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Preface

Throughout the course of history, engineering and mathematics have developed in
parallel. All branches of engineering depend on mathematics for their description and
there has been a steady flow of ideas and problems from engineering that has stimulated
and sometimes initiated branches of mathematics. Thus it is vital that engineering stu-
dents receive a thorough grounding in mathematics, with the treatment related to their
interests and problems. As with the previous editions, this has been the motivation for
the production of this fourth edition — a companion text to the fourth edition of Modern
Engineering Mathematics, this being designed to provide a first-level core studies
course in mathematics for undergraduate programmes in all engineering disciplines.
Building on the foundations laid in the companion text, this book gives an extensive
treatment of some of the more advanced areas of mathematics that have applications in
various fields of engineering, particularly as tools for computer-based system model-
ling, analysis and design. Feedback, from users of the previous editions, on subject
content has been highly positive indicating that it is sufficiently broad to provide the
necessary second-level, or optional, studies for most engineering programmes, where
in each case a selection of the material may be made. Whilst designed primarily for use
by engineering students, it is believed that the book is also suitable for use by students
of applied mathematics and the physical sciences.

Although the pace of the book is at a somewhat more advanced level than the com-
panion text, the philosophy of learning by doing is retained with continuing emphasis
on the development of students’ ability to use mathematics with understanding to solve
engineering problems. Recognizing the increasing importance of mathematical model-
ling in engineering practice, many of the worked examples and exercises incorporate
mathematical models that are designed both to provide relevance and to reinforce the
role of mathematics in various branches of engineering. In addition, each chapter con-
tains specific sections on engineering applications, and these form an ideal framework
for individual, or group, study assignments, thereby helping to reinforce the skills of
mathematical modelling, which are seen as essential if engineers are to tackle the
increasingly complex systems they are being called upon to analyse and design. The
importance of numerical methods in problem solving is also recognized, and its treat-
ment is integrated with the analytical work throughout the book.

Much of the feedback from users relates to the role and use of software packages,
particularly symbolic algebra packages. Without making it an essential requirement the
authors have attempted to highlight throughout the text situations where the user could
make effective use of software. This also applies to exercises and, indeed, a limited
number have been introduced for which the use of such a package is essential. Whilst
any appropriate piece of software can be used, the authors recommend the use of
MATLAB and/or MAPLE. In this new edition more copious reference to the use of these
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two packages is made throughout the text, with commands or codes introduced and
illustrated. When indicated, students are strongly recommended to use these packages
to check their solutions to exercises. This is not only to help develop proficiency in their
use, but also to enable students to appreciate the necessity of having a sound knowledge
of the underpinning mathematics if such packages are to be used effectively. Throughout
the book two icons are used:

e Anopen screen indicates that the use of a software package would be useful
(e.g. for checking solutions) but not essential.

e A closed screen indicates that the use of a software package is essential or

highly desirable.

As indicated earlier, feedback on content from users of previous editions has been
favourable, and consequently no new chapter has been introduced. However, in
response to feedback the order of presentation of chapters has been changed, with a
view to making it more logical and appealing to users. This re-ordering has necessitated
some redistribution of material both within and across some of the chapters. Another
new feature is the introduction of the use of colour. It is hoped that this will make the text
more accessible and student-friendly. Also, in response to feedback individual chapters
have been reviewed and updated accordingly. The most significant changes are:

e Chapter 1 Matrix Analysis: Inclusion of new sections on ‘Singular value decom-
position’ and ‘Lyapunov stability analysis’.

e Chapter 5 Laplace transform: Following re-ordering of chapters a more unified
and extended treatment of transfer functions/transfer matrices for continuous-
time state-space models has been included.

e Chapter 6 Z-transforms: Inclusion of a new section on ‘Discretization of
continuous-time state-space models’.

e Chapter 8 Fourier transform: Inclusion of a new section on ‘Direct design of
digital filters and windows’.

e Chapter 9 Partial differential equations: The treatment of first order equations
has been extended and a new section on ‘Integral solution’ included.

e Chapter 10 Optimization: Inclusion of a new section on ‘Least squares’.

A comprehensive Solutions Manual is available free of charge to lecturers adopting this
textbook. It will also be available for download via the Web at: www.pearsoned.co.ck/james.
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1.1

1.2

Introduction

In this chapter we turn our attention again to matrices, first considered in Chapter 5
of Modern Engineering Mathematics, and their applications in engineering. At the
outset of the chapter we review the basic results of matrix algebra and briefly introduce
vector spaces.

As the reader will be aware, matrices are arrays of real or complex numbers, and have
a special, but not exclusive, relationship with systems of linear equations. An (incorrect)
initial impression often formed by users of mathematics is that mathematicians have
something of an obsession with these systems and their solution. However, such systems
occur quite naturally in the process of numerical solution of ordinary differential equa-
tions used to model everyday engineering processes. In Chapter 9 we shall see that they
also occur in numerical methods for the solution of partial differential equations, for
example those modelling the flow of a fluid or the transfer of heat. Systems of linear
first-order differential equations with constant coefficients are at the core of the state-
space representation of linear system models. Identification, analysis and indeed design
of such systems can conveniently be performed in the state-space representation, with
this form assuming a particular importance in the case of multivariable systems.

In all these areas it is convenient to use a matrix representation for the systems under
consideration, since this allows the system model to be manipulated following the rules
of matrix algebra. A particularly valuable type of manipulation is simplification in some
sense. Such a simplification process is an example of a system transformation, carried
out by the process of matrix multiplication. At the heart of many transformations are
the eigenvalues and eigenvectors of a square matrix. In addition to providing the means
by which simplifying transformations can be deduced, system eigenvalues provide vital
information on system stability, fundamental frequencies, speed of decay and long-term
system behaviour. For this reason, we devote a substantial amount of space to the
process of their calculation, both by hand and by numerical means when necessary. Our
treatment of numerical methods is intended to be purely indicative rather than complete,
because a comprehensive matrix algebra computational tool kit, such as MATLAB, is
now part of the essential armoury of all serious users of mathematics.

In addition to developing the use of matrix algebra techniques, we also demonstrate
the techniques and applications of matrix analysis, focusing on the state-space system model
widely used in control and systems engineering. Here we encounter the idea of a function
of a matrix, in particular the matrix exponential, and we see again the role of the
eigenvalues in its calculation. This edition also includes a section on singular value
decomposition and the pseudo inverse, together with a brief section on Lyapunov stability
of linear systems using quadratic forms.

Review of matrix algebra

This section contains a summary of the definitions and properties associated with matrices
and determinants. A full account can be found in chapters of Modern Engineering
Mathematics or elsewhere. It is assumed that readers, prior to embarking on this chapter,
have a fairly thorough understanding of the material summarized in this section.
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1.2.1 Definitions

1.2.2

(a)

(b)

(c)

(d)
(e)

()

An array of real numbers

ap dp dps ayy
A = Ay dp az'a ayy
aml amZ am3 e amn

is called an m X n matrix with m rows and n columns. The g, is referred to as the
i, jth element and denotes the element in the ith row and jth column. If m = n
then A is called a square matrix of order ». If the matrix has one column or one
row then it is called a column vector or a row vector respectively.

In a square matrix A of order » the diagonal containing the elements a,,, a»,, - . . ,
a,, is called the principal or leading diagonal. The sum of the elements in this
diagonal is called the trace of A, that is

trace A = i a;

i=1

A diagonal matrix is a square matrix that has its only non-zero elements along the
leading diagonal. A special case of a diagonal matrix is the unit or identity matrix |
for whicha,, =a,=...=a,,=1.

A zero or null matrix 0 is a matrix with every element zero.

The transposed matrix A" is the matrix A with rows and columns interchanged,
its 7, jth element being a;,.

A square matrix A is called a symmetric matrix if A" = A. It is called skew
symmetric if AT =-A,

Basic operations on matrices

In what follows the matrices A, B and C are assumed to have the i, jth elements a

b,

ijs

and c; respectively.

Equality

The matrices A and B are equal, that is A = B, if they are of the same order m X n

and

a“:b

J p lsism, 1sjsn

>

Multiplication by a scalar

If A is a scalar then the matrix AA has elements Aa,,.
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Addition

We can only add an m X n matrix A to another m X n matrix B and the elements of the
sum A + B are

a;tby, l<ism, 1sjsn

Properties of addition

(i) commutative law: A+B=B+A

(ii)  associative law: (A+B)+C=A+B+0C)

(iii) distributive law:  A(A + B) = AA + AB, A scalar

Matrix multiplication

If A is an m X p matrix and B a p X n matrix then we define the product C = AB as the
m X n matrix with elements

P
c,-j=2a,kbkj, i=L,2,...,m j=1,2,...,n
k=1

Properties of multiplication

(i) The commutative law is not satisfied in general; that is, in general AB # BA.
Order matters and we distinguish between AB and BA by the terminology:
pre-multiplication of B by A to form AB and post-multiplication of B by A to
form BA.

(i) Associative law: A(BC)=(AB)C
(iii) If A is a scalar then
(AA)B = A(AB) = AAB
(iv) Distributive law over addition:
(A+B)C=AC+BC
AB +C)=AB +AC
Note the importance of maintaining order of multiplication.

(v) If Ais an m X n matrix and if |, and |, are the unit matrices of order m and n
respectively then

1LA=Al=A

Properties of the transpose

If AT is the transposed matrix of A then
i (A+B)Y =AT+BT

(i) (AH'=A

(i) (AB)"=B'AT
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1.2.3

1.24

Determinants

The determinant of a square » X n matrix A is denoted by det A or |A|.

If we take a determinant and delete row i and column j then the determinant
remaining is called the minor M; of the i, jth element. In general we can take any row
i (or column) and evaluate an n X n determinant | A | as

IA1=Y (1) a;M,
Jj=1

A minor multiplied by the appropriate sign is called the cofactor 4; of the i, jth element
so 4; = (1) M, and thus

A]= Z%‘Aij
j=1

Some useful properties
i IAT=]A]
(i) |AB|=|A]IB]|

(ii1) A square matrix A is said to be non-singular if |A | # 0 and singular if [A | = 0.

Adjoint and inverse matrices

Adjoint matrix

The adjoint of a square matrix A is the transpose of the matrix of cofactors, so for a
3 X 3 matrix A

T

Ay An Ags
adjA =4, Ay Ax
Ay An As

Properties

() A@diA)=|All

(i) ladj A|=|A|"", n being the order of A
(iii) adj (AB)= (adj B )(adj A)

Inverse matrix
Given a square matrix A if we can construct a square matrix B such that
BA=AB =1

then we call B the inverse of A and write it as A\
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Properties

(i) If A is non-singular then |A | 0 and A™" = (adj A)/|A .
(ii) If A is singular then |A | = 0 and A™' does not exist.
(i) (AB)'=B'A™\.

All the basic matrix operations may be implemented in MATLAB and MAPLE
using simple commands. In MATLAB a matrix is entered as an array, with row
elements separated by spaces (or commas) and each row of elements separated by a
semicolon(;), or the return key to go to a new line. Thus, for example,

A=[1 2 3; 4 0 5; 7 4 2]
gives

A=
123
4 0 5
7 4 2

Having specified the two matrices A and B the operations of addition, subtraction
and multiplication are implemented using respectively the commands

C=A+B, C=A-B, C=A*B

The trace of the matrix A is determined by the command trace (a), and its
determinant by det (a).

Multiplication of a matrix A by a scalar is carried out using the command *, while
raising A to a given power is carried out using the command ~ . Thus, for example,
3A? is determined using the command C=3*A"2.

The transpose of a real matrix A is determined using the apostrophe ’ key; that
is C=A’ (to accommodate complex matrices the command c=A. ' should be used).
The inverse of A is determined by C=inv (2).

For matrices involving algebraic quantities, or when exact arithmetic is desirable
use of the Symbolic Math Toolbox is required; in which matrices must be expressed
in symbolic form using the sym command. The command A=sym (2) generates the
symbolic form of A. For example, for the matrix

21 32 0.6
A=|12 05 33
52 1.1 0

the commands
A=[2.1 3.2 0.6; 1.2 0.5 3.3; 5.2 1.1 01];
A=sym (A)
generate
A=
[21/10, 16/5, 3/5]
[6/5, 1/2, 33/10]
[26/5, 11/10, O]
Symbolic manipulation can also be undertaken in MATLAB using the MuPAD
version of Symbolic Math Toolbox.
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There are several ways of setting up arrays in MAPLE; the easiest is to use the
linear algebra package LinearAlgebra so, for example, the commands:

with (LinearAlgebra) :
A:=Matrix([[1,2,3],[4,0,51,[7,6,21]1);

return
1 2 3
A=[4 0 5
7 6 2

with the command

b:=Vector ([2,3,1]);

returning
2
b=|3
1

Having specified two matrices ‘A and B’ addition and subtraction are implemented

using the commands:

C:=A+B; and C:=A-B;
Multiplication of a matrix A by a scalar k is implemented using the command k*A;
so, for example, (2A + 3B) is implemented by

2*A+3*B;
The product AB of two matrices is implemented by either of the following two
commands:

A.B; or Multiply (A,B);

(Note: 4*B will not work)
The transpose, trace, determinant, adjoint and inverse of a matrix A are returned
using, respectively, the commands:

Transpose (A) ;
Trace(A) ;
Determinant (A) ;
Adjoint (A) ;
MatrixInverse (A) ;

1.2.5 Linear equations

In this section we reiterate some definitive statements about the solution of the system
of simultaneous linear equations

apx,+apx, +...+a,x,=b,

Ay Xy + ApXy + ...+ ay, X, = b,

a.x,+a,x,+...+a,x,=b,
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or, in matrix notation,

a, ap ... a, || x b,
Ay Ay ... || X| | by
Ay Qpy  o. Ay || X, b,
that is,
Ax=b (1.1)

where A is the matrix of coefficients and x is the vector of unknowns. If b = 0 the
equations are called homogeneous, while if b # 0 they are called nonhomogeneous (or
inhomogeneous). Considering individual cases:

Case (i)

If b # 0 and |A | # 0 then we have a unique solution x = A™'b.

Case (ii)

If b =0 and |A | # 0 we have the trivial solution x = 0.

Case (iii)
If b # 0 and |A | = 0 then we have two possibilities: either the equations are inconsistent
and we have no solution or we have infinitely many solutions.

Case (iv)
If b =0 and |A | = 0 then we have infinitely many solutions.
Case (iv) is one of the most important, since from it we can deduce the important

result that the homogeneous equation Ax = 0 has a non-trivial solution if and only
if |[A]=0.

Provided that a solution to (1.1) exists it may be determined in MATLAB using the
command x=A\b. For example, the system of simultaneous equations
x+y+z=6, x+2y+3z=14, x+4y+9z2=36

may be written in the matrix form

1 1 17x 6
1 2 3|y|=]|14
1 4 91z 36

A X b

Entering A and b and using the command x = A\Db provides the answerx=1,y=2,z=3.
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1.2.6

In MAPLE the commands

with (LinearAlgebra) :
soln:=LinearSolve (A,Db) ;

will solve the set of linear equations Ax = b for the unknown x when A, b given.
Thus for the above set of equations the commands

with (LinearAlgebra) :
A:=Matrix([[1,1,1]1,[1,2,3],[1,4,911);
b:=Vector([6,14,36]) ;

x:=LinearSolve (A, Db) ;

return

Rank of a matrix

The most commonly used definition of the rank, rank A, of a matrix A is that it is the order
of the largest square submatrix of A with a non-zero determinant, a square submatrix
being formed by deleting rows and columns to form a square matrix. Unfortunately it
is not always easy to compute the rank using this definition and an alternative definition,
which provides a constructive approach to calculating the rank, is often adopted. First,
using elementary row operations, the matrix A is reduced to echelon form

in which all the entries below the line are zero, and the leading element, marked *, in
each row above the line is non-zero. The number of non-zero rows in the echelon form
is equal to rank A.

When considering the solution of equations (1.1) we saw that provided the determinant
of the matrix A was not zero we could obtain explicit solutions in terms of the inverse matrix.
However, when we looked at cases with zero determinant the results were much less clear.
The idea of the rank of a matrix helps to make these results more precise. Defining the
augmented matrix (A : b) for (1.1) as the matrix A with the column b added to it then
we can state the results of cases (iii) and (iv) of Section 1.2.5 more clearly as follows:

If A and (A : b) have different rank then we have no solution to (1.1). If the two
matrices have the same rank then a solution exists, and furthermore the solution
will contain a number of free parameters equal to (n — rank A).
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In MATLAB the rank of the matrix A is generated using the command rank (2).
For example, if

=
A=| 0
=1l

N O N
S = N

the commands

A=[-1 2 2; 0 0 1; -1 2 0];
rank (A)

generate
ans=2

In MAPLE the command is also rank (2) .

Vector spaces

Vectors and matrices form part of a more extensive formal structure called a vector space.
The theory of vector spaces underpins many modern approaches to numerical methods
and the approximate solution of many of the equations that arise in engineering analysis.
In this section we shall, very briefly, introduce some of the basic ideas of vector spaces
necessary for later work in this chapter.

Definition

A real vector space V is a set of objects called vectors together with rules for addition
and multiplication by real numbers. For any three vectors a, b and ¢ in V" and any real
numbers o and f3 the sum a + b and the product ca also belong to 7 and satisfy the
following axioms:

(a) a+b=b+a

(by a+b+c)=(a+b)+c

(c) there exists a zero vector 0 such that
a+0=a

(d) for each a in V there is an element —a in V' such that
a+(-a)=0

(¢) ola+b)=oa+ ob

(f) (o+ P)a=oa+ Pa

(2) (of)a = o(Pa)

(h) la=a
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1.3.1

Example 1.1

Solution

It is clear that the real numbers form a vector space. The properties given are also
satisfied by vectors and by m X n matrices so vectors and matrices also form vector
spaces. The space of all quadratics a + bx + cx* forms a vector space, as can be estab-
lished by checking the axioms, (a)—(h). Many other common sets of objects also form
vector spaces. If we can obtain useful information from the general structure then this
will be of considerable use in specific cases.

Linear independence

The idea of linear dependence is a general one for any vector space. The vector x is said
to be linearly dependent on x,, x,, . . ., x,, if it can be written as

X=0X + 00X, +...+0,X,

for some scalars ¢, . .., ¢,. The set of vectors y,, y,, ..., y, is said to be linearly
independent if and only if

ﬁ1y1+ﬁ2y2+"'+ﬁmym:0

implies that B, =8,=...=f,=0.
Let us now take a linearly independent set of vectors x,, x,, . .., x,, in V" and con-
struct a set consisting of all vectors of the form

X=0Xx + 00X, +...+ 0,X,

We shall call this set S(x,, x,, .. ., x,,). It is clearly a vector space, since all the axioms
are satisfied.

Show that
1 0
e, =|0| and e,=|1
0 0

form a linearly independent set and describe S(e,, e,) geometrically.

We have that
o
0=oqae +Pe,=|B
0

is only satisfied if @ = =0, and hence e, and e, are linearly independent.

o
S(ey, e,) is the set of all vectors of the form | |, which is just the (x,, x,)

0

plane and is a subset of the three-dimensional Euclidean space.
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1.3.2

If we can find a set B of linearly independent vectors x,, x,, . . ., x, in ¥ such that
S(xh xZ’ LRI 5xn) = V

then B is called a basis of the vector space V. Such a basis forms a crucial part of the
theory, since every vector x in V' can be written uniquely as

X=04X + 0Lx, + ...+ 0,x,

The definition of B implies that x must take this form. To establish uniqueness, let us
assume that we can also write x as

x=0x+Bx,+...+Bx,

Then, on subtracting,

Oz(al _ﬂl)xl +... +(an_ﬁn)xn

and since x,, . . . , x, are linearly independent, the only solution is o, = 8, & =5, . . . ;
hence the two expressions for x are the same.

It can also be shown that any other basis for /" must also contain n vectors and that
any n + 1 vectors must be linearly dependent. Such a vector space is said to have
dimension 7 (or infinite dimension if no finite » can be found). In a three-dimensional
Euclidean space

1 0 0
e = 0, e, = 1 , €3= 0
0 0 1

form an obvious basis, and
1 1 1
dl = O 5 dz =1 5 d3 =1
0 0 1

is also a perfectly good basis. While the basis can change, the number of vectors in the
basis, three in this case, is an intrinsic property of the vector space. If we consider the
vector space of quadratics then the sets of functions {1, x, ¥’} and {1, x — 1, x(x — 1)}
are both bases for the space, since every quadratic can be written as a + bx + cx” or as
A+ B(x — 1) + Cx(x — 1). We note that this space is three-dimensional.

Transformations between bases

Since any basis of a particular space contains the same number of vectors, we can look
at transformations from one basis to another. We shall consider a three-dimensional
space, but the results are equally valid in any number of dimensions. Let e, e,, e; and
e, e5, e; be two bases of a space. From the definition of a basis, the vectors e/, e; and e;
can be written in terms of e, e, and e, as

/7
e =ape +aze,tase;
/7
e, =ape,+ayne,taye; (1.2)

4 —
e; = ape;t+anetaye;
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Taking a typical vector x in 7, which can be written both as
X =Xx,6, + X8, + X505 (1.3)
and as
X = xje] + x5 + x;¢;
we can use the transformation (1.2) to give
4 ’ ’
x =x((a, e + aye, + aye;) + xy(ape; + ane; + aynes) + xi(aie; + ane, + ayes)
s ’ ’ ’ ’ ’ ’ ’ ’
= (xjay; + X505, + xXja3)e; + (X1ay + X5y + X3a5)e; + (X{as; + 505, + Xiass)e,
On comparing with (1.3) we see that
_ ’ ’ ’
Xy =apX; + apk; + apX
_ ’ ’ ’
Xy = Ay Xy + Xy + y3Xy
_ ’ ’ ’
X3 = a3X) + Xy + ayX;
or
x=Ax

Thus changing from one basis to another is equivalent to transforming the coordinates
by multiplication by a matrix, and we thus have another interpretation of matrices.
Successive transformations to a third basis will just give x’ = Bx”, and hence the
composite transformation is x = (AB)x” and is obtained through the standard matrix
rules.

For convenience of working it is usual to take mutually orthogonal vectors as a
basis, so that e,-Tej =0, and ¢/ Tej’- = 0,, where 9, is the Kronecker delta

7
5, = 1 %f i=j
0 if i#j

Using (1.2) and multiplying out these orthogonality relations, we have

/T, T _ T _ _
e; e]- = z aie; 2 apjep = 22 ak,-apjekep = 22 ak,-apj(skp = 2 a,a-akj
k P P k p k

k

Hence
z Al = 5z'j
k

or in matrix form
ATA =1

It should be noted that such a matrix A with A™ = A" is called an orthogonal
matrix.
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1.3.3 Exercises

1 Which of the following sets form a basis for a
three-dimensional Euclidean space?

@ 0] 2]
Sl
©) |0}, |1]
;04 ¥04

2 Given the unit vectors

e =

s

[

N

Under this, how does the vector
X =Xx,e, + X,e, + x;e, transform and what
is the geometrical interpretation? What

1 1 3 lines transform into scalar multiples of
() (0], 2] |2 themselves?
Il (3] |5

3 Show that the set of all cubic polynomials
forms a vector space. Which of the following
sets of functions are bases of that space?

(@ {1, x,x%x}

() {1-x,1+x,1-x,1+x}

(©) {1-x,1+xx(1-x),x1+x)}

0 0
e,=|1|, e;=|0 @ {x(1-x),x(1+x),1-x,1+x°}
0 1 (€) {1+2x,2x+3x 3¢ +4x, 4 + 1}

find the transformation that takes these to the vectors

ool
[
V2

1
1|, e =
0

Describe the vector space
1

_1’ e3':
0

1 S+ 2x, 2x — 3%, x + %)
2
J

—_ O O

What is its dimension?

1.4

The eigenvalue problem

A problem that leads to a concept of crucial importance in many branches of math-
ematics and its applications is that of seeking non-trivial solutions x # 0 to the matrix
equation

Ax=Ax

This is referred to as the eigenvalue problem; values of the scalar A for which non-
trivial solutions exist are called eigenvalues and the corresponding solutions x # 0 are
called the eigenvectors. Such problems arise naturally in many branches of engineering.
For example, in vibrations the eigenvalues and eigenvectors describe the frequency and
mode of vibration respectively, while in mechanics they represent principal stresses
and the principal axes of stress in bodies subjected to external forces. In Section 1.11,
and later in Section 5.7.1, we shall see that eigenvalues also play an important role in
the stability analysis of dynamical systems.

For continuity some of the introductory material on eigenvalues and eigenvectors,
contained in Chapter 5 of Modern Engineering Mathematics, is first revisited.
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14.1

Example 1.2

Solution

The characteristic equation

The set of simultaneous equations

Ax=Ax 1.4)
where A isann X n matrix and x =[x, x, ... x,]"isann X | column vector can
be written in the form

A=Ay =0 (1.5)

where | is the identity matrix. The matrix equation (1.5) represents simply a set of
homogeneous equations, and we know that a non-trivial solution exists if

cA=A-A|=0 (1.6)

Here ¢(A) is the expansion of the determinant and is a polynomial of degree n in A,
called the characteristic polynomial of A. Thus

cCA) =X+, A+, L A+, +e it

and the equation ¢(4) = 0 is called the characteristic equation of A. We note that this
equation can be obtained just as well by evaluating |A — Al | = 0; however, the form
(1.6) is preferred for the definition of the characteristic equation, since the coefficient
of A" is then always +1.

In many areas of engineering, particularly in those involving vibration or the control
of processes, the determination of those values of A for which (1.5) has a non-trivial
solution (that is, a solution for which x # 0) is of vital importance. These values of
A are precisely the values that satisfy the characteristic equation, and are called the
eigenvalues of A.

Find the characteristic equation for the matrix

I 1 -2
A=|-1 2 1
0 1 -1

By (1.6), the characteristic equation for A is the cubic equation
A-1 -1 2
cA)=| 1 A=2 -1]1=0
0 -1 A+1
Expanding the determinant along the first column gives
‘ -1 2
-1 A+1

-1

A-2
c(l):(l_l)‘ 1A+

=A-D(A-2)A+1)—-1]-[2-(A+ 1)]
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Thus
cD=A-22-1+2=0

is the required characteristic equation.

For matrices of large order, determining the characteristic polynomial by direct
expansion of |[Al — A | is unsatisfactory in view of the large number of terms involved
in the determinant expansion. Alternative procedures are available to reduce the amount
of calculation, and that due to Faddeev may be stated as follows.

The method of Faddeev
If the characteristic polynomial of an n X n matrix A is written as
A=p A= =paA-p,

then the coefficients p,, p,, . . . , p, can be computed using

b= YtraceA, (r=1,2,....n)
-

where

A A (r=1)
" |AB,, (r=2,3,...,n)

and
B,=A,—-pl, wherelisthe n X n identity matrix
The calculations may be checked using the result that

B,=A,—-p,] mustbe the zero matrix

Example 1.3  Using the method of Faddeev, obtain the characteristic equation of the matrix A of
Example 1.2.

Solution 1 1 =2

Let the characteristic equation be

c(A) = X _pl//Lz — P2A = p;
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Then, following the procedure described above,

pi=traceA=(1+2-1)=2

11 =2
B,=A-2l=|-1 0 1
0 1 -3

2 -1 5
A,=AB,=|-1 0 1
-1 -1 4

P> =itraceA, = 1(-2+0+4) =1

3 -1 5
B,=A,—l =|-1 -1

1 -1 3

2 0 0
A,=AB,=| 0 =2 0

0 0 -2

p3=itrace Ay =1(-2-2-2)=-2
Then, the characteristic polynomial of A is
cAH=A-22-21+2

in agreement with the result of Example 1.2. In this case, however, a check may be
carried out on the computation, since

B,=A,+21=0

as required.

1.4.2 Eigenvalues and eigenvectors

The roots of the characteristic equation (1.6) are called the eigenvalues of the matrix A
(the terms latent roots, proper roots and characteristic roots are also sometimes used).
By the Fundamental Theorem of Algebra, a polynomial equation of degree n has
exactly 7 roots, so that the matrix A has exactly n eigenvalues A,i=1,2, ..., n. These
eigenvalues may be real or complex, and not necessarily distinct. Corresponding to each
eigenvalue A,, there is a non-zero solution x = ¢; of (1.5); ¢; is called the eigenvector of
A corresponding to the eigenvalue A,. (Again the terms latent vector, proper vector and
characteristic vector are sometimes seen, but are generally obsolete.) We note that if
x = ¢; satisfies (1.5) then any scalar multiple fB.e; of e; also satisfies (1.5), so that the
eigenvector ¢; may only be determined to within a scalar multiple.
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Example 1.4  Determine the eigenvalues and eigenvectors for the matrix A of Example 1.2.

Solution 1 1 -2
A=-1 2 1
0 1 -1

The eigenvalues A; of A satisfy the characteristic equation ¢(4) = 0, and this has been
obtained in Examples 1.2 and 1.3 as the cubic

AN =22-A+2=0

which can be solved to obtain the eigenvalues A, A, and A,.

Alternatively, it may be possible, using the determinant form |Al — A |, or indeed (as
we often do when seeking the eigenvalues) the form |A — Al |, by carrying out suitable
row and/or column operations to factorize the determinant.

In this case

[A=All=| -1 2-24 1
0 1 -1-2
and adding column 1 to column 3 gives

-2 1 -1-2 1-1 1
-1 2-12 0 |=—(1+1)] -1 2-21 0
0 1 -1-2 0 1

Subtracting row 3 from row 1 gives

1-24 0 0
—(1+M)] =1 2-2 0|==(1+1)(1=2)(2=1)
0 11

Setting |A — Al | = 0 gives the eigenvalues as A, =2, 4, =1 and A, = —1. The order in
which they are written is arbitrary, but for consistency we shall adopt the convention of
taking A;, A,, . . ., A4, in decreasing order.

Having obtained the eigenvalues A, (i = 1, 2, 3), the corresponding eigenvectors e,
are obtained by solving the appropriate homogeneous equations

(A=2A1)e,=0 (1.7)

Wheni=1,4,=24,=2and (1.7) is

-1 1 2||epn
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that is,
-+ ep—2e;=0
—e,; +0e,+ ;=0
Oe;, + ep—3e;=0

leading to the solution

where f, is an arbitrary non-zero scalar. Thus the eigenvector e, corresponding to the
eigenvalue A, =2 is

e =B[1 3 1]T

As a check, we can compute

1 1 =211 2 1
Ae =B |-1 2 1||3]=B|6]=2B3|=Ae
0 1 -—-1]]|1 2 1

and thus conclude that our calculation was correct.
When i =2, A,= A, =1 and we have to solve

0 1 =2||ey
-1 1 1|lep|=0
0 1 —2||exy

that is,
Oey; + ey, —2e,,=0
—eytent e3=0
Oey; + ey, —2e,;,=0
leading to the solution

€y _ "€ _ €n ﬂ
—_—=—====D

-3 2 -1
where B, is an arbitrary scalar. Thus the eigenvector e, corresponding to the eigenvalue
A,=11is

e=/B 2 11"

Again a check could be made by computing A e,.
Finally, when i = 3, A, = A, = —1 and we obtain from (1.7)

2 1 —21[es
-1 3 1 €3 | = 0
0 1 01| es
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that is,
2e5+ e5 —2e4;,=0
—ey +3e;,+ e;3=0
Oey; + e5, +0e3;,=0

and hence

€31 _ €3 _ €33 B
oo B_ g

-1 0 -1

Here again f3; is an arbitrary scalar, and the eigenvector e, corresponding to the eigen-
value A, is

e;=pf[1 0 1]T

The calculation can be checked as before. Thus we have found that the eigenvalues of
the matrix A are 2, 1 and —1, with corresponding eigenvectors

Bl 3 11, B3 2 11" and B[1 0 17"

respectively.

Since in Example 1.4 the B, i = 1, 2, 3, are arbitrary, it follows that there are an
infinite number of eigenvectors, scalar multiples of each other, corresponding to each
eigenvalue. Sometimes it is convenient to scale the eigenvectors according to some
convention. A convention frequently adopted is to normalize the eigenvectors so that
they are uniquely determined up to a scale factor of £1. The normalized form of an

eigenvectore=[e, e, ... e,]"is denoted by é and is given by
e
é=—
le]
where
2 2 2
le|=J(ei+es+ ... +e,)

For example, for the matrix A of Example 1.4, the normalized forms of the eigenvectors
are

é =[1/ 11 3/11 1117, & =[3/J14 2/J14 1/)14]"
and
&=[1/2 0 1/2]

However, throughout the text, unless otherwise stated, the eigenvectors will always
be presented in their ‘simplest’ form, so that for the matrix of Example 1.4 we take
B, =B, =p;=1 and write

e=[1 3 1], e=[3 2 1]" and e=[1 0 1]
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For a n X n matrix A the MATLAB command p=poly (A) generates an n + 1 ele-
ment row vector whose elements are the coefficients of the characteristic polynomial
of A, the coefficients being ordered in descending powers. The eigenvalues of A
are the roots of the polynomial and are generated using the command roots (p).
The command

[M,S]l=eig(A)

generates the normalized eigenvectors of A as the columns of the matrix M and its
corresponding eigenvalues as the diagonal elements of the diagonal matrix S
(M and S are called respectively the modal and spectral matrices of A and we shall
return to discuss them in more detail in Section 1.6.1). In the absence of the left-
hand arguments, the command eig (2) by itself simply generates the eigenvalues
of A.

For the matrix A of Example 1.4 the commands

A=[1 1 -2; -1 2 1; 0 1 -1];
(M, S]=eig(A)
generate the output

0.3015 -0.8018 0.7071
M=0.9045 -0.5345 0.0000
0.3015 -0.2673 0.7071

2.0000 0 0
S=0 1.0000 0
0 0 -1.0000

These concur with our calculated answers, with 3, = 0.3015, 3, = —0.2673 and
B, =0.7071.

Using the Symbolic Math Toolbox in MATLAB we saw earlier that the matrix A
may be converted from numeric into symbolic form using the command A=sym (2) .
Then its symbolic eigenvalues and eigenvectors are generated using the sequence of
commands

A=[1 1 -2; -1 2 1; 0 1 -11;
A=sym (A) ;
[M,S]=eig (A)

as
M=[3, 1, 1]
(2, 3, 0]
(1, 1, 1]
s=[1, 0, 0]
o, 2, 0]
to, 0, -1]

In MAPLE the command Eigenvalues (A); returns a vector of eigenvalues. The
command Eigenvectors (A) returns both a vector of eigenvalues as before and
a matrix containing the eigenvalues, so that the ith column is an eigenvector
corresponding to the eigenvalue in the ith entry of the preceding vector. Thus the
commands:



22 MATRIX ANALYSIS

Example 1.5

Solution

with (LinearAlgebra) ,
A:=Matrix([[1,1,-2],[-1,2,1];([0,1,-111]);
Eigenvalues (A) ;

return
1
2
-1
and the command

Eigenvectors (A) ;

returns
2 I 1 3
—1 3 0 2
1 I 1 1

Find the eigenvalues and eigenvectors of
A = | cos 6 —sin6
sin@ cosf

Now

MI_Al:‘A—COSG sin ‘

—sin 6 A — cos 6
=2 —2Acos 0+ cos’O + sin0= 2> — 2Acos O + |
So the eigenvalues are the roots of
A —2AcosO+1=0
that is,
A=cosO*jsin6
Solving for the eigenvectors as in Example 1.4, we obtain

e=[1 —jI' and e=[1 jI'

In Example 1.5 we see that eigenvalues can be complex numbers, and that the eigen-
vectors may have complex components. This situation arises when the characteristic
equation has complex (conjugate) roots.
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1.4.3 Exercises

Check your answers using MATLAB or MAPLE whenever possible.

5  Using the method of Faddeev, obtain the F1 o0 —4] 1 1 2
characteristic polynomials of the matrices ©lo s a @ o 2 2
3 2 1 (2)—11?) | —4 | -1 1 3
a - b - - -
@4 5 -1 ()_1111 0 6 { -1 o
23 4 1 1 1 0 (e) 11 6 () 1 2 1
. . . 6 6 -2 -2 I -1
6  Find the eigenvalues and corresponding - - -
eigenvectors of the matrices - - -
1 1 -4 -2
11 1 2 @] 2 s Mo 3 1
(a) (b)
11 302 -1 -1 0] 1 2 4
1.4.4 Repeated eigenvalues
In the examples considered so far the eigenvalues A, (i=1, 2, . . . ) of the matrix A have
been distinct, and in such cases the corresponding eigenvectors can be found and are
linearly independent. The matrix A is then said to have a full set of linearly independent
eigenvectors. It is clear that the roots of the characteristic polynomial ¢(A) may not all
be distinct; and when c¢(A) has p < n distinct roots, ¢c(A) may be factorized as
cA)=A=A)"A=2)" .. (A=A,)"
indicating that the root A= 4, i=1,2, ..., p, is a root of order m,, where the integer m;
is called the algebraic multiplicity of the eigenvalue A,. Clearly m, +m,+...+m,=n.
When a matrix A has repeated eigenvalues, the question arises as to whether it is
possible to obtain a full set of linearly independent eigenvectors for A. We first consider
two examples to illustrate the situation.
Example 1.6  Determine the eigenvalues and corresponding eigenvectors of the matrix
3 -3 2
A=|-1 5 =2
-1 3 0
Solution  We find the eigenvalues from

3-4 -3 2
-1 5-42 -2|=0
-1 3 -2

as A, =4, 1,=A;=2.



24 MATRIX ANALYSIS

The eigenvectors are obtained from
(A=A)e,=0 (1.8)
and when A = A4, = 4, we obtain from (1.8)
e=[1 -1 -17"
When A=A, =4, =2, (1.8) becomes
1 -3 211 ey
-1 3 =2|len|=0
-1 3 =2||exn
so that the corresponding eigenvector is obtained from the single equation
€, —3epn+2e,,=0 1.9)

Clearly we are free to choose any two of the components e,,, e,, or e,; at will, with the
remaining one determined by (1.9). Suppose we set e,, = o and e,; = ; then (1.9) means
that e, = 30t — 23, and thus

3 -2
e,=[Ba-28 a Bl'=a|1|+B| 0 (1.10)
0 1

Now A = 2 is an eigenvalue of multiplicity 2, and we seek, if possible, two linearly
independent eigenvectors defined by (1.10). Setting oc= 1 and = 0 yields

e,=[3 1 0]
and setting =0 and =1 gives a second vector
e,=[-2 0 1"

These two vectors are linearly independent and of the form defined by (1.10), and it is
clear that many other choices are possible. However, any other choices of the form (1.10)
will be linear combinations of e, and e, as chosen above. For example, e=[1 1 1]
satisfies (1.10), but e = e, + e;.

In this example, although there was a repeated eigenvalue of algebraic multiplicity 2,
it was possible to construct two linearly independent eigenvectors corresponding to this
eigenvalue. Thus the matrix A has three and only three linearly independent eigenvectors.

The MATLAB commands
A=[3 -3 2; -1 5 -2; -1 3 0];
[M,S]=eig(A)
generate
0.5774 -0.5774 -0.7513
M=-0.5774 -0.5774 0.1735
-0.5774 -0.5774 0.6361
4.0000 0 0

S= 0 2.0000 0
0 0 2.0000
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Clearly the first column of M (corresponding to the eigenvalue A, = 4) is a scalar
multiple of e, The second and third columns of M (corresponding to the repeated
eigenvalue A, = A, = 2) are not scalar multiples of e, and e;. However, both satisfy
(1.10) and are equally acceptable as a pair of linearly independent eigenvectors
corresponding to the repeated eigenvalue. It is left as an exercise to show that both
are linear combinations of e, and e;.

Check that in symbolic form the commands

A=sym(A) ;
[M,S]l=eig (A)
generate

M=[-1, 3, -2]
[1, 1, 0]
[1, 0, 11

S=[4, 0, 0]
[0, 2, 0]
[0, 0, 2]

In MAPLE the command Eigenvectors(A); produces corresponding results.
Thus the commands

with (LinearAlgebra) :
A:=Matrix([[3,-3,2],[-1,5,-21,([-1,3,011);
Eigenvectors (A) ;

return

Example 1.7 Determine the eigenvalues and corresponding eigenvectors for the matrix

1 2 2
A= 0 2 1
-1 2 2

Solution  Solving |A — Al | = 0 gives the eigenvalues as A, = 4, = 2, A; = 1. The eigenvector
corresponding to the non-repeated or simple eigenvalue A, = 1 is easily found as

es=[1 1 —IT"
When A= A4, = A, = 2, the corresponding eigenvector is given by
(A=2l)e;=0
that is, as the solution of
—e, +2e,+2e5;=0 @)
e, =0 (ii)

—ey, +2e), =0 (iii)
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Example 1.8

Solution

From (ii) we have e;; = 0, and from (i) and (ii) it follows that e,, = 2¢,,. We deduce
that there is only one linearly independent eigenvector corresponding to the repeated
eigenvalue A = 2, namely

e=[2 1 of

and in this case the matrix A does not possess a full set of linearly independent
eigenvectors.

We see from Examples 1.6 and 1.7 that if an » X n matrix A has repeated eigen-
values then a full set of » linearly independent eigenvectors may or may not exist.
The number of linearly independent eigenvectors associated with a repeated eigen-
value A, of algebraic multiplicity m; is given by the nullity ¢; of the matrix A — A1,
where

gi=n—-rank (A-A1), with 1<g¢g,<m (1.11)
g; is sometimes referred to as the degeneracy of the matrix A — 4,1 or the geometric

multiplicity of the eigenvalue A, since it determines the dimension of the space
spanned by the corresponding eigenvector(s) e;.

Confirm the findings of Examples 1.6 and 1.7 concerning the number of linearly
independent eigenvectors found.

In Example 1.6, we had an eigenvalue A, = 2 of algebraic multiplicity 2. Correspondingly,

3-2 -3 2 1 -3 2
A-Ll=] -1 5-2 =2|=|-1 3 -2
-1 3 =2 -1 3 -2

and performing the row operation of adding row 1 to rows 2 and 3 yields

1 -3 2
0 0 O
0 0 0

Adding 3 times column 1 to column 2 followed by subtracting 2 times column 1 from
column 3 gives finally

1 0 0
0 0 O
0 0 O

indicating a rank of 1. Then from (1.11) the nullity ¢, = 3 — 1 = 2, confirming that
corresponding to the eigenvalue A =2 there are two linearly independent eigenvectors,
as found in Example 1.6.
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In Example 1.7 we again had a repeated eigenvalue A4, = 2 of algebraic multiplicity 2.
Then

1-2 2 2 -1 2 2
A-2l=| 0 2-12 I |=] 0 0 1
-1 2 2-2 -1 2 0

Performing row and column operations as before produces the matrix

S O =
(=R -]
S = O

this time indicating a rank of 2. From (1.11) the nullity ¢, =3 — 2 = 1, confirming that
there is one and only one linearly independent eigenvector associated with this eigen-
value, as found in Example 1.7.

1.4.5 Exercises

Check your answers using MATLAB or MAPLE whenever possible.

Obtain the eigenvalues and corresponding
eigenvectors of the matrices

@

©

using the concept of rank, determine how
many linearly independent eigenvectors
correspond to this value of A. Determine a

2 21 0 -2 -2 corresponding set of linearly independent
1 3 1 (b) | -1 1 2 eigenvectors.
1 2 2 -1 -1 2
r r Given that A =1 is a twice-repeated eigenvalue
4 6 6 7T -2 _4] of the matrix
1 3 2 @[3 0 -2
-1 -5 =2 6 -2 -3 2 -1
A=|-1 0
Given that A =1 is a three-times repeated -1 -1 2

eigenvalue of the matrix

-3 -7 -5 how many linearly independent eigenvectors
correspond to this value of A? Determine a
A=|2 4 3 . . .
corresponding set of linearly independent
1 22 eigenvectors.
1.4.6 Some useful properties of eigenvalues

The following basic properties of the eigenvalues A,, A,, . .., 4, of an n X n matrix A
are sometimes useful. The results are readily proved either from the definition of eigen-
values as the values of A satisfying (1.4), or by comparison of corresponding charac-
teristic polynomials (1.6). Consequently, the proofs are left to Exercise 10.
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Property 1.1

The sum of the eigenvalues of A is

i A; = trace A = i @
=i i=1

Property 1.2

The product of the eigenvalues of A is

ﬁ A; = detA
i=1

where detA denotes the determinant of the matrix A.

Property 1.3

The eigenvalues of the inverse matrix A™', provided it exists, are

Property 1.4

The eigenvalues of the transposed matrix A" are
Ay Ay oo, A,

as for the matrix A.
Property 1.5
If k is a scalar then the eigenvalues of kA are

kA, kA, ..., kA,

Property 1.6

If k is a scalar and | the n X n identity (unit) matrix then the eigenvalues of A * £l
are respectively

Mk, Atk ..., Atk
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1.4.7

Example 1.9

Solution

Property 1.7

If k is a positive integer then the eigenvalues of A* are

k k k
1> )’25 © o009 /ln

Symmetric matrices

A square matrix A is said to be symmetric if A" = A. Such matrices form an important
class and arise in a variety of practical situations. Two important results concerning the
eigenvalues and eigenvectors of such matrices are

(a) the eigenvalues of a real symmetric matrix are real;

(b) for an n X n real symmetric matrix it is always possible to find » linearly
independent eigenvectors e, e,, . . . , e, that are mutually orthogonal so
that eje; = 0 for i # .

If the orthogonal eigenvectors of a symmetric matrix are normalized as
é,é,...,6é,

then the inner (scalar) product is

é,é:a‘ij G,j=1,2,...,n)

L)

where & is the Kronecker delta defined in Section 1.3.2.
The set of normalized eigenvectors of a symmetric matrix therefore forms an ortho-
normal set (that is, it forms a mutually orthogonal normalized set of vectors).

Obtain the eigenvalues and corresponding orthogonal eigenvectors of the symmetric
matrix

>

Il
I SR )
BNV I

0
0
3
and show that the normalized eigenvectors form an orthonormal set.

The eigenvalues of A are A, =6, A, =3 and A, = 1, with corresponding eigenvectors
e=[1 2 0, e=[0 0 1], e=[2 1 O

which in normalized form are
6=[1 2 05 &=[0 0 1, é&=[2 1 0]5

Evaluating the inner products, we see that, for example,

AT A AT A
e1e1:§+§+0:1, e1e3:_§+§+020
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and that
él¢=0; (i,j=1,2,3)

confirming that the eigenvectors form an orthonormal set.

1.4.8 Exercises

Check your answers using MATLAB or MAPLE whenever possible.

10  Verify Properties

11  Given that the eigenvalues of the matrix

1.1-1.7 of Section 1.4.6. 12 Determine the eigenvalues and corresponding
eigenvectors of the symmetric matrix

-3 -3 -3
4 A=|-3 1 -1
A=| 2 5 4 -3 -1 1
-1 -1 0 and verify that the eigenvectors are mutually
orthogonal.
are 5,3 and 1:
13 The 3 x 3 symmetric matrix A has eigenvalues 6,
(a) confirm Properties 1.1-1.4 of Section 3 and 2. The eigenvectors corresponding to
1.4.6; the eigenvalues 6 and 3 are [I 1 2]" and
(b) taking k& = 2, confirm Properties 1.5—1.7 of [1 1 —1]"respectively. Find an eigenvector

Section 1.4.6.

corresponding to the eigenvalue 2.

15.1

Numerical methods

In practice we may well be dealing with matrices whose elements are decimal numbers
or with matrices of high orders. In order to determine the eigenvalues and eigenvectors
of such matrices, it is necessary that we have numerical algorithms at our disposal.

The power method

Consider a matrix A having n distinct eigenvalues 4,, 4, . . . , 4, and corresponding
n linearly independent eigenvectors ey, e,, . . . , e,. Taking this set of vectors as the
basis, we can write any vector x = [x; X, ... x,]" as a linear combination in the
form

n
X = O(lel+06282+. ..+O(ne,1=za,«ei
i=1

Then, since Ae, = de, fori=1,2,...,n,

n n
Ax=A Z oe; = Z o, Me,
i=1 i=1



1.5 NUMERICAL METHODS 31

and, for any positive integer £,
A'x = 2 a e,
i=1
or
A'x = A one, + 2 o (&)ke (1.12)
1 1€1 - i )‘1 i

Assuming that the eigenvalues are ordered such that
> 12,1 > ... >4,
and that o # 0, we have from (1.12)

limA'x = Ajae, (1.13)
k—o0
since all the other terms inside the square brackets tend to zero. The eigenvalue A, and
its corresponding eigenvector e, are referred to as the dominant eigenvalue and eigen-
vector respectively. The other eigenvalues and eigenvectors are called subdominant.
Thus if we introduce the iterative process

XD = Ax® (k=0,1,2,...)

starting with some arbitrary vector x” not orthogonal to e,, it follows from (1.13)
that

X0 = Aky©

will converge to the dominant eigenvector of A.

A clear disadvantage with this scheme is that if | 4,| is large then A*x” will become
very large, and computer overflow can occur. This can be avoided by scaling the vector
x® after each iteration. The standard approach is to make the largest element of x*
unity using the scaling factor max(x*), which represents the element of x® having the
largest modulus.

Thus in practice we adopt the iterative process

pheD = A x®
(k+1)
M= (k=0,1,2,...) (1.14)
max(y“")
and it is common to take xX® =1 1 ... 1]

Corresponding to (1.12), we have

i i n }1{ k
Y =RA e, + 0{,-(—’) e;
23,
i

where

R = [max(y"")max(y?) . . . max(y*)]™
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Figure 1.1 Outline
pseudocode program
for power method to
calculate the maximum
eigenvalue.

Example 1.10

Solution

Again we see that x* converges to a multiple of the dominant eigenvector e,. Also,
since Ax*® — 1,x®, we have y**V — 1,x®, and since the largest element of x® is unity,
it follows that the scaling factors max(y**") converge to the dominant eigenvalue A,.
The rate of convergence depends primarily on the ratios

A |4 A,
ll ’ Al ’ )vl
The smaller these ratios, the faster the rate of convergence. The iterative process repres-
ents the simplest form of the power method, and a pseudocode for the basic algorithm

is given in Figure 1.1.

{read in X" =[x, X, ...X,]}
m <« 0
repeat
mold < m
{evaluate y = Ax}
{find m = max(y;) }
{x"=[y/myym...y,/m]}
until abs(m — mold) << tolerance
{write (results)}

Use the power method to find the dominant eigenvalue and the corresponding eigen-
vector of the matrix

I 1 =2
A=|-1 2 1
0 1 -1

Taking x®=[1 1 1]"in (1.14), we have

11 =2l[1] o 0
xO=-1 2 1l1]=]2]=2]1]; A=2
0 1 —1/|1] o 0
0
(l)_y(l) 1
0
1 =2llo] [1 0.5
=Ax"=[-1 2 1|l1|=]2]=2|1 |; AV
1 —1llo| |1 0.5

(2) l

Ni— = =
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Example 1.11

Solution

11 -2} ! 0.25
yYW=AxP=|-1 2 1||1]|=]2|=2]1 |; AP =2
0 1 -1]|; ! 0.25

0.25
xV =11
0.25

Continuing with the process, we have
y=2[0375 1 0.375]"
y9=2[0312 1 0312]"
y9=2[0344 1 0.344]"
»y7=2[0328 1 0.328]"
y¥=2[0336 1 0.336]"

Clearly y* is approaching the vector 2[1 1 1 1", so that the dominant eigenvalue is
2 and the corresponding eigenvector is [% 1 11", which conforms to the answer

3
obtained in Example 1.4.

Find the dominant eigenvalue of

10 -1 0
Al O 1 1 0
-1 1 2 1
00 1 -l

Starting with xX®=[1 1 1 1], the iterations give the following:

Iteration k& 1 2 3 4 5 6 7
Eigenvalue - 3 2.6667  3.3750 3.0741 3.2048  3.1636  3.1642
X 1 0 —0.3750 —0.4074 —0.4578 —0.4549 —0.4621 —0.4621
x5 1 0.6667 0.6250  0.4815  0.4819  0.4624 04621  0.4621
X0 11 1 1 1 1 1 1
X 1 0 0.3750  0.1852  0.2651  0.2293  0.2403  0.2401

This indicates that the dominant eigenvalue is aproximately 3.16, with corresponding
eigenvector [-0.46 0.46 1 0.24]"
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Example 1.12

Solution

The power method is suitable for obtaining the dominant eigenvalue and cor-
responding eigenvector of a matrix A having real distinct eigenvalues. The smallest
eigenvalue, provided it is non-zero, can be obtained by using the same method on the
inverse matrix A™' when it exists. This follows since if Ax = Ax then A'x = 2"'x. To
find the subdominant eigenvalue using this method the dominant eigenvalue must first
be removed from the matrix using deflation methods. We shall illustrate such a method
for symmetric matrices only.

Let A be a symmetric matrix having real eigenvalues 1, A, . . ., 4. Then, by result
(b) of Section 1.4.7, it has n corresponding mutually orthogonal normalized eigen-
vectors é,, é,, . . ., €, such that

éié=5, (i,j=1,2,...,n)
Let A, be the dominant eigenvalue and consider the matrix
A =A-1é¢6]
which is such that
A =(A- A1é‘1é‘-1r)é‘1 =Aé - klél(é‘{él) =A4é - Lé =0
Aé,=Aé - llél(é-{éz) =16,

A _An ArATAN A
Aé;=Aé; — 1é,(é,6) = L6,

A _An ArATAN A
Alen - Aen - //1/181(313”) - 2’nen

Thus the matrix A, has the same eigenvalues and eigenvectors as the matrix A, except
that the eigenvalue corresponding to A, is now zero. The power method can then be
applied to the matrix A, to obtain the subdominant eigenvalue A, and its corresponding
eigenvector e,. By repeated use of this technique, we can determine all the eigenvalues
and corresponding eigenvectors of A.

Given that the symmetric matrix

>

Il
I SR
S wow

0
0
3
has a dominant eigenvalue A, = 6 with corresponding normalized eigenvector é, =

[1 2 0]%5, find the subdominant eigenvalue 4, and corresponding eigenvector &,.

Following the above procedure,

A =A-1éé
2 2 0| |1 £ 20
— 4 —
=l2 5 o|-¢2[1 2 01=|=2 L o
0 0 3| |0 0 0 3
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Applying the power method procedure (1.14), with x? =1 1 1], gives

2 2
5 15
yW=AxV =L =3]-1]; 2 =3
3 1
2 0.133
xV=|-Ll=1-0133
1] 1
[ 2] 2
15 45
Y = AxV = ~Ll=3|-2|; A0 =3
3] 1
2] | 0044
(2) _
xP =] -2 =|-0.044
1 1
[ 2] 2
45 135
y = Ax? = —2]=3]-Z|; 29 =3
3] 1
0015
x® =1-0.015
1

Clearly the subdominant eigenvalue of A is A, = 3, and a few more iterations confirm
the corresponding normalized eigenvector as & =[0 0 1]". This is confirmed by the
solution of Example 1.9. Note that the third eigenvalue may then be obtained using
Property 1.1 of Section 1.4.6, since

trace A=10=A4,+ A, + A, =6+3+ A,

giving A, = 1. Alternatively, A; and é, can be obtained by applying the power method
to the matrix A, = A, — 1,é,é1.

Although it is good as an illustration of the principles underlying iterative methods
for evaluating eigenvalues and eigenvectors, the power method is of little practical im-
portance, except possibly when dealing with large sparse matrices. In order to evaluate
all the eigenvalues and eigenvectors of a matrix, including those with repeated eigen-
values, more sophisticated methods are required. Many of the numerical methods avail-
able, such as the Jacobi and Householder methods, are only applicable to symmetric
matrices, and involve reducing the matrix to a special form so that its eigenvalues can
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1.5.2

Theorem 1.1

Theorem 1.2

be readily calculated. Analogous methods for non-symmetric matrices are the LR and
QR methods. It is methods such as these, together with others based on the inverse
iterative method, that form the basis of the algorithms that exist in modern software
packages such as MATLAB. Such methods will not be pursued further here, and the
interested reader is referred to specialist texts on numerical analysis.

Gerschgorin circles

In many engineering applications it is not necessary to obtain accurate approximations
to the eigenvalues of a matrix. All that is often required are bounds on the eigenvalues.
For example, when considering the stability of continuous- or discrete-time systems
(see Sections 5.7-6.8), we are concerned as to whether the eigenvalues lie in the
negative half-plane or within the unit circle in the complex plane. (Note that the eigen-
values of a non-symmetric matrix can be complex.) The Gerschgorin theorems often
provide a quick method to answer such questions without the need for detailed calcula-
tions. These theorems may be stated as follows.

First Gerschgorin theorem

Every eigenvalue of the matrix A = [a;], of order n, lies inside at least one of the
circles (called Gerschgorin circles) in the complex plane with centre a,; and radii

vy =20 i lagl i=1,2, ..., n). Expressed in another form, all the eigenvalues of the

matrix A = [a,] lie in the union of the discs
lz—a;| <r = 2 la;l (i=1,2,...,n)
j=1
J#I
in the complex z plane.

end of theorem

Second Gerschgorin theorem

If the union of s of the Gerschgorin circles forms a connected region isolated from the
remaining circles then exactly s of the eigenvalues lie within this region.

end of theorem

Since the disc |z — a;| =< r, is contained within the disc
n
lz| =< lay|+7= 2 layl
j=1

centred at the origin, we have a less precise but more easily applied criterion that all the
eigenvalues of the matrix A lie within the disc

lz| = m_ax{Zla,z,l} (i=1,2,...,n) (1.15)
i o

centred at the origin.
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Example 1.13

Solution

Figure 1.2
Gerschgorin circles
for the matrix A of
Example 1.13.

The spectral radius p(A) of a matrix A is the modulus of its dominant eigenvalue;
that is,

p(A)=max{|A]} (=1,2,...,n) (1.16)

where A, A,, .. ., A, are the eigenvalues of A. Geometrically, p(A) is the radius of the
smallest circle centred at the origin in the complex plane such that all the eigenvalues
of A lie inside the circle. It follows from (1.15) that

p(A) = max{ila,jl} (i=1,2,...,n) (1.17)

J=1

Draw the Gerschgorin circles corresponding to the matrix

10 -1 0
A=|-1 2
0o 2 3

What can be concluded about the eigenvalues of A?

The three Gerschgorin circles are
1 |z—-10|=]-1]+0=1

(i) |z=2]=|-1]+12|=3
(i) |z-3|=2]=2

and are illustrated in Figure 1.2.

It follows from Theorem 1.2 that one eigenvalue lies within the circle centred (10, 0)
of radius 1, and two eigenvalues lie within the union of the other two circles; that is,
within the circle centred at (2, 0) of radius 3. Since the matrix A is symmetric, it follows
from result (a) of Section 1.4.7 that the eigenvalues are real. Hence

9<A <11
1< {Ay Ay} <5

N,

o
-2 -1 1.2 3 4 5 6 7 8 9~10-11 12

z plane
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14

15

16

17

1.5.3 Exercises

Use the power method to estimate the dominant
eigenvalue and its corresponding eigenvector for
the matrix

4 3
3 5
2 2

2
A= 2 18
1

Stop when you consider the eigenvalue estimate is
correct to two decimal places.

Repeat Exercise 14 for the matrices

2 1 0 3.0 1
@A=|1 2 1 b)yA=|2 2 2
1 2 4 2 5
[2 -1 o
(©) A = -1 2 -1
0 -1 2 -1
L0 0 -1 2
The symmetric matrix
3 1
A=|1 3 1
1 5 19

has dominant eigenvector e, =[1 1 2]".
Obtain the matrix

A =A-16é"

where 4, is the eigenvalue corresponding to the
eigenvector e,. Using the deflation method, obtain
the subdominant eigenvalue A, and corresponding
eigenvector e, correct to two decimal places, taking
[1 1 1]"as afirst approximation to e,. Continue
the process to obtain the third eigenvalue 14, and its
corresponding eigenvector e;.

Draw the Gerschgorin circles corresponding to
the matrix

5 1 -1
A= 1 0 1
-1 -5

and hence show that the three eigenvalues are
such that

3<A<T, 2<A, <2, T<A,; <3

Show that the characteristic equation of the
matrix

10 -1 0
A=l-1 2 2
0 2 3

of Example 1.13 is
S =X -152+511-17=0
Using the Newton—Raphson iterative procedure

S(4)
A 1= 2'n TN
! S (A)

determine the eigenvalue identified in
Example 1.13 to lie in the interval 9 < A < 11,
correct to three decimal places.

Using Properties 1.1 and 1.2 of Section 1.4.6,
determine the other two eigenvalues of A to the
same approximation.

(a) If the eigenvalues of the n X n matrix A are

ML>A>A...4,=0

show that the eigenvalue A, can be found by
applying the power method to the matrix kI — A,
where | is the identity matrix and k = A,.

(b) By considering the Gerschgorin circles, show
that the eigenvalues of the matrix

2 -1 0
A=|-1 2 -1
0 -1 2

satisfy the inequality
0s=sA<4

Hence, using the result proved in (a), determine
the smallest modulus eigenvalue of A correct to
two decimal places.
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1.6.1

Reduction to canonical form

In this section we examine the process of reduction of a matrix to canonical form.
Specifically, we examine methods by which certain square matrices can be reduced or
transformed into diagonal form. The process of transformation can be thought of as a
change of system coordinates, with the new coordinate axes chosen in such a way that
the system can be expressed in a simple form. The simplification may, for example, be
a transformation to principal axes or a decoupling of system equations.

We will see that not all matrices can be reduced to diagonal form. In some cases we
can only achieve the so-called Jordan canonical form, but many of the advantages of
the diagonal form can be extended to this case as well.

The transformation to diagonal form is just one example of a similarity transform.
Other such transforms exist, but, in common with the transformation to diagonal form,
their purpose is usually that of simplifying the system model in some way.

Reduction to diagonal form

For an n X n matrix A possessing a full set of » linearly independent eigenvectors
e, e, ...,e, we can write down a modal matrix M having the » eigenvectors as its
columns:

M=[e, e e ... e]

The diagonal matrix having the eigenvalues of A as its diagonal elements is called
the spectral matrix corresponding to the modal matrix M of A, often denoted by A.
That is,

with the ijth element being given by A,6;, where §, is the Kronecker delta and 7, j = 1,
2, ..., n. It is important in the work that follows that the pair of matrices M and A
are written down correctly. If the ith column of M is the eigenvector e, then the
element in the (i, i) position in A must be A,, the eigenvalue corresponding to the

eigenvector e;.

We saw in Section 1.4.2 that in MATLAB the command
[M,S]=eig (A)

generates the modal and spectral matrices for the matrix A (Nofe: For convenience
S is used to represent A when using MATLAB; whilst both are produced by the
command Eigenvalues (A) in MAPLE.)
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Example 1.14

Solution

Obtain a modal matrix and the corresponding spectral matrix for the matrix A of
Example 1.4.

1 1 =2
A=|-1 2 1
0 1 -1

having eigenvalues A, =2, 1, =1 and A, = —1, with corresponding eigenvectors
ee=[1 3 11", =3 2 1], e=[1 0 1]

Choosing as modal matrix M =[e, e, e;]" gives

1
M=13
1

=N W

1
0
1

The corresponding spectral matrix is

Returning to the general case, if we premultiply the matrix M by A, we obtain

AM=Ale, e, ... e,]=[Ae Ae, ... Ae,]
=[Ae, Ae, ... Ael]
so that
AM =MA (1.18)
Since the n eigenvectors e, e,, . . . , e, are linearly independent, the matrix M is non-

singular, so that M ™" exists. Thus premultiplying by M ™' gives
M~AM = M'MA = A (1.19)

indicating that the similarity transformation M~'AM reduces the matrix A to the diag-
onal or canonical form A. Thus a matrix A possessing a full set of linearly independent
eigenvectors is reducible to diagonal form, and the reduction process is often referred
to as the diagonalization of the matrix A. Since

A =MAM"" (1.20)

it follows that A is uniquely determined once the eigenvalues and corresponding eigen-
vectors are known. Note that knowledge of the eigenvalues and eigenvectors alone is
not sufficient: in order to structure M and A correctly, the association of eigenvalues
and the corresponding eigenvectors must also be known.
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Example 1.15

Solution

Verify results (1.19) and (1.20) for the matrix A of Example 1.14.

