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Modeling and Inferring in Science

Emiliano Ippoliti, Thomas Nickles and Fabio Sterpetti

Science continually contributes new models and rethinks old ones. The way
inferences are made is constantly being re-evaluated. The practice and achieve-
ments of science are both shaped by this process, so it is important to understand
how models and inferences are made.

Despite the relevance of models and inference in scientific practice, these con-
cepts are not only multifaceted but also in some sense their definition, role and
purpose still remain controversial in many respects.

Let us start with the notion of model. Frigg and Hartmann, for instance, state
that:

Models can perform two fundamentally different representational functions. On the one
hand, a model can be a representation of a selected part of the world (the ‘target system’).
[…]. On the other hand, a model can represent a theory in the sense that it interprets the
laws and axioms of that theory. These two notions are not mutually exclusive as scientific
models can be representations in both senses at the same time.1

It seems that the concept of ‘model’ is so wide that it cannot be grasped by
means of a single, clear definition, and thus its meaning is still controversial. In
effect, there are several definitions of what models are, which often sharply diverge
(see e.g. Krause and Bueno 2007, p. 187). For example, Bailer-Jones states that a
“model is an interpretative description of a phenomenon that facilitates access to
that phenomenon,” and that interpretative descriptions may rely “on idealizations or
simplifications or on analogies to interpretative descriptions of other phenomena.”
Moreover, models can “range from being objects, such as a toy airplane, to being

E. Ippoliti (&) � F. Sterpetti
Sapienza University of Rome, Rome, Italy
e-mail: emi.ippoliti@gmail.com

F. Sterpetti
e-mail: fabio.sterpetti@uniroma1.it

T. Nickles
University of Nevada, Reno, NV, USA
e-mail: nickles@unr.edu

1Frigg and Hartmann (2012), § 1.

© Springer International Publishing Switzerland 2016
E. Ippoliti et al. (eds.), Models and Inferences in Science,
Studies in Applied Philosophy, Epistemology and Rational Ethics 25,
DOI 10.1007/978-3-319-28163-6_1

1



theoretical, abstract entities, such as the Standard Model of the structure of matter
and its fundamental particles” (Bailer-Jones 2009, pp. 1–2). Along this line, models
may be easily conceived as instruments, ‘neither true nor false’: instead, they are
useful heuristic devices, which often are effective even when they are ‘false’.

On the contrary, it has been argued that models cannot be interpreted as useful
heuristic devices, because if “theories are vehicles of scientific knowledge, then so too
must models be” (Suppe 2000, p. S109). The reason for such a claim is that if
knowledge is intended as being related to the truth, and theories are vehicles of
knowledge,models of such theories have to be true, nor just metaphor-like or heuristic
devices. In fact, in model theory models of a theory make true the axioms of such
theory. Since those who adopt the semantic view of theories adopt themodel theoretic
concept of ‘model’, they cannot think of models as heuristic devices (Morrison 2009).
For example, Suppes claims that “the concept of model in the sense of Tarski may be
used without distortion and as a fundamental concept” in scientific and mathematical
disciplines, and that “the meaning of the concept of model is the same in mathematics
and the empirical sciences” (Suppes 1961, p. 165). According to Suppe, “Suppes’
claim is that the Tarski concept of amodel is a common formal framework for analysis
of various uses of models in science and mathematics” (Suppe 2000, p. S111).

Many authors have criticized this conflation of different senses attached to the
term ‘model’ (Thomson‐Jones 2006). But the problem is that if we decouple the
concept of model used in model theory from that used for heuristic purposes in
scientific practice, then it is difficult to maintain some of the traditional realist
claims about the truth of our best scientific theories that many philosophers of
science subscribe to. Indeed, the best tools to describe the idea that our best theories
correctly ‘correspond’ to the world have been for a long time Tarski’s theory and
the notion of ‘isomorphism’ (da Costa and French 2003).

In effect, the move of denying the identity of the concept of model used in
mathematics and that used in scientific practice, by trying to develop a more sub-
ject- and context-dependent notion of model centered on the notion of ‘represen-
tation’ instead of that on that of ‘isomorphism’, has faced two main objections.

First, there is the argument from realist-minded philosophers that such a motive
implies or at least invites a sort of instrumentalism that is not able to preserve the
objectivity of science, and thus risks to open the door to skepticism or relativism.
Second, again coming from some realist philosophers, is that the notion of repre-
sentation used by the instrumentalists may be in its turn accounted for in terms of
isomorphism, and so that the notions of model used in mathematics and in scientific
practice are not really distinct and may be in the ultimate analysis reduced to one
(French 2003).

As concerns the notion of inference, its role, nature and purpose are at stake as
well, since the orthodox viewpoint put forward by the analytic tradition, modeled
on mathematical logic, displayed more and more weaknesses, especially in the
attempt to account for the growth of knowledge (see e.g. Cellucci 2013; Ippoliti
2014). For an increasing number of philosophers, this problem requires a com-
pletely new approach to the concepts of knowledge and inference, both internally
and externally.

2 E. Ippoliti et al.



More specifically, the standard view of the notion of inference is “formulated by
Hintikka and Sandu as follows: ‘Inferences can be either deductive, that is, nec-
essarily truth preserving, or ampliative, that is, not necessarily truth preserving’”
(Cellucci 2013, p. 295). Such a distinction is internally inadequate, since it does not
produce a cogent classification of the various kinds of inference. In particular it
does not work for abduction. In fact, abduction, as many people understand it, is
neither ampliative nor truth preserving, and hence it is a counter-example to this
standard way of conceiving inferences. If we accept the orthodox distinction
between deductive rules (truth preserving) and ampliative rules (non-deductive, and
hence not truth preserving), it turns out that abduction “belongs to a different
category because, on the one hand, like deductive rules, it is non-ampliative, but, on
the other hand, unlike them, it is not truth preserving” (Ibidem, p. 302).

On the other side, the standard view is unsatisfactory also externally, that is, with
respect to the nature, role and purposes of knowledge. For, in the end, it does not
account for the growth and ampliation of knowledge. Mathematical logic, the
model of the analytic tradition, is a tool explicitly designed to systematize and
justify what is already known. It does not aim at producing genuinely new
knowledge, since its purpose is to provide a secure foundation for our scientific
knowledge, in particular mathematics; and the method to do that is the deductive
method.

First, mathematical logic fails as a means of justification, in virtue of a careful
reading of the limitative results in general, and of the consequences of Gödel’s
incompleteness theorems in particular (see Cellucci 2013).

Second, the analytic tradition and mathematical logic essentially draw on a
restriction on the scope of logic, and hence inference, with respect to Plato,
Aristotle, Descartes and Kant, which turned out to be detrimental to its role in the
scientific research.

A promising way out to these difficulties is to approach the notion of inference
using different notions, namely the one of containment instead of truth preservation
and the one of vindication instead of validation. We will sketch here the former.

We can produce a more cogent classification of inferential rules in terms of
ampliative and non-ampliative ones. The former, like induction or analogy, are such
that their conclusions are not contained in the premises, the information in the
conclusion goes beyond the information in the premises. And because of that they
can go wrong, even if they have heuristic power. The latter, like the deductive rules,
are such that the conclusion is contained in the premises, that is, the conclusion
either is literally a part of the premises, or entails nothing that is not already entailed
by the premises. For instance, in Modus Ponens the conclusion B is literally
included in the premises A, and A → B. Therefore, deductive rules, as
non-ampliative rules, have no heuristic power. For a new idea (B in this case) must
already be available before the inference can be constructed. It is not, therefore, an
inference to B as new knowledge. It goes without saying that it does not mean that
they are useless. As a matter of fact, since the conclusion of a deductive rule makes
explicit all or part of what is contained in the premises, it enables us to establishing
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that its conclusion is plausible, facilitating the comparison of the premises with
experience.

The bottom line here is that there is no consensus on how models and inferences
are to be understood. Thus, inquiring into the nature and role of models and
inferences is at the top of the philosophical agenda, and tellingly several works have
been devoted to this issue in recent years (Humphreys and Imbert 2012; Meheus
and Nickles 2009; Suarez 2009; Morgan and Morrison 1999).

So the attempt to understand the ways models and inferences are made basically
opens two roads. The first one is to produce an analysis of the role that models and
inferences play in science—how sciences use models and inferences to inquire into
the world. The second one is to produce an analysis of the way models and
inferences are constructed—how to model the way that scientific knowledge is
pursued, especially in the light of what science tells us about our cognitive abilities.

This volume goes both ways. In the exploration of the nature and role of models
and inferences, the contributed papers focus on different aspects of both the way in
which models and inferences are relevant to science and the way in which science is
relevant to rethinking what models and inferences are, and how models and
inferences are made. In fact, the collected papers deal with issues such as: the role
of the models in scientific practice; how science shapes our conceptions of models;
how to model the pursuit of scientific knowledge; the relation between our con-
ception of models and our conception of science; models and scientific explanation;
models in the semantic view of theories; the applicability of mathematical models to
the world; the relation between models and inferences; models as a means for
acquiring new knowledge.

In dealing with those issues, the collected papers clearly underline that in order
to better understand what models are it is crucial to investigate how our accounts of
models and inferences are related to the way in which we analyse human knowl-
edge, and specifically scientific knowledge.

Knowledge is indeed a crucial issue when dealing with models and inferences.
To see this point let us consider some well-known and debated issues in philosophy
of science.

The discussion over the nature of abduction, and the related ‘Inference to the
Best Explanation’, that has taken place in recent years (Magnani 2009; Aliseda
2006; Lipton 2004) can be seen as an example of the relevance of the way in which
inferences are analysed for the way in which science is characterized, and the
reciprocal relevance of the view about science that we adopt for the definition of our
ideas with regard to the nature of inferences. Whether abduction has to be con-
sidered an ampliative inference, and whether abductive reasoning has to be con-
sidered an acceptable form of scientific reasoning, are questions deeply related to
the dispute over scientific realism, i.e., the way in which scientific knowledge has to
be understood. Different ways of conceiving the same inference are due to the
different conception of knowledge that one can deploy. And the concept of
knowledge that one can accept is at its turn related to the way in which one
conceives of the nature and the role of certain inferences.

4 E. Ippoliti et al.



Another example of the connection between the way in which inferences are
characterized and the way in which science is analysed is the issue of the
ampliativity of deduction (Prawitz 2014). To take a stance on that issue clearly
makes a great difference for the way in which one conceives the scientific method.
In fact, if deduction may give us new knowledge, i.e. something more than what is
already contained in the premises, then the method of science may be more easily
conceived of in axiomatic-deductivist terms. If, on the contrary, deduction is
considered not to be ampliative, then an axiomatic-deductivist view cannot account
for the process of knowledge ampliation. And subscribing to a specific view on how
the scientific method has to be characterized has a great relevance for our con-
sidering deduction as ampliative or not, and thus has a great relevance on the way in
which knowledge is intended (Cellucci 2013).

But even science, i.e., our recent scientific acquisitions, is relevant to logic and
the way in which we conceive of the nature of inferences. For example, naturalism
seems to be a mainstream tendency in contemporary philosophy, but the impact that
a naturalistic stance on logic, inspired by recent work on human cognitive structures
and evolution, could have on the way in which logic is conceived of is not yet clear
(Schechter 2013; Dutilh Novaes 2012; Pelletier et al. 2008).

There is a similar relation between the way in which we conceive of mathematics
and science. For example, as we have already seen above, despite the wide
acceptance of the semantic view of theories, which, roughly speaking, says that a
theory is the class of its models, the difficulties of making such a definition com-
patible with the conception of model usually accepted in model theory have not
been overcome (Halvorson 2012). Moreover, models are normally understood by
the semanticists as mathematical models. Thus, the problem of the relation between
a theory and the world is connected to the issue of the relation between mathematics
and the world. This means that the question about the role of models in science is
ultimately related to the question of the nature of the relation between mathematics
and the world, and thus to the question about the nature of mathematics (Cellucci
2013).

This suggests that, as in the case of logic, science not only uses mathematics, but
even puts pressure on philosophers to rethink what mathematics is, so to make our
conception of what mathematics is more compatible with what science tells us
about the way the world is. And doing so, in turn, can even lead us to rethink what
science is. Thus, not only our models and inferences, but also our way of modelling
our models and inferences are worth being continuously investigated.

The papers collected in this volume are devoted precisely to the task of
rethinking and better understanding what models and inferences are. It will be
useful to describe their content in some detail.

Sorin Bangu’s paper, On ‘The Unreasonable Effectiveness of Mathematics in the
Natural Sciences’, deals with Eugene Wigner’s famous claim that the appropri-
ateness of the language of mathematics for the formulation of the laws of physics is
a miracle (Wigner 1960). Bangu reconstructs Wigner’s argument for the unrea-
sonable effectiveness of mathematics and takes into account six objections to its

Modeling and Inferring in Science 5



soundness. After having shown that those six objections are weaker than it is
usually thought, he raises a new objection to Wigner.

Thomas Nickles, in his Fast and Frugal Heuristics at Research Frontiers,
investigates how we should model scientific decision-making at the frontiers of
research. Nickles explores the applicability of Gigerenzer’s ‘fast and frugal’
heuristics to the context of discovery. Such heuristics require only one or a very few
steps to a decision and only a little information. While Gigerenzer’s approach
seems promising in accounting for the context of discovery, given the limited
resources available in frontier contexts, it nevertheless raises challenging questions,
since it seems that, according to this view of frontier epistemology, we find our-
selves in the quite paradoxical situation in which the way forward may be to make
sparse information even sparser.

Fabio Sterpetti’s Scientific Realism, the Semantic View and Evolutionary
Biology deals with the difficulties which arise when we try to apply structural
realism and the semantic view of theories to some philosophical issues peculiarly
related to biology. Given the central role that models have in the semantic view, and
the relevance that mathematics has in the definition of the concept of model,
Sterpetti focuses on population genetics, which is one of the most mathematized
areas in biology, to assess French’s proposal (French 2014) of adopting structural
realism in dealing with biology.

Emily Grosholz’s Models of the Skies examines the development of models of
astronomical systems, beginning with the early 17th century models of the solar
system, and ending with late 20th century models of galaxies. More precisely,
models by Kepler, Newton, Laplace, Clausius, Herschel, Rosse, Hubble, Zwicky,
and Rubin are taken into account. In each case she emphasizes the distinction and
the interaction between the aims of reference and analysis, and the ways in which
disparate modes of representation combine to enlarge scientific knowledge.

Carlo Cellucci, in his Models of Science and Models in Science, deals with the
issue of how it is possible to model science. Indeed, with regard to science, one may
speak of models in two different senses, i.e. ‘models of science’ and ‘models in
science’. A model of science is a representation of how scientists build their the-
ories, a model in science is a representation of empirical objects, phenomena, or
processes. Cellucci considers five models of science: the analytic-synthetic model,
the deductive model, the abstract deductive model, the semantic model, and the
analytic model. After presenting them, he assesses to what extent each of them is
capable of accounting for models in science.

Raffaella Campaner’s Mechanistic Models and Modeling Disorders deals with
the debate on how disorders should be modeled, and focuses on some issues arising
from modeling neuropsychiatric disorders. More precisely, she discusses some
models of attention deficit hyperactivity disorder (ADHD). The main aspects of
such models are analyzed in the light of the philosophical debate about mechanistic
models. The paper highlights how the neo-mechanist accounts of models can only
partly capture the many aspects entering the dynamics of modeling disorders in an
actual medical scenario.

6 E. Ippoliti et al.



Sergio Caprara’s and Angelo Vulpiani’s paper, Chaos and Stochastic Models in
Physics, deals with the issue of clarifying the distinction between determinism and
predictability. In order to show that the two concepts are completely unrelated,
Caprara and Vulpiani analyse the Lyapunov exponents and the Kolmogorov-Sinai
entropy and show how deterministic chaos, although it possesses an epistemic
character, is not subjective at all. They also show how this is useful to shed light on
the role of stochastic models in the description of the physical world.

Emiliano Ippoliti’s paper, Ways of Advancing Knowledge. A Lesson from Knot
Theory and Topology, investigates the ways of advancing knowledge focusing on
the construction of several approaches put forward to solve problems in topology
and knot theory. More precisely, Ippoliti considers two problems: the classification
of knots and the classification of 3-manifolds. Examining the attempts made to
solve those problems, Ippoliti is able to specify some key features of the ampliation
of knowledge, such as the role of representation, theorem-proving and analogy, and
to derive some considerations on the very nature of mathematical objects.

Juha Saatsi’s paper, Models, Idealisations, and Realism, deals with the diffi-
culties that, for the scientific realist, derive from the role that idealizations and
abstractions play in models. Indeed, realists maintain that predictively successful
models tell us the truth about the unobservable world. But how should the realist
construe the way in which models latch onto unobservable reality? This is a
problem, since models essentially incorporate various kinds of idealisations and
approximations that cannot be interpreted realistically and that are indispensable to
both their predictive and their explanatory use. Saatsi tries to face such a challenge
by arguing that it is the modal character of idealisations that accounts for their
utility from a realist perspective.

In Modelling Non-Empirical Confirmation Richard Dawid argues that
non-empirical theory confirmation plays an important role in the scientific process
and that it should be considered an extension of empirical confirmation. Since
confirmation is mostly understood in Bayesian terms, Dawid proposes a formal-
ization of non-empirical confirmation within a Bayesian framework that demon-
strates that non-empirical confirmation does have the same structural characteristics
of empirical theory confirmation. The No Alternative Argument (Dawid et al. 2015)
is then illustrated and debated.

Reuben Hersh’s paper Mathematics as an Empirical Phenomenon, Subject to
Modeling deals with the issue of modeling mathematics. Indeed, philosophy of
mathematics deals with models of mathematics, which is in large part already a
model, because much of mathematics is a model of physical action. Arithmetic, for
instance, models the human action of counting. Hersh’s suggestion is that in order
to facilitate the creation of a unified field of inquiry on mathematics, philosophers
should start thinking of their work as model-building instead of arguing for their
chosen position against opposing positions.

Lorenzo Magnani’s paper, Scientific Models Are Distributed and Never
Abstract: A Naturalistic Perspective, analyses several definitions of models: from
the classical ones, which see models as abstract entities and idealizations, to the
more recent, which see models as fictions, surrogates, credible worlds, missing
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systems, make-believe, parables, epistemic actions. Magnani reveals some of their
epistemological inadequacies, sometimes by appealing to recent results in cognitive
science. Magnani specifically addresses epistemological relying on recent results on
the role of distributed and abductive cognition.

Kahindo Kamau’s and Emily Grosholz’s paper The Use of Models in Petroleum
and Natural Gas Engineering inquires how adequate are some of the fundamental
models in the science of petroleum and natural gas engineering. The authors try to
unveil what assumptions were made as the models were created. They claim that a
good account of the adequacy of models must be strongly pragmatist, for the
questions related to their adequacy cannot be answered properly without paying
attention to human purposes. They also claim that many of the distortions and
over-simplifications in these models are in fact intentional and useful, when we
examine the models in the light of their pragmatic aims.
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On ‘The Unreasonable Effectiveness
of Mathematics in the Natural Sciences’

Sorin Bangu

Abstract I present a reconstruction of Eugene Wigner’s argument for the claim
that mathematics is ‘unreasonable effective’, together with six objections to its
soundness. I show that these objections are weaker than usually thought, and I
sketch a new objection.

1 Introduction

In a well-known essay published in 1960, the celebrated physicist Eugene Wigner
claimed that “the appropriateness of the language of mathematics for the formu-
lation of the laws of physics” is a “miracle” (Wigner 1960, p. 14). Despite Wigner’s
immense scientific reputation (he will be awarded the Nobel prize in 1963), the
general sentiment is that he hasn’t quite succeeded in making a case for the
‘miraculousness’ of the applicability of mathematics—although everyone agrees
that the issue is prima facie intriguing. In fact, the issue was considered so
intriguing that several of the brightest minds of theoretical physics (Dirac,
Weinberg, Wilczek) found worth engaging with it; moreover, one even gets the
impression, upon becoming familiar with the early literature discussing this
so-called ‘Wigner puzzle’, that for a good while after 1960 the conundrum inter-
ested more the scientists and the mathematicians than the philosophers. This situ-
ation, it seems to me, changed significantly after the year 2000—that is, after the
publication, in 1998, of Mark Steiner’s landmark book The Applicability of
Mathematics as a Philosophical Problem (Harvard Univ. Press). Thus, in the last
decade or so, partly due to this book’s influence, the puzzle has received signifi-
cantly more attention from philosophers.

And, to be sure, there is no shortage of attempts to (dis)solve the puzzle, fact
which accounts for the almost universal skeptical sentiment I mentioned above.
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In this paper, I will end up sharing this sentiment, but not before casting a critical
eye on the proposed solutions. I shall proceed as follows. First of all, I’ll spell out
the puzzle—or, more precisely, a version of it as reconstructed from Wigner’s
essay. The ‘unreasonableness’ claim will appear as the conclusion of a valid
argument, and thus the next natural step will be to inspect the premises. Then, I will
identify six different (types of) solutions, each of them attacking one (or more) of
these premises. Although these are cogent objections, and certainly raise doubts
about the soundness of the argument, they are not decisive; a defender of Wigner’s
central point will surely feel their force, but will not need to concede defeat. Finally,
I will sketch a different (and, as far as I can tell, novel) solution to the puzzle,
drawing on what I’ll call ‘ecological’ considerations affecting scientific research.1

2 Wigner’s Argument

Before we get to discuss Wigner’s argument per se, it is important to clarify two
aspects of it. First, Wigner talks about the unreasonable effectiveness of ‘mathe-
matics’ in physics, but what he has in mind is something slightly more specific: the
effectiveness of the mathematical language—and by this it is pretty clear that he
means the effectiveness of a fair amount of mathematical concepts (and structures),
such as complex number, group, Hilbert space, etc. (these are some of his own
examples). The second and related question is ‘what are these concepts effective
for?’Wigner’s answer is that these concepts are effective for “the formulation of the
laws of physics” (1960, p. 6), that is, in describing natural phenomena, or, more
exactly, certain law-like regularities holding in nature.

This clarification of what is effective (mathematical concepts), and what they are
effective for (describing nature), is necessary in order to distinguish Wigner’s con-
cern from a recent proposal of a somewhat similar problem by Steiner (1998). For
Steiner, what is primarily (and ultimately mysteriously) effective are mathematical
analogies, and what they are effective for is the formulation of novel laws of physics
—that is, laws formulated by analogy with the existent mathematically formulated
laws.2 (The new laws are needed in domains of reality not covered by the existing
laws, such as the quantum domain.) Unlike Wigner’s, Steiner’s main concern is thus
the heuristic role of mathematics, or its ability to mediate the development of new
laws. Here, however, I will put this issue aside, and focus on Wigner alone.3

1I deal with the puzzle in my (2009) and, more thoroughly, in my (2012, Chap. 7). Although there
is some overlap between this paper and my treatment of the issue in my book, the current paper
offers a different reconstruction of the puzzle. My conclusion, however, is the same—that
Wigner’s riddle can be (dis)solved.
2Grattan-Guiness (2008) seems to me an example, among others, of conflating these separate
issues: Wigner’s, who focused on the role of mathematics in describing nature, and others’
concerns with its role in theory-building.
3For my take on Steiner’s own argument, see my (2006) and (2012, Chap. 8).
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Now, what is Wigner’s argument in his 1960 paper? As it happens, this is not
immediately clear, since his points are open to a couple of reconstructions. Steiner
(1998, pp. 45–6) offered one of the first such careful renderings. He identified two
versions of the argument; one is as follows:

Concepts c1, c2, c3,…, cn (some listed in the paper; see above for a sample) are unrea-
sonably effective in physics, and these concepts are mathematical.

Hence, mathematical concepts (‘mathematics’) are (is) unreasonably effective in
physics.

This argument is invalid, and if this version is what the critics had in mind then
their discontent is understandable. Steiner points out that the conclusion doesn’t
follow; what follows is a weaker claim, that some mathematical concepts are
unreasonably effective—and this invites the query as to how this unreasonable
effectiveness is related to their being mathematical. Yet, with Steiner, I also believe
that a more charitable reconstruction is possible and, taking my cue from his
analysis (and also departing from it), I will put one forward below—and call it
‘WA’.

My WA is meant to be the version of Wigner’s concern that fascinated those
most brilliant theoretical physicists I named above, and its specificity is that it is a
diachronic, or historically-based reconstruction of his point. I favor this specifically
diachronic version since it reflects faithfully the oddity of a certain “situation”
(Dirac’s word; see below) noticed not only by Wigner, but also by other people,
both before and after the publication of his article. Here is what Paul Dirac said in
1939 in his note on ‘The relation between mathematics and physics’:

One may describe this situation by saying that the mathematician plays a game in which he
himself invents the rules while the physicist plays a game in which the rules are provided
by Nature, but as time goes on it becomes increasingly evident that the rules which the
mathematician finds interesting are the same as those which Nature has chosen. (1939,
p. 124)

This quote is very suggestive, as it encapsulates all the elements I will include in
the WA: the idea that mathematicians ‘invent the rules’, that what drives this
invention is what they find ‘interesting’ (hence the aesthetic aspects of WA), and
finally the overt reference to the temporal succession. Similar to Dirac’s point
above, Steven Weinberg writes:

It is positively spooky how the physicist finds the mathematician has been there before him
or her. (1986, p. 725),

where, importantly, what led the mathematicians ‘there’ was their aesthetical sense:

[M]athematicians are led by their sense of mathematical beauty to develop formal structures
that physicists only later find useful, even where the mathematician had no such goal in
mind. […]. Physicists generally find the ability of mathematicians to anticipate the math-
ematics needed in the theories of physics quite uncanny. It is as if Neil Armstrong in 1969
when he first set foot on the surface of the moon had found in the lunar dust the footsteps of
Jules Verne. (1993, p. 125)
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Wigner himself talks explicitly in diachronic terms, when referring to physical
concepts as discovered

independently by the physicist and recognized then as having been conceived before by the
mathematician. (1960, p. 7; my emphasis)

Finally, against this background, this is the WA:

1. Modern mathematical concepts originate in our (mathematicians’) aesthetic
preferences.

2. It is unreasonable that these concepts, originating in the subjective aesthetic
domain, are effective in the objective domain of physics.

3. And yet this is the case: several physical theories proposed at a later time t′
turned out to benefit significantly from the application of mathematical con-
cepts developed at an earlier time t.

4. Therefore, it is unreasonable that modern mathematical concepts (developed
up to an earlier time t) are effective in the physics introduced at a later time t′.

Curious as it may seem, such explicit reconstructions of the problem are not
common in the literature. It is not always recognizedwhat theWigner puzzle in fact is,
namely a pre-established harmony type of mystery4: how can it be that such a tem-
poral anticipation of physics bymathematics exists throughout the history of science?

Since the validity of argument WA is not an issue anymore, the objections have
to focus on the truth of the premises. And, as I said, all proposed solutions so far are
formulated as attacks on one, or several, of these three premises. I will examine the
premises in the next section (and, after that, the solutions).

3 A Closer Look at the Premises

Let us put the premises under a magnifying glass. I will take them in turn. To begin
with the first, what does it mean to say that modern mathematics and, more
specifically, modern mathematical concepts and structures, have aesthetic origins?
That is, what can one make of the claim that modern mathematics is “the science of
skillful operations with concepts and rules invented just for this purpose”, where the
purpose is for mathematicians to “demonstrate [their] ingenuity and sense of formal
beauty.”? (Wigner 1960, p. 2)5

4In fact, Bourbaki, when referring to this issue, uses the word ‘preadaption’. Here is the entire
quote: “Mathematics appears […] as a storehouse of abstract forms—the mathematical structures;
and it so happens—without out knowing why—that certain aspects of empirical reality fit them-
selves into these forms, as if through a kind or pre-adaption.” (1950, p. 231) I found this quote in
Ginammi (2014, p. 27).
5Wigner also writes that mathematical concepts “are defined with a view of permitting ingenious
logical operations which appeal to our aesthetic sense … [they are chosen] for their amenability to
clever manipulations and to striking, brilliant arguments.” (1960, p. 7).
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This first premise makes two claims. First, that (i) mathematics is a human
invention, i.e., the concepts are free inventions of the mind, and also that (ii) among
these many free creations, some of them strike the mathematicians as particularly
beautiful, interesting, etc.—and thus they are selected, on the basis of these aes-
thetic criteria, to be studied and developed (typically by formulating and proving
theorems about them.)

It is important to clarify what ‘aesthetic’ means in this context. The central idea
of an aesthetic preference has to be construed as a rather broad notion. It is an
umbrella-term, standing of course for what Wigner himself called above “formal
beauty”, but also covering a wider gamut of related sentiments such as certain
concepts being ‘interesting’, ‘elegant’, ‘simple’, ‘deep’, ‘unifying’, ‘fruitful’,
‘stimulating’, ‘intriguing’, etc. Like other important physicists (his friend John von
Neumann included; see below), Wigner believes that mathematicians are free to
choose what concepts to work with, and they select what they find—in these
various guises—‘beautiful’.

Thus, to say that the primary creative impulse of a (modern) mathematician is
aesthetic is to stress that the concepts and structures she selects to study are

(a) neither descriptions of some natural phenomenon,
(b) nor tools to help the development of an existing (perhaps incipient) physical

theory.

Two examples may clarify the matter here. The invention of real analysis (or
‘calculus’), by Leibniz and Newton, provides one particularly clear illustration of a
mathematical achievement that does not have aesthetic origins. On the other hand,
the concept complex number (and, consequently, complex analysis) does qualify as
having aesthetical ancestry, since the introduction of complex numbers satisfied
clauses (a) and (b) above.6 The same relation holds in other subfields of mathe-
matics, for instance between Euclidean geometry and its various multi-dimensional
generalizations or alternatives. It is also important to understand that this ‘mathe-
matical aestheticism’ is perfectly compatible with some of the aesthetically-driven
mathematicians’ hope or desire that maybe in the future the physicists will find the
concepts she studied useful. This kind of attitude (sometimes transpiring in their
writings) doesn’t make the initial impulse to focus on these concepts and structures
less ‘pure’, i.e., less aesthetical. (We’ll get back to this point when we’ll discuss the
Riemann episode below.)

Returning to the first premise, its two parts have different statuses. Component
(i) expresses adherence to a metaphysical view of the nature of mathematics
(anti-Platonism), while (ii) sounds more like a factual statement about certain
historical/psychological events, or processes: the circumstances of origination, or

6Jerome Cardan, who is credited with introducing them in the 16th century, remarked that “So
progresses arithmetic subtlety the end of which, as is said, is as refined as is useless.” (Cited in
Kline 1972, p. 253). According to Kline, neither did Newton regard complex numbers as sig-
nificant, “most likely because in his day they lacked physical meaning.” (1972, p. 254).
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invention, of certain concepts. I will leave (i) aside for the moment (I will get back
to it in Sect. 4), as it is notoriously difficult to search for justifications for such basic
metaphysical commitments—here I’ll only focus on (ii). This is a claim that can be
vindicated by research into the history of mathematics. This kind of research is
available and, as it happens, seems to confirm Wigner. The historian Kline (1972,
pp. 1029–31) summarizes the situation as following:

[G]radually and unwittingly mathematicians began to introduce concepts that had little or
no direct physical meaning (…) [M]athematics was progressing beyond concepts suggested
by experience (…) [M]athematicians had yet to grasp that their subject … was no longer, if
it ever had been, a reading of nature. (…) [A]fter about 1850, the view that mathematics can
introduce and deal with rather arbitrary concepts and theories that do not have immediate
physical interpretation but may nevertheless be useful, as in the case of quaternions, or
satisfy a desire for generality, as in the case of n-dimensional geometry, gained acceptance.7

Another way to go about this first premise is to simply ask the (great) mathe-
maticians themselves: do they think that a view like Wigner’s has any credibility?8

If the practitioners’ avowals are to be given any weight, then aestheticism is sup-
ported by quite a few, and prominent mathematicians. Among the most cited such
confessions is the one belonging to Richard Hamming (of the ‘Hamming code’
fame), that “artistic taste plays a large role in modern mathematics” (1980, p. 83;
author’s emphasis)9; another belongs to no less a figure than John von Neumann.
He makes the point at the end of the paragraph below, worth quoting in full because
it also canvasses some important insights into the relation between physics and
mathematics. Like Dirac, he talks about a certain “situation”:

The situation in mathematics is entirely different [from physics]. (…) ‘Objectively’ given,
‘important’ problems may arise after a subdivision of mathematics has evolved relatively
far and if it has bogged down seriously before a difficulty. But even then the mathematician
is essentially free to take it or leave it and turn to something else, while an important
problem in theoretical physics is usually a conflict, a contradiction, which ‘must’ be
resolved. (…) The mathematician has a wide variety of fields to which he may turn, and he
enjoys a very considerable freedom in what he does with them. To come to the decisive
point: I think that it is correct to say that his criteria of selection, and also those of success,
are mainly aesthetical. (1961, p. 2062; emphasis added)

More pronouncements like these can be found, but I will now move on to the
second premise. It states that the modern mathematical concepts, originating in the
subjective domain of our aesthetic sense, should not be effective in the objective
domain of physics—and hence it is ‘unreasonable’ if they are. What does Wigner

7The selection of quotes is from Maddy (2007, p. 330).
8But, should one take into consideration their views on the matter, when they bothered to express
them? My answer (for which I don’t have space to argue here) is ‘yes’, but not everybody agrees;
see Azzouni (2000, p. 224).
9Hamming continues by saying that “we have tried to make mathematics a consistent, beautiful
thing, and by doing so we have had an amazing number of successful applications to the physical
world” (1980, p. 83)—yet another expression of the Wigner problem.
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claim here? The short answer is that what he says amounts, in essence, to voicing
the generally accepted idea that there is no obligation for the world to conform to
our human, parochial aesthetic preferences, in the sense that there is no obligation
for the laws governing the world to be expressible in mathematical concepts. He
expresses the same sentiment as Freeman Dyson who once asked, “Why should
nature care about our feelings of beauty?” (1986, p. 103)

A more complete answer has to bring up the most intriguing element of the
entire Wigner issue: yes, the Universe and the laws of nature are under no such
‘obligation’—unless they, together with the human race, have somehow been de-
signed to match. That is, unless a certain form of anthropocentrism is true. This
means that we inhabit a ‘user-friendly Universe’,10 that the human species has a
privileged place in the grand scheme of things, that our subjective aesthetic incli-
nations (expressed in favoring certain concepts) have a correlate in objective
physical reality,11 i.e., are truth-conducive. This (intelligent) design suggestion has
of course been long questioned, opposed, and considered ‘unreasonable’ by many.
Thus, in doubting it in the second premise, Wigner doesn’t in fact make any novel
or controversial claim, but simply joins this rather influential line of thought. In the
end then, although the premise may initially sound problematic, it turns out that it
reflects the general naturalistic, agnostic (even atheistic) contemporary scientific
zeitgeist.

We have now reached the third and last premise, which completes the argument.
Under the (generally shared) assumption that modern mathematical concepts stem
from the mathematicians’ aesthetic inclinations, Wigner also pointed out that such
concepts should not be effective in physics—and thus it is ‘unreasonable’ if they
are. The third premise closes the circle by stating that they are so indeed: several
physical theories proposed at certain points in time turned out to benefit signifi-
cantly from the already developed mathematical theories and concepts. Let’s ask,
once again, what is claimed here. Similar to the second component (ii) of the first
premise, one can’t help but notice that this third premise also sounds like a factual
claim; hence, such ‘situations’ can be documented historically. Then, the relevant
question to ask here is whether Wigner (or anyone else) has done any quantitative
assessment of the historical record, counting (α) the number of physical theories in
this situation (the ‘successes’), as well as (β) the ratio of successes to ‘failures’.

I will now go over all available solutions, beginning with the one that takes issue
precisely with the third premise. As it turns out, out of the six solutions I’ll be
discussing, only one attacks the first premise—although, as I’ll argue in the last
section of the paper, this premise is in fact the most vulnerable one.

10This reconstruction is heavily influenced by Steiner (1998), and I warn the reader that I may have
been reading too much into Wigner’s (1960) paper.
11Wigner makes the point about the independence (hence objectivity) of the laws of a huge variety
of particular circumstances on pp. 4–5 in his (1960).
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4 Revisiting the Available Solutions

The literature on Wigner’s problem spans more than half a century, but (I dare
saying) any attempt to deal with his argument is summarized by one (or several) of
the six characterizations below (I present them here in abridged form, but more
details follow):

It is not unreasonable to find mathematical concepts available to be applied in
physical theories because …

the situations when this happens are not numerous, and thus these ‘successes’ can be
attributed to chance (Solution S1)

Wigner’s starting point, that mathematics is invented, is just false (S2)

mathematical concepts have empirical origins (as opposed to aesthetical ones) (S3)

applicability presupposes modeling, i.e., the ‘preparation’ of physical systems in order to
apply mathematics (S4)

there is over-determination in the relation between mathematics and physics, i.e., there is a
lot of mathematics to choose from when we need to embed a physical insight (S5)

our aesthetical mathematical sense is shaped by evolution, hence it is sensitive to
environment (S6)

The first solution S1 attacks premise (3)—that several physical theories proposed
at a later time turned out to benefit significantly from the application of mathe-
matical concepts developed at an earlier time—by pointing out that its advocates
make an exaggerated claim. Quantitatively speaking, the situation can be the result
of pure chance.

Fair enough, the premise is rejectable in this way. However, before a counting of
successes is done, the premise does not strike one as clearly false. One has to admit
that the counting (once we settle upon what and how to count) may confirm Wigner.
But this is perhaps too defensive; a sympathizer of Wigner’s argument may also
counterattack by proposing that this third premise should be read along qualitative
lines too. Or, more precisely, that one should balance the strict quantitative reading
against a more qualitative one. She could say that although there may be many
natural phenomena that fail to receive a mathematical description, we should also
judge the relative relevance of these ‘failures’ (and ‘successes’) in the larger con-
text. From this perspective then, what the third premise says is that we should focus
on the rather few major, truly important episodes in modern theoretical physics;
and, if we do this, we’ll see that they support Wigner’s claim in premise (3). These
major episodes are not very numerous (in absolute number) to begin with, hence the
number of mathematical concepts and theories which were ‘waiting’, available for
physicists to use them, should not be expected to be numerous either.

On this reading, the premise says that one can list relatively many major
achievements in modern physics which fit Wigner’s WA scheme perfectly. It is, for
instance, widely accepted that Einstein’s General Theory of Relativity (developed,
roughly, between 1905 and 1916) drew massively on Riemannian geometry
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(developed before 1900), that quantum mechanics (in essence a product of the first
quarter of the 20th century) makes essential mathematical use of complex numbers
(among other concepts well-established before 1900). Moreover, groundbreaking
work (within quantum field theory) on the classification of elementary particles by
Wigner himself, Gell-Mann and others between (roughly) 1930s and 1970s
employed group theory concepts (such as group ‘representation’) introduced much
earlier (beginning with Frobenius, Lie, Shur, E. Cartan, and others.)

The list can be continued with several other well-known examples; thus, if the
qualitative reading of this third premise is allowed to counteract the blind quanti-
tative aspect, then one reads premise (3) as follows: ‘restricting judgment to the few
major breakthroughs in modern physics, many of them were anticipated by math-
ematical concepts and structures’. Read this way, one may begin to see that the
support for this premise is actually not weak at all, to say the least.

The second solution S2 above rejects the first component (i) of the first premise.
Such an objector denies that mathematics is ‘invented’ and, in particular, that
modern mathematical concepts were invented to satisfy the mathematicians’ aes-
thetic preferences. Thus, the picture Wigner proposes—that mathematicians invent
concepts and decide to study those that foster beautiful theorems—is wrong. The
correct metaphysical picture is something one may call Theistic Keplerian
Platonism: there is a Creator of the Universe (God), and He made the world using a
mathematical blueprint. For instance, when God created the solar system, He
implemented in it the mathematical properties of the five ‘perfect’ solids—as the
numerical values of the radii of the planets moving around the Sun; this is what
Kepler, and others, genuinely believed.12

On this picture, a mathematician doesn’t choose what concepts to study, but
rather ‘sees’, with his ‘mind’s eye’, what is ‘there’ (in the realm of mathematical
forms) to be investigated; these concepts more or less ‘force upon’ him (to allude to
the recent Platonist, Kurt Goedel). His job as a mathematician is thus not to invent
anything, but rather to describe (as theorems), the eternal, true relations among
these concepts; a mathematician’s responsibility is therefore to discover the ways to
connect these concepts, i.e., to discover proofs of the theorems. Moreover, once one
does this properly, one may expect that one will also discover truths about the
physical (material) world! This is so since, by assumption, these concepts and
relations served as God’s blueprints in designing the world.

Although some of the details of the story are still to be filled in, it should now be
clear that there can be no problem as to why the Wigner-type coincidences arise. In
fact, S2 is so radical that it almost generates an anti-puzzle: to the extent that one is
a genuine mathematician (i.e., able to peek at God’s blueprints), one must find such
coincidences! Moreover, one should stop calling them ‘coincidences’, since they
are the result of intentional acts of Divinity.

12A well-known passage from Kepler reads: “Thus God himself was too kind to remain idle, and
began to play the game of signatures, signing his likeness into the world; therefore I chance to
think that all nature and the graceful sky are symbolized in the art of geometry.” Quoted in Dyson
(1969, p. 9).
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What about Theistic Platonism then? While it may have sounded credible a few
centuries ago,13 there are very few people who believe it today.14 The general
metaphysical view underlying it strikes us as creating more problems than it solves.
(To mention an obvious one: what kind of evidence does one have, or can one have,
for the postulations of this doctrine? What kind of epistemology do we have to
develop to make sense of this picture of the world and of mathematics?) In the end,
this seems a rather clear case in which the cure is worse than the disease, so to
speak, as the amount of controversial metaphysical baggage one has to assume in
order to make S2 work is too large. On balance, this way out seems then
implausible; hence, one would be better off ignoring it, and looking for alternative
ideas.

And it is not unusual that many find a more plausible alternative in the third
solution S3. Thus, one can also object to the first premise, but not so much to
component (i), as to component (ii). One rejects the view that mathematical con-
cepts have aesthetical origins because, on this view, mathematical concepts have
empirical origins. Philosopher Ernst Nagel’s pronouncement is usually invoked
here, as it nicely summarizes this position:

It is no mystery, therefore, that pure mathematics can so often be applied (…) because the
symbolic structures it studies are all suggested by the natural structures discovered in the
flux of things. (1979, p. 194)

To this, a defender of Wigner’s argument has two replies. First of all, this
objector forgets about an important aspect of premise (1), namely that it is about
modern mathematics, not about the basic, traditional arithmetical and geometrical
concepts. They of course may well have empirical origins, and Wigner himself
grants this in his paper.15 But his point is not about these types of concepts; it’s
about the modern/advanced ones. These, as we saw above, are usually recognized
as belonging to the corpus of mathematics in so far as the mathematicians find them
interesting and intriguing, and not because they are ‘suggested’ by nature.

The second reply takes issue with the ambiguity of the idea that a certain
structure is ‘suggested’ by nature. What this meant was clarified above in the form
of conditions (a) and (b). Now, as is evident, many modern mathematical concepts
and structures are the results of various kinds of generalizations and modifications
of more basic concepts and structures, and this is just the normal course of math-
ematical development. If one grants that these basic concepts are directly reflected
in nature (and thus one agrees that they were ‘suggested’ to the mathematicians in

13As Kline (172, p. 1028) describes: “the Greeks, Descartes, Newton, Euler, and many others
believed mathematics to be the accurate description of real phenomena (…) [T]hey regarded their
work as the uncovering of the mathematical design of the universe.”
14A recent author seemingly embracing this idea is Plantinga (2011, pp. 284–91).
15See Wigner (1960, p. 2): “Furthermore, whereas it is unquestionably true that the concepts of
elementary mathematics and particularly elementary geometry were formulated to describe entities
which are directly suggested by the actual world, the same does not seem to be true of the more
advanced concepts, in particular the concepts which play such an important role in physics.”
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this way), does it follow that the later modified/generalized concepts are also
suggested by nature, via some kind of transitivity? Does it follow that if concept C*
is a generalization/modification of concept C, and C is suggested by nature, then C*
is also suggested by nature?

This reasoning is dubious; it is clear that one can modify and generalize a basic
concept or structure in a multitude of ways, and yet, in perfect accordance with
Wigner’s position, the only generalizations/modifications that survive as mathe-
matically viable are the ones which are regarded as ‘interesting’ enough to fascinate
the mathematicians to further study them. So, although one can perhaps trace all
modern mathematical structures to some ‘natural structure’, it is simply incorrect to
maintain that this kind of transitivity supports the idea that modern mathematical
concepts and structures are also suggested by nature.16

This fallacy is worth discussing in some detail, as I find it committed by the
historian Kline and, following him, by the philosopher Maddy; see below17. In
commenting on the modern developments of Group Theory, Kline points out
(correctly) that the origin of this theory is in the attempts to solve polynomial
equations, which he takes to be (correctly, again) “so basic a problem” (1980,
p. 294), in the sense that solving equations which directly represent physical sit-
uations is an activity directly linked to (‘suggested’ by) the physical world. But one
can accept this idea, and yet object to Kline’s point (1980, pp. 293–4) that the more
advanced concepts introduced in this theory much later (continuous symmetries,
Lie algebras, group representations, etc.) also share this feature. In fact, they have
nothing to do with ‘nature’ anymore. Unlike their ancestors, these concepts have
been introduced for their aesthetical properties, as part of a mature and sophisticated
mathematical theory.

Before making this point about group theory, Kline claims the same about
Riemann’s work on geometry. He says the following:

The pure mathematicians often cite the work of Riemann, who generalized on the
non-Euclidean geometry known in his time and introduced a large variety of non-Euclidean
geometries, now known as Riemannian geometries. Here, too, the pure mathematicians
contend that Riemann created his geometries merely to see what could be done. Their
account is false. The efforts of mathematicians to put beyond question the physical
soundness of Euclidean geometry culminated, as we have just noted, in the creation of
non-Euclidean geometry which proved as useful in representing the properties of physical
space as Euclidean geometry was. This unexpected fact gave raise to the question, since
these two geometries differ, what are we really sure is true about physical space? This
question was Riemann’s explicit point of departure and in answering it in his paper of 1854
(Chapter IV) he created more general geometries. In view of our limited physical knowl-
edge, these could be as useful in representing physical space as Euclidean geometry. In fact,
Riemann foresaw that space and matter would have to be considered together. Is it to be
wondered then that Einstein found Riemannian geometry useful? Riemann’s foresight

16I discuss a different kind of transitivity in my (2012, Chap. 7).
17Ivor Grattan-Guiness reasons along the same fallacious line: “Much mathematics, at all levels,
was brought into being by worldly demands, so that its frequent effectiveness there is not so
surprising.” (2008, p. 8; my emphasis).
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concerning the relevance of this geometry does not detract from the ingenious use which
Einstein made of it; its suitability was the consequence of work on the most fundamental
physical problem which mathematicians have ever tackled, the nature of physical space.
(1980, p. 293)

But in a different work Kline himself contradicts this view:

Bolyai, Lobatchevsky, and Riemann. It is true that in undertaking their research these
audacious intellects had in mind only the logical problem of investigating the consequences
of a new parallel axiom. (1964, p. 429)

So, it is after all unclear what Riemann “had in mind” when working on his new
geometries: “only” the attempt to play with the mathematical possibilities,18 or, as
we were told above, his intention was in essence to solve “a fundamental physical
problem”, to find out “the nature of physical space”.

I find the ‘Riemann-qua-physicist’ picture much less convincing than the
‘Riemann-qua-pure-mathematician’ picture. On reflection, bringing the former in
discussion is perhaps the result of confusing two aspects of his work. One aspect
has to do with understanding what he actually did. The question to ask here is: did
Riemann’s work consist in taking an element of physical reality (or an aspect of a
physical theory of his time) and trying to describe it mathematically? Were his
innovations ‘suggested by the natural structures discovered in the flux of things’?
Recalling clauses (a) and (b) above, the answer has to be ‘no’: there were no such
things (i.e., differentiable manifolds) to describe in the physics of his time, let alone
identified in nature, hence he couldn’t have received any ‘suggestion’ from these
two sources. (Slightly more precisely, what he was doing was to work out a
mathematically profound generalization of the very idea of space.19 This led to the
notion of a differentiable manifold, and further, as part of the package, to a gen-
eralized notion of distance, together with a ‘Pythagorean’ theorem for such mani-
folds.) Physical-perceptual, tri-dimensional space provided of course the initial
inspiration, and the object of description, for traditional geometry; nevertheless, as
we saw, it just doesn’t follow that devising ways to generalize it are also inspired or
suggested by ‘nature’.

The second aspect relevant here is what Riemann perhaps hoped, or desired, to
achieve in his work—and this is an entirely different matter from what he actually
did. It is perhaps true that Riemann hoped, even expected, that maybe one of the
alternatives he was thinking up will be proven, as a matter of empirical fact, to be a
description of the real, physical space (which, as we know, did happen in Einstein’s
work on General Relativity in 1916).

18In the same passage quoted above from (1964, p. 429), Kline calls this kind of work “an
ingenious bit of mathematical hocus-pocus”.
19In fact, the second passage in his 1854 masterpiece ‘On the Hypotheses Which Lie At The Bases
Of Geometry’ contains the generalization point: “It will follow from this that a multiply extended
magnitude is capable of different measure-relations, and consequently that space is only a par-
ticular case of a triply extended magnitude.” (Riemann 1854; reprinted in Hawking 2007,
pp. 1031–2; translated by W.K. Clifford).
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With this distinction in place, talking about Riemann’s “motivation” [as Maddy
does (2007, p. 337)]20 is prone to perpetuate the conflation of the two aspects men-
tioned above. On one hand, we can of course assume that Riemann’s ‘motivation’—
understood as hope—was to contribute to the progress of science bymaking available
models of possible physical spaces. On the other, if ‘motivation’ refers to what
actually led him to the manifold concept, we can be sure that he was not following
some suggestion from ‘nature’. He certainly couldn’t have been in the business of
taking cues from an extra-mathematical source (‘nature’, or physics) and writing
down a mathematical formalism encoding them. To stress, what led him to introduce
a new battery of concepts was the attempt to generalize, unify, etc.—and these are
exactly aesthetical elements (recall, in a broad understanding of ‘aesthetics’).

Before we move on to S4, it is important to address a type of reaction very
similar in spirit to the S3. Many are tempted to embrace a line of thinking of the
common cause type, where the common cause is not ‘nature’ per se (as above), but
the structural similarities, or symmetries holding both in nature and in the mathe-
matical domain. Simplifying, what one often hears is this: ‘Scientists study sym-
metries (structures, patterns) occurring in nature, and similarly, mathematicians are
often fascinated by symmetries (structures, patterns) at an abstract level; thus, given
this common basis, there is no surprise that a (temporal) harmonious correlation
exist.’

To reply, one must repeat the idea that aside from some very basic symmetries
(patterns and structures) studied in mathematics because they indeed pop up
everywhere in the physical domain, the kinds of symmetries and structures making
up modern mathematics are invented by the mathematicians. They are not imposed
on them by ‘nature’; they are selected (among the many available structures they
invent) to be studied and developed because they are found aesthetically pleasing.
A paraphrase of Dirac’s point above illustrates the gist of this reply: the problem
doesn’t go away just because there is this common ground (symmetries, structures)
between mathematics and physics:

One may describe this situation by saying that the mathematician plays a game in which he
himself invents the symmetries / structures while the physicist plays a game in which the
symmetries / structures are provided by Nature, but as time goes on it becomes increasingly
evident that the symmetries / structures which the mathematician finds interesting are the
same as those symmetries / structures which Nature has chosen. (1939, p. 124)

Let us investigate the fourth solution S4 now. With it, we enter the region of less
discussed objections, in part because these have been articulated rather recently.
The essence of this solution is captured by the memorable words of Wilczek
(2006a, p. 8): “One way to succeed at archery is to draw a bull’s-eye around the
place your arrow lands.” The premise of WA under attack here is the second one.

20Maddy (2007, p. 337) accepts the (problematic) Kline picture, backing it up with a quote from
Kline himself (1968, p. 234): “So Riemann’s motivation was not ‘purely aesthetic’ or in any sense
‘purely mathematical’; he was concerned, rather, with the needs of physical geometry and his
efforts were successful.”
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The critic points out that it is not unreasonable that modern mathematical concepts
find uses in physics, since the applicability of mathematics relies heavily on
modeling. That is, scientists don’t apply mathematical concepts directly to nature,
but they ‘prepare’ the physical systems first—they idealize, abstract, simplify them,
etc.—precisely in order to apply the concepts they have available: mathematics
typically applies to a model of the system. Thus, to adapt a well-known proverb: ‘if
all you have is a hammer, then turn everything into a nail’.21

This idea has been advanced by several authors, both philosophers and scientists.
Among philosophers, Maddy (2007) and French (2000) argue for a similar view,
admittedly troublesome for the Wignerian perspective. And yet one may insist that
not all worries have been removed. For, on this picture, what we do is take a
collection of aesthetically-generated concepts and model the physical reality to fit
them. In doing so, we are successful quite often and—here is the crucial point in the
rebuttal—one wonders, how could this happen? In this context it is instructive to
reflect on what Jakob T. Schwartz (of the ‘Ultracomputer’ fame) writes:

Mathematics (…) is able to deal successfully only with the simplest of situations, more
precisely, with a complex situation only to the extent that rare good fortune makes this
complex situation hinge upon a few dominant simple factors. (1986, pp. 21–2; emphasis
added)

Is this ‘good fortune’ rare? The Wignerian demurs, and replies that in fact
many22 natural processes and phenomena “hinge upon a few dominant simple
factors “, and thus remain meaningful after all the simplifications, idealizations,
omissions are operated on them. So, why isn’t it the case, one insists, that the
opposite happens on a regular basis, namely that once we model and make these
adjustments in order to apply mathematics, what we get in the end is so rigid and
empty that a mathematical description, even correct, would be useless or mean-
ingless? Looked at it from this angle, the Universe does seem ‘user friendly’ after
all. So, to return to the proverb above, at the important junctures in science the
scientists often tried to ‘make’ nails—and they succeeded. And, if they did, this
means (the Wignerian insists) that this very possibility was somehow present there,
and has to be accounted for.

In closing the discussion of S4, I should mention a variation on this theme by
Wilczek (2006, p. 8), who writes:

Part of the explanation for the success of mathematics in natural science is that we select
what we regard as the scientifically interesting aspects of nature largely for their ability to
allow mathematical treatment.

21Note that such an objector has no troubles to accept the first premise of WA, that these concepts
are in the mathematical corpus because they are interesting and intriguing; if this objection from
preparation and modeling is viable, the origin of concepts is just irrelevant.
22Recall that ‘many’ is relative; it means, ‘many among the truly important ones’, since these are
the ones that matter, as we remember from the discussion of premise 3 above.
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That such a selection strategy23 is in use in science sounds like a factual claim,
and thus it is open to investigation (we can perhaps run a survey among scientists?).
However, even before the results are in, the proposal strikes me as an exaggeration.
To one who says that “[scientists] select what [they] regard as the scientifically
interesting aspects of nature largely for their ability to allow mathematical treat-
ment”, a Wignerian is tempted to reply that although there may be cases like these
on record (and Wilczek mentions one, the behavior of ultrapure semiconductor
hetero-junctions subject to ultra-strong magnetic fields at ultralow temperatures), it
is extremely hard to believe that this is a fundamental, and widely accepted, rule of
the game in science. Moreover, when one recalls the standard examples of ‘aspects
of nature’ to motivate the puzzle—as mentioned above: General Relativity,
Quantum Mechanics, the characterization and classification of elementary particles
in Quantum Field Theory—one remarks that none of these fit the selection strategy
idea. Gravitation or the observed invariances holding among elementary particles
were surely not “regard[ed] as scientifically interesting aspects of nature largely for
their ability to allow mathematical treatment.” On the contrary, it seems pretty clear
that they were considered scientifically interesting independently of the existence of
such a treatment.

The fifth solution S5 is built around the idea of what can be called over-de-
termination. Now one rejects premise 2: there is nothing ‘unreasonable’ about the
fact that the aesthetically-generated concepts and structures find a home in physics
simply because there is a lot of them. There is a lot of mathematics to choose from
when one looks for embedding a physical idea, and this quantitative fact alone
solves the problem generated by the existence of the anticipatory coincidences.24

To adapt Wilczek’s archery metaphor, there is no mystery in the fact that when
many arrows are shot, they’ll eventually hit even a very small target.

The over-determination idea is admittedly very powerful, and yet can be
doubted. To exploit the archery metaphor further, it is true that when many arrows
are shot, they’ll eventually hit even a very small target—but only if they are shot in
the right direction, that is, in the direction of the target! How would that translate in
less metaphorical terms: if the concepts are aesthetically-driven indeed, the fact that
there are so many available to choose from doesn’t really affect Wigner’s overall
point. That the ‘arrows’ (the subjective, aesthetically-selected concepts) are all shot
in a direction other than the ‘target’ (the objective, careless world) surely doesn’t
make it more likely that the ‘target’ will eventually get hit even if there are very
many of them.

23See also Maddy (2007, p. 339): “As a mathematical analog, I suggest that we tend to notice those
phenomena we have the tools to describe. There’s a saying: when all you’ve got is a hammer,
everything looks like a nail. I propose a variant: if all you’ve got is a hammer, you tend to notice
the nails.”
24Maddy (2007, p. 341) puts it as follows: “With the vast warehouses of mathematics so gener-
ously stocked, it’s perhaps less surprising that a bit of ready-made theory can sometimes be pulled
down from the shelf and effectively applied.”
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Finally, we should now examine closely the sixth solution S6. Its key-insight is
somewhat similar to S3, but its proponents develop the argument in a different
manner. Supposing that one accepts that the modern mathematical concepts are
generated and selected on the basis of our aesthetic sense (i.e., premise 1), Wigner’s
conclusion still doesn’t follow since our aesthetic sense itself is a result of evolu-
tion, and thus shaped by, and sensitive to, our environment—i.e., to the ‘natural
structures’ around us. Hence it enjoys some sort of objectivity, due to its origin;
therefore the contrast subjective v. objective underlying the puzzle doesn’t hold.25

As I said, this solution re-iterates S3, but in a subtler way: it accepts the first
premise at a superficial level, but rejects it at a deeper level.

Still, the Wignerian remains unconvinced. There is no doubt that evolutionary
pressure plays an immensely important explanatory role in a variety of areas. Yet
the explanation proposed here is hopelessly sketchy. On one hand, it’s perhaps not
hard to see how preferences for certain types of mating partners (the muscular and
faster specimens, the more vividly colored ones, etc.) may be interpreted as
reflecting what living creatures (humans included) take to be aesthetically pleasing.
But, on the other hand, even if such a reduction of the aesthetical to the evolu-
tionary advantageous is accepted (and it’s by no means clear that it should be!), one
still has a long way to go until one demonstrates that the aesthetical criteria involved
in shaping modern mathematics are also subject to the same kind of reduction.
When mathematicians talk in terms of beauty, they have in mind a highly formal,
and abstract, type of beauty—not the ‘corporeal’, or mundane beauty (supposedly)
efficacious in natural selection. The relevant question then becomes how exactly
can the environment, and evolutionary pressure more generally, shape this
formal/abstract beauty; this, the Wignerian urges, is a yet unanswered question.
Moreover, given how counterintuitive the suggestion is after all, it is fair to say that
the burden of proof (rather: answer) is on the proponent of this kind of solution.

5 A Sketch of yet Another Solution

At the end of the examination of the first solution S1 (the only one disputing
premise 3), I concluded that there are ways to read this premise that would make it
plausible. If all that matters is how we count the scientific episodes that vindicate
Wigner, then we can also count in his favor; this is the ‘qualitative’ perspective I
introduced above. The solution I’ll be sketching now assumes this qualitative
perspective, and still attacks this third premise, but in a more radical fashion. What
I’ll discuss here is not the number of successes of applicability [aspect (α) above],
but the ratio of successes to failures [aspect (β)].

25I take Pincock (2012, pp. 184–5) to advance this line of thought: “Even an argument based on
natural selection seems imaginable according to which our tendency to make aesthetic judgments
is an adaptation precisely because these judgments track objective features of our environment.”

26 S. Bangu



The insight behind this solution is of an ‘ecological’ nature, i.e., it has to do with
the way ideas ‘survive’ in the scientific ‘environment’. The scenario I envisage is
quite simple. Imagine a physicist—call him Neinstein—thinking up a novel
physical theory at time t. Assume further that his idea is bold, and a candidate to
belong among the several (yet, recall, not that many in absolute number) major
scientific achievements one typically mentions in connection to the qualitative
approach to the Wigner’s problem. Now, it is a fact that such a scientist has to
embed his insight into a mathematical formalism. I take it to be beyond doubt
(again, as a matter of sociological/professional scientific fact) that without such an
embedding, i.e., without the ability to write down the theory’s central mathematical
equations, the theory is extremely unlikely to draw any interest from the scientific
community. Neinstein’s theory—again, left in the form of a vision, or deep insight
into the nature of things—might of course float around for a while, in the heads of
other fellow scientists, but until it comes packed in a mathematical formalism, very
few (if any) will be ready to take it seriously as more than mere speculation. In
other words, the un-mathematized insight will not survive, just like organisms and
species don’t survive in uninhabitable environments. So, on this picture, what
would have happened with a Neinstein proposing General Relativity before
Riemann? Bluntly put, we would have never perhaps heard of him and his theory
(or, as one might note, we shouldn’t even call it a ‘theory’ in the first place, but stick
with the initial label and call it a ‘vision’, ‘revelation’, ‘insight’, ‘speculation’, etc.)

In fact, one doesn’t even need to make the assumption that our physicist’s idea is
a major one: any idea in physics, no matter how trivial, needs mathematical
embedding. Yet, just to stay within the confines of the above qualitative interpre-
tation of Wigner’s point, let’s assume we focus only on ‘major’ insights here. Thus,
the thought behind this seventh solution is that it is guaranteed that for any case of a
major idea in physics (developed at a certain time t), the scientist(s) proposing it will
have found a mathematical formalism available to embed it, and thus express it as a
proper scientific theory (where the formalism was of course developed, at least in
part, at an earlier time t′). As intimated above, the reason for this is immediate: were
this not the case, that idea would not have been recognized (as a valid scientific
contribution); it would not have survived, and there would have been no theory to
talk about today in the first place. Thus, there is no anticipation, no pre-adaption, no
pre-established harmony, no miracle—only a filtering (‘ecological’) effect operating
in the scientific environment. To stress the point above, if the mathematics had not
been available when needed, such an idea/theory would most likely have been lost,
perhaps forever—and thus the Wignerians could not have counted it (nor Neinstein)
among the examples of (major) achievements/achievers.26

26Sometimes the physicists themselves try to develop the mathematics they need, but usually aren’t
successful. Here is the story of Gell-Mann in Steiner (1998, p. 93), relying on Doncel et al. (1987,
p. 489): “[In trying to generalize the Yang-Mills equations] [w]hat Gell-Mann did without
knowing was to characterize isospin rotations as a ‘Lie Algebra’, a concept reinvented for the
occasion, but known to mathematicians since the nineteenth century. He then (by trial and error)
began looking for Lie Algebras extending isospin—unaware that the problem had already been
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To return to Weinberg’s rendering of the Wigner problem, we now see that there
can’t be any cases of (major) achievements in physics in which the mathematician
hasn’t been ‘there’ before. The very fact that there is an achievement to talk about
(i.e., recognized as such) is already a guarantee that there was a mathematician
‘there’ first. To begin by presenting a number of examples of achievements and
then wonder how could it be that a mathematician was ‘there’ first is like wondering
how could it be that all the people we find in a hospital are sick.

