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Introduction

As Robinson and Wainer [RW] have observed in the almost 300 years since its
introduction by Arbuthnot [A], null hypothesis significance testing (NHST) has
become an important tool for working scientists. In the early 20th century, the
founders of modern statistics (R.A. Fisher, Jerzy Neyman, and Egon Pearson)
showed how to apply this tool in widely varying circumstances, often in agriculture,
that were almost all very far afield from Dr. Arbuthnot’s noble attempt to prove the
existence of God.

In the process of applying NHST, however, confusion has often arisen among
practitioners and statisticians, giving rise to philosophical criticisms of hypothesis
texting (see, for example, [Ch, LMS, K, MZ, MH, O], which cite 300–400 primary
references). These criticisms reflected a general point of view that the theory of
mathematical statistics and the results of testing are inconsistent in many situations
and that the typical null hypothesis is almost always false. With the advantage of
increasing use, practitioner’s eyes became accustomed to the darker reality and the
shortcomings of NHST became more apparent.

Below we cite comments concerning the criticism of NHST from the joint work
of J.L. Rodgers and D.C. Rowe [RR]:

The methodological literature contains cogent criticism of null hypothesis significance
testing (NHST; e.g., Cohen, 1994; Rozeboom, 1960; Schmidt, 1996), including the extreme
position that NHST has been discredited and never makes a positive contribution (Schmidt
Hunter, 1997, p. 37). Some have called for NHST to be outlawed, with enforcement
charged to journal editors (see discussion in Shrout, 1997). The American Psychological
Association (APA) Board of Scientific Affairs commissioned a task force on statistical
inference, a committee of talented methodological scholars, to consider the situation. Their
conclusion (Wilkinson Task Force on Statistical Inference, APA Science Directorate, 1999)
was to temper the stridency of the anti-NHST movement:

Some had hoped that this task force would vote to recommend an outright ban on the use of
significance tests in psychology journals. . . . the task force hopes instead that this report
will induce editors, reviewers, and authors to recognize practices that institutionalize the
thoughtless application of statistical methods. (pp. 602–603).
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Most thoughtful methodologists seem to conclude that NHST is a statistical tool that
handles a certain type of question (e.g., Abelson, 1997; Muliak, Raju, Harshman, 1997;
Wainer, 1999). As with any tool, problems can arise with misuse, and other tools can
substitute for or complement NHST. However, the committee and many others concluded
that NHST should remain part of the methodologists toolbox, along with confidence
intervals, effect sizes, graphical analysis, and so on. We were reminded of this recent NHST
controversy when we read Roberts and Pashler’s (2000) article, which criticized the
evaluation of how well a model fits empirical data in the development of psychological and
social science theories. Like the critics of NHST, Roberts and Pashler had no difficulty
identifying examples in which model-fitting methodology has been misused. Like the
critics of NHST, they also pointed to methods to evaluate models that can substitute or
complement the evaluation of goodness-of-fit procedures. Like the critics of NHST, they
substantially overstated their case in their criticism of using good fits to support theories
(p. 365).

On the one hand, the reexamination of the viability of NHST was described by
Anderson, Burnham, and Thompson (2000), who showed that over the past 60
years an increasing number of articles have questioned the utility of NHST.

On the other hand, it is revealing that Thompson’s database, over the same time
period, showed a concomitant increase in the number of articles defending the
utility of NHST.

It is obvious that this phenomenon can formally be explained as follows:

• An application of NHST has a supporter (or an oppositionist) if the associated
statistical test is “objective” (or “subjective”).

One of the purposes of this book consists in putting into notions “objective” and
“subjective” reasonable mathematical senses and in providing this simple expla-
nation with a strong mathematical base.

It seems worthwhile also to use “subjective” statistical tests to try to construct
new “objective” statistical tests under which NHST remains a viable tool. Here we
will present a methodology for resolution of this problem under some restrictions
introduced by Pantsulaia and Kintsurashvili [PK2].

We are not going to consider in detail all relevant issues. Instead we shall focus
our attention on a certain confusion which is described in the works of Nunnally
[N] and Cohen [Coh].

In 1960, Nunnally [N] noticed that in many standard statistical tests null
hypotheses are always rejected and observed: “If the decisions are based on con-
vention they are termed arbitrary or mindless while those not so based may be
termed subjective. To minimize type II errors, large samples are recommended. In
psychology practically all null hypotheses are claimed to be false for sufficiently
large samples so … it is usually nonsensical to perform an experiment with the sole
aim of rejecting the null hypothesis”.

In 1994, Cohen [Coh] noticed some gaps between the theory of mathematical
statistics and the results of testing and observed: “… Don’t look for a magic
alternative to NHST [null hypothesis significance testing] … It does not exist.”
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Here the following question naturally arises:

• Whether can be explained Jacob Cohen and Jum Nunnally above mentioned
observations?

Estimating a useful signal for a linear one-dimensional stochastic system, we
plan to demonstrate the validity of Cohen and Nunnally’s predictions for a certain
standard hypothesis testing in terms of infinite samples such that the sum of errors
of I and II types is equal to zero (we refer to such tests as tests with a maximal
reliability). Note that working with infinite samples is a natural requirement because
a definition of consistent estimates can not be given without infinite samples.
Further, we plan to explain why a null hypothesis is claimed to be false for “almost
every” (in the sense of [HSY]) infinite sample.

Another goal of the present book is an application of the approach of “almost
every” (in the sense of [HSY]) in studying structures of domains of some infinite
sample statistics and in explaining why the null hypothesis is rejected for “almost
every” (in the sense of [HSY]) infinite sample by the associated NHST with a
maximal reliability.

In order to explain the large gap between the theory of mathematical statistics
and the results of hypothesis testing, by using the technique of Haar null sets in the
space of infinite samples, we introduce an essentially new approach which naturally
divides the class of all consistent infinite sample estimates of a useful signal in the
linear one-dimensional stochastic model into disjoint classes of subjective and
objective estimates. Following this approach, each consistent infinite sample esti-
mate has to pass a theoretical test on objectivity. This means that theoretical
statisticians should expend much effort in carrying out such a certification exam for
each consistent infinite-sample estimation.

Correspondingly, we have the following three objectives:

i. To introduce a new approach which naturally divides the class of all consistent
estimates of an unknown parameter in a Polish group into disjoint classes of
subjective and objective estimates.

ii. To construct tests on objectivity for consistent estimations of an unknown
parameter in a Polish group.

iii. To explain of the main requirement why each consistent infinite-sample
estimation must pass the certification exam on objectivity.

This book is devoted to the mathematical development of the first two items. We
also briefly discuss a few interesting mathematical points concerning item
(iii) (While there is a rich family of NHTSs whose corresponding statistical tests are
consistent, to date we have no information regarding their objectivity).

The book comprises six chapters, as outlined below:
Chapter 1 demonstrates that the technique for numerical calculation of some

one-dimensional improper Riemann integrals is similar to the technique given by
Weyl’s [W] celebrated theorem for continuous functions on ½0; 1�.

In Sect. 1.2 we consider some auxiliary notions and facts from the theory of
uniformly distributed sequences on the interval ½0; 1�. In Sect. 1.3 we present the
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proof of a certain modification of Kolmogorov’s Strong Law of Large Numbers and
the Glivenko-Cantelli theorem. In Sect. 1.4 we give an extension of the main result
of Baxa and Schoiβengeier [BS] for calculation of some improper one-dimensional
Riemann integrals by use of uniformly distributed sequences.

Chapter 2 presents a concept of infinite-dimensional Monte-Carlo integration
developed by Pantsulaia [P6].

In Sect. 2.2, in terms of the “Lebesgue measure” λ [B1], we consider concepts
of the uniform distribution and the Riemann integrability in infinite-dimensional
rectangles in R1 and prove infinite-dimensional versions of the famous results of

Lebesgue [N1] and Weyl [W], respectively. In this section we show that if ðαðkÞ
n Þn2N

is an infinite sequence of different integer numbers for every k 2 N, then a set of all
sequences ðxkÞk2N in R1 for which a sequence of increasing sets ðYnððxkÞk2NÞÞn2N
defined by

YnððxkÞk2NÞ ¼
Yn

k¼1

ðð [ n
j¼1f\α

ðkÞ
j xk [ ðbk � akÞgÞþ akÞ �

Y

k2Nnf1;...;ng
fakg

is not λ-uniformly distributed on the
Q

k2Nð½ak; bk�Þ is of λ measure zero and,
hence shy in R1, where \ � [ denotes the fractional part of the real number.