Since
13 2 2 2
M=[3 2 0| wehave M’l=é 30 -3
11 -1 =2 7
Taking
20 0
A=lo 1 o
0 0 -1

matrix multiplication confirms the results

MTAM=A, A=MAM"

For an n X n symmetric matrix A it follows, from result (b) of Section 1.4.7, that
to the n real eigenvalues A,, A,, . . ., 4, there correspond 7 linearly independent
normalized eigenvectors é,, é,, . . . , é, that are mutually orthogonal so that

éi6=0; (i,j=12,....n)
The corresponding modal matrix
M=[é ¢ ... é]

is then such that

[ e, & ... é] T AT A AT 4

e e e e e, ... e e,
e A AT AT A AT A AT A
MTM: e, — e,e, e e, ... e e,

AT AT A AT A AT A

€, €,€ €,e, e,e,

1 0 ... 0

0 0

=1 . =
0o 0 ... 1

That is, M' M=1and so M' = M~'. Thus M is an orthogonal matrix (the term ortho-
normal matrix would be more appropriate, but the nomenclature is long established).

It follows from (1.19) that a symmetric matrix A can be reduced to diagonal form A
using the orthogonal transformation

MAM= A (1.21)
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Example 1.16

Solution

1.6.2

For the symmetric matrix A considered in Example 1.9 write down the corresponding
orthogonal modal matrix M and show that M 'AM = A, where A is the spectral matrix.

From Example 1.9 the eigenvalues are A, = 6, 4, =3 and A, = 1, with corresponding
normalized eigenvectors

é=[1 2 0]"\5 é&=[0 0 1], &=[2 1 0]

The corresponding modal matrix is

0 -2
0

D= D=

\

and, by matrix multiplication,

MAM =

S o o
S w o
- o o
Il
>

The Jordan canonical form

If an n X n matrix A does not possess a full set of linearly independent eigenvectors
then it cannot be reduced to diagonal form using the similarity transformation M~'AM.
In such a case, however, it is possible to reduce A to a Jordan canonical form, making
use of ‘generalized’ eigenvectors.

As indicated in (1.11), if a matrix A has an eigenvalue A, of algebraic multiplicity
m; and geometric multiplicity ¢, with 1 < g, < m,, then there are ¢, linearly independent
eigenvectors corresponding to A,. Consequently, we need to generate m, — ¢, generalized
eigenvectors in order to produce a full set. To obtain these, we first obtain the g, linearly
independent eigenvectors by solving

(A-21)e=0

Then for each of these vectors we try to construct a generalized eigenvector e such
that

(A-Al)ef=e

If the resulting vector e is linearly independent of all the eigenvectors (and generalized
eigenvectors) already found then it is a valid additional generalized eigenvector. If
further generalized eigenvectors corresponding to A, are needed, we then repeat the
process using

(A=2l)ef* =ef

and so on until sufficient vectors are found.
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Example 1.17

Solution

Obtain a generalized eigenvector corresponding to the eigenvalue A =2 of Example 1.7.

For

1
A= 0
-1

[\CTN SR )
N = N

we found in Example 1.7 that corresponding to the eigenvalue A, = 2 there was only
one linearly independent eigenvector

e=[2 1 o

and we need to find a generalized eigenvector to produce a full set. To obtain the general-
ized eigenvector e, we solve

(A =2l)ef=e,

that is, we solve

1 2 2][ex| [2
0 0 1]|e|=]|1
-1 2 0] ef 0

At once, we have ef; = 1 and e} = 2¢f, and so
ex=[2 1 17

Thus, by including generalized eigenvectors, we have a full set of eigenvectors for the
matrix A given by

e=[2 1 0", e,=[2 1 1%, e;=[1 -1 1]

If we include the generalized eigenvectors, it is always possible to obtain for
an n X n matrix A a modal matrix M with z linearly independent columns e, e,,
..., e, Corresponding to (1.18), we have

AM =MJ
where J is called the Jordan form of A. Premultiplying by M~ then gives

M~AM =J (1.22)

The process of reducing A to J is known as the reduction of A to its Jordan normal, or

canonical, form.
If A has p distinct eigenvalues then the matrix J is of the block-diagonal form

J=[, 3 ... 3]

where each submatrix J, (i=1, 2, . .., p) is associated with the corresponding eigen-
value A,. The submatrix J; will have A, as its leading diagonal elements, with zeros
elsewhere except on the diagonal above the leading diagonal. On this diagonal the
entries will have the value 1 or 0, depending on the number of generalized eigenvectors
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Example 1.18

Solution

used and how they were generated. To illustrate this, suppose that A is a 7 X 7 matrix
with eigenvalues A, = 1, 4, = 2 (occurring twice), A, = 3 (occurring four times), and
suppose that the number of linearly independent eigenvectors generated in each case is

A =1, 1 eigenvector
A, =2, 1 eigenvector
Ay=3, 2 eigenvectors

with one further generalized eigenvector having been determined for A, = 2 and two
more for A; = 3.

Corresponding to A, = 1, the Jordan block J, will be just [1], while that corresponding
to A, =2 will be

J2=21
0 2

Corresponding to A, = 3, the Jordan block J, can take one of the two forms

A 1 0 .0 A 1

0 A 1 !0 0 A
Jiy=[0 0 A ¢ 0] or Jyy=|-ceeooreeooee

----------- D1

0 0 0 1 A i L0 A

depending on how the generalized eigenvectors are generated. Corresponding to A, = 3,
we had two linearly independent eigenvectors e;; and e;,. If both generalized eigen-
vectors are generated from one of these vectors then J; will take the form J; , whereas
if one generalized eigenvector has been generated from each eigenvector then J; will
take the form Js,.

Obtain the Jordan canonical form of the matrix A of Example 1.17, and show that
M~'AM = J where M is a modal matrix that includes generalized eigenvectors.

For
1 2 2
A= 0 2 1
-1 2 2

from Example 1.17 we know that the eigenvalues of A are A, = 2 (twice) and A5 = 1.
The eigenvector corresponding to A, = 1 has been determined as e; =[1 1 —1]"in
Example 1.7 and corresponding to A, = 2 we found one linearly independent eigen-
vectore, =[2 1 0]" and a generalized eigenvector ef =[2 1 1]". Thus the modal
matrix including this generalized eigenvector is

2 2 1
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and the corresponding Jordan canonical form is

To check this result, we compute M~ as

2 -3 -1
M'=|-1 2 1
-1 2 0

and, forming M~'AM, we obtain J as expected.

In MATLAB the command J=jordan (A) computes the Jordan form of A; including
the case when J is diagonal and all the eigenvectors of A are linearly independent.
The command

[M,J]=jordan (A)

also computes the similarity transformation or modal matrix M that may include
generalized eigenvectors.

Numerical calculation of the Jordan form is very sensitive to round-off errors, etc.
This makes it very difficult to compute the Jordan form reliably and almost any
change in A causes it to be diagonal.

For the matrix A in Example 1.18 the sequence of commands

A=[1 2 2; 0 2 1; -1 2 271;
[M,J]=jordan (A)

returns
-1 -2 2
M=-1 -1 1
1 0 -1
1 0 0
J= 0 2 1
0 0 2

which is equally acceptable to the solution given in Example 1.18. (This can be
checked by evaluating M—AM.)
Using the Symbolic Math Toolbox in MATLAB the sequence of commands

A=[1 2 2; 0 2 1; -1 2 2];
AS=sym A
[M,J]=jordan (AS)
returns the same output as above. In practice, this sequence of commands is only

really effective when the elements of the matrix A are integers or ratios of small
integers.
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20

21

22

23

1.6.3 Exercises

Check your answers using MATLAB or MAPLE whenever possible.

Show that the eigenvalues of the matrix

-1 6 -12
A=| 0 -13 30
0 -9 20

are 5, 2 and —1. Obtain the corresponding
eigenvectors. Write down the modal matrix
M and spectral matrix A. Evaluate M~ and
show that M~'AM = A,

Using the eigenvalues and corresponding
eigenvectors of the symmetric matrix

>

1]
S N
S v

0
0
3

obtained in Example 1.9, verify that
M'AM = A where Mand A are respectively
a normalized modal matrix and a spectral
matrix of A.

Given
5 10 8
A=|10 2 =2
g8 -2 11

find its eigenvalues and corresponding
eigenvectors. Normalize the eigenvectors

and write down the corresponding normalized

modal mat{ix M. Write down M" and show
that M'AM = A, where A is the spectral
matrix of A.

Determine the eigenvalues and corresponding
eigenvectors of the matrix

1 -2
A=|-1 2 1
0 1 -1

Write down the modal matrix M and spectral
matrix A. Confirm that M~'AM = A and that
A=MAM"".

24

25

26

27

Determine the eigenvalues and corresponding
eigenvectors of the symmetric matrix

3 2 4
A=l-2 2 &6
4 6 -1

Verify that the eigenvectors are orthogonal,
and write down an orthogonal matrix L such that
LTAL = A, where A is the spectral matrix of A.

A 3 X 3 symmetric matrix A has eigenvalues
6, 3 and 1. The eigenvectors corresponding

to the eigenvalues 6 and 1 are [1 2 0]" and
[<2 1 0] respectively. Find the eigenvector
corresponding to the eigenvalue 3, and hence
determine the matrix A.

Given that A =1 is a thrice-repeated eigenvalue
of the matrix

-3 -7 =5
A=| 2 4 3
1 2 2

use the nullity, given by (1.11), of a suitable matrix
to show that there is only one corresponding linearly
independent eigenvector. Obtain two further
generalized eigenvectors, and write down the
corresponding modal matrix M. Confirm thatM "'AM
=J, where J is the appropriate Jordan matrix.

Show that the eigenvalues of the matrix

1 0o o0 -3
0 1 -3 0
-05 -3 1 05

-3 0o 0 1

A:

are —2, —2, 4 and 4. Using the nullity, given

by (1.11), of appropriate matrices, show that
there are two linearly independent eigenvectors
corresponding to the repeated eigenvalue —2
and only one corresponding to the repeated
eigenvalue 4. Obtain a further generalized
eigenvector corresponding to the eigenvalue 4.
Write down the Jordan canonical form of A.
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1.6.4

Example 1.19

Solution

Quadratic forms

A quadratic form in n independent variables x,, x,, . . ., x, is a homogeneous second-
degree polynomial of the form

n n
Vix, Xy ..., x,) = z z a;X;X;
i=1 j=1
_ 2
=a X7+ apxx, + ...+ a,xx,

+ Ay XX, + ApX3 + ..+ Ay XX,

+ X, X, + ApX, Xy + ..+, X (1.23)
Defining the vector x =[x, x, ... x,]" and the matrix
all alz DR aln
A= ay dyp ... ('?Zn
Ay Ay ... Ay,

the quadratic form (1.23) may be written in the form
V(x)=x"Ax (1.24)

The matrix A is referred to as the matrix of the quadratic form and the determinant of
A is called the discriminant of the quadratic form.

Now a; and a;, in (1.23) are both coefficients of the term x,x; (i # /), so that for i # j
the coefficient of the term x.x; is a; + a;. By defining new coefficients a; and a; for x.x;
and x,x; respectively, such that ;= a,= % (a; + a;;), the matrix A associated with the
quadratic form ¥(x) may be taken to be symmetric. Thus for real quadratic forms we
can, without loss of generality, consider the matrix A to be a symmetric matrix.

Find the real symmetric matrix corresponding to the quadratic form

V(x,, Xy, X3) = X2 4+ 3x3 — dx? — 3x,2, + 2x,05 — 5x,x3

Ifx=[x, x, x]", wehave

30 2
L= 5llx
T
V(xp, x5, x3) =[x X x5] —% 3 —§ x| =x Ax
2 5
5 3 411 x;

where the matrix of the quadratic form is

1=
A=|-2 3 =

[—
|
[N
|

N
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In Section 1.6.1 we saw that a real symmetric matrix A can always be reduced to the
diagonal form

MAM= A

where M is the normalized orthogonal modal matrix of A and A is its spectral matrix.
Thus for a real quadratic form we can specify a change of variables

x=My
where y=[y, y, ... »,]I% such that
V=x"Ax=y"M"AMy =y Ay
giving
V= +Ays+...+ Ay, (1.25)

Hence the quadratic form x"Ax may be reduced to the sum of squares by the trans-
formation x = My, where M is the normalized modal matrix of A. The resulting form
given in (1.25) is called the canonical form of the quadratic form ¥ given in (1.24).
The reduction of a quadratic form to its canonical form has many applications in
engineering, particularly in stress analysis.

Example 1.20  Find the canonical form of the quadratic form
V= 2x2+ 5x3 + 3x3 + 4xx,

Can V take negative values for any values of x|, x, and x;?

Solution At once, we have

2 20
V=xT2 5 Ox=xTAx
0 0 3

where

x=[x x x3]Ts A=

S DN
S N

0
0
3

The real symmetric matrix A is the matrix of Example 1.16, where we found the
normalized orthogonal modal matrix M and spectral matrix A to be

2! 6 0 0

.
Mm=|2, AloA=l0 3 0
0 1 0 0 1

N

0
0

G L=
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Example 1.21

such that M'AM = A. Thus, setting x = My, we obtain

6 0 0
V=y M AMy=y"[0 3 0|y=6+312+)
0 0 1

as the required canonical form.

Clearly V' is non-negative for all y,, , and y;. Since x = m 'y and Mis an orthogonal
matrix it follows that y = Mx, so for all x there is a corresponding y. It follows that V'
cannot take negative values for any values of x,, x, and x;.

The quadratic form of Example 1.20 was seen to be non-negative for any vector x,
and is positive provided that x # 0. Such a quadratic form x"Ax is called a positive-
definite quadratic form, and, by reducing to canonical form, we have seen that this
property depends only on the eigenvalues of the real symmetric matrix A. This leads us

to classify quadratic forms V' = x'Ax, where x =[x, x, ... x,]" in the following
manner.

(a)  Vis positive-definite, that is /> 0 for all vectors x except x = 0, if and only
if all the eigenvalues of A are positive.

(b)  Vis positive-semidefinite, that is /= 0 for all vectors x and V' = 0 for at least
one vector x # 0, if and only if all the eigenvalues of A are non-negative and
at least one of the eigenvalues is zero.

(c)  Vis negative-definite if —J is positive-definite, with a corresponding condition
on the eigenvalues of —A.

(d)  Vis negative-semidefinite if - is positive-semidefinite, with a corresponding
condition on the eigenvalues of —A.

(e) Vis indefinite, that is V' takes at least one positive value and at least one

negative value, if and only if the matrix A has both positive and negative
eigenvalues.

Since the classification of a real quadratic form x"A x depends entirely on the location
of the eigenvalues of the symmetric matrix A, it may be viewed as a property of A itself.
For this reason, it is common to talk of positive-definite, positive-semidefinite, and so
on, symmetric matrices without reference to the underlying quadratic form.

Classify the following quadratic forms:

(a)
(b)
(c)
(d)

3x% 4 2x3 + 3x% — 2x,x, — 2X,%;3
Tx 4+ x3 + x% — dx,x, — dx,x; + 8x,x;3
—3x3 = 5x3 = 3x3 + 2x,0, + 2X,05 — 2X,X;

4x2 + x3 + 15x3 — 4xx,
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Solution

(a)  The matrix corresponding to the quadratic form is

3 -1 0
A=-1 2 -1
0 -1 3

The eigenvalues of A are 4, 3 and 1, so the quadratic form is positive-definite.

(b)  The matrix corresponding to the quadratic form is

7 -2 =2
A=|-2 1 4
-2 4 1

The eigenvalues of A are 9, 3 and -3, so the quadratic form is indefinite.

(c)  The matrix corresponding to the quadratic form is

-3 I -1
A=|1 -5 1
-1 1 -3

The eigenvalues of A are —6, —3 and -2, so the quadratic form is negative-definite.

(d)  The matrix corresponding to the quadratic form is

4 -2 0
A=-2 1 0
0 0 15

The eigenvalues of A are 15, 5 and 0, so the quadratic form is positive-
semidefinite.

In Example 1.21 classifying the quadratic forms involved determining the eigen-
values of A. If A contains one or more parameters then the task becomes difficult, if not
impossible, even with the use of a symbolic algebra computer package. Frequently in
engineering, particularly in stability analysis, it is necessary to determine the range of
values of a parameter k, say, for which a quadratic form remains definite or at least
semidefinite in sign. J. J. Sylvester determined criteria for the classification of quadratic
forms (or the associated real symmetric matrix) that do not require the computation of
the eigenvalues. These criteria are known as Sylvester’s conditions, which we shall
briefly discuss without proof.

In order to classify the quadratic form x"Ax Sylvester’s conditions involve considera-
tion of the principal minors of A. A principal minor P, of orderi (i=1,2, ..., n) of
an n X n square matrix A is the determinant of the submatrix, of order i, whose principal
diagonal is part of the principal diagonal of A. Note that when i = n the principal minor
is det A. In particular, the leading principal minors of A are

a; dp dp

a
D1=|a“|, D2= . D3= ay ay Arys|, ..., D,,=detA

as  ds  dsz
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Example 1.22

Solution

Determine all the principal minors of the matrix

1 £ O
A=k 2 0
0 0 5
and indicate which are the leading principal minors.

(a)  The principal minor of order three is
P,=detA =52 - k% (leading principal minor D;)
(b)  The principal minors of order two are

(i)  deleting row 1 and column 1,

2 0
Py = Q® =10
(i)  deleting row 2 and column 2,
P, = N =5
0 5
(ii1) deleting row 3 and column 3,
Py = llc ;C =2-K (leading principal minor D,)

(c)  The principal minors of order one are
(1)  deleting rows 1 and 2 and columns 1 and 2,
P,=|5|=5
(i)  deleting rows 1 and 3 and columns 1 and 3,
P,=12]=2
(i11) deleting rows 2 and 3 and columns 2 and 3,

P;=]1|=1 (leading principal minor D)

Sylvester’s conditions: These state that the quadratic form x"Ax, where A is an

n X n real symmetric matrix, is

(a) positive-definite if and only if all the leading principal minors of A are

positive; thatis, D, > 0 (i=1,2, ..., n);

(b) negative-definite if and only if the leading principal minors of A alternate in

sign with a,, < 0; that is, (-=1YD, > 0(=1,2, ..., n);

(c) positive-semidefinite if and only if det A = 0 and a// the principal minors of

A are non-negative; that is, det A = 0 and P, = 0 for al/l principal minors;

(d) negative-semidefinite if and only if det A = 0 and (-1)'P, = 0 for all principal

minors.
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Example 1.23

Solution

Example 1.24

Solution

For what values of £ is the matrix A of Example 1.22 positive-definite?
The leading principal minors of A are

D, =1, D,=2-k% D,=52-k)

These will be positive provided that 2 — k* > 0, so the matrix will be positive-definite
provided that k* < 2, that is —2 < k < 2.

Using Sylvester’s conditions, confirm the conclusions of Example 1.21.

(a)  The matrix of the quadratic form is

3 -1 0
A=|-1 2 -1
0 -1 3

and its leading principal minors are

3 —1‘

>

=5, detA=12
-1 2

Thus, by Sylvester’s condition (a), the quadratic form is positive-definite.

(b)  The matrix of the quadratic form is

7 -2 -2
A=|-2 1 4
-2 4 1

and its leading principal minors are

-2
7, ! =3, detA=-81
-2 1

Thus none of Sylvester’s conditions can be satisfied, and the quadratic form is
indefinite.

(c)  The matrix of the quadratic form is

-3 1 -1
A=| 1 -5 1
-1 1 -3

and its leading principal minors are
-3 1 ‘

-3,
1 -5

=14, detA=-36

Thus, by Sylvester’s condition (b), the quadratic form is negative-definite.
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28

29

30

31

(d)  The matrix of the quadratic form is

4 -2 0
A=[-2 1 0
0 0 15

and its leading principal minors are

4 -2
S R

2

detA=0

We therefore need to evaluate all the principal minors to see if the quadratic form
is positive-semidefinite. The principal minors are

4 -2

4, 1, 15, ‘
-2 1

0. |

= 60,

0 4 0
~ 15, det A=0

15 0 15

Thus, by Sylvester’s condition (c), the quadratic form is positive-semidefinite.

1.6.5 Exercises

Reduce the quadratic form
2x7 + 5x3 + 2x3 4 4xo,x; + 2%, + 4x,x,

to the sum of squares by an orthogonal
transformation.

Classify the quadratic forms

(@) x% 4 2x3 + 7x3 — 2x,x, + 4x,005 — 25,5

(b) x% 4 2x3 + 5x% — 2x,x, + 4x,005 — 22,3

(©) X2+ 2x3+4x2 — 2x,x, + 4x,x5 — 2x,%3

(a) Show that ax? — 2bx,x, + cx3 is positive-definite
if and only if @ > 0 and ac > b

(b) Find inequalities that must be satisfied by a and

b to ensure that 2x? + ax? + 3x3 — 2x,x, + 2bx,x;
is positive-definite.

Evaluate the definiteness of the matrix

2 1 -1
A=l 1 2 1
-1 1 2

32

EE

34

(a) by obtaining the eigenvalues;
(b) by evaluating the principal minors.

Determine the exact range of & for which the
quadratic form

O, y,2) =k(x*+y?) + 2xy + 2% + 2xz — 2yz
is positive-definite in x, y and z. What can be said

about the definiteness of Q when k = 2?

Determine the minimum value of the constant
a such that the quadratic form

3+a 1 1
x| 1 a 2|x
1 2 a

where x =[x, x, x;]", is positive-definite.

Express the quadratic form
0 = x% + dxx, — 4x,005 — 6x,x;5 + A(x3 +x3)

in the form x"Ax, where x =[x, x, x;]" and
A is a symmetric matrix. Hence determine

the range of values of A for which Q is
positive-definite.
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Functions of a matrix

Let A be an n X n constant square matrix, so that

AZ=AA AP = AA’ = A’A, and so on

are all defined. We can then define a function f(A) of the matrix A using a power series
representation. For example,

f(A):iﬁ,A’:ﬂol +BA+.. .+ BA (1.26)

r=0

where we have interpreted A” as the n x n identity matrix |.

Example 1.25  Given the 2 X 2 square matrix
1 -1
A=
2 3

2
determine f(A) = Zﬂ,Ar when f,=1, B, =-1and 3, =3.

r=0

Solution Now

f(A)=ﬁol+ﬂ1A+[32A2:1[1 0}_1[1 —1}3[—1 _4}
0 1

_[-3 -n
219

Note that A is a 2 X 2 matrix and f(A) is another 2 X 2 matrix.

Suppose that in (1.26) we let p — oo, so that
f(A) =Y BA
r=0
We can attach meaning to f(A) in this case if the matrices

SR =Y BA

r=0

tend to a constant # X n matrix in the limit as p — oo.



1.7 FUNCTIONS OF A MATRIX 55

Example 1.26

Solution

For the matrix

using a computer and larger and larger values of p, we infer that

P
£ [271828 0
A =1im S L =
e plflz ! { 2.71828}

indicating that

e 0
o[t ]

What would be the corresponding results if
-1 0 -t 0
A= , b) A= ?
(a) [ 0 J (b) [ 0 J

(a)  The computer will lead to the prediction

(2.71828)" 0
0

S(A) =
2.718 28

indicating that

A:efl 0
e[

(b)  The computer is of little help in this case. However, hand calculation shows that
we are generating the matrix

L—t+1f =1+ 0
f(A) =

0 L+t+10 410+

indicating that

= 0
0 ¢

By analogy with the definition of the scalar exponential function

—1+at+at +...+a—t-+...:2‘Ml
21 r!
=0
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Theorem 1.3

Example 1.27

Solution

it is natural to define the matrix function e®, where # is a scalar parameter, by the power
series

fA) = ) o ! (1.27)

r=0

In fact the matrix in part (b) of Example 1.26 illustrates that this definition is reasonable.

In Example 1.26 we were able to spot the construction of the matrix f(A), but this
will not be the case when A is a general n X n square matrix. In order to overcome this
limitation and generate a method that will not rely on our ability to ‘spot’ a closed form
of the limiting matrix, we make use of the Cayley—Hamilton theorem, which may be
stated as follows.

Cayley—Hamilton theorem

A square matrix A satisfies its own characteristic equation; that is, if

At A +e, A7+ e d+c=0
is the characteristic equation of an #n X n matrix A then

A'+c, A +c, A+t A+cl=0 (1.28)
where | is the # X n identity matrix.

end of theorem

The proof of this theorem is not trivial, and is not included here. We shall illustrate the
theorem using a simple example.

Verify the Cayley—Hamilton theorem for the matrix
A=|3 4
1 2

The characteristic equation of A is

3-4 4
‘ =0 or A-51+2=0
1 2-2
Since
|3 4|3 4|13 20
1o2f[1 2] |5 s
we have

Aosa+ar=| B 2053 Aot 0y
5 8 1 2 0 1

thus verifying the validity of the Cayley—Hamilton theorem for this matrix.
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Example 1.28

In the particular case when A is a 2 X 2 matrix with characteristic equation
cAH)=P+ar+a,=0 (1.29)
it follows from the Cayley—Hamilton theorem that
c(A)=A'+agA+al=0

The significance of this result for our present purposes begins to appear when we
rearrange to give

A’=—a,A - a,l
This means that A? can be written in terms of A and A” = |I. Moreover, multiplying by
A gives

A’ =—a, A’ - a,A=—-a(-a,A-a)l)— @A
Thus A’ can also be expressed in terms of A and A’ = |; that is, in terms of powers of
A less than n = 2, the order of the matrix A in this case. It is clear that we could continue

the process of multiplying by A and substituting A* for as long as we could manage the
algebra. However, we can quickly convince ourselves that for any integer » = n

A= ol + oA (1.30)

where o, and ¢, are constants whose values will depend on 7.

This is a key result deduced from the Cayley—Hamilton theorem, and the determina-
tion of the ¢, (i = 0, 1) is not as difficult as it might appear. To see how to perform the
calculations, we use the characteristic equation of A itself. If we assume that the eigen-
values A, and A, of A are distinct then it follows from (1.29) that

cA)=V+ar+a,=0 (i=1,2)

Thus we can write
AM=—a, A, —a,

in which @, and a, are the same constants as in (1.29). Then, fori =1, 2,
AM=—ali-aA, = —a,(-a A, — a)) — @,

Proceeding in this way, we deduce that for each of the eigenvalues A, and 4, we
can write

A=+ oy,

with the same «, and ¢, as in (1.30). This therefore provides us with a procedure for
the calculation of A" when » = n (the order of the matrix) is an integer.

Given that the matrix

S

has eigenvalues A, = —1 and 4, = -2 calculate A’ and A", where r is an integer greater
than 2.
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Solution

Example 1.29

Solution

Since A is a 2 X 2 square matrix, it follows from (1.30) that
A’ =l + oA
and for each eigenvalue A, (i = 1, 2) o and ¢, satisfy
A= o+ oy,
Substituting A, = —1 and 4, = -2 leads to the following pair of simultaneous equations:
1Y =ay+ (1), (-2 =0a,+ a(-2)
which can be solved for ¢, and ¢ to give
0 =2(-17 = (-2, o =(-1)’-(=2)
Then

A’ [2(—1)5—<—2>5][1 0}[(—1)5—(—2)5]{0 1}
0 1 -2 =3

_ |21 =(=2y -1)°=(=2)° | | 30 31
(D=1’ =(=2)") 2(=2)-(-1)’| [-62 -63
Replacing the exponent 5 by the general value r, the algebra is identical, and it is easy
to see that

Ao [z(—w—(—z)r (-1 = (-2) ]
“2((-1)=(=2)) 2(=2) = (=1

To evaluate ¢, and ¢ in (1.27), we assumed that the matrix A had distinct eigen-
values A, and A,, leading to a pair of simultaneous equations for ¢, and ¢;,. What
happens if the 2 x 2 matrix A has a repeated eigenvalue so that A, = 1, = A, say?
We shall apparently have just a single equation to determine the two constants ¢, and
a,. However, we can obtain a second equation by differentiating with respect to
A, as illustrated in Example 1.29.

Given that the matrix

)

has eigenvalues A, = 1, = —1, determine A’, where 7 is an integer greater than 2.

Since A is a 2 X 2 matrix, it follows from (1.30) that
A= ol + A
with o, and ¢ satisfying
=o,+ ol (1.31)
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Since in this case we have only one value of A, namely A =—1, we differentiate (1.31)
with respect to A, to obtain

A = (1.32)
Substituting A =—1 in (1.31) and (1.32) leads to
o= o=+ og = (1)1

giving

Arz(l_r)(_l)r{l 0}_},(_1),{0 1}
0 1 1 -2

_ A=D1y
=" (T+n(=1)

Having found a straightforward way of expressing any positive integer power of the
2 x 2 square matrix A we see that the same process could be used for each of the terms
in (1.26) for » = 2. Thus, for a 2 X 2 matrix A and some o, and ¢,

SR =3 BA = ool + i

r=0

If, as p — oo,

f(A)=1im Y BA

p—

exists, that is, it is a 2 X 2 matrix with finite entries independent of p, then we may write
f(A) = Z BA =l + oA (1.33)
r=0

We are now in a position to check the results of our computer experiment with the matrix

A= {1 0} of Example 1.26. We have defined
0 1

f(A) — eAt: z&tr
r!
r=0

SO we can write
e =l + oA
Since A has repeated eigenvalue A = 1, we adopt the method of Example 1.29 to give

e=0,+ te'= o
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leading to

o =te, o,=(1-1)e

t
A= (l—pel +teA=cl=|¢ O
0 ¢

Setting ¢ = 1 confirms our inference in Example 1.26.

Example 1.30  Calculate e*’ and sin At when
A|l -
0 1

Solution  Again A has repeated eigenvalues, with A, = 1, = 1. Thus for ¢*’ we have
e =l + oA
with
t

e'=o,+ a, te'=q

leading to

Similarly,
sin Ar= ol + oA
with
sint = o, + tcost=oy

leading to

0 sin ¢

Although we have worked so far with 2 X 2 matrices, nothing in our development
restricts us to this case. The Cayley—Hamilton theorem allows us to express positive
integer powers of any n X n square matrix A in terms of powers of A up to n — 1. That
is, if A is an n X n matrix and p = n then

n—1

A"=N BA =Bl +BA+...+ B AT
r=0
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From this we can deduce that for an n X n matrix A we may write

SR =Y BA

as
n—1
f(A) = 2 o, A (1.34a)
r=0
which generalizes the result (1.33). Again the coefficients «,, ¢y, ..., o, are

obtained by solving the n equations

() = ”Z_l,ar/l? (i=1,2,....n) (1.34b)

r=0

where 4, 4,, ..., A, are the eigenvalues of A. If A has repeated eigenvalues, we
differentiate as before, noting that if A, is an eigenvalue of multiplicity m then the
first m — 1 derivatives

dk dk n—1
;l—;{kf(ﬂ’i):(‘i';{kzar)«; (k=1,2,...,m—1)
i i r=0

are also satisfied by A..

Sometimes it is advantageous to use an alternative approach to evaluate

SR =Y BA

If A possesses n linearly independent eigenvectors then there exists a modal matrix M
and spectral matrix A such that

M™AM = A=diag(A, Ay, ..., A,)
Now

V4

M7 (AM =3 BMTAM) =Y B(MAM)

r=0 r=0
P P )

= BA =Y Boding (A, K. 2
r=0 r=0

P P p
= dlag (2 Brlq’ 2 Br’lg’ cee 2 ﬁr/l’n]
=0 r=0

r=0

= dlag(f(//ll)’f(}lZ)’ e 3f(2'n))

This gives us a second method of computing functions of a square matrix, since we see that

S(A) =M diag (f(4), f(As), ..., (A )M (1.35)
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Example 1.31  Using the result (1.35), calculate A" for the matrix

SR

of Example 1.28.

Solution A has eigenvalues A, =—1 and A, = -2 with corresponding eigenvectors
e=[1 -11", e=[1 -2]"

Thus a modal matrix M and corresponding spectral matrix A are

SUEITE

Clearly

e[

Taking f(A) = A*, we have
diag (f(=1), f(-2)) = diag (-1)", (-2)")
Thus, from (1.35),
k k k k k
PR [(—n 0 ] s [2(—1) - 't
0 (-2) 2(-2) -(=1)") 2(=2) -(-1)

as determined in Example 1.28.

Example 1.31 demonstrates a second approach to the calculation of a function of a
matrix. There is little difference in the labour associated with each method, so perhaps
the only comment we should make is that each approach gives a different perspective
on the construction of the matrix function either from powers of the matrix itself or
from its spectral and modal matrices.

Later in this chapter we need to make use of some properties of the exponential
matrix e/, where A is a constant n X n square matrix. These are now briefly discussed.

(i)  Considering the power series definition given in (1.27)
M=+ Ar+ LAY + LAY +
term-by-term differentiation gives

der AL 2 A+ IAR 4 A+ A LAY+ ]
dt 2! 3! 21

so that

(%(eA’) = Ac™ = ™A (1.36)



1.7 FUNCTIONS OF A MATRIX 63

(il)) Likewise, term-by-term integration of the power series gives

t t t t
JeAfdr=IJd1+AJ d7 + %AZJ T+ ...
0 0 0 - 0

— 2 2,3
_It+ﬁAt +$At +...

so that

t
AJ eAdr+ I =e™

0

giving

J eAdr= AT[er — ] = [e* — 1A (1.37)

0

provided the inverse exists.

A(t+1,) At, At
e ) — P ghh

(iii) (1.38)

Although this property is true in general we shall illustrate its validity for the
particular case when A has # linearly independent eigenvectors. Then, from (1.35),

™ = Mdiag(eM, e™", ..., e )M
™2 = Mdiag(e™?, e, ..., )M
so that
eAtleAz2 =M diag(ell([‘ﬂz), elz(tlﬂz)’ L eln(zlﬂz))M -1 — eA(t]+12)

(iv) It is important to note that in general

eAteBt + e(A+B)t

It follows from the power series definition that
eAteBt — e(A+B)t (1.39)
if and only if the matrices A and B commute; that is, if AB = BA.
To conclude this section we consider the derivative and integral of a matrix A(f) =

[a;(1)], whose elements a;(¢) are functions of 7. The derivative and integral of A(#) are
defined respectively by

d - d
LA = [dta,-j(t)} (1.402)

and

J A1) dr = U a,(t) dt} (1.40b)

that is, each element of the matrix is differentiated or integrated as appropriate.
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Example 1.32  Evaluate dA/dr and [A dt for the matrix

£+1 -3
2 FA+2t-1

Solution  Using (1.40a),

d, » d
dA b g3 :{m 1 }

e | ¢ d o 0 242
doy Y421
dt() dt( )

Using (1.40Db),

2
JAd J(r +1)dr J(t—3)dt Parren  F-3t+en
= =
1,3 2_
J2dt J(t2+2t—l)dt 2tten Aty
713 1.2 1.3 1,2
Yyr -3¢ ¢ Ch Yyr -3¢
— 3 2 + — 3 2 +C
2t WWHr-t| ey en 2t W+r-t

where C is a constant matrix.

Using the Symbolic Math Toolbox in MATLAB the derivative and integral of the

matrix A(?) is generated using the commands diff (A) and int (A) respectively.
To illustrate this confirm that the derivative of the matrix A(¢) of Example 1.32 is
generated using the sequence of commands

syms t

A=[t"2+1 t-3; 2 t7242*t-17];

df=diff (a);

pretty (df)

and its integral by the additional commands

I=int (A);
pretty (I)

From the basic definitions, it follows that for constants ¢ and

d _odA, zdB

a—t(aA+ﬁB)—ocdt +ﬁdt (1.41)
J(OCA-FﬁB)dl‘:O{JAdt-FﬁJBdt (1.42)
d agy—adB, dA

a-t(A )= dt+dtB (1.43)

Note in (1.43) that order is important, since in general AB # BA.
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35

36

37

Note that in general

nfld;o\

d ,
GIAMT = nATI

1.7.1 Exercises

Check your answers using MATLAB or MAPLE whenever possible.

Show that the matrix
5 6
2 3

satisfies its own characteristic equation.

A=

Given

use the Cayley—Hamilton theorem to evaluate
@A  OBA (A
The characteristic equation of an n X n matrix A is
Ate, A +e A2+, .+ d+c,=0
so, by the Cayley—Hamilton theorem,
A"+, A7+, AT+ At gl =0

If A is non-singular then every eigenvalue is
non-zero, so ¢, # 0 and

l=—L (At A4t eA)
Co
which on multiplying throughout by A™" gives
A=l Arr e AT vel) (1.44)

Co
(a) Using (1.44) find the inverse of the matrix

(b) Show that the characteristic equation of the
matrix

1 1 2
A=(3 1 1
2 3 1

is

A-32-71-11=0

Evaluate A” and, using (1.44), determine A™".

38

9

40

41

42

Given

A=

—_— W N

3
1
2

W N~

compute A” and, using the Cayley—Hamilton
theorem, compute

AT —3A%+ A*+3A° - 2A% + 3]

Evaluate e*' for

10 1o
A= b) A=
@ L J (b) L 2}

Given

2 0 0
A=T 11
2 0
0 0 1
show that
0O 0 O
sinA=2A-LA-10 1 o
T T
0 0 1
Given
2
A= r+1 2t-3
5-t £—1+3
evaluate

2

dA
(a) T (b) j Adt

1

Given

Al |+l -1
5 0
evaluate A’ and show that

d a2 dA
— (A #2A—
dt( ) dt
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Singular value decomposition

Example 1.33

Solution

So far we have been concerned mainly with square matrices, dealing in particular with
the inverse matrix, the eigenvalue problem and reduction to canonical form. In this
section we consider analogous results for non-square (or rectangular) matrices, all of
which have important applications in engineering.

First we review some definitions associated with non-square matrices:

(a) A non-square m X n matrix
A=(ay),i=1,2,...,mj=1,2...,n

is said to be diagonal if all the i, j entries are zero except possibly for i = j. For

example:

2 0
0 3 is a diagonal 3 X 2 matrix

10 0

whilst

2 0 0 o ,
0 3 is a diagonal 2 x 3 matrix

(b) The row rank of a m X n matrix A denotes the maximum number of linearly
independent rows of A, whilst the column rank of A denotes the maximum
number of linearly independent columns of A. It turns out that these are the same
and referred to simply as the rank of the matrix A and denoted by » = rank(A). It
follows that  is less than, or equal to, the minimum of m and »n. The matrix A is
said to be of full-rank if » equals the minimum of m and n.

For the 3 X 4 matrix

1 2 3 4
A=|3 4 7 10
2 1 3 5

confirm that row rank (A) = column rank (A).

Following the process outlined in Section 1.2.6 we reduce the matrix to row (column)
echelon form using row (column) elementary operations.

(a)  Row rank: using elementary row operations

1 2 3 4
3 4 7 10
2 1 3 5

l row 2 — 3 xXrow 1, row 3 —2 X row 1
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1 2 3 4
0o -2 -2 2
0 -3 -3 -3

l multiply row 2 by —3

1 2 3 4
0 1 1 1
0 -3 -3 -3

l row 3 + 3 X row 2

1 2 3 4

0 1 1 1

0 0 0 O

which is in row echelon form and indicating that
row rank (A) =2

(b)  Column rank: using elementary column operations

1 2 3 4
34 7 10
21 3 5

l col2 — 2 x coll, col3 — 3 X coll, col4 — 4 x coll

1 0 0 O
3 2 2 2
2 -3 -3 3

l col3 — col2, col4 — col2

1 0 0 O
3 -2 0 0
2 -3 0 0

which is in column echelon form and indicating that
column rank (A) =2

confirming that
rank(A) = row rank (A) = column rank (A) = 2

Note that in this case the matrix A is not of full rank.
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1.8.1

Singular values

For a m X n matrix A the transposed matrix A" has dimension n X m so that the product
AAT is a square matrix of dimension m X m. This product is also a symmetric matrix
since

(AAT)T — (AT)T(AT) — AAT

It follows from Section 1.4.7 that the m X m matrix AA" has a full set of m linearly
independent eigenvectors u,, u,, . . ., u, that are mutually orthogonal, and which
can be normalized to give the orthogonal normalized set (or orthonormal set) of
eigenvectors

with ﬁ,Tﬁ, =0, (i,j=1,2,..., m), where §, is the Kronecker delta defined in
Section 1.3.2.

(Reminder: As indicated in Section 1.4.2 normalized eigenvectors are uniquely
determined up to a scale factor of £1.) We then define the m x m orthogonal matrix U
as a matrix having these normalized set of eigenvectors as its columns:

U=Ia, d, ..., 4, (1.45)

with U0 = UU" =1,,. Such a matrix is also called a unitary matrix.
Let A, 4,, ..., A, be the corresponding eigenvalues of AAT so that

(AAYG, = A, i=1,2,...,m
Considering the square of the length, or norm, of the vector A, then from orthogonality
|Aa,|” = (A" (A = i (A'Ad) = @] i, = 4

(Note: the notation || A, || is also frequently used.) Since |A#;|* = 0 it follows that the
eigenvalues A,(i =1, 2,. .., m) of the matrix AAT are all non-negative and so can be
written in the form

A=oki=1,2,...,m
It is also assumed that they are arranged in a non-increasing order so that
olzol=...=202=0

Some of these eigenvalues may be zero. The number of non-zero values (accounting
for multiplicity) is equal to r the rank of the matrix A. Thus, if rank(A) = r then the
matrix AAT has eigenvalues

oclz=zoi=...=0->0witho’,=...=02=0

The positive square roots of the non-zero eigenvalues of the matrix AA” are called the
singular values of the matrix A and play a similar role in general matrix theory that
eigenvalues play in the theory of square matrices. If the matrix A has rank 7 then it has
r singular values

0=0=...20,>0

In practice determining the singular values of a non-square matrix provides a means of
determining the rank of the matrix.
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Example 1.34  For the matrix

(a)
(b)

(©)
(d)

Solution (a)

Determine the eigenvalues and corresponding eigenvectors of the matrix AAT,

Normalize the eigenvectors to obtain the corresponding orthogonal matrix U and
confirm that U™ = 1.

What are the singular values of A?

What is the rank of A?

R I
AAT=I1 31 =0 10 4
1

(Note that AAT is a symmetric matrix.)
The eigenvalues of AAT are given by the solutions of the equation

10-4 0 2
IAAT-All=| 0 10-A 4 |=0
2 4 2-1
which reduces to
(12=-)(10-MHA=0
giving the eigenvalues as
A=12,4,=10,4=0
Solving the homogeneous equations
(AAT = Au,=0
gives the corresponding eigenvectors as:
w=[1 2 11", w,=[2 -1 0], wy=[1 2 -5]"

The corresponding normalized eigenvectors are:

T T T
i, =|1Xr 2 1 i, =12 =1 a.=|1r 2 =
! |:\6 R ERE 0. # 30 730 130

giving the corresponding orthogonal matrix

el

0.04082  0.8944  0.1826
&0 | = 08165 -0.4472  0.3651
0.4082 0.0000 -0.9129

~
1]
—
1Y
Y
]
ESY
S
i
1]
|0
(71 LR (N
/UJ
(=]

=N

o
&

EY
’L»J
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By direct multiplication

|~
|-

1 1
6 5 k0|l 6 6 6 1 0 0

AT _ | 2 -1 2 2 -l _

UU" = % 0 5 > 0Oj=|0 1 0
L 0 =L 2 = 0 0 1
6 B0 || 730 730 730

confirming that UU" = I.

(c)  The singular values of A are the square roots of the non-zero eigenvalues of AAT.
Thus the singular values of A are o, = 12 and o, = |10.

(d)  The rank of A is equal to the number of singular values giving rank (A) = 2. This
can be confirmed by reducing A to echelon form.

Likewise, for a m X n matrix A the product ATA is a square n X n symmetric matrix,

having a full set of n orthogonal normalierd eigenvectors 0, D,, . . . , ¥, which form the
columns of the n X n orthogonal matrix V-
V=[6,0,...0,] (1.46)
and having corresponding non-negative eigenvalues l,, Wy, . . . , i1, With
w=w=..=u,=0 (1.47)

Again the number of non-zero eigenvalues equals 7, the rank of A, so that the product
A"A has eigenvalues

w==...=2u>0wthy,=...=4,=0
Thus

ATAD,=ud, w>03G=1,2,...,7) (1.48)
Premultiplying by A gives

(AAT)(AD) = u(AD)

so that 11; and (A5,) are an eigenvalue and eigenvector pair of the matrix AA”; indicating
that the non-zero eigenvalues of the product AA™ are the same as the non-zero eigen-
values of the product ATA. Thus if A is of rank 7 then the eigenvalues (1.47) of the
product A"A may be written as

oli=1,2,...,r
uf:{o,i=r+1,...,n
In general the vector (A#;) is not a unit vector so
AD, = ki, (1.49)
and we need to show that k = o;. Taking the norm of (Ad,) gives
|AD,]* = (AD) (AD)
=0/ ATAD,
=0 1, from (1.48)

— o — 2
=l;=0;
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Example 1.35

Solution

giving
|Aﬁi| =k= O;
It follows from (1.49) that

Ad, =

i

ci,i=1,2,...,r
{ (1.50)
0,i=r+1,...,m

Clearly the singular values of A may be determined by evaluating the eigenvalues of
the product AAT or the product ATA. The eigenvectors #@,, i,, . . ., i,, of the product
AAT (that is the columns of U') are called the left singular vectors of A and the eigen-
vectors Dy, Dy, . . . , D, of the product ATA (that is columns of ¥) are called the right
singular vectors of A.

For the matrix

(a) Determine the eigenvalues and corresponding eigenvectors of the product A"A.
(b) Normalize the eigenvectors to obtain the orthogonal matrix V.

(c) What are the singular values of A?

3 -1
31 1 11 1
AjA: =
(@) L 3 J i ? {1 11}

The eigenvalues of ATA are given by the solutions of the equation

M-u 1
1 1l-u

IATA — ul| = =0

which reduces to
(L—12)(n—-10)=0

giving the eigenvalues as
u =12, u, =10

Solving the homogeneous equations
ATA-ul)v,=0

gives the corresponding eigenvectors as

vi=[1 11", wv,=[1 -1]"



72 MATRIX ANALYSIS

1.8.2

(b)  The corresponding normalized eigenvectors are:

A 1 1 T Py 1 -1 T
v1=[—2 \_2] ,v2=[—2 \_2]
giving the orthogonal matrix

L
V_ v

L
2

S
L5

—_

107071 —0.7071

B [0.7071 0.7071}

[

(c)  The singular values of A are the square roots of the non-zero eigenvalues of ATA.
Thus the singular values of A are:

0, =, =,12=3.4641 and o,=,10=23.1623

in agreement with the values obtained in Example 1.34.

Singular value decomposition (SVD)

For an m X n matrix A of rank r the m equations (1.50) can be written in the partitioned
form

AlbD, ... 0| Dy ...0,)= ity .. 400, ...4,]% (1.51)

where the matrix Z has the form

o 0 010 0
0 o, - 0|0 - 0 I
=10 0 - o]0 - 0
0 0 010 0
: m-—r
0 0 010 0]
+“—— <—>
r n—r
where 0|, 0,, ..., 0, are the singular values of A. More precisely (1.51) may be
written as
AV=UZ

Using the orthogonality property PP" = I leads to the result
A=0zV" (1.52)

Such a decomposition (or factorization) of a non-square matrix A is called the
singular value decomposition of A, commonly abbreviated as SVD of A. It is
analogous to the reduction to canonical (or diagonal) form of a square matrix developed
in Section 1.6.
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Example 1.36  Find the SVD of the matrix
3 -1
A=|1 3
1 1
and verify your answer.
Solution  The associated matrices U and ¥ and the singular values of A were determined in
Examples 1.34 and 1.35 as:
12
V6 V5 V30 1 1
? - % V2 V2 / |
U=|% = 5| V= N __l,Glz\;IZandGz:\slo
_ 2 2
w00
From (1.52) it follows that the SVD of A is
1 2 ]
6 o530 |12 0|1 o
_ ‘ 2 2
A=15 5 S| 0 yiof|,
. 2 2
Lo gl
Direct multiplication of the right hand side confirms
3 —
A=|1 3
1
The decomposition (1.50) can always be done. The non-zero diagonal elements of
are uniquely determined as the singular values of A. The matrices U and ¥ are not
unique and it is necessary to ensure that linear combinations of their columns satisfy
(1.50). This applies when the matrices have repeated eigenvalues, as illustrated in
Example 1.37.
Example 1.37  Find the SVD of the matrix

o O O =
o O NN O
o b o o



74 MATRIX ANALYSIS

Solution

o O O =
o O N O
o NN o o
S O =
S N O
N o o
S o o
Il
o O O =
o O kO
S b o o
S O o o

The product AA" has eigenvalues A, =4, 1, =4, A, = 1 and A, = 0. Normalized eigen-
vectors corresponding to Ay and A, are respectively

a,=[1 0 0 0" and @,=[0 0 0 1T

Various possibilities exist for the repeated eigenvalues A, = A, = 4. Two possible
choices of normalized eigenvectors are

1Y

,=[0 1 0 0" and @=[0 0 1 O]

or

V2

a;=+0 1 1 0]" and ﬁ§=\i2[0 1 -1 0"

(Note that the eigenvectors #] and i, are linear combinations of #, and #,.) Likewise

1 0 0
1000020 1 0 0
AA'=(0 2 0 0 =0 4 0
0 0 2
0 0 2 0 0 0 4
0 0 0

and has eigenvalues u, =4, y, =4 and y; = 1. The normalized eigenvector correspond-
ing to the eigenvalue ;= 1 is

py=[1 0 Of

and two possible choices for the eigenvectors corresponding to the repeated eigenvalue
My =, =4 are

,=[0 1 0]" and &,=[0 O 1]

oY

or

Ay
v, =

[0 1 1" and #5=4[0 1 -1J'

[S]

v

The singular values of A4 are 6, =2, 6, =2 and o, = 1 giving

S O O N
[N S B -l
(=N e =]

Considering the requirements (1.50) it is readily confirmed that

AD, = o,it,, AD, = Gyit, and Ad, = Gyl
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1.8.3

so that
0 0 I O
1 0 0 O 0 01
U = and ¥V, = | |
1 o1 0 0 1 0 0
0 1 0
0o 0 0 1

reduces A to the SVD form A = U, ZP].
Also, it can be confirmed that

Ad| = o], Ad; = oyit;, Ad, = oiil,

so that the matrix pair

- <
o

|- <
(e

NQ>
|
IS
|- ©

-
|
(=i -]
|._.
(=

A
|
IS
- ©

IS

©
ol
)

1
0
0
0

(=]
(=]

1

reduces A to the SVD form

A=0,2P]
However, the corresponding columns of the matrix pair U,, ¥, do not satisfy conditions
(1.50) and

A=zU,XPT

To ensure that conditions (1.50) are satisfied it is advisable to select the normalized
eigenvectors &, first and then determine the corresponding normalized eigenvectors #,
directly from (1.50).

Pseudo inverse

In Section 1.2.5 we considered the solution of the system of simultaneous linear
equation

Ax=b (1.53)

where A is the n X n square matrix of coefficients and x is the n vector of unknowns.
Here the number of equations is equal to the number of unknowns and a unique solution

x=A"b (1.54)

exists if and only if the matrix A is non-singular.
There are situations when the matrix A is singular or a non-square m X n matrix. If
the matrix A is a m X n matrix then:

e if m > n there are more equations than unknowns and this represents the over
determined case;

e if m < n there are fewer equations than unknowns and this represents the under
determined case.
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Example 1.38

Solution

Clearly approximate solution vectors x are desirable in such cases. This can be achieved
using the SVD form (1.52) of a m x n matrix A. Recognizing the orthogonality of U
and V the following matrix A is defined

Af=pz=0" (1.55)

where £* is the transpose of X in which the singular values o; of A are replaced by their
reciprocals. The matrix A is called the pseudo inverse (or generalized inverse) of the
matrix A. It is also frequently referred to as the Moore—Penrose pseudo inverse of A.
It exists for any matrix A including singular square matrices and non-square matrices.
In the particular case when A is a square non-singular matrix A" = A™'. Since

I : 0
AfA=|... ..
0 : 0
a solution of (1.53) is A"Ax = ATh, that is
x=A'b (1.56)

This is the least squares solution of (1.53) in that it minimizes (Ax — b)"(Ax — b), the
sum of the squares of the errors.

Determine the pseudo inverse of the matrix

3 -1
A=|1 3
1 1

and confirm that ATA = 1.

From Example 1.36 the SVD of A is

Elks

5| [y12 01 o
A=0zP'=| % % || o qiof|] O
1 0o = 0 o1l? 2

6 730

The matrix X* is obtained by taking the transpose of X and inverting the non-zero
diagonal elements, giving

T |12

c\|"‘

L L1l o of]® w© ¢ 17 4 5
0 22| |12 - _
A'=VE0" = 1 -l 1 %5 \_; 0 _6_10

w|-
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Example 1.39

Direct multiplication gives

3 -1
17 4 5 60 0
-7 16 5 1 ] 0 60

so that A" is a left inverse of A. However, A cannot be a right inverse of A.

We noted in the solution to Example 1.38 that whilst A" was a left inverse of A it was
not a right inverse. Indeed a matrix with more rows than columns cannot have a right
inverse, but it will have a left inverse if such an inverse exists. Likewise, a matrix with
more columns than rows cannot have a left inverse, but will have a right inverse if such
an inverse exists.

There are other ways of computing the pseudo inverse, without having to use SVD.
However, most are more restrictive in use and not so generally applicable as the SVD
method. It has been shown that A is a unique pseudo inverse of an m X n matrix A
provided it satisfies the following four conditions:

AA"  is symmetric

A"A; is symmetric 1.57)
AA'A=A
ATAAT=A

For example, if an m X n matrix A is of full rank then the pseudo inverse may be
calculated as follows:

if m > nthen A" = (ATA)'AT (1.58a)
if m < nthen AT= AT(AAT)" (1.58b)

It is left as an exercise to confirm that these two forms satisfy conditions (1.57).

(a) Without using SVD determine the pseudo inverse of the matrix

3 -1
A=11 3
1

(b) Find the least squares solution of the following systems of simultaneous linear

equations

i) 3x—y=2 (i) 3x—y=2
x+3y=4 x+3y=2
x+y=2 x+y=2

and comment on the answers.
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Solution (a) From the solution to Example 1.34 rank(A) = 2, so the matrix A is of full rank.
Since in this case m > n we can use (1.58a) to determine the pseudo inverse as

-1
Al=@aTAyA [T 301 1
11| |-1 3 1

o= 31
PN 1l -1 301

[17 4 5}{ 02833  0.0667 0.0833}

=1
60

=7 16 5 -0.1167 0.2667 0.0833

in agreement with the result obtained in Example 1.38.

(b) Both (i) and (ii) are examples of over determined (or over specified) sets of
equations Ax = b with A being an m X n matrix, m > n, b being an m-vector and
x an n-vector of unknowns. Considering the augmented matrix (A:b) then:

e ifrank(A:b) > rank(A) the equations are inconsistent and there is no solution
(this is the most common situation for over specified sets of equations);

e if rank(A:b) = rank(A) some of the equations are redundant and there is a
solution containing n — rank(A) free parameters.

(See Section 5.6 of Modern Engineering Mathematics.)
Considering case (i)

3 -1 2
A=[1 3[,b=|4| and x=H
11 2 Y
3 -1 2
rank(A:b) = rank | 1 3 4| =2=rank(A) from (a).
1 1 2

Thus the equations are consistent and a unique solution exists. The least squares
solution is

2
x=A+b=;—017 4 sl
y -7 16 || |1

which gives the unique solution x =y = 1.
Considering case (ii) A and x are the same as in (i) and b = [2 2 2]"

3 -1 2
rank(A:b) =rank| 1 3 2| =3 > rank(A)=2
1 1 2
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Thus the equations are inconsistent and there is no unique solution. The least
squares solution is

2
X 17 4 5 13
=Ab=g 2| =%
y -7 16 5 5 7

. . _E _l
givingx =2 andy = .

As indicated earlier, the least squares solution x = A’b of the system of equations Ax = b
is the solution that minimizes the square of the error vector r = (Ax — b); that is, mini-
mizes (Ax — b)'(Ax — b).

In practice, data associated with individual equations within the set may not be
equally reliable; so more importance may be attached to some of the errors r,. To
accommodate for this, a weighting factor (positive number) w; is given to the i equa-
tion (i =1, 2,..., m) and the least squares solution is the solution that minimizes the
square of the vector W(Ax — b), where W is the is the n X n diagonal matrix having
the square roots \w; of the weighting factors as its diagonal entries; that is

w0 0
W= 0w, 0
0 1 W,

The larger w; the closer the fit of the least squares solution to the i, equation; the
smaller w; the poorer the fit. Care over weighting must be taken when using least
squares solution packages. Most times one would notice the heavy weighting, but in
automated systems one probably would not notice. Exercise 49 serves to illustrate.

In MATLAB the command
svd(A)

returns the singluar values of A in non-decreasing order; whilst the command
[U,S,V]=svd(A)

returns the diagonal matrix § = X and the two unitary matrices U= U and V' = ¥ such
that A = USP". The commands:

A=sym(A) ;
svd (A)

return the singular values of the matrix A in symbolic form. Symbolic singular vec-
tors are not available. The command:

pinv (A)
returns the pseudo inverse of the matrix A using the SVD form of A.
Using the matrix A of Examples 1.35, 1.36, 1.38 and 1.39 the commands
A=[3 -1;1 3;1 17];
[U,S,V]=svd(A)
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return
-0.4082 0.8944 -0.1826
U=-0.8165 -0.4472 -0.3651
-0.4082 -0.0000 0.9129
3.4641 0
S= 0 3.1623
0 0
. -0.7071 0.7071
" -0.7071 -0.7071

The additional command
pinv (A)
returns the pseudo inverse of A as
0.2833 0.0667 0.0833
-0.1167 0.2667 0.0833
The commands:
A=[3 -1;1 3;1 17];
a=sym(A) ;
S=svd (A)
return
_2%3%(1/2)
107 (1/2)
In MAPLE the commands

with (LinearAlgebra) :
A:=Matrix([[3,-1],([2,3]1,[1,111);

svd:=SingularValues (A, output=[‘U’,‘S’,‘Vt’]);
return
—-0.4082 0.8944 -0.1826 3.4641
-0.7071 -0.7071
svd=[-0.8165 —-0.4472 -0.3651|, |3.1623],
0.7071 -0.07071
-0.4082 -0.0004 0.9129 0.0000

where the singular values are expressed as a vector. To output the values of U and
vt separately and to output the singular values as a matrix the following additional
commands may be used
U:=svd[1l];
Vt:=svd[3];
SS:=matrix (3,2, (i,j) — 1f i=j then svd[2][i]else 0
fi);#output the singular values into a 3 2 matrix
The further command
U.SS.Vt;

gives the output

3.0000 =-1.0000
1.0000 3.0000
1.000 1.000
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43

44

45

confirming that we reproduce A.

To obtain the pseudo inverse using MAPLE the normal matrix inverse command

is used. Thus the commands

with (LinearAlgebra) :

A:=Matrix([[3,-1],[1,3],[1,1]]);

MatrixInverse (A) ;

{_

return

,_.
<
=
a

o
o
[
o
i
N

3=
Gl
o
5

in agreement with the answer obtained in Example 1.38.

1.8.4 Exercises
Use MATLAB or MAPLE to check your answers.

Considering the matrix

1 2 3 4
A=(3 4 7 10
21 5 7

(a) Determine row rank (A) and column rank (A).
(b) Is the matrix A of full rank?
(a) Find the SVD form of the matrix

A= 4 11 14
8 7 -
(b) Use SVD to determine the pseudo inverse A" of

the matrix 4. Confirm that 4’4 = 1.

(c) Determine the pseudo inverse without using
SVD.

Show that the matrix

11

3.0
A=|-2 1
0 2

-1 2

is of full rank. Without using SVD determine its
pseudo inverse A" and confirm that 474 = I.

46

47

Considering the matrix

1 -1
A=|-2 2
2 =2

(a) What is the rank of A?
(b) Find the SVD of A.

(c) Find the pseudo inverse A" of A and confirm
that A4°4 = A and ATAAT = A",

(d) Find the least squares solution of the
simultaneous equations

x—y=1,-2x+2y=2,2x-2y=3

(e) Confirm the answer to (d) by minimizing the

square of the error vector
(Ax —b)whereb=[1 2 3]"

Considering the matrix

(a) Use the pseudo inverse A" determined in
Example 1.38 to find the least squares solution
for the simultaneous equations

x—y=1,x+3y=2,x+y=3



82 MATRIX ANALYSIS

48

49

(b) Confirm the answer to (a) by minimizing the

square of the error vector
(Ax—b)whereb=[1 2 3]"

(c) By drawing the straight lines represented by the
equations illustrate your answer graphically.

Considering the matrix

1 0 -2

A_| 0 1 -1
-1 1 1 50

2 -1 2

(a) Show that A4 is of full rank.
(b) Determine the pseudo inverse 4.

(c) Show that the A" obtained satisfies the four
conditions (1.57).

Find the least squares solution of the following
pairs of simultaneous linear equations.

(@@ 2x+y=3
x+2y=3
x+y=2

b)) 2x+y=3
x+2y=3
10x + 10y =20

() (@) 2x+y=3
x+2y=3
100x + 100y = 200

Comment on your answers.

(i) 2x+y=3
x+2y=3
x+y=3

(i) 2x+y=3
x+2y=3
10x + 10y =30

(i) 2x+y=3
x+2y=3

100x + 100y = 300

By representing the data in the matrix form Az =y,

where z = [m c]", use the pseudo inverse to find the
values of m and ¢ which provide the least squares fit
to the linear model y = mx + ¢ for the following data.

ko1 2 3 4 5
x| 0 1 2 3 4
ye |1 1 2 2 3

(Compare with Example 2.17 in Modern

Engineering Mathematics.)

State-space representation

In Section 10.11.2 of Modern Engineering Mathematics it was illustrated how the solu-
tion of differential equation initial value problems of order n can be reduced to the
solution of a set » of first-order differential equations, each with an initial condition. In
this section we shall apply matrix techniques to obtain the solution of such systems.

1.9.1

Single-input-single-output (SISO) systems

First let us consider the single-input-single-output (SISO) system characterized by
the nth-order linear differential equation

n—1

o e, S0y v a Yiay=u (1.59)
dr" de"” dr
where the coefficients a; (i =0, 1, ..., n) are constants with @, # 0 and it is assumed
that the initial conditions y(0), y(0), . .., y*"(0) are known.
We introduce the n variables x,(), x,(¢), . . ., x,(¢) defined by
x,(2) = (1)

x,(1) = % = %,(0)

2

() = =)
dr
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n-2
ra =2 = 0
d¢

n—1

wn=Y=x (1
dr

where, as usual, a dot denotes differentiation with respect to time #. Then, by substitut-
ing in (1.59), we have
a,X, + a, X, + a, X, +...+ax,+ayx; =u(f)
giving
a,_ a,_> a,

. ay 1
Xy=——"=x, - 2=x,  — . — =X =X+ —u
an an an aVI an

Thus, we can represent (1.59) as a system of n simultaneous first-order differential
equations

X =X,
X, =X
xnfl_xn
a a _ 1
X,=—=x-=xn- .. -y, +=u
aVl an an aﬂ

which may be written as the vector—-matrix differential equation

X 0 1 0o ... 0 0 X 0
X, 0 0 | 0 0 X, 0
= - : 1 : 1 L+ (1.60)
X1 0 0 0 0 1 X, 0
—4dy 4 -4 —dp T4u 1
X, _ — == .. = =y, —
L | L aVI an aVI aVl a}’l AL a ;aﬂg
(Note: Clearly x|, x,, . .., x, and u are functions of ¢ and strictly should be written as
x,(6), x,(1), . . ., x,(f) and u(?). For the sake of convenience and notational simplicity the

argument (¢) is frequently omitted when the context is clear.)
Equation (1.60) may be written in the more concise form

*=Ax+bu (1.61a)

The vector x(7) is called the system state vector, and it contains all the information that
one needs to know about the behaviour of the system. Its components are the n state
variables x,, x,, . . ., x,, which may be considered as representing a set of coordinate
axes in the n-dimensional coordinate space over which x(f) ranges. This is referred to
as the state space, and as time increases the state vector x(f) will describe a locus in this
space called a trajectory. In two dimensions the state space reduces to the phase plane.
The matrix A is called the system matrix and the particular form adopted in (1.60) is
known as the companion form, which is widely adopted in practice. Equation (1.61a)
is referred to as the system state equation.
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The output, or response, of the system determined by (1.59) is given by y, which in
terms of the state variables is determined by x,. Thus

Xy
X
y=[1 0 ... 0]
xn
or, more concisely,
y=c"x (1.61b)
wherec=[1 0 ... O]

A distinct advantage of the vector—matrix approach is that it is applicable to
multivariable (that is, multi-input-multi-output MIMO) systems, dealt with in Section
1.9.2. In such cases it is particularly important to distinguish between the system state
variables and the system outputs, which, in general, are linear combinations of the
state variables.

