41.90 41.90
comp 2 1.15 19.25 61.15
comp 3 1.01 16.88 78.03
comp 4 0.83 13.77 91.79
comp 5 0.33 5.56 97.35
comp 6 0.16 2.65 100.00

The first principal component explains the largest share of the total variance of the data table. The second
component is orthogonal to the first component. It explains the second largest share of inertia. The remaining
components are computed likewise.

Next, we plot the proportions of inertia (also known as eigenvalues) explained by the principal compo-
nents (Fig. 10.4).

> barplot(pca.object$eig[,1], names.arg=paste("comp ",1:nrow(pca.object$eig))) # barplot

comp  1 comp  2 comp  3 comp  4 comp  5 comp  6

0.
0
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Fig. 10.4: A barplot showing the eigenvalues associated with each component
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To select the most important components, we look for discontinuities in the plot as we move from left
to right. In Fig. 10.4, the first major discontinuity occurs after the first component. This component alone
accounts for 41.9% of the variance which, given the ratio between the number of observations and the
number of columns, expresses a significant structure of the data in PCA. A second discontinuity occurs
between the fifth and the fourth components. The first four components account for almost all the variance
(91.8%). In other words, PCA has reduced the number of dimensions to inspect from 6 to 4.

It is now time to visualize the PCA output with plot() and its fine-tuning options. A combination
of the shadow and autoLab arguments guarantees that the labels will be legible if there are many data
points. By default, the first two principal components are plotted. They correspond to the most optimal plane
because the distances between individuals are the least distorted and because the variance of the projected
data is maximized.

> pca.object <- PCA(data[,1:6], graph=FALSE) # no plot is produced
> plot(pca.object,shadow=T, autoLab="yes", choix="var",new.plot=F, title="") # variables
> plot(pca.object, shadow=T, autoLab="yes", title="") # individuals

The first graph shows the variables in R
K (Fig. 10.5a), whereas the second one shows the cloud of individuals

in R
I (Fig. 10.5b). The first graph is a key to interpreting the second graph.

In PCA, correlations are interpreted geometrically. Fig. 10.5a shows a correlation circle. Each active
variable is plotted inside a circle of radius 1 using correlation coefficients as coordinates. These coordinates
are available from pca.object.5

> pca.object$var$coord[,1:2]
Dim.1 Dim.2

pauses 0.6767341 -0.62190814
overlaps 0.3292927 0.55179602
euh -0.5789986 -0.09553468
prom 0.5493958 0.58167708
PI 0.7718681 -0.31577079
PA 0.8455460 0.12774240

The variables appear as a solid arrows.6 We can think of each arrow as pulling away from the intersection
of the horizontal and vertical axes. The longer the arrow, the harder it pulls. With all the arrows pulling
together, PCA considers their overall effect.

In the first component of variability, there is a contrast between the variable euh, which points to the
left, and the other variables, which point to the right. In the second component, there is a contrast between
the variables overlaps, prom, and PA (top) and euh, PI, and pauses (bottom). When we combine
these first two components, we expect the corpus samples characterized by more overlaps, prominences,
or intonation packages to cluster in the upper right part of the plane. The corpus samples characterized by
more periods or pauses are expected to cluster in the lower right part of the plane. The corpus samples
characterized by more gap fillers are expected to cluster in the lower left part of the plane. The corpus
samples expected to be found in the upper left corner of the plane are characterized by smaller scores with
respect to the other variables, the detail of which we shall come back to later. The actual projection of these
corpus samples is shown in Fig. 10.5b.

Unless we know exactly what the corpus samples consist of, it is hard to generalize from Fig. 10.5b. This
is what supplementary variables are for. Let us run PCA() again. This time, we include the qualitative
variables and declare them as supplementary.

5 Because our variables are standardized, the coordinates correspond to the coefficients of the correlations between the variables
and the components.
6 If there were supplementary variables (see below), they would appear as dashed arrows.
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Fig. 10.5: PCA biplots (components 1 and 2). (a) Variables; (b) individuals
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> pca.object.2 <- PCA(data, quali.sup=c(7:12), graph=FALSE)

The insights offered by the inclusion and projection of supplementary information is what makes PCA and
related methods attractive. Supplementary rows and/or columns are projected in the plane obtained from
the PCA performed on the original data table. Supplementary data can be continuous or categorical (our
supplementary variables are categorical). Bear in mind that supplementary elements do not contribute to the
construction of the components. They are projected only after inertia has been computed from the active
elements. This does not affect the construction of the components.

> round(pca.object.2$eig, 2)
eigenvalue percentage of variance cumulative percentage of variance

comp 1 2.51 41.90 41.90
comp 2 1.15 19.25 61.15
comp 3 1.01 16.88 78.03
comp 4 0.83 13.77 91.79
comp 5 0.33 5.56 97.35
comp 6 0.16 2.65 100.00

Rather than plot the individuals, you may now focus on the categories of the supplementary variables.
Neat clusters appear in Fig. 10.6a. As opposed to descriptive, semi-interactive samples, oratory samples

are characterized by a high number of intonation periods and very frequent pauses. There is a neat contrast
between the samples in the upper-right corner and those in the lower-left corner.

Inspection of Fig. 10.6b reveals that the atypical profile of oratory samples should be toned down with
respect to the third and fourth components. In contrast, the profile of semi-spontaneous stands out
with respect to these components.

> dimdesc(pca.object.2)
$Dim.1
$Dim.1$quanti

correlation p.value
PA 0.8455460 1.288448e-16
PI 0.7718681 2.085404e-12
pauses 0.6767341 7.523535e-09
prom 0.5493958 9.606625e-06
overlaps 0.3292927 1.237681e-02
euh -0.5789986 2.378971e-06

$Dim.1$quali
R2 p.value

social_context 0.11750449 0.009047008
subgenre 0.21039303 0.013918880
channel 0.10402383 0.014410761
event_structure 0.08967506 0.023637198
interactivity 0.11287505 0.039408460

$Dim.1$category
Estimate p.value

public 0.5765062 0.009047008
broadcasting 0.5501019 0.014410761
oratory 1.3184753 0.019048756
dialogue 0.4749011 0.023637198
interactive 0.7941458 0.024182741
description -1.0895818 0.023950148
monologue -0.4749011 0.023637198
face-to-face -0.5501019 0.014410761
private -0.5765062 0.009047008

$Dim.2
$Dim.2$quanti

correlation p.value
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Fig. 10.6: PCA biplots (supplementary variables in R
I). (a) Components 1 and 2; (b) components 3 and 4
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prom 0.5816771 2.082481e-06
overlaps 0.5517960 8.621097e-06
PI -0.3157708 1.672159e-02
pauses -0.6219081 2.422954e-07

$Dim.2$quali
R2 p.value

subgenre 0.25614407 0.003490792
interactivity 0.18617948 0.003839487
event_structure 0.09864320 0.017348845
channel 0.09529872 0.019469480
social_context 0.08151312 0.031335204

$Dim.2$category
Estimate p.value

interactive 0.5694425 0.010168067
dialogue 0.3375553 0.017348845
broadcasting 0.3568325 0.019469480
public 0.3254128 0.031335204
argumentation 0.7085504 0.034595162
private -0.3254128 0.031335204
face-to-face -0.3568325 0.019469480
monologue -0.3375553 0.017348845
procedural -0.5806223 0.002684967
non-interactive -0.6113854 0.002492045

$Dim.3
$Dim.3$quanti

correlation p.value
prom 0.5122576 4.633616e-05
euh 0.3952687 2.341783e-03
PA 0.3492439 7.750895e-03
PI -0.3472536 8.132105e-03
overlaps -0.5709713 3.520492e-06

$Dim.3$quali
R2 p.value

event_structure 0.1418851 0.003876516
planning_type 0.1188896 0.032795879

$Dim.3$category
Estimate p.value

monologue 0.3791308 0.003876516
interactive -0.4764462 0.027693050
semi-spontaneous -0.7871007 0.009385061
dialogue -0.3791308 0.003876516

10.3 An Alternative to PCA: t-SNE

We live in the age of big data. Big data implies very large data frames, and individuals by the thousands.
In this case, plotting the graph individuals with PCA may be cumbersome as you might expect data points
to clutter the graph. Another problem is when the number of descriptive variables is also very large. In this
section, I illustrate this problem and how to fix it with a case study involving large data frames of annotated
corpus data.

Whether manual or (semi-)automatic, the semantic annotation of a comprehensive corpus or a large
dataset is a hard and time-consuming task. One long-standing challenge is the resolution of lexical and
syntactic ambiguities. One option favored by corpus semanticists is to use a set of predetermined classes,
such as Levin (1993) for verbs or Dixon and Aikhenvald (2004) for adjectives.
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Because such semantic classes are generally broad and determined a priori, they hardly ever match the ad
hoc contextual meanings of their targets. By way of example, Tab. 10.1 is a sample dataset compiled from the
British National Corpus (2007). It contains a sample of adjectives that occur in quite/rather constructions.
Each adjective is automatically annotated with the UCREL Semantic Analysis System (USAS). As expected,
the contextual meanings of highly polysemous adjectives like hot and cold are poorly captured by the limited
range of possibilities of the generic tagset: e.g. hot in a rather hot seller has little to do with ‘Temperature’.

Table 10.1: A sample data frame with USAS annotation of adjectives (BNC XML)

corpus file context adjective semantic tag semantic class

K1J.xml quite a hot shot hot O4.6+ Temperature_Hot_on_fire
G2W.xml a rather hot seller hot O4.6+ Temperature_Hot_on_fire
KRT.xml a quite clear position clear A7+ Likely
J0V.xml quite a clear understanding clear A7+ Likely
CHE.xml quite a clear view clear A7+ Likely
FEV.xml quite a clear picture clear A7+ Likely
EWR.xml a quite clear line clear A7+ Likely
CRK.xml quite a clear stand clear A7+ Likely
HA7.xml a rather clouded issue clouded O4.3 Colour_and_colour_patterns
KPV.xml quite a cold day cold O4.6- Temperature_Cold
G3B.xml a rather cold morning cold B2- Disease
AB5.xml a rather cold person cold O4.6- Temperature_Cold
CDB.xml rather a cold note cold O4.6- Temperature_Cold
K23.xml a rather colder winter colder O4.6– Temperature_Cold

Two cutting-edge unsupervised learning algorithms have offered a solution to this problem: word2vec
(Mikolov et al. 2013a,b,c) and GloVe (Pennington et al. 2014). Based on neural networks, they (a) learn
word embeddings that capture the semantics of words by incorporating both local and global corpus context,
and (b) account for homonymy and polysemy by learning multiple embeddings per word. Once trained on
a very large corpus, these algorithms produce distributed representations for words in the form of vectors.
Words or phrases from the vocabulary are mapped to vectors of real numbers (Tab. 10.2). Words with similar
vector representations have similar meanings.

The data set adjectives.vectors.rds contains 1108 adjectives (rows) and each is characterized
by a 300-dimensional word vector representation (columns).

> rm(list=ls(all=TRUE))
> data <- readRDS("C:/CLSR/chap10/adjectives.vectors.rds") # Windows
> data <- readRDS("/CLSR/chap10/adjectives.vectors.rds") # Mac

Because the data frame is very wide (300 columns), we display only the first ten rows and the first nine
columns.

> head(data[1:10,1:9])
V1 V2 V3 V4 V5 V6 V7 V8 V9

able -0.274940 0.23719 0.058772 -0.043835 -0.018766 0.155180 -4.33010 0.21271 0.174290
abnormal -0.211740 -0.27585 -0.929810 0.279370 -0.462320 -0.177400 -2.24480 1.57590 0.026833
abrupt -0.100270 -0.24864 0.046093 0.224550 -0.827240 -0.150440 -1.74370 1.02900 0.132330
abstract 0.079376 -0.78241 -0.103870 0.625730 0.034500 -0.029305 -1.72160 0.43605 0.189480
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Table 10.2: Snapshot of a word-vector matrix of some adjectives from the BNC

adjectives V1 V2 V3 V4 V5 V6 . . .

gloomy −0.36405 −0.44487 −0.33327 −0.16695 −0.52404 0.31066 . . .
sacred 0.60337 −0.20526 −0.042822 −0.33008 −0.68957 0.26654 . . .
jaundiced −0.32168 −0.58319 −0.34614 −0.12474 0.10368 0.1733 . . .
loud 0.24615 −0.24904 −0.18212 −0.14834 −0.06532 −0.3393 . . .
memorable 0.30206 0.20307 0.062304 0.66816 0.048326 0.034361 . . .
justified −0.080959 −0.23694 −0.43372 −0.31442 −0.31528 0.0057226 . . .
scant −0.14467 −0.29329 0.10832 −0.11123 −0.57925 −0.27022 . . .
continuous −0.15253 −0.082764 −0.40871 −0.53719 0.0822 −0.31482 . . .
imposing 0.32043 0.155 −0.10547 −0.23157 −0.35657 −0.097553 . . .
weighty 0.085281 0.015087 0.58454 0.0094917 −0.082617 0.36811 . . .
. . . . . . . . . . . . . . . . . . . . . . . .

abstracted 0.230450 -0.31227 -0.305120 -0.186680 0.036875 0.124390 -0.69434 0.03134 0.540250
absurd -0.588760 -0.50195 -0.148390 0.271660 -0.283130 0.313740 -2.13350 -0.10671 -0.374170

V10
able 0.09212
abnormal 0.25169
abrupt -0.24750
abstract 0.28779
abstracted 0.13886
absurd -0.59916

On the one hand, word vectors capture context-sensitive information. On the other hand, the number of
dimensions is so high that we would have to inspect many dimensions in a pairwise fashion if we inspected
a graph based on a PCA of the data frame.

Laurens van der Maaten has devised a dimensionality reduction technique known as t-Distributed
Stochastic Neighbor Embedding (t-SNE) (van der Maaten and Hinton 2008). He claims that t-SNE dimen-
sionality reduction is particularly well suited for the visualization of high-dimensional datasets. The t-SNE
algorithm is implemented in R in two packages: tsne and Rtsne.7 I use the latter, with the dedicated
function Rtsne().

> install.packages("Rtsne") # install the Rtsne package
> library(Rtsne) # load the package

The argument initial_dims specifies the number of word-vector columns.

> rtsne <- Rtsne(as.matrix(data), initial_dims=300)
> str(rtsne)
List of 7
$ theta : num 0.5
$ perplexity: num 30
$ N : int 1108
$ origD : int 300
$ Y : num [1:1108, 1:2] 0.423 -5.541 3.93 -2.07 -1.544 ...
$ costs : num [1:1108] 0.00419 0.00146 0.00171 0.00143 0.00161 ...
$ itercosts : num [1:20] 70 69.5 69.4 70 70 ...

7 Rtsne is a wrapper for van der Maaten’s implementation of t-SNE via Barnes-Hut approximations.
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Rtsne() outputs a list whose Y component we want to plot. First, call the plot with plot() and indicate
type="n" so that no data point is plotted. Instead, use the row names to label each point with text()
and its labels argument. Because there are many adjectives to plot, reduce the font size with the cex
argument.

> plot(rtsne$Y, type="n", main="Barnes-Hut t-SNE")
> text(rtsne$Y, labels=rownames(data), cex=0.5)

You may find the plot in Fig. 10.7 too daunting because of the accumulation of words scattered across
the euclidean space. If so, you may want to partition the data points into classes with a method known
as k-means clustering. K-means partitions the observations into k classes. Each observation is part of the
cluster with the nearest mean. We select the desired number of clusters via the centers argument. Here,
we choose to have ten clusters. In base R, you perform k-means clustering with the kmeans() function,
which outputs a list.

> km.clustering <- kmeans(data, centers=10)
> str(km.clustering)
List of 9
$ cluster : Named int [1:1108] 6 3 1 3 10 2 3 3 4 3 ...
..- attr(*, "names")= chr [1:1108] "able" "abnormal" "abrupt" "abstract" ...

$ centers : num [1:10, 1:300] -0.29695 -0.28824 0.06032 0.00418 -0.21374 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : chr [1:10] "1" "2" "3" "4" ...
.. ..$ : chr [1:300] "V1" "V2" "V3" "V4" ...

$ totss : num 37164
$ withinss : num [1:10] 2111 2234 5010 1788 1687 ...
$ tot.withinss: num 31568
$ betweenss : num 5596
$ size : int [1:10] 80 83 163 65 71 150 90 119 58 229
$ iter : int 5
$ ifault : int 0
- attr(*, "class")= chr "kmeans"

We are interested in the cluster element, which we extract and convert into a factor.

> fit <- as.factor(km.clustering$cluster)

Next, we append the factor to the original data frame with cbind().

> newdata <- cbind(data, fit)

We run the Rtsne() function again.

> rtsne_out <- Rtsne(as.matrix(data), initial_dims=300)

We want to assign one color per class. Because there are ten classes, we need ten colors. The rainbow()
function is perfect for this task because it specifies a range of hues, of which we select ten.

> colors <- rainbow(length(unique(newdata$fit)))
> colors
[1] "#FF0000FF" "#FF9900FF" "#CCFF00FF" "#33FF00FF" "#00FF66FF" "#00FFFFFF" "#0066FFFF" "#3300FFFF"
[9] "#CC00FFFF" "#FF0099FF"

We assign one color to each class with the names() function.

> names(colors) = unique(newdata$fit)
> colors

6 3 1 10 2 4 7 5
"#FF0000FF" "#FF9900FF" "#CCFF00FF" "#33FF00FF" "#00FF66FF" "#00FFFFFF" "#0066FFFF" "#3300FFFF"

9 8
"#CC00FFFF" "#FF0099FF"
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Finally, we plot the adjectives, which are colored depending on the class that they belong to (Fig. 10.8). The
k-means partitions do not necessarily correspond to how the adjectives are clustered by the t-SNE algorithm.
This may be meaningful and worth interpreting.

> plot(rtsne_out$Y, t='n', main="Barnes-Hut t-SNE with k-means clustering")
> text(rtsne_out$Y, labels=rownames(data), col=colors[newdata$fit])

10.4 Correspondence Analysis

Correspondence analysis (henceforth CA) is a multifactorial method used to summarize and visualize large
contingency tables. Its foundations were laid out by Benzécri (1973, 1984), and further described by
Greenacre (2007) and Glynn (2014). It was popularized by Bourdieu (1979). It is now applied in corpus
linguistics fairly regularly.

10.4.1 Principles of Correspondence Analysis

CA takes as input a matrix M of counts that consists of I individuals or observations (rows) and J variables
(columns). This matrix is a contingency table. The method consists in reducing the dimensionality of
M by calculating matrices between the rows and the columns. The output is then visualized on a two-
dimensional map. The larger the distance between two rows and/or columns, the further apart the row
or column coordinates will be on the map. The term “correspondence analysis” gets its name from what
it aims to show, namely the correspondence between what the rows and the columns represent. Besides
FactoMineR, there are several options for running CA in R: ca (Nenadic and Greenacre 2007), and
anacor (de Leeuw and Mair 2009).

10.4.2 Case Study: General Extenders in the Speech of English Teenagers

Cheshire (2007) studies the use of general extenders in the speech of teenagers in England. General extenders
are clause-final pragmatic particles appended to a word, a phrase, or a clause (2007, p. 156). Their basic
pattern is a conjunction (and or but) followed by a noun phrase. Here are three examples:

(12) Steve works in the engineering office and has taken over some of the er you know purchasing func-
tion as well, like enquiries and stuff. (BNC–JP2)

(13) And I don’t think we do it so much with the erm (pause) careers service training, but with the careers
teachers often we’ve got them doing action plans and things. (BNC–G4X)

(14) I knew exactly where to stop it so that I could get off and go down the ladder, sneak a cup of tea or
something. (BNC–FXV)

Cheshire recorded teenagers from three towns: Reading, Milton Keynes, and Hull. These towns are
located in three distinct regional locations in England. In each town, the teenagers were grouped according
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to gender and social class. After inspecting Tab. 10.3, which summarizes the distribution of the most frequent
general extenders based on the social class of the informants, Cheshire finds that “there [is] a robust social-
class distinction in the use of certain forms (. . . )” (2007, p. 164).

Table 10.3: The distribution of some general extenders in the speech of teenagers in three English towns
(adapted from Cheshire 2007, p. 164)

forms
Reading Milton Keynes Hull

middle class working class middle class working class middle class working class

and that 4 49 9 44 10 66
and all that 4 14 2 4 1 4
and stuff 36 6 45 5 62 18
and things 32 0 35 0 12 5
and everything 21 16 22 18 30 31
or something 72 20 30 17 23 3

Although modest in size, the contingency table is hard to synthesize with the naked eye. Another problem
is that it does not display the marginal totals, i.e. the sum totals of the rows and columns. Any tendency we
infer from raw frequencies may be flawed. This is where correspondence analysis steps in.

The aim of this part of Cheshire’s study is to see if there are geographic/social differences across the data
set and, if so, point out these differences. In fact, the point of making a table such as the above is twofold.
You want to know which linguistic forms have the same regional and social profiles. You also want to know
the linguistic profile of each region/social class with respect to general extenders.

In your chap10 subfolder, you will find Tab. 10.3 in R data file format (df_extenders.rds). After
clearing R’s memory, load the FactoMineR library and import the data set into R.

> rm(list=ls(all=TRUE))
> library(FactoMineR)
> data <- readRDS("/CLSR/chap10/df_extenders.rds") # Windows
> data <- readRDS("/CLSR/chap10/df_extenders.rds") # Mac

The data set has been successfully imported as a data frame. With str(), inspect data.

> str(data)
'data.frame': 6 obs. of 6 variables:
$ Reading_MC : int 4 4 36 32 21 72
$ Reading_WC : int 49 14 6 0 16 20
$ Milton_Keynes_MC: int 9 2 45 35 22 30
$ Milton_Keynes_WC: int 44 4 5 0 18 17
$ Hull_MC : int 10 1 62 12 30 23
$ Hull_WC : int 66 4 18 5 31 3

It consists of six individuals (i.e. the six linguistic forms of the general extenders with one individual
per row), and six variables (one variable per column). One minor difference with the original table is
that the regional and social variables have been conflated. Thus, the column Reading_WC contains the
contributions of teenagers of working class extraction from Reading whereas the column Reading_MC
contains the contributions of teenagers from of middle class extraction from the same town.
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The CA() function of the package FactoMineR is used to run the CA.

> ca.object <- CA(data)

By default, CA() outputs the plot that summarizes the contingency table (Fig. 10.9). The plot makes it easier
to explore the meaningful tendencies in the data set. By default, the individuals are in blue and the variables
in red.

Without the help of a CA graph, Cheshire (2007, p. 164) interprets the table as follows:

Of the adjunctives, and that was preferred by the working-class speakers in all three towns, as was the less frequent
and all that. The middle-class speakers, on the other hand, preferred and stuff and and things again in all three towns,
though in Hull the middle-class adolescents used and stuff far more often than and things (the relatively high frequency
of and stuff for the working-class group in Hull was due to just three speakers, one of whom was responsible for 10 of
the 18 tokens).