In Sect. 2.3, a Monte-Carlo algorithm for estimating the value of
infinite-dimensional Riemann integrals over infinite-dimensional rectangles in R1

described by Pantsulaia [P6] is presented. Further, we introduce Riemann inte-
grability for real-valued functions with respect to product measures in R1 and give
some sufficient conditions under which a real-valued function of infinitely many
real variables is Riemann integrable. We describe a Monte-Carlo algorithm for
computing of infinite-dimensional Riemann integrals for such functions.

In Sect. 2.4, we consider some interesting applications of Monte-Carlo algo-
rithms for computing of the infinite-dimensional Riemann integrals described in
Sect. 2.3.

Chapter 3 is devoted to study of the structure of the set of all sequences uni-
formly distributed in ½�1=2; 1=2�. Pantsulaia [P5] has shown that μ-almost every
element of R1 is uniformly distributed in ½�1=2; 1=2�, where μ denotes
Moore-Yamasaki-Kharazishvili measure in R1 for which μð½�1=2; 1=2�1Þ ¼ 1. In
Sect. 3.3 we prove that the set D of all real-valued sequences uniformly distributed
in ½�1=2; 1=2� is shy in RN . In Sect. 3.4, we demonstrate that in the Solovay model
[So1] the set F of all sequences uniformly distributed modulo 1 in ½�1=2; 1=2� is
prevalent set [HSY] in RN .

Chapter 4 contains a brief description of Yamasaki’s [Y] remarkable investigation
(1980) of the relationship between Moore-Yamasaki-Kharazishvili type measures
and infinite powers of Borel diffused probability measures on R. More precisely,
Yamasaki’s proof is given that no infinite power of the Borel probability measure
with a strictly positive density function on R has an equivalent Moore-Yamasaki-
Kharazishvili type measure. A certain modification of Yamasaki’s example is used
for the construction of such a Moore-Yamasaki-Kharazishvili type measure that is
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equivalent to the product of a certain infinite family of Borel probability measures
with a strictly positive density function on R. By virtue of the properties of
real-valued sequences equidistributed on the real axis, it is demonstrated that an
arbitrary family of infinite powers of Borel diffused probability measures with
strictly positive density functions on R is strongly separated and, accordingly, has an
infinite-sample well-founded estimator of the unknown distribution function. This
extends the main result established in [ZPS].

The last two chapters of the book present applications of the theories of Haar
null sets and of uniformly distributed sequences in ½0; 1� to statistics.

In Chap. 5, by using the notion of a Haar ambivalent set introduced by Balka,
Buczolich and Elekes [BBE], essentially new classes of statistical structures having
objective and strong objective estimates of unknown parameters are introduced in a
Polish non-locally-compact group admitting an invariant metric and relations
between them are studied. An example of a weakly separated statistical structure is
constructed for which a question asking “whether there exists a consistent estimate
of an unknown parameter” is not solvable in the theory ðZFÞ & ðDCÞ. A question
asking “whether there exists an objective consistent estimate of an unknown
parameter for any statistical structure in a non-locally compact Polish group with
an invariant metric when subjective one exists” is answered positively in [KKP]
when there exists at least one such a parameter the pre-image of which under this
subjective estimate is a prevalent set. This construction essentially uses the rather
recent celebrated result of Solecki [So2] concerning the partition of a non-locally
compact Polish group into a continuous family of pairwise disjoint Haar ambiva-
lents. These results are extensions of recent results of Pantsulaia and Kintsurashvili
[PK2]. Some examples of objective and strong objective consistent estimates in a
compact Polish group f0; 1gN are also considered in this chapter. At the end of the
chapter we present a certain claim for theoretical statisticians in which each con-
sistent estimation with domain in a non-locally compact Polish group equipped with
an invariant metric must pass the certification exam on objectivity prior to its
practical application and give some recommendations.

In Chap. 6, the notion of Haar null set firstly introduced by Christensen [Ch1] in
1973 and reintroduced in 1992 in the context of dynamical systems by Hunt, Sauer
and Yorke [HSY] is used in studying structures of domains of some infinite sample
statistics (for example, of an infinite sample average) and in explaining why the null
hypothesis is rejected for “almost every” infinite sample by hypothesis testing with
maximal reliability.
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Chapter 1
Calculation of Improper Integrals by Using
Uniformly Distributed Sequences

1.1 Introduction

A useful technique for numerical calculation of the one-dimensional Riemann inte-
gral for a real-valued Riemann integrable function over [0, 1] in terms of uniformly
distributed sequences was first given in 1916 by HermannWeyl’s celebrated theorem
as follows.

Theorem 1.1.1 ([KN], Corollary 1.1, p. 3) The sequence of real numbers (xn)n∈N ∈
[0, 1]∞ is uniformly distributed in [0, 1] if and only if for every real-valued Riemann
integrable function f on [0, 1] we have

lim
N→∞

∑N
n=1 f (xn)

N
=

∫ 1

0
f (x)dx . (1.1.1)

Main corollaries of this theorem were used successfully in Diophantine approxi-
mations and have applications to Monte Carlo integration (see, e.g., [KN, H1, H2]).
During the last decades the methods of the theory of uniform distribution modulo
one have been intensively used for calculation of improper Riemann integrals (see,
e.g., [S, BS]).

Note that the set S of all uniformly distributed sequences in [0, 1] viewed as
a subset of [0, 1]∞ has full �∞

1 -measure, where �∞
1 denotes the infinite power of

the linear Lebesgue measure �1 in [0, 1]. Therefore each element of the set S can
be used for calculation of the one-dimensional Riemann integral for an arbitrary
Riemann integrable real-valued function in [0, 1]. For an arbitrary Lebesgue inte-
grable function f in [0, 1], there naturally arises the following question.

Question 1.1.1 What is a maximal subset S f of S, each element of which can be
used for calculation of the Lebesgue integral over [0, 1] by the formula (1.1.1), if
this subset has the full �∞

1 -measure?

© Springer International Publishing Switzerland 2016
G. Pantsulaia, Applications of Measure Theory to Statistics,
DOI 10.1007/978-3-319-45578-5_1
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2 1 Calculation of Improper Integrals …

In this chapter we consider two tasks:
The first task is an investigation of Question1.1.1 by using Kolmogorov’s strong

law of large numbers.
The second task is an improvement of the following result of C. Baxa and

J. Schoiβengeier.

Theorem 1.1.2 ([BS], Theorem 1, p. 271) Let α be an irrational number, Q be a
set of all rational numbers, and F ⊆ [0, 1] ∩ Q be finite. Let f : [0, 1] → R be an
integrable, continuous almost everywhere, and locally bounded on [0, 1]\F. Assume
further that for every β ∈ F there is some neighborhood U of β such that f is either
bounded or monotone in [0, β) ∩ U and in (β, 1] ∩ U as well. Then the following
conditions are equivalent.

1. limn→∞ f (xn)
n = 0.

2. limN→∞ 1
N

∑N
k=1 f (xk) exists.

3. limN→∞ 1
N

∑N
k=1 f (xk) = ∫

(0,1) f (x)dx.

More precisely, we present an extension of the result of Theorem1.1.2 to max-
imal sets D f ⊂ S and E f ⊆ (0, 1)∞ strictly containing all sequences of the form
({αn})n∈N where α is an irrational number and calculate �∞

1 measures of D f and E f ,
respectively; This Chapter is organized as follows.

In Sect. 1.2 we consider some auxiliary notions and facts from the theory of
uniformly distributed sequences on the interval [0, 1]. In Sect. 1.3 we present
proofs of a certain modification of the Kolmogorov strong law of large numbers
and the Glivenko–Cantelli theorem. In Sect. 1.4 we consider an application of the
Kolmogorov strong law of large numbers to extension of the main result of Baxa and
Schoiβengeier [BS].