Together the pair of equations (1.61a,b) in the form

%=Ax+bu (1.62a)
y=cx (1.62b)

constitute the dynamic equations of the system and are commonly referred to as the
state-space model representation of the system. Such a representation forms the basis
of the so-called ‘modern approach’ to the analysis and design of control systems in
engineering. An obvious advantage of adopting the vector—matrix representation (1.62)
is the compactness of the notation.

More generally the output y could be a linear combination of both the state and input,
so that the more general form of the system dynamic equations (1.62) is

x=Ax+bu (1.63a)
y=c"x+du (1.63b)
Comment
It is important to realize that the choice of state variables x,, x,, . . ., x, is not unique.
For example, for the system represented by (1.59) we could also take
dn—l dn—Z
xlz_n_zls x2=_n_%9 cees Xy =)
dr dr

leading to the state-space model (1.62) with

R ) a4 l
a" aVl n n an
1 0 - 0 0 0
A= S b= s c= (1.64)
0 1 - 0 .
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Example 1.40

Solution

Obtain a state-space representation of the system characterized by the third-order
differential equation

3 2
SRR T (1.65)
daf T dP de
Writing

xzzg‘X:xls x3:d_.X:x

X1 =), 2
dt dt

we have, from (1.65),

3 2
Xy = d—%=4y—2d —3d—-¥+eft =4x, —2x, = 3x;+ ¢
dr dr dt
Thus the corresponding state equation is
xl 0 1 O X1 0
=10 0 1|[x|+|0]e”
X3 4 _2 _3 X3 1
with the output y being given by
X1
0 0]|x,

X3

y=x=[1

These two equations then constitute the state-space representation of the system.

We now proceed to consider the more general SISO system characterized by the
differential equation
n—-1 m
S +aoy=bmd—”+ .
d"

- . +bou
d d#

(m < n) (1.66)

in which the input involves derivative terms. Again there are various ways of representing
(1.66) in the state-space form, depending on the choice of the state variables. As an illus-
tration, we shall consider one possible approach, introducing others in the exercises.

We define A and b as in (1.60); that is, we take A to be the companion matrix of the
left-hand side of (1.66), giving

0 0 S 0 0
0 0 1
A= z
0 0 0 0 1
—dy —ad; —a —dy—y  —dy
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Example 1.41

Solution

Figure 1.3

Block diagram for the
state-space model of
Example 1.41.

and we take b=[0 0 ... 0 1] In order to achieve the desired response, the
vector c is then chosen to be

c=[by b, ... b, 0 ... O] (1.67)

It is left as an exercise to confirm that this choice is appropriate (see also Section 5.7.1).

Obtain the state-space model for the system characterized by the differential equation
model

3 2 2
g_..g+6g.%+1lgl+3y:59_%{+g_2+u (1.68)
dr dr dr dr  dr

Taking A to be the companion matrix of the left-hand side in (1.68)

0 1 0
A=| 0 0 1| and b=[0 0 1]7
-3 —-11 -6

we have, from (1.67),
c=[1 1 3]"

Then from (1.62) the state-space model becomes
x=Ax+bu, y=c'x

This model structure may be depicted by the block diagram of Figure 1.3. It provides
an ideal model for simulation studies, with the state variables being the outputs of the
various integrators involved.

u(t)

A distinct advantage of this approach to obtaining the state-space model is that A, b
and c are readily written down. A possible disadvantage in some applications is that the
output y itself is not a state variable. An approach in which y is a state variable is
developed in Exercise 56, Section 5.7.2. In practice, it is also fairly common to choose
the state variables from a physical consideration, as is illustrated in Example 1.42.
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1.9.2

Example 1.42

Figure 1.4
Parallel circuit of
Example 1.42.

Solution

Multi-input-multi-output (MIMO) systems

Many practical systems are multivariable in nature, being characterized by having more
than one input and/or more than one output. In general terms, the state-space model is
similar to that in (1.63) for SISO systems, except that the input is now a vector u(f) as
is the output y(¢). Thus the more general form, corresponding to (1.63), of the state-
space model representation of an nth-order multi-input-multi-output (MIMO) system
subject to 7 inputs and / outputs is

%=Ax+Bu (1.692)
y= Cx+Du (1.69b)
where x is the n-state vector, u is the r-input vector, y is the /-output vector, A is the

n X n system matrix, B is the n X r control (or input) matrix, and C and D are respect-
ively / X n and / X r output matrices.

Obtain the state-space model representation characterizing the two-input—one-output
parallel network shown in Figure 1.4 in the form

X=Ax+Bu, y=cx+du

where the elements x,, x,, x; of x and u,, u, of u are as indicated in the figure, and the
output y is the voltage drop across the inductor L, (v, denotes the voltage drop across
the capacitor C).

Applying Kirchhoff’s second law (see Section 5.4.1) to each of the two loops in turn
gives

Ri+L, Y04y =e, (1.70)
dr
di

L, -(-1-;2 +ve=e, (1.71)

The voltage drop v across the capacitor C is given by
. 1, .
Ve = 'é(ll + 1) 1.72)

The output y, being the voltage drop across the inductor L,, is given by

di,

=L
Yy "z
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51

52

which, using (1.70), gives

y=—Rji —vc+e

(1.73)

Writing x, = i}, X, = I, X3 = v, 4, = ¢, and u, = e,, (1.70)—(1.73) give the state-space

representation as

- R, T . _
¢ -— 0 ——= — 0
1 L, IR
1 1 ||u
X =10 0 —||x,]+|0 — !
2 L, 2 L, le
. 1 1
X3 C C 0 X3 0 0
X1
Uy
y=I[=R 0 —1]{x; +[I 0]{ 1
U
X3
which is of the required form
x=Ax+Bu
y=c'x+du
1.9.3 Exercises
Obtain the state-space forms of the differential 53  Obtain the state-space model of the single-input—
equations single-output network system of Figure 1.5 in the
& £ d form X = Ax + bu, y = ¢"x, where u, y and the
(a) —% +4 —% +5<Ly 4y = u(r) elements x|, x,, x; of x are as indicated.
dr dr dr
4 2 Ve =X
b L dy g dro 5, R —
df dr dr
using the companion form of the system matrix in Y
each case.
u=e(t)
Obtain the state-space form of the differential
equation models
3 2 2 . .
(a) SL% +6 Q_{ +5 dy +7y= Q_% +3 du +5u Figure 1.5 Network of Exercise 53.
' df  dr et dr
54  The mass—spring—damper system of Figure 1.6

3 2 2
(b) Si-~¥+491-¥+351~Z:51—-%’+3511—‘+2u
' dFf dr  dr dr

using the companion form of the system matrix in
each case.

models the suspension system of a quarter-car.
Obtain a state-space model in which the output
represents the body mass vertical movement y

and the input represents the tyre vertical movement
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u(t) due to the road surface. All displacements are 55

SEE - Obtain the state-space model, in the form
measured from equilibrium positions.

X =Ax + bu,y = Cx + d"u of the one-input—
two-output network illustrated in Figure 1.7. The

y(I)T W elements x,, x, of the state vector x and y,, y, of
" Body mass the output vector y are as indicated. If R, = 1 kQ,
R,=5kQ,R,=R,=3kQ, C,=C,=1puF
. calculate the eigenvalues of the system
Spring K IZ:I B Shock matrix A ¢ g
absorber '
M, Axle and
wheel mass

Road profile

Figure 1.6 Quarter-car Suspension model of
Exercise 54. Figure 1.7 Network of Exercise 55.

Solution of the state equation

In this section we are concerned with seeking the solution of the state equation
x=Ax+ Bu (1.74)

given the value of x at some initial time #, to be x,. Having obtained the solution of this
state equation, a system response y may then be readily written down from the linear
transformation (1.69b). As mentioned in Section 1.9.1, an obvious advantage of adopt-
ing the vector—matrix notation of (1.74) is its compactness. In this section we shall see
that another distinct advantage is that (1.74) behaves very much like the corresponding
first-order scalar differential equation

%2; —ax+bu, x(t) =x, (1.75)

1.10.1 Direct form of the solution

Before considering the nth-order system represented by (1.74), let us first briefly review the
solution of (1.75). When the input u is zero, (1.75) reduces to the homogeneous equation

%);C =ax (1.76)

which, by separation of variables,

J QE:J adt
X 11

XO 0
gives

Inx —Inx,=a(t—1,)
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leading to the solution
x=x,e (1.77)

for the unforced system.
If we consider the nonhomogeneous equation (1.75) directly, a solution can be
obtained by first multiplying throughout by the integrating factor ™ to obtain

ef‘”(%)f - ax) =e " bu(t)

or
dit(e*‘”x) = e bu(r)

which on integration gives

t
e “x—e “x,= J e “Tbu(t)dr
L
leading to the solution
t
x(1) = ey, +J e““?pu(r)dr (1.78)
f
The first term of the solution, which corresponds to the solution of the unforced system,
is a complementary function, while the convolution integral constituting the second
term, which is dependent on the forcing function u(¢), is a particular integral.
Returning to (1.74), we first consider the unforced homogeneous system

x=Ax, x(t)=x, (1.79)

which represents the situation when the system is ‘relaxing’ from an initial state.
The solution is completely analogous to the solution (1.77) of the scalar equation (1.76),
and is of the form

x=e"""x, (1.80)
It is readily shown that this is a solution of (1.79). Using (1.36), differentiation of (1.80)
gives

x=A eA(H"}xO =Ax
so that (1.79) is satisfied. Also, from (1.80),

x(ty) = x, = I1x, = x,

using €’ = |. Thus, since (1.80) satisfies the differential equation and the initial condi-
tions, it represents the unique solution of (1.79).

Likewise, the nonhomogeneous equation (1.74) may be solved in an analogous man-
ner to that used for solving (1.75). Premultiplying (1.74) throughout by ™', we obtain

e (X — Ax) =e*Bu(t)
or using (1.36),

dit(e*“’x) = e MBu(r)
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1.10.2

Figure 1.8

(a) Transition
matrix D(t, t)).
(b) The transition
property.

(c) The inverse
D71, 1,y).

Integration then gives
t
e Mx(t) —e Mox, = J e MBu(1) dr
)

leading to the solution

t
x(n=¢ " Vx, +J A IBu(r)dr (1.81)
t

0

This is analogous to the solution given in (1.78) for the scalar equation (1.75). Again it
contains two terms: one dependent on the initial state and corresponding to the solution
of the unforced system, and one a convolution integral arising from the input. Having
obtained the solution of the state equation, the system output y(¢) is then readily obtained
from equation (1.69b).

The transition matrix

. . A(t— . oge .
The matrix exponential ¢ " is referred to as the fundamental or transition matrix

and is frequently denoted by @(z, ,), so that (1.80) is written as
x(t) = D(t, ty)x, (1.82)

This is an important matrix, which can be used to characterize a linear system, and in
the absence of any input it maps a given state x, at any time f, to the state x(¢) at any
time ¢, as illustrated in Figure 1.8(a).

x(1) x(15) x(t)
D1, 1) D1, 1) Do, 1) &t 1)
x(t)
&1, 1) D=1, 1)
x(1) x(1y) x(ty)
(a) (b) (c)

Using the properties of the exponential matrix given in Section 1.7, certain properties
of the transition matrix may be deduced. From

At +t,) At At
e (1) 2 oMM M2

it follows that @(z, ¢,) satisfies the transition property

D(1, 1) = P(1, 1)) D(1, 1p) (1.83)
for any ¢, t, and t,, as illustrated in Figure 1.8(b). From
eAt e—At: |

it follows that the inverse @7'(¢, #,) of the transition matrix is obtained by negating time,
so that

D(1, t,) = D(—t, —t,) = D(t,, {) (1.84)

for any #, and ¢, as illustrated in Figure 1.8(c).
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1.10.3

Example 1.43

Solution

Evaluating the transition matrix

Since, when dealing with time-invariant systems, there is no loss of generality in taking

t, = 0, we shall, for convenience, consider the evaluation of the transition matrix

D(t) = (1, 0) = ™

Clearly, methods of evaluating this are readily applicable to the evaluation of

d(t, ) = D
Indeed, since A is a constant matrix,

D(t, 7)= D(t — 1, 0)

so, having obtained @(7), we can write down @(¢, 7) by simply replacing ¢ by ¢ — 7.
Since A is a constant matrix the methods discussed in Section 1.7 are applicable for

evaluating the transition matrix. From (1.34a),

M= oy () + oy (DA + 0(H)A* + .. .+ o, (A"

(1.85a)

where, using (1.34b), the () (i =0, 1, ..., n — 1) are obtained by solving simul-

taneously the » equations

e = ay(r) + ou(O;+ O+ .+ 0, (DA]

(1.85b)

where A, (j =1, 2, ..., n) are the eigenvalues of A. As in Section 1.7, if A has
repeated eigenvalues then derivatives of e*, with respect to A, will have to be used.

A system is characterized by the state equation

{xl(t)} _ {—1 0] {xm} ; Huu)
%, (f) 1 =3[ n] |1

Given that the input is the unit step function

u(t) = H(t) = {(1) Z i g;

and initially
x(0) =x,(0)=1

deduce the state x(¢) = [x,(z) x,(¢)]" of the system at subsequent time 7.

From (1.81), the solution is given by

x(1) = ™ x(0) +J A pu(t) dr

0

where

(1.86)
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Since A is a 2 X 2 matrix, it follows from (1.85a) that
M= (O + oy (H)A

The eigenvalues of A are A, =—1 and A4, = -3, so, using (1.85), we have
a(t)=1Ce"—¢e™), a()=1ie"-e)

giving

Thus the first term in (1.86) becomes

—t
Al e 0|1 e
¢ x(O) - 1/t -3t -3t - 1/t -3t
s(e—e) e 1 e +e )
and the second term is
t o[ —(t-1) ]
_ e 0 1
J P bu(rydr = J o s s ldz
o o |5(e —-e ) e 1
rel o
- 1 ~(=0 | =3(-1)
Jo |5(e t+e )

t
e*(tff)

1o —(t-7 1,307
E(e +3€ )

-0 -
€ €
- 1,.-0,1_-0 - 1, —t 1 =3t
5(6 +§C ) z(e +§C )
l-¢”'
- 2 _ -t 1 =3t
372 6©

l1-¢" 1
x(t)= t 3t t 3t = 3¢
1 2 1ot _1a- 2, 1.~
;e +e ) $-3€ —5¢ $+se
That is,
x()=1, x()=2+le”
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Using the Symbolic Math Toolbox in MATLAB the transition matrix e is gener-
ated by the sequence of commands

syms t
A=[specify];
A=sym(A) ;
E=expm (t*A) ;
pretty (E)

Confirm this using the matrix A = [-1 0; 1 —3] of Example 1.43.
In MAPLE e” is returned by the commands:

with (LinearAlgebra) :
A:=Matrix([[-1,0], [1,-311);
MatrixExponential (A, t) ;

1.10.4 Exercises

Check your answers using MATLAB or MAPLE whenever possible.

56  Obtain the transition matrix @(f) of the system 59  Find the solution of
x=Ax .
.| N
where x= { }
X2

i

Verify that @(¢) has the following properties:

{5 o
-6 =5||x, 6

where u(t) =2 and x(0)=[1 1]~

(a) @0)=1;
(b) B(1,) = D(t,— 1,)D(1,); 60  Using (1.81), find the response for ¢ = 0 of the
t
© ()=, e
X, =x,+2u

57  Writing x, = y and x, = dy/dz express the differential £ = —2x, -3,

equation
& d to an input u(f) = ¢ and subject to the initial
E% +2 alt +y=0 conditions x,(0) = 0, x,(0) = 1.
t

61 A system is governed by the vector-matrix

in the vector-matrix form % = Ax, x =[x, x,]" differential equation

Obtain the transition matrix and hence solve the
differential equation given that y = dy/df = 1 when 3 4 0 1

t=0. Confirm your answer by direct solution of the xX(1) = { }C(Z) + { }l(t) (r=0)
second-order differential equation. 1

where x(#) and u(7) are respectively the state
58  Solve . .
and input vectors of the system. Determine
. X 1 0l]x the transition matrix of this system, and hence
X= ; - 11l obtain an explicit expression for x(f) for the input
2 2

u(t)=[4 3]" and subject to the initial condition
subject to x(0) =[1 17" x(0)=[1 2]
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1.10.5

Spectral representation of response
We first consider the unforced system
x(t) = Ax(t) (1.87)

with the initial state x(#,) at time ¢, given, and assume that the matrix A has as distinct
eigenvalues A, (i = 1, 2, ..., n) corresponding to # linearly independent eigenvectors
e, (i=1,2,...,n). Since the n eigenvectors are linearly independent, they may be used
as a basis for the n-dimensional state space, so that the system state x(¢) may be written
as a linear combination in the form

x(t)=c(t)e, +...+c,(t)e, (1.88)

where, since the eigenvectors are constant, the time-varying nature of x(¢) is reflected
in the coefficients ¢,(f). Substituting (1.88) into (1.87) gives

é(te+ ... +¢ (e, =Alc(t)e +...+c,(t)e,] (1.89)
Since (A,, ;) are spectral pairs (that is, eigenvalue—eigenvector pairs) for the matrix A,
Ae.=Ade, (i=1,2,...,n)
(1.89) may be written as
[¢1(t) — Liey(D)]e + ...+ [¢,(0) — A,c()]e, =0 (1.90)

Because the eigenvectors e; are linearly independent, it follows from (1.90) that the
system (1.87) is completely represented by the set of uncoupled differential equations

)= Aici(t)y=0 (=1,2,...,n) (1.91)
with solutions of the form

i) =" e (1)
Then, using (1.88), the system response is

x(0)= Y ct)e e, (1.92)
i=1

Using the given information about the initial state,

n

x(t) = Z ci(to) € (1.93)
i=1
so that the constants ¢;(#,) may be found from the given initial state using the reciprocal
basis vectors r; (i =1, 2, . . . , n) defined by
rie,= 9,

7 i

where 6 is the Kronecker delta. Taking the scalar product of both sides of (1.93) with
r, we have

nx(1y) =Y cit)rie = clty)  (k=1,2,...,n)

i=1
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Example 1.44

Solution

which on substituting in (1.92) gives the system response

x(1) =Y rix(1) " e, (1.94)

i=1

which is referred to as the spectral or modal form of the response. The terms
rix(ty) el’(tft")e,- are called the modes of the system. Thus, provided that the system
matrix A has » linearly independent eigenvectors, this approach has the advantage of
enabling us to break down the general system response into the sum of its simple modal
responses. The amount of excitation of each mode, represented by r7x(t,), is dependent
only on the initial conditions, so if, for example, the initial state x(z,) is parallel to the
ith eigenvector e, then only the ith mode will be excited.

It should be noted that if a pair of eigenvalues A,, A, are complex conjugates then
the modes associated with ¢ and """ cannot be separated from each other. The
combined motion takes place in a plane determined by the corresponding eigenvectors
e, and e, and is oscillatory.

By retaining only the dominant modes, the spectral representation may be used to
approximate high-order systems by lower-order ones.

Obtain in spectral form the response of the second-order system

W [N AR

and sketch the trajectory.

The eigenvalues of the matrix

S

are determined by
[A=A|=A2+41+3=0
that is,
A=-1, A,=-3
with corresponding eigenvectors
e, =1 17°, e,=[1 -11"
Denoting the reciprocal basis vectors by
r=[ry .l m=[ry 7l
and using the relationships

r-irej = 61/ (lsj = 17 2)
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Figure 1.9
Trajectory for
Example 1.44.

we have

rie,=ry+r,=1, re,=r;—r,=0
giving

”11=%> ”12=%> "12[% 1]T
and

re, =1y, +ry,=0, re, =1, —ry=1
giving

”21=%> I =3, ”2:[% —%T
Thus

rx(0)=1i+1=2  mnx0)=i-1=-!

so that, from (1.94), the system response is

2
x(1) = 3 rix(0) e*'e, = rix(0)e™e, + r;x(0) e*'e,

i=1
That is,
3 _—t 1 -3t
x(t)=3¢ e,—5;¢ e,

which is in the required spectral form.

To plot the response, we first draw axes corresponding to the eigenvectors e, and e,,

as shown in Figure 1.9. Taking these as coordinate axes, we are at the point (% , —

1)at

time ¢ = 0. As ¢ increases, the movement along the direction of e, is much faster than
that in the direction of e,, since ™ decreases more rapidly than e”. We can therefore

guess the trajectory, without plotting, as sketched in Figure 1.9.
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1.10.6

We can proceed in an analogous manner to obtain the spectral representation of the
response to the forced system

%(f) = Ax(?) + Bu()

with x(¢,) given. Making the same assumption regarding the linear independence of the
eigenvectors ¢; (i = 1, 2, . . ., n) of the matrix A, the vector Bu(f) may also be written
as a linear combination of the form

Bu(r) = 2 Bi(t)e; (1.95)

so that, corresponding to (1.90), we have

() = Aie\(@) = B@D]e, + ...+ [6,(1) = A,c,(t) = B,(1)]e, = 0

As a consequence of the linear independence of the eigenvectors e; this leads to the set
of uncoupled differential equations

() = Ae(t) - B()=0 (=1,2,...,n)
which, using (1.78), have corresponding solutions

t

A(t=ty)
ci(t)y=e ci(t)+ | e

L

A(t=7)

Bi(7)dr (1.96)

As for ¢;(¢,), the reciprocal basis vectors r; may be used to obtain the coefficients B4(7).
Taking the scalar product of both sides of (1.95) with r, and using the relationships
rie;= 0;, we have

rBu(t)= () (k=1,2,....n)
Thus, from (1.96),

t
Ai(t=ty) A (t=1)
c(t)y=¢" "rix(t) +J e rBu(t)dr
11

0
giving the spectral form of the system response as

x(t) = i ci(t)e;

i=1
Canonical representation
Consider the state-space representation given in (1.69), namely
x=Ax+Bu (1.69a)

y=Cx+Du (1.69b)

Applying the transformation
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x=Tz

where T is a non-singular matrix, leads to

T:=ATz+Bu
y=CTz+ Du
which may be written in the form
:=Az+ Bu (1.97a)
y=Cz+ Du (1.97b)

where z is now a state vector and
A=T'AT, B=T'B, C€=CT, D=D

The system input—output relationship is unchanged by the transformation (see Section
5.7.3), and the linear systems (1.69) and (1.97) are said to be equivalent. By the trans-
formation the intrinsic properties of the system, such as stability, controllability and
observability, which are of interest to the engineer, are preserved, and there is merit in
seeking a transformation leading to a system that is more easily analysed.

Since the transformation matrix T can be arbitrarily chosen, an infinite number of
equivalent systems exist. Of particular interest is the case when T is taken to be the
modal matrix M of the system matrix A; that is,

T=M=[e, e, ... e]

where e, (i = 1, 2, . . ., n) are the eigenvectors of the matrix A. Under the assumption
that the n eigenvalues are distinct,

A=M"'AM=A, the spectral matrix of A
B=m"'B
C=CM, D=D

so that (1.97) becomes

¢2=Az+M'Bu (1.98a)

y=CMz+Du (1.98b)
Equation (1.98a) constitutes a system of uncoupled linear differential equations

Z=Az;+bu (i=1,2,...,n) (1.99)
where 7= (2, 2,, . . . , z,)" and b'is the ith row of the matrix M ~'B. Thus, by reducing
(1.69) to the equivalent form (1.98) using the transformation x = Mz, the modes
of the system have been uncoupled, with the new state variables z;, (i = 1, 2, ..., n)

being associated with the ith mode only. The representation (1.98) is called the normal
or canonical representation of the system equations.
From (1.78), the solution of (1.99) is

t
Ai(t=ty) Ai(t=1) .
z;=e ‘RU@+J ¢ blu(tydt (i=1,...,n)
1,

0
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so that the solution of (1.98a) may be written as

t
20 =" "z (1) +J A M ' Bu(r)dr (1.100)
t

0

where

e/11(/—r0) 0

A(t=ty)
(5]

0 ’ e/ln(t—ro)
In terms of the original state vector x(z), (1.100) becomes

t
x(1) =Mz =M e " ""M 'x(z,) +J M e "M "'Bu(7)dt (1.101)

fy

and the system response is then obtained from (1.69b) as
y(t)=Cx(t)+ Du(t)

By comparing the response (1.101) with that in (1.81), we note that the transition matrix
may be written as

D(1,t,) = N = M MM !

The representation (1.98) may be used to readily infer some system properties. If the
system is stable then each mode must be stable, so, from (1.101), each 4, i=1, 2, ..., n)
must have a negative real part. If, for example, the jth row of the matrix M™'B is zero
then, from (1.99), Z,= A;z; + 0, so the input #(¢) has no influence on the jth mode of the
system, and the mode is said to be uncontrollable. A system is said to be controllable
if all of its modes are controllable.

If the jth column of the matrix CM is zero then, from (1.98b), the response y is
independent of z;, so it is not possible to use information about the output to identify z;.
The state z;is then said to be unobservable, and the overall system is not observable.

A third-order system is characterized by the state-space model

0 1 0 1
xX=10 0 Ijx+|-3|u, y=[1 0 O0O]x
0 -5 -6 18

where x =[x, x, x;]". Obtain the equivalent canonical representation of the model
and then obtain the response of the system to a unit step u(¢) = H(¢) given that initially
x(0)=[1 1 o]"
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Solution  The eigenvalues of the matrix

0 1 0
A=10 0 1
0 -5 -6

are determined by

-2 1 0
A-All=| 0 -2 1 |=0
0 -5 —6-1

that is,
AMA +6A+5)=0

giving A, =0, 1, =—1 and 1, = -5, with corresponding eigenvectors
e=[1 0 0, e=[ -1 1], e=[1 -5 25]'

The corresponding modal and spectral matrices are

111 0 0 0
M=|0 -1 -5/, A=|0 -1 0
0 1 25 0 0 -5

and the inverse modal matrix is determined to be

20 25 4
M7'=%l 0 -25 -5
0 1 1

In this case B=[1 -3 18], so

200 25 4] 1 20 1
MB=x%| 0 -25 —5||-3|=%|-15|=|-3
0 1 11|18 15 :

Likewise, C=[1 0 0], giving

1 1 1
CM=[1 0 O]l0 -1 -=5|=[1 1 1]
0 1 25

Thus, from (1.98), the equivalent canonical state-space representation is

a2l o o o[z 1
7= Z'2 =10 -1 0 z, + 3 (1.1023)

IS

ENyoY

2.3 0 0 -5 Z3
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2]
y=[1 1 1]|z (1.102b)

23

When u(t) = H(t), from (1.100) the solution of (1.102a) is

e 0 0 10 0 1
z=(0 e 0 z(O)+J 0 e¢“? o0 -2 |1dr
_ 0 _5(1-7
0 0 e 0 0 el 2
where
20 24 4|1 8
20)=M"x(0)=% 0 -25 -5(|1|=|-%
0 1 1|0 %
leading to
1 0 0 = , 1
z2=10 e’ 0 —i +J —iei(tiﬂ dr
70 0 e—St % 0 % e—S(r—r)
i u t t+ 4
=|-le |+ | 24l =] 2=t
zLoe—St i3_0_ %G_St %_ Ee—sr

Then, from (1.102b),

1 - -5t
y=zitntzy=(t+3)H(—i-1e )+ (5 -5e )

_ 8§ _1a.t_ 1 -5t
—l+5 Ze loe

If we drop the assumption that the eigenvalues of A are distinct then A=M"AM is
no longer diagonal, but may be represented by the corresponding Jordan canonical form
J with M being made up of both eigenvectors and generalized eigenvectors of A. The
equivalent canonical form in this case will be

:=Jz+ M 'Bu
y=CMz+Du
with the solution corresponding to (1.100) being

t
x(ty=Me" "M x(1) +J Me’ P M 'Bu(r)dr

fy
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62

63

64

65

66

1.10.7 Exercises

Obtain in spectral form the response of the unforced
second-order system

. 3
(1) = x(1) _
X,(1) I -

4

x(1),

(S]]
[N [V N

67
Using the eigenvectors as the frame of reference,
sketch the trajectory.
Using the spectral form of the solution given in
(1.94), solve the second-order system
=7 . x0=|>
2 -5 3
and sketch the trajectory.
68

Repeat Exercise 62 for the system

x(1) = {0 _4}0), x(0) = H
2 -4 2

Determine the equivalent canonical representation
of the third-order system

1 1 =2 -1
X=|- 2 l|lx+| 1|u

0 1 -1 -1
y=[-2 1 0]x

The solution of a third-order linear system is
given by

X = o0ye’e, + a,e Ve, + a,ee,

where e, e, and e, are linearly independent vectors
having values

e=[1 1 0,
e=[1 2 3T

e=[0 1 17,

Initially, at time 7 = 0 the system state is
x(0) = [1 1 1]" Find @, &, and «, using
the reciprocal basis method.

Obtain the eigenvalues and eigenvectors of the matrix

A= 5 4
1 2
Using a suitable transformation x(¢) = M z(¢), reduce
x(#) = Ax(?) to the canonical form £(f) = Az(?),
where A is the spectral matrix of A. Solve the

decoupled canonical form for z, and hence solve
for x(¢) given that x(0) = [1 4]".

A second-order system is governed by the state
equation

xm:F 4};(;){0 lJu(z) (= 0)
2 1 11

Using a suitable transformation x(¢) = M z(¢), reduce
this to the canonical form

Z(t) = Az(f) + Bu(?)

where A is the spectral matrix of

2

and B is a suitable 2 X 2 matrix.

For the input u(f) =[4  3]" solve the decoupled
canonical form for z, and hence solve for x(7) given
that x(0) =[1  2]". Compare the answer with that
for Exercise 60.

In Chapter 5 we shall consider the solution of state-space models using the Laplace
transform method and in Chapter 6 extend the analysis to discrete-time systems using

z-transforms.
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| 0 0 R VT YT T T L Lyapunov stability analysis

The Russian mathematician Alexsander Mikhailovich Lyapunov (1876-1918) devel-
oped an approach to stability analysis which is now referred to as the direct (or second)
method of Lyapunov. His approach remained almost unknown in the English-speaking
world for around half a century, before it was translated into English in the late 1950s.
Publication of Lyapunov’s work in English aroused great interest, and it is now widely
used for stability analysis of linear and non-linear systems, both time-invariant and
time-varying. Also, the approach has proved to be a useful tool in system design such
as, for example, in the design of stable adaptive control systems. The Lyapunov method
is in fact a ‘method of approach’ rather than a systematic means of investigating stability
and much depends on the ingenuity of the user in obtaining suitable Lyapunov func-
tions. There is no unique Lyapunov function for a given system.

In this section we briefly introduce the Lyapunov approach and will restrict con-
sideration to the unforced (absence of any input) linear time-invariant system

% = Ax (1.103)

where x =[x}, X,, . . . , x,]" is the n-state vector and A is a constant n X n matrix. For the
linear system (1.103) the origin x = 0 is the only point of equilibrium. If, for any initial state
x(0), the trajectory (solution path) x(f) of the system approaches zero (the equilibrium point)
as t — oo then the system is said to be asymptotically stable. In practice the elements
of the matrix A may include system parameters and we are interested in determining
what constraints, if any, must be placed on these parameters to ensure system stability.
Stability of (1.103) is further discussed in Section (5.7.1), where algebraic criteria for
stability are presented. In particular, it is shown that stability of system (1.103) is
ensured if and only if all the eigenvalues of the state matrix A have negative real parts.

To develop the Lyapunov approach we set up a nest of closed surfaces, around the
origin (equilibrium point), defined by the scalar function

Vx)=Vx;, x, ..., x,)=C (1.104)

where C is a positive constant (the various surfaces are obtained by increasing the
values of C as we move away from the origin). If the function V(x) satisfies the follow-
ing conditions:

(a) V(x) =0 at the origin, that is /(0) = 0;
(b) V(x) > 0 away from the origin;
(¢) V(x) is continuous with continuous partial derivatives;

then it is called a scalar Lyapunov function. (Note that conditions (a) and (b) together
ensure that V(x) is a positive definite function.) We now consider the rate of change
of V(x), called the Eulerian derivative of V(x) and denoted by V(x), along the trajectory
of the system under investigation; that is,

dx,  ovdy, o 9Vdx,
ox, dt  ox, dt ox, dt
where the values of X, X,, . . ., X, are substituted from the given equations representing

the system ((1.103) in the case of the linear equations under consideration).
If V satisfies the condition

Vix) = (1.105)

(d) V(x) is negative definite

then it follows that all the trajectories cross the surfaces V(x) = C in an inward direction
and must tend to the origin, the position of equilibrium. Thus asymptotic stability has
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Example 1.46

been assured without having to solve the differential equations representing the system.
The function V(x) which satisfies conditions (a)—(d) is called a Lyapunov function for
the system being considered.

If we start with a positive-definite ¥(x) and impose conditions on V(x) to be negative-
definite, then these conditions will provide sufficient but not necessary stability criteria,
and in many cases they may be unduly restrictive. However, if we are able to start with
a negative-definite ¥(x) and work back to impose conditions on V(x) to be positive-
definite, then these conditions provide necessary and sufficient stability criteria.
This second procedure is far more difficult to apply than the first, although it may be
applied in certain cases, and in particular to linear systems.

Of particular importance as Lyapunov functions for linear systems are quadratic
forms in the variables x,, x,, . . . , x, which were introduced in Section 1.6.4. These
may be written in the matrix form ¥(x) = x"Px, where P is a real symmetric matrix.
Necessary and sufficient conditions for V(x) to be positive-definite are provided by
Sylvester’s criterion, which states that all the principal minors of P of order 1,2, ..., n
must be positive; that is

Pu Pn Pi3
p V4
pu >0, " . >0,|pn pn pu|>0,...,[P[>0
P2 P»n
Pz P P33

Returning to the linear system (1.103) let us consider as a tentative Lyapunov function
the quadratic form

V(x) = x"Px

where P is an n X n real symmetric matrix. To obtain the Eulerian derivative of V(x)
with respect to system (1.103) we first differentiate V(x) with respect to ¢

14
dt

and then substitute for X" and X% from (1.103) giving
V(x) = (Ax)"Px + x"P(Ax)
V(x) = x"(A"P + PA)x
or alternatively
V(x) = —x"Ox (1.106)
—Q=A"P+PA (1.107)

=x"Px + x"Px
that is

where

To obtain necessary and sufficient conditions for the stability of the linear system
(1.103) we start with any negative definite quadratic form —x"Qx, with an n X n
symmetric matrix @, and solve matrix equation (1.107) for the elements of P. The con-
ditions imposed on P to ensure that it is positive definite then provide the required
necessary and sufficient stability criteria.

The vector-matrix differential equation model representing an unforced linear R—C
circuit is
Y= 4o 4o X (l)
200 —60

Examine its stability using the Lyapunov approach.
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69

70

71

Solution

Take Q of equation (1.107) to be the identity matrix | which is positive-definite

(thus —Q is negative-definite), then (1.107) may be written

-1 0 _ 4o 20«
0 -1 4o -6

Equating elements in (ii) gives

Pu
P

2l 4 |P Pr 4o 4o (ii)
P P DPxn|| 200 —6o

=8ap, +4ap,=-1,4ap,, — 100p,, + 20p,, = 0, 8ap,, — 120p,, = -1

Solving for the elements gives

1

-7 , -1 _3
Pu= P s P» Na

400’ 10

so that

p=_L |7 4
40ci4 6

The principal minors of B ﬂ are |7| > 0 and A

74 =26>0.
6

Thus, by Sylvester’s criterion, P is positive-definite and the system is asymptotically

stable provided o > 0.

Note that the Lyapunov function in this case was

1
V(x)=x"Px = 0% (7x7 + 8x,x, + 6x3)

1.11.1 Exercises

Using the Lyapunov approach investigate the
stability of the system described by the state
equation

B jx

Take Q to be the unit matrix. Confirm your answer
by determining the eigenvalues of the state matrix.

Repeat Exercise 68 for the system described by the
state equation

. [-3 2
X = X
-1 =

For the system modelled by the state equation

iR

72

use the Lyapunov approach to determine the
constraints on the parameters a and b that yield
necessary and sufficient conditions for asymptotic
stability.

Condition (d) in the formulation of a Lyapunov
function, requiring ¥(x) to be positive-definite, may
be relaxed to V(x) being positive-semidefinite
provided V(x) is not identically zero along any
trajectory. A third-order system, in the absence of
an input, is modelled by the state equation

X =Ax

where x =[x, x, x;]"and

0O 1 0
1| with & being a constant scalar.

It is required to use the Lyapunov approach to
determine the constraints on & to ensure asymptotic
stability.
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(a) In (1.106) choose Q to be the positive-
semidefinite matrix

0 0 0
Q=10 0 0
0 0 1

so that
V(x) = —x"Qx = -

Verify that V(x) is identically zero only at the
origin (equilibrium point) and is therefore not
identically zero along any trajectory.

(b) Using this matrix Q solve the matrix equation
AP+ PA=-Q

to determine the matrix P.

73

(c) Using Sylvester’s criterion show that the
system is asymptotically stable for
0<k<6.

A feedback control system modelled by the
differential equation

X+ax+hkx=0

is known to be asymptotically stable, for k£ > 0,
a > 0. Set up the state-space form of the equation
and show that

V(xy, x,) = kx? +(x, + axl)za X=X, X=X

is a suitable Lyapunov function for verifying
this.

| 0 VA 2 T T T Lo i W capacitor microphone

Many smaller portable tape recorders have a capacitor microphone built in, since such
a system is simple and robust. It works on the principle that if the distance between the
plates of a capacitor changes then the capacitance changes in a known manner, and
these changes induce a current in an electric circuit. This current can then be amplified
or stored. The basic system is illustrated in Figure 1.10. There is a small air gap (about
0.02 mm) between the moving diaphragm and the fixed plate. Sound waves falling on
the diaphragm cause vibrations and small variations in the capacitance C; these are

certainly sufficiently small that the equations can be /inearized.

Figure 1.10 Capacitor  Air gap Moving diaphragm
microphone.
I —— Fixed plate
Insulation
Metal frame

We assume that the diaphragm has mass m and moves as a single unit so that its
motion is one-dimensional. The housing of the diaphragm is modelled as a spring-
and-dashpot system. The plates are connected through a simple circuit containing a
resistance and an imposed steady voltage from a battery. Figure 1.11 illustrates the
model. The distance x(#) is measured from the position of zero spring tension, F is the
imposed force and f'is the force required to hold the moving plate in position against
the electrical attraction. The mechanical motion is governed by Newton’s equation
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Figure 1.11 Capacitor

! —> x(t) from zero-spring-tension
microphone model. !

! position
> ; N

SN

,

SELLIIA
k

—>
R Fixed  Moving £

plate  diaphragm

mi=—kx—-Ax—f+F (1.108)
and the electrical circuit equation gives
E=ri+% with -7 (1.109)
C dt
The variation of capacitance C with x is given by the standard formula
_ Coa
a+x

where a is the equilibrium distance between the plates. The force f'is not so obvious,
but the following assumption is standard

2
_1,24 l)zlq_
/ 2qu(C 2Cya

It is convenient to write the equations in the first-order form

X=v
‘]2
v=—kx—Av—L+=2— + F(t
mv X v— 3 ¥ (1)

Rj=-L9FX)
aC,

Furthermore, it is convenient to non-dimensionalize the equations. While it is obvious
how to do this for the distance and velocity, for the time and the charge it is less so.
There are three natural time scales in the problem: the electrical time 7, = RC,, the
spring time 73 = m/k and the damping time 7, = m/A. Choosing to non-dimensionalize
the time with respect to 7,, the non-dimensionalization of the charge follows:

t

T= s X= Ea V= L 5 - :
T, a kal A J(2Coka®)

Then, denoting differentiation with respect to 7 by a prime, the equations are

X =—V
A
m ’ > F
— V' =X-V-0+—
ARC, 0 ka

0'=-0(1 +X)+——2—
1(2Coka®)
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y=-X(1 + X)?

Figure 1.12 Solutions
to equations (1.111).

There are four non-dimensional parameters: the external force divided by the spring
force gives the first, G = F/ka; the electrical force divided by the spring force gives the
second, D* = (E*C,/2a)/ka; and the remaining two are

A= RCk _ 11 __m_ _5
A 7 ’ ARC, T,
The final equations are therefore
X' =4V
BV'=-X-V-0+G (1.110)

0’'=-0(1+X)+D
In equilibrium, with no driving force, G=0and V=X"= V"= Q’ =0, so that
2 —
Q +X‘O} (1.111)
O(1+X)-D=0
or, on eliminating Q,
X(1+ Xy =-D?

From Figure 1.12, we see that there is always one solution for X < —1, or equivalently
x < —a. The implication of this solution is that the plates have crossed. This is clearly
impossible, so the solution is discarded on physical grounds. There are two other solu-
tions if

2 104\2 _ 4
D" <3G) =5

2
B (1.112)
2ka

27

We can interpret this statement as saying that the electrical force must not be too strong,
and (1.112) gives a precise meaning to what ‘too strong’ means. There are two
physically satisfactory equilibrium solutions -1 < X, < 0 and -1 < X, < -1, and the
only question left is whether they are stable or unstable.

Stability is determined by small oscillations about the two values X, and X,, where
these values satisfy (1.111). Writing

X=X +¢, 0=0:+n, V=20
and substituting into (1.110), neglecting terms in €2, y*, 6%, €60 and so on, gives
=460
BO'=—e—- 0200 (1.113)
n'=(-0:e-(1+X,)n)

Equations (1.113) are the linearized versions of (1.110) about the equilibrium values.
To test for stability, we put G =0 and € = Le*’, 6= Me*", n=Ne* into (1.113):

La =AM
BMo =—-L - M—20,N
Na=-0,L—(1+X)N
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which can be written in the matrix form

L 0 A 0 L
a|M|=|-1/B -1/B =20,/B||M
N -0, 0 -(1+X)|| N

Thus the fundamental stability problem is an eigenvalue problem, a result common
to all vibrational stability problems. The equations have non-trivial solutions if

-0 A 0
0=|-1/B —(1/B) - « -20,/B
-0, 0 ~(1+X) - o

=—[Bo® + (B +X) + Do + (1 + X, + Ao + A(1 + X, — 202)|/B

For stability, o must have a negative real part, so that the vibrations damp out, and the
Routh—Hurwitz criterion (Section 5.6.2) gives the conditions for this to be the case.
Each of the coefficients must be positive, and for the first three

B>0, B(l1+X)+1>0, 1+X+A4>0

are obviously satisfied since —1 < X; << 0. The next condition is
A1+ X,-207) >0

which, from (6.118), gives
1+3X,>0, or  X,>-1

Thus the only solution that can possibly be stable is the one for which X, > —% ; the other
solution is unstable. There is one final condition to check,

[B(1 +X) + 1](1 + X+ A) — BA(1 + X;,— 20?) > 0
or
BA+X)P+1+X+A+2BA0* >0

Since all the terms are positive, the solution X; > ! is indeed a stable solution.

Having established the stability of one of the positions of the capacitor diaphragm,
the next step is to look at the response of the microphone to various inputs. The char-
acteristics can most easily be checked by looking at the frequency response, which is
the system response to an individual input G = be’®, as the frequency  varies. This
will give information of how the electrical output behaves and for which range of
frequencies the response is reasonably flat.

The essential point of this example is to show that a practical vibrational problem
gives a stability problem that involves eigenvalues and a response that involves a
matrix inversion. The same behaviour is observed for more complicated vibrational
problems.
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1.13 Review exercises (1-20)

Check your answers using MATLAB or MAPLE whenever possible.

1

2

3

4

Obtain the eigenvalues and corresponding
eigenvectors of the matrices

-1 6 12
@ | 0 —13 30
0 -9 20
2 0 1
® -1 4 21
-1 2 o0
1 -1 o0
© |-1 2 -1
0 -1 1

Find the principal stress values (eigenvalues)
and the corresponding principal stress directions
(eigenvectors) for the stress matrix

3
T=1|2
1

— W N
BOo= =

Verify that the principal stress directions are
mutually orthogonal.

Find the values of b and ¢ for which the matrix

2 -1 0
A=|-1 3 b
0 b c

has[I 0 1]" as an eigenvector. For these
values of b and c calculate all the eigenvalues

and corresponding eigenvectors of the matrix A.

Use Gerschgorin’s theorem to show that the
largest-modulus eigenvalue A, of the matrix

4 -1 0
A=|-1 4 -1
0 -1 4

is such that 2 < |A,| < 6.

Use the power method, with starting vector
xX9=[-1 1 -1]" to find A, correct to one
decimal place.

5

(a) Using the power method find the dominant
eigenvalue and the corresponding eigenvector
of the matrix

2 1 1
A=|1 25 1
1 1 3

starting with an initial vector [I 1 1]"
and working to three decimal places.

(b) Given that another eigenvalue of A is 1.19
correct to two decimal places, find the value of the
third eigenvalue using a property of matrices.

(c) Having determined all the eigenvalues of A,
indicate which of these can be obtained by
using the power method on the following
matrices: (i) A™'; (i) A — 3I.

Consider the differential equations

%=4x+y+z
(—12=2x+5y+4z
dt

dz__ _,

dt

Show that if it is assumed that there are solutions
of the form x = aze”, y = Be* and z = ye* then
the system of equations can be transformed into
the eigenvalue problem

4 1 1| o
2 5 4||B|=AlB
-1 -1 0||y Y

Show that the eigenvalues for this problem
are 5, 3 and 1, and find the eigenvectors
corresponding to the smallest eigenvalue.

Find the eigenvalues and corresponding
eigenvectors for the matrix

8 -8 -2
A=|4 -3 =2
3 -4 1

Write down the modal matrix M and spectral
matrix A of A, and confirm that

MTAM= A
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10

Show that the eigenvalues of the symmetric matrix

1 0 —4
A= 0 4
-4 3

are 9, 3 and —3. Obtain the corresponding
eigenvectors in normalized form, and write down
the normalized modal matrix M. Confirm that

MAM=A

where A is the spectral matrix of A.

In a radioactive series consisting of four different
nuclides starting with the parent substance N, and
ending with the stable product N, the amounts of
each nuclide present at time 7 are given by the
differential equations model

dn,
- 6N,
dt !
dnN.
= 6N~ 4N,
dN; _ 4N, - 2N,
dr
dn,
AL T
dt }

Express these in the vector—matrix form

N=AN
where N=[N;, N, N, N,]".Find theeigenvalues
and corresponding eigenvectors of A. Using the

spectral form of the solution, determine N,(7) given
that at time 1 =0, N,= Cand N, = N;=N, = 0.

(a) Given

2 0
A=
11
use the Cayley—Hamilton theorem to find

() A7=3A%+A*+3A%_2A2+3
(ii) A%, where k > 0 is an integer.

(b) Using the Cayley—Hamilton theorem, find
¢ when

afo ]

11

12

13

Show that the matrix

3
4

>

I
o o ~
S —

has an eigenvalue A = 1 with algebraic
multiplicity 3. By considering the rank of a
suitable matrix, show that there is only one
corresponding linearly independent eigenvector
e,. Obtain the eigenvector e, and two further
generalized eigenvectors. Write down the
corresponding modal matrix M and confirm that
M~ AM = J, where J is the appropriate Jordan
matrix. (Hint: In this example care must be taken
in applying the procedure to evaluate the
generalized eigenvectors to ensure that the
triad of vectors takes the form {T’m, Tw, ®},
where T=A - Al, with T’@=e,.)

The equations of motion of three equal masses
connected by springs of equal stiffness are

X=-2x+y
J=x—-2y+z
Z=y—-2z

Show that for normal modes of oscillation
x = Xcoswt, y = Ycoswt,
z=7cosmt

to exist then the condition on A = @’ is

0 1 A-2

Find the three values of A that satisfy this
condition, and find the ratios X: Y: Z in
each case.

Classify the following quadratic forms:

(a) 20 +)* + 22— 2xy — 2z

(b) 3x* + 7)* + 22> — dxy — dxz

(c) 16x* +36)* + 172° + 32xy + 32xz +16yz
(d) —21x% +30xy — 12xz — 11 + 8yz — 27°

(e) —x*—3y*— 522+ 2xy + 2xz + 2yz
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14

15

16

Show that e, =[1 2
the matrix

3]" is an eigenvector of

>
I
& o
|
—_
o NI

(Y™
=

and find its corresponding eigenvalue. Find the
other two eigenvalues and their corresponding
eigenvectors.

Write down in spectral form the general
solution of the system of differential
equations

2%)-:=7x—y—z

C—12—4x—y

dt

2d—z =-3x+3y+z
dt
Hence show thatifx =2, y=4andz=6

when ¢ = 0 then the solution is

U

x=2¢, y=4e, z=6¢

(a) Find the SVD form of the matrix
12 09 -4
A =
16 12 3

(b) Use the SVD to determine the pseudo inverse
A" and confirm it is a right inverse of A.

(c) Determine the pseudo inverse A" without using
the SVD.

From (1.51) the unitary matrices U and ¥ and sigma
matrix X may be written in the partitioned form:

ﬁ=uz&HLV=[Kv;¢2={j g}

where S is 7 X r diagonal matrix having the singular
values of 4 as its diagonal elements and 0 denotes
zero matrices having appropriate order.

(a) Show that the SVD form of 4 may be
expressed in the form

A=US0"

17

This is called the reduced singular value
decomposition of 4.

(b) Deduce that the pseudo inverse is given by
A=V §'0"

(c) Use the results of (a) and (b) to determine
the SVD form and pseudo inverse of the

matrix
1 -1
A=|-2 2
2 =2

and check your answers with those obtained
in Exercise 46.

A linear time-invariant system (A, b, c) is
modelled by the state-space equations

X(t) = Ax(?) + bu(t)
y(t) = €"x(1)

where x(7) is the n-dimensional state vector, and
u(?) and y(¢) are the system input and output
respectively. Given that the system matrix A
has #n distinct non-zero eigenvalues, show that
the system equations may be reduced to the
canonical form

() = AE(t) + byu(r)
(1) = ¢TE@)

where A is a diagonal matrix. What properties of
this canonical form determine the controllability
and observability of (A, b, ¢)?

Reduce to canonical form the system (A, b, ¢)
having

1 1 =2
A=|-1 2 1

[0 1 -1

(-1 -2
b=1| 1 c=1 1

-1 0

and comment on its stability, controllability and
observability by considering the ranks of the
appropriate Kalman matrices [b Ab AZb]
and[¢ ATe (AT)c].
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18

19

20

A third-order system is modelled by the state-space
representation

-2 -2 0 1 0
x=0 0 1{x+|0 1|u
0 -3 -4 1 1

wherex=[x, x, x]"andu=[u, u)]"
Find the transformation x = Mz which reduces
the model to canonical form and solve for x(7)
givenx(0)=[10 5 2]"andu(r)=[t 1]".

The behaviour of an unforced mechanical system
is governed by the differential equation

5 2 -1 0
(=13 6 -9x(1), x(0)=|1
11 1 0

(a) Show that the eigenvalues of the system
matrix are 6, 3, 3 and that there is only
one linearly independent eigenvector
corresponding to the eigenvalue 3. Obtain the
eigenvectors corresponding to the eigenvalues
6 and 3 and a further generalized eigenvector
for the eigenvalue 3.

(b) Write down a generalized modal matrix M
and confirm that

AM=MJ
for an appropriate Jordan matrix J.
(c) Using the result
x(t) = Me?M~'x(0)
obtain the solution to the given differential

equation.

(Extended problem) Many vibrational systems are
modelled by the vector—matrix differential equation

X(1) = Ax(1) )

where A is a constant n X n matrix and

x(t)=[xi(t) xo(1) x,(0]". By
substituting x = e*u, show that

Au=Au )

and that non-trivial solutions for u exist
provided that

A -A1=0 A3)
Let A%, A3, ..., A2 be the solutions of (3) and
U, u,, ..., u,the corresponding solutions of (2).

Define M to be the matrix having u,, u,, . . .,
u, as its columns and S to be the diagonal matrix
having A2, A, ..., A2 as its diagonal elements.
By applying the transformation x(¢) = M¢(#),
where (1) = [¢,(1) ¢x(?) 7,0]", to (1),
show that

4§=Sq “
and deduce that (4) has solutions of the form
q;=C;sin(wyt + a;) 5)

where ¢; and ¢; are arbitrary constants and
A;=]jo, with j = (-1).

The solutions A? of (3) define the natural
frequencies ®, of the system. The corresponding
solutions ¢; given in (5) are called the normal
modes of the system. The general solution of (1)
is then obtained using x(7) = M¢(?).

A mass—spring vibrating system is governed
by the differential equations

X,(t) = =3x,(2) + 2x,(¢)
X(1) = x1(2) — 2x,(2)

with x,(0) = 1 and x,(0) = x,(0) = x,(0) = 2.
Determine the natural frequencies and the
corresponding normal modes of the system.
Hence obtain the general displacement x,(#)
and x,(¢) at time ¢ = 0. Plot graphs of both
the normal modes and the general solutions.
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yBW Introduction

Frequently the equations which express mathematical models in both engineering ana-
lysis and engineering design involve derivatives and integrals of the models’ variables.
Equations involving derivatives are called differential equations and those which include
integrals or both integrals and derivatives are called integral equations or integro-
differential equations. Generally integral and integro-differential equations are more
difficult to deal with than purely differential ones.

There are many methods and techniques for the analytical solution of elementary
ordinary differential equations. The most common of these are covered in most first-
level books on engineering mathematics (e.g. Modern Engineering Mathematics).
However, many differential equations of interest to engineers are not amenable to ana-
lytical solution and in these cases we must resort to numerical solutions. Numerical
solutions have many disadvantages (it is, for instance, much less obvious how changes
of parameters or coefficients in the equations affect the solutions) so an analytical solu-
tion is generally more useful where one is available.

There are many tools available to the engineer which will provide numerical solutions
to differential equations. The most versatile of these perhaps are the major computer
algebra systems such as MAPLE. These contain functions for both analytical and

numerical solution of differential equations. Systems such as MATLAB/Simulink and
Mathcad can also provide numerical solutions to differential equations problems. It
may sometimes be necessary for the engineer to write a computer program to solve
a differential equation numerically, either because suitable software packages are
not available or because the packages available provide no method suitable for the
particular differential equation under consideration.

Whether the engineer uses a software package or writes a computer program for
the specific problem, it is necessary to understand something of how numerical
solution of differential equations is achieved mathematically. The engineer who
does not have this understanding cannot critically evaluate the results provided by a
software package and may fall into the trap of inadvertently using invalid results. In
this chapter we develop the basics of the numerical solution of ordinary differential
equations.

AV 3 P T CET T T ITEN DM motion in a viscous fluid

The problem of determining the motion of a body falling through a viscous fluid arises
in a wide variety of engineering contexts. One obvious example is that of a parachutist,
both in free fall and after opening his or her parachute. The dropping of supplies from
aircraft provides another example. Many industrial processes involve adding particulate
raw materials into process vessels containing fluids, whether gases or liquids, which
exert viscous forces on the particles. Often the motion of the raw materials in the pro-
cess vessel must be understood in order to ensure that the process is effective and
efficient. Fluidized bed combustion furnaces involve effectively suspending particles
in a moving gas stream through the viscous forces exerted by the gas on the particles.
Thus, understanding the mechanics of the motion of a particle through a viscous fluid
has important engineering applications.
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mg

Figure 2.1 A particle
falling through a
viscous fluid.

2.3

When a particle is falling through a viscous fluid it may be modelled simply in the
following way. The force of gravity acts downwards and is opposed by a viscous drag
force produced by the resistance of the fluid. Figure 2.1 shows a free body diagram of
the particle which is assumed to be falling vertically downwards. If the particle’s mass
is m, the gravitational force is mg, and it is opposed by a drag force, D, acting to oppose
motion. The displacement of the particle from its initial position is x.

The equation of motion is

s _ gD 2.1
moE e 2.1)

Before we can solve this equation, the form of the drag term must be determined.
For particles moving at a high speed it is often assumed that the drag is proportional to
the square of the speed. For slow motion the drag is sometimes assumed to be directly
proportional to the speed. In other applications it is more appropriate to assume that
drag is proportional to some power of the velocity, so that

D=k*= k(i—);) where, normally, 1 < o < 2

The differential equation (2.1) then becomes

dt2 dr
. d’x dx\*
ie. mag + k(a;) =mg 2.2)

This is a second-order, nonlinear, ordinary differential equation for x, the displacement of
the particle, as a function of time. In fact, for both o= 1 and = 2, (2.2) can be solved
analytically, but for other values of & no such solution exists. If we want to solve the
differential equation for such values of & we must resort to numerical techniques.

Numerical solution of first-order ordinary
differential equations

In a book such as this we cannot hope to cover all of the many numerical techniques which
have been developed for dealing with ordinary differential equations so we will concen-
trate on presenting a selection of methods which illustrate the main strands of the theory.
In so doing we will meet the main theoretical tools and unifying concepts of the area.
In the last twenty years great advances have been made in the application of computers
to the solution of differential equations, particularly using computer algebra packages
to assist in the derivation of analytical solutions and the computation of numerical solu-
tions. The MATLAB package is principally oriented towards the solution of numerical
problems (although its Symbolic Math Toolbox and the MuPAD version are highly
capable) and contains a comprehensive selection of the best modern numerical techniques
giving the ability to solve most numerical problems in ordinary differential equations.
Indeed numerical solutions can be achieved both in native MATLAB and in the Simulink
simulation sub-system; which of these paths the user chooses to follow may well be
dictated as much by their experience and professional orientation as by theoretical
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23.1

Figure 2.2

The direction field
for the equation
dx/df = x(1 = x)t.

considerations. MAPLE, despite being mainly orientated towards the solution of sym-
bolic problems, also contains a comprehensive suite of numerical solution routines and
is, in practice, just as capable as MATLAB in this area. Moreover, MAPLE gives to the
user more control of the solution method used and includes a number of ‘classical’
solution methods. These classical methods include all the methods which are used, in
this chapter, to introduce, develop and analyse the main strands of the theory mentioned
above. For this reason, MAPLE will be featured rather more frequently than MATLAB,
but the practising engineer is as likely to be using MATLAB for the numerical solution
of real-world problems as using MAPLE.

Despite the fact that professional engineers are very likely to be using these packages
to compute numerical solutions of ordinary differential equations it is still important
that they understand the methods which the computer packages use to do their work, for
otherwise they are at the mercy of the decisions made by the designers of the packages
who have no foreknowledge of the applications to which users may put the package. If
the engineering user does not have a sound understanding of the principles being used
within the package there is the ever present danger of using results outside their domain
of validity. From there it is a short step to engineering failures and human disasters.

A simple solution method: Euler’s method

For a first-order differential equation dx/df = f{(#, x) we can define a direction field. The
direction field is that two-dimensional vector field in which the vector at any point (7, x)
has the gradient dx/dz. More precisely, it is the field

— LX)y fe, )

JIT+f(5,%)7]
For instance, Figure 2.2 shows the direction field of the differential equation dx/dt =
x(1 —x)t.

Since a solution of a differential equation is a function x(f) which has the property
dx/dt = f(¢, x) at all points (¢, x) the solutions of the differential equation are curves in
the (¢, x) plane to which the direction field lines are tangential at every point. For
instance, the curves shown in Figure 2.3 are solutions of the differential equation
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Figure 2.3 Solutions
of dx/dt = x(1 — x)t
superimposed on its
direction field.

Figure 2.4

The construction of
a numerical solution
of the equation
dx/dr = f{¢, x).

X

dx
i =x(1 —x)t

This immediately suggests that a curve representing a solution can be obtained by
sketching on the direction field a curve that is always tangential to the lines of the
direction field. In Figure 2.4 a way of systematically constructing an approximation to
such a curve is shown.

Starting at some point (), x,), a straight line parallel to the direction field at that
point, f(#,, x,), is drawn. This line is followed to a point with abscissa 7, + 4. The ordin-
ate at this point is x, + Af(,, x,), which we shall call X|. The value of the direction field
at this new point is calculated, and another straight line from this point with the new
gradient is drawn. This line is followed as far as the point with abscissa #, + 24. The
process can be repeated any number of times, and a curve in the (7, x) plane consisting
of a number of short straight-line segments is constructed. The curve is completely
defined by the points at which the line segments join, and these can obviously be
described by the equations

A
12 +
I | I / / s/ e e
P
| | [ /
g 4 I / / / / b - - = =
/ / / / e
64 i / / / —
! / / — e —
44 / / / -
wx) A - - - = — —
2T WGpx) ~— T — T T =
tpx~h — — — — — =

! ! 1 ! [
T T T T T Ll
t

0 2 4 6 8 10 12
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Figure 2.5 The
Euler-method solutions
of dx/dt = x*te™ for
h=0.05,0.025 and
0.0125.

x A Analytic
| ! f / / Ve e /solution
104 I ! / / / s s = - _h=0.0125
| / | /
I i Z N
o p— —_— _
81 2005
I ! / / = .
6 ! / / / — e
/ / / — .
4 / / / e —_— — — = =
/ / —~ e,
2_. / - — — J—— — — — J— —_—
| | i Il I .
T T T T lj [
0 2 4 6 8 10 12 ¢
t=ty+h, Xy =xo + hf(ty, x,)

L=t +h, X, =X, + hf(t, X))
L=t+h, X=X+ hf(tza X;)

tn+] = tn + h) Xn+] = Xvn + hf(tm Xn)

These define, mathematically, the simplest method for integrating first-order differential
equations. It is called Euler’s method. Solutions are constructed step by step, starting
from some given starting point (#,, x,). For a given ¢, each different x,, will give rise to
a different solution curve. These curves are all solutions of the differential equation, but
each corresponds to a different initial condition.

The solution curves constructed using this method are obviously not exact solutions
but only approximations to solutions, because they are only tangential to the direction
field at certain points. Between these points, the curves are only approximately tangen-
tial to the direction field. Intuitively, we expect that, as the distance for which we follow
each straight-line segment is reduced, the curve we are constructing will become a
better and better approximation to the exact solution. The increment / in the independent
variable ¢ along each straight-line segment is called the step size used in the solution.
In Figure 2.5 three approximate solutions of the initial-value problem

A _ 2 x0)=0091 2.3)
dr

for step sizes 4 = 0.05, 0.025 and 0.0125 are shown. These steps are sufficiently small
that the curves, despite being composed of a series of short straight lines, give the illusion
of being smooth curves. The equation (2.3) actually has an analytical solution, which
can be obtained by separation:

e
(1+He +C

The analytical solution to the initial-value problem is also shown in Figure 2.5 for com-
parison. It can be seen that, as we expect intuitively, the smaller the step size the more
closely the numerical solution approximates the analytical solution.
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MAPLE provides options in the dsolve function, the general-purpose ordinary
differential equation solver, to return a numerical solution computed using the Euler
method. Using this option we can easily generate the solutions plotted on Figure 2.5.
In fact we can readily extend the figure to some smaller time steps. The following
MAPLE worksheet will produce a figure similar to Figure 2.5 comparing the solu-
tions obtained from the Euler method using time steps of 0.05, 0.025, 0.0125,
0.00625, 0.003125 and the exact solution. The pattern established in Figure 2.5 can be
seen to continue with each halving of the time step producing a solution with a yet
smaller error when compared with the exact solution.