This new criticism27 against the third premise amounts to maintaining that the
quantitative comparison implicit in the third premise (even when read along the
qualitative lines I proposed above) may actually be unintelligible. What we should
be able to estimate is the number of the cases in which important physical ideas
were advanced but no mathematical embedding for them was available—and then
compare it to the number of successful cases (which, again, we assume we can list).
Then, the argument goes, we have something to worry about only if the later
number is much larger than the former (given premise 1, the aesthetical origins of
mathematical concepts, and 2, the assumption of anti-anthropocentrism.) However,
as I hope it is now clear, when it comes to this relevant ratio, we are able to
(roughly) estimate only one number (the successes), but no way (even in principle)
to estimate the other (the failures).
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Fast and Frugal Heuristics at Research
Frontiers

Thomas Nickles

Abstract How should we model scientific decision-making at the frontiers of
research? This chapter explores the applicability of Gerd Gigerenzer’s “fast and
frugal” heuristics to frontier contexts, i.e., to so-called context of discovery. Such
heuristics require only one or a very few steps to a decision and only a little
information. While the approach is somewhat promising, given the limited
resources in frontier contexts, trying to extend it to fairly “wild” frontiers raises
challenging questions. This chapter attempts to frame the issues (rather than to
provide resolutions to them), and thereby to cast light on frontier contexts, which
have been misunderstood by philosophers, the general public, and funding agencies
alike.

Keywords Context of discovery � Decision under uncertainty � Fast and frugal
heuristics � Frontier research � Gigerenzer

1 Introduction

Is it possible to make rational decisions in frontier research contexts, or must we be
resigned to being non-rational or even irrational? Rarely can the more substantive
decisions that must be made in such contexts satisfy the conditions of logic and
probability theory required to meet the traditional standard of rationality. Since such
decisions violate the standard, are they therefore irrational, no matter how careful
are the researchers? Such an answer seems harsh, since investigators often can
provide reasons for choosing B rather than A or C. In such cases these reasons are
far from conclusive, yet they may be as well as one can be expected to do under the
circumstances. To say that researchers blundered when a decision did not turn out
well is simply unhistorical and whiggish if they were doing as well as can be
expected in their frontier context (Kuhn 1970b, Sect. II).
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If the answer to the rationality question is a qualified affirmative, the next
question is whether there can be an ameliorative role for an account of rationality in
frontier contexts, that is, one that provides guidance to improve reasoning in such
contexts, an account with normative force. Gerd Gigerenzer and the Adaptive
Behavior and Cognition (ABC) Group give an affirmative answer to both questions
(Gigerenzer et al. 1999; Todd and Gigerenzer 2000). They want to extend their
account of “fast and frugal” heuristics and “ecological rationality” to real-world
contexts characterized by uncertainty, and they want to improve human reasoning
in both routine and risky contexts.1 They reject the invidious use of context-of-
discovery/context-of-justification distinctions by the logical empiricists and Karl
Popper to exclude frontier research from epistemology and scientific methodology.
They dismiss Popper’s Romanticism (theories as non-rational creations of the
imagination) and return to a more Enlightenment conception of reasoning as
rule-based calculation or computation—but not to the Enlightenment, universal, a
priori standard of rationality. In many cases, they claim, fast and frugal (f&f)
heuristics will do as well or better than traditional rational decision theory, where
the latter is applicable.

One of their goals is to extend their core results to new areas, both descriptively
and normatively. Frontier research is one of these areas. Given the limited infor-
mational resources of frontier research, exploring the promise of the ABC approach
would seem to be well motivated. A more positive motivation is provided by the
many studies showing that experts typically use less information than novices and
by the many stories of scientists and technologists who made breakthroughs by
ignoring one or more theoretical constraints or even empirical data. In these cases
we have the irony that the way ahead in dealing with the problem of sparse
information may be to make the sparse information even sparser!

Failure at the frontier would not be a refutation of the program as a whole, which
has already enjoyed many successes. Todd and Gigerenzer themselves remark that
“Some higher-order processes, such as the creative processes involved in the
development of scientific theories or the design of sophisticated artifacts, are most
likely beyond the purview of fast and frugal heuristics” (2000, 740). But frontier
research involves many things, and the question is worth investigating.

Accordingly, this chapter is a first attempt to explore whether or not the f&f,
ecological rationality program can be usefully extended to fairly “wild” frontier
research contexts. As Gigerenzer and his many associates have shown over the past
thirty years, the approach works very well in several important practical contexts that
are not frontier-like. When it comes to frontiers, Gigerenzer’s main contribution is

1There are other lines of both descriptive and normative work of this sort. Meehl (1954) was
critical of the expert-intuitions approach typical of traditional clinical psychology and argued, with
empirical support, that relatively simple decision rules often provide better results. Meehl’s rules
are not always fast and frugal, and Gigerenzer does not reject expert intuition as a
sometimes-reliable basis for decision-making. See also Dawes (1979). Bishop and Trout (2005)
argue for an ameliorative epistemology to replace standard analytic epistemology. They identify
with the Meehl tradition and are rather critical of Gigerenzer’s approach (Chaps. 8 and 9).

32 T. Nickles



the “tools-to-theories” heuristic, by means of which the tools that researchers use to
study organisms are subsequently projected onto the agents themselves as the
explanation for how their cognitive systems work. Given limitations of space, I save
detailed discussion of this heuristic (and also case-based thinking) for other work
(Nickles draft-2015).

2 The Problem of Research Frontiers

It is at the frontiers of inquiry in the sciences, technologies, and the arts where our
most substantive knowledge about the universe, including us humans, grows. The
central problem of frontier theory of inquiry is this. (1) Roughly speaking, the
wilder the frontier, the sparser or more badly organized the available domain
knowledge. (2) Yet for the heuristics and other procedures employed, there is a
roughly inverse relationship between problem-solving power and specificity, or
problem-solving power and domain knowledge, just as turned out to be the case in
computer science.2 (3) Reasoning in frontier contexts involves a good deal of
decision-making under uncertainty, often-extreme uncertainty, not merely
decision-making under risk. Thus standard probabilistic methods, including stan-
dard Bayesian analysis, will not suffice.3 (4) While past frontiers have been tamed
by successful science, their problems now being reduced to routine solution
methods, current frontiers are just as challenging for us as past frontiers were to the
scientists who experienced them. As Hume argued intuitively, and as Wolpert and
Macready (1995), Wolpert (1996) have argued in a series of “No Free Lunch
Theorems,” no inductive rule can be known a priori to be superior to any other
when all possible domain structures are taken into account. And frontier research is
that which ventures into new domains.

As science expands into new territory, including more deeply into an established
field, there is no guarantee that old techniques will continue to work. Moreover,
ongoing developments frequently undermine deep orthodoxies of the past. Consider
what happened to remarkably successful classical mechanics when scientists
attempted to extend it to the deeper atomic-molecular domain. Thus cumulatively
building upon past work can take scientists part way at best—and sometimes into a
blind alley. Science is nonlinear in the sense that even a fairly normal result may
produce a conflict with another claim than cannot be resolved. And even when
scientific change is more evolutionary than revolutionary, the change can be as
dramatic as you please, given enough time. To be sure, ongoing frontiers can be
tamed a bit by increasing expertise and by technological advances (e.g., computer
modeling versus modeling the old fashioned way), but only a bit. If they could be

2See the quotations from Edward Feigenbaum and Allen Newell in my (2015).
3There are exceptions, e.g., causal Bayesian networks and (other) algorithmic searches of large
databases.
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tamed to the level of completely routine science, they would not be wild frontiers or
even research in the fullest sense, and the growth of that specialty area would be
minimal.4 As our techniques improve, our aspiration levels rise.

At stake is the big issue of whether a “frontier epistemology” or “frontier theory
of inquiry” is even possible. There is, of course, no question of finding a
turn-the-crank algorithm that routinely produces novel successes, let alone a uni-
versal logic of discovery.5 Even requiring that frontier decisions reflect reliable
processes (as required by reliabilist epistemology) may be too strong.

How do creative scientists make decisions concerning their next research steps at
frontiers of research? Skilled people of all kinds are creatures of routine, but here I
am talking about non-routine decisions of the sort that determine the direction of the
research or whether or not to explore previous results or practices in a substantially
transformed manner. I shall not here attempt a taxonomy of frontier contexts,
although I think a large collection of concrete examples would be useful and might
even lend itself to a limited degree of higher-order classification, at least at the level
of problems. Significant research often requires developing new tools and/or new
resources, material, conceptual, practice-based, and organizational. It is frequently a
dynamic enterprise that involves developing new vocabulary, among other tools,
and articulating new or shifted goals. A piece of pragmatic wisdom is that there are
two ways to solve a problem: You can get what you want or you can want what you
get. If you know exactly what you need to get, you are doing fairly routine, normal
science. To the degree that you are open to wanting what you get, you are entering a
frontier.

My general answer to the question of how scientists make decisions in risky and
in uncertain research contexts is by means of heuristic appraisal, i.e., evaluation of
the heuristic potential of the different research steps considered (Nickles 2006). My
ultimate aim is to make this idea crisper by linking it with extant studies of
heuristics, in this case Gigerenzer’s. In this chapter I can make only a few gestures
in this direction.

What are f&f heuristics? They are computationally precise rules that lead to a
decision in one, two, or a very few, clearly defined steps and that do not require
large amounts of information. A fast heuristic is one that does not require much
computation. Typically, its search is limited to a small amount of the total infor-
mation available.

But how useful Gigerenzer’s f&f rules can be in frontier contexts remains a
challenging question. Most of the successful applications to date lie in fairly routine
sorts of decision contexts. Moreover, there is an ambiguity in talk of domain
specificity (specificity of application versus specificity in explicitly building domain

4For a defense of these claims, see Nickles (2006, 2015, draft-2015).
5Strong proponents of Bayesian methods sometimes leave the impression that Bayesian methods
are the updated form of a universal, content-neutral scientific method; but many frontier contexts
would seem to pose severe difficulties for Bayesian methods as for other approaches.
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information into a decision rule or an algorithm itself: Sect. 6 below). And some
authors loosely lump together risk and uncertainty, often in popular writings. Like
the ABC Group, I shall follow the standard usage of decision theorists and econ-
omists in distinguishing decision making under uncertainty from decision making
under mere risk. While frontier contexts are certainly “risky” in a popular sense, it is
uncertainty that creates the deep difficulties.

What exactly is the difference? According to standard decision theory as
employed by economists and others, decision-making under risk is a matter of
maximizing one’s expected utilities. In the full-blown case, one has (a) several
action options, (b) a partition of relevant future states of the world, (c) a probability
distribution over them, plus (d) utility assignments that reflect a well-defined
preference ranking. By contrast, some of this information is missing from situations
of decision-making under uncertainty. In frontier research contexts, one will rarely
have a partition of states of nature and their probabilities, and one is likely to be
unclear about the ultimate goal and hence the preference ranking and utilities.
Uncertainty in a broader sense also characterizes the consequences of present work
in the context of other results, in terms of the degree to which they may be
destabilizing or unifying. Sometimes even fairly normal results turn out to be
destabilizing, e.g., by introducing discrepancies (“anomalies”) that, despite much
effort, can never be reconciled with extant theory or practice.

I emphasize that the frontier sparseness problem is not always a matter of a small
quantity of domain information, e.g., empirical data. Even more important, in most
cases, is the structure of the domain, which has to do with how domain information
is organized in terms of lawful principles, causal relations, statistical correlations,
and the like. Today everyone is talking about problems of handling Big Data, how
to mine it for relevant information, how to discern patterns in it, etc. What I like to
call the knowledge pollution problem can present major difficulties even in frontier
contexts. Today we are so awash with information that it is often difficult to identify
the relevant pieces. The answer that we seek may be hiding in plain sight. No
physicist has the time to read The Physical Review, for example, now that it has
gotten so large. Ditto for chemists attempting to read even chemical abstracts.
Chemical Abstracts Service (CAS) has now registered almost 100 million distinct
organic and inorganic substances, a good many of which are being studied in new
research papers each year.6 The periodical Chemical Abstracts grew so large that
the American Chemical Society stopped print publication of it in 2010.7 The society
developed SciFinder as a tool to recall relevant items in the huge chemistry data-
base. Research scientists have developed heuristic filters of various sorts as parts of
their individual research styles, but most of them surely employ keywords as a
literature search procedure that is much faster and more frugal than reading

6Moreover, as the CAS website informs us, CAS deals only with “disclosed” chemistry, not the
undisclosed, secret research for military and proprietary purposes.
7Wikipedia article “Chemical Abstracts,” accessed 2 June 2015.
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abstracts. In fact, a f&f heuristic filter here would be: If an article displays one of
your research keywords, read the abstract! A slightly more complex rule would
prioritize according to the number of keywords from your list. Perhaps these are not
successful f&f heuristics in Gigerenzer’s sense, since the proportion of useful hits is
not likely to be high, but we might call them f&f neighbors of those rules.

In The Structure of Scientific Revolutions (1962, 1970a, b) Thomas Kuhn drew a
sharp distinction between normal science and extraordinary or revolutionary sci-
ence, but it is more plausible to think of a spectrum of frontier possibilities between
these extremes. At the “normal” extreme the frontier is pretty tame: the goals and
problems are fairly well structured, to use Herbert Simon’s term (1977, Sect. 5.3).
At Kuhn’s revolutionary extreme the frontiers become so wild that Kuhn spoke
(problematically) of incommensurability between the new and the old practices. Be
that as it may, in fairly wild frontiers the problems are ill structured, and even the
goals and vocabulary are likely to shift as the research proceeds. I attempted to
capture the flavor of moderately wild research frontiers in Nickles (2015). Here I
shall add a quotation from Richard Rorty. Although he is not usually quoted in
extenso by philosophers of science, the following extended passage characterizes
the revolutionary extreme as I conceive it.

The gradual trial-and-error creation of a new, . . . vocabulary—the sort of vocabulary
developed by people like Galileo, Hegel, or the later Yeats—is not a discovery about how
old vocabularies fit together. That is why it cannot be reached by an inferential process—by
starting with premises formulated in the old vocabularies. Such creations are not the dis-
coveries of a reality behind the appearances, of an undistorted view of the whole picture
with which to replace myopic views of its parts. The proper analogy is with the invention of
new tools to take the place of old tools. To come up with such a vocabulary is more like
discarding the level and the chock because one has envisaged the pulley, or like discarding
gesso and tempera because one has now figured out how to size canvas properly.

This Wittgensteinian analogy between vocabularies and tools has one obvious drawback.
The craftsman typically knows what job he needs to do before picking or inventing tools
with which to do it. By contrast, someone like Galileo, Yeats, or Hegel (a “poet” in my
wide sense of the term—the sense of ‘one who makes things new’) is typically unable to
make clear exactly what it is that he wants to do before developing the language in which
he succeeds in doing it. His new vocabulary makes possible, for the first time, a formulation
of its own purpose. It is a tool for doing something which could not have been envisaged
prior to the development of a particular set of descriptions, those which it itself helps to
provide. (1989, 12–13)

So one way to put the larger question behind this chapter is whether there can be
an ameliorative epistemology of the frontier. My question is whether and to what
extent Gigerenzer’s approach can be extended from contexts of decision-making
under risk to decision-making under uncertainty. Mine is the meta-heuristic exercise
of exploring the promise (positive and negative) for extending his “less is more,”
f&f heuristic approach explicitly to frontier research contexts. I shall suggest that
introducing some broadly parallel Kuhnian elements may help this enterprise, by
adding some desirable concreteness to the treatment of empirical scientific research.
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3 Some Background: Kuhn, Simon, Gigerenzer

In my view the character of frontier research has been misconstrued by many
philosophers of science as well as by the general public and funding agencies. This
is surprising, since the frontier is the primary growth-point of knowledge. Karl
Popper stated that the central problem of philosophy is the problem of the growth of
knowledge (Popper 1972). But, as is well known, Popper himself, like the logical
empiricists, insisted that there is little that is philosophically interesting to be said
about this, that predictive testing of ideas already on the table is where the philo-
sophical action is. Two reasons in support of Popper’s position are that (1) there is
no single “nature” to the frontier: we must reject any trace of frontier essentialism,
and (2), accordingly, “the scientific method” that defines science is a myth (pace his
emphasis on falsifiability as a criterion of demarcation).

I believe that Popper was right on both of these counts but that there is nonetheless
important epistemological/methodological work to be done with frontier contexts.
One attempt was Kuhn’s. In The Structure of Scientific Revolutions (1962) Kuhn
aspired to rehabilitate context of discovery as a legitimate domain for philosophical
investigation. In that and related papers from this period (e.g., 1970a, b), he broad-
ened the context beyond logical relations to include rhetorical relations such as
similarity and analogy and argued that much problem solving in science is based on
noting similarities of the current puzzle to a paradigm-defining collection of exem-
plary problems and solutions. Second, he stressed the importance of heuristic fertility
over representational truth in decision-making at the frontier. Although there is much
to criticize in Kuhn’s dynamical model of scientific change, I believe that both these
moves are on the right track in opening up frontier contexts to investigation.

The positivist-Popperian position was also challenged from a very different
quarter. While many philosophers were still relying on the two-context distinction
to dismiss the idea of frontier epistemology, by the late 1950s Simon and company
were busy inventing artificial intelligence, much of which was devoted precisely to
just that—what we may call frontier epistemology. For Simon and colleagues,
attention to the discovery context was not only possible but also necessary if AI
were to advance. Simon stressed the centrality to inquiry of both problem solving
and heuristics. From around 1960 his insight was that, contrary to the naysayers, we
already had a good deal to say about the seemingly esoteric context of discovery.
For scientific discovery is a form of problem solving, we already knew a good deal
about that, and ongoing research was already teaching us more. Specifically,
problem solving (including problem finding) is search, and studying the advantages
and disadvantages of various types of searches through different kinds of problem
spaces is both a possible and a fruitful area of investigation. The proper use of
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heuristics makes a tremendous difference in the efficiency of such searches.8 In
short, Simon and AI made the treatment of discovery both unavoidable and
tractable.

Roughly speaking, Simon’s important distinction between well-structured and
ill-structured problems parallels Kuhn’s distinction between research puzzles in
normal science and the deeper, poorly defined problems central to revolutionary
science. Well-structured problems are those with well-structured problem spaces,
which means, basically, that there is a clear decision procedure for determining
whether a given point in the space represents an adequate solution.

As for heuristics, Simon’s were at first domain-neutral heuristics such as hill
climbing, backward chaining, and means-ends analysis (Newell and Simon 1972).
However, he soon recognized that these were helpful only in certain kinds of
empirically contingent circumstances. In that sense they were not purely a priori,
universally applicable rules but had implicit empirical content of a fairly general
sort. After all, they were heuristics!9 But meanwhile, AI adepts were discovering
that expert systems and knowledge-based computation in a stronger sense, by
featuring heuristics that explicitly incorporated domain content, could address more
difficult problems than the General Problem Solver of Newell and Simon, although
they were thereby far more restricted in scope of successful application.10

Simon is surely most famous for challenging the traditional, a priori conception
of rationality, replacing it with his positions on bounded rationality, satisficing,
heuristics, and contextual (environmental) sensitivity. Thus there is a premium on
economy of research. Attempting to do too much with the limited resources
available is not cost-effective.

Here again there is something roughly parallel in Kuhn. Both men make an
important contribution to a pragmatic account of how science works. Recognizing
how far successful scientific research departed from the logical models of
philosophers and from pious claims about the search for truth, Kuhn famously (or
notoriously) reinterpreted scientific progress as a matter of moving fruitfully away
from, or beyond, a starting point (a terminus a quo) rather than as moving toward a
final goal of representational truth about that domain of the universe (a terminus ad
quem). An important implication is that, in decision-making at frontiers, fertility
trumps truth. We thus avoid the “to the max” philosophy of aiming for final,
representational truth. Even when scientists think they know upon which path truth
lies, they will typically choose a more fruitful path, when available, one that gives

8AI researcher Douglas Lenat soon extended these ideas to all of science. “Discovery is ubiqui-
tous,” he said (Lenat 1978). Problem solving as search pervades scientific work, including the
testing and justification phases (regarded as ongoing practices or processes rather than finished
products), and is not limited to an early stage of “context of discovery.” Thus understanding
discovery is necessary to understand science.
9Wimsatt (1980) stressed that even reliable heuristics work well only in limited domains of
application.
10The distinction is between those AI systems that incorporate rules gleaned from human experts
and knowledge-based systems more generally.
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them something more doable or that promises new and interesting results. For
instance, several physicists expressed disappointment in the apparent discovery of
the Higgs boson at CERN, on the ground that a deviation from expectations would
have left them with a lot of interesting physics yet to do. But in fact, when it comes
to general theoretical claims (and some other claims as well), the absolute truth is
not attainable with any assurance—and especially not in frontier research. There is
no direct test for truth, either in advance or post hoc, that is, after the research is
completed. By contrast, we can know, post hoc, whether or not a line of investi-
gation has been fertile. The question is: how reliably can we estimate this in
advance? How reliable can heuristic appraisal become?

As already hinted, this may be good news for the progress of inquiry but bad
news for strong scientific realist positions, for there is no reason to think that truth
(or truthlikeness) is correlated with fertility in the human order of inquiry. Fertility
is not a reliable proxy for truth. Indeed, when working scientists speak of truth,
many of these locutions are best interpreted as a summary statement concerning
fertility. To use medieval terminology, what is fruitful in the ordo cognoscendi
(order of knowing) may yet be very far from the ordo essendi (order of being or
causal order). From my historicist point of view, the closer we look at the processes
of scientific investigation, including the history of science, the less attractive the
philosophical position of strong, convergent, philosophical realism looks in those
areas where we lack a high degree of controlled experimental access. Conversely,
strong realists tend to treat frontier research in a shallow manner, as tamer than it
usually is (Nickles in press).

4 Gigerenzer’s Ecological Rationality

Gigerenzer and his associates in the Adaptive Behavior and Cognition
(ABC) Group locate themselves in the Simon tradition of ecological rationality. The
f&f heuristics program is an important development in empirical decision theory,
what we might call “behavioral decision theory”) as a kind of generalization of
behavioral economics.11 “Loosely speaking,” writes, Gigerenzer (2010, p. 50), “the
heuristic lets the environment do much of the work.” Context-sensitivity here
means taking the structure of the environment into account, thereby avoiding what
is often called “the fundamental attribution error,” which, by failing to take into
account environmental factors, forces us to attribute unnecessary cognitive com-
plexity to the organism.

The f&f heuristics approach is a bold departure from traditional decision theory.
The latter requires maximizing expected utilities and thus typically requires large

11Gigerenzer’s treatment of heuristics thus differs from the “heuristics and biases” program of
Tversky and Kahneman, which retains the classical conception of rationality (Kahneman et al.
1982). See, e.g., Gigerenzer et al. (1999, 2011).
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amounts of information (often unavailable) and huge amounts of computing power,
often impossible amounts. A f&f heuristic must be fast (one, two, or perhaps three
steps), frugal (employ a minimum of informational content), and be computable. To
be computable the heuristic must contain a precise search rule, a decision rule, and a
stop rule. In sum, the goal to be achieved and the steps needed to achieve it are
completely determinate.

Gigerenzer’s breakthrough came when, surprisingly, the Germans he was testing
performed better on a population comparison of pairs of U.S. cities than Americans
themselves did. The Germans could be interpreted as using a simple recognition
heuristic: If you recognize the name of only one of the two cities, choose that one as
larger. The best performers were those agents in the Goldilocks position of knowing
something about American cities (in this case) but not too little or too much. The
Americans did poorly, on average, because they knew too much: they had heard of
all of the cities.

Gigerenzer and the ABC Group have since extended this line of research to
several f&f heuristics in a variety of applications, including medicine and law,
showing that they often do as well or better than far more computationally
expensive methods such as multiple regression. Gigerenzer does not dismiss tra-
ditional statistical methods completely, however, granting that there are contexts in
which they give better results. One of Gigerenzer’s main points is that there is no
“one size fits all” method. Accordingly, he and the ABC Group speak of an
“adaptive toolbox.”Which tools are useful depends upon the domain of application,
the ecological context.

5 Some Reasons for Optimism

In the remainder of this contribution I first itemize some reasons for thinking that
something like the ABC approach might help us to understand decision-making in
frontier contexts, and then I list some challenges that such an extension faces.

(a) Many empirical studies show that experts search for and use less information
than do novices. Experts are far more selective. True, at far frontiers, no one is
an expert in terms of detailed domain knowledge, but there remains a big
difference in research know-how.

(b) Using frugal heuristics of some kind is the default situation for many frontier
decisions, given the scarcity of domain information.

(c) Being quick, easy, and cheap to use, f&f heuristics are potentially valuable,
especially in the resource-poor, early-to-middle stages of a research project,
when researchers know something, but neither too little nor too much.

(d) Not even wild scientific frontiers are entirely new. To some degree old
methods of investigation can be recycled or adapted to the new application.
Typically, many tools are in play, some old, some newly evolving. For
instance, a new instrument may produce reams of new data that can be
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analyzed by older methods, and a new model will often permit familiar kinds
of computation.

(e) The method of hypothesis, long taken to be the central method of science,
already retains the less-can-be-more motif, since the researchers introduce
hypothetical premises into key scientific arguments, e.g., for purposes of
potential explanation and prediction. Contrary to Euclidean methods that
require reasoning only from already established truths, or to Baconian meth-
ods that require those truths to be observational from rich data sets, the method
of hypothesis both dispenses with the known-truth requirement and flourishes
in data-sparse domains. It even functions to identify which observations are
most relevant to seek. (However, in a sense it adds new information, hypo-
thetically.) Modeling methods push still further by allowing premises already
known to be false. Modeling is the use of heuristics writ large.

(f) Heuristic reasoning typically works by neglecting some factors. For example,
a back-of-the-envelope calculation may reveal the heuristic promise of a line
of investigation where rigorous accounting for the variables in play or where
immediately requiring precise agreement with exact measurements would
spoil the exercise (see, e.g., Miller 2002).

(g) There is surely at least a grain of truth in Levins (1966) famous argument that,
when dealing with complex systems, scientists must strike a compromise.
Levins prefers to sacrifice quantitative precision to generality and realism. And
then there are the many instances in which experts from other fields come in
and make a breakthrough partly by ignoring the constraining expert culture or
“context bias” of the field in question, while perhaps introducing new mod-
eling ideas or constraints of their own.

(h) Much frontier thinking is rhetorical, based on analogies, similes, or metaphors.
All of these make some features salient while ignoring others. In their intro-
duction to The Psychology of Problem Solving, Pretz et al. (2003, 10–11)
remind us that, when faced with analogy problems, “knowledge is actually an
impediment to problem-solving success.” Good modeling typically depends
on identifying apt analogies while not becoming distracted by disanalogies.
“The man who knows too much” can easily think of disanalogies that, for him,
constitute knock-off arguments against a promising idea or technique. A key to
good modeling, especially in Kuhnian matching of current problems to
exemplars, is to be able to resolve the current problem into a combination of
exemplary problems, much as a legal expert can resolve a complex case into
multiple dimensions, each of which has legal precedents. Relevance does not
require identity.

(i) In their article “How forgetting aids heuristic inference” Schooler and Hertwig
(2005) argue that forgetting can be functional for higher cognition, as in the
recognition heuristic, when knowing too much spoils performance. There is
much anecdotal information that taking a break from work or changing the
venue or even closing one’s eyes (Vredeveldt et al. 2011) can help us gain a
perspective on essentials, by suppressing the clutter of detail. We have all had
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the experience of giving some of our most insightful lectures when arriving at
class underprepared and “winging it.”

(j) What of “follow your gut instinct” and “trust your intuition” as f&f heuristics
for experts working at frontiers? These fit the less-can-be-more idea in the
sense that they are immediate, one-step procedures that require little or no
conscious deliberation. I agree with much that Gigerenzer writes in his Gut
Feelings (2007) and also with Damasio (1994), Thagard (2004, 2008) and
others that emotion can be cognitively important and can play a guiding role in
good decision-making. We believe that much animal cognition employs the
emotions as an important adaptive endowment. We also want to recognize the
role of skill or expertise. But caution is necessary. Apart from the difficulty of
determining whether or which subconscious rules are in play (see (ix) in
Sect. 6), there is the Meehl tradition that argues that simple statistical rules
often outperform the intuitions of supposed experts. (Is there thus something
of a tension within Gigerenzer’s own view?) Furthermore, intuitions that are
the product of deeply ingrained habits of experts are again the products of
much domain experience (either ontogenetic or phylogenetic via evolutionary
learning) and thus reliably govern behavior only in normal situations rather
than in unfamiliar, frontier contexts.

(k) Given that f&f heuristics tend to work well within a specific environmental
niche or Umwelt with its domain structure, and given that cognitive economy
is an adaptive advantage in the biological world, we should expect evolution
to have hit upon many f&f heuristics that reduce cognitive load well below
what traditional logic and statistical inference requires, e.g., in adapting the
critter to the affordances crucial to the organism’s lifeways (Gibson 1979;
Norman 1993). On the ground of evolutionary continuity, we should expect
some of these to be wired into us humans as well, as the ABC program
supposes. However, again, the products of evolutionary adaptation will surely
be regularized behavior patterns rather highly specific tricks for faring well in
unfamiliar domains. Besides, regularized action rules would make the critter
vulnerable to predators, who will learn to recognize the behavior patterns—
unless some sort of randomizing decision procedure is built in.

(l) Quite generally human inquiry proceeds in a broadly evolutionary manner, by
default, for a variation-selection process is the only one we know that solves
the Meno problem (Nickles 2003). It is perhaps debatable whether evolu-
tionary biological processes themselves employ heuristics, since it makes little
sense to attribute prospective, problem-solving purposes, etc., to them (unless
we count such things as exaptation as heuristics: see Wimsatt’s commentary to
Todd and Gigerenzer 2000); but as Simon and others have emphasized,
heuristics become crucial in the human case. Lacking the bountiful resources
of Mother Nature (every organism on earth as a field experiment in a vastly
parallel “computation”), we need to take advantage of our small measure of
lookahead to employ a more efficient variation-selection process, one that we
can point in promising directions.
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Alan Turing once observed that an intelligent computer need not know what
arithmetic is, because its behavior is algorithmic. Similarly, Mother Nature
does not know what arithmetic or prey or predator or mate is but has never-
theless succeeded in creating “endless forms most beautiful” (in the words of
the final paragraph of Darwin’s Origin). If frontier research were governed
completely by fast and frugal heuristics, operating at the Turing or Darwin
limit, it might be able to make progress, but it would be extremely slow
progress. As noted, we human beings do have a bit of lookahead and can
formulate and address problems off-line, so to speak. The history of the sci-
ences and the arts discloses that we can proceed at a relatively fast pace, so
some degree of improved efficiency is possible. If this way of thinking is
correct, then Gigerenzer’s f&f heuristics may have some purchase in human
frontier research, but other, more powerful heuristics based on “knowing
arithmetic” (i.e., domain expertise) may be more important.12

Less-can-be-more heuristics are the key to solving theMeno paradox of inquiry,
as Simon and others have noted. Paradoxically stated, a less-can-be-more
approach is necessary to get more from less! The Meno paradox concludes that
learning—getting more knowledge from less, more design from less—is
impossible, because the inquirers either know already that which they seek (and
hence genuine inquiry is impossible) or else would not be able to recognize the
solution even should they stumble upon it accidentally (whence, again, suc-
cessful inquiry is impossible).13 The key to solving the paradox is to avoid this
all-or-nothing dilemma by going between the horns, by using indicators that tell
us, perhaps highly fallibly, whether we are getting warmer or colder in the
search for a solution. And, regarding research as a slow, step-by-step process of
variation and selection, the satisficer will be content with a solution that meets
the aspiration level “heuristically suggestive” rather than “certifiably true.”
It was Darwin’s theory of evolution that opened the door to the large domain
of variation-selection processes that show how to get more from less, in
Darwin’s case more biological design from less. My own view in Nickles
(2003) is heavily indebted to Campbell (1974) and Dennett (1995) as well as
to Simon (1945, etc.) and Wimsatt (2007). If universal evolutionists Campbell
and Dennett are right that all novel design emerges from a BVSR process, the
questions become: (1) Which ones are available in which kinds of frontier
situations? and (2) Which ones among the first set are more efficient than
others for a given task?

(m) In order to have a guiding role at the frontier, an ameliorative role, a heuristic
must satisfy some conditions, but the requirements should not be set so high
that they are impossible to meet. Since it is a form of appraisal, heuristic

12On Darwin and Turing see Dennett (2009). For his Tower of Generate and Test see his (1995,
1996).
13According to Simon (1992, 155): “Intuition is nothing more and nothing less than recognition.”
Klein (1999) develops a “Recognition-Primed Decision” model in which intuition plays an
important role.
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appraisal is normative; but it need be only weakly so to have some purchase.
There can be no requirement that the heuristic provide a route to truth or that it
meet the conditions of traditional rationality theory or even reliability theory.
As satisficers we must be content with highly fallible indications of fertility.
Often we must make do with something weaker than f&f rules. In the weakest
case we might fall back on pragmatic vindication: a heuristic has occasionally
seemed to work, we must act now, and nothing better is available.
Once we adopt Gigerenzer’s wider concept of rational behavior (jettisoning
the rational decision theory textbook statements about irrational behavior), we
have a better chance of making sense of frontier inquiry.14 But extending the
f&f approach to frontier contexts will require still more flexibility, and that
move will generate new challenges of its own (Sect. 6). Even if helpful f&f
rules in research contexts do not fully meet Gigerenzer’s requirements, this
would still be progress, with Gigerenzer’s model being the limiting case.
Stated otherwise, our satisficing in frontier contexts may require treating the
Gigerenzer limit as a rarely realizable optimum.

(n) Satisficing applies to content-specific research goals as well, and hence to
problem formulations. Creative researchers in fairly wild frontier contexts
remain open to unexpected twists that may alter their research goals. So a f&f
heuristic in the form of a production rule might be: If a research procedure
produces a surprising result, then decide to follow it up. This is a little too
vague to be a f&f rule in Gigerenzer’s rigorous sense, but it does have the
virtue of calling attention to the distinction between making a decision and
following up the decision made. The decision itself may be f&f, while the
resulting research is likely to be anything but f&f.
We must also have a way of resolving conflicts among rules (including
time-order conflicts, given that research time is itself a costly resource), which
is why one might consider a production system of such rules, with some sort
of prioritizing meta-rules. An example of a conflict is that the researcher may
be presented with many choices. Satisficing prohibits trying to determine
which choice has optimal heuristic potential. One possible rule is to pick that
choice endorsed by the gut instincts of the key researchers.
Thus a heuristic consideration should not be eliminated simply because it does
not contribute to a pre-established research goal. Part of the research exercise,
after all, is to better identify and articulate fruitful goals and resulting prob-
lems. This is one area in which politically controlled funding agencies such as
the U.S. National Science Foundation and the British Research Assessment
Exercise (which imposes evaluation metrics on university research) run afoul
of good research practice, by making it difficult to depart from the funded
research proposal (Gillies 2008).

14It is no wonder that those positivists who drew the invidious context-of-discovery/
context-of-justification distinction on traditional logical grounds found context of discovery to
be non-logical and hence non-epistemic.
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(o) It is also important not to restrict the application of f&f heuristics to indi-
viduals at the laboratory bench, for these heuristics are potentially applicable
at all levels and with different degrees of precision as regards goals. Many
“rules of thumb” for productively organizing research can probably be stated
as f&f heuristics. For example, having regular afternoon teas is a British
practice that brings researchers of different stripes together in an attempt to
overcome narrow specialist silo or tunnel effects. Other simple rules of thumb
govern the layout of lab space, informal meeting places in new buildings,
institutional grant-processing procedures and the like that improve the general
research culture by contributing to the economy of research.
Of course, the f&f decision at one level may result in a lot of work and cost at
another. Here are three quick examples. The method of hypothesis may focus
only on some known aspects of the phenomenon, namely those that it predicts,
and disregard the others. And even the five-step “scientific method” taught in
schools looks fairly fast and frugal if we formulate it at a high enough level of
abstraction: “Formulate and test the hypothesis that would explain the puz-
zling phenomenon.” However, such a rule is not computable, for it omits any
instruction about how to find a hypothesis worth testing and how to devise a
suitable test ( Lenat 1978 again). Second, “Build the new laboratory complex
with lots of space for informal communication.” Third, the peer-review pro-
cess used by journals is typically a f&f heuristic for filtering submissions: e.g.,
(i) Send article to three reviewers. (ii) If two of three agree on accept or reject,
make the corresponding decision. (iii) If step (ii) fails, send submission to one
more reviewer, etc.15

(p) Most of the examples discussed by the ABC Group concern empirical regu-
larities. However, f&f heuristics might be used to make theoretically deeper
moves. One is the aforementioned tools-to-theories heuristic, by which sci-
entists attribute to the system whose behavior they are trying to understand the
very same sort of cognitive tools the scientists themselves have developed to
analyze such phenomena (Gigerenzer 1991; Gigerenzer and Sturm 2007). An
example is the unconscious inference model of perception from Helmholtz to
Richard Gregory and beyond, in which the cognitive system of the perceiving
subject is hypothesized to compute visual attributes much as a team of sci-
entists would. This move can be formulated as a one-step f&f rule: If
methodological model M, constructed from the toolset T, adequately fits an
entity’s behavior, then attribute M to the organism or device itself as the real
process that generates the behavior (Gigerenzer et al. 1999, 23). This will be
possible only when the research methodology has matured, of course. Some
historical uses of the heuristic are suspect, as Gigerenzer and Sturm and others

15The peer-review process used by most journals and funding agencies has recently come under
fire. See, e.g., Braben (2004) and Gillies (2008).
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have noted. However, the move may advance research at least by providing a
“how possibly?” explanation of the behavior. I discuss the tools-to-theories
heuristic in (Nickles, draft-2015). Given that the preparatory work that makes
the tool-to-theories move possible is labor intensive and includes practical
familiarity with the methods as well as theoretical work (but not yet attribution
to the organism or artifact), should this work count against the heuristic’s
being f&f—or not, since it is work that is already done anyway?

(q) Another theoretical move is this. Much scientific research proceeds by mod-
eling current problems on one or more previously solved problems, as Kuhn
emphasized in his treatment of exemplars (1970a). He compared these sci-
entific precedents to the use of precedents in legal reasoning. In Structure
Kuhn limited the use of exemplars to normal science, so at first it would seem
that Kuhn’s exemplars face somewhat the same problems as Gigerenzer’s f&f
heuristics, namely, that they work well only for relatively crisp problems in
domains in which a good deal of structure is already known. Unfortunately,
Kuhn exaggerated the difference between normal and revolutionary science, as
when he claimed that a revolution eliminates or replaces all of the old
exemplars. However, he hinted in other passages that one can often trace a
historical continuity across the revolutionary transition (1962, Chaps. X, XIII).
For example, several special relativity and early quantum theoretic exemplars
are modeled on those of classical physics. Nor (going still further beyond
Kuhn) is such direct modeling of problems upon problems restricted to the
domain in which the original exemplar was formulated. On the basis of either
mathematical similarity or physical similarity, trans-domain modeling has
often been fruitful, indeed sometimes the basis of major breakthroughs. The
first order of business for many researchers is surely to locate precedents in
their field or (going beyond Kuhn) in other fields that bear some similarity to
their own research problems. Above I suggested a simple f&f rule for literature
search. One difficulty to be faced in this attempt to merge Kuhn and
Gigerenzer is that the latter treats f&f heuristics as explicit rules for
decision-making, whereas Kuhn adamantly criticized a rules approach.16

To sum up: these bits of reasons and evidence for the importance of
“less-can-be-more” research strategies are admittedly a scattered, ragtag bunch
and usually only marginally f&f at best; but collectively they do amount to
something. On the basis of reasons such as these it seems clear that “less can
be more” often works, indeed, that it must sometimes work, since we have
gloriously succeeded in solving the Meno problem and in getting more for
less, thanks to broadly Darwinian variation-selection procedures.17

16Structure, Chap. V, but see also his 1960s attempts at computer modeling in Kuhn (1970a, b).
17Darwin himself saw a connection to the Meno problem as is evident from his notebook entries.
See Desmond and Moore (1991, p. 263).
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6 Some Reasons for Pessimism

I list here some challenges to extending the f&f approach to reasonably wild
frontier contexts. Some items are surely genuine difficulties, others are open
questions. The ABC group is aware of all of these issues in some form (see, e.g.,
Todd and Gigerenzer 2000), but more attention is needed to frontier contexts, if
there is hope of extending the approach there. As before, the various items intersect
and overlap in various ways, but I shall continue to number them separately for ease
of reference. In some cases I briefly suggest a response.

(i) The tamed frontiers problem. The entire motivation for the extension to
frontier contexts is flawed, for regarding frontier research as the application
of f&f rules reduces it to routine, and that is precisely what frontier research
is not. Again, Kuhn rebelled at a rules approach even for normal science
(1962, Chap. V), but he had in mind explicit rules of the sort that would
appear in scientific texts.
Brief response. No one is claiming that f&f rules cover everything. Also,
weaker variations of f&f heuristics may be instructive even where there are
no known, strict f&f rules. The main suggestion here is to replace truth with
fallible, not even reliable, heuristic appraisal. Instead of requiring that a
correct outcome of a decision be true, we require only that it have a rea-
sonable chance of leading to fruitful and sustained research. Can it count as
satisficing with an aspiration level so low? Cues can sometimes be ranked.
Heuristic fertility is a fuzzy notion, but, as noted above, it is more accessible
than is truth, both prospectively and retrospectively.

(ii) The strong requirements problem. The frugality of frontier research contexts
does not yet establish the existence of usable f&f heuristics. Informationally
frugal heuristics are not necessarily fast, and fast heuristics need not be
frugal. In frontier contexts, imposing f&f or reliabilist requirements on
heuristic thinking would throw out the baby with the bathwater.

(iii) The evidence problem: descriptive. What is missing from the ragtag list of
Sect. 5 is hard evidence (e.g., historical cases or survey data) of the type that
Gigerenzer and the ABC Group provide for the several successful one-, two-,
or three-step heuristics that they discuss.

(iv) The evidence problem: normative. In frontier contexts there will usually be
insufficient evidence available in advance to validate the heuristics. Hence,
the heuristic approach can provide no guidance to research. How can
researchers know that they are applying validated f&f rules for this domain in
order to learn the domain structure, when validation presupposes that the
structure is already known, or at least that there is already a successful record
of application at the more superficial level of behavioral prediction? How can
the ecological validity of f&f heuristics in frontier contexts be tested? What
benchmarks could possibly be used in the case of fairly wild frontier research?
Response. One possible answer is that it cannot be known until domain
structure is worked out well enough that certain kinds of problems now
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become routine. If there are heuristic shortcuts in dealing with these prob-
lems that were used early the research, they can now be vindicated retro-
spectively. There are many instances in the history of science in which
non-rigorous tricks used successfully (say for computation) early in the game
were later vindicated or validated in some form, e.g., by showing that later,
rigorous results justified the shortcut. Two examples would be the use of
infinitesimals in early calculus and the early use of the Dirac delta function.
(I do not here examine whether any of their uses were f&f.)

(v) In frontier contexts the goals, constraints, and hence problems, are often ill
structured, making rigorous computability a severe (and still too traditional) a
requirement to meet. (Cf. xii.)

(vi) The multiple goals/tradeoffs problem. Wise researchers retain multiple goals,
with the result that decisions involve tradeoffs, whereas f&f heuristics are
non-compensatory. There are also values tradeoffs, specific and general,
fertility versus truth being a big, general one.

(vii) The dilemma. In sum, we face a dilemma. Insofar as we relax the standards
for f&f heuristics in order to adapt the approach to frontier research, we lose
the advantage of genuine f&f rules. But insofar as we enforce rigorously the
requirements for f&f heuristics, we lose our purchase on frontier research.

(viii) The ignorance-of-domain-structure problem (continued). The favorite ABC
examples are not frontier examples (with the exception of tools-to-theories).
In the case of the city-size decision problems, for example, we know that the
f&f heuristic works, where it does, because the analysts (Gigerenzer in this
case) but not the subjects tested already possess the relevant information on
the statistical structure of the domain (sufficiently accurate information on
city populations, in rank order). But that is precisely the sort of information
that is typically lacking at research frontiers. Filling out the domain structure
is the overall goal of the research, after all, and the researchers are in the
position of unwitting subjects rather than knowledgeable analysts. At that
point there do not yet exist knowledgeable analysts (in fact, none who will
know the truth about nature with the assurance of city population statistics).
This is why instruction in science courses leads to failure to understand the
frontier problem, for the teachers and the textbook writers have the position
of nearly omniscient analysts. One can even get a science degree without
ever confronting frontier problems.
To suppose that domain structure is already known would beg the research
question in somewhat the same way as did Simon’s early programs that
allegedly rediscovered Kepler’s laws, the law of specific heats, Ohm’s law,
and others (Langley et al. 1987). Supposing that the key conceptual and
empirical-organizational work has been done (identification of the key
variables, the way to measure them, etc.) reduces frontier science to the
routinized computations characteristic of textbook science—the eventual,
pedagogical product of the frontier research. At genuine frontiers the eco-
logical blade of Simon’s scissors is largely missing. Despite his historical
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sensitivity, Kuhn did something of the same thing in dealing successfully
with context of discovery (insofar as he did) only by further taming the
already non-wild frontier of normal science.18

(ix) Confusion of analysts’ and subjects’ knowledge. Another way of stating this
difficulty is that the successful German guessers of American cities’ relative
populations do not themselves know that they have in hand a reliable
heuristic. They are merely guessing. Only the analysts know, after the test
results are in. (Gigerenzer himself was initially quite surprised at this result.)
At the far frontier, everyone is merely a guesser, using something fairly close
to trial and error. We must carefully distinguish the knowledge of the ana-
lysts from that of their subjects. A reliabilist take on the situation does not
solve the problem either. Alvin Goldman holds that the successful Germans
used what was in fact a reliable process and thus did know something about
the domain, although they were not aware of that fact (commentary on Todd
and Gigerenzer 2000). But if heuristics are to play an ameliorative or nor-
mative role at the frontier, don’t they have to be known and applied
explicitly? Well, perhaps the intuitions of experts are a counterexample, but
are the successful German students experts? Surely not.

(x) Where do heuristics come from? To suppose that the heuristics are already
known and available at the frontier is another way of framing the above
challenges. Frontiers often call for the development of new methods or the
modification of old ones. Even in the tools-to-theories case it would be
misleading to say that method completely anticipates “theory,” although it
does anticipate the projection of the developed theory onto the subjects
themselves. Those people who believe in “the scientific method” for doing
successful science in all contexts run afoul of the aforementioned No Free
Lunch Theorems. Moreover, they are strangely committed to a sort of
intelligent design rather than an evolutionary conception of how new
knowledge comes into existence (Nickles 2003).

(xi) The ambiguity problem. There seems to be an ambiguity in the term ‘domain
specific’. Gigerenzer’s f&f rules are domain specific when it comes to suc-
cessful application, but which methods are not? The question is whether they
are domain-specific in incorporating domain knowledge into the rule or
algorithm itself. To take a simple case, the heart attack assessment example
at the beginning of Simple Heuristics that Make Us Smart incorporates
domain-specific medical terms and threshold numerical values relevant to
that domain. There is nothing like that in “take the best” and similar
heuristics themselves. As pointed out in Sect. 3 on frontiers, what makes a
method powerful is its including domain knowledge within it, and ditto for
instrumentation containing internal processing. I don’t disagree that it is the
implicit domain specificity of “take the best” and the like that gives them
their power, but I suspect that specificity in the strong sense can convey more

18See the especially the Goldman, Gorman, and Wang comments on Todd and Gigerenzer (2000).
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power, as well as explicitly identifying the domain of application. By con-
trast with the explicitly specific rules, “take the best” and its cousins are
domain-free methods already there waiting on the shelf to try out in various
contexts. In this respect they after all resemble the general rules of Newell
and Simon (1972), such as means-ends analysis and backward chaining.
Response. We must not overplay the difficulty, for it has turned out that the
research in both the Meehl and Gigerenzer lines has generalized surprisingly
widely. For many real-world systems we have learned that figuring out what
the primary one or two variables are is often enough to get a pretty good grip
on what is happening. The different f&f heuristics help us to classify prob-
lems into types or classes that can or cannot be handled in such-and-such a
manner (the toolbox idea). Moreover, Gigerenzer et al. speak of “biases”
built into f&f heuristics and agree with Newell and Simon when the latter
write: “To the extent that the behavior is precisely what is called for by the
situation, it will give us information about the task environment” (1972,
p. 55). The success or failure of application conveys domain knowledge,
making f&f heuristics useful probes, e.g., to determine whether one or two
key variables are especially salient. Similarly, applying f&f heuristics toge-
ther with the hypothetical use of the tools-to-theories heuristic to cognitive
systems provides information about how they work.

(xii) The rules attribution problem. What sense does it make to attribute rules to
non-linguistic animals or even to human cognitive systems, given that most
cognitive processing occurs below the level of explicit conscious reasoning?
Is the f&f heuristic approach committed to subconscious languages of
thought of some kind? Connectionists will surely disagree. Insofar as they
are right, it would appear that attribution of rules to subjects is an application
of the tools-to-theories heuristic that is metaphorical rather than representa-
tionally realist. Dan Dennett’s intentional systems approach comes to mind
as a sort of intermediate position (Dennett 1987).

(xiii) The knowledge pollution problem (reprise). Ironically, as research continues
and domain knowledge becomes richer, it may happen that a heuristic that
worked well enough at the crude stages of work becomes less effective,
simply because the researchers now know too much. This ‘Goldilocks’
phenomenon is nicely illustrated by Gigerenzer’s ongoing toy example of the
city population comparison task. A German who is quite ignorant about the
USA will do badly, but so will a German who knows a great deal. Finding
the happy medium is just another task for the ongoing research, since it
cannot be known in advance.
Response. Such a research trajectory has a happy outcome, after all. Many
heuristics are valuable as ladders that can then be thrown away when no
longer needed. After all, the methods, including heuristics and standards,
also evolve, as the research proceeds. In all creative fields the standards
imposed tend to increase in strength as the field advances.
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(xiv) The big switch problem. Gigerenzer and company sometimes speak of their
heuristics as simple ‘building blocks’, each one amounting to a kind of
cognitive trick or short-cut that works well for a particular domain. A reader
can be left with the impression that something like a highly modular con-
ception of cognition is the goal here. Is the ABC approach on the path to
massive modularity and its difficulties? One of these is the “big switch”
problem. Insofar as organisms solve problems by means of problem-specific
tricks, how do they decide what the problem is, in the first place, and hence
the specific trick?
Response. Evolved cue responses largely answer this question and similarly
for evolved tool use by human beings. Many species also have some degree
of learning within their own lifetime sufficient to produce deeply ingrained
habitual responses (“second nature”) that mimic biological instincts. Thus no
high-level cognitive switch as a decision mechanism is needed. Still, the Big
Switch problem can arise in early frontier research insofar as a bunch of
domain-neutral (as far as the investigators know) heuristics such as “take the
best” are already on the shelf, waiting to be used.
Dennett speaks of the evolutionary-wired-in reasons for behavior as
“free-floating rationales,” since the reasons cannot be articulated by the
actors, except, to some degree by us humans on the basis of evolutionary
studies (1995, pp. 133, 232, 1996, p. 49, 2013, Chap. 40). We might extend
the idea of free-floating rationales to habits of action acquired within actors’
lifetimes insofar as they are unable to articulate that wisdom. Thus expert
scientists working at frontiers can have free-floating rationales for some of
the decisions they make. Another Dennett phrase applies here as well:
“competence without comprehension,” at least full comprehension (2013,
Chap. 39). At the frontier the expert scientist is in a much better position to
inquire than a layperson, even when both are ignorant of the structure of the
domain at that point.
Another sort of big switch problem is how decisions are made when the
subject has many different ways of achieving the goal. This is the Bernstein
Problem, after the Russian, Nikolai Bernstein. Consider all the ways in which
an octopus can reach for something (all the degrees of freedom in play).
Other things being equal, the ABC Group advises to pick randomly. Fine,
but what sort of computational realization would this require in an octopus?

(xv) Rules versus intuitions? A skeptic might wonder whether heuristic rules are
what is wanted at the frontier, where hunches, intuitions, instincts, or ‘gut
feelings’ (Gigerenzer 2007) of experts may be in play. And there are a
variety of people from Wittgenstein to Heidegger and Hubert Dreyfus to
Kuhn who raise serious objections to rules approaches (but see Stanley 2011;
Thagard 2004, 2008). On the one hand, we do not want to treat all decisions
in a Kantian manner (according to the stereotype), as products of explicit
deliberation. On the other, many experts employ the term ‘decision’ in a very
broad sense that applies to children, the hunches of experts, to animals, and
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even to machines. Fortunately, the issue of what counts as a decision is not
one that I can delve into here.

(xv) Gigerenzer and company tend to treat “gut feelings” as the same as, or based on,
f&f heuristics. Other writers consider this a conflation of two different things.
For example, the Meehl tradition makes a sharp distinction between intuitive
decision-making and decisions based on statistically supported rules.19

7 Conclusion

The straightforward extension of the ABC paradigm to frontier contexts faces
challenges. While there are surely some f&f rules of some sort already used by
researchers, it is not clear how far they take us beyond practical wisdom already
widely known. The whole matter needs further discussion, with many concrete
applications. In my view a good strategy is to explore variations on the f&f idea,
along the lines of some of the suggestions above. The two theoretically deeper
heuristics mentioned above are the tools-to-theories move and adaptations of
Kuhnian exemplars. Exemplars are like mini-toolboxes, and a (perhaps complex)
version of the recognition heuristic is in play here.
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Scientific Realism, the Semantic View
and Evolutionary Biology

Fabio Sterpetti

Abstract The semantic view of theories is normally considered to be an account of
theories congenial to Scientific Realism. Recently, it has been argued that Ontic
Structural Realism could be fruitfully applied, in combination with the semantic
view, to some of the philosophical issues peculiarly related to biology. Given the
central role that models have in the semantic view, and the relevance that mathe-
matics has in the definition of the concept of model, the focus will be on population
genetics, which is one of the most mathematized areas in biology. We will analyse
some of the difficulties which arise when trying to use Ontic Structural Realism to
account for evolutionary biology.

Keywords Scientific realism � Structural realism � Semantic view of theories �
Evolutionary biology � Population genetics � Models

1 Introduction

Recently, Steven French (French 2014) has claimed that Ontic Structural Realism
(OSR), a position normally held by philosophers interested in metaphysically
accounting for physical theories, may be, in combination with the semantic view of
theories, fruitfully adopted also to account for biological theories, especially pop-
ulation genetics. The present work is aimed at assessing whether this proposal hits
the mark or not.

This paper will firstly briefly present the context in which OSR has been
developed, and what is the main problem that this position has to face (Sect. 2);
then, it will briefly present the semantic view and three of the main problems that
this position has to face (Sect. 3); then, the paper will take into account two different
possible responses to the main problem of structuralism, i.e. Psillos’ and French’s
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responses, and it will try to underline the difficulties of each position (Sect. 4).
Finally, the paper will focus on one of the examples given by French to illustrate his
proposal of adopting structuralism in biology, i.e. Price’s Equation, and it will try to
spell out the difficulties of supporting French’s claims on the metaphysical sig-
nificance of Price’s Equation for population genetics (Sect. 5).

2 Scientific Structural Realism

2.1 Scientific Realism

Scientific Realism (SR) can be briefly described as the claim that our best scientific
theories are true. As Saatsi and Vickers state: “scientific realists seek to establish a link
between theoretical truth and predictive success” (Saatsi and Vickers 2011, p. 29). SR
is based on a two step strategy(Ellis 2009): (1) infer from the empirical success the
truth of the scientific theories; (2) infer from the truth of the successful scientific
theories the existence of those entities which appear in such theories. So, the claim that
theories are able to refer to such existing entities is justified from their empirical
success, while this very same ability explains their predictive empirical success.

2.2 Truth

The concept of truth is central for SR. For example, Giere states that: “virtually
every characterization of scientific realism I have ever seen has been framed in
terms of truth” (Giere 2005, p. 154).The most shared view of truth among the
realists is that of truth as correspondence. For example, Sankey states that: “cor-
respondence theories which treat truth as a relation between language and reality are
the only theories of truth compatible with realism” (Sankey 2008, p. 17).

Given that the crucial element in order to claim for the truth of a theory is the
confirmation of such theory, and that confirmation doesn’t allow to discriminate
between the different parts of the theory which has been confirmed, and that the-
ories usually contain theoretical terms, i.e. terms which refer to some unobserv-
ables, realists believe in the existence of the theoretical terms postulated by the
confirmed theory.

2.3 The No Miracle Argument

The main argument to support SR is the No Miracle Argument (NMA). Putnam
formulated the NMA as follows: “The positive argument for realism is that it is the
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only philosophy that does not make the success of science a miracle” (Putnam
1975, p. 73). The central idea of the NMA is that the truth of a scientific theory is
the best, or the only scientifically acceptable, explanation of its empirical success.
The problem is that, given the traditionally accepted realist view of truth, claiming
that the success of a theory is due to its being true would imply that such theory
should not be radically modified over time or ever considered false.

2.4 The Pessimistic Meta-Induction

But the history of science seems not to allow us to support such a claim. The
Pessimistic Meta-Induction (PMI), firstly developed by Laudan (1981), can be
briefly summarized as follows:

1. The historical record reveals that past theories which were successful turned out
to have been false.

2. So, our present scientific theories, although successful, will probably turn out to
be false.

3. Therefore, we should not believe our best present theories.1

To face the PMI different strategies have been developed by the realists. Many of
them try to show that despite the theory shift, something is retained from one theory
to another, and that it is just such ‘something’ that the realist is committed to.

2.5 Scientific Structural Realism

The most credited position in this realist line of reasoning is Scientific Structural
Realism (SSR). French states that SSR has been developed exactly “to overcome
the so-called Pessimistic Meta-Induction, which presents the realist with the
problem of accommodating the apparent historical fact of often-dramatic ontolog-
ical change in science” (French 2011, p. 165). Even if SSR does not rely on the
NMA, it is normally considered to be able to support the intuition at the origin of
the NMA, i.e. that there is a deep correlation between success and truth.2 SSR is
articulated in two main positions: Epistemic Structural Realism (ESR), which
claims that we can be realist only about the mathematical structure of our theories
(Worrall 1989), and OSR, which claims that structure is all there is (Ladyman

1Magnus (2010, p. 804).
2Cf. French and Ladyman (2003, p. 45): “structural realism is supposed to be realist enough to take
account of the no-miracles argument”.

Scientific Realism, the Semantic View … 57



1998).3 So, what is thought not to change during the theory shift by SSR is the
mathematical structure of the theories. For example, Sneed says that “structuralists
see the mathematical structures associated with a theory to be much more ‘essential’
features of the theory than the claims it makes. The claims may change with the
historical development of the theory, but the mathematical apparatus remains the
same” (Sneed 1983, p. 351).

2.6 Scientific Structural Realism and the Semantic View

The focus on the mathematical structures of the theories makes clear why those who
support SSR usually support the semantic view of theories (Chakravartty 2001), the
view according to which a theory is the class of its models. For example, Ladyman
states that the “‘semantic’ or ‘model-theoretic’ approach to theories, […], is par-
ticularly appropriate for the structural realist” (Ladyman 1998, p. 417), and suggests
that “structural realists adopt Giere’s account of theoretical commitment: to accept a
theory means believing that the world is similar or isomorphic to one of its models”
(Halvorson 2012, p. 185). Indeed, the way in which models are intended in the
semantic view is the same in which models are intended in metamathematics. Thus,
they are mathematical structures. To see this is particularly easy: the relation of
isomorphism, which is claimed to hold among the models of a theory by the
semanticists, is defined exactly in the same terms in which the relation of iso-
morphism is defined in model theory. Semanticists look at Tarski as the initiator of
the semantic view of theories (da Costa and French 2003) and explicitly adopt the
Tarskian concept of model in their view. For example, Suppes claims that “‘the
concept of model in the sense of Tarski may be used without distortion and as a
fundamental concept’ in scientific and mathematical disciplines,” and that “‘the
meaning of the concept of model is the same in mathematics and the empirical
sciences’;” so, we can conclude that for him “the Tarski concept of a model is a
common formal framework for analysis of various uses of models in science and
mathematics” (Suppe 2000, pp. S110–S111).

2.7 Ontic Structural Realism and Mathematics

If the structuralist supports ESR, she is committed to the indispensable role of math-
ematics in accounting for theory change in a realist fashion. But if she supports OSR,
she is also committed to the existence of the mathematical structures which figure in the

3See Frigg and Votsis (2011) for a survey on SSR. For a definition of structure, cf., e.g., Ibidem,
p. 229: “A structure S consists of (a) a non-empty set U of objects, which form the domain of the
structure, and (b) a non-empty indexed set R (i.e. an ordered list) of relations on U, where R can
also contain one-place relations”.
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theory, and so she has to face the risk of let her position become a full-blood
Pythagorean position. Indeed, “Pythagoreanism […] is the teaching that the ultimate
‘natural kinds’ in science are those of pure mathematics” (Steiner 1998, p. 60).

This risk that the supporters of OSR have to face, has been labeled by French the
‘Collapse Problem’ (French 2014): if the world is isomorphic to theories, and
isomorphism can hold only between mathematical structures, then the world is a
mathematical structure. Tegmark, for example, “explains the utility of mathematics
for describing the physical world as a natural consequence of the fact that the latter
is a mathematical structure, and we are simply uncovering this bit by bit. […]. In
other words, our successful theories are not mathematics approximating physics,
but mathematics approximating mathematics” (Tegmark 2008, p. 107). In fact,
Tegmark argues, “the external reality is” not “described by mathematics, […] it is
mathematics […]. This corresponds to the ‘ontic’ version of universal structural
realism […]. We write is rather than corresponds to here, because if two structures
are isomorphic, then there is no meaningful sense in which they are not one and the
same. From the definition of a mathematical structure […], it follows that if there is
an isomorphism between a mathematical structure and another structure […], then
they are one and the same. If our external physical reality is isomorphic to a
mathematical structure, it therefore fits the definition of being a mathematical
structure” (Ibidem).

3 The Semantic View of Theories and Biology

3.1 The Semantic View and Evolutionary Biology

Since the eighties many authors have been supporting the semantic view of theories
as the best account of evolutionary biology, and tried to elaborate a semanticist
account of evolution (Lloyd 1984; Thompson 1983; Beatty 1980). This view has
rapidly become the received view. The reasons for proposing and accepting the
semantic view as the best account of biological theories were basically two: (1) the
difficulties afflicting the traditional syntactic account of theories; (2) the more
specific fact that, given that biology is normally considered to lack general laws
from which starting to axiomatize an entire field of research (Beatty 1995), the
semantic view seemed to be more adequate to meta-theoretically describe the
biological theories, directly presenting a set of their models, instead of trying to
axiomatize them.