1.2 Some Auxiliary Notions and Facts from the Theory
of Uniform Distribution of Sequences

Definition 1.2.1 A sequence s1, s2, s3, . . . of real numbers from the interval [a, b]
is said to be uniformly distributed in the interval [a, b] if for any subinterval [c, d]
of the [a, b] we have

lim
n→∞

#({s1, s2, s3, . . . , sn} ∩ [c, d])
n

= d − c

b − a
, (1.2.1)

where # denotes a counting measure.

Definition 1.2.2 The sequence s1, s2, s3, . . . is said to be uniformly distributedmod-
ulo 1 if the sequence ({sn})n∈N of the fractional parts of the (sn)n∈N , is equidistributed
(equivalently, uniformly distributed) in the interval [0, 1].
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Example 1.2.1 ([KN], Exercise 1.12, p. 16) The sequence of all multiples of an
irrational α

0, α, 2α, 3α . . . (1.2.2)

is uniformly distributed modulo 1.

Remark 1.2.1 Note that a sequence (xk)k∈N ∈ (0, 1)∞ is uniformly distributed in
[0, 1] if and only if it is equidistributed modulo 1.

The following lemma contains an interesting application of uniformly distributed
sequences in (0, 1) for a calculation of theRiemann integral over the one-dimensional
unit interval [0, 1].
Lemma 1.2.1 (Weyl [W]) These two conditions are equivalent:
(i) (an)n∈N is equidistributed modulo 1.
(ii) for every Riemann integrable function f on [0, 1]

lim
n→∞

1

n

n∑

j=1

f ({a j }) =
∫

[0,1]
f (x)dx . (1.2.3)

Lemma 1.2.2 ([N1] Lebesgue Theorem, p. 359) Let f be a bounded real-valued
function on [0, 1]. Then f is Riemann integrable on [0, 1] if and only if f is �1 almost
everywhere continuous on [0, 1].
Lemma 1.2.3 ([KN] Lemma2.1, p. 182) Let B[0, 1] be a set of all bounded Borel
measurable functions on [0, 1] and let �∞

1 be the infinite power of the standard linear
Lebesgue measure �1 on [0, 1]. Then for f ∈ B[0, 1], we have

�∞
1 ({(xk)k∈N : (xk)k∈N ∈ [0, 1]∞ & lim

N→∞
1

N

N∑

n=1

f (xn) =
∫

[0,1]
f (x)dx}) = 1.

Proof Note that it is sufficient to prove Lemma1.2.3 for f ∈ B[0, 1] with
∫

[0,1]
f (x)dx = 0.

Indeed, if
∫
[0,1] f (x)dx = c �= 0, then we consider a function g defined by

g(x) = f (x) − c for x ∈ [0, 1]. The validity of Lemma1.2.3 for g implies

�∞
1 ({(xk)k∈N : (xk)k∈N ∈ [0, 1]∞ & lim

N→∞
1

N

N∑

n=1

( f (xn) − c) =
∫

[0,1]
( f (x) − c)dx}) = 1,

which is equivalent to the condition

�∞
1 ({(xk)k∈N : (xk)k∈N ∈ [0, 1]∞ & lim

N→∞
1

N

N∑

n=1

f (xn) =
∫

[0,1]
f (x)dx}) = 1.

http://dx.doi.org/10.1007/978-3-319-45578-5_2
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For N ≥ 1, we define FN on [0, 1]∞ as follows.

FN (x1, . . . , xn, . . .) = 1

N

N∑

n=1

f (xn).

Then we get

∫

[0,1]∞
F2
N (x1, . . .)d�∞

1 (x1, . . .)

= 1

N 2

N∑

n=1

∫

[0,1]∞
f 2(xn)d�∞

1 (x1, . . .)

+ 2

N 2

∑

1≤i< j≤N

∫

[0,1]∞
f (xi ) f (x j )d�∞

1 (x1, · · · )

= 1

N 2

N∑

n=1

∫

[0,1]
f 2(x)dx + 2

N 2

∑

1≤i< j≤N

(∫

[0,1]
f (x)d(x)

)2

= 1

N 2

N∑

n=1

∫

[0,1]
f 2(x)dx =

∫
[0,1] f

2(x)dx

N
. (1.2.4)

Hence

∞∑

m=1

∫

[0,1]∞
F2
m2(x1, . . .)d�∞

1 (x1, . . .)

=
∫

[0,1]
f 2(x)dx

∞∑

m=1

1

m2
< ∞. (1.2.5)

By Levi’s well-known theorem, we deduce that the sequence (Fm2)m≥1 tends to zero
and m tends to +∞ �∞

1 almost everywhere on [0, 1]∞. For N ≥ 1, we can choose
m ≥ 1 such that m2 ≤ N < (m + 1)2. Then we get

|FN | = ∣
∣ 1

N

(
f (x1) + · · · + f (xm2)

) + 1

N

(
f (xm2+1)

+ · · · + f (xN )
)∣
∣ = ∣

∣m
2

N
× 1

m2

(
f (x1)

+ · · · + f (xm2)
) + 1

N

(
f (xm2+1) + · · · + f (xN )

)∣
∣ (1.2.6)

≤ |Fm2 | + 2m

N
|| f || = |Fm2 | + 2m2

mN
|| f ||

≤ |Fm2 | + 2

m
|| f ||, (1.2.7)
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where || f || = supx∈[0,1] f (x).
Because the right-hand side of the last equality tends to zero when m tends to

+∞ (equivalently, N tends to +∞), we end the proof of Lemma1.2.3.

Lemma 1.2.4 ([KN] Theorem2.2, p. 183) Let S be a set of all elements of [0, 1]∞
that are uniformly distributed on [0, 1]. Then �∞

1 (S) = 1.

Proof Let ( fk)k∈N be a countable subclass ofB[0, 1] that defines a uniform conver-
gence on [0, 1].1 For k ∈ N , we set

Bk =
{

(xk)k∈N : (xk)k∈N ∈ [0, 1]∞ & lim
N→∞

1

N

N∑

n=1

fk(xn) =
∫

[0,1]
fk(x)dx

}

.

By Lemma1.2.3 we know that �∞
1 (Bk) = 1 for k ∈ N, which implies �∞

1
(∩k∈NBk) = 1. Thus

�∞
1

({

(xk)k∈N : (xk)k∈N ∈ [0, 1]∞ & (∀k)(k ∈ N → lim
N→∞

1

N

N∑

n=1

fk(xn)

=
∫

[0,1]
fk(x)dx

})

= 1. (1.2.8)

The latter relation means that �∞
1 almost every element of [0, 1]∞ is uniformly

distributed on [0, 1].

1.3 Kolmogorov Strong Law of Large Numbers
and Glivenko–Cantelli Theorem

We need some auxiliary facts from mathematical analysis and probability theory.

Lemma 1.3.1 (Kolmogorov–Khinchin ([Sh], Theorem 1, p. 371)) Let (X, S, μ) be
a probability space and let (ξn)n∈N be the sequence of independent random variables
forwhich

∫
X ξn(x)dμ(x) = 0. If

∑∞
n=1

∫
X ξ 2

n (x)dμ(x) < ∞, then the series
∑∞

n=1 ξn
converges with probability 1.

Proof We put Sn = ∑n
k=1 ξk for n ∈ N. We set

A = {x : x ∈ X & max |Sk(x)| ≥ ε},

1We say that a family ( fk)k∈N of elements ofB[0, 1] defines a uniform convergence on [0, 1], if for
each (xn)n∈N ∈ [0, 1]∞ the validity of the condition limN→∞ 1

N

∑N
n=1 fk(xn) = ∫

[0,1] fk(x)dx
for k ∈ N implies that (xn)n∈N is uniformly distributed on [0, 1]. Indicator functions of closed
subintervals of [0, 1] with rational endpoints is an example of such a family.

http://dx.doi.org/10.1007/978-3-319-45578-5_2
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Ak = {x : x ∈ X & |Si (x)| < ε for i = 1, . . . , k − 1 & |Sk(x)| ≥ ε}

for k = 1, 2, . . . , n.
It is obvious that A = ∑n

k=1 Ak and

∫

X
S2n (x)dμ(x) ≥

∫

X
S2n (x) × χA(x)dμ(x) =

n∑

k=1

∫

X
S2n (x) × χAk (x)dμ(x).