> degl:=diff (x(t),t)=x(t) "2*t*exp(-t);initl:=x(0)=0.91;
> #solve the differential equation with 5 different
timesteps
> x1:=dsolve({degl, initl},
numeric,method=classical [foreuler],output=1listprocedure,
stepsize=0.05) ;
> x2:=dsolve({degl, initl},
numeric,method=classical [foreuler],output=1listprocedure,
stepsize=0.025);
> x3:=dsolve({degl, initl},
numeric,method=classical [foreuler],output=1listprocedure,
stepsize=0.0125) ;
> x4:=dsolve({degl, initl},
numeric,method=classical [foreuler],output=1listprocedure,
stepsize=0.00625) ;
> x5:=dsolve({degl, initl},
numeric,method=classical [foreuler],output=1listprocedure,
stepsize=0.003125) ;
> #extract the five solutions from the listprocedure
structures
for i from 1 to 5 do;solution||i:=op(2,x|1i[2]);end do;

#find the exact solution

xa:=dsolve ({degl, initl});

#plot the five numerical solutions and the exact solution

plot ([seg(solution| |i(t),i=1..5),0p(2,xa) (t)],t=0..12);

vV V. V V V

Example 2.1  The function x(¢) satisfies the differential equation

dx_x+¢

dt xt

and the initial condition x(1) = 2. Use Euler’s method to obtain an approximation to the
value of x(2) using a step size of 2 =0.1.

Solution  In this example the initial value of ¢ is 1 and x(1) = 2. Using the notation above we have
t, =1, and x, = 2. The function f(¢, x) = )%tt So we have

ty=ty+h=1+0.1=1.1000
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Figure 2.6
Computational results
for Example 2.1.

2.3.2

t X X+t Xt p ALt
Xt
1.0000 2.0000 3.0000 2.0000 0.1500
1.1000 2.1500 3.2500 2.3650 0.1374
1.2000 2.2874 3.4874 2.7449 0.1271
1.3000 2.4145 3.7145 3.1388 0.1183
1.4000 2.5328 3.9328 3.5459 0.1109
1.5000 2.6437 4.1437 3.9656 0.1045
1.6000 2.7482 4.3482 4.3971 0.0989
1.7000 2.8471 4.5471 4.8400 0.0939
1.8000 2.9410 4.7410 5.2939 0.0896
1.9000 3.0306 4.9306 5.7581 0.0856
2.0000 3.1162
X, = xo + hf(ty, x0) = x, + K10 =2 101221 5 1500
thO 2 N 1
fy=1,+h=1.1000 + 0.1 = 1.2000
X, =x, + hf(t, %)) = x, + KD — 21500 4012200 £ 1100 _ 5 5g7y
i 2.1500 - 1.100

The rest of the solution is obtained step by step as set out in Figure 2.6. The approxima-
tion X(2) = 3.1162 results.

The solution to this example could easily be obtained using MAPLE as follows:
> degl:=diff(x(t),t)=(x(t)+t)/(x(t)*t);initl:=x(1)=2;
> x1:=dsolve({degl, initl},
numeric,method=classical [foreuler], output=1listprocedure,
stepsize=0.1);
> sol:=op(2,x1[2]);s01(2);

Analysing Euler’s method

We have introduced Euler’s method via an intuitive argument from a geometrical
understanding of the problem. Euler’s method can be seen in another light — as an
application of the Taylor series. The Taylor series expansion for a function x(f) gives
2 42 3 43
w(t+hy=x()+ W&+ L5y L dxgy Q2.4)
d¢ 21 dr 31 drs
Using this formula, we could, in theory, given the value of x(#) and all the derivatives
of x at ¢, compute the value of x(¢ + /) for any given A. If we choose a small value for
h then the Taylor series truncated after a finite number of terms will provide a good
approximation to the value of x(¢# + /). Euler’s method can be interpreted as using
the Taylor series truncated after the second term as an approximation to the value of
x(t + h).
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In order to distinguish between the exact solution of a differential equation and a
numerical approximation to the exact solution (and it should be appreciated that all
numerical solutions, however accurate, are only approximations to the exact solu-
tion), we shall now make explicit the convention that we used in the last section. The
exact solution of a differential equation will be denoted by a lower-case letter and a
numerical approximation to the exact solution by the corresponding capital letter. Thus,
truncating the Taylor series, we write

X(t + h) = x(f) + hda)-;(t) — x() + W1, %) @.5)

Applying this truncated Taylor series, starting at the point (¢,, x,) and denoting ¢, + nh
by ¢,, we obtain

X(t) = X(ty + h) = x(ty) + hf(ty, x,)

X(t) = X(t, + h) = X(1)) + hf(t,, X))

X(t) = X(t, + h) = X(t,) + hf(t,, X)
and so on

which is just the Euler-method formula obtained in Section 2.3.1. As an additional
abbreviated notation, we shall adopt the convention that x(¢, + nh) is denoted by x,,
X(t, + nh) by X,, f(¢,, x,) by f,, and f(¢,, X,) by F,. Hence we may express the Euler
method, in general terms, as the recursive rule

Xo=x,
Xn+l :Xn + th (I’l = O)

The advantage of viewing Euler’s method as an application of Taylor series in this way
is that it gives us a clue to obtaining more accurate methods for the numerical solution
of differential equations. It also enables us to analyse in more detail how accurate
the Euler method may be expected to be. Using the order notation we can abbreviate
(2.4) to

x(t + h) = x(t) + hf(t, x) + O(h?)
and, combining this with (2.5), we see that
X(t+ h) =x(t + h) + O(h*) (2.6)

(Note that in obtaining this result we have used the fact that signs are irrelevant in
determining the order of terms; that is, —O(h”) = O(h”).) Equation (2.6) expresses the
fact that at each step of the Euler process the value of X(z + /) obtained has an error of
order 47, or, to put it another way, the formula used is accurate as far as terms of order
h. For this reason Euler’s method is known as a first-order method. The exact size of
the error is, as we intuitively expected, dependent on the size of %, and decreases as 4
decreases. Since the error is of order 4%, we expect that halving %, for instance, will
reduce the error at each step by a factor of four.

This does not, unfortunately, mean that the error in the solution of the initial value
problem is reduced by a factor of four. To understand why this is so, we argue as
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Example 2.2

Solution

Figure 2.7
Computational results
for Example 2.2.

follows. Starting from the point (z,, x,) and using Euler’s method with a step size /4 to
obtain a value of X(¢, + 4), say, requires 4/h steps. At each step an error of order /” is
incurred. The total error in the value of X(#, + 4) will be the sum of the errors incurred
at each step, and so will be 4/ times the value of a typical step error. Hence the total
error is of the order of (4/h)O(h?); that is, the total error is O(h). From this argument we
should expect that if we compare solutions of a differential equation obtained using
Euler’s method with different step sizes, halving the step size will halve the error in the
solution. Examination of Figure 2.5 confirms that this expectation is roughly correct in
the case of the solutions presented there.

Let X, denote the approximation to the solution of the initial-value problem

2
dx_ _x

dt t+1°

x(0)=1

obtained using Euler’s method with a step size 4 = 0.1, and X, that obtained using a step size
of 4 =0.05. Compute the values of X(f) and X,(¢) for t=0.1, 0.2, ..., 1.0. Compare
these values with the values of x(7), the exact solution of the problem. Compute the ratio
of the errors in X, and Xj.

The exact solution, which may be obtained by separation, is

o
1-1In(t+ 1)

The numerical solutions X, and X; and their errors are shown in Figure 2.7. Of course,
in this figure the values of X, are recorded at every step whereas those of X, are only
recorded at alternate steps.

Again, the final column of Figure 2.7 shows that our expectations about the effects
of halving the step size when using Euler’s method to solve a differential equation are
confirmed. The ratio of the errors is not, of course, exactly one-half, because there are
some higher-order terms in the errors, which we have ignored.

‘ X, X, (1) - X, I - X,| |2 =Xl
‘ x-X, ‘
0.00000 1.000 00 1.000 00 1.000 00
0.10000 1.100 00 1.102 50 1.10535 0.005 35 0.002 85 0.53
0.20000 1.21000 1.21603 1.22297 0.01297 0.006 95 0.54
0.30000 1.33201 1.34294 1.35568 0.023 67 0.01275 0.54
0.400 00 1.468 49 1.486 17 1.507 10 0.03861 0.02092 0.54
0.50000 1.62252 1.649 52 1.68199 0.05947 0.03247 0.55
0.60000 1.798 03 1.83791 1.886 81 0.08878 0.04890 0.55
0.700 00 2.00008 2.05792 2.13051 0.13042 0.07259 0.56
0.80000 2.23540 231857 2.42593 0.19053 0.10736 0.56
0.90000 2.51301 2.63251 2.79216 0.27915 0.15965 0.57

1.000 00 2.84539 3.01805 3.25889 0.413 50 0.240 84 0.58
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2.3.3

Example 2.3

Solution

Using numerical methods to solve engineering problems

In Example 2.2 the errors in the values of X, and X| are quite large (up to about 14% in
the worst case). While carrying out computations with large errors such as these is quite
useful for illustrating the mathematical properties of computational methods, in engineering
computations we usually need to keep errors very much smaller. Exactly how small they
must be is largely a matter of engineering judgement. The engineer must decide how
accurately a result is needed for a given engineering purpose. It is then up to that engineer
to use the mathematical techniques and knowledge available to carry out the computations
to the desired accuracy. The engineering decision about the required accuracy will usually
be based on the use that is to be made of the result. If, for instance, a preliminary design
study is being carried out then a relatively approximate answer will often suffice, whereas
for final design work much more accurate answers will normally be required. It must be
appreciated that demanding greater accuracy than is actually needed for the engineering
purpose in hand will usually carry a penalty in time, effort or cost.

Let us imagine that, for the problem posed in Example 2.2, we had decided we needed
the value of x(1) accurate to 1%. In the cases in which we should normally resort to
numerical solution we should not have the analytical solution available, so we must
ignore that solution. We shall suppose then that we had obtained the values of X,(1) and
X,(1) and wanted to predict the step size we should need to use to obtain a better appro-
ximation to x(1) accurate to 1%. Knowing that the error in X, (1) should be approximately
one-half the error in X,(1) suggests that the error in X, (1) will be roughly the same as
the difference between the errors in X,(1) and X, (1), which is the same as the difference
between X,(1) and X,(1); that is, 0.172 66. One per cent of X, (1) is roughly 0.03, that is
roughly one-sixth of the error in X,(1). Hence we expect that a step size roughly one-
sixth of that used to obtain X, will suffice; that is, a step size # = 0.008 33. In practice,
of course, we shall round to a more convenient non-recurring decimal quantity such as
h=0.008. This procedure is closely related to the Aitken extrapolation procedure some-
times used for estimating limits of convergent sequences and series.

Compute an approximation X(1) to the value of x(1) satisfying the initial-value problem

2
dy _ _x

dt t+1’

x(0) =1

by using Euler’s method with a step size 4 = 0.008.

It is worth commenting here that the calculations performed in Example 2.2 could
reasonably be carried out on any hand-held calculator, but this new calculation requires
125 steps. To do this is on the boundaries of what might reasonably be done on a hand-
held calculator, and is more suited to a micro- or minicomputer. Repeating the calcula-
tion with a step size & = 0.008 produces the result X(1) =3.21391.

We had estimated from the evidence available (that is, values of X(1) obtained using
step sizes & = 0.1 and 0.05) that the step size # = 0.008 should provide a value of X(1)
accurate to approximately 1%. Comparison of the value we have just computed with the
exact solution shows that it is actually in error by approximately 1.4%. This does not quite
meet the target of 1% that we set ourselves. This example therefore serves, first, to illustrate
how, given two approximations to x(1) derived using Euler’s method with different step
sizes, we can estimate the step size needed to compute an approximation within a
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Figure 2.8 A poorly
structured algorithm
for Example 2.2.

desired accuracy, and, secondly, to emphasize that the estimate of the appropriate step
size is only an estimate, and will not guarantee an approximate solution to the problem
meeting the desired accuracy criterion. If we had been more conservative and rounded
the estimated step size down to, say, 0.005, we should have obtained X(1) = 3.23043,
which is in error by only 0.9% and would have met the required accuracy criterion.

Again the solution to this example could be obtained using MAPLE. The following
worksheet computes the numerical solution using a step size of 0.008, then the
analytical solution and finally computes the percentage error in the numerical solution.

#set up differential equation

degl:=diff (x(t),t)=x(t)"2/(t+1);initl:=x(0)=1;

#obtain x1, the numerical solution

x1:=dsolve ({deqgl, initl},

numeric,method=classical [foreuler],output=1listprocedure,

V V. V V

stepsize=0.008) ;

#xa 1s the analytic solution
xa:=dsolve ({deqgl, initl});
#obtain the value of x(t) at t=1
op(2,x1[2]) (1) ;
#find the percentage error in the numerical solution
evalf ((op(2,x1[2]) (1)-subs(t=1,0p(2,xa)))/

subs (t=1,0p(2,xa)))*100;

V V. V V V V

Since we have mentioned in Example 2.3 the use of computers to undertake the
repetitive calculations involved in the numerical solution of differential equations, it is
also worth commenting briefly on the writing of computer programs to implement those
numerical solution methods. Whilst it is perfectly possible to write informal, unstruc-
tured programs to implement algorithms such as Euler’s method, a little attention to
planning and structuring a program well will usually be amply rewarded — particularly
in terms of the reduced probability of introducing ‘bugs’. Another reason for careful
structuring is that, in this way, parts of programs can often be written in fairly general
terms and can be re-used later for other problems. The two pseudocode algorithms in
Figures 2.8 and 2.9 will both produce the table of results in Example 2.2. The pseudocode
program of Figure 2.8 is very specific to the problem posed, whereas that of Figure 2.9
is more general, better structured, and more expressive of the structure of mathematical
problems. It is generally better to aim at the style of Figure 2.9.

xl « 1
x2 « 1
write(vdu, 0, 1, 1, 1)
foriis 1 to 10 do
x1 < x1 + 0.1#x1#x1/((i—-1)*0.1 + 1)
X2 ¢ x2 + 0.05%x2%x2/((i—1)*0.1 + 1)
x2 ¢« x2 + 0.05%x2*x2/((i—1)*0.1 + 1.05)
x ¢« 1/(1 = In(i*0.1 + 1))
write(vdu,0.1#1,x1,x2.x,x — x1,x — x2,(x — x2)/(x — x1))
endfor
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Figure 2.9 A better
structured algorithm
for Example 2.2.

initial_time < 0
final_time « 1
initial_x < 1
step < 0.1
t ¢ initial_time
x1 « initial_x
X2 <« initial_x
hl « step
h2 « step/2
write(vdu,initial_time,x1,x2,initial_x)
repeat
euler(t,x1,h1,1 — x1)
euler(t,x2,h2,2 — x2)
t « t+ step
X < exact_solution(t,initial_time,initial_x)
write(vdu,t,x1,x2,x,abs(x — x1),abs(x — x2),abs((x — x2)/(x — x1)))
until t = final_time

procedure euler(t_old,x_old,step,number — x_new)
temp_x < x_old
for iis 0 to number —1 do
temp_x «— temp_x + stepxderivative(t_old + step*i,temp_x)
endfor
X_New < temp_x
endprocedure

procedure derivative(t,x — derivative)
derivative «— x#x/(t + 1)
endprocedure

procedure exact_solution(t,t0,x0 — exact_solution)
¢« In(t0 + 1) + 1/x0
exact_solution < 1/(c — In(t + 1))

endprocedure

2.3.4 Exercises

All the exercises in this section can be completed using MAPLE in a similar manner to Examples 2.1 and 2.3 above.
In particular MAPLE or some other form of computer assistance should be used for Exercises 5, 6 and 7. If you do
not have access to MAPLE, you will need to write a program in MATLAB or some other high-level scientific

computer programming language (e.g. Pascal or C).

Find the value of X(0.3) for the initial-value problem 3 Find the value of X(1) for the initial-value problem

X
51__ =—1xt,

de 2

using Euler’s method with step size 7 =0.1.

X0)=1 de _ _x X(0.5) =1

20+ 1)

using Euler’s method with step size 7 = 0.1.

Find the value of X(1.1) for the initial-value problem 4 Find the value of X(0.5) for the initial-value problem
dx _ dx _4 -1
a_ 1 =0. &x_2=f 0)=1
T >xt, x(1)=0.1 11 x(0)

using Euler’s method with step size 4 = 0.025.

using Euler’s method with step size 4 = 0.05.
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Denote the Euler-method solution of the initial-
value problem

dx _ _xt

=, x(1)=2
dt +2

using step size & = 0.1 by X,(¢), and that using
h=0.05 by X,(¢). Find the values of X,(2) and
X,(2). Estimate the error in the value of X;(2), and
suggest a value of step size that would provide a
value of X(2) accurate to 0.1%. Find the value of
X(2) using this step size. Find the exact solution of
the initial-value problem, and determine the actual

X,(2). Estimate the error in the value of X,(2), and
suggest a value of step size that would provide a
value of X(2) accurate to 0.2%. Find the value of
X(2) using this step size. Find the exact solution of
the initial-value problem, and determine the actual
magnitude of the errors in X,(2), X,(2) and your
final value of X(2).

Denote the Euler-method solution of the initial-
value problem

dr_ 1 =12

dr  Inx’

magnitude of the errors in X,(2), X;(2) and your

final value of X(2).

Denote the Euler-method solution of the initial-

value problem

dv _ 1
dr

using step size & = 0.1 by X,(¢), and that using
h =0.05 by X,(¢). Find the values of X,(2) and

using step size 4 = 0.05 by X,(#), and that using
h =0.025 by X,(¢). Find the values of X (1.5) and
X,(1.5). Estimate the error in the value of X,(1.5),
and suggest a value of step size that would provide
a value of X(1.5) accurate to 0.25%. Find the value
of X(1.5) using this step size. Find the exact
solution of the initial-value problem, and determine
the actual magnitude of the errors in X(1.5), X;(1.5)
and your final value of X(1.5).

x(1)=1

2.3.5

More accurate solution methods: multistep methods

In Section 2.3.2 we discovered that using Euler’s method to solve a differential equa-
tion is essentially equivalent to using a Taylor series expansion of a function truncated
after two terms. Since, by so doing, we are ignoring terms O(A?), an error of this order
is introduced at each step in the solution. Could we not derive a method for calculat-
ing approximate solutions of differential equations which, by using more terms of the
Taylor series, provides greater accuracy than Euler’s method? We can — but there are
some disadvantages in so doing, and various methods have to be used to overcome
these.
Let us first consider a Taylor series expansion with the first three terms written
explicitly. This gives
2 42
x(t+ ) =x(0) + h&E () + L 4x
dz 21 dt

Substituting f{(¢, x) for dx/d¢, we obtain

(1) +O(I) 2.7

Xt + 1) = x() + hf(t, x) + ’2’—? g{(z, X) + O

Dropping the O(h*) terms provides an approximation
2
Xt + h) = x(t) + hfit, x) + % g{(t, X)

such that
X(t+ h)=x(t+ h) + O(h?)
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in other words, a numerical approximation method which has an error at each step that
is not of order /? like the Euler method but rather of order 4°. The corresponding general
numerical scheme is

X=X, +hF+—d—F

BT, (2.8)

The application of the formula (2.5) in Euler’s method was straightforward because
an expression for f{#, x) was provided by the differential equation itself. To apply (2.8)
as it stands requires an analytical expression for df/df so that dF,/df may be computed.
This may be relatively straightforward to provide — or it may be quite complicated.
Although, using modern computer algebra systems, it is now often possible to compute
analytical expressions for the derivatives of many functions, the need to do so remains
a considerable disadvantage when compared with methods which do not require the
function’s derivatives to be provided.

Fortunately, there are ways to work around this difficulty. One such method hinges
on the observation that it is just as valid to write down Taylor series expansions for
negative increments as for positive ones. The Taylor series expansion of x(¢ — /) is

3 .43
x(t—hy=x(t) - h%(y + £ L Qi hdxg
dt 21 dt 31 dt
If we write only the first three terms explicitly, we have

hdx

x(t—h) =x(t) — h (t) + = 0 (t) + O(I)

or, rearranging the equation,

hdx
21 d

(t) x(t—h) —x(t) + h (t) + O(h*)
Substituting this into (2.7), we obtain

Xt + ) = x(0) + hda)f(t) + {x(r —h) - x(£) + h%’f(r) + O(hS)J + o)
That is,

X(t+h) = x(t - h) + 21%“(;) + O

or, substituting f(¢, x) for dx/dt,
x(t + ) =x(t — h) + 2hf(t, x) + O(h*) 2.9)

Alternatively, we could write down the Taylor series expansion of the function dx/dz
with an increment of —A:

2 2 43
dxe, gy =93 - p 92y L L dx) o)
dt dt ds 21 dt
Writing only the first two terms explicitly and rearranging gives

#8200y 95 iy 4 o)
dt dt dr
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and substituting this into (2.4) gives
_ dx , , hfdx ,y _dx,, : ;
x(t+h)=x(t) + hdt(t) + 7 {dt(t) dt(t h) + O(h )J + O(l°)
That is,
- hlgdx y _dx, 3
x(t+h)=x(t) + 7 {3 dt(t) dt(t h)} + O(h°)

or, substituting f(¢, x) for dx/dt,
x(t + h) = x(t) + 5 h[3f(t, x(1)) — f(t — h, x(t — h))] + O(K*) (2.10)

Equations (2.7), (2.9) and (2.10) each give an expression for x(¢ + /) in which all
terms up to those in /#* have been made explicit. In the same way as, by ignoring terms
of O(K*) in (2.7), the numerical scheme (2.8) can be obtained, (2.9) and (2.10) give rise
to the numerical schemes

X, =X_, +2hF, (2.11)
and
X,.=X,+;hG3F,-F,_) (2.12)

respectively. Each of these alternative schemes, like (2.8), incurs an error O(/*) at
each step.

The advantage of (2.11) or (2.12) over (2.8) arises because the derivative of
f(t, x) in (2.7) has been replaced in (2.9) by the value of the function x at the
previous time, x(¢ — /), and in (2.10) by the value of the function fat time # — 4. This
is reflected in (2.11) and (2.12) by the presence of the terms in X,_, and F,_, respect-
ively and the absence of the term in dF,/df. The elimination of the derivative of the
function f{#, x) from the numerical scheme is an advantage, but it is not without its
penalties. In both (2.11) and (2.12) the value of X,,, depends not only on the values
of X, and F, but also on the value of one or the other at #, ;. This is chiefly a problem
when starting the computation. In the case of the Euler scheme the first step took
the form

X, =X, + hF,

In the case of (2.11) and (2.12) the first step would seem to take the forms
X, =X, +2hF,

and

X, =X, + Lh(3F, - F.)

respectively. The value of X, in the first case and F_, in the second is not normally
available. The resolution of this difficulty is usually to use some other method to
start the computation, and, when the value of X, and therefore also the value of F,
is available, change to (2.11) or (2.12). The first step using (2.11) or (2.12) therefore
involves
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Example 2.4

Solution

Figure 2.10
Computational results
for Example 2.4.

X, =X, + 2hF,
or
X=X+ %h(3Fl_Fo)

Methods like (2.11) and (2.12) that involve the values of the dependent variable or its
derivative at more than one value of the independent variable are called multistep
methods. These all share the problem that we have just noted of difficulties in deciding
how to start the computation. We shall return to this problem of starting multistep methods
in Section 2.3.7.

Solve the initial-value problem

2
dx _ _x

dt t+ 1

x(0)=1

posed in Example 2.2 using the scheme (2.12) with a step size 2 = 0.1. Compute the
values of X(¢) for t=0.1, 0.2, ..., 1.0 and compare them with the values of the exact
solution x(7).

We shall assume that the value of X(0.1) has been computed using some other method
and has been found to be 1.10535. The computation therefore starts with the calculation
of the values of F,, F, and hence X,. Using the standard notation we have #,= 0, and
xo= 1. The function f(#, x) = x%(¢ + 1). Using the given value X(0.1) = 1.105 35, we have
t, =0.1, and X; = 1.105 35. So the first step is

t,=t,+h=0.100 00 + 0.1 = 0.200 00
X=X+ %h(3F1 —-F)=X+ %h[3f(t1,X1) _f(tm Xo)]

B 1.10535° 17
H+1 ty+1

=Xl+§h(3 )=1.22196
0.1+1 0+1

) =1.10535+ %0.1(3

The results of the computation are shown in Figure 2.10.

t X, F, $hGF,~F,) x(2) |x =X,
0.00000 1.000 00 1.000 00

0.10000 1.10535 1.11073 0.11661 1.10535 0.00000
0.20000 1.22196 1.24432 0.13111 1.22297 0.00101
0.30000 1.35307 1.408 31 0.14903 1.35568 0.00261
0.40000 1.502 10 1.61165 0.17133 1.507 10 0.004 99
0.50000 1.67344 1.86692 0.19946 1.68199 0.008 55
0.60000 1.87289 2.19233 0.23550 1.886 81 0.01391
0.70000 2.10839 2.61490 0.28262 2.13051 0.02211
0.80000 2.39101 3.176 08 0.34567 2.42593 0.03492
0.90000 2.736 68 3.94180 0.43247 2.79216 0.05548

1.000 00 3.169 14 3.258 89 0.08975
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Example 2.5

Solution

It is instructive to compare the values of X computed in Example 2.4 with those com-
puted in Example 2.2. Since the method we are using here is a second-order method,
the error at each step should be O(A°) rather than the O(4*) error of the Euler method.
We are using the same step size as for the solution X, of Example 2.2, so the errors
should be correspondingly smaller. Because in this case we know the exact solution of
the differential equation, we can compute the errors. Examination of the results shows
that they are indeed much smaller than those of the Euler method, and also considerably
smaller than the errors in the Euler method solution X, which used step size # = 0.05,
half the step size used here.

In fact, some numerical experimentation (which we shall not describe in detail)
reveals that to achieve a similarly low level of errors, the Euler method requires a step
size h =0.016, and therefore 63 steps are required to find the value of X(1). The second-
order method of (2.12) requires only 10 steps to find X(1) to a similar accuracy. Thus
the solution of a problem to a given accuracy using a second-order method can be
achieved in a much shorter computer processing time than using a first-order method.
When very large calculations are involved or simple calculations are repeated very
many times, such savings are very important.

How do we choose between methods of equal accuracy such as (2.11) and (2.12)?
Numerical methods for the solution of differential equations have other properties
apart from accuracy. One important property is stability. Some methods have the
ability to introduce gross errors into the numerical approximation to the exact solu-
tion of a problem. The sources of these gross errors are the so-called parasitic
solutions of the numerical process, which do not correspond to solutions of the
differential equation. The analysis of this behaviour is beyond the scope of this
book, but methods that are susceptible to it are intrinsically less useful than those
that are not. The method of (2.11) can show unstable behaviour, as demonstrated in
Example 2.5.

Let X, denote the approximation to the solution of the initial-value problem

dx _ ,, _

T 3x+2e”, x(0)=2

obtained using the method defined by (2.11), and X, that obtained using the method
defined by (2.12), both with step size ~ = 0.1. Compute the values of X,(#) and X,(¢) for
t=0.1,0.2, ..., 2.0. Compare these with the values of x(f), the exact solution of the
problem. In order to overcome the difficulty of starting the processes, assume that the
value X(0.1) = 1.645 66 has been obtained by another method.

The exact solution of the problem, which is a linear equation and so may be solved by
the integrating-factor method, is

x=e'+e

The numerical solutions X, and X, and their errors are shown in Figure 2.11. It can be
seen that X, exhibits an unexpected oscillatory behaviour, leading to large errors in the
solution. This is typical of the type of instability from which the scheme (2.11) and
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Figure 2.11
Computational results
for Example 2.5.

t X, X, x(t) x—X, x—-X,
0.000 00 2.000 00 2.000 00 2.000 00

0.10000 1.645 66 1.645 66 1.645 66 0.000 00 0.000 00
0.200 00 1.374 54 1.376 56 1.36754 —-0.007 00 —-0.009 02
0.300 00 1.14842 1.159 09 1.14739 —0.001 04 —0.01170
0.400 00 0.98182 0.98436 0.97151 —0.01030 -0.012 84
0.500 00 0.82746 0.84227 0.829 66 0.002 20 -0.01261
0.600 00 0.72795 0.72583 0.714 11 —0.013 84 -0.01172
0.700 00 0.61022 0.629 54 0.61904 0.008 83 —-0.01050
0.800 00 0.56045 0.54922 0.540 05 —0.02041 —-0.009 17
0.900 00 0.453 68 0.481 64 0.47378 0.020 10 —0.007 86
1.000 00 0.450 88 0.42432 0.41767 —-0.03321 —0.006 66
1.100 00 0.33030 0.37533 0.36975 0.03945 —0.005 58
1.200 00 0.38584 0.33315 0.328 52 —0.05733 —0.004 64
1.300 00 0.21927 0.296 60 0.29277 0.073 50 —0.003 83
1.400 00 0.36329 0.26475 0.26159 —-0.10170 —-0.003 15
1.500 00 0.09993 0.23683 0.23424 0.13431 —0.002 59
1.600 00 0.39259 0.21225 0.21013 —0.18246 —-0.002 12
1.700 00 —0.054 86 0.190 52 0.18878 0.243 64 —-0.00173
1.800 00 0.498 57 0.17124 0.169 82 —0.328 76 —0.001 42
1.900 00 —0.287 88 0.154 08 0.15291 0.440 80 —0.001 16
2.000 00 0.73113 0.13877 0.137 81 -0.59332 —0.000 96

those like it are known to suffer. The scheme defined by (2.11) is not unstable for all
differential equations, but only for a certain class. The possibility of instability in
numerical schemes is one that should always be borne in mind, and the intelligent user
is always critical of the results of numerical work and alert for signs of this type of
problem.

In this section we have seen how, starting from the Taylor series for a function,
schemes of a higher order of accuracy than Euler’s method can be constructed. We have
constructed two second-order schemes. The principle of this technique can be extended
to produce schemes of yet higher orders. They will obviously introduce more values
of X, or F,, (Where m=n—2,n—3,...). The scheme (2.12) is, in fact, a member of a
family of schemes known as the Adams—Bashforth formulae. The first few members
of this family are

Xy =X, + hF,
X =X, + %h(3E, =)

X =X, + ﬁ h(23F, — 16F,_, + 5F,,)
X =X, + 2i4 h(55F, = 59F,_, + 37F,, — 9F, ;)

The formulae represent first-, second-, third- and fourth-order methods respectively. The
first-order Adams—Bashforth formula is just the Euler method, the second-order
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one is the scheme we introduced as (2.12), while the third- and fourth-order formulae
are extensions of the principle we have just introduced. Obviously all of these require
special methods to start the process in the absence of values of X_|, F_|, X,, F_, and
SO on.

Some of the methods used by the standard MATLAB procedures for numerical
solution of ODEs are based on more sophisticated versions of the multistep methods
which we have just introduced. Multistep methods are particularly suitable for solving
equations in which the derivative function, f{z, x), is relatively computationally costly
to evaluate. At each step a multistep methods can reuse the values of the function
already computed at previous steps so the number of evaluations of the derivative
function is reduced compared to some other methods.

Local and global truncation errors

In Section 2.3.2 we argued intuitively that, although the Euler method introduces an
error O(h?) at each step, it yields an O(h) error in the value of the dependent variable
corresponding to a given value of the independent variable. What is the equivalent
result for the second-order methods we have introduced in Section 2.3.5? We shall
answer this question with a slightly more general analysis that will also be useful to us
in succeeding sections.

First let us define two types of error. The local error in a method for integrating
a differential equation is the error introduced at each step. Thus if the method is
defined by

Xn+l :g(h’ tn’ ‘Xvna tnfl’ ‘Xvnfls e )
and analysis shows us that
xn+l = g(h’ tn’ xna tnfls xnfls LI ) + O(h[’“)

then we say that the local error in the method is of order p + 1 or that the method is a
pth-order method.

The global error of an integration method is the error in the value of X(¢#, + a)
obtained by using that method to advance the required number of steps from a known
value of x(z,). Using a pth-order method, the first step introduces an error O(h**"). The
next step takes the approximation X, and derives an estimate X, of x, that introduces a
further error O(h”*"). The number of steps needed to calculate the value X(t, + a) is a/h.
Hence we have

X(t, + a) = x(t, + a) + ;-ll O(h™")

Dividing a quantity that is O(4") by & produces a quantity that is O(A"™"), so we must
have

X(t, + a) = x(t, + a) + O(h")

In other words, the global error produced by a method that has a local error O(h”*")
is O(h’). As we saw in Example 2.2, halving the step size for a calculation using
Euler’s method produces errors that are roughly half as big. This is consistent with
the global error being O(4). Since the local error of the Euler method is O(/?), this is
as we should expect. Let us now repeat Example 2.2 using the second-order Adams—
Bashforth method, (2.12).
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Example 2.6

Solution

Figure 2.12
Computational results
for Example 2.6.

Let X, denote the approximation to the solution of the initial-value problem

dr_ X 0)=1

dt t+ 1
obtained using the second-order Adams—Bashforth method with a step size 4 = 0.1, and
X, that obtained using a step size of & = 0.05. Compute the values of X,(7) and X,(7) for
t=0.1,0.2, ..., 1.0. Compare these values with the values of x(f), the exact solution
of the problem. Compute the ratio of the errors in X, and .X;. In order to start the process,
assume that the values X(—0.1) = 0.904 68 and X(—0.05) = 0.951 21 have already been
obtained by another method.

The exact solution was given in Example 2.2. The numerical solutions X, and X, and
their errors are shown in Figure 2.12.

Because the method is second-order, we expect the global error to vary like A%
Theoretically, then, the error in the solution JX; should be one-quarter that in X,. We see
that this expectation is approximately borne out in practice.

t X, X, x(1) - X,| v - X,| |2,
‘ x-X, ‘
0.00000 1.000 00 1.000 00 1.000 00
0.10000 1.104 53 1.10512 1.10535 0.000 82 0.00023 0.28
0.20000 1.22089 1.22239 1.22297 0.002 08 0.000 58 0.28
0.30000 1.35176 1.35459 1.35568 0.00392 0.00109 0.28
0.40000 1.50049 1.50525 1.507 10 0.006 61 0.001 85 0.28
0.50000 1.67144 1.67903 1.68199 0.01055 0.00296 0.28
0.60000 1.87040 1.88217 1.886 81 0.01640 0.004 64 0.28
0.700 00 2.10525 2.12331 2.13051 0.02525 0.00720 0.29
0.80000 2.38700 2.41470 2.42593 0.03893 0.01123 0.29
0.90000 2.73145 2.77440 2.79216 0.060 70 0.01776 0.29
1.000 00 3.16220 3.23007 3.258 89 0.096 70 0.028 82 0.30

Just as previously we outlined how, for the Euler method, we could estimate from
two solutions of the differential equation the step size that would suffice to compute a
solution to any required accuracy, so we can do the same in a more general way. If we
use a pth-order method to compute two estimates X,(¢, + a) and X, (¢, + a) of x(¢t, + a)
using step sizes 4 and } 4 then, because the global error of the process is O(h”), we
expect the error in X (¢, + a) to be roughly 27 times that in X,(#, + @). Hence the error in
X,(t, + a) may be estimated to be

| X(t+a) =X (to+a)|
2P -1
If the desired error, which may be expressed in absolute terms or may be derived from

a desired maximum percentage error, is € then the factor £, say, by which the error in
X, (%, + a) must be reduced is

k= | X, (to+a) =X, (t, +a)]
e2"-1)
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2.3.7

Since reducing the step size by a factor of ¢ will, for a pth-order error, reduce the error
by a factor of ¢”, the factor by which step size must be reduced in order to meet the
error criterion is the pth root of k. The step size used to compute X, is 3 /, so finally we
estimate the required step size as

ﬁ 8(2P_ 1) 1/p
z(lXa(t0+a)_Xh(t0+a)|) (2.13)

This technique of estimating the error in a numerical approximation of an unknown
quantity by comparing two approximations of that unknown quantity whose order of
accuracy is known is an example of the application of Richardson extrapolation.

Estimate the step size required to compute an estimate of x(1) accurate to 2dp for the
initial-value problem in Example 2.6 given the values X,(1) = 3.16220 and X, (1) =
3.230 07 obtained using step sizes # = 0.1 and 0.05 respectively.

For the result to be accurate to 2dp the error must be less than 0.005. The estimates
X,(1) and X, (1) were obtained using a second-order process, so, applying (2.13), with
£=0.005, 14 =10.05 and p = 2, we have

0.015
[3.162 20 - 3.230 07

1/2
h=0.05 ( ) =0.0235
In a real engineering problem what we would usually do is round this down to say
0.02 and recompute X(1) using step sizes # = 0.04 and 0.02. These two new estimates
of X(1) could then be used to estimate again the error in the value of X(1) and confirm
that the desired error criterion had been met.

More accurate solution methods: predictor-corrector
methods

In Section 2.3.5 we showed how the third term in the Taylor series expansion
x(t+h) =x(t) + pdx " & L —-—(t) + O(h*) (2.14)
21d

could be replaced by either x(# — /) or (dx/df)(¢ — h). These are not the only possibilities.
By using appropriate Taylor series expansions, we could replace the term with other values
of x(f) or dx/dt. For instance, expanding the function x(z — 2/) about x(#) gives rise to

>d’x

x(t — 2h) = x(t) — 2h %)f(t) +2h (t)+ 3 (2.15)

and eliminating the second-derivative term between (2.14) and (2.15) gives

X(t+ h) =3 x(0) + L x( = 2h) + 2k %(t) +O(h)



2.3 NUMERICAL SOLUTION OF FIRST-ORDER ORDINARY DIFFERENTIAL EQUATIONS 137

which, in turn, would give rise to the integration scheme
Xn+1 = %Xn + }‘)(n—Z + % th

Such a scheme, however, would not seem to offer any advantages to compensate for
the added difficulties caused by a two-step scheme using non-consecutive values of X.

The one alternative possibility that does offer some gains is using the value of
(dx/df)(t + h). Writing the Taylor series expansion of (dx/d¢)(z + &) yields

2
=0+ +omd)
dt dt dt
and eliminating the second derivative between this and (2.14) gives
s hldx g ;
x(t+ h) =x(t) + 3 {dt(t) + dt(t + h)} + O(l’) (2.16)

leading to the integration scheme
Xn+1 = Xn + %h(Fn + Fn+1) (2017)

This, like (2.11) and (2.12), is a second-order scheme. It has the problem that, in order
to calculate X,,,, the value of F,,, is needed, which, in its turn, requires that the value
of X,,, be known. This seems to be a circular argument!

One way to work around this problem and turn (2.17) into a usable scheme is to start
by working out a rough value of X, use that to compute a value of F,_,, and then use
(2.17) to compute a more accurate value of X,,,. Such a process can be derived as
follows. We know that

Xt +h) = x(0) + h ‘(11—’;@) + 00
Let

H(t+ ) =x() + h ‘(11—’;(1) (2.18)
then

(i + k) = £(t + h) + O()
or, using the subscript notation defined above,

X1 = )en-#l + O(h2)

Thus

dx,:
_x(-iﬂt—l :f(thrl’ xn+l)
= b1 3y + OGP
= s ) + O LL (1,5, + O
X

= f(tyirs Xpt) + O(R?) (2.19)
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In the subscript notation (2.16) is
Xy =X, + 3 h( S, x,) + [0, %)) + O(R)
Substituting (2.19) into this gives
X =X, 3 (S X,) + [t %) + OUF) + O(R)
That is,
Xy =X, ([, x,) + [ty X00)) + O(R) (2:20)

Equation (2.20) together with (2.18) forms the basis of what is known as a predictor—
corrector method, which is defined by the following scheme:

(1) compute the ‘predicted’ value of X,,,, call it X,,,, from

Xn+1 = Xn + hf(tna ‘Xvn) (2.213)
(2) compute the ‘corrected’ value of X, from

X =X, + Sh(f(t,, X)) + fty, X,1) (2:21b)

n

This predictor—corrector scheme, as demonstrated by (2.20), is a second-order method.
It has the advantage over (2.11) and (2.12) of requiring only the value of X,, not X,_, or
F,_,. On the other hand, each step requires two evaluations of the function f{¢, x), and
so the method is less efficient computationally.

Example 2.8  Solve the initial-value problem

dx _ x_z, x(0)=1
dr t+1

posed in Example 2.2 using the second-order predictor—corrector scheme with a step

size h = 0.1. Compute the values of X(¢) for r = 0.1, 0.2, ..., 1.0 and compare them

with the values of the exact solution x(¥).

Solution  The exact solution was given in Example 2.2. In this example the initial value of ¢ is
0 and x(0) = 1. Using the standard notation we have #,= 0, and x,= x(¢,) = x(0) = 1.
The function f(#, x) = x*/(t + 1). So the first two steps of the computation are thus

2 2
. 1
X1:x0+hf(t0,x0)=xo+htil = 140,157 =1.100 00
5 X X3
X, =t LA ) (0 20 =0+ 1 g+ 2
2 2
=1.00000+§o.1( L, 110000 ):1.105 00
0+1 " 0.10000+1
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Figure 2.13

Computational results

for Example 2.8.

X, =X, + hf(t, X)) =X, +h

X
t+1

1.105 00°

=1.10500+ 0.1 ————=1.216 00

0.100 00 + 1

X=X+ %h[f(tl’ X))+ f(tr, X)]

:X1+%h(

=1.10500 + %O.l(

Xi +_X_)
H+l tH+1

2 2
1.105 00 n 1.216 00 )=1.22211
0.10000+1 0.200 00 + 1

The complete computation is set out in Figure 2.13.

t X, St X,) X St X)) x(1) lx— X,

0.000 00 1.000 00 1.000 00 1.100 00 1.10000 1.000 00 0.000 00
0.100 00 1.105 00 1.11002 1.21600 123222 1.10535 0.00035
0.200 00 122211 1.244 63 1.346 58 1.39482 1.22297 0.000 86
0.300 00 1.35408 1.41042 1.495 13 1.59672 1.35568 0.001 60
0.400 00 1.504 44 1.61667 1.666 11 1.85061 1.507 10 0.002 65
0.500 00 1.67781 1.876 69 1.86547 2.17500 1.68199 0.004 18
0.600 00 1.88039 2.20992 2.10138 2.59753 1.88681 0.00642
0.700 00 2.12076 2.64567 2.38533 3.16100 2.13051 0.00975
0.800 00 241110 3.22966 2.73406 3.93426 2.42593 0.01483
0.900 00 2.76929 4.03630 3.17292 5.03372 279216 0.02287
1.000 00 3.22279 3.25889 0.036 10

Again the solution to this example can be obtained using MAPLE. The following
worksheet computes the numerical and analytical solutions and compares them at

the required points.

> #set up differential equation

> degl:=diff(x(t),t)=x(t)"2/(t+1);initl:=x(0)=1;

> #obtain x1, the numerical solution

> x1:=dsolve({degl, initl},

numeric,method=classical [heunform], output=1istprocedure,

V V V V

stepsize=0.1);

#xa 1s the analytic solution

xa:=dsolve ({deqgl, initl});

#compute values at required solution points
for i from 1 to 10 do

t:=0.1*1i:0p(2,x1[2]) (t),evalf(op(2,xa)) end do;

Comparison of the result of Example 2.8 with those of Examples 2.2 and 2.6 shows
that, as we should expect, the predictor—corrector scheme produces results of consider-
ably higher accuracy than the Euler method and of comparable (though slightly better)
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Example 2.9

Solution

Figure 2.14
Computational results
for Example 2.9.

accuracy to the second-order Adams—Bashforth scheme. We also expect the scheme to
have a global error O(h?), and, in the spirit of Examples 2.2 and 2.6, we confirm this in
Example 2.9.

Let X, denote the approximation to the solution of the initial-value problem

dx _ _x’
dt t+ 1

x(0)=1

obtained using the second-order predictor—corrector method with a step size # = 0.1, and
X, that obtained using 2 = 0.05. Compute the values of X,(f) and X, () for r=0.1,0.2, ...,
1.0. Compare these with the values of x(¢), the exact solution of the problem. Compute
the ratio of the errors in X, and X,.

The numerical solutions X, and X, and their errors are shown in Figure 2.14. The ratio
of the errors confirms that the error behaves roughly as O(h?).

t X, X, x(1) x - X,| Ix — X, X=X
‘x _Xa‘
0.00000 1.000 00 1.000 00 1.000 00
0.10000 1.10500 1.10526 1.10535 0.00035 0.000 09 0.27
0.20000 1.22211 1.22274 1.22297 0.000 86 0.00023 0.27
0.30000 1.35408 1.35525 1.35568 0.001 60 0.00043 0.27
0.400 00 1.504 44 1.506 38 1.507 10 0.002 65 0.00072 0.27
0.50000 1.67781 1.680 86 1.68199 0.004 18 0.00113 0.27
0.600 00 1.88039 1.88507 1.886 81 0.00642 0.00173 0.27
0.700 00 2.12076 2.12787 2.13051 0.00975 0.002 64 0.27
0.80000 241110 2.42190 2.42593 0.014 83 0.004 03 0.27
0.900 00 2.769 29 2.78592 2.79216 0.022 87 0.006 24 0.27
1.000 00 322279 3.24898 3.258 89 0.036 10 0.00991 0.27

In Section 2.3.5 we mentioned the difficulties that multistep methods introduce
with respect to starting the computation. We now have a second-order method that
does not need values of X,_, or earlier. Obviously we can use this method just as
it stands, but we then pay the penalty, in computer processing time, of the extra
evaluation of f{(¢, x) at each step of the process. An alternative scheme is to use the
second-order predictor—corrector for the first step and then, because the appropriate
function values are now available, change to the second-order Adams—Bashforth
scheme — or even, if the problem is one for which the scheme given by (2.11) (which
is called the central difference scheme) is stable, to that process. In this way we create
a hybrid process that retains the O(A?) convergence and simultaneously minimizes the
computational load.

The principles by which we derive (2.16) and so the integration scheme (2.17) can
be extended to produce higher-order schemes. Such schemes are called the Adams—
Moulton formulae and are as follows:
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Figure 2.15

A geometrical
interpretation of
the second-order
predictor—corrector
method.

)(n+l =)(n + th+1

)(n+l =)(n+ %h(FnJrl +Fn)
X’l+l =‘Xvn+ 11_2h(5Fn+1 + 8Fn_Fn—l)

X’l+l =‘X:‘l + 21_4h(9Fn+1 + 19Fn - 5F‘n—l +Fn—2)

These are first-, second-, third- and fourth-order formulae respectively. They are all like
the one we derived in this section in that the value of F,, is required in order to compute
the value of X,,,. They are therefore usually used as corrector formulae in predictor—
corrector schemes. The most common way to do this is to use the (p — 1)th-order
Adams—Bashforth formula as predictor, with the pth-order Adams—Moulton formula
as corrector. This combination can be shown to always produce a scheme of pth order.
The predictor—corrector scheme we have derived in this section is of this form, with p = 2.
Of course, for p > 2 the predictor—corrector formula produced is no longer self-starting,
and other means have to be found to produce the first few values of X. We shall return to
this topic in the next section.

It may be noted that one of the alternative methods offered by MATLAB for the
numerical solution of ODEs is based on the families of Adams—Bashforth and Adams—
Moulton formulae.

More accurate solution methods: Runge-Kutta methods

Another class of higher-order methods comprises the Runge—Kutta methods. The math-
ematical derivation of these methods is quite complicated and beyond the scope of this book.
However, their general principle can be explained informally by a graphical argument.
Figure 2.15 shows a geometrical interpretation of the second-order predictor—corrector
method introduced in the last section. Starting at the point (z,, X,), point A in the diagram,
the predicted value X,,, is calculated. The line AB has gradient f(t,, X,), so the ordinate
of the point B is the predicted value X,,,. The line AC in the diagram has gradient
f(t,.1» X,11), the gradient of the direction field of the equation at point B, so point C
has ordinate X, + Af(t,.,, X,.,). The midpoint of the line BC, point D, has ordinate X, +
%h( f(t,, X,) + f(t,.1, X,.))), which is the value of X,,, given by the corrector formula.

C
D
Xn+l (tn+la Xn+l) N
B i1y Xosr)
X TSt X,) + [ty K1)
}hf(tm X,)
X,

n

0 t, f t
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Figure 2.16

A geometrical
interpretation of
the fourth-order
Runge—Kutta
method.

Geometrically speaking, the predictor—corrector scheme can be viewed as the process
of calculating the gradient of the direction field of the equation at points A and B and
then assuming that the average gradient of the solution over the interval (¢, ,,,) is
reasonably well estimated by the average of the gradients at these two points. The Euler
method, of course, is equivalent to assuming that the gradient at point A is a good
estimate of the average gradient of the solution over the interval (z,, #,,,). Given this
insight, it is unsurprising that the error performance of the predictor—corrector method
is superior to that of the Euler method.

Runge—Kutta methods extend this principle by using the gradient at several points in
the interval (z,, #,,,) to estimate the average gradient of the solution over the interval.
The most commonly used Runge—Kutta method is a fourth-order one which can be
expressed as follows:

¢, = hf(t,, X,) (2.22a)
¢, =hf(t, +3h, X, +5¢) (2.22b)
ey = hf(t, + 51, X, +5¢) (2.22¢)
co=hft, + h, X, +c3) (2.22d)
X=X, +c(c1+2c,+2¢;, + ¢)) (2.22¢)

Geometrically, this can be understood as the process shown in Figure 2.16. The line AB
has the same gradient as the equation’s direction field at point A. The ordinate of this
line at 7, + %h defines point B. The line AC has gradient equal to the direction of the
direction field at point B. This line defines point C. Finally, a line AD, with gradient
equal to the direction of the direction field at point C, defines point D. The average
gradient of the solution over the interval (¢,, ¢,,,) is then estimated from a weighted
average of the gradients at points A, B, C and D. It is intuitively acceptable that such a
process is likely to give a highly accurate estimate of the average gradient over the
interval.

(tn+l,Xn+l)
X, + hf(t, + b, X, + c3)

X+ hf(t, + X, + Lo
X, 4 b, + Th X, + ey &

X, + hf(1,, X,) } c, %(Cl +2¢,+2¢5+ cy)
Cy

X,
A

(0] t, [ t
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Example 2.10

Solution

Figure 2.17
Computational results
for Example 2.10.

As was said before, the mathematical proof that the process defined by (2.22a—¢) is
a fourth-order process is beyond the scope of this text. It is interesting to note that the
predictor—corrector method defined by (2.21a, b) could also be expressed as

¢ = hf(tna Xn)
c,=hft,+ h, X, +c)
X,

w1 =X, + %(Cl + )

This is also of the form of a Runge—Kutta method (the second-order Runge—Kutta
method), so we find that the second-order Runge—Kutta method and the second-
order Adams—Bashforth/Adams—Moulton predictor—corrector are, in fact, equivalent
processes.

Let X, denote the approximation to the solution of the initial-value problem

2
dy _ _x7

0)=1
dt t+1 0)

obtained using the fourth-order Runge—Kutta method with a step size # = 0.1, and X,
that obtained using / = 0.05. Compute the values of X,(#) and X, (¢) forr=0.1,0.2, ...,
1.0. Compare these with the values of x(¢), the exact solution of the problem. Compute
the ratio of the errors in X, and X;.

The exact solution was given in Example 2.2. The numerical solutions X, and X and their
errors are presented in Figure 2.17.

This example shows, first, that the Runge—Kutta scheme, being a fourth-order scheme,
has considerably smaller errors, in absolute terms, than any of the other methods we
have met so far (note that Figure 2.17 does not give raw errors but errors times 1000!) and,
second, that the expectation we have that the global error should be O(h*) is roughly
borne out in practice (the ratio of |x — X,| to [x — X, | is roughly 16:1).

t X, X, () B XIx 10 exgxie =l
‘X _Xa‘
0.00000  1.0000000  1.0000000  1.0000000
0.10000 11053507 11053512 11053512  0.00055 0.000 04 0.0682
020000 12229733 12229745 12229746  0.00133 0.00009 0.0680
030000 13556802 13556825 13556827  0.00246 0.00017 0.0679
040000 15070918 15070957 15070959  0.00410 0.00028 0.0678
050000  1.6819805  1.6819866 16819871  0.00653 0.000 44 0.0678
0.60000  1.8867952  1.8868047 18868054  0.01020 0.000 69 0.0677
070000 21304915 21305064 21305074  0.01592 0.00108 0.0677
0.80000 24259031 24259266 24259283  0.02519 0.00171 0.0677
090000 27921155 27921537 27921565  0.04103 0.00278 0.0677

1.000 00 3.2588214 3.2588866 3.2588914 0.069 94 0.004 74 0.0678
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The table of values in Figure 2.17 can be obtained using MAPLE with the
appropriate setting of the numerical method. The following worksheet computes
the solutions specified and composes the required table.

#set up differential equation
degl:=diff (x(t),t)=x(t)"2/(t+1);initl:=x(0)=1;
#obtain x1 and x2, the numerical solutions

vV V V V

x1:=dsolve({deqgl, initl}, numeric,method=classical[rk4],
output=listprocedure, stepsize=0.1) ;
> x2:=dsolve({degl, initl},numeric,method=classicall[rk4],
output=listprocedure, stepsize=0.05) ;
> #xa 1s the analytic solution
> xa:=dsolve({degl, initl});
> printlevel:=0:
fmtstr:="%5.1£f,%12.7£,%12.7£,%12.7£,%10.5£,%10.5¢f,
%10.4f,\n":
for i from 1 to 10 do
te=0.1%1s
xx1l:=op(2,x1[2]) (t):
xx2:=0p(2,x2[2]) (t) :
xxa:=evalf (subs(t=1,0p(2,xa))) :
printf (fmtstr, t,xx1l,xx2,xxa, abs (xx1-xxa) *1e3,
abs (xx2-xxa) *1le3, (xx2-xxa) / (xxl-xxa)) ;
end do;

It is interesting to note that the MAPLE results in the right-hand column, the ratio
of the errors in the two numerical solutions, vary slightly from those in Figure 2.17.
The results in Figure 2.17 were computed using the high-level programming language
Pascal which uses a different representation of floating point numbers from that
used by MAPLE. The variation in the results is an effect of the differing levels of
precision in the two languages. The differences are, of course, small and do not
change the overall message obtained from the figure.

Runge—Kutta schemes are single-step methods in the sense that they only require the
value of X, not the value of X at any steps prior to that. They are therefore entirely self-
starting, unlike the predictor—corrector and other multistep methods. On the other hand,
Runge—Kutta methods proceed by effectively creating substeps within each step. There-
fore they require more evaluations of the function f{#, x) at each step than multistep
methods of equivalent order of accuracy. For this reason, they are computationally less
efficient. Because they are self-starting, however, Runge—Kutta methods can be used
to start the process for multistep methods. An example of an efficient scheme that
consistently has a fourth-order local error is as follows. Start by taking two steps
using the fourth-order Runge—Kutta method. At this point values of X, X, and X, are
available, so, to achieve computational efficiency, change to the three-step fourth-
order predictor—corrector consisting of the third-order Adams—Bashforth/fourth-order
Adams—Moulton pair.
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2.3.9 Exercises

(Note that Questions 8—15 may be attempted
using a hand-held calculator, particularly if it
is of the programmable variety. The arithmetic
will, however, be found to be tedious, and the
use of computer assistance is recommended if
the maximum benefit is to be obtained from
completing these questions.)

Using the second-order Adams—Bashforth
method (start the process with a single step
using the second-order predictor—corrector
method),

(a) compute an estimate of x(0.5) for the initial-
value problem
‘-j-iit‘ = x’sint—x, x(0)=02
using step size 4 =0.1;
(b) compute an estimate of x(1.2) for the initial-
value problem

‘é—;‘ —2e® x(05)=0.5

using step size 4 =0.1.

Using the third-order Adams—Bashforth method

(start the process with two second-order

predictor—corrector method steps) compute an

estimate of x(0.5) for the initial-value problem
dx

a JOF+28), x(0)=1

using step size 4 =0.1.

Using the second-order predictor—corrector method,

(a) compute an estimate of x(0.5) for the initial-
value problem
dx

— =(2t+x)sin2t,

0)=0.5
i x(0)

using step size 4 = 0.05;
(b) compute an estimate of x(1) for the initial-value
problem

dx 1 +x
dr _ 14X 0)=-2
@& smarn O

using step size 4 =0.1.

11

12

13

Write down the first three terms of the Taylor series
expansions of the functions

dx dx
=@-h d =@-2h
dt( ) an dt( )

about x(7). Use these two equations to eliminate
&x
2

d’x
() and —;(t)
dt dt

from the Taylor series expansion of the function
x(¢ + h) about x(¢). Show that the resulting formula
for x(¢ + &) is the third member of the Adams—
Bashforth family, and hence confirm that this
Adams—Bashforth method is a third-order method.

Write down the first three terms of the Taylor series
expansions of the functions

dx dx
—(t+h d —=(t-nh
g (M and S (—h)
about x(7). Use these two equations to eliminate
2 3
Lxiy and LX)
dr dr

from the Taylor series expansion of the function
x(t + h) about x(7). Show that the resulting formula
for x(¢ + h) is the third member of the Adams—
Moulton family, and hence confirm that this
Adams—Moulton method is a third-order method.

Write down the first four terms of the Taylor series
expansion of the function x(z — /) about x(#), and the
first three terms of the expansion of the function

dx
= (@t-h
o (1=
about x(7). Use these two equations to eliminate
2 3
Ly and L
t dr
from the Taylor series expansion of the function
x(t + h) about x(¢). Show that the resulting formula is

X, =—4X, + 5X_, + h(4F, + 2F, ) + O(h*)

n

Show that this method is a linear combination of the
second-order Adams—Bashforth method and the
central difference method (that is, the scheme based
on (2.9)). What do you think, in view of this, might
be its disadvantages?
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14

15

16

Using the third-order Adams—Bashforth—Moulton
predictor—corrector method (that is, the second-
order Adams—Bashforth formula as predictor and
the third-order Adams—Moulton formula as
corrector), compute an estimate of x(0.5) for
the initial-value problem

dx =x>+ 17

3)=0.1
m x(0.3)=0

using step size 4 = 0.05. (You will need to employ
another method for the first step to start this scheme
— use the fourth-order Runge—Kutta method).

Using the fourth-order Runge—Kutta method,

(a) compute an estimate of x(0.75) for the initial-
value problem

dx

—=x+t+xt, x(0)=1

using step size 4 = 0.15;
(b) compute an estimate of x(2) for the initial-value

problem
d 1
o w072

using step size 4 =0.1.
Consider the initial-value problem

dx _ 32 —

& =x*+ 1", x0)=-1

(a) Compute estimates of x(2) using the second-
order Adams—Bashforth scheme (using the
second-order predictor—corrector to start the
computation) with step sizes # = 0.2 and 0.1.
From these two estimates of x(2) estimate what
step size would be needed to compute an
estimate of x(2) accurate to 3dp. Compute X(2),
first using your estimated step size and second
using half your estimated step size. Does the
required accuracy appear to have been achieved?

(b) Compute estimates of x(2) using the second-
order predictor—corrector scheme with step
sizes & =0.2 and 0.1. From these two estimates

of x(2) estimate what step size would be
needed with this scheme to compute an
estimate of x(2) accurate to 3dp. Compute
X(2), first using your estimated step size and
second using half your estimated step size.
Does the required accuracy appear to have
been achieved?

(c) Compute estimates of x(2) using the fourth-
order Runge—Kutta scheme with step sizes
h=0.4 and 0.2. From these two estimates of
x(2) estimate what step size would be needed to
compute an estimate of x(2) accurate to 5 dp.
Compute X(3), first using your estimated step
size and second using half your estimated step
size. Does the required accuracy appear to have
been achieved?

For the initial-value problem

dx _ o

P x“ e, x(l)=1

find, by any method, an estimate, accurate to 5dp, of
the value of x(3).

Note: All of the exercises in this section can be
completed by programming the algorithms in a
high-level computer language such as Pascal,

C and Java. Programming in a similar high-level
style can be achieved using the language constructs
embedded within the MATLAB and MAPLE
packages. MAPLE, as we have already seen,
and MATLAB also allow a higher-level style

of programming using their built-in procedures
for numerical solution of ODEs. Both MATLAB
and MAPLE have very sophisticated built-in
procedures, but MAPLE also allows the user

to specify that it should use simpler algorithms
(which it calls ‘classic’ algorithms). Amongst
these simpler algorithms are many of the
algorithms we discuss in this chapter. In the
preceding exercise set, those which specify the
Runge—Kutta method and the second-order
predictor—corrector could be completed using
MAPLE’s dsolve procedure specifying the
relevant ‘classic’ solution methods.
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Example 2.11

Figure 2.18

The analytical
solutions of
(2.23) and (2.24).

Stiff equations

There is a class of differential equations, known as stiff differential equations, that are
apt to be somewhat troublesome to solve numerically. It is beyond the scope of this text
to explore the topic of stiff equations in any great detail. It is, however, important to be
aware of the possibility of difficulties from this source and to be able to recognize the
sort of equations that are likely to be stiff. In that spirit we shall present a very informal
treatment of stiff equations and the sort of troubles that they cause. Example 2.11 shows
the sort of behaviour that is typical of stiff differential equations.

The equation

dx

—=1-x, x(0)=2 2.23

o=1-x x(0) (2.23)
has analytical solution x = 1 + ¢™. The equation

dx _ -

a5 50(1 —x)+50e”, x(0)=2 (2.24)

has analytical solution x = 1 + 5(50 e” — ). The two solutions are shown in
Figure 2.18.

Suppose that it were not possible to solve the two equations analytically and
that numerical solutions must be sought. The form of the two solutions shown in
Figure 2.18 is not very different, and it might be supposed (at least naively) that the
numerical solution of the two equations would present similar problems. This, however,
is far from the case.

Figure 2.19 shows the results of solving the two equations using the second-order
predictor—corrector method with step size # = 0.01. The numerical and exact solutions
of (2.23) are denoted by X, and x, respectively, and those of (2.24) by X, and x,. The
third and fifth columns give the errors in the numerical solutions (compared with the
exact solutions), and the last column gives the ratio of the errors. The solution X, is seen
to be considerably more accurate than X, using the same step size.
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Figure 2.19
Computational results
for Example 2.11;
h=0.01.

Figure 2.20
Computational results
for Example 2.11;
h=0.025.

Figure 2.21
Computational results
for Example 2.11;
h=0.05.

t X, |X, — x,| X, X, — ] Ratio of
errors
0.000 00 2.000 00 0.000 000 2.000 00 0.000 000
0.100 00 1.904 84 0.000 002 1.923 15 0.000017 11.264 68
0.200 00 1.81873 0.000 003 1.83547 0.000 028 10.022 19
0.300 00 1.740 82 0.000 004 1.75596 0.000 026 6.864 34
0.400 00 1.67032 0.000 005 1.684 02 0.000 023 5.15007
0.500 00 1.606 54 0.000 005 1.61893 0.000 021 4.12006
0.600 00 1.548 82 0.000 006 1.560 03 0.000019 3.43338
0.700 00 1.496 59 0.000 006 1.506 74 0.000017 2.94290
0.800 00 1.449 34 0.000 006 1.45851 0.000016 2.57503
0.900 00 1.406 58 0.000 006 1.414 88 0.000014 2.28892
1.000 00 1.367 89 0.000 006 1.37540 0.000013 2.06002
t X, |X, — x| X, |Xy = x] Ratio of
errors
0.000 00 2.000 00 0.000 000 2.000 00 0.000 000
0.10000 1.904 85 0.000010 1.922 04 0.001 123 116.95124
0.200 00 1.81875 0.000017 1.83567 0.000231 13.270 10
0.300 00 1.740 84 0.000 024 1.756 25 0.000317 13.438 84
0.400 00 1.67035 0.000 028 1.68430 0.000 296 10.384 39
0.500 00 1.606 56 0.000 032 1.61918 0.000 268 8.32898
0.600 00 1.548 85 0.000 035 1.56025 0.000243 6.94236
0.700 00 1.496 62 0.000 037 1.506 94 0.000220 5.950 68
0.800 00 1.44937 0.000 038 1.45870 0.000 199 5.206 82
0.900 00 1.406 61 0.000 039 1.41505 0.000 180 4.62826
1.000 00 1.36792 0.000 039 1.37555 0.000 163 4.16542
t X, X, = x| X, X, = x|
0.000 00 2.000 00 0.000 000 2.000 00 0.000 000
0.10000 1.904 88 0.000039 1.87343 0.049 740
0.200 00 1.818 80 0.000071 1.70736 0.128075
0.300 00 1.74091 0.000 096 1.42102 0.334914
0.400 00 1.67044 0.000 116 0.802 59 0.881408
0.500 00 1.606 66 0.000 131 —-0.705 87 2.324778
0.600 00 1.548 95 0.000 142 -4.57642 6.136434
0.700 00 1.496 74 0.000 150 —-14.695 10 16.201 818
0.800 00 1.449 48 0.000 156 —41.32243 42.780932
0.900 00 1.40673 0.000 158 —111.55173 112.966 595
1.000 00 1.368 04 0.000 159 -296.92540 298.300 783

Figure 2.20 is similar to Figure 2.19, but with a step size 2 = 0.025. As we might
expect, the error in the solution X, is larger by a factor of roughly six (the global error
of the second-order predictor—corrector method is O(h%)). The errors in X;, however,
are larger by more than the expected factor, as is evidenced by the increase in the ratio

of the error in X, to that in X,.