The same divide between the linguistic practices of working class and middle class teenagers is observed
in the graph. Indeed, the variables Reading_MC, Miton_Keynes_MC, and Hull_MC cluster in the left
part of the plot whereas Reading_WC, Miton_Keynes_WC, and Hull_WC cluster in the right part of
the plot. The general extenders and that and and all that do cluster together with the latter on the right. We
also observe the surprising profile with respect to the three middle-class teenager from Hull, one of whom
contributed 10 out of 18 occurrences of and stuff (see the lower left part of the plot). Cheshire further
observes the following:

There is a middle-class preference for or something in Reading and also in Hull, though in Hull the numbers of tokens
are lower: however, this social class difference does not exist in the Milton Keynes data set.
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Fig. 10.9: CA biplot: a plane representation of individuals and variables in dimensions 1 and 2
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Admittedly, or something is found in the left part of the plot—where the linguistic preferences of middle-
class teenagers are found—and is closely associated with Reading_MC. Yet, the social class differ-
ence regarding this extender is not conspicuous for Hull in the graph because Hull_MC is not close to
or something. Neither conspicuous is the absence of social class difference regarding Milton Keynes:
Milton_Keynes_MC and or something are both on the left part of the plot. To understand why this
is the case, let us wind back a little to understand what goes on statistically speaking when you run a CA.

10.4.3 How CA Works

Theoretically, the linguist makes no assumption as to what groupings should be found in the data set prior to
running a CA. In practice, however, linguists construct a contingency table precisely because they expect to
find a relationship between row and column variables. In fact, if the rows and the columns are independent,
the operationalization of the research question has to be called into question. To make sure that the rows
and columns are not independent, the χ2 test is used. It tests the significance of the overall deviation of the
table from the independence model. The test computes the contribution of each cell to χ2 and sums up all
contributions to obtain the χ2 statistic.

The result is given by entering ca.object. The first part of the object states the following:

**Results of the Correspondence Analysis (CA)**
The row variable has 6 categories; the column variable has 6 categories
The chi square of independence between the two variables is equal to 384.1155
(p-value = 5.499003e-66 ).

Here, χ2 has a high value and it is associated with very small p-value, implying that there is indeed a
relationship between the row variables and the column variables. Yet, we should be wary of not using the
magnitude of the χ2 value to quantify the effect of the correlation between variables, because this value is
dependent on the sample size. The data set does not meet one assumptions of the χ2 test, which stipulates
that 80% of the sample size should be greater than 5 (only about 67% of the sample is greater than 5).
However, because CA is exploratory, it can be applied to tables even when the conditions of validity of the
χ2 statistic are not met (Greenacre 2007). Given that the p-value is very close to 0, the significance of the
deviation of the table from independence is undeniable. In other words, the choice of a general extender and
the locations and social classes of the informants are globally interdependent.

Central to CA is the concept of profile. To obtain the profile of a row, each cell is divided by its row total,
as in Tab. 10.4. The last row in the table is the average row profile.

You obtain Tab. 10.4 thanks to Peter Dalgaard’s function prop.table(), which converts the contin-
gency table into a table of proportions based on marginal totals.

Table 10.4: The row profiles of Tab. 10.3

forms
Reading Milton Keynes Hull

row total
middle class working class middle class working class middle class working class

and that 0.0220 0.2692 0.0495 0.2418 0.0549 0.3626 1
and all that 0.1379 0.4828 0.0690 0.1379 0.0345 0.1379 1
and stuff 0.2093 0.0349 0.2616 0.0291 0.3605 0.1047 1
and things 0.3810 0 0.4167 0 0.1429 0.0595 1
and everything 0.1522 0.1159 0.1594 0.1304 0.2174 0.2246 1
or something 0.4364 0.1212 0.1818 0.1030 0.1394 0.0182 1
column average 0.2195 0.1364 0.1857 0.1143 0.1792 0.1649 1
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> data.col.totals <- rbind(data, apply(data[,1:6], 2, sum)) # sum up each column
> rownames(data.col.totals)[7] <- "column average" # add name to the last row
> data.col.totals <- as.matrix(data.col.totals) # convert to matrix
> row.profiles <-prop.table(data.col.totals, margin=1) # get proportions
> row.profiles <- cbind(row.profiles, rowSums(row.profiles)) # sum up each row
> colnames(row.profiles)[7] <- "row total" # add name to the last column
> row.profiles <- round(row.profiles, 4) # keep four decimal places
> row.profiles # display

Reading_MC Reading_WC Milton_Keynes_MC Milton_Keynes_WC Hull_MC Hull_WC row total
and that 0.0220 0.2692 0.0495 0.2418 0.0549 0.3626 1
and all that 0.1379 0.4828 0.0690 0.1379 0.0345 0.1379 1
and stuff 0.2093 0.0349 0.2616 0.0291 0.3605 0.1047 1
and things 0.3810 0.0000 0.4167 0.0000 0.1429 0.0595 1
and everything 0.1522 0.1159 0.1594 0.1304 0.2174 0.2246 1
or something 0.4364 0.1212 0.1818 0.1030 0.1394 0.0182 1
column average 0.2195 0.1364 0.1857 0.1143 0.1792 0.1649 1

In a similar fashion, one obtains the profile of a column by dividing each column frequency by the column
total (Tab. 10.5).

Table 10.5: The column profiles of Tab. 10.3

forms
Reading Milton Keynes Hull

row average
middle class working class middle class working class middle class working class

and that 0.0237 0.4667 0.0629 0.5000 0.0725 0.5197 0.2364
and all that 0.0237 0.1333 0.0140 0.0455 0.0072 0.0315 0.0377
and stuff 0.2130 0.0571 0.3147 0.0568 0.4493 0.1417 0.2234
and things 0.1893 0 0.2448 0 0.0870 0.0394 0.1091
and everything 0.1243 0.1524 0.1538 0.2045 0.2174 0.2441 0.1792
or something 0.4260 0.1905 0.2098 0.1932 0.1667 0.0236 0.2143
column total 1 1 1 1 1 1 1

Again, you obtain Tab. 10.5 with prop.table().

> data.row.totals <- cbind(data, apply(data[1:6,], 1, sum))
> colnames(data.row.totals)[7] <- "row average"
> col.profiles <-prop.table(as.matrix(data.row.totals), margin=2)
> col.profiles <- rbind(col.profiles, colSums(col.profiles))
> rownames(col.profiles)[7] <- "column total"
> col.profiles <- round(col.profiles, 4)
> col.profiles

Reading_MC Reading_WC Milton_Keynes_MC Milton_Keynes_WC Hull_MC Hull_WC row average
and that 0.0237 0.4667 0.0629 0.5000 0.0725 0.5197 0.2364
and all that 0.0237 0.1333 0.0140 0.0455 0.0072 0.0315 0.0377
and stuff 0.2130 0.0571 0.3147 0.0568 0.4493 0.1417 0.2234
and things 0.1893 0.0000 0.2448 0.0000 0.0870 0.0394 0.1091
and everything 0.1243 0.1524 0.1538 0.2045 0.2174 0.2441 0.1792
or something 0.4260 0.1905 0.2098 0.1932 0.1667 0.0236 0.2143
column total 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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Comparing row profiles to their average row profile leads to the same conclusions as comparing column
profiles to their average column profile. For example, if we compare the profile of and that observed in
the speech of middle class teenagers from Reading (0.0220) to the profile of all general extenders used by
middle-class teenagers from Reading (0.2195) in Tab. 10.4, we obtain a ratio of 0.0220/0.2195 = 0.1002.
This implies that the use of and that among middle-class teenagers from Reading is well below the average
profile of the general extenders among middle-class teenagers in Reading. In Tab. 10.5, the profile of and
that in the same sociolinguistic context is 0.0237, whereas the average profile of and that is 0.2364. We
obtain the same ratio as above, i.e. 0.0237/0.2364= 0.1002. The above profiles add up to 1. These relative
frequencies have special geometric features, which CA converts into coordinates and visualizes as points on
a map.

Let us now come back to Cheshire’s claim that a middle-class preference is observed in Reading and Hull
with regards to the use of or something, but not in Milton Keynes. Inspection of Tabs. 10.4 and 10.5 proves
that she is right regarding Reading and Hull. However, even though the social class difference in Milton
Keynes is not apparent in Tab. 10.5 (column profiles), it is more pronounced in Tab. 10.4 (row profiles).
Furthermore, the difference between middle-class and working-class usage in Hull is not specific to or
something. Bigger differences exist with respect to and that and and stuff in the row profiles and the column
profiles. This explains why, although Hull_MC is on the left hand side of the biplot (like or something), the
variable is not close to this extender. The two-dimensional map produced by CA goes a little farther than
the eye can see.

On the one hand, representing both rows and columns on a single map is useful to capture the nature
of the relationship between the row variables and the column variables. On the other hand, it does not say
anything as to the intensity of the relationship. This intensity is measured with Cramér’s V , introduced in
Chap. 8.

> V <- sqrt(as.vector(chisq.test(data)$statistic)/(sum(data)*((min(ncol(data), nrow(data)))-1)))
> round(V, 3)
[1] 0.316

The intensity of the relationship is non negligible for this sort of data: V = 0.316. A score of 1 would be
unrealistic as it would attest an exclusive association between the use of extenders and socio-geographic
background. In CA, Cramér’s V is assessed in the light of the variance of the table.

Distances between profiles are measured with inertia, which Greenacre (2007, p. 32) defines as “the
weighted average of squared χ2-distances between the row profiles and their average profile (similarly,
between the column profiles and their average)”. CA interprets inertia geometrically to assess how far
row/column profiles are from their respective average profiles. It is with the total inertia of the table (Φ2)
that CA measures how much variance there is. Φ2 is obtained by dividing the χ2 statistic by the sample size.

> chisq <- chisq.test(data)
> inertia <- as.vector(chisq$statistic)/sum(chisq$observed); inertia
[1] 0.4988513
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In Tab. 10.3, Φ2 has a value of 0.5, which is not very high. Therefore, we can expect data points to be less
spread out on the map than if Φ2 were higher. This is because there are subtle differences between the data
profiles.

Each column of the table contributes one dimension. CA decomposes Φ2 along a few dimensions that
concentrate as much information as possible. This is measured in terms of eigenvalues, which are compo-
nents of the total inertia of the table (Φ2).

> round(ca.object$eig, 2)
eigenvalue percentage of variance cumulative percentage of variance

dim 1 0.37 73.62 73.62
dim 2 0.09 18.14 91.76
dim 3 0.03 5.18 96.94
dim 4 0.02 3.05 99.99
dim 5 0.00 0.01 100.00

Each dimension is associated with a percentage that reflects its contribution to Φ2 (the larger the eigenvalue,
the more the dimension contributes to Φ2). In standard practice, the first few dimensions concentrate the
largest eigenvalues. As evidenced by the output above and Fig. 10.10, the first two dimensions represents
91.76% of the variance of the table, that is to say most of the difference between the actual sample (the data
table) and the theoretical sample under the independence hypothesis. Considering these two dimensions
alone for interpretation is enough to capture the logic of Tab. 10.3.

> barplot(ca.object$eig[,2], names=paste("dimension", 1:nrow(ca.object$eig)),
+ xlab="dimensions", ylab="percentage of variance")
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Fig. 10.10: A barplot showing the eigenvalues associated with each dimension

CA offers two indicators to facilitate the interpretation of biplots: the relative contributions of the data
points to inertia and the quality of the projection of the data points onto the dimensions. Contributions are
useful when there are many data points on the biplot. If a data point displays a minor contribution to a given
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dimension, you must be careful not to overinterpret its position with respect to that dimension. Contributions
are stored in ca.object. In one line of code, you can extract the contributions of rows and columns and
combine them into one table using rbind().

> contrib <- rbind(ca.object$row$contrib[,1:2], ca.object$col$contrib[,1:2])

With subsetting and sort(), you obtain the contributions to dimensions 1 and 2.

> sort(contrib[,1], decreasing=TRUE) # contributions of rows and columns to dim 1
and that Hull_WC Reading_WC Reading_MC and things

55.6242953 22.6977255 20.1086910 20.0324055 16.9323102
Milton_Keynes_WC Milton_Keynes_MC and stuff or something Hull_MC

15.0839737 14.4709370 13.2773723 8.4835958 7.6062673
and all that and everything

4.9022705 0.7801559
> sort(contrib[,2], decreasing=TRUE) # contributions of rows and columns to dim 2

or something Hull_MC and stuff Reading_MC Reading_WC
45.4466061 35.3528820 34.3225961 33.6661156 14.0714353

Hull_WC and all that and everything Milton_Keynes_WC Milton_Keynes_MC
13.3971677 11.3867915 7.6981253 1.8360965 1.6763029
and things and that
1.0280076 0.1178734

The extender and that and the variables Hull_WC, Reading_WC, and Reading_MC contribute the most
to dimension 1 (along the horizontal axis in Fig. 10.9), unlike or something, Hull_MC, and all that, and
and everything, which can be ignored here. Some of the data points, whose contribution to dimension
1 is negligible, contribute decisively to dimension 2 (along the vertical axis in Fig. 10.9): or something,
Hull_MC, and and stuff.

The quality of the projection onto a dimension is measured as the percentage of inertia associated with
this dimension.

> quality <- rbind(ca.object$row$cos2[,1:2], ca.object$col$cos2[,1:2])
> sort(quality[,1], decreasing=TRUE) # projection quality of rows and columns in dim 1

and that Milton_Keynes_WC Hull_WC Milton_Keynes_MC and things
0.9905390 0.9066550 0.8310275 0.8132865 0.7793381

Reading_WC Reading_MC and stuff and all that or something
0.7661048 0.6950972 0.5807247 0.4307165 0.4076990
Hull_MC and everything

0.3997791 0.2689299
> sort(quality[,2], decreasing=TRUE) # projection quality of rows and columns in dim 2
and everything or something Hull_MC and stuff Reading_MC

0.6538582814 0.5381484992 0.4578406895 0.3698957352 0.2878369052
and all that Reading_WC Hull_WC Milton_Keynes_WC Milton_Keynes_MC
0.2465111508 0.1320942040 0.1208612359 0.0271933550 0.0232134877

and things and that
0.0116586164 0.0005172065

Customarily, projection quality is used to select the dimension in which the individual or the variable is
the most faithfully represented. For example, the contribution of Reading_MC is non-negligible in both
dimensions, but the quality of its projection is at its highest in dimension 1. It is therefore with respect to the
horizontal axis that this variable is to be interpreted in Fig. 10.9.

If you want to compare more than the first two dimensions, use the axes option.

> par(mfrow=c(1,2))
> plot(ca.object, title="")
> plot(ca.object, axes=2:3, title="")

In Fig. 10.11, the two biplots map the first three dimensions of the data. Dimension 1 is represented by
the horizontal axis and dimension 2 by the vertical axis in the left plot. Dimension 2 is represented by the
horizontal axis and dimension 3 by the vertical axis in the right plot.



266 10 Clustering Methods

Dim 1 (73.62%)

D
im

 2
 (

18
.1

4%
)

and that

and all that

and stuff

and things

and everything

or something
Reading_MC

Reading_WC

Milton_Keynes_MC

Milton_Keynes_WC

Hull_MC

Hull_WC

−0.5 0.0 0.5 1.0

−
0.

5
0.

0
0.

5
1.

0

−0.4 −0.2 0.0 0.2 0.4 0.6

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

Dim 2 (18.14%)

D
im

 3
 (

5.
18

%
)

and that

and all that

and stuff

and things

and everything

or something

Reading_MC

Reading_WC

Milton_Keynes_MC

Milton_Keynes_WC

Hull_MC

Hull_WC

Fig. 10.11: Two CA biplots—left: dimensions 1 and 2; right: dimensions 2 and 3

Given that dimensions 1 and 2 account for most of Φ2, let us focus on the left plot. The key to interpret-
ing a CA biplot is to remember that, given the symmetric treatment of rows and columns, two rows or two
columns have a similar profile if they are relatively close in the Euclidean space. The proximity of a par-
ticular row to a particular column indicates that this row has a particularly important weight in this column,
and vice versa. As far as the column variables are concerned (in red), there is a clear divide between the use
of extenders by middle-class (to the left) and working-class informants (to the right). As far as the row vari-
ables are concerned (in blue), the extenders favored by middle-class teenagers are or something, and things,
and and stuff. The extenders favored by working-class teenagers are and all that, and and that. The general
extender and everything stands in the middle. It does not contribute significantly to either dimension, but it
is well projected along the vertical axis. This indicates that it is somewhat indifferent to socio-geographic
variation. The vertical axis shows a difference between Reading and Milton Keynes in the upper part of the
plot, and Hull at the bottom. Look at a map of England and you will see that this is not much of a surprise:
Hull is in Yorkshire (northern England), whereas Reading and Milton Keynes are much further south.

10.4.4 Supplementary Variables

As with PCA, you can introduce illustrative elements in CA. These supplementary rows and/or columns
help interpret the active rows and columns. As opposed to active elements, supplementary elements do not
contribute to the construction of the dimensions. They can still be positioned on the map, but only after Φ2

has been calculated with the active elements.
The column variables in Tab. 10.3 conflate the geographic origin and the social class of the informants,

but what if you want to focus on either the geographic origin or the social background? What you can do
is augment Tab. 10.3 with the totals for each town and each social class so as to obtain Tab. 10.6. In R,
Tab. 10.6 is obtained by summing up the rows for each group of variables: Reading, Milton Keynes, Hull,
middle class, and working class.
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Table 10.6: Tab. 10.3 augmented with illustrative variables

forms
Reading Milton Keynes Hull

Reading Milton_Keynes Hull MC WC
middle class working class middle class working class middle class working class

and that 4 49 9 44 10 66 53 53 76 23 159
and all that 4 14 2 4 1 4 18 6 5 7 22
and stuff 36 6 45 5 62 18 42 50 80 143 29
and things 32 0 35 0 12 5 32 35 17 79 5
and everything 21 16 22 18 30 31 37 40 61 73 65
or something 72 20 30 17 23 3 92 47 26 125 40

> # sum up the rows for Reading data and append the new column
> data.illust <- cbind(data, apply(data[1:6, 1:2], 1, sum))
> # add column name
> colnames(data.illust)[7] <- "Reading"
>
> # sum up the rows for Milton Keynes data and append the new column
> data.illust <- cbind(data.illust, apply(data.illust[1:6, 3:4], 1, sum))
> # add column name
> colnames(data.illust)[8] <- "Milton_Keynes"
>
> # sum up the rows for Hull data and append the new column
> data.illust <- cbind(data.illust, apply(data.illust[1:6, 5:6], 1, sum))
> # add column name
> colnames(data.illust)[9] <- "Hull"
>
> # sum up the rows for middle-class data and append the new column
> data.illust <- cbind(data.illust, apply(data.illust[1:6, c(1,3,5)], 1, sum))
> # add column name
> colnames(data.illust)[10] <- "MC"
>
> # sum up the rows for working-class data and append the new column
> data.illust <- cbind(data.illust, apply(data.illust[1:6, c(2,4,6)], 1, sum))
> # add column name
> colnames(data.illust)[11] <- "WC"
>
> #inspect
> str(data.illust)
'data.frame': 6 obs. of 11 variables:
$ Reading_MC : int 4 4 36 32 21 72
$ Reading_WC : int 49 14 6 0 16 20
$ Milton_Keynes_MC: int 9 2 45 35 22 30
$ Milton_Keynes_WC: int 44 4 5 0 18 17
$ Hull_MC : int 10 1 62 12 30 23
$ Hull_WC : int 66 4 18 5 31 3
$ Reading : int 53 18 42 32 37 92
$ Milton_Keynes : int 53 6 50 35 40 47
$ Hull : int 76 5 80 17 61 26
$ MC : int 23 7 143 79 73 125
$ WC : int 159 22 29 5 65 40

Your data frame now contains 11 columns, i.e. six active columns and five illustrative columns. As we run
the function CA() on the data frame, we must declare the last five columns as illustrative with the col.sup
argument.

> ca.object.2 <- CA(data.illust, col.sup=7:11)

Adding illustrative columns does not affect the χ2 score and its associated p-value.
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> ca.object.2

**Results of the Correspondence Analysis (CA)**
The row variable has 6 categories; the column variable has 6 categories
The chi square of independence between the two variables is equal to 384.1155 (p-value = 5.499003e-66 ).

*The results are available in the following objects:

name description
1 "$eig" "eigenvalues"
2 "$col" "results for the columns"
3 "$col$coord" "coord. for the columns"
4 "$col$cos2" "cos2 for the columns"
5 "$col$contrib" "contributions of the columns"
6 "$row" "results for the rows"
7 "$row$coord" "coord. for the rows"
8 "$row$cos2" "cos2 for the rows"
9 "$row$contrib" "contributions of the rows"
10 "$col.sup$coord" "coord. for supplementary columns"
11 "$col.sup$cos2" "cos2 for supplementary columns"
12 "$call" "summary called parameters"
13 "$call$marge.col" "weights of the columns"
14 "$call$marge.row" "weights of the rows"

If you generate the CA biplot based on ca.object.2, you get redundant projections with respect to
the column variables.

> plot(ca.object.2)

Thanks to the invisible argument, you can choose which variables not to plot. In the code below, the
active columns are made invisible.8

> plot(ca.object.2, invisible="col", title="")

Thanks to the illustrative variables, Fig. 10.12 makes the tendencies outlined above more conspicuous.
Reading (upper part of the plot) and Hull (bottom part of the plot) have clearly distinct profiles, like middle
class (left) and working class (right). The Milton Keynes variable is close to where the horizontal and vertical
axes intersect. This point is where the average row profile and the average column profile coincide. It is also
relatively to this intersection that all profiles on the map are measured. Because Milton Keynes is very close
to the average profiles, no noteworthy tendency can be derived from this variable, contrary to what Tab. 10.3
might have led us to believe.

10.5 Multiple Correspondence Analysis

As its name indicates, multiple correspondence analysis, henceforth MCA, is an extension of CA. It takes
as input tables with nominal categorical variables whereas CA takes as input tables with counts. This is
because MCA was originally developed to explore the structure of surveys in which informants are asked
to select an answer from a list of suggestions. For example, the question “According to you, which of
these disciplines best describes the social sciences: literature, history, sociology, linguistics, anthropology?”
requires informants to select one category.

When you extract data from a corpus, the table you obtain often takes the form of a table with individuals
in the rows and categorical variables in the columns. Such is the case of the data frame that you compiled in

8 Setting the values of invisible to "row", "row.sup", "col", and "col.sup" will make the active rows, illustrative
rows, active columns, and illustrative columns respectively invisible.
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Fig. 10.12: CA biplot: a plane representation of active rows and illustrative columns

Sect. 5.3.3. Our starting point for MCA clustering is therefore a I × J data frame with I observations and J
variables.

10.5.1 Principles of Multiple Correspondence Analysis

The general principles of CA outlined above also apply to MCA (Greenacre and Blasius 2006; Le Roux
2010). However, I find MCA to be more versatile than CA. For this reason, MCA is perhaps more complex
than CA. This is a reasonable price to pay for the subtle interpretations that you will make from a study
based on MCA.

In MCA, you may choose to focus on the individuals, the variables, or the categories of these variables.
The categories are important because they provide a link between the individuals and the variables. If you
choose to focus on individuals, you want to examine the proximities between them in terms of the variables
and/or the categories that characterize them. The more categories individuals have in common, the more
similar their profiles and the closer they will be on a map. You may also want to summarize the relationships
between variables (this is what we shall do below). When you focus on categories, the more individuals two
categories have in common, the closer they are.
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10.5.2 Case Study: Predeterminer vs. Preadjectival Uses of Quite and Rather

MCA is illustrated using a case study based on Desagulier (2015). The purpose of this paper was to tease
out differences between quite and rather, the underlying assumption being that these two adverbs are near-
synonyms. Although quite and rather can modify other adverbs (quite frankly, rather desperately), NPs
(quite a sight, rather a shock), or even VPs (I quite understand, I rather enjoyed it), the investigation was
restricted to the far more frequent contexts where these intensifiers are used as degree modifiers of adjectives,
as in (15) and (16).