Because
∑k

i=1 ξi × χAk and
∑n

i=k+1 ξi are independent random variables and∫
X ξk(x)dμ(x) = 0 for k = 1, . . . , n, we get

∫

X
Sk(x) ×

n∑

i=k+1

ξi (x) × χAk (x)dμ(x)

=
∫

X
Sk(x) × χAk (x)dμ(x) ×

∫

X

n∑

i=k+1

ξi (x)dμ(x) = 0. (1.3.1)

The latter relation implies

∫

X
S2n (x) × χAk (x)dμ(x) =

∫

X
(Sk(x) +

n∑

i=k+1

ξi (x))
2 × χAk (x)dμ(x)

=
∫

X
S2k (x) × χAk (x)dμ(x) + 2

∫

X
Sk(x) ×

n∑

i=k+1

ξi (x) × χAk (x)dμ(x)

+
∫

X

(
n∑

i=k+1

ξi (x)

)2

× χAk (x)dμ(x) ≥
∫

X
S2k (x) × χAk (x)dμ(x), (1.3.2)

which means that

∫

X
S2n (x)dμ(x) ≥

∫

X
S2n (x) × χA(x)dμ(x) =

n∑

k=1

∫

X
S2n (x) × χAk (x)dμ(x)

≥
n∑

k=1

∫

X
S2k (x) × χAk (x)dμ(x) ≥ ε2 ×

n∑

k=1

μ(Ak) = ε2 × μ(A). (1.3.3)

Thus we have obtained the validity of the inequality

μ{x : x ∈ X & max
1≤k≤n

|Sk(x)| ≥ ε} ≤ 1

ε2

∫

X
S2n (x)dμ(x).

It is well known that the sequence (Sn)n∈N converges for μ almost every point
if and only if this sequence is fundamental for μ almost every point. But we know
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that (Sn)n∈N is fundamental for μ almost every point if and only if the following
condition

lim
n→∞ μ{x : sup

k≥1
|Sn+k(x) − Sk(x)| ≥ ε} = 0

holds true. We get

μ{x : sup
k≥1

|Sn+k(x) − Sk(x)| ≥ ε} = lim
N→∞ μ{x : x ∈ X & max

1≤k≤N
|Sn+k(x) − S(n)| ≥ ε}

≤ lim
N→∞

1

ε2

n+N∑

k=n

∫

X
ξ2k (x)dμ(x) = 1

ε2

∞∑

k=n

∫

X
ξ2k (x)dμ(x). (1.3.4)

Finally we get

lim
n→∞ μ{x : sup

k≥1
|Sn+k(x) − Sk(x)| ≥ ε} ≤ lim

n→∞
1

ε2

∞∑

k=n

∫

X
ξ 2
k (x)dμ(x) = 0.

This ends the proof of Lemma1.3.1.

Lemma 1.3.2 (Toeplitz Lemma ([Sh], Lemma 1, p. 377)) Let (an)n∈N be a sequence
of nonnegative numbers, bn = ∑n

i=1 ai , bn > 0 for each n ≥ 1 and bn ↑ ∞, when
n → ∞. Let (xn)n∈N be a sequence of real numbers such that limn→∞ xn = x. Then

lim
n→∞

1

bn

n∑

j=1

a j x j = x .

In particular, if an = 1 for n ∈ N, then

lim
n→∞

1

n

n∑

k=1

xk = x .

Proof For ε > 0, let n0 = n0(ε) be a natural number such that |xn − x | < ε
2 for

n ≥ n0. Let us choose n1 > n0 such that

1

bn1

n0∑

j=1

a j |x j − x | <
ε

2
.

Then for n > n1, we get

∣
∣ 1

bn

n∑

j=1

a j x j − x
∣
∣ ≤ 1

bn

n∑

j=1

a j |x j − x |
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= 1

bn

n0∑

j=1

a j |x j − x | + 1

bn

n∑

j=n0+1

a j |x j − x |

≤ 1

bn1

n0∑

j=1

a j |x j − x | + 1

bn

n∑

j=n0+1

a j |x j − x |

≤ ε

2
+

∑n
j=n0+1 a j

∑n
j=0 a j

ε

2
≤ ε. (1.3.5)

Lemma 1.3.3 (Kronecker Lemma ([Sh], Lemma 2, p. 378)) Let (bn)n∈N be an
increasing sequence of positive numbers such that bn ↑ ∞, when n → ∞, and
let (xn)n∈N be a sequence of real numbers such that the series

∑
k∈N xk converges.

Then

lim
n→∞

1

bn

n∑

j=1

b j x j = 0.

In particular, if bn = 0, xn = yn
n and the series

∑∞
n=1

yn
n converges then

lim
n→∞

∑n
k=1 yk
n

= 0.

Proof Let b0 = 0, s0 = 0, Sn = ∑n
j=1 x j . Then we get

n∑

j=1

b j x j =
n∑

j=1

b j (Sj − Sj−1) = bnSn − b0S0 −
n∑

j=1

Sj−1(b j − b j−1).

Because limn→∞ Sn = x for some x ∈ R, by the Toeplitz lemma (cf. Lemma1.3.2)
we get that

lim
n→∞

1

bn

n∑

j=1

Sj−1a j = x,

where a j = b j −b j−1 for 1 ≤ j ≤ n. By using the latter relation we easily conclude
that

lim
n→∞

1

bn

n∑

j=1

b j x j = lim
n→∞ Sn − lim

n→∞
1

bn

n∑

j=1

Sj−1a j = 0,

which implies

lim
n→∞

1

bn

n∑

j=1

b j x j = 0.

Below we give the proof of a certain modification of the Kolmogorov strong law
of large numbers (cf. [Sh], Theorem 3, p. 379).
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Theorem 1.3.1 Let (X,F, μ) be a probability space and let L(X) be a class of all
real-valued Lebesgue measurable functions on X. Let μ∞ be the infinite power of
the probability measure μ. Then for f ∈ L(X) we have μ∞(A f ) = 1, where A f is
defined by

A f =
{

(xk)k∈N : (xk)k∈N ∈ X∞ & lim
N→∞

1

N

N∑

n=1

f (xn) =
∫

X
f (x)dμ(x)

}

.

(1.3.6)

Proof Without loss of generality, we can assume that f is nonnegative. We put
ξk((xi )i∈N) = f (xk) for k ∈ N and (xi )i∈N ∈ X∞. We also put

ηk((xi )i∈N)

= 1

k

[

ξk((xi )i∈N)χ{ω:ξk (ω)<k}((xi )i∈N) −
∫

X∞
ξk((zi )i∈N)χ{ω:ξk (ω)<k}((zi )i∈N)dμ∞((zi )i∈N)

]

(1.3.7)

for (xi )i∈N ∈ X∞.
Note that (ηk)k∈N is the sequence of independent random variables for which∫

X∞ ηkdμ∞ = 0.