Figure 2.21 shows the results obtained using a step size & = 0.05. The errors in X,
are again larger by about the factor expected (25 when compared with Figure 2.19). The
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solution X,, however, shows little relationship to the exact solution x, — so little that the
error at = 1 is over 20 000% of the exact solution. Obviously a numerical method that
causes such large errors to accumulate is not at all satisfactory.

In Section 2.3.5 we met the idea that some numerical methods can, when applied to
some classes of differential equation, show instability. What has happened here is, of
course, that the predictor—corrector method is showing instability when used to solve
(2.24) with a step size larger than some critical limit. Unfortunately the same behaviour
is also manifest by the other methods that we have already come across — the problem
lies with the equation (2.24), which is an example of a stiff differential equation.

The typical pattern with stiff differential equations is that, in order to avoid instabil-
ity, the step size used to solve the equation using normal numerical methods must be
very small when compared with the interval over which the equation is to be solved. In
other words, the number of steps to be taken is very large and the solution is costly in
time and computing resources. Essentially, stiff equations are equations whose solution
contains terms involving widely varying time scales. That (2.24) is of this type is evid-
enced by the presence of terms in both ¢ and e™" in the analytical solution. In order
to solve such equations accurately, a step must be chosen that is small enough to cope
with the shortest time scale. If the solution is required for times comparable to the long
time scales, this can mean that very large numbers of steps are needed and the computer
processing time needed to solve the problem becomes prohibitive. In Example 2.11 the
time scale of the rapidly varying and the more slowly varying components of the solu-
tion differed by only a factor of 50. It is not unusual, in the physical problems arising
from engineering investigations, to find time scales differing by three or more orders
of magnitude; that is, factors of 1000 or more. In these cases the problems caused
are proportionately amplified. Fortunately a number of numerical methods that are
particularly efficient at solving stiff differential equations have been developed. It is
beyond the scope of this text to treat these in any detail.

From the engineering point of view, the implication of the existence of stiff equations
is that engineers must be aware of the possibility of meeting such equations and also of the
nature of the difficulty for the numerical methods — the widely varying time scales inherent
in the problem. It is probably easier to recognize that an engineering problem is likely to
give rise to a stiff equation or equations because of the physical nature of the problem than
it is to recognize a stiff equation in its abstract form isolated from the engineering con-
text from which it arose. As is often the case, a judicious combination of mathematical
reasoning and engineering intuition is more powerful than either approach in isolation.

Both MAPLE and MATLAB feature procedures for the numerical solution of ODEs
which are designed to deal efficiently with stiff equations. The user may be tempted to
think that a simple way to negotiate the problem of stiff equations is to use the stiff equation
solvers for all ordinary differential equations. However, the stiff equation methods are less
computationally efficient for non-stiff equations so it is worth trying to identify which
type of equation one is facing and using the most appropriate methods.

Computer software libraries and the ‘state of the art’

In the last few sections we have built up some basic methods for the integration of first-
order ordinary differential equations. These methods, particularly the more sophisticated



150 NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS

ones — the fourth-order Runge—Kutta and the predictor—corrector methods — suffice for
many of the problems arising in engineering practice. However, for more demanding
problems — demanding in terms of the scale of the problem or because the problem is
characterized by ill behaviour of some form — there exist more sophisticated methods
than those we are able to present in this book.

All the methods that we have presented in the last few sections use a fixed step size.
Among the more sophisticated methods to which we have just alluded are some that use
a variable step size. In Section 2.3.6 we showed how Richardson extrapolation can be
used to estimate the size of the error in a numerical solution and, furthermore, to estim-
ate the step size that should be used in order to compute a solution of a differential
equation to some desired accuracy. The principle of the variable-step methods is that a
running check is kept of the estimated error in the solution being computed. The error
may be estimated by a formula derived along principles similar to that of Richardson
extrapolation. This running estimate of the error is used to predict, at any point in the
computation, how large a step can be taken while still computing a solution within any
given error bound specified by the user. The step size used in the solution can be altered
accordingly. If the error is approaching the limits of what is acceptable then the step
size can be reduced; if it is very much smaller than that which can be tolerated then the step
size may be increased in the interests of speedy and efficient computing. For multistep
methods the change of step size can lead to quite complicated formulae or procedures.
As an alternative, or in addition, to a change of step size, changes can be made in the
order of the integration formula used. When increased accuracy is required, instead
of reducing the step size, the order of the integration method can be increased, and
vice versa. Implementations of the best of these more sophisticated schemes are readily
available in software packages, such as MAPLE and MATLAB, and software libraries
such as the NAG library.

The availability of complex and sophisticated ‘state of the art’ methods is not the
only argument for the use of software packages and libraries. It is a good engineering
principle that, if an engineer wishes to design and construct a reliable engineering artefact,
tried and proven components of known reliability and performance characteristics
should be used. This principle can also be extended to engineering software. It is almost
always both more efficient, in terms of expenditure of time and intellectual energy, and
more reliable, in terms of elimination of bugs and unwanted side-effects, to use soft-
ware from a known and proven source than to write programs from scratch.

For both of the foregoing reasons, when reliable mathematical packages, such as
MAPLE and MATLAB, and software libraries are available, their use is strongly
recommended. MAPLE is arguably the leading mathematical software package available
today, offering both symbolic manipulation (computer algebra) and numerical problem
solving across the whole span of mathematics. Amongst these, as we have already
noted, MAPLE includes routines for the numerical solution of systems of ordinary
differential equations. These routines are highly sophisticated, offering alternative
methods suitable for stiff and non-stiff problems, using fixed time steps or variable time
steps and optimized either for speed or for accuracy. The MATLAB package, with its
Simulink continuous system modelling add-on, also offers sophisticated facilities for
solving differential equations numerically. Again the package offers the choice of
both fixed and variable time step methods, methods suitable for stiff problems as well
as non-stiff ones, and a choice of optimizations aimed at either best speed or highest
accuracy. Amongst the best known, and probably the most widely used, library of
software procedures today is the NAG library. This library has a long history and has
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been compiled by leading experts in the field of numerical mathematics. Routines are
available in a variety of programming languages. The routines provided for the solution
of ordinary differential equations again encompass a variety of methods chosen to deal
with stiff and non-stiff problems and to offer the user considerable flexibility in choice
of method to suit every possible engineering requirement. By choosing an appropriate,
high-quality software package or library the engineer can be assured that the imple-
mentation will be, as far as possible, bug free, that the methods used will be efficient
and reliable, and that the algorithms will have been chosen from the best ‘state of the
art’ methods.

It is tempting to believe that the use of software libraries solves all the problems of
numerical analysis that an engineering user is likely to meet. Faced with a problem for
which analytical methods fail, the engineer simply needs to thumb through the index to
some numerical analysis software library until a method for solving the type of problem
currently faced is found. Unfortunately such undiscerning use of packaged software
will almost certainly, sooner or later, lead to a gross failure of some sort. If the user is
fortunate, the software will be sophisticated enough to detect that the problem posed is
outside its capabilities and to return an error message to that effect. If the user is less
fortunate, the writer of the software will not have been able to foresee all the possible
uses and misuses to which the software might be subjected and the software will not be
proof against such use outside its range of applicability. In that case the software may
produce seemingly valid answers while giving no indication of any potential problem.
Under such circumstances the undiscerning user of engineering software is on the verge
of committing a major engineering blunder. From such circumstances result failed
bridges and crashed aircraft! It has been the objective of these sections on the numerical
solution of differential equations both to equip readers with numerical methods suitable
for the less demanding problems that will arise in their engineering careers and to give
them sufficient understanding of the basics of this branch of numerical analysis that
they may become discriminating, intelligent and wary users of packaged software and
other aids to numerical computing.

Numerical solution of second- and higher-order
differential equations

Obviously, the classes of second- and higher-order differential equations that can be
solved analytically, while representing an important subset of the totality of such
equations, are relatively restricted. Just as for first-order equations, those for which no
analytical solution exists can still be solved by numerical means. The numerical solu-
tion of second- and higher-order equations does not, in fact, need any significant new
mathematical theory or technique.

Numerical solution of coupled first-order equations

In Section 2.3 we met various methods for the numerical solution of equations of the
form

dx _
a _f(t! X)
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that is, first-order differential equations involving a single dependent variable and a
single independent variable. However it is possible to have sets of coupled first-order
equations, each involving the same independent variable but with more than one
dependent variable. An example of these types of equation is

dx 2

d _ 225
TR (2.252)
%Zt =2 4 xy—t (2.25b)

This is a pair of differential equations in the dependent variables x and y with the inde-
pendent variable 7. The derivative of each of the dependent variables depends not only
on itself and on the independent variable ¢, but also on the other dependent variable.
Neither of the equations can be solved in isolation or independently of the other — both
must be solved simultaneously, or side by side. A pair of coupled differential equations
such as (2.25) may be characterized as

&~ fx ) (226a)
t

dy _

i = At x, ) (2.26b)
For a set of p such equations it is convenient to denote the dependent variables not by
X,¥,z,...butbyx, x,, x;, ..., x,and the set of equations by

dx;

a—.ﬁ(tsxlsxz,u-,xp) (i=12,...,p)

or equivalently, using vector notation,
d
= [x]=fx
£ [x] =10, )

where x(7) is a vector function of ¢ given by

x(1)=[x(t) x(t) ... x,O

f(t, x) is a vector-valued function of the scalar variable ¢ and the vector variable x.
The Euler method for the solution of a single differential equation takes the
form

XVH—] = Xn + hf(tns Xn)
If we were to try to apply this method to (2.26a), we should obtain
Xn+1 = Xn + hﬁ(tm ‘Xn? Yn)

In other words, the value of X,,, depends not only on #, and X, but also on Y,. In the same
way, we would obtain

Yn+l = Yn + hﬁ(tnﬂ Xm Yn)
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for Y,,,. In practice, this means that to solve two simultaneous differential equations,
we must advance the solution of both equations simultaneously in the manner shown in
Example 2.12.

Example 2.12  Find the value of X(1.4) satisfying the following initial-value problem:

((11—); =x—-y*+xt, x(1)=0.5

%f =27+xy—1, y(1)=12

using the Euler method with time step 4 = 0.1.

Solution  The right-hand sides of the two equations will be denoted by f(¢, x, y) and f£i(¢, x, »)
respectively, so

ft,x,y)=x—y*+xt and fo(t,x,y)=2x>+xpy—t¢

The initial condition is imposed at ¢ = 1, so #, will denote 1 + nk, X, will denote X(1 + nh),
and Y, will denote Y(1 + nh). Then we have

X, = X0+ hfi(to, Xo» Vo) Y, =y, + hfs(ty, X0, ¥o)
=0.5+0.1f,(1, 0.5, 1.2) =12+0.1£(1, 0.5, 1.2)
=0.4560 =1.2100

for the first step. The next step is therefore

X, =X, + hfi(t, X;, V) Y, =Y, +hfi(t, Xi, V)
= 0.4560 =1.2100

+0.1£,(1.1, 0.4560, 1.2100) +0.1£(1.1, 0.4560, 1.2100)
=0.4054 = 1.1968

and the third step is

X, =0.4054 Y, =1.1968
+0.1£,(1.2, 0.4054, 1.1968) +0.1£(1.2, 0.4054, 1.1968)
=0.3513 =1.1581

Finally, we obtain
X, =0.3513 +0.1£,(1.3, 0.3513, 1.1581)
=0.2980

Hence we have X(1.4) = 0.2980.
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MAPLE’s dsolve procedure can find the numerical solution of sets of coupled
ordinary differential equations as readily as for a single differential equation. The
following worksheet finds the solution required in the example above.

> #set up the two differential equations
> deqgl:=diff(x(t),t)=x(t)*(1l+t)-y(t)"2:
deg2:=diff(y(t),t)=2*x(t)" 2 +x(t)*y(t)-t:
degsystem:=deqgl, deqg?2;
> #set up the initial conditions
> inits:=x(1)=0.5,y(1)=1.2;
> #iprocedure “dsolve” used to solve s system of two coupled
differential equations
> sol:=dsolve({degsystem, inits}, numeric,
method=classical [foreuler],output=1istprocedure,
stepsize=0.1);
> #obtain numerical solution required
> xx:=0p(2,s01[2]);xx(1.4);

The principle of solving the two equations side by side extends in exactly the same
way to the solution of more than two simultaneous equations and to the solution of
simultaneous differential equations by methods other than the Euler method.

Example 2.13  Find the value of X(1.4) satisfying the following initial-value problem:

((11—); =x—y*+xt, x(1)=0.5

% =2 +xy—t, y(1)=12

using the second-order predictor—corrector method with time step 2 = 0.1.

Solution First step:

predictor
X, = xo+ hfi(to, X0 o) Yy =y + hfi(to, X0, %)
=0.4560 =1.2100
corrector
X =x+ % h[ fi(to, Xo5 Vo) Yi=y+ %h[fz(to, Xo, Vo)
+ﬁ(t19)213 ?l)] +ﬁ(tlaX19 Yl)]
=0.5+0.05[£(1,0.5,1.2) =1.2+0.05[£4(1, 0.5, 1.2)
+£1(1.1, 0.456, 1.21)] + £,(1.1, 0.456, 1.21)]

=0.4527 =1.1984
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Second step:
predictor
X, =X, +hfi(t,, X, 1)
=0.4042
corrector
X, =X, + 3 hlfi(t, X, YY)
+fi(t Koy 1)1
=0.4527
+0.05[£,(1.1, 0.4527, 1.1984)
+£1(1.2, 0.4042, 1.1836)]
=0.4028

Third step:

predictor
X=X, + (1, X, Vo)
=0.3542
corrector
Xy =X+ Shlfi(ty, X5, 1))
+fi(ts, X5, Y3)]
=0.4028
+0.05[ £,(1.2, 0.4028, 1.1713)
+£1(1.3,0.3542, 1.1309)]
=0.3553

Fourth step:

predictor
X4 =X, + hfi(t5, X5, V3)
=0.3119

corrector

X4 = )(3 + %h[ﬁ(th XSs Y3) +ﬁ(t4’ X4s Y4)]

YQZ Y +hf2(t|aX1, Yl)
=1.1836

Y,=Y, + S f(t, X, Y)
+fltr, X, 1))
=1.1984
+0.05[£5(1.1, 0.4527, 1.1984)
+£,(1.2,0.4042, 1.1836)]
=1.1713

Y3 = Y2 + hﬁ(t29 Xza YZ)
=1.1309

Y=Y, + LhLf(t, X, V)
+ Stz X3, V3)]
=1.1713
+0.05[ (1.2, 0.4028, 1.1713)
+£(1.3,0.3542, 1.1309)]
=1.1186

?4: Yy +hf2(t3,X3, Ys)
=1.0536

=0.3553 + 0.05[ £,(1.3, 0.3553, 1.1186) + £,(1.4, 0.3119, 1.0536)]

Hence finally we have X(1.4) = 0.3155.
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2.4.2

Example 2.14

The MAPLE worksheet at the end of Example 2.12 can be easily modified to repro-
duce the solution of Example 2.13 by changing the name of the required numerical
method from foreuler to heunform.

It should be obvious from Example 2.13 that the main drawback of extending
the methods we already have at our disposal to sets of differential equations is the
additional labour and tedium of the computations. Intrinsically, the computations are
no more difficult, merely much more laborious — a prime example of a problem ripe
for computerization.

State-space representation of higher-order systems

The solution of differential equation initial-value problems of order greater than one can
be reduced to the solution of a set of first-order differential equations using the state-space
representation introduced in Section 1.9. This is achieved by a simple transformation,
illustrated by Example 2.14.

The initial-value problem

2 ad

dx 2 dx 2 17, x(0)=12, dx(o) =08
> 2

dr dt dr

can be transformed into two coupled first-order differential equations by introducing
an additional variable

ol
dt
With this definition, we have
&x _dy
dr  dr
and so the differential equation becomes

d 2
a-¥+xzt)/—xt2= L

Thus the original differential equation can be replaced by a pair of coupled first-order
differential equations, together with initial conditions:
dx _

0)=12
TR x(0)

(Z% =Py + 1A, p(0)=08

This process can be extended to transform a pth-order initial-value problem into a
set of p first-order equations, each with an initial condition. Once the original equation
has been transformed in this way, its solution by numerical methods is just the same
as if it had been a set of coupled equations in the first place.
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Example 2.15

Solution

Find the value of X(0.2) satisfying the initial-value problem

3 2 )
d—)§+xtd—)zc+td—x—t2x=0, x(0) =1, d_x(())=0_5’ %(0):—0.2
dr drt  dt ds dr

using the fourth-order Runge—Kutta scheme with step size # = 0.05.

Since this is a third-order equation, we need to introduce two new variables:

2
y=d—x and Zzgz:d_x

dt dt drf

Then the equation is transformed into a set of three first-order differential equations

dx
P x(0)
dy
= 0)=0.5
rriakd »(0)
dz

o —xtz — ty + t*x z(0) =-0.2

Applied to the set of differential equations

d
PR ACE )
d
3 =% 3.2)

d
d—j = fi(t, %, v, 2)

the Runge—Kutta scheme is of the form
= hﬁ(tm )(na Yn’ Zn)
€y = hfé(tm ‘va Yn: Zn)
Cy = hﬁ(tn’ )(n’ an Zn)
Cpp= hﬁ(tn + %h’ Xvn + %clls }In + %CZI’ Zn + %c31)
Cpn = hﬁ(tn + %h’ X1 + %clla Yn + %CZI’ Zn + %C31)
C3 = hﬁ(tn + %h’ Xn + %cll’ Yn + %CZI’ Zn + %C3l)
Ci3= hﬁ(tn + %h’ Xvn + %clb }In + %022’ Zn + %032)
Co3 = hﬁ(tn + %h’ X1 + %0127 Yn + %CZZ’ Zn + %C32)
C33 = hﬁ(tn + %h’ Xn + %CIZ’ Yn + %CZZ’ Zn + %C32)
Ciy = hﬁ(tn + h’ ‘Xvn + Ci3s Yn + C23s Zn + C33)
Coy = hﬁ(tn + h’ X1 + Ci3» Yn + C23s Zn + C33)

Cyq = hﬁ(tn + h’ Xn + Ci3s Yn + Co3, Zn + C33)
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X=X, + é(cll +2¢p + 2¢15 + 1)
YVou=7,+ (l,(CZI +2¢p + 203 + o)
Zy=2,+ %(031 +2¢3 + 2¢33+ ¢34)
Note that each of the four substeps of the Runge—Kutta scheme must be carried out in
parallel on each of the equations, since the intermediate values for all the independent

variables are needed in the next substep for each variable; for instance, the computation

of ¢|5 requires not only the value of ¢, but also the values of ¢,, and c;,. The first step of
the computation in this case proceeds thus:

Xo=x,=1 Yo=»,=0.5 Zy=12y=-02
e = hfi(to, Xoo Yo, Zo)
= hY,
=0.025000 a1 = hf(to, Xo» Yo» Zo)
= hZ,
=-0.010000 51 = hfi(to, Xo» Yo, Zo)
= h(=XotoZy — 1Y, + 15.X,)
=0.000 000

cip = hfi(ty + %h, Xo + %Cns Yo+ %Czu Zy+ %Cm)
=h(Y, + %CZI)

=0.024750
o = hfy(ty + %h)XO + %c”, Yo+ %6219 Zy+ %Cn)
=h(Z,+ %031)
=-0.010000

Cop=hfy(ty+ 30, Xo+ 3en, Yo+ e, Zo+ 3cy)
= h(~(Xy + Len)to + L) Zo + Le3y)
—(ty+ 5 (Yo+ 5c) + (tg + (X, + 3 ¢1)
=-0.000334
ci; = hfi(ty + %h, X, + %Cm Y, + %cn, Zy + %cn)
=hY, + %czz)
=0.024750
Coy = hfy(ty + 31, Xy + S, Yo+ Sy Zo + 2 03y)
=h(Zy+ ic3)
=-0.010008
33 = hfi(to + S h, X, + %Cm Yo+ 3¢, Zo+ 5¢3)
= h(-(X, + %Cu)([o + %h)(Zo + 5032)
— (ty+ ) (Yo + 3 ¢yp) + (6 + L)X, + 5 ¢10)
=-0.000334
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Cia=hfi(ty+ h, Xy + ¢35, Yo + o3, Zy + C33)
=Yy + )
=0.024499
Cos = hf(ty+ hy Xy + €13, Yy + o3, Zo + C33)
=h(Zy+ c33)
=-0.010016
Cyy = hfy(ty+ h, Xy + 5, Yo + Co3, Zy + C33)
= h(—(X, + ¢t + M)(Zy + ¢33)
— (ty + h)(Yy + Cp3) + (t, + WXy + €13))
=-0.000584
X, =1.024750, Y, =0.489994, Z,=-0.200320

The second and subsequent steps are similar — we shall not present the details of the
computations. It should be obvious by now that computations like these are sufficiently
tedious to justify the effort of writing a computer program to carry out the actual arith-
metic. The essential point for the reader to grasp is not the mechanics, but rather the
principle whereby methods for the solution of first-order differential equations can be
extended to the solution of sets of equations and hence to higher-order equations.

Again MAPLE could be used to find the numerical solution of this set of coupled
ordinary differential equations. However, the MAPLE dsolve procedure is also able
to do the conversion of the higher-order equation into a set of first-order equations
internally so the numerical solution of the example above using the fourth-order
Runge—Kutta algorithm could be achieved with the following worksheet.

> #set up the differential equation

> deqg:=diff (x(t),t,t,t)+x(t)*t*diff(x(t),t,t)
+t*diff(x(t),t)-t"2*x(t)=0;

> #set up the initial conditions

> inits:=x(0)=1,D(x) (0)=0.5,D(D(x)) (0)=-0.2;

> #procedure “dsolve” used to solve third order

differential equations
> sol:=dsolve({deqg, inits}, numeric,method=classical([rk4],
output=1listprocedure, stepsize=0.05) ;
> #obtain the numerical solution required
> xx:=0p(2,s801[2]);xx(0.05) ;xx(0.2) ;
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2.4.3 Exercises

Transform the following initial-value problems
into sets of first-order differential equations with
appropriate initial conditions:

@

(b)

() =

(d)

©

()

(2)

(h)

d’x

dr

+6(-nE _4x=0

dt
dx

0)=1, —=(0)=2

x(0)=1, dt()

2
x4 -2 =0
dr

_ dx .y
x()=2, T(1)=05

_ dx oy
x(0)=0, (0)=0

3 2
(—1—)-C+td—)2‘+6

3 et d—)f
dr dt dt

2 2t
—Xxt=e

2
w0=1, Eoy=2, L=o
dt dr

3 2
d—);+td—)2€+x2:sint
dt dr

2
=1, Emy=o, -2
d¢ dt

3 1/2 2
((—1—?) TRPLUE I
dt d

t2
2
w2)=0, ¥2)=0, LX)=>2
dt dr

4 2
by vy oy, x0)=0,
at dr

2 3
dxgy=4, LXg=3
dr dr

4 3
51—-1‘+(515— 1)t51—13‘+91‘—(xz)”2

it \dr dr
=1*+4t-5
2
w0 =a, Eo=0, X0)=»
dt d¢

&)=,
dt

3
dx )0
dr

19

20

21

22

Find the value of X(0.3) for the initial-value
problem

2
d_’2‘+x2(£‘+x:sint, x(0) =0, (H(O)Z1
dr dt dr

using the Euler method with step size & = 0.1.

The second-order Adams—Bashforth method for
the integration of a single first-order differential
equation

dx

_ = [’

3 /e
is

X =X, + $hI3f(t,, X)) = f(t, 1, X, )]
Write down the appropriate equations for applying

the same method to the solution of the pair of
differential equations

dx _ dy_
dt _ﬁ(ta X, y)a df _fé(ta X, y)

Hence find the value of X(0.3) for the initial-value
problem

2
Cry e dry v —sing, x0)=0, ¥ 0)=1
dr dt dr

using this Adams—Bashforth method with step size
h =0.1. Use the second-order predictor—corrector
method for the first step to start the computation.

Use the second-order predictor—corrector

method (that is, the first-order Adams—Bashforth
formula as predictor and the second-order
Adams—Moulton formula as corrector) to compute
an approximation X(0.65) to the solution x(0.65)
of the initial-value problem

3 2 2
d—)3C+ (x—t)d—);+(d—x) -x'=0
dt dr dt

_ dx _ d’x _
x0.5)=-1, =(05)=1, =5(0.5)=2
dr dr
using a step size & = 0.05.

Write a computer program to solve the initial-value
problem

2
Cr, ed o sing, x0)=0, ¥ (0)=1
e dt
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using the fourth-order Runge—Kutta method. Use
your program to find the value of X(1.6) using
step sizes & = 0.4 and 0.2. Estimate the accuracy
of your value of X(1.6) and estimate the step size
that would be necessary to obtain a value of X(1.6)
accurate to 6dp.

Write a computer program to solve the initial-
value problem

3 2 )
d—f+(x—t)d—);+(g) -x'=0
dr dr dr

dx d’x
x(0.5)=-1, 5;(0.5):1, E-;(0.5):2

using the third-order predictor—corrector method
(that is, the second-order Adams—Bashforth
formula as predictor with the third-order Adams—
Moulton as corrector). Use the fourth-order Runge—
Kutta method to overcome the starting problem
with this process. Use your program to find the
value of X(2.2) using step sizes # = 0.1 and 0.05.
Estimate the accuracy of your value of X(2.2) and
estimate the step size that would be necessary to
obtain a value of X(2.2) accurate to 6dp.

Note: The comment on the use of high-level computer
language and the MATLAB and MAPLE packages
at the end of Section 2.3.9 is equally applicable to

the immediately preceding exercises in this section.

244

Boundary-value problems

Because first-order ordinary differential equations only have one boundary condition,
that condition can always be treated as an initial condition. Once we turn to second- and
higher-order differential equations, there are, at least for fully determined problems, two
or more boundary conditions. If the boundary conditions are all imposed at the same point
then the problem is an initial-value problem and can be solved by the methods we have
already described. The problems that have been used as illustrations in Sections 2.4.1
and 2.4.2 were all initial-value problems. Boundary-value problems are somewhat more
difficult to solve than initial-value problems.

To illustrate the difficulties of boundary-value problems, let us consider second-order
differential equations. These have two boundary conditions. If they are both imposed at the
same point (and so are initial conditions), the conditions will usually be a value of the
dependent variable and of its derivative, for instance a problem like

L] =/, x@=p. F@)=g

where L is some differential operator. Occasionally, a mixed boundary condition such as

dry |
Cx(a) + Da (a)=p

will arise. Provided that a second boundary condition on x or dx/df is imposed at the same
point, this causes no difficulty, since the boundary conditions can be decoupled, that is
solved to give values of x(a) and (dx/df)(a), before the problem is solved.

If the two boundary conditions are imposed at different points then they could con-
sist of two values of the dependent variable, the value of the dependent variable at
one boundary and its derivative at the other, or even linear combinations of the values
of the dependent variable and its derivative. For instance, we may have

LIx(n] =10,

or

x(a) =p,

x(b)=q

L] =/, F@=p. xb)=g
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Example 2.16

Solution

24.5

or
_ _, dxo
Lx@01 =110, xa@)=p, S B)=q
or even such systems as

LX) =/0), @) =p, Ax(b)+BE(B)=¢

The increased range of possibilities introduced by boundary-value problems almost
inevitably increases the problems which may arise in their solution. For instance, it may at
first sight seem that it should also be possible to solve problems with boundary conditions
consisting of the derivative at both boundaries, such as

Lol =0, F@=p. Lty=g

Things are unfortunately not that simple — as Example 2.16 shows.

Solve the boundary-value problem

dx _

dx dx
4, Zoy=p, ¥1)=
" 2O)=p. F()=q

Integrating twice easily yields the general solution
x=2t"+At+B

The boundary conditions then impose
A=p and 4+A4=gq

It is obviously not possible to find a value of 4 satisfying both these equations unless
q =p + 4. In any event, whether or not p and g satisfy this relation, it is not possible to
determine the constant B.

Example 2.16 illustrates the fact that if derivative boundary conditions are to be
applied, a supplementary compatibility condition is needed. In addition, there may be a
residual uncertainty in the solution. The complete analysis of what types of boundary
conditions are allowable for two-point boundary-value problems is beyond the scope of
this book. Differential equations of orders higher than two increase the range of possi-
bilities even further and introduce further complexities into the determination of what
boundary conditions are allowable and valid.

The method of shooting

One obvious way of solving two-point boundary-value problems is a form of systematic
trial and error in which the boundary-value problem is replaced by an initial-value
problem with initial values given at one of the two boundary points. The initial-value
problem can be solved by an appropriate numerical technique and the value of whatever
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Figure 2.22

The solution of a
differential equation
by the method of
shooting: initial trials.

x A
X, (b)
9t T4
P+
~ X, (b)
} >
0 a b t

function is involved in the boundary condition at the second boundary point deter-
mined. The initial values are then adjusted and another initial-value problem solved.
This process is repeated until a solution is found with the appropriate value at the
second boundary point.

As an illustration, we shall consider a second-order boundary-value problem of
the form

Lix] =/, x(a)=p, x(b)=gq (2:27)

The related initial-value problem

Llx] =/(0), x(a)=p, %(CJF0 (2:28)

could be solved as described in Section 2.4.2. Suppose that doing this results in an
approximate solution of (2.28) denoted by X;. In the same way, denote the solution of
the problem

Lx] =70, x(a)=p, % (@)=1 (2:29)

by X,. We now have a situation as shown in Figure 2.22. The values of the two solutions
at the point # = b are X;(b) and X,(b). The original boundary-value problem (2.27)
requires a value ¢ at b. Since ¢ is roughly three-quarters of the way between X;(b) and
X,(b), we should intuitively expect that solving the initial-value problem

LIx] =/(®), x(a)=p, %f(a)=0.75 (2.30)

will produce a solution with X(») much closer to g. What we have done, of course,
is to assume that X(b) varies continuously and roughly in proportion to (dx/df)(a)
and then to use linear interpolation to estimate a better value of (dx/df)(«). It is unlikely,
of course, that X(b) will vary exactly linearly with (dx/df)(a) so the solution of (2.30),
call it X5, will be something like that shown in Figure 2.23. The process of linear
interpolation to estimate a value of (dx/df)(a) and the subsequent solution of the
resulting initial-value problem can be repeated until a solution is found with a value
of X(b) as close to ¢ as may be required. This method of solution is known, by an
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Figure 2.23

The solution of a
differential equation
by the method of

shooting: first
refinement.

2.4.6

X A
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+ 4+ 4
4 =X, (b)
»t
~ X, (b)
} >
o a b t

obvious analogy with the bracketing method employed by artillerymen to find their
targets, as the method of shooting. Shooting is not restricted to solving two-point
boundary-value problems in which the two boundary values are values of the dependent
variable. Problems involving boundary values on the derivatives can be solved in an
analogous manner.

The solution of a two-point boundary-value problem by the method of shooting
involves repeatedly solving a similar initial-value problem. It is therefore obvious that
the amount of computation required to obtain a solution to a two-point boundary-
value problem by this method is certain to be an order of magnitude or more greater
than that required to solve an initial-value problem of the same order to the same
accuracy. The method for finding the solution that satisfies the boundary condition at
the second boundary point which we have just described used linear interpolation. It is
possible to reduce the computation required by using more sophisticated interpolation
methods. For instance, a version of the method of shooting that utilizes Newton—Raphson
iteration is described in R. D. Milne, Applied Functional Analysis, An Introductory
Treatment (Pitman, London, 1979).

Function approximation methods

The method of shooting is not the only way of solving boundary-value problems numeric-
ally. Other methods include various finite-difference techniques and a set of methods
that can be collectively characterized as function approximation methods. In a finite-
difference method the differential operator of the differential equation is replaced
by a finite-difference approximation to the operator. This leads to a set of linear
algebraic equations relating the values of the solution to the differential equation at
a set of discrete values of the independent variable. Function approximation methods
include various collocation methods and the finite-element method. In this section we
shall very briefly outline function approximation methods and give an elementary
example of the use of a collocation method. It is not appropriate to give an extensive
treatment of these methods in this book; the reader needing more detail should refer to
more advanced texts.

The method of shooting solves a boundary-value problem by starting at one boundary
and constructing an approximate solution to the problem step by step until the second
boundary is reached. In contrast with this, function approximation methods find an
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approximate solution by assuming a particular type or form of function for the solution
over the whole range of the problem. This function (usually referred to as the trial
function) is then substituted into the differential equation and its boundary conditions.
Trial functions always contain some unknown parameters, and, once the function has
been substituted into the differential equation, some criterion can be used to assign
values to these initially unknown parameters in such a way as to make the trial function
as close an approximation as possible to the solution of the boundary-value problem.

Unless a very fortuitous choice of trial function is made, it is unlikely that it will
be possible to make the function chosen satisfy the differential equation exactly. If,
for instance, a trial function depending on some parameters p,, p,, . . . and denoted
by X(#; py, ps, - - - ) is to be used to obtain an approximate solution to the differential
equation L[x(#)] = 0 then substituting this function into the differential equation results
in a function

LIX(% prs pas - - 1= 0 pis pas - - )

which is called the residual of the equation. Intuitively, it seems likely that making this
residual as small as possible will result in a good approximation to the solution of the
equation. But what does making a function as small as possible mean? The most com-
mon approaches are to make the residual zero at some discrete set of points distributed
over the range of the independent variable — this gives rise to collocation methods — or
to minimize, in some way, some measure of the overall size of the residual (for instance,
the integral of the square of the residual) — this is commonly used in finite-element
methods.
Thus, for instance, to solve the boundary-value problem

Lix(H]=0, x(a)=¢q, x(b)=r (2.31)

we should assume that the trial function X{(7), an approximation to x(), takes some form
such as

X(0=Y pfil0) (2.32)

i=1

where {p,:i=1,2,...,n} is the set of parameters that are to be determined and { f(?) :
i=1,2,...,n} is some set of functions of ¢. Substituting the approximation (2.32) into
the original problem (2.31) gives

LIS pifio)| = 0 (2.33a)
En, pifi(a)=gq (2-33b)
and

i pifib)=r (2.33¢)

i=1
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Equations (2.33b, c) express the requirement that the approximation chosen will satisfy
the boundary conditions of the problem. The function 7(¢) in (2.33a) is the residual of
the problem. Since (2.33b, ¢) impose two conditions on the choice of the parameters p,,

D - - - » P, We need another » — 2 conditions to determine all the p,. For a collocation
solution this is done by choosing n — 2 values of  such thata < <t, <...<t,,<b
and making n(z,) =0 for k=1, 2, ..., n — 2. Thus we have the n equations
lepifi(t")]:o (k=1,2,...,n-2) (2.34a)
i=1
Y pifia)=q (2.34b)
i=1
Y pifib)=r (2.34¢)
i=1

for the n unknown parameters p,, p,, . . . , p,. In general, these equations will be nonlinear
in the p,, but if the operator L is a linear operator then they may be rewritten as

ipiL[fl-(tk)]=0 (k=1,2,...,n-2) (2.35a)
i=1
Zn: pifila)=gq (2.35b)
i=1
Y pifib)=r (2.35¢)
i=1
and are linear in the p;. They therefore constitute a matrix equation for the p;:
LA LA Lise! [ o] To]
LIfi(t)]  LIA(5)] LI/.(t:)] || Pa 0
LIfi(5:)]  LIA(8)] LI/.(6:)] || ps 0
s s ] 2:36)
LIfi(t,0)] LIAG,-2)] LI/t 2)]] | Paes
fi(a) fr(a) f(a) Pt
J1(b) 1>(b) Loy L p.] L7

This matrix equation can, of course, be solved by any of the standard methods of linear
algebra. If the operator L is nonlinear then (2.34) cannot be expressed in the form
(2.35). The equations (2.34) may still be solved for the coefficients p,, but the solution
of nonlinear equations is, in general, a much more difficult task than the solution of
linear ones.

The choice of the functions f;(¢) and the collocation points ¢, greatly affect the accur-
acy and speed of convergence of the solution. (The speed of convergence in this context
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Example 2.17

Solution

is usually measured by the number of terms it is necessary to take in the approxima-
tion (2.32) in order to achieve a solution with a specified accuracy.) Example 2.17 shows
a simple application of collocation methods to the solution of a second-order boundary-
value problem.

Solve the boundary-value problem

2
Ay ordx,

> x=0,
de dt

x(0)=0, x2)=1 2.37)

using a collocation method with

X, (1) = ZP i

i=1

The differential operator in this case is linear, so we may construct the matrix equation
equivalent to (2.36). With the given approximation, we have

[(-D)(i-2+te)+£1 (i=3)
LIfi(nl=L["] = (e +1) (i=2)
1 (i=1)

We shall choose the collocation points to be equally spaced over the interior of the
interval [0, 2]. Thus, for n = 5 say, we need three collocation points, which would be
0.5, 1.0 and 1.5. We should therefore obtain the matrix equation

Computing the numerical values of the matrix elements yields the matrix equation

[ 1.000
1.000
1.000
1.000

| 1.000

2.149
3.718
5.982
0.000
2.000

whose solution is

p=1[0.000 2.636

3.899
8.437
17.695
0.000
4.000

4.362
15.155
42.626
0.000
8.000

3.887
23.873
92.565

0.000
16.000

-1.912 0.402 0.010]"

0.000 |
0.000
0.000
0.000
1.000 |

LLA(0.5)] LLA0.5)] LIA0.5)] LIA05)] LIAWOS)T || po| |0
LIA(LO)] LIA(LO)] LIA(L0)] LIA(LO)] LIAMOI || p| |0
LLALS)] LIAMLS)] LIAMS)] LLUALS]T LIAS)] || ps 0
1 0 0 0 0 pa| |0
L1 2 4 8 16 Jlps] L1J

Figure 2.24 shows the solutions X,, X5, X; and X;. As we should intuitively expect,
taking more terms in the approximation for x(¢) causes the successive approximations
to converge. In Figure 2.25 the approximations X; and X, are compared with a solution
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Figure 2.24 A collocation solution of (2.37). Figure 2.25 Comparison of the collocation solutions

Example 2.18

with the solution by the method of shooting.

to the problem (2.37) obtained by the method of shooting using a second-order Runge—
Kutta integration method. The step size used for the method-of-shooting solution was
estimated, using the technique introduced in Section 2.3.6, to yield a solution accurate
to better than 3.5 x 107, On this graph the solution X, was indistinguishable from the
method-of-shooting solution.

Although Example 2.17 gave reasonably good accuracy from a relatively small
number of terms in the function X, (), difficulties do arise with collocation methods when
straightforward power-series approximations like this are used. It is more normal to use
some form of orthogonal polynomials, such as Tchebyshev or Legendre polynomials,
for the fi(¢). In appropriate cases f;(f) = sin it and cos it are also used. The reader is
referred to more advanced texts for details of these functions and their use in collocation
methods.

Although they are rather more commonly used for problems involving partial dif-
ferential equations, finite-element methods may also be used for ordinary differential
equation boundary-value problems. The essential difference between finite-element
methods and collocation methods of the type described in Example 2.17 lies in the type
of functions used to approximate the dependent variable. Finite-element methods use
functions with localized support. By this, we mean functions that are zero over large
parts of the range of the independent variable and only have a non-zero value for some
restricted part of the range. A complete approximation to the dependent variable may
be constructed from a linear sum of such functions, the coefficients in the linear sum
providing the parameters of the function approximation.

A typical simple set of functions with localized support that are often used in the finite-
element method are the ‘witch’s hat’ functions. For a one-dimensional boundary-value
problem, such as (2.31), the range [a, b] of the independent variable is divided into a
number of subranges [t t,], [{}, ], - - -, [t,_1, t,] With ¢, = a and ¢, = b. We then define
functions
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Figure 2.26
The ‘witch’s hat’
functions.

Figure 2.27

The construction
of a continuous
piecewise-linear
approximation
function from
‘witch’s hat’
functions.
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The function f;(f) has support (that is, its value is non-zero) only on the interval [#,_,, ,,,].
Figure 2.26 shows the form of the functions f;(f). An approximation to the solution of a
boundary-value problem can be formed as

X1 =Y pifi(t) (2.38)

k=0

This equation defines a function that is piecewise-linear and continuous on the range
[a, b] as illustrated in Figure 2.27.

The finite-element method provides a general framework for using functions with
localized support to construct an approximation to the whole solution. One advant-
age of using such functions is that the user can, to a considerable extent, tailor the
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approximation used to the properties of the physical problem. If the problem is expected
to give rise to very rapid changes in some region then more functions with local support
in that area can be used. In regions where the solution is expected to change relatively
slowly fewer functions may be used. In Figure 2.27, for instance, the division of the
interval [a, b] into subregions is shown as being finer near #, and coarser near ¢,,. This
property of functions with local support gives the finite-element method considerable
advantages over collocation methods (which use functions defined over the whole
range of the problem) and over finite-difference methods.

Just as for the function approximation method illustrated in Example 2.17, the finite-
element method requires that some criterion be chosen for determining the values of
the unknown parameters in the approximation (2.38). A variety of criteria are commonly
used, but we shall not describe these in detail in this section. The use of the finite-element
method for obtaining numerical solutions of partial differential equations is described
in Section 9.6.

YR A P CET T TN oscillations of a pendulum

Figure 2.28 A simple
pendulum.

The simple pendulum has been used for hundreds of years as a timing device. A
pendulum clock, using either a falling weight or a clockwork spring device to provide
motive power, relies on the natural periodic oscillations of a pendulum to ensure good
timekeeping. Generally we assume that the period of a pendulum is constant regardless
of its amplitude. But this is only true for infinitesimally small amplitude oscillations. In
reality the period of a pendulum’s oscillations depends on its amplitude. In this section
we will use our knowledge of numerical analysis to assist in an investigation of this
relationship.

Figure 2.28 shows a simple rigid pendulum mounted on a frictionless pivot swinging
in a single plane. By resolving forces in the tangential direction we have, following the
classical analysis of such pendulums,

2
ma— =-mg sin6
dt

that is,

2
40, ggno=0 (2.39)
dt” a

For small oscillations of the pendulum we can use the approximation sin 6 = 6 so the
equation becomes

2
40, 89-0 (2.40)
A" a

which is, of course, the simple harmonic motion equation with solutions

0=4 cos(\/fz)+3sin(\/§t)
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Hence the period of the oscillations is 27,(a/g) and is independent of the amplitude of
the oscillations.

In reality, of course, the amplitude of the oscillations may not be small enough for
the linear approximation sin 8 = 0 to be valid, so it would be useful to be able to solve
(2.39). Equation (2.39) is nonlinear so its solution is rather more problematical than
(2.40). We will solve the equation numerically. In order to make the solution a little
more transparent we will scale it so that the period of the oscillations of the linear
approximation (2.40) is unity. This is achieved by setting # = 27,((a/g) 7. Equation (2.39)
then becomes

2
o +4m*sin =0 (2.41)
dr?

For an initial amplitude of 30°, the pseudocode algorithm shown in Figure 2.29, which
implements the fourth-order Runge—Kutta method described in Section 2.3.8, produces
the results ©(6.0) = 23.965 834 using a time step of 0.05 and ©(6.0) = 24.018 659 with
a step of 0.025. Using Richardson extrapolation (see Section 2.3.6) we can predict that
the time step needed to achieve 5 dp of accuracy (i.e. an error less than 5 x 107°) with
this fourth-order method is

1/4

4
0.000005x(2 — 1) % 0.025 = 0.0049

|23.965 834 —24.018 659 |

repeating the calculation with time steps 0.01 and 0.005 gives ©(6.0) = 24.021 872 7 and
©(6.0) = 24.021 948 1 for which Richardson extrapolation implies an error of 5 x 107
as predicted.

These results could also have been obtained using MAPLE as shown by the follow-
ing worksheet:

> degsys:=diff (x(t),t$2)+4*Pi"2*sin(x(t))=0;

> inits:=x(0)=60/180*Pi,D(x) (0)=0;

> gol:=dsolve({degsys, inits}, numeric,method=classical
[rkd4],output=1listprocedure, stepsize=0.005) ;

> xx:=0p(2,s01[2]);xx(6);evalf (xx(6)*180/P1i) ;

As a check we can draw the graph of |©, ,,(T) — O, 40s(7)|/15, shown in Figure 2.30.
This confirms that the error grows as the solution advances and that the maximum error
is around 7.5 x 107°.

What we actually wanted is an estimate of the period of the oscillations. The most
satisfactory way to determine this is to find the interval between the times of successive
zero crossings. The time of a zero crossing can be estimated by linear interpolation between
the data points produced in numerical solution of the differential equation. At a zero
crossing the successive values of © have the opposite sign. Figure 2.31 shows a modified
version of the main part of the algorithm of Figure 2.29. This version determines the times
of successive positive to negative zero crossings and the differences between them.

Figure 2.32 shows some results from a program based on the algorithm of Figure 2.31;
it is evident that the period has been determined to 6 sf accuracy. Figure 2.33 has been
compiled from similar results for other amplitudes of oscillation.
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Figure 2.29

A pseudocode tol « 0.00001

algorithm for solving t_start < 0

the nonlinear pendulum t_end < 6

equation (2.41). write(vdu, Enter amplitude => *)

read(keyb, x0)
x_start «— pi*x0/180
v_start < 0
write(vdu,‘Enter stepsize =>’)
read(keyb,h)
write(vdu,t_start,” ’,deg(x_start))
t < t_start
X ¢« x_start
Vv «— v_start
repeat

rk4(x,v,h — xn,vn)

X ¢~ Xn

V ¢ vn

t < t+h
until abs(t — t_end) < tol
write(vdu,t, ©  ’,deg(x))

procedure rk4(x,v,h — xn,vn)

cll « h=*fl(x,v)

c21 « h*f2(x,v)

cl12 « hxfl(x + cl1/2,v + c21/2)

€22 « h*f2(x + c11/2,v + c21/2)

c13 « h#fl(x + c12/2,v + c22/2)

c23 « h*f2(x + c12/2,v + ¢22/2)

cl4 « h#fl(x + c13,v +c23)

c24 « h#f2(x + c13,v + c23)

xn < X + (cl1 +2x(cl2 +cl13) + c14)/6

vn ¢ v+ (c21 + 2#(c22 + ¢23) + c24)/6
endprocedure

procedure f1(x,v — fl)
fl «v
endprocedure

procedure f2(x,v — f2)
f2 « —4s*pixpixsin (x)
endprocedure

procedure deg(x — deg)
deg < 180*x/pi
endprocedure

Some spring-powered pendulum clocks are observed to behave in a counter-intuitive
way — as the spring winds down the clock gains time where most people intuitively
expect it to run more slowly and hence lose time. Figure 2.33 explains this phenom-
enon. The reason is that, in a spring-powered clock, the spring, acting through the
escapement mechanism, exerts forces on the pendulum which, over each cycle of oscil-
lation of the pendulum, result in the application of a tiny net impulse. The result is that
just sufficient work is done on the pendulum to overcome the effects of bearing friction,
air resistance and any other dissipative effects, and to keep the pendulum swinging with
constant amplitude. But, as the spring unwinds the force available is reduced and the
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Figure 2.30 8.0E-6

Error in solution

of equation (2.41) 6.0E-6

using algorithm

(2.30) with /\ / \

. A ]
AP

0'OEH)O.)O \/1/ 0 200 \ 3.]{0 \ 4.00 \ S.ﬁ \ 6.00

VA

o T 1 \v

—8.0E-6

Error

Time

Figure 2.31
Modification of
pseudocode algorithm
to find the period

of oscillations of
equation (2.41).

tol < 0.00001
t_start < 0
t_end < 6
write(vdu, Enter amplitude => )
read(keyb,x0)
x_start «— pi*x0/180
v_start < 0
write(vdu,‘Enter stepsize => )
read(keyb,h)
write(vdu,t_start,” ’,deg(x_start))
t < t_start
X ¢« Xx_start
Vv < v_start
t_previous_cross «— t_start
repeat
rk4(x,v,h — xn,vn)
if(xn*x < 0) and (x > 0) then
t_cross «— (t¥xn — (t + h)*x)/(xn-x)
write(vdu,t_cross,* ’,t_cross —t_previous_cross)
t_previous_cross < t_cross
endif
X ¢~ Xn
V ¢ vn
t « t+h
until abs(t — t_end) < tol

impulse gets smaller. The result is that, as the clock winds down, the amplitude of
oscillation of the pendulum decreases slightly. Figure 2.33 shows that as the amplitude
decreases the period also decreases. Since the period of the pendulum controls the
speed of the clock, the clock runs faster as the period decreases! Of course, as the clock
winds down even further, the spring reaches a point where it is no longer capable of
applying a sufficient impulse to overcome the dissipative forces, the pendulum ceases
swinging and the clock finally stops.
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Figure 2.32 Periods of
successive oscillations
of equation (2.41),

Time of crossing Period of last cycle
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’ 1.271761 06 1.017408 93
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The periods of the oscillations can also be measured using MAPLE. The procedure

fsolve finds numerically the roots of a function. The output of the procedure
dsolve is a function so we can use fsolve to find the zeros of that function, as in
the following MAPLE worksheet. Note that the period of successive cycles is found
more accurately and consistently using MAPLE. This is because the procedure
fsolve uses a higher-order method to locate the zeros of the function rather than
the linear interpolation method outlined in the algorithm in Figure 2.31.

> printlevel:=0:

> for i from 1 to 6 do;
tl:=fsolve(xx(t)=0,t, (1-1)..(1-1+0.99)):
t2:=fsolve(xx(t)=0,t,1..(1+0.99)):
printf (“%$12.7f,%12.7f,%12.7f,\n",tl,t2,t2-tl);

end do;

20 A P CE T T DTN M heating of an electrical fuse

The electrical fuse is a simple device for protecting an electrical apparatus or circuit
from overload and possible damage after the failure of one or more components in the
apparatus. A fuse is usually a short length of thin wire through which the electrical current



2.6 ENGINEERING APPLICATION: HEATING OF AN ELECTRICAL FUSE 175

powering the apparatus flows. If the apparatus fails in such a way as to draw a dangerously
increased current, the fuse wire heats up and eventually melts thus disconnecting the
apparatus from the power source. In order to design fuses which will not fail during
normal use but which will operate reliably and rapidly in abnormal circumstances we
must understand the heating of a thin wire carrying an electrical current.
The equation governing the heat generation and dissipation in a wire carrying an
electrical current can be formulated as
2
kL o (T- T = 1P L 2.42)
dx’ 7
where T is the temperature of the fuse wire, x is the distance along the wire, £ is the
thermal conductivity of the material of which the wire is composed, » is the radius of
the wire, /4 is the convective heat transfer coefficient from the surface of the wire, 7, is
the ambient temperature of the fuse’s surroundings, ¢ is an empirical constant with a
value around 1.25, 7 is the current in the wire and p is the resistivity of the wire. Equa-
tion (2.42) expresses the balance, in the steady state, between heat generation and heat
loss. The first term of the equation represents the transfer of heat along the wire by
conduction, the second term is the loss of heat from the surface of the wire by convec-
tion and the third term is the generation of heat in the wire by the electrical current.
Taking 6= (T — T.) and dividing by knr?, (2.42) can be expressed as
2 2
d_? _2hge _ _% (2.43)
dx™  kr kn'r
Letting the length of the fuse be 2a and scaling the space variable, x, by setting x = 2a.X,
(2.43) becomes
ﬁ B 8a2h0a _ 4d’pl’
X’ kr k7
The boundary conditions are that the two ends of the wire, which are in contact with the
electrical terminals in the fuse unit, are kept at some fixed temperature (we will assume
that this temperature is the same as 7,). In addition, the fuse has symmetry about its
midpoint x = a. Hence we may express the complete differential equation problem as

40 _8a’h g _4d’pl’
dx*  kr k'

o0y=0, 4€1)=0 (2.44)
dx

Equation (2.44) is a nonlinear second-order ordinary differential equation. There is
no straightforward analytical technique for tackling it so we must use numerical means.
The problem is a boundary-value problem so we must use either the method of shooting
or some function approximation method. Figure 2.34 shows a pseudocode algorithm for
this problem and Figure 2.35 gives the supporting procedures. The procedure ‘desolve’
assumes initial conditions of the form 6(0) = 0, d8/d X(0) = 6; and solves the differential
equation using the third-order predictor—corrector method (with a single fourth-order
Runge—Kautta step to start the multistep process). The main program uses the method of
regula falsa to iterate from two starting values of 6; which bracket that value of 6;
corresponding to d6/dX(1) = 0 which we seek.

Figure 2.36 shows the result of computations using a program based on the algorithm
in Figure 2.34. Taking the values of the physical constants as #= 100 Wm=K™, a=0.01m,
k=63Wm'K"', p=16x10°Q mand r=35 x 10~ m, and taking 7 as 20 amps and
40 amps, gives the lower and upper curves in Figure 2.36 respectively.
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Figure2.34 tho « 16e-8
Pseudocode algorithm
. . kappa < 63
for solving equation
(2.44) r < Se-4
e a¢«le-2
hh « le2
i< 20

peonst «— 8+hh*a*a/(kappasxr)
qeonst «— 4xa*asrho*ixi/(kappa*pi*pi*r*r*rir)
tol « le-5
x_start < 0.0
x_end < 1.0
theta_start <— 0.0
write(vdu,Enter stepsize -->")
read(keyb,h)
write(vdu,‘Enter lower limit -->’)
read(keyb,theta_dash_low)
write(vdu,‘Enter upper limit -->’)
read(keyb,theta_dash_high)
desolve(x_start,x_end,h,theta_start,theta_dash_low — th,ql)
desolve(x_start,x_end,h,theta_start,theta_dash_high — th,gh)
repeat
theta_dash_new <« (qhxtheta_dash_low — qlxtheta_dash_high)/(gh — ql)
desolve (x_start,x_end,h,theta_start,theta_dash_new — th,qn)
if ql*qn>0 then
ql < qn
theta_dash_low <« theta_dash_new
else
gh < qn
theta_dash_high < theta_dash_new
endif
until abs(qn) < tol
write(vdu,th,qn)

procedure desolve(x_0,x_end,h,vl_0,v2_0 — v1_f,v2_f)
X« x_0
vl_ o« v1l 0
v2_ 0 v2_0
rk4(x,vl_o,v2_o,h — v1,v2)
X < X+h
repeat
pe3(x,vl_o,v2_o,vl,v2,h, = vl_n,v2_n)
vl_o« vl
v2_0 « V2
vl < vl_n
V2 V2 n
X < x+h
until abs(x — x_end) < tol
vl_f« vl
v2_fv2
endprocedure

Evidently at 20 amps the operating temperature of the middle part of the wire is
about 77° above the ambient temperature. If the current increases to 40 amps the
temperature increases to about 245° above ambient — just above the melting point of tin!
The procedure could obviously be used to design and validate appropriate dimensions
(length and diameter) for fuses made from a variety of metals for a variety of applica-
tions and rated currents.
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Figure 2.35
Subsidiary procedures
for pseudocode
algorithm for solving
equation (2.44).

Figure 2.36
Comparison of
temperatures in a fuse
wire carrying 20 amps
and 40 amps.

procedure rk4 (x,v1,v2,h — vIn,v2n)
cll « hxfl(x,v1,v2)
c21 « hx*f2(x,v1,v2)
c12 « h*fl(x + h/2,vl + c11/2,v2 + c21/2)
€22 « h*f2(x + h/2,vl + c11/2,v2 + ¢21/2)
cl13 « h*fl(x + h/2,v] + c12/2,v2 + ¢22/2)
€23 « h*f2(x + h/2,vl + ¢12/2,v2 + ¢22/2)
cl4 « h#fl(x + h,vl + c13,v2 + ¢c23)
c24 « h#f2(x + h,vl + c13,v2 + ¢23)
vin < vl + (cll +2x(cl2 + c13) + c14)/6
v2n ¢ v2 + (c21 + 2%(c22 + c23) + c24)/6
endprocedure

procedure pc3(x, vl_o,v2_o,vl,v2,h — vl _n,v2_n)
vl _p < vl + hx(3*fl(x,v1,v2) — fl(x — h,vl_o,v2_0))/2
v2_p < v2 + h*x(3*f2(x,v1,v2) — f2(x — h,vl_o,v2_0))/2
vl_n < vl + h*(5*fl(x + h,vl_p,v2_p)
+ 8*f1(x,v1,v2) — fl(x — h,vl_o,v2_0))/12
v2_n < v2 + h*(5*f2(x + h,vl_p, v2_p)
+ 8#f2(x,v1,v2) — f2(x — h,vl_o,v2_0))/12
endprocedure

procedure fl(x, theta,theta_dash — f1)
fl « theta_dash;
endprocedure

procedure f2(x,theta,theta_dash — f2)
if theta < tol then
f2 < —qconst
else
f2 < pconstexp(In (theta)*1.25) — qconst
endif
endprocedure
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The differential equation problem to be solved in this application is a boundary-
value problem rather than an initial-value problem. MAPLE’s dsolve procedure
can readily handle this type of problem. The following MAPLE worksheet repro-
duces the temperature profiles shown in Figure 2.36.

> deqgsys:=diff (theta(x),x,x)-8*a”2*h/
(k*r) *theta (x) “alpha=-4*a”2*ro*i~2/ (k*Pi"2*r"4) ;
> inits:=theta(0)=0,D(theta) (1)=0;
> alpha:=1.25;h:=100;a:=0.01;k:=63;ro0:=16e-8;r:=5e-4;
13=20p
> soll:=dsolve({degsys, inits},
numeric,output=1listprocedure, maxmesh=512) ;
> 1:=40;
> sol2:=dsolve({degsys, inits},
numeric,output=listprocedure, maxmesh=512) ;
> op(2,s0l1[2])(1);0p(2,s012[2]) (1) ;
> plot([op(2,s011[2]),0p(2,8012[2])]1,0..1);

To find a numerical solution of a second-order differential equation using
MATLAB, the user must first carry out the transformation to a set of two first-order
equations; MATLAB, unlike MAPLE, cannot complete this stage internally. Then
the following MATLAB M-file solves the differential equation and reproduce the
temperature profiles shown in Figure 2.36.

function engineering_ app?2
a=0.01;h=100;k=63;r=5e-4;alpha=1.25;ro=16e-8;1=20;
solinit = bvpinit(linspace(0,1,10),[40 0.5]);
soll = bvp4dc (Rodefun, @bcfun,solinit) ;

1=40;

sol2 = bvp4dc (@Godefun, @bcfun,solinit) ;

x = linspace(0,1);

vl = deval (soll,x);

v2 = deval (sol2,x);
plot(x,v1(1,:),x,v2(1,:));

yv1(1,100)

v2(1,100)

function dydx = odefun(x,y)
dydx = [ y(2)
8*a”2*h/ (k*r)*y (1) ~alpha-4*a”2*ro*i"2/ (k*pi"2*r™4)];
end
function res = bcfun(ya,yb)
res = [ ya(l)
yb(2)1;
end
end
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2.7 Review exercises (1-12)

1

2

8

4

5

Find the value of X(0.5) for the initial-value
problem

dx S
—=4Jx, x(0)=1
T (©)
using Euler’s method with step size 4 =0.1.

Find the value of X(1.2) for the initial-value
problem

‘(—111; =—e", x()=1

using Euler’s method with step size 4 = 0.05.

Solve the differential equation

dx _ xt

dt \/x2 7
to find the value of X(0.4) using the Euler method
with steps of size 0.1 and 0.05. By comparing the
two estimates of x(0.4) estimate the accuracy of the
better of the two values which you have obtained
and also the step size you would need to use in order
to calculate an estimate of x(0.4) accurate to two
decimal places.

x(0) =1

Solve the differential equation

dx o 2 _

Frie sin (¢9), x(0)=2

to find the value of X(0.25) using the Euler method
with steps of size 0.05 and 0.025. By comparing
the two estimates of x(0.25) estimate the accuracy
of the better of the two values which you have
obtained and also the step size you would need to
use in order to calculate an estimate of x(0.25)
accurate to three decimal places.

Let X}, X, and X; denote the estimates of the

function x(7) satisfying the differential equation

d_x = V”(xt + t)>

o x(1)=2

which are calculated using the second-order
predictor—corrector method with steps of 0.1, 0.05
and 0.025 respectively. Compute X,(1.2), X,(1.2)
and X;(1.2). Show that the ratio of |.X;, — X;| and

|X; — X, | should tend to 4 : 1 as the step size
tends to zero. Do your computations bear out
this expectation?

Compute the solution of the differential equation

‘;—f — 7 A)=5

for x = 0 to 2 using the fourth-order Runge—Kutta
method with step sizes of 0.2, 0.1 and 0.05.
Estimate the accuracy of the most accurate of
your three solutions.

In a thick cylinder subjected to internal pressure
the radial pressure p(r) at distance  from the axis
of the cylinder is given by

p+rd—2=2a—p
dr

where a is a constant (which depends on the
geometry of the cylinder).

If the stress has magnitude p, at the inner wall,
r =r,, and may be neglected at the outer wall,
r = r,, show that

pr2 ;’2
p(r)= LA (4-1)

ry—rog™r

Ifr,=1,r, =2 and p, = 1, compare the value
of p(1.5) obtained from this analytic solution
with the numerical value obtained using the
fourth-order Runge—Kutta method with step size
h =0.5. (Note: with these values of r,, 7, and p,,
a=-1/3).

Find the values of X(#) for # up to 2 where X(7)
is the solution of the differential equation
problem

3 2_\2 2
d—f+(d—f) +4((i)-c) —tx =sint,
dt dz dt
2
x1=02, ¥my=1, Lay=o0
dt dr

using the Euler method with steps of 0.025.
Repeat the computation with a step size of
0.0125. Hence estimate the accuracy of

the value of X(2) given by your solution.
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10

11

Find the solution of the differential equation problem

2
dx, - 1)% 4 40x =0,

dr dt
x(0) =002, 0y=0
dr

using the second-order predictor—corrector
method. Hence find an estimate of the value
of x(4) accurate to four decimal places.

Find the solution of the differential equation problem

1

2 3

+4(d_x) —tx =sint,
dt

d’x

3
dx [y
dr

dr

2
x(=-1, Eay=1, )=
dr dt

using the fourth-order Runge—Kutta method.
Hence find an estimate of the value of x(2.5)
accurate to four decimal places.

(Extended, open-ended problem.) The second-
order, nonlinear, ordinary differential equation

d’x

E+,u(x2—l)d—x

dr

+A%x =0

governs the oscillations of the Van der Pol
oscillator. By scaling the time variable the
equation can be reduced to
2
- e 2nx =0
dr dt

12

Investigate the properties of the Van der

Pol oscillator. In particular show that the
oscillator shows limit cycle behaviour (that

is, the oscillations tend to a form which is
independent of the initial conditions and depends
only on the parameter u). Determine the
dependence of the limit cycle period on L.