In what follows, we will firstly describe some of the difficulties which afflict the
semantic view in general, and then a specific difficulty related to the attempt of
semantically representing the evolutionary processes.
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3.2 Two Main Difficulties of the Semantic View

The semantic view of theories can be seen as composed by two parts: the first which
equates theories and classes of models, the second which defines the relation
between such models and the empirical world (Halvorson 2012). Both these parts
have been challenged.

Halvorson focuses his criticisms on the first part, and shows that such “first
component is a mistake; i.e., a class of models is not the correct mathematical
component of a theory” (Halvorson 2012, p. 189), because “this view equates
theories that are distinct, and it distinguishes theories that are equivalent” (Ibidem,
p. 183). In fact, Halvorson shows that there is no good notion of isomorphism
between classes of models, and so that the semantic account fails to provide a
satisfactory account of the identity of theories.4

This is a big problem for the semanticists, because the possibility of clearly
identifying a theory is considered essential in order to give a realist account of the
theory change which can avoid the PMI. Indeed, as we have seen above, to avoid
the PMI has been the principal motivation for the development of SSR. Suppe
explicitly states that the semantic view “is inadequate if it cannot properly indi-
viduate theories. Theories undergo development. This has implications for theory
individuation,” because the semantic view “essentially treats theory development as
progression of successive theories,” and he adds that he considers “theory indi-
viduation issues as make-or-break for any account of theories” (Suppe 2000,
pp. S108–S109). To sum up: there is a deep relation between OSR and the semantic
view. The issue of theory individuation is considered to be crucial by the seman-
ticists themselves to determine whether the semantic view is a tenable position or
not, and Halvorson’s work seriously treats exactly such crucial requisite of the
semantic view.

4For technical details and examples, see (Halvorson 2012). Here the room suffices just to sketch
Halvorson’s argument in five points: (1) given that, according to the semantic view, a theory is a
class of models, if we have two classes of models,M andM0, under which conditions should we
say that they represent the same theory? (2) Semanticists (e.g., Giere, Ladyman, Suppe, van
Fraassen) have not offered any sort of explicit definition of the form: (X) M is the same theory
as M0 if and only if (iff)… (3) “Suppe’s claim that ‘the theories will be equivalent just in case
we can prove a representation theorem showing that M and M0 are isomorphic (structurally
equivalent)’ […] just pushes the question back one level—we must now ask what it means to
say that two classes of models are ‘isomorphic’ or ‘structurally equivalent’” (Halvorson 2012,
p. 190). (4) He then considers the following three proposals for defining the notion of an
isomorphism between M and M0: (a) Equinumerous: M is the same theory as M0 iff M ’
M0; that is, there is a bijection F : M ! M0. (b) Pointwise isomorphism of models: M is the
same theory as M0, just in case there is a bijection F : M ! M0 such that each model m 2 M
is isomorphic to its paired model F mð Þ 2 M0. (c) Identity: M is the same theory as M0, just in
case M ¼ M0. (5) Finally, he tests such proposals and shows how they all fail, and thus makes
it clear that it is impossible to formulate good identity criteria for theories when they are
considered as classes of models.
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Chakravartty has challenged the second part of the semantic view: given that the
semantic view of theories is deeply related to the concept of truth as correspon-
dence, if the semantic view is language independent, it cannot satisfactorily account
for a correspondence relation. The problem is the following: how is it possible to
state that theories (i.e. classes of models) correspond to the world, if the required
realist definition of such a correspondence, e.g. that of Tarski, is relative to (formal)
languages, while theories are supposed to be non-linguistic entities by the seman-
ticists? (French and Saatsi 2006). Thus, in order to qualify the semantic view as
being able to satisfy the realist’s claims, it seems necessary to presuppose a cor-
respondence relation between the mathematical structure of theories and the
structure of the world.

The problem is precisely how to account for such presupposition. To answer the
question: “why an abstract structure such as a mathematical model can describe the
non abstract physical world?” the realist’s response usually “depicts nature as itself
a relational structure in precisely the same way that a mathematical object is a
structure. On this view, if the mathematical model represents reality, it does so in
the sense that it is a picture or copy […] of the structure that is there” (van Fraassen
2008, p. 242). So, the realist seems to subscribe to a sort of substantial corre-
spondence theory of truth and representation. But when she is pressed by the fact
that there are different ways of mathematically representing the physical world, the
realist cannot do better than “insists that there is an essentially unique privileged
way of representing: ‘carving nature at the joints’. There is an objective distinction
‘in nature’ between on the one hand arbitrary or gerrymandered and on the other
hand natural divisions” (Ibidem, p. 244). How does she justify such assertion? She
doesn’t: “It is a postulate” (Ibidem).

3.3 Gildenhuys’ Attack on the Semantic View

Recently, Gildenhuys has pointed out a difficulty which afflicts the semantic attempt
to describe evolutionary biology, more precisely population genetics (Gildenhuys
2013). In fact, in such approach models are normally described as states in the
phase space of the represented systems:

The models picked out are mathematical models of the evolution of states of a given system
[…]. This selection is achieved by conceiving of the ideal system as capable of a certain set
of states—these states are represented by elements of a certain mathematical space […].
The variables used in each mathematical model represent various measurable or potentially
quantifiable physical magnitudes […] any particular configuration of values for these
variables is a state of the system, the state space or ‘phase space’ being the collection of all
possible configurations of the variables.5

5Lloyd (1984, p. 244).
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According to Gildenhuys, this view is inadequate to describe population
genetics, because even if philosophers have argued that, “in comparison to the rival
syntactic approach to scientific theories,” the semantic view “provides a superior
framework for presenting population genetics […], none of these writers has
specified the class of mathematical structures that constitutes population genetics or
any of its formalisms” (Gildenhuys 2013, p. 274).

Details are not relevant here, what is worth noting is that Gildenhuys not only
shows that a clear and complete definition of the ‘phase space’ of a biological
system has never actually been given, but also that it would not be easy to give it for
mathematical reasons. Indeed, he focuses on Lloyd’s formulation, according to
which there are “two main aspects to defining a model. First, the state space must be
defined […]; second, coexistence laws, which describe the structure of the system,
and laws of succession, which describe changes in its structure, must be defined”
(Lloyd 1994, p. 19). Then, Gildenhuys underlines the challenge “posed by the
existence of coefficients in population genetics whose values are set by functions”
(Gildenhuys 2013, p. 281).

The problem is that if we try to construct the class of such functions, we get a
mathematical indefinite object, and so we are not able to give the phase space we
should instead construct to model population genetics in a semanticist fashion.
Roughly, the difficulty lays in how to relate the causal relations among the indi-
viduals and all the possible different fitness functions deriving by their interactions.
Indeed, “by means of functions that feature relative frequency terms as arguments,
frequency dependent selection functions capture causal dependencies among the
individuals” (Ibidem, p. 282). The problem is that when the character of the causal
dependencies among population members varies, “the functions that set fitness
values must vary with them. This variation is not merely variation in the values
taken by a fixed set of arguments arranged in a fixed functional form. Causal
relationships among individuals […] need not be linear […]. Equally, they may
feature exogenous variables” (Ibidem, pp. 282–283). Now, to see “how fitness
functions […] pose an obstacle to using” the semantic approach to describe pop-
ulation genetics, notice that “alternative fitness functions are inconsistent. Different
fitness functions serve as alternative equations for setting the value of a single
parameter. They cannot appear side by side, then, in a system of coexistence laws”
(Ibidem, p. 284). Moreover, if we try to construct the class of those functions,
“there are good reasons to believe that the class of such functions is in fact
mathematically indefinite” (Ibidem). Thus, the “charge is that […] we cannot
specify the class of fitness functions” (Ibidem, p. 285) and so that we cannot
construct a phase space for population genetics systems.

3.4 Longo’s View on Phase Space in Biology

Gildenhuys’ criticism may be seen in relation to a wider criticism on the very
possibility of giving a phase space when dealing with biological entities, a kind of
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criticism developed by Giuseppe Longo. Longo identifies the peculiarity of biology
with respect to physics exactly in “the mathematical un-predefinability of biological
phase space” (Longo and Montévil 2014, p. 195). Indeed, “in contrast to existing
physical theories, where phase spaces are pre-given, if one takes organisms and
phenotypes as observables in biology, the intended phase spaces need to be ana-
lyzed as changing in unpredictable ways through evolution” (Ibidem, p. 189). The
fact is that “random events, in biology, do not ‘just’ modify the (numerical) values
of an observable in a pre-given phase space, like in physics […]. They modify the
very phase space” (Ibidem, p. 199). Thus, “one major aspect of biological evolution
is the continual change of the pertinent phase space and the unpredictability of these
changes.” (Ibidem, p. 187). We will not try to assess such criticisms. What is worth
noting here is that Gildenhuys and Longo underline the difficulty of giving a
definite phase space when dealing with evolutionary theories. If, as many sup-
porters of the semantic approach to evolution maintain, giving the phase space is
essential for giving an account of biological theories in accordance to the semantic
approach, and the semantic view is the view adopted by the structural realists, then
the structural realists should face this kind of difficulty if they want to account for
evolutionary biology in structural terms. They may face this difficulty either by
giving a definite phase space for the system they want to model, or by showing that
giving a phase space is not essential for their approach.

4 Structural Realism and the Collapse Problem

4.1 Facing the Collapse Problem

The Collapse Problem described above (Sect. 2.7) may be better understood con-
sidering it from a more general perspective: the pressure that mathematical pla-
tonists are doing on scientific realists in order to let the realists accept Mathematical
Platonism (MP). For example, Psillos states that philosophy of science “has been a
battleground in which a key battle in the philosophy of mathematics is fought […]
indispensability arguments capitalise on the strengths of scientific realism, and in
particular of the no-miracles argument […], in order to suggest that a) the reality of
mathematical entities […] follows from the truth of […] scientific theories; and b)
there are good reasons to take certain theories to be true” (Psillos 2012, p. 63).

The scientific realists may respond to the platonist’s pressure in two ways:
(1) widening their ontology to accept abstract objects; (2) continuing to rely on
causality and trying to avoid a direct commitment to the existence of abstract
objects. The first option has been taken, among others, by Psillos. The second
option has been taken, among others, by French. In what follows we will describe
their approaches and the main difficulties that afflict them.
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4.2 An Analysis of Psillos’ Approach

Psillos’ approach is representative of the attempt of ‘moving beyond causation’ that
many realists are pursuing exactly to take into account abstract objects and
non-causal (basically, mathematical) explanations (Rice 2013). Indeed, classically,
SR supported the idea that scientific theories should be taken at face-value. But, “a
literal reading of scientific theories implies commitment to a host of entities with a
(to say the least) questionable ontic status: numbers, geometrical points, theoretical
ideals, models and suchlike” (Psillos 2011a, pp. 5–6). The difficulty of conceiving
the reality of the abstracta leads the realist to face what Psillos has called the
‘Central Dilemma’: “Either theories should be understood literally, but then they
are false. Or, they should not be understood literally, but then realism itself is false
(at least insofar as it implies that theories should be understood literally)” (Ibidem,
p. 6). Indeed, if we commit ourselves to a correspondence view of truth, how could
we avoid to take scientific theories to be understood literally? But, if we take a
theory to be literally true, then we should believe in the existence of, e.g., numbers.
The problem is that numbers are defined by platonists in such a way that they are
outside the reach of science, at least to the extent that science is considered to be
indispensably related to causality, as the majority of the realists seems still to think.
Indeed, the so called ‘Eleatic Principle’, which can be stated as: “everything that is
real makes some causal difference to how the world is” (Newstead et al. 2012,
p. 89), has been considered to be able to discriminate what exists, referring to
causation, by many realists since a long time.

Moreover, since, as we have seen, ever more realists have started supporting the
semantic view of theories, the problem of how to conceive of the nature of models
has become central for the realists. In fact, if following the semantic view, “theories
are taken to be collections of models,” and models are considered as abstract
objects, then “theories traffic in abstract entities much more widely than is often
assumed:” the claim that models are abstract entities “is meant to imply that (a) they
are not concrete and (b) they are not causally efficacious. In this sense, models are
like mathematical abstract entities” (Psillos 2011a, p. 4). Thus, models are abstract
in the same way in which mathematical entities are claimed to be abstract by the
mathematical platonists. Indeed, MP can be briefly described as the claim that
mind-independent mathematical abstract entities exist, and abstract entities
are normally understood as ‘non-spatiotemporally located’ and ‘causally inert’
(Balaguer 2009).

To make SR and MP compatible, Psillos adopts an ‘explanatory criterion’ to
determine his realist ontology, explicitly claiming that “something is real if its
positing plays an indispensable role in the explanation of well-founded phenomena”
(Psillos 2011a, p. 15). He clearly underlines the distance between the explanatory
criterion and causality: “This explanatory criterion should not be confused with a
causal criterion. It is not a version of the so-called Eleatic principle” (Ibidem).

So, even non causal objects exist, and it seems that their existence could be
supported relying only on explanatory considerations. The argument could run
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something like this: we believe in the existence of what appears to be indispensable
in our scientific explanations, abstract entities are indispensible in our best scientific
explanations, then abstract objects exist.

But an explanation could have a great explanatory power and nevertheless be
false. So, we could risk to infer the existence of some object which doesn’t really
(i.e. from a realist perspective) exist. So, how can Psillos deem the explanatoriness
and indispensability of an object be reliable means to infer the existence of such
indispensable objects? The problem lays in the ambiguity of the way in which
Psillos describes the relation between explanations and theories, and between
theories and the world.

What Psillos doesn’t explicitly state is that an inference from the explanatoriness
to the existence could be sound only if one has already accepted the two classical
realist assumptions concerning the truth, i.e.: (1) that truth is correspondence to the
world, and (2) that our best scientific theories are true because they have empirical
success. So, Psillos’ argument could be restated as follows: given that we infer the
truth of the theories from their success, and that abstract entities are indispensible
for the very reaching of such success; if truth is correspondence, the success of a
theory is (best) explained by the existence of the objects such theory refers to, then
abstract objects exist; a scientific explanation relies on our already selected, i.e.
empirically confirmed, best scientific theories; then, if in such explanation an
abstract object appears to be indispensable, we can safely commit ourselves to its
existence.

In this way, the dangerous equation between explanatoriness and confirmation in
order to define ontological matters has been neutralized. This has been possible
thanks to the occultation of the link between confirmation and the set of the already
accepted theories, and the insertion of the requirement that acceptable explanations
from which deriving our ontology can only be drawn from such set of empirically
confirmed theories. In such a way, our ontology may appear as based exclusively
on the ‘explanatory criterion’, which Psillos explicitly says that should not be
confused with a causal criterion, but such explanatory criterion rests nevertheless
upon confirmation, i.e. empirical success, which is at its turn normally intended and
explained in causal terms.

So, despite what Psillos explicitly asserts on explanatoriness, confirmation still
plays a crucial role for the realists in order to determine the truth of a theory, and
causality still plays a crucial role in order to account for the way in which con-
firmation is obtained and detected.6 In fact, in another work (published in the same
period) Psillos himself explicitly affirms that the “best explanation (of the instru-
mental reliability of scientific methodology) is this: the statements of the theory
which assert the specific causal connections or mechanisms in virtue of which
methods yield successful predictions are approximately true” (Psillos 2011b, p. 23).
Thus, it is not easy for a realist to accept abstracta and give up causality.

6At least in the measure in which Psillos doesn’t give a different account of how to consider a
theory to be empirically confirmed.
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4.3 The Collapse Problem and the Problem
of Representation

Besides its relation with MP, it is also important to underline the connection
between the Collapse Problem and the problem of scientific representation. Indeed,
the way in which theories are related to the world is the crucial problem of any kind
of realism. For example, Hughes states that “in what sense […] a physical theory
represent the world?” is one of “the key question that philosophers of physics need
to address” (Hughes 1997, p. 344).

For SSR, as we have seen, the problem is also related to the problem of the
applicability of mathematics: since models are normally intended as not being
interpretable as literally true, and models are generally conceived of as mathe-
matical models, the problem of the relation between models and the world amounts
to the problem of the relation between mathematics and the world.

This is where the problems described above relative to the semantic view meet
the problem afflicting OSR. In fact, being able to solve the problems of the semantic
view would imply to be able to distinguish the mathematical from the physical, i.e.
to solve the Collapse Problem, because it would amount to be able to identify the
right mathematical formulation of a phenomenon among the many which are
possible, given that we would be able to state which is the correct representational
relation between a mathematical structure and the world, and this could be possible
only if the mathematical structures and the world do not coincide, i.e. if they are not
the same thing, as Tegmark claims.

The problem is that there is a sort of dilemma here for the realist: either to
account for the relation between models and the world she insists on isomorphism,
but then she has to face the ‘Collapse Problem’; or she has to specify which kind of
representational relation holds between the scientific theories and the world. The
risk in this case is that there is not a fully realist account of the representational
relation.

In a nutshell, a relation of isomorphism is a symmetric dyadic objective relation,
while that of representation is an asymmetric ‘triadic’ intentional relation (Suárez
2003). In other words, if we have to move beyond isomorphism we have to
introduce a subject in our picture. For example, Giere argues for an ‘agent-based’
conception of representation, and describes it as composed by the following ele-
ments: “Agents (1) intend; (2) to use model, M; (3) to represent a part of the world,
W; (4) for some purpose, P” (Giere 2010, p. 269). Giere also states that it is
important to note “that this conception presupposes a notion of representation in
general. I doubt that it is possible to give a non-circular (or reductive) account of
representation in general” (Ibidem, p. 274). This means that we do not have a
formal account of the notion of ‘representation’ which is ‘objective’ in the same
way in which the formal account we have of the notion of isomorphism is ‘ob-
jective’. Bas van Fraassen clearly states that, terminology aside, “a scientific model
is a representation. So even if a scientific theory is a set of scientific models, and
those literally are mathematical structures, it does not follow that the identity of a
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theory can be defined in terms of the corresponding set of mathematical structures
without reference to their representational function” (van Fraassen 2014, p. 278).

The fact is that ‘representation’ is a semiotic relation: someone describes
something as something else. There is an intrinsic subjective element in such an
account which is unpalatable for many realists. A representation is subject- and
context-dependent, while the realists aim at truth, and normally conceive of truth as
mind- and stance-independent. Thus, if we maintain that we represent some phe-
nomena, the problem is how to claim that our representation is the right repre-
sentation, i.e. that it corresponds to reality. In other words, a satisfying realist
account should concern only the model and the world, and should not include any
reference to the knowing subject, while the notion of ‘representation’ seems to
intrinsically involve a reference to the subject.

French is aware of the difficulty of solving such problem, but his answer is
clearly unsatisfying. Indeed he simply acknowledges that the fact that:

the relationship between any formal representation and the physical systems that it repre-
sents cannot be captured in terms of the former only […] led to the accusation that the
structuralist who relies on such representational devices cannot give an appropriate account
of the relationship between representations and the world in terms of those very repre-
sentations. My response is that all current forms of realism must face this accusation, not
just OSR.7

This is clearly an unsatisfying answer, because the fact that to account for the
relation between theories and the world is a problem for any kind of realism, does
not diminish the relevance of such problem for OSR.

4.4 French’s Approach to the Collapse Problem

French faces the above described difficulties claiming both that (1) the distinction
between mathematics and the physical has to be accounted for in terms of causality:
“how we can distinguish physical structure from mathematical structure […]. The
obvious answer is in terms of causality, with the physical structure we are to be
realists about understood as fundamentally causal” (French 2011, p. 166); and that
(2) we can secure the fact that our representation of the world is the right one
relying on a sort of NMA: “In the realist case, we will have only the ‘no miracles’
intuition to justify our claim that our theories represent the structure of the world”
(Brading 2011, p. 57, fn 24).

These two claims can be reduced to one. In fact: how can we be sure that
causality is a genuine feature of the world and not a feature of our model, as the
anti-realists would suggest, and so that we can safely rely on causality to distinguish
the physical from the mathematical? We can be sure that causality is a feature of the
world only if we adopt a realist stance: “Ladyman follows Giere […], who states

7French (2014, p. 195, fn 7).
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that ‘the crucial dividing line between empiricism and realism’ concerns the status
of modality, and urges that representing the world as modal is essential to the […]
realist” (Ibidem, p. 58). Thus, the way in which we ground the claim that a physical
structure does not coincide with a mathematical structure is based on a sort of NMA
exactly in the same way in which the claim that our representation of the world is
the right representation is based on a sort of NMA. To better see this point, let’s
follow the argument given by French on a related issue:

On what basis can we ascribe lawhood […] to the world? Here we need to articulate the
ascription […] within the structuralist framework: first of all, there is the attribution of laws,
as features of structure, to the world. […]. The structuralist can follow this line and
maintain a form of the No Miracles Argument, concluding that the best explanation for the
success of a given theory is that ‘its’ laws are ‘out there’ in the world, as features of the
structure of the world.8

Thus, the way to claim for a realist stance on causality is relying on a form of
NMA. But the main appeal of SSR was exactly due to its supposed ability in
avoiding the PMI, i.e. in supporting realism without directly relying on the NMA,
given that the NMA is vulnerable to the PMI.

The fact is that if we accept OSR, we have to face the Collapse Problem. But, if
we ground our defence from the Collapse Problem on causality and we justify our
confidence in the fact that causality is a feature of the world and not a feature of the
model relying on a sort of NMA, we find ourselves in the very same position in
which the classical realists were in confronting the PMI. In fact, if we rely on the
NMA, then we cannot be sure that a feature belongs to the world and not to the
model, because we cannot exclude that our theory is false or incomplete, and so that
the feature in question does not really correspond to anything in the world. If there
is not a complete correspondence between our theory and the world, we are not able
to safely state whether a feature belongs to the world or not. On the contrary, if a
perfect correspondence holds, we can safely claim that everything that is in the
model corresponds to something in the world. In this case we could safely assume
that causality is in the world. But if we adopt OSR, to state a perfect correspon-
dence between a theory and the world would amount to state that there is a relation
of isomorphism between the mathematical structure of that theory and the world.
But a relation of isomorphism may hold only between two mathematical structures.
Thus, the Collapse Problem would step back again, and we would not be able to
distinguish the mathematical and the physical anymore. Thus, we have to conclude
that we are not able to certainly state whether causality is a feature of the world or
not, and so that there is not an easy solution to the Collapse Problem for the realist
based on causality. Both Psillos’ and French’s approaches seem to be inadequate.

8French (2014, pp. 274–275).
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5 Structural Realism and Biology

5.1 Ontic Structural Realism and Price’s Equation

Let’s now turn to French’s proposal of adopting OSR in dealing with biology.
French’s attempt to articulate a biological form of OSR faces “the obvious problem
of a comparative paucity of mathematized equations or laws by means of which we
can identify and access the relevant structures” (French 2014, p. 329). But such
paucity of mathematical structures does not affect “all biological fields—population
genetics and theoretical ecology are the exceptions” (Ibidem, p. 329, fn 8). Thus,
French focuses on Price’s Equation, which is “sometimes presented as representing
‘The Algebra of Evolution’, and which one could take as characterizing a certain
fundamental—if, perhaps, abstract—and ‘high-level’ feature of biological struc-
ture” (Ibidem, p. 338). Indeed, Price’s Equation is a central result in population
genetics, and can be written in the following form:

Dz ¼ Cov w; zð ÞþEw Dzð Þ ð1Þ

where: ‘Δz’ is the change in average value of a character from one generation to the
next; ‘Cov(w, z)’ represents the covariance between fitness w and character (action
of selection); and ‘Ew(Δz)’ represents the fitness weighted average of transmission
bias. The equation “separates the change in average value of character into two
components, one due to the action of selection, and the other due to the difference
between offspring and parents” (Ibidem). According to French, there is a sense in
which Price’s Equation “offers a kind of ‘meta-model’ that represents the structure
of selection in general […] this covariance equation is independent of objects, rests
on no contingent biological assumptions, and can be understood as representing the
modal, relational structure of the evolutionary process” (Ibidem, italics mine).

5.2 Fisher’s Fundamental Theorem of Natural Selection

In order to assess the claim made by French relative to Price’s Equation, let’s
consider a special case of Price’s Equation which has been widely debated: Fisher’s
Fundamental Theorem of Natural Selection (FTNS).

In fact, Price’s Equation tells us exactly how much of a character will exist in the
population in the next period. If we let the character equal fitness itself, then we get
Fisher’s theorem:

D�w ¼ Varadd gð Þ=�w ð2Þ
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which can be read as: the change in average fitness from one generation to another
equals the additive genetic variance in the first generation, divided by mean fitness.
The additive genetic variance, i.e. ‘Varadd(g)’, measures the fitness variation in the
population that is due to the additive, or independent, action of the genes. In other
words, it measures any gene’s effect on fitness which is independent of its genetic
background. Indeed, according to this view of population genetics, it is possible to
see the total ‘Genetic Variance’ as the sum of the ‘Additive Genetic Variance’ and
the ‘Non-additive Genetic Variance’.

Since its formulation, the FTNS has received different interpretations. This is
due to the unclear formulation of the FTNS given by Fisher in his writings. In fact,
Fisher describes the FTNS as follows: “the rate of increase in fitness of any
organism at any time is equal to its genetic variance in fitness at that time” (Fisher
1930, p. 35).

This formulation of the FTNS induced many authors (and Fisher among them) to
compare the FTNS to the second law of thermodynamics, according to which
entropy, on average, can never decrease. In this interpretation, the FTNS is thought
to be able to give a formal definition of the ‘directionality of evolution’, i.e. to give
a proof of the fact that fitness, on average, will never decrease. Such a kind of result
would have explained the course of evolution, the development of more and more
complex forms, without any reference to any kind of ‘design’ or ‘teleological
explanation’.

The problem is that “it is simply untrue that the average fitness of a population
undergoing natural selection never decreases, so the rate of change of average
fitness cannot always be given by the additive genetic variance” (Okasha 2008,
p. 328). Okasha clarifies that “Fisher was not talking about the rate of change of
average fitness at all, but rather the partial rate of change which results from [the
direct action of] natural selection altering gene frequencies in the population, in a
constant environment” (Ibidem, p. 329).9

This means that it is more careful to say that according to the FTNS when natural
selection is the only force in operation, average fitness can never decrease.

5.3 The Failure of the Analogy with Thermodynamics

The problem with this more careful interpretation of the FTNS is that it undermines
the analogy between the FTNS and the second law of thermodynamics. Indeed, “by

9To understand Fisher’s understanding of the FTNS, we have to accept Fisher’s view of ‘envi-
ronment’: any change in the average effects constitutes an ‘environmental’ change. On the con-
stancy of environment, cf. Okasha (2008, p. 331): “For Fisher, constancy of environment from one
generation to another meant constancy of the average effects of all the alleles in the population.
Recall that an allele’s average effect (on fitness) is the partial regression of organismic fitness on
the number of copies of that allele.” Cf., also, Ibidem, p. 324: “an allele’s average effect may
change across generations, for it will often depend on the population’s genetic composition”.
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Fisher’s lights, natural selection will almost never be the only force in operation;
for by causing gene frequencies to change, selection almost always induces envi-
ronmental change, which is itself a force affecting average fitness” (Ibidem, p. 344).
In fact “the environment in Fisher’s sense will not remain fixed, for selection itself
alters it” (Ibidem, p. 347). Details are not relevant here, the basic idea is that for
Fisher, when natural selection operates, this fact directly alters both the mean fitness
w ̄, and the ‘environment’, which at its turn alters the mean fitness w̄. Thus, if the
FTNS holds only when natural selection is the only force to operate in a constant
environment, and if when natural selection operates, the environment cannot remain
constant, then we should conclude that the situation described by the FTNS can
never obtain. Thus, the analogy between fitness and entropy seems to fail.

5.4 Different Interpretations of the Fundamental Theorem

The biological meaning of the FTNS is at least contentious. Price (1972) and Ewens
(1989) state that the FTNS is mathematically correct, but that it does not have the
biological significance that Fisher claimed for it. On the contrary, Edwards (1994)
and Grafen (2003) are much more sympathetic to Fisher. We cannot develop this
issue here. What we will analyse is whether French’s proposal may be useful in
dealing with this topic. In other words, can OSR help us in trying to determine the
biological significance of the FTNS?

The fact is that both the main interpretations of the FTNS agree on the mathe-
matical validity of Fisher’s result. Thus, since structuralism seems to be mainly
committed to the mathematical structures of a theory, and since the two main
interpretations of the FTNS do not diverge on this issue, OSR seems prima facie
unable to asses which interpretation of the FTNS is to be preferred. But French’s
formulation of OSR states that structures have to be interpreted in causal terms, in
order to face the Collapse Problem. Thus, it seems that French’s approach should be
able to assess which interpretation of the FTNS we should prefer. Indeed, the issue
of the interpretation of the FTNS is deeply related to the issue of the nature of
natural selection, i.e. to the debate over the causal nature of natural selection.

5.5 The Fundamental Theorem and the Nature of Natural
Selection

Let’s restate the issue we are dealing with: French supports the claim that Price’s
Equation gives us the modal structure of the evolutionary process. The FTNS is a
special case of Price’s Equation. Thus, we can infer that French supports an
interpretation of the FTNS as a significant and substantial result referring to natural
selection. Since French claims also that structures have to be interpreted as causal in
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order to avoid the Collapse Problem, and since, as we have seen, he seems to
support the biological significance of the FTNS, we should infer that he thinks that
the relevant mathematical structure in this context, i.e. the FTNS, can be interpreted
in causal terms, i.e. that the FTNS can be interpreted as referring to some causal
process.

Now, the problem is that the process to which the FTNS refers is that of natural
selection, and that the causal nature of such process is harshly debated. It is not
relevant to take side on this issue here. What is worth underling is that, contrary to
French’s proposal, those who deny the causal nature of natural selection explicitly
refer to the FTNS and its mathematical formulation and significance to support their
claim that such a kind of result cannot be interpreted as referring to causal
processes.

5.6 The Causal Nature of Natural Selection

The causal nature of natural selection has recently been put under severe scrutiny.10

This sort of “causal scepticism is motivated by the fact that most, if not all, prin-
ciples of evolutionary theory—such as the Price equation or Fisher’s fundamental
theorem of natural selection—are expressed by purely statistical terms such as
variances or covariances” (Otsuka 2014, p. 2). For example, Matthen and Ariew
state that the reason “for reifying natural selection […] lies in a[n] […] analogy
between equations of population genetics—such as Fisher’s Theorem—and certain
equations of physics.” (Matthen and Ariew 2009, p. 208). But this analogy is not
well founded, because, unlike the models that we find in physics, the descriptions of
natural selection “rendered by population genetics models are in general neither
predictive nor explanatory,” since “population genetics models are, in general,
noncausal models” (Glymour 2006, pp. 369, 383). Moreover, natural selection itself
is not a genuine feature of the world, it is just “ontologically derivative on
individual-level events such as births, deaths, and mutations” (Matthen and Ariew
2009, p. 216).

This view of the nature of natural selection seems to conflict with French’s idea
that the mathematical structures of a theory have to be intended as causal and that
mathematical structures give us the fundamental structures of the world. Indeed, it
would be difficult to accept that we should think that the FTNS tells us something
about the deep (causal) structure of the evolutionary process, i.e. the core process of
biology, if such theorem refers to something which is not only an ‘ontologically
derivative’ non-causal concept, but which is also not intrinsically related to any-
thing biological in nature. For example, Matthen and Ariew state that natural
selection “is not even a biological phenomenon as such. It holds in any history in
which the terms of the theory can be jointly interpreted in a way that accords with

10See Otsuka (2014) for a survey.
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the abstract requirements of the theory” (Ibidem, p. 222). To illustrate this point
they show how the FTNS may be equally well applied to something which is
certainly not a biological entity or process:

Suppose that you have two bank accounts, one yielding 5 % interest and the other yielding
3 %. One can treat units of money in each account as the members of a population, and the
interest rate as an analogue of fitness. Provided that no money is transferred from one
account to another, one can treat these ‘fitness’ values as heritable—that is, the fitness of
any particular (non original) piece or unit of money can be ascribed to the ‘reproductive’
rate (i.e., interest) on preexisting units of money. Thus you would have, as between the
monies resident in the two accounts, variation in heritable fitness. On this interpretation,
Fisher’s Fundamental Theorem of Natural Selection applies to your bank accounts: it
predicts (correctly) that the average interest earned by the two bank accounts taken together
will increase in proportion to the variance of interest rates earned by your money in the two
accounts.11

As already noted, here the issue is not taking side on the dispute over the nature
of natural selection, but underling how the difficulty of assessing such nature poses
a challenge for French’s proposal.

5.7 Ontic Structural Realism and the Meaning of Price’s
Equation

The fact is that French seems to acknowledge the abstract and not-intrinsically
biological character of Price’s Equation. For example, he states that “Price himself
emphasized that his equation could be used to describe the selection of radio
stations with the turning of a dial just as easily as it could to describe biological
evolution” (French 2014, p. 338, fn 8). Even if we accept, for the sake of the
argument, that there could be a way to make this abstractness compatible with the
claim that Price’s Equation gives us the deep structure of biological evolution, there
remains a problem. The problem is that several authors support the idea that it is
possible to give a causal interpretation of the FTNS (Sober 1984; Millstein 2006).
Indeed, the causal interpretation of the evolutionary principles “shows adaptive
evolution as a genuine causal process, where fitness and selection are both causes of
evolution” (Otsuka 2014, p. 1). But French does not refer to such authors. He
instead explicitly refers several times to Samir Okasha’s works (French 2014,
Chap. 12). The point is that Okasha does not adopt a straightforward causal
interpretation of the fundamental results of population genetics. For example, he
states that “Price’s equation is statistical not causal” (Okasha 2006, p. 25). Even
more explicitly, Okasha states that Price’s Equation “is simply a mathematical
tautology whose truth follows from the definition of the terms. Nothing is assumed
about the nature of the ‘entities’, their mode of reproduction, the mechanisms of
inheritance, the genetic basis of the character, or anything else” (Ibidem, p. 24).

11Matthen and Ariew (2009, p. 222).
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Thus, the problem is that French has not defended at all the claim that natural
selection has a causal nature. The only mathematical structure taken into account by
French, i.e. Price’s Equation, which is supposed to be able to give us the deep
structure of the evolutionary process, gives raise (mainly) to two different and
incompatible interpretations. But French’s structural proposal could help us in
solving such issue only if the dispute over the causal nature of natural selection
would have been already settled in favor of the causalists, and French says nothing
on this point.

6 Conclusions

To conclude, let’s briefly sum up the difficulties that French’s proposal of adopting
OSR in biology has to face, in order to assess whether this proposal gives us some
advantage in philosophically dealing with biology. French seems to accept the
causal nature of natural selection and the idea that structures have to be understood
as causal structures, but Price’s Equation and other population genetics results, as
the FTNS, are often interpreted as giving non-causal explanations, also by those
authors to whom French himself refers in order to illustrate his proposal. In
focusing on the mathematical abstract features of such equations, French seems to
think that such structural characteristics are enough to give us a structural
description of biology. But then there is nothing which can help us in avoiding the
Collapse Problem according to the French’s own strategy to face this problem: there
is nothing in French’s proposal on Price’s Equation which suggests that (1) the
causal nature of natural selection can be safely shown to be a feature of the world
and that (2) such feature of the world is correctly reflected by the population
genetics models. Only if (1) and (2) obtain, in fact, the abstract structure given by
Price’s Equation could be interpreted both as the fundamental structure of biology
and a causal structure. On the contrary, we have shown that there are relevant
difficulties in showing that both these conditions hold.

Moreover, we have to stress that French’s proposal does not confront at all with
the traditional semanticist approach to biology, which claims that it is necessary to
give a phase space of the biological system we are modeling. French contents
himself with referring only to some equations, and so he neither defends the pos-
sibility of giving a semanticist account without having to give the phase space, nor
tries to give a complete phase space of the model he is considering. He explicitly
states: “How are we to identify these structures that we are supposed to be realist
about? The most obvious route is via the equations” (French 2011, p. 165). But, as
we have seen, this is an insufficient response to the detailed remarks made by
Gildenhuys on the difficulty of constructing a phase space when dealing with
population genetics.

Thus, it seems reasonable to conclude that in the biological domain, OSR has to
face the same challenges that it has to face in other domains, and that dealing with
biological issues does not give to OSR any peculiar help in facing those challenges,
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e.g. the Collapse Problem. At the same time, OSR seems not able to solve any
peculiar philosophical issue related to population genetics, since, on the contrary, it
is the solution of a debated philosophical issue related to biology, such that of the
nature of the natural selection, which, if given, could represent a support to a
structuralist approach to population genetics.
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Models of the Skies

Emily Grosholz

Abstract Reasoning that adds content to scientific theories typically moves
between the task of accurate reference and taxonomy, and the task of analysis, the
theoretical search for conditions of intelligibility. Here we examine the develop-
ment of models of astronomical systems, beginning with the early 17th century
models of the solar system, and ending with late 20th century models of galaxies. In
each case, we note both the distinction, and the interaction, between the aims of
reference and analysis, and the ways in which disparate modes of representation
combine to enlarge scientific knowledge.

Keywords Reference � Analysis � Scientific model � Astronomy � Cosmology �
Kepler � Newton � Laplace � Clausius � Herschel � Rosse � Hubble � Zwicky �
Rubin

1 Introduction

1.1 Ampliative Reasoning

Philosophers of mathematics and science have increasingly insisted on the
importance of understanding ampliative reasoning, reasoning that adds content and
yet is “rational” in a sense that goes beyond deductive and inductive logic. The
writings of Carlo Cellucci and Nancy Cartwright come immediately to mind. We
understand such reasoning variously, sometimes as a search for the solution of
problems and sometimes as a search for the conditions of intelligibility of prob-
lematic things. Thus we are interested in the ampliative thrust of certain methods,
notations and imaging, the inexhaustibly enigmatic nature of mathematical and
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natural objects and systems, and the important role played in research by the
conjunction of different modes of representation, including iconic images, dia-
grams, and two- or three-dimensional displays alongside formal languages and
natural language. The primacy of the closed, homogeneous systems of deductive
logic (so limited in their ability to refer) for understanding how we reason is thus
challenged, and so too are assumptions about how we integrate mathematics,
physical science and empirical data. One of the central concerns is the nature of
‘models’ and how they bring the natural world and mathematics into rational
relation.

1.2 Reference and Analysis

I begin by observing that productive scientific and mathematical discourse must
carry out two distinct tasks in tandem: an analysis or search for conditions of
intelligibility or solvability, and a strategy for achieving successful reference, the
clear and public indication of what we are talking about, which often involves a
search for the conditions of intelligibility of problematic objects. Difficulties often
arise for mathematicians and scientists because modes of representation apt for
analysis may prove to be inapt for successful reference, and vice versa. Sometimes
the task of analysis is more difficult, and lags behind; sometimes the task of ref-
erence is more difficult; improvements in reference may lead to improvements in
analysis, and vice versa, but often the different tasks, and attendant modes of
representation, are hard to reconcile. One of the most effective ways to bring
mathematics and the world into rational relation is to combine referential and
analytic discourses, a task which inevitably involves the construction of successful
models.

In his essay “Mathematics, Representation and Molecular Structure,” Robin
Hendry notes that Nancy Cartwright (and Margaret Morrison) distinguish strongly
between two kinds of models (Hendry 2001). On the one hand, philosophers like
Bas van Fraassen pay most attention to theoretical models, which as in model
theory are structures that satisfy a set of sentences in a formal language: such
structures are themselves organized as a language, so that the sentences of the
formal language are true when interpreted in terms of the object-language. On the
other hand, philosophers like Cartwright and Morrison remind us of the importance
of representational models, where the relevant relation is not satisfaction (as
between a meta-language and an object-language), but representation (as between a
discursive entity and a thing that exists independent of discourse), like the iconic
images that represent molecules. (This one is benzene, C6H6.) (Fig. 1).

Different models, or modes of discourse bring out different aspects of the ‘target
system.’ Those that help us to elaborate theory and the abstract, highly theoretical
networks that lead to scientific explanation, typically differ from those that help us
to denote, to single out the intended target system. The relation between metatheory
and object theory is isomorphism; but isomorphism leaves us adrift in a plurality of
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possible structures. And scientists cannot allow themselves to drift in that way:
Hendry writes, “… we note that equations are offered not in isolation, but in
conjunction with text or speech. This linguistic context is what determines their
denotation and serves to make representation a determinate, non-stipulative relation
that may admit of (degrees of) non-trivial success and failure. Natural languages
like English, French or German equip their speakers with abilities to refer to their
surroundings, and we can understand how equations can represent if they borrow
reference from this linguistic context.” (Hendry 2001). In sum, theoretical models
are too general; they cannot help us refer properly to the things and systems we are
trying to investigate. And referential models are too limited; they cannot offer the
explanatory depth that theory provides.

1.3 Models

My intention in this essay is to show how models of the solar system, our galaxy
and closest galaxy-neighbor Andromeda, and our cosmos have historically proved
to be composites: in order to be effective, they must combine discursive and rep-
resentational modelling in an uneasy but fruitful unity. We need a thoughtful
account of the variety of strategies that scientists use to construct such composite
models. The relative stability of successful models makes scientific theorizing
possible; and the residual instability (which no logician can erase) leaves open the
possibility of further analysis and more accurate and precise reference. Models are
revisable not only because they are ‘approximations’ that leave out information, but
also because they must combine both reference and analysis. To inquire into the
conditions of intelligibility of formal or natural things, we may decompose them in
various ways, asking what components they have and how those components are
related, or asking what attributes go into their complex concepts. We can also ask
what laws they satisfy. But in order to refer properly to a thing or system, we have
to grasp it first as what it is, a whole relatively stable in time and space, its unity
governing the complex structure that helps to characterize it.

Things and systems—both natural and formal—have symmetries and (since
periodicity is symmetry in time) so do natural processes! Carbon molecules as they
throb, snowflakes as they form, and solar systems as they rotate exhibit symmetries

Fig. 1 Benzene molecule
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and periodicities that are key to understanding what they are and how they work.
Thus the shape (in space and time) of a system or thing is not, as Aristotle once
claimed, a merely accidental feature. On the contrary, symmetry and periodicity are
a kind of generalization of identity; they are the hallmark of stable existence.
Symbolic modes of representation seem to be most useful for abstract analysis, and
iconic modes of representation for reference: a representation of shape is often an
important vehicle for referring. This is an over-simplification, however; tabulated
data and data displayed to exhibit (for example) linear correlations have both
symbolic and iconic dimensions, and most icons come equipped with indices that
relate them to symbolic notation. Thus we should expect models to be both sym-
bolic and iconic. And then it is rewarding to ask, how do those modes of repre-
sentation interact, on the page and in thought?

2 Early Modern Astronomy

2.1 Tycho Brahe and Kepler

In the late sixteenth century and throughout the seventeenth century, the problem of
reference in astronomy is important but less pressing than problems of analysis. The
latter include debate over whether the sun or the earth occupies the center of the
cosmos, and whether heavenly bodies move in circles at a constant speed or not.
However, the objects in question are clearly defined: we stand on the earth, the sun
and the moon are large, brilliant objects in the sky, and the planets are salient and
distinctive in their movements. To refer, in one sense, all we have to do is point. But
the very act of pointing out an item in the solar system is a tracking: such items
move, so the question of how to characterize that movement must also arise.
Tracking the objects of the solar system required, in the sixteenth century, a
compass and a sextant or quadrant; Tycho Brahe used these instruments in an
unusually consistent and careful fashion, calibrating his instruments regularly and
measuring their positions at small temporal intervals all along a given orbit with
unprecedented accuracy. Brahe’s tables of planetary motion, the Rudolphine
Tables, meant to supplant the 13th c. Alphonsine Tables, were published a quarter
century after his death in 1627, by his collaborator Kepler. The Tables are the
model, along with Kepler’s ellipse: what do I mean by this claim? (Kuhn 1957).

Perusing the pages of the Rudolphine Tables, we see that the issues of reference
and analysis cannot be thoroughly disentangled. First, from the way Kepler sets up
the Tables, it is clear that he is using a heliocentric system with elliptical planetary
orbits. This is noteworthy because Tycho remained opposed to the heliocentric
hypothesis till the end of his life, and he died before Kepler worked out his laws of
motion: the claim that the orbit of Mars is elliptical is first published in Kepler’s
Astronomia Nova (1609). Thus the tables embody and display two theoretical
challenges to Aristotelian/Ptolemaic astronomy which Tycho himself never made.
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Second, it was the very accuracy of Tycho’s data that persuaded Kepler finally to
abandon his devotion to the circle, and to search for other simple mathematical
forms, at last settling on the ellipse. Unprecedentedly accurate and frequent tracking
forced a change in conceptualization. Of course, it was also the highly theoretical
mathematics of Euclid and Apollonius (newly available in the Renaissance) that
offered a repertoire of forms to Kepler. His famous ellipse from the Astronomia
Nova is given below (Kuhn 1957) (Fig. 2).

2.2 Galileo

As is well known, Galileo pounced upon the refracting telescope almost as soon as
it was invented, made improvements to it, and turned it on the heavens. (Kepler was
an enthusiastic supporter of Galileo’s Sidereus Nuncius (1610), and himself used
the telescope to look at the moons of Jupiter and the surface of the moon.) Sixty
years later, Newton built the first reflecting telescope, using a concave primary
mirror and a flat diagonal secondary mirror; this invention impressed both Barrow
and Huygens, and led to Newton’s induction into the Royal Society. From then on,
improvements in our ability to refer to the objects of astronomy have depended on
improvements in the material composition, size, and placement of telescopes.
Galaxies and galaxy clusters, if they are not simply invisible, are at first mere
smudges on the night sky (a few are visible as smudges to the naked eye). Either
they are not recorded, or they are noted as ‘nebulae,’ clouds whose structure is just
barely visible in the nineteenth century and whose composition remains mysterious
until well into the twentieth. Like clouds, they seem to have no determinate shape;
the discernment of galactic shape plays an important role in the development of
twentieth century astronomy and cosmology (Wilson et al. 2014).

Fig. 2 Frontispiece,
Astronomia Nova
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3 Newton’s Principia

3.1 Principia, Book I

In Book I of Newton’s Principia, Kepler’s Second Law (that planets sweep out
equal sectors in equal times: they accelerate as they get closer to the sun and
decelerate as they get further away) is proved in Newtonian fashion in Proposition I,
and Kepler’s ellipse is the centerpiece of the diagram that accompanies the proof of
the inverse square law, Proposition XI. This model is a geometric shape. In this
case, however, what is modeled is only a fragment of the solar system, which
consists of two bodies, the sun and a single planet. One might suppose then that the
appropriate geometric model would simply be two points ( . . ); however, a quick
look at Fig. 3 discredits that idea. For this model of the sun and a planet to exhibit
the integrity of a system (“the System of the World”) and to serve as the basis for
building back more of the complexity of the known system with its sun, six planets
and various moons in later models, two points side by side will not suffice. Rather,
the model must include the spatial and temporal symmetries involved in the
motions of the two bodies, and thereby, as we learn from Proposition XI, it must
also express the dynamical nature of the interaction between them.

Proposition XI demonstrates that if a body in orbit around a center of force traces
out an ellipse, then the force must obey an inverse square law. The geometrical
array that we see in Figure I represents a planet at P in elliptical orbit around the sun
at S, located at one of the two foci of the ellipse. Note that significant points, and
therefore certain line segments and areas they delimit, on the geometrical con-
struction (their significance is both geometrically and physically motivated) are
labeled by letters, and that this array is surrounded by prose in Latin as well as
proportions and equations involving the letters of those lettered points. The ellipse
therefore appears as a palimpsest. It is at the same time a Euclidean-Apollonian
mathematical object, with one set of internal articulations useful for discovering its
mathematical properties; a tracking device for Kepler as he finishes compiling the
Tables with Tycho’s compass and sextant or quadrant, and therefore just an outline,
since a trajectory is just a (projected) line across the sky; and finally as well
Newton’s construction, with a superimposed set of articulations for displaying
temporal and physical properties. That final layer turns the array into the repre-
sentation of a dynamical system, as the center of force is shown to obey the inverse
square law. The ellipse thus becomes a model where the demands of reference and
the demands of theorization are, in Book I, Proposition XI, happily reconciled. All
the same, the multiple roles the ellipse is forced to play there in a sense destabilize
the geometry and will ultimately lead to its re-expression in the Leibnizian form of
a differential equation (Newton 1966; Grosholz 2007).
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3.2 Principia, Book III

In Book III of the Principia, Newton elaborates his theory and enriches his model,
building in further complexity, to show that he can account for further tabular
evidence compiled by other astronomers around Europe. He accounts for pertur-
bations in the orbit of the moon in terms of the gravitational pull of both the earth
and the sun, and goes on to account for the tides; he explains the orbits of comets as
they intermittently visit the solar system; and he generalizes the law of universal
gravitation. The problems left for the next generation by Newton’s Book III are
therefore, in his opinion, puzzles of normal science. (Kuhn apparently concurs in
Newton’s assessment.) On this account of scientific progress, the puzzles of ref-
erence are to locate and measure the movements of more and more astronomical
items, and so to make sure that they accord with Newton’s three laws of motion and
the law of universal gravitation. Existing theory, expressed in the formal (highly
geometrical) idioms of the Principia, will cover and explain observation, and prove
adequate to solving the puzzles of theory, which include first and foremost how to
move from the 2-body problem to the 3-body problem to the n-body problem.

Newton’s Law of Universal Gravitation states that, in the case of two bodies, the
force acting on each body is directly proportional to the product of the masses, and
inversely proportional to the square of the distance between their centers; and it acts
along the straight line which joins them. He also shows that gravity acts on the
bodies, when they are solid spheres, in just the same way that it would act on point
particles having the same masses as the spheres and located at their centers. This
allowed the formulation of the n-body problem, which models a group of heavenly
bodies: consider n point masses in three-dimensional Euclidean space, whose initial
positions and velocities are specified at a time t0, and suppose the force of attraction
obeys Newton’s Law of Universal Gravitation: how will the system evolve? This
means we have to find a global solution of the initial value problem for the dif-
ferential equation describing the n-body problem (Diacu and Holmes 1996).

But here is the irony: the differential equations of the two-body problem are easy
to solve. (Newton’s difficulties with his own much more geometric formulation in
Book I, Propositions XXXIX–XLI indicate the superiority of the idiom of differ-
ential equations here. At this point in the Principia, he really needed Leibniz’s
help.) However, for n larger than 2, no other case has been solved completely. One
might have thought that “reducing” the models to differential equations would have
made the solution of these centrally important problems about the solar system
straightforward. But on the contrary, the equations articulated the complexity of the
high-dimensional phase spaces needed to express accurately the physical situation
(sub-systems of the solar system), as well as the great difficulty of finding complete
solutions. The severe difficulty of the n-body problem drove the development of
physics for many decades. The work of Leibniz, Euler, Lagrange, Laplace and
Hamilton replaced Newton’s Laws with a single postulate, the Variational
Principle, and replaced Newton’s vectorial mechanics with an analysis in which the
fundamental quantities are scalars rather than vectors, and the dynamical relations

84 E. Grosholz



are arrived at by a systematic process of differentiation. Lagrange’s Méchanique
Analytique (1788) introduced the Lagrangian form of the differential equations of
motion for a system with n degrees of freedom and generalized coordinates qi (i = 1,
… n). This re-writing of the equations allowed physicists to choose whatever
coordinates were most useful for describing the system, increasing the simplicity,
elegance and scope of the mathematics.

4 Eighteenth and Nineteenth Century Astronomy

4.1 Analysis: Laplace to Clausius

But of course in another obvious sense, the very complexity of the object, the solar
system, forced the development of physics, since the solar system was the only
thing that could be studied as a celestial mechanical system by the instruments
available at the time. The main features of that complexity were already apparent to
everyone: around the sun there are many planets, with moons around some planets.
Uranus was identified by the important astronomer Herschel in 1781, and the
asteroid belt between Mars and Jupiter was correctly identified at the beginning of
the 19th century. Moreover, there were no important advances in telescopy until the
mid-19th century, so the controversies and advances apropos the mathematical
models were notably theoretical and analytic. The culmination of these develop-
ments was the publication of Pierre-Simon Laplace’s five volume Mécanique
céleste (1799–1825), where with immense mathematical skill Laplace further
elaborated these results into analytical methods for calculating the motions of the
planets. In the early 1830s, William Rowan Hamilton discovered that if we regard a
certain integral as a function of the initial and final coordinate values, this “principal
function” satisfies two first order partial differential equations; Carl Jacobi showed
how to use Hamilton’s approach to solve dynamical ordinary differential equations
in terms of the Hamilton-Jacobi equation, later simplified and generalized by Alfred
Clebsch Fraser (2000).

Hermann von Helmholtz’s publication of On the Conservation of Force (with
force (Kraft) defined in such a way that we would now translate it as energy) in
1847 was the culmination of efforts to find a mechanical equivalent for heat in the
new domain of thermodynamics, and to integrate a theory of mechanics, heat, light,
electricity and magnetism by means of the notion of energy, rather than gravita-
tional force. Rudolf Clausius reformulated the work of Sadi Carnot and introduced
the second law of thermodynamics in 1850, as well as the notion of entropy in
1865. In an 1870 lecture entitled “On a Mechanical Theorem Applicable to Heat,”
he introduced the Virial Theorem, which states that in an assemblage of particles in
gravitationally bound, stable statistical equilibrium, the average kinetic energy is
equal to half the average potential energy. Whereas measuring the potential energy
of a system requires the ability to measure its mass, measuring the kinetic energy
depends on the measurement of the motions of bodies in the system. In the case of
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astronomical bodies, it is much easier to measure the latter than the former, so the
Virial Theorem came to assume an important role in twentieth century cosmology,
when it was applied to galaxies and galaxy clusters. However, in 1870, these
objects were barely discernible: they were referred to as nebulae, clouds, because
that was how they appeared. Many astronomers supposed that they would prove to
have interesting internal structure, after Laplace in 1796, following the speculations
of Kant, proposed the nebular hypothesis that the solar system emerged from a
cloud of swirling dust. Thus here the issue of models for the heavens reverts to the
problem of reference, and the work of the astronomers Sir William Herschel and
William Parsons, Earl of Rosse.

4.2 Reference: Messier, Herschel and the Earl of Rosse

The path from the detection of ‘nebulae’ as cloudy smudges within the sole ‘island
galaxy’ of the Milky Way to the recognition that many of them were in fact other
galaxies far distant from our own, with complex internal structure encompassing
hundreds of billions of stars is long and winding. Charles Messier catalogued the
closest galaxy Andromeda as M31 in 1764, and William Herschel estimated that it
was about 2000 times further away from us than Sirius (which is one of the stars
closest to us). Herschel’s large reflecting telescopes produced a dramatic increase in
the ability of astronomers to watch the heavens; in 1789 he proposed that nebulae
were made up of self-luminous nebulous material. He made hundreds of drawings
of them, looking for significant morphological differences, or patterns of devel-
opment, as he searched for evidence of his nebular hypothesis that clusters of stars
may be formed from nebulae. (Laplace modified the nebular hypothesis, as noted
above, to speculate that the solar system was originally formed from a cloud of
gases.) Herschel’s son John revised his father’s catalogue for the Northern hemi-
sphere, and established a catalogue for the Southern Hemisphere as well, and kept
alive the question of the composition of the nebulae: what were they made of?
Alongside tabulations of positions, astronomical observations were drawn by hand;
John Herschel was known for his meticulous sketches, which he hoped could be
used in series, and by future astronomers, to determine change and motion in
celestial configurations (Nasim 2010).

In 1845, William Parson, Earl of Rosse, built the largest telescope in the world:
its speculum mirror was six feet in diameter, with a focal length of over four feet.
He hoped to discover some of the fine structure of Herschel’s nebulae. Soon after
the telescope was set up, next to a smaller one that was equatorially mounted, he
pointed it at Messier 51 (what we now call the Whirlpool Galaxy, a bright, face-on
spiral with a companion) and discovered both its spiral, swirled structure and its
companion. The discernment of the shape of the nebula was decisive. He sketched
it repeatedly, in two steps: first he used the smaller telescope to scale the drawing,
and then the large one to fill in the details. Herschel saw Rosse’s sketches, presented
at a meeting of the British Association for the Advancement of Science and was
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enthusiastically supportive. These drawings were later improved and engraved, so
that the nebula was represented in negative, as black on a white background. So in
Rosse’s research project, the production of an astronomical image was an interplay
between what was seen through the telescope, and what was carefully sketched by
lamplight by Rosse and various assistants, thereafter to be re-fashioned as an
engraving. This was the first model of a galaxy (Nasim 2010) (Fig. 4).

5 Twentieth Century Astronomy

5.1 From Rosse to Hubble

In the last two decades of the 19th century, astronomers solved various technical
problems (for example, how to keep a linked telescope and a camera with a certain
required exposure time pointing in the right direction for the required stretch of
time) and profited from the introduction of dry plate photography, so that by 1887 a
consortium of twenty observatories could produce a comprehensive astronomical
atlas from photographic images. Comparison of photographs rapidly made clear
how variable sketches had been as records of celestial objects, especially nebulae.
Once astronomers had a firmer grasp of what they were trying to look at, the next
step was to estimate how far away they were, and then to combine that knowledge
with star counts and further estimations of stellar velocities within a given galaxy.

Fig. 4 Rosse’s sketch of Messier 51
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Up to this point, the application of classical mechanics to these mysterious objects
had really only been a pipedream. In the first decades of the twentieth century it
became a true research program, once nebulae were acknowledged to be
extra-galactic objects, much larger and farther away than anyone in the 19th century
suspected, and ever more powerful telescopes were able to track their motions and
resolve their images. In the meantime, however, classical mechanics was being
transformed, and the ensuing theoretical disputes affected the work of astronomers
as well.

Thus the development of Newtonian mechanics was not “normal science” in
Kuhn’s sense. The emergence of electro-magnetic theory, the independent devel-
opment of chemistry, and the study of thermodynamics were shaped by a growing
awareness that in different domains forces other than gravity were important and
demanded codification, and that the notation of differential equations, the study of
symmetries, and the category of energy (as opposed to force) should be central to
mechanics. However, the most direct challenge to Newtonian mechanics came from
Einstein’s special and general theories of relativity, which explored the conse-
quences of the equivalence of inertial frames (special relativity) and of accelerated
frames (general relativity), given the constant speed of light. Einstein proposed an
equivalence between matter and energy, a 4-dimensional space-time continuum
curved locally and perhaps globally by the matter and energy located in it, a dilation
or slowing down of the passage of time experienced by items moving close to the
speed of light, and the notion of a light-cone as a formal limit on cosmic causal
interaction. It was clear that these revisions of classical mechanics would have
significant consequences for astronomy, certain aspects of which were beginning to
change into modern scientific cosmology. In the late eighteenth and early nine-
teenth century, cosmology had remained merely speculative, driven by the meta-
physical certainty of Leibniz and Goethe that in nature, “everything strives.”
However, relativity theory did not impinge immediately on the study of galaxies;
rather, it was the study of the ‘red shift’ of the electro-magnetic radiation emitted
from stars and the characterization of ‘Cepheid variables,’ both more closely related
to problems of reference and taxonomy than to theoretical speculation, which
moved the study of galaxies into the heart of modern cosmology.

The astronomer Edwin Hubble studied galaxies by analyzing the emission
spectra of the light emitted by their stars; he noted that the standard patterns of
spectral lines were shifted toward the red end of the spectrum. This he interpreted as
analogous to a ‘Doppler shift,’ which we know from ordinary experience as the
lowering of the tone (due to the sound wave’s perceived lengthening) of a train
whistle when the train rushes past us; this effect holds not only for sound waves but
also for light waves. That is, Hubble took this ‘red shift’ as evidence that the
galaxies (most of them) were receding from us. His famous law proposed in 1929
posits a linear relation defined by the Hubble constant between recessional velocity
and distance, so that a measurement of red shift could be used to give an accurate
estimate of how far away from us a galaxy lies. He also used ‘standard stars’ called
Cepheid variables, whose period of variation and absolute luminosity are tightly
related, as signposts; in combination, these factors allowed him to see that nebulae
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were extra-galactic, and to estimate their distances from us. Thus it was only during
the 1920s that the scale of the universe began to dawn on astronomers (Liddle
2009). In 1936, Hubble wrote in his influential book The Realm of the Nebulae that
“valuable information has been assembled concerning the scale of nebular dis-
tances, the general features of nebulae, such as their dimensions, luminosities, and
masses, their structure and stellar contents, their large-scale distribution in space,
and the curious velocity-distance relation.” (Hubble 1982) (Fig. 5).

From that point on, scientists were puzzled about how to address the mismatch
between astrophysical theory, originally based on the behavior of objects in the
solar system, and the measurement of celestial systems. The orbital speeds of the
stars in galaxies should be determined by the total mass of the galaxy pulling on
them, and should diminish in proportion to their distance from the center; but stars
on the outskirts of galaxies go much too fast. The laws of Newtonian physics
predict that such high speeds would pull the galaxy apart. Thus in order to explain
the stability of a galaxy, scientists either had to assume there is much more matter in
a galaxy than we can see in the form of stars like our sun, or that Newton’s laws
must be revised for large systems.

5.2 The Dispute Between Zwicky and Hubble

In 1937, the astronomer Fritz Zwicky took issue with Hubble on a number of points.
He announced at the beginning of his paper “On the Masses of Nebulae and Clusters
of Nebulae,” that the determination of the masses of extragalactic nebulae was a

Fig. 5 Hubble’s data (1929)

Models of the Skies 89



central problem for astrophysics. “Masses of nebulae until recently were estimated
either from the luminosities of nebulae or from their internal rotations,” he noted,
and then asserted that both these methods of reckoning nebular masses were unre-
liable. The adding up of observed luminosities gave figures that are clearly too low;
and the models used for reckoning mass on the basis of observed internal motions
were too indeterminate. Better models were needed, not least because Zwicky was
convinced that in addition to luminous matter, galaxies (and the larger formations of
galaxy clusters) included ‘dark matter.’ He wrote, “We must know how much dark
matter is incorporated in nebulae in the forms of cool and cold stars, macroscopic
and microscopic solid bodies, and gases.” (Zwicky 1937). It would be anachronistic
to read Zwicky here as supporting or even introducing the current hypothesis of
‘dark matter,’ since he used the term simply to indicate that he thought that our
telescopes cannot see some or most of what is actually included in a galaxy or galaxy
cluster. There was luminous matter, which we can detect, and dark matter which (as
yet) we can’t. This made it all the more important to be able to estimate the mass of a
galaxy or galaxy cluster on the basis of the internal movements of its visible com-
ponents; thus we would have to improve upon the mechanical models used, so that
those estimates could become more accurate. He discussed four kinds of models, the
first of which, Hubble’s model, he dismissed.