(15) We are quite different people now, we need different things. (BNC–CEX)

(16) As it happens, there is a rather nice place for sale, not too far from London. (BNC–H9V)

When quite and rather modify attributive adjectives, they can occur in predeterminer position, a behavior
that we do not see with other intensifiers.

(17) a. That has proved to be a quite difficult question to answer. (preadjectival)

b. That has proved to be quite a difficult question to answer. (predeterminer)

a. That is a rather difficult question to answer. (preadjectival)

b. That is rather a difficult question to answer. (predeterminer)

a. I know it is a fairly difficult question. (preadjectival)

b. ??I know it’s fairly a difficult question. (predeterminer)

The study was partly prompted by the popular belief that the predeterminer pattern is significantly associated
with written language (and the formality traditionally associated with it).

To remain within the strict limits of the preadjectival vs. predeterminer alternation, I kept only those
patterns that involved both alternants, namely <a(n) quite/rather ADJ NP> and <quite/rather a(n) ADJ
NP>. Following the same logic, I ignored the cases where the adjective was in predicative position. To see
how the preadjectival vs. predeterminer alternation behaves in the light of contextual variables, I extracted
contextual tags of the XML edition of the British National Corpus and compiled a dataset with three levels
of contextual information for each observation: text mode, text type, and information regarding each text. I
obtained a data frame that consists of about 3100 observations and 6 categorical variables:

• construction (predeterminer vs. preadjectival),
• intensifier (quite and rather),
• text mode (written vs. spoken),
• text type (othersp, news, fiction, etc.),
• text information (W fict prose, W ac:humanities arts, S conv, etc.),
• semantic classes of adjectives.

The dataset was submitted to multiple correspondence analysis.
In your chap10 subfolder, you will find a miniature version of the data frame that I used in the above-

mentioned paper: quite.rather.rds. It has been compiled from the BNC Baby instead of the full
BNC (XML Edition).

After clearing R’s memory, load the data frame and inspect it.
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> rm(list=ls(all=T))
> df.quite.rather <- readRDS("/CLSR/chap10/quite.rather.rds")
> str(df.quite.rather)
'data.frame': 163 obs. of 9 variables:
$ corpus_file : Factor w/ 69 levels "A1F.xml","A1N.xml",..: 57 38 6 32 40 13 43 43 27 39 ...
$ construction: Factor w/ 2 levels "PREADJECTIVAL",..: 2 1 2 2 2 1 1 1 1 1 ...
$ intensifier : Factor w/ 2 levels "QUITE","RATHER": 1 2 1 1 2 1 1 1 2 2 ...
$ text_mode : Factor w/ 2 levels "SPOKEN","WRITTEN": 1 2 2 2 2 2 2 2 2 2 ...
$ text_type : Factor w/ 4 levels "ACPROSE","CONVRSN",..: 2 3 4 3 3 4 3 3 1 3 ...
$ text_info : Factor w/ 18 levels "S conv","W ac:humanities arts",..: 1 6 13 6 6 10 6 6 2 6 ...
$ match : Factor w/ 150 levels "a quite different class ",..: 133 15 69 76 147 1 2 3 18 19 ...
$ adjective : Factor w/ 89 levels "able","aggressive",..: 1 10 10 19 69 21 21 21 21 21 ...
$ sem_class : Factor w/ 18 levels "Able/intelligent",..: 1 1 1 1 1 2 2 2 2 2 ...

MCA is very sensitive to the number of categories per variable. In R, this is visible when you inspect
the structure of the data frame with str(): Factor w/ n levels. If there are too many levels, it will
affect the inertia of the table and therefore its breaking down into eigenvalues. You will therefore need to
inspect a lot more than just the first two dimensions (which is common in MCA anyway).

Furthermore, if some factor levels concern too small a number of individuals, a large inertia will result
and these factors will be overrepresented. Such is the case of some categories of the variables text_info.

> sort(table(df.quite.rather$text_info), decreasing=TRUE)

S conv W fict prose W ac:nat science
57 47 11

W newsp other: report W ac:humanities arts W ac:soc science
8 7 7

W ac:polit law edu W newsp brdsht nat: misc W newsp other: arts
6 5 4

W newsp brdsht nat: arts W newsp brdsht nat: commerce W newsp brdsht nat: editorial
3 1 1

W newsp brdsht nat: report W newsp brdsht nat: science W newsp brdsht nat: social
1 1 1

W newsp brdsht nat: sports W newsp other: science W newsp tabloid
1 1 1

Several of the categories prefixed by W newsp brdsht characterize very few observations (and often just
one). We should therefore group these rare categories into larger ones. The function levels() allows you
to access each level of the variable text_info.

> levels(df.quite.rather$text_info)
[1] "S conv" "W ac:humanities arts" "W ac:nat science"
[4] "W ac:polit law edu" "W ac:soc science" "W fict prose"
[7] "W newsp brdsht nat: arts" "W newsp brdsht nat: commerce" "W newsp brdsht nat: editorial"
[10] "W newsp brdsht nat: misc" "W newsp brdsht nat: report" "W newsp brdsht nat: science"
[13] "W newsp brdsht nat: social" "W newsp brdsht nat: sports" "W newsp other: arts"
[16] "W newsp other: report" "W newsp other: science" "W newsp tabloid"

You may now replace the rare categories with a higher-order category using the indices provided by
levels() above.

> levels(df.quite.rather$text_info)[7:14] <- "W newsp brdsht nat"
> levels(df.quite.rather$text_info)[8:11] <- "W newsp other"

Regarding the variable sem_class, the category Comparison_Usual concerns only one observation.

> sort(table(df.quite.rather$sem_class), decreasing=TRUE)

Evaluation_Good Comparison_Different Size_Big_Large_Heavy
37 19 19

Evaluation_Bad Time_period_long_old Psych_state_neg
17 14 13
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Phys_percept_Beautiful_pleasant Comparison_Unusual Size_Small_Short
9 7 6

Able/intelligent Easy Entire_maximum
5 3 3

Comparison_Similar Definite_Detailed Difficult
2 2 2

Phys_percept_Ugly_unpleasant Time_period_short_young Comparison_Usual
2 2 1

We group it with Comparison_Similar.

> levels(df.quite.rather$sem_class)[5] <- "Comparison_Similar"

In this first MCA, we restrict the variables to those listed above (construction, intensifier,
text_mode, text_type, and text_info) but leave aside sem_class so as not to clutter the graph.

> df.mca <- df.quite.rather[, c(2:6)]
> str(df.mca)
'data.frame': 163 obs. of 5 variables:
$ construction: Factor w/ 2 levels "PREADJECTIVAL",..: 2 1 2 2 2 1 1 1 1 1 ...
$ intensifier : Factor w/ 2 levels "QUITE","RATHER": 1 2 1 1 2 1 1 1 2 2 ...
$ text_mode : Factor w/ 2 levels "SPOKEN","WRITTEN": 1 2 2 2 2 2 2 2 2 2 ...
$ text_type : Factor w/ 4 levels "ACPROSE","CONVRSN",..: 2 3 4 3 3 4 3 3 1 3 ...
$ text_info : Factor w/ 8 levels "S conv","W ac:humanities arts",..: 1 6 7 6 6 7 6 6 2 6 ...

All the variables are declared as active except text_info, which we declare as illustrative (or “supple-
mentary qualitative variable”) thanks to the argument quali.sup of the MCA() function.

> library(FactoMineR)
> mca.object <- MCA(df.mca, quali.sup=5, graph=FALSE)

By default, MCA() generates several graphs: a graph of variables (including supplementary variables),
a graph of categories, and a graph of individuals.9 To prevent MCA() from plotting these graphs, switch
graph to FALSE. We can plot the graph(s) that we want later with the plot() or plot.MCA() functions,
which offer more plotting options.

As in CA, each dimension is associated with a percentage that reflects its contribution to Φ2. To determine
the number of representative dimensions, examine the cumulative percentage of variance.

> round(mca.object$eig, 2)
eigenvalue percentage of variance cumulative percentage of variance

dim 1 0.72 47.97 47.97
dim 2 0.31 20.44 68.41
dim 3 0.25 16.68 85.09
dim 4 0.15 9.87 94.96
dim 5 0.08 5.04 100.00
dim 6 0.00 0.00 100.00

You may also represent the results graphically with a barplot (Fig. 10.13).

> barplot(mca.object$eig[,2], names=paste("dimension", 1:nrow(mca.object$eig)))

The first two dimensions account for 68.41% of Φ2. The cumulative percentage of the first two dimensions
is usually much lower than what you witness in CA. Here, we are lucky because the percentage is unusually
high.10 The contribution of dimension 2 is not much smaller than the contribution of dimension 3 (dim 2:
20.44; dim 3: 16.68), which is why examining the latter at some stage is not a bad idea.

9 A graph dedicated to quantitative variables will also be plotted if your data frame contains such variables.
10 I designed the data set on purpose.
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Fig. 10.13: A barplot showing the eigenvalues associated with each dimension

Because the data set consists of a limited number of categories we can represent them simultaneously.
The individuals are of little importance (they are just distinct corpus-based observations) so we make them
invisible by specifying invisible="ind". If we do not, each observation will appear on the map as a
number, which will clutter the graph.11

> plot.MCA(mca.object, invisible="ind", autoLab="yes", shadow=TRUE, habillage="quali",
+ cex=0.6, title="")

Fig. 10.14 maps the first two dimensions of the data. It is a good idea to back up your interpretation
of a MCA biplot with numerical descriptors. You can display them thanks to the FactoMineR-specific
function dimdesc().

> descriptors <- dimdesc(mca.object, axes=c(1,2))

Two kinds of descriptors are found for each dimension.

> descriptors$`Dim 1`$category
Estimate p.value

WRITTEN 0.7854541 8.669160e-55
PREADJECTIVAL 0.7062451 1.396927e-37
RATHER 0.6904487 2.544149e-35
ACPROSE 0.7306224 9.514332e-12
W fict prose 0.1270017 2.959679e-08
FICTION 0.4096808 2.959679e-08
W ac:humanities arts 0.6825574 3.327880e-04
W ac:nat science 0.3732726 1.042961e-03
W ac:polit law edu 0.4408545 1.026816e-02
W ac:soc science 0.3367449 1.443907e-02

11 The arguments autolab and shadow are specific to FactoMineR: they prevent data points and their respective labels
from being overplotted. The argument habillage is set to "quali", which means that the categories are assigned one color
depending on what variable they belong to. The argument cex is used to specify the size of the plotted labels: 0.6 means the
font size is 60% of the default size. The default main title of the plot is removed with title="".
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Fig. 10.14: MCA biplot: a simultaneous representation of preadjectival vs. predeterminer syntax (active,
in black), intensifiers (active, in red), text modes (active, in green), text types (active, in blue), and text
information (illustrative, in cyan)

QUITE -0.6904487 2.544149e-35
PREDETERMINER -0.7062451 1.396927e-37
S conv -1.4508915 8.669160e-55
CONVRSN -1.1682124 8.669160e-55
SPOKEN -0.7854541 8.669160e-55

We observe a strong correlation between (a) quite and the predeterminer construction in the lower left
corner of the plot, and (b) between rather and the preadjectival construction in the upper right corner.
Along the horizontal axis (dimension 1), predeterminer quite is correlated with the SPOKEN category
of the text_mode variable, and more specifically with the catogory CONVRSN (=conversation) of the
text_type variable. In contrast, along the same axis, preadjectival rather is correlated with the WRITTEN
modality of text_mode and all the modalies of text_type: ACPROSE, FICTION, and NEWS.12

Regarding dimension 2, we should be wary of concluding that predeterminer quite occurs exclusively in
spoken contexts and preadjectival rather in written contexts. Indeed, pay attention to the first six lines and
the last seven lines of the table below, which displays the descriptors for the categories in dimension 2.

> descriptors$`Dim 2`$category
Estimate p.value

ACPROSE 0.62071175 6.466665e-11

12 Although far from RATHER, NEWS is also found in the right part of the plot.
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S conv 0.25249883 8.508201e-08
CONVRSN 0.37412124 8.508201e-08
SPOKEN 0.23486899 8.508201e-08
PREADJECTIVAL 0.18474516 3.000038e-05
RATHER 0.18313246 3.315603e-05
W ac:humanities arts 0.64419427 5.784886e-04
W ac:nat science 0.45318397 1.555289e-03
W ac:polit law edu 0.49442785 1.344386e-02
W ac:soc science 0.43011700 1.818796e-02
W fict prose -0.20173368 2.906486e-02
FICTION -0.08011128 2.906486e-02
QUITE -0.18313246 3.315603e-05
PREDETERMINER -0.18474516 3.000038e-05
WRITTEN -0.23486899 8.508201e-08
W newsp brdsht nat -0.95063807 1.507307e-11
W newsp other -1.12205017 8.835144e-17
NEWS -0.91472171 5.842538e-39

Along the vertical axis (dimension 2), predeterminer quite is found in two written contexts: FICTION and
NEWS. Along the same axis, preadjectival rather is found in one written context (ACPROSE) but also one
spoken context (CONVRSN). MCA shows that the divide between the uses of quite and rather is a matter
of degree. Given the greater contribution of dimension 1 to Φ2, we can say that quite occurs preferentially
in predeterminer position. This pattern tends to appear both in the written and spoken components of the
corpus, with a preference for the latter. Rather occurs preferentially in pre-adjectival position. This pattern
tends to appear both in the written and spoken components of the corpus, with a preference for the former.
Contrary to popular belief, we find that the predeterminer construction is not exclusively associated with
written language in the BNC Baby. Of course, these conclusions are valid for the corpus only. Whether they
can be extended beyond the corpus cannot be determined with MCA because this method is only exploratory.

10.5.3 Confidence Ellipses

One asset of FactoMineR with respect to the other available packages that can do MCA is the possibility
to draw confidence ellipses around the categories thanks to the function plotellipses(). The argument
keepvar selects the number of categories that you want to plot. By default, the confidence level is set to
0.95. You can modify it by changing the value of the level argument. Finally, magnify controls the
magnification of level names.

In the line of code below, keepvar selects the first four variables by means of the columns indices:
construction, intensifier, text_mode, and text_type. These four categories are the first
four columns of the data table.

> plotellipses(mca.object, keepvar=c(1:4), magnify = 1)

In Fig. 10.15, the ellipses do not overlap, which means the categories are significantly distinct. Let us now
plot the confidence ellipses of the categorical variable text_info.

> plotellipses(mca.object, keepvar=5, magnify = 1)

In Fig. 10.16, the ellipses of two sets of categories within text_info overlap: W newsp brdsht nat
and W newsp other on the one hand, and W ac:humanities arts, W ac:nat science, W
ac:polit law edu, and W ac:soc science on the other hand. This means that the categories
within each set are not significantly distinct.



276 10 Clustering Methods

Dim 1 (47.97%)

D
im

 2
 (2

0.
44

%
)

−1.0

−0.5

0.0

0.5

−1.0 −0.5 0.0 0.5 1.0

PREADJECTIVAL

PREDETERMINER

construction

QUITE

RATHER

intensifier

SPOKEN

WRITTEN

text_mode

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5
ACPROSE

CONVRSN

FICTION

NEWS

text_type

Fig. 10.15: MCA: confidence ellipses for four variables

10.5.4 Beyond MCA

Some statisticians do not like the fact that in the case of data frames with many categorical variables and
categories, you have to inspect a large number of dimensions. Joint correspondence analysis has been
suggested as a simple alternative (Camiz and Gomes 2013).

10.6 Hierarchical Cluster Analysis

Hierarchical cluster analysis (henceforth HCA) clusters individuals on the basis of the distance between them
(Everitt et al. 2011, Sect. 4.2). The distance between individuals depends on the variables that characterize
them. HCA has been used widely in linguistics. Some relevant references include Divjak and Fieller (2014),
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Fig. 10.16: MCA: confidence ellipses around the categories of text_info

Divjak and Gries (2006, 2008), and Gries and Stefanowitsch (2010). HCA is available from several R
packages: hclust, diana, cluster (agnes()), or pvclust.

10.6.1 The Principles of Hierarchical Cluster Analysis

HCA takes as input a data table T of I individuals or observations and K variables. The response variable
may be discrete (integers), continuous (real numbers), or both.13 HCA converts the table into a distance
object to which an amalgamation rule is applied. The amalgamation rule specifies how the elements in the
distance object are assembled into clusters.

13 See Husson et al. (2011) to learn how to integrate qualitative variables.
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10.6.2 Case Study: Clustering English Intensifiers

I illustrate HCA with a case study from Desagulier (2014).

> rm(list=ls(all=TRUE))
> data <- readRDS("C:/CLSR/chap10/hca_intensifiers.rds") # Windows
> data <- readRDS("/CLSR/chap10/hca_intensifiers.rds") # Mac

The data set was compiled to see how 23 English intensifiers cluster on the basis of their most associated
adjectives. To obtain a list of the 23 intensifiers, you can use the rownames() function because there is
one row per intensifier.

> rownames(data)
[1] "a_bit" "a_little" "absolutely" "almost" "awfully" "completely"
[7] "entirely" "extremely" "fairly" "frightfully" "highly" "jolly"
[13] "most" "perfectly" "pretty" "quite" "rather" "slightly"
[19] "somewhat" "terribly" "totally" "utterly" "very"

Let me explain how the data set was compiled. For each of the 23 adverbs listed above, I first extracted all
adjectival collocates from the Corpus of Contemporary American English (Davies 2008–2012), amounting
to 432 adjective types and 316159 co-occurrence tokens. Then, I conducted a collexeme analysis for each of
the 23 degree modifiers. To reduce the data set to manageable proportions, the 35 most attracted adjectives
were selected on the basis of their respective collostruction strengths, yielding a 23-by-432 cooccurrence
table (or contingency table) containing the frequency of adverb-adjective pair types.

The contingency table must be converted into a distance object. Technically, this distance object is a
dissimilarity matrix. A dissimilarity matrix is similar to the driving distance tables that you used to find in
road atlases (Tab. 10.7). Because the matrix is symmetric, it is divided into two parts (two triangles) on either
side of the diagonal of null distances between the same cities. Only one triangle is needed. You obtain the

Table 10.7: Matrix of driving distances between five US cities

Dallas Miami New York San Francisco Seattle

Dallas 0 1312.1 1548.5 1731.4 2109.1
Miami 1312.1 0 1283.3 3114.3 3296.9
New York 1548.5 1283.3 0 2568.6 2404.6
San Francisco 1731.4 3114.3 2568.6 0 807
Seattle 2109.1 3296.9 2404.6 807 0

dissimilarity matrix by converting the contingency table into a table of distances with a user-defined distance
measure. When the variables are ratio-scaled, you can choose from several distance measures: Euclidean,
City-Block/Manhattan, correlation, Pearson, Canberra, etc. For reasons of space, I cannot discuss the reasons
why one should prefer a distance measure over another.14 I find the Canberra distance metric to best handle
the relatively large number of empty occurrences that we typically obtain in linguistic data. We use the
dist() function. The first argument is the data table. The second argument is the distance metric (here,
Canberra). The third argument (diag) lets you decide if you want R to print the diagonal of the distance

14 A description of some distance measures can be found in Gries (2010, pp. 313–316). See also Divjak and Gries (2006).
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object. The fourth argument (upper) lets you decide if you want R to print the upper triangle of the distance
object.

> dist.object <- dist(data, method="canberra", diag=T, upper=T)

The function dist() outputs a distance object, which has a class of its own (it is not exactly a matrix
object).

> class(dist.object)
[1] "dist"

If you want to display the whole distance matrix, type dist.matrix. If you want to display only a
snapshot (e.g. the first five rows and the first five columns), first convert the distance object into a matrix,
and then subset the matrix.

> dist.matrix <- as.matrix(dist.object)
> dist.matrix[1:5, 1:5]

a_bit a_little absolutely almost awfully
a_bit 0.0000 372.1788 432.0000 432.0000 418.8591
a_little 372.1788 0.0000 429.4200 426.3215 422.8858
absolutely 432.0000 429.4200 0.0000 421.9386 432.0000
almost 432.0000 426.3215 421.9386 0.0000 432.0000
awfully 418.8591 422.8858 432.0000 432.0000 0.0000

The diagonal of 0 values separates the upper and lower triangles, as expected from a distance matrix.
Finally, use the hclust() function to apply an amalgamation rule that specifies how the elements in the

matrix are clustered. We amalgamate the clusters with Ward’s method (Ward 1963), which evaluates the dis-
tances between clusters using an analysis of variance. Ward’s method is the most widely used amalgamation
rule because it has the advantage of generating clusters of moderate size. We specify method="ward.D".

> clusters <- hclust(dist.object, method="ward.D")

Fig. 10.17 shows the resulting dendrogram, which you obtain with plot().

> plot(clusters, sub="(Canberra, Ward)")

The sub argument allows you to annotate your dendrogram. I recommend that you specify the distance
metric and the amalgamation rule.

10.6.3 Cluster Classes

Two more function help you spot and interpret the relevant clusters. Thanks to the rect.hclust() func-
tion, you can assign groups. The code below draws red rectangles around the branches of the dendrogram,
highlighting six groups of clusters (Fig. 10.18).

> rect.hclust(clusters, 6)

The cutree() function lists the individuals that belong to each group. Each group is assigned a digit.
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Fig. 10.17: Cluster dendrogram of 23 English intensifiers, clustered according to their adjectival collexemes
(distance method: Canberra; amalgamation rule: Ward)

> cutree(clusters, 6)
a_bit a_little absolutely almost awfully completely entirely extremely

1 1 2 3 3 4 2 5
fairly frightfully highly jolly most perfectly pretty quite

6 3 5 3 5 2 6 6
rather slightly somewhat terribly totally utterly very

6 1 1 3 4 2 5

The dendrogram displays several homogeneous clusters. Based on the classes delimited by the red rect-
angles, we find, from left to right: maximizers15 (completely, totally, perfectly, absolutely, entirely, and
utterly), diminishers (slightly, a little, a bit, and somewhat), moderators (rather, pretty, fairly, and quite),
and boosters (most, very, extremely, highly, awfully, terribly, frightfully, and jolly). The presence of almost
is odd, but probably due to the fact that it is used as a sentential adverb more than it is used as an adjectival
intensifier. In any case, based on the simplicity of the input, HCA reveals consistent clusters.

15 I use the terminology proposed by Paradis (1997).
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Fig. 10.18: Cluster dendrogram of 23 English intensifiers with 6 groups

10.6.4 Standardizing Variables

When your variables have different units, you must standardize them with the scale() function. Fox and
Jacewicz (2009) compare the spectral change of five vowels (/I/, /E/, /e/, /æ/, and /aI/) in Western North
Carolina, Central Ohio, and Southern Wisconsin. The corpus consists of 1920 utterances by 48 female
informants. Fox and Jacewicz find variation in formant dynamics as a function of phonetic factors. They
also find that, for each vowel and for each measure employed, dialect is a strong source of variation in
vowel-inherent spectral change. The data set hca_vow_cons.rds is adapted from Tabs. 7 and 8 from
Fox and Jacewicz (2009).