(Extended, open-ended problem.) The equation
of simple harmonic motion

2

d—%c +A%x=0

dr
is generally used to model the undamped
oscillations of a mass supported on the end of
a linear spring (that is, a spring whose tension is
strictly proportional to its extension). Most real
springs are actually nonlinear because as their
extension or compression increases their
stiffness changes. This can be modelled by
the equation

dzx 2 _

= +4m’(1 + B =0

dr
For a ‘hard’ spring stiffness increases with
displacement (8 > 0) and a soft spring’s stiffness
decreases (f§ < 0). Investigate the oscillations
of a mass supported by a hard or soft spring. In
particular determine the connection between
the frequency of the oscillations and their
amplitude.
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Figure 3.1
Elementary
vector algebra.

3.1

Introduction

In many applications we use functions of the space variable r = xi + yj + zk as models
for quantities that vary from point to point in three-dimensional space. There are two types
of such functions. There are scalar point functions, which model scalar quantities like
the temperature at a point in a body, and vector point functions, which model vector
quantities like the velocity of the flow at a point in a liquid. We can express this more
formally in the following way. For each scalar point function f'we have a rule, u = f(r),
which assigns to each point with coordinate r in the domain of the function a unique
real number u. For vector point functions the rule v = F(r) assigns to each r a unique vector
v in the range of the function. Vector calculus was designed to measure the variation of
such functions with respect to the space variable r. That development made use of the ideas
about vectors (components, addition, subtraction, scalar and vector products) described
in Chapter 4 of Modern Engineering Mathematics and summarized here in Figure 3.1.

b el _b -
b
‘ a+b a-b a
addition subtraction
components
b
%]
a

a-b=|al|b| cos 6
scalar product

c=axb
lc| = |a||b| sin 6
vector product

In component form if @ = (a,, a,, a;) and b = (b,, b,, b;) then
atrb=(a, £b,a,tb, a;%by)

a-b =(ab, +ab,+ab;)=b-a

i j k
axb=\|a, a, as;|=—-bXxXa
by b, b

= (ayby — byas, bias — aby, ab, — bia,)
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Figure 3.2

Level surfaces
of f(r) = (2,2,
=2x+2y-z

3.1.1

-1)-r

The recent development of computer packages for the modelling of engineering
problems involving vector quantities has relieved designers of much tedious analysis
and computation. To be able to use those packages effectively, however, designers need
a good understanding of the mathematical tools they bring to their tasks. It is on that
basic understanding that this chapter focuses.

Basic concepts

ZA

We can picture a scalar point function f{r) by means of its level surfaces f(r) = constant.
For example, the level surfaces of f{(r) = 2x + 2y — z are planes parallel to the plane
z = 2x + 2y, as shown in Figure 3.2. On the level surface the function value does not
change, so the rate of change of the function will be zero along any line drawn on the
level surface. An alternative name for a scalar point function is scalar field. This is in
contrast to the vector point function (or vector field). We picture a vector field by its
field (or flow) lines. A field line is a curve in space represented by the position vector
r(¢) such that at each point of the curve its tangent is parallel to the vector field. Thus
the field lines of F(r) are given by the differential equation
dr

T =F(r), wherer(t)=r,

and r, is the point on the line corresponding to ¢ = ¢,. This vector equation represents
the three simultaneous ordinary differential equations

&= Pex, 3, 2),

(_ld.¥ = Q(x’ y’ Z))

& R 2)

where F = (P, O, R).
Modern computer algebra packages make it easier to draw both the level surfaces of

scalar functions and the field lines of vector functions, but to underline the basic ideas
we shall consider two simple examples.
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Example 3.1

Solution

Figure 3.3 (a) Level
surfaces of f(r)=ze™;
(b) field lines of
F(r)=(-y,x, 1)

Sketch

(@)
(b)

(a)

(b)

the level surfaces of the scalar point function f(r) =ze™;

the field lines of the vector point function F(r) = (-, x, 1).

Consider the level surface given by f(r) = ¢, where ¢ is a number. Then
ze™ =cand so z = ce”. For ¢, x and y all positive we can easily sketch part of
the surface as shown in Figure 3.3(a), from which we can deduce the appearance
of the whole family of level surfaces.

(a) (b)

For the function F(r) = (-, x, 1) the field lines are given by
dr

Y (9,x1

(%D

that is, by the simultaneous differential equations

e dy_ o odz_

- = > - x’

a7 dr dt

The general solution of these simultaneous equations is
x(t)=Acost+ Bsint, y(t)=-Bcost+Asint, z(t)=t+C

where 4, B and C are arbitrary constants. Considering, in particular, the field line
that passes through (1, 0, 0), we determine the parametric equation

(x(2), y(t), z(t)) = (cos t, sint, t)

This represents a circular helix as shown in Figure 3.3(b), from which we can
deduce the appearance of the whole family of flow lines.
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In MATLAB a level surface may be drawn using the ezsurf function. Using the
Symbolic Math Toolbox the commands:

syms X y z C

for ¢ = [1 2 3]

z = c*exp(x*y);

ezsurft (z, [0, 2, 0, 2])
hold on

end

will produce three of the level surfaces of z = e™ on the same set of axes. The
surfaces may also be produced in MAPLE using the ezsurf function. The field
lines may be plotted in MATLAB using the st reaml ine function.

To investigate the properties of scalar and vector fields further we need to use the
calculus of several variables. Here we shall describe the basic ideas and definitions
needed for vector calculus. A fuller treatment is given in Chapter 9 of Modern Engineer-
ing Mathematics.

Given a function f(x) of a single variable x, we measure its rate of change (or
gradient) by its derivative with respect to x. This is

%f = f1x) = lim [xEA%) = /x)
X

x) — f(x
Ax—0 Ax

However, a function f(x, y, z) of three independent variables x, y and z does not have a
unique rate of change. The value of the latter depends on the direction in which it is
measured. The rate of change of the function f(x, y, z) in the x direction is given by its
partial derivative with respect to x, namely

gf: limf(x+Ax’ Y, Z)—f(x,y, Z)

ax Ax—0 Ax

This measures the rate of change of f(x, y, z) with respect to x when y and z are held
constant. We can calculate such partial derivatives by differentiating f(x, y, z) with
respect to x, treating y and z as constants. Similarly,

_@Z: hmf(x: y+Ay5 Z)_f(x’ Y, Z)
Y ays0 Ay

and

sz lim f(xy YV, Z+AZ)_f(x’ Y, Z)

)z Az—0 Az

define the partial derivatives of f(x, y, z) with respect to y and z respectively.
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Example 3.2

Solution

For conciseness we sometimes use a suffix notation to denote partial derivatives, for
example writing f, for df/dx. The rules for partial differentiation are essentially the
same as for ordinary differentiation, but it must always be remembered which variables
are being held constant.

Higher-order partial derivatives may be defined in a similar manner, with, for
example,

(2,

ox’  ox\ox
2L oar)
dyox  dy\odx v
It :i( 5’2f)=f
dzdyodx  dz\dyox E

Find the first partial derivatives of the functions f(x, y, z) with formula (a) x + 2y + z°,
(b) x*(y + 22) and (c) (x + y)/(z* + x).

(a)  f(x,y,z) =x+2y+z°. To obtain £, we differentiate f(x, y, z) with respect to x,
keeping y and z constant. Thus f, = 1, since the derivative of a constant (2y + z*)
with respect to x is zero. Similarly, f, =2 and £, = 32°.

(b)  f(x, y, z) = x*(y + 2z). Here we use the same idea: when we differentiate with

respect to one variable, we treat the other two as constants. Thus

2 [x*(y+22)]=(y+ ZZ)i (xH) =2x(y +22)
ox ox

9 [x*(y +22)] = xz—Q- (y +2z) =x*(1) = x?
% %

-8— [xz(y +2z)] = xz_él (y+22)= x2(2) = 2x?
0z 0z

(¢)  f(x,y,z) = (x + y)/(z* + x). Here we use the same idea, together with basic rules
from ordinary differentiation:

I _ (DE+x) = (x+1)(1)

(quotient rule)

ox (2 +x)°
_Z-y
(z3 + x)2
o _ _1_
I Pix
2
a> -3z (x+y) (chain rule)

0z (2 +x)°




3.1 INTRODUCTION 187

Example 3.3

Solution

The partial derivatives /' and f, of the function f{x, y), with respect to x and y respec-
tively, are given by the commands

MATLAB MAPLE

Syms X y

f = f(x, v) f := £(x, v);

fx diff(f, x) fx := diff(f, x);
fy diff(f, y) fy := diff(f, y);

These commands can readily be extended to functions of more than two variables.
Also second-order partial derivatives can be obtained by suitably differentiating the
first-order partial derivatives already found. Thus in MATLAB the second-order
partial derivatives of f{x, y) are given by

fxx = diff(fx,x) fxy = diff(fx,y) fyy = diff(fy,vy)
fyx = diff(fy,x)

Alternatively, the non-mixed derivatives can be obtained directly using the
commands

fxx = diff(f,x,2) fyy = diff(f,y,2)

which can be extended to higher-order partial derivatives. The corresponding com-
mands in MAPLE are

fxx := diff(f,x,x); fxy := diff(f,x,v);

fyy := diff(f,yv,vy);

In Example 3.2 we used the chain (or composite-function) rule of ordinary

differentiation
df _ df du
dx dudx

to obtain the partial derivative df/dz. The multivariable calculus form of the chain rule
is a little more complicated. If the variables u, v and w are defined in terms of x, y and
z then the partial derivative of f(u, v, w) with respect to x is

9 _9fdu_ dfdv, of dw
ox Jdudx Jdvdx oJw dx

with similar expressions for df/dy and df/oz.

Find 07/0r and d7/00 when

T(x,y)=x—xy+y’

and

x=rcosf and y=rsinf
By the chain rule,

o _ T dx T dy

dr  oxadr dyor
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In this example

%=3x2—y and g—;=—x+3y2
and
g—f =cosf and g-f =sin 0
so that
? = (3x? — y)cos O + (—=x + 3y?)sin O
-
Substituting for x and y in terms of » and 0 gives
%—Z =3r%(cos’0 + sin*0) — 2rcos O sin O
r
Similarly,
aT _ 2 . 2
i (Bx* —y)(=rsin@) + (—x + 3y“)rcos O

= 37%(sin O — cos 0)cos O sin O + r*(sin*0 — cos*0)

Example 3.4  Find d #/d¢ when
H(t) = sin(3x — y)
and

x=2"-3 and y=ir’-5t+1

Solution  We note that x and y are functions of 7 only, so that the chain rule becomes
dH _ 9H dx , OH dy
dt  ox dt dy dr

Note the mixture of partial and ordinary derivatives. H is a function of the one variable
t, but its dependence is expressed through the two variables x and y.
Substituting for the derivatives involved, we have

%[ = 3[cos(3x — y)]47 — [cos(3x — y)](t = 5)

= (11t +5)cos(3x —y)
= (11z + 5)cos(51* + 5¢ — 10)

Example 3.5 A scalar point function f(r) can be expressed in terms of rectangular cartesian coordin-
ates (x, y, z) or in terms of spherical polar coordinates (7, 6, ¢), where

x=rsinfcos¢, y=rsinfOsing, z=rcosf
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Solution

Figure 3.4 Spherical
polar coordinates.

Example 3.6

Solution

as shown in Figure 3.4. Find df/dx in terms of the partial derivatives of the function
with respect to r, 8 and ¢.

Using the chain rule, we have

9 _ 9fdr, dfd0, dfdo
ox or (9x 00 8x ¢ ox

From Figure 3.4, 7> = x? + y* + z%, tan ¢ = y/x and tan @ = (x* + ?)"?/z, so that

&=J£=sin9cos¢
ox r
Q@:i(tan IZ)— y __Sin¢
ox ok x x4y 7sin
26 = i{tanl £x2+ 22!1/2 } - Xz
ox ox z (x +y 4z )(x +y2)1/2
_ cos pcos 6
r
Thus
9 - smOcosrp—f sin ¢ _f cos ¢ cos 6 Jf
ox r rsmeaq) r 00

The Laplace equation in two dimensions is

o’
where x and y are rectangular cartesian coordinates. Show that expressed in polar co-
ordinates (7, 8), where x = r cos 6 and y = r sin 6, the Laplace equation may be written

19( du),  1d°u
r&r( )+

r 892
Using the chain rule, we have

=0

=0

du _ dudx , dudy
or oxodr dyor
du du
= 8x00S9+ aysm@
and
2 2
Q_i;:&u 0+a—usm9+2a sin 6 cos 6
o’ ox o’ oxdy
Similarly
du

30" (9( r51n0)+—(rc059)
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and
L = 8y gin 6 + Ly cos 6y’ - 22 5in6 cos 6
06 o Byz oxdy
— Eg(r cos 0) — g—z(r sin 0)
so that
2 2
lza_L;: d'u sin 9+Mcos 6-2 9 u sin O cos 0
00> ox’ o’ oxdy
(g: cos 6+ g;’ sin 9)
Hence
2
12‘9_L;+l@ Iu si 9+ﬂcos 6-2 Iu sin 6 cos 6
206> ror oy’ (9y oxdy
and
Loy, 10, Fu_ P,
00 Tor 9t ox Byz
Since

8( 8u)_ Q___zu_l_@
or\_ dr o or

we obtain the polar form of the Laplace equation in two dimensions

1(9( au)Jrl@ _
ror\ or) ?96*

The chain rule can be readily handled in both MATLAB and MAPLE. Considering
Example 3.3, in MATLAB the solution may be developed as follows:
The commands
syms X y z theta
T=x"3 - xX*y + y7™3; Tx = diff(T,x); Ty = diff(T,vy);
X = r*cos(theta); y = r*sin(theta);
xr = diff(x,r); xtheta = diff (x,theta); yr = diff(y,r);
yvtheta = diff (y,theta);
Tr = Tx*xr + Ty*yr
return
Tr = (3*x"2 - y)*cos(theta) + (-x + 3*y”"2)*sin(theta)

To substitute for x and y in terms of r and theta we make use of the eval
function, with

eval (Tr) ; pretty(ans)
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returning the answer

(3r’cos (theta)? - rsin(theta))cos (theta) +
(-rcos (theta) + 3r’sin(theta)?)sin(theta)

which readily reduces to the answer given in the solution.
Similarly the commands

Ttheta = Tx*xtheta + Ty*ytheta;
eval (Ttheta); pretty (ans)

return the answer

(-3r°cos(theta)? + rsin(theta))rsin(theta) +
(-rcos (theta) + 3r’sin(theta)?)rcos(theta)
which also reduces to the answer given in the solution.
MAPLE solves this problem much more efficiently using the commands

T := (x,¥y)-—> x"3 - x*vy + y*3;
diff (T (r*cos(theta), r*sin(theta)), r);
diff (T (r*cos(theta), r*sin(theta)), theta);

collect (%,r);
returning the answer

(-3cos (0)%sin(0) + 3sin(0)3cos(0))r’
+ (sin(@)* - cos(0)?)r?

3.1.2 Exercises

Check your answers using MATLAB or MAPLE whenever possible.

Sketch the contours (in two dimensions) of the 5  Find all the first and second partial derivatives of
scalar functions the functions
(@) flx,y)=In(x*+y*-1) (@) f(N=xyz—x>+y—z (b) f(r) =x%z’
(b) flx,y)=tan"'[y/(1 +x)] (c) f(r) =z tan™ (y/x)
Sketch the ﬂow lines (in two dimensions) of the 6  Find df/ds, where
vector functions ’
_ 2 2 _ 3 _
(a) F(x,y):yi+(6x2—4x)j (a) f(}’) 1—/(.;( ':)y z, and x = ¢ l,y— Zt,
z= -

(b) F(x,y)=yi+(zx* - x)j
where i and j are unit vectors in the direction of

the x and y axes respectively. 7 Find 9f/dy and 9f/9z in terms of the partial

Sketch the level surfaces of the functions

(@ fr=z-xy

(b) f(r)=xyz,and x=¢"'sint, y=¢"'cost,z=t

derivatives of f'with respect to spherical polar
coordinates (r, 6, ¢) (see Example 3.5).
®) f(n=z-¢"

8  Show that if u(r) = f(r), where r* = x> + y* + z% as

Sketch the field lines of the functions usual, and

(a) F(r):(xy,yz+ I’Z) 82u (92u+£b_t
2

=4 == =0

(b) F(r)=(yz, zx, xy) o't oz
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then satisfies the differential equation
2 2 2
4,241 or, 2y _ov
dr® rdr o gyz oz

Hence find the general form for f(r).

10 Verify that V(x, y, z) = sin3x cos4y cosh 5z satisfies
the differential equation

9  Show that
2 2 2
1 Ot 2) oV IV IV _
Vi =21 X Ty + + 0
. 2) Zexp( 4z o’ ot o7
3.1.3 Transformations

Example 3.3 may be viewed as an example of transformation of coordinates. For
example, consider the transformation or mapping from the (x, y) plane to the (s, f)
plane defined by

S=S(X»J’)a t=t(x9y) (3‘1)
Then a function u = f(x, y) of x and y becomes a function u = F(s, #) of s and ¢ under the
transformation, and the partial derivatives are related by

du_ quds , dudk
ox dsox Jdtox

3.2)
Qu_ duds  dun
dy dsdy OJtdy
In matrix notation this becomes
ou| [as or[ou
ox _ ox ox||ds (3.3)

du| |35 | ou

dy dy dy|| ot
The determinant of the matrix of the transformation is called the Jacobian of the trans-
formation defined by (3.1) and is abbreviated to

9s. 1) or simply to J
a(x, )
so that

ds ot ds Js
I A(s, 1) _ dx ox| |ox dy 3.4)
S dx,y) |ds ol | d .

dy dy ox dy

The matrix itself is referred to as the Jacobian matrix and is generally expressed in

I 9
the form (;x gy . The Jacobian plays an important role in various applications of
t t

ox dy
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mathematics in engineering, particularly in implementing changes in variables in multi-
ple integrals, as considered later in this chapter.

As indicated earlier, (3.1) define a transformation of the (x, y) plane to the (s, 7) plane
and give the coordinates of a point in the (s, #) plane corresponding to a point in the
(x, y) plane. If we solve (3.1) for x and y, we obtain

x = X(s, 1), y=1Y(s, 1) 3.5)

which represent a transformation of the (s, f) plane into the (x, y) plane. This is called
the inverse transformation of the transformation defined by (3.1), and, analogously to
(3.2), we can relate the partial derivatives by

u_ dudx , dudy
ds Jdxds Jdyds

Ju _ Judx , dudy
ot oxot dyot

(3.6)

The Jacobian of the inverse transformation (3.5) is

ax, y) _

xS yS
J, = =
"0, 1)

Xe Wi

where the suffix notation has been used to denote the partial derivatives. Provided
J # 0, it is always true that J, =J ' or

dx, y) d(s, 1) _ 1
d(s, 1) d(x, y)

If J = 0 then the variables s and ¢ defined by (3.1) are functionally dependent; that is, a
relationship of the form f(s, ) = 0 exists. This implies a non-unique correspondence
between points in the (x, y) and (s, ) planes.

If s = s(x, y), t = t(x, y) then using MuPAD in MATLAB the commands
delete x, vy:

linalg:: jacobian([s, tl, [x, vI])
& 9
return the Jacobian matrix ox Jy
a a
ox ady

The same result may be obtained with the Symbolic Math Toolbox using the
commands

syms X y s t
jacobian ([s, tl1,I[x, vI)

or in MAPLE using the commands

with (VectorCalculus) :
Jacobian([s, tl, [x, v1);
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Example 3.7

Solution

Example 3.8

Solution

(a) Obtain the Jacobian J of the transformation
s=2x+y, t=x—-2y

(b) Determine the inverse transformation of the above transformation and obtain its
Jacobian J,. Confirm that J, =J .

(a)  Using (3.4), the Jacobian of the transformation is

Jzags,t!:‘z 1‘:_5
aAx,y) |1 =2

(b)  Solving the pair of equations in the transformation for x and y gives the inverse
transformation as

x=1@2s+1), y=1(s—20)

-5

The Jacobian of this inverse transformation is

J = ax,y) _
'O, 1)

[ VTN

wiN L=

confirming that J, = J .

Show that the variables x and y given by

x=3t 8t 3.7

N t

are functionally dependent, and obtain the relationship f(x, y) = 0.

The Jacobian of the transformation (3.7) is

t 1
J:Mx’ =xs ys= 52 ! _—1———1-_
As, ) |x, v, 1 s| st st
N tz

Since J = 0, the variables x and y are functionally related.
Rearranging (3.7), we have

x=1+£, y=“—§+l

N

so that

x-Dy-1=12=1
st
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11

12

13

14

giving the functional relationship as

xy—(x+y)=0

The definition of a Jacobian is not restricted to functions of two variables, and it is
readily extendable to functions of many variables. For example, for functions of three
variables, if

u=Ux,y, z), v=VWVx,y,z), w=Wx,y,z) 3.8)

represents a transformation in three dimensions from the variables x, y, z to the variables
u, v, w then the corresponding Jacobian is

: U, v, Wy u, u, u,
U, v, w
E et o W) =|lu, v, w|=|v, v v
Y Y Y X Y z
a(x, y, z)
u, v, w, W, w, W,

Again, if J= 0, it follows that there exists a functional relationship f{u, v, w) = 0 between
the variables u, v and w defined by (3.8).

3.1.4 Exercises

Show that if x + y = u and y = uv, then 15  Find the value of the constant K for which
Ix. ) u=Kx*+4y*+z°

(u, v) -

Show that, if x + y + z=u, y + z =uv and z = uww,

v=3x+2y+z
w=2yz+3zx + 6xy

are functionally related, and obtain the

then corresponding relation.
ox. v, 2) _ 2, 16  Show that, if u = g(x, y) and v = A(x, ), then
Nu, v, w)
YT Y
If x = " cosv and y = e" sinv, obtain the two du  Jy o %
Jacobians & _ /J 9 _du /J
du ox v odx
ICx. y) A(u, v) where in each case
(u, v) d(x, »)
. . J= a(u, v)
and verify that they are mutual inverses. d(x, y)

Find the values of the constant parameter A for
which the functions

U =cosxcosy— Asinxsiny

v =sinxcosy + Acosxsiny

17  Use the results of Exercise 16 to obtain the partial
derivatives

x ok d d

' o

where

are functionally dependent. u=e'cosy and v=e“siny
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3.1.5

Figure 3.5
Illustration of result
(3.11).

The total differential

Consider a function « = f{(x, y) of two variables x and y. Let Ax and Ay be increments
in the values of x and y. Then the corresponding increment in u is given by

Au=f(x+Ax,y+ Ay) — f(x, )

We rewrite this as two terms: one showing the change in « due to the change in x, and
the other showing the change in u due to the change in y. Thus

Au=[flx+Ax, y + Ay) = f(x, y + Ap)] + [f(x, v + Ay) = f(x, y)]
Dividing the first bracketed term by Ax and the second by Ay gives

Au=LEHAY Y+ AY) =, y H AX) 5 [y AY) AN 3) 5,
Ax Ay

From the definition of the partial derivative, we may approximate this expression by

Au = Qfo + Q[Ay
ox dy

We define the differential du by the equation
du = Qfo + QfAy 3.9
ox dy

By setting f(x, ¥) = fi(x, ¥) = x and f(x, y) = f,(x, ) = y in turn in (3.9), we see that

dx = Qf-‘Ax+ Qf-lAy =Ax and dy=Ay
ox dy

so that for the independent variables increments and differentials are equal. For the
dependent variable we have

du = Qfdx + Qfdy 3.10)
ox dy

We see that the differential du is an approximation to the change Au in u = f(x, y)
resulting from small changes Ax and Ay in the independent variables x and y; that is,

Auzduzgfdx+gzdy = Qfo-FQfAy (3.11)
ox dy ox dy

a result illustrated in Figure 3.5.

(x+Ax,y+ Ay, u+ Au)
A

IS
s §— of
Au a—xAx

(CRAD) Ay
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Example 3.9

Solution

This extends to functions of as many variables as we please, provided that the partial
derivatives exist. For example, for a function of three variables (x, y, z) defined by
u = f(x, y, z) we have

Auzduz—afdx+—o?fdy+éfdz
ox dy 0z

S/ N/ N/
BxAx I 3yAy aF 8ZAZ

The differential of a function of several variables is often called a total differential,
emphasizing that it shows the variation of the function with respect to small changes in
all the independent variables.

Find the total differential of u(x, y) = x”.

Taking partial derivatives we have

8_u — yxy*l

ox
Hence, using (3.10),

and @ =x"Inx

dy

du =y~ dx + x’ Inx dy

Differentials sometimes arise naturally when modelling practical problems. When this
occurs, it is often possible to analyse the problem further by testing to see if the expres-
sion in which the differentials occur is a total differential. Consider the equation

P(x, y)dx + Q(x, y)dy =0

connecting x, y and their differentials. The left-hand side of this equation is said to be
an exact differential if there is a function f(x, y) such that

df'=P(x,y)dx + O(x, y)dy
Now we know that

df= Lax+ Ly
ox dy
so if f(x, y) exists then
Pay=2L ad Owy=2
ox dy

For functions with continuous second derivatives we have

I _ 9L
oxdy dyox
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Example 3.10

Solution

Thus if f(x, y) exists then

aP _ 90 12
dy ox (312)

This gives us a test for the existence of f(x, y), but does not tell us how to find
it! The technique for finding f(x, y) is shown in Example 3.10.

Show that
(6x+9y+ 11)dx+ (9x — 4y + 3)dy
is an exact differential and find the relationship between y and x given

dy _ _6x+9y+11
dx 9x—4y+3

and the condition y = 1 when x = 0.

In this example
P(x,y)=6x+9y+11 and Ox,y)=9%x—4y+3

First we test whether the expression is an exact differential. In this example
JP
dy

so from (3.12), we have an exact differential. Thus we know that there is a function
f(x, y) such that

=9 and (9_Q:9
ox

Qf=6x+9y+ll and Qf=9x—4y+3 (3.13a, b)
ox dy

Integrating (3.13a) with respect to x, keeping y constant (that is, reversing the partial
differentiation process), we have

f(x,¥) =3x?+ 9xy + L1x + g(y) 3.14)

Note that the ‘constant’ of integration is a function of y. You can check that this expression
for f(x, y) is correct by differentiating it partially with respect to x. But we also know
from (3.13b) the partial derivative of f(x, y) with respect to y, and this enables us to find
g’ (»). Differentiating (3.14) partially with respect to y and equating it to (3.13b), we have

Qf=9x+d—g=9x—4y+3
Y dy

(Note that since g is a function of y only we use dg/dy rather than dg/dy.) Thus

dg
= =—4y+3
dy Y

so, on integrating,
gy =-27+3y+C
Substituting back into (3.13b) gives
J6, ) =3x2+ 9y + 1lx =22+ 3y + C
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Now we are given that

dy _ _6x+9y+11
dx O9x—-4y+3

which implies that

(6x+9y+11)dx+ (9x—4y+3)dy=0
which in turn implies that

3x7+9xy + 1lx - 2p*+3y+C=0

The arbitrary constant C is fixed by applying the given condition y = 1 when x = 0,
giving C = —1. Thus x and y satisfy the equation

37+ 9xy + 1lx—2p2+ 3y =1

3.1.6 Exercises

18  Determine which of the following are exact is the exact differential of a function f(x, y). Find the
differentials of a function, and find, where corresponding function f{(x, y) that also satisfies the
appropriate, the corresponding function. condition £(0, 1) = 0.

(@) (¥*+2xy+ Ddx + 2y +x%)dy 20  Show that the differential
(b) (2xy* + 3ycos3x)dx + (2x%y + sin 3x) dy g(x, y) = (10x* + 6xy + 6)*) dx

+ (9x% + 4xy + 15y dy

(c) (6xy—yHdx+ (2xe’ —x?)dy

is not exact, but that a constant m can be chosen so

(d) (2°-3y)dx+ (12> = 3x)dy + 3xz*dz that

(2x + 3y)"g(x, y)

19 Find the value of the constant A such that

is equal to dz, the exact differential of a function

(ycosx+ Acosy)dx + (xsiny + sinx + y) dy z=f(x, y). Find f(x, ).

Derivatives of a scalar point function

3.2.1

In many practical problems it is necessary to measure the rate of change of a scalar
point function. For example, in heat transfer problems we need to know the rate of
change of temperature from point to point, because that determines the rate at which
heat flows. Similarly, if we are investigating the electric field due to static charges,
we need to know the variation of the electric potential from point to point. To deter-
mine such information, the ideas of calculus were extended to vector quantities. The
first development of this was the concept of the gradient of a scalar point function.

The gradient of a scalar point function

We described in Section 3.1.1 how the gradient of a scalar field depended on the direc-
tion along which its rate of change was measured. We now explore this idea further.
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Consider the rate of change of the function f{(r) at the point (x, y, z) in the direction of
the unit vector (/, m, n). To find this, we need to evaluate the limit

f!r+Ar!—ﬂ )

Ar—>0
where Ar is in the direction of (/, m, n). In terms of coordinates, this means

r+Ar=r+ Ar(l, m, n)
=(x+Ax,y+ Ay, z+ Az)

so that
Ax = IAr, Ay = mAr, Az = nAr
Thus we have to consider the limit

lim fx+IAr, y+mAr, z+nAr) —f(x,v,2)
Ar—0 Ar

We can rewrite this as

lim {f(x +[Ar, y+mAr, z+nAr) —f(x, y+ mAr, z + nAr)} i
IAr

Ar—0

+ lim [y £ mAr, z+ nAr) = f(x, y, z+nAr) |,
Ar—>0 mAr

+ lim {f(x, v, z+nAr) —f(x, v, Z)Jn

Ar—0 nAr

Evaluating the limits, remembering that Ax = /Ar and so on, we find that the rate of
change of f(r) in the direction of the unit vector (/, m, n) is

ay’" az oy az) (b
The vector
(Qf 9 I )
ox’ dy’ 0z
is called the gradient of the scalar point function f{(x, y, z), and is denoted by grad f or
by Vf, where V is the vector operator

0 .0 4,0
V—ta +ja +k8

where i, j and k are the usual triad of unit vectors.
The symbol V is called ‘del” or sometimes ‘nabla’. Then

gradszfzg){i+—-f 55 (g-)i:, %,%) (3.15)

Thus we can calculate the rate of change of f(x, y, z) along any direction we please. If
i is the unit vector in that direction then

(gradf)- @
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Figure 3.6

(a) Adjacent level
surfaces of f(r);
(b) grad facts
normally to the
surface f(r) = c.

Example 3.11

Solution

gives the required directional derivative, that is the rate of change of f(x, y, z) in the
direction of 4. Remembering that a - b = |a||b|cos 8, where 0 is the angle between the
two vectors, it follows that the rate of change of f(x, y, z) is zero along directions per-
pendicular to grad f'and is maximum along the direction parallel to grad /. Furthermore,
grad facts along the normal direction to the level surface of f(x, y, z). We can see this
by considering the level surfaces of the function corresponding to ¢ and ¢ + Ac, as
shown in Figure 3.6(a). In going from P on the surface f(r) = ¢ to any point Q on
f(r) = c + Ac, the increase in fis the same whatever point Q is chosen, but the distance
PQ will be smallest, and hence the rate of change of f(x, y, z) greatest, when Q lies on the
normal 7 to the surface at P. Thus gradf'at P is in the direction of the outward normal
71 to the surface f(r) = u, and represents in magnitude and direction the greatest rate of
increase of f(x, y, z) with distance (Figure 3.6(b)). It is frequently written as

grad f = Qzﬁ
on
where df/dn is referred to as the normal derivative to the surface f(r) = c.
Vf

f(r)=c+Ac

fin=c

(2) (b)

Find grad f for f(r) = 3x* + 2y* + z* at the point (1, 2, 3). Hence calculate

(a) the directional derivative of f(r) at (1, 2, 3) in the direction of the unit vector
1
12,2, 1);
3

(b) the maximum rate of change of the function at (1, 2, 3) and its direction.

(a)  Since df/dx = 6x, df/dy = 4y and df/dz = 2z, we have from (3.15) that
grad = V= 6xi + 4yj + 2zk
At the point (1, 2, 3)
grad f'= 6i + & + 6k

Thus the directional derivative of f(r) at (1, 2, 3) in the direction of the unit vector

(.3.5)is

(6i+8j+6k)- Gi+3j+ik)=%
(b)  The maximum rate of change of f(r) at (1, 2, 3) occurs along the direction parallel

to grad f'at (1, 2, 3); that is, parallel to (6, 8, 6). The unit vector in that direction
is (3, 4, 3)/,34 and the maximum rate of change of f(r) is | grad /| = 2 /34.
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If a surface in three dimensions is specified by the equation f(x, y, z) = ¢, or equival-
ently f(r) = ¢, then grad f'is a vector perpendicular to that surface. This enables us to
calculate the normal vector at any point on the surface, and consequently to find the
equation of the tangent plane at that point.

Example 3.12 A paraboloid of revolution has equation 2z = x* + y2. Find the unit normal vector to the
surface at the point (1, 3, 5). Hence obtain the equation of the normal and the tangent
plane to the surface at that point.

Solution A vector normal to the surface 2z = x? + y? is given by

grad (x? + y? — 2z) = 2xi + 2yj — 2k
At the point (1, 3, 5) the vector has the value 2i + 6j — 2k. Thus the normal unit vector
at the point (1, 3, 5) is (i + 3j — k)/,/11. The equation of the line through (1, 3, 5) in the
direction of this normal is

x-1_y=-3_z-5

1 3 -1

and the equation of the tangent plane is

Figure 3.7 Tangent Dx=D+B)Nv=3)+(-Dz-5)=0
plane at (1, 3, 5) to the D =D+ =3 +EDE-3)
paraboloid 2z =x*+y>  which simplifies to x + 3y —z = 5 (see Figure 3.7).

The concept of the gradient of a scalar field occurs in many applications. The
simplest, perhaps, is when f(r) represents the potential in an electric field due to static
charges. Then the electric force is in the direction of the greatest decrease of the poten-
tial. Its magnitude is equal to that rate of decrease, so that the force is given by —gradf.

Using the Symbolic Math Toolbox in MATLAB the gradient grad f of the scalar func-
tion f{(x, y, z) is given by the grad function. For example, considering Example 3.11,
the gradient of the scalar function f(x, y, z) = 3x* + 2)* + z* is given by the commands

syms X y z
f = (3*x72 + 2*y"2 + z2°2);
gradf = [diff(f,x), diff(f,y), diff(f,z)];
pretty (gradf)

returning the answer
[6x 4y 2z]

Using MuPAD the answer is returned using the commands
delete x, vy, z:
linalg :: grad(3*x"2 + 2*y"2 +z"2, [x, vy, z])

In MAPLE the answer is obtained using the commands

with (VectorCalculus) :
gradf := Gradient (3*x"2 + 2*y"2 + z"2, [x, v, zl);
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21

22

23

24

25

26

27

3.2.2 Exercises

Find grad f for f(r) = x*yz? at the point (1, 2, 3).
Hence calculate

(a) the directional derivative of f(r) at (1, 2, 3)
in the direction of the vector (-2, 3, —6);

(b) the maximum rate of change of the function at
(1, 2, 3) and its direction.

Find Vf where f(r) is

(@) x*+y*-z (b) ztan™ (y/x)

(©) e +y?)

(d) xyzsin{m(x+y+2z)}

Find the directional derivative of f(r) = x> + y* — z

at the point (1, 1, 2) in the direction of the vector
4, 4,-2).

Find a unit normal to the surface xy? — 3xz = -5 at
the point (1, -2, 3).

If r is the usual position vector r = xi + yj + zk, with
|¥| = r, evaluate

@ Vr (b VG)

IfVo=(2xy+z2)i+ (x> +2)j + (y + 2x2)k, find a
possible value for ¢.

Given the scalar function of position
O(x, y,2) =x*y = 3xyz + 23

find the value of grad ¢ at the point (3, 1, 2). Also
find the directional derivative of ¢ at this point in

the direction of the vector (3, =2, 6); that is, in the
direction 3i — 2j + 6k.

28

29

30

Find the angle between the surfaces x* +y* +z*=9
and z = x* + y* — 3 at the point (2, -1, 2).

Find the equations of the tangent plane and normal
line to the surfaces

(@) x*+2y*+3z*=6at(1,1,1)
(b) 2x?+y*—z?=-3at(1,2,3)
(c) x*+y*—z=1lat(1,2,4).

(Spherical polar coordinates) When a function f(r)
is specified in polar coordinates, it is usual to
express grad fin terms of the partial derivatives of f°
with respect to 7, 8 and ¢ and the unit vectors u,., u,
and u, in the directions of increasing r, 6 and ¢ as
shown in Figure 3.8. Working from first principles,
show that

- N/ /A Lo/
Vf = gradf 9ru'+r80ue+rsin09¢u¢

Figure 3.8 Unit vectors associated with spherical
polar coordinates.

Derivatives of a vector point function

When we come to consider the rate of change of a vector point function F(r), we see
that there are two ways of combining the vector operator V with the vector F. Thus we
have two cases to consider, namely

V-F and VxF

that is, the scalar product and vector product respectively. Both of these ‘derivatives’
have physical meanings, as we shall discover in the following sections. Roughly, if we
picture a vector field as a fluid flow then at every point in the flow we need to measure
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3.3.1

Figure 3.9 Flow out
of a cuboid.

the rate at which the field is flowing away from that point and also the amount of spin
possessed by the particles of the fluid at that point. The two ‘derivatives’ given formally
above provide these measures.

Divergence of a vector field

Consider the steady motion of a fluid in a region R such that a particle of fluid instan-
taneously at the point  with coordinates (x, y, z) has a velocity v(r) that is independent
of time. To measure the flow away from this point in the fluid, we surround the point
by an ‘elementary’ cuboid of side (2Ax) X (2Ay) X (2Az), as shown in Figure 3.9, and
calculate the average flow out of the cuboid per unit volume.

k-v(x,y,z+Az)

i-v(x—Ax,y,z2)

i-v(x+Ax,y,z2)

jovx,y+Ay,z)
k-v(x,y,z—Az)

The flow out of the cuboid is the sum of the flows across each of its six faces.
Representing the velocity of the fluid at (x, y, z) by v, the flow out of the face ABCD is
given approximately by

i-v(x +Ax,y, z)(4AyAz)
The flow out of the face A’'B’C’D’ is given approximately by
—i-v(x — Ax, y, z)(4AyAz)

There are similar expressions for the remaining four faces of the cuboid, so that the total
flow out of the latter is

i[v(x+Ax,y,z)—vx—Ax, v, 2)|(4AVvAz)
+j [vlx, y+ Ay, z) —v(x, y — Ay, 2)|(4AxAz)
+k-[v(x,y, z+ Az) —v(x, y, z — Az)|(4AxAy)

Dividing by the volume 8AxAyAz, and proceeding to the limit as Ax, Ay, Az — 0, we
see that the flow away from the point (x, y, z) per unit time is given by

I
Pt TR,
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Example 3.13

Solution

This may be rewritten as

or simply as V- ». Thus we see that the flow away from this point is given by the scalar
product of the vector operator V with the velocity vector v. This is called the divergence
of the vector v, and is written as divy. In terms of components,

dive=V-v= (tai +]§ + k;) (iv, + jv, + kvs)
(3.16)
_ % z9v2 dvs
&y 0z

When v is specified in this way, it is easy to compute its divergence. Note that the
divergence of a vector field is a scalar quantity.

Find the divergence of the vector v = (2x — y%, 3z + x?, 4y — z?) at the point (1, 2, 3).

Here v, = 2x — y?, v, = 3z + x* and v, = 4y — 2%, so that

Thus from (3.16), at a general point (x, y, z),
dive=V-v=2-2z
so that at the point (1, 2, 3)

Vv=-4

A more general way of defining the divergence of a vector field F(r) at the point r
is to enclose the point in an elementary volume A} and find the flow or flux out of AV
per unit volume. Thus

divF =V-F= limiowoutof AV
AV—=0 AV

A non-zero divergence at a point in a fluid measures the rate, per unit volume, at which
the fluid is flowing away from or towards that point. That implies that either the density
of the fluid is changing at the point or there is a source or sink of fluid there. In the case
of a non-material vector field, for example temperature gradient in heat transfer, a non-
zero divergence indicates a point of generation or absorption. When the divergence is
everywhere zero, the flow entering any element of the space is exactly balanced by the
outflow. This implies that the lines of flow of the field F(r) where div F = 0 must either
form closed curves or finish at boundaries or extend to infinity. Vectors satisfying this
condition are sometimes termed solenoidal.
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Using MuPAD in MATLAB the divergence of a vector field is given by the
divergence function. For example, the divergence of the vector
v=02x—3,3z+x% 4y -7
considered in Example 3.13, is given by the commands
delete x, vy, z:
linalg :: divergence([2*x -y"2, 3*z + x"2, 4*y - x"2],
[x, v, z])
which return the answer
2 - 2z
In MAPLE the answer is returned using the commands
with (VectorCalculus) :
SetCoordinates (‘cartesian’ [ x, v, z]);
F:= VectorField(<2*x -y"2, 3*z + x"2, 4*y - xX"2>);
Divergence (F); or Del.F ;

3.3.2 Exercises

31  Find dive where F=(Q2x%*+2)i+ Bxy’ —x%2)j + Axy*z + x)k

(a) v(r)=3x%i+zj+x%k is solenoidal.

b =@ i+ (2 j -2k

®) v} =G+ )i+ Q24 2j+E-2) 36  (Spherical polar coordinates) Using the notation
32 If F = (200”4 29 + (3’22 =223 + (22 = x2 )k introduced in Exercise 30, show, working from first

calculate div f at the point (-1, 2, 3). principles, that

13 2 d .

33  Find V(a-r), (a-V)rand a(V - r), where a is a Vov=dive= 2or (o) + sin 6 a—é(v" sin 6)

constant vector and, as usual, r is the position vector P

":(X,yaz)~ + — (v

7 sin 8¢( »)

34 The vector v is defined by v = rr™', where Where 0 = bt + Dotie + oot

r=(x,y,z)and r = |r|. Show that = Urlly T Dolle T Lolly:

. 2 37 A force field F, defined by the inverse square law.
V V . = d d = —— B .
(V-v) = grad dive I r is given by
F=rvir

35  Find the value of the constant A such that the vector "

field defined by Show that V- F = 0.

3.3.3 Curl of a vector field

It is clear from observations (for example, by watching the movements of marked corks
on water) that many fluid flows involve rotational motion of the fluid particles. Com-
plete determination of this motion requires knowledge of the axis of rotation, the rate
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D *”2 C
- 7.‘
—U3 . V32 Az
(x,»,2) ;
> YA
A v, B
K---2 Ay--->

Figure 3.10 Flow
around a rectangle.

of rotation and its sense (clockwise or anticlockwise). The measure of rotation is thus a
vector quantity, which we shall find by calculating its x, y and z components separately.
Consider the vector field v(r). To find the flow around an axis in the x direction at the
point r, we take an elementary rectangle surrounding r perpendicular to the x direction,
as shown in Figure 3.10.

To measure the circulation around the point r about an axis parallel to the x direc-
tion, we calculate the flow around the elementary rectangle ABCD and divide by its
area, giving

[v,(x, v*, z — Az)(2AY) + v5(x, y + Ay, z¥)(2Az)
—vy(x, P, 2+ Az)(RAY) — v5(x, y — Ay, 2)(2Az2)]/(4AyAz)

where y*, 7y € (y — Ay, y + Ay), z*, 2 € (z — Az, z + Az) and v = vji + v,j + v5k.
Rearranging, we obtain

—[vs(x, 7, 2 + Az) = 0y(x, ¥, z = Az)J/(2Az)
+[v3(x, ¥y + Ay, 2%) = v3(x, y = Ay, 2))/(2Ay)
Proceeding to the limit as AyAz — 0, we obtain the x component of this vector as

dy 0oz

By similar arguments, we obtain the y and z components as

oz ok’ ox oy

respectively.
The vector measuring the rotation about a point in the fluid is called the curl
of v:

dvy dv dv, v dv, ov
lp = _3__2)- (_.__3) (_2__1)k
ey (3)/ - ) " o ox ) " ox dy

(2o o an_an
_(5’)/ dz’ dz ox’ dx dy @17

It may be written formally as

curl v =

k
a
= (3.18)

Plo ~

i
2
ox
vy Uy Us

or more compactly as

curlv =V xvo
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Example 3.14

Solution

AS i

&

Figure 3.11
Circulation around
the element AS.

Figure 3.12
Rotation of a
rigid body.

Find the curl of the vector v = (2x — y?, 3z + x?, 4y — z%) at the point (1, 2, 3).

Here v, = 2x — y%, v, = 3z + x%, v, = 4y — 2%, so that
i j k
9 9 2
ox dy 0z
2x—y2 3z4+x 4y -z

curl v =

2

- i[a—aymy—f) - 8%(3z+x2)
il 9 a2~ Doy
1[ax(4y Z) =5 (2x y)}

+ k[%(3z+x2) - %(2)6—)/2)}

=i(4-3)—jO0-0)+k(2x+2y)=i+2(x+ )k
Thus, at the point (1, 2, 3), Vxv =(1, 0, 6).

More generally, the component of the curl of a vector field F(r) in the direction of the
unit vector 7i at a point L is found by enclosing L by an elementary area AS that is perpen-
dicular to 7, as in Figure 3.11, and calculating the flow around AS per unit area. Thus

(curl F)- s = lim How round AS
AS—0 AS

Another way of visualizing the meaning of the curl of a vector is to consider the
motion of a rigid body. We can describe such motion by specifying the angular velocity
o of the body about an axis OA, where O is a fixed point in the body, together with the
translational (linear) velocity » of O itself. Then at any point P in the body the velocity
u is given by

U=v+oOxXr
as shown in Figure 3.12. Here v and @ are independent of (x, y, z). Thus

curl u = curlv + curl (@ X r) =0 + curl (@ X r)

%
/@

(o} — . .
v translation velocity

w Xr tangential velocity




3.3 DERIVATIVES OF A VECTOR POINT FUNCTION

209

The vector @ X r is given by

@ X 1= (W, 0y, ®3) X (X, , z)
= (0,2 — OY)i + (0x — W2)j + (0 y — 0 x)k

and
i j k
J J J
(@ xr) = — - -
curl(@ x r) pN N >
0)22 - 0)3)/ w3x - COIZ (l)ly b wz.x
=2wi+2w,j+2wk=2w
Thus
curlu =2
that is,
o= !curlu

2

Hence when any rigid body is in motion, the curl of its linear velocity at any point is

twice its angular velocity in magnitude and has the same direction.

Applying this result to the motion of a fluid, we can see by regarding particles of the
fluid as miniature bodies that when the curl of the velocity is zero there is no rotation
of the particle, and the motion is said to be curl-free or irrotational. When the curl is

non-zero, the motion is rotational.

Using MuPAD in MATLAB the command 1inalg :: curl (v, x) computes the
curl of the three-dimensional vector field v with respect to the three-dimensional

vector x in cartesian coordinates. For example, the curl of the vector
v=02x -4 3z+x% 4y — 2%
considered in Example 3.14, is given by the commands

delete x, vy, z:

linalg :: curl([2*x -y"2, 3*z + x"2, 4*y - z"2],
[x, v, zl])
1
which return the answer 0
2x +2y

In MAPLE the answer is returned using the commands

with (VectorCalculus) :

SetCoordinates (‘cartesian’ [ x, vy, z]);

F:= VectorField(<2*x -y"2, 3*z + xX"2, 4*y - z"2>);
Curl (F); or Del &x F;
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38

39

40

41

42

3.3.4 Exercises

Find u = curlv when v = (3xz%, —yz, x + 22).

A vector field is defined by v = (yz, xz, xy). Show
that curlv = 0.

Show that if v = (2x + yz, 2y + zx, 2z + xy) then
curlv = 0, and find f{r) such that v = grad f.

By evaluating each term separately, verify the
identity

Vx(fv)y=AV xv)+ (Vf)xv

for f(r) = x* — y and v(r) = (z, 0, —x).

Find constants a, b and ¢ such that the vector field
defined by

F = (4xy + az’)i + (bx* + 32)j + (6xz” + cy)k

is irrotational. With these values of @, b and ¢,
determine a scalar function @(x, y, z) such that
F=V¢.

43

44

45

If v =—yi +xj + xyzk is the velocity vector of a fluid,

find the local value of the angular velocity at the

point (1, 3, 2).

Ifthe velocity of a fluid at the point (x, y, z) is given by
v=(ax+ by)i+ (cx + dy)j

find the conditions on the constants a, b, ¢ and d in
order that

dive =0, curlv=0
Verify that in this case

v = !grad(ax*+ 2bxy — ay?)

1
2
(Spherical polar coordinates) Using the notation
introduced in Exercise 30, show that

V xv=curl v

u, ruy rsinu,
1|0 2 2
#sin@|dr 90 9

v, Tvy TSNy,
3.3.5 Further properties of the vector operator V
So far we have used the vector operator in three ways:
Vf=gradf = o7f1+ fk f(r) a scalar field

V-F=dvr=2%,% %
8y oz’

ox
VXxF = curl F

(5L

]+
3

9

S (5-5k

F(r) a vector field

F(r) a vector field

A further application is in determining the directional derivative of a vector field:

a-VF = (alé]—i+a2%

(3/’1 9%,

ox dy

(0L ad

y

" ox

0
0z

—)F
.
oz

)i+(a a—f2+ 8f2 81[2)

2

" ox 8 } 0z
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The ordinary rules of differentiation carry over to this vector differential operator, but
they have to be applied with care, using the rules of vector algebra. For non-orthogonal
coordinate systems a specialist textbook should be consulted. Thus for scalar fields f(r),
g(r) and vector fields u(r), v(r) we have

Vi stz = Lvg (3.199)

g
V[ f(r)g(r] = gr)VAr) + f(r)Ve(r) (3.19b)
Viu@) - v@)]=vx(Vxu)+ux(Vxv)+ @ Vu+u-Vyp (3.19¢)
V[ fu@)]=u-VF+fV-u (3.19d)
V X [ f(nur)] = (Vf) < u+fV xu (3.19%)
V:-[u@@)xv@)]=v- (Vxu)—u-(Vxv) (3.191)
Vxu@r)xv@)]=@ Vu—v(V-u)— (u-Vo+uV-v) (3.19¢g)

Higher-order derivatives can also be formed, giving the following:

div [grad f(r)] = V- Vf = 9f  9f, 9 \%ra (3.20)

o’ oyt o7
where V? is called the Laplacian operator (sometimes denoted by A);
curl [grad f(r)] = V x Vf(r) =0 (3.21)

since

of 82f) ( f azf) ( o Bzf)
VxVf= - - J _ k
xVf (&y&z dzady o ozox  oxoz) " oxdy dyox

=0

when all second-order derivatives of f(r) are continuous;
div[curl v(r)] = V- (Vxv)=0 3.22)
since

T GO T W TP T

ox\dy 0z oy\dz odx/) Jdz\ox dy
o) = VT = (12 g2 4k 2)(2y 2, 2
grad (div ) = V(V'») = (l8x +]8y+k3z)( ox * dy * 0z 3.23)
2 P99 . .
Vv = (8_x2 + 52 + ;)(011 + v, + v3k) (3.24)

curl [curl v(r)] = V x (Vxv) = V(V -v) - Vo 3.25)
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Example 3.15  Verify that V x (V x v) = V(V - v) — V2 for the vector field v = (3xz?, —yz, x + 2z).

i j k
Solution Vxv= % &% &% =(y, 6xz—1,0)
3xz0 —yz x+2z
i J k
|4 4 9d\_. _
Vx(Vxv)= W E = (—6x, 0, 6z—-1)
y 6xz—-1 0

Vo= 58;(3x22) + %(—yz) + g—é(x+22) =3z2—z+2

V(V-v) = (0,0, 6z — 1)
Vi = (V*(3xz?), VA(~yz), VX(x + 22)) = (6x, 0, 0)
Thus
V(V-v) - Vu=(-6x,0,62-1)=V x (Vxv)

Similar verifications for other identities are suggested in Exercises 3.3.6.

Example 3.16  Maxwell’s equations in free space may be written, in Gaussian units, as
(a) divH=0, (b) divE=0

(c) curlH:VxH:la—E, (d) cuﬂE:VxE:_la_H
c ot c ot
where c is the velocity of light (assumed constant). Show that these equations are
satisfied by
19 19, 9
H==—grad g xk, E=-k—=—+—grad ¢
c ot o oz
where ¢ satisfies
1 0%
Vip=—
¢ or

and k is a unit vector along the z axis.

Solution (a) H-= 10 grad ¢ X k
c ot
gives
divH = L 2 div (grad ¢ x k)
c ot
- % -g—t[k' curl (grad ¢) — (grad @) - curl k], from (3.19f)

By (3.21), curl (grad ¢) = 0, and since k is a constant vector, curl kK = 0, so that
divH=0
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2
(by E= —%a—?+igrad¢
¢ ot 4
gives

2
div E =~ div(k28)+ 2 div grad ¢
ot 0z

c

=L 0(70), 22y by (320
cza(at2)+ (V*9), by (3.20)

¥ outh
o ¢’ or
and since V2 = (1/¢*)0*¢/dt*, we have
divE=0
10
(¢) curl H= == curl(grad ¢ X k)
c ot

- lg-t[(kV)graw
— k (div grad ¢) — (grad ¢- V)k + grad ¢(V - k)], from (3.19g)

-1 g ( ; grad ¢ — szd)) , since k is a constant vector
c
- 1JE
¢ ot
2
(d) curlE = —gl—zcurl (k%?) + 582- curl grad ¢
T
= —lz 5% g— -g— , since curl grad ¢ = 0 by (3.21)
c
A
i or
_ _1(,_¢_ _@_)
N\ dyor 3 or
Also,
oH _ 17
Eri catzgrad Oxk
17 . ,
= —;( grad ¢ X k), since k is a constant vector
c
_12 (_@,+_@,+_@k)xk 1 82(_@ 29)- (_a _a)
o |\ox dy o0z cof'\ dy 8x dyot’ 8x0t

so that we have

1 0H
VxE=-128
% c ot
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46

47

48

49

50

51

3.3.6 Exercises
Show that if g is a function of r = (x, y, z) then
grad g = ldg r
rdr

Deduce that if u is a vector field then
div [(u X r)g] = (r-curlu)g

For ¢(x, y, z) = x*y*z* and

F(x, y, z) = x*i + xy’zj — yz°k determine

(a) V¢  (b) graddivF  (c) curlcurl F

Show that if a is a constant vector and r is the
position vector r = (x, y, z) then

div {grad [(r - r)(r-a)]} = 10(r - a)
Verify the identity

Vv = grad divv — curl curl v

for the vector field v = x*y(xi + yj + zk).

Verify, by calculating each term separately,
the identities

div(u X v)=v-curlu —u-curlv

curl (u X v) =udive —vdivu + (v-Vyu

— -V

when u = xyj + xzk and v = xyi + yzk.

If r is the usual position vector r = (x, y, z),
show that

(@) div grad(l ) -0

r

(b) curl {k X grad(% )J + grad {k : grad(% )J =0

52

53

54

59

If A is a constant vector and r is the position vector
r=(x, y, z), show that

(a) grad(A—;r) = 43 - 3£A—'5r2r
r 3 r

Axr)ZZ_A

(b) curl(—3 S +%(A><r)><r
r r

”
If r is the position vector r = (x, y, z), and a and b
are constant vectors, show that

(a Vxr=0

) (a-Vyr=a

(¢) Vx[(a-r)b—(b-r)a]=2(axb)

(d V-[(a-r)b—(b-r)a]l=0

By evaluating V - (Vf), show that the Laplacian

in spherical polar coordinates (see Exercise 30) is
given by
Vf = '1-2 2 (rzg) + 2; —Q—(sineéjj)
rrdr\ dr/ r sinBdo 20
19

" sin’ 6 09

Show that Maxwell’s equations in free space, namely

divH=0, divE=0
VxH:l‘E, VxE——la—H
c ot ot
are satisfied by
H= lcurl—a-z
c ot

E=curlcurlZ
where the Hertzian vector Z satisfies
19’z

VZ = :
c ot

Topics in integration

In the previous sections we saw how the idea of the differentiation of a function of a
single variable is generalized to include scalar and vector point functions. We now turn
to the inverse process of integration. The fundamental idea of an integral is that of
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Figure 3.13 Definite
integral as an area.

34.1

Figure 3.14 Integral
along a curve.

summing all the constituent parts that make a whole. More formally, we define the
integral of a function f(x) by

b n
J f(x)dx=lim Zf(fi)Axi
n—eo 4
“ all Ax;—0 =1
where a = x, < x; < x, < ...<x,, <x,=b, Ax,=x;, —x,, and x,_, < X; < x,.
Geometrically, we can interpret this integral as the area between the graph y = f(x), the
x axis and the lines x = ¢ and x = b, as illustrated in Figure 3.13.

YA
y=fx) .

=Y

Line integrals

Consider the integral

J S(x,y)dx, wherey=g(x)

b

This can be evaluated in the usual way by first substituting for y in terms of x in the
integrand and then performing the integration

J Sx, g(x))dx

Clearly the value of the integral will, in general, depend on the function y = g(x). It may
be interpreted as evaluating the integral [, b f(x, y)dx along the curve y = g(x), as shown
in Figure 3.14. Note, however, that the integral is not represented in this case by the
area under the curve. This type of integral is called a line integral.

There are many different types of such integrals, for example

B B 1 B
J S(x,y)dx, J S(x,y)ds, J S(x, y)de, J LiGx, y)dx +£5(x, y)dy]
A A4 1 A
C C C C

Here the letter under the integral sign indicates that the integral is evaluated along the
curve (or path) C. This path is not restricted to two dimensions, and may be in as many
dimensions as we please. It is normal to omit the points A and B, since they are usually
implicit in the specification of C.
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Example 3.17

Figure 3.15
Portion of circle.

Solution

Example 3.18

Solution

Evaluate [ xydx from A(1, 0) to B(0, 1) along the curve C that is the portion of x> + y* = 1
in the first quadrant.

y
B
0,1
O, 1) c
A
0 (1,0) x

The curve C is the first quadrant of the unit circle as shown in Figure 3.15. On the curve,
y= (1 —x?), so that

0
nydx - J x/(1=o)do = =530 -o) ] =

1
C

Evaluate the integral

I= J[(x2+2y)dx+(x+y2)dy]

C

from A(0, 1) to B(2, 3) along the curve C defined by y = x + 1.

The curve C is the straight line y = x + 1 from the point A(0, 1) to the point B(2, 3).
In this case we can eliminate either x or y. Using

y=x+1 and dy=dx

we have, on eliminating y,

I

x=2
J {IxX*+2(x+ D]dx+[x+ (x+ 1)’ ]dx}

x=0

2
= [ (2% +5x+3)dx = 3 + 2 +3x]) = &
0

In many practical problems line integrals involving vectors occur. Let P(r) be a point
on a curve C in three dimensions, and let ¢ be the unit tangent vector at P in the
sense of the integration (that is, in the sense of increasing arclength s), as indicated in
Figure 3.16. Then ¢ ds is the vector element of arc at P, and

tds=| 9 9 92l 4o m dxit dyj+ dzk = dr
ds ds® ds
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Figure 3.16
Element of arclength.

Iffi(x, v, 2), fo(x, v, z) and fi(x, v, z) are the scalar components of a vector field F(r) then

j [fi(x, y, 2)dx +fo(x, y, z)dy + f3(x, y, z)dz]
C

= | Ay 0 ds+ A v, 2) Lds + 4y, 2) s
B ds ds ds

=J F-tds =J F-dr
C C

Thus, given a vector field F(r), we can evaluate line integrals of the form [ F -dr. In
order to make it clear that we are integrating along a curve, the line integral is some-
times written as [ F - ds, where ds = dr (some authors use d/ instead of ds in order to
avoid confusion with dS, the element of surface area). In a similar manner we can
evaluate line integrals of the form [ F x dr.

Example 3.19  Calculate (a) J. F-dr and (b) [ F x dr, where C is the part of the spiral r= (a cos 6,
asin 6, af) corresponding to 0 < 6 < %n, and F = ri.

Solution  The curve C is illustrated in Figure 3.17.
(a) Since r=acos 0i + asin 6j + abk,
dr=—asin 6d6i + acos 0d6j + adOk
so that
F-dr=r’%-(—asin 0d0i + acos 0d0j + a dOk)
=—ar*sin 0dO
=—a’(cos’0 + sin’0 + 6%) sin 6dO=—a’(1 + 6%)sin dO

since 7 = |r| = (@’ cos’0 + a*sin*0 + a*6%). Thus,

Figure 3.17

The spiral /2
r=(acosb, J F-dr=—a3J (1+6%)sin6de
C

asin 6, af).

0
= —a’[cos O+20sinO- 6’ cos 0]3/2 , using integration by parts

= —a(nt-1)
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i J k
(by Fxdr= s 0 0
—asinfd@ acos@dO ad6
= —ar’d0j + ar*cos 0dOk

—d’(1 + 6% dOj + a*(1 + 6%) cos 0dOk
so that

/2 /2
Jderz—jcﬁJ (1+02)d0+ka3J (1+6%)cos6do
C

0 0

3 3
Ta 2y« A 2
=M 4ty j+ L (nP -4k
24( )J 4( )

F(r) The work done as the point of application of a force F moves along a given path
t C as illustrated in Figure 3.18 can be expressed as a line integral. The work done
. - , — .
C as the point of application moves from P(r) to P'(r + dr), where PP’= dr, is
r dW =|dr||F|cos 8= F-dr. Hence the total work done as P goes from A to B is
Figure 3.18 Work done
by a force F. W=| F-dr
C

56

57

58

In general, /¥ depends on the path chosen. If, however, F(r) is such that F(r) - dr is an
exact differential, say —dU, then W= [. — dU = U, — U,, which depends only on A and
B and is the same for all paths C joining A and B. Such a force is a conservative force,
and U(r) is its potential energy, with F(r) = —grad U. Forces that do not have this prop-
erty are said to be dissipative or non-conservative.

Similarly, if v(r) represents the velocity field of a fluid then $. v -dr is the flow
around the closed curve C in unit time. This is sometimes termed the net circulation
integral of v. If v - dr = 0 then the fluid is curl-free or irrotational, and in this case v
has a potential function ¢(r) such that v = —grad ¢.

3.4.2 Exercises

Evaluate [y ds along the parabola y = 2 x from 59 IfA=Q2y+3)i+xzj+ (yz—x)k, evaluate [~ A4 -dr
2 1 the followi ths C:
AQ,2,3) to B(24, 4,6). [Recall: (g—;)z =1+ (g—;) N along the following paths C

(a) x=2t",y=t,z=1from¢t=0tor=1;
(b) the straight lines from (0, 0, 0) to (0, 0, 1),

Evaluate [% [2xy dx + (x* — y?) dy] along the arc
Lo - 8 then to (0, 1, 1) and then to (2, 1, 1);

of the circle x* + y* = 1 in the first quadrant from

A(1, 0) to B(0, 1). (c) the straight line joining (0, 0, 0) to (2, 1, 1).
Evaluate the integral [V -dr, where 60  Prove that F = (y*cosx +z°)i + (2ysinx — 4)j
V= (2yz + 3%, y* + 4xz, 22° + 6xy), and C is the + (3xz” + z)k is a conservative force field. Hence
curve with parametric equations x =3,y =t* z=1¢ find the work done in moving an object in this field

joining the points (0, 0, 0) and (1, 1, 1). from (0, 1, —1) to (w/2, -1, 2).
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61 Find the work done in moving a particle in the force any curve C joining the point (0, 0, 0) to the
field F = 3x% + (2xz — y)j + zk along point (1, 2, 3).
2 3_
(a) the curve deﬁ.ned by x* =4y, 3x° = 8z from 63  If F=xyi—zj+x’kand Cis the curve x =, y = 2t,
x=0 th = 2,’ z=1¢from t=0to ¢ = 1, evaluate the vector line
(b) the straight line from (0, 0, 0) to (2, 1, 3). integral [ F x dr.
(¢) Does this mean that F is a conservative force?
Give reasons for your answer. 64 IfA=QCx+y,—x,y-zandB=(2,-3,1)
evaluate the line integral $.(A4 X B) X dr around
62  Prove that the vector field F = (3x> — y, 2yz> — x, the circle in the (x, y) plane having centre at the

2y?z) is conservative, but not solenoidal. Hence
evaluate the scalar line integral [ F - dr along

origin and radius 2, traversed in the positive
direction.