We have
∞∑

n=1

∫

X∞
η2n((xi )i∈N)dμ∞((xi )i∈N)

=
∞∑

n=1

1

n2

∫

X∞
ξ2n ((xi )i∈N)χ{(yi )i∈N :ξn((yi )i∈N)<n}((xi )i∈N)dμ∞((xi )i∈N)

−
∞∑

n=1

1

n2

(∫

X∞
ξn((xi )i∈N)χ{(yi )i∈N :ξn ((yi )i∈N)<n}((xi )i∈N)dμ∞((xi )i∈N)

)2

=
∞∑

n=1

1

n2

∫

X∞
f (xn)

2χ{(yi )i∈N : f (yn)<n}((xi )i∈N)dμ∞((xi )i∈N)

−
∞∑

n=1

1

n2

(∫

X∞
f (xn)χ{(yi )i∈N : f (yn)<n}((xi )i∈N)dμ∞((xi )i∈N)

)2

=
∞∑

n=1

1

n2

∫

X
f 2(x)χ{ω: f (ω)<n}(x)dμ(x) −

∞∑

n=1

1

n2

(∫

X
f (x)χ{ω: f (ω)<n}(x)dμ(x)

)2

≤
∞∑

n=1

1

n2

∫

X
f 2(x)χ{ω: f (ω)<n}(x)dμ(x) =

∞∑

n=1

1

n2

n∑

k=1

∫

X
f 2(x)χ{ω:k−1≤ f (ω)<k}(x)dμ(x)

=
∞∑

k=1

∫

X
f 2(x)χ{ω:k−1≤ f (ω)<k}(x)dμ((x))

∞∑

n=k

1

n2
≤2

∞∑

k=1

1

k

∫

X
f 2(x)χ{ω:k−1≤ f (ω)<k}(x)dμ(x)

≤ 2
∞∑

k=1

∫

X
f (x)χ{ω:k−1≤ f (ω)<k}(x)dμ((x)) = 2

∫

X
f (x)dμ(x). (1.3.8)
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Because

∞∑

n=1

∫

X
η2
n((xi )i∈N)dμ((xi )i∈N) < +∞, (1.3.9)

by using Lemma1.3.1 we get

μ

{

(xi )i∈N :
∞∑

k=1

1

k

[

f (xk)χ{(yi )i∈N: f (yk )<k}((xi )i∈N)

−
∫

X∞
ξk((zi )i∈N)χ{(yi )i∈N: f (yk )<k}((zi )i∈N)dμ∞((zi )i∈N)

]

is convergent

}

= 1.

(1.3.10)

Now by the Kronecker lemma (cf. Lemma1.3.3) we get that

μ∞
{

(xi )i∈N : lim
N→∞

1

N

N∑

k=1

[

f (xk)χ{(yi )i∈N: f (yk )<k}((xi )i∈N)

−
∫

X∞
ξk((zi )i∈N)χ{(yi )i∈N: f (yk )<k}((zi )i∈N)dμ∞((zi )i∈N)

]

= 0

}

= 1. (1.3.11)

Note that

∞∑

n=1

μ∞({(xi )i∈N : ξ1((xi )i∈N) ≥ n})

=
∞∑

n=1

∑

k≥n

μ∞{(xi )i∈N : k ≤ ξ1((xi )i∈N) < k + 1}

=
∞∑

k=1

kμ∞{(xi )i∈N : k ≤ ξ1((xi )i∈N) < k + 1}

=
∞∑

k=0

∫

X∞
kχ{(y j ) j∈N:k≤ξ1((yi )i∈N)<k+1}((zi )i∈N)dμ∞((zi )i∈N)

≤
∞∑

k=0

∫

X∞
ξ1((zi )i∈N)χ{(y j ) j∈N:k≤ξ1((y j ) j∈N)<k+1}((zi )i∈N)dμ∞((zi )i∈N)

=
∫

X∞
ξ1((zi )i∈N)dμ∞((zi )i∈N) < +∞. (1.3.12)

Because (ξk)k∈N is a sequence of equally distributed random variables on X∞, we
have
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∞∑

n=1

μ∞({(xi )i∈N : ξk((xi )i∈N) ≥ n}) ≤
∫

X∞
ξ1((xi )i∈N)dμ∞((xi )i∈N) < +∞,

(1.3.13)

which by the well-known Borelli–Cantelli lemma implies that

μ∞({(xi )i∈N : ξn((xi )i∈N) ≥ n} i.o.) = 0. (1.3.14)

The latter relation means that

μ∞({(xi )i∈N : (∃N ((xi )i∈N))(∀n ≥ N ((xi )i∈N) → ξn((xi )i∈N) < n}) = 1.
(1.3.15)

Thus, we have obtained the validity of the equality μ∞(A∗
f ) = 1, where

A∗
f =

{

(xi )i∈N : lim
N→∞

1

N

N∑

k=1

[

f (xk)χ{(yi )i∈N: f (yk )<k}((xi )i∈N)

−
∫

X∞
ξk((zi )i∈N)χ{(yi )i∈N: f (yk )<k}((zi )i∈N)dμ∞((zi )i∈N)

]

= 0

&(∃N ((xi )i∈N))(∀n > N ((xi )i∈N) → ξn((xi )i∈N) < n)

}

. (1.3.16)

Now it is obvious that for (xi )i∈N ∈ A∗
f , we have

0 = lim
N→∞

1

N

N∑

k=1

[

f (xk)χ{(yi )i∈N: f (yk )<k}((xi )i∈N)

−
∫

X∞
ξk((zi )i∈N)χ{(yi )i∈N: f (yk )<k}((zi )i∈N)dμ∞((zi )i∈N)

]

= lim
N→∞

1

N

N∑

k=N ((xi )i∈N)

[

f (xk)χ{(yi )i∈N: f (yk )<k}((xi )i∈N)

−
∫

X∞
ξk((zi )i∈N)χ{(yi )i∈N: f (yk )<k}((zi )i∈N)dμ∞((zi )i∈N)

]

= lim
N→∞

1

N

N∑

k=N ((xi )i∈N)

[

f (xk) −
∫

X
f (x)χ{y: f (y)<k}(x)dμ(x)

]

= lim
N→∞

1

N

N∑

k=1

[

f (xk) −
∫

X
f (x)χ{y: f (y)<k}(x)dμ(x)

]

. (1.3.17)

Inasmuch as
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lim
k→∞

∫

X
f (x)χ{y: f (y)<k}(x)dμ(x) =

∫

X
f (x)dμ(x), (1.3.18)

by Toeplitz’s lemma (cf. Lemma1.3.2) we get

lim
N→∞

1

N

N∑

k=1

∫

X
f (x)χ{y: f (y)<k}(x)dμ(x) =

∫

X
f (x)dμ(x) (1.3.19)

which implies that

lim
N→∞

1

N

N∑

k=1

f (xk) =
∫

X
f (x)dμ(x) (1.3.20)

for each (xi )i∈N ∈ A∗
f .

The validity of the inclusion A∗
f ⊆ A f ends the proof of Theorem1.3.1.

Remark 1.3.1 (Kolmogorov Strong Law of Large Numbers, [Sh], Theorem 3, p. 379)
Kolmogorov’s strong law of large numbers states that if (Ω,S , P) is a probability
space and (ξk)k∈N is a sequence of independent equally distributed random variables
for which mathematical expectation m of ξ1 is finite then the following condition

P

({

ω : ω ∈ Ω & lim
n→∞

∑n
k=1 ξk(ω)

n
= m

})

= 1

holds true.
Note the validity of Theorem1.3.1 can be obtained by the Kolmogorov strong law

of large numbers if we put (Ω,S , P) = (X∞,F∞, μ∞) and ξk((xi )i∈N ) = f (xk)
for each (xi )i∈N ∈ X∞, where (X,F, μ) come from Theorem1.3.1.

Theorem 1.3.2 (Glivenko–Cantelli Theorem) Let F be a distribution function and
let PF be a Borel probability measure in R with distribution function F. Then

P∞
F ({(xk)k∈N : (xk)k∈N ∈ R∞ & lim

n→∞ sup
x∈R

|#({x1, . . . , xn} ∩ (−∞, x])
n

− F(x)| = 0}) = 1.

Proof Let us consider a probability space (Ω,S , P) = (R∞,B(R∞), P∞
F ). For

x ∈ R, we put ξk((xi )i∈N ) = I(−∞,x](xk) for k ∈ N . It is obvious that (ξk)k∈N is
a sequence of equally distributed independent random variables with mathematical
expectation F(x). Indeed,

∫

R∞
ξk((xi )i∈N )dP∞

F ((xi )i∈N ) =
∫

R
I(−∞,x](xk)dPF (xk) = PF ((−∞, x]) = F(x).

By the strong law of large numbers we get

P∞
F ({(xk)k∈N : (xk)k∈N ∈ R∞ & lim

n→∞

∑n
k=1 ξk((xi )i∈N )

n
= F(x)}) = 1.