> rm(list=ls(all=T))
> data <- readRDS("C:/CLSR/chap10/hca_vow_cons.rds") # Windows
> data <- readRDS("/CLSR/chap10/hca_vow_cons.rds") # Mac

The data frame consists of 30 observations and 4 variables (type head(data) to see the detail).16 Each
observation is named after:

• the vowel of interest (/I/, /E/, /e/, /æ/, or /aI/);

16 The phonetic characters will display properly if IPA fonts are installed on your system.
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• the State where the informant is from: Ohio (Ohio), North Carolina (NorthC), and Wisconsin (Wisc);
• the phonetic factor that conditions variation: vowel emphasis (V_emph) and consonental context

(C_context).

For example, I_NorthC_V_emph stands for the vowel /I/ in the context of vowel emphasis in the dialect
of North Carolina. The four variables come in two units:

• vow_dur_voiced_ms: the mean duration of vowels before voiced consonants (in milliseconds),
• vow_dur_voiceless_ms: the mean duration of vowels before voiceless consonants (in millisec-

onds),
• TL_voiced_Hz: the mean trajectory length of vowels before voiced consonants (in hertz),
• TL_voiceless_Hz: the mean trajectory length of vowels before voiceless consonants (in hertz).

You need to scale the variables as you convert the data table into a distance object.

> dist.object <- dist(scale(data), method="manhattan", diag=T, upper=T)

Next, amalgamate the clusters and generate the plot (Fig. 10.19).

> clusters <- hclust(dist.object, method="ward.D")
> plot(clusters, main="cluster dendrogram", sub="(manhattan, Ward)", cex=0.6)
> rect.hclust(clust.ana, 4) # 4 cluster classes
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Fig. 10.19: Cluster dendrogram of five vowels in American English
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Some homogeneous clusters appear on the dendrogram. The leftmost cluster brings together /I/ and /E/ in
Wisconsin and Ohio. The center left cluster groups together /e/ and /aI/ in all three states. The center right
cluster groups together /I/, /e/, and /E/ in all three states. The rightmost cluster groups together /æ/ and /aI/ in
all three states.

10.7 Networks

Network science has its roots in graph theory, which originated when Euler solver the Königsberg bridge
problem in the eighteenth century.

10.7.1 What Is a Graph?

A graph consists of vertices (nodes) and edges (links). In Fig. 10.20a, each circle is a node and each line is
an edge. Each edge denotes a relationship between two nodes. The relationship is undirected, i.e. symmet-
ric. In Sect. 9.3.7, we saw that collocations could be asymmetric. Likewise, the edges of a graph may be
asymmetric, i.e. have a direction association with them. The graph in Fig. 10.20b illustrates this asymmetry.
In the parlance of graph theory, this graph is directed.
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node  3

node  4

node  5

node  6

node  7

node  8

node  9

node  10

(a)

node  1

node  2
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node  7

node  8

node  9

node  10

(b)

Fig. 10.20: Two simple graphs. (a) An undirected graph; (b) a directed graph
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There are several R packages that allow you to plot such graphs: network (Butts 2008, 2015), igraph
(Csárdi and Nepusz 2006). My preference goes to igraph because it is flexible, and thoroughly docu-
mented (Kolaczyk and Csárdi 2014; Arnold and Tilton 2015).

The simplest way of plotting a graph is to do it manually. Let me start with the graph in Fig. 10.20a. First,
clear up R’s memory, install the igraph package, and load it.

> rm(list=ls(all=TRUE))
> install.packages("igraph")
> library(igraph)

Next, create an igraph object. We plot ten nodes, numbered from 1 to 10. We link the nodes with edges by
means of two hyphens (-). We use the function graph.formula().

> g <- graph.formula(1--2, 1--3, 1--4, 2--5, 2--6, 2--7, 3--8, 3--9, 4--10)

The function outputs a graph object.

> g
IGRAPH UN-- 10 9 --
+ attr: name (v/c)
+ edges (vertex names):
[1] 1--2 1--3 1--4 2--5 2--6 2--7 3--8 3--9 4--10

Given the simplicity of this first graph, this output is far from exciting. It says that we have a graph that is
undirected (U) and named (N) with ten nodes and nine edges. We now assign labels to the node.

> labels <- c("node 1", "node 2", "node 3", "node 4", "node 5", "node 6", "node 7", "node 8",
+ "node 9", "node 10")

igraph allows you to specify plotting parameters such as the size, color, and labels of nodes (vertex.
size, vertex.color, vertex.labels), the font size (vertex.label.cex) and the font family
of node labels (vertex.label.family), and the width of edges (edge.width).

> igraph.options(vertex.size=30, vertex.color="cornsilk", vertex.label=labels, vertex.label.cex=0.8,
+ vertex.label.family="Helvetica", edge.width=0.5)

The final step is to plot the graph. If you intend to plot the graph several times without altering its shape, use
set.seed(). The first argument of plot() is the graph object. The second argument is the layout of
the graph. There are several layouts to choose from: Fruchterman-Reingold (layout.fruchterman.
reingold), Kamada-Kawai (layout.kamada.kawai), Sugiyama (layout.sugiyama), Reingold-
Tilford (layout.reingold.tilford), etc. This choice is important as a graph that appears cluttered
with a given layout may appear fine with another layout. For this graph, I use the Reingold-Tilford layout.
If you omit circular=TRUE inside the layout.reingold.tilford() function, the graph will be
shaped as a tree.

> set.seed(42)
> plot(g, layout=layout.reingold.tilford(g, circular=T))

The directed graph is plotted likewise. The only difference is how you link the nodes. The source node
and the target node are on either side of -+.

> g.d <- graph.formula(1-+2, 1-+3, 1-+4, 2-+5, 2-+6, 2-+7, 3-+8, 3-+9, 4-+10)

The rest of the code is identical, except for the specification of the arrow size in igraph.options:
edge.arrow.size=0.5.
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> labels=c("node 1", "node 2", "node 3", "node 4", "node 5", "node 6", "node 7", "node 8",
+ "node 9", "node 10")
> igraph.options(vertex.size=30, vertex.color="cornsilk", vertex.label=labels, vertex.label.cex=0.8,
+ vertex.label.family="Helvetica", edge.width=0.5, edge.arrow.size=0.5)
> plot(g.d, layout=layout.reingold.tilford(g.d, circular=TRUE))

10.7.2 The Linguistic Relevance of Graphs

10.7.2.1 An Undirected Graph

The attributes of a graph may be assigned linguistically relevant features. For example, the frequency of a
constituent has a correlate in the importance of the node: frequent nodes may be represented with a larger
size than infrequent nodes. The co-occurrence frequency of at least two nodes has a correlate in the number
of edges between nodes: frequent co-occurrence can be visualized by means of either multiple edges or one
edge whose thickness is indexed on frequency.

Our first example is based on the dative dataset, from the languageR package. We want to plot a
graph of the relations between the double-object dative (NP), the prepositional dative (PP), and the verbs
that occur in each construction.

First, load and inspect two data sets: v.attr.dat and e.list.dat.

> v.attr.dat <- readRDS("/CLSR/chap10/v.attr.dat.rds") # Windows
> v.attr.dat <- readRDS("/CLSR/chap10/v.attr.dat.rds") # Mac
>
> e.list.dat <- readRDS("C:/CLSR/chap10/elist.dat.rds") # Windows
> e.list.dat <- readRDS("/CLSR/chap10/elist.dat.rds") # Mac

v.attr.dat contains the node attributes.

> head(v.attr.dat)
Name Frequency

1 accord 1
2 afford 1
3 allocate 3
4 allot 3
5 allow 13
6 assess 1

We have two attributes: the name of each node (all the verbs, NP, and PP) and its frequency. The names will
be used to label the nodes, and the frequencies to adjust the size of the nodes accordingly. e.list.dat is
an edge list.

> head(e.list.dat)
RealizationOfRecipient Verb

1 NP feed
2 NP give
5 NP offer
7 NP pay
8 NP bring
9 NP teach

Each row stands for an edge in the graph. Each co-occurrence between a construction and a verb type is
signalled by an edge. The first column contains the origins of the edges and the second column the end
points.
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One important aspect of graphs is their centrality. Graph centrality is a measure of how important a node
is in the context of the entire graph. It can be applied to detect the most prototypical collostructions. There
are three popular measures of centrality: degree centrality (nodes are ranked according to the number of
edges to which they are connected), eigenvector centrality (nodes connected to important nodes are assigned
a higher weight), and betweenness centrality (nodes are ranked according to how many pairs of nodes linked
by the shortest path they are connected to). We shall use eigenvector centrality to spot the most influential
nodes.

First, we create a graph object with graph.data.frame(). We provide the edge list, the node at-
tributes, and specify that we want an undirected graph.

> set.seed(33) # for a reproducible graph
> G <- graph.data.frame(e.list.dat, vertices=v.attr.dat, directed="FALSE")

Eigenvector centrality is calculated with the evcent() function, which outputs a list. We are interested in
the vector element of the list. It is a vector that assigns each node a numerical score between 0 and 1.

> eigenCent <- evcent(G)$vector
> eigenCent

accord afford allocate allot allow assess assign assure award bequeath
0.1031757 0.1081254 0.1081254 0.2113011 0.1031757 0.1031757 0.2113011 0.1031757 0.2113011 0.1081254

bet bring carry cause cede charge cost deal deliver deny
0.1031757 0.2113011 0.1081254 0.2113011 0.1081254 0.2113011 0.1031757 0.1081254 0.2113011 0.2113011

do extend feed fine flip float funnel get give grant
0.2113011 0.2113011 0.2113011 0.1031757 0.1031757 0.1031757 0.1081254 0.1081254 0.2113011 0.2113011
guarantee hand hand_over issue lease leave lend loan mail make
0.1031757 0.2113011 0.1081254 0.1081254 0.1081254 0.2113011 0.2113011 0.2113011 0.2113011 0.2113011

net offer owe pay pay_back permit prepay present promise quote
0.1031757 0.2113011 0.2113011 0.2113011 0.1031757 0.1031757 0.1081254 0.1081254 0.2113011 0.1031757

read refuse reimburse repay resell run sell sell_back sell_off send
0.2113011 0.1031757 0.1031757 0.1081254 0.1081254 0.1081254 0.2113011 0.1081254 0.1081254 0.2113011

serve show slip submit supply swap take teach tell tender
0.2113011 0.2113011 0.1081254 0.1081254 0.1081254 0.1031757 0.2113011 0.2113011 0.2113011 0.1081254

trade vote will wish write NP PP
0.1081254 0.1031757 0.1031757 0.1031757 0.2113011 0.9542230 1.0000000

We are going to use the centrality score to color the nodes. This score is known to drop dramatically17 We
must therefore rearrange the centrality scores into quantized buckets known as “bins”. This is how you do
it.

> bins <- unique(quantile(eigenCent, seq(0,1,length.out=30)))
> vals <- cut(eigenCent, bins, labels=FALSE, include.lowest=TRUE)

Each bin is now assigned a color along a rainbow continuum skewed to the reds (for higher scores) and
yellows (for lower scores). The color values are assigned to the color attributes of the nodes. This means
that the plotting function will shade the nodes according to their eigenvector centralities.

> colorVals <- rev(heat.colors(length(bins)))[vals]
> V(G)$color <- colorVals

Next, we adjust the size of the nodes based on Frequency and we assign a label to each name (Name).

> v.size <- 0.7*sqrt(V(G)$Frequency)+.5 # adjust node size
> v.label <- V(G)$Name

17 Most of the nodes have a score that is well below 0.5. See it for yourself by entering plot(sort(eigenCent,
decreasing=TRUE), type="l").
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Finally, we select a layout (Fruchterman-Reingold) and plot the graph with the desired parameters. Note that,
to make the labels more legible, a distance is set between each label and the center of its node (vertex.
label.dist=0.2). Additionally, label size is further adjusted because it is not set along the same scale
as node size.

> l <- layout.fruchterman.reingold(G)
> plot(G, layout=l, vertex.size=v.size, vertex.label=v.label, vertex.label.dist=0.2,
+ vertex.label.cex=0.3*sqrt(v.size), vertex.label.family="Arial")

The resulting graph is displayed in Fig. 10.21. Among other things, the graph allows you to see that:

• the double-object dative (NP) is more frequent than the prepositional dative in the corpus;
• three classes of verbs emerge: the verbs that co-occur exclusively with the double-object dative, the

verbs that co-occur exclusively with the prepositional dative, and the verbs that co-occur with both
alternants;

• give, whose meaning is the most consonant with the meaning of the dative construction, occurs with the
highest frequency and is compatible with both alternants.

10.7.2.2 A Directed Graph

Our second example is based on the study of A as NP (Desagulier 2016). We want to plot a graph of
asymmetric collostructions between the adjective slot and the NP slot. Load the following data sets: v.
attr.anp and e.list.anp.

> v.attr.anp <- readRDS("/CLSR/chap10/v.attr.anp.rds") # Windows
> v.attr.anp <- readRDS("/CLSR/chap10/v.attr.anp.rds") # Mac
>
> e.list.anp <- readRDS("C:/CLSR/chap10/elist.anp.rds") # Windows
> e.list.anp <- readRDS("/CLSR/chap10/elist.anp.rds") # Mac

v.attr.anp contains the node attributes: Name (i.e. the adjective types), Type (A or NP) and
Const_freq (the construction’s frequency). The names will be used to label the nodes, the types to
distinguish adjectives from NPs based on color,18 and the construction’s frequency to adjust the size of the
nodes.

> head(v.attr.anp)
Name Type Const_freq

1 air NP 4
2 angel NP 2
3 angry A 3
4 anthracite NP 2
5 arrow NP 2
6 baby_s_skin NP 2

e.list.anp contains the list of edges. Like above, the first column is the origin of the edge, and the
second column the end point. Based on ΔP, a constituent (adjective or NP) that attracts the constituent in
the other slot is placed in the second column. If not, it is placed in the first column. Therefore, each column
contains adjectives and NPs. The third column is an edge attribute, namely the collostruction strength of the
association between the adjective and the NP measured with G2. We are going to use this edge attribute to
adjust the width of each edge.

18 This time, we do not use a centrality measure.



288 10 Clustering Methods

accord

afford

allocate

allot

allow

assess

assign

assure

award

bequeath

bet

bring

carry

cause

cede

charge

cost

deal

deliver

deny

do

extend

feed

fine

flip

float

funnel

get

give
grant

guarantee

hand

hand_over

issue

lease

leave

lend

loan

mail

make

net

offer

owe

pay

pay_backpermit

prepay

present

promise

quote

read

refuse

reimburse

repay

resell

run

sell

sell_back

sell_off

send

serve

show

slipsubmit
supply

swap

take

teach
tell

tender

trade

vote

will

wish

write

NP

PP

Fig. 10.21: A graph of the verbs recruited by two English dative alternants (NP and PP)

> head(e.list.anp)
from to coll_strength

1 man old 7.0591
2 chalk white 11.4292
3 marble white 11.4292
4 night_follows_day sure 11.5171
5 money_in_the_bank good 12.8812
6 spring clear 13.5610

First, we create a graph object with the same function as above: graph.data.frame(). This time,
we specify directed="TRUE".
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> set.seed(15) # for a reproducible graph
> G <- graph.data.frame(e.list.anp, vertices=v.attr.anp, directed="TRUE")
> G
IGRAPH DN-- 231 211 --
+ attr: name (v/c), Type (v/c), Const_freq (v/n), coll_strength (e/n)
+ edges (vertex names):
[1] man ->old chalk ->white marble ->white
[4] night_follows_day->sure money_in_the_bank->good spring ->clear
[7] anthracite ->black world ->old paper ->white
[10] baby_s_skin ->smooth monkey ->quick syrup ->smooth
[13] mud ->clear midnight ->black muck ->soft
[16] putty ->soft shite ->soft granite ->hard
[19] cream ->smooth crystal ->clear coal ->black
[22] thunder ->black mice ->quiet shit ->thick
+ ... omitted several edges

Upon inspection, we see that the graph is indeed directed and named. We also have the detail of the attributes
of the nodes and edges. Next, we adjust the size of the nodes based on construction frequency and assign a
label to each node.

> v.size <- 1.5*sqrt(V(G)$Const_freq)+.5
> v.label <- V(G)$name

We weight the edges based on collostruction strength. We are going to use this weighting to adjust the width
of the edges when we plot the graph.

> E(G)$weight <- E(G)$coll_strength

We want two different shapes and two different colors for the nodes depending on whether they denote
adjectives or NPs. We convert Type into a numeric vector and assign shapes and colors accordingly.

> type <- as.factor(V(G)$Type)
> type <- as.numeric(type)
> v.shapes <- c("circle","square")[type]
> v.colors <- c("red", "dodgerblue")[type]

Finally, we select a layout (Fruchterman-Reingold again) and plot the graph. As planned, we use
E(G)$weight to adjust the width of the edges and the size of the arrows (because the graph is directed,
the edges are automatically converted into arrows).

> l <- layout.fruchterman.reingold(G)
> plot(G, layout=l, edge.width=2.5*sqrt(E(G)$weight), edge.arrow.size=1.5*sqrt(E(G)$weight),
+ vertex.size=v.size, vertex.label=v.label, vertex.shape=v.shapes, vertex.color= v.colors,
+ vertex.label.cex=v.size, vertex.label.color="black", vertex.label.family="Arial")

The resulting graph is displayed in Fig. 10.22. Among other things, the graph shows that some types
are somewhat fixed as per the adjectives or NPs that they collocate with (large as life, honest as the day
is long, gauche as a schoolgirl, thin as a rake, taut as a bowstring, etc.) On the other hand, some other
types are more productive. They are part of more complex combinatorial constellations of adjectives and
NPs (towards the center part of the graph). These complex networks are based on hubs, i.e. constituents that
are connected to several other nodes, e.g. the adjectives white, cold, clear or smooth or the NP hell. We can
also see that some attractive constituents are themselves attracted by other constituents. For example, the
adjective sure attracts the NPs death and night follows day. At the same time, it is attracted by the NP hell.
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Fig. 10.22: A graph of asymmetric collostructions between adjectives and NPs in A as NP (adjectives are in
red, NPs in blue)

Exercises

10.1. Principal component analysis
The data set for this exercise is it.be.A.to.V.that.rds. You will find it in (C:)/CLSR/chap10.
It is based on a study of the productivity of the construction it BE ADJ to V that in the British National
Corpus (see Exercise 5.2).
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The data frame consists of 244 observations and 6 variables. The observations are the constituents of
the it BE ADJ to V that constructions, i.e. either adjectives or verbs in the infinitive. The variables are the
following:

• category: the grammatical category of the constituent (ADJ for adjectives, and V_inf for verbs in
the infinitive);

• num.hapax: the number of times each constituent appears as a hapax legomena in the construction;
• V: the type frequency of each constituent in the construction;
• delta.diff: the mean difference ΔP(V_in f |ADJ)−ΔP(ADJ|V_in f ) (see Sect. 9.3.7.2);
• association.chisq: the mean association score between ADJ and V_inf according to χ2 (see

Sect. 9.3.3.3);
• P.potential: the mean P score of each constituent (see Sect. 9.4.1);
• P.global: the mean P∗ score of each constituent (see Sect. 9.4.1).19

Run a PCA of it.be.A.to.V.that.rds. Consider the variables num.hapax and V supplemen-
tary. Decide how many components (or dimensions) should be inspected, plot the results, and interpret
them.

10.2. Correspondence analysis
The data set modals.BNC.rds is a contingency table that contains the frequencies of ten English modals
across seventy text genres in the British National Corpus.20 Run a CA of modals.BNC.rds, which you
will find in (C:)/CLSR/chap10.

First, plot only the variables that correspond to written texts (the variable names starts with W_). What can
you say about the respective distributions of may and might? Second, plot only the variables that correspond
to spoken texts (the variable names starts with S_). What profile stands out the most? What is the contextual
specificity of will?

10.3. Multiple correspondence analysis
The data set for this exercise is typocorp.rds. You will find it in (C:)/CLSR/chap10. It corresponds
to Tab. 3.1. The individuals and the variables are described in Sect. 3.1. Your goal is to run a MCA using the
MCA() function from the FactoMineR package. The variables corpus, stored_data_format, and
size should be considered supplementary. Plot the graph of individuals. You should obtain Fig. 3.1.

10.4. Hierarchical cluster analysis
Using the same data frame as in Exercise 10.2, run a hierarchical cluster analysis of the ten English modals
and plot the results in the form of a dendrogram. The hclust() function from the stats package in base
R should do the trick. Compare the following distance measures:

• Euclidean,
• Manhattan,
• Minkowski,
• Canberra.21

Use Ward’s method to amalgamate the clusters.