343

Figure3.19 Volume
as an integral.

Double integrals

In the introduction to Section 3.4 we defined the definite integral of a function f{(x) of
one variable by the limit

b n
j S(x)dx = lim 2 S(x) Ax;

4 allnA_;i:O i=1
where a =x, <x, <x,<...<x,=b,Ax;=x;,—x., and x, |, < X; =< x;. This integral
is represented by the area between the curve y = f(x) and the x axis and between x = a
and x = b, as shown in Figure 3.13.

Now consider z = f(x, y) and a region R of the (x, y) plane, as shown in Figure 3.19.

Define the integral of f(x, y) over the region R by the limit

”f(x,y)dA= lim Y /(% 5) Ad,

" all A4;—0 =1

where A4, (i=1, ..., n)is a partition of R into n elements of area A4, and (X, 7)) is
a point in AA4,. Now z = f(x, y) represents a surface, and so f(%,, 7)) A4, = Z,AA4, is the
volume between z = 0 and z = Z, on the base A4,. The integral [, f(x, y) d4 is the limit
of the sum of all such volumes, and so it is the volume under the surface z = f(x, y) above
the region R.

z=f(x. )

B

<

AA
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YA

Ay; [

0O

=Y

0O —
Ax;

!

Figure 3.20 A possible grid for the partition of R Figure 3.21 Another possible grid for the partition of R

(rectangular cartesian). (polar).

The partition of R into elementary areas can be achieved using grid lines parallel to
the x and y axes as shown in Figure 3.20. Then A4, = Ax; Ay,, and we can write

Jff(x: y)d4 =JJ f(x, y)dxdy = lg{lc Zf(ii’ Vi) Ax; Ay;

Other partitions may be chosen, for example a polar grid as in Figure 3.21. Then the
element of area is (;A0,) Ar;= AA; and

ij(x, y)d4 = 4Uf(rcos 0, rsin )rdrdo (3.26)

R R

The expression for A4 is more complicated when the grid lines do not intersect at right
angles; we shall discuss this case in Section 3.4.5.

We can evaluate integrals of the type [[ f(x, y) dx dy as repeated single integrals in
x and y. Consequently, they are usually called double integrals.

Consider the region R shown in Figure 3.22, with boundary ACBD. Let the curve
ACB be given by y = g,(x) and the curve ADB by y = g,(x). Then we can evaluate
[I f(x, ) dx dy by summing for y first over the Ay, holding x constant (x = £, say),
from y = g,(x,) to y = g,(x;), and then summing all such strips from A to B; that is, from
X =a to x = b. Thus we may write

Hf(x,y)dA= im 3|3 A% Ay Ax, (1= min(n, n,))

all Ax,, ij.—)O i=1 | j=1

b [y=g,(0)
=J U S(x, ) dy}ix
a LJ y=¢,(x)

R

Here the integral inside the brackets is evaluated first, integrating with respect to y,
keeping the value of x fixed, and then the result of this integration is integrated with
respect to x.
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yA
YA
d D

d iy

x=hy(y)—""
L A _—x=hy(y)
by, T_::_V . 5B

C \ /

C

C

0 -~ .

0] a b x

(b)

Figure 3.22 The region R.

Example 3.20

Figure 3.23 Domain
of integration for
Example 3.20.

Solution

Alternatively, we can sum for x first and then y. If the curve CAD is represented by
x = hy(y) and the curve CBD by x = h,(y), we can write the integral as

JJf(x,y) d4 = lim i if(x,.,)?,) Ax;|Ay;, (n=min(n, n,))

n—yoo
all ij, Ax;—0 Jj=1 i=1

d x=hy(y)
J U S, ) dx} dy
e Ldx=n»

If the double integral exists then these two results are equal, and in going from one to
the other we have changed the order of integration. Notice that the limits of integration
are also changed in the process. Often, when evaluating an integral analytically, it is
easier to perform the evaluation one way rather than the other.

R

Evaluate [[; (x* + y?) d4 over the triangle with vertices at (0, 0), (2, 0) and (1, 1).

The domain of integration is shown in Figure 3.23(a). The triangle is bounded by the
linesy=0,y=xand y =2 —x.
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(a)

(b)

Integrating with respect to x first, as indicated in Figure 3.23(b), gives

1 [x=2-y
Jj(xz-i-yz)dA = J J (x2+y2)dxdy
0J x=y

R

1
- J [%x3 +y2x]f:j_ydy

0

1
=J [E-dy+4y" -5y’ dy=1

0

Integrating with respect to y first, as indicated in Figure 3.23(c), gives

1 fy=x 2 [y=2—-x
JJ (x2+y2)dA =J f (x2+y2)dydx+J J (x2+y2)dydx
0J y=0 1J y=0

R

Note that because the upper boundary of the region R has different equations for
it along different parts, the integral has to be split up into convenient subintegrals.
Evaluating the integrals we have

1 [fy=x 1 1
J J <x2+y2>dydx=J Ly + 3071 dx = J ' dr=g

0J y=0 0 0

2 (y=2—x 2
JJ (" +y)dy dx = J [y +1y'T7  dx

1J y=0 1

3

2
=J (3—4x+4x2—§x3)dx=1
1

as before

Clearly, in this example it is easier to integrate with respect to x first.

Example 3.21

Figure 3.24 Domain
of integration for
Example 3.21.

Evaluate [[; (x + 2y) "> d4 over the region x — 2y < 1 and x = y* + 1.

x=1+2
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Solution

Example 3.22

Solution

The bounding curves intersect where 2y + 1 = y* + 1, which gives y = 0 (with x = 1)
and y =2 (with x = 5). The region R is shown in Figure 3.24. In this example we choose to
take x first because the formula for the boundary is easier to deal with: x = y? + 1 rather
than y = (x — 1)"%. Thus we obtain

2 [2y+1
fj(x+2y)”2dA =[ JZ (x+2y)71/2dx dy
0J y+1

R

2
= J [2(x+2y) 13 dy

0

2
=J [2(4y+ 1" =2(y+1)]dy

0

3/2

=[Ly+1)" -y = 2y], =13

As indicated earlier, the evaluation of integrals over a domain R is not restricted
to the use of rectangular cartesian coordinates (x, y). Example 3.22 shows how polar
coordinates can be used in some cases to simplify the analytical process.

Evaluate [f,x%d4, where R is the region x* + y*> < 1.

The fact that the domain of integration is a circle suggests that polar coordinates are a
natural choice for the integration process. Then, from (3.26), x = rcos 6, y = rsin 6 and
dA4 =rdOdr, and the integral becomes

1 2n
U x’yd4 =J J ¥ cos’0 rsin@ rdodr
r=0J 6=0

R
1 21
4 2 -
=4[ J r cos’@sinf dodr

r=0J 6=0

Note that in this example the integration is such that we can separate the variables » and
6 and write

1 2n
ijzy d4 = J /‘J cos’@sin O dOdr
r=0 6=0

R

Furthermore, since the limits of integration with respect to 6 do not involve r, we can
write

1 2n
JJ x'ydd = 4[ r4er cos’0 sin @ d6
r=0 6=0

R
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65

and the double integral in this case reduces to a product of integrals. Thus we obtain

szy d4 =[], [~Lcos’8]" = 0
R

Reflecting on the nature of the integrand and the domain of integration, this is the result
one would anticipate.

There are several ways of evaluating double integrals using MATLAB. The simplest
uses the command dblquad (f, x,, %;, v, v;).Forexample, consider

2 (3
J J (& + ") dx dy
1J 0

Here we define the integrand as an inline function

f = inline (‘x.%2 + y*2', 'x', 'v');
(Note that x is taken as a vector argument.)

I = dblquad (£ , 12, 2 , 0 , 3)
returns the answer

I =16

For non-rectangular domains, the same command is used but the integrand is
modified as shown below. Consider

1 (x
J J (7 + ") dx dy
0J 0

from Example 3.20 (b). Here we define the integrand as the inline function
f = inline (' (xX.7"2 + y™2).*(y-x <= 0)’, 'x', 'yv');
where the logical expression (y - x <= 0) returns 1 if the expression is true and
0 otherwise, so that the command
I = dblguad (£ , O , 1 , 0 , 1)
returns the required answer
I = 0.3333

despite integrating over a rectangular domain.

3.4.4 Exercises

Evaluate the following: 66  Evaluate

32 3 s
J xy(x+y)dydx (b) J J xzy dy dx Jf X_2 dxdy
0J1 2J1 y

1 2
() J J (2x*+y")dydx over the rectangle bounded by the lines x = 0,
-1J 2

x=2,y=1landy=2.
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67

68

69

70

71

72

Evaluate [[ (x*+y?) dx dy over the region for which
x=0,y=0andx+y=<1.

Sketch the domain of integration and evaluate

() J de o dejv(x+y)dy

1 Xty 0 0

1 ((1=x%) |
() J de ﬁdy
0 Ja?) (1 =x"=)7)

Evaluate [[sin  n(x + y) dx dy over the triangle
whose vertices are (0, 0), (2, 1), (1, 2).

Sketch the domains of integration of the double
integrals

(a) dej _)2251_14_

/2 Y
(b) J dyJ (cos2y)|(1 -k’ sin’x)dx

0 0

Change the order of integration, and hence evaluate
the integrals.

Evaluate

1 1
j dyj dx .
0 oA +x7)]

Sketch the domain of integration of the double
integral

L)
j J —— dvdx
0t o JxT+y7)

73

74

75

76

Express the integral in polar coordinates, and hence
show that its value is 1 .

Sketch the domain of integration of the double
integral

1 (=33
j dxj XY gy

0 0 v“(xz"‘yz)

and evaluate the integral.

Evaluate

x+2
JJ — dedy
X +y +a

over the portion of the first quadrant lying inside the
circle x? + y? = a*.

By using polar coordinates, evaluate the double
integral

2 2

-

JJ———‘V—Z 2dxdy
X +y

over the region in the first quadrant bounded by the arc
of the parabola y* = 4(1 — x) and the coordinate axes.

By transforming to polar coordinates, show that the
double integral

JJ Qﬁj—)é)—z dx dy
(xy)

taken over the area common to the two circles
x?+y*=ax and x* + y* = by is ab.

3.4.5

Green’s theorem in a plane

This theorem shows the relationship between line integrals and double integrals,
and will also provide a justification for the general change of variables in a double

integral.

Consider a simple closed curve, C, enclosing the region A as shown in Figure 3.25. If
P(x, y) and Q(x, y) are continuous functions with continuous partial derivatives then

j((de-i—Qdy):JJ(%%—

© A

P

ay) dxdy

(3.27)
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Figure 3.25 Green’s x=g(y
theorem. ;“ \ N
( x=g,(y)
A M
K
c ——
L
o "

where C is traversed in the positive sense (that is, so that the bounded area is always on
the left). This result is called Green’s theorem in a plane.

The proof of this result is straightforward. Consider the first term on the right-hand
side. Then, with reference to Figure 3.25,

5’Q d g () (9Q
JJ&dXdy:Jc{ng)-é;dx}dy
R ™

J [Q(g:(), ») = 0(g:1(»), )] dy

J O(x,y)dy— fQ(x,y) dy

LMN LKN

J O(x,y)dy = % O(x, y)dy

LMNKL C
Similarly,
—JJ Qfdx dy = %P(x, y)dx
dy
A C
and hence
U (L-%)aray= f [P(r, ) dr + O(x, ) dy]
ox dy
A C

An elementary application is shown in Example 3.23.

Example 3.23  Evaluate ¢ [2x(x + y) dx + (x* + xy + y?) dy] around the square with vertices at (0, 0),
(1, 0), (1, 1) and (0, 1) illustrated in Figure 3.26.

Solution  Here P(x, y) = 2x(x + y) and O(x, y) = x> + xy + ), so that dP/dy = 2x, d0/ox = 2x + y
and dQ/dx — dP/dy = y. Thus the line integral transforms into an easy double integral
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YA
0,1 (LD

0,0

=Y

1,0,

Figure 3.26 Path
of integration for
Example 3.23.

% [2x(x+y)dx+ (x2 +xy +y2) dy] = ij dxdy

| [
foufon

It follows immediately from Green’s theorem (3.27) that the area 4 enclosed by the
closed curve C is given by

A= ledxdy: fxdyz—%ydx:%jg(—ydx+xdy)

4 c c c

Suppose that under a transformation of coordinates x = x(u, v) and y = y(u, v), the curve
becomes C’, enclosing an area A”. Then

Afzﬂdudu:jgudu:jg (‘;jj g” y)

A c’ C

J |42 22 oo

4
HBZ 3; ! 8?625)/] BZ 32 aig ]}dx dy

dudp_udny
(Bx dy dy Bx) * ey

A

This implies that the element of area du dv is equivalent to the element

(8u dv du 31})

oxdy dyox dx dy

Here the modulus sign is introduced to preserve the orientation of the curve under the
mapping. Similarly, we may prove that

dxdy = ‘ 9, V)| 4 dy (3.28)

I(u, v)

where d(x, y)/d(u, v) is the Jacobian

v vy _
Judv ovou S y)
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Example 3.24

Solution

Figure 3.27

Domain of
integration for
Example 3.24:

(a) in the (x, y) plane;
(b) in the (u, v) plane.

This enables us to make a general change of coordinates in a double integral:

JJ f(x,y)dxdy = ‘”f(x(u, v), y(u, v))|J| dudv 3.29)

A A

where 4’ is the region in the (&, v) plane corresponding to A in the (x, y) plane.
Note that the above discussion confirms the result

I, v) _ [Q(x,y)}_]

d(x, y) Nu, v)

as shown in Section 3.1.3. Using (3.29), the result (3.26) when using polar coordinates
is readily confirmed.

Evaluate [ xy dx dy over the region in x = 0, y = 0 bounded by y = x> + 4, y = x?,
y=6—-x*andy =12 —x°

The domain of integration is shown in Figure 3.27(a). The bounding curves can be
rewritten as y —x*=4,y —x*>=0, y +x? =6 and y + x* = 12, so that a natural change
of coordinates is to set

u=y+x? v=y— x>

Under this transformation, the region of integration becomes the rectangle 6 < u < 12,
0 =< v =< 4, as shown in Figure 3.27(b). Thus since

_ o) _[dwwn)| -1
e )= ANu,v) [8()6, y)} 4x

the integral simplifies to

ny dxdy = ijyé%;cdudv

A A’

A
12|
6 v
0
- 4
4
0 \ x 0 6 v

(a) (b)
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Figure 3.28
Three-dimensional
generalization of
Green’s theorem.

Hence

4” xydxdy = j—‘ J‘[ydudu = %JJ (u+v)dudv, sincey=(u+v)2

A A’
4 12
=éj dvj (u+v)du =33
0 6

We remark in passing that Green’s theorem in a plane may be generalized to three
dimensions. Note that the result (3.27) may be written as

LS

%(P, 0,0)-dr = JJ curl [((P, O, 0)] - kdxdy

C A

For a general surface S with bounding curve C as shown in Figure 3.28 this identity
becomes

% F(r)-dr= Jf curl F(r) - dS

@ N

where d§ = 7i dS is the vector element of surface area and 7 is a unit vector along the
normal. This generalization is called Stokes’ theorem, and will be discussed in
Section 3.4.12 after we have formally introduced the concept of a surface integral.

Surface S

3.4.6 Exercises

77  Evaluate the line integral

i{) [siny dx + (x —cos y) dy]

C

Verify your answer using Green’s theorem in a plane.

78  Use Green’s theorem in a plane to evaluate

j[; [(xy’ =p) dx + (x +)7) dy]

C

taken in the anticlockwise sense, where C is the
perimeter of the triangle formed by the lines

1

y=;mx, y=;T, x=0

oI—

as a double integral, where C is the triangle with
vertices at (0, 0), (2, 0) and (2, 2) and is traversed
in the anticlockwise direction.



230 VECTOR CALCULUS

79  Evaluate the line integral 81  Evaluate

a 2a-x
I=§(xydx+xdy) J de Ldy

C

where C is the closed curve consisting of y = x?

0 x 4az+(y +x)2

using the transformation of coordinates u = x + y,

v=x-y.
fromx=0tox=1andy=/x fromx=1tox=0. 4
Confirm your answer by applying Green’s theorem 82  Using the transformation
in the plane and evaluating / as a double integral. )
. +y=u, < =
80  Use Green’s theorem in a plane to evaluate the line rry=u x=Vv
integral
tiegra show that
[(e"=3)%) dx + (e’ +4x%) dy] L s o
dy x—;ze””dxz du | e"dv=¢"-1
0 y X 0 0

C

where C is the circle x? + y? = 4. (Hint: use polar
coordinates to evaluate the double integral.)

3.4.7

i
C.(r(u, vy))

Clr(u, v))

Cu(r (’40= U))

Figure 3.29 Parametric
curves on a surface.

Surface integrals

The extensions of the idea of an integral to line and double integrals are not the only
generalizations that can be made. We can also extend the idea to integration over a
general surface S. Two types of such integrals occur:

N
(2) J f(x,y,2)dS
J

N

i
(b) J F(r)- ﬁdS:U F(r)-dS
J

N S

In case (a) we have a scalar field f(r) and in case (b) a vector field F(r). Note that
dS = 7idS is the vector element of area, where 7 is the unit outward-drawn normal
vector to the element dS.

In general, the surface S can be described in terms of two parameters, u# and v say,
so that on §

r=r(u,v) =, v), y(u, v), z(u, v))

The surface S can be specified by a scalar point function C(r) = ¢, where ¢ is a
constant. Curves may be drawn on that surface, and in particular if we fix the value of
one of the two parameters u and v then we obtain two families of curves. On one,
C,(r(u, vy)), the value of u varies while v is fixed, and on the other, C,(r(u,, v)), the
value of v varies while u is fixed, as shown in Figure 3.29. Then as indicated in
Figure 3.29, the vector element of area dS is given by
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Figure 3.30 A surface
described by

z=2z(x, y).

O g O gy dr O
dS_&uduxﬁvdU_&tX&vdudv

(22, ) (25, 2 2 = i
(éht’ 50 o X 0 90" 9 dudv = (Jyi+J,j+J3k)dudv
where
v v, _dedx_dzdx , _dxdy_oxdy
"TOudv dvou’ % Judv dvou’ I3 Judv Jvdu (3.30)
Hence
U F(r)- ds=” (PJ, + OJ, + RJ) dudv
S A

ﬂf(x, y,z)dS = Hf(u, VI T+ T3+ J3)dud
N A

where F(r) = (P, O, R) and 4 is the region of the (u, v) plane corresponding to S. Here,
of course, the terms in the integrands have to be expressed in terms of # and v.

In particular, # and v can be chosen as any two of x, y and z. For example, if z = z(x, y)
describes a surface as in Figure 3.30 then

r=(x,,2(x, y)

with x and y as independent variables. This gives

Jl - (9)6 s JZ ay bl J3 1
and
F _ ( oz 0z )
(r)-dS = —P=-0=+R |dxdy (3.31a)
dx " dy

S

ij(x,y, z)dS =

S

J f(x, v, z(x,¥)) \/ {1 it (-gi)z 4+ (%ﬂ dxdy  (3.31b)

NT—

zZA Surface S
Element dS

’

<Y
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Example 3.25  Evaluate the surface integral

jj (x+y+2z)dS

N

where S is the portion of the sphere x? + y? + z* = 1 that lies in the first quadrant.

Figure 3.31
(a) Surface S for
Example 3.25; YA
(b) quadrant of a ©.1)
circle in the (x, y) ’
plane.
0 (1,0) x

Solution  The surface S is illustrated in Figure 3.31(a). Taking

z= (1 -x*~y?

we have
oz _ x| dz_ =y
ko J(1=x=))" dy J(1-x=))
giving
1+(—‘25)2+(—‘?5)2 - 4y (1 -x"—y)
ox dy (1-x"=y%
-1
N@! _xz_yz)

Using (3.17) then gives

JJ(x+y+z)dS=JJ[x+y+v,/(1_x2_y2)]%dxdy
(I =x"=y%)
s 4

where A4 is the quadrant of a circle in the (x, y) plane illustrated in Figure 3.31(Db).
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Figure 3.32 Surface
element in spherical
polar coordinates.

Thus

(1=
U(x+y+z)dS— dxj [ x2 —+ y2 —+1|dy
VA =x"=y) (I =x"=y7)

S

(=2

= J xsin I[F‘Lz)j— \(1 —xz—y2)+y dx
J(I=x
L 0

Ex+2 I(1-x )}dx

1

[Z—fxz +x(1 —xz) + sin_lx}

0

I

ENT)

An alternative approach to evaluating the surface integral in Example 3.25 is to evaluate
it directly over the surface of the sphere using spherical polar coordinates. As illustrated

in Figure 3.32, on the surface of a sphere of radius ¢ we have

X =asin 6 cos ¢, y=asin O sin ¢

z=acosh, dS=a’sin0dOd¢

asinfd¢

0,4a,0)

In the sphere of Example 3.25 the radius a = 1, so that

n/2 (/2
Jf(x+y+z)dS:J J (sin 8 cos ¢ + sin O sin @ + cos ) sin O dO d¢@

0 0
N

/2
:J [{mcosg+imsing+1]de= f’;

0

as determined in Example 3.25.
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Figure 3.33
Surface element
in cylindrical
polar coordinates.

Example 3.26

Figure 3.34 (a) torus
of Example 3.26;

(b) position vector of a
point on the surface of
the torus.

Solution

In a similar manner, when evaluating surface integrals over the surface of a cylinder of
radius @, we have, as illustrated in Figure 3.33,

X = acos ¢, y =asin @, z=12z, dS=adzd¢g

Find the surface area of the torus shown in Figure 3.34(a) formed by rotating a circle
of radius b about an axis distance a from its centre.

Locus of

. (b)

From Figure 3.34(b), the position vector r of a point on the surface is given by
r=(a+ bcos ¢)cos 0i + (a + bcos @) sin 8j + b sin ok

(Notice that 8 and ¢ are not the angles used for spherical polar coordinates.) Thus
using 3.16,

Jy = (a + bcos ¢)cos O(b cos ¢) — (b sin @ sin 6)(0)
J, = (0)(=bsin ¢ cos 0) — (b cos ¢)(a + b cos ¢)(—sin O)
Jy=—(a + bcos @) sin B(—b sin ¢ sin O) — (—b sin ¢ cos O)(a + b cos ¢) cos
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Example 3.27

Solution

Simplifying, we obtain
Jy = b(a + bcos @) cos O cos ¢
J, =b(a + bcos ¢)sin O cos ¢
Jy=b(a + bcos @) sin @

and the surface area is given by

2n (2m
S=J J JJT+J5+ J3) dode

0 0

= J J b(a + bcos ¢) dOdo

0o Jo
=4n*ab

Thus the surface area of the torus is the product of the circumferences of the two circles
that generate it.

Evaluate [[¢V - dS, where V' =zi + xj — 3y*zk and S is the surface of the cylinder
x*+ y? =16 in the first octant between z =0 and z = 5.

The surface S is illustrated in Figure 3.35. From Section 3.2.1, the outward normal to
the surface is in the direction of the vector

n=grad (x* + y* — 16) = 2xi + 2yj
so that the unit outward normal 7 is given by
f= 2xit2yj
2(x"+")
Hence on the surface x> + y* = 16,
i = G (xi + )
giving
dS = dSi = $dS(xi + yj)

Projecting the element of surface dS onto the (x, z) plane as illustrated in Figure 3.35,
the area dx dz of the projected element is given by

dxdz=dScosf

where B is the angle between the normal 7 to the surface element and the normal j to
the (x, z) plane. Thus

dxdz=dS|di-j|=3dS|(xi+yj)-jl=3;dSy
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Figure 3.35 z A
Surface S for 0,0,5)
Example 3.26.

dx L ds
a2

o SNa .
0,4,00 ¥
X
(4,0,0)

giving

ds=4dxdz

y

Also,

V-dS=V-idS=(zi +xj - 3y%k)- (x"—zll')‘—‘dxdz = X2V 44,

y ¥

so that

J V~dS:J YZEX 4x dz

y
S A

where 4 is the rectangular region in the (x, z) plane bounded by 0 <x < 4,0 <z < 5.
Noting that the integrand is still evaluated on the surface, we can write y = (16 — x?),
so that

4 s
JJV-dSzJJ X+L2 dz dx
oo J(16=x7)
S
41 5 5
=J | 4
o 2y06-xY)]

ir
=J SX+L2 dx
ol 2J(16 —x")

= [ -Z(16-x)];

=90

An alternative approach in this case is to evaluate j [ [, (xz + xy) dS directly over
the surface using cylindrical polar coordinates. This is left as Exercise 90, in Exer-
cises 3.4.8.
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83

84

85

86

3.4.8 Exercises

Evaluate the area of the surface z=2 — x> — y* lying
above the (x, y) plane. (Hint: Use polar coordinates
to evaluate the double integral.)

Evaluate

(@) [ffs(x*+y?)dS, where S is the surface area of
the plane 2x + y + 2z = 6 cut off by the planes
z=0,z=2,y=0,y=3;

(b) [[szdS, where S is the surface area of the
hemisphere x* + y? + z2 = 1 (z > 0) cut off
by the cylinder x* — x + y*=0.

Evaluate [fv-dsS, where

(a) v=(xy,—x% x +z)and S is the part of
the plane 2x + 2y + z = 6 included in the
first octant;

(b) v =3y, 2x% z*) and S is the surface of the
cylinder x> +y°=1,0 <z < 1.

Show that [f;z*>dS = % 7, where S is the surface of
the sphere x> +y? +z> =1,z = 0.

87

88

89

90

91

Evaluate the surface integral [f U(x, y, z) dS,
where S is the surface of the paraboloid
z=2— (x*+y?) above the (x, y) plane and
U(x, y, z) is given by

@ 1 (bx*+y"  (0)z

Give a physical interpretation in each case.

Determine the surface area of the plane
2x+y+2z=16cutoffbyx=0,y=0
and x* + y? = 64.

Show that the area of that portion of the surface
of the paraboloid x? + y* = 4z included between
the planes z= 1 and z =3 is 2 7(4 — |2).

Evaluate the surface integral in Example 3.27 using
cylindrical polar coordinates.

If F = yi + (x — 2xz)j — xyk, evaluate the surface
integral [[; (curl F)- dS, where S is the surface of
the sphere x>+ y? +z>=a* z = 0.

3.4.9 Volume integrals

In Section 3.4.7 we defined the integral of a function over a curved surface in three
dimensions. This idea can be extended to define the integral of a function of three
variables through a region 7 of three-dimensional space by the limit

ﬂ J Sy V= tim Y (G5 2)AY,

T

all AV;—0

i=1

where AV, (i=1, ..., n)is a partition of 7 into n elements of volume, and (%, 7, Z)) is
a point in AV as illustrated in Figure 3.36.
In terms of rectangular cartesian coordinates the triple integral can, as illustrated in

Figure 3.37, be written as

J[[f(x,y,z)de Jydxf

T

g,(x)

g

hy(x, )
dyJ S(x,y,z)dz

(3.32)

UNERD)

Note that there are six different orders in which the integration in (3.32) can be

carried out.

As we saw for double integrals in (3.28), the expression for the element of volume
dV = dx dy dz under the transformation x = x(u, v, w), y =y (u, v, w), z = z(u, v, w) may

be obtained using the Jacobian
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Upper surface z = h,(x, y)

I
(6] ; >
| 4 'y o
! : Projection of
————— T v volume onto
* ' (x, ) plane
Figure 3.36 Partition of region 7 into Figure 3.37 The volume integral in terms of rectangular

volume elements AV,

cartesian coordinates.

dx dy oz
Ju Jdu Jdu
J= dx,p,z) _|dx dy 9z
d(u,v,w) |dv Jdv Jv

dx dy 9z

ow Jdw Jdw

as
dV=dxdydz=|J|dudvdw 3.33)
For example, in the case of cylindrical polar coordinates
X =pcos g, y=psin g, z=z
cos¢ sing O
J=p|-sing cos¢ O|=p
0 0 1
so that

dV=pdpdodz 3.34)
a result illustrated in Figure 3.38.
Similarly, for spherical polar coordinates (r, 6, ¢)
X =rsin @ cos ¢, y=rsin@sin ¢, z=rcos@
sin 6 cos ¢ sin @ sin¢ cos 0
J=|rcos@cosd rcos@sing -—rsin@| =7 sinf
—-rsin@sin¢@ rsin O cos ¢ 0

so that
dV =r*sin 0 dr d9d¢ 3.35)

a result illustrated in Figure 3.39.
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Figure 3.38 Volume element in Figure 3.39 Volume element in spherical
cylindrical polar coordinates. polar coordinates.

Example 3.28  Find the volume and the coordinates of the centroid of the tetrahedron defined by x = 0,
y=0,z=0andx+y+z=<1.

Solution  The tetrahedron is shown in Figure 3.40. Its volume is

x=1 y=1-x z=1-x—y
plancx+yz=1 V= m dxdydz=J de dyf dz
x=0 y=0 z=0

tetrahedron

1 1—x 1
©.1,0 7 =Jd"f (1—x—y)dy=J%(1—x)2dx=%

X¥(1,0,0) 0 0 0
llieox TY=L | ot the coordinates of the centroid be (%, 7, 2); then, taking moments about the line x = 0,
z=2z,
Figure 3.40

=1

Tetrahedron for
Example 3.28. V= xdlV = xdxdydz

tetrahedron tetrahedron

1 1-x 1-x—y 1
=J de dy‘[ xdz=J %x(l—x)de=2‘—4
0 0 0 0

Hence ¥ = 3, and by symmetry j =z =

1
4 9
Example 3.29  Find the moment of inertia of a uniform sphere of mass M and radius a about a diameter.

Solution A sphere of radius a has volume 4ma’/3, so that its density is 3M/47na’. Then the moment
of inertia of the sphere about the z axis is

I = 3M3 (" + y2) dxdydz
41ma

sphere
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In this example it is natural to use spherical polar coordinates, so that

1=3Y A1 (2 5in’0) * sin6 dr d6 dg
4na

sphere

a kg 2n
= M g | sin'edo | d = M (lah)d2m)
dna | | 0 0 4ma

2
=iMa

Evaluating triple integrals using MATLAB uses the command triplequad. For
example, consider (see Example 3.28):

1 (1-x (1-x-y
JJ J x dx dy dz
0J 0 0

Here we write the integrand as the inline function

F = inline (‘x.*( x + vy + z <=1)", 'xX', ‘'v', ‘z');
so that the command

I = triplequad (£ , 0 , 1 , 0 , 1, 0 , 1)
returns the answer

I = 0.0416

This procedure could be slow because of the large number of points at which the
integrand is evaluated.

3.4.10 Exercises

92  Evaluate the triple integrals 95  Evaluate [ff, xyzdxdydz, where V is the region
1 , \ bounded by the planes x =0, y =0, z =0 and
) x+y+z=1
(a) | dx | dy | x"yzdz
0 0 ! 96  Sketch the region contained between the parabolic

cylinders y = x* and x = y* and the planes z = 0 and

2 (3 r4
(b) f j j xy22 dz dy dx X +y +z=2. Show that the volume of the region

I may be expressed as the triple integral

1 WX [2—x—y
93  Show that J J . J dzdydx
0J x 0

1 z X+z d 1 t t
and evaluate it.
j dzJ de (x+y+2z)dy=0
-1 0 o 97  Use spherical polar coordinates to evaluate
94 Evaluate [f[ sin (x +y + z) dx dy dz over the X+ ) + ) dedydz
portion of the positive octant cut off by the plane

X+y+z=m. v
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where V' is the region in the first octant lying within
the sphere x* + y* +z% = 1.

where V' is the volume of the tetrahedron
bounded by the planes x =0,y =0, z=0 and
X+y+z=1.

98  Evaluate [[[ x*y*z%(x + y + z) dx dy dz throughout
thireglon definedbyx+y+z<1x>0,y=0, 100 Evaluate J[f,yzdxdy dz taken throughout the
z=0. prism with sides parallel to the z axis, whose base
] is the triangle with vertices at (0, 0, 0), (1, 0, 0),
99  Show thatifx+y+z=u,y+z=wandz=wuw (0, 1, 0) and whose top is the triangle with vertices
then at (0,0, 2), (1,0, 1), (0, 1, 1). Find also the position
of the centroid of this prism.
d(x,v,z) _ 2
=uv
d(u, v, w)
101  Evaluate [ff zdxdy dz throughout the region
Hence evaluate the triple integral defined by x> +y* <z, x> +y?+z°< 1,z > 0.
102  Using spherical polar coordinates, evaluate

JJJ exp[-(x +y + 2)’1dx dydz

4

Jff x dx dy dz throughout the positive octant of
the sphere x? + y* + z% = a*.

In the same way that Green’s theorem relates surface and line integrals, Gauss’s theorem

Consider the closed volume V' with surface area S shown in Figure 3.41. The surface
integral [[; F -dS may be interpreted as the flow of a liquid with velocity field F(r)
out of the volume V. In Section 3.3.1 we saw that the divergence of F could be

3.4.11 Gauss’s divergence theorem
relates surface and volume integrals.
S
Figure 3.41 expressed as

Closed volume V
with surface S.

flow out of AV
AV

In terms of differentials, this may be written

divF=V-F= lim

AV—=0

div F dV = flow out of dV

Consider now a partition of the volume V given by AV, (i=1, ..., n). Then the total
flow out of V is the sum of the flows out of each AV,. That is,

JJF -dS = lim z (flow out of AV;) = lim z (div FAV))
n—soco = n—sco =

N

giving

|| mos= [[[ avrar

S 4

(3.36)

This result is known as the divergence theorem or Gauss’s theorem. It enables us
to convert surface integrals into volume integrals, and often simplifies their evaluation.
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Example 3.30 A vector field F(r) is given by
F(r) = x*yi + x>V + x*yzk

Find [[g F -dS, where S is the surface of the region in the first octant for which
x+y+z=<1.

Figure 3.42 Region
and surface S for
Example 3.30.

Solution  We begin by sketching the region ¥ enclosed by S, as shown in Figure 3.42. It is clear that
evaluating the surface integral directly will be rather clumsy, involving four separate
integrals (one over each of the four surfaces). It is simpler in this case to transform it into
a volume integral using the divergence theorem (3.36):

ﬂp.dsz [|| awrar

Vv
Here
div F = 3x%y + 2x% + x%y = 6x?y

and we obtain

1 1-x 1-x—y
ﬂFdS:J de dyj 6x’ydz
0 0 0

1 1—x 1-x—y
=6 J X dx J ydy J dz
0 0 0 (see Example 3.28)

1 1—x
= 6J xzdxj [(1-x)y—-)"1dy

Example 3.31  Verify the divergence theorem

[[7eas= ||| awrar

N vV

when F = 2xzi + yzj + z*k and V is the volume enclosed by the upper hemisphere
x*+yt+zi=a%z= 0.
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Figure 3.43
Hemisphere for
Example 3.31.

Solution

The volume ¥ and surface S of the hemisphere are illustrated in Figure 3.43. Note that
since the theorem relates to a closed volume, the surface S consists of the flat circular
base in the (x, ) plane as well as the hemispherical surface. In this case

divF=2z+z+2z=5z

so that the volume integral is readily evaluated as

JJJ S5zdxdydz = J 5zt dz = J Snz(a’ - 2°)dz = f;Tta4
0 0

Vv

Considering the surface integral

[[ras= || raass || raas

s circular base hemisphere

The unit normal to the base is clearly 71, = —k, so
F-i,=-z*

giving

” F-7,dS=0

circular base

since z = 0 on this surface.
The hemispherical surface is given by

fouy,2)=x*+y*+22-a*=0
so the outward unit normal 7, is

P Vf _ 2xi+2yj+ 2zk
, = =
|Vf] 2\5‘(x2 +y2 + 22)

Since x% + y? + z? = @® on the surface,

A, =%i+Lj+ ik
a a a
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giving

2 2 3 2
Fo,=252 f V2 2 X2, 202,02,
a

a a a a
Hence
U F-A,dS = U 2P +dh)ds
a
hemisphere hemisphere

since x? + y? + z? = @* on the surface. Transforming to spherical polar coordinates,
x=asinfcosp, z=acosh,  dS=a’sin0dod¢

the surface integral becomes

2n (n/2
” F-#,dS = a4J J (sin @ cos O + sin’@ cos 6 cos’¢) dO d¢

0 0
hemisphere

2n
. L4
= a4j [Lsin’6 + !sin‘6 cos’9]}? do

0

2n
= a4J [5+1 cos’¢1dp = ina4

0

thus confirming that

[[7as=||| awrar

N 14

3.4.12 Stokes’ theorem

Stokes’ theorem is the generalization of Green’s theorem, and relates line integrals in
three dimensions with surface integrals. At the end of Section 3.3.3 we saw that the curl

of the vector F could be expressed in the form

curl F- /i = lim floW round A§
A550 AS

In terms of differentials, this becomes

curl F-dsS = flow round dS

S Consider the surface S shown in Figure 3.44, bounded by the curve C. Then the
line integral §. F-dr can be interpreted as the total flow of a fluid with velocity field
F around the curve C. Partitioning the surface S into elements AS; (i =1, ..., n), we

ﬁ can write

C

Figure

%F~ dr = lim 2 (flow round AS,) = lim 2 (curl F-AS))
i=1 e

n—oo £

3.44 Surface S

bounded by curve C. c
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&

C,
Figure 3.45 Two
paths, C, and C,,
joining points A
and B.

so that
% F-dr= fj (curl F) - dS 3.37)
@ S

This result is known as Stokes’ theorem. It provides a condition for a line integral to
be independent of its path of integration. For, if the integral [% F-dr is independent of
the path of integration then

JF-dr=JF~dr

S G

where C, and C, are two different paths joining A and B as shown in Figure 3.45. Since

JF~dr=—fF-dr

¢ G

where —C, is the path C, traversed in the opposite direction, we have

JF'dV‘i‘ JF-drzO

¢ G

That is,

§F~dr=0

C

where C is the combined, closed curve formed from C, and —C,. Stokes’ theorem
implies that if $. F - dr = 0 then

U (curl F)-dS =0

N

for any surface S bounded by C. Since this is true for all surfaces bounded by C, we
deduce that the integrand must be zero, that is curl F = 0. Writing F = (F, F,, F;), we
then have that

F-dr=F dx+F,dy+ F;dz
is an exact differential if curl F = 0; that is, if
L S )
dz  Ix’ dy  ox’ dJdz dy
Thus there is a function f(x, y, z) = f(r) such that
Ref 2 pod

ox’ dy
that is, such that F(r) = grad f.
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Example 3.32

Figure 3.46
Hemispherical
surface and boundary
for Example 3.32.

Solution

When F(r) represents a field of force, the field is said to be conservative (since it
conserves rather than dissipates energy). When F(r) represents a velocity field for a
fluid, the field is said to be curl-free or irrotational.

Verify Stokes’ theorem for F = (2x — y)i — yz’j — y’zk, where S is the upper half of the
sphere x* + y*+z? = 1 and C is its boundary.

0,1,0)

The surface and boundary involved are illustrated in Figure 3.46. We are required to
show that

%F-dr:”curleS

C N
Since C is a circle of unit radius in the (x, y) plane, to evaluate ¢ F - dr, we take
X =cos ¢, y=sin¢
so that
r =cos ¢i + sin ¢j
giving
dr =—sin ¢ dgi + cos ¢ doj
Also, on the boundary C, z = 0, so that
F =(2x—y)i=(2cos ¢ — sin 9)i
Thus

%F-dr =J (2 cos ¢ — sin @)i - (—sin @i + cos ¢j)d¢

2n

J (=2 sin ¢ cos ¢ + sin2¢)d¢ = J [-sin2¢ + 1 (1 + cos 2¢)] do

0 0

=T
i J k
J J J
curl F = 5 Iy 7 k



3.4 TOPICS IN INTEGRATION 247

103

104

105

106

107

108

The unit outward-drawn normal at a point (x, y, z) on the hemisphere is given by
(xi + yj + zk), since x> + y* + z> = 1. Thus

ﬂ curl F-dS:” k-(xi +yj + zk)dS

o
|

J zdS
/2
0

2n[} sin’6 ]

0

2 _

2n
J cosOsin 6 dOdg
0

Hence ¢, F-dr = [[;(curl F)-dS, and Stokes’ theorem is verified.

3.4.13 Exercises

Evaluate [f F-dS, where F = (4xz, —y* yz) and S'is
the surface of the cube bounded by the planes x =0,
x=1Ly=0,y=1,z=0andz=1.

Use the divergence theorem to evaluate the surface
integral [[F - dS, where F = xzi + yzj + z’k and S is
the closed surface of the hemisphere x* + y? +z2 =4,
z > 0. (Note that you are not required to verify the
theorem.)

Verify the divergence theorem

[[[7as <] av rar

N vV

for F = 4xi — 2y%j + z*k over the region bounded by
x*+y*=4,z=0and z=3.

Prove that
JJJ (grad @) - (curl F)dV = 4” (F x grad ¢) - dS
Vv N

Verify the divergence theorem for F = (xy + )i +x%j
and the volume / in the first octant bounded by
x=0,y=0,z=0,z=1and x* +)* = 4.

Use Stokes’ theorem to show that the value of the
line integral [% F-dr for

109

110

111

112

F = (36xz+6ycosx,3+6sinx+zsiny,
18x% — cos y)

is independent of the path joining the points A and B.

Use Stokes’ theorem to evaluate the line integral
$. A-dr, where A = —yi + xj and C is the boundary
of the ellipse x%/a*> + y*/b* =1,z =0.

Verify Stokes’ theorem by evaluating both sides of

Jj(curledS:fﬁF'dr

N C

where F = (2x — y)i — yz% — y*zk and S is the curved
surface of the hemisphere x* + y> +z2 =16,z = 0.

By applying Stokes’ theorem to the function af{r),
where a is a constant, deduce that

Jf(n X grad ) dS = Jf(r)dr

N C

Verify this result for the function f(r) = 3x)* and
the rectangle in the plane z = 0 bounded by the
linesx=0,x=1,y=0and y =2.

Verify Stokes’ theorem for F = (2y +z,x —z,y — X)
for the part of x> + y? + z> = 1 lying in the positive
octant.
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ER 2 G T LM streamlines in fluid dynamics

As we mentioned in Section 3.1.5, differentials often occur in mathematical modelling
of practical problems. An example occurs in fluid dynamics. Consider the case of
steady-state incompressible fluid flow in two dimensions. Using rectangular cartesian
coordinates (x, y) to describe a point in the fluid, let # and v be the velocities of the fluid
in the x and y directions respectively. Then by considering the flow in and flow out of
(r+Ax,y+Ay)  a small rectangle, as shown in Figure 3.47, per unit time, we obtain a differential
relationship between u(x, y) and v(x, y) that models the fact that no fluid is lost or gained
Ay| 2l in the rectangle; that is, the fluid is conserved.
The velocity of the fluid ¢ is a vector point function. The values of its components
A u and v depend on the spatial coordinates x and y. The flow into the small rectangle in
) : ll, ! unit time is
k—>
Ax

u(x, ¥)Ay + v(¥, y)Ax

Figure 3.47 where ¥ lies between x and x + Ax, and j lies between y and y + Ay. Similarly, the flow
Fluid flow. out of the rectangle is

u(x + Ax, ))Ay + v(X, y + Ay)Ax

where X lies between x and x + Ax and y lies between y and y + Ay. Because no fluid is
created or destroyed within the rectangle, we may equate these two expressions, giving

u(x, V)Ay + v(x, Y)Ax = u(x + Ax, 7)Ay + v(X, y + Ay)Ax

Rearranging, we have

u(x + Ax7y~) _ u(x?.);) + U(i,y + Ay) _ U()Efy) e 0
Ax Ay

Letting Ax — 0 and Ay — 0 gives the continuity equation

Streamline ou v

ox dy
uIAy

The fluid actually flows along paths called streamlines so that there is no flow across
a streamline. Thus from Figure 3.48 we deduce that

0

v
&>

Ax

Figure 3.48
Streamline. and hence

vAx =udly

vdx—-udy=0

The condition for this expression to be an exact differential is
9y =2
ay(v) = 8x( u)

or

Jdu , dv _
8x+8y_0

This is satisfied for incompressible flow since it is just the continuity equation, so that
we deduce that there is a function y(x, y), called the stream function, such that
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Example 3.33

Solution

_ __9y
v E and u 9

It follows that if we are given u and v, as functions of x and y, that satisfy the continuity
equation then we can find the equations of the streamlines given by y(x, y) = constant.

Find the stream function y(x, y) for the incompressible flow that is such that the velocity
q at the point (x, y) is

(p/(x* + y?), x/(x* + y?))

From the definition of the stream function, we have

oy
ox

u(x,y) = —%}1—/}/ and ov(x,y) =

provided that

Ju , dv _
8x+(9y_0

Here we have

— X
u=—=— and v= ot
x +y x +y

so that
du _ _ 2xy and dv _ __ 2yx
ox (X + yz)2 dy (x* + yZ)2
confirming that

Ju , dv _
8x+8y_0

Integrating

W —u(x,y) = —+—

dy X +y
with respect to y, keeping x constant, gives
y(x,y) = ;In(x*+y?) + g(x)
Differentiating partially with respect to x gives
d d
oy _ sz + 48
ox x +y dx
Since it is known that

d
& U(x,y)Z";L;
dx X +y
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we have

dg
=9
dx

which on integrating gives
gx)=C

where C is a constant. Substituting back into the expression obtained for y/(x, y), we have
y(x,y) =G +y) +C

A streamline of the flow is given by the equation y(x, y) = k, where £ is a constant.
After a little manipulation this gives

x*+y’=d®> and lna=k-C

and the corresponding streamlines are shown in Figure 3.49. This is an example of a
vortex.

Figure 3.49 y
Streamline illustrating
a vortex.

Py
:

e
N

Y

3.6 Engineering application: JiEIRIEIIN{1

In modelling heat transfer problems we make use of three experimental laws.

(1) Heat flows from hot regions to cold regions of a body.

(2)  The rate at which heat flows through a plane section drawn in a body is proportional
to its area and to the temperature gradient normal to the section.

(3) The quantity of heat in a body is proportional to its mass and to its temperature.
In the simplest case we consider heat transfer in a medium for which the constants of
proportionality in the above laws are independent of direction. Such a medium is called

thermally isentropic. For any arbitrary region within such a medium we can obtain an
equation that models such heat flows. The total amount Q(¢) of heat within the region V'is

o) = JJJ cpu(r,t)dV

v
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where c is the specific heat of the medium, p is the density and u(r, f) is the temperature
at the point r at time 7. Heat flows out of the region through its bounding surface S. The
experimental laws (1) and (2) above imply that the rate at which heat flows across an
element AS of that surface is —kVu-AS, where k is the thermal conductivity of the
medium. (The minus sign indicates that heat flows from hot regions to cold.) Thus the
rate at which heat flows across the whole surface of the region is given by

JJ (=kVu)-dS = -k Jf Vu-ds

S N

Using Gauss’s theorem, we deduce that the rate at which heat flows out of the region is

_kmvzudy

Vv

If there are no sources or sinks of heat within the region, this must equal the rate at which
the region loses heat, —dQ/d¢. Therefore

_(% JJJ cpu(r, 1)dV :—kJJJ Viudv

Vv Vv

this implies that

M(kvzu_cpg_t;)w:o

v

This models the situation for any arbitrarily chosen region V. The arbitrariness in the
choice of V implies that the value of the integral is independent of /" and that the
integrand is equal to zero. Thus

= cp du
Viu k dt

The quantity k/cp is termed the thermal diffusivity of the medium and is usually
denoted by the Greek letter kappa, x. The differential equation models heat flow within
a medium. Its solution depends on the initial temperature distribution u(r, 0) and on
the conditions pertaining at the boundary of the region. Methods for solving this equa-
tion are discussed in Chapter 9. This differential equation also occurs as a model for
water percolation through a dam, for neutron transport in reactors and in charge transfer
within charge-coupled devices. We shall now proceed to obtain its solution in a very
special case.
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Example 3.34

Solution

A large slab of material has an initial temperature distribution such that one half is at
—u, and the other at +u,. Obtain a mathematical model for this situation and solve it,
stating explicitly the assumptions that are made.

When a problem is stated in such vague terms, it is difficult to know what approxima-
tions and simplifications may be reasonably made. Since we are dealing with heat
transfer, we know that for an isentropic medium the temperature distribution satisfies
the equation
2 1 du

Viu = K dt
throughout the medium. We know that the region we are studying is divided so that at
t = 0 the temperature in one part is —u, while that in the other is +u,, as illustrated in
Figure 3.50. We can deduce from this figure that the subsequent temperature at a point
in the medium depends only on the perpendicular distance of the point from the
dividing plane. We choose a coordinate system so that its origin lies on the dividing
plane and the x axis is perpendicular to it, as shown in Figure 3.51. Then the differential
equation simplifies, since u(r, ) is independent of y and z, and we have

-u, (x <0)

+u, (x=0)

Pu_ 10

Y Py with  u(x, 0) :{
X K

=Y

u(r, 0) = u(x, 0)
=-uq

u(r, 0) = u(x, 0)
=+ug

Figure 3.50 Region for Example 3.34. Figure 3.51 Coordinate system for Example 3.34.

Thinking about the physical problem also provides us with some further information.
The heat flows from the hot region to the cold until (eventually) the temperature is
uniform throughout the medium. In this case that terminal temperature is zero,
since initially half the medium is at temperature +u, and the other half at —u,. So we
know that u(x, ) — 0 as t — oo. We also deduce from the initial temperature distribution
that —u, < u(x, t) < u, for all x and ¢, since there are no extra sources or sinks of heat
in the medium. Summarizing, we have

-u, (x<0)
+u, (x=0)

5 5 u(x,O)z{
du_1du (=00 < x < oo, t = 0) with

2
ox" Kot u(x,t) bounded for all x
u(x,t) >0 as t—oo
There are many approaches to solving this problem (see Chapter 9). One is to investig-
ate the effect of changing the scale of the independent variables x and ¢. Setting x = A.X
and ¢ = uT, where A and u are positive constants, the problem becomes
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JU_X

x* xdr

with U(X, T) = u(x, t) and U(X, 0) = u, sgn X. Choosing u = A*, we see that
FU_1ay

e with  U(X, 0) = u, sgn X
X

which implies that the solution u(x, f) of the original equation is also a solution of the
scaled equation. Thus

u(x, £) = u(Ax, A*f)

which suggests that we should look for a solution expressed in terms of a new variable
s that is proportional to the ratio of x to |z. Setting s = ax/#, we seek a solution as a
function of s:

u(x, 1) = u, f(s)

This reduces the partial differential equation for « to an ordinary differential equation
for £, since

du_audf  Lu_dudf du__laxudf
dx |t ds ’ ox’ t ds® dt 2 tJt ds
Thus the differential equation is transformed into
CEf__ax df
tds® 2xt(tds
giving
2
& d_{ __sdf
ds 2K ds
Choosing the constant a such that a* = 1/(4k) reduces this to the equation
2
<_1_12’ -,
ds ds

The initial condition is transformed into two conditions, since for x < 0, s — —oo as
t— 0and forx > 0,5 — +e as t — 0. So we have

fs) > 1 as s—> oo
fs) > -1 as s— —oo

Integrating the differential equation once gives
(alfz A e_sz, where 4 is a constant
s

and integrating a second time gives

f(s)=B+ 4 Je ds
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The integral occurring here is one that frequently arises in heat transfer problems, and
is given a special name. We define the error function, erf(x), by the integral

erf(x) = —TZT—EJ e dz

v 0

Its name derives from the fact that it is associated with the normal distribution, which

is a common model for the distribution of experimental errors (see Section 11.2.4).

This is a well-tabulated function, and has the property that erf(x) — 1 asx — oo,
Writing the solution obtained above in terms of the error function, we have

fls)=Aerf(s)+B
Letting s — o0 and s — —eo gives two equations for 4 and B:
1=4+B
-1=-4A+B
from which we deduce 4 =1 and B = 0. Thus
Ss) = erf(s)
so that

x/2\t
u(x, t) = u, erf(i) = %J e dz
200 7

3.7 Review exercises (1-21)

1 Show that u(x, y) = x"f(¢), t = y/x, satisfies the
differential equations

Hence deduce that the general solution of the
equation is given by

(@) 122+ 9% _ u(x, ) =f(x +3y) + g(x +3)
dx dy
2 2 2
(b) x28—1§+2xy—8u +y28—t2l
ox dxdy y
Verify these results for the function
u(x, y) =x* +y* + 1l6x?)7~.

where fand g are arbitrary functions.
=n(n - 1u Find the solution of the differential equation
that satisfies the conditions

u(x, 0) = sin x, %;’—02 =3cosx
Y

2  Find the values of the numbers a and b such that
the change of variables u =x + ay, v =x + by
transforms the differential equation

2 2 2
9%— 09/ 2% =0
ox dxdy dy

3 A differential P(x, y, z) dx + Q(x, y, z) dy +
R(x, y, z) dz is exact if there is a function
f(x, y, z) such that

P(x, y,z)dx + O(x, y, 2) dy + R(x, y, 2) dz

into = Vf(dxs dy: dZ)
s _ Show that this implies V x (P, O, R) = 0. Deduce
Jdudv that curl grad /= 0.



3.7 REVIEW EXERCISES (1-21) 255

10

11

Find grad f, plot some level curves f'= constant
and indicate grad f by arrows at some points
on the level curves for f{r) given by

12
@ xy  (b) X/(x*+y?)
Show that if @ is a constant vector then
(a) grad (@ r=w
(b) curl (@xr)=20 13

(a) Prove that if f(r) is a scalar point function then
curl grad /=0

(b) Prove that if v = grad [zf(r)] + af(r)k and 14
V?f= 0, where o is a constant and fis a
scalar point function, then

divv=(2+a)§f, Vzuzgrad(ng)
z z

Show that if F = (x* — y* + x)i — (2xy + )J,
then curl F = 0, and find f{r) such that
F =gradf.
Verify that 15

2,1
J F-dr=[f(r]&)

(1,2)

A force F acts on a particle that is moving

in two dimensions along the semicircle
x=1-cos6,y=sinf(0 < 0= m).

Find the work done when 16

@) F=a*+y%i
(b) F=x*+y)i

7i being the unit vector fangential to the path. 17

A force F = (xy, —y, 1) acts on a particle as it moves
along the straight line from (0, 0, 0) to (1, 1, 1).
Calculate the work done. 18

The force F per unit length of a conducting wire
carrying a current / in a magnetic field B is
F = I x B. Find the force acting on a circuit
whose shape is given by x = sin 6, y = cos 6,
z=sin § 6, when current / flows in it and when
it lies in a magnetic field B = xi — yj + k.

The velocity v at the point (x, y) in a 19
two-dimensional fluid flow is given by

v = (yi —xj)/(x* + y?). Find the net
circulation around the square x = 1, y = 1.

A metal plate has its boundary defined by
x =0, y=x%cand y = c. The density at the
point (x, ) is kxy (per unit area). Find the
moment of inertia of the plate about an axis
through (0, 0) and perpendicular to the plate.

A right circular cone of height / and base radius
a is cut into two pieces along a plane parallel to
and distance ¢ from the axis of the cone. Find the
volume of the smaller piece.

The axes of two circular cylinders of radius a
intersect at right angles. Show that the volume
common to both cylinders may be expressed as
the triple integral

a \(a27y2) \(azi},Z)
SJ dyJ dxf dz
0 0 0

and hence evaluate it.

The elastic energy of a volume V of material
is ¢?V/(2EI), where q is its stress and £ and /
are constants. Find the elastic energy of a
cylindrical volume of radius » and length / in
which the stress varies directly as the distance
from its axis, being zero at the axis and ¢, at the
outer surface.

The velocity of a fluid at the point (x, y, z) has
components (3x%y, xy%, 0). Find the flow rate out
of the triangular prism bounded by z=0,z =1,
x=0,y=0andx+y=1.

An electrostatic field has components
(2xy, —y*, x + y) at the point (x, y, z). Find the total
flux out of the sphere x* + y* + z2 = a*.

Verify Stokes’ theorem

%F-dr = JJ(curlF)~dS

© N
where F = (x> +y — 4, 3xy, 2xz + z°) and S is
the surface of the hemisphere x? + y* + z> = 16
above the (x, y) plane.

Use the divergence theorem to evaluate the
surface integral



256 VECTOR CALCULUS

20

ﬂa.ds

N

where a = xi + yj — 2zk and S is the surface of
the sphere x* + y? + z> = a* above the (x, y)
plane.

Evaluate the volume integral

[[[ e

vV

where V" denotes the wedge-shaped region
bounded in the positive octant by the four
planesx=0,y=0,y=1-xandz=2 —x.

21

Continuing the analysis of Section 3.5, show that
the net circulation of fluid around the rectangular
element shown in Figure 3.47 is given by

[M(.X, y + Ay) - u(x, J’)]Ax

= [v(x + Ax, y) — v(x, »)]Ay
Deduce that if the fluid motion is irrotational at
(x, ), then

du_dv_

dy ox

Show that for irrotational incompressible flow,
the stream function v satisfies Laplace equation

2 2
8_gf+9_gf=0
ox~  dy
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Introduction

In the theory of alternating currents, the application of quantities such as the complex
impedance involves functions having complex numbers as independent variables. There
are many other areas in engineering where this is the case; for example, the motion of
fluids, the transfer of heat or the processing of signals. Some of these applications are
discussed later in this book.

Traditionally, complex variable techniques have been important, and extensively used,
in a wide variety of engineering situations. This has been especially the case in areas
such as electromagnetic and electrostatic field theory, fluid dynamics, aerodynamics
and elasticity. With the development of computer technology and the consequential
use of sophisticated algorithms for analysis and design in engineering there has, over
the last two decades or so, been less emphasis on the use of complex variable tech-
niques and a shift towards numerical techniques applied directly to the underlying full
partial differential equations model of the situation being investigated. However, even
when this is the case there is still considerable merit in having an analytical solution,
possibly for an idealized model, in order both to develop better understanding of
the behaviour of the solution and to give confidence in the numerical estimates for the
solution of enhanced models. Many sophisticated software packages now exist, many
of which are available as freeware, downloadable from various internet sites. The older
packages such as FLUENT and CFX are still available and still in use by engineering
companies to solve problems such as fluid flow and heat transfer in real situations. The
finite element package TELEMAC is modular in style and is useful for larger-scale
environmental problems; these types of software programs use a core plus optional
add-ons tailored for specific applications. The best use of all such software still requires
knowledge of mappings and use of complex variables. One should also mention the
computer entertainment industry which makes use of such mathematics to enable
accurate simulation of real life. The kind of mappings that used to be used extensively
in aerodynamics are now used in the computer games industry. In particular the ability
to analyse complicated flow patterns by mapping from a simple geometry to a complex
one and back again remains very important. Examples at the end of the chapter illus-
trate the techniques that have been introduced. Many engineering mathematics texts
have introduced programming segments that help the reader to use packages such as
MATLAB or MAPLE to carry out the technicalities. This has not been done in this
chapter since, in the latest version of MAPLE, the user simply opens the program
and uses the menu to click on the application required (in this chapter a derivative or
an integral), types in the problem and presses return to get the answer. Students are
encouraged to use such software to solve any of the problems; the understanding of
what the solutions mean is always more important than any tricks used to solve what
are idealized problems.

Throughout engineering, transforms in one form or another play a major role in anal-
ysis and design. An area of continuing importance is the use of Laplace, z, Fourier and
other transforms in areas such as control, communication and signal processing. Such
transforms are considered later in the book where it will be seen that complex variables
play a key role. This chapter is devoted to developing understanding of the standard
techniques of complex variables so as to enable the reader to apply them with confidence
in application areas.
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/)

—_—

IE Mapping Ia

Figure 4.1 Real
mapping y = f(x).

Figure 4.2 Complex
mapping w = f(z).

Complex functions and mappings

The concept of a function involves two sets X and Y and a rule that assigns to each
element x in the set X (written x € X) precisely one element y € Y. Whenever this
situation arises, we say that there is a function f'that maps the set X to the set ¥, and
represent this symbolically by

y=/x (xeX)

Schematically we illustrate a function as in Figure 4.1. While x can take any value in
the set X, the variable y = f{x) depends on the particular element chosen for x. We therefore
refer to x as the independent variable and y as the dependent variable. The set X is
called the domain of the function, and the set of all images y = f(x) (x € X) is called
the image set or range of /. Previously we were concerned with real functions, so that
x and y were real numbers. If the independent variable is a complex variable z = x + jy,
where x and y are real and j = /(—1), then the function f(z) of z will in general also be
complex. For example, if f(z) = z* then, replacing z by x + jy and expanding, we have

@O =&+ =E-)y)+j2xy=u+jv (say)

where u and v are real. Such a function f(z) is called a complex function, and we write

w=/(2)

where, in general, the dependent variable w = u + ju is also complex.

The reader will recall that a complex number z = x + jy can be represented on a plane
called the Argand diagram, as illustrated in Figure 4.2(a). However, we cannot plot
the values of x, y and f(z) on one set of axes, as we were able to do for real functions
y = f(x). We therefore represent the values of

w=fz)=u+jv

on a second plane as illustrated in Figure 4.2(b). The plane containing the independent
variable z is called the z plane and the plane containing the dependent variable w is
called the w plane. Thus the complex function w = f(z) may be regarded as a mapping
or transformation of points P within a region in the z plane (called the domain) to
corresponding image points P” within a region in the w plane (called the range).

It is this facility for mapping that gives the theory of complex functions much of its
application in engineering. In most useful mappings the entire z plane is mapped onto
the entire w plane, except perhaps for isolated points. Throughout this chapter the
domain will be taken to be the entire z plane (that is, the set of all complex numbers,
denoted by C). This is analogous, for real functions, to the domain being the entire real

w=/()
—_—

Mapping or
transformation

YA A

Domain

z®P
S

0\\/ x

(a) z plane

(b) w plane
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Example 4.1

Solution

Figure 4.3
The mapping of
Example 4.1.

line (that is, the set of all real numbers R). If this is not the case then the complex
function is termed ‘not well defined’. In contrast, as for real functions, the range of the
complex function may well be a proper subset of C.

Find the image in the w plane of the straight line y = 2x + 4 in the z plane, z = x + jy,
under the mapping

w=2z+6

Writing w = u + ju, where u and v are real, the mapping becomes
w=u+jv=2x+jy)+6
or
u+juv=2x+6)+j2y
Equating real and imaginary parts then gives
u=2x+06, v=2yp 4.1)
which, on solving for x and y, leads to
xz%(u—6), y:%v
Thus the image of the straight line
y=2x+4
in the z plane is represented by
%v=2>< %(u—6)+4
or
v=2u—-4

which corresponds to a straight line in the w plane. The given line in the z plane and the
mapped image line in the w plane are illustrated in Figures 4.3(a) and (b) respectively.

Note from (1.1) that, in particular, the point P,(=2 + j0) in the z plane is mapped to
the point P{(2 + jO) in the w plane, and that the point P,(0 + j4) in the z plane is mapped
to the point P5(6 + j8) in the w plane. Thus, as the point P moves from P, to P, along

(a) z plane (b) w plane
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4.2.1

Figure 4.4
The degenerate

mapping w = .

the line y = 2x + 4 in the z plane, the mapped point P” moves from P/ to P} along the
line v = 2u — 4 in the w plane. It is usual to indicate this with the arrowheads as
illustrated in Figure 4.3.

Linear mappings

The mapping w = 2z + 6 in Example 4.1 is a particular example of a mapping cor-
responding to the general complex linear function

w=oz+p 4.2)

where w and z are complex-valued variables, and o and § are complex constants. In this
section we shall investigate mappings of the z plane onto the w plane corresponding to
(4.2) for different choices of the constants ¢ and . In so doing we shall also introduce
some general properties of mappings.