1.3 Kolmogorov Strong Law of Large Numbers … 13

But note that
∑n

k=1 ξk((xi )i∈N )

n
= #({x1, . . . , xn} ∩ (−∞, x])

n
.

Thus for x ∈ R, we get

P∞
F ({(xk)k∈N : (xk)k∈N ∈ R∞ & lim

n→∞
#({x1, . . . , xn} ∩ (−∞, x])

n
= F(x)}) = 1.

Similarly, for x ∈ R, we can prove that

P∞
F ({(xk)k∈N : (xk)k∈N ∈ R∞ & lim

n→∞
#({x1, . . . , xn} ∩ (−∞, x))

n
= F(x−)}) = 1,

where F(x−) = PF ((−∞, x]) − PF ({x}) is the left-hand limit of the function F at
point x .

For ε > 0, let k > 1/ε. We consider “knot” points κ0, . . . , κk for which

−∞ = κ0 < κ1 ≤ κ2 ≤ · · · ≤ κk−1 < κk = ∞

and κ0, . . . , κk defines a partition of R into disjoint intervals such that

F(κ−
j ) ≤ j

k
≤ F(κ j )

for j = 1, . . . , k − 1. Then by the construction, if κ j−1 < κ j we get

F(κ−
j ) − F(κ j−1) ≤ j

k
− ( j − 1)

k
= 1

k
< ε.

By the remark above we have

P∞
F ({(xk)k∈N : (xk)k∈N ∈ R∞ & lim

n→∞
#({x1, . . . , xn} ∩ (−∞, κ j ])

n
= F(κ j )}) = 1,

and

P∞
F ({(xk)k∈N : (xk)k∈N ∈ R∞ & lim

n→∞
#({x1, . . . , xn} ∩ (−∞, κ j ))

n
= F(κ−

j )})=1.

Then it immediately follows that, for each j ,

P∞
F ({(xk)k∈N : (xk)k∈N ∈ R∞ & lim

n→∞ |#({x1, . . . , xn} ∩ (−∞, κ j ])
n

− F(κ j )| = 0}) = 1,

and
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P∞
F ({(xk)k∈N : (xk)k∈N ∈ R∞ & lim

n→∞ |#({x1, . . . , xn} ∩ (−∞, κ j ))

n
− F(κ−

j )| = 0}) = 1.

The latter relation implies that

P∞
F ({(xk)k∈N : (xk)k∈N ∈ R∞ & lim

n→∞ �n((xk)k∈N ) = 0}) = 1,

where

�n((xk)k∈N )

= max
1≤ j≤k−1

{|#({x1, . . . , xn} ∩ (−∞, κ j ])
n

− F(κ j )|, |#({x1, . . . , xn} ∩ (−∞, κ j ))

n
− F(κ−

j )|}.
(1.3.21)

For any x find the interval within which x lies; that is, identify j such that

κ j−1 ≤ x < κ j .

Then we get

#({x1, . . . , xn} ∩ (−∞, x])
n

− F(x) ≤ #{x1, . . . , xn} ∩ (−∞, κ j ))

n
− F(κ j−1)

≤ #({x1, . . . , xn} ∩ (−∞, κ j ))

n
− F(κ−

j ) + ε (1.3.22)

and

#({x1, . . . , xn} ∩ (−∞, x])
n

− F(x) ≥ #({x1, . . . , xn} ∩ (−∞, κ j−1])
n

− F(κ−
j )

≥ #({x1, . . . , xn} ∩ (−∞, κ j−1])
n

− F(κ j−1) − ε. (1.3.23)

Thus we get

#({x1, . . . , xn} ∩ (−∞, κ j−1])
n

− F(κ j−1) − ε≤#({x1, . . . , xn} ∩ (−∞, x])
n

−F(x)

≤ #({x1, . . . , xn} ∩ (−∞, κ j ))

n
− F(κ−

j ) + ε. (1.3.24)

The latter relations, for each x ∈ R give that

P∞
F ({(xk)k∈N : (∀n)(n ∈ N ⇒ | #({x1, . . . , xn} ∩ (−∞, x])

n
−F(x)| ≤ �n((xk)k∈N )+ε)}) = 1,

which implies

P∞
F ({(xk )k∈N : (∀n)(n ∈ N ⇒ sup

x∈R
| #({x1, . . . , xn} ∩ (−∞, x])

n
−F(x)| ≤ �n((xk )k∈N )+ε)}) = 1.
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Because

{(xk)k∈N : (∀n)(n ∈ N ⇒ sup
x∈R

| #({x1, . . . , xn} ∩ (−∞, x])
n

− F(x)| ≤ �n((xk)k∈N ) + ε)}

⊆ {(xk)k∈N : lim
n→∞ sup

x∈R
| #({x1, . . . , xn} ∩ (−∞, x])

n
− F(x)| = ε)} (1.3.25)

we get

P∞
F ({(xk)k∈N : lim

n→∞ sup
x∈R

| #({x1, . . . , xn} ∩ (−∞, x])
n

− F(x)| = ε}) = 1.

Setting

Aε = {(xk)k∈N : lim
n→∞ sup

x∈R
| #({x1, . . . , xn} ∩ (−∞, x])

n
− F(x)| = ε},

we get P∞
F (Aε) = 1 for each ε > 0. Now if we put A = ∩ε>0Aε, then we obtain

P∞
F (A) = P∞

F (∩ε>0Aε) = P∞
F (∩∞

k=1A1/k) = lim
k→∞ P∞

F (A1/k) = 1,

which means that

P∞
F ({(xk)k∈N : (xk)k∈N ∈ R∞ & lim

n→∞ sup
x∈R

|#({x1, . . . , xn} ∩ (−∞, x])
n

− F(x)| = 0}) = 1.

This ends the proof of Theorem1.3.2.

1.4 Calculation of a Certain Improper One-Dimensional
Riemann Integral by Using Uniformly Distributed
Sequences

By using Theorem1.3.1 we get the validity of the following assertion.

Theorem 1.4.1 Let f be a Lebesgue integrable real-valued function on (0, 1). Then
we have

�∞
1 ({(xk)k∈N : (xk)k∈N ∈ [0, 1]∞ &(xk)k∈N is uniformly distributed in (0, 1)

& lim
N→∞

1

N

N∑

k=1

f (xk) =
∫ 1

0
f (x)dx}) = 1. (1.4.1)
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Proof Note that

{(xk)k∈N : (xk)k∈N ∈ [0, 1]∞

&(xk)k∈N is uniformly distributed in (0, 1) & lim
N→∞

1

N

N∑

k=1

f (xk) =
∫ 1

0
f (x)dx} = S ∩ A f ,

(1.4.2)

where S comes from Lemma1.2.4 and A f comes from Theorem1.3.1 when
(X,F, μ) = ((0, 1),B(0, 1), �1).

Note the answer to Question1.1.1 contained in the following statement.

Theorem 1.4.2 The set S f = A f ∩ S is a maximal subset of S, each element of
which can be used for calculation of the Lebesgue integral over [0, 1] by the formula
(1.1.1) and �∞

1 (S f ) = 1.