In The Realm of Nebulae, Hubble argued that from observations of internal
rotations, good values of the mass of a galaxy should be derived. He wrote, “Apart
from uncertainties in the dynamical picture, the orbital motion of a point in the
equatorial plane of a nebula should be determined by the mass of material inside the
orbit. That mass can be calculated in much the same way in which the mass of the
sun is found from the orbital motion of the earth (or of the other planets).” (Hubble
1982). However, he expressed some doubts about how to interpret available data
about both galaxies and galaxy clusters. Zwicky diagnosed the problem in terms of
the indeterminacy of the mechanical model, for one could make the assumption
either that the ‘internal viscosity’ of a nebula was negligible, or that it was very
great. In the former case, the observed angular velocities will not allow the com-
putation of the mass of the system; in the latter case, the nebula will rotate like a
solid body, regardless of what its total mass and distribution of that mass may be.
For intermediate and more realistic cases, Zwicky argued, “it is not possible to
derive the masses of nebulae from observed rotations without the use of additional
information.” If, for example, there were a central, highly viscous core with distant
outlying, little-interacting components, one would need information about that
viscosity and about the distribution of the outlying bodies. And he dismissed the
analogy with the solar system as superficial.

Zwicky went on to propose three other possible models for calculating the mass
of a galaxy or galaxy cluster. The second approach was to apply the Virial
Theorem. If a galaxy cluster such as the Coma cluster was stationary, then “the
virial theorem of classical mechanics gives the total mass of a cluster in terms of the
average square of the velocities of the individual nebulae which constitute this
cluster.” He argued that the Virial Theorem would work for the system, even if the
nebulae are not evenly distributed throughout the cluster. But what if the cluster
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was not stationary? A brief calculation showed that, given the velocities, the virial
theorem predicts that ultimately it will fly apart, which is odd, since then there
should be no galaxy clusters at all; so there must be ‘internebular material,’ whose
nature and density should be further studied. Zwicky concluded that “the virial
theorem as applied to clusters of nebulae provides for a test of the validity of the
inverse square law of gravitational forces,” because the distances are so enormous
and these clusters are the largest known aggregates of matter. He also remarked that
it would be desirable to apply the virial theorem to individual galaxies, but that it
was just too difficult to measure the velocities of individual stars, as it was at that
point in time. He treated this practical limitation as if he could not foresee its
resolution (Zwicky 1937).

The next model was that of gravitational lensing, a direct application of
Einstein’s theory of General Relativity; however, this was merely a speculative
proposal, and wasn’t carried out observationally until 1979. The final model was an
extrapolation of ordinary statistical mechanics, “analogous to those which result in
Boltzmann’s principle.” Zwicky’s motivation in this section seemed to be to find a
theory that would explain large-scale features of the universe without resorting to
the kind of cosmological account (like the Big Bang theory, with which Hubble’s
Law became associated) he opposed, given his general disapproval of Hubble.
Zwicky concluded, “It is not necessary as yet to call on evolutionary processes to
explain why the representation of nebular types in clusters differs from that in the
general field. Here, as in the interpretation of other astronomical phenomena, the
idea of evolution may have been called upon prematurely. It cannot be overem-
phasized in this connection that systematic and irreversible evolutionary changes in
the domain of astronomy have thus far in no case been definitely established.” For
Zwicky, part of what was at stake was whether our model of the whole cosmos
should be evolutionary or not (Zwicky 1937).

5.3 Vera Rubin

Thus at the end of the 1930s, two important astronomers who had access to the
same observational data on the largest material objects in the universe found
themselves associated with two radically opposed views on the direction cosmology
should take. Yet they were both equally puzzled by the discrepancy in estimates of
the mass of these large objects. The evidence provided by star-counting or
galaxy-counting, and the results of mechanically plausible models that calculate
mass on the basis of the motions of stars in galaxies and of galaxies within clusters,
simply did not agree. So the choice of theory could not be determined by obser-
vational results, and the clash of observational results could not be reconciled by
theory. A quarter century later, astronomers were finally in a position to measure
the velocities of components of a galaxy, and so to calculate the mass of the galaxy.
Astronomers already had reliable evidence that a galaxy rotates about its center,
based on the gradient in the stellar absorption lines on the major axis and the lack of
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such a gradient on the minor axis. If a galaxy were a mechanical system like the
solar system, then we should expect that the velocity of its outer regions should
decrease, as Kepler (and then, generalizing, Newton and Clausius) demonstrated.
The longer periods of revolution of Jupiter and Nepture, and the shorter periods of
Mercury and Venus, can be accurately predicted. Even such a distinguished
astronomer as Vesto Slipher (1875–1969) continued to characterize the radial
velocity data of Andromeda and the Sombrero galaxy as “planetary” into the 1950s.

In the early 1960s, Vera Rubin and her graduate students made careful studies of
the velocities of stars on the outskirts of Andromeda, because Rubin was interested
in where galaxies actually end; they found that the galaxy rotation curve did not
diminish, as expected, but remained flat. In 1970, she and W. Kent Ford, Jr.
reported new data on Andromeda, profiting from the identification of almost 700
individual emission regions, as well as the use of image intensifiers that reduced
observation times by a factor of 10. The edges of Andromeda did not move slower;
they moved just as quickly as the inner regions. (The Galaxy Andromeda is M31 in
the Messier Catalogue.) (Rubin and Ford 1970) (Fig. 6).

In 1980, with W. Kent Ford and Norbert Thonnard, she reported similar data for
21 further galaxies. While in the earlier papers she was reticent about drawing
explicit conclusions, in this paper she writes, “Most galaxies exhibit rising rotational
velocities at the last measured velocity; only for the very largest galaxies are the

Fig. 6 Rubin’s data
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rotation curves flat. Thus the smallest Sc’s (i.e. lowest luminosity) exhibit the same
lack of Keplerian velocity decrease at large R as do the high-luminosity spirals. This
form for the rotation curves implies that the mass is not centrally condensed, but that
significant mass is located at large R. The integral mass is increasing at least as fast as
R. The mass is not converging to a limiting mass at the edge of the optical image.
The conclusion is inescapable that non-luminous matter exists beyond the optical
galaxy.” Since then, her observations have proved consistent with the measurement
of velocities in a wide variety of other galaxies (Rubin et al. 1980).

6 Coda

Scientists remain divided about how to address the mismatch between astrophysical
theory, originally modeled on our solar system, and data on larger systems.
Proponents of the abductive thesis of dark matter argue that, in order to explain the
stability of a galaxy or a galaxy cluster, we have to assume that there is much more
matter in a galaxy than we can see in the form of stars like our sun. We must posit a
spherical halo of dark matter around the spiral or ellipsoid or spheroid that we see.
Other scientists are unhappy with a scientific theory based on something that (up till
now) has resisted detection altogether. The research program MOND (Modified
Newtonian Dynamics) proposes instead that we revise Newtonian Mechanics to
explain the uniform velocity of rotation of galaxies. Since its inception thirty years
ago, proponents have- tried various adjustments and refinements, without winning
general acceptance. So it seems that we must choose between ad hoc adjustment of
principles, or postulating a new kind of matter we can’t detect. Clearly, a new kind
of model is called for, which will bring reference and theoretical analysis into novel
and more fruitful alignment.
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Models of Science and Models in Science

Carlo Cellucci

1 Premise

With regard to science, one may speak of models in different senses. The two main
ones are models of science and models in science. A model of science is a repre-
sentation of how scientists build their theories, a model in science is a represen-
tation of empirical objects, phenomena, or processes of some area of science.

In this article I will describe and compare four models of science: the
analytic-synthetic model, the hypothetico-deductive model, the semantic model,
and the analytic model. Then I will briefly discuss to what extent each of these
models of science is capable of accounting for models in science.

2 The Analytic-Synthetic Model

The analytic-synthetic model of science was introduced by Aristotle and is
Aristotle’s model of science.

According to Aristotle, “the process of knowledge proceeds from what is more
knowable and clearer to us to what is clearer and more knowable by nature”
(Aristotle, Physica, A 1, 184 a 16–18). Now, what is more knowable and clearer to
us is the conclusion we want to establish, while what is clearer and more knowable
by nature are the prime premises, or principles. Thus, according to Aristotle, the
process of knowledge proceeds from the conclusion we want to establish to the
prime premises, or principles.
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Starting from the conclusion we want to establish, we must find “the necessary
premises through which the syllogisms come about” (Aristotle, Topica, Θ 1, 155 b
29). We will find them “either by syllogism”—namely by Aristotle’s procedure for
finding the premises of a syllogism, given the conclusion—“or by induction”
(Aristotle, Topica, Θ 1, 155 b 35–36). For a detailed description of Aristotle’s
procedure for finding the premises of a syllogism, given the conclusion, see
Cellucci (2013, Chap. 7).

When the premises are found, we “should not put these forward right away, but
rather should stand off as far above them as possible” (ibid., Θ 1, 155 b 29–30).
Namely, we should find other premises from which the previous premises can be
deduced. And so on, until we arrive at premises which are prime premises. The
prime premises are principles, because “I call the same thing prime and principle”
(Aristotle, Analytica Posteriora, A 2, 72 a 6–7). Being principles, the prime pre-
mises must be indemonstrable and true. Moreover, they must implicitly contain all
about the kind with which they are concerned, and must be of the same kind as the
conclusion, because “the indemonstrables,” namely the principles, “must be in the
same kind as the things demonstrated” (ibid., A 28, 87 b 2–3).

When we arrive at prime premises, the upward process terminates. This is
analysis, and the upward process is the analytic method. At this point we try to
invert the process, deducing the conclusion we want to establish from the prime
premises, thus producing a demonstration of it and hence scientific knowledge. For
“to know scientifically is to know through demonstration” (Aristotle, Analytica
Posteriora, Α 2, 71 b 18). This is synthesis, and the deduction process is the
synthetic method.
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In addition to being true, the prime premises must be known to be true, other-
wise we could not say that we “have scientific knowledge of what follows from
them, absolutely and properly” (ibid., A 3, 72 b 14). Then the question arises how
the prime premises become known to be true. Now, the prime premises cannot
become known to be true by demonstration, otherwise they would be demonstrable.
But the prime premises, being principles, “are indemonstrable, therefore it will not
be scientific knowledge but intuition [nous] that is concerned with the principles”
(Aristotle, Magna Moralia, A 34, 1197 a 22–23). Thus it will be “intuition [nous]
that apprehends the principles” (Aristotle, Analytica Posteriora, Β 19, 100 b 12).

Since, for Aristotle, the prime premises become known to be true by intuition,
intuition plays an essential role in Aristotle’s analytic-synthetic model, being the
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way we apprehend the principles. However, the prime premises are not discovered
by intuition. They are discovered either by Aristotle’s procedure for finding the
premises of a syllogism, given the conclusion, or by induction.

3 The Analytic-Synthetic Model and Modern Science

According to a widespread opinion, “modern science owes its origins and present
flourishing state to a new scientific method which was fashioned almost entirely by
Galileo Galilei” (Kline 1985, p. 284). This opinion, however, is unjustified. The
initiators of modern science, from Galileo to Newton, did not fashion a new sci-
entific method, on the contrary, they followed Aristotle’s analytic-synthetic model
of science.

For example, Newton states that “as in mathematicks, so in natural philosophy, the
inquiry of difficult things by the method of analysis, ought ever to precede the
method” of synthesis, or “composition” (Newton 1952, p. 404). Now, “analysis
consists in making experiments and observations, and in drawing general conclusions
from them by induction” (ibid.). More precisely, in analysis “particular propositions
are inferred from the phenomena, and afterwards rendered general by induction”
(Newton 1962, II, p. 676). Of course, “the arguing from experiments and observations
by induction” is “no demonstration of general conclusions; yet it is the best way of
arguing which the nature of things admits of” and “may be looked upon as so much
the stronger, by how much the induction is more general” (Newton 1952, p. 404).

Once a general conclusion has been reached, “if no exception occur from phe-
nomena, the conclusion may be pronounced generally” (ibid.). On the other hand, if
“any exception shall occur from experiments,” the conclusion will “then begin to be
pronounced with such exceptions as occur” (ibid.). For “in experimental philoso-
phy, propositions gathered from phenomena by induction, when no contrary
hypotheses are opposed, must be considered to be true either exactly or very nearly,
until other phenomena occur by which” such propositions “are made either more
exact or liable to exceptions” (Newton 1962, II, p. 400). Then the propositions will
be pronounced with the exceptions.

By this way of inquiry we proceed “from effects to their causes, and from
particular causes to more general ones, till the argument end in the most general.
This is the method of analysis” (Newton 1952, p. 404). On the other hand, “syn-
thesis consists in assuming the causes discovered, and established as principles, and
by them explaining the phenomena proceeding from them, and proving the
explanations” (ibid., pp. 404–405).

Thus, according to Newton, premises are obtained from experiments and
observations by induction. The latter is not demonstration, and yet is the best way
of dealing with the objects of nature, as distinguished from mathematical objects.
Moreover, induction is so much stronger by how much it is more general. Premises
obtained by means of it are accepted as long as no counterexample occurs. This is
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analysis. From the premises, which give the causes, one then deduces the phe-
nomena. This is synthesis.

Clearly, this is Aristotle’s analytic-synthetic model of science, except that
Newton does not mention Aristotle’s procedure for finding the premises of a syl-
logism, given the conclusion, but only induction.

The method just described is the method by which Newton proceeds. Indeed, he
explains that his own propositions “were invented by analysis. But, considering”
that ancient mathematicians “admitted nothing into geometry before it was
demonstrated by composition,” namely by synthesis, Newton composed, that is, he
wrote synthetically, what he had “invented by analysis, to make it geometrically
authentic and fit for the publick” (Cohen 1971, p. 294). Newton “could have written
analytically” what he “had found out analytically,” but he “was writing for scien-
tists steeped in the elements of geometry”—namely in Euclid’s Elements—and was
“putting down geometrically demonstrated bases for physical science” (Newton
1967–1981, VIII, p. 451). Therefore, he wrote “in words at length after the manner
of the ancients” (Cohen 1971, p. 294). That is, synthetically.

Admittedly, “if any man who understands analysis will reduce the demonstra-
tions of the propositions from their composition back into analysis,” he “will see by
what method of analysis they were invented” (ibid.). But this will require consid-
erable skill, because synthesis tends to hide analysis. This “makes it now difficult
for unskilful men to see the analysis by which those propositions were found out”
(ibid., p. 295).

Thus Newton makes it quite clear that he discovered his results by analysis. But
he presents them hiding analysis and disclosing only synthesis, in order to make
them fit for a public used to the didactic style of Euclid’s Elements. Thus Newton
proceeds in an opposite way with respect to Descartes who, in his Geometry, lays
down no definitions, postulates and common notions in the beginning, and presents
only analysis. Indeed, according to Descartes, in synthesis “there is no difficulty,
except in deducing the consequences properly; which” however “can be done even
by the less attentive people, provided only that they remember what has gone
before” (Descartes 1996, VII, pp. 156–157). Perhaps Newton refers to Descartes
when he states that “the mathematicians of the last age have much improved
analysis, but stop there and think they have solved a problem when they have only
resolved it” by the method of analysis, thus “the method of synthesis is almost laid
aside” (Cohen 1971, p. 294).

4 The Disappearance of Analysis

Contrary to what happened in the age of Descartes and Newton, in the period from
the eighteenth century to the second half of the nineteenth century, the analytic part
of the analytic-synthetic model regresses and ultimately disappears, only the syn-
thetic part of the analytic-synthetic model remains.

98 C. Cellucci



This does not mean that, in the period in question, there are no explicit uses of
the analytic-synthetic model. An example is provided by Riemann who states that,
“for the physiology of a sense organ,” in particular the ear, “there are two possible
ways of gaining knowledge about its functions. Either we proceed from the con-
stitution of the organ, and from there seek to determine the interaction of its parts as
well as its response to external stimuli; or we begin with what the organ accom-
plishes and then attempt to account for this” (Riemann 1892, p. 338). Now, “by the
first way we argue from given causes to effects, by the second way we seek causes
of given effects. With Newton and Herbart, we may call the first way synthetic, the
second analytic. The first way is closest to the anatomist” (ibid.). On the other hand,
“by the second way we seek to give an explanation for what the organ accom-
plishes. This undertaking can be broken down into three parts. (1) The search for a
hypothesis which is sufficient to explain what the organ accomplishes. (2) The
investigation of the extent to which this explanation is a necessary one. (3) The
comparison with experience in order to confirm or correct such explanation” (ibid.,
p. 339). The search of a hypothesis is carried out with “the use of analogy” (ibid.,
p. 341). Both ways are indispensable, because “every synthesis rests upon the
results of a preceding analysis, and every analysis, in order to be confirmed or
corrected through experience, requires a subsequent synthesis” (ibid., p. 340).

Clearly, this is Aristotle’s analytic-synthetic model of science, except that, like
Newton, Riemann does not mention Aristotle’s procedures for finding the premises
of a syllogism given the conclusion, and replaces induction with analogy.

However, despite some exceptions, as already said, in the period from the
eighteenth century to the second half of the nineteenth century, the reference to
analysis declines and ultimately disappears. At the origin of this there are at least
two factors.

One factor is Romanticism, which exalts genius and the role of intuition. Thus
Novalis states that scientific discoveries “are leaps—(intuitions, resolutions)” and
products “of the genius—of the leaper par excellence” (Novalis 2007, p. 28).
Therefore the analytic part of the analytic-synthetic model should be abandoned and
only the synthetic part should be preserved, because “genius is the synthesizing
principle” (ibid., 215). In mathematics “a true method of progressing synthetically
is the main thing” and this is the “method of the divinatory genius” (ibid., 100). The
synthetic method gives “the regulation of genius” (ibid., 164). Admittedly, “the
synthetic method” is “the freezing, wilting, crystallizing, structuring and successive
method. The analytic method in contrast, is a warming, dissolving and liquefying
method. The former seeks the whole, the latter the parts” (ibid., 175). For “the
synthetic course proceeds above all from the constituents (or better, from the ele-
ments) to the whole,” while “the analytic course from the whole to the elements”
(ibid., 194). Neverthless, the true method is the synthetic method, because only the
synthetic method permits to build a system in an absolutely free way. Therefore
“the true philosopher has a synthetic method” (ibid., 73).

Another factor is the development, in the nineteenth century, of theories
involving hypotheses that appeal to unobservable entities and processes, and hence
cannot be derived from observation. Thus Whewell states that from these theories it
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is clear that “an art of discovery is not possible. At each step of the progress of
science, are needed invention, sagacity, genius; elements which no art can give”
(Whewell 1847, I, p. viii). Discovery “must ever depend upon some happy thought,
of which we cannot trace the origin; some fortunate cast of intellect, rising above all
rules. No maxims can be given which inevitably lead to discovery. No precepts will
elevate a man of ordinary endowments to the level a man of genius” (ibid., II,
pp. 20–21). Since discovery must ever depend upon some fortunate cast of intellect,
rising above all rules, Herschel states that “we must not, therefore, be scrupulous as
to how we reach to a knowledge of such” theories: “provided only we verify them
carefully when once discovered, we must content to seize them wherever they are to
be found” (Herschel 1851, p. 164).

Because of these and possibly other factors, at the end of the nineteenth century
the analytic part of Aristotle’s analytic-synthetic model is abandoned and only the
synthetic part is retained. This leads to a new model of science, the
hypothetico-deductive model.

5 The Hypothetico-Deductive Model

According to the hypothetico-deductive model of science, formulating a scientific
theory about a certain class of phenomena means formulating hypotheses, then
deducing consequences from them, and finally comparing consequences with the
observation data. The hypotheses are subject to the condition that they must be
consistent (namely, non-contradictory) and known to be consistent. The hypotheses
are supposed to solve all problems in the relevant field. They can and must be tested
by comparing the consequences deduced from them with the observational and
experimental data.
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Thus Carnap states that formulating a scientific theory about a physical process is
“a matter of deducing the concrete sentence which describes the process” from
hypotheses, consisting of “valid laws and other concrete sentences. To explain a
law,” thus a universal fact, “means to deduce it from more general laws” (Carnap
2001, p. 320). There is “great freedom in the introduction” of hypotheses, or
“primitive sentences” (ibid., p. 322). However, “every hypothesis must be
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compatible with the total system of hypotheses” (ibid., p. 320). That is, it must be
consistent with them. Moreover, “the hypotheses can and must be tested by expe-
rience” (ibid.). Namely, the consequences deduced from them must agree with the
observational and experimental data.

6 The Hypothetico-Deductive Model and Closed Systems

According to the hypothetico-deductive model, a scientific theory is a closed sys-
tem. This means that the development of the theory remains completely internal to
the theory, it involves no interaction with other theories, so a scientific theory is a
self-sufficient totality. The hypotheses of the theory are given once for all, and
developing the theory only means deducing consequences from them. The conse-
quences contain nothing essentially new with respect to the hypotheses, because
deduction is non-ampliative, it simply makes explicit what is implicitly contained in
the hypotheses.

Thus, according to the hypothetico-deductive model, a theory is all implicitly
contained in its hypotheses. As Kant says, a theory is a whole “all of whose parts
still lie very involuted and are hardly recognizable even under microscopic obser-
vation” (Kant 1998, A834/B862). It can only “grow internally (per intus suscep-
tionem),” that is, by growth from within, and “not externally (per appositionem)”
(ibid., A833/B861). That a theory is all implicitly contained in its hypotheses is due
to the fact that developing a theory means deducing consequences from the
hypotheses of the theory, and deduction simply makes “explicit what is implicitly
contained in a set of premises. The conclusions to which” deduction leads “assert
nothing that is theoretically new in the sense of not being contained in the content of
the premises,” they can only be “psychologically new” in the sense that we were not
aware of their being implicitly contained in the premises, thus we were not aware of
“what we committed ourselves to in accepting a certain set of assumptions or
assertions” (Hempel 2001, p. 14). As Wittgenstein says, in deduction “there can
never be surprises” (Wittgenstein 2002, 6.1251). For in deduction “process and
result are equivalent. (Hence the absence of surprise)” (ibid., 6.1261).

7 The Hypothetico-Deductive Model and the Axiomatic
Method

Clearly, the hypothetico-deductive model is based on the axiomatic method, more
precisely, on what is called the ‘modern axiomatic method’ to distinguish it from
the ‘classical axiomatic method’.

Aristotle states the classical axiomatic method by saying that a scientific theory
proceeds from hypotheses or axioms “that are true and primitive” (Aristotle,
Analytica Posteriora, A 2, 71b 20-21). Then it deduces conclusions from them by
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“scientific deduction” (ibid., A 2, 71b 18). That is, it deduces conclusions from
them by a deduction with true premises. In addition to be true, the hypotheses, or
axioms, must be known to be true, otherwise we would not have scientific
knowledge of what follows from them. The modern axiomatic method differs from
the classical axiomatic method in that it does not require that the hypotheses or
axioms be true and known to be true, but only consistent and known to be
consistent.

In the classical axiomatic method, that the hypotheses must be true means that
they must be true of certain given things and facts. However, it may possible to
discover that they are true also of other things and facts. This has led to frame
axioms systems in which the hypotheses or axioms are true for a large number of
things and facts. A typical example is group theory. Such axiom systems are based
on the modern axiomatic method rather than the classical axiomatic method. The
difference between the classical axiomatic method and the modern axiomatic
method is often viewed as an opposition. Such is the case of the Frege-Hilbert
controversy, in which, on the one hand, Frege states: “I call axioms propositions
that are true” of certain given things and facts, and “from the truth of the axioms it
follows that they do not contradict one another” (Frege 1980, p. 37). Assuming that
axioms are true for a large number of things and facts means to detach a scientific
theory from reality and “to turn it into a purely logical science” (ibid., p. 43). On the
other hand, Hilbert states that “any theory can always be applied to infinitely many
systems of basic elements,” for example, “all statements of electrostatics hold of
course also for any other system of things which is substituted for quantity of
electricity,” provided “the requisite axioms are satisfied. Thus the circumstance I
mentioned is never a defect (but rather a tremendous advantage) of a theory” (ibid.,
p. 42).

However, as Shoenfield points out, “the difference” between the classical
axiomatic method and the modern axiomatic method “is not really in the axiom
system, but in the intentions of the framer of the system” (Shoenfield et al. 1967,
p. 2).

It must be mentioned that, although Aristotle stated the classical axiomatic
method, this is not his model of science, which is the analytic-synthetic model. For
him, the classical axiomatic method is only as a model of the teaching of science.
Indeed, he states that “didactic arguments are those that deduce from the proper
principles of each subject” (Aristotle, Sophistici Elenchi, 2, 165 b 1–2). That is,
didactic arguments are those based on the classical axiomatic method. As a matter
of fact, in his scientific research works Aristotle never uses the classical axiomatic
method.
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8 Models of Science and Gödel’s Incompleteness
Theorems

The analytic-synthetic model and the hypothetico-deductive model share a basic
limitation: they are incompatible with Gödel’s incompleteness theorems.

The analytic-synthetic model is incompatible with Gödel’s first incompleteness
theorem because, by the latter, for any scientific theory in a given field, satisfying
certain minimal conditions, there is a sentence which is true but not deducible from
the hypotheses of the theory. This affects the analytic-synthetic model, according to
which all true sentences of a theory must be deducible from the hypotheses of the
theory. It affects the analytic-synthetic model also because, by Gödel’s first
incompleteness theorem, the hypotheses from which a given truth is to be deduced
need not be of the same kind as that truth, while according to the analytic synthetic
model they must be of the same kind.

The hypothetico-deductive model is incompatible with Gödel’s first incom-
pleteness theorem because, by the latter, for any scientific theory for a given field
satisfying certain minimal conditions, there is a sentence of the theory such that
neither A nor ¬A is deducible from the hypotheses of the theory. This affects the
hypothetico-deductive model, according to which the hypotheses are supposed to
solve all problems in the relevant field.

The analytic-synthetic model and the hypothetico-deductive model are incom-
patible with Gödel’s second incompleteness theorem because, by the latter, for any
scientific theory in a given field, satisfying certain minimal conditions, it is
impossible to prove, by any reliable means, that the hypotheses of the theory are
consistent, even more that they are true. This affects the analytic-synthetic model,
according to which the hypotheses of a theory must be true and known to be true. It
also affects the hypothetico-deductive model, according to which the hypotheses of
a theory must be consistent and known to be consistent.

9 Curry’s Alleged Way Out

According to Curry, the analytic-synthetic model and the hypothetico-deductive
model may be retained if we assume that scientific knowledge in a given field is not
represented by a single theory but rather by a growing sequence of theories. Gödel’s
first incompleteness theorem only entails that “the concept of intuitively valid proof
cannot be exhausted by any single formalization” (Curry 1977, p. 15). But scientific
knowledge for a given field can be represented by a growing sequence of theories in
which each theory properly includes the preceding one, in the sense that the
hypothesis of a theory properly include the hypotheses of the preceding one.

Curry’s way out, however, is not viable because, in Curry’s growing sequence of
theories, proof is not a fixed thing but a growing thing. Indeed, as Curry acknowl-
edges, “proof is precisely that sort of growing thing which the intuitionists have

Models of Science and Models in Science 103



postulated for certain infinite sets” (ibid.). But this notion of proof is incompatiblewith
the analytic-synthetic model and the hypothetic-deductive model, according to which
proof is a fixed thing. Each theory in Curry’s sequence is a step in a growing sequence
of theories, and, as Gödel points out, “there cannot exist any formalism which would
embrace all these steps” (Gödel 1986–2002, II, p. 151). But the existence of such a
formalism would be necessary if proof is to be a fixed thing.

10 Other Limitations of the Hypothetico-Deductive Model

In addition to being incompatible with Gödel’s incompleteness theorems, the
hypothetico-deductive model has other limitations. It leaves to one side the crucial
issue of how to find hypotheses, limiting itself to saying that, in order to find them,
“creative ingenuity is required” (Carnap 1966, p. 33). But this is a non-explanation,
it completely evades the issue. Moreover, it may occur that the observational and
experimental data may confirm not only our hypotheses, but also other hypotheses
which are incompatible with our hypotheses. The hypothetico-deductive model has
no argument to claim that the test confirms our hypotheses in preference to the other
hypotheses. Furthermore, the hypothetico-deductive model is incapable of
accounting for the process of theory change, that is, the process in which one theory
comes to be replaced by another. For according to it, a theory has no rational
connection with the preceding one, except that it agrees with more observational
and experimental data than the preceding one. Thus the hypothetico-deductive
model leaves to one side not only the crucial issue of the discovery of hypotheses,
but also the equally crucial issue of the process of theory change.

11 The Semantic Model

In the second half of the twentieth century, the support for the hypothetico-
deductive model declines, and this model is gradually replaced by the semantic
model. There are some slightly different versions of the semantic model. I will
consider van Fraassen’s version.

According to the semantic model, to formulate a scientific theory about certain
phenomena is to specify a family of models. The concept of model is supposed to
be the same in mathematics and the empirical sciences. A model is a structure,
consisting of a set along with a collection of operations and relations that are
defined on it. A scientific theory is adequate if it has some model which is iso-
morphic to the phenomena that the theory is intended to theorize.

Thus van Fraassen states that “to present a theory is to specify a family of
structures, its models” (van Fraassen 1980, p. 64). Such family of structures is
specified “directly, without paying any attention to questions of axiomatizability, in
any special language” (van Fraassen 1989, p. 222). Then, if a theory as such is to be

104 C. Cellucci



identified with anything at all, it “should be identified with its class of models”
(ibid.). Here “a model is a mathematical structure” (van Fraassen 2008, p. 376,
Footnote 18). More precisely, “a model is a structure plus a function that interprets
the sentences in that structure” (van Fraassen 1985, p. 301). If “a theory is advo-
cated then the claim made is that these models can be used to represent the phe-
nomena, and to represent them accurately,” where we say that “a model can (be
used to) represent a given phenomenon accurately only if it has a substructure
isomorphic to that phenomenon” (van Fraassen 2008, p. 309).

The semantic model, however, has some serious shortcomings. A model is a
structure and hence a mathematical object, while the phenomenon is not a math-
ematical object. Indeed, van Fraassen himself asks: “If the target,” that is, the
phenomenon, “is not a mathematical object, then we do not have a well-defined
range for the function, so how can we speak of an embedding or isomorphism or
homomorphism or whatever between that target and some mathematical object?”
(ibid., p. 241). His answer is that we compare the model not with the phenomenon
but rather with the data model, that is, our representation of the phenomenon. The
data model “is itself a mathematical structure. So there is indeed a ‘matching’ of
structures involved” and “is a ‘matching’ of two mathematical structures, namely
the theoretical model and the data model” (ibid., p. 252). But van Fraassen’s answer
is unsatisfactory, because the data model is a mathematical object while the phe-
nomenon is not a mathematical object, which raises the question of the matching of
the data model and the phenomenon. Thus van Fraassen’s answer just pushes the
problem back one step.

Moreover, even a fiction may have a model, in the sense of a structure.
Therefore, it is not models that can make a distinction between fictions and reality.

Furthermore, the semantic model entails that scientific theories, being families of
structures, are static things. But scientific theories undergo development. The
semantic model has no alternative than treating theory development as a progres-
sion of successive families of models. But then the question arises how the tran-
sition from a theory to the next one in the progression comes about. The semantic
model has nothing to say about this, because it does not account for the process of
theory formation, which is essential to explain the development of theories and the
process of theory change. Therefore, the semantic model cannot account for the
dynamic character of scientific theories. This is a structural limitation of the
semantic model.

12 The Analytic Model

An alternative to the above models is the analytic model. According to it, in order to
solve a given problem, we start from the problem and look for some hypothesis
capable of solving it. The hypothesis is obtained from the problem, and possibly
other data already available, by some non-deductive rule—induction, analogy,
metaphor, etc. The hypothesis need not belong to the same field as the problem and
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must be plausible, that is, in accord with the present experience. But the hypothesis
is in its turn a problem that must be solved, and is solved in the same way. That is,
we look for another hypothesis from which a solution to the problem posed by the
previous hypothesis can be deduced, it is obtained from the latter problem, and
possibly other data already available, by some non-deductive rule, it need not
belong to the same field as the problem, and must be plausible. And so on, ad
infinitum.

Analysis

A
2

A
1

B

Plausible Hypotheses

Problem to solve

A
2

A
1

B

Thus, unlike the analytic-synthetic model, the analytic model assumes that
analysis is not a finite process terminating with principles, but rather a potentially
infinite process which leads to more general hypotheses, thus it is an unending
quest.

Moreover, unlike the hypothetico-deductive model, the analytic model estab-
lishes a rational connection between subsequent theories. The hypotheses of the
new theory are rationally connected with those of the preceding theory because they
are formulated through an analysis of the reasons why the hypotheses of the pre-
ceding theory are no longer plausible.

13 The Analytic Model and Open Systems

According to the analytic model, a scientific theory is an open system. This means
that the development of the theory need not remain completely internal to the
theory, it may involve interactions with other theories, so a scientific theory is not a
self-sufficient totality.

No system of hypotheses may solve all the problems of a given field, any such
system is inherently incomplete and must appeal to other systems to bridge its gaps.
Therefore the hypotheses of the theory are not given once for all, and developing
the theory need not merely mean deducing consequences from them. It may involve
replacing the hypotheses with more general ones, obtained through interactions
with other scientific theories, according to a potentially infinite process.

106 C. Cellucci



14 The Neglect of the Analytic Model

In the last century the analytic model has been generally neglected. One of its few
supporters is Pólya, according to whom scientific hypotheses are found “by plau-
sible reasoning” (Pólya 1954, I, p. v). Contrary to deductive reasoning, which is
“safe, beyond controversy, and final,” plausible reasoning is “hazardous, contro-
versial, and provisional” (ibid.). However, deductive reasoning is “incapable of
yielding essentially new knowledge about the world around us. Anything new that
we learn about the world involves plausible reasoning” (ibid.). The latter is “the
kind of reasoning on which” the “creative work will depend” since to discover
hypotheses one has “to combine observations and follow analogies” (ibid., I, p. vi).
Thus Pólya shares the basic idea of the analytic model that scientific hypotheses are
obtained by logical procedures such as induction, analogy, metaphor, etc.

However, Pólya limits the scope of the analytic model, because he reduces
plausibility to probability. Indeed, he states that “the calculus of plausibilities obeys
the same rules as the calculus of probabilities” (Pólya 1941, p. 457). This claim is
unjustified, because there are hypotheses which are plausible but, in terms of the
classical concept of probability, have zero probability. On the other hand, there are
hypotheses which are not plausible but, again in terms of the classical concept of
probability, have a non-zero probability. The same holds on other concepts of
probability, see Cellucci (2013, Sect. 20.4).

That in the last century the analytic model has been generally neglected does not
mean, however, that it has not been tacitly or unconsciously used. An example is
the solution of Fermat’s problem: Show that there are no positive integers x, y,
z such that xn + yn = zn for n > 2. The problem was solved by Ribet using the
Taniyama-Shimura hypothesis: Every elliptic curve over the rational numbers is
modular. Indeed Ribet showed: “Conjecture of Taniyama-Shimura⇒ Fermat’s Last
Theorem” (Ribet 1990, p. 127). But the Taniyama-Shimura hypothesis was in its
turn a problem that had to be solved. It was solved by Wiles and Taylor using
plausible hypotheses from various mathematics fields. And so on.

Hypotheses from various fields

Taniyama-Shimura

Fermat's Problem

Plausible 
hypotheses

Problem to solve

Ribet

Wiles-Taylor
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15 The Analytic Model and Gödel’s Incompleteness
Theorems

While the analytic-synthetic model and the hypothetico-deductive model are
incompatible with Gödel’s incompleteness theorems, the analytic model is com-
patible with the latter and even supported by them.

For according to the analytic model, no system of hypotheses can solve all the
problems of a given field. The hypotheses are bound to be replaced sooner or later
with other more general ones through a potentially infinite process, since every
system of hypotheses is incomplete and needs to appeal to other systems to bridge
its gaps. Thus the analytic method is supported by Gödel’s first incompleteness
theorem.

Moreover, according to the analytic method, the hypotheses for the solution to a
problem are not definitive, true and certain but only provisional, plausible and
uncertain. Thus the analytic method is supported by Gödel’s second incompleteness
theorem.

16 Models in Science

After considering models of science, I will briefly consider models in science. As
already mentioned, a model in science is a representation of empirical objects,
phenomena, or processes.

It is out of question that there is an optimal model in science. In the seventeenth
century France, the minister Colbert charged the astronomer Gian Domenico
Cassini to make an extremely detailed map of France. The map was the work of
four different generations of the Cassini family and is so detailed that, as Calvino
says, “every forest in France is drawn tree by tree, every church has its bell-tower,
every village is drawn roof by roof, so that one has the dizzying feeling that beneath
one’s eyes are all the trees and all bell-towers and all the roofs of the Kingdom of
France” (Calvino 2014, p. 23).

Perhaps this inspired Borges’ story about an empire in which “the craft of
cartography attained such perfection” that “the college of cartographers evolved a
map of the empire that was of the same scale as the empire and that coincided with
it point for point” (Borges 1972, p. 141). A previous Lewis Carroll’s story goes
even further. One of the characters of the story says that in his Kingdom they had
“the grandest idea of all” about mapmaking, that is, to make “a map of the country,
on the scale of a mile to the mile” (Carroll 1996, p. 556). But “the farmers objected:
they said it would cover the whole country, and shut out the sunlight! So we now
use the country itself, as its own map, and I assure you it does nearly as well” (ibid.,
p. 557).

Carroll’s story indicates that there cannot be any optimal model in science,
because the optimal model of reality would be reality itself. But, contrary to what
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the story’s character says, using reality itself as its own model would not do nearly
as well. As Boltzmann states, “no theory can be objective, actually coinciding with
nature,” but “each theory is only a mental picture of phenomena” (Boltzmann 1974,
pp. 90–91).

In science there cannot be an optimal model, but only models suited to particular
purposes. There are several kinds of models suited to particular purposes, such as
physical models, scale models, analogical models, mathematical models, just to
name a few. It would be impossible to discuss all kinds of models in science here.
Instead, I will argue that not all models of science are equally capable of accounting
for models in science.

17 The Hypothetico-Deductive Model and Models
in Science

The hypothetico-deductive model of science is incapable of accounting for models
in science. For according to it, the scientific activity can be exclusively described in
terms of deduction of consequences from hypotheses, subject only to the require-
ment of consistency. Therefore, use of models in science is inessential and can be
eliminated.

Thus Carnap states that “it is important to realize that the discovery of a model
has no more than an esthetic or didactic or at best a heuristic value, it is not at all
essential for a successful application of the physical theory” (Carnap 1939, p. 68).

This contrasts with the fact that, as Morrison and Morgan state, “models are one
of the critical instruments of modern science. We know that models function in a
variety of different ways within the sciences to help us to learn not only about
theories but also about the world” (Morrison and Morgan 1999, p. 10). In particular,
models are instruments of discovery.

Moreover, in the hypothetico-deductive model one must always be able to
consider arbitrary models of hypotheses, or axioms. Thus, in the case of the axioms
of geometry, Hilbert famously stated that, “instead of ‘points, straight lines, and
planes’, one must always be able to say, ‘tables, chairs, and beer mugs’” (Hilbert
1970, III, p. 403). This contrasts with the fact that, in the actual practice of science,
one does not consider arbitrary models of axioms but only specific ones. In par-
ticular, the model in terms of tables, chairs, and beer mugs is never considered. In
practice, there are always reasons for considering a model of the axioms rather than
another one, and these reasons do not depend on the deductive model but are
external to it. Thus the decision to consider a model of the axioms rather than
another one cannot be justified in terms of the hypothetico-deductive model.
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18 The Semantic Model and Models in Science

One would have thought that, unlike the hypothetico-deductive model, the semantic
model would be capable of accounting for models in science. For according to it,
formulating a scientific theory about certain phenomena means specifying a family
of models.

But it is not so because, as already pointed out, the semantic model is unable to
account for the relation between a model and the phenomena and for theory change.
The semantic model puts emphasis on the static aspect of physical systems, namely
their structure, but physical systems have both structural and behavioral properties.
Behavior refers to state transitions and dynamic properties—operations and their
relationships. Models should be able to express how and when changes occur to
entities and relate with one another. Structures are unable to express that.

19 The Analytic Model and Models in Science

The analytic model is capable of accounting for models in science. According to it,
solving a problem involves formulating hypotheses. Now, while many hypotheses
in science are expressed using sentences in language, many other hypotheses are
expressed using models. Thus models are not ancillary to doing science, but central
to the solution of scientific problems. A model is the hypothesis that certain
properties of the world can be represented in a certain way for certain purposes.

While, according to the semantic model of science, models are structures,
according to the analytic model of science they can be a wide range of things,
including words, equations, diagrams, graphs, photographs, computer-generated
images, dynamic entities, etc. The question of isomorphism does not arise, because
a model is only the hypothesis that certain properties of the world can be repre-
sented in a certain way for certain purposes. Thus the analytic model is capable of
accounting for models in science.

20 Conclusion

That, unlike the hypothetico-deductive and the semantic model, the analytic model
is capable of accounting for models in science, justifies the claim that not all models
of science are equally capable of accounting for models in science. Science is a
more complex process than the hypothetico-deductive or the semantic model
suggest. To account for science it is necessary to account for theory formation and
theory change.

Calvino states that “knowledge always proceeds via models, analogies, symbolic
images, which help us to understand up to a certain point; then they are discarded,
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so we turn to other models,” other analogies, other symbolic “images” (Calvino
2014, p. 119). Only the analytic model seems capable of accounting for this
dynamic character of scientific knowledge.
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Mechanistic Models and Modeling
Disorders

Raffaella Campaner

Abstract Recent debate has focused on how disorders should be modeled, and on
how their onset, course and final outcome should be explained. I shall here address
some issues arising from modeling neuropsychiatric disorders, which are in many
cases still poorly understood, subject to a very high rate of individual variations,
and tackled from different disciplinary standpoints. After recalling a few core
features of current views on mechanistic models, and related views on psychiatric
disorders, I shall discuss some models of Attention Deficit Hyperactivity Disorder.
The main aspects of such models are analyzed in the light of the philosophical
debate on the elaboration and use of mechanistic models, stressing the distance
between the two. The paper highlights the many aspects entering the dynamics of
modeling disorders and discusses a few problematic issues of explanatory models
elaborated in an actual medical scenario that neo-mechanist accounts can only
partly capture.

Keywords Mechanisms � Mechanistic models � Explanation

1 Mechanistic Models and Neuropsychiatric Disorders

Given the almost ubiquitous use of mechanistic notions in the biomedical and health
sciences, an understanding of the scientific endeavor in these fields requires,
amongst others, an understanding of how mechanistic models are conceived, elab-
orated and employed. While being much indebted to Wesley Salmon’s conception of
probabilistic mechanism (Salmon 1984, 1998), the last few decades have seen the
development of so-labeled “neo-mechanist views” with distinctive features.
Different definitions of mechanisms have been put forward by authors like Glennan,
Machamer, Darden, Craver, Bechtel, Richardson, Abrahamsen, Tabery, and others.
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Without entering into controversies on the different specific characterizations of
mechanisms provided by the various theories, we can adopt a minimal rough notion
of mechanism as an organized set of component parts, performing some activities
and interacting with each other in the production of some outcome behavior.
A mechanism is taken to underlie a given behavior, and is hence to be identified
according to the description of the behavior under enquiry. Component parts of the
mechanism and their activities, their spatial and temporal organization (position,
order, duration, …), and their mutual interactions are held to bring about a given
output behavior. A mechanistic explanation outlines the mechanism responsible for
the production of the behavior under investigation, by indicating not just its inputs
and outputs, but also what occurs in between what are regarded the initial causal
factors and the final outcome to be explained, thus opening the “black box” of a
system’s functioning.

Mechanisms are organized systems of interacting parts; mechanistic models are
accounts of mechanisms. In Glennan’s words, “a mechanical model consists of (i) a
description of the mechanism’s behavior (the behavioral description); and (ii) a
description of the mechanism that accounts for that behavior (the mechanical
description)” (Glennan 2005, p. 446). Whereas the behavioral description is a
description of the overall behavior a mechanism brings about, namely of what the
mechanism does, the mechanical description is a description of how the mechanism
produces it, by the arrangement and working of its parts. The behavioral description
hence amounts to the explanandum, and the mechanical description to the explanans:
amere description of the behaviour, without an account of the underlyingmechanism,
has no explanatory import.

When searching for mechanisms, what we usually obtain are representations
with some degree of abstraction—mechanisms’ “sketches” and “schemata” in the
words of Machamer et al. (2000). A “sketch” is an abstraction for which bottom out
entities and activities cannot (yet) be supplied or which contains gaps in its stages.
A “mechanism schema” is an abstract description of a type of mechanism that can
be filled with already known component parts and their activities. “Mechanism
schemata (or sometimes mechanistic models)” are required to be “complete enough
for the purposes at hand” (Craver and Darden 2013, p. 30, italics added). This in
turn seems to require that the purpose of the enquiry be already clear and explicit
when the mechanism is sought and the schema put forward, which might not
always be the case. Craver (2006) has suggested further concepts to differentiate
between mechanistic models, which attempt to provide a more adequate rendering
of the dynamic modeling process. How-possibly models are only loosely con-
strained conjectures on the mechanism that produces the phenomenon at stake, with
both the existence of the conjectured parts and their engagement in the conjectured
activities being highly uncertain.1 Instead, how-actually models describe the

1For instance, “some computer models are purely how-possibly models” (Craver 2006, p. 366).
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components, activities, and organizational features of the mechanism that are as a
matter of fact involved in the production of the phenomenon: they illustrate how a
mechanism actually works, not just merely how it could work if the posited entities
and activities existed. How-possibly models explain how some output could be
produced; they provide some explanatory, yet just conjectural information on the
mechanism’s functioning. If the mechanism is then discovered to work as described
by the how-possibly model, this turns into a how-actually one. How-plausibly
models lie somewhere in between, and are more or less consistent with the known
constraints on features of components, activities and organization, triggering and
inhibiting conditions of the target system.

Some of these conceptual tools have recently been deemed useful to deal with
medical issues, and, more specifically, mental disorders and some of the episte-
mological problems they raise. That the mechanistic approach should be seen not as
the only, but as one of the appropriate approaches for psychiatry is maintained by
an eminent psychiatrist, Kendler (2008a, b),2 who believes it is naturally suited to a
multicausal framework. According to Kendler, mechanistic modeling fits psychiatry
insofar as it allows complicated mechanisms to be decomposed into simple sub-
units, to study them in isolation and then reassemble constituent parts into their
functioning wholes. While this operation can be straightforward when dealing with
additive mechanisms, it is much more problematic in a field like psychiatry, where
the causal networks investigated present multiple nonlinear interactions between
biological, psychological and socioeconomic processes, and often causal loops.
A significant example can be given by alcohol dependence, whose causal factors
include both molecular and genetic factors (e.g. aggregate genetic factors) and
social, cultural, and economic components (e.g. drug availability, forms of ethanol
commonly consumed in a social group, acceptability of public drunkenness, reli-
gious beliefs, level of taxation on alcoholic beverages, sizes of alcoholic beverages
containers allowed,…). What is at issue in the construction of a causal picture of
mental disorders is that psychiatry does not demand a clarification of biological,
psychological or socio-cultural processes per se, but complex systems resulting
from some peculiar intertwining of such different kinds of processes, which can
impact on each other in various ways. For instance, the actions of biological factors
can be modified by the environment (e.g. light-dark cycle), stressful life experiences
(e.g. maternal separation), and cultural forces (e.g. the social acceptability or not of
a given behaviour). If construed without privileging any single level a priori,
without any specific ontological commitment on some single level deemed the most
fundamental, and with just a focus on genuinely productive relations, a mechanistic
account can provide a middle ground—Kendler suggests—between hard reduction
and hard emergence, both to be avoided. Decomposition is claimed to be driven by

2Kendler is thinking of a mechanistic approach like William Bechtel’s. Kendler also supports, with
different motivations, the interventionist view, and suggests an “integrative pluralism” as the most
adequate explanatory framework for psychiatry. See Kendler (2005, 2012), Campaner (2014,
forthcoming).
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a reductionist stance, while theoretical rearrangement of constituent parts and their
activities into complex wholes is guided by some sense of high level organization.3

How to model the interactions of many diverse factors and reach a correct and
adequate causal account is also extremely relevant for clinical purposes. Although
mechanistic knowledge is not necessary to implement therapies and preventive
policies, it significantly increases successful interventions on both individual cases
and at a population level. Amongst others, Murphy (2010, 2011) stresses that in
psychiatry—as in other medical fields—we use models to explain exemplars, which
are idealized representations of the symptoms of disorders and their course.
Exemplars take collections of symptoms—which can be many and diverse—to
unfold over time in analogous ways, and take patients to respond similarly to the
same treatments. To explain, we unravel the pathogenic processes accounting for
the phenomenon described in the exemplar. In doing so, we appeal to mechanistic
knowledge concerning what are regarded as standard forms of behavior of the
systems involved—e.g., the standard neurobiological functioning of the brain.
Clinical reasoning then “adjusts” exemplars to the real cases it happens to confront,
which always differ to some extent from what is assumed as the prototypical
representation of the disease. Clinical practice is hence strongly affected by what are
taken to be the standard forms of behavior of the systems involved, and by
knowledge on what are regarded as the underlying mechanisms.

Mechanistic models have also been deemed useful to define and classify mental
disorders. For instance, a recent joint work by Kendler, Zachar and Craver suggests
the mechanistic approach can be employed as a tool to identify mental disorders
through different social and cultural contexts by focusing on some shared physi-
ological mechanism. Disorders ought thus to be defined in terms of mutually
reinforcing networks of causal mechanisms. It is acknowledged that explanatory
structures underlying most psychiatric disorders are still quite far from being
understood and are likely to be messy, and that cultural and social factors signifi-
cantly shape the disorder concepts. However, the identification of common
mechanisms underlying distinct cases is taken as the possible ground for a taxon-
omy, to cross cultural and historical contexts. According to Kendler, Zachar and
Craver, what is needed for classificatory purposes, is “a scientific model […] that
accommodates variability in members of the kinds, multiple etiologies, and prob-
abilistic interactions between causes and outcomes” (Kendler et al. 2011, p. 1143).
These sound like rather demanding requirements on classificatory practices. While
classifications provided by the various versions of the DSM are mainly symp-
tomatic, these authors suggest that some invariant causal relations underlying
clusters of symptoms are to be sought which hold over and above historical, cultural
and socio-economic contexts and the corresponding classifications.4 What are taken
as clusters of symptoms in different contexts can be produced by the same

3We cannot dwell here on reductionist and antireductionist stances in psychiatry. See e.g.
Schaffner (2013).
4On mechanisms and psychiatric classification, see also Sirgiovanni (2009).
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underlying mechanisms, and the same cluster of symptoms can be brought about by
different underlying mechanisms in different cases. Mechanisms are sought which
work “at multiple levels, including the symptoms themselves, in addition to
mechanisms investigated by the molecular, physiological, computational, psycho-
logical and social sciences” (Kendler et al. 2011, p. 1148).

2 Neuropsychiatric Models: Examples from ADHD
Investigations

Without claiming that a mechanistic approach can provide the only or best account
of mental disorders, I shall suggest some reflections on mechanistic models in
scientific practice by specifically considering the modeling of Attention Deficit
Hyperactivity Disorder (ADHD), a disorder which has been the object of increasing
attention and is still far from being thoroughly understood. DSM V (2013) defines
ADHD as: “a persistent pattern of inattention and/or hyperactivity-impulsivity that
interferes with development, has symptoms presenting in two or more settings (e.g.
at home, school, or work), and negatively impacts directly on social, academic, or
occupational functioning”. The very definition—and hence diagnosis—of ADHD
has varied significantly over the last decades. Whereas DSM I (1952) made no
mention of the disorder, DSM II (1968) introduced an analogous pathology char-
acterized by short attention span, hyperactivity and restlessness, which was labeled
“hyperactivity reaction to childhood”. The disorder was most strictly linked to
hyperactive behavior, and confined to childhood. DSM III (1980) relabeled it ADD,
i.e. attention deficit disorder, being regarded as primarily a problem of inattention,
rather than hyperactivity.5 More recently, DSM IV (1994) included ADHD and
distinguished three possible presentations: predominantly hyperactive-impulsive,
predominantly inattentive, and combined presentation. Symptoms can change over
time, and so can the presentation. To be diagnosed with ADHD, symptoms must be
present before the age of 12 years. According to DSM V, children must present at
least six symptoms from either—or both—the inattention group of criteria and the
hyperactivity and impulsivity criteria, while adolescent and adults must present at
least five. ADHD has long been regarded as just a childhood psychiatric condition,
but it is now recognized to persist into adolescence and adulthood in a large number
of cases.

As it appears, definitions rely on symptoms. Symptomatic behavior includes
failure to pay close attention to details, difficulties in organizing tasks and activities,
excessive talking, deficits in working memory, regulation of motivation and motor
control (e.g. inability to remain seated in appropriate circumstances), difficulties in
getting started or sustaining efforts for tasks, in modulating experience and

5Two subtypes were identified: ADD/H, i.e. with hyperactivity, and ADD/WO, i.e. without
hyperactivity.

Mechanistic Models and Modeling Disorders 117



expressing emotions, in regulating sleep and alertness. Research has largely focused
on underlying cognitive difficulties and executive function impairments, regarded
as the core features of the pathology. Specific gene variants have been associated
with ADHD,6 and the pathology is currently investigated from different disciplinary
standpoints (e.g. neuropsychiatry, psychiatric genetics, psychiatric epidemiology,
clinical psychology,…). The etiology is still uncertain, relationships with the
environment fairly opaque, and the disorder presents arrays of clinical symptoms,
which are treated both pharmacologically and by means of behavioral interventions.
The effectiveness of separate and joint pharmacological and behavioral treatment is
widely discussed.7 Among the theoretical models of the disorder that have been
elaborated I shall here consider some influential ones grounded on neurobiology.
More specifically, I will consider two causal models which account for the disorder
in terms of a single core disorder, i.e. the executive dysfunction model and the
motivational model, and some of their developments, conveyed both verbally and
visually. They are not the only available models, but have been very successful and
have generated lively debate. A close look at their core characteristics can shed light
on the features and roles of models in scientific practice, in dealing with disorders
whose representation and explanation are still controversial.

The executive dysfunction model stresses the role of executive dysfunction due
to deficient inhibitory control, which is ascribed to disturbances in the frontodorsal
striatal circuit and associated mesocortical dopaminergic branches.8 Figure 1 is a
schematic representation of the simple cognitive deficit model of ADHD (column
on the left) and a simplified account of the associated frontostriatal circuitry (col-
umn on the right). B, C, and S represent biology, cognition, and symptoms,
respectively. The slashed C represents cognitive deficit; NE, norepinephrine; DA,
dopamine; DLPFC, dorsolateral prefrontal cortex. ADHD results from impairments
in the dopamine and norepinephrine systems, which play a crucial role in efficient
communication in the brain’s circuitry. The symptoms of ADHD are here con-
sidered to be caused by dysfunctions of neurocognitive control systems, more
specifically, by deficits in inhibitory-based executive processes. While there is no
consensus definition, “executive function” is usually taken to be a broad range of
cognitive processes responsible for facilitating the pursuit of future goals and
involved in the distribution of cognitive-energetic resources (i.e. effort) to activation

6“Pathogenetic models of ADHD have traditionally focused on molecules involved in neuro-
transmission and catecholamine synaptic dysfunction, including dopamine transporter DAT1
(SLC6A3), dopamine receptors DRD4, DRD5 and synaptosomal protein SNAP-25. More recently
neural developmental genes including cadherin 13 (CDH13) and cGMP-dependent protein kinase I
(PRKG1) have been associated with ADHD” (Cristino et al. 2014, p. 294; see also, Fowler et al.
2009; Sharp et al. 2009).
7Medication and behavioural interventions are difficult to isolate completely in order to compare
their efficacy. In contexts in which pharmacological treatments are adopted as a consequence of the
disorder being diagnosed (e.g. school and home), some form of behavioral intervention—more or
less systematic—is usually implemented at the same time.
8See e.g. Barkeley (1997). All figures are from Sonuga-Barke (2005). Copyright © 2004 Society
of Biological Psychiatry. Reprinted with permission of Elsevier.
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and arousal systems to meet the changing demands of different situations.9 At the
neurobiologic level, “there is growing evidence that inhibitory control and other
cognitive functions are underpinned by one of a family of […] basal
ganglia-thalamocortical circuits […]. Data from structural and functional neu-
roimaging studies support the hypothesis that deficits in inhibitory-based executive
functions in ADHD are associated with disturbances in this circuit […]. Dopamine
[…] is a key neuromodulator of this circuit” (Sonuga-Barke 2005, p. 1232).

According to a different simple causal model, the motivational model, ADHD
results from impaired signaling of delayed rewards arising from disturbances in
motivational processes, which involve frontoventral striatal reward circuits and
mesolimbic branches terminating in the ventral striatum. Deficits are hence imputed
to reward mechanisms, with ADHD being thought of as the outcome of “neuro-
biological impairment in the power and efficiency with which the contingency
between present action and future reward is signaled. This leads to a reduction in
the control exerted by future rewards on current behaviour” (Sonuga-Barke 2005,

Fig. 1 Simple cognitive deficit model

9Examples of such processes include “planning and implementing strategies for performance,
initiation and discontinuation of actions, inhibiting habitual or prepotent responses or task irrel-
evant information, performance monitoring, vigilant attention and set switching. Researchers have
struggled to understand whether the broad range of ‘executive’ functions are supported by a single
unitary process or a diverse array of cognitive processes” (Castellanos et al. 2006, p. 118). Current
models are supported by neuroimaging and studies on focal lesions and tend to conceive executive
function as a collection of higher-order cognitive control processes.
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p. 1233). This view of the disorder is supported by data on ADHD children’s
hypersensitivity to delay, difficulties in waiting for motivationally salient outcomes
and in working effectively for prolonged periods of time. These are held to be
related to alterations in another of the dopamine-modulated thalamocortical-basal
ganglia circuits.10 The circuit at stake here “links the ventral striatum (in particular,
the nucleus accumbens) to frontal regions (especially the anterior cingulate and
orbitofrontal cortex), connections that are reciprocated via the ventral pallidum and
related structures through the thalamus. The amygdala also seems to be implicated
in this system, possibly playing a role in defining the motivational significance of
incentives” (Sonuga-Barke 2005, p. 1233). Figure 2 is a simple motivational model
of attention-deficit/hyperactivity disorder (ADHD) (column on the left) and a
simplified model of the frontostriatal circuitry involved (column on the right). Data
suggest that the executive circuit considered in the first model presented above and
the reward circuit considered here might each make distinctive contributions to the
development of the disorder.

Fig. 2 Simple motivational model

10“The fact that dopamine is a key neuro-modulator of both the executive and reward circuits
therefore provides further support for the neurobiological plausibility for these cortico-basal
ganglia models of AD/HD. At the same time, the fact that each circuit is influenced by inputs from
different branches of the dopamine system confirms the differentiation of the pathways”
(Sonuga-Barke 2003, p. 598).
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These two models provide simple causal paradigms, in need of some imple-
mentation. Driven by the idea that theoretical models combining motivational and
cognitive elements are needed, research is being carried out on the relations
between these two models, and on the role of some further causal factors to be
included. Different models have hence been advanced to shift from common simple
deficits to multiple neurodevelopmental pathway accounts. The ultimate aim is to
reach some explanatory account of the arrays of symptoms, by including, amongst
others, the role of the social environment in shaping neurodevelopmental pathways
to ADHD. The still elusive mechanisms connecting psychological activity and
behavioral outcomes with low-level neurobiological processes are to be unraveled.

As a variation and extension of the motivational model, the delay aversion
model has been put forward (Fig. 3), which stresses difficulties of ADHD-affected
people in dealing with time-delayed rewards. Alterations in neurobiological circuits
impair the signaling of delayed rewards, leading to impulsiveness; impulsiveness
leads to failures to engage effectively with delay-rich environments; this failure to
engage has the potential to elicit a negative punitive response from a parent or
another significant adult (e.g. teacher), which, over time, leads to generalized delay
aversion (column on the left). The failure to engage with delay-rich environments
also constrains the experience of managing delay, and so reduces the opportunities
to develop the organizational skills and strategies required to do this (column on the
right). Delay aversion is expressed both as a compounding of existing impulsive-
ness and as a further elaboration of behavioral characteristics. Over time, various
processes can reinforce a pattern of symptomatology and impairment can persist.
For instance, negative parental responses elicited by the child’s disorder, or
uncertain and inconsistent environments in which future promised rewards or
events were not delivered, place the child at risk of developing oppositionally. At
the same time, the possibility that the child might accommodate the constraints

Fig. 3 Motivational developmental pathway model
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imposed by her underlying predisposition to impulsiveness and delay aversion
should be considered. For instance, the hypothesis is being explored that ADHD
children develop compensatory strategies to exploit limited processing time more
effectively and to overcome deficits in working memory.

Similar considerations apply to a revision of the first model we considered, the
cognitive deficit model. Figure 4 is a hypothetical cognitive developmental pathway
model analogous to the motivational developmental pathway model. Negative/
punitive responses might be elicited from significant adults (left column), potentially
resulting in “executive-task aversion”, which could in turn lead the child to avoid
settings requiring executive effort and skills and early and premature disengagement.
Reduced exposure to executive-type tasks might limit the opportunities to develop
executive skills (right column). At the same time, failure on executive tasks might
also reduce the extent to which tasks are intrinsically motivating. This will in turn
reduce task effort and engagement in tasks, perpetuating the process.

The extended models are explicitly presented as hypothetical, and the extra
elements included admittedly await further investigation. What is worth stressing
here is that, with respect to the simple causal models, environmental and personal
accommodation factors are explicitly added to the picture, with the aim of reaching
a more accurate and articulated representation of the disorder. It is suggested that
processes regulating the child’s engagement with her environment and her devel-
opmentally significant experiences (e.g. educational agendas, cultural level to
which one is exposed, a punitive parenting style, …) shape the course of her
development.11 Similarity should hold in developmental outcome within the same

Fig. 4 Cognitive developmental pathway model

11The most confirmed genes x environmental factors interactions are those between dopaminergic
genes and maternal smoking, alcohol abuse during pregnancy and psycho-social adversity (as
severe deprivation experience in early childhood).
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community, with specific parenting styles and personal accommodation strategies
being responsible for individual differences.

Much research is driven by the idea that “multiple pathway models may emerge
as particularly powerful explanatory tools in this area” (Sonuga-Barke 2003, p. 597,
italics added). Current investigations are directed, amongst others, towards a deeper
understanding of how brain development in persons with ADHD differs from that in
non-affected people of the same age, which roles emotions and motivation play in
ADHD, which treatments tend to be more helpful and safer, and why and to what
extent ADHD can overlap with other disorders. In the light of evidence that
executive function deficits and delay aversion pathways are dissociated, but equally
strongly associated with the combined ADHD symptomatology, some sort of
integration of the two models is sought, by placing the pathways within a common
neurobiological framework, and in the context of some understanding of the
interplay between cortical and sub-cortical brain regions in the regulation of action,
cognition and emotion/motivation. Evidence from, e.g., neuroanatomical, imaging,
psychopharmacological, and clinical studies is collected to model cortical and
subcortical interactions, in an attempt to elaborate multipathway, multilevel
developmental accounts of the disorder incorporating different kinds of data and
different neuropsychological effects.