19 Sometimes, the value of P∗ is Inf (infinite). Because R cannot make any computation based on Inf, the value was changed
to 999999999.
20 See David Lee’s Genre Classification Scheme: http://rdues.bcu.ac.uk/bncweb/manual/genres.html.
21 Enter ?dist for more information about the distance metrics.

http://rdues.bcu.ac.uk/bncweb/manual/genres.html
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10.5. Networks
In /CLSR/chap10, you will find two files to plot a network graph of the constituents of it BE ADJ to V_inf
that (see Ex. 10.1): v.attr.practice.rds and e.list.practice.rds. The first file contains
the vertex attributes. The vertices are the adjectives and the infinitive verbs. There are two attributes: the
grammatical category (A for adjective and V for verb), and the construction frequency. The second file is an
edge list. The first column is the origin of the edge, and the second column the end point. The origins and
the end points were determined on the basis of the asymmetric association measure ΔP. The third column is
an edge attribute. This attribute is the measure of symmetric association between the adjective and the verb
according to χ2. Plot a directed graph of the constituents of the construction. Select only those constituents
whose construction frequency is greater than or equal to 20. Choose the lgl layout.22
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Appendix A

A.1 Chapter 6

A.1.1 Dispersion Plots

> ###########################
> # CORPUS FILE PREPARATION #
> ###########################
>
> rm(list=ls(all=TRUE))
> corpus.file <- scan("/CLSR/BNC_baby/A1E.xml", what="character", sep="\n", fileEncoding="UTF-8")
> head(corpus.file)
> corpus.file.sentences <- grep("<s n=", corpus.file, perl=TRUE, value=TRUE)
> head(corpus.file.sentences)
>
> library(gsubfn)
>
> #######
> # NN0 #
> #######
>
> tagged.NN0 <- unlist(strapply(corpus.file.sentences,
+ "<w c5=\"NN0(-...)?\" hw=\"\\w+\" pos=\"SUBST\">\\w+ ?</w>",
+ perl=T, backref=1))
> head(tagged.NN0)
>
> NN0<-gsub("<.*?>", "", tagged.NN0, perl=T)
> NN0<-gsub("(^ | +$)", "", NN0, perl=T)
> head(NN0)
>
> untagged.words<-unlist(strsplit(corpus.file.sentences, "<.*?>", perl=TRUE))
> head(untagged.words)
> untagged.words <- gsub("[,;:.?!'`-]", "", untagged.words)
> untagged.words <- gsub("(^ +| +$)", "", untagged.words, perl=TRUE)
> untagged.words <- untagged.words[nchar(untagged.words)>0]
> head(untagged.words)
>
> seq.corpus <- seq(1:length(untagged.words))
>
> NN0.positions <- integer()
> for (i in 1:length(NN0)) {
+ NN0.position <- which(untagged.words==NN0[i])
+ NN0.positions <- c(NN0.positions, NN0.position)
+ }
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> head(NN0.positions)
>
> NN0.count <- rep(NA, length(seq.corpus))
>
> NN0.count[NN0.positions] <- 1
>
> #######
> # NN1 #
> #######
>
> tagged.NN1 <- unlist(strapply(corpus.file.sentences,
+ "<w c5=\"NN1(-...)?\" hw=\"\\w+\" pos=\"SUBST\">\\w+ ?</w>",
+ perl=T, backref=1))
> head(tagged.NN1)
>
> NN1<-gsub("<.*?>", "", tagged.NN1, perl=T)
> NN1<-gsub("(^ | +$)", "", NN1, perl=T)
> head(NN1)
>
> NN1.positions <- integer()
> for (i in 1:length(NN1)) {
+ NN1.position <- which(untagged.words==NN1[i])
+ NN1.positions <- c(NN1.positions, NN1.position)
+ }
> head(NN1.positions)
>
> NN1.count <- rep(NA, length(seq.corpus))
>
> NN1.count[NN1.positions] <- 1
>
> #######
> # NN2 #
> #######
>
> tagged.NN2 <- unlist(strapply(corpus.file.sentences,
+ "<w c5=\"NN2(-...)?\" hw=\"\\w+\" pos=\"SUBST\">\\w+ ?</w>",
+ perl=T, backref=1))
> head(tagged.NN2)
>
> NN2<-gsub("<.*?>", "", tagged.NN2, perl=T)
> NN2<-gsub("(^ | +$)", "", NN2, perl=T)
> head(NN2)
>
> NN2.positions <- integer()
> for (i in 1:length(NN2)) {
+ NN2.position <- which(untagged.words==NN2[i])
+ NN2.positions <- c(NN2.positions, NN2.position)
+ }
> head(NN2.positions)
>
> NN2.count <- rep(NA, length(seq.corpus))
>
> NN2.count[NN2.positions] <- 1
>
> #######
> # NP0 #
> #######
>
> tagged.NP0 <- unlist(strapply(corpus.file.sentences,
+ "<w c5=\"NP0(-...)?\" hw=\"\\w+\" pos=\"SUBST\">\\w+ ?</w>",
+ perl=T, backref=1))
> head(tagged.NP0)
>
> NP0<-gsub("<.*?>", "", tagged.NP0, perl=T)
> NP0<-gsub("(^ | +$)", "", NP0, perl=T)
> head(NP0)
>
> NP0.positions <- integer()
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> for (i in 1:length(NP0)) {
+ NP0.position <- which(untagged.words==NP0[i])
+ NP0.positions <- c(NP0.positions, NP0.position)
+ }
> head(NP0.positions)
>
> NP0.count <- rep(NA, length(seq.corpus))
>
> NP0.count[NP0.positions] <- 1
>
> #########
> # PLOTS #
> #########
>
> par(mfrow=c(4,1))
> plot(NN0.count, main="", xlab="A1E.xml", ylab="NN0", type="h", ylim=c(0,1), yaxt='n')
> plot(NN1.count, main="", xlab="A1E.xml", ylab="NN1", type="h", ylim=c(0,1), yaxt='n')
> plot(NN2.count, main="", xlab="A1E.xml", ylab="NN2", type="h", ylim=c(0,1), yaxt='n')
> plot(NP0.count, main="", xlab="A1E.xml", ylab="NP0", type="h", ylim=c(0,1), yaxt='n')

A.2 Chapter 8

A.2.1 Contingency Table

> # a frequency list of tags in A1J.xml of BNC-Baby
> rm(list=ls(all=TRUE))
> library(gsubfn)
> corpus.file <- scan("/CLSR/BNC_baby/A1J.xml", what="char", sep="\n")
> sentences <- grep("<s n=", corpus.file, value=TRUE)
> tags <- unlist(strapplyc(sentences, "w c5=\"(.*?)\""))
> table_tags <- sort(table(tags), decreasing=TRUE)
> freqlist_tags <- paste(names(table_tags), table_tags, sep="\t")
> head(freqlist_tags)
> cat("TAG\tFREQUENCY", freqlist_tags, file="~/Desktop/freqlist_tags_A1J.txt", sep="\n")
> freqlist.A1J <- read.table("~/Desktop/freqlist_tags_A1J.txt", header=TRUE)
> saveRDS(freqlist.A1J, "/CLSR/chap8/freqlist.A1J.rds")
> freqlist.A1J <- readRDS("/CLSR/chap8/freqlist.A1J.rds")
> str(freqlist.A1J)
> nouns <- c("NN0", "NN1", "NN2", "NP0")
> freqlist.nouns <- freqlist.A1J[freqlist.A1J$TAG %in% nouns, ]
> sum(freqlist.nouns$FREQUENCY)
>
> # a frequency list of tags in A1K.xml of BNC-Baby
> corpus.file <- scan("/CLSR/BNC_baby/A1K.xml", what="char", sep="\n")
> sentences <- grep("<s n=", corpus.file, value=TRUE)
> tags <- unlist(strapplyc(sentences, "w c5=\"(.*?)\""))
> table_tags <- sort(table(tags), decreasing=TRUE)
> freqlist_tags <- paste(names(table_tags), table_tags, sep="\t")
> cat("TAG\tFREQUENCY", freqlist_tags, file="~/Desktop/freqlist_tags_A1K.txt", sep="\n")
> freqlist.A1K <- read.table("~/Desktop/freqlist_tags_A1K.txt", header=TRUE)
> saveRDS(freqlist.A1K, "/CLSR/chap8/freqlist.A1K.rds")
> freqlistA1K <- readRDS("/CLSR/chap8/freqlist.A1K.rds")
>
> # a frequency list of tags in A1L.xml of BNC-Baby
> corpus.file <- scan("/CLSR/BNC_baby/A1L.xml", what="char", sep="\n")
> sentences <- grep("<s n=", corpus.file, value=TRUE)
> tags <- unlist(strapplyc(sentences, "w c5=\"(.*?)\""))
> table_tags <- sort(table(tags), decreasing=TRUE)
> freqlist_tags <- paste(names(table_tags), table_tags, sep="\t")
> cat("TAG\tFREQUENCY", freqlist_tags, file="~/Desktop/freqlist_tags_A1L.txt", sep="\n")
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> freqlist.A1L <- read.table("~/Desktop/freqlist_tags_A1L.txt", header=TRUE)
> saveRDS(freqlist.A1L, "/CLSR/chap8/freqlist.A1L.rds")
> freqlist.A1L <- readRDS("/CLSR/chap8/freqlist.A1L.rds")
>
> freqlist.A1J <- readRDS("/CLSR/chap8/freqlist.A1J.rds")
> freqlist.A1K <- readRDS("/CLSR/chap8/freqlist.A1K.rds")
> freqlist.A1L <- readRDS("/CLSR/chap8/freqlist.A1L.rds")
>
> freqlist.NN0.A1J <- freqlist.A1J[freqlist.A1J$TAG %in% "NN0", ]
> freqlist.NN1.A1J <- freqlist.A1J[freqlist.A1J$TAG %in% "NN1", ]
> freqlist.NN2.A1J <- freqlist.A1J[freqlist.A1J$TAG %in% "NN2", ]
> freqlist.NP0.A1J <- freqlist.A1J[freqlist.A1J$TAG %in% "NP0", ]
>
> freqlist.NN0.A1K <- freqlist.A1K[freqlist.A1K$TAG %in% "NN0", ]
> freqlist.NN1.A1K <- freqlist.A1K[freqlist.A1K$TAG %in% "NN1", ]
> freqlist.NN2.A1K <- freqlist.A1K[freqlist.A1K$TAG %in% "NN2", ]
> freqlist.NP0.A1K <- freqlist.A1K[freqlist.A1K$TAG %in% "NP0", ]
>
> freqlist.NN0.A1L <- freqlist.A1L[freqlist.A1L$TAG %in% "NN0", ]
> freqlist.NN1.A1L <- freqlist.A1L[freqlist.A1L$TAG %in% "NN1", ]
> freqlist.NN2.A1L <- freqlist.A1L[freqlist.A1L$TAG %in% "NN2", ]
> freqlist.NP0.A1L <- freqlist.A1L[freqlist.A1L$TAG %in% "NP0", ]
>
> NN0.A1J <- sum(freqlist.NN0.A1J$FREQUENCY)
> NN1.A1J <- sum(freqlist.NN1.A1J$FREQUENCY)
> NN2.A1J <- sum(freqlist.NN2.A1J$FREQUENCY)
> NP0.A1J <- sum(freqlist.NP0.A1J$FREQUENCY)
>
> NN0.A1K <- sum(freqlist.NN0.A1K$FREQUENCY)
> NN1.A1K <- sum(freqlist.NN1.A1K$FREQUENCY)
> NN2.A1K <- sum(freqlist.NN2.A1K$FREQUENCY)
> NP0.A1K <- sum(freqlist.NP0.A1K$FREQUENCY)
>
> NN0.A1L <- sum(freqlist.NN0.A1L$FREQUENCY)
> NN1.A1L <- sum(freqlist.NN1.A1L$FREQUENCY)
> NN2.A1L <- sum(freqlist.NN2.A1L$FREQUENCY)
> NP0.A1L <- sum(freqlist.NP0.A1L$FREQUENCY)
>
> cont.table <- matrix(c(NN0.A1J, NN1.A1J, NN2.A1J, NP0.A1J,
+ NN0.A1K, NN1.A1K, NN2.A1K, NP0.A1K, NN0.A1L,
+ NN1.A1L, NN2.A1L, NP0.A1L), nrow=4, ncol=3, byrow=F); cont.table
> row.names(cont.table) <- c("NN0", "NN1", "NN2", "NP0")
> colnames(cont.table) <- c("A1J.xml", "A1K.xml", "A1L.xml")
> install.packages("epitools")
> library(epitools)
> table.margins(cont.table)

A.2.2 Discrete Probability Distributions

> par(mfrow=c(3,2))
>
> n=4
> prob=0.5
> x=0:4
> p=dbinom(x, n, prob)
> plot(x, p, type="h", xlim=c(-1,5), ylim=c(0,.6),
+ lwd=2, col="blue", ylab="p", xlab="number of vowels", main="4 trials")
> #points(x,p,pch=16,cex=2,col="black")
> text(0, p[1]+.1, p[1])
> text(1, p[2]+.1, p[2])
> text(2, p[3]+.1, p[3])
> text(3, p[4]+.1, p[4])
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> text(4, p[5]+.1, p[5], col="red")
>
> n=10
> prob=0.5
> x=0:10
> p=dbinom(x, n, prob)
> plot(x, p, type="h", xlim=c(-1,11), ylim=c(0,.4),
+ lwd=2, col="blue", ylab="p", xlab="number of vowels", main="10 trials")
> #points(x,p,pch=16,cex=2,col="black")
> text(10, p[11]+.1, p[11], col="red")
> Arrows(10,0.09,10,p[11]+.02, col="red")
>
>
> n=20
> prob=0.5
> x=0:20
> p=dbinom(x, n, prob)
> plot(x, p, type="h", xlim=c(-1,21), ylim=c(0,.3),
+ lwd=2, col="blue", ylab="p", xlab="number of vowels", main="20 trials")
> #points(x,p,pch=16,cex=2,col="black")
> text(19, p[21]+.1, p[21], col="red", cex=0.8)
> Arrows(20,0.09,20,p[21]+.02, col="red")
>
> n=30
> prob=0.5
> x=0:30
> p=dbinom(x, n, prob)
> plot(x, p, type="h", xlim=c(-1,31), ylim=c(0,.3), lwd=2,
+ col="blue", ylab="p", xlab="number of vowels", main="30 trials")
> #points(x,p,pch=16,cex=2,col="black")
> text(28, p[31]+.1, p[31], col="red", cex=0.8)
> Arrows(30,0.09,30,p[31]+.02, col="red")
>
> n=50
> prob=0.5
> x=0:50
> p=dbinom(x, n, prob)
> plot(x, p, type="h", xlim=c(-1,51), ylim=c(0,.2),
+ lwd=2, col="blue", ylab="p", xlab="number of vowels", main="50 trials")
> #points(x,p,pch=16,cex=2,col="black")
> text(45, p[51]+.1, p[51], col="red", cex=0.8)
> Arrows(50,0.09,50,p[51]+.009, col="red")
>
> n=100
> prob=0.5
> x=0:100
> p=dbinom(x, n, prob)
> plot(x, p, type="h", xlim=c(-1,101), ylim=c(0,.2),
+ lwd=2, col="blue", ylab="p", xlab="number of vowels", main="100 trials")
> #points(x,p,pch=16,cex=2,col="black")
> text(90, p[101]+.1, p[101], col="red", cex=0.8)
> Arrows(100,0.09,100,p[101]+.009, col="red")



300 Appendix A

A.2.3 A χ2 Distribution Table

Table A.1

degrees of freedom
Probability p of obtaining a larger value of χ2

0.1 0.05 0.025 0.01 0.005 0.001

1 2.7055 3.8415 5.0239 6.6349 7.8794 10.8276
2 4.6052 5.9915 7.3778 9.2103 10.5966 13.8155
3 6.2514 7.8147 9.3484 11.3449 12.8382 16.2662
4 7.7794 9.4877 11.1433 13.2767 14.8603 18.4668
5 9.2364 11.0705 12.8325 15.0863 16.7496 20.515
6 10.6446 12.5916 14.4494 16.8119 18.5476 22.4577
7 12.017 14.0671 16.0128 18.4753 20.2777 24.3219
8 13.3616 15.5073 17.5345 20.0902 21.955 26.1245
9 14.6837 16.919 19.0228 21.666 23.5893 27.8772
10 15.9872 18.307 20.4832 23.2093 25.1882 29.5883
11 17.275 19.6751 21.92 24.725 26.7568 31.2641
12 18.5493 21.0261 23.3367 26.217 28.2995 32.9095
13 19.8119 22.362 24.7356 27.6882 29.8195 34.5282
14 21.0641 23.6848 26.1189 29.1412 31.3193 36.1233
15 22.3071 24.9958 27.4884 30.5779 32.8013 37.6973
16 23.5418 26.2962 28.8454 31.9999 34.2672 39.2524
17 24.769 27.5871 30.191 33.4087 35.7185 40.7902
18 25.9894 28.8693 31.5264 34.8053 37.1564 42.3124
19 27.2036 30.1435 32.8523 36.1909 38.5823 43.8202
20 28.412 31.4104 34.1696 37.5662 39.9968 45.3147
21 29.6151 32.6706 35.4789 38.9322 41.4011 46.797
22 30.8133 33.9244 36.7807 40.2894 42.7957 48.2679
23 32.0069 35.1725 38.0756 41.6384 44.1813 49.7282
24 33.1962 36.415 39.3641 42.9798 45.5585 51.1786
25 34.3816 37.6525 40.6465 44.3141 46.9279 52.6197
26 35.5632 38.8851 41.9232 45.6417 48.2899 54.052
27 36.7412 40.1133 43.1945 46.9629 49.6449 55.476
28 37.9159 41.3371 44.4608 48.2782 50.9934 56.8923
29 39.0875 42.557 45.7223 49.5879 52.3356 58.3012
30 40.256 43.773 46.9792 50.8922 53.672 59.7031
40 51.8051 55.7585 59.3417 63.6907 66.766 73.402
50 63.1671 67.5048 71.4202 76.1539 79.49 86.6608
60 74.397 79.0819 83.2977 88.3794 91.9517 99.6072
70 85.527 90.5312 95.0232 100.4252 104.2149 112.3169
80 96.5782 101.8795 106.6286 112.3288 116.3211 124.8392
90 107.565 113.1453 118.1359 124.1163 128.2989 137.2084

100 118.498 124.3421 129.5612 135.8067 140.1695 149.4493
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Solutions

Exercises of Chap. 2

2.1 a.

> x <- c(3, 8)
> y <- 2
> z <- c(x,y)

x is a numeric vector that combines the digits 3 and 8. y is a numeric vector that “contains” 2. z is a
numeric vector that combines 3, 8, and 2.

> x <- c(3, 7, 9)
> y <- x[3]-x[2]
> z <- y + x[1]

Here, x is a numeric vector that combines 3, 7, and 9. y is a numeric vector that subtracts the second
element of x (7) from the third element of x (9). If you enter y, you should obtain 2 (9−7). z is a numeric
vector that sums y (2) and the first element of x (3). The sum of y and z is therefore 5 (2+ 3).

b. The vector x combines three digits that are treated as characters, as evidenced by the presence of quotes.
x[1] denotes "3" and x[2] denotes "7". You cannot do maths with characters. The only way to sum 3
and 7 is to declare them as digits in a numeric vector by removing the quotes.

> x <- c(3, 7, 9)
> x[1] + x [2]
[1] 10

c.

> y <- c(1,3,5,5)
> y[c(1,3)]

y is a numeric vector that combines 1, 3, 5, and 5. In y[c(1,3)], the square brackets subset the first and
third positions from y. R should output 1 and 5.

© Springer International Publishing AG 2017
G. Desagulier, Corpus Linguistics and Statistics with R, Quantitative Methods in the Humanities
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d.

> i <- rep(1,5)
> j <- rep(6,7)
> k <- rep(i, 3)
> g <- c(i,j,k)

i is a numeric vector that replicates 1 five times. j is a numeric vector that replicates 6 seven times. k is a
numeric vector that replicates i (i.e. 1 1 1 1 1) three times. g combines i (1 1 1 1 1), j (6 6 6
6 6 6 6), and k (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1). R should therefore output: 1 1 1 1 1
6 6 6 6 6 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1.

e.

> ww <- 1+3

ww is the sum of 1 and 3. It is a numeric vector of length 1.

> xx <- c(ww,4)

xx combines the vector of length 1 ww and 4. It is a numeric vector of length 2.

> yy <- c(xx,8)

yy combines the vector of length 2 xx and 8. It is a numeric vector of length 3.

> z <- rep(yy,3)

ww “contains” 4 and xx combines 4 and 4, yielding 4 4. yy combines 4 4 and 8, yielding 4 8 8. z
replicates yy three times, yielding 4 8 8 4 8 8 4 8 8.

f. In general, proceed from the innermost level to the outermost level.

> i_1 <- c(2,5,9)
> i_2 <- mean(i_1)
> i_3 <- seq(1,3)
> i_4 <- c(i_3, i_2)
> i <- rep(i_4, 3)

g.

> integers <- 1:5
> five_letters <- c("a","b","c","d","e")
> names(integers) <- five_letters
> integers

or, shorter:

> integers <- 1:5
> names(integers) <- letters[1:5]

h.

> rep(c("a", "b", "c"), 2)
[1] "a" "b" "c" "a" "b" "c"
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> c(rep(c(T, F, T), 2), rep(T, 5))
[1] TRUE FALSE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE
> # or
> c(T,F,T,T,F,rep(T,6))
[1] TRUE FALSE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE

i. In R, characters are not just letters. They include spaces and punctuation. In R is great!, there are
eight letters, two spaces, and one exclamation mark. There are therefore 11 characters.

2.2 a.

> values <- c(33, 65, 17, 3638)
> row_names <- c("sure", "other adjectives")
> col_names <- c("hell", "other NPs")
> mat <- matrix(values, 2, 2, dimnames=list(row_names, col_names)) ; mat

hell other NPs
sure 33 17
other adjectives 65 3638

b.

> rowSums(mat)
sure other adjectives

50 3703
> colSums(mat)

hell other NPs
98 3655

c.

> source("/CLSR/mypercentage.r") # load the mypercentage() function
> percentage (mat[1,1], sum(mat))
33 is 0.88 percent of 3753

2.3 a.

> rank <- 1:5
> A <- c("good", "quick", "right", "large", "safe")
> NP <- c("gold", "flash", "rain", "life", "houses")
> G2 <- c(288.82, 189.29, 175.98, 164.55, 148.32)
> df <- data.frame(rank, A, NP, G2)
> df
rank A NP G2

1 1 good gold 288.82
2 2 quick flash 189.29
3 3 right rain 175.98
4 4 large life 164.55
5 5 safe houses 148.32

b.

> mean(df$G2)
[1] 193.392
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c.

> mean(df$G2[c(1:3)])
[1] 218.03
> # or
> mean(df$G2[1:3])
[1] 218.03

d.

> sort(df$A)
[1] good large quick right safe
Levels: good large quick right safe

e.

> sort(df$NP, decreasing=TRUE)
[1] rain life houses gold flash
Levels: flash gold houses life rain

Exercise of Chap. 3

Visit http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/. Download and
install the German parameter files and German chunker parameter files. Open a terminal window and type
sh install-tagger.sh to run the installation script in the directory where you have downloaded the
files (on my computer: /TreeTagger, which I access by entering cd /TreeTagger in the terminal.)

Next, download the German model from http://datacube.wu.ac.at.

> install.packages("openNLPmodels.de", repos = "http://datacube.wu.ac.at/", type = "source")

Load NLP, openNLP, and openNLP.de.

> library(NLP)
> library(openNLP)
> library(openNLPmodels.de)

For the function to run properly, you need to set the language argument of both

Maxent_Word_Token_Annotator() and
Maxent_POS_Tag_Annotator()

to de (the ISO code for German).

> tagPOS <- function(x, ...) {
+ s <- as.String(x)
+ word_token_annotator <- Maxent_Word_Token_Annotator(language="de")
+ a2 <- Annotation(1L, "sentence", 1L, nchar(s))
+ a2 <- annotate(s, word_token_annotator, a2)
+ a3 <- annotate(s, Maxent_POS_Tag_Annotator(language="de"), a2)
+ a3w <- a3[a3$type == "word"]
+ POStags <- unlist(lapply(a3w$features, `[[`, "POS"))
+ POStagged <- paste(sprintf("%s_%s", s[a3w], POStags), collapse = " ")
+ list(POStagged = POStagged, POStags = POStags)
+ }

The unique argument of TagPOS() is the text to be tagged.

http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/
http://datacube.wu.ac.at
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> text <- scan("/CLSR/chap3/exercise/Brot.txt", what="char", sep="\n")
> tagged_txt <- tagPOS(text)

To print the tagged text only, access the POStagged element of tagged_txt.

> tagged_txt$POStagged

This is what you should obtain:

Brot_NN ist_VAFIN ein_ART traditionelles_ADJA
Nahrungsmittel_NN ,_$, das_PRELS aus_APPR einem_ART
Teig_NN aus_APPR gemahlenem_ADJA Getreide_NN (_$(
Mehl_NE )_$( ,_$, Wasser_NN ,_$, einem_ART Triebmittel_NN
und_KON meist_ADV weiteren_ADJA Zutaten_NN gebacken_VVINF
wird_VAFIN ._$. Es_PPER zählt_VVFIN zu_APPR den_ART
Grundnahrungsmitteln_NN ._$. Das_ART feste_ADJA ,_$,
dunkle_ADJA Äußere_NN des_ART Brotes_NN heißt_VVFIN
Kruste_NN oder_KON Rinde_NN ._$. Das_ART Innere_NN
ist_VAFIN die_ART Krume_NN ._$. Brotkrümel_NN
heißen_VVFIN auch_ADV Brosamen_NN (_$( aus_APPR dem_ART
Mittelhochdeutschen_NN )_$( oder_KON Brösel_NE .
_$. Die_ART meisten_PIAT Brotteige_NN können_VVFIN
auch_ADV in_APPR Form_NN kleinerer_ADJA ,_$, etwa_ADV
handtellergroßer_ADJA Portionen_NN als_APPR Brötchen_NN
gebacken_VVPP werden_VAINF ._$.