Observation 1.4.1 Let f : (0, 1) → R be a Lebesgue integrable function. Then we
have A f ⊆ B f , where

B f = {(xk)k∈N : (xk)k∈N ∈ (0, 1)∞ & lim
N→∞

1

N

N∑

k=1

f (xk) exists}. (1.4.3)

Observation 1.4.2 Let f : (0, 1) → R be a Lebesgue integrable function. Then we
have B f ⊆ C f , where

C f = {(xk)k∈N : (xk)k∈N ∈ (0, 1)∞ & lim
N→∞

f (xN )

N
= 0}. (1.4.4)

Proof For (xk)k∈N ∈ B f we get

lim
N→∞

f (xN )

N
= lim

N→∞
1

N

(
N∑

k=1

f (xk) −
N−1∑

k=1

f (xk)

)

= lim
N→∞

1

N

N∑

k=1

f (xk) − lim
N→∞

1

N

N−1∑

k=1

f (xk)

= lim
N→∞

1

N

N∑

k=1

f (xk) − lim
N−1→∞

N − 1

N

(
1

N − 1

N−1∑

k=1

f (xk)

)

= lim
N→∞

1

N

N∑

k=1

f (xk) − lim
N−1→∞

1

N − 1

N−1∑

k=1

f (xk) = 0. (1.4.5)

Remark 1.4.1 Note that for each Lebesgue integrable function f in (0, 1), the fol-
lowing inclusion S∩A f ⊆ S∩C f holds true, but the converse inclusion is not always
valid. Indeed, let (xk)k∈N be an arbitrary sequence of uniformly distributed numbers
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in (0, 1). Then the function f : (0, 1) → R, defined by f (x) = χ(0,1)\{xk :k∈N}(x) for
x ∈ (0, 1), is Lebesgue integrable, (xk)k∈N ∈ C f ∩ S but (xk)k∈N /∈ A f ∩ S because

lim
N→∞

1

N

N∑

n=1

f (xn) = 0 �= 1 =
∫

(0,1)
f (x)dx . (1.4.6)

Theorem 1.4.3 Let f : (0, 1) → R be a Lebesgue integrable function. Then the set
D f of all uniformly distributed sequences in (0, 1) for which the following conditions

1. limn→∞ f (xn)
n = 0.

2. limN→∞ 1
N

∑N
k=1 f (xk) exists.

3. limN→∞ 1
N

∑N
k=1 f (xk) = ∫

(0,1) f (x)dx.

4. (xk)k∈N is uniformly distributed in (0, 1)

are equivalent, has �∞
1 measure 1, and

D f = (
A f ∩ S) ∪ (

(S\A f ) ∩ (
S\B f ) ∩ (S\C f )

) = (
A f ∩ S) ∪ (S\C f ),

where S, A f , B f and C f come from Lemma1.2.4, Theorem1.3.1 (when (X,F, μ) =
((0, 1),B(0, 1), �1)), and Observations 1.4.1 and 1.4.2, respectively.

Proof By Lemma1.2.4 we know that �∞
1 (S) = 1. By Theorem1.3.1 we know that

�∞
1 (A f ) = 1 whenever (X,F, μ) = ((0, 1),B((0, 1)), �1). Following Observations
1.4.1 and 1.4.2 we have A f ⊆ B f ⊆ C f . Because S f = A f ∩B f ∩C f ∩S = A f ∩S,
we get

�∞
1 (S f ) = �∞

1 (A f ∩ S) = 1. (1.4.7)

Because S f ⊆ D f we end the proof of theorem.

Corollary 1.4.1 LetQ be a set of all rational numbers of [0, 1] and F ⊆ [0, 1] ∩Q
be finite. Let f : [0, 1] → R be Lebesgue integrable, and �1 almost everywhere
continuous and locally bounded on [0, 1]\F. Assume that for every β ∈ F there is
some neighborhood Uβ of β such that f is either bounded or monotone in [0, β) ∩
Uβ and in (β, 1] ∩ Uβ as well. Let S, A f , B f and C f come from Lemma1.2.4,
Theorem1.3.1 (when (X,F, μ) = ((0, 1),B(0, 1), �1)), and Observations 1.4.1 and
1.4.2, respectively. We set

D f = (
A f ∩ S) ∪ (

(S\A f ) ∩ (
S\B f ) ∩ (S\C f )

) = (
A f ∩ S) ∪ (S\C f ).

Then for (xk)k∈N ∈ D f the following conditions are equivalent.

1. limn→∞ f (xn)
n = 0.

2. limN→∞ 1
N

∑N
k=1 f (xk) exists.

3. limN→∞ 1
N

∑N
k=1 f (xk) = ∫

(0,1) f (x)dx.
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Note that D f is the maximal subset of the set S in which conditions 1 to 3
participated in the formulation of Corollary1.4.1 are equivalent, provided that for
each (xk)k∈N ∈ D f the sentences 1 to 3 are true or false simultaneously, and for
each (xk)k∈N ∈ S\D f the sentences 1 to 3 are not true or false simultaneously. This
extends the main result of Baxa and Schoiβengeier [BS] because the class S∗ of all
sequences of the form ({nα})n∈N is in D f for each irrational number α, and not every
element of D f can be presented in the same form. For example,

({(n + 1/2(1 − χ{k:k≥2}(n)))πχ{k:k≥2}(n)})n∈N ∈ D f \S∗, (1.4.8)

where {·} denotes the fractional part of the real number and χ{k:k≥2} denotes the
indicator function of the set {k : k ≥ 2}.

Similarly, setting

E f = A f ∪ ((0, 1)∞\C f )), (1.4.9)

we get a maximal subset of (0, 1)∞ in which Conditions 1 to 3 participated in the
formulation of Corollary1.4.1 and are equivalent, provided that for each (xk)k∈N ∈
E f the sentences 1 to 3 are true or false simultaneously, and for each (xk)k∈N ∈
(0, 1)∞\E f the sentences 1 to 3 are not true or false simultaneously.

Remark 1.4.2 Main results of Sect. 1.4 has been obtained in [P1].
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Chapter 2
Infinite-Dimensional Monte Carlo
Integration

2.1 Introduction

In mathematics, Monte Carlo integration is a technique for numerical integration
using random numbers and a a particular Monte Carlo method numerically com-
putes the Riemann integral. Whereas other algorithms usually evaluate the integrand
at a regular grid, Monte Carlo randomly chooses points at which the integrand is
evaluated. This method is particularly useful for higher-dimensional integrals. There
are different methods to perform a Monte Carlo integration, such as uniform sam-
pling, stratified sampling, and importance sampling. In this chapter we describe a
certain technique for numerical calculation of infinite-dimensional integrals by using
methods of the theory of uniform distribution modulo (u.d.mod) 1. Development of
this theory for one-dimensional Riemann integrals was begun by Hermann Weyl’s
[W] celebrated theorem.

Theorem 2.1.1 ([KN], Theorem 1.1, p. 2) The sequence (xn)n∈N of real numbers is
u.d. mod 1 if and only if for every real-valued continuous function f defined on the
closed unit interval I = [0, 1] we have

lim
N→∞

∑N
n=1 f ({xn})

N
=

∫

I
f (x)dx, (2.1.1)

where {·} denotes the fractional part of the real number.
Main corollaries of this theorem were used successfully in Diophantine approxi-

mations and have applications to Monte Carlo integration (see, e.g., [H1, H2, KN]).
During the last decades themethods of the theory of uniform distributionmodulo one
have been intensively used in various branches of mathematics as diverse as number
theory, probability theory, mathematical statistics, functional analysis, topological
algebra, and so on.

© Springer International Publishing Switzerland 2016
G. Pantsulaia, Applications of Measure Theory to Statistics,
DOI 10.1007/978-3-319-45578-5_2

19
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In [P2], the concept of increasing families of finite subsets uniformly distributed
in infinite-dimensional rectangles has been introduced and a certain infinite general-
ization of the Theorem 2.1.1 has been obtained as follows.

Theorem 2.1.2 ([P2], Theorem 3.5, p. 339) Let (Yn)n∈N be an of [0, 1]∞. Then
(Yn)n∈N is uniformly distributed in the infinite-dimensional rectangle [0, 1]∞ if and
only if for every Riemann integrable function f on [0, 1]∞ the following equality

lim
n→∞

∑
y∈Yn f (y)

#(Yn)
=

∫

[0,1]∞
f (x)dλ(x) (2.1.2)

holds true, where λ denotes the infinite-dimensional “Lebesgue measure” [B1].

The purpose of the present chapter is to consider some corollaries and applications
of Theorem 2.1.2. More precisely, we elaborate Monte Carlo integration for real-
valued functions of infinitely many variables.

This chapter is organized as follows.
In Sect. 2.2, in terms of the “Lebesgue measure” λ [B1], we consider concepts of

the uniform distribution and Riemann integrability in infinite-dimensional rectangles
in R∞ and prove infinite-dimensional versions of Lebesgue’s [N] and Weyl’s [W]
famous results, respectively. In this section we show that if (α(k)

n )n∈N is an infinite
sequence of different integer numbers for every k ∈ N , then a set of all sequences
(xk)k∈N in R∞ for which a sequence of increasing sets (Yn((xk)k∈N ))n∈N is not λ
uniformly distributed on the

∏
k∈N [ak, bk]), where

Yn((xk)k∈N ) =
n∏

k=1

((∪n
j=1{< α(k)

j xk > (bk − ak)}) + ak) ×
∏

k∈N\{1,...,n}
{ak}

andλ is the “Lebesguemeasure” constructed byR. Baker in 1991, and is ofλmeasure
zero, and hence shy in R∞.