Neuropathologic heterogeneity in ADHD might have major implications for the
clinical management of the condition, and more articulated causal models may, in
the long run, suggest ways to better tailor treatments. Pathways moderated by
cultural or social factors are likely to be treated by psychosocial interventions, while
pharmacology may focus on selective antagonists targeting specific dopamine
circuits. “Overall, the field has witnessed notable progress as it converges on an
understanding of ADHD in relation to disruption of a multicomponent
self-regulatory system.” (Nigg 2005, p. 1424). Research trends give some insight
into the dynamics of modeling ADHD, through which accounts are progressively
implemented and revised, building up different conceptions of the disorder and,
hence, orienting different therapeutic practices.

3 Models of ADHD and Mechanistic Models:
What Do They Explain, and How?

Which characteristics do these models exhibit, and which kinds of explanations do
they provide? Some deep examination of this case study can stimulate reflections on
behavioral and mechanical descriptions, and relations between them. To start with,
what do we explain? One of the most interesting features with respect to accounts of
such a relatively recently introduced pathology—whose definition, as we have seen,
has varied—is the very identification of the explanandum, whose importance should
not be underestimated and which clearly and significantly affects the elaboration of
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any explanatory model. In the case of controversial disorders such as ADHD, we do
not start from a single and shared description of a definitely isolated phenomenon.
Craver states: “a mechanistic explanation must begin with an accurate and complete
characterization of the phenomenon to be explained […]. To characterize the
phenomenon correctly and completely is the first restrictive step in turning a model
into an acceptable mechanistic explanation” (Craver 2006, pp. 368–369). In cases
like the one at issue, the explanatory enterprise does not start from a single, accurate
and complete description of the system under investigation. Rather, the identifi-
cation of the disorder evolves along with the progressive identification of the rel-
evant causal features and the elaboration of more and more comprehensive
explanatory accounts. Descriptions of the disorder and explanatory practice can be
thought of as co-evolving, with shifts on emphasis, taking predominantly to the
foreground either cognitive deficit, motivational, environmental, or other aspects, or
some combination of them.

Models are here aimed “to account for the cardinal symptom domains of
impulsiveness, inattention, and hyperactivity; however a number of other candi-
date-defining features clearly exist” (Sonuga-Barke 2005, p. 1233, italics added),
which can affect the explanatory account. The elaboration of the model hence starts
from the choice of a minimum set of characterizing features that are taken to
describe the disorder, and which will impinge on what will be identify as the
explanans. While we struggle to unravel the causal mechanisms bringing about the
disorder, characterizations of the disorders themselves are subject to revisions and
social and historical factors, and change according to, e.g., ongoing research, dis-
coveries and innovation. In dealing with psychiatric disorders, while we strive to
identify some common network of causal mechanisms, isolating the explanandum
system with precision is further complicated by a high rate of comorbidity.
Specifically, ADHD can often co-occur with Tourette syndrome or rage attacks;
Tourette syndrome, in turn, is often accompanied by depression and
obsessive-compulsive disorder. The concurrence of different disorders makes it
even more difficult to precisely draw the borders of the pathology to be modeled,
disentangle the relevant variables, their mutual dependence, or dependence on some
common cause, and detect their exact temporal sequence and interactions in time.
The explanandum is some provisional description of the disorder, largely relying
on what is taken to be the prevailing cluster of symptoms—which is, in turn, subject
to change. Different kinds of symptoms have been associated with ADHD, have
been attributed different diagnostic weight, and have all played a major role in the
description and classification of the pathology. Not only can we agree that “as one
incorporates more mechanistically relevant details into the model […], one corre-
spondingly improves the quality of the explanandum” (Kaplan 2011, p. 347), but
we can also observe that the re-description of the explanandum can result from an
extension of the mechanistic account, and can in turn orientate the search for further
mechanistically relevant details in some direction rather than others.

124 R. Campaner



For the model to be explanatory, some mapping must occur between elements in
the model and elements in the mechanism bringing about the explanandum.12 The
disease is modeled in the first place as a network of impaired normal mechanisms.
To start with, deficits and malfunctions in specific steps of standard neurophysio-
logical mechanisms are taken to explain the disorder which can in turn be deemed
sub-mechanisms of ADHD.13 The first two models considered above take different
neurophysiological circuits to constitute the fundamental components of the dis-
order, and hence to provide the fundamental clues to understand it. However,
further research suggests that the pathology can be adequately accounted for only as
an articulated system including multiple, intertwined and heterogeneous levels. In
the third and forth extended models, neurophysiological mechanisms are integrated
with higher-level causal reinforcing factors, and deficits in the normal neurobio-
logical functioning of the brain system are embedded in a wider characterization of
the disorder, as a broader pathological mechanism. “Heuristically, the pathological
mechanism and the causal lineage in which it becomes increasingly distant from
normal behavior and increasingly global in its effects is the most relevant object of
medical knowledge” (Nervi 2010, p. 219). A broadening of the causal picture can
go hand in hand with a re-description of the disorder and the identification of what
are taken as its distinctive features (e.g. the role of cognitive development). All
these features obviously also affect clinical practice, insofar as modeling orientates
therapeutic interventions at different—physiological and non-physiological—
levels.

Instantiations of ADHD can vary significantly from one another, and what we
model is something which will never occur as such: we are modeling the disease,
while always encountering the diseased. What we are explaining is, in Murphy’s
terms, an “exemplar”. On the one hand, mechanistic representations provide some
manageable accounts of clinical conditions, overcoming the idiosyncrasies of the
individual cases through the identification of some regular patterns expressed in the
model. On the other hand, which model among a range of possible models will be
referred to and the uses to which it will be put are dictated by some specific features
of given instantiations of the disorder. When addressing ADHD, one of the diffi-
culties is given by the need to account for the range of possible differences
encountered in clinical practice,14 due, for instance, to different person x environ-
ment interactions and different individual adaptation to developmental constraints.
Some of the core elements the models presented include—those related to the

12See Kaplan and Craver (2011).
13On whether diseases are to be regarded as pathological mechanisms, conceived as separate and
autonomous entities, or rather as malfunctions of physiological mechanisms, deemed as a con-
ceptual prior over pathological mechanisms, see Nervi (2010), Moghaddam-Taaheri (2011).
14Let us recall that recovery rates can vary too. Even if it is commonly considered a childhood
disorder, ADHD actually endures into adulthood in more than a half of the cases. The relevant
interactions between environmental factors and neurodevelopmental components differ over time,
according to age, and so do the symptoms. On ADHD in adulthood, see Karama and Evans (2013),
Shaw et al. (2013).
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involvement of dopaminergic circuits—are both crucial and quite unspecific,
regarding the basic working of neurobiological underpinning mechanisms, holding
for the general population of ADHD patients. Causal networks involved also
include higher-level factors—such as parenting styles and social conditions—that,
while affecting the whole the population in principle, might or might not make an
actual difference in the single case, and can hence partly account for the degrees of
variability, the possible arrays of outcome symptoms, and their different levels of
severity. What is needed is some better understanding of the actions of the psy-
chological and environmental factors on the neural underpinnings of the disorder,
and some integration of subsystems—from changes in molecular, synaptic and
cellular functions to sensory, cognitive and motor activities. This in turn requires
integrating data from studies in a number of fields, like neuropsychology, devel-
opmental psychology, behavioral and cognitive neuroscience, and genetics.15

ADHD cannot be modeled as a static medical condition, due to dysfunctions of a
few isolated brain regions, but as a developmental trajectory involving different
possible causes, mediators and outcomes.

So how are we explaining the disorder? Mechanistic modeling requires speci-
fication of the entities and activities operating in a system, and their organization:
the behavior of the mechanism depends upon what the components are and on how
the components and their activities are organized and interact with each other—
bringing together, in our case, underlying neural and neurocognitive systems,
neurodevelopmental processes, and environmental causal factors. While the
behavioral description can rest content with the identification of the output
behavior, the mechanical description requires some unraveling of the mechanism’s
working, and that is what the mechanist, explanatory model is called to specify. In
discussing how mechanical adequacy must be assessed, Glennan (2005) believes
the following questions should be addressed: Has the model identified all of the
components in the mechanism? Have the components been localized? Does the
model provide quantitatively accurate descriptions of the interactions and activities
of each component? Does the model correctly represent the spatial and temporal
organization of the mechanism? Models considered here are purely qualitative, and
present different degrees of specification and graininess. To provide an adequate
account of ADHD, the models start off at the neurobiological level, and then
proceed “to build causal chains across intermediate cognitive or neuropsychologic
and behavioral levels of analysis” (Sonuga-Barke 2005, p. 1232), moving up to
environmental and social levels. Hence, a very fine-grained “zoomed-in” descrip-
tion of the neurophysiological mechanisms underpinning the disorder goes together
with a “zoom out” at higher levels. Spatiotemporal scales are very different, and
temporal features like the order and “rhythm” at which different level factors act are
not specified. The inclusion of higher levels does not simply amount to situating the
mechanistic system in its context, but to an attempt at reshaping its very

15See Halperin and Healey (2011), Coghill (2014) and Sonuga-Barke and Coghill (2014).
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boundaries, which will not be clear-cut. The resulting mechanism is broader, and
potentially open to further expansion.16

These aspects shed some light on the relations between behavioral and
mechanical descriptions in the construction of an explanatory model of a disorder.
Not only does the inclusion of, e.g., cultural, psychological and social factors
provide a different explanatory framework, but also, and more in general, a different
conception of the disorder, which cannot be easily and straightforwardly isolated.
The extended models do not originate simply from some “looking around and up”
after “looking down” (see Bechtel 2009),17 to situate the mechanism by putting it
into its proper context. They actually draw a different, more comprehensive system,
re-define the boundaries of the mechanism, and thus draw a different disorder
altogether. This has clear implications with respect to the localization of the system.
Implicit in the classic disease model of mental disorders “is the assumption that
mental disorders are discrete disease entities, […] which result from a dysfunction
of neuropsychological/biologic mechanisms within the patient” (Sonuga-Barke
2005, p. 1231). Once mental disorders are taken as separate, discrete disease
entities, “it is not surprising that much scientific psychopathology seems motivated
by a quest to identify the site of the core dysfunctions that ‘cause’ the disorder”
(Sonuga-Barke 2005, p. 1231, italics added). Broadening the range of potentially
relevant causal factors like that in the extended models affects the very idea of
localization of the target system: the system won’t be isolated through some spatial
localization, according to the “site of the core dysfunction”, but rather in terms of
the active role of relevant causal factors involved.18

The arrows in the figures represent the relations which are taken as explanatorily
relevant. In general, etiopathogenetic causes are responsible for an initial increased
vulnerability to mental disorders, and can include, e.g., genes, obstetric complica-
tions, urban birth and upbringing in extreme poverty, migrant status, chronic cannabis
use, social isolation, and lack of support.19 The activation of the pathophysiologial
mechanisms—temporally more proximal—brings about the clinical manifestations
and symptoms. The pathophysiological and/or etiopathogenetic factors figure in the
explanation of the clinical features, and the clinical features provide a testing ground
of the validity of the former.20 Models at stake here provide possible alternative
explanations of the disorder, tentatively accounting for the behavior of the whole

16On mechanistic modeling as an integrative and iterative process, see Boogerd et al. (2013).
17See also Bechtel (2010).
18McManus has convincingly argued that “too much emphasis has been given to the discreteness
of parts, foreclosing the possibility that diffuse entities might be epistemically useful in the realm
of mechanistic explanation” (McManus 2012, p. 532).
19Their common final effect grounding individual vulnerability to psychosis is supposed to consist
in a sensitization of an individual’s striatum, which is then expressed by modifications in dopa-
mine release in the brain. Investigations are being carried on regarding both genetic and envi-
ronmental etiologies of dopamine deficits and their effects on the dopamine system in early
development.
20See Oulis (2013a, b).
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system in terms of the working of its pathophysiological mechanisms, a complete
account of the causal history of the mental disorder, including the etiopathogenetic
factors, remaining an elusive goal. Our models support causal links by different kinds
and amounts of evidence. While the causal relations assessed by relying on already
accepted neurophysiological knowledge of standard functioning of the brain’s pro-
cesses are presented as—so-to-speak—“confirmed lines”, reinforcing actions per-
formed by higher-level causal components are admittedly presented as just
hypothetical, in need of further specification. The working parts belong to different
granularity levels, and relations between levels are to be clarified.

To count as genuinely explanatory, models do not necessarily need to include an
awful lot of details. As recently stressed in some portions of the debate on abstraction
and idealization in modeling,21 in some cases less can be more, with the chosen level
of abstraction and amount of details included to be evaluated always with respect to
the context and goals of the investigation. “Building more of everything into the
model does not automatically augment knowledge, and it can in fact obscure the
situation by including details that are not relevant for producing the system property
that is a particular project’s focus” (O’Malley et al. 2014, p. 818). Adding more
details does not per se yield a better explanation. On the one hand, the explanatory
import is not to be measured on the basis of the number of details included, but,
rather, on which details are included. On the other hand, some account of organi-
zation must count as a bar set on any explanatory mechanistic model once the
explanandum has been fixed. While the context can dictate the level of
fine-graininess and amount of details included from different levels described, some
causal organization of the interacting multiple pathogenic factors must be specified
for an understanding of how the constellation of typical symptoms are brought
about, and in what respects ADHD differs from co-morbid as well as other psy-
chiatric disorders. A thorough extended mechanistic explanation of the phenomenon
should also include some clear indication of the intertwined operations of neuro-
biological alterations underpinning the relevant pathways and the psychological and
environmental processes mediating and moderating them. The two extended models
assess that environmental factors are causally relevant, but fail to explain how they
act in contributing to the pathology functioning and reinforcing it.22

Organization “involves an internal division of causal labor whereby different
components perform different causal roles […]. Given some effect or behavior, a
system is organized with respect to that effect or behavior if (a) different compo-
nents of the system make different contributions to the behavior, and (b) the
components’ differential contributions are integrated, exhibiting specific interde-
pendencies (i.e. each component interacts in particular ways with a particular subset
of other components)” (Levy and Bechtel 2013, pp. 243–244). The extended
mechanistic explanatory models should hence clarify relations between what can be
identified as different psychopathological sub-mechanisms within the same

21See Batterman (2009), Batterman and Rice (2014) and Rohwer and Rice (2013).
22Some open issues along these lines are stressed in Campbell et al. (2014).
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disorder. Once environmental factors are brought into the picture as causally rel-
evant for the neurodevelopmental disorder, if the model is meant to be mechanis-
tically explanatory, interdependencies must be modeled as the key to the system’s
overall behavior. For instance, “how does a polymorphism in a (dopamine)
risk-gene for ADHD translate into a neurobiological substrate and result in
behaviors that warrant a diagnosis of ADHD in a developing child? (Durston and
Konrad 2007, p. 374). How does the blocking of striatal dopamine transporters,
achieved through pharmacological treatment, alleviate behavioral symptoms? How
does an increase in striatal activation improve motor function? Integrated knowl-
edge of levels is likely to make us gain in control over the disorder,23 which is
definitely one of the major aims of neuropsychiatry, and to shed some light on other
neurodevelopmental disorders as well.

Returning to Glennan’s requirements, what sense does it make to talk of the
adequacy of an explanatory model in this kind of context? The adequacy of the
model has to do with both the identification of genuinely causal relations between
variables and their organization, with their mutual constraints, and with what the
explanatory model is going to be used for. Different, not incompatible, explana-
tions, with different levels of graininess can be provided for one and the same
phenomenon. The issue here is not whether, for instance, impulsivity or aggres-
siveness involve the brain, but whether a neural or neuropsychologic or social level
of analyses “is the most useful level for understanding why this disorder develops”
(Nigg et al. 2005, p. 1224, italics added). The field in which the investigation is
pursued, its methods and purpose shape the kind of questions raised, the method-
ological and conceptual tools employed to answer them, and the sort of answers
accepted. Neurobiologic and biochemical activity may not be the most adequate
level to focus on if—for instance—the purpose is providing an adequate explana-
tory model to support some behavioral interventions on ADHD in a school context.
Vice versa, the impact of parenting styles on neurodevelopmental features might
prove less interesting in the search for increasingly effective pharmacologic med-
ication on behalf of some pharmaceutical company. If it can be agreed that “the way
in which mechanisms are investigated shapes the kinds of explanations in which
those mechanisms figure” (Andersen 2014, p. 276), it equally holds that the use to
which explanations are to be put and the contexts in which they are elaborated
shape the search for the mechanisms they are supposed to exhibit, and how
mechanistic systems are isolated and described.

Concluding, in what respects do the models considered provide explanatory
accounts of the neuropsychiatric disorder at stake in mechanistic terms, and to what
extent do they fulfill neo-mechanist desiderata? If we reflect on the dynamics of
modeling in scientific practice in contexts like the one at issue, features like an
accurate and complete description of the explanandum, and the specification
of interactions and organization seem to be seen at most as a regulatory ideal.

23On the relation between mechanistic knowledge and control, see Craver and Darden (2013,
Chap. 11).
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The mechanistic models described here deal with a disorder lying at the crossroad
of systems which are known to various extents. Resulting models look as a matter
of fact like some combination of mechanism sketches and mechanism schemata, or
like some set of how-possibly, how-plausibly and how-actually models of
sub-systems, to be integrated through the merging of knowledge from different
fields of enquiry, at different levels of graininess. At the time that a given model is
proposed as a representation of the working of the disorder, we might not know
exactly to what extent parts of our model are approximations and distortions, and
which parts represent more or less accurately the actual features of the disorder—
whose description, on top of that, is in turn subject to changes and revisions. The
plausibility of the model, the possibility or need for revisions must be evaluated in
the long run. The mechanistic models considered allow us to answer some range of
why questions on the disorder, are admittedly incomplete and partly hypothetical
and constructed piecewise, with poor cues on modes of interaction between causal
factors.

Any progress in mechanistic understanding of some level further constrains the
space of possible mechanisms underpinning the disorder. In the process, one
obtains a more accurate identification and description of the mental dysfunction
which, in turn, enables a more accurate identification of what produces it, with the
relational properties of models and target systems being produced simultaneously.24

The description of the underlying mechanism can reshape the definition of the
disease, which can vary and, in turn, orientate further search for explanatory
accounts. Disciplinary contextualization, and unraveling of underpinning assump-
tions depending on disciplinary standpoints, might help shed light on relationships
between different approaches and tentative models. Interdependence must be
brought into light between the different partial explanatory accounts of what can be
drawn as sub-systems if some grasping of the causal complexity exhibited by
mutually reinforcing networks of causal mechanisms (see Kendler et al. 2011) is to
be reached. The target of a coherent, comprehensive and integrated model of
ADHD might be quite far off, neuropsychiatry as a field being, with respect to
mechanistic stances, in many senses still “at the ‘how possibly’ stage” (Kendler
2008a, b, p. 899).
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Chaos and Stochastic Models in Physics:
Ontic and Epistemic Aspects

Sergio Caprara and Angelo Vulpiani

Abstract There is a persistent confusion about determinism and predictability. In
spite of the opinions of some eminent philosophers (e.g., Popper), it is possible to
understand that the two concepts are completely unrelated. In few words we can say
that determinism is ontic and has to do with how Nature behaves, while pre-
dictability is epistemic and is related to what the human beings are able to compute.
An analysis of the Lyapunov exponents and the Kolmogorov-Sinai entropy shows
how deterministic chaos, although with an epistemic character, is non subjective at
all. This should clarify the role and content of stochastic models in the description
of the physical world.

1 Introduction

In the last decades scientists and philosophers showed an intense interest for chaos,
chance and predictability. Some aspects of such topics are rather subtle, and in the
literature is not unusual to find wrong statements. In particular it is important to
avoid confusion on the fact that to be deterministic (or stochastic) is an ontic
property of a system, i.e. related to its own nature independently of our knowledge;
while predictability, and somehow chaos, have an epistemic character, i.e. depend
on our knowledge. We will see how the introduction of a probabilistic approach in
deterministic chaotic systems, although with an epistemic character, is not
subjective.

Often in the past, the central goal of science has been though to be ‘‘prediction
and control’’, we can mention von Neumann’s belief that powerful computers and a
clever use of numerical analysis would eventually lead to accurate forecasts, and
even to the control, of weather and climate:
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The computer will enable us to divide the atmosphere at any moment into stable
regions and unstable regions. Stable regions we can predict. Unstable regions we
can control.1

The great scientist von Neumann was wrong, but he did not know the phe-
nomenon of deterministic chaos.

About half a century ago, thanks to the contribution of M. Hénon, E. Lorenz (see
e.g., Lorenz 1963) and B.V. Chirikov (to cite just some of the most eminent
scientists in the field), deterministic chaos was (re)discovered. Such an event sure
was scientifically important, e.g., as it clarifies topics like the different possible
origins of the statistical laws and the intrinsic practical limits of the predictions. On
the other hand, one has to admit that the term ‘‘deterministic chaos’’ can be seen as
an oxymoron and induced the persistence of a certain confusion about concepts as
determinism, predictability and stochastic laws. Our aim is to try to put some order
into this matter, discussing some aspects of deterministic chaos which, in our
opinion, are often misunderstood, leading to scientifically, as well as philosophi-
cally, questionable and confused claims.

In spite of the fact that it is quite evident that Maxwell, Duhem, and Poincaré
(see e.g., Poincaré 1892) understood in a clear way the distinction between deter-
minism and chaos, in the recent literature one can find a large spectrum of wrong
statements on the conceptual impact of deterministic chaos, see Campbell and
Garnett (1882). For instance, Prigogine and Stengers (1994) claim that the notion of
chaos leads us to rethink the notion of “law of nature”. In a book on statistical
physics (Vauclair 1993), one can read that as consequence of chaos the deter-
ministic approach fails. Sir James Lightill (1986) in a lecture to the Royal Society
on the 300th anniversary of Newton’s Principia shows how to confuse determinism
and prediction: We are all deeply conscious today that the enthusiasm of our
forebears for the marvelous achievements of Newtonian mechanics led them to
make generalization in this area of predictability, which indeed we may generally
have tended to believe before 1960, but which we now recognize were false. We
collectively wish to apologize for having misled the generally educated public by
spreading ideas about the determinism of systems satisfying Newton’s laws of
motion, that after 1960 were to be proved incorrect.

Chaos presents both ontic and epistemic aspects2 which may generate confusion
about the real conceptual relevance of chaos. We shall see that chaos allows us to
unambiguously introduce probabilistic concepts in a deterministic world. Such a
possibility is not merely the consequence of our limited knowledge of the state of
the system of interest. Indeed, in order to account for this limited knowledge, one
usually relies on a coarse-grained description, which requires a probabilistic
approach. We will see that many important features of the dynamics do not depend
on the scale � of the graining, if it is fine enough. At the same time, many results for

1Cited by Dyson (2009).
2We shall see how determinism refers to ontic descriptions, while predictability (and, in some
sense, chaos) has an epistemic nature.
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the � ! 0 limit do not apply to the cases with � ¼ 0. Therefore, the probabilistic
description of chaotic systems reveals one more instance of singular limits.

2 About Determinism

The word determinism has often been used in fields other than physics, such as
psychology and sociology, causing some bewilderment. There have been some
misunderstandings about the meaning of determinism, and because, at times,
determinism has been improperly associated with reductionism, mechanicism and
predictability (Chibbaro et al. 2014), it seems to us that a brief review of the notion
of determinism is not useless.

For example, unlike the majority of modern physicists and mathematicians, by
deterministic system Popper (1992) means a system governed by a deterministic
evolution law, whose evolution can be in principle predicted with arbitrary
accuracy:

Scientific determinism is the doctrine that the state of any closed physical system
at any future instant can be predicted.

In other words, Popper confuses determinism and prediction.
On the contrary, Russell gives the following definition, which is in agreement

with the present mathematical terminology:
A system is said to be “deterministic” when, given certain data e1; e2; . . .; en at

times t1; t2; . . .; tn, respectively, concerning this system, if Et is the state of the
system at any (later) time t, there is a functional relation of the form

Et ¼ f ðe1; t1; e2; t2; . . .; en; tnÞ :

In the definition of Russell practical prediction is not mentioned.
The confusion about determinism and predictability is not isolated, see, e.g.,

Stone (1989) and Boyd (1972) who examine in great detail arguments about the
widespread opinion that human behavior is not deterministic because it is not
predictable.

Determinism amounts to the metaphysical doctrine that same events always
follow from same antecedents. But, as Maxwell had already pointed out in 1873, it
is impossible to confirm this fact, because nobody has ever experienced the same
situation twice:

It is a metaphysical doctrine that from the same antecedents follow the same
consequences. No one can gainsay this. But it is not of much use in a world like
this, in which the same antecedents never again concur, and nothing ever happens
twice … The physical axiom which has a somewhat similar aspect is “that from like
antecedents follow like consequences”. But here we have passed … from absolute
accuracy to a more or less rough approximation.

In these few lines, Maxwell touches on issues which will be later investigated,
and anticipates their solution. The issues are:
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1. the impossibility of proving (or refuting) the deterministic character of the laws
of Nature;

2. the practical impossibility of making long-term predictions for a class of phe-
nomena, referred to here as chaotic, despite their deterministic nature.

After the development of quantum mechanics, many think that discussing the
deterministic nature of the laws of physics is too academic an exercise to deserve
serious consideration. For instance, in a speech motivated by the heated controversy
on chaos and determinism between philosophers and scientists, (van Kampen 1991)
bluntly said that the problem does not exist, as it is possible to show that:

the ontological determinism à la Laplace can neither be proved nor disproved
on the basis of observations.3

It is not difficult to realize that determinism and predictability constitute two
quite distinct issues, and the former does not imply the latter. Roughly speaking,
determinism can be traced back to a vision of the nature of causality and can be cast
in mathematical terms, by saying that the laws of nature are expressed by ordinary
(or partial) differential equations. However, as noted by Maxwell, the objectively
ontological determinism of the laws of nature cannot be proven; but one might find
it convenient to use deterministic descriptions. Moreover, even at a macroscopic
level, many phenomena are chaotic and, in some sense, appear to be ‘‘random’’. On
the other hand, the microscopic phenomena described by quantum mechanics, fall
directly within a probabilistic framework. When referring to observable properties,
they appear ontologically and epistemologically non-deterministic.

3 Two Explicit Examples

In order to clarify the concepts of determinism, predictability and chaos let us
discuss two deterministic systems whose behaviors are rather different. They do not
have particular own relevance, their choice is motivated just for pedagogical
reasons:

Example A The pendulum (of length L):

d2h
dt2

¼ � g
L
sin h: ð1Þ

According to well known mathematical theorems on differential equations the
following results hold:

3In brief, van Kampens argument is the following. Suppose the existence of a world A which is not
deterministic and consider a second world B obtained from the first using the following deter-
ministic rule: every event in B is the copy of an event occurred one million years earlier in A.
Therefore, all the observers in B and their prototypes live the same experiences despite the
different natures of the two worlds.
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(a) the initial condition ðhð0Þ; dhð0Þ=dtÞ determines in a unique way the state of the
system ðhðtÞ; dhðtÞ=dtÞ at any time t, in other words the system is deterministic;

(b) the motion is periodic, i.e., there exists a time T (depending on the initial
conditions) such that

hðtþ TÞ; dhðtþ TÞ
dt

� �
¼ hðtÞ; dhðtÞ

dt

� �
;

(c) the time evolution can be expressed via a function Fðt; hð0Þ; dhð0Þ=dtÞ:

hðtÞ ¼ F t; hð0Þ; dhð0Þ
dt

� �
:

The function F can be explicitly written only if hð0Þ and dhð0Þ=dt are small (and,
in such a case, T ¼ 2p

ffiffiffiffiffiffiffiffi
L=g

p
is a constant, independent of the initial conditions);

however, in the generic case, F can be easily determined with the desired precision.

Example B Bernoulli’s shift:

xtþ 1 ¼ 2xt mod 1: ð2Þ

Where the operation mod 1 corresponds to taking the fractional part of a number,
e.g., 1:473 mod 1 ¼ 0:473. It is easy to understand that the above system is
deterministic: x0 determines x1, which determines x2 and so on. Let us show that the
above system is chaotic: a small error in the initial conditions doubles at every
step. Suppose that x0 is a real number in the interval ½0; 1�, it can be expressed by an
infinite sequence of 0 and 1:

x0 ¼ a1
2

þ a2
4

þ . . .þ an
2n

þ . . .;

where every an takes either the value 0 or the value 1. The above binary notation
allows us to determine the time evolution by means of a very simple rule: at every
step, one has just move the “binary point” of the binary expansion of x0 by one
position to the right and eliminate the integer part. For example, take

x0 ¼ 0:11010000101110101010101100. . .

x1 ¼ 0:1010000101110101010101100. . .

x2 ¼ 0:010000101110101010101100. . .

x3 ¼ 0:10000101110101010101100. . .
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and so on. In terms of the sequence fa1; a2; . . .g, it becomes quite clear how
crucially the temporal evolution depends on the initial condition. Let us consider

two initial conditions xð1Þ0 and xð2Þ0 such that jxð1Þ0 � xð2Þ0 j\2�M for some arbitrary

(large) integer number M, this means that xð1Þ0 and xð2Þ0 have the first M binary digits
identical, and they may differ only afterwards. The above discussion shows that the
distance between the points increases rapidly: for t\M one has an exponential
growth of the distance between the two trajectories

jxð1Þt � xð2Þt j � jxð1Þ0 � xð2Þ0 j2t :

As soon as t[M, one can only conclude that jxð1Þt � xð2Þt j\1. Our system is
chaotic: even an arbitrarily small error in the initial conditions eventually dominates
the dynamics of the system, making long-term prediction impossible.

From the above discussion we saw how in deterministic systems one can have
the following possible cases (in decreasing order of predictability):

(i) Explicit possibility to determine the future (pendulum in the limit of small
oscillations);

(ii) Good control of the prediction, without an explicit solution (pendulum with
large oscillations);

(iii) Chaos and practical impossibility of predictability (Bernoulli’s shift).

3.1 About the Ontic/Epistemic Character of Chaos

One should also beware of the possible confusion between ontic and epistemic
descriptions, when studying the topic of chaos. Determinism simply means that:
given the same initial state Xð0Þ, one always finds the same evolved state XðtÞ, at
any later time t[ 0. Therefore, determinism refers exclusively to ontic descriptions,
and it does not deal with prediction. This has been clearly stressed by
Atmanspacher (2002), in a paper by the rather eloquent title Determinism is ontic,
determinability is epistemic. This distinction between ontic and epistemic
descriptions was obvious to Maxwell; after having noted the metaphysical nature of
the problem of determinism in physics, he stated that:

There are certain classes of phenomena … in which a small error in the data
only introduces a small error in the result … There are other classes of phenomena
which are more complicated, and in which cases of instability may occur.

Also for Poincaré the distinction between determinism and prediction was rather
clear, on the contrary, Popper (1992) confused determinism and prediction.
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4 Chaos and Asymptotics

Here, we briefly recall the essential properties of a deterministic chaotic system:

(i) The evolution is given by a deterministic rule, for example, by a set of dif-
ferential equations;

(ii) Solutions sensitively depend on the initial conditions: i.e., two initially almost
identical states Xð0Þ and X0ð0Þ, with a very small initial displacement
jX0ð0Þ � Xð0Þj ¼ d0, become separated at an exponential rate:

jX0ðtÞ � XðtÞj ¼ dt � d0 e
kt; ð3Þ

where k is positive and is called the Lyapunov exponent, for Bernoulli’s shift
k ¼ ln 2;

(iii) The evolution of the state XðtÞ is not periodic and appears quite irregular,
similar in many respects to that of random systems.

The sensitive dependence on the initial condition drastically limits the possibility
of making predictions: if the initial state is known with a certain uncertainty d0, the
evolution of the system can be accurately predicted with precision D only up to a
time that depends on the Lyapunov exponent. This quantity is inherent in the
system and does not depend on our ability to determine the initial state; hence,
recalling Eq. (3), the time within which the error on the prediction does not exceed
the desired tolerance is:

Tp � 1
k
ln

D
d0

: ð4Þ

The sensitivity to initial conditions introduces an error in predictions which grows
exponentially in time. As the Lyapunov exponent k is an intrinsic characteristic of
the system, predictions remain meaningful only within a time given by Eq. (4);
therefore, it is well evident that a deterministic nature does not imply the possibility
of an arbitrarily accurate prediction.

Let us note that, since X is in a bounded domain, some accuracy is needed in the
definition of the Lyapunov exponent: before one has to take the limit d0 ! 0 and
then t ! 1:

k ¼ lim
t!1 lim

d0!0

1
t
ln

dt
d0

� �
:

Another important characterisation of the dynamics is given by the
Kolmogorov-Sinai entropy, hKS, defined as follows. Just for the sake of simplicity
we consider a system with discrete time: let A ¼ fA1; . . .;ANg be a finite partition
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of the phase space (the space of configurations of a given system under study),
made up of the N disjoint sets Ai, and consider the sequence of points

fx1; . . .; xn; . . .g;

which constitutes the trajectory with initial condition x0. This trajectory can be
associated with the symbol sequence

fi0; i1; . . .; in; . . .g; ð5Þ

where ik ¼ j if xk 2 Aj.
Once a partition A has been introduced, the coarse-grained properties of chaotic

trajectories can be therefore studied through the discrete time sequence (5). Let
Cm ¼ ði1; i2; . . . imÞ be a ‘‘word’’ (a string of symbols) of length m and probability
PðCmÞ. The quantity

Hm ¼
X
Cm

PðCmÞ lnPðCmÞ ð6Þ

is called the block entropy of the m-sequences.4 In the limit of infinitely long
sequences, the asymptotic entropy increment

hSðAÞ ¼ lim
m!1ðHmþ 1 � HmÞ

is called the Shannon entropy, and in general depends on the partition A . Taking
the largest value over all possible partitions we obtain the so-called
Kolmogorov-Sinai entropy:

hKS ¼ sup
A

hSðAÞ:

A more intuitive definition of hKS starts from the partition A� made of a grid of
hypercubes with sides of length �, and takes the following limit:

hKS ¼ lim
�!0

hð�Þ ;

where hð�Þ ¼ hSðA�Þ.
Naively, one might consider chaos in deterministic systems to be illusory, just a

consequence of our observational limitations. Apparently, such a conclusion is
confirmed by the fact that important measures of the dynamical complexity, such as
the Lyapunov exponent k and the Kolmogorov-Sinai entropy hKS, are defined via
finite, albeit arbitrarily high, resolutions. For instance, in the computation of k one

4Shannon (1948) showed that, once the probabilities PðCmÞ are known, the entropy (6) is the
unique quantity which measures, under natural conditions, the surprise or information carried by
fCmg.
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considers two trajectories, which are initially very close jXð0Þ � X0ð0Þj ¼ d0 and
diverge in time from each other. Similarly, hKS is computed introducing a partition
of the phase space, whose elementary cells have a finite size �. However, in the
small-� limit, hð�Þ asymptotically tends to a value (hKS) that no longer depends on �,
as happens to k in the small-d0 limit. Therefore, k and hKS can be considered
intrinsic properties of the dynamics themselves: they do not depend on our
observational ability, provided it is finite, i.e., provided � and d0 do not vanish.
According to Primas (2002), measures of stability, such as the Lyapunov exponent,
concern ontic descriptions, whereas measures of information content or information
loss, such as the Kolmogorov-Sinai entropy, relate to epistemic descriptions. We
agree as far as stability is concerned. Regarding the epistemic character of hKS, we
observe that the Shannon entropy of a sequence of data, as well as the
Kolmogorov-Sinai entropy, enjoy an epistemic status from a certain viewpoint, but
not from another. The epistemic status arises from the fact that information theory
deals with transmission and reception of data, which is necessarily finite. On the
other hand, hKS is definitely an objective quantity, which does not depend on our
observational limitations, as demonstrated by the fact that it can be expressed in
terms of Lyapunov exponents (Cencini et al. 2009). We note that the �-entropy hð�Þ
can be introduced even for stochastic processes, therefore it is a concept which links
deterministic and stochastic descriptions.

5 Chaos and Probability

After the (re)discovery of chaos in deterministic systems, owing to the presence of
irregular and unpredictable behaviours, it is quite natural to adopt a probabilistic
approach even in the deterministic realm. Let us assume that we known the
probability density of configurations in phase space at the initial time qðx; 0Þ, it is
possible to write down its time evolution law:

qðx; 0Þ ! qðx; tÞ :

Under certain conditions (mixing5) one has that al large time the probability density
approaches a function which does not depend on qðx; 0Þ:

lim
t!1 qðx; tÞ ¼ qinvðxÞ ; ð7Þ

5The precise definition of mixing in dynamical systems requires several specifications and tech-
nicalities. To have an idea, imagine to put flour and sugar, in a given proportion (say 40 and 60 %,
respectively) and initially separated, in a jar with a lid. After shaking the jar for a sufficiently long
time, we expect the two components to be mixed, i.e., the probability to find flour or sugar in every
part of the jar matches the initial proportion of the two components: a teaspoonful of the mixture
taken at random will contain 40 % of flour and 60 % of sugar.
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and is therefore called the invariant probability density. For instance, for Bernoulli’s
shift one has the following recursive rule:

qðx; tþ 1Þ ¼ 1
2
q

x
2
; t

� �
þ 1

2
q

x
2
þ 1

2
; t

� �
;

and the invariant probability density is constant in the interval ½0; 1�:

lim
t!1 qðx; tÞ ¼ qinvðxÞ ¼ 1 :

It is rather natural, from an epistemic point of view, to accept the above proba-
bilistic approach: the introduction of qðx; 0Þ can be seen as a necessity stemming
from the human practical impossibility to determine the initial condition. For
instance, in the case of Bernouilli’s shift, knowing that the initial condition xð0Þ is
in interval ½x�; x� þD�, it is natural to assume that qðx; 0Þ ¼ 1=D for
x 2 ½x�; x� þD�, and 0 otherwise.

For t large enough (roughly t[ t� � lnð1=DÞ) one has the convergence of qðx; tÞ
toward the invariant probability distribution. Let us note that such a feature holds
for any finite D, while t� weakly depends on D, therefore we can say that qinvðxÞ, as
well the approach to the invariant probability density, sure are objective properties
independent of the uncertainty D. Perhaps somebody could claim that, since it is
necessary to have D 6¼ 0, the above properties, although objective, still have an
epistemic character. We do not insist further.

Figures 1a and b show, in a rather transparent way, how the approach to the
qinvðxÞ is rather fast and basically independent on the qðx; 0Þ.
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Fig. 1 Probability density qðx; tÞ for Bernoulli’s shift. The distribution is obtained generating at
random 100,000 points, uniformly distributed in the interval ½0:1 : 0:2� (a) and ½0:4 : 0:55� (b), and
then iterating the dynamics of each point for 14 time steps. The red curves correspond to the initial
distribution, the green, the blue, and the magenta curves correspond to one, two and three time
steps, respectively. As it is evident, at each time step the dynamics initially doubles the width of
interval over which the points are distributed, until qðx; tÞ � qinvðxÞ ¼ 1. The light blue curves are
obtained after 14 iterations: The probability density qðx; tÞ for t[ 12 is close to the invariant
distribution qinvðxÞ independently of the initial qðx; 0Þ
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We saw how chaotic systems and, more precisely, those which are ergodic,6

naturally lead to probabilistic descriptions, even in the presence of deterministic
dynamics. In particular, ergodic theory justifies the frequentist interpretation of
probability, according to which the probability of a given event is defined by its
relative frequency. Therefore, assuming ergodicity, it is possible to obtain an
empirical notion of probability which is an objective property of the trajectory (von
Plato 1994). There is no universal agreement on this issue; for instance, Popper
(2002) believed that probabilistic concepts are extraneous to a deterministic
description of the world, while Einstein held the opposite view, as expressed in his
letter to Popper:

I do not believe that you are right in your thesis that it is impossible to derive
statistical conclusions from a deterministic theory. Only think of classical statistical
mechanics (gas theory, or the theory of Brownian movement).

6 A Brief Digression on Models in Physics

At this point of the discussion, we wish to recall that our description of physical
phenomena is necessarily based upon models,7 that entail a schematization of a
specified portion of the physical world. Take for instance the pendulum described
by Eq. (1). The mathematical object introduced thereby relates to a physical pen-
dulum under some specific assumptions. For instance, the string of length L, that
connects the swinging body to a suspension point, is assumed to be inextensible,
whereas any physical string is (to some extent) extensible. The model also assumes
that gravity is spatially uniform and does not change with time, i.e., it can be
described by a constant g. Equation (1) will therefore reasonably describe a physical
pendulum only inasmuch as the variations of L and/or g are sufficiently small, so as
to add only tiny corrections. Even more important, there is not in the physical world
such an object as an isolated pendulum, whereas Eq. (1) totally ignores the physical
world around the pendulum (the only ingredients being gravity, the string, and the
suspension point). Galileo Galilei was well aware of this subtlety when comparing
the prediction of our mathematical models with the physical phenomena they aim to

6A very broad definition of an ergodic system relies on the identification of time averages and
averages computed with the invariant probability density (7). Said in other words, a system is
ergodic if its trajectory in phase space, during its time evolution, visits (and densely explores) all
the accessible regions of phase space, so that the time spent in each region is proportional to the
invariant probability density assigned to that region. Therefore, if a system is ergodic, one can
understand its statistical features looking at the time evolution for a sufficient long time; the
conceptual and technical relevance of ergodicity is quite clear.
7There are several definitions of a Model, but to our purposes the following is a reasonable one:
Given any system S, by which we mean a set of objects connected by certain relations, the
system M is said a model of S if a correspondence can be established between the elements
(and the relations) of M and the elements (and the relations) of S, by means of which the study
of S is reduced to the study of M, within certain limitations to be specified or determined.
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describe8 and called accidents (on this topic, see, e.g., Koertge 1977) all external
influences apt to modify, often in an apparently unpredictable way, the behaviour of
a (supposedly isolated) portion of the physical world. In the case of the Eq. (1), we
are, e.g., neglecting the fact that a real pendulum swings in a viscous medium (the
air), and also experiences some friction at the suspension point. These effects
gradually alter the motion of the pendulum, which is no longer periodic and
eventually stops. Equation (1) also neglects the fact that the Earth is not an inertial
reference frame: it rotates around its axis and around the Sun. The first effect is far
more important and gives rise to the gradual but sizable variation of the plane of
oscillation (Foucault’s pendulum). There are several external influences that may
alter the motion of a pendulum. Some of them may be accounted for, at least to
some extent, by simple modifications of Eq. (1). Other are rather complicated and
are not easily accountable. Thus, Eq. (1) describes a pendulum only as far and as
long as external influences do not alter significantly its motion. Said in other words,
it describes a pendulum under controlled conditions.

7 The Old Dilemma Determinism/Stochasticity

The above premise underlines the crucial importance of the concept of state of the
system, i.e., in mathematical terms, the variables which describe the phenomenon
under investigation. The relevance of such an aspect is often underestimated; only
in few situations, e.g., in mechanical systems, it is easy to identify the variables
which describe the phenomenon. On the contrary, in a generic case, there are
serious difficulties; we can say that often the main effort in building a theory of
nontrivial phenomena concerns the identification of the appropriate variables. Such
a difficulty is well known in statistical physics; it has been stressed, e.g., by Onsager
and Machlup (1953) in their seminal work on fluctuations and irreversible pro-
cesses, with the caveat:

how do you know you have taken enough variables, for it to be Markovian?

In a similar way, Ma (1985) notes that:

the hidden worry of thermodynamics is: we do not know how many coordinates
or forces are necessary to completely specify an equilibrium state.

8Experiments are usually carried out under controlled conditions, meaning that every possible care
is taken in order to exclude external influences and focus on specific aspects of the physical world.
In his “Dialogues concerning two new sciences”, Galilei (English translation 1914) describes the
special care to be taken in order to keep the accidents under control: “… I have attempted in the
following manner to assure myself that the acceleration actually experienced by falling bodies is
that above described. A piece of wooden moulding or scantling, about 12 cubits long, half a cubit
wide, and three finger-breadths thick, was taken; on its edge was cut a channel a little more than
one finger in breadth; having made this groove very straight, smooth, and polished, and having
lined it with parchment, also as smooth and polished as possible, we rolled along it a hard,
smooth, and very round bronze ball …” (the italicized emphases are ours).
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Unfortunately, we have no definite method for selecting the proper variables.
Takens (1981) showed that from the study of a time series fu1; u2; . . .; umg,

where u is an observable sampled at the discrete times tj ¼ jDt and uj ¼ uðtjÞ, it is
possible (if we know that the system is deterministic and is described by a finite
dimensional vector) to determine the proper variable X. Unfortunately the method
has rather severe limitations:

(a) It works only if we know a priori that the system is deterministic;
(b) The protocol fails if the dimension of the attractor9 is large enough (say more

than 5 or 6).

Therefore the method cannot be used, apart for special cases (with a small
dimension), to build up a model from the data.

We already considered arguments, e.g., by van Kampen, which deny that
determinism may be decided on the basis of observations. This conclusion is also
reached from detailed analyses of sequences of data produced by the time evolu-
tions of interest. In few words: the distinction between deterministic chaotic sys-
tems and genuine stochastic processes is possible if one is able to reach arbitrary
precision on the state of the system.

Computing the so-called �-entropy hð�Þ, at different resolution scales �, at least in
principle, one can distinguish potentially underlying deterministic dynamics from
stochastic ones.

From a mathematical point of view the scenario is quite simple: for a deter-
ministic chaotic system as � ! 0 one has hð�Þ ! hKS\1, while for stochastic
processes hð�Þ ! 1.10 On the other hand an arbitrary solution is not possible,
therefore the analysis of temporal series can only be used, at best, to pragmatically
classify the stochastic or chaotic character of the observed signal, within certain
scales (Cencini et al. 2009; Franceschelli 2012). At first, this could be disturbing:
not even the most sophisticated time-series analysis that we could perform reveals
the “true nature” of the system under investigation, the reason simply being the
unavoidable finiteness of the resolution we can achieve.

On the other hand, one may be satisfied with a non-metaphysical point of view,
in which the true nature of the object under investigation is not at stake. The
advantage is that one may choose whatever model is more appropriate or conve-
nient to describe the phenomenon of interest, especially considering the fact that, in
practice, one observes (and wishes to account for) only a limited set of
coarse-grained properties.

In light of our arguments, it seems fair to claim that the vexed question of
whether the laws of physics are deterministic or probabilistic has, and will have, no

9The attractor of a dynamical system is a manifold in phase space toward which the system tends
to evolve, regardless of the initial conditions. Once close enough to the attractor, the trajectory
remains close to it even in the presence of small perturbations.
10Typically hð�Þ� ��a where the value of a depends on the process under investigation (Cencini
et al. 2009).
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definitive answer. On the sole basis of empirical observations, it does not appear
possible to decide between these two contrasting arguments:

(i) Laws governing the Universe are inherently random, and the determinism that
is believed to be observed is in fact a result of the probabilistic nature implied
by the large number of degrees of freedom;

(ii) The fundamental laws are deterministic, and seemingly random phenomena
appear so due to deterministic chaos.

Basically these two positions can be viewed as a reformulation of the endless
debate on quantum mechanics: thesis (i) expresses the inherent indeterminacy
claimed by the Copenhagen school, whereas thesis (ii) illustrates the hidden
determinism advocated by Einstein (Pais 2005).
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Ways of Advancing Knowledge. A Lesson
from Knot Theory and Topology

Emiliano Ippoliti

Abstract The examination of the construction of several approaches put forward to
solve problems in topology and knot theory will enable us to shed light on the
rational ways of advancing knowledge. In particular I will consider two problems:
the classification of knots and the classification of 3-manifolds. The first attempts to
tell mathematical knots apart, searching for a complete invariant for them. In par-
ticular I will examine the approaches based respectively on colors, graphs, numbers,
and braids, and the heuristic moves employed in them. The second attempts to tell
3-manifolds apart, again searching for a complete invariant for them. I will focus on
a specific solution to it, namely the algebraic approach and the construction of the
fundamental group, and the heuristic moves used in it. This examination will lead
us to specify some key features of the ampliation of knowledge, such as the role of
representation, theorem-proving and analogy, and will clear up some aspects of the
very nature of mathematical objects.

1 Introduction

The classification of knots and the classification of manifolds are long-standing
problems in knot theory and topology (see e.g. Adams 2004) that offer an inter-
esting chance to study the rational ways by which knowledge is advanced and to
contribute to the ongoing study of these ways.1 They are a sort of laboratory of
mathematical activity, where we can see how problems are found, posed, and

E. Ippoliti (&)
Sapienza University of Rome, Rome, Italy
e-mail: emi.ippoliti@gmail.com

1See in particular: Polya (1954), (Hanson 1958), (Lakatos 1976), (Laudan 1977), (Simon 1977),
(Nickles 1980a, b), (Simon et al. 1987), (Gillies 1995), (Grosholz and Breger 2000), (Abbott
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solved, and how the tools to do it are created and progressively refined. Moreover,
in this laboratory we can examine in vivo (or at least in vitro) how solutions and
hypotheses are generated, and observe the interplay between mathematics and
natural sciences (see also Ippoliti 2008, 2011, 2013). In particular topology and
knot theory offer tools for tackling those problems where form and function are
strictly related. Most of these problems originate from physics and natural science
(i.e. chemistry, biology) and mathematical entities are developed in order to deal
with them.

As I will show, the attempts to solve the problems of the classification of knots
and of the classification of manifolds tell stories of success and failure, or better of
partial success and failure, but we can learn a lot also from failures, or partial
failures. It is just when an attempt of solution does not succeed that it displays its
own inner dynamics: we can reconstruct the rational and inferential steps of this
process and better see its interpretations and manipulations of objects.

2 Invariants in Knot Theory

The problem of classification of knots originated in nineteenth century theoretical
physics, as Hermann Von Helmholtz, William Thomson (Lord Kelvin), Maxwell,
and Peter Guthrie Tait tried to develop a theory about atoms. The climax of this
effort was Lord Kelvin’s vortex theory (Thomson 1869). As well known, it con-
jectures that atoms are knotted tubes of ether, and has been received for about two
decades. In particular, the vortex theory draws on the hypothesis that the stability of
matter and the variety of chemical elements derive respectively from the topological
stability and the variety of the underlying knots. Accordingly, this theory needed a
mathematical foundation, that is a study and classification of knots capable of
telling us if two knots are different or not. In this way the problem passed from
physics to mathematics: Tait (1900) put forward an extensive study and tabulation
of knots in the attempt to determine when two knots are isotopically different. In
effect, if vortex’s theory turns out to be the right basis for the classification of the
chemical elements, then a knot table is needed to found a periodic table of elements.
Unfortunately Kelvin’s theory did not succeed and was abandoned. But the
mathematical problem survived and continued to draw the interest of mathematical
community.

A mathematical knot is a simple, closed, non-self-intersecting curve in R3 and the
mathematical study focuses on its behavior under a specific kind of deformation—
ambient isotopy: you can distort a knot (stretch, pull, etc.) without breaking it. You
cannot cut and glue it. The classification of knots aims at determining if two knots
are equivalent under isotopy, in order to distinguish different types of knots. The
solution of this problem requires finding a way to tell non-equivalent knots
apart. The first step to do this it to find an existence proof of knots, by specifying a
procedure capable of telling us when a given knot is equivalent to the unknot or not
(see Fig. 1)—that is, if it is possible or not to reduced it to a circle under isotopy.
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Classifying knots up to equivalence turned out to be a very hard problem. The
basic strategy to tackle it was the search for invariants, by setting up a procedure
capable of assigning the same ‘quantity’ to equivalent knots. More specifically the
goal was to find ways of defining and associating a quantity to knots such that it
does not change under isotopic deformations if the knots are the same. In order to
find a complete invariant, several approaches have ben put forward. I will examine
four of them: the ones based respectively on colors, numbers, graphs, and braids.
I will show that these approaches are ways of interpreting and manipulating knots,
and how different approaches reveal both specific features of knots and specific
features of ways for ampliating knowledge.

Tellingly, even though knots are 3d objects, they are opaque to most of the tools
developed for investigating 3d objects. This fact motivated the attempt to employ
tools from other fields in order to deal with the problem. But in order to that, a
change of representation was needed. More specifically, the construction of a
suitable 2d representation of knots has permitted to use tools and results for 2d
objects to shed light on knots. In this sense, it is worth noting that the applicability
of tools and knowledge from another domains motivates the choice of a particular
representation of the mathematical object. The representation of a knot in a 2d
format is a crucial and not so easy task to perform. It requires a set of devices,
interpretations, and changes of a knot that can generate new problems—as it did. It
is not a neutral move and shows how a key tool in problem-solving is changing
representation. In this case, this step is accomplished with the construction of a knot
diagram, i.e. the representation of a knot by means of a suitable projection into a
plane (see Fig. 2). Roughly, a knot diagram is the shadow of the knot plus the
crossing information. More precisely it is the image of a function from the R3 to the
plane, taking the triple (x, y, z) to the pair (x, y), and which meets certain conditions.
In effect there are several possible ways of constructing projections of a knot, so we
have to make choices. Some projections are better than others, for some of them
involve too much loss of information and it would hard to reconstruct the 3d knot
from these pictures. For instance all the projections in Fig. 2b (called irregular)
would make the study of knots very hard. On the contrary, we simplify the
investigation by focusing on a specific knot projection (called regular, see Fig. 2a)

Fig. 1 The unknot
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where three points in the knot cannot project to the same point, and no vertex
projects to the same point as any other point on the knot. A regular projection of a
knot is called knot diagram (see Fig. 3).

This simple operation introduces new information in the problem (i.e. not
contained in its 3d formulation): we define crossings and arcs in a knot diagram.
A crossing is a place where the projections of the knot curve crosses–going over or
under–itself. An arc is a piece of the curve going between two undercrossings—
overcrossings are allowed along the way.

The study of diagrams, rather than 3d curves, makes it possible the application of
new tools in problem-solving, enhancing our ability to tackle it. But it also gen-
erates new problems, since part of information of the 3d object is neglected. An
example of new problem is the fact that the same knot can be represented by several
diagrams (depending on the projection point, see Fig. 4) and, hence, it can be
difficult to establish if two or more diagrams represent the same knot.

Since there are an infinite number of moves that can be performed on a particular
diagram, is it possible to establish if two given diagrams represent the same knot?
This point is crucial: it raises the question of whether a particular projection
determines what we can infer. If we cannot answer this question, we cannot rely on
the study of knot diagrams to shed light on knots and their properties. The

Fig. 2 a Regular projection
of a knot, b irregular
projections of a knot

Fig. 3 A knot diagram
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Reidemeister theorem (Reidemeister 1927) answers the question: the results are not
diagram-sensitive. We need only three moves to go from one projection of a knot to
any other projection of the same knot, regardless of how complicated is the
sequence of these three moves. More formally the theorem tell us that two diagrams
are ambient isotopic if and only if they are connected by a finite sequence of the
three Reidemeister moves (see Fig. 5).

The Reidemeister theorem holds also for oriented diagrams (and links), so it
accounts for all the possible coherent orientations of diagrams. But even if the
Reidemeister theorem provides us with a powerful tool to deal with knots by mean
of their diagrams, it a has a limit: with these three moves you can tell whether two
knots are the same, but you cannot tell them apart, if they are different.

Fig. 4 Two 2d projections of
the same knot

Fig. 5 The Reidemeister
moves
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2.1 Coloring Knots: Heuristic Construction of New
Representations

Coloring is a technique developed in ‘800 for dealing with problems in discrete
mathematics (e.g. 4-colors or 5-colors theorems). Coloring is a way of assigning
distinct labels (a color, a number, a letter, etc.) to each component of a discrete
object (see Fig. 6), such as a plane or a graph. It makes possible to pose and solve
several problems involving topological properties. In knot theory, coloring has been
introduced by Crowell and Fox (19632) in order to tell knots apart, and since then it
has extensively used (see Kauffman 1991; Montesinos 1985).

From a heuristic point of view, the salient aspect of the application of coloring to
knot theory is the fact that, strictu sensu, there are no components for knots. A knot
is a single strand in 3d space, and it has no crossings and strands: consequently, it
cannot be discretized. Thus no labels can be identified, as there is only one item—
the single string in 3d. Accordingly, coloring is a non-sense for 3d knots: it cannot
be even defined for them. On the other hand, a 2d object, like a knot diagram, can
be discretized and, hence, colored. It is just after this change of representation that
coloring can be applied to the study of knots (see Fig. 7). For instance, we can
employ two well-known techniques like 3-colorability or 5-colorability. Let us
focus on 3-colorability. A diagram D is tricolored if:

1. every arc is colored, e.g., r (red), b (blue) or y (yellow);
2. at any given crossing appear either all three colors or only one color.

Now, 3-coloring turns out to be an invariant, event tough a basic one. It allow us
to tell several knots apart. For instance, 3-coloring is the simplest invariant that
distinguishes the trefoil knot and the trivial knot. Fox shows that every 3-colorable
knot is nontrivial. More precisely he proves that if a given diagram can be
3-colored, then it expresses a knot different from the unknot, which cannot be
3-colored since only once color can be assigned to its one arc. In other words, we
can tell apart any 3-colorable from non 3-colorable knot. Accordingly, since we can

Fig. 6 Three ways of labeling

2See in particular Chap. 6, exercises 6–7.
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certainly 3-color some diagrams, then we have just proven the existence of non-
trivial knots. Moreover it distinguishes the trefoil knot and its mirror images, or the
trefoil knot and the unknot. On the other hand, 5-colorability tells apart the figure
eight knot and its mirror image. But coloring does not provide a complete invariant.
For instance 3-colorability cannot distinguish the figure eight knot and its mirror
images, or figure-eight knot and the unknot. And 5-colorability cannot tell apart the
trefoil and its mirror image.

So even if colorability cannot be even defined for knots in 3D, it ends up
revealing properties of knots, and not simply of their diagrams. This is not obvious,
since a new representation adds and cut offs features of the original entities that
affect the results obtained by the use of other tools.

2.2 Graphing Knots: The Heuristic Change
of Representation

There are a number of ways of manipulating and interpreting a mathematical object
to make it treatable by specific tools in order to advance hypotheses for solving a
given problem. This operation does not come cheap, not to say free. It has a specific
cost: these interpretations often requires a change of the representation of the object
and this, in turn, implies a choice about which characteristics to highlights and
which one to ignore, which ones are to be considered relevant and which ones
negligible. It goes without saying that this is a tentative move, which can be
justified only on heuristic basis. Coloring ignores a set of 3-dimensional properties
of knots, using a specific change in representation and it is designed to focus on 2d
discrete characteristics, so to use approaches developed for discrete mathematics in
the search for a classification of knots.

Another way of conceptualizing knots by means of diagrams is by using graph.
A graph is finite set V(G) of vertices and a finite set of edges E(G)—see Fig. 8. Any
edge is paired with vertices that are not necessarily distinct and are called endpoints
of the edge. Moreover, a graph G can have multiple edges and loops.

Fig. 7 Tricolored knot
diagram

Ways of Advancing Knowledge. A Lesson from Knot Theory and Topology 153



The conceptualization of knots by means of graphs is based on an analogy, that
is the fact that graphs and knots are both 2d objects, namely closed plane curves,
and as such they can be interpreted, once suitably manipulated, as ways of sepa-
rating a plane in regions. This requires manipulating both graphs and knots in a
very specific way in order to make them similar under certain respects and employ
graph theory in the study of knots.

Tellingly, Tait himself was the first to read knots as planar graphs. More pre-
cisely, he manipulated a knot diagram in the following way (Tait 1887, 292–94): he
colored the regions of the diagram alternately white and black (following Listing
1847) and constructed the graph by placing a vertex inside each white region and
then connecting the vertices by edges passing through the crossing points of the
diagram (see Fig. 9).

Now we can complete this transformation by expressing the crossing of a knot
simply introducing ± values at each crossing, obtaining a signed planar graph. At
the end of this manipulation, i.e. a change or adaptation to a specific purpose, we
have a new object, namely the graph of a knot (see Fig. 10). The bottom line: we
have just generated a new viewpoint on knots and we can investigate them with the
tools provided by graph theory.

Fig. 8 Example of graph

Fig. 9 Obtaining a graph
from a knot
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This heuristic manipulation offers several contributions to the study of knots.
The three main contributions of graph theory to the study of knots are (e.g. Yajima
and Kinoshita 1957; Kinoshita and Terasaka 1957):

1. The deformation of knots, i.e. the equivalence of knots, can be explained
schematically by the graphical representation of knots.

2. The graphical representation of knots contributes to the study of construction of
knots.

3. Graphs knots provide a necessary and sufficient condition for amphibious knots.

For instance in the latter, graph theory allows us to prove a theorem stating that if
the knot graphs g(π) and g*(π) are of same type and have opposite signs, then the
original knot K of π is amphibious. That is, K is equivalent to its mirror image
(Reidemeister 1932; Schubert 1956).

2.3 Arithmetizing Knots: Cutting the Problem Space

Another way of attacking the problem of classification of knots is to investigate
them in terms of composition, i.e. a number-theoretical operation that classifies
objects by ordering them from the simpler to the more complicated by means of a
function of composition (and decomposition).

An efficient way of doing this is factorization. It offers a straight heuristic
advantage: it does not require to classify all knots, but rather only those that cannot
be made up of smaller “pieces” or knots—the prime factors. The heuristic move of
interpreting knots as numbers, that is numbering knots in a way the preserve the
decomposition into suitably defined prime factors, is the seminal idea of the work
of Alexander and Briggs (1926–27). With this new representation, the search for a
solution to the problem of classification of knot is reduced to the search for a way of
defining and associating a prime number to a prime knot and a composite number to
a composite knot, so that the prime factors of the number are the prime factors of
the knot. In effect, if the approach of finding a unique factorization of knots into

Fig. 10 Graph of a knot
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prime components succeeds, we would get an important result: a drastic reduction
in the search for invariant for knots. First, instead of having to look for invariants of
all knots, we could focus only on invariants of prime components—and how those
invariants behave under the connected sum. Second, we could focus on the smaller
components that make up knots. This would produce a considerable simplification
in the study of knots, as we could totally ignore the order by which a knot is broken
into prime components—since the resulting factors will be the same.

Number-theory offers just this way of classifying objects, and this motivates the
search for a way of treating knots as numbers. In other words we are searching for a
way of transforming the target (knots) so to make them treatable by our source
(numbers), in order to mimic into knots as many relevant properties of number
factorization as possible. The problem is whether there is a way to manipulate knots
that permits this number-theoretical conceptualization, by constructing and defining
prime knots, composite knots, and composition between knots. This is a very strong
heuristic move: in essence we are trying to build new entities, relations, and
operators on knots.

The idea of a number-theoretical approach to knots goes back to Gauss (1798),
who used the analogy between primes and knots, and it was put forward by
Schubert (1949) and Mazur (1973). In principle, there are several possible ways of
constructing a number-theoretical version of a knot. To this end, it is worth
recalling that the crucial property of a knot is not its manifold structure (under
which every knot is equivalent to a circle) but rather its embedding into the ambient
space. So any attempt of defining the operation of composition of knots (the
connected sum) requires an appropriate definition that produces a well-defined
embedding. A way of doing this is to cut each knot at any point and join the
boundaries of the cut, keeping orientations consistent (see Fig. 11).