Exercises of Chap. 4

4.1 The first solution consists in looking for a character string that contains "c" or "m" followed by "at".

> catmat <- c("the", "cat", "sat", "on", "the", "mat")
> grep("[cm]at", catmat, value=TRUE) # solution 1
[1] "cat" "mat"

The second solution consists in looking for a character string that does not contain "s" followed by
"at".

> grep("[^s]at", catmat, value=TRUE) # solution 2
[1] "cat" "mat"

4.2 Clear R’s memory and load the text.

> rm(list=ls(all=TRUE))
> text <- scan("C:/CLSR/chap4/gnu.txt", what="char", sep="\n") # Windows
> text <- scan("/CLSR/chap4/gnu.txt", what="char", sep="\n") # Mac

Next, split the character vector text at non-word characters with strsplit(). Do not forget to unlist
the output of strsplit() with unlist().
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> text.split <- unlist(strsplit(text, "\\W+"))

Look for the occurrences of the with grep(). Make sure that you enclose your match within ˆ and $ so
that only the as a stand-alone word is retrieved. See what happens when you do not

> grep("the", text.split, value=TRUE)
[1] "other" "other" "the" "the" "the" "the" "other" "the" "them" "the" "these"

R retrieves all occurrences of the, including when it is part of a larger word. Another issue that you have to
deal with is case sensitivity. In your text vector, the definite article comes in two forms: The and the. For R
to recognize the former, set the ignore.case argument to TRUE.

> grep("^the$", text.split, value=TRUE) # case sensitive
[1] "the" "the" "the" "the" "the" "the"
> grep("^the$", text.split, ignore.case=TRUE, value=TRUE) # case insensitive
[1] "The" "The" "the" "the" "the" "the" "the" "the"

All that is left to do is count the number of matches with length().

> the.in.text.split <- grep("^the$", text.split, ignore.case=TRUE, value=TRUE)
> length(the.in.text.split)
[1] 8

There are eight occurrences of the in the text.

4.3 First, load the corpus file.

> rm(list=ls(all=TRUE))
> corp.file <- scan("/CLSR/chap4/102CTL002_annotated.txt", what="char", sep="\n")

a. Because this is an exact matching task, you will need strapply() from the gsubfn package. Ac-
cording to the CLAWS7 tagset, the past participle form of a lexical verb is coded VVN. Therefore, we look
for one or more characters followed by an underscore and the desired tag: \\w+_VVN. By placing the
character string between brackets, we make sure that the tag is not retrieved because strapply() applies
backreferencing by default (as if we had backref=-1). If we did want the tag, we would set backref
to 0.

> library(gsubfn)

Loading required package: proto

> unlist(strapply(corp.file, "(\\w+)_VVN")) # without the tag
[1] "doubled" "caused" "provided" "acknowledged"
> unlist(strapply(corp.file, "(\\w+)_VVN", backref=-1)) # without the tag
[1] "doubled" "caused" "provided" "acknowledged"
> unlist(strapply(corp.file, "(\\w+)_VVN", backref=0)) # with the tag
[1] "doubled_VVN" "caused_VVN" "provided_VVN" "acknowledged_VVN"

b. To retrieve all the verb forms of be, we need to write a regular expression that encompasses the following
tags:

• VBDR: were;
• VBDZ: was;
• VBG: being;
• VBI: be;
• VBM: am;
• VBN: been;
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• VBR: are;
• VBZ: is.

All the tags have VB in common. One safe but clumsy way of retrieving the desired verbs forms is to look
for VB followed by D, or G, or I, or M, or N, or R, or Z, and optionally by R or Z (to match VBDR and VBDZ).

> unlist(strapply(corp.file, "(\\w+)_VB[DGIMNRZ][RZ]*", backref=-1)) # without the tag
[1] "be" "is" "is" "are" "is" "be"

A far more elegant query involves VB followed by one or two word characters.

> unlist(strapply(corp.file, "(\\w+)_VB\\w{1,2}", backref=-1)) # without the tag
[1] "be" "is" "is" "are" "is" "be"

c. To retrieve all the 3SG forms of be, do, and have in the simple present, we need to write a regular
expression that encompasses the following tags:

• VBZ: is;
• VDZ: does;
• VHZ: has.

All the tags have V.Z in common. They differ with respect to the middle letter: B, D, or H. This is how we
translate the query using a regular expression:

> unlist(strapply(corp.file, "(\\w+)_V[BDH]Z", backref=-1)) # without the tag
[1] "is" "is" "has" "is"

There is no 3SG form of do in the corpus file.

Exercises of Chap. 5

5.1 Clear R’s memory, and install and load the gutenbergr package.

> rm(list=ls(all=TRUE))
> install.packages("gutenbergr")
> library(gutenbergr)

Download the three novels and inspect.

> dickens <- gutenberg_download(c(1400, 1023, 766))

Determining mirror for Project Gutenberg from http://www.gutenberg.org/robot/harvest
Using mirror http://aleph.gutenberg.org

> str(dickens)
Classes 'tbl_df', 'tbl' and 'data.frame': 98053 obs. of 2 variables:
$ gutenberg_id: int 766 766 766 766 766 766 766 766 766 766 ...
$ text : chr "DAVID COPPERFIELD" "" "" "By Charles Dickens" ...

dickens is a two-column data frame with one row for each line of the texts.1 The two columns are:

• gutenberg_id: a column of integers with the Project-Gutenberg ID of each text;
• text: a character vector containing the lines of the text(s).

1 More specifically, according to the documentation, it is a two-column “tbl_df ”, as used by the tibble and dplyr packages.
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Create an empty text file to store the concordance and add the column headers manually.

> output.conc <- "C:/CLSR/chap5/conc.exercise.txt" # Windows
> output.conc <- "/CLSR/chap5/conc.exercise.txt" # Mac
> cat("PROJECT GUTENBERG ID\tLEFT CONTEXT\tNODE\tRIGHT CONTEXT\n", file=output.conc)

Vectorize the match and select the contextual window.

> match <- "London"
> context <- 10

In Sect. 5.2.1.4, we used one loop to iterate over the matches. In this exercise, you need to embed that
loop into another loop, which iterates over the three novels. In this embedding loop, the variable i stands
for the ID of each novel successively.

> # enter the first loop
> for (i in unique(dickens$gutenberg_id)){ # access each novel by ID
+ # split at non-word characters
+ split <- unlist(strsplit(dickens$text[which(dickens$gutenberg_id==i)], "\\W+"))
+ # find the positions of the match/node
+ node.positions <- grep(match, split)
+
+ # enter the second loop
+ for (j in 1:length(node.positions)){ # access each match...
+ # access the current match
+ node <- split[node.positions[j]]
+ # access the left context of the current match
+ if (node.positions[j] < context)
+ if (node.positions[j]==1) left.context <- NULL
+ else left.context <- split[1:(node.positions[j]-1)]
+ else left.context <- split[(node.positions[j]-context):(node.positions[j]-1)]
+
+ # access the right context of the current match
+ if ((node.positions[j] + context) >= length(split))
+ if (node.positions[j]==length(split)) right.context <- NULL
+ else right.context <- split[(node.positions[j]+1):length(split)]
+ else right.context <- split[(node.positions[j]+1):(node.positions[j]+context)]
+
+ # print the results
+ cat(i,"\t", left.context,"\t", node, "\t", right.context, "\n", file=output.conc, append=TRUE)
+ } # exit the second loop
+ } # exit the first loop

Tab. B.1 displays a sample of the output.

5.2 The first part of the script from Sect. 5.3.3 does not change.

> # Clear R's memory
> rm(list=ls(all=TRUE))
>
> # load the gsubfn package
> library(gsubfn)
>
> # load the paths to all the corpus files
> corpus.files <- list.files(path="/CLSR/BNC_baby", pattern="\\.xml$", full.names=TRUE)

The expression for the match needs to be formulated so as to retrieve all instances of the it BE ADJ to V that
construction. It contains a sequence of the following elements:

• the pronoun it:
<w c5=\"PNP\" hw=\"it\" pos=\"PRON\">it </w>
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Table B.1: A concordance of London in three novels by C. Dickens (excerpt)

PG ID LEFT CONTEXT NODE RIGHT CONTEXT

1023 Bleak House true There is in that city of London there some property of ours which is much at this
766 Martha wants she said to Ham to go to London Why to London returned Ham He stood between them
1023 Oh dear no miss he said This is a London particular I had never heard of such a thing
1400 uns if you please good Lord and not my London gentleman No no We ll show em another pair of
766 a month and his sister and my aunt came to London to see him Agnes and I parted from him aboard
1023 a more convenient place for all of us So to London we will go That being settled there is another thing
1400 a walk and that I would go on along the London road while Mr Jaggers was occupied if he would let
766 affect them who were so innocent of London life and London streets to discover how knowing I was and was ashamed
1400 after day a vast heavy veil had been driving over London from the East and it drove still as if in
766 Agnes Well I returned See here You come to London I rely on you and I have an object and
. . . . . . . . . . . .

• all the forms of the copula be:
<w c5=\"VB[BDGINZ]\" hw=\"be\" pos=\"VERB\">\\w+ </w>

• any adjective:
<w c5=\"AJ0\" hw=\"\\w+\" pos=\"ADJ\">\\w+ </w>

• the infinitive marker to:
<w c5=\"TO0\" hw=\"to\" pos=\"PREP\">to </w>

• any verb in the infinitive:
<w c5=\"VVI\" hw=\"\\w+\" pos=\"VERB\">\\w+ </w>

• the conjunction that:
<w c5=\"CJT\" hw=\"that\" pos=\"CONJ\">that </w>

Note that all quotes must escaped so as not to be mixed up with R’s character-string delimiter.

> # vectorize the search expression
> expr.match <- "<w c5=\"PNP\" hw=\"it\" pos=\"PRON\">it </w>
+ <w c5=\"VB[BDGINZ]\" hw=\"be\" pos=\"VERB\">\\w+ </w>
+ <w c5=\"AJ0\" hw=\"\\w+\" pos=\"ADJ\">\\w+ </w>
+ <w c5=\"TO0\" hw=\"to\" pos=\"PREP\">to </w>
+ <w c5=\"VVI\" hw=\"\\w+\" pos=\"VERB\">\\w+ </w>
+ <w c5=\"CJT\" hw=\"that\" pos=\"CONJ\">that </w>"

Prepare an empty vector to collect all matches at the end of the first for loop

> all.matches <- character()

Before entering the loop, you need to change the relevant elements to be collected, namely ADJ and V_inf.

> ADJ <- unlist(strapplyc(matches, "pos=\"ADJ\">(\\w+) </w>"))
> V_inf <- unlist(strapplyc(matches, "<w c5=\"VVI\" hw=\"(\\w+)\"", backref=1))

Here is what the full loop looks like.

> # enter the loop
> for (i in 1:length(corpus.files)) {
+ # load current corpus file
+ corpus.file <- scan(corpus.files[i], what="char", sep="\n")
+ classcode <- unlist(strapplyc(corpus.file, "<classCode scheme=\"DLEE\">(.*?)</classCode>"))
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+ # retrieve corpus file info
+ info <- unlist(strapplyc(corpus.file, "<[ws]text type=\"\\w+\">", backref=1))
+ # look for mode
+ mode <- unlist(strapplyc(info, "[ws]text"))
+ # look for type
+ type <- unlist(strapplyc(info, "[ws]text type=\"(\\w+)\""))
+
+ # isolate corp sentences and discard header
+ sentences <- grep("<s n=", corpus.file, perl=TRUE, value=TRUE)
+ # get matches (full pattern)
+ matches <- unlist(strapplyc(sentences, expr.match, ignore.case=TRUE, backref=0))
+ # if there are no matches, go to next corpus path ...
+ if (length(matches)==0) { next }
+
+ # collect the relevant elements
+ ADJ <- unlist(strapplyc(matches, "pos=\"ADJ\">(\\w+) </w>"))
+ V_inf <- unlist(strapplyc(matches, "<w c5=\"VVI\" hw=\"(\\w+)\"", backref=1))
+
+ # clean up
+ matches.clean <- gsub("<.*?>", "", matches, perl=T) # remove xml tags
+ matches.clean <- gsub("< +$>", "", matches.clean, perl=T) # remove trailing spaces
+
+ # paste the collected elements
+ matches.row <- paste(basename(corpus.files[i]), classcode, mode, type, matches.clean,
+ ADJ, V_inf, sep="\t")
+
+ # collects all results
+ all.matches <- c(all.matches, matches.row)
+ } # exit the loop

Finally, save the results into a text file. Do not forget to add tab-separated column headers.

> cat("corpus file\tinfo\tmode\ttype\texact match\tADJ\tV_inf", all.matches, sep="\n",
+ file="/CLSR/chap5/df_exercise.txt")

Tab. B.2 displays a sample of the output.

5.3 Clear R’s memory, load gutenbergr, download the novel (whose ID is 2701), and inspect moby.

> rm(list=ls(all=TRUE))
> library(gutenbergr)
> moby <- gutenberg_download(2701) # load Moby Dick from Project Gutenberg
> head(moby)
# A tibble: 6 x 2
gutenberg_id text

<int> <chr>
1 2701 MOBY DICK;
2 2701
3 2701
4 2701 or, THE WHALE.
5 2701
6 2701
> tail(moby)
# A tibble: 6 x 2
gutenberg_id text

<int> <chr>
1 2701 and night, I floated on a soft and dirgelike main. The unharming sharks,
2 2701 they glided by as if with padlocks on their mouths; the savage sea-hawks
3 2701 sailed with sheathed beaks. On the second day, a sail drew near, nearer,
4 2701 and picked me up at last. It was the devious-cruising Rachel, that in
5 2701 her retracing search after her missing children, only found another
6 2701 orphan.
> str(moby)
Classes 'tbl_df', 'tbl' and 'data.frame': 22258 obs. of 2 variables:
$ gutenberg_id: int 2701 2701 2701 2701 2701 2701 2701 2701 2701 2701 ...
$ text : chr "MOBY DICK;" "" "" "or, THE WHALE." ...
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Table B.2: A data frame of the it BE ADJ to V that construction in the BNC baby (sample)

corpus file info mode type exact match ADJ V_inf

A1J.xml W newsp brdsht nat: report wtext NEWS it is logical to assume that logical assume
A1N.xml W newsp brdsht nat: sports wtext NEWS It is fair to say that fair say
A6U.xml W ac:humanities arts wtext ACPROSE It is easy to say that easy say
A98.xml W newsp brdsht nat: social wtext NEWS It is interesting to note that interesting note
ACJ.xml W ac:polit law edu wtext ACPROSE it is fair to say that fair say
ACJ.xml W ac:polit law edu wtext ACPROSE it is unacceptable to claim that unacceptable claim
ACJ.xml W ac:polit law edu wtext ACPROSE it is possible to concede that possible concede
AHC.xml W newsp brdsht nat: misc wtext NEWS it is hard to believe that hard believe
AJF.xml W newsp brdsht nat: arts wtext NEWS it is good to report that good report
AL2.xml W newsp brdsht nat: commerce wtext NEWS it is possible to argue that possible argue
. . . . . . . . . . . . . . . . . . . . .

We are only interested in the text component of moby. We isolate this component.

> moby <- moby$text

Time for some cleanup. First, switch the whole novel to lowercase, so as not to alter the count later on.

> moby <- tolower(moby)

Next, remove everything that is not a letter or a space. You do it by substituting whatever is not a letter or a
space by a space. To understand the code below, remember that [ˆxyz] means “not x, or y, or z”.

> moby <- gsub("[^a-zA-Z\\s]", " ", moby); head(moby)
[1] "moby dick " "" "" "or the whale " ""
[6] ""

The above line of code is very likely to generate multiple spaces. You remove them after getting rid of
leading and trailing spaces.

> moby <- gsub("(^ | +$)", "", moby) # remove leading/trailing spaces
> moby <- gsub(" +", " ", moby) # remove multiple spaces

At this stage, your moby vector is full of empty strings. Get rid of them via subsetting.

> moby <- moby[which(moby!="")]
> head(moby)
[1] "moby dick" "or the whale"
[3] "by herman melville" " contents"
[5] " etymology" " extracts supplied by a sub sub librarian"

Your character vector consists of as many elements as the novel has lines (enter length(moby) to obtain
the number of lines). To proceed, moby must be of length 1. Gather all the elements of moby into one
element with paste(). The value of the collapse argument is a space, to delimit the conflated elements.

> moby.one <- paste(moby, collapse=" ")
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It is now time to generate bigrams. This is easy. Load the ngram package and use the dedicated function:
ngram(). The main argument is the character string that serves as input (in your case moby.one). The
second argument is the value of n (2 for bigrams, 3 for trigrams, etc.).

> library(ngram)
> text.bigrams <- ngram(moby.one, n=2)
> text.bigrams
An ngram object with 116430 2-grams

According to the package documentation, you access the list thanks to the get.phrasetable() func-
tion.

> bigrams <- get.phrasetable(text.bigrams)
> head(bigrams)

ngrams freq prop
1 of the 1886 0.008610142
2 in the 1184 0.005405307
3 to the 732 0.003341794
4 from the 441 0.002013294
5 the whale 414 0.001890031
6 of his 373 0.001702854

The output is a data frame with three columns: ngram, freq, and prop. Get rid of the third column.

> bigrams$prop <- NULL

The good news is that the frequency list is almost done, thanks to get.phrasetable(). The bad news
is that you need to split the ngram column in two to apply the stoplist. Fortunately, there are many easy
ways of doing it. The solution below hinges on do.call(). The function executes rbind() to make a
new data frame where each line of bigrams$ngram is split in two by means of strsplit(). A third
column, bigrams$freq is appended to this data frame.

> bigrams <- data.frame(do.call('rbind', strsplit(as.character(bigrams$ngram), " ")), bigrams$freq)
> colnames(bigrams)[1] <- "word.1" # change name of 1st column
> colnames(bigrams)[2] <- "word.2" # change name of 2nd column
> str(bigrams)
'data.frame': 116430 obs. of 3 variables:
$ word.1 : Factor w/ 16956 levels "a","aback","abaft",..: 10047 7448 15089 5986 14859 10047

489 10102 10047 848 ...
$ word.2 : Factor w/ 16957 levels "a","aback","abaft",..: 14860 14860 14860 14860 16535 6982

14860 14860 1 14860 ...
$ bigrams.freq: int 1886 1184 732 441 414 373 372 359 334 330 ...

You are almost there. Load the stoplist used in the Chap. 5.

> stoplist <- scan("/CLSR/chap5/english_stoplist.txt", what="character", sep="\n")

You want the stoplist to apply to the words found in each column. You subset the lines in the bigrams data
frame whose words are not those found in the stoplist.

> bigrams.filtered <- bigrams[which(!bigrams$word.1 %in% stoplist & !bigrams$word.2 %in% stoplist),]
> head(bigrams.filtered, 10)

word.1 word.2 bigrams.freq
27 sperm whale 183
72 white whale 106
99 moby dick 85
152 captain ahab 62
216 mast head 50
337 mast heads 37
377 whale ship 34
406 captain peleg 32
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415 quarter deck 32
420 aye aye 32

In case you still do not know what the novel is about, the most frequent bigrams are sperm whale, white
whale, and Moby Dick.

Exercises of Chap. 6

6.1 Clear R’s memory and load the data frame.

> rm(list=ls(all=TRUE))
> df <- readRDS("/CLSR/chap6/modals.by.genre.BNC.rds")
> str(df)
'data.frame': 10 obs. of 8 variables:
$ ACPROSE : int 44793 17379 35224 11293 13511 976 4097 19420 32805 29903
$ CONVRSN : int 23161 7955 628 3524 2989 451 1639 4344 9032 9895
$ FICTION : int 32293 49826 5302 13917 15043 1649 4855 13791 24285 56934
$ NEWS : int 16269 14045 6134 3634 4306 221 408 8900 37476 23375
$ NONAC : int 53297 32923 32934 13110 15522 1115 3746 25622 53246 59211
$ OTHERPUB: int 53392 19684 20923 7215 11176 477 2306 22014 66980 33132
$ OTHERSP : int 26262 11976 4267 4710 3045 820 1233 7647 15934 23778
$ UNPUB : int 11816 5733 6853 1465 4064 110 1701 7104 19258 8741

Because you are making barplots, you need to convert the data frame into a matrix.

> mat <- as.matrix(df)

Before entering the loop, you need to set up the plotting window so that it can hold ten barplots. Here, we
tell R to arrange the ten barplots in two rows and five columns.

> par(mfrow=c(2,5))

The loop tells R to access each row of the matrix (i takes the value of each row). For each row, R makes
a barplot of the values that it finds there. Thanks to the argument las=2, the labels are perpendicular to
x axis (by default, they are parallel, because las=0). The main argument selects an overall title for each
plot. This title is the name of each row, i.e. the corresponding English modal. For a change, the columns
will be in Dodger blue.

> for (i in 1:nrow(mat)){ # for each row in the matrix
+ barplot(mat[i,], las=2, main=rownames(mat)[i], col="dodgerblue") # make a barplot
+ }

Fig. B.1 shows what the loop outputs. Be careful when you interpret a barplot. The height of each bar
should be interpreted in the light of the size of each text genre. Because the size of CONVRSN is smaller than
the size of most of the other genres, you cannot conclude that English modals are used less in conversation.

6.2 Clear R’s memory, load the novel using the gutenbergr package (see Sol. 5.1 above), and isolate the
text.

> rm(list=ls(all=TRUE))
> library(gutenbergr)
> ot <- gutenberg_download(730)
> ot <- ot$text
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Fig. B.1: A barplot of the distribution of ten English modals across text genres in the BNC

Because we are going to split the text at non-word characters, we replace the spaces with an underscore in
the place names that consist of multiple words: Snow Hill, Jacob’s Island, and London Bridge. By doing so,
we make sure that multiple-word place names are not affected by the split.

> ot <- gsub("Snow Hill", "Snow_Hill", ot)
> ot <- gsub("Jacob's Island", "Jacob_s_Island", ot)
> ot <- gsub("London Bridge", "London_Bridge", ot)

Next, we split the text and remove the empty character strings.

> ot.split <- unlist(strsplit(ot, "\\W+"))
> ot.split <- ot.split[nchar(ot.split)>0]

In dispersion plots, the x-axis denotes the sequence of words in the novel. We create these values with
seq() and store them in seq.corpus

> seq.corpus <- seq(1:length(ot.split))
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and we vectorize the matches.

> matches <- c("Clerkenwell", "Snow_Hill", "Holborn", "Jacob_s_Island",
+ "Southwark", "London_Bridge", "Newgate", "Pentonville", "Smithfield")

We need to loop over the matches to generate a dispersion plot for each of them. The loop does the
following:

• get the position of the current match in the text;
• replace each position in the text with NA;
• replace each NA with 1;
• generate the plot.

Before running the loop, specify the desire plot layout. You obtain Fig. B.2.