Case (a) a=0

Letting =0 (or =0 +j0) in (4.2) gives
w=p

which implies that w = 8, no matter what the value of z. This is quite obviously a
degenerate mapping, with the entire z plane being mapped onto the one point w = 8
in the w plane. If nothing else, this illustrates the point made earlier in this section,
that the image set may only be part of the entire w plane. In this particular case the
image set is a single point. Since the whole of the z plane maps onto w = 3, it follows
that, in particular, z = 8 maps to w = . The point B is thus a fixed point in this
mapping, which is a useful concept in helping us to understand a particular mapping.
A further question of interest when considering mappings is that of whether, given a
point in the w plane, we can tell from which point in the z plane it came under the
mapping. If it is possible to get back to a unique point in the z plane then it is said to
have an inverse mapping. Clearly, for an inverse mapping z = g(w) to exist, the point
in the w plane has to be in the image set of the original mapping w = f(z). Also, from
the definition of a mapping, each point w in the w plane image set must lead to a single
point z in the z plane under the inverse mapping z = g(w). (Note the similarity to the
requirements for the existence of an inverse function f~'(x) of a real function f(x).) For
the particular mapping w = 3 considered here the image set is the single point w = f in
the w plane, and it is clear from Figure 4.4 that there is no way of getting back to just
a single point in the z plane. Thus the mapping w = 8 has no inverse.

Mapping w = 3
B

7[3

=Y

z plane w plane
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Figure 4.5
The mapping
w=(1+]j)z

Case (b) B=0,a#0
With such a choice for the constants ¢ and S, the mapping corresponding to (4.2) becomes
w=az

Under this mapping, the origin is the only fixed point, there being no other fixed points
that are finite. Also, in this case there exists an inverse mapping

_ 1
z==w
o
that enables us to return from the w plane to the z plane to the very same point
from which we started under w = oz. To illustrate this mapping at work, let us choose
a=1+j, so that

w=(1+]) 4.3)

and consider what happens to a general point z, in the z plane under this mapping. In
general, there are two ways of doing this. We can proceed as in Example 4.1 and split
both z and w into real and imaginary parts, equate real and imaginary parts and hence
find the image curves in the w plane to specific curves (usually the lines Re(z) = con-
stant, Im(z) = constant) in the z plane. Alternatively, we can rearrange the expression
for w and deduce the properties of the mapping directly. The former course of action,
as we shall see in this chapter, is the one most frequently used. Here, however, we shall
take the latter approach and write oz =1 + j in polar form as

1+j=/2e™
Then, if
z=rel’
in polar form it follows from (4.3) that
w = ry2ei®m 4.4)

We can then readily deduce from (4.4) what the mapping does. The general point in the
z plane with modulus » and argument 6 is mapped onto an image point w, with modulus
rJ2 and argument € + ; T in the w plane as illustrated in Figure 4.5.

It follows that in general the mapping

w=0z

maps the origin in the z plane to the origin in the w plane (fixed point), but effects an expan-
sion by || and an anticlockwise rotation by arg o. Of course, arg & need not be positive,
and indeed it could even be zero (corresponding to ¢ being real). The mapping can be loosely
summed up in the phrase ‘magnification and rotation, but no translation’. Certain geometrical

y=1Im(2) v=1Im (w)

w=(l+]jz

o x =Re (2) O u=Re(w')

z plane w plane



4.2 COMPLEX FUNCTIONS AND MAPPINGS 263

Figure 4.6
The mapping
w=_{+p.

properties are also preserved, the most important being that straight lines in the z plane
will be transformed to straight lines in the w plane. This is readily confirmed by noting
that the equation of any straight line in the z plane can always be written in the form

|z—al=|z-b|

where a and b are complex constants (this being the equation of the perpendicular
bisector of the join of the two points representing a and b on the Argand diagram).
Under the mapping w = oz, the equation maps to

- —a
o

‘ w

V—V—b‘ (a#0)
o

or
|w—aa|=|w-bo]|

in the w plane, which is clearly another straight line.
We now return to the general linear mapping (4.2) and rewrite it in the form

w—[f=a0z
This can be looked upon as two successive mappings: first,
=z

identical to w = oz considered earlier, but this time mapping points from the z plane to
points in the { plane; secondly,
w={+p 4.5)

mapping points in the { plane to points in the w plane. Elimination of { regains equation
(4.2). The mapping (4.5) represents a translation in which the origin in the { plane is
mapped to the point w = 8 in the w plane, and the mapping of any other point in the
{ plane is obtained by adding f3 to the coordinates to obtain the equivalent point in the
w plane. Geometrically, the mapping (4.5) is as if the { plane is picked up and, without
rotation, the origin placed over the point . The original axes then represent the w plane
as illustrated in Figure 4.6. Obviously all curves, in particular straight lines, are pre-
served under this translation.

We are now in a position to interpret (4.2), the general linear mapping, geometrically
as a combination of mappings that can be regarded as fundamental, namely

e translation
e rotation, and
e magnification

that is,
j0 jo jo
— ¢’ —— |ale’z — |lale”z+ f=az+ B=w
rotation magnification translation
¢ vh HA
2 w={+p 2]
——— - 1
1
op | op
1
Pfo--mmmm e »
> s G
O 4 (¢] u

Cplane, (=) + wplane, w = u + ju
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Example 4.2

Solution

It clearly follows that a straight line in the z plane is mapped onto a corresponding
straight line in the w plane under the linear mapping w = oz + B. A second useful
property of the linear mapping is that circles are mapped onto circles. To confirm this,
consider the general circle

|z—=2z)l =7

in the z plane, having the complex number z, as its centre and the real number r as its
radius. Rearranging the mapping equation w = oz + B gives

_w_B
z=2 -2 (az0)

so that

z—zo=v—v—g—zo=l(w—w0)
o o o

where w, = 0z, + 5. Hence
lz=z|=r

implies
[w—wo| =lalr

which is a circle, with centre w, given by the image of z, in the w plane and with radius
|| given by the radius of the z plane circle magnified by |c|.
We conclude this section by considering examples of linear mappings.

Examine the mapping
w={1+jz+1-]

as a succession of fundamental mappings: translation, rotation and magnification.

The linear mapping can be regarded as the following sequence of simple mappings:

jm/4 | jm/4 | jm/4 :
: My ————— 2e" - 2"z +1—j=w
rotation magnification translation
anticlockwise by |2 0—1-jor
by I (0.0)>(1,-1)

Figure 4.7 illustrates this process diagrammatically. The shading in Figure 4.7 helps to
identify how the z plane moves, turns and expands under this mapping. For example,
the line joining the points 0 + j2 and 1 + jO in the z plane has the cartesian equation

%y +x=1

Taking w = u + jv and z = x + jy, the mapping
w=(1+jz+1-]

becomes

u+jpv=_1+ppx+jpy+l-j=x—-y+H+jx+y-1
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Figure 4.7
The mapping
w=({1+jz+1-j.

Example 4.3

z — ez V2
r [l
H

\J

I
< =]
™)
o
=
P
o

|
vA , A
V2eimdz 41 —j 5
-
—1 4 el 3+j [
N - , o
NS “ 21O 1]2
_l_hE =
-2
-1-j3 3-13

w plane

Equating real and imaginary parts then gives

u=x-y+1, v=x+y-1

which on solving for x and y gives

2x=u+v, 2y=v-—u+2

Substituting for x and y into the equation 3y + x = 1 then gives the image of this line in

the w

plane as the line

v+u=2

which crosses the real axis in the w plane at 2 and the imaginary axis at 2. Both lines

are sh

own dashed, in the z and w planes respectively, in Figure 4.7.

The mapping w = oz + f (o, B constant complex numbers) maps the point z = 1 + j

to the
(a)
(b)

(©)

(d)
In (b)

point w = j, and the point z =1 — j to the point w = —1.
Determine ¢ and S3.

Find the region in the w plane corresponding to the right half-plane Re(z) = 0
in the z plane.

Find the region in the w plane corresponding to the interior of the unit circle
|z] < 1 in the z plane.

Find the fixed point(s) of the mapping.

—(d) use the values of o and 3 determined in (a).
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Solution

(a)

(b)

The two values of z and w given as corresponding under the given linear mapping
provide two equations for ¢ and f3 as follows: z = 1 + j mapping to w = j
implies
j=ol+j)+p
while z = 1 — j mapping to w = —1 implies
“l=a(l-)+p
Subtracting these two equations in o and 3 gives
jtl=ad+)—o(l-j)
so that
1+j .

- — = = 1 —
*=" 2(1=17)
Substituting back for 3 then gives
B=i-(+ja=j-;1-j)=j-1
so that
w=i(l-jz+j-1=(1-jEz-1)

The best way to find specific image curves in the w plane is first to express
z (=x+]y) in terms of w (= u + jv) and then, by equating real and imaginary parts,
to express x and y in terms of # and v. We have

w=(1-)Gz-1)
which, on dividing by 1 —j, gives

w_
1 -]

.
=5z—-1

Taking w=u + jv and z =x + jy and then rationalizing the left-hand side, we have
S+l +j) =5 +jy) -1

Equating real and imaginary parts then gives

u—v=x-2, u+v=y (4.6)

The first of these can be used to find the image of x = 0. It is u — v = -2, which
is also a region bordered by the straight line # — v = —2 and shown in Figure 4.8.
Pick one point in the right half of the z plane, say z = 2, and the mapping gives
w = 0 as the image of this point. This allays any doubts about which side of
u — v =—2 corresponds to the right half of the z plane, x = 0. The two correspond-
ing regions are shown ‘hatched’ in Figure 4.8.

Note that the following is always true, although we shall not prove it here. If a

curve cuts the z plane in two then the corresponding curve in the w plane also cuts
the w plane in two, and, further, points in one of the two distinct sets of the z plane
partitioned by the curve correspond to points in just one of the similarly partitioned
sets in the w plane.
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Figure 4.8 U—v=-2
The mappings of I o ¥
Example 4.3, A w=(1-)Gz-1) ﬂ/i
i 1 _ S -
A
/
z plane w plane

(c) In cartesian form, with z = x + jy, the equation of the unit circle |z| =1 is
¥ +yt=1

Substituting for x and y from the mapping relationships (4.6) gives the image of
this circle as

w—v+2P+w+vP=1

or

W+ +2u-20+32 =0

which, on completing the squares, leads to
u+1y+@-17=}

As expected, this is a circle, having in this particular case centre (-1, 1) and
radius 3. If x?+y? < 1 then (u + 1)* + (v — 1)* < 3, so the region inside the
circle |z| = 1 in the z plane corresponds to the region inside its image circle in
the w plane. Corresponding regions are shown shaded in Figure 4.8.

(d)  The fixed point(s) of the mapping are obtained by putting w =z in w = az + 3,
leading to

z=(3z-1)(1-))
that is,

z=1z-1jz—1+]

so that
-1+j_ .
z=7—l=j2
3 T3l

is the only fixed point.

One final point is in order before we leave this example. In Figure 4.8 the images of
x =0 and x* + y* = 1 can also be seen in the context of translation, rotation (the line in
Figure 4.8 rotates about z = 2j) and magnification (in fact, shrinkage, as can be seen by
the decrease in diameter of the circle compared with its image in the w plane).
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4.2.2 Exercises

Find in the cartesian form y = mx + ¢ (m and c real
constants) the equations of the following straight
lines in the z plane, z = x + jy:

(@ lz=2+jl=1z-j+3]|
b) z+z¥+4jz—-z%)=6

where * denotes the complex conjugate.

Find the point of intersection and the angle of
intersection of the straight lines

lz=1-jl=1z=3+]l
lz=1+jl=1z=3-]l

The function w = jz + 4 — 3j is a combination of
translation and rotation. Show this diagrammatically,
following the procedure used in Example 4.2. Find
the image of the line 6x + y =22 (z =x + jy) in the
w plane under this mapping.

Show that the mapping w = (1 — j)z, where
w=u+ jvand z = x + jy, maps the region y > 1
in the z plane onto the region «# + v > 2 in the
w plane. Illustrate the regions in a diagram.

Under the mapping w = jz + j, where w = u + ju
and z = x + jy, show that the half-plane x > 0
in the z plane maps onto the half-plane v > 1 in the
w plane.

For z = x + jy find the image region in the w plane
corresponding to the semi-infinite strip x > 0,

0 <y < 2 in the z plane under the mapping

w = jz + 1. [llustrate the regions in both planes.

Find the images of the following curves under
the mapping

w=((G+3)z+j/3 -1
(@) y=0 (b) x=0

(c) ¥+y*=1 d *+y*+2p=1

where z = x + jy.

The mapping w = oz + B (a, § both constant
complex numbers) maps the point z =1 +j to
the point w = j and the point z = —1 to the point
w=1+].

(a) Determine o and S.

(b) Find the region in the w plane
corresponding to the upper half-plane
Im(z) > 0 and illustrate diagrammatically.

(c) Find the region in the w plane corresponding to
the disc |z| < 2 and illustrate diagrammatically.

(d) Find the fixed point(s) of the mapping.

In (b)—(d) use the values of & and 8 determined
in (a).

4.2.3 Inversion

The inversion mapping is of the form

1

z

w =

.7

and in this subsection we shall consider the image of circles and straight lines in the
z plane under such a mapping. Clearly, under this mapping the image in the w plane of

the general circle

|lz-zl=r

in the z plane, with centre at z, and radius r, is given by

- —Zy| =T

4.8)

but it is not immediately obvious what shaped curve this represents in the w plane. To
investigate, we take w = u + ju and z, = x,, + jy, in (4.8), giving
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u—ju
—-—J——xo

—iv|=r
e+

Squaring we have

2 2

u v 2

(2 2—x0)+(2 2+yo):r
u +v u +v

which on expanding leads to

2 2
2ux 2v
zu 22 2 02+xé+ 2U 2.2 2)/02 +y2=r2
(u"+v°) u +v (u"+v°) (u”+v7)
or
2 2
u +v 2y, = 2uxy _ 2 2
=rT=Xpo—=Yo
2 2.2 2 2
(u"+0v) u +v
so that
W + vH)(r* = x3 = y3) + 2uxy, — 2vy, = 1 4.9)

The expression is a quadratic in « and v, with the coefficients of #* and v? equal and no
term in uv. It therefore represents a circle, unless the coefficient of u? + o7 is itself zero,
which occurs when

x3+yi=ri or |zl=r
and we have
2uxy —2vy, =1

which represents a straight line in the w plane.

Summarizing, the inversion mapping w = 1/z maps the circle |z — zy| =  in the z
plane onto another circle in the w plane unless |z,| = r, in which case the circle is
mapped onto a straight line in the w plane that does not pass through the origin.

When |z,| # r, we can divide the equation of the circle (4.9) in the w plane by the
factor > — x% — y? to give
2 2 2xu 2y,v _ 1
utv+ = 2 2 2 2 2T 2 2 2
r—=Xp=Yo ¥ —Xo=Yo T —Xo=J)o

which can be written in the form
(= up)* + (v — v, = R

where (1, v,) are the coordinates of the centre and R the radius of the w plane circle. It
is left as an exercise for the reader to show that

(ug, Vo) :( al Lo )» R=—"—

2 2> 2 2 2 2
r _‘ZO‘ r _‘Zo‘ r _‘Zo‘

Next we consider the general straight line

lz—a|=|z—a,l
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in the z plane, where @, and a, are constant complex numbers with a, # a,. Under the
mapping (4.7), this becomes the curve in the w plane represented by the equation

(4.10)

- —a,

= ——a2
w w

Again, it is not easy to identify this curve, so we proceed as before and take
w=u+jv, a,=p+jq, a,=r+js

where p, g, r and s are real constants. Substituting in (4.10) and squaring both sides, we
have

2 2 2 2
u v _ u v
(2 2—p)+(2 2+q)—(2 2—}’)4—(2 2+S)
u +v u +v u +v u +v

Expanding out each term, the squares of u/(u* + v?) and v/(x* + v*) cancel, giving

_ 2up L 2vq t = - 2ur 2. _2vs 2
2 2 2 2 2 2 2 2
u +v u +v u +v u +v

which on rearrangement becomes

W+ )P+ @ -1 =D+ 2ulr—p)+2v(g—5)=0 4.11)
Again this represents a circle through the origin in the w plane, unless

P =r+s

which implies |a,| = | a,|, when it represents a straight line, also through the origin, in
the w plane. The algebraic form of the coordinates of the centre of the circle and its
radius can be deduced from (4.11).

We can therefore make the important conclusion that the inversion mapping
w = 1/z takes circles or straight lines in the z plane onto circles or straight lines in
the w plane. Further, since we have carried out the algebra, we can be more
specific. If the circle in the z plane passes through the origin (that is, | z)| = 7 in (4.9) )
then it is mapped onto a straight line that does not pass through the origin in the w
plane. If the straight line in the z plane passes through the origin (|a,| = |a,| in
(4.11)) then it is mapped onto a straight line through the origin in the w plane.
Figure 4.9 summarizes these conclusions.

To see why this is the case, we first note that the fixed points of the mapping, deter-
mined by putting w = z, are

1
z=~-, or =1
z

so that z = *1.

We also note that z = 0 is mapped to infinity in the w plane and w = 0 is mapped to
infinity in the z plane and vice versa in both cases. Further, if we apply the mapping a
second time, we get the identity mapping. That is, if

w=l, and §=l
z w
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Figure 4.9
The inversion
mapping w = 1/z.

z plane Mapping w = zl w plane
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then

which is the identity mapping.

The inside of the unit circle in the z plane, |z| < 1, is mapped onto | I/w| < 1 or
|[w| > 1, the outside of the unit circle in the w plane. By the same token, therefore,
the outside of the unit circle in the z plane |z| > 1 is mapped onto | l/w| > 1 or
|w| < 1, the inside of the unit circle in the w plane. Points actually on |z| =1 in the
z plane are mapped to points on |w| =1 in the w plane, with *1 staying fixed, as
already shown. Figure 4.10 summarizes this property.

It is left as an exercise for the reader to show that the top half-boundary of |z| =1 is
mapped onto the bottom half-boundary of |w| = 1.

For any point z, in the z plane the point 1/z, is called the inverse of z, with respect
to the circle |z| = 1; this is the reason for the name of the mapping. (Note the double
meaning of inverse; here it means the reciprocal function and not the ‘reverse’
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Figure 4.10 Mapping
of the unit circle under
w=1/z.

Example 4.4

Solution

mapping.) The more general definition of inverse is that for any point z, in the z plane
the point 7%/z, is the inverse of z, with respect to the circle |z| = r, where 7 is a real
constant.

Determine the image path in the w plane corresponding to the circle |z — 3| =2 in the
z plane under the mapping w = 1/z. Sketch the paths in both the z and w planes and
shade the region in the w plane corresponding to the region inside the circle in the
z plane.

The image in the w plane of the circle |z — 3| = 2 in the z plane under the mapping
w = 1/z is given by

—3‘=2

which, on taking w = u + ju, gives

1;12_3‘:2
u+ 0’

Squaring both sides, we then have
u 2 v\
)+ (72
(uz +° u'+ v

2 2
u +v 6u

2 2.2 2 2+5:0
(u" +0v7) u +v

or

which reduces to
1 —6u+5*+1v)=0

or
u—-3iyY+vi=4
Thus the image in the w plane is a circle with centre (£, 0) and radius 3. The cor-

responding circles in the z and w planes are shown in Figure 4.11.
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Figure 4.11
The mapping of
Example 4.4.

4.2.4

w plane

Taking z = x + jy, the mapping w = 1/z becomes

u+jv= L _ XT:J-ZZ
x+jy x4y
which, on equating real and imaginary parts, gives

¥ _
u= . =2
2 2 2 2
x +y X +y

We can now use these two relationships to determine the images of particular points
under the mapping. In particular, the centre (3, 0) of the circle in the z plane is mapped
onto the point u = % ,v=01n the w plane, which is inside the mapped circle. Thus, under
the mapping, the region inside the circle in the z plane is mapped onto the region inside
the circle in the w plane.

Further, considering three sample points A(1 + j0), B(3 —j2) and C(5 + jO) on the
circle in the z plane, we find that the corresponding image points on the circle in the w
plane are A’(1, 0), B'(3, 3) and C'(}, 0). Thus, as the point z traverses the circle in the
z plane in an anticlockwise direction, the corresponding point w in the w plane will also
traverse the mapped circle in an anticlockwise direction as indicated in Figure 4.11.

Bilinear mappings

A bilinear mapping is a mapping of the form

az+b

T cz+d (@.12)

where a, b, ¢ and d are prescribed complex constants. It is called the bilinear mapping

in z and w since it can be written in the form Awz + Bw + Cz + D = 0, which is linear
in both z and w.

Clearly the bilinear mapping (4.12) is more complicated than the linear mapping
given by (4.2). In fact, the general linear mapping is a special case of the bilinear
mapping, since setting ¢ = 0 and d = 1 in (4.12) gives (4.2). In order to investigate the
bilinear mapping, we rewrite the right-hand side of (4.12) as follows:

a ad
L az+b E(CZ+d)—?+b
Cez+d cz+d
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so that

a , bc—ad
a4, 4.13
" ¢ c(cz+d) (@.13)
This mapping clearly degenerates to w = a/c unless we demand that bc — ad # 0. We
therefore say that (4.12) represents a bilinear mapping provided the determinant

b
“ =ad — bc

c

is non-zero. This is sometimes referred to as the determinant of the mapping. When
the condition holds, the inverse mapping

_—dw+b
s =_4WTO
cw—a
obtained by rearranging (4.12), is also bilinear, since
-d b
=da—cb#0

—a

Renaming the constants so that A = a/c, 4 = bc — ad, oo = ¢* and 8 = cd, (4.13)
becomes

w=A+ —H—
oaz+f

and we can break the mapping down into three steps as follows:

zi=oz+
1
Z,= =
Z
w= A+ Uz,

The first and third of these steps are linear mappings as considered in Section 4.2.1,
while the second is the inversion mapping considered in Section 4.2.3. The bilinear
mapping (4.12) can thus be generated from the following elementary mappings:

1
- oz - oz + /3 _
rotation translation inversion (7 + ﬁ
and
magnification
— = A+ =y
magnification ¢z 4 ﬁ translation oz + ﬁ

and
rotation

We saw in Section 4.2.1 that the general linear transformation w = oz + 3 does not
change the shape of the curve being mapped from the z plane onto the w plane. Also,
in Section 4.2.3 we saw that the inversion mapping w = 1/z maps circles or straight lines
in the z plane onto circles or straight lines in the w plane. It follows that the bilinear
mapping also exhibits this important property, in that it also will map circles or straight
lines in the z plane onto circles or straight lines in the w plane.
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Example 4.5

Solution

Investigate the mapping

z—1

T z+1

by finding the images in the w plane of the lines Re(z) = constant and Im(z) = constant.
Find the fixed points of the mapping.

Since we are seeking specific image curves in the w plane, we first express z in terms
of w and then express x and y in terms of u and v, where z = x + jy and w=u + ju.
Rearranging

z—
W:
z+1
gives
_14+w
s =W
1-w

Taking z =x + jy and w = u + ju, we have
Xtiy= 1+u+]-u
l-u-jv

_ltutjvl-u+jv
l-—u—jvl-u+jv

which reduces to

— 1—u' =0 | . 2v
X+)y= 2 2+-] 2 2
(1-u)y+v (1-u)y +v

Equating real and imaginary parts then gives

1—u' =0’
X = (4.14a)
(1-u)’+v
2
§ = ——— (4.14b)
(1-u)y +v

It follows from (4.14a) that the lines Re(z) = x = ¢,, which are parallel to the imaginary
axis in the z plane, correspond to the curves

o = 1—u' =0

| =

(1—u)’ +0°

where ¢, is a constant, in the w plane. Rearranging this leads to
ol =2u+1*+vH)=1-1*-1*

or, assuming that 1 + ¢, # 0,

,  2cu c—1

W+ vt — =0
l+¢ ¢ +1
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Figure 4.12
The mapping
w=(@z-D/(z+1).

which, on completing squares, gives

2 2
s o)
1+c 1+¢,

It is now clear that the corresponding curve in the w plane is a circle, centre (u =
c,/(1 +¢,), v=0) and radius (1 +c,)™".

In the algebraic manipulation we assumed that ¢, # —1, in order to divide by 1 + ¢,.
In the exceptional case ¢, = —1, we have u = 1, and the mapped curve is a straight line
in the w plane parallel to the imaginary axis.

Similarly, it follows from (4.14b) that the lines Im(z) = y = ¢,, which are parallel to
the imaginary axis in the z plane, correspond to the curves

2v

€y =
L w4

where ¢, is a constant, in the w plane. Again, this usually represents a circle in the w
plane, but exceptionally will represent a straight line. Rearranging the equation we have
2v

(1-u)f+v*==
G

provided that ¢, # 0. Completing the square then leads to
2
(u— 1)2+(u—l) -1

C ¢

which represents a circle in the w plane, centre (z = 1, v = 1/¢,) and radius 1/c,.

In the exceptional case ¢, =0, v = 0 and we see that the real axis y = 0 in the z plane
maps onto the real axis v = 0 in the w plane.

Putting a sequence of values to ¢, and then to c¢,, say —10 to +10 in steps of +1,
enables us to sketch the mappings shown in Figure 4.12. The fixed points of the map-
ping are given by

z—1
z+ 1

z =

v=Im(w)4

y=Im(z)

DI OO X IR W S PR SO
P TR CE B L . BE X

-l - e e -

LI U Y 3 S P

t v 1O

- e o - B S B E

z plane
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Example 4.6

Solution

that is,
Z=-1, or z=4j

In general, all bilinear mappings will have two fixed points. However, although there
are mathematically interesting properties associated with particular mappings having
coincident fixed points, they do not impinge on engineering applications, so they only
deserve passing reference here.

Find the image in the w plane of the circle |z| = 2 in the z plane under the bilinear
mapping

w=2=l
zZ+]

Sketch the curves in both the z and w planes and shade the region in the w plane cor-
responding to the region inside the circle in the z plane.

Rearranging the transformation, we have

_]W+_]
1-w

z

so that the image in the w plane of the circle |z| = 2 in the z plane is determined by

w+j

— (4.15)

One possible way of proceeding now is to put w = u + jv and proceed as in Example 4.4,
but the algebra becomes a little messy. An alternative approach is to use the property
of complex numbers that | z,/z,| = |z, |/|z,|, so that (4.15) becomes

jw+jl=2]1-w|
Taking w = u + ju then gives
|—v+j+ 1D =2|(1 —u)—jvl|
which on squaring both sides leads to
P+ (1 +u)P=4[(1 —u)*+14
or
W+t = Qu+1=0
Completing the square of the u term then gives
(u— §)2 +7 = L

indicating that the image curve in the w plane is a circle centre (u = g , v=0) and radius
‘3-‘. The corresponding circles in the z and w planes are illustrated in Figure 4.13. To
identify corresponding regions, we consider the mapping of the point z =0 + jO
inside the circle in the z plane. Under the given mapping, this maps to the point
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Figure 4.13
The mapping
w=(z=)Nz+)).

Example 4.7

Solution

w=2=Jd__14j0

0+

in the w plane. It then follows that the region inside the circle | z| =2 in the z plane maps
onto the region outside the mapped circle in the w plane.

-2

<

z plane w plane

An interesting property of (4.12) is that there is just one bilinear transformation that
maps three given distinct points z,, z, and z; in the z plane onto three specified distinct
points w,, w, and w; respectively in the w plane. It is left as an exercise for the reader
to show that the bilinear transformation is given by

(w = wp)(w, — ws) — (z —z)(z — z3) (4.16)
w=wy)(w, = wy) (z-2z3)(z, — 2))

The right-hand side of (4.16) is called the cross-ratio of z,, z,, z; and z. We shall illus-
trate with an example.

Find the bilinear transformation that maps the three points z = 0, —j and —1 onto the
three points w =j, 1, 0 respectively in the w plane.

Taking the transformation to be

W_az+b
cz+d

on using the given information on the three pairs of corresponding points we have

. _a0)+b_b 4.17

1= 0 vd 4 (4-172)

j—a+b (4.17b)
c(—-j)+d

o= ez +b 4.17
)+ d (@.17¢)

From (4.17c) a = b; then from (4.17a)
d=2=_jp=—ja

J
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10

11

12

13

and from (4.17b) ¢ = ja. Thus

_az+a _lz+1_ .z+1

Cjaz—ja jz-1

z—1

Alternatively, using (4.16) we can obtain

w=pad=-0)_=0)+1)

(w—=0)(1-1j)
or
W:_jz+l
z—1
as before.

(z+D(=-0)

4.2.5 Exercises

Show that if z = x + jy, the image of the half-plane
y > ¢ (c constant) under the mapping w = 1/z is the
interior of a circle, provided that ¢ > 0. What is
the image when ¢ = 0 and when ¢ < 0? Illustrate
with sketches in the w plane.

Determine the image in the w plane of the circle

7

3 =7
Z+Z+_] =3

under the inversion mapping w = 1/z.

Show that the mapping w = 1/z maps the circle
|z — a| = a, with a being a positive real constant,
onto a straight line in the w plane. Sketch the
corresponding curves in the z and w planes,
indicating the region onto which the interior

of the circle in the z plane is mapped.

Find a bilinear mapping that maps z =0 to w = j,
z=—jtow=1and z=-1 to w= 0. Hence sketch
the mapping by finding the images in the w plane
of'the lines Re(z) = constant and Im(z) = constant in
the z plane. Verify that z = %(j —1)(-1=£3)are
fixed points of the mapping.

The two complex variables w and z are related
through the inverse mapping

W:1+J
z

(a) Find the images of the points z=1, 1 —j and
0 in the w plane.

(b) Find the region of the w plane corresponding
to the interior of the unit circle |z| < 1 in the
z plane.

14

15

16

17

(c) Find the curves in the w plane corresponding
to the straight lines x =y and x + y = | in the
z plane.

(d) Find the fixed points of the mapping.

Given the complex mapping

:z+l
z—1

w

where w = u + jv and z = x + j y, determine the
image curve in the w plane corresponding to the
semicircular arc x* + 3> = 1 (x < 0) described from
the point (0, —1) to the point (0, 1).

(a) Map the region in the z plane (z = x + jy) that
lies between the lines x =y and y = 0, with x < 0,
onto the w plane under the bilinear mapping

z+]

z-3
(Hint: Consider the point w = % to help identify
corresponding regions.)

(b) Show that, under the same mapping as in (a),
the straight line 3x + y = 4 in the z plane
corresponds to the unit circle |w| =1 in the
w plane and that the point w = 1 does not
correspond to a finite value of z.

If w=(z—j)/(z +]), find and sketch the image in
the w plane corresponding to the circle | z| =2 in the
z plane.

Show that the bilinear mapping

9 z — 2z

z—Z§
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18

where 0, is a real constant 0 < 6, < 2m, z, a fixed
complex number and z its conjugate, maps the
upper half of the z plane (Im(z) > 0) onto the inside
of the unit circle in the w plane (|w| < 1). Find the
values of z, and 6, if w =0 corresponds to z =j and
w = —1 corresponds to z = oo,

Show that, under the mapping

:2'2
z+]

w

19

circular arcs or the straight line through z = 0 and
z =] in the z plane are mapped onto circular arcs
or the straight line through w =0 and w = j in the
w plane. Find the images of the regions |z — 1| < 1
and |z| < |z —j] in the w plane.

Find the most general bilinear mapping that maps
the unit circle |z| = 1 in the z plane onto the unit
circle |w| =1 in the w plane and the point z = z, in
the z plane to the origin w = 0 in the w plane.

Example 4.8

4.2.6 The mapping w = z?2

There are a number of other mappings that are used by engineers. For example, in
dealing with Laplace and z transforms, the subjects of Chapters 5 and 6 respectively,
we are concerned with the polynomial mapping

w=a,+az+...+a,z"

where a,, a,, . .

w=2)
0(z)

., a, are complex constants, the rational function

where P and Q are polynomials in z, and the exponential mapping

w=ae”

where e = 2.71828 . . ., the base of natural logarithms. As is clear from the bilinear
mapping in Section 4.2.4, even elementary mappings can be cumbersome to analyse.
Fortunately, we have two factors on our side. First, very detailed tracing of specific
curves and their images is not required, only images of points. Secondly, by using com-
plex differentiation, the subject of Section 4.3, various facets of these more complicated
mappings can be understood without lengthy algebra. As a prelude, in this subsection
we analyse the mapping w = z*, which is the simplest polynomial mapping.

Investigate the mapping w = z* by plotting the images on the w plane of the lines

x = constant and y = constant in the z plane.

Solution

There is some difficulty in inverting this mapping to get z as a function of w, since

square roots lead to problems of uniqueness. However, there is no need to invert here,
for taking w = u + jv and z = x + jy, the mapping becomes

w=u+jv=(x+jy)’=x*-)) +j2xy

which, on taking real and imaginary parts, gives

u=x—y*

v=2xy

(4.18)
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Figure 4.14
The mapping w = 2%,

If x = o, a real constant, then (4.18) becomes
u=a’-y? v=2ay

which, on eliminating y, gives

2

u=o’— 2
40’
or
40tu =40 -1*
so that

v =4a' - 40u = 4o (o — u)

This represents a parabola in the w plane, and, since the right-hand side must be
positive, o> = u so the ‘nose’ of the parabola is at # = o* on the positive real axis in
the w plane.

If y = j3, a real constant, then (4.18) becomes

u=x’-p3, v=2xp

which, on eliminating x, gives
v 2

u= Zb—z -B
or

4% =v* - 4p*
so that

VP =4B% + 4% = 48%u + 57

This is also a parabola, but pointing in the opposite direction. The right-hand side, as
before, must be positive, so that u > —f3? and the ‘nose’ of the parabola is on the
negative real axis. These curves are drawn in Figure 4.14.

A \
w=2z2 \
r0a )

<
Py
Y

=Y
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We shall not dwell further on the finer points of the mapping w = z*. Instead, we note
that in general it is extremely difficult to plot images of curves in the z plane, even the
straight lines parallel to the axes, under polynomial mappings. We also note that we do

not often need to do so, and that we have done it only as an aid to understanding.

The exercises that follow should also help in understanding this topic. We shall then
return to examine polynomial, rational and exponential mappings in Section 4.3.4, after
introducing complex differentiation.

4.2.7 Exercises

Find the image region in the w plane corresponding
to the region inside the triangle in the z plane having
vertices at 0 +j0, 2 +j0 and 0 + j2 under the
mapping w = z2. Illustrate with sketches.

Find the images of the lines y = x and y = —x under
the mapping w = z%. Also find the image of the
general line through the origin y = mx. By putting
m = tan 6, deduce that straight lines intersecting at
the origin in the z plane map onto lines intersecting
at the origin in the w plane, but that the angle
between these image lines is double that between
the original lines.

Consider the mapping w = z", where 7 is an integer
(a generalization of the mapping w = z?). Use the
polar representation of complex numbers to show
that

(a) Circles centred at the origin in the z plane are
mapped onto circles centred at the origin in the
w plane.

23

(b) Straight lines passing through the origin
intersecting with angle 6, in the z plane are
mapped onto straight lines passing through the
origin in the w plane but intersecting at an
angle n6,.

If the complex function

1+7
z

w =

is represented by a mapping from the z plane onto
the w plane, find « in terms of x and y, and v in terms
of x and y, where z = x + jy, w = u + jv. Find the
image of the unit circle |z| = 1 in the w plane. Show
that the circle centred at the origin, of radius 7, in
the z plane (|z| = r) is mapped onto the curve

u Y o\ 2
(LY (L2 =r e
r+ 1 r =1

in the w plane. What kind of curves are these? What
happens for very large ?

m Complex differentiation

The derivative of a real function f{x) of a single real variable x at x = x, is given by the
limit

X=Xy X — Xy

£'(xp) = lim [Ji(ji)__:_ﬁz‘_o_)}

Here, of course, x, is a real number and so can be represented by a single point on the
real line. The point representing x can then approach the fixed x, either from the left or
from the right along this line. Let us now turn to complex variables and functions
depending on them. We know that a plane is required to represent complex numbers,
80 z, is now a fixed point in the Argand diagram, somewhere in the plane. The definition
of the derivative of the function f(z) of the complex variable z at the point z, will thus be
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43.1

f'(z)) = lim {JMJ

z-z, z — ZO

It may appear that if we merely exchange z for x, the rest of this section will follow
similar lines to the differentiation of functions of real variables. For real variables
taking the limit could only be done from the left or from the right, and the existence of
a unique limit was not difficult to establish. For complex variables, however, the point
that represents the fixed complex number z, can be approached along an infinite num-
ber of curves in the z plane. The existence of a unique limit is thus a very stringent
requirement. That most complex functions can be differentiated in the usual way is a
remarkable property of the complex variable. Since z = x + jy, and x and y can vary
independently, there are some connections with the calculus of functions of two real
variables, but we shall not pursue this connection here.

Rather than use the word ‘differentiable’ to describe complex functions for which a
derivative exists, if the function f(z) has a derivative f’(z) that exists at all points of a
region R of the z plane then f{(z) is called analytic in R. Other terms such as regular or
holomorphic are also used as alternatives to analytic. (Strictly, functions that have a
power series expansion — see Section 4.4.1 — are called analytic functions. Since dif-
ferentiable functions have a power series expansion they are referred to as analytic
functions. However, there are examples of analytic functions that are not differentiable.)

Cauchy-Riemann equations

The following result is an important property of the analytic function.

If z=x+jy and f(2) = u(x, y) + ju(x, y), and f(z) is analytic in some region R of the
z plane, then the two equations

Ju _ ov du Jdv
o _ G wi . & 4.19
dx 9y dy ox (@.19)

known as the Cauchy—Riemann equations, hold throughout R.

It is instructive to prove this result. Since f”(z) exists at any point z, in R,

f'(z)) = lim {JMJ

z-z, z — ZO

where z can tend to z, along any path within R. Examination of (4.19) suggests that
we might choose paths parallel to the x direction and parallel to the y direction, since
these will lead to partial derivatives with respect to x and y. Thus, choosing z — z, = Ax,
a real path, we see that

f(z) = lim kf(zo + Ax) = flzy)
Ax—0 Ax

Since f(z) = u + jv, this means that

f(zo) = lim u(xy + Ax, yo) + ju(xe + Ax, yo) — u(xy, yo) = jv(xo, yo)
Ax—0 Ax
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or, on splitting into real and imaginary parts,

F(zy) = hm u(xg + Ax, yo) — u(x,, J’O) (xg + Ax, yo) = v(xg, Vo)
0 +]
Ax Ax

giving
fz) = [ gu} (4.20)
x X=. XO —yo

Starting again from the definition of /”’(z,), but this time choosing z — z, = jAy for the
path parallel to the y axis, we obtain

f (Z)— lim f(ZO +JA)’) _f(ZO)
0 _]A}—>07 JAy

Once again, using f(z) = u + jv and splitting into real and imaginary parts, we see that

fz) = lim U(xo, Yo+ Ay) + ju(xe, Yo + Ay) —u(xo, ¥o) = ju(xe, Vo)
0 iAy—0 jAy

- lim Tu(xo, yo + Ay) — u(x, ¥o) U(XOs Yo + Ay) — v(xg, Vo)
j Ay Ay

giving

’ 1 (9” (9U
7y = 4.21)
f ( 0) |: ay (9y:|x —

Since f”(z,) must be the same no matter what path is followed, the two values obtained
in (4.20) and (4.21) must be equal. Hence

du, v 1du o _du o
ox “ox jdy dy 3y dy

Equating real and imaginary parts then gives the required Cauchy—Riemann equations

du_d v _ du
ox oy ox oy

at the point z = z,. However, z, is an arbitrarily chosen point in the region R; hence the

Cauchy—Riemann equations hold throughout R, and we have thus proved the required

result.

It is tempting to think that should we choose more paths along which to let z — z,
tend to zero, we could derive more relationships along the same lines as the Cauchy—
Riemann equations. It turns out, however, that we merely reproduce them or expressions
derivable from them, and it is possible to prove that satisfaction of the Cauchy—Riemann
equations (4.19) is a necessary condition for a function f{z) = u(x, y) + ju(x, ), z = x + j,
to be analytic in a specified region. At points where f’(z) exists it may be obtained from
either (4.20) or (4.21) as

oy i
f(Z)_ngrJBx
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Example 4.9

Solution

or

oy

If z is given in the polar form z = r ¢!’ then
S@) = u(r, 0) + ju(r, 0)
and the corresponding polar forms of the Cauchy—Riemann equations are

u_ldv v lou

or  roe’ o rado @-22)
At points where f”(z) exists it may be obtained from either of
e du | .dv
’ — o0 ¢¥ vy
fl@)=e ( o 8r) (4.23a)
or
iy =eio( L0 _ 1 Qk’)
flz)=e (r ETRT: (4.23b)

Verify that the function f(z) = z* satisfies the Cauchy—Riemann equations, and deter-
mine the derivative f”(z).

Since z = x + jy, we have
fe)=2=(x+jy)’ =" - ") +]j2xp

so if f(z) = u(x, y) + ju(x, y) then
u=x-y>, v=2xy

giving the partial derivatives as

Ju =2x, du =2y

ox dy
v v _
v 2y, o 2x

It is readily seen that the Cauchy—Riemann equations

u_dv
ox oy dy ox
are satisfied.
The derivative f”(z) is then given by
du | .ov

f'(z)=(9—i+ch =2x+j2y=2z

as expected.
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Example 4.10

Solution

Verify that the exponential function f(z) = e*, where « is a constant, satisfies the
Cauchy—Riemann equations, and show that f'(z) = o e™.

f@) =u+jv=e"=e") = el =™ (cos ay + j sin ary)
so, equating real and imaginary parts,

u=e*cosay, v=e*sinoy
The partial derivatives are

u av

= oe* cos ay, = e sin oy
ox ox
du . v
— =—ae“sinay, — =ae*cosay
dy dy

confirming that the Cauchy—Riemann equations are satisfied. The derivative f’(z) is
then given by

f(z)= ou + j<9_u = oe* (cos oy + jsin oy) = xe™
ox Tox
so that
4 oo = o (4.24)
z

As in the real variable case, we have (see Section 4.3.1)
e =cosz+jsinz 4.25)
so that cosz and sinz may be expressed as
e+ e’
2
ef
2j

COoSz =
(4.262)

sinz =

Using result (4.24) from Example 4.10, it is then readily shown that

;1% (sinz) =cosz

d%(cos z) =—sinz

Similarly, we define the hyperbolic functions sinhz and cosh z by

-z

sinhz = & _26 = —jsinjz

L (4.26b)
coshz = &+€ = oS jz
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from which, using (4.24), it is readily deduced that

4 (sinhz) = coshz
dz

4 (coshz) =sinhz
dz

We note from above that e” has the following real and imaginary parts:
Re(e’) =e*cosy
Im(e’) =e"siny

In real variables the exponential and circular functions are contrasted, one being mono-
tonic, the other oscillatory. In complex variables, however, the real and imaginary parts
of ¢ are (two-variable) combinations of exponential and circular functions, which
might seem surprising for an exponential function. Similarly, the circular functions of
a complex variable have unfamiliar properties. For example, it is easy to see that | cos z|
and |sinz| are unbounded for complex z by using the above relationships between
circular and hyperbolic functions of complex variables. Contrast this with [cosx| < 1
and |sinx| < 1 for a real variable x.

In a similar way to the method adopted in Examples 4.9 and 4.10 it can be shown
that the derivatives of the majority of functions f(x) of a real variable x carry over to the
complex variable case f(z) at points where f(z) is analytic. Thus, for example,

d _
_Zn:nzn 1

dz

for all z in the z plane, and

d1 !
—Inz= -
dz z

for all z in the z plane except for points on the non-positive real axis, where Inz is
non-analytic.

It can also be shown that the rules associated with derivatives of a function of a real
variable, such as the sum, product, quotient and chain rules, carry over to the complex
variable case. Thus,

di[ﬂz) + g(z)] = 442 ; 422)
z dz dz

L1 112) 8201 = i) B2 + L2y )
z dz dz

d _dfdg

& fete = TG

4| f(z) | - g2 f1(2) - f(2) g(2)
dz| g(2) g7
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4.3.2

Example 4.11

Solution

Conjugate and harmonic functions

A pair of functions u(x, y) and v(x, y) of the real variables x and y that satisfy the
Cauchy—Riemann equations (4.19) are said to be conjugate functions. (Note here
the different use of the word ‘conjugate’ to that used in complex number work, where
z*¥ = x — jy is the complex conjugate of z = x + jy.) Conjugate functions satisfy the
orthogonality property in that the curves in the (x, y) plane defined by u(x, y) = constant
and v(x, y) = constant are orthogonal curves. This follows since the gradient at any point
on the curve u(x, y) = constant is given by

dy| _ _u /a_u
dx| dyl ox

and the gradient at any point on the curve v(x, y) = constant is given by

dy| __Qy/éy

dx,,,_ dy| ox

It follows from the Cauchy—Riemann equations (4.19) that

dy| (dy] =
dx” dxu

so the curves are orthogonal.
A function that satisfies the Laplace equation in two dimensions is said to be
harmonic; that is, u(x, y) is a harmonic function if

2 2
_9_12! + Q.k; -

ox~  dy
It is readily shown (see Example 4.12) that if f(z) = u(x, y) + ju(x, y) is analytic, so that
the Cauchy—Riemann equations are satisfied, then both # and v are harmonic functions.
Therefore u and v are conjugate harmonic functions. Harmonic functions have applica-

tions in such areas as stress analysis in plates, inviscid two-dimensional fluid flow and
electrostatics.

0

Given u(x, y) = x* — y* + 2x, find the conjugate function v(x, ) such that f(z) =
u(x, y) + ju(x, y) is an analytic function of z throughout the z plane.

We are given u(x, y) = x* — y* + 2x, and, since f(z) = u + jv is to be analytic, the Cauchy—
Riemann equations must hold. Thus, from (4.19),

o _
dy ox

Integrating this with respect to y gives

=2x+2

v=2xy+2y+ F(x)

where F(x) is an arbitrary function of x, since the integration was performed holding
x constant. Differentiating v partially with respect to x gives
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Example 4.12

Solution

but this equals —du/dy by the second of the Cauchy—Riemann equations (4.19). Hence

du_ _,, _dF
dy YT e

But since u = x* — y* + 2x, du/dy = -2y, and comparison yields F(x) = constant. This
constant is set equal to zero, since no conditions have been given by which it can be
determined. Hence

u(x, y) +jo(x, y) = x> = y* + 2x + j(2xy + 2y)

To confirm that this is a function of z, note that f(z) is f(x + jy), and becomes just f(x)
if we set y = 0. Therefore we set y = 0 to obtain

f(x +j0) = f(x) = u(x, 0) + ju(x, 0) = x* + 2x
and it follows that
fley=2+2z

which can be easily checked by separation into real and imaginary parts.

Show that the real and imaginary parts u(x, y) and v(x, y) of a complex analytic function
f(z) are harmonic.

Since

@) = ulx, y) + julx, y)
is analytic, the Cauchy—Riemann equations
dv_ _du  Ju_dv
ox oy ox dy
are satisfied. Differentiating the first with respect to x gives

Qz_y_ dJu _ Fu _ Q(Qu)

ox

x> oxdy - dyox - ay
which is —9*v/d/?, by the second Cauchy-Riemann equation. Hence

, =0
ox’ o’ ox’ oy

and v is a harmonic function.
Similarly,

du__ v _ _@_(Qy):_éiz_t

N’ dyox  ox\oy ox’

so that
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25

26

27

28

and u is also a harmonic function. We have assumed that both # and v have continuous
second-order partial derivatives, so that

du _ du v _ v
oxdy dyox’  odxdy dyox
4.3.3 Exercises
Determine whether the following functions are 29  Find the orthogonal trajectories of the following
analytic, and find the derivative where appropriate: families of curves:
(a) ze&f (b) sin4z (a) X’y —xy’ = o (constant )
(c) zz* (d) cos2z (b) e*cosy+xy=a (constant )
Determine the constants a and b in order that 30  Find the real and imaginary parts of the functions
w=x>+ay’ = 2xy + j(bx* — y* + 2xp) (a) P&
be analytic. For these values of @ and b find the (b) sin2z
derivative of w, and express both w and dw/dz as
functions of z = x + jy. Verify that they are analytic and find their
derivatives.
Find a function v(x, y) such that, given u =2x(1 - y),
f(z) = u + jv is analytic in z. 31  Give a definition of the inverse sine function

sin™' z for complex z. Find the real and imaginary

Show that @(x, y) =e*(x cosy —ysiny) is a harmonic
function, and find the conjugate harmonic function
y(x, y). Write ¢(x, y) + jy(x, y) as a function of

parts of sin™' z. (Hint: put z = sinw, split into
real and imaginary parts, and with w = u + ju
and z = x + jy solve for u and v in terms of x

and y.) Is sin”' z analytic? If so, what is its
derivative?

z=x+jy only.

Show that u(x, y) = sinx coshy is harmonic. Find
the harmonic conjugate v(x, y) and express w=u + ju 32
as a function of z = x + jy.

Establish that if z = x + jy,
|sinhy| < |sinz| < coshy.

4.3.4 Mappings revisited

In Section 4.2 we examined mappings from the z plane to the w plane, where in the
main the relationship between w and z, w = f(z) was linear or bilinear. There is an
important property of mappings, hinted at in Example 4.8 when considering the map-
ping w = z2. A mapping w = f(z) that preserves angles is called conformal. Under such
a mapping, the angle between two intersecting curves in the z plane is the same as the
angle between the corresponding intersecting curves in the w plane. The sense of the
angle is also preserved. That is, if 6 is the angle between curves 1 and 2 taken in the anti-
clockwise sense in the z plane then 0 is also the angle between the image of curve 1
and the image of curve 2 in the w plane, and it too is taken in the anticlockwise sense.
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Figure 4.15
Conformal mappings.

Example 4.13

Solution

w=f(z)
———
YA (conformal) VA

curve 2 flcurve 2)

P [4
curve | fleurve 1)

zy f(ZO)
0 X ) f
z plane w plane

Figure 4.15 should make the idea of a conformal mapping clearer. If f(z) is analytic
then w = f(z) defines a conformal mapping except at points where the derivative f’(z)
is zero.

Clearly the linear mappings

w=oz+f (a#0)

are conformal everywhere, since dw/dz = o and is not zero for any point in the z plane.
Bilinear mappings given by (4.12) are not so straightforward to check. However, as we
saw in Section 4.2.4, (4.12) can be rearranged as

— K
w /l+ocz+ﬁ (o, u#0)
Thus
dw _ __ po
dz  (az+ By’

which again is never zero for any point in the z plane. In fact, the only mapping we have
considered so far that has a point at which it is not conformal everywhere is w = z*
(cf. Example 4.8), which is not conformal at z = 0.

Determine the points at which the mapping w = z + 1/z is not conformal and demon-
strate this by considering the image in the w plane of the real axis in the z plane.

Taking z =x + jy and w = u + ju, we have

x—jy
X+

w=u+jv=x+jy+

which, on equating real and imaginary parts, gives

u=x-+ >
X +y

v=y- 2y 2
X +y
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Figure 4.16 Image
ofz=1+¢€of
Example 4.13.

The real axis, y = 0, in the z plane corresponds to v = 0, the real axis in the w plane.
Note, however, that the fixed point of the mapping is given by

z=z+ l
z

or z = co. From the Cauchy—Riemann equations it is readily shown that w is analytic
everywhere except at z = 0. Also, dw/dz = 0 when

1-L-0, thatis z=#1

z

which are both on the real axis. Thus the mapping fails to be conformal at z = 0 and
z==1. The image of z =1 is w = 2, and the image of z = —1 is w = —2. Consideration
of the image of the real axis is therefore perfectly adequate, since this is a curve passing
through each point where w =z + 1/z fails to be conformal. It would be satisfying if we
could analyse this mapping in the same manner as we did with w = z? in Example 4.8.
Unfortunately, we cannot do this, because the algebra gets unwieldy (and, indeed, our
knowledge of algebraic curves is also too scanty). Instead, let us look at the image of
the point z = 1 + &, where € is a small real number. € > 0 corresponds to the point Q
just to the right of z = 1 on the real axis in the z plane, and the point P just to the
left of z = 1 corresponds to & < 0 (Figure 4.16).

y UT

Tpéea‘(-aa_Q‘ <2>R
0 I x o| 2 u
z plane w plane

If z=1 + e then

w=1+8+L
1+¢

=l+e+(1+¢"
=l+e+l-e+e*—+...
=2+g2

if | €] is much smaller than 1 (we shall discuss the validity of the power series expansion
in Section 4.4). Whether € is positive or negative, the point w =2 + £ is to the right of
w =2 in the w plane as indicated by the point R in Figure 4.16. Therefore, as € — 0, a
curve (the real axis) that passes through z = 1 in the z plane making an angle 6 =«
corresponds to a curve (again the real axis) that approaches w = 2 in the w plane along
the real axis from the right making an angle 08 = 0. Non-conformality has thus been
confirmed. The treatment of z = —1 follows in an identical fashion, so the details
are omitted. Note that when y =0 (v =0), u = x + 1/x so, as the real axis in the z plane
is traversed from x = —oo to x = 0, the real axis in the w plane is traversed from
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|

-2 Ol +2 u
w plane

Figure 4.17 Image
in w plane of the real
axis in the z plane for
Example 4.13.

Example 4.14

Solution

u = —oo to =2 and back to u = —eo again (when x = —1, u reaches —2). As the real
axis in the z plane is traversed from x = 0 through x = 1 to x = +oo, s0 the real axis in
the w plane is traversed from u = +oo to u =42 (x = 1) back to u = o again. Hence the
points on the real axis in the w plane in the range —2 < u < 2 do not correspond to real
values of z. Solving u = x + 1/x for x gives

which makes this point obvious. Figure 4.17 shows the image in the w plane of the real
axis in the z plane. This mapping is very rich in interesting properties, but we shall not
pursue it further here. Aeronautical engineers may well meet it again if they study the
flow around an aerofoil in two dimensions, for this mapping takes circles centred at the
origin in the z plane onto meniscus (lens-shaped) regions in the w plane, and only a
slight alteration is required before these images become aerofoil-shaped.

Examine the mapping
w=¢€

by (a) finding the images in the w plane of the lines x = constant and y = constant in
the z plane, and (b) finding the image in the w plane of the left half-plane (x < 0) in the
z plane.

Taking z = x + jy and w = u + ju, for w = " we have
u==e'cosy
v=e'siny

Squaring and adding these two equations, we obtain
W+t =e”

On the other hand, dividing the two equations gives
Y —tan y
u

We can now tackle the questions.

(a)  Since u* +v* = €™, putting x = constant shows that the lines parallel to the imagin-
ary axis in the z plane correspond to circles centred at the origin in the w plane.
The equation

£ =tany
u

shows that the lines parallel to the real axis in the z plane correspond to straight
lines through the origin in the w plane (v = utan ¢ if y = @, a constant).
Figure 4.18 shows the general picture.
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Figure 4.18 Mapping

y=Im @) A
of lines under w = ¢°.
R R T X
----_----r—-----
6]
z plane
(b)

w plane

Since u* + v* = €%, if x = 0 then u” + v* = 1, so the imaginary axis in the z plane

corresponds to the unit circle in the w plane. If x < 0 then ¢ < 1, and as x — —oo,
e™ — 0, so the left half of the z plane corresponds to the interior of the unit circle
in the w plane, as illustrated in Figure 4.19.

Figure 4.19 Mapping VA . vA
w=¢€
of halzf-plane under — Pl
w=¢e. /‘ '\
0 x -1 Q/l u
z plane w plane
4.3.5 Exercises
33  Determine the points at which the following 36  Consider the mapping w = sinz. Determine the
mappings are not conformal: points at which the mapping is not conformal.
By finding the images in the w plane of the
_ _ _ 3 _ 2
@ w=z-1 (b) w=2z" =217+ 722+ 6 lines x = constant and y = constant in the z plane
B 1 (z=x+jy), draw the mapping along similar lines to
© w=82+ > Figures 4.14 and 4.18.
34 F0119w Example 4.13 er the maPping w=z- 1/;. 37  Show that the transformation
Again determine the points at which the mapping is
not conformal, but this time demonstrate this by &
looking at the image of the imaginary axis. z=0+ E
35  Find the region of the w plane corresponding to where z = x + jy and { = R e/ maps a circle, with

the following regions of the z plane under the
exponential mapping w = e”:
(a) 0sx<o b)yosx<1,0=<y<1

(¢ in<y<smo<x<e

centre at the origin and radius a, in the { plane, onto
a straight line segment in the z plane. What is the
length of the line? What happens if the circle in the
¢ plane is centred at the origin but is of radius b,
where b # a?
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44.1

Complex series

In Modern Engineering Mathematics we saw that there were distinct advantages in being
able to express a function f{(x), such as the exponential, trigonometric and logarithmic
functions, of a real variable x in terms of its power series expansion

fx) = 2 ax" =ay+ax+ax’+.. . +ax +... 4.27)
n=0

Power series are also very important in dealing with complex functions. In fact, any real
function f(x) which has a power series of the form in (4.27) has a corresponding com-
plex function f(z) having the same power series expansion, that is

flz)= Zanz” =a,taz+a,z’+...+az +... (4.28)
n=0

This property enables us to extend real functions to the complex case, so that methods
based on power series expansions have a key role to play in formulating the theory of
complex functions. In this section we shall consider some of the properties of the power
series expansion of a complex function by drawing, wherever possible, an analogy with
the power series expansion of the corresponding real function.

Power series

A series having the form

2 a,z—z))' =ay+a(z—z) taz—z)+...+a(z—z) +... 4.29)
n=0

in which the coefficients a, are real or complex and z, is a fixed point in the complex
z plane is called a power series about z, or a power series centred on z,. Where z, = 0,
the series (4.29) reduces to the series (4.28), which is a power series centred at the
origin. In fact, on making the change of variable z’ = z — z,, (4.29) takes the form (4.28),
so there is no loss of generality in considering the latter below.

Tests for the convergence or divergence of complex power series are similar to those
used for power series of a real variable. However, in complex series it is essential that
the modulus | a,| be used. For example, the geometric series

>
n=0
has a sum to N terms
= .. 1-Z
Sv=2 =T

and converges, if |z]| < 1, to the limit 1/(1 —z) as N — oo, If | z| = 1, the series diverges.
These results appear to be identical with the requirement that |x| < 1 to ensure con-
vergence of the real power series
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Figure 4.20
Region of
convergence
of X0 2",

1 —
l—x:ggx

However, in the complex case the geometrical interpretation is different in that the
condition |z| < 1 implies that z lies inside the circle centred at the origin and radius 1
in the z plane. Thus the series Y.._,z" converges if z lies inside this circle and diverges
if z lies on or outside it. The situation is illustrated in Figure 4.20.
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e Y
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4 0
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i — >
1 0 , diverges x
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\ 4
Al ’
N v’
~ - - v
z plane

The existence of such a circle leads to an important concept in that in general there
exists a circle centred at the origin and of radius R such that the series

ia n | converges if |z|] <R
— b divergesif  |z| > R

The radius R is called the radius of convergence of the power series; what happens
when |z| = R is normally investigated as a special case.

We have introduced the radius of convergence based on a circle centred at the
origin, while the concept obviously does not depend on the location of the centre of
the circle. If the series is centred on z, as in (4.29) then the convergence circle would
be centred on z,. Indeed it could even be centred at infinity, when the power series
becomes

r

= -n a, a, a,
zanz =at+ =+ S+ L
pry z z z

which we shall consider further in Section 4.4.5.

In order to determine the radius of convergence R for a given series, various tests for
convergence, such as those introduced in Modern Engineering Mathematics for real
series, may be applied. In particular, using d’ Alembert’s ratio test, it can be shown that
the radius of convergence R of the complex series Y.,_,a,z" is given by

ay

R = lim

n—eo

(4.30)

iy

provided that the limit exists. Then the series is convergent within the disc |z| < R.
In general, of course, the limit may not exist, and in such cases an alternative method
must be used.
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Example 4.15

Solution

Find the power series, in the form indicated, representing the function 1/(z — 3) in the
following three regions:

(@) |z <3; z a,z"
n=0

® Iz-21<1 Y aE-2y

n=0

© I2>3% Y&

n
n=0 Z

and sketch these regions on an Argand diagram.

We know that the binomial series expansion

(1+z)”:1+nz+n—£——-———2"2|_1 zz+...+n(n_1)("_2)l'"("_r+l)z"+...
: r:

is valid for |z| < 1. To solve the problem, we exploit this result by expanding the
function 1/(z — 3) in three different ways:

1

1 - n
@ —= 1_312 = 11-) = A+l r )’ ()
3
for |3z| < 1, that is | z| < 3, giving the power series
1
Z—-—_3=—§—§z—§%z2—... (Iz] < 3)
1 1 »
(b) S P [z=2)-1]
= l+(z-2)+(z=-2P%+...]1 (lz=2]<1)
giving the power series
-2 -2r—... (z-21<1)
z-3
1 1/z 1 3 (3
e e (2]
© z-3 1-3/z z{ +Z+(z)+ }

giving the power series

—
—_—

=—+%+%+... (1z] > 3)
z=3 z 2z z

The three regions are sketched in Figure 4.21. Note that none of the regions includes
the point z = 3, which is termed a singularity of the function, a concept we shall discuss
in Section 4.5.1.
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Figure 4.21 Regions
of convergence for the
series in Example 4.15.

Example 4.16

Solution

Iz]>3

z plane

In Example 4.15 the whole of the circle |z| = 3 was excluded from the three regions
where the power series converge. In fact, it is possible to include any selected point in
the z plane as a centre of the circle in which to define a power series that converges
to 1/(z — 3) everywhere inside the circle, with the exception of the point z = 3. For
example, the point z = 4j would lead to the expansion of

1 _ 1 1
z—4j+4j -3 4j-3:z-4j
4j -3

in a binomial series in powers of (z — 4j)/(4j — 3), which converges to 1/(z — 3) inside
the circle

|z—4jl=14j - 3]= /(16 +9) =5

We should not expect the point z = 3 to be included in any of the circles, since the
function 1/(z — 3) is infinite there and hence not defined.

Prove that both the power series .., a,z" and the corresponding series of derivatives
Y. na,z"" have the same radius of convergence.

Let R be the radius of convergence of the power series Y., a,z". Since lim,_,_. (a,z() =0
(otherwise the series has no chance of convergence), if | z)| < R for some complex number
z, then it is always possible to choose

la,| <1z[™

for n > N, with N a fixed integer. We now use d’Alembert’s ratio test, namely

. . |a =

if lim|=Z| <1 then E a,z’  converges
n—>oc0 an =

. . a, 1 - n :

if lim|[—Z=|> 1 then E a,z  diverges
"o y n=0
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The differentiated series X, na,z"" satisfies

n—1

z|nanz"_1| < 2n|an| |z|"_1 < 2 nl—g-l--—
n=1

n=1 n=1 |Z()|n

which, by the ratio test, converges if 0 < |z,| < R, since |z| < |z,| and |z,| can be as
close to R as we choose. If, however, |z| > R then lim,_.(a,z") # 0 and thus
lim,_,_ (na,z"") # 0 too. Hence R is also the radius of convergence of the differentiated
series X, na,z"".

The result obtained in Example 4.16 is important, since if the complex function
=Y a7
n=0
converges in |z| < R then the derivative
1@=Y naz"
n=1
also converges in |z| < R. We can go on differentiating f(z) through its power series

and be sure that the differentiated function and the differentiated power series are equal
inside the circle of convergence.

4.4.2 Exercises

Find the power series representation for the 39  Find the power series representation of the function
function 1/(z — j) in the regions
1) = =+
(a) |z] <1 22 +1
(b) [z]>1 in the disc | z| < 1. Use Example 4.16 to deduce the
© lz—-1-j] <2 power series for
Deduce that the radius of convergence of the 1 1
power series representation of this function is @ ( + 1)2 (b) (2 + 1)3
|zy — j|, where z = z, is the centre of the circle of
convergence (z, # j). valid in this same disc.

4.4.