This definition of composition offers two advantages: it is independent of the
location of the cut and does not generate new crossings. Thus we are now in a
position to pose and solve problem in knot theory by analogy with
number-theoretical well-known properties of composition. In particular the analogy
allows us to explore the features of composition like commutativity, associativity,
subtraction, inversion, and factorization. I denote composition with the symbol #.
Schubert (1949) proved that commutativity holds for knots (see Fig. 12)—namely
given two knots a and b, a#b = b#a.

Moreover, he showed that also associativity holds for knots: given the knots a, b,
and c, (a#b)#c = a#(b#c). On the other hand, there is no way to define the

Fig. 11 Composing knots
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subtraction of knots. The arithmetical analogy fails here. Tellingly, just like natural
numbers, where for every natural number n > 1 there is no natural number m such
that n#m = 1, it is not possible to find the inverse knot, that is given a knot to find
another knot that, composed with it, gives the unknot. More precisely there is no
general way of finding a knot that composed to another ones cancel them out (gives
the unknot)—even if you can find it for specific instances.

Once the features of composition have been explored and clarified for knots, it is
possible to employ one of its main tools—i.e. factoring. Since this requires building
blocks, the primes, the first step of our inquiry is to find a way of constructing the
counter-part of primes for knots, which requires identifying them (show their
existence) and, in case, their features. Just like prime numbers are the product of
smaller numbers, a prime knot can be conceived as one that is not the sum of
simpler knots. First, it turns out that it is possible to prove the existence of prime
knots. It can be done in several ways—for instance using knot genus. So, a knot is
called prime if it cannot be represented as a connected sum of two knots that are
both knotted. Second, factoring turns out to be a more complex operation than
connected sum to define and perform. The standard way of factoring a knot, say K,
is by using a sphere, S, that cuts K at two points and then separates it into two
components K1 and K2—joining the two loose ends of each knot with some path in
the sphere (see Fig. 13). The result of this operation is problematic, since it depends
on the sphere chosen to factor the knot.

It is worth noting that a knot can be decomposed recursively, by iteratively
factoring it into smaller and smaller components ending up with prime components.
Factoring knots turns out not only to be possible, but unique up to the order.
Schubert’s theorem (Schubert 1956) just states that every knot can be uniquely

Fig. 12 Commutativity for knots

Fig. 13 Decomposing a knot in factors
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decomposed in a finite number of prime knots. In this way we have produced an
arithmetic of knots, which shows some essential features of knots. Thus this
approach offers a genuine advancement in the search for a solution of knot clas-
sification by drastically reducing the space of research for invariant for knots.
Unfortunately, it does not solve completely the problem. Natural numbers have a
total order that does not exist for knots—or at least has not been discovered. Of
course, few attempts of fixing this point and ordering knots have been put forward.
The received one is ordering knots by the number of minimal crossings of their
diagrams. But this order is not linear, and does not allows us to order knots like the
ones in Fig. 14—that is answering the question about which one is the smallest.

3 Notations as Heuristics: The Conway’s Case

The seemingly primitive and neutral act of notating turns out to be a way of
ampliating knowledge. More precisely, a notation is the endpoint of a specific
conceptualization and a heuristic tool employed in problem-solving. Knot theory
provides a particularly strong example in this sense, namely the Conway’s notation
for knots (Conway 1967), which offers an explicit example of the heuristic role of
notation. Conway himself states that he built “a notation in terms of which it has
been found possible to list (by hands) all knots of 11 crossing or less and […] some
properties of their algebraic invariants whose discovery was a consequence of the
notation” (Ibid., 329).

In essence, Conway notation is a way of representing a knot by means of a
sequence of integer numbers that express a selection of its properties. The con-
struction of this notation provides us a magnifying glass over the rational steps put
forward to advance knowledge. It uses two heuristics. First, the use of knot diagrams.
Second, the reduction of a global problem to a local one. In latter case Conway
focuses on the properties of portions of knot-diagram, called tangles. A tangle is a
part of a knot projection—namely a circled region in the projection plane such that
four strands exit the circled region (see Fig. 15). Then he shows that a whole class of

Fig. 14 Ordering knots by
minimal crossings
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knots can be represented by tangles, by performing simple changes on tangles,
ending up with the Conway theorem. The definition and construction of tangles is not
arbitrary: in particular the fixed number of strands exiting the circle draws on the idea
of combining tangles and performing arithmetical operations. In effect, Conway
shows how to represents tangles with numbers by using a simple algorithm.

So, Conway’s notation uses three basic tangles in order to generate more
complicated ones: the infinity-tangle, the zero-tangle, and the n-tangle, where n is
an integer. For instance, a 3-tangle is a tangle with 3 twists in it (see Fig. 16). Then
the notation introduces a distinction between −n tangles and +n tangle by means of
overcrossings. More precisely, if a overcrossing has a positive slope, the tangle has
a positive value; if it has a negative slope, the tangle has a negative value. On this
basis, Conway produces rational tangles by preforming a sequence (an algorithm)
of simple operations on tangles—such as rotation, twist and reflection. This pro-
cedure associates a sequence of numbers to tangles. For example, you get the 2 3
tangle by starting from a 2 tangle, rotating it and joining the outcome of rotation
with its mirror image. The numbers keep track of these properties of the rational
tangles and can be used to classify them (tell them apart). Conway shows how to
represent any knot by means of a tangle: given any tangle you can transform it in a
knot by joining its two northern and two southern strands together. This seemingly
simple construction is the heuristic move that allows us to extend to knots results
and tools for tangles and, in particular, offer a way to classify them.

Thus the question that naturally arises here is if different notations do always
expresses different tangles. The answer, unfortunately, is no. As a matter of fact, it
is possible to show, e.g., that the 2 2 1 tangle and the −2 2 1 tangle are equivalent
(under Reideimester moves). The bottom line: notation is not a complete invariant
for tangle and, accordingly, for knots. Nevertheless, this notation is the starting
point of another notation that allowed Conway to achieve his most important
contribution to knot theory. This new notation employs continued fractions and

Fig. 15 Infinity-tangle and
zero-tangle

Fig. 16 3-tangle
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ends up with the Conway’s theorem, which states that two rational tangles are
equivalent if and only if their continued fraction values are the same. For instance
−2 3 2 tangle and 3 −2 3 tangle are equivalent. Remarkably, the continued fraction
value embodies the shape of the tangle itself—and of course knots formed from
these tangles will also be identical.

The continued fraction representation of tangles uses the indexes of Conway’s
notation, i.e. the sequence of numbers. For instance, let us take the 5 1 4 tangle and
the 2 −2 2 −2 2 4 tangle. Apparently the numbers tell us that they are distinct tangles.
The continued fractions representations of these two tangles are respectively:

5þ 1
1þ 1

4

; and 2þ 1
�2þ 1

2þ 1
�2þ 1

2þ 1
4

A rapid calculation shows that their continued fractions value is the same (29/6).
Hence, in virtue of the Conway theorem we know that they expresse that same
tangles and so are the knots obtained from them. This means that we can perform a
sequence of Reidemeister moves that allows us to transform one tangle in the other,
and vice versa.

Moreover, using Conway notation it is possible to prove that all the knots
obtained from rational tangles are alternating knots. So given an alternating knot,
we can determine most of its properties by means of rational tangles theory. We can
show that also the definitions, not only the notations, can play a similar heuristic
role (see e.g. Kauffman 1987). A nice example is the X polynomial for knots
(Kauffman 1991, 33), but I won’t treat it here. I merely point out that this example
displays that also definitions are laden with ampliative reasoning and that they are
not mere stipulations, but end-points of conceptualizations and interpretations of
given objects.

4 Braiding Knots: Theorem-Proving and Heuristics

An essential passage in constructing Conway’s notation is a representational one, a
result stating that a given object with certain properties is isomorphic to another
object—namely that knots and tangles are equivalent under certain respects. This
passage is crucial for ampliation of knowledge in general: it formally enables us to
employ results and tools produced for the one object in the study of the other. When
this assimilation is established explicitly, a set of concepts, operations and prop-
erties can be transferred from the one to the other, reducing and shaping the space
of research for solutions of a problem.

This process displays the heuristic role of theorem-proving: the continual search
of mathematicians for a way of representing a given structure by means of another
is a tool for producing new knowledge by connecting two unrelated objects. The
connection is new—not the objects. This also explains why certain objects are
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manipulated in a way rather than in another way: one way is approachable by pieces
of known mathematics, whilst the other not. Essentially theorem-proving is a
method of reduction in two senses. First, a reduction of a selection of certain
properties of one object to (a selection of properties of) another objects. Second, the
reduction of the space of research for a solution.

Knot theory offers a strong example of the heuristic role of theorem-proving: the
Alexander’s theorem (Alexander 1923). This representation theorem simply states
that every knot has a closed braid presentation—that is every knot is isotopic to a
closed braid. I won’t give the detail of the theorem, but I will examine two
important consequences of it:

1. it formalizes a new relation between two entities—knot diagram and the closure
of braids. So if you have full understanding of braids, it turns out that you will
have a good understanding of knots (and links).

2. Since braids are conceptualized in algebraic terms (i.e. group theory), it turns out
that algebra con be used to study knots too.

A braid is a set of n strands attached between two horizontal bars. The strands
must always go down from the top horizontal bar to the bottom horizontal bar and
can cross each other (see Fig. 17).

In essence, a braid is a two-dimensional object expressing information about the
relative position of the strands and their overcrossings—just like knots under this
respect. Braids have been approached from an algebraic viewpoint: the braid group
(Artin 1947) gives an deep understanding of braids in pure algebraic terms.

Since braids and knot diagrams are two ways of expressing similar information,
the attempt to use the formers to understand the latters has been extensively put
forward. But in order to establish this connection it is necessary to find a way of
assimilating knots to braids, and to understand to what extent this is possible. This
step has been accomplished with the operation of closure of a braid, a move that
evolves up to the proof of Alexander theorem. The closure of braids b, denoted CL
(b), is simply the connection of the endpoints of the strands in a standard way, i.e.
without introducing further intersections between the strings (see Fig. 18). It is
possible to show that equivalent braids express equivalent knots, but a number of
braids may express the same knot.

Fig. 17 A braid
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The assimilation of knots and braids produces a real advancement of knowledge
in knot theory: not only it opens the door to the Alexander’s theorem, but it also
lays the foundation for the Brunn’s theorem (Brunn 1897), stating that every knot
has a projection with only one multiple point.

5 Invariants and Manifolds: The Fundamental Group

Because the classification of 3-manifolds requires extra levels of detail, it makes it
possible to zoom in even closer on the rational ways of ampliating knowledge. This
problem is hard, as traditional tools and concepts such as genus, orientability and
boundary components cannot offer a complete description of 3-manifold. A key
idea to classify them, again, is the search for invariants. But traditional invariants,
like Euler characteristic, are useless for 3-manifolds since their values all became
zero. Thus, a new approach is needed to tackle the problem and it was developed
by employing algebra. This move draws on a simple heuristics: an invariant is
something that does not change under certain operations—in this sense it is a
structure. And algebra is just the study of structures (i.e. something preserved under
specific functions or operations). So if we find a way of associating algebraic
structures over the topological entities, we could be in a position to attack and solve
the problem of classifying 3-manifolds: if a structure can be uniquely associated to
a topological space and preserved, then it can tell manifolds apart. The problem,
naturally, is which topological structure, if any, can be associated to topological
entities as an invariant and, above all, how to do it. On second thought, this
approach is not new: “elementary analytic geometry provides a good example of the
application of formal algebraic techniques to the study of geometrical concepts”
(Crowell and Fox 1963, 13). Poincaré put forward just this approach (Poincaré
1895), ending up with the construction of the fundamental group (or the first
homotopy group).

Fig. 18 Closure of a braid b
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The big question hence is how to build a bridge from algebra to topology. There
are a number of ways of associating algebraic structures to topological spaces,
many possible interpretations, and the data not only do not determine, but also do
not suggest the more appropriate algebraic structure to build it. In order to do this,
we have to manipulate a topological space, to introduce specific definitions, nota-
tions, operations and relations that are not contained in it. We have to conceptualize
it in a new way, entering new and uncertain lands—the lands of heuristic reasoning.

The fundamental group is the endpoint of a step-by-step construction that
gradually introduces new information into topological spaces (new entities, defi-
nitions, operations and relationships) by means of a rational manipulation of it, and
using ampliative inferences. As the name suggests, the algebraic structure associ-
ated to a topological space at the end of this construction is a group—i.e. a set of
elements with a composition map and three properties: associativity, an identity
element, and an inverse element. It provides an algebraic structure that can ‘mea-
sure’ shapes by a calculation that maps numbers into topological spaces.

Before examining the rational and inferential content of this construction, and
why just a group and not another algebraic structures is chosen, it is important to
note that this process is not the mere search for an isomorphism, but a new inter-
pretation and conceptualization of topological space.

To build a bridge between algebra and topology we have to answer at least two
preliminary questions:

1. how to define the topological counterpart of the set of elements of an algebraic
structure;

2. how to define the topological analogous of operations in algebraic structures.

First, since the Euler characteristic does not help us in differentiating
3-manifolds, we need a new kind of equivalence. This is homotopy, which can be
defined as continuous deformation: in addition to pulling and stretching, it is
possible to compress, a operation that changes dimension. Under homotopy, a disc,
a ball and a point are all equivalent.

Second, we have to manipulate a topological space X in a very specific way in
order to let it act like an algebraic structure. It is possible to construct several
algebraic representations of topological entities. For instance, a first attempt could
be made by looking at the set of all paths of a topological space between two given
points, and then by defining a composition—e.g. their product (see Fig. 19). The
paths would keep track of the information about the shape of the space, and their
product would model their behaviour under homotopy. Unfortunately, the “meager
algebraic structure of the set of all paths of a topological space with respect to the
product” (Crowell and Fox 1963, 15) is far from offering something useful for the
solution of our problem: it does not tell apart even simple distinct surfaces.

We need a better interpretation and manipulation of a topological space. The first
step is to find a different way of defining the elements: “one way to improve the
situation algebraically is to select an arbitrary point p in X and restrict our attention
to paths which begin and end at p” (Crowell and Fox 1963, 13). Looking at loops
(see Fig. 20) rather than simple paths provides a series of advantages:
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1. if we can continuously deform a loop into another loop under homotopy, the we
can consider them as a single element of our structure. Another loop that cannot
be continuously deformed into the first is a different element. The bottom line:
they are a means to tell apart specific region of the topological structure.

2. loops keep track of crucial properties of manifolds, such as holes in the surface.
3. It is easy to define a function of composition between loops. Since there will be

a class of loops starting and ending at the same place, their composition (e.g.
product of loops) is certainly defined at the base point.

Moreover the base-points act as the identity elements i—they are loops standing
just at the base-point. Hence, the identity path i is a multiplicative identity. In this
way we get a semi-group with identity on the topological space: the set of all p-
based loops in X. This is better than the set of all paths of a topological space with
respect to the product. But it can be improved. By introducing orientation for loops
we can define the inverse of a loop and deepen the analogy with algebra: it is given
by simply traversing it in the opposite direction. We are now in a position to build a
group, as we have a class of elements (all the oriented paths starting and ending at a
given base-point), a product of paths (a*b)(t); the identity path i; the inverse of a
path, denoted a−1. The product is associative, that is (ab)(c) = (a)(bc)—but not
commutative. This group for a topological space is called the fundamental group
(see Fig. 21). The fundamental group is independent of the choice of a base-point:
any loop through a point p is homotopic to a loop through any other point q.

This conceptualization, shaped by an analogy with algebra, gradually introduces
information about topology that was not contained in it at the beginning of the process.
It is the result of a new language and discourse about operations and elements of
surfaces under homotopy. In this sense the fundamental group is a ‘hybrid’ (Grosholz
2007) and lays the foundation of algebraic topology: it is a basic tool for forming

Fig. 19 A simple algebraic
structure of a topological
space

Fig. 20 A loop
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algebraic representations of topological spaces. Most often these algebraic repre-
sentations are groups, but also structures like rings and modules can be associated to
topological entities. The bottom line: algebraic topology «associates algebraic
structures with purely topological, or geometrical, configurations. The two basic
geometric entities of topology are topological spaces and continuous functions
mapping one space into the other. To the spaces and continuous maps between
them are made to correspond groups and group homomorphisms» (Crowell and Fox
1963, 13).

Now we can calculate the fundamental group π of several surfaces (sphere,
anulus, torus, etc.) in order to tell them apart. Unfortunately, the fundamental group
is not a complete invariant for 3-manifolds, and more generally «the algebra of
topology is only a partial characterization of the topology» (Ibid.). More specifi-
cally, algebraic topology will produce one-way outcomes, which state that «if
topological spaces X and Y are homeomorphic, then such and such algebraic
conditions are satisfied. The converse proposition, however, will generally be false.
Thus, if the algebraic conditions are not satisfied, we know that X and Y are
topologically distinct. If, on the other hand, they are fulfilled, we usually can
conclude nothing. The bridge from topology to algebra is almost always a one-way
road» (Crowell and Fox 1963, 13). But even with this, we can do a lot.

5.1 Fruitfulness of Fundamental Group

The construction of an algebraic image of topological objects allows us to use
algebraic tools and results as a means for investigating topological objects. Even if
the problems that we can pose and solve, and the proprieties you can investigate,
will depend on the adopted representation, we can generate new knowledge. For
instance, the fundamental group allows us to solve problems and raise new
problems.

Fig. 21 The fundamental
group
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On one hand, the Poincaré conjecture is a stock example of new problem that it
generates. Its formulation is based on the notion of fundamental group: “consider a
compact 3-dimensional manifold V without boundary. Is it possible that the fun-
damental group of V could be trivial, even though V is not homeomorphic to the
3-dimensional sphere?” (Poincaré 1906). This problem was solved by Perelman
(2002, 2003a, b).

On the other side, the fundamental group can be used to solve problems, for
instance just in knot theory. Wirtinger (1905) showed that trefoil is really knotted
by proving that the fundamental group of the trefoil is the symmetric group on three
elements. Moreover, Wirtinger extended his method so to construct the funda-
mental group of an arbitrary link. This presentation of the fundamental group is
now known as the Wirtinger presentation. In addition, Dehn (1910) developed an
algorithm for constructing the fundamental group of the complement of a link. He
showed that a knot is nontrivial when its fundamental group is non-abelian, and that
a trefoil knot and its mirror image are topologically distinct.

6 Remarks on Ways of Ampliating Knowledge

These examples reveal a number of crucial features about the rational and infer-
ential ways whereby knowledge is ampliated. In particular, first I will examine the
role played by representation, in particular the issues of the sensitivity to repre-
sentation and the one of the interaction between representations of the same object
(and their possible convergence, see also Morrison 2000 on this point). I will then
examine the manipulation of mathematical objects, the role of ampliative reasoning,
the historical nature of ampliation of knowledge, the role of theorem-proving and,
in the end, the nature of mathematics objects.

First, both knot theory and topology exemplify the crucial role played by rep-
resentation in the ampliation of knowledge. Here new knowledge and formal results
come out from new representations that require specific manipulations of mathe-
matical objects, in the sense of adapting or changing them to suit a given purpose or
advantage. These manipulations end up with a conceptualization that produces a
new language and discourses about a problem and its entities. The building of a
new representation is a step-by-step process, which highlights certain features of the
object and deliberately neglects other ones. This construction, when successful,
creates an information surplus: introduces pieces of information that are not con-
tained in the entities of a problem at the beginning of the process. Moreover, this
construction is shaped mostly by ampliative inferences, as they are a means for
progressively defining objects, relations, and the constraints3 (or the conditions of
solvability4) of a problem. For example the analogy with algebra is the key for

3See Nickles (1980a), and Nickles and Meheus (2009).
4See Cellucci (2013).
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generating ‘constraints’ in the construction of the fundamental group. The gener-
ation of a new representation draws on existing knowledge, which is used in
combination with ampliative inferences to suggest how to change or adapt a geo-
metrical object to a specific purpose.

The role of representation in advancing knowledge raises the question of the
sensitivity to representation. Since the construction of the representation highlights
certain features of the objects and deliberately neglects other ones, the results
derived from a new representation could be dependent on it. Let us go back to the
simple use of the projection of a knot onto a plane: since several 3d features of
knots are lost and other added (e.g. the overcrossings), we cannot be sure that
results obtained for the 2d object will hold also for the 3d entity. We need the
Reidemeister theorem to establish that a set of operations on 2d projections are
valid also for the 3d knot. Moreover, if different representations reveal different
properties of the object, then, in turn, we have another issue, namely the relation
between these representations, in particular their convergence or not and, in the end,
their possible unification. More specifically, we are interested in understanding if
different properties revealed by different representations contribute together to the
solution of a problem or not. Maybe they add pieces of the same puzzles, or maybe
not. Moreover, even if they are adding pieces of the same puzzle, we do not know if
they will be able to complete the picture—if their summing up will get a solution
for the problem. They could never converge into a final solution to the problem,
simply offering a “patchwork” (Cartwright 1999), a juxtaposition of characteristics
of entities of the problem. Coloring, braids, numbering, graphs did not solve the
problem of classification of knots, but offer an answer to portions of it, revealing
partial class of equivalences.

In effect, the use of all these different approaches seems to tell a story of failure:
the unsuccessful search for a solution to the problems of classification of knots and
of manifolds. Each time, we construct and then pass from one approach to the other
in search for a complete invariant that in the end we do not get. On the contrary, this
seeming failure reveals many features of the ampliation of knowledge, displaying
the several approaches employed to tackle a problem, how to switch from one to
another and, when possible, to compose them. It would be much more difficult to
reconstruct this process using a straight successful story of problem solving, where
the right path to the solution is found from the very beginning. The absence of a
solution, or at least the difficulties in finding it, force us to construct and put in use
different tools, which to a large extent have to be made explicit. And so they can be
more easily investigated. In the end, all this shows the multiplicative and manip-
ulative nature of ampliation of knowledge. New representations, the multiplication
of readings and viewpoints on the ‘same’ object, and ampliative inferences, are
always in operation when we try to extend our knowledge.

Moreover the partial accounts to the problem of knots classification provided by
the several approaches show an essential property of mathematical objects, as
argued by Cellucci (2013). In essence these objects are inexhaustible, as new
view-points can always be offered. I have shown how this happens via the con-
struction of new representations. In this sense, an object is always partial and open
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to new determinations. Or better, a mathematical object is simply a hypothesis put
forward to solve a given problem and can always be conceptualized in new ways.
Sometimes these ways converge and eventually merge into a deeper understanding
of a problem and its entities, while sometimes they make sense only of certain
features. In this sense also the distinction between a mathematical and a physical
object almost vanishes. Knots are exemplary under this respect: tellingly, at the
very beginning they were tackled with an experimental approach—an empirical
compilation of tables of knots.

The examples in this paper show that the generation of new knowledge is not
only a historical but also a holistic process.

Firs, it is historical in the sense that the new knowledge draws on the corpus of
existing knowledge and since this varies trough time, the new knowledge that we
can get will depend on it. Different configurations of this corpus will generate
different pieces of new knowledge. So a problem that cannot be solved or posed a
time t, could be so at t + k when the corpus has changed. The production of new
representations and viewpoints on problematic issues are based on the specific
configuration of this corpus: the hypotheses candidate to solve certain problems and
their order of introduction will change if it varies.

Second, it is holistic, both at interfield and intrafield level. As a part of our ‘web’
of knowledge expands, to use a long-standing metaphor, and new results emerge in
a local area, they affect in principle any other area of our knowledge. Once a new
tool or viewpoint is developed to solve a specific problem into a given field, it is
open to the application to other problems in the field (intra-field) and also in another
fields (inter-fields) via the construction of suitable representations. When this
application succeeds, also the new domain will benefit from this application, by
enlarging its corpus of knowledge. In turn, the knowledge produced in the new field
can affect and expand the original source. For example, after the application of
graphs to knot theory, we can go the other way by studying knotted graph, using
knots to better understand and explore graphs (see e.g. Foisy 2002, 2003).
Moreover, this holds also for different domains, for instance mathematics and
physics.5

We have also seen that theorem-proving can play a heuristic role in our web of
knowledge, exemplified by representation theorems like the Alexander’s theorem.
Here a new ‘representation’ establishes and formalizes a bridge between two
mathematical entities and fields. In essence, theorem-proving creates new links in
our web of knowledge by establishing a formal relation between two objects for-
merly treated as separated. Also re-proving theorem can be a heuristic move under
this respect. Drawing the same consequence from different hypotheses reshape the
web of knowledge, by connecting two previously unrelated areas and creating new
links. Of course this is a different kind of ‘new’ knowledge.

More in general, the concept of novelty is positional, that is contextual and
temporal: something is ‘new’ only with respect to a specific body of knowledge at a

5String theory is a stock example of the interaction between knot theory and physics.
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given time, not by itself. So this body is the basis for the construction of any kind of
new knowledge. This holds for virtually any ways of advancing knowledge, even
the one based on the deliberate break of constraints (Nickles 1980a) or on the ‘what
if’ approach (Nickles 2014). The first step of this construction, as we have seen, is
the determination of similarities and dissimilarities between what we already know
and the objects of our inquiry. In this process we employ an active manipulation of
the target domain whereby new information is added to it and where we proceed
step-by-step guided by analogies, and ampliative inferences in general.

This account of the construction of new knowledge faces two straight objections
(e.g. Bunge 1981), namely:

1. analogies will collapse even if initially fertile, ending up from insight to
nonsense;

2. rigorous interpretation and explanation are literal, not metaphorical.

According to this criticism, analogy plays only a logically and temporally lim-
ited role in the construction of knowledge. Juts like Wittgenstein’s ladder, we have
to throw it away after we have climbed up on it: “analogy can be fruitful in the
preliminary exploration of new scientific territory, by suggesting that the new and
unknown is, in some respects, like the old and known. […] whether or not the
hypothesis succeeds, we shall have learned something, while nothing will have
been learned if no hypothesis at all had been formulated” (Bunge 1981, 269). More
specifically, if the analogy succeeds, “we shall know that A and B are indeed
similar either substantially or formally. And if the analogy fails utterly, we shall
realize that some radically new ideas are called for because B is in some respect
radically different from A” (Ibid.). But even though analogy offers an epistemic
gain in any case, it seems that it is what is radically new and sui generis that cannot
be accounted for by means of analogies and ampliative inferences. The bottom line:
analogy “on the one hand facilitates research into the unknown by encouraging us
to tentatively extend our antecedent knowledge to a new field. On the other hand, if
the world is variegated then analogy is bound to exhibit its limitation at some point,
for what is radically new is precisely that which cannot be fully accounted for in
familiar terms” (Ibid.). Analogy has to abandoned at a certain point, as it is just an
approximation, but “unless the analogy is extremely specific or detailed, chances
are that it will hold to a first approximation for, after all, our conceptual outfit is
limited and no two concrete systems are dissimilar in every respect. The question is
to decide what to stress at a given stage of research: whether resemblance or
difference should be emphasized” (Ibid., pp. 268–9). Hence, analogy is simply an
economical way of approaching new lands: “when faced with novelty we sponta-
neously start to oscillate between two poles: we try to find out what the new thing
looks like and what it is unlike. Taking cognizance of resemblances and differences
is the beginning of knowledge” (Ibid., 266).

But as we have seen in the case of knot theory and topology, analogy is not static
transfer of knowledge, but a dynamic and active construction. More precisely it is
not simply a transfer of a given and fixed knowledge from a source to a target, but it
requires a dynamic process whereby the target has to be interpreted and
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manipulated in order to make the transfer possible and obtain new knowledge.
I have shown how during this process new information is gradually introduced in
the target, displaying that ‘new’ is not an absolute concept—again, a piece of
knowledge is ‘new’ always in comparison to something known and familiar. Any
inquiry cannot even begin without something already known that we use as a basis
for our investigation (searching for similarities and dissimilarities) and conceptu-
alization, which can end up with a formal theory. In essence, other tools, theories
and objects (the source in the analogical reasoning) suggest and shape the ways of
manipulating the target under investigation. For instance, we have seen how graphs
shape the way of manipulating and interpreting knots, i.e. by coloring the regions of
the knot diagram alternately white and black, placing a vertex inside each white
region, and then connecting vertices by edges going through the crossing points of
the diagram.

More generally, this objection draws on a static conception of knowledge and
the objects of scientific inquiry, whereby in principle objects can be determined in a
complete fashion—they have a given, exhaustible set of properties that we can
approach and ultimately grasp. On the contrary, in this paper I have shown the need
for a dynamic and heuristic conception of knowledge and its objects in order to
make sense in an appropriate and effective way of how we produce new knowledge.
New representations offer a partial, open-to-new-determinations modeling of the
objects of our inquiry and gradually allow us to construct and define goals, entities,
operators, and the constraints in the problem-space of our inquiry. This construction
is simply a human way of understanding and conceptualizing a phenomenon: it is
not, and cannot be, literal (on this point see e.g. Lakoff and Johnson 1999), as it is
always mediated by our biological and cognitive make-up. On second thought, it is
even hard to see what a literal description is (see Turner 2005).

In the end, analogy and ampliative inferences are not simply the beginning of
knowledge, but the only possible way of constructing knowledge and conceptu-
alizing with it. Simply, we do not have other options. Novelty does not show up by
chance, and the simple act of identifying a piece of knowledge as new is a step
along a continual understanding that draws on them. The construction of knowledge
relies on the search for similarities and dissimilarities (see Helman 1988): “analo-
gies exist because of the way we categorize” (Turner 1988, 3), and they are “an
indispensable, pervasive form of understanding” (Johnson 1988, 38). Even if ‘new’
is something whose characteristics are different from those of everything we already
know, we must use what we already know to develop our understanding of it. Were
this not the case, if something totally new came up (that is, something that cannot
be reduced at least in part to what we know), no human way of understanding could
make sense of it. It would be like facing the ocean on Solaris, an entity for which
“the sum total of known facts was strictly negative” (Lem 1961, p. 23), and hence
destined to remain unknown.
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Models, Idealisations, and Realism

Juha Saatsi

Abstract I explore a challenge that idealisations pose to scientific realism and
argue that the realist can best accommodate idealisations by capitalising on certain
modal features of idealised models that are underwritten by laws of nature.

1 Introduction

This paper explores a challenge that idealisations pose to scientific realism. I will
review the challenge before briefly assessing some recent analyses of idealised
models that function as a foil and motivation for my response to the challenge.
I will argue that the realist can best accommodate idealisations by capitalising on
certain modal features of idealised models that are underwritten by laws of nature.

The idea that idealisations in some sense represent possibilia is common place.
Typical idealisations—such as frictionless planes, point masses, isolated systems,
and omniscient agents—are naturally thought of in terms of possible systems that
are suitably related to some actual systems of interest. David Lewis, for example,
thought that we can best make sense of the pervasive utility of idealisations in
science in terms of possible worlds that are more and less similar to the actual
world.

[We find it much easier to tell the truth if we sometimes drag in the truthlike fiction, and
when] we do, we traffic in possible worlds. Idealisations are unactualised things to which it
is useful to compare actual things. An idealised theory is a theory known to be false at our
world, but true at worlds thought to be close to ours. The frictionless planes, the ideal gases,
the ideally rational belief systems—one and all, these are things that exist as parts of other
worlds than our own. The scientific utility of talking of idealisations is among the theo-
retical benefits to be found in the paradise of possibilia. (1986, pp. 26–27)
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Recognising that idealisations are naturally thought of in terms of possibilia is
but a start, however. The spadework lies in properly accounting for the utility of
such modal constructs.1 What, then, is required to account for the utility of ideal-
isations in science? Various questions present themselves here. I will focus on the
following challenge to scientific realism, in particular: given that idealisations
incorporate false assumptions about the way the world is, why are idealisations so
important for making successful predictions and for coming up with powerful
explanations?

I will examine this challenge in relation to idealised models in particular. (Often
theoretical laws are also characterised as idealised. My focus is on idealised
modelling assumptions other than laws.) This challenge differs from the standard
arguments against scientific realism, deriving from a ‘pessimistic induction’ over
past false theories, or the idea that theories can be underdetermined by evidence.
These stock anti-realist arguments are typically framed in terms of scientific the-
ories. It is interesting that the realism debate has been largely framed in terms of
theories, even though in contemporary philosophy of science much of the focus has
shifted from theories to models as the most fitting ‘unit’ of philosophical analysis.
In as far as realism is primarily motivated by the impressive empirical success of
science (culminating in novel predictions), it is typically models that provide or
facilitate such success. Furthermore, according to a popular ‘modelling view’ of
science, theories in a sense are nothing but families of models (unified by laws).

When we shift the focus from theories to models, anti-realists can find further
ammunition from various kinds of inconsistencies that modelling practices exhibit.
Often different models of one and the same phenomenon are mutually inconsistent
with one another. Some models are even internally inconsistent. And many models
incorporate assumptions that are at odds—sometimes radically so—with modellers’
background beliefs. Such inconsistencies can be used to challenge the realist in as
far as they indicate that various kinds of falsehoods are playing a bigger role in the
production of the empirical successes that realists are inclined to think. If falsehoods
can play a significant role in bringing about empirical successes, perhaps the role
played by (approximate) truths is less significant than realists would have it?
Perhaps the joint contribution to empirical success from idealising falsehoods, and
whatever degree of (approximate) truth there is to a model otherwise, can be so
entangled that we can make no sense of the realist credo that a model’s empirical
success is due to its ‘latching onto reality’?

What follows is concerned with this kind of challenge, arising out of the
indispensability of idealisations for modelling. I will start by fleshing out the
challenge (§2), before briefly reviewing some philosophical analyses of idealisa-
tions (§3), paving the way for my own response to the challenge (§4).

1A lot has been written about modal aspects of idealisations. I will not attempt to relate my point of
view here to the broader context of the Poznań school and the verisimilitude literature, for
example. See Niiniluoto (2007) for a review.
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2 Realism and Idealisations: A Challenge

Let us first try to get a good handle on the ‘idealisation-challenge’ previewed above.
How exactly do idealised models challenge a realist attitude to science? Sorensen
(2012) crisply (if somewhat provocatively) explains:

Scientists wittingly employ false assumptions to explain and predict. Falsification is
counter-productive in the pursuit of truth. So scientific realism appears to imply that ide-
alisation would be worse than ineffective.
The instrumentalist says the scientist merely aims at the prediction and control of phe-
nomena. […] Given that scientists are indifferent to the truth and often believe idealisations
will promote prediction and control, the instrumentalist predicts that the scientists will
idealise.
Consequently, idealisation looks like a crucial experiment for philosophy of science. […]
Since scientists idealise, the instrumentalism prevails. (p. 30)

In other words, if realism is committed to the notion that science aims at truth,
while anti-realists regard lesser aims of empirical and instrumental adequacy to be
enough, then idealisations seem to speak against realism.

One might worry that this challenge to realism quickly evaporates in the light of
obvious realist responses applicable to many (or perhaps even most) idealisations.2

Consider various ‘Galilean’ idealisations, for example, that McMullin (1985) views
as providing an argument for scientific realism, not against it. Take an idealised
model of a gravitational pendulum, for instance. It incorporates various simplifying
assumptions, such as the complete absence of air resistance, friction, and so on. But
it does so in a way that readily suggests ways in which the model can be de-idealised,
for example by simply adding further terms to the model’s force function. McMullin
rightly points out that a realist reading of idealised models best predicts and explains
models’ capacity to be thus de-idealised; therefore such idealisations arguably
support (a suitably qualified form of) realism about these kinds of idealised models.3

In general, a realist perspective on scientific modelling clearly has the where-
withal to account for the way in which various kinds of simplifications are

2To be clear, Sorensen himself notes that idealisations only ‘appear’ to challenge scientific realism,
and he does not endorse the instrumentalist conclusion in the offing. I will review Sorensen's
reasoning in §3.
3See McMullin (1985):

If the original model merely ‘saved the appearances’ without in any way approximating to
the structure of the object whose behavior is under scrutiny, there would be no reason why
this reversal of a simplifying assumption, motivated by the belief that the object does
possess something like the structure attributed to it, would work as it does. Taking the
model seriously as an approximately true account is what leads us to expect the correction
to produce a verifiable prediction. The fact that formal idealisation rather consistently does
work in this way is a strong argument for a moderate version of scientific realism. (p. 262)
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pragmatically indispensable in the scientific study of systems of otherwise
unmanageable complexity. Realist reading of theories suggests different ways of
brushing aside complications that, according to our theory, make next to no con-
tribution to the end result. After all, science is obviously not only in ‘the pursuit of
truth’, even according to the realist; it is also in the pursuit of achieving actual
results, mathematical tractability, predictions, effective control and manipulability,
and so on. The different aspects of Galilean idealisations are ways in which the
realist can anticipate deliberate ‘falsifications’ (typically simplifications) to con-
tribute to the latter pursuits.4

This realist response does not answer the challenge completely, however, since
some idealisations do not fit the Galilean mould. Philosophers of science have
identified other, more radical idealisations in science, and the question remains
whether some of these non-Galilean idealisations rather support instrumentalism
about certain kinds of models. What should a realist say about ‘uncontrollable’
idealisations where no de-idealisation is in the offing? (see e.g. Batterman 2005)
What about idealisations involved in the so-called minimal models, such as the
Ising-model? How should the realist accommodate these kinds of idealisations that
seem altogether indispensable, going beyond the kind of broadly pragmatic con-
venience associated with Galilean idealisations? How can the realist account for the
indispensable utility of such falsifications in modelling? This is one challenge that
remains for the realist.

Moreover, even with respect to Galilean idealisations, there is further work to be
done in clarifying the letter of the realist response. For example, is there a con-
ceptual framework within which the utility of different types of idealisations can be
accounted for in unified terms? Intuitively speaking, the realist response to the
challenge from idealised models is to say that there is a sense in which an idealised
model ‘latches onto’ reality in a way that is responsible for the model’s empirical
success. One challenge is to articulate this notion of ‘latching onto reality’ so as to
capture the relevant features of models in a way that meshes with the realist
intuitions. Call this the articulation-of-realism challenge. What does an idealised
model ‘get right’ about its target system, such that it is empirically successful by
virtue of getting those things right (and despite getting some other things wrong)?
This challenge of articulating how idealised models latch onto reality has been
recognised in the vast literature on idealisations, and realists typically maintain that
there is some principled sense in which predictive (as well as explanatory) success
is due to models latching onto reality. This then underwrites the realist’s epistemic
commitment for regarding predictive success as a (fallible) indicator of models
latching onto reality in this sense.

Philosophers have appealed to different conceptual and formal resources in
spelling out this idea, ranging from accounts of verisimilitude, to partial structures
and quasi-truth, to philosophy of language/logic, to philosophy of fiction.5 I cannot

4McMullin (1985) distinguishes three different types of Galilean idealisations.
5See e.g. Niiniluoto (2007), Da Costa and French (2003), Sorensen (2012), Toon (2012).
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do full justice to this rich literature here, but I will next briefly review a couple of
recent analyses of idealisation as a foil for my own perspective. To prefigure: in my
view these analyses fall short of properly accounting for the empirical success of
idealised models. Providing a sense in which a model can get things right, while
also getting things wrong, does not in and of itself account for how the falsehoods
are immaterial for the empirical successes at stake, and how the empirical successes
are due to ‘getting things right’. After discussing these analyses of idealisations I
will take steps towards a different (possibly complementary) account of idealisa-
tions that better serves the realist’s need to explain the empirical success of ide-
alised models. This requires reflecting more closely on what it takes to account for
predictive success of a model that incorporates false assumptions. I will argue that
such an account can turn on showing how a model’s predictive success is robust
with respect to variation in the false assumptions involved in idealisations, in the
sense that these assumptions could have been different without undoing the pre-
dictive success. I will argue that it is this modal character of idealisations that can
account for their utility from a realist perspective.

3 Some Analyses of Idealised Models

Idealisations as suppositional. Recall Sorensen’s presentation of the
idealisation-challenge above. His own response to it is iconoclastic. Typically
philosophers characterise idealisation as being essentially a matter of some sort of
intentional introduction of distortion into a scientific model or theory, with different
philosophers holding different views regarding the nature of such ‘intentional dis-
tortions’. For example, such intentional distortion has been taken to be a matter of
indirect assertion of something true (Strevens); relativized assertion of something
true (Giere); temporary assertion of falsehood (McMullin); or assertion in the mood
of pretence (Toon, Frigg, and various others). In contrast to these different ways of
regarding idealisation as some sort of attenuated assertion, Sorensen views ideali-
sations as suppositional, in analogy to suppositional premises in a conditional
proof.6 That is, Sorensen’s perspective on idealisation—drawing on philosophy of
language and logic—regards it as a matter of ‘simplifying supposition,’ naturally
free of any realist commitment. (Compare: a mathematician’s supposition that
‘there is a largest prime’ for the purpose of reductio ad absurdum entails no
commitment to finitude of primes.) In sum:

6Schematically: [(P1)] Suppose P.
[(P2)] From P derive Q.
[——————————]
[(C)] Conclude that if P then Q.
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Idealisation is constituted by supposition. Only simplified suppositions count as idealisa-
tions. The filters are psychological and methodological. Idealisers seek tractability, mem-
orability, and transmissibility (rather like myth makers). (Sorensen 2012, p. 37)

Sorensen contends that we can thus assimilate idealisations with something that is
already well understood by logicians—a supposition that initiates a conditional proof
or reductio ad absurdum. Allegedly we thus have an ‘off-the-shelf’ model for ana-
lysing idealisations as a matter of propositions that are governed by well-understood
rules of rational use; not ontologically committing, for well-understood reasons; and
not in need of elimination. And all this arguably explains, at least in part, why
scientists are so happy to idealise, and are not overly preoccupied with de-idealisation
or the ‘distance’ of verisimilitude between idealisation and the exact truth.

While Sorensen’s perspectivemay throw light on some idealisations in science, for
various reasons I do not find the analogy convincing or illuminating in general. Even
the simplest paradigmatic exemplars of Galilean idealisation, such as the ideal pen-
dulum or a frictionless plane, seem to be fit-for-purpose for obvious reasons that have
little to do with reductio ad absurdum, or purely conditional arguments. Analysing
idealisations in terms of the status of propositions involved—suppositional vs.
assertoric—also seems much too dichotomous and coarse-grained to capture relevant
differences in the various kinds of idealisations and how they contribute to predictive
success (see e.g.McMullin (1985) for useful distinctions amongst differentflavours of
‘Galilean’ idealisations, and Batterman (2005) for the distinction between these and
‘non-Galilean’ idealisations). Furthermore, with respect to the articulation-of-realism
challenge most importantly, it is wholly unclear why a realist account of a model’s
predictive success should in any way depend on whether or not the ‘falsehoods’
involved are intentional, as in the case of idealisations, or simply mistaken assertions
about the target. In both cases we can consider the relationship between the
target-as-represented-by-the-model, and the target-as-it-actually-is, in trying to
account for the model’s empirical success in terms of how it latches onto reality.7

Idealisations in the semantic view. According to the semantic view of theories
idealisations are more of a piece with other approximations. The semantic view is
touted as providing a unified account of science where models occupy a centre
stage. Consider da Costa and French (2003), for example, who offer models in the
sense of (quasi-formal) model-theory as an appropriate backbone to a ‘unitary
approach to models and scientific reasoning.’ In particular, their model-theoretic
meta-scientific framework is motivated as offering the wherewithal to capture
idealisations and approximations in science by providing ‘a more sophisticated
concept of ‘model’ […] which accommodates the essential incompleteness and
partial nature of scientific representations’ (p. 5). In their ‘partial structures’ for-
malisation of the semantic view, idealisations (as well as other approximations) can
be ‘accommodated through the introduction of ‘partial isomorphism’ as the fun-
damental relationship—horizontally and vertically—between theoretical and data

7The realist faces the epistemic challenge of justifying her knowledge of the target-as-it-actually-is,
of course, but this issue has nothing to do with idealisation per se.
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models’ (p. 102). Furthermore, the model-theoretic framework furnishes a notion of
‘quasi-truth’ that ‘can be used to formally underpin the claim that idealisations are
regarded as if they were true’ (p. 163). (See da Costa and French (2003) for details.)
Moreover, arguably the considerable flexibility of the partial structures framework
allows it to also accommodate non-Galilean infinite idealisations (Bueno and
French 2012). It is thus offered as a truly unitary approach to understanding the role
and workings of idealisations—both Galilean and non-Galilean alike.

Is it enough for a realist to point to this meta-scientific framework as providing a
satisfactory response to the challenges that idealisations pose to her? I do not think
so. The framework of partial structures, partial homo-/isomorphisms, and
quasi-truth allows us to identify a formal correspondence between an idealised
model and its target, which in turn allows us to formally (re)present the idea that the
model is in a sense ‘latching onto’ the target. Since idealised models can latch onto
their targets in this sense, the framework thus ‘accommodates’ idealisations. But we
should try to go beyond this by accounting for an idealised model’s empirical
success by showing how a model’s ‘latching onto’ unobservable reality can be
considered to be responsible for the model’s predictive success. It is not clear how
the existence of partial homo-/isomorphisms between (a formal representation of) a
model and its target, or the model’s quasi-truth for that matter, provides under-
standing of why the model is empirically successful by virtue of latching onto
reality thus-and-so, and regardless of incorporating such-and-such aspects of
misrepresentation. We should want a clearer sense of the role played by the ide-
alising ‘falsehoods’ in an idealised model, and a clearer sense of how the realist can
bracket those aspects of the model as falling outside her realist commitments,
despite them being useful, or even indispensable for making the predictions. The
existence of partial homo-/isomorphism between an idealised model and a data
model, for instance, says nothing about this in and of itself, and little has been said
by way of analysing the explanatory credentials of such structural relations (vis-à-
vis the idealisation challenge) in the context of the semantic view.8

Many have taken to heart the notion, well expressed by Giere, that when it comes
to science ‘idealisation and approximation are the essence, [so] an adequate theory of
science must reflect this fact in its most basic concepts’ (Giere 1988, p. 78). But in
the face of the idealisation challenge ‘reflecting’ is not enough. An adequate (realist)
theory of science should also account for the empirical success of idealised models,
and the above accounts of idealisations fall short of throwing sufficient light on the
roles played by idealisations in the production of predictive success. In particular, we
should demand a clearer sense of how the realist can consider idealisations not to be
the driving force behind models’ predictive success, and how the realist can rather
consider the models’ latching onto reality to be responsible for it.

8It is possible that more can be said on behalf of the structuralist analysis of idealisation, and the
partial structures analysis of idealisations can well be a useful part of a bigger picture, of course.
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4 Towards a Realist Analysis of Idealisations

Scientific models and their inexact representational fit to the world raise various
questions, many of which specifically concern idealisations. But it is important to
realise that the articulation-of-realism challenge, in particular, is actually not
specifically about idealisations. Rather, it is an instance of a much broader challenge
to realism. The general form of the question at stake is: how can a model that is
false in this way be empirically successful in that way? This question arises in
connection with any empirically successful model that incorporates falsehoods,
regardless of the reason behind those falsehoods. A model can incorporate false-
hoods due to being idealised, but also for other reasons. In particular, the same
question arises even if scientists are simply mistaken or misguided about their target
of theorising.

Recognising the general nature of the question at stake, it is immediately unclear
why the realist response to it should vary depending on the reason behind the
representational inaccuracy in play. Why would it matter for the realist response
whether the reason behind a representational inaccuracy is an intentional simplifi-
cation (as in the case of idealisation), or an unintentional, erroneous assumption?9

After all, in both cases the realist hopes to be able to answer this question in terms
of how the model relates to its target, in such a way that we can regard the sense in
which the model latches onto its the target as being responsible for the model’s
empirical success. Furthermore, if we have a fruitful conceptual framework for
offering a realist response in connection with unintentional misrepresentations in
science, it is reasonable to try to apply that framework also to idealisations (qua
intentional misrepresentations).

My analysis of idealisations from a realist perspective is guided by this line of
thought. That is, I adopt a conceptual framework that I have found fruitful and
apposite in connection with some models that incorporate fundamentally misguided
assumptions.10 I claim that within this framework we can in quite general terms
naturally account for idealisations’ utility in modal terms, going beyond merely
noting that idealisations traffic in non-actual possibilia to which actual systems can
be usefully compared, or that there are different (quasi-formalisable) senses in which
idealised models can be ‘partially true’ despite the ‘falsehoods’ they incorporate.

Here is an outline of the conceptual framework. We shall focus on predictive
success of models, ignoring their explanatory success for now. (I will comment on
the explanatory utility of idealisations later.) Given a particular model, I am

9There are questions about the modelling practice that specifically involve idealisations: for
example, is the endemic and carefree employment of idealisations in tension with realism? My
way of framing the idealisation-challenge focuses on models themselves, not the modelling
practice.
10Some of these models have animated much discussion in the realism debate, such as Fresnel’s
elastic ether model of the partial refraction and reflection of light, used to derive the so-called
Fresnel’s equations. See Saatsi (2005).
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interested in question Q: how is the model predictively successful—viz. empirically
adequate in the relevant ways—despite misrepresenting its target in certain respects.
To answer this question we can consider a range of models that vary in those
respects, corresponding to a range of possible systems they can be taken to rep-
resent. The aim is to show how the required degree of empirical adequacy is
independent of the particular false assumptions incorporated in the model.
Independence is a matter of robustness of predictive success under variation in
possible modelling assumptions that together with fixed background assumptions
(including the relevant laws) yield the predictive success at stake.

The thought is that modal information of this sort can furnish a realist response
to Q to the following extent: it shows how modelling assumptions can be false but
nevertheless ‘contain’ veridical assumptions about the target that are responsible for
the predictive success in the sense that variation in the specific false assumptions,
without variation in the ‘contained’ veridical assumptions, would not undo the
predictive success. It is via these ‘contained’ veridical assumptions that the model
can be viewed as latching onto reality so as to ensure the model’s predictive
success. The specific false assumptions involved, regardless of their indispens-
ability or otherwise for presenting and working with the model, are not doing any of
the heavy lifting in producing the predictive successes at stake.

The tricky business lies in spelling out the sense in which a set of modelling
assumptions can ‘contain’ veridical, success-fuelling assumptions. (The complex
literature on verisimilitude and approximate/partial truth demonstrates how difficult
these issues are.) Here I take ‘containing’ to be a matter of the specific modelling
assumptions together with the relevant background assumptions entailing some
further, less specific features of the target system, such that getting these further
features right (in conjunction with the relevant background assumptions, including
laws) would suffice for a model to exhibit the predictive success at stake.11 All this
is perhaps best elaborated by illustrating it via a simple toy example. Before we get
to this, I note again that nothing in the abstract outline above directly corresponds to
the notion of idealisation. This is as it should be, for the reasons given at the start of
this section.

As for a toy example, consider a model system with a graph-like structure. The
model represents its target system as having four nodes, connected by some dyadic
relations as in Fig. 1.

That is, the model represents a target of four vertices, connected with one another
in this 3-regular way. (A graph structure is 3-regular if each of the nodes is con-
nected to three other nodes.) Assume that the relevant background assumptions,
including the relevant laws, allow one to make a successful prediction about the
system’s behaviour under some circumstances (e.g. in the chemistry of carbon
molecules.)

11By ‘entailing’ I mean not only logical entailment, but also metaphysical entailment, such as the
relationship between determinate and corresponding determinable properties. If facts about such
relationships can be packed into the background assumptions we can ensure logical entailment, of
course.
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Assume further (for the sake of the argument) that the phenomenon in question,
given the laws, is only exhibited by systems that have less than eight nodes, and
that for such systems the phenomenon only depends on 3-regularity. That is, we are
assuming that the relevant laws are such that even if the system were to have six
nodes, say, and a 3-regular structure, it would display the behavior predicted.

Given these assumptions, representing correctly the number of nodes is clearly
not relevant for the predictive success of our model. If as a matter of fact the target
is 3-regular and has six nodes (as in Fig. 2), then the model misrepresents the target
regarding the number of nodes and relations between them, but it still ‘gets right’
the fact that each of the nodes is connected to three other nodes, i.e. the structure is
3-regular.

I take it that there is an intuitively clear sense in which our model gets the
relevant feature of the target right: it latches onto reality by correctly representing
the target’s 3-regularity. This is the critical, less specific feature of the system that
the model ‘contains’. It is less specific than the modelling assumptions that specify
which node is connected to which. (Note that 3-regularity need not be part of the
stated modelling assumptions, and need only be ‘contained’ in these assumptions in
the sense of being entailed by them.) And it can be this sense of ‘containing’ of the
veridical assumption about the target—this sense of ‘latching onto’ the target—that
explains the model’s empirical adequacy vis-à-vis the phenomenon in question. The
model’s predictive success is explained in a way that renders wholly immaterial the
misrepresentations the model incorporates with respect to the number of nodes, and
which node is connected to which. In the setting of this toy-example, grasping this
sense ‘latching onto’ the target adequately answers the challenge at stake.

Fig. 1 3-regular model with four vertices

Fig. 2 The actual 3-regular
target with six vertices
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For the very same reason a model that represents the target as a different
3-regular graph of six nodes (as in Fig. 3) would be equally empirically successful.
It also ‘gets right’ the fact that the target is 3-regular, and that it has less than eight
nodes. As it happens, there are only three 3-regular graphs of less than eight nodes.
A given target system can only instantiate one of these specific structures, but given
the laws (we have assumed), the relevant features that our model needs to latch onto
are less specific than that. The critical, less-specific features of the target are: the
target has 4 or 6 nodes; the target is 3-regular. These less-specific modelling
assumptions are realized in three different, more specific ways. Any model is going
to incorporate one or another of the specific realisers, but all that really matters is
that a model incorporates one or another of these features, i.e. that it incorporates
the less specific feature. Some models can furthermore count as being idealised by
virtue of incorporating such specific realiser that sufficiently simplifies the model in
its presentation and operation. (In some context a 3-regular graph of mere 4 nodes
could be an idealisation of a larger 3-regular graph, for example.)

This is merely a simple toy example, of course, but it serves to bring out the key
features of an interesting conceptual framework. In particular, it shows how
accounting for a model’s predictive success can turn on grasping the robustness of
predictive success under variation in the specific modelling assumptions that all
‘contain’ a critical veridical assumption.12 The sense in which a model (in relation to
the relevant background assumptions) can thus latch onto reality is conceptually quite
straightforward, and not in my view well captured by the existing (quasi-) formal
frameworks for ‘partial truth’, approximate truth, or verisimilitude. What matters is
the grasping of what is common to different possible systems, such that the common
feature is all that matters, since variation in other features is immaterial: any model
that features some ‘realiser’ of the common feature would count as predictively
successful. A derivation of the prediction further requires the right laws of nature as
background assumptions, grounding the relevance of these less-specific features.

Fig. 3 The other possible
3-connected model with six
vertices

12This has connotations of robustness analysis of idealised models (see e.g. Odenbaugh 2011).
Exploring the connections to the literature on robustness analysis requires further work. (Thanks to
Arnon Levy for flagging this question for me).
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The sense in which modelling assumptions can ‘contain’ a veridical,
success-fuelling assumption need not be captured by a notion of partial truth
applied to propositions that can be used to specify the model. Consider, for
example, the model:

{Alice knows Bob. Bob knows Erik and Fred. Erik knows David and Charlie. David knows
Fred and Alice. Fred knows Charlie. Charlie knows Alice.}

This model can latch onto the target represented by

{Alice knows Bob. Bob knows Erik and Charlie. Erik knows David and Fred. David knows
Alice and Fred. Fred knows Charlie. Charlie knows Alice.}

The two systems represented by these two sets of propositions exhibit the two
alternative 3-regular structures with six nodes. Neither set of propositions explicitly
says anything about the shared 3-regularity, however, and the underlying similarity
is not explicitly represented by the propositions, nor revealed by looking at the
(partial) truth or otherwise of the (sets of) propositions involved in presenting the
two systems. Since the pertinent similarity between the model and the target need
not be part of the explicit representational content of the model—the model need
not represent the target as 3-regular—I call the model inferentially veridical (as
opposed to representationally veridical). The idea is that from the model we can
infer, with the help of the relevant background assumptions, the critical veridical
assumptions.13

One may worry that this kind of ‘inferential veridicality’ is too thin to support a
realist account of empirical success. One may worry, for example, how the less
specific feature ‘having 4 or 6 nodes’—a disjunctive property—can be attributed to
the target. Or one may worry about the sense in which a model ‘containing’ a
veridical assumption of this kind can account for the model’s empirical adequacy in
a realist spirit. I think the right response to such worries is to note that it is the
appeal to laws of nature in deriving predictions from a model that underwrites the
significance of the less-specific properties, regardless of whether or not they have
disjunctive realisations. So, given these laws, from a scientific point of view such a
property can be a genuine, bona fide feature of the world on which our theorising
can latch, despite its disjunctive (or unspecific, or vague) character. One way to put
this is to say that with the less-specific, veridical assumptions we are latching onto
an important modal truth: had the target had only 4 (as opposed to 6) nodes, all with
3 connections, the same result would have ensued given the relevant laws of nature.

One may push the same worry in more general terms, in relation to my char-
acterisation of how the veridical assumptions are ‘contained’ in the model. I said
above that ‘containing’ is a matter of the specific modelling assumptions together
with the relevant background assumptions entailing some further, less specific
features of the target system. The worry here is that this idea that the model is thus

13The realist can then claim that derivations of successful predictions involve such inferences, and
thus involve the veridical assumptions. Cf. Saatsi (2005) for related discussion in connection with
Fresnel's model of light.
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latching onto some less specific, more abstract worldly features seems to face a
‘disjunction problem’: since any modelling assumption p always entails p _ q, any
model is (allegedly) guaranteed to latch onto reality, as long as there is some true
q such that it would work to produce the right prediction.14 Does a model’s
inferential veridicality thereby become a trivial matter, deflating realism of any
worthwhile commitment?

The answer is no. It is not the case that any model is guaranteed to latch onto
reality just by virtue of being predictively successful, since a model latches onto
reality partly by virtue of appealing to appropriate facts about laws of nature. For
example, if one constructs an empirically adequate model M in classical Newtonian
physics of a purely quantum phenomenon, the false modelling assumptions are not
latching onto reality, since there is no possible classical model that provides a
faithful, veridical representation of the target. It is not the case that some more
complicated classical model faithfully represents the system and shares the critical,
less specific properties with M such that any classical model that exhibits those
properties would be equally empirically adequate as M. For the same reason a
Ptolemaic model with epicycles does not latch onto its target (the solar system)
despite its impressive empirical success.

Admittedly there is much more to be said regarding the kind of realism that can
be served by the conceptual framework I am proposing here, and I hasten to add
that it is not the case that realist intuitions and cause are saved just by showing
predictively successful models being inferentially veridical. There can be interest-
ing cases of local underdetermination where radically different modelling
assumptions, in conjunction with the right laws, give rise to more or less the same
predictions (see for example Saatsi and Vickers (2011) for one such case). In such
cases the explanation of predictive success can have a strong anti-realist flavour.
But in many cases the details of the derivation, and in particular the role played
therein by the relevant less-specific features (with respect to which the model is
inferentially veridical), can serve the realist cause by saving the ‘no miracles’
intuition. Or so I contend.

5 Beyond Toy Examples

I have proposed, largely in the abstract, a conceptual framework for accounting for
the predictive success of idealised models in modal terms. One may wonder
whether this conceptual framework can capture some real idealised models as well.
I certainly think so! Consider a paradigmatic Galilean idealisation, such as an ideal
pendulum as a model of my grand father’s pendulum clock. The model’s degree of
empirical adequacy is naturally accounted for in terms of the model’s inferential

14See Strevens’s (2008) discussion of the disjunction problem in connection with his
difference-making account of causal explanation that operates by abstraction.
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veridicality, in conjunction with the appropriateness of the background laws
(Newtonian mechanics + gravity). The model is inferentially veridical by virtue of
entailing truths about less specific features of the target such that any model that
realises those features in one way or another will attain at least that degree of
empirical adequacy. The relevant less specific features concern a vague force
function, vague specification of the pendulum’s dimensions, etc. The ideal pen-
dulum model represents a particularly simple specific realisation of these less
specific (vague) features, and its empirical adequacy is easily accountable—re-
gardless of its misrepresentation in these respects—by noting the robustness of its
predictive success under variation in the particular false specification of the critical
less specific features, the specification that constitute the idealisation.

Various other Galilean idealisations similarly lend themselves to analysis in
these modal terms (see Saatsi (2011a) for further discussion). One might wonder
how much we gain from this, given that arguably Galilean idealisations do not
present a serious challenge to realism to begin with. Although I already admitted
(§2) that realists have a wealth of resources in responding to a challenge posed by
Galilean idealisations, I think the realist can further gain from the conceptual
framework advocated here. In particular, the framework allows us to shed further
light on the modal aspects of idealised models, and how those aspects can feed into
an account of an idealised model’s empirical success. This framework affords us a
better sense of a particular way in which an idealised model can latch onto reality so
as to account for the model’s empirical success.

Furthermore, there are reasons to think that the framework can also deal with (at
least some) non-Galilean idealisations. The distinction between Galilean and
non-Galilean idealisations need not be as deep as one might think. In relation to the
much discussed infinite continuum idealisations in statistical physics, for example,
we may construe the distinction in terms of how indispensable a given idealisation
is to a model. On one side we have Galilean idealisations which are controllable, at
least in principle, in the sense that we can we can replace our original model with a
related, less idealised model that represents the system in question more truthfully
(for example by including previously omitted forces). On the other side we have
uncontrollable, non-Galilean idealisations that cannot be thus eliminated or
reduced, even in principle, by a related, less idealised model. A paradigmatic
example of such uncontrollable idealisation is the use of the thermodynamic limit in
statistical physics of finite systems, where the number of particles n and the volume
V of a system are taken to infinity while keeping n=V constant. This mathematical
idealisation is uncontrollable since it cannot be replaced with a model that takes n to
be some finite-but-large number (e.g. � 1023), thereby representing better the
finitude and atomicity of the actual system.

The sense of indispensability of such uncontrollable idealisations raises inter-
esting questions, and it clearly in some sense demarcates these idealisations from
the controllable cases. The uncontrollability in and of itself does not mean that these
models cannot be viewed as inferentially veridical, however. What it means, rather,
is that we are unable to construct models that are more veridical in these idealising
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respects, so as to demonstrate in that way how the predictive success of the ide-
alised model is robust under variation in the idealising assumptions. Models
incorporating uncontrollable idealisations can still be inferentially veridical, how-
ever, in the sense that it can be a modal fact about the relevant laws of nature that
they deductively yield, when combined with more veridical assumptions about the
idealised features, the same or improved degree of empirical adequacy. Our (in)
ability to demonstrate this—in principle or in practice—by de-idealising the orig-
inal model need not necessarily be taken to indicate that such fact does not obtain.

There is a close analogy here with debates concerning mathematics’ indis-
pensability to science. Nominalists argue that regardless of our inability to nomi-
nalize our best theories we can maintain that it is the non-mathematical content of
our theories that is responsible for the theories’ empirical success, with mathematics
playing a role only in representing non-mathematical facts and facilitating rea-
soning about it.15 In a similar spirit I maintain that the indispensability of the
uncontrollable infinite limits in statistical mechanics, for instance, can be indis-
pensable only for representing and reasoning about systems with enormous but
nevertheless finite numbers of components. It can still be a modal fact about the
relevant micro-level laws of nature that they entail the same empirical results from
veridical assumptions about the interacting micro-constituents.