> par(mfrow=c(5,2))
> for (i in 1:length(matches)) {
+ match.positions <- which(ot.split==matches[i])
+ match.count <- rep(NA, length(seq.corpus))
+ match.count[match.positions] <- 1
+ plot(match.count, xlab="novel", ylab=matches[i], type="h", ylim=c(0,1), yaxt="n")
+ }

6.3 Clear R’s memory and load the data frame.

> rm(list=ls(all=TRUE))
> df <- readRDS("/CLSR/chap6/modals.by.genre.BNC.rds")
> str(df)
'data.frame': 10 obs. of 8 variables:
$ ACPROSE : int 44793 17379 35224 11293 13511 976 4097 19420 32805 29903
$ CONVRSN : int 23161 7955 628 3524 2989 451 1639 4344 9032 9895
$ FICTION : int 32293 49826 5302 13917 15043 1649 4855 13791 24285 56934
$ NEWS : int 16269 14045 6134 3634 4306 221 408 8900 37476 23375
$ NONAC : int 53297 32923 32934 13110 15522 1115 3746 25622 53246 59211
$ OTHERPUB: int 53392 19684 20923 7215 11176 477 2306 22014 66980 33132
$ OTHERSP : int 26262 11976 4267 4710 3045 820 1233 7647 15934 23778
$ UNPUB : int 11816 5733 6853 1465 4064 110 1701 7104 19258 8741

Because the modals are the row variables and the text genres column variables, you need to transpose the
data frame with t(). Because the transposition outputs a matrix, convert it back into a data frame.

> df <- t(df)
> class(df)
[1] "matrix"
> df <- as.data.frame(df)

It is now time to run stripchart(). The chart consists of ten strips (one for each modal). For ease of
reading, we assign one color per modal with rainbow(). The numeric argument of this function specifies
how many distinct colors we want. The pch argument determines how the points are drawn in the plot
(pch=16 selects a filled circle).2 Thanks to the las argument (las=1), the labels are perpendicular to the
y axis. You should obtain Fig. B.3.

> stripchart(df, xlab="frequencies", col = rainbow(8), pch=16, las=1)

2 Enter ?pch for more details.
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Fig. B.2: Dispersion plots of nine place names in Oliver Twist

Exercises of Chap. 7

7.1 Clear R’s memory and load the data file.

> rm(list=ls(all=TRUE))
> df <- readRDS("/CLSR/chap6/modals.by.genre.BNC.rds")
> str(df)
'data.frame': 10 obs. of 8 variables:
$ ACPROSE : int 44793 17379 35224 11293 13511 976 4097 19420 32805 29903
$ CONVRSN : int 23161 7955 628 3524 2989 451 1639 4344 9032 9895
$ FICTION : int 32293 49826 5302 13917 15043 1649 4855 13791 24285 56934
$ NEWS : int 16269 14045 6134 3634 4306 221 408 8900 37476 23375
$ NONAC : int 53297 32923 32934 13110 15522 1115 3746 25622 53246 59211
$ OTHERPUB: int 53392 19684 20923 7215 11176 477 2306 22014 66980 33132
$ OTHERSP : int 26262 11976 4267 4710 3045 820 1233 7647 15934 23778
$ UNPUB : int 11816 5733 6853 1465 4064 110 1701 7104 19258 8741

You need to transpose the data frame, otherwise you will calculate the measures of central tendency of text
genres, not modals. The transposition process converts the data frame into a matrix, which is fine because
we are doing arithmetics.

> mat <- t(df)
> str(mat)
int [1:8, 1:10] 44793 23161 32293 16269 53297 53392 26262 11816 17379 7955 ...
- attr(*, "dimnames")=List of 2
..$ : chr [1:8] "ACPROSE" "CONVRSN" "FICTION" "NEWS" ...
..$ : chr [1:10] "can" "could" "may" "might" ...
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Fig. B.3: A strip chart of the distribution of ten English modals across text genres in the BNC

With a for loop, tell R to go over each row and calculate the mean, the median, and find the frequency
of the mode. With cat(), prefix the row name and append the results, separated by a space. Each line of
the output ends with a newline ("\n").

> for (i in 1:nrow(mat)){ # for each row in the matrix
+ mean <- mean(mat[i,]) # calculate the mean
+ median <- median(mat[i,]) # calculate the median
+ mode <- max(mat[i,]) # find the frequency of the mode
+ cat(rownames(mat)[i], mean, median, mode, "\n", sep=" ") # print the results
+ } # exit the loop
ACPROSE 20940.1 18399.5 44793
CONVRSN 6361.8 3934 23161
FICTION 21789.5 14480 56934
NEWS 11476.8 7517 37476
NONAC 29072.6 29272.5 59211
OTHERPUB 23729.9 20303.5 66980
OTHERSP 9967.2 6178.5 26262
UNPUB 6684.5 6293 19258

7.2 Clear R’s memory and create two numeric vectors with the values contained in Tab. 7.1.

> rm(list=ls(all=TRUE))
> vg1 <- c(314, 299, 401, 375, 510, 660, 202)
> vg2 <- c(304, 359, 357, 342, 320, 402, 285)

Summarizing the data in a plot such as Fig. 7.6 requires several steps. First, create a vector with the days
of the week. Assign the names to each element of vg1 and vg2.
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> days <- c("Mon","Tue","Wed","Thur","Fri","Sat","Sun")
> names(vg1) <- days
> names(vg2) <- days
> vg1
Mon Tue Wed Thur Fri Sat Sun
314 299 401 375 510 660 202
> vg2
Mon Tue Wed Thur Fri Sat Sun
304 359 357 342 320 402 285

Second, plot the first vector.

> plot(vg1, xlab="days of the week", ylab="occurrences of 'whatever'", xaxt="n", type="b", main="")

In the plot call, add labels with xlab and ylab. xaxt="n" removes the automatic indexing along the
x-axis. We need to do this to plot the names of the days instead. type="b" indicates the type of plot that
we want: with both points and lines. The next line of code plots the names of the days. grid() adds a
rectangular grid to the plot. With lines(), we plot the values of the second numeric vector.

> axis(1, at=1:7, labels=days)
> grid()
> lines(vg2, type="b", col="blue")

The mean and the standard deviation are calculated with their respective functions.

> #mean
> mean(vg1)
[1] 394.4286
> mean(vg2)
[1] 338.4286
> #standard deviation
> sd(vg1)
[1] 151.0572
> sd(vg2)
[1] 39.16145

We add the means to the plot with abline().

abline(h=mean(vg1))
abline(h=mean(vg2), col="blue")

Finally, we annotate the plot with text(). The first two arguments of this function position the text on the
plot. We specify the x-axis and the y-axis coordinates.

> text(1.2,mean(vg1)+10,"mean Valley girl 1", cex=0.8)
> text(1.2,mean(vg2)+10,"mean Valley girl 2", col="blue", cex=0.8)
> text(2,11,"mean girl 1", cex=0.6)
> text(2,9,"mean girl 2", col="blue", cex=0.6)
> text(5, 560, "Valley girl 1")
> text(5, 300, "Valley girl 2", col="blue")

Summarizing the data by means of a boxplot is equally easy.

> boxplot(vg1, vg2, names=c("Valley girl 1", "Valley girl 2"),
+ ylab="occurrences of 'whatever'")

Although both Valley girls use ‘whatever’ a lot, as evidenced by similar means, we observe much more
deviation with respect to Valley girl 1.
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Exercises of Chap. 8

8.1 Clear R’s memory, load whitman.txt, and inspect.

> rm(list=ls(all=TRUE))
> whitman <- scan("/CLSR/chap4/whitman.txt", what="char", sep="\n")
> head(whitman,2)
[1] "When I heard the learn'd astronomer;"
[2] "When the proofs, the figures, were ranged in columns before me;"

The strategy that I adopt here is to look for letters, replace consonants with “C”, vowels with “V”, and count
them. There are many ways of solving this exercise. The one I present here may not be the shortest, but it is
simple to grasp.

First, we remove the apostrophes (as in learn’d) because we do not want it to interfere with the count.

> whitman <- gsub("'", "", whitman, ignore.case = TRUE)

Next, we split the text at non-word characters. This has the double advantage of getting rid of spaces and
punctuation.

> whitman.split<- unlist(strsplit(whitman, "\\W+"))
> head(whitman.split)
[1] "When" "I" "heard" "the" "learnd" "astronomer"

We paste the text back together so that we end up with an uninterrupted character string.

> whitman.paste <- paste(whitman.split, collapse ="")

With gsub(), we replace consonants (i.e. letters that are not “a" or “e” or “i” or “o” or “u”) with “C” and
vowels with “V”.

> whitman <- gsub("[^aeiou]", "C", whitman.paste, ignore.case = TRUE)
> whitman <- gsub("[aeiou]", "V", whitman, ignore.case = TRUE)

Before counting the number of consonants and vowels, we need to find them first. We use strapply(),
from the gsubfn package. The count proper is done with length().

> library(gsubfn)
> nwhit <- sum(nchar(whitman)) # number of letters
> nC <- length(unlist(strapply(whitman, "C"))) # number of consonants
> nV <- length(unlist(strapply(whitman, "V"))) # number of vowels

The probability of drawing a consonant is nC divided by the total number of letters.

> P_C <- nC/nwhit
> P_C
[1] 0.6256684

Because drawing a consonant and drawing a vowel are mutually exclusive, the probability of drawing a
vowel is 1−P(C).

> P_V <- 1-P_C
> P_V
[1] 0.3743316

The probability of drawing a consonant is 0.63 and the probability of drawing a vowel is 0.37.

8.2 Clear R’s memory and load the contingency table. Convert the data frame into a matrix.
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> rm(list=ls(all=TRUE))
> ct <- as.matrix(readRDS("C:/CLSR/chap8/ct.rds")) # Windows
> ct <- as.matrix(readRDS("/CLSR/chap8/ct.rds")) # Mac

Calculate the marginal totals (i.e. the sums of rows and columns) and add them to the matrix with
rbind() and cbind().

> row.totals <- colSums(ct)
> ct <- rbind(ct, row.totals)
> col.totals <- rowSums(ct)
> ct <- cbind(ct, col.totals)
> ct

preadjectival predeterminer col.totals
quite 453 1749 2202
rather 1423 370 1793
row.totals 1876 2119 3995

The cell at the intersection of row.totals and col.totals (3995) corresponds to the sample size.
It can be obtained in two other ways.

> sum(rowSums(ct[1:2, 1:2]))
[1] 3995
> sum(colSums(ct[1:2, 1:2]))
[1] 3995

a. If we randomly selected an observation from this sample, the probability that this observation is P(quite)
is found by dividing the total frequency of quite by the sample size: 2202/3995= 0.55. With R, you do not
need to calculate each probability individually. All you need to do is divide the matrix by the sample size.
Let us round the results to two decimal places.

> ct_probs <- round(ct/ct[3,3], 2)
> ct_probs

preadjectival predeterminer col.totals
quite 0.11 0.44 0.55
rather 0.36 0.09 0.45
row.totals 0.47 0.53 1.00

• P(quite) = 0.55 (55%)
• P(rather) = 0.45 (45%)
• P(pread jectival) = 0.47 (47%)
• P(predeterminer) = 0.53 (53%)

b. Calculating the probability of drawing the adverb rather in predeterminer position means finding the in-
tersection of these two events (Sect. 8.2.4). This union is expressed in the form: P(rather∩ predeterminer).
It corresponds to the value in the table where rather and predeterminer intersect.

> P_predet_and_rather <- ct_probs[2,2]
> P_predet_and_rather
[1] 0.09

P(rather∩ predeterminer) = 0.09 (9%).

c. Calculating the probability of drawing either an adverb in predeterminer position or the adverb
rather means finding the union of these two events (Sect. 8.2.4). This union is expressed in the form:
P(predeterminer∪ rather).
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> P_predet <- ct_probs[3,2]
> P_rather <- ct_probs[2,3]
> P_predet_and_rather <- ct_probs[2,2]
> P_predet_or_rather <- P_predet + P_rather - P_predet_and_rather
> P_predet_or_rather
[1] 0.89

P(predeterminer∪ rather) = 0.89 (89%).

d. Let us first focus on the probability of an observation being in predeterminer position on the condition of
being the adverb rather. We denote this as P(predeterminer|rather). We calculate it by dividing the joint
probability by the corresponding marginal probability for the rather sample only:

P(predeterminer|rather) =
0.09
0.45

.

> P_predet_cond_rather <- ct_probs[2,2]/ct_probs[2,3]
> P_predet_cond_rather
[1] 0.2

Given that an observation is the adverb rather, there is a 20% chance that it occurs in predeterminer position.
Now, let us do it the other way around. We calculate the probability for the observation to be the adverb

rather on the condition of occurring in predeterminer position: P(rather|predeterminer). We calculate it by
dividing the joint probability by the corresponding marginal probability for the predeterminer sample only:

P(rather|predeterminer) =
0.09
0.53

.

> P_rather_cond_predet <- ct_probs[2,2]/ct_probs[3,2]
> P_rather_cond_predet
[1] 0.1698113

Given that an observation is in predeterminer position, there is a 17% chance that it is the adverb rather.
Because the marginal probabilities are different, so are the conditional probabilities.

e. P(pread jectival|quite) (i.e. the probability of drawing an observation in preadjectival position given that
it is the adverb quite) is found by dividing the joint probability of the two events by the marginal probability
of quite.

> P_preadj_cond_quite <- ct_probs[1,1]/ct_probs[1,3]
> P_preadj_cond_quite
[1] 0.2

P(pread jectival|quite) = 0.2 (20%).
P(predeterminer|quite) (i.e. the probability of drawing an observation in predeterminer position given

that it is the adverb quite) is found by dividing the joint probability of the two events by the marginal
probability of quite.

> P_predet_cond_quite <- ct_probs[1,2]/ct_probs[1,3]
> P_predet_cond_quite
[1] 0.8
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P(predeterminer|quite) = 0.8 (80%). We find that the adverb quite is much more likely to occur in prede-
terminer position in the corpus.

8.3 Clear R’s memory, load the text, and inspect. Note that I have cleaned the text a little.

> rm(list=ls(all=TRUE))
> text <- scan("C:/CLSR/chap8/rodogune.txt", what="char", sep="\n") # Windows
> text <- scan("/CLSR/chap8/rodogune.txt", what="char", sep="\n") # Mac
> head(text)

Your first task is to determine the number of words per line. Use a loop.

> num_words <- integer() # create an empty integer vector to collect all results
> for (i in 1:length(text)){ # for each line in the text...
+ split_line <- unlist(strsplit(text[i], "\\W+")) # split at non-word characters...
+ num_words_line <- length(split_line) # obtain the size in words of the line
+ num_words <- c(num_words, num_words_line) # collect all results
+ }

You are now ready to plot the histogram with hist(). You can add a density curve with curve() and
dnorm(), as shown in the next line of code (Fig. B.4).

> hist(num_words, prob=TRUE, main="")
> curve(dnorm(x, mean=mean(num_words), sd=sd(num_words)), col="blue", add=TRUE)

According to the density curve, the data look normally distributed. However, when we look at the bars,
we observe a little skew to the left. A Shapiro-Wilk normality test is needed to remove any doubt regarding
the normality of the data. Remember that this test assumes the following:

H0: the data are normally distributed;
H1: the data are not normally distributed.

Thus, if p < α , then H0 is rejected because there is evidence that the data are not from a normally distributed
population.

> shapiro.test(num_words)

Shapiro-Wilk normality test

data: num_words
W = 0.9609, p-value < 2.2e-16

Here, p < 2.2e−16 (i.e. very close to zero). Despite what the histogram made us believe, the data are not
normally distributed.

When you test for normality, make sure that your sample is large enough. Fig. B.5 shows the distribution
of the data depending on the sample size. The larger the sample, the easier it is to make an opinion about the
distribution.



Solutions 331

num_words

D
en

si
ty

4 6 8 10 12 14

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25
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Fig. B.5: The distribution of words per lines in Rodogune based on different samples

8.4 First, we create the contingency table in the form of a matrix.

rm(list=ls(all=TRUE))
r1 <- c(353, 124)
r2 <- c(157, 42)
matrix <- matrix(c(r1,r2), nrow=2, ncol=2, byrow=TRUE); matrix
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Next, we run a χ2 test on the matrix and display the expected frequency of each cell.

chisq.test <- chisq.test(matrix)
round(chisq.test$expected, 0)

Rather than compare the observed frequencies to the expected frequencies, we access the res element from
the chisq.test() output.

chisq.test$res

If we were to rely on observed frequencies only, we would naturally conclude that word 1 and word 2
tend to occur in context 1. With χ2, we know that, in fact, word 1 disprefers context 1 and word 2 disprefers
context 2. Conversely, the preference of word 1 for context 2 and the preference of word 2 for context 1 are
significant.

8.5 First, we load the contingency table.

rm(list=ls(all=TRUE))
stance <- readRDS("/CLSR/chap8/stance.rds")
str(stance)

First, we need to convert the counts in each column into ordinal data. This can be done with rank().

for (i in 1:ncol(stance)){
stance[,i] <- rank(stance[,i])

}

With cor() and the method="kendall" argument, we can now compute the entire matrix of correla-
tions between all the variables in stance.

cor(stance, method="kendall")

With cor.test() and the method="kendall" argument, we calculate the pairwise correlations.

cor.test(stance$ACPROSE, stance$NEWS, method="kendall")

There is a strong positive correlation between the word distribution of adjective categories in ACPROSE and
NEWS (τ = 0.73). The correlation is slightly above 0.05 (p = 0.06).

cor.test(stance$ACPROSE, stance$NONAC, method="kendall")

There is a perfect positive correlation between the word distribution of adjective categories in ACPROSE and
NONAC (τ = 1). The correlation is quite significant (p = 0.002).

cor.test(stance$NEWS, stance$CONVRSN, method="kendall")

There is a weak negative correlation between the word distribution of adjective categories in NEWS and
CONVRSN (τ = −0.11), but the correlation is not significant (p = 0.77). Mind you: because there are ties,
the exact p-value is not computed.

Exercise of Chap. 9

The simple, non-interactive function requires that you vectorize the frequency of the target word (freq_W1)
and the corpus size in word tokens (corp.size).
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> rm(list=ls(all=TRUE))
> freq_W1 <- 63135
> corp.size <- 533788932

You should also load the input file beforehand.

> data <- readRDS("C:/CLSR/chap9/computer.NP.rds") # Windows
> data <- readRDS("/CLSR/chap9/computer.NP.rds") # Mac

The vector data is the sole argument of your function. This unique argument is declared as x in the
structure of the function.

> assoc.chi <- function(x, ...){
+
+ }

Just place the loop inside the function. Optionally, you may append a line of code right after the loop
prompting the user to choose an output file interactively. This file is where the results are stored.

> assoc.chi <- function(x, ...){
+ all.chi <- character()
+ for (i in 1:nrow(data)){ # enter the loop
+ a <- data$freq_W1_W2[i] # cell a
+ b <- freq_W1 - a # cell b
+ c <- data$corp_freq_W2[i] - a # cell c
+ d <- (corp.size - freq_W1) - c # cell d
+ m <- matrix(c(a, b, c, d), nrow=2, ncol=2, byrow=TRUE) # make the 2x2 matrix
+ N <- sum(m) # sum total of the contingency table
+ N_row1 <- rowSums(m)[1] # sum total of row 1
+ N_row2 <- rowSums(m)[2] # sum total of row 2
+ N_col1 <- colSums(m)[1] # sum total of column 1
+ N_col2 <- colSums(m)[2] # sum total of column 2
+ E11 <- (N_row1*N_col1/N) # expected freq of cell in row 1 col 1
+ E12 <- (N_row1*N_col2/N) # expected freq of cell in row 1 col 2
+ E21 <- (N_row2*N_col1/N) # expected freq of cell in row 2 col 1
+ E22 <- (N_row2*N_col2/N) # expected freq of cell in row 2 col 2
+ m.exp <- matrix(c(E11, E12, E21, E22), nrow=2, ncol=2, byrow=TRUE) # matrix of expected freqs
+ current.chi <- ((m[1,1]-m.exp[1,1])^2/m.exp[1,1]) +
+ ((m[1,2]-m.exp[1,2])^2/m.exp[1,2]) +
+ ((m[2,1]-m.exp[2,1])^2/m.exp[2,1]) +
+ ((m[2,2]-m.exp[2,2])^2/m.exp[2,2])
+ current.chi <- round(current.chi, 2) # round the score
+ current.chi <- paste(data$W2[i], current.chi, sep="\t") # append word 2
+ all.chi <- c(all.chi, current.chi) # collect all scores
+ } # exit the loop
+ cat(all.chi, file=file.choose(), sep="\n")
+ }

To run the function, enter assoc.chi() and choose data as its unique argument.

> assoc.chi(data)

An interactive window opens almost immediately. Select the output text file. You are done.
With an interactive function, you do not have to worry about entering data before running the script.

Because the function has no argument, leave the brackets of function() empty. The first part of the
function prompts the user to select a format for the input file. The menu() function asks a question for-
mulated in the title argument. The question offers two options: "R data format (.rds)" and
"tab-separated text file (.txt)". The switch() function tells R what to do based on the
user’s choice.
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> assoc.chi <- function(){ # beginning of the function
+ what.format <- switch(menu(c("R data format (.rds)", "tab-separated text file (.txt)"),
+ title="\nWhat is the format of the input file? (enter 0 to exit)"),
+ load.data.rds(), load.data.txt())
+ } # end of the function

If the data is an R data file (choice: 1), the script proceeds to launch load.data.rds(), and if the
data is a tab-delimited text file (choice: 2), the script proceeds to launch load.data.txt(). These
subfunctions do two things:

• they load the input file using the functions required for each kind (readRDS() for a R data file, read.
table() for a tab-delimited text file);

• they launch another function: assoc.chi.2().

> load.data.rds <- function(){
+ readline("Press Enter to select the input matrix (.rds)...")
+ data <- readRDS(file=file.choose())
+ assoc.chi.2()
+ }
>
> load.data.txt <- function(){
+ readline("Press Enter to select the input matrix (.txt)...")
+ data <- read.table(file=file.choose(), header=T, sep="\t")
+ assoc.chi.2()
+ }

The assoc.chi.2() function is the most important part of the script. It is an interactive version of the
loop in Sect. 9.3.4.

> assoc.chi.2 <- function(){
+ x <- readline("What is the frequency of W1, a.k.a. the target word?\n")
+ freq_W1 <- as.numeric(x)
+ y <- readline("what is the corpus size in word tokens?\n")
+ corp.size <- as.numeric(y)
+ all.chi <- character()
+ for (i in 1:nrow(data)){ # enter the loop
+ a <- data$freq_W1_W2[i] # cell a
+ b <- freq_W1 - a # cell b
+ c <- data$corp_freq_W2[i] - a # cell c
+ d <- (corp.size - freq_W1) - c # cell d
+ m <- matrix(c(a, b, c, d), nrow=2, ncol=2, byrow=TRUE) # make the 2x2 matrix
+ N <- sum(m) # sum total of the contingency table
+ N_row1 <- rowSums(m)[1] # sum total of row 1
+ N_row2 <- rowSums(m)[2] # sum total of row 2
+ N_col1 <- colSums(m)[1] # sum total of column 1
+ N_col2 <- colSums(m)[2] # sum total of column 2
+ E11 <- (N_row1*N_col1/N) # expected freq of cell in row 1 col 1
+ E12 <- (N_row1*N_col2/N) # expected freq of cell in row 1 col 2
+ E21 <- (N_row2*N_col1/N) # expected freq of cell in row 2 col 1
+ E22 <- (N_row2*N_col2/N) # expected freq of cell in row 2 col 2
+ m.exp <- matrix(c(E11, E12, E21, E22), nrow=2, ncol=2, byrow=TRUE) # matrix of expected freqs
+ current.chi <- ((m[1,1]-m.exp[1,1])^2/m.exp[1,1]) +
+ ((m[1,2]-m.exp[1,2])^2/m.exp[1,2]) +
+ ((m[2,1]-m.exp[2,1])^2/m.exp[2,1]) +
+ ((m[2,2]-m.exp[2,2])^2/m.exp[2,2])
+ current.chi <- round(current.chi, 2) # round the score
+ current.chi <- paste(data$W2[i], current.chi, sep="\t") # append word 2
+ all.chi <- c(all.chi, current.chi) # collect all scores
+ } # exit the loop
+ readline("Press Enter to select a text file where you want to save the results...")
+ output <- file.choose() # select the output file
+ cat(all.chi, file=output, sep="\n") # print the results into the output file
+ cat(paste("Here is the path to your output file: ",
+ normalizePath(output), sep="")) # print the path
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+ }

First, the function prompts the user to input the frequency of the target word and the corpus size in word
tokens. Next comes the loop. Upon exiting the loop, the function prompts the user to select a text file where
the results are saved. The selected file is vectorized in output, so that its path can be retrieved after the
results have been saved.