But how, one may wonder, can this attitude be justified, if not by having good
reasons to think that a model is de-idealisable, at least in principle? The answer is
that one’s understanding of the workings of an uncontrollable idealisation can
involve much else besides the assumptions that go into a particular non-Galilean
model. That is, the full set of theoretical resources that can come to bear on
justifying one’s belief in such modal fact about the laws—justifying the inferential
veridicality of the idealised model—goes well beyond the modelling assumptions.
In the full theoretical context of such models we can arguably explain, by reference
to relevant facts about finite systems, why an infinite mathematical idealisation is
empirically adequate to the degree it is, notwithstanding its indispensability. This
broader theoretical contexts has been extensively discussed in the recent literature
(see e.g. Butterfield 2011a, b; Menon and Callender 2013; Norton 2012). It is
through such theoretical accounts of a given uncontrollable idealisation that we get
a handle on the sense in which the model ‘gets right’ some critical less specific
features of large-enough systems. These are the features that the model shares with
large finite systems, features that in conjunction with the relevant laws entail the
right predictions (to a sufficient degree of approximation).

The details of these ‘reductionist accounts’ of the continuum limit in statistical
physics remain to be discussed further in the context of my conceptual framework.
I have to leave this for further work, and move on to conclude the paper with brief
remarks on explanation. Throughout the paper I have focused on the predictive
success of idealised models, largely bracketing the role of idealisations in successful
scientific explanations. The explanatory dimension also matters to the realist, of

15See e.g. Melia (2000) and Saatsi (forthcoming).
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course, given the role of inference to the best explanation in many realist gambits, for
example. (It is worth noting that Batterman’s much discussed work on uncontrol-
lable idealisations almost exclusively concern their explanatory indispensability.) It
is impossible for me to do justice to this rather large topic here, but let me just note
the importance of considering models’ explanatory successes quite separately from
their predictive successes. The distinction between predictive and explanatory suc-
cess was perhaps only of minor consequence back in the day of the DN-model of
explanation. But in the contemporary context, largely ruled by different modal
accounts of explanation, the conceptual difference between prediction and expla-
nation matters a great deal to the way realists should apportion their epistemological
commitments in relation to scientifically successful theories and models. Different
issues come to the fore in accounting for the explanatory role played by the false-
hoods that constitute idealisations. The indispensability of idealisations for expla-
nations, for example, raises issues for the realist that are closely related, or analogous
to the issues raised by the arguably indispensable role that mathematics plays in
scientific explanations. I have argued elsewhere that the realist should consider the
latter issues in close contact with well-formed views about the nature explanation
(Saatsi forthcoming). I believe the same holds for the former issues as well.
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Modelling Non-empirical Confirmation

Richard Dawid

Abstract The paper provides a presentation and motivation of the concept of
non-empirical theory confirmation. Non-empirical theory confirmation is argued to
play an important role in the scientific process that has not been adequately
acknowledged so far. Its formalization within a Bayesian framework demonstrates
that non-empirical confirmation does have the essential structural characteristics of
theory confirmation.

1 Introduction

The canonical view of the scientific process understands theory confirmation in
terms of a direct confrontation of a theory’s predictions with empirical data.
A scientific theory is expected to make testable empirical predictions. If the relevant
collected data agrees with those predictions, the data confirms the theory. If the data
disagrees with the predictions, the theory gets disconfirmed.

One may view this understanding in terms of a technical definition of theory
confirmation, which would render it immune against criticism. It may be argued,
however, that the concept of confirmation should account for the scientists’ actual
reasons for taking a theory to be well-established as a viable description of a given
aspect of the observed world. If that aim is endorsed, one may question a given
understanding of theory confirmation by comparing it with the scientists’ actual
attitude towards their theories.

The latter view is the point of departure chosen in the present article. It is
assumed that the concepts deployed by the philosophy of science for modelling
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scientific reasoning should offer a characterization of the actual structure of sci-
entific reasoning—and should be measured by that standard. On that account,
however, a closer look at actual science throws the adequacy of the canonical
understanding of theory confirmation into doubt. In many scientific fields, confir-
mation in the canonical sense described above is not the only basis for an assess-
ment of a theory’s status. Three interrelated issues arise, which render a full focus
on empirical confirmation insufficient. They shall be briefly sketched in the
following.

1: In historical fields of research, scientists often face a conjunction of two prob-
lems. First, the general character of scientific hypotheses in those fields often
makes it difficult to extract specific and quantitative predictions from them.
Second, and maybe even more troubling, those scientific fields often deal with
empirical situations where most of the empirical record has been irretrievably
lost to natural decay or destruction during the periods that lie between that
events under investigation and the time of inquiry. Moreover, even of the data
that would be available in principle, it is often only possible to collect a hap-
hazard and arbitrary subset.1 Anthropologists searching for early human traces,
to give one example, cannot search specifically for the missing link they are
most interested in but must be content with whatever new material their exca-
vations provide. The two described conditions in conjunction create a situation
where empirical confirmation remains patchy and, on its own, does not provide
a stable foundation for assessing the probability that a theory is trustworthy.
External characteristics of the theory and the research field therefore play an
important role in that assessment.

More specifically, if various conflicting hypotheses aim at explaining the same
available data, abductive forms of reasoning are deployed, which depend on
understanding whether or not one of the theories seems substantially more plausible
than the others. One important issue that must be addressed in such cases is the
question whether and if so on what grounds it makes sense to assume that those
theories that have been developed cover the spectrum of possible plausible theories
on the issue. Only if that is the case does it make sense to trust the most plausible of
the known theories. Trust in a theory thus is instilled based on a combination of
assessments of the spectrum of known alternatives and some induced understanding
of the presumptive spectrum of unconceived alternatives.

2: A similar issue arises in the case of micro-physical theories that conjecture the
existence of unobservable physical objects like atoms, quarks or, to mention an
important recent example, the Higgs particle. In those cases, announcing a
discovery amounts to endorsing all empirical implications of the discovered

1For an instructive philosophical perspective on historical sciences, see Turner (2007).
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object, whether or not they have been empirically tested yet. A discovery
therefore has profound consequences in high energy physics. Once a particle
has been discovered in one experiment, background calculations in all future
experiments factor in all empirical implications the particle has within the
established theoretical framework. The question is, however, on what basis
scientists can be so confident that no unconceived alternative could account for
the data collected without having the same further empirical implications as the
known theory. The answer is that scientists cannot make that assessment
without relying on observations about the overall research process. They need
to make an assessment as to whether or not an alternative seems likely to show
up based on their understanding of the overall conceptual context and whether
assessments of that kind have turned out reliable in the past. In other words, the
declaration of a discovery of a new object in microphysics relies on consid-
erations very similar to those which lead scientists towards endorsing a theory
in palaeontology or other non-formalized historical sciences.

3: Finally, since the 1980s high energy physicists and cosmologists have shown
an increasing readiness to invest a high degree of trust in empirically uncon-
firmed theories. Theories like string theory or cosmic inflation are taken by
many as important steps towards a deeper understanding of nature even though
those theories so far have no (in the case of string theory) or only inconclusive
(in the case of inflation) empirical confirmation. Once again it turns out that the
reasons responsible for that trust are of a very similar kind as those at play in
the previously discussed contexts.

Unlike in the previously discussed cases, the extent to which exponents of
empirically unconfirmed theories in fundamental physics consider their theory
well-established has led to a highly controversial debate on the scientific legitimacy
of the involved strategies of theory assessment. In this light, the case of scientific
trust in empirically unconfirmed theories turns the question of an adequate
understanding of the concept of confirmation from a mainly philosophical issue into
a question of high significance for the further evolution of fundamental physics.

All three discussed scientific contexts suggest that a perspective that focusses
entirely on the agreement between a theory’s predictions and empirical data is
insufficient for acquiring an adequate understanding of the reasons why scientists
trust a scientific theory.

In the following, I will present a widened concept of theory confirmation that, as
I will argue, comes closer to that goal.

Two basic guidelines will determine the layout of the presented approach. On the
one hand, as already pointed out above, the discussion will be guided by the idea
that the concept of confirmation should provide a basis for understanding the degree
of trust scientists have in a theory. On the other hand, however, the empirical
character of science, that is the connection between confirmation and observation,
shall not be abandoned. So, while the approach to be presented is non-canonical, it
will be argued to remain true to core principles of scientificality.
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2 The Setup

2.1 What Is Non-empirical Confirmation?

The canonical view as it is presented in accounts from classical hypothetico-
deductivism to most readings of Bayesian confirmation (see e.g. Bovens and
Hartmann 2003; Howson and Urbach 2006) constrains confirmation to observations
within the theory’s intended domain. Only the agreement between a theory’s pre-
dictions and empirical data constitutes confirmation of that theory. We will call this
form of confirmation “empirical confirmation” because it is based on empirical
testing of the theory’s predictions. Our question will be: which kinds of consid-
eration beyond the limits of empirical confirmation may in principle be understood
as contributions to theory confirmation? More specifically, we’ll search for a form
of “non-empirical” theory confirmation that can account for those considerations
that have been argued above to be crucial in a number of contexts for instilling trust
in a scientific theory.2 At the same time, however, we want to retain the crucial role
of observation and stay as close as possible to the mechanism of empirical con-
firmation. Confirmation should remain true to the basic principles of scientific
reasoning.

In order to guarantee a grounding of confirmation in observation, we introduce
elements of empiricist reasoning at two distinct levels. First, we understand trust in
a theory in terms of the theory’s empirical predictions rather than in terms of truth.
If a scientist trusts a theory, she believes that the theory’s predictions in its char-
acteristic regime, if tested, will get empirically confirmed. If a theory’s predictions
in its characteristic regime are indeed in agreement with all possible data, the theory
shall be called empirically viable. Non-empirical confirmation thus amounts to an
increase of trust in the theory’s empirical viability. Note that this understanding of
confirmation in a certain respect stays closer to an empiricist understanding than
concepts of empirical confirmation that are based on truth probability. By avoiding
reference to truth, we block the possibility that theories which have no empirical
implications get non-empirically confirmed. Trust in theories that have no empirical
implications is trivial on our account and cannot be increased by any means.
Therefore, confirmation of non-predictive theories cannot occur.

Second, we will require that confirmation be based on some observations about
the world beyond the theory and its endorser. The mere fact that a consideration
contributes to a person’s subjective belief in a theory’s viability does not justify
calling that consideration non-empirical confirmation on our account. For example,
the fact that some scientists trust elegant theories does not imply that a theory’s
elegance constitutes non-empirical confirmation.

2The concept was first laid out in Dawid (2006) and then further developed in Dawid (2013).
A Bayesian formalization of one argument of non-empirical confirmation was given in Dawid
et al. (2015).
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Being based on observations about the world is a fairly vague requirement,
however. Which kind of relation between observation and confirmation do we
require? One might follow various strategies in this regard. One plausible guideline,
which we will follow, is a structural similarity between empirical and non-empirical
confirmation.

We will introduce the following fairly specific definition of non-empirical
confirmation. Non-empirical confirmation is based on observations about the
research context of the theory to be confirmed. Those observations lie within the
intended domain of a meta-level hypothesis about the research process and, in an
informal way, can be understood to provide empirical confirmation of that
meta-level hypothesis. The meta-level hypothesis, in turn, is positively correlated
with the probability of the truth or viability of the scientific theory under scrutiny.

This may seem like a fairly complicated and arbitrary construction at first glance.
However, it has a number of considerable merits. Most significantly, non-empirical
confirmation of the suggested kind turns out to work as a reconstruction of the most
conspicuous lines of reasoning that do generate trust in a scientific theory beyond
the limits of empirical confirmation.

Second, non-empirical confirmation in the suggested sense can be understood in
terms of an extension of the basis of observational evidence for a theory. The
mechanisms of connecting observations to the overall conceptual framework
remain the same as in the case of empirical confirmation. Confirmation is still based
on comparing predictions with observations, but that comparison may play out at
the meta-level of analysing the research process within which the theory is
embedded rather than at the ground level of the theory’s subject matter.

Third, and directly related to point 2, non-empirical confirmation of the
described kind resembles empirical confirmation in being symmetric between
confirmation and dis-confirmation. Observations at the meta-level may equally
support and speak against a theory’s viability, depending on whether or not they
agree with the predictions of the meta-level hypothesis. The correlation between
observational input and confirmation/dis-confirmation thus works along very sim-
ilar lines as in empirical confirmation.

2.2 Towards a Formalized Model

Conformation today is mostly understood in Bayesian terms. In this light, we will
analyse the nature of non-empirical confirmation from a Bayesian perspective. It
will turn out that a probabilistic approach is particularly suitable for characterizing
the way non-empirical confirmation works.

In Bayesian terms, an increase of trust in a theory’s viability is expressed as an
increase of the subjective probability that the theory is viable. As already discussed,
our use of probabilities of viability constitutes a deviation from canonical Bayesian
epistemology, which is based on truth probabilities.
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We introduce the proposition T that a theory H is empirically viable (consistent
with all empirical data) within a given context. Let us first consider the case of
empirical confirmation. We take H to be confirmed by empirical data E iff
P(T|E) > P(T), that is if the subjective probability of the viability of H is increased
by E. If E lies within the extended domain of H, one can deduce a probability of E
from H and a set of initial conditions specified based on other observations. A high
probability of E then justifies

PðEjTÞ[PðEÞ ð1Þ

which implies that E confirms H due to Bayes’ formula

PðTjEÞ
PðTÞ ¼ PðEjTÞ

PðEÞ ð2Þ

Now our goal is to replace E by some observations FX that are not in the
intended domain of H. In other words, H in conjunction with knowledge about
initial conditions for the system described by H does not provide any information
on the probability of FX. Nevertheless FX should imply P(T|FX) > P(T).

Further, we want this probability increase to be induced via a new hypothesis Y
that lives at the meta-level of theory assessment and is positively correlated with
both F and T. Moreover, FX should be in the intended domain of Y, that is,
implications for FX can be extracted from hypothesis Y.

In principle, one might try to find a specific variable YX for each type of
non-empirical observation FX. However, we shall pursue a different strategy and
specify one Y that will be tested by various forms of FX. This strategy has two
advantages. First, it turns out to work well with respect to the three most con-
spicuous candidates for non-empirical theory confirmation to be found in science.
And second, it allows for a more coherent overall understanding of the way the
arguments of non-empirical confirmation mutually support each other.

So what would be a plausible candidate for Y? It is helpful to think about this
question by looking at the most straightforward candidate for an argument of
non-empirical theory confirmation: the no alternatives argument (see Dawid et al.
2015). Let us, for the time being, continue the analysis within the framework of this
specific argument. Later, we will return to a more general perspective.

3 The No Alternatives Argument

Let us assume that we make the following observation FA: scientists have looked
intensely and for a considerable time for alternatives to a known theory H that can
solve a given scientific problem but haven’t found any. This observation may be
taken by us as an indication that the theory they have is probably viable.
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Clearly, this kind of reasoning plays an important role in generating trust in some
empirically unconfirmed or insufficiently confirmed theories in science. As men-
tioned above, a specific reconstruction of a phenomenon or object in anthropology
or other historic sciences gains credibility if the case can be made that no other
plausible reconstruction has been found. Most high energy physicists believed in
the existence of a Higgs particle even before its discovery in 2012 because no
satisfactory explanation of the mass spectrum of elementary particles that did not
rely on some kind of Higgs particle had been found.

We call this kind of reasoning the no alternatives argument (NAA) (Dawid et al.
2015). In the following, we give a Bayesian reconstruction of NAA. In the case of
NAA, we can easily identify the most natural candidate for Y: to the extent FA

increases the probability of the viability of H, it arguably does so by supporting the
hypothesis that there in fact are no or very few possible scientific alternatives to H.
NAA thus involves an inference from an observation FA on the alternatives dis-
covered to a statement Y on the actual number of possible alternatives. Y thus is a
statement on the limitations on the number of possible scientific theories on a
subject. In order to make sense of this, we need to specify the framework more
clearly. Let us assume a theory H that is built to account for empirical data D. We
now assume that there exists a specific but unknown number i of possible scientific
theories (i.e. theories that satisfy a set of scientificality constraints C) which are
compatible with the existing data D and give distinguishable predictions for the
outcome of some relevant set E of future experiments.

Here, D specifies the empirical status quo. Possible scientific theories on the
subject must be consistent with the relevant available data D. In the most
straightforward cases, H can be shown either to predict data D or at any rate to be
consistent with it. There are also more difficult cases (like e.g. string theory) where
consistency of H with data D has not been established but is considered plausible.
Obviously, a situation of the latter type generates a comparably lower prior prob-
ability P(T). Still non-empirical confirmation can work on that basis as well.

C specifies what counts as a scientific theory. Only those theories that meet the
scientificality-conditions C count as possible theories. Scientificality-conditions are
themselves volatile to a given degree an may change in time. Note, however, that
our formal argument does not rely on a precise specification of the
scientificality-conditions. All we need is the assumption that scientists apply a set of
scientificality-conditions that contains a viable core that can be satisfied by theories
that are empirically viable with respect to the future experiments E.

Having introduced a framework for scientific theory building, we still need to
specify a way of individuating theories. We need to decide up to which point we
still speak of one theory and when we start talking about two different theories.

Generally speaking, we individuate theories by their predictive implications with
respect to future experiments E. Theories which give the same predictions (or the
same range of predictions under variation of their parameter values) count as one
theory. The reason for choosing this approach is that we are mainly interested in
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empirical predictions. Trust in a theory, from our perspective, is justified if the
theory ends up making correct predictions. Since we only talk about empirical
viability and not about truth, questions related to the spectrum of empirically
equivalent theories lie beyond the scope of our analysis.

The specific form of criteria for theory individuation depends on the kind of
predictions one is interested in. Therefore, we don’t prescribe those criteria in detail.
Scientists implicitly select them in dependence on the level at which they trust their
theory’s predictions. Let us explicate this by looking at the example of the empirical
testing of the Higgs model. The Higgs model is a theoretical concept that can
explain why elementary particles have masses. It predicts the existence of a scalar
particle with a mass that lies within a certain range of possible values. Physicsts had
a high degree of trust in the existence of the Higgs particle already long before the
particle’s discovery in 2012. Let us now assume that, before 2012, some physicist
wanted to predict that the Higgs-particle existed and had precisely mass M1. This
‘theory’, let us call it H1, would have been distinct from any other exemplification
of the Higgs model that predicted a different mass for the Higgs particle. In order to
count the alternatives to H1 one would have had to count each of these variations as
an individual ‘theory’ Hn and thus would have got an infinite number of possible
alternatives to H1. Given that physics before 2012 did not offer arguments for the
precise Higgs mass, it would have been clear that one could not trust H1 or its
predictions. Individuating theories based on specific Higgs masses thus would have
been an inadequate basis for deploying NAA with respect to the Higgs hypothesis.

Since there was no basis for predicting the precise Higgs mass before 2012,
physicists were most interested in the question as to whether the Higgs particle
exists at all without specifying its precise mass. They were interested in the general
viability of the Higgs hypothesis as a theoretical mechanism that could explain
particle masses and implied the existence of at least one scalar particle—and they
were quite confident about the viability of the Higgs mechanism even in the
absence of empirical data. When analysing this situation, an assessment of possible
alternatives to the Higgs hypothesis must not count different mass values as dif-
ferent theories. Even the specification of the Higgs model beyond its core structure
(by introducing additional scalars, a constituent structure of the Higgs particle, etc.)
would not have counted as a different theory at this level. Only substantially dif-
ferent approaches to mass generation which did not rely on a scalar field would
have counted as alternatives to the Higgs hypothesis. The fact that one had not
found any convincing alternatives at this level gave reason to trust in the viability of
the Higgs hypothesis even in the absence of empirical confirmation. The level of
theory individuation used in NAA had to correspond to this line of reasoning.

Having thus clarified the framework for specifying the number i of possible
alternatives to theory H, we can now proceed to the proof that NAA amounts to
confirmation of H in Bayesian terms based on a set of very plausible assumptions
(Fig. 1).
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4 Formalizing the No Alternatives Argument

We introduce the binary propositional variables T and FA, already encountered in
the previous section.3 T takes the values
T The hypothesis H is empirically viable.
¬T The hypothesis H is not empirically viable.

and FA takes the values

FA The scientific community has not yet found an alternative to H that fulfills C,
explains D and predicts the outcomes of E.

¬FA The scientific community has found an alternative to H that fulfills C,
explains D and predicts the outcomes of E.

We would now like to explore under which conditions FA confirms H, that is,
when

PðTjFAÞ[PðTÞ : ð3Þ

We then introduce variable Y that mediates the connection between T and FA. In
the previous section, we characterized Y in general terms as a statement about
limitations to the number of possible alternatives to theory H. In our formalization,
we are more specific. Y has values in the natural numbers, and Yk corresponds to
the proposition that there are exactly k hypotheses that fulfil C, explain D and
predict the outcomes of E.

The value of FA—that scientists find/do not find an alternative to H—does not
only depend on the number of available alternatives, but also on the relation
between the difficulty of the problem and the capabilities of the scientists. Call the
variable that captures this factor S, and let it take values in the natural numbers, with
Sj := {S = j} and dj := P(Sj). The higher the values of S, the more difficult the
problem is to solve for the scientists.4 It is clear that S has no direct influence on
Y and T (or vice versa), but that it matters for FA and that this influence has to be
represented in our Bayesian Network.

We now list five plausible assumptions that we need for showing the validity of
the No Alternatives Argument.

T FA

Fig. 1 The Bayesian Network representation of the two-propositions scenario

3The presentation of this section is largely taken from Dawid et al. (2015).
4For the purpose of our argument, it is not necessary to assign a precise operational meaning to the
various levels of S. It is sufficient that they satisfy a natural monotonicity assumption with regard
to their impact on FA—see condition A3.
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A1. The variable T is conditionally independent of FA given Y:

ð4Þ

Hence, learning that the scientific community has not yet found an alternative
to H does not alter our belief in the empirical adequacy of H if we already
know that there are exactly k viable alternatives to H.

A2. The variable D is (unconditionally) independent of Y:

ð5Þ

Recall that D represents the aggregate of those context-sensitive factors that
affect whether scientists find an alternative to H, but that are not related to the
number of suitable alternatives. In other words, D and Y are orthogonal to each
other by construction.

These are our most important assumptions, and we consider them to be emi-
nently sensible. Figure 2 shows the corresponding Bayesian Network. To complete
it, we have to specify the prior distribution over D and Y and the conditional
distributions over FA and T, given the values of their parents. This is done in the
following three assumptions.

A3. The conditional probabilities

fkj: ¼ PðFAjYk;DjÞ ð6Þ

are non-increasing in k for all j 2 N and non-decreasing in j for all k 2 N.
The (weak) monotonicity in the first argument reflects the intuition that for
fixed difficulty of a problem, a higher number of alternatives does not decrease
the likelihood of finding an alternative to H. The (weak) monotonicity in the
second argument reflects the intuition that increasing difficulty of a problem
does not increase the likelihood of finding an alternative to H, provided that
the number of alternatives to H is fixed.

A4. The conditional probabilities

tk: ¼ PðTjYkÞ ð7Þ
are non-increasing in k.

Y

TFA

S

Fig. 2 The Bayesian Network representation of the four-propositions scenario
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This assumption reflects the intuition that an increase in the number of
alternative theories does not make it more likely that scientists have already
identified an empirically adequate theory.

A5. There is at least one pair (i, k) with i < k for which (i) yi yk [ 0 where yk := P
(Yk), (ii) fij > fkj for some j 2 N, and (iii) ti > tk.
In particular, this assumption implies that yk < 1 for all k 2 N because
otherwise, a pair satisfying (i) could not be found.

With these five assumptions, we can show that (For a proof, see Dawid et al.
2015):

Theorem 1 If Y takes values in the natural numbers N and assumptions A1 to A5
hold, then FA confirms T, that is, P(T|FA) > P(T).

FA thus confirms the empirical viability of H under rather weak and plausible
assumptions.

5 The Meta-Inductive Argument

So NAA formally constitutes confirmation. The question remains, however, how
significant that confirmation is. The problem is that we have two possible expla-
nations of FA. FA may be explained by the fact that there are no or very few possible
alternatives to H. However, it might also be explained by a statement of type S:
scientists are not clever enough to find the complicated alternatives that are pos-
sible. FA cannot distinguish between those two kinds of explanation. If it is our
prior assessment that an explanation of type S is far more likely to apply than an
explanation of type Y, even the most powerful observation FA could not alter this
assessment. Therefore, if we start with very low priors for low number Yks and high
priors for the hypothesis that scientists are not clever enough to find most of the
alternatives, FA won’t strongly increase probabilities for low number Yks and
therefore won’t provide significant confirmation of H.

In order to turn NAA into a significant argument, we therefore need a second
line of reasoning that allows us to distinguish between S and Y and, on that basis,
can establish considerable probabilities of low number Yks which can then serve as
a basis for significant confirmation of H by NAA.

This brings us to the second argument of non-empirical confirmation, the
meta-inductive argument (MIA). The meta inductive argument is based on the
observation FM that those theories in the research field that satisfy a given set of
conditions K (note that these are not the scientificality conditions C but may be
considerably more restrictive) have shown a tendency of being viable in the past.

A meta-inductive step leads directly from FM to inferring a high probability
P(T|FM). However, in order to use MIA as support for NAA, it is helpful once again
to use the statements Y as an intermediary. In order to do so, we have to assume a
stronger connection between empirical viability and the number of alternatives. The
simplest and most straightforward assumption would be that the theory found by
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the scientists is a random pick from the set of empirically distinguishable possible
alternatives. This means that a theory’s chances of being viable is P(T) = 1/i. Based
on this model one can understand our subjective probability P(T) in terms of our
assessment of the probabilities of numbers of alternatives. For the simple model
introduced above we get

PðTÞ ¼
X

k

PðYkÞPðT jYkÞ ¼
X

k

1
k
PðYkÞ: ð8Þ

On that basis, if one observes a certain success rate of theories in a research field
that satisfy conditions K, a frequentist analysis enforces substantial probabilities for
Yks with low k. To give an example, let us assume that we observe a success rate of
50 % of theories that satisfy K. A simple calculation shows that, based on our
model and frequentist data analysis, we must attribute a probability of 1/3 or higher
to the hypothesis (k = 1 ∨ k = 2). MIA therefore generates assessments of P(Yk)
which can then serve as priors in NAA.

MIA thus strengthens explanation Y of FA and weakens explanation
S correspondingly. If scientists were so successful in finding viable theories in the
past, it seems less plausible to assert that they are not clever enough for doing the
same this time. Therefore, MIA can turn NAA into a method of significant
confirmation.

One important worry may arise even if MIA and NAA look strong: it is not a
priori clear whether the empirically unconfirmed theory that is evaluated is suffi-
ciently similar in relevant respects to earlier successful theories to justify
meta-inductive inference from the viability of those earlier theories to the viability
of the present one.

Now it may happen that the theory under evaluation is so closely related and the
problems addressed are so similar to earlier cases that there just seems no plausible
basis for that worry. The Higgs hypothesis is an example of such a scenario. It is so
deeply immersed in standard model physics that it would be quite implausible to
argue that physicists understood the other problems raised with respect to the
standard model sufficiently well but were not up to the complexity of the Higgs
case.

In a similar vein, certain principles of reconstructing species from scarce exca-
vated evidence may be applicable in many fairly similar individual cases. If such a
strategy has proved successful in a number of cases, this may be sufficient for
trusting the reliability of the method in similar cases in the future, provided the
method offers the only known plausible reconstruction of the given species.

In cases like those referred to above, NAA and MIA in conjunction can be
sufficient for generating a high degree of trust in a theory. The trust in the Higgs
mechanism was indeed generated largely by those two arguments: the under-
standing that no convincing alternative to the Higgs mechanism was forthcoming
and the observation that standard model physics had turned out predictively
extremely successful whenever it had been tested.

202 R. Dawid



6 Unexpected Explanatory Interconnections

There are other cases, however, where differences between previous theories and
the new one with respect to the nature or the complexity of the core problems are
very significant. String physics is a particularly good example of such a situation.
Though string theory stands in the tradition of previous high energy physics, it
clearly is a far more complex and difficult theory than any of its forebears. Thus it
may easily be argued that, while scientists were clever enough to understand the
spectrum of possibilities in the case of standard model physics, they are not up to
the task with respect to string physics.

In cases like this, a third argument is required in order to turn NAA + MIA into a
convincing line of reasoning. Arguably, the most effective argument of this kind is
the argument of unexpected explanatory interconnections (UEA). The observation
FU on which this argument is based is the following. Theory H was developed in
order to solve a specific problem. Once H was developed, physicists found out that
H also provides explanations with respect to a range of problems which to solve
was not the initial aim of developing the theory.

The argument is structurally comparable to the argument of novel empirical
confirmation: a theory that was developed in order to account for a given set of
empirical data correctly reproduces data that had not entered the theory’s con-
struction process. UEA is the non-empirical “cousin” of novel confirmation: instead
of successful novel empirical predictions, the theory provides unexpected
explanatory interconnections that do not translate into successful empirical
predictions.

The most prominent example of UEA in the context of string theory is the
microphysical derivation of the black hole entropy area law in special cases of black
holes. String theory was not developed for providing this derivation. More than two
decades after string theory was proposed as a theory of all interactions, Strominger
and Vafa (2006) succeeded in providing it.

UEA fits well into the category of non-empirical confirmation because it can be
read as an argument for limitations to underdetermination just like NAA and MIA.
The line of reasoning in the case of UEA is the following. Let us assume a set of n
seemingly unrelated scientific problems in a research field. Let us further assume
that there is a number i of possible alternative solutions to one of those problems. If
the number of possible solutions to a specific problem is typically much higher than
n, we have no reason to expect that a random solution to one problem will solve
other problems as well. If we assume, however, that i is typically substantially
smaller than n, we may plausibly assume that consistent strategies for solving one
individual problem will typically be applicable to a number of problems. The
reason for this is that we know that there is one theory, the true theory, that does
solve all n problems. Therefore, in the extreme case that there is only one consistent
solution to the problem we look at, all problems must be solved by that theory.
Inversely, the observation that the theory that was developed for solving the given
problem turns out to answer a number of other open questions as well can be taken
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as an indicator that there probably are very few possible different solutions to the
given problem. From that consideration, once again, there follows a reasonably
high probability that the given theory is viable.

UEA is of particular importance in contemporary fundamental physics, where
theory building gets extremely difficult and UEA can provide a check as to whether
or not physicists are capable of dealing with the overall set of problems they face in
a way that goes beyond limited puzzle solving with respect to individual problems.

7 Conclusion

What is the status on non-empirical theory confirmation? As already emphasised in
the introduction, non-empirical confirmation is an extension of empirical confir-
mation with a widened arsenal of conceptual tools but similar basic patterns of
reasoning. It is secondary to empirical confirmation for two reasons. First,
non-empirical confirmation is understood as a tool for establishing a theory’s via-
bility. Viability however, as defined in Sect. 2, is based on the theory’s agreement
with empirical data. Therefore, the perspective of eventual empirical testing is
always in the background and, once conclusive empirical testing can be achieved,
will in all cases make a stronger case for the theory’s viability than non-empirical
confirmation ever could. Second, the significance of non-empirical confirmation
crucially relies on MIA. MIA, however, as described in Sect. 5, is based on
empirical confirmation somewhere else in the research field. Non-empirical con-
firmation therefore can only work properly as long as empirical confirmation can be
achieved somewhere in the research field.

Non-empirical confirmation is closely linked to a probabilistic view on confir-
mation. To a philosopher who denies that confirmation has anything to do with
attributing a probability to a theory’s viability or truth, non-empirical confirmation
will look empty. On the other hand, to a philosopher who acknowledges a prob-
abilistic basis of confirmation, it seems difficult to deny that non-empirical con-
firmation exists. From that perspective, the core question becomes how significant
non-empirical confirmation can be. This paper offered some indications as to how a
formal argument in favour of the significance non-empirical confirmation could be
developed.

It has to be emphasised that a general argument for the legitimacy of
non-empirical confirmation by no means implies that each individual deployment
of non-empirical confirmation is convincing. There are cases in science, some of
which have been mentioned in this paper, where the actual strength and influence
of non-empirical arguments for a theory’s viability is indeed striking. There are
many others where understanding the strengths and weaknesses of the use of
non-empirical confirmation requires careful analysis. I suggest that a probabilistic
account of non-empirical confirmation provides a promising framework for carry-
ing out that kind of analysis in a fruitful way.
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Mathematics as an Empirical
Phenomenon, Subject to Modeling

Reuben Hersh

Abstract Among the universal attributes of homo sapiens, several have become
established as special fields of study—language, art and music, religion, political
economy. But mathematics, another universal attribute of our species, is still
modeled separately by logicians, historians, neuroscientists, and others. Could it be
integrated into “mathematics studies,” a coherent, many-faceted branch of empirical
science? Could philosophers facilitate such a unification? Some philosophers of
mathematics identify themselves with “positions” on the nature of mathematics.
Those “positions” could more productively serve as models of mathematics.

Modeling, the topic of this meeting, is a central feature of contemporary empirical
science. There is mathematical modeling, there is computer modeling, and there is
statistical modeling, which is half way between. We may recall older models:
plaster models of mathematical surfaces, stick-and-ball models of molecules, and
the model airplanes that used to be so popular, but now have been promoted into
drones.

Today the scholarly or scientific study of any phenomenon, whether physical,
biological, or social, implicitly or explicitly uses a model of that phenomenon.
A physicist studying heat conduction, for example, may model heat conduction as a
fluid flow, or as propagation of kinetic energy of molecules, or as a relativistic or
quantum mechanical action. Different models serve different purposes. Setting up a
model involves focusing on features of the phenomenon that are compatible with
the methodology being proposed, and neglecting features that are not compatible
with it. A mathematical model in applied science explicitly refrains from attempting
to be a complete picture of the phenomenon being modeled.

Mathematical modeling is the modern version of both applied mathematics and
theoretical physics. In earlier times, one proposed not a model but a theory. By
talking today of a model rather than a theory, one acknowledges that the way one
studies the phenomenon is not unique; it could also be studied other ways. One’s
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model need not claim to be unique or final. It merits consideration if it provides an
insight that isn’t better provided by some other model.

It is disorienting to think of mathematics as the thing being modeled, because
much of mathematics, starting with elementary arithmetic, already is a model of a
physical action. Arithmetic, for instance, models the human action of counting.

Philosophy of mathematics, when studying the “positions” of formalism, con-
structivism, Platonism, and so on, is studying models of mathematics, which is in
large part a model. It studies second-order models! (Other critical fields like literary
and art criticism are also studying models of models.) Being a study of
second-order models, philosophy of mathematics constitutes still a higher order of
modeling—a third-order model!

At this philosophical conference on scientific modeling, I will make a few
suggestions about the modeling of mathematics.

1 Empirical Studies of Mathematics

To study any phenomenon, a scholar or scientist must conceptualize it in one way
or another. She must focus on some aspects and leave others aside. That is to say,
she models it.

Mathematical knowledge and mathematical activity are observable phenomena,
already present in the world, already out there, before philosophers, logicians,
neuroscientists, or behavioral scientists proceed to study them.

The empirical modeling of social phenomena is a whole industry. Mathematical
models, statistical models and computer models strive to squeeze some under-
standing out of the big data that is swamping everyone. Mathematical activity (in
contrast to mathematical content) is one of these social phenomena. It is modeled by
neuroscience, by logic, by history of mathematics, by psychology of mathematics,
anthropology and sociology. These must use verbal modeling for phenomena that
are not quantifiable—the familiar psychological and interpersonal variables of daily
life, including mathematical life.

Recognizing mathematical behavior and mathematical life as empirical phe-
nomena, we’d expect to use various different models, each focusing on a particular
aspect of mathematical behavior. Some of these models might be mathematical. For
such models there would be a certain reflexivity or self-reference, since the model
then would be part of the phenomenon being modeled.

History, logic, neuroscience, psychology, and other sciences offer different
models of mathematics, each focusing on the aspects that are accessible to its
method of investigation. Different studies of mathematical life overlap, they have
interconnections, but still, each works to its own special standards and criteria.
Historians are historians first of all, and likewise educators, neuroscientists, and so
on. Each special field studying math has its own model of mathematics.

Each of these fields has its particular definition of mathematics. Rival definitions
could provoke disagreement, even conflict. Disagreement and conflict are
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sometimes fruitful or instructive, but often they are unproductive and futile. I hope
to convince some members of each profession that his/her viewpoint isn’t the only
one that is permissible. I try to do justice to all, despite the bias from a lifetime as a
mathematician.

Let’s look separately at four of the math-studying disciplines, and their models.
Logic. Among existing models of mathematics, the giant branch of applied logic

called formalized mathematics is by far the most prestigious and successful. Being
at once a model of mathematics and a branch of mathematics, it has a fascinating
self-reflexivity. Its famous achievements are at the height of mathematical depth.
Proudly and justifiably, it excludes the psychological, the historical, the personal,
the contingent or the transitory aspects of mathematics.

Related but distinct is the recent modeling of mathematical proof in actual code
that runs on an actual machine. Such programs come close to guaranteeing that a
proof is complete and correct.

Logic sees mathematics as a collection of virtual inscriptions—declarative
sentences that could in principle be written down. On the basis of that vision, it
offers a model: formal deductions from formal axioms to formal conclusions—
formalized mathematics. This vision itself is mathematical. Mathematical logic is a
branch of mathematics, and whatever it’s saying about mathematics, it is saying
about itself—self-reference. Its best results are among the most beautiful in all of
mathematics (Godel’s incompleteness theorems, Robinson’s nonstandard analysis).

This powerful model makes no attempt to resemble what real mathematicians
really do. That project is left to others. The logician’s view of mathematics can be
briefly stated (perhaps over-simplified) as “a branch of applied logic”.

The competition between category theory and set theory, for the position of
“foundation,” can be regarded as a competition within logic, for two alternative
logical foundations. Ordinary working mathematicians see them as two alternative
models, either of which one may choose, as seems best for any purpose.

The work of neuroscientists like Stanislas Dehaene (1997) is a beginning on the
fascinating project of finding how and where mathematical activity takes place on
the biophysical level of flesh and blood. Neuroscience models mathematics as an
activity of the nervous system. It looks at electrochemical processes in the nervous
system of the mathematician. There it seeks to find correlates of her mathematical
process. Localization in the brain will become increasingly accurate, as new
research technologies are invented. With accurate localization, it may become
possible to observe activity in specific brain processes synchronized with conscious
mathematical thought. Already, Jean-Pierre Changeux argues forcefully that
mathematics is nothing but a brain process.

The neuroscientist’s model of mathematics can be summarized (a bit
over-simplified) as “a certain kind of activity of the brain, the sense organs and
sensory nerves.”

History of mathematics is done by mathematicians as well as historians. History
models mathematics as a segment of the ongoing story of human culture
Mathematicians are likely to see the past through the eyes of the present, and ask,
“Was it important? natural? deep? surprising? elegant?” The historian sees
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mathematics as a thread in the ever-growing web of human life, intimately inter-
woven with finance and technology, with war and peace. Today’s mathematics is
the culmination of all that has happened before now, yet to future viewpoints it will
seem like a brief, outmoded stage of the past.

Many philosophers have proposed models of mathematics, but without explic-
itly situating their work in the context of modeling. Lakatos’ Proofs and Refutations
(1976) presents a classroom drama about the Descartes-Euler formula. The problem
is to find the correct definition of “polyhedron,” to make the Descartes-Euler for-
mula applicable. The successive refinement by examples and counter-examples is
implicitly being suggested as a model for mathematical research in general. Of
course critics of Lakatos found defects in this model. His neat reconstruction
overlooked or omitted inconvenient historical facts. Lakatos argued that his rational
reconstruction was more instructive than history itself! This is amusing or outra-
geous, depending on how seriously you take these matters. It is a clear example of
violating the zero’th law of modeling, which is: Never confuse or identify the
model with the phenomenon!

Philip Kitcher’s The Nature of Mathematical Knowledge (1983) sought to explain
how mathematics grows, how new mathematical entities are created. He gave five
distinct driving forces to account for this. Solomon Feferman (1998), in constructing
the smallest system of logic that is big enough to support classical mathematics, is also
offering us a model of mathematics. Emily Grosholz (2007), in focusing on what she
calls “ampliative”moves inmathematical research, ismodelingmathematical activity.
Carlo Cellucci (2006), in arguing that plausible reasoning rather than deductive rea-
soning is the essentialmathematical activity, is alsoproposing amodel ofmathematics.
In A Subject With No Object, John Burgess and Gideon Rosen (1997) conclude that
nominalist reconstructions of mathematics help us better understand mathematics—
even though nominalism (they argue) is not very tenable as a philosophical position.
This short list reflects my own reading and interests.Many others could bementioned.

Analogous to the well-established interaction of history of science and philos-
ophy of science, there has been some fruitful interaction between philosophy of
mathematics and history of mathematics. One disappointing example was the great
French number theorist Andre Weil (1978), who in his later years took an interest in
history, and declared that no two fields have less in common, than philosophy of
math and history of math. The philosopher-historian Imre Lakatos (1976), on the
other hand, wrote that without philosophy history is lame, and without history,
philosophy is blind. Or maybe it’s the other way around. Each model is important,
none should be ignored.

The collaboration between philosopher Mark Johnson and linguist George
Lakoff is exemplary. (Where mathematics comes from, by Lakoff and Rafael Nunez
(2000), is a major contribution to our understanding of the nature of mathematics.)

There are some eccentric, philosophically oriented mathematicians. We try to
untangle our own and each others’ actions and contributions. We don’t always
manage to separate the content of mathematics from the activity of mathematics, for
to us they are inseparable. We aren’t offering contributions to philosophy. We’re not
philosophers, as some philosophers politely inform us. We merely try to report
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faithfully and accurately what we really do. We are kindly tolerated by our
fellow-mathematicians, and are considered “gadflies” by the dominant philosophers.

William Byers (2010) introduced ambiguity as an essential aspect of mathe-
matics, and a driving force that leads to the creation of new mathematics.

Several leading mathematicians have written accounts of their own experience in
a phenomenological vein; I quote them in How mathematicians convince each
other, one of the chapters in Experiencing Mathematics.

My own recent account of mathematicians’ proof is another possible model of
mathematics. Here it is: A mathematician possesses a mental model of the math-
ematical entity she works on. This internal mental model is accessible to her direct
observation and manipulation. At the same time, it is socially and culturally con-
trolled, to conform to the mathematics community’s collective model of the entity
in question. The mathematician observes a property of her own internal model of
that mathematical entity. Then she must find a recipe, a set of instructions, that
enables other competent, qualified mathematicians to observe the corresponding
property of their corresponding mental model. That recipe is the proof. It establishes
that property of the mathematical entity.

This is a verbal, descriptive model. Like any model, it focuses on certain specific
features of the situation, and by attending to those features seeks to explain what is
going on.

The discussion up to this point has left out of account the far greater part of
ongoing mathematical activity—that is, schooling. Teaching and learning,
education.

Teachers and educators will be included in any future comprehensive science of
mathematics. They observe a lot and have a lot to say about it. Paul Ernest (1997),
in his book Social constructivism in the philosophy of mathematics, follows Lakatos
and Wittgenstein, in building his social constructivist model.

Mathematics education has urgent questions to answer. What should be the goals
of math education? What methods could be more effective than the present disas-
trously flawed ones? Mathematics educators carry on research to answer these
questions. Their efforts would be greatly facilitated by a well-established overall
study of the nature of mathematics.

Why not seek for a unified, distinct scholarly activity of mathematics studies: the
study of mathematical activity and behavior? Mathematics studies could be
established and recognized, in a way comparable to the way that linguistics has
established itself, as the study of mathematical behavior, by all possible methods.
Institutionally, it would not interfere with or compete with mathematics depart-
ments, any more than linguistics departments impinge on or interfere with the
long-established departments of English literature, French literature, Russian liter-
ature, and so on.

Rather than disdain the aspect of mathematics as an ongoing activity of actual
people, philosophers could seek to deepen and unify it. How do different models fit
together? How do they fail to fit together? What are their contributions and their
shortcomings? What is still missing? This role for philosophy of mathematics
would be higher than the one usually assigned to it.
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A coherent inclusive study of the nature of mathematics would contribute to our
understanding of problem-solving in general. Solving problems is how progress is
made in all of science and technology. The synthesizing energy to achieve such a
result would be a worthy and inspiring task for philosophy.

2 About Modeling and the Philosophy of Mathematics

Turning now to the content of mathematics rather than the activity, we are in the
realm of present-day philosophy of mathematics.

Philosophers of mathematics seem to be classified by their “positions,” as though
philosophy of mathematics were mainly choosing a position, and then arguing
against other positions. I take Stewart Shapiro’s The Oxford Handbook of Philosophy
of Mathematics and Logic (2005) as a respected representative. “I now present
sketches of some main positions in the philosophy of mathematics,” he writes.

Six positions appear in the table of contents, and five of them get two chapters,
pro and con. Between chapters expounding logicism, intuitionism, naturalism,
nominalism, and structuralism, are chapters reconsidering structuralism, nominal-
ism, naturalism, intuitionism, and logicism. “One of these chapters is sympathetic
to at least one variation on the view in question, and the other ‘reconsiders’.”
Formalism gets only one chapter, evidently it doesn’t need to be reconsidered.

“A survey of the recent literature shows that there is no consensus on the logical
connections between the two realist theses or their negations. Each of the four
possible positions is articulated and defended by established philosophers of
mathematics.”

“Taking a position” on the nature of mathematics looks very much like the vice
of “essentialism”—claiming that some description of a phenomenon captures what
that phenomenon “really is,” and then trying to force observations of that phe-
nomenon to fit into that claimed essence. Rival essentialisms can argue for a very
long time; there is no way either can force the other to capitulate.

Such is the story of mathematical Platonism and mathematical anti-Platonism.
Mark Balaguer (2001, 2013) has even published a book proving that neither of
those two can ever be proved or disproved. “He concludes by arguing that it is not
simply that we do not currently have any good arguments for or against Platonism
but that we could never have such an argument.” Balaguer’s conclusion is correct.
It is impossible in principle to prove or disprove any model of any phenomenon, for
the phenomenon itself is prior to, independent of, our formalization, and cannot be
regarded as or reduced to a term in a formal argument.

One natural model for mathematics is as story or narrative. Robert Thomas
(2007, 2014) suggests such a model. Thinking of mathematical proofs or theories as
stories has both obvious merits and defects. Pursuing its merits might have payoffs
in research, or in teaching. That would be different from being a fictionalist—taking
the position that mathematics IS fiction. Thomas has also suggested litigation and
playing a game as models for mathematical activity.

212 R. Hersh



Another natural model for mathematics is as a structure of structures (whether
“ante rem” or otherwise). It is easy to see the merits of such a model, and not hard
to think of some defects. Pursuing the merits might have a payoff, in benefiting
research, or benefiting teaching. This would be a different matter from being a
structuralist–taking the position that mathematics IS structure.

The model of mathematics as a formal-axiomatic structure is an immense suc-
cess, settling Hilbert’s first and tenth problems, and providing tools for mathematics
like nonstandard analysis. It is a branch of mathematics while simultaneously being
a model of mathematics, so it possesses a fascinating and bewildering reflexivity.
Enjoying these benefits doesn’t require one to be a formalist—to claim that
mathematics IS an axiomatic structure in a formal language. Bill Thurston (2006)
testifies to the needless confusion and disorientation which that formalist claim
causes to beginners in mathematical research.

If a philosopher of mathematics regarded his preferred “position” as a model
rather than a theory, he might coexist and interact more easily. Structuralism,
intuitionism, naturalism, nominalism/fictionalism and realism/Platonism each has
strengths and weaknesses as a model for mathematics. Perhaps the most natural and
appealing philosophical tendency for modeling mathematics is phenomenology.
The phenomenological investigations of Merleau-Ponty looked at outer perception,
especially vision. A phenomenological approach to mathematical behavior would
try to capture an inner perception, the mathematicians’ encounter with her own
mathematical entity.

If we looked at these theories as models rather than as theories, it would hardly
be necessary to argue that each one falls short of capturing all the major properties
of mathematics, for no model of any empirical phenomenon can claim to do that.
The test for models is whether they are useful or illuminating, not whether they are
complete or final.

Different models are both competitive and complementary. Their standing will
depend on their benefits in practice. If philosophy of mathematics were seen as
modeling rather than as taking positions, it might consider paying attention to
mathematics research and mathematics teaching as testing grounds for its models.

Can we imagine these rival schools settling for the status of alternative models,
each dealing with its own part of the phenomenon of interest, each aspiring to offer
some insight and understanding? The structuralist, Platonist, and nominalist could
accept that in the content of mathematics, even more than in heat conduction or
electric currents, no single model is complete. Progress would be facilitated by
encouraging each in his own contribution, noticing how different models overlap and
connect, and proposing when a new model may be needed. A modeling paradigm
would substitute competition for conflict. One philosophical modeler would allow
the other modeler his or her model. By their fruits would they be judged.

Frege expelled psychologism and historicism from respectable philosophy of
mathematics. Nevertheless, it is undeniable that mathematics is a historical entity,
and that mathematical work or activity are mental work and activity. Its history and
its psychology are essential features of mathematics. We cannot hope to understand
mathematical activity while forbidding attention to the mathematician’s mind.
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As ideologies, historicism or psychologism are one-sided and incomplete, as was
logicisms’ reduction of mathematics to logic. We value and admire logic without
succumbing to logicism. We can see the need for the history of mathematics and the
psychology of mathematics, without committing historicism or psychologism.

The argument between fictionalists, Platonists and structuralists seems to sup-
pose that some such theory could be or should be the actual truth. But mathematics
is too complex, varied and elaborate to be encompassed in any model. An
all-inclusive model would be like the map in the famous story by Borges—perfect
and inclusive because it was identical to the territory it was mapping.

Formalists, logicists, constructivists, and so on can each try to provide under-
standing without discrediting each other, any more than the continuum model of
fluids contradicts or interferes with the kinetic model.

3 Some Elementary Number Theory

Since nothing could be more tedious than 20 pages of theorizing about mathematics
without a drop of actual mathematics, I end with an example from the student
magazine Eureka which also appeared in the College Mathematics Journal. It is an
amusing, instructive little sample of mathematicians’ proof, and a possible test case
for different models of mathematics.

A high-school exercise is to find a formula for the sum of the first n cubes. You
quickly sum

1 þ 8 þ 27 þ 64 þ 125. . .

and find the successive sums

1; 9; 36; 100; 225. . .

You immediately notice that these are the squares of

1; 3; 6; 10; 15

which are the sums of the first n integers for

n ¼ 1; 2; 3; 4 and 5:

If we denote the sum of the p’th powers of the integers, from the first up to the n’th,
as the polynomial Sp(n), which always has degree p + 1, then our discovery about
the sum of cubes is very compact:

S3 nð Þ ¼ S1 nð Þ½ �2
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What is the reason for this surprising relationship? Is it just a coincidence?

A simple trick will explain the mystery. We will see that the sums of odd powers—
the first, third, fifth, or seventh powers, and so on—are always polynomials in the
sum of the first n integers. If you like, you could call this a “theorem.”

I will give you instructions. To start, just make a table of the sums of p’th powers
of the integers, with

p = 0 in the first row,
p = 1 in the second row,
p = 2 in the third row,
p = 3 in the fourth row.

Instead of starting each row at the left side of the page, start in the middle of the
page, like this:

0 1 2 3 4 5

0 1 3 6 10 15

0 1 5 14 30 55

0 1 9 36 100 225

Now notice that nothing prevents you from extending these rows to the left—by
successive subtractions of powers of integers, instead of adding! In the odd rows,
subtracting negative values, you obtain positive entries. Here is what you get:

−5 −4 −3 −2 −1 0 0 1 2 3 4 5

15 10 6 3 1 0 0 1 3 6 10 15

−55 −30 −14 −5 −1 0 0 1 5 14 30 55

225 100 36 9 1 0 0 1 9 36 100 255

The double appearance of 0 in each row results from the fact that in the suc-
cessive subtractions, a subtraction of 0 occurs between the subtractions of 1 to the
p’th power and (−1) to the p’th power.

Notice the symmetry between the right and left half of each row. The symmetry
of the first and third row is opposite to the symmetry of the second and fourth.
These two opposite kinds of symmetry are called “odd” and “even” respectively.

(That is because the graphs of the odd and even power functions have those two
opposite kinds of symmetry. The even powers 2, 4, and so on, have the same values
in the negative direction as in the positive direction. For degree 2, the graph is the
familiar parabola of y = x2, with axis of symmetry on the y-axis. The fourth power,
sixth power, and so on have more complicated graphs, but they all are symmetric
with respect to the vertical axis. The graphs of the odd powers, on the other hand,
(the first, third, fifth and so on), are symmetric in the opposite way, taking negative
values in the negative direction (in the “third quadrant”) and symmetric with respect
to a point, the origin of coordinates.)
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The two opposite symmetries in your little table suggest that the sum functions
of the integers raised to even powers are odd polynomials, and the sums of odd
powers are even polynomials.

Continuing to the left is done by subtracting (−n)p. For the odd powers p, this is
negative, so the result is adding np. That is the same as what you would do to
continue to the right, adding the p’th power of the next integer. Therefore the
observed symmetry for odd powers will continue for all n, and for every odd p, not
just the p = 1 and p = 3 that we can read off our little table.

But surprise! The center of symmetry is not at

n ¼ 0

but halfway between 0 and −1! Therefore, as the table shows, for odd p the
polynomial Sp(n) satisfies the shifted symmetry identity

Sp �nð Þ ¼ Sp n� 1ð Þ:

Therefore, for odd p, the squares, fourth powers and higher terms of Sp(n) are
even powers of (n + 1/2). A sum of those even powers is the same thing as a sum of
all powers of (n + 1/2)2,, which would be called “a polynomial in (n + 1/2)2”. To
complete our proof, we need only show that

n þ 1=2ð Þ2 ¼ 2 S1 þ 1=4:

Now S1(n) is very familiar, everybody knows that it is equal to

n nþ 1ð Þ=2:

(There is a much-repeated anecdote about how this was discovered by the
famous Gauss when he was a little boy in school.)

So then, multiplying out,

2 S1 ¼ n2 þ n:

We do a little high-school algebra:

nþ 1=2ð Þ2 ¼ n2 þ nþ 1=4 ¼ 2 S1 þ 1=4;

so for odd p we do have Sp as a polynomial in S1, as claimed.
I leave it to any energetic reader to work out S5(n) as a polynomial in S1(n).

Since S5 has degree 6, and S1 is quadratic, S5 will be cubic as a polynomial in S1.
There are only three coefficients to be calculated!

This little proof in elementary number theory never even needed to state an
axiom or hypothesis. The rules of arithmetic and polynomial algebra didn’t need to
be made explicit, any more than the rules of first-order logic. Without an axiom or a
hypothesis or a premise, where was the logic?
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Given an interesting question, we dove right into the mathematics, and swam
through it to reach the answer. We started out, you and I, each possessing our own
internal model of mathematical tables, of the integers, and of polynomials in one
variable. These models match, they are congruent. In particular, we agree that an
odd power of a negative number is negative, and that subtracting a negative number
results in adding a positive number.

I noticed that continuing the table to the left led to interesting insights. So I gave
you instructions that would lead you to those insights. You followed them, and
became convinced. My list of instructions is the proof!

One could elaborate this example into formalized logic. But, what for? More
useful would be making it a test for competing models of mathematics (formerly
“positions.”). How would the structuralist account for it? The nominalist, the
constructivist, the Platonist, the intuitionist? Which account is more illuminating?
Which is more credible? How do they fit together? Are any of them incompatible
with each other?

You may wonder, “Am I serious, asking a philosopher to take up modeling,
instead of arguing for his chosen position against opposing positions?”

Yes. I am serious. The philosopher will then be more ready to collaborate with
historians and cognitive scientists. The prospect for an integrated field of mathe-
matics studies will improve.

However, such a turn is not likely to be made by many. If philosophy is all about
“taking a position” and arguing against other positions, a switch from
position-taking to modeling might bring a loss of standing among philosophers.
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Scientific Models Are Distributed
and Never Abstract

A Naturalistic Perspective

Lorenzo Magnani

The biological memory records, known as engrams, differ from
the external symbols, or exograms, in most of their
computational properties […]. The conscious mind is thus
sandwiched between two systems of representation, one stored
inside the head and the other outside […]. In this case, the
conscious mind receives simultaneous displays from both
working memory and the external memory field. Both displays
remain distinct in the nervous system.

Merlin Donald, A Mind So Rare. The Evolution of Human
Consciousness, 2001.

Abstract In the current epistemological debate scientific models are not only
considered as useful devices for explaining facts or discovering new entities, laws,
and theories, but also rubricated under various new labels: from the classical ones,
as abstract entities and idealizations, to the more recent, as fictions, surrogates,
credible worlds, missing systems, make-believe, parables, functional, epistemic
actions, revealing capacities. This article discusses these approaches showing some
of their epistemological inadequacies, also taking advantage of recent results in
cognitive science. I will substantiate my revision of epistemological fictionalism
reframing the received idea of abstractness and ideality of models with the help of
recent results related to the role of distributed cognition (common coding) and
abductive cognition (manipulative).
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1 Against Fictionalism

Current epistemological analysis of the role models in science is often philosophi-
cally unproblematic and misleading. Scientific models are now not only considered
as useful ways for explaining facts or discovering new entities, laws, and theories, but
are also rubricated under various new labels: from the classical ones, abstract entities
(Giere 1988, 2009, 2007) and idealizations (Portides 2007; Weisberg 2007; Mizrahi
2011), to the more recent, fictions (Fine 2009; Woods 2010; Woods and Rosales
2010a, b; Contessa 2010; Frigg 2010a, b, c; Godfrey-Smith 2006; 2009; Suárez
2009, 2010), surrogates (Contessa 2007), credible worlds (Sugden 2000, 2009;
Kuorikoski and Lehtinen 2009), missing systems (Mäki 2009; Thomson-Jones
2010), as make-believe (Frigg 2010a, b, c; Toon 2010), parables (Cartwright 2009b),
as functional (Chakravartty 2010), as epistemic actions (Magnani 2004a, b), as
revealing capacities (Cartwright 2009a). This proliferation of explanatory metaphors
is amazing, if we consider the huge quantity of knowledge on scientific models that
had already been produced both in epistemology and in cognitive science. Some of
the authors mentioned above are also engaged in a controversy about the legitimacy
especially of speaking of fictions in the case of scientific models.

Even if the above studies related to fictionalism have increased knowledge about
some aspects of the role of models in science, I am convinced that sometimes they
have also generated some philosophical confusion and it seems to me correct
(following the suggestion embedded in the title of a recent paper) “to keep quiet on
the ontology of models” (French 2010), and also to adopt a more skeptical theo-
retical attitude. I think that, for example, models can be considered fictions or
surrogates, but this just coincides with a common sense view, which appears to be
philosophically questionable or, at least, delusory. Models are used in a variety of
ways in scientific practice, they can also work as mediators between theory and
experiment (Portides 2007), as pedagogical devices, for testing hypotheses, or for
explanatory functions (Bokulich 2011), but these last roles of models in science are
relatively well-known and weakly disputed in the epistemological literature. In this
article I will concentrate on scientific models in creative abductive cognitive pro-
cesses, which Hintikka considered the central problem of current epistemological
research (Hintikka 1998).

I provocatively contend that models, both in scientific reasoning and in human
visual perception,1 are neither mere fictions, simple surrogates or make-believe, nor
they are unproblematic idealizations; in particular, models are never abstract,
contrarily to the received view: of course this does not mean that the standard
epistemological concept of abstract model is devoid of sense, but that it has to be

1In philosophical tradition visual perception was viewed very often like a kind of inference (Kant
1929; Fodor 1983; Gregory 1987; Josephson and Josephson 1994). On visual perception as
model-based abduction cf. chapter five of my book (Magnani 2009); its semi-encapsulated
character is illustrated in Raftopoulos (2001a, b, 2009).
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considered in a Pickwickian sense. In the meantime I aim at substantiating my
critique of fictionalism also outlining the first features of my own approach to the
role of scientific models in terms of what I call “epistemic warfare” (see below,
Sect. 4), which sees scientific enterprise as a complicated struggle for rational
knowledge in which it is crucial to distinguish epistemic (for example scientific
models, experiments, mathematics, etc.) from non epistemic (for example fictions,
falsities, propaganda, etc.) weapons. The characteristic feature of epistemic weap-
ons is that they are value-directed to the aim of promoting the attainment of sci-
entific truth, for example through predictive and empirical accuracy, simplicity,
testability, consistency, etc.

In this perspective I basically agree with the distinction between epistemic and
non-epistemic values as limpidly depicted in (Steel 2010) and, substantially, with
the celebration of the so-called epistemic virtues, as pragmatic—I would also add
“moral”—conditions of rational truths, illustrated by Cozzo (2012). What I called
“moral epistemology” (Magnani 2011, p. 274) (which for example comprehends
the intrinsic “morality of sound reasoning” and is concerned with a somehow moral
“commitment to the truth”), is indeed supposed to be clever in a pure way and able
to foster good moral outcomes for everyone. In sum, we have to acknowledge that
rationality is always intertwined with a kind of “moral” commitment: if making
science as the fruit of following rules of rationality is considered central, we also
have to acknowledge that a deliberate moral decision of following them is
necessary.

I consider scientific enterprise a complicated epistemic warfare, so that we could
plausibly expect to find fictions in this struggle for rational knowledge. Are not
fictions typical of any struggle which characterizes the conflict of human coalitions
of any kind? During the Seventies of the last century Feyerabend (1975) clearly
stressed how, despite their eventual success, the scientist’s claims are often far from
being evenly proved, and accompanied by “propaganda [and] psychological tricks
in addition to whatever intellectual reasons he has to offer” (p. 65), like in the case
of Galileo. Indeed Galileo’s discussions of real experiments—in the Dialogo but
also in the Discorsi—become rhetorical, to confound the opponents and persuade
the readers, and also to fulfil didactic needs, as contended by Naylor (1976). It is
important to immediately note that another role is played by other kinds of models,
for example the famous Galileo’s thought experiment regarding the falling bodies,
which shows the creative and constitutive—not fictional—role of cognitive models
in science.2

The tricks that fulfil didactic or rhetorical needs are very useful and efficient, but
one thing is the epistemic role of reasons scientist takes advantage of, such the
scientific models I will illustrate in this article, which for example directly govern
the path to provide a new rational intelligibility of the target systems at hand;
another thing is the extra-epistemic role of propaganda and rhetoric, which only
plays a mere—positive or negative—ancillary role in the epistemic warfare. So to

2I have discussed this experiment in detail in Magnani (2012).
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say, these last aspects support scientific reasoning providing non-epistemic weap-
ons able for example to persuade other scientists belonging to a rival “coalition” or
to build and strengthen the coalition in question, which supports a specific research
program, for example to get funds.