The full function is stored in (C:)/CLSR/chap9. To load it, use source(). To run it, enter assoc.
chi().

> source("/CLSR/chap9/assoc.chi.R") # Windows
> source("/CLSR/chap9/assoc.chi.R") # Mac
> assoc.chi()

Exercises of Chap. 10

10.1 Clear R’s memory and load the data frame

> rm(list=ls(all=TRUE))
> df <- readRDS("C:/CLSR/chap10/it.be.A.to.V.that.rds") # Windows
> df <- readRDS("/CLSR/chap10/it.be.A.to.V.that.rds") # Mac

Inspect the data frame.

> str(df)
'data.frame': 244 obs. of 7 variables:
$ category : Factor w/ 2 levels "ADJ","V_inf": 1 1 2 1 2 1 2 2 2 1 ...
$ num.hapax : int 1 5 8 1 1 0 2 0 1 2 ...
$ V : int 1 10 15 1 1 2 4 2 3 2 ...
$ delta.diff : num -6.09e-05 1.13e-03 3.61e-04 1.70e-04 -1.52e-03 ...
$ association.chisq: num 1.54 99.67 6.17 1.26 5.2 ...
$ P.potential : num 0.00051 0.00255 0.00408 0.00051 0.00051 ...
$ P.global : int 1960 3920 3675 1960 1960 999999999 3920 999999999 1960 1960 ...
> head(df)

category num.hapax V delta.diff association.chisq P.potential P.global
able ADJ 1 1 -6.091308e-05 1.540000 0.0005102041 1960
absurd ADJ 5 10 1.125578e-03 99.671429 0.0025510204 3920
accept V_inf 8 15 3.613657e-04 6.167273 0.0040816327 3675
acceptable ADJ 1 1 1.699959e-04 1.260000 0.0005102041 1960
access V_inf 1 1 -1.520983e-03 5.200000 0.0005102041 1960
accurate ADJ 0 2 6.467982e-04 0.560000 0.0000000000 999999999

Next, we load the FactoMineR package.

> library(FactoMineR)

We perform the PCA with the PCA() function. We indicate that the first column is a qualitative variable
with quali=1. We also indicate that the second and third columns are quantitative and supplementary:
quanti.sup=c(2,3). We specify graph=FALSE as we want to choose our own plotting parameters.3

> pca.object <- PCA(df, quali=1, quanti.sup=c(2,3), graph=F)

At this stage, it is advisable to inspect the eigenvalues associated with each component (or dimension).
Eigenvalues measure the relative importance of the components. Their ranking, based on their respective
contributions, helps us select the components that we should take into account.

3 Enter ?plot.PCA for details.
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> round(pca.object$eig, 2)
eigenvalue percentage of variance cumulative percentage of variance

comp 1 1.14 28.60 28.60
comp 2 1.13 28.37 56.97
comp 3 0.89 22.31 79.28
comp 4 0.83 20.72 100.00

The above table of contributions is summarized graphically by the barplot in Fig. B.6.

> barplot(pca.object$eig[,2], names=paste("dim", 1:nrow(pca.object$eig)),
+ xlab="dimensions", ylab="percentage of variance")
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Fig. B.6: A barplot showing the eigenvalues associated with each dimension

After the second dimension, we observe a decrease of eigenvalues, but this decrease is not sharp enough. In
fact, if we focused on the first two dimensions, we would be missing 100−56.97= 43.03% of the variance.
In this case, we shall have to take all four dimensions into account.

First, we plot the circle of correlations between variables and the graph of individuals for the first two
components (Fig. B.7). As you know, the former is a key for the interpretation of the latter.

> par(mfrow=c(2,1))
> plot(res.pca, cex=0.9,shadow=T, autoLab="yes", choix="var", title="")
> plot(res.pca, cex=0.9, shadow=T, autoLab="yes", palette=palette(c("black","blue")),
+ habillage=1, title="")

If we examine the circle of correlations, we see a perfect correlation between P.potential and num.
hapaxwith respect to the first two components. This is normal because the former is based on the latter. We
would also expect a strong positive correlation between P.global and V because the former is also based
on the latter, but such is not the case. This correlation is perhaps visible if we inspect other components.
The variables association.chisq and delta.diff seem to be positively correlated with respect
to the first two components, which is counterintuitive and somewhat contradictory. As we shall see, their
relation is better captured by the third and fourth components. The most salient conclusion that we draw
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Fig. B.7: PCA biplots of adjectives and infinitive verbs in it BE ADJ to V that in the BNC—components 1
and 2
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from the inspection of the first two components is that the variables P.potential and P.global are
opposed. Remember that potential productivity (P) measures the probability of encountering new types,
whereas global productivity (P∗) evaluates P in terms of observed types. If we examine the graph of
individuals, the probability of encountering new types is higher for those subschemas in the upper left corner:
it BE ADJ to think/assume/say and it BE possible/easy/difficult/hard/reasonable/impossible/necessary to
V_inf. The global productivity is higher for those subschemas in the lower right corner: it BE ADJ to
add/provide/emphasise and it BE intriguing/farcical/accutate/funny/common to V_inf. The subschema it BE
permissable to V_inf in the upper right corner of the plot is characterized by a high score of either symmetric
association or ΔP difference. A quick look at our data table shows that the subschema is in fact characterized
by a high symmetric-association score.

> df[which(row.names(df)=="permissable"),]
category num.hapax V delta.diff association.chisq P.potential P.global

permissable ADJ 1 1 0.1658178 13720.11 0.0005102041 1960

The position of it BE correct that V_inf and it is ADJ to aver that in the lower left corner is explained by
their negative ΔP differences.

> df[which(row.names(df)=="aver"),]
category num.hapax V delta.diff association.chisq P.potential P.global

aver V_inf 1 1 -0.1998271 3351.24 0.0005102041 1960
> df[which(row.names(df)=="correct"),]

category num.hapax V delta.diff association.chisq P.potential P.global
correct ADJ 2 3 -0.100011 1677.785 0.001020408 1960

Next, we plot the circle of correlations between variables and the graph of individuals for the third and
fourth components (Fig. B.8).

> par(mfrow=c(2,1))
> plot(res.pca, axes=c(3,4), cex=0.9,shadow=T, autoLab="yes", choix="var", title="")
> plot(res.pca, axes=c(3,4), cex=0.9, shadow=T, autoLab="yes", palette=palette(c("black","blue")),
+ habillage=1, title="")

This time, the most conspicuous opposition is between association.chisq (upper left cor-
ner of the correlation circle) and delta.diff (lower right corner). We were right to wait un-
til we inspect components 3 and 4 before getting to a conclusion. The subschemas that cluster in
the upper left corner of individuals are characterized by a high symmetric-association score: it is
ADJ to aver/fantasise/hypothesise/note/ponder that and it is correct/inresting/logical to V_inf that.
These subschemas appear in somewhat fixed ADJ–V_inf combinations. The subschemas that clus-
ter in the upper right corner of the graph of individuals are the most potentially and globally pro-
ductive: it is ADJ to think/emphasise/provide/add/assume/know/suppose/say that and it is intrigu-
ing/accurate/common/funny/farcical/easy/possible/difficult/hard/important/reasonable to V_inf that. They
appear in more flexible ADJ–V_inf combinations.

10.2 First, clear R’s memory and load the data frame.

> rm(list=ls(all=TRUE))
> df <- readRDS("C:/CLSR/chap10/modals.BNC.rds") # Windows
> df <- readRDS("/CLSR/chap10/modals.BNC.rds") # Mac
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Dim 3 (22.31%)
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Fig. B.8: PCA biplots of adjectives and infinitive verbs in it BE ADJ to V that in the BNC—components 3
and 4
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Because the data frame is very wide, we inspect only a portion of it.

> df[, sample(1:ncol(df), 5)]
S_interview_oral_history S_pub_debate W_ac_humanities_arts S_brdcast_documentary

can 1832 1048 8251 126
could 2208 557 5103 68
may 141 313 5190 35
might 283 191 3123 22
must 348 127 2517 8
ought 31 63 219 3
shall 68 51 654 2
should 359 650 2863 40
will 379 817 3820 97
would 3695 2130 6868 142

S_lect_humanities_arts
can 214
could 135
may 39
might 31
must 43
ought 12
shall 17
should 33
will 117
would 200

With grep(), we isolate the variables that correspond to written and spoken texts. This will come in handy
later on when we plot each kind of variable separately.

> written.vars <- grep("W_", colnames(df), value=TRUE)
> head(written.vars)
[1] "W_ac_humanities_arts" "W_ac_medicine" "W_ac_nat_science" "W_ac_polit_law_edu"
[5] "W_ac_soc_science" "W_ac_tech_engin"
> spoken.vars <- grep("S_", colnames(df), value=TRUE)
> head(spoken.vars)
[1] "S_brdcast_discussn" "S_brdcast_documentary" "S_brdcast_news" "S_classroom"
[5] "S_consult" "S_conv"

Next, we load the FactoMineR package.

> library(FactoMineR)

We perform the correspondence analysis with the CA() function. We specify graph=FALSE as we want
to choose our own plotting parameters.4

> ca.object <- CA(df, graph=FALSE)

4 Enter ?plot.CA for details.
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At this stage, it is advisable to inspect the eigenvalues associated with each dimension.

> round(ca.object$eig, 2)
eigenvalue percentage of variance cumulative percentage of variance

dim 1 0.09 51.26 51.26
dim 2 0.04 22.92 74.18
dim 3 0.03 13.93 88.11
dim 4 0.01 4.53 92.64
dim 5 0.01 4.15 96.79
dim 6 0.00 1.33 98.12
dim 7 0.00 1.05 99.17
dim 8 0.00 0.56 99.73
dim 9 0.00 0.27 100.00

The above table of contributions is summarized graphically by the barplot in Fig. B.9.

> barplot(ca.object$eig[,2], names=paste("dim", 1:nrow(ca.object$eig)),
+ xlab="dimensions", ylab="percentage of variance")

The first three dimensions represent 88.11% of all the variance in the data table. After the third dimension,
we observe a sharp decrease of eigenvalues. This means that the contributions of dimensions 4, 5, 6, 7, 8,
and 9 are not decisive. Therefore, we can safely ignore them.

Because we want to compare more than two dimensions, we use the axes option and make two CA
plots on top of each other with par(mfrow=c(1,2)). The selectCol argument allows you to select
the column variables that are plotted. We use it to select the variables that correspond to written texts
(written.vars). The unselect argument can take two values: 0 or 1. If unselect=0, the variables
that are not selected (spoken texts in this case) are plotted without labels. If unselect=1, the unselected
variables are not plotted at all. We choose the latter, so as not to clutter the graph (Fig. B.10).
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Fig. B.9: A barplot showing the eigenvalues associated with each dimension
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Fig. B.10: The distribution of 10 modals across 46 written-text genres. Top: dimensions 1 and 2; bottom:
dimensions 2 and 3
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> par(mfrow=c(1,2))
> # dimensions 1 and 2
> plot(ca.object, autoLab="yes", shadow=TRUE, col.col="black", col.row="blue",
+ selectCol = written.vars, unselect=1, title="", cex=0.8)
> # dimensions 2 and 3
> plot(ca.object, axes = c(2, 3), autoLab="yes", shadow=TRUE, col.col="black", col.row="blue",
+ selectCol = written.vars, unselect=1, title="", cex=0.8)

Inspection of dimensions 1 and 2 reveals that may is associated with scientific texts in the fields of
medicine (both in academic and non-academic prose) and natural sciences. Might (together with ought)
seems to be preferred in non-academic humanities. Inspection of dimensions 2 and 3 reveals confirms the
preference of may for the medical context. Dimension 3 reveals that this modal is also used significantly
in academic prose bearing on politics, law, and education. The same dimension confirms the proximity
between might and ought.

The CA plot of the spoken variables is obtained in a similar way (Fig. B.11). All that we need to change
is the selectCol argument and point it to spoken.vars.

> par(mfrow=c(1,2))
> # dimensions 1 and 2
> plot(ca.object, autoLab="yes", shadow=TRUE, col.col="black", col.row="blue",
+ selectCol = spoken.vars, unselect=1, title="", cex=0.8)
> # dimensions 2 and 3
> plot(ca.object, axes = c(2, 3), autoLab="yes", shadow=TRUE, col.col="black", col.row="blue",
+ selectCol = spoken.vars, unselect=1, title="", cex=0.8)

In both plots, the profile of may stands out the most. Inspection of dimensions 1 and 2 (top plot) reveals
that may is preferred in lectures (S_lect). In the same plot, we see that will is preferred in spoken contexts
where speech is scripted: TV or radio news broadcasts, planned speech, whether dialogue or monologue,
parliamentary speeches, and religious sermons.

The above comments are based on a toy data set. Ideally, we should further analyze the use of these
modals by determining if they are deontic or epistemic, or examining what verbs they occur with, for in-
stance.

10.3 We clear R’s memory and load the data.

> rm(list=ls(all=TRUE))
> df <- readRDS("C//CLSR/chap10/typocorp.rds") # Windows
> df <- readRDS("/CLSR/chap10/typocorp.rds") # Mac

The individuals (the corpora) have their own columns, as you can see when you inspect the data.

> str(df)
'data.frame': 17 obs. of 8 variables:
$ corpus : Factor w/ 17 levels "Bank of English",..: 12 14 16 7 17 1 8 11 5 6 ...
$ variety : Factor w/ 3 levels "var: GB","var: international",..: 1 1 1 1 3 2 2 2 3

3 ...
$ general_specific : Factor w/ 2 levels "general","specific": 2 2 1 2 2 1 1 1 1 2 ...
$ static_dynamic : Factor w/ 2 levels "dynamic","static": 2 2 2 2 2 1 2 2 2 2 ...
$ synchronic_diachronic: Factor w/ 2 levels "diachronic","synchronic": 1 1 2 2 2 2 2 2 2 1 ...
$ stored_data_format : Factor w/ 3 levels "text","text + audio",..: 1 1 1 1 2 1 1 1 1 1 ...
$ mode : Factor w/ 3 levels "spoken","spoken + written",..: 3 3 1 1 1 2 3 3 2 3 ...
$ size : Factor w/ 5 levels "large","largest",..: 3 3 5 5 5 2 4 4 1 1 ...

Next, we load the FactoMineR package.

> library(FactoMineR)

We perform the MCA with the MCA() function. We indicate that the first, sixth, and eighth columns are qual-
itative and supplementary: quali.sup=c(1,6,8). We specify graph=FALSE as we want to choose
our own plotting parameters.
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Fig. B.11: The distribution of 10 modals across 24 spoken-text genres. Top: dimensions 1 and 2; bottom:
dimensions 2 and 3
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> mca.object <- MCA(df, quali.sup=c(1,6,8), graph=FALSE)

We inspect the eigenvalues associated with each dimension. The numeric table below is graphically repre-
sented in Fig. B.12.

> round(mca.object$eig, 2)
eigenvalue percentage of variance cumulative percentage of variance

dim 1 0.45 32.08 32.08
dim 2 0.30 21.14 53.22
dim 3 0.25 17.72 70.95
dim 4 0.20 14.34 85.29
dim 5 0.14 10.32 95.61
dim 6 0.04 2.62 98.23
dim 7 0.02 1.77 100.00

The expected sharp decrease occurs after dimension 5. Ideally, we should inspect five dimensions. In this
exercise, however, we shall focus on the first two dimensions, which account for 53.22% of the variance.
In MCA, it is not unusual to see the eigenvalue percentages drop dramatically when you demultiply the
variables and their associated categories. This means more dimensions to inspect.

Before we plot the MCA graph, we should remember that the rows are indexed from 1 to 17. Because the
corpora are declared in a separate column, the row names are in fact "1", "2", . . . , "17". As we do not
want to plot these indices, we specify invisible=c("ind") so as to make the individuals (i.e. the row
names) invisible. The argument habillage="quali" assigns one color per qualitative variable. You
obtain the graph in Fig. 3.1.

> plot(mca.object, invisible=c("ind"), autoLab="auto", shadow=TRUE, habillage="quali", cex=.6, title="")
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Fig. B.12: A barplot showing the eigenvalues associated with each dimension

10.4 As usual, we clear R’s memory and load the data.

> rm(list=ls(all=TRUE))
> df <- readRDS("C//CLSR/chap10/modals.BNC.rds") # Windows
> df <- readRDS("/CLSR/chap10/modals.BNC.rds") # Mac
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Create one distance object per distance metric.

> dist.object.euclidean <- dist(df, method="euclidean", diag=T, upper=T)
> dist.object.manhattan <- dist(df, method="manhattan", diag=T, upper=T)
> dist.object.minkowski <- dist(df, method="minkowski", diag=T, upper=T)
> dist.object.canberra <- dist(df, method="canberra", diag=T, upper=T)

Use hclust() to apply Ward’s amalgamation rule on each distance object.

> clusters.euclidean <- hclust(dist.object.euclidean, method="ward.D")
> clusters.manhattan <- hclust(dist.object.manhattan, method="ward.D")
> clusters.minkowski <- hclust(dist.object.minkowski, method="ward.D")
> clusters.canberra <- hclust(dist.object.canberra, method="ward.D")

Finally, plot the four dendrograms (Fig. B.13).

> par(mfrow=c(2,2))
> plot(clusters.euclidean, sub="(Euclidean, Ward)", main="")
> plot(clusters.manhattan, sub="(Manhattan, Ward)", main="")
> plot(clusters.minkowski, sub="(Minkowski, Ward)", main="")
> plot(clusters.canberra, sub="(Canberra, Ward)", main="")

The dendrograms based on the Euclidean, Manhattan, and Minkowski metrics are almost identical. The
scale of “Height” in the Manhattan dendrogram is different, but the shape of the tree is not affected. The
Canberra method clusters the individuals differently. In my experience, the Canberra metric works best
when the matrix is sparse, i.e. when there are many cells with null values.

10.5 Clear R’s memory and load the igraph library, the vertex attributes, and the edge list.

> rm(list=ls(all=TRUE))
> library(igraph)
> v.attr <- readRDS("C:/CLSR/chap10/v.attr.practice.rds") # Windows
> e.list <- readRDS("C:/CLSR/chap10/e.list.practice.rds") # Windows
> v.attr <- readRDS("/CLSR/chap10/v.attr.practice.rds") # Mac
> e.list <- readRDS("/CLSR/chap10/e.list.practice.rds") # Mac

Select those vertices whose frequency is greater than or equal to 20 with which().

> v.attr <- v.attr[which(v.attr$Const_freq >= 20),]

Now, select the items from the from and to columns of the edge list that are also present in the vertex
attributes. You do it by subsetting e.list and using the %in% operator.

> e.list <- e.list[e.list$from %in% v.attr$Name,]
> e.list <- e.list[e.list$to %in% v.attr$Name,]

Inspect the data.

> head(v.attr)
Name Type Const_freq

26 difficult A 123
32 easy A 132
35 essential A 23
38 fair A 96
45 good A 46
48 hard A 132
> head(e.list)

from to assoc.chisq
3 interesting note 112572.26
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Fig. B.13: Cluster dendrograms of ten English modals in the BNC

5 important note 15394.75
7 important stress 2356.39
11 important realize 649.61
13 important recognize 597.73
14 important realise 975.63

It is now time to create the graph object with graph.data.frame(). Provide the edge list, the vertex
attributes (vertices=v.attr), and specify that you want a directed graph (directed="TRUE").

> G <- graph.data.frame(e.list, vertices=v.attr, directed="TRUE")
> G
IGRAPH DN-- 39 187 --
+ attr: name (v/c), Type (v/c), Const_freq (v/n), assoc.chisq (e/n)
+ edges (vertex names):
[1] interesting->note important ->note important ->stress important ->realize
[5] important ->recognize important ->realise reasonable ->suppose reasonable ->assume
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[9] important ->remember interesting->observe important ->recognise sufficient ->note
[13] possible ->argue interesting->note easy ->assume difficult ->argue
[17] easy ->forget difficult ->imagine safe ->assume hard ->imagine
[21] important ->observe difficult ->believe important ->ensure interesting->note
[25] difficult ->suppose hard ->believe interesting->observe important ->stress
[29] essential ->stress essential ->stress sufficient ->stress important ->recognize
+ ... omitted several edges

Adjust the vertex size using the construction frequency. This stage is tricky and requires several trials. I find
that square rooting Const_freq prevents vertices that are very frequent from being too large.

> v.size <- sqrt(V(G)$Const_freq)

Next, assign a label to each vertex.

> v.label <- V(G)$Name

Adjust the width of the edges by weighting the edges based on collostruction strength.

> E(G)$weight <- E(G)$assoc.chisq

Use the Type attribute to affect the shape and the color of vertices. Two steps are required: first, convert
V(G)$Type from character to factor, then from factor to integer.

> type <- as.factor(V(G)$Type)
> type <- as.integer(type) # as.numeric() also works

You may now select the shapes and colors. Adjectives will be red squares, and verbs dodger blue squares.

> v.shapes <- c("circle","square")[type]
> v.colors <- c("red", "dodgerblue")[type]

You are almost there. Select the lgl layout (the acronym stands for “Large Graph Layout”).

> l <- layout.lgl(G)

In a perfect world, you could plot the graph right now. However, because the graph is large, I rec-
ommend that you produce an encapsulated PostScript graphic. This allows you to reduce the size of the
graphic file and choose an appropriate scale by selecting a height and a width that are large enough. The
postscript() function starts the graphics device driver. Its arguments are: the path to the destination
file, the orientation of the printed image, whether you allow multiple figures in one file, the size of paper in
the printer ("special" has to be used when you customize height and width), and height and width,
which set the width and height of the graphics region in inches. The next line is the plot call. As you can
see, finding the perfect edge width and arrow size requires several trials! The last line (dev.off()) closes
the graphics device. Note that the positions of vertices and egdes in your graph will differ from what you
have in Fig. B.14. What will not change is the number, size, color, and shape of vertices, and the number,
length, orientation, and arrow size of edges.

> postscript("/CLSR/chap10/network_ldl.eps", horizontal = FALSE, onefile = FALSE,
+ paper = "special", height=70, width=70)
> plot(G, layout=l, edge.width=(log10(E(G)$weight))^2, edge.arrow.size=log10(E(G)$weight),
+ vertex.size=v.size, vertex.label=v.label, vertex.shape=v.shapes, vertex.color= v.colors,
+ vertex.label.cex=v.size/2, vertex.label.color="black", vertex.label.family="Arial")
> dev.off()
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