I am neither denying that models as idealizations and abstractions are a pervasive
and permanent feature of science, nor that models, which are produced with the aim
of finding the consequences of theories—often very smart and creative—are very
important. I just stress that the “fundamental” role played by models in science is
the one we find in the core conceptual discovery processes, and that these kinds of
models cannot be indicated as fictional at all, because they are constitutive of new
scientific frameworks and new empirical domains. In this last sense the capacity of
scientific models to constitute new empirical domains and so new knowability is
ideally related to the emphasis that epistemology, in the last century, put on the
theory-ladenness of scientific facts (Hanson, Popper, Lakatos, Kuhn): in this light,
the formulation of observation statements presupposes significant knowledge, and
the search for new observability in science is guided by scientific modeling.3

Suárez (2009) provides some case studies, especially from astrophysics and
concerning quantum model of measurement, emphasizing the inferential function of
the supposed to be “fictional” assumptions in models: I deem this function to be
ancillary in science, even if often highly innovative. Speaking of the Thomson’s
plum pudding model Suárez maintains that, basically “The model served an
essential pragmatic purpose in generating quick and expedient inference at the
theoretical level, and then in turn from the theoretical to the experimental level. It
articulated a space of reasons, a background of assumptions against which the
participants in the debates could sustain their arguments for and against these three
hypotheses” (p. 163). In these cases the fact that various assumptions of the models
are empirically false is pretty clear and so is the “improvement in the expediency of
the inferences that can be drawn from the models to the observable quantities”
(p. 165):4 the problem is that in these cases models, however, are not fictions—at
least in the minimal unequivocal sense of the word as it is adopted in the
literary/narrative frameworks—but just the usual idealizations or abstractions,
already well-known and well studied, as devices, stratagems, and strategies that
lead to efficient results and that are not discarded just because they are not fake
chances from the perspective of scientific rationality.5 Two consequences derive:

3On this issue cf. Bertolotti (2012).
4It has to be added that Suárez does not conflate scientific modeling with literary fictionalizing. He
clearly distinguishes scientific fictions from other kinds of fictions—the scientific ones are con-
strained by both the logic of inference and, in particular, the requirement to fit in with the empirical
domain (Suárez 2009, 2010)—in the framework of an envisaged compatibility of “scientific
fiction'' with realism. This epistemological acknowledgment is not often present in other stronger
followers of fictionalism.
5I discussed the role of chance-seeking in scientific discovery in Magnani (2007). For a broader
discussion on the role of luck and chance-seeking in abductive cognition see also Bardone (2011).
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– the role of models as “expediency of the inferences” in peripheral aspects of
scientific research, well-known from centuries in science, does not have to be
confused with the constitutive—in a kind of Kantian sense—role of modeling in
the central creative processes, when new conceptually revolutionary perspec-
tives are advanced [When Galileo illustrates an imaginary model—a thought
experiment in this case—concerning the problem of falling bodies, he provides a
kind of smart “constitutive” mental modeling (Magnani 2012)].

– models are—so to say—just models that idealize and/or abstract, but these last
two aspects have to be strictly criticized in the light of recent
epistemologico/cognitive literature as special kinds of epistemic actions, as I
will illustrate in Sects. 2 and 3 below: abstractness and ideality cannot be solely
related to empirical inadequacy and/or to theoretical incoherence (Suárez 2009,
p. 168), in a static view of the scientific enterprise.

In the following sections I will concentrate my attention to the second aspect,
concerning a fresh analysis of models in the light of cognitive science, which I think
can help clarify some ambiguities present in the recent mainstream fictionalist
epistemology of model and model-based reasoning.

Should scientific models be regarded as works of fictions? I said above that
models, both in scientific reasoning and in human perception, are neither mere
fictions, simple surrogates or make-believe, nor they are unproblematic idealiza-
tions; in particular, models are never abstract, contrarily to the received view. As for
now we can note that, in a philosophical naturalistic framework, where all phe-
nomena and thus also cognition, gain a fundamental eco-physical significance,
models are always material objects, either when we are dealing with concrete
diagrams, physical or computational models, or when we face human “mental
models”, which at the end “are” particular, unrepeatable, but ever-changing con-
figurations and transformations of neural networks and chemical distributions at the
level of human brains. Indeed, defending in this article an interdisciplinary
approach we are simply re-engaged in one of the basic tenets of that philosophical
mentality enriched by a naturalistic commitment, which acknowledges the rele-
vance of scientific results of cognitive research.

Furthermore, if, ontologically, models are imaginary objects in the way objects
of fictions are imaginary objects, I cannot see them as situated in any “location”
different from the brain, so that they are imaginary in so far as they are just “mental”
models. As Giere contends:

In spite of sharing an ontology as imagined objects, scientific models and works of fiction
function in different cultural worlds. One indication of this difference is that, while works of
fiction are typically a product of a single author’s imagination, scientific models are typ-
ically the product of a collective effort. Scientists share preliminary descriptions of their
models with colleagues near and far, and this sharing often leads to smaller or larger
changes in the descriptions. The descriptions, then, are from the beginning intended to be
public objects. Of course, authors of fiction may share their manuscripts with family and
colleagues, but this is not part of the ethos of producing fiction. An author would not be
professionally criticized for delivering an otherwise unread manuscript an editor. Scientists
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who keep everything to themselves before submitting a manuscript for publication are
regarded as peculiar and may be criticized for being excessively secretive (Giere 2009,
p. 251).

The following sections will clarify, in a naturalistic framework, both the col-
lective and the distributed character of scientific models.

2 Manifest Models and Perception-Action Common
Coding as an Example of “On-Line” Manipulative
Abduction

At the beginning of the previous section I advanced the hypothesis that models,
both in scientific reasoning and in human perception, are neither mere fictions,
simple surrogates or make-believe, nor they are unproblematic idealizations, and I
also specifically provocatively contended that models are never abstract or ideal,
contrarily to the received view: they do not live—so to say—in a kind of mysterious
Popperian World 3. Let us deepen this second problem concerning the abstract and
ideal nature of models in scientific reasoning.

First of all, within science the adopted models are certainly constructed on the
basis of multiple constraints relating to the abstract laws, principles, and concepts,
when clearly available at a certain moment of the development of a scientific
discipline. At the same time we have to immediately stress that the same models are
always distributed material entities, either when we are dealing with concrete
diagrams or physical and computational models, or when we face human “mental
models”, which, as I already said in the previous section, at the end are indeed
particular, unrepeatable, and ever-changing configurations and transformations of
neural networks and chemical distributions at the level of human brains. In this
perspective we can say that models are “abstract” only in a Pickwickian sense, that
is as “mental models”, shared to different extents by groups of scientists, depending
on the type of research community at stake. This cognitive perspective can therefore
help us in getting rid of some ambiguities sparked by the notion of abstractness of
models.

I contend that the so-called abstract model can be better described in terms of
what Nersessian and Chandrasekharan (2009) call manifest model: when the sci-
entific collective decides whether the model is worth pursuing, and whether it
would address the problems and concepts researchers are faced with, it is an internal
model and it is manifest because it is shared and “[…] allows group members to
perform manipulations and thus form common movement representations of the
proposed concept. The manifest model also improves group dynamics”
(Chandrasekharan 2009, p. 1079). Of course the internal representation presents
slight differences in each individual’s brain, but this does not impede that the
various specific representations are clearly thought to be “abstract” insofar as they
are at the same time “conceived” as referring to a unique model. This model, at a

224 L. Magnani



specific time, is considered “manifest”, in an atmosphere of common understand-
ing. Nevertheless, new insights/modifications in the internal manifest model usually
occur at the individual level, even if the approach to solve a determinate problem
through the model at stake is normally shared by a specific scientific collective: the
singular change can lead to the solution of the problems regarding the target system
and so foster new understanding. However, new insights/modifications can also
lead to discard the model at stake and to build another one, which is expected to be
more fruitful and which possibly can become the new manifest model. Moreover,
some shared manifest models can reach a kind of stability across the centuries and
the scientific and didactic communities, like in the case of the ideal pendulum, so
that they optimally reverberate the idea of high abstractness of scientific models.

If we comply with a conception of the mind as “extended”, we can say that the
mind’s guesses—both instinctual and reasoned—can be classified as plausible
hypotheses about “nature” because the mind grows up together with the repre-
sentational delegations6 to the external world that the mind itself has made
throughout the history of culture by constructing the so-called cognitive niches.7

Consequently, as I have already anticipated few lines above, not only scientific
models are never abstracts/ideal, they are always distributed. Indeed, in the per-
spective of distributed (and embodied) cognition (Hutchins 1999) a recent exper-
imental research (Chandrasekharan 2009, 2014; Nersessian and Chandradekharan
2009; Chandradekharan and Nersessian 2014) further provides deep and fresh
epistemological insight into the old problem of abstractness and ideality of models
in scientific reasoning.

The research first of all illustrates two concrete external models, as functional
and behavioral approximations of neurons, one physical (in vitro networks of
cultured neurons) and the other consisting in a computational counterpart, as
recently built and applied in a neural engineering laboratory.8 These models are
clearly recognized as external systems—external artifacts more or less intentionally
prepared, exactly like concrete diagrams in the case of ancient geometry—inter-
acting with the internal corresponding models of the researchers, and they aim at
generating new concepts and control structures regarding target systems. In a
logico-epistemological perspective an inference which aims at generating—possi-
bly new—hypotheses taking advantage of external models is a kind of what I have
called (Magnani 2001) manipulative abduction. Manipulative abduction also

6Representational delegations are those cognitive acts that transform the natural environment in a
cognitive one.
7The concept of cognitive niche is illustrated in detail in Odling-Smee et al. (2003). I adopted this
interesting biologically oriented concept in my epistemological and cognitive research (Magnani
2009, Chap. 6), but also as an useful and synthetic theoretical tool able to clarify various puzzling
problems of moral philosophy, (Magnani 2011, Chap. 4).
8An analysis of the differences between models in biology and physics and of the distinction
between natural, concrete, and abstract models is illustrated in Rowbottom (2009); unfortunately,
the author offers a description of abstract models that seems to me puzzling, and falls under some
of the criticism I am illustrating in the present article.
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happens when we are thinking through doing (and not only, in a pragmatic sense,
about doing). We have to note that this kind of action-based cognition can hardly be
intended as completely intentional and conscious.

As I am trying to demonstrate with the description of the above models based on
common coding, I consider the interplay internal/external critical in analyzing the
relation between meaningful semiotic internal resources and devices and their
dynamical interactions with the externalized semiotic materiality already stored in
the environment (scientific artifactual models, in this case). This external materiality
plays a specific role in the interplay due to the fact that it exhibits (and operates
through) its own cognitive constraints. Hence, minds are “extended” and artificial in
themselves. It is at the level of that continuous interaction between on-line and
off-line intelligence that I underlined the importance of manipulative abduction.

In summary, manipulative abduction, which is widespread in scientific reasoning
(Magnani 2009, Chap. 1) is a process in which a hypothesis is formed and eval-
uated resorting to a basically extra-theoretical and extra-sentential behavior that
aims at creating communicable accounts of new experiences to integrate them into
previously existing systems of experimental and linguistic (theoretical) practices.
Manipulative abduction represents a kind of redistribution of the epistemic and
cognitive effort to manage objects and information that cannot be immediately
represented or found internally. An example of manipulative abduction is exactly
the case of the human use of the construction of external models in the neural
engineering laboratory I have outlined above, useful to make observations and
“experiments” to transform one cognitive state into another to discover new
properties of the target systems. Manipulative abduction also refers to those more
unplanned and unconscious action-based cognitive processes I have characterized
as forms of “thinking through doing”, as I have already noted above.

The external models in general offer more plasticity than the internal ones and
lower memory and cognitive load for the scientist’s minds. They also incorporate
constraints imposed by the medium at hand that depend on the intrinsic and
immanent cognitive/semiotic delegations (and the relative established convention-
ality) performed by the model builder(s): artificial languages, proofs, new figures,
examples, computational simulations, etc.9 It is obvious that the information (about
model behavior) from models to scientists flow through perception [and not only
through visualization as a mere representation—as we will see below, in the case of
common coding, information also flows through “movements in the visualization
[which] are also a way of generating equivalent movements in body coordinates”
(Chandrasekharan 2009, p. 1076)].10

Perception persists in being the vehicle of model-based and motor information to
the brain. We see at work that same perception that Peirce speculatively analyzed as

9On the cognitive delegations to external artifacts see Magnani (2009, Chap. 3, Sect. 3.6). A useful
description of how specific “formats” also matter in the case of external hypothetical models and
representations, and of how they provide different affordances and inferential chances, is illustrated
in Vorms (2010).
10See also Chandradekharan (2014).
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a complicated philosophical structure.11 Peirce explains to us that some basic
human model-based ways of knowing, that is perceptions, are abductions, and thus
that they are hypothetical and withdrawable. Moreover, given the fact that judg-
ments in perception are fallible but indubitable abductions, we are not in any
psychological condition to conceive that they are false, as they are unconscious
habits of inference. Hence, these fundamental—even if non scientific—
model-based ways of cognizing are constitutively intertwined with inferential
processes. Unconscious cognition enters these processes (and not only in the case of
some aspects of perception—remind the process, in scientific modeling, of that
“thinking through doing” I have just quoted above) so that in visual perception
model-based cognition is typically performed in an unintentional way. The same
happens in the case of emotions, which provide a quick—even if often highly
unreliable—abductive appraisal/explanation of given data, which usually appears
anomalous or inconsistent. It seems that, still in the light of the recent results in
cognitive science I have just described, the importance of the model-based character
of visual perception stressed by Peirce is intact. This suggests that we can
hypothesize a continuum from construction of models that actually emerge at the
stage of perception, where models are operating with the spontaneous application of
abductive processes to the high-level model activities of more or less intentional
modelers (cf. Park 2012; Bertolotti 2012), such as scientists.12 Finally, if perception
cannot be wrong, given the fact that judgments in perception are fallible but
indubitable abductions, as I have just illustrated, then also these judgments should
not be regarded as fictional.

3 Perception-Action Common Coding

The cognitive mechanism carefully exploited and illustrated in Chandrasekharan
(2009, 2014) takes advantage of the notion of common coding,13 recently studied in
cognitive science and closely related to embodied cognition, as a way of explaining

11The detailed analysis of some seminal Peircean philosophical considerations concerning
abduction, perception, inference, and instinct, which I consider are still important to current
cognitive and epistemological research, is provided in Magnani (2009, Chap. 5).
12On the puzzling problem of the “modal” and “amodal” character of the human brain processing
of perceptual information, and the asseveration of the importance of grounded cognition, cf.
Barsalou (2008a, b).
13“The basic argument for common coding is an adaptive one, where organisms are considered to
be fundamentally action systems. In this view, sensory and cognitive systems evolved to support
action, and they are therefore dynamically coupled to action systems in ways that help organisms
act quickly and appropriately. Common coding, and the resultant replication of external move-
ments in body coordinates, provides one form of highly efficient coupling. Since both biological
and nonbiological movements are equally important to the organism, and the two movements
interact in unpredictable ways, it is beneficial to replicate both types of movements in body
coordinates, so that efficient responses can be generated” (Chandrasekharan 2009, p. 1069): in this
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the special kind of “internal-external coupling”, where brain is considered a control
mechanism that coordinates action and movements in the world. Common coding
hypothesizes.

[…] that the execution, perception, and imagination of movements share a common rep-
resentation (coding) in the brain. This coding leads to any one of these three (say perception
of an external movement), automatically triggering the other two (imagination and exe-
cution of movement). One effect of this mechanism is that it allows any perceived external
movement to be instantaneously replicated in body coordinates, generating a dynamic
movement trace that can be used to generate an action response. The trace can also be used
later for cognitive operations involving movement (action simulations). In this view,
movement crosses the internal/external boundary as movement, and thus movement could
be seen as a “lingua franca” that is shared across internal and external models, if both have
movement components, as they tend to do in science and engineering (Chandrasekharan
2009, p. 1061).

Common coding refers to a representationalist account, but representation sup-
ports a motor simulation mechanism “which can be activated across different
timescales—instantaneous simulation of external movement, and also extended
simulations of movement. The latter could be online, that is, linked to an external
movement [as in mental rotations while playing Tetris, see Kirsh and Maglio
(1994)], or can be offline (as in purely imagined mental rotation)”
(Chandrasekharan 2009, p. 1072). Furthermore

1. given the fact models in science and engineering often characterize phenomena
in terms of bodies and particles, motor simulations are important to understand
them, and the lingua franca guarantees integration between internal and external
models;

2. the manipulation of the external models creates new patterns that are offered
through perception to the researchers (and across the whole team, to possibly
reach that shared “manifest model” I have illustrated above), and “perturbs”
(through experimentation on the model that can be either intended or random)
their movement-based internal models possibly leading “[…] to the generation
of nonstandard, but plausible, movement patterns in internal models, which, in
combination with mathematical and logical reasoning, leads to novel concepts”
(cit., p. 1062);

3. this hybrid combination with mathematical and logical reasoning, and possible
other available representational resources stored in the brain, offers an example
of the so-called multimodality of abduction14: not only both data and theoretical
adopted hypotheses, but also the intermediate steps between them—i.e. for
example, models—can have a full range of verbal and sensory representations,
involving words, sights, images, smells, etc. and also kinesthetic and motor

(Footnote 13 continued)

quoted paper the reader can find a rich reference to the recent literature on embodied cognition and
common coding.
14On the concept of multimodal abduction see Chap. 4 of Magnani (2009).
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experiences and feelings such as satisfaction, and thus all sensory modalities.
Furthermore, each of these cognitive levels—for example the mathematical
ones, often thought as presumptively abstract [does this authorize us to say they
are fictional?]—actually consists in intertwined and flexible models (external
and internal) that can be analogically referred to the Peircean concept of the
“compound conventional sign”, where for example sentential and logical or
symbolic aspects coexist with model-based features. For Peirce, iconicity
hybridates logicality: the sentential aspects of symbolic disciplines like logic or
algebra coexist with model-based features—iconic. Indeed, sentential features
like symbols and conventional rules15 are intertwined with the spatial config-
uration, like in the case of “compound conventional signs”. Model-based
iconicity is always present in human reasoning, even if often hidden and
implicit16;

4. it is the perturbation I have described above that furnishes a chance for change,
often innovative, in the internal model (new brain areas can be activated creating
new connections, which in turn can motivate further manipulations and revi-
sions of the external model): it is at this level that we found the scientific
cognitive counterpart of what has been always called in the tradition of phi-
losophy and history of science, scientific imagination. In a perspective that does
not basically take into account the results of cognitive science but instead adopts
the narrative/literary framework about models as make-believe, Toon (2010) too
recognizes the role of models in perturbing mental models to favor imagination:
“Without taking a stance in the debate over proper names in fiction, I think we
may use Walton’s analysis to provide an account of our prepared description
and equation of motion. We saw […] that these are not straightforward
descriptions of the bouncing spring. Nevertheless, I believe, they do represent
the spring, in Walton’s sense: they represent the spring by prescribing imag-
inings about it. When we put forward our prepared description and equation of
motion, I think, those who are familiar with the process of theoretical modelling
understand that they are to imagine certain things about the bouncing spring.
Specifically, they are required to imagine that the bob is a point mass, that the
spring exerts a linear restoring force, and so on” (p. 306).

15Written natural languages are intertwined with iconic aspects too. Stjernfelt (2007) provides a
full analysis of the role of icons and diagrams in Peircean philosophical and semiotic approach,
also taking into account the Husserlian tradition of phenomenology.
16It is from this perspective that—for example—[sentential] syllogism and [model-based] per-
ception are seen as rigorously intertwined. Consequently, there is no sharp contrast between the
idea of cognition as perception and the idea of cognition as something that pertains to logic. Both
aspects are inferential in themselves and fruit of sign activity. Taking the Peircean philosophical
path we return to observations I always made when speaking of the case of abduction: cognition is
basically multimodal.
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It is worth to note that, among the advantages offered by the external models in
their role of perturbing the internal ones, there are not only the unexpected features
that can be offered thanks to their intrinsic materiality, but also more neutral but
fruitful devices, which can be for example exemplified thanks to the case of
externalized mathematical symbols: “Apparently the brain immediately translates a
positive integer into a mental representation of its quantity. By contrast, symbols
that represent non-intuitive concepts remain partially semantically inaccessible to
us, we do not reconstruct them, but use them as they stand” (De Cruz and De Smedt
2011). For example, it is well-known that Leibniz adopted the notation dx for the
infinitesimals he genially introduced, and curiously called them fictions bien
fondées, given their semantic paradoxical character: they lacked a referent in
Leibnizian infinitesimal calculus, but were at the basis of plenty of new astonishing
mathematical results.17 De Cruz and De Smedt call this property of symbols “se-
mantic opacity”, which renders them underdetermined, allowing further creative
processes where those same symbols can be relatively freely exploited in novel
contexts for multiple cognitive aims. Semantic opacity favors a kind of reasoning
that is unbiased by those intuitive aspects that possibly involve stereotypes or
intended uncontrolled interpretations, typical of other less opaque external
models/representations.

Peirce too was clearly aware, speaking of the model-based aspects of written
proofs in deductive reasoning, that there is an “experimenting upon this image [the
external model/diagram] in the imagination”, where the idea that human imagina-
tion is always favored by a kind of prosthesis, the external model as an “external
imagination”, is pretty clear, even in case of classical geometrical deduction: “[…]
namely, deduction consists in constructing an icon or diagram the relations of
whose parts shall present a complete analogy with those of the parts of the object of
reasoning, of experimenting upon this image in the imagination and of observing
the result so as to discover unnoticed and hidden relations among the parts” (Peirce
1931–1958, 3.363).

Analogously, in the case at stake in this section, the computational model of
neuronal behavior, by providing new chances in terms of control, visualizations,
and costs, is exactly the peculiar tool able to favor manipulations which trigger the
new idea of the “spatial activity pattern of the spikes” (Chandrasekharan 2009,
p. 1067).

17To confront critiques and suspects about the legitimacy of the new number dx, Leibniz prudently
conceded that dx can be considered a fiction, but a “well founded” one. The birth of
non-standard analysis, an “alternative calculus” invented by Robinson (Robinson 1966), based
on infinitesimal numbers in the spirit of Leibniz’s method, revealed that infinitesimals are not at
all fictions, through an extension of the real numbers system R to the system R

� containing
infinitesimals smaller in the absolute value than any positive real number.
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4 Epistemic Warfare: Are Scientific Models Fictions
or Epistemic Weapons?

Thanks to the cognitive research I have illustrated in the previous section, we are
faced with the modern awareness of what also implicitly underlies Peircean
philosophical speculations I am trying to reproduce in the following paragraphs.
Nature fecundates the mind because it is through a disembodiment and extension of
the mind in nature (that is in such a way, so to say, “artificialized”) that in turn
nature affects the mind. Models are built by the mind of the scientist(s), who first
delegate “meanings” to external artifacts: in other words, mind’s “internal” repre-
sentations are “extended” in the environment, and later on shaped by processes that
are occurring through the constraints found in the external models (in the “nature”
itself, Peirce would have said); that is in that external nature that consists of the
“concrete” model represented by the artifact, in which the resulting aspects and
modifications/movements are “picked up” and in turn re-represented and reworked
in the human brain.

By the way, it is in this perspective that we can still savor, now in a naturalistic
framework, the speculative Aristotelian anticipation that “nihil est in intellectu quod
prius non fuerit in sensu”. In such a way—that is thanks to the information that
flows from the external model—the scientists’ internal models are rebuilt and
further refined, and the resulting modifications can easily be seen as guesses—both
instinctual and reasoned, depending on the brain areas involved—that is as plau-
sible abductive hypotheses about the external extra-somatic world (the target sys-
tems). I repeat, the process can be seen in the perspective of the theory of cognitive
niches: the mind grows up together with its representational delegations to the
external world that has made itself throughout the history of culture by constructing
the so-called cognitive niches. In this case the complex cognitive niche of the
scientific lab is an epistemological niche, expressly built to increase knowledge
following rational methods, where “people, systems, and environmental affor-
dances” (Chandrasekharan 2009, p. 1076) work together in an integrated fashion.

Even if Chandrasekharan and Nersessian’s research deals with models which
incorporate movement, and so does not consider models that are not based on it, it
provides an useful example able to stress the distributed character of scientific
models, and the true type of abstractness/ideality they possess, so refreshing these
notions that come from the tradition of philosophy of science. The analysis of
models as material, mathematical, and fictional—and as “abstract objects”—pro-
vided by Contessa (2010), where “a model is an actual abstract object that stands
for one of the many possible concrete objects that fit the generative description of
the model” (p. 228) would take advantage of being reframed in the present natu-
ralistic perspective. The same in the case of Frigg (2010c), who contends a fic-
tionalist view and says “Yet, it is important to notice that the model-system is not
the same as its [verbal] description; in fact, we can re-describe the same system in
many different ways, possibly using different languages. I refer to descriptions of
this kind as model-descriptions and the relation they bear to the model-system as p-
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representation” (pp. 257–258). Indeed, Contessa’s reference to models as “actual
abstract objects” and Frigg’s reference to models as abstract “model-systems”
would take advantage of the cognitive perspective I am presenting here: where are
they located, from a naturalistic point of view? Are they mental models? If they are
mental models, as I contend, this should be more clearly acknowledged.

Hence, in my perspective models cannot be considered neither abstract (in the
traditional ambiguous sense) nor fictional: scientists do not have any intention to
propose fictions, instead they provide models as tools that reshape a generic cog-
nitive niche as an epistemological niche to the aim of performing a genuine struggle
for representing the external world. Models, the war machines used in this struggle,
which I call epistemic warfare, to stress the determined—strictly epistemic—dy-
namism of the adopted tools that are at stake, are not illusional fictions or strata-
gems used for example to cheat nature or swindle human beings, but just concrete,
unambiguous, and well disposed tactical intermediate weapons able to strategically
“attack” nature (the target systems) to further unveil its structure. Contrarily, fic-
tions in works of fictions are for example meant to unveil human life and characters
in new esthetic perspectives and/or to criticize them through a moral teaching, while
fictions and stratagems in wars are meant to trick the enemy and possibly destroy
the eco-human targets.

A recent study on fictions reinforces my view from a fresh epistemological
perspective. Barwich (2013) analyzes the construction of models and their use in
scientific reasoning by comparison with fictions, reframing the debate in terms of
the presence of denoting and non-denoting elements and their “functions”, so
acknowledging the dynamic character of scientific cognition,18 often overlooked by
the mainstream epistemology of fictions. The examination of the role played by the
so-called not-denoting elements of scientific models, which legitimated epistemo-
logical fictionalism and its fame, leads to the following conclusion: “In contrast to
scientific representations, fiction is not used to serve as an explanation nor is
intended to be a truthful description of the world. While scientific representations
are epistemic items, proper fictions are not. In light of this, the difference between
denoting and non-denoting elements is not subject to structural resemblance to a
physical target system, but concerns their assigned epistemic role” (p. 367).

At this point I can conclude that scientific models are not fictions. This does not
mean that fictions (and also falsities and propaganda) are not present in the sci-
entific enterprise, as I have already anticipated in the first section of this article. To
explain the features of this presence we have to introduce the reader to some issues
concerning usually unnoticed moral and social aspects of the status of scientific
cognition.

18Myself I have already emphasized the importance of taking into account the dynamic aspects of
science when criticizing the epistemology of models as “missing systems”: in the case of creative
inferences the missing system is not, paradoxically, the one represented by the “model”, but
instead the target system itself, still more or less largely unknown and un-schematized, which will
instead appear as “known” in a new way only after the acceptation of the research process results
Magnani (2012, pp. 21–24).
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I contend that epistemologists do not have to forget that various cognitive
processes present a “military” nature, even if it is not evident in various aspects and
uses of syntactilized human natural language and in abstract knowledge.19 It is hard
to directly see this “military intelligence”20 in the many epistemic functions of
natural language, for example when it is simply employed to transmit scientific
results in an academic laboratory situation, or when we gather information from the
Internet—expressed in linguistic terms and numbers—about the weather. However,
we cannot forget that even the more abstract character of knowledge packages
embedded in certain uses of language (and in hybrid languages, like in the case of
mathematics, which involves considerable symbolic parts) still plays a significant
role in changing the moral behavior of human collectives. For example, the pro-
duction and the transmission of new scientific knowledge in human social groups
not only operates on information but also implements and distributes roles,
capacities, constraints and possibilities of actions. This process is intrinsically moral
because in turn it generates precise distinctions, powers, duties, and chances which
can create new between-groups and in-group violent (often) conflicts, or reshape
older pre-existent ones.

New theoretical biomedical knowledge about pregnancy and fetuses usually has
two contrasting moral/social effects, (1) a better social and medical management of
childbirth and related diseases; (2) the potential extension or modification of con-
flicts surrounding the legitimacy of abortion. In sum, even very abstract bodies of
knowledge and more innocent pieces of information enter the semio/social process
which governs the identity of groups and their aggressive potential as coalitions:
deductive reasoning and declarative knowledge are far from being exempt from
being accompanied by argumentative, deontological, rhetorical, and dialectic
aspects. For example, it is hard to distinguish, in an eco-cognitive setting, between a
kind of “pure” (for example deductive) inferential function of language and an
argumentative or deontological one. For example, the first one can obviously play
an associated argumentative role. However, it is in the arguments traditionally
recognized as fallacious, that we can more clearly grasp the military nature of
human language and especially of some hypotheses reached through fallacies.

Hence, we have to be aware that science imposes itself as a paradigm of pro-
ducing knowledge in a certain “decent” way, but at the same time it de facto belongs
to the cross-disciplinary warfare that characterizes modernity: science more or less
conflicts with other non scientific disciplines, religions, literature, magic, etc., and
also implicitly orders and norms societies through technological products which
impose behaviors and moral conducts. Of course scientific cognitive processes—
sensu strictu, inside scientific groups as coalitions—also involve propaganda (and so

19I extendedly treated the relationship between cognition and violence in my Magnani (2011).
20I am deriving this expression from Thom (1988), who—in my opinion—relates “military
intelligence” to the role played by language and cognition in the so-called coalition enforcement,
that is at the level of their complementary effects in the affirmation of moralities and related
conducts, and the consequent perpetration of possible violent punishments.
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various kinds of “fictions” and falsities), like Feyerabend says, for instance to
convince colleagues about a hypothesis or a method, but propaganda is also exter-
nally addressed to other private and public coalitions and common people, for
example to get funds (a fundamental issue often disregarded in the contemporary
science is the cost of producing new models) or to persuade about the value of
scientific knowledge. Nevertheless the core cognitive process of science is based on
avoiding fictional and rhetorical devices when the production of its own regimen of
truth is at stake. Finally, science is exactly that enterprise which produces those kinds
of truths which express the paradigms for demarcating fictions and so “irrational” or
“arational” ways of knowing.

I am aware of the fact that epistemological fictionalism does not consider fictions
forgery or fake, that is something “far from being execrable”, instead, something
“we cherish” (Frigg 2010c, p. 249), but to say that scientific and literary fictions are
both “good” fictions is a bit of a theoretical oversemplification, because it is science
that created, beyond literature and poetry, new kinds of models committed to a
specific production of truth, constitutively aiming at not being fictional. I confess I
cannot see how we can speak of the ideal pendulum in the same way we speak of
Anna Karenina: it seems to me that we are running the risk of inadvertently opening
the gates of epistemology to a kind of relativistic post-modernism à la mode, even if
fictionalists seem to avoid this possible confusion by producing—often useful—
taxonomies about the slight differences between fictions in science and in other
cognitive practices.

In overall, I am convinced that introducing the word fiction in epistemology adds
a modest improvement to the analysis of topics like inference, explanation, cre-
ativity, etc., but just an attractive new lexicon, which takes advantage of some
seductive ideas coming for example from the theory of literary fictions. Anna
Karenina and the in-vitro model21 are very different. In actual scientific practice, a
model becomes fictional only after the community of researchers has recognized it
as such, because it has failed in fruitfully representing the target systems. In these
cases a model is simply discarded. Tolstoy might have discarded the character of
Anna Karenina as an inappropriate fiction for some contemporary esthetic purpose
(for instance, had she failed, in her author’s opinion, to veraciously represent a
female member of Russia’s high society at the end of XIX century), but he would
have substituted her with yet another—just as fictional—character, doomed to re-
main fictional for ever.22

Conversely, a scientific model is recognized as fictional in a cognitive (often
creative) process when it is assessed to be unfruitful, by applying a kind of negation

21Indeed, in the recent epistemological debate about fictions, even the whole “experimental sys-
tems” are reframed as “materialized fictional ‘worlds’” Rouse (2009, p. 51).
22Giere usefully notes that “Tolstoy did not intend to represent actual people except in general
terms” and that, on the contrary, a “primary function [of models in science], of course, is to
represent physical processes in the real world” (Giere 2007, p. 279).

234 L. Magnani



as failure (Clark 1978; Magnani 2001): it becomes fictional in the mere sense that it
is falsified (even if “weakly” falsified, by failure).23 Methodologically, negation as
failure is a process of elimination that parallels what Freud describes in the case of
constructions (the narratives the analyst builds about patient’s past psychic life)
abandoned because they do not help to proceed in the therapeutic psychoanalytic
process: if the patient does not provide new “material” which extends the proposed
construction, “if”, as Freud declares, “[…] nothing further develops we may con-
clude that we have made a mistake and we shall admit as much to the patient at
some suitable opportunity without sacrificing any of our authority”. The “oppor-
tunity” of rejecting the proposed construction “will arise” just “[…] when some
new material has come to light which allows us to make a better construction and so
to correct our error. In this way the false construction drops out, as if it has never
been made; and indeed, we often get an impression as though, to borrow the words
of Polonius, our bait of falsehood had taken a carp of truth” (Freud 1953–1974,
vol. 23, 1937, p. 262].

Similarly, for example in a scientific discovery process, the scientific model is
simply eliminated and labeled as “false”, because “new material has come to light”
to provide a better model which in turn will lead to a new knowledge that super-
sedes or refines the previous one, and so the old model is buried in the necropolis of
the unfruitful/dead models. Still, similarly, in the whole scientific enterprise, also a
successful scientific model is sometimes simply eliminated (for example the ether
model) together with the theory to which that model belonged, and so the old model
is buried in yet another necropolis, that of the abandoned “historical” models, and
yes, in this case, it can be plausibly relabeled as a fiction.

A conclusion in tune with my contention against the fictional character of sci-
entific models is reached by Woods and Rosales (2010a), who offer a deep and
compelling logico-philosophical analysis of the problem at stake. They contend that
it is extremely puzzling to extend the theory of literary and artistic fictions to
science and other areas of cognition. Whatever we say of the fictions of mathe-
matics and science, there is “nothing true of them in virtue of which they are
literary fictions” (p. 375). They correctly note that “Saying that scientific stipulation
is subject to normative constraints is already saying something quite different from
what should be said about literary stipulation”:

We also see that scientific stipulation is subject to a sufferance constraint, and with it to
factors of timely goodness. A scientist is free to insert on his own sayso a sentence / in T’s
model of M on the expectation that T with it in will do better than T with it not in, and
subject in turn to its removal in the face of a subsequently disappointing performance by T .
This is a point to make something of. Here is what we make of it:

23On the powerful and unifying analysis of inter-theory relationships, which involves the problem
of misrepresenting models—and their substitution/adjustement—and of incompleteness of scien-
tific representation, in terms of partial structural similarity, cf. Bueno and French (2011) and the
classic (da Costa and French 2003).
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– The extent to which a stipulation is held to the sufferance condition, the more it
resembles a working hypothesis.

– The more a sentence operates as a working hypothesis, the more its introduction into a
scientific theory is conditioned by abductive considerations.

Accordingly, despite its free standing in M, a stipulationist’s / in T is bound by, as
we may now say, book-end conditions, that is to say, conditions on admittance into
T in the first place, and conditions on its staying in T thereafter. The conditions on
going in are broadly abductive in character. The conditions on staying in are
broadly—sometimes very broadly—confirmational in character. Since there is
nothing remotely abductive or confirmational in virtue of which a sentence is an
F -truth [fictive truth] on its author’s sayso, radical pluralism must be our verdict
here (Woods and Rosales 2010a, pp. 375–376).

In conclusion, after having proposed a distinction between predicates that are
load-bearing in a theory and those that are not, Woods and Rosales maintain that a
predicate that is not load-bearing in a theory is a façon de parler: “For example,
everyone will agree that the predicate ‘is a set’ is load-bearing in the mathematical
theory of sets and that ‘is an abstract object’, if it occurs there at all, is a façon de
parler. ‘Is an abstract object’ may well be load-bearing in the philosophy of
mathematics, but no work-a-day mathematician need trouble with it. It generates no
new theorems for him. Similarly, ‘reduces to logic’ is not load-bearing in number
theory, notwithstanding the conviction among logicists that it is load-bearing in
mathematical epistemology” (Woods and Rosales 2010a, pp. 377–378).
Unfortunately the predicate “is a fiction” is non-load-bearing, or at best a façon de
parler, in any scientific theory. At this point the conclusion is obvious, and I agree
with it, since there is no concept of scientific fiction, the question of whether it is
assimilable to or in some other way unifiable with the concept of literary fiction
does not arise.

Elsewhere (Magnani 2009, Chap. 3) I called the external scientific models
“mimetic”,24 not in a “military” sense, as camouflaged tools to trick the hostile
eco-human systems, but just as structures that mimic the target systems for epis-
temic aims. In this perspective I described the centrality of the so called “disem-
bodiment of the mind” in the case of semiotic cognitive processes occurring in
science. Disembodiment of the mind refers to the cognitive interplay between
internal and external representations, mimetic and, possibly, creative, where the
problem of the continuous interaction between on-line and off-line (for example in
inner rehearsal) intelligence can properly be addressed.25

24On the related problem of resemblance (similarity, isomorphism, homomorphism, etc.) in sci-
entific modeling some preliminary comments are provided in Magnani (2012).
25This distinction parallels the one illustrated by Morrison between models which idealize (mir-
roring the target systems) and abstract models (more creative and finalized to establish new
scientific intelligibility). On this issue cf. Magnani (2012).
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5 Conclusion and Future Work

In this article I have contended that scientific models are not fictions and that a
naturalistic perspective can help to see abstractness and ideality of models in the
concrete epistemological dimension of an eco-cognitive perspective. I have argued
that also other various related epistemological approaches to model-based scientific
cognition (in terms of surrogates, credible worlds, missing systems, make-believe,
etc.) present severe inadequacies, which can be detected taking advantage of recent
cognitive research in scientific labs and of the concept of manipulative abduction.
The illustrated critique, also performed in the light of distributed cognition, offered
new insight on the analysis of the two main classical attributes given to scientific
models: abstractness and ideality. A further way of delineating a more satisfactory
analysis of fictionalism and its discontents has been constructed by proposing the
concept of “epistemic warfare”, which sees scientific enterprise as a complicated
struggle for rational knowledge in which it is crucial to distinguish epistemic (for
example scientific models) from extra-epistemic (for example fictions, falsities,
propaganda) weapons.

Other issues, I have already sketched in Magnani (2012), still need be deepened:

1. it is misleading to analyze models in science by confounding static and dynamic
aspects of the scientific enterprise, or by overlooking the dynamic aspect, such
as it is occurring in the case of the mainstream fictionalist epistemology: indeed
the static perspective leads to an overemphasis of the possible fictional character
of models because the creative/factive role of modeling is underestimated;

2. science never aimed at providing “fictions” at the basic levels of its activities,26

so that the recent fictionalism, lacking a cognitive analysis of scientific models,
does not add new and fresh knowledge about the status of models in science,
and tends to obfuscate the distinctions between different areas of human cog-
nition, such as science, religion, arts, and philosophy. In the end, “epistemic
fictionalism” tends to enforce a kind “epistemic concealment”, which can
obliterate the actual gnoseological finalities of science, shading in a kind of
debate about entities and their classification that could remind of medieval

26“In Sarsi [Lothario Sarsi of Siguenza is the pseudonym of the Jesuit Orazio Grassi, author of The
Astronomical and Philosophical Balance. In The Assayer, Galileo weighs the astronomical views
of Orazio Grassi about the nature of the comets, and finds them wanting (Galilei 1957, p. 231)].
I seem to discern the firm belief that in philosophizing one must support oneself upon the opinion
of some celebrated author, as if our minds ought to remain completely sterile and barren unless
wedded to the reasoning of some other person. Possibly he thinks that philosophy is a book of
fiction by some writer, like the Iliad or Orlando Furioso, productions in which the least important
thing is whether what is written there is true. Well, Sarsi, that is not how matters stand. Philosophy
is written in this grand book, the universe, which stands continually open to our gaze. But the book
cannot be understood unless one first learns to comprehend the language and read the letters in
which it is composed. It is written in the language of mathematics, and its characters are triangles,
circles, and other geometric figures without which it is humanly impossible to understand a single
word of it; without these, one wanders about in a dark labyrinth” (Galilei 1957, pp. 237–238).
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scholasticism. It is not certainly possible and welcome in this postmodern era of
philosophy to demarcate science from non-science thanks to absolute criteria,
but it is surely cognitively dangerous to systematically undermine local epis-
temic ways of depicting and saving the differences. The epistemological use of
the so-called fictions, credible worlds, surrogate models, etc. appears theoreti-
cally suspect, but ideologically clear, if seen in the “military” framework of the
academic struggle between disciplines, dominated—at least in my opinion—by
a patent proliferation of “scientific” activities that just produce bare “credible” or
“surrogate” models, looking aggressively for scientificity, when they actually
are, at the best, kinds of fictions acting as science or, at the best, bad philosophy.
I plan to devote a further study to this important topic, also intertwined with the
need of reviving the old-fashioned epistemological problem of demarcation.
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The Use of Models in Petroleum
and Natural Gas Engineering

Kahindo Kamau and Emily Grosholz

Abstract This essay is an inquiry into the formulation of models in the science of
petroleum and natural gas engineering. The underlying questions of this essay how
adequate some of the fundamental models of this science really are, and what
assumptions have been made as the models were created. Our claim is that a good
account of the adequacy of models must be strongly pragmatist, for these questions
cannot be answered properly without strict attention to human purposes. These
purposes include not only the search for a better understanding of geological for-
mations, their natural history and structure, but also classroom instruction for
university students, and economically feasible extraction of petroleum and natural
gas. These models include machines as well as natural formations, and so too raise
the interesting question of how we (pragmatically) model machines. We claim that
many of the distortions and over-simplifications in these models are in fact inten-
tional and useful, when we examine the models in light of their pragmatic aims.

1 Introduction1

We start this discussion first with a series of descriptions to understand better the
topic at hand. Petroleum engineering is a relatively new science which has become
a central field of study in Earth and Mineral Sciences at the university level. Any
introductory class in petroleum engineering will usually begin with a focus on
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petroleum reservoir rock and fluid properties. The term “petroleum” originated from
the Greek and Latin words “petra” and “oleum”, respectively, which combined
form “rock oil”. These two words were combined due to petroleum’s location in the
surface of the earth, and its common liquid state. Petroleum also refers to hydro-
carbons which are compounds of carbon and hydrogen found in either liquid or
vapor states. Thus the formation and location of petroleum reservoirs links them to
the study of earth and mineral sciences.

The most well-received theory dealing with the formation of petroleum is known
as the organic or biogenic theory. The formation process is believed to begin with
subsurface generation of kerogen, a sedimentary organic matter generated through
the decomposition of vegetable and animal organisms in sedimentary rocks. This
subsurface generation is analyzed in terms of variables like pressure and temper-
ature, and in terms of geological time scales. The rock which allows for this
transformation of kerogen into petroleum is known as the source rock. After the
formation of petroleum has occurred, hydrocarbons depart from the source rock and
migrate upward through permeable beds until reaching a sealed hydrocarbon
trap. This trap is an impermeable rock that allows for the accumulation of hydro-
carbons and the creation of petroleum reservoirs. In an ideal reservoir, this accu-
mulation of hydrocarbons will stay trapped by impermeable rocks until drilled for.

The typical/ideal petroleum reservoir, as seen in Fig. 1, will be found within
1600–13,000 ft below the earth’s surface. At such depths it is common for tem-
peratures and pressures to have increased tremendously. Both variables typically
increase as the depth of the petroleum reservoir is increased. An ideal petroleum
reservoir will be split into gas, oil, and water zones. These two phases of the
hydrocarbon, and the water, separate naturally from each other due to gravity
segregation.

Fig. 1 Ideal petroleum reservoir (“Mineral and Energy Resources.” Mineral/energy Resources.
Earthsci, n.d. Web.)
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2 The Progression of Models

To clarify the role that models play in the subject of petroleum engineering, we first
mention the purpose of a petroleum engineer. A petroleum engineer’s job is to
develop ways to extract oil and natural gas from reservoirs in the earth’s surface,
which entails finding ways to optimize the amount of oil and gas extracted from the
reservoirs efficiently and economically. Thus models must encompass a number of
different dimensions, since the engineer must attend to the physical, technological
and mathematics aspects of the situation. The economic aspects of the situation also
strongly come into play, as well as pedagogical aspects, for this “know-how” must
be conveyed to students in Earth and Mineral Sciences, even before they are sent
out into the field. There are thus several types of models involved in texts devoted
to petroleum engineering. The relations among these models, and the order of their
introduction in the classroom, are worth studying. For example, students of pet-
roleum engineering will begin their learning of the subject first with the physical
aspects of a petroleum reservoir, before moving on to learn about mathematical
models or advanced technology used in the extraction process. So as in every
subject, there is a progression in the formulation of models. Typically, students
begin from a certain topic or part, and progress to different topics, i.e., from
physical models to mathematical models. The pattern in petroleum engineering is
that physical aspects of this subject are taught prior to the mathematical. Therefore,
we begin our investigation of models in petroleum engineering with physical
models.

3 Representation

To investigate the use of models in this area, we must now come to a clear
understanding of what models are. Models a representation of the natural world that
bring scientific discourse into relation with formations or systems in nature. They
rely on the use of physical science, mathematics, and empirical data to form their
representations of the natural world; and they are constructed for various purposes.

In his book Scientific Representation (Oxford University Press 2008), Bas van
Fraassen makes a three-way distinction among data models, surface models and
theoretical models. Data models result from the iteration of a single operation, the
interaction of an instrument with the object or system to be measured. However,
such tables, plots or graphs are usually not in themselves useful for research. Highly
discrete and finitary data must be reformulated into a scientifically significant form,
where the data is “smoothed out” and adumbrated into a continuous, idealized,
mathematically significant form. Van Fraassen calls this a surface model, and
claims that it is a kind of middle term, which relates the data to a theoretical model,
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which can be suitably embedded in scientific theory (Van Fraassen 2008, 166-172).
This classification of models, insightful as it is, needs to be further enlarged, for
models may also be simplified in terms of other human purposes, namely those of
the classroom and those of the marketplace, pedagogical and economic aims.

Before we delve into the relationship that various models may have with the
natural world (and the culturally constructed world of machines), we first turn to a
simple example of representation to exhibit some of the issues in play. To get a
better grasp of the creation of models and how they can at times mislead us, we can
turn to an example given by Bas van Fraassen in his book Scientific Representation.
Van Fraassen turns to a story related by Ernst Gombrich to show how these rep-
resentations can be misleading. The story tells of two sculptors who must each
create a statue of Minerva to be placed on a high pillar. The one sculptor, who is
well trained in geometry and optics, creates a beautiful statue, while the other
sculptor creates a disfigured and distorted statue. Once the two statues are placed on
the pillar, however, everyone realized that the distorted statue looks more beautiful
from a distance (Van Fraassen 2008, 12–13). This is an illustration of how models
can at times be usefully misleading, for we must take into account the aim and
situation of the model.

4 Simplification in Physical Models

So let us look back at Fig. 1, the Ideal Petroleum Reservoir, from an introductory
online text, and ask how closely the model in Fig. 1 represents the natural phe-
nomenon of a petroleum reservoir. A geologist and petroleum engineer analyzing
this model could agree that the representation of the relationship between gas, oil,
and water is only adequate as an idealization, for the figure does not include
transition zones between the two phases, oil and gas, or between oil and water. The
geologist might point out the structural simplification of the underground reservoir.
The engineer, however, might be more concerned with the inadequacy of the
representation of the above ground structures, such as the well rig. The geologist
and the engineer could elaborate at length about the grounds for their severe
judgments of the merits of the representation. However, the simplification in Fig. 1
can well be beneficial for students and teachers when applied at a certain period of
education. To make this point, I contrast it with other models that include more
detail and a truer to nature (and culture), but harder to construe.

The next two images presented, Figs. 2 and 3, are examples of a basic surface
production facility and a seismic reading, respectively. The goal of a surface facility
is to isolate the fluids into three components, namely oil, gas, and water. These
phases must then be processed into marketable products or disposed of in an
environmentally suitable manner. This picture is in its own respect simplified, but it
is a much more detailed representation of the above ground occurrences on a
petroleum reservoir than Fig. 1.
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Figure 3, is an example of an actual seismic reading from below the earth’s
surface. In van Fraassen’s terminology, it stands somewhere between a data model
and a surface model. Seismic readings are accomplished in numerous ways, the
most significant of which are through the use of sources and receivers. A source is
a tool that emits a measured acoustic wave. A receiver is a tool which measures this
acoustic wave some distance from the source. These acoustic waves are then
reproduced as a seismic image. It takes a great deal of time to interpret seismic

Fig. 2 Basic surface production facility (picture taken from Dr. Luis Ayala’s PNG 480: Surface
Production Facility notes)

Fig. 3 Seismic reading of flemish pass basin, offshore Canada. With interpretations for faulting
(picture taken from Dr. Terry Engler’s GEOSC 454)
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images, e.g. to highlight fault lines or folds within a specific segment (as shown by
the black lines in Fig. 3). A comparison of this seismic reading with Fig. 1
underlines the degree of idealization in Fig. 1.

At the stage in his or her training when a student is introduced to the first image,
it provides a holistic understanding of the petroleum reservoir. That is, earlier
periods of engagement with the subject, the process of understanding itself, would
be obscured by the introduction of material which, at the time, might be too spe-
cific. Thus there may be good reasons why a pedagogical model simplifies a
complex system. For example, it may be better in this case to summarize surface
production, in a basic model of a petroleum reservoir, through the use of one rig.
This rig is a denotation of all the equipment that will later be presented and
explained to the student. It must be included, even in this schematic form, because it
will be a vital part of a petroleum engineer’s knowledge, but not at this early stage.
The same goes for the idealized format of the structural formation of the petroleum
geosystem.

Such an idea is highlighted in Mauricio Suárez’s paper “Scientific
Representation” (Suarez 2010). He argues that while philosophical conversations in
the past have focused on the accuracy of scientific models, philosophers of science
should now pragmatically distinguish between representation and truth. Thus he
writes, “The distinction [between truth and representation] is essential to make
sense of the phenomenon of scientific misrepresentation. Models often are inac-
curate and misrepresent in some definite ways. This does not, however, take away
any of their representational power: an imperfect and inaccurate model M of some
target system T is still a model of T.” Suárez’s claim supports our current point. In
the first figure we note that there is a great amount of simplification: should it be
construed as a misrepresentation or an error? We can’t answer that question
properly without first asking what the purpose of the figure is. What is this figure
trying to represent, and to what end? Figure 1, is certainly a representation of a
basic petroleum reservoir; and since a petroleum reservoir is a physical phe-
nomenon that pertains to the geological sciences, we can assume that the repre-
sentation of the subsurface reservoir is the central aspect of the model.

If this assumption is acknowledged, the rig above surface could be taken as a
definitive misrepresentation of a surface facility. And yet the schematic rig should
still be part of the whole representation. It is still an important element of the target
system, and therefore can still be used as a schematic denotation of a surface
facility. The figure also simplifies its representation of a petroleum reservoir. This is
seen again, in the comparison of the seismic reading in Fig. 3 and the reservoir in
Fig. 1. The ideal reservoir uses a simplified interpretation of seismic images to make
it easier for the student to grasp how the reservoir looks. In reality a geologist would
only have seismic readings to denote the whereabouts of a reservoir, and not a
simple structure map as shown in Fig. 1. It is because of the possibility of intelligent
simplification and even misrepresentation in the physical models that sciences such
as petroleum engineering are able to progress. Physical models use simplification as
a tool to make complex phenomena into understandable material. Simplification has
been used as a means for students to gain a broader understanding of their subject.
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5 Mathematical Models2

Having looked at the use of iconic physical models in petroleum engineering, we
can now cross over into the realm of mathematical models, specifically equational
models. Our example will show how heavily mathematical models rely on an
understanding of the physical world. Two of the most important rock and fluid
properties that every petroleum engineer must understand are porosity and per-
meability. The porosity of a reservoir rock is its storage capacity—pore volume
divided by total volume. The permeability of a reservoir rock is a measure of its
flow capacity, or the rock’s ability to transmit fluids. Solving for the permeability of
a reservoir rock is done by using Darcy’s equation, named after its originator.

Henry Darcy was a French civil engineer who developed the mathematical
equation known today as Darcy’s Law. He developed this equation while testing the
flow of water through sand bags for the city of Dijon, France. Figure 4, summarizes
the flow experiments that Darcy was investigating. The results of Darcy’s experi-
ments are expressed in Darcy’s equation, in Eq. 1. Where Q is the volumetric flow
rate through a core plug (in ft3/s), K the proportional constant also defined as
hydraulic conductivity (in ft/s), A the cross-sectional area of the core plug (in ft2), L
the length of the core plug in (ft), h1 and h2 represent the hydraulic head at inlet and
outlet, respectively (in ft), ρ is the fluid density (in kg/ft3), and g is the acceleration
due to gravity (in ft/s2).

Q ¼ KA
ðh1 � h2Þ

L
¼ KA

dP
dL

ð1Þ

where dP ¼ Dhqg

This conception of flow through a core plug can then be transformed so that that
it has a dependence on both permeability and fluid viscosity—creating a general-
ized equation that can be used for more fluids other than water. Viscosity is a
measure of the fluid’s resistance to flow, e.g. maple syrup has a higher viscosity

Fig. 4 Schematic of Darcy’s fluid flow experiments

2This section is based heavily on Chap. 4: Absolute Permeability, in (Dandekar 2006) Petroleum
Reservoir Rock and Fluid Properties. All figures are taken from this chapter Abhijit (2006b).
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than water, and furthermore cold syrup has a higher viscosity than hot
syrup. Equations 2 and 3 represent the inclusion of permeability and viscosity in
Darcy’s equation. In this equation K has been taken to be the ration of k/μ, where
k is the permeability and μ is the viscosity of a fluid.

Q ¼ � k
l
A
dP
dL

ð2Þ

Q ¼ � kADP
lL

ð3Þ

We note that, between the articulation of Eqs. 2 and 3, an integration has taken
place. However, the most important aspect for understanding Eq. 3, known as
Darcy’s Law, in this context is to understand the assumptions that had to be made
for its articulation. Darcy’s Law is an equation used extensively in petroleum
engineering calculations to solve for permeability of a reservoir rock, as noted
above. We will focus on one important assumption. This assumption is that the fluid
flowing through the core plug has completely saturated the plug. In this core plug
there is no other fluid flowing through the plug except the one being calculated for.
This means that the core is 100 % saturated by this fluid. In an ideal reservoir this
would be possible; however, natural reservoirs are much more complex. Even if a
reservoir were 100 % saturated by one fluid, it is highly unlikely that even this fluid
would have the same properties throughout the reservoir, as Darcy’s law assumes.
Although natural reservoirs are not as ideal as the core plug, this idealizing
assumption is not very misleading, because there is still a kind of uniformity in
them, in the following sense. In a natural reservoir, an engineer would find distinct
layers, blocks or concentric rings that have a specific permeability. Such layers are
used to an engineer’s advantage. In such cases the average permeability over a
series of layers is taken. An example is shown in Fig. 5.

The representation below highlights a combination that is made of three parallel
layers of rock, each of which has a different permeability. From this representation
of flow through a combination of parallel layers, we can see that Darcy’s Law may
be different for different layers in a reservoir. (There are also representations of flow

Fig. 5 A representation of
flow through a parallel
combination
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through a series combination, though we do not discuss this further mathematical
strategy in this paper. The job of a petroleum engineer is to understand the rock and
fluid properties in each of the layers in these representations. Usually a summation
of the flow through each of the layers represented is taken, as shown in Eq. 4.
(Equations. 5 and 6 spell out the meanings of the terms.)

Qt ¼ Q1 þQ2 þQ3 ¼ kavgWhtDP
lL

ð4Þ

ht ¼ h1 þ h2 þ h3 ð5Þ

kavg ¼
Pn

i¼1 kihiPn
i¼1 hi

ð6Þ

These summations represent the changes in reservoir properties, such as per-
meability, over a whole petroleum reservoir. The summations presented in these
equations offer one of the best ways to write equations for the permeability and flow
rate in the layers that compose the reservoir being studied.

If petroleum reservoirs actually occurred in the nice parallel layers represented in
Fig. 5, then all of the listed equations and images would seem perfectly appropriate.
However, from the seismic reading shown in Fig. 3 it is clear that such parallel
layerings are quite ideal. For instance, there could be parallel combinations, series
combinations, and diagonal combinations. A summation of such layerings, in each
specific case, could give a closer estimation of the whole reservoir’s properties; but
the question remains, is there really a need to build in this level of complexity? We
must look at the purpose of the model, at the pragmatics of their role in human
knowledge.

Before we try to answer this question, we need to review the techniques used
within the petroleum industry to make permeability estimations. Usually as a well is
being drilled in a certain reservoir, service companies will take core samples from
different depths in the reservoir. These core samples are then carried back to lab-
oratories and their properties are studied; during these studies equations such as
Darcy’s Law can be applied. Therefore companies will only know, for instance, the
permeability at certain depths of a reservoir, which is not a completely precise
understanding of the reservoir. Given the nature of the sampling techniques in these
studies, we can conclude that companies do not need to be completely precise with
their understanding of reservoirs. If necessary, the core plugs they study can be
assumed to be at 100 % saturated with a fluid. From an analysis of the core
permeability of each of these layers, a summation can then be taken, providing an
estimation that can be used with relative confidence.

Thus even in the mathematical modeling case, we find simplification being used
once again as a means to gain an understanding of a subject, in this scenario a
reservoir. Simplification is therefore also necessary within mathematical modeling,
as van Fraassen notes in his study of the relations between data models and surface
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models. Here, however, we see that the data model itself is simplified, in addition to
the “smoothing” required by the translation into equations, and that part of the
motivation is practical: engineers need a model that is “good enough”. We can
conclude from this analysis that it is therefore not the job of the model to become an
exact replica of its subject (supposing anything could ever meet that description),
but rather to be a useful representation, insofar as that entails simplification and
representation. A representation is therefore not completely supposed to ‘be like’ its
target, but is supposed to accomplish whatever purpose its creator has set out for it.
In the present case, the mathematical equation’s purpose is to provide a “good
enough” summation of a reservoir’s permeability. That is, the provided estimate of
permeability from Darcy’s law will allow for further analysis and finally production
from a reservoir that meets the expected production values for a given company.
Thus economic factors bear on this situation as well.

6 Technological Models

A distinctive aspect of petroleum engineering is that it is an area of research that not
only requires physical and mathematical models but also technological models. As
we saw in Fig. 2, very specific equipment is used in production at a reservoir site.
Equipment used at reservoir sites is modeled in terms of both physical and math-
ematical models. This is because the equipment is constantly interacting with the
natural world that surrounds it (hence the need for iconic physical models), but is
also in need of mathematical equations to help in its construction and functioning
(hence the need for symbolic mathematical models). Here is one useful example:
Fig. 6 is an image of a vertical separator. This separator has been cut-open for
educational purposes; so once again we encounter the practical demands of peda-
gogy. Fluids that are produced from a reservoir are complex mixtures of hydrogen
and carbon, all with different densities and other physical properties. During the
production process, fluids travel from high pressures and temperatures within a
reservoir to reduced pressures and temperatures at the surface facility. This period
allows for the first process of phase changes to occur, such as gases evolving from
liquids. These produced hydrocarbon mixtures flow from the reservoir into the
wellhead—which controls production flow rate—and then into a separator.3

The purpose of separators is physically to separate the liquid and gas phases. The
vertical separator shown above utilizes differences in gas and liquid densities to
accomplish separation. It may seem to the normal human eye, and to the engineer,
that this separator is quite simple, even on the inside. This is partially true. It does
not take extensive knowledge of gas and liquid phase interactions to understand
how gravity settling could occur due to differences in densities; and the separator is
not specially complex in construction. It is mostly an empty tank that takes into

3Stewart and Arnold (2007).
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account the process of gravity settling, which allows liquids to separate from gas, as
well as vapor pressures, which are the pressures at which gas will evolve from
liquids. Separators are therefore quite “simple” equipment. However, the process of
their creation relies on both physical and mathematical modeling; and you cannot
understand how they function without at least an elementary understanding of the
physical and mathematical models that went into their construction. Knowledge of
how gravity interacts with liquid and gas particles, and of the chemistry behind
vapor pressure and its effect on fluids, is required to grasp how a vertical separator
actually separates fluids. Understanding separators is therefore based on a grasp of
thermodynamics, a subject concentrated on physical relationships between heat and
temperature and their relation to energy and work, for thermodymics as a theory
shapes the physical and mathematical models.

7 Economics

We have tried to show how models are developed in petroleum engineering
research, both in the field and in the classroom. There is an iconic representation of
natural phenomenon using physical modeling, an symbolic modeling of empirical
data using mathematical equations, and finally equipment modeling through both

Fig. 6 Cut-away 2 phase
vertical separator (picture
taken from Dr. Luis Ayala’s
PNG 480: Surface Production
Facility notes)
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physical and mathematical modeling. These models are at times highly idealized for
the benefit of students, and sometimes even use simplifications that we might call
misrepresentations to achieve certain ends.

Iconic physical representation uses simplification to produce images that are
easier to grasp. Mathematical equations only use a restricted amount of empirical
data to produce legible, continuous solutions for various properties of reservoirs.
These equations use idealized representations of the structure of reservoirs to
analyze properties. Finally, technological models use physical representations and
mathematical equations for the creation of equipment. From this technological
modeling, equipment can then be made to interact with the natural phenomena in
such a way that it will allow for maximum production from a reservoir—since this
is the most common aim of a petroleum engineer.

From these considerations, we conclude modeling in petroleum engineering has
important aims not only as a representation that will be most truthful to its target,
but also one that will be most beneficial to its producer. For example, a petroleum
engineer will not try to find the most precise reading of a reservoir’s permeability,
because that could take months or years; rather, he or she will aim for a moderate
reading that will still allow for economical production. Economics therefore seems
to be a leading factor in the creation of models, because it is what will indicate the
most useful model to an engineer. Although we will not discuss this topic at length
in this paper, we end by emphasizing its importance, because it is one of the main
controlling factors in the shape of all the models here covered.

8 Conclusion

In this paper we inquire into the formulation of models in the science of petroleum
and natural gas engineering. We looked at the relations among different kinds of
models, and asked whether simplification might be considered misrepresentation.
We concluded that, since all models are distortions, the best questions to ask are:
What were the assumptions made in constructing this model? And, what were the
purposes that directed its construction? The pragmatics of model construction, in
order to measure reservoir properties and to create surface equipment, include the
scientific interests of geologists who study oil and natural gas reservoirs, the
engineers who must construct equipment to extract these products in the most
efficient way, and the teachers who must train students in Earth and Mineral
Science. These sometimes disparate aims explain the variety of models, and remind
us that pedagogy and economics, as well as science and mathematics, play a role in
shaping models.
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