In Sect. 2.3, a Monte Carlo algorithm for estimating the value of infinite-
dimensional Riemann integrals over infinite-dimensional rectangles in R∞ is
described. Furthermore, we introduce Riemann integrability for real-valued func-
tions with respect to product measures in R∞ and give some sufficient conditions
under which a real-valued function of infinitely many real variables is Riemann inte-
grable. We describe a Monte Carlo algorithm for computing infinite-dimensional
Riemann integrals for such functions.

In Sect. 2.4, we consider some interesting applications of Monte Carlo algorithms
for computing infinite-dimensional Riemann integrals described in Sect. 2.3.
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2.2 Uniformly Distributed Sequences of an Increasing
Family of Finite Sets in Infinite-Dimensional Rectangles

Definition 2.2.1 A bounded sequence s1, s2, s3, . . . of real numbers is said to be
equidistributed or uniformly distributed on an interval [a, b] if for any subinterval
[c, d] of the [a, b] we have

lim
n→∞

#({s1, s2, s3, . . . , sn} ∩ [c, d])
n

= d − c

b − a
,

where # denotes a counting measure.

Remark 2.2.1 For a ≤ c < d ≤ b, let ][c, d][ denote a subinterval of the [a, b]
that has one of the following forms [c, d], [c, d[, ]c, d[ or ]c, d]. Then it is obvious
to show that a bounded sequence s1, s2, s3, . . . of real numbers is equidistributed or
uniformly distributed on an interval [a, b] iff, for any subinterval][c, d][of the [a, b],
we have

lim
n→∞

#({s1, s2, s3, . . . , sn}∩][c, d][)
n

= d − c

b − a
.

Definition 2.2.2 (Weyl [W]) The sequence s1, s2, s3, . . . is said to be equidistributed
modulo 1 or uniformly distributedmodulo 1 if the sequence (sn−[sn])n∈N of the frac-
tional parts of the (sn)n∈N ’s is equidistributed (equivalently, uniformly distributed)
in the interval [0, 1].
Example 2.2.1 ([KN], Exercise 1.12, p. 16) The sequence of all multiples of an
irrational α

0, α, 2α, 3α, . . .

is uniformly distributed modulo 1.

Example 2.2.2 ([KN], Exercise 1.13, p. 16) The sequence

0

1
,
0

2
,
1

2
,
0

3
,
1

3
,
2

3
, . . . ,

0

k
, . . . ,

k − 1

k
, . . .

is uniformly distributed modulo 1.

Example 2.2.3 The sequence of all multiples of an irrational α by successive prime
numbers

2α, 3α, 5α, 7α, 11α, . . .

is equidistributed modulo 1. This is a famous theorem of analytic number theory,
proved by I. M. Vinogradov in 1935 (see [V]).
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Agreement In the sequel, unlike N. Bourbaki’s well-known notion, under N we
understand a set {1, 2, . . . }.
Remark 2.2.2 If (sk)k∈N is uniformly distributed modulo 1, then ((sk − [sk])(b −
a) + a)k∈N is uniformly distributed in an interval [a, b).

The following assertion contains an interesting application of uniformly distrib-
uted sequences for a calculation of Riemann integrals.

Lemma 2.2.1 (Weyl [W]) The following two conditions are equivalent.
(i) (an)n∈N is equidistributed modulo 1.
(ii) for every Riemann integrable function f on [0, 1]

lim
n→∞

1

n

n∑

j=1

f (a j ) =
∫

[0,1]
f (x)dx .

Remark 2.2.3 Let s1, s2, s3, . . . be uniformly distributed in an interval [a, b]. Setting
Yn = {s1, s2, s3, . . . , sn} for n ∈ N , the (Yn)n∈N will be an increasing sequence of
finite subsets of the [a, b] such that, for any subinterval [c, d] of the [a, b], the
following equality

lim
n→∞

#(Yn ∩ [c, d])
#(Yn)

= d − c

b − a

will be valid.

Remark 2.2.3 gives rise to the following definition.

Definition 2.2.3 An increasing sequence (Yn)n∈N of finite subsets of the [a, b] is
said to be equidistributed or uniformly distributed in an interval [a, b] if, for any
subinterval [c, d] of the [a, b], we have

lim
n→∞

#(Yn ∩ [c, d])
#(Yn)

= d − c

b − a
.

Definition 2.2.4 Let
∏

k∈N [ak, bk] ∈ R. A set U is called an elementary rectangle
in the

∏
k∈N [ak, bk] if it admits the representation:

U =
m∏

k=1

][ck, dk][×
∏

k∈N\{1,...,m}
[ak, bk],

where ak ≤ ck < dk ≤ bk for 1 ≤ k ≤ m.
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It is obvious that

λ(U ) =
m∏

k=1

(dk − ck) ×
∞∏

k=m+1

(bk − ak),

for the elementary rectangle U .

Definition 2.2.5 An increasing sequence (Yn)n∈N of finite subsets of the infinite-
dimensional rectangle

∏
k∈N [ak, bk] ∈ R is said to be uniformly distributed in the∏

k∈N [ak, bk] if for every elementary rectangle U in the
∏

k∈N [ak, bk[ we have

lim
n→∞

#(Yn ∩U )

#(Yn)
= λ(U )

λ(
∏

k∈N [ak, bk[) .

Theorem 2.2.1 ([P2], Theorem 3.1, p. 4) Let
∏

k∈N [ak, bk] ∈ R. Let (x (k)
n )n∈N be

uniformly distributed in the interval [ak, bk] for k ∈ N. We set

Yn =
n∏

k=1

(∪n
j=1x

(k)
j ) ×

∏

k∈N\{1,...,n}
{x (k)

1 }.

Then (Yn)n∈N is uniformly distributed in the rectangle
∏

k∈N [ak, bk].
Proof Let U be an elementary rectangle in the

∏
k∈N [ak, bk].

Because (x (k)
n )n∈N is uniformly distributed in the interval [ak, bk] for k ∈ N , we

get

lim
n→∞

#({x (k)
1 , x (k)

2 , . . . , x (k)
n }∩][ck, dk][)

n
= dk − ck

bk − ak
.

Therefore we have

lim
n→∞

#(Yn ∩U )

#(Yn)
= lim

n→∞

m∏

k=1

#({x (k)
1 , x (k)

2 , . . . , x (k)
n }∩][ck, dk][)

n

=
m∏

k=1

lim
n→∞

#({x (k)
1 , x (k)

2 , . . . , x (k)
n }∩][ck, dk][)

n

=
m∏

k=1

dk − ck
bk − ak

= λ(U )

λ(
∏

k∈N [ak, bk]) . (2.2.1)

The theorem is proved.

Remark 2.2.4 In the context of Theorem 2.2.1, it is natural to ask whether there
exists an increasing sequence of finite subsets (Yn)n∈N such that



24 2 Infinite-Dimensional Monte Carlo Integration

lim
n→∞

#(Yn ∩U )

#(Yn)
= λ(U )

λ(
∏

k∈N [ak, bk])

for every infinite-dimensional rectangle U = ∏
k∈N Xk ⊂ ∏

k∈N [ak, bk], where, for
each k ∈ N , Xk is a finite sum of pairwise disjoint intervals in [ak, bk].

Let us show that the answer to this question is no.
Indeed, assume the contrary and let (Yn)n∈N be such an increasing sequence of

finite subsets in
∏

k∈N [ak, bk[. Then we have

∪n∈NYn = {(x (k)
i )i∈N : k ∈ N }.

For k ∈ N , we set Xk = [ak, bk] \ x (k)
k . Then, it is clear that

λ
( ∏

k∈N
Xk

)
= λ

( ∏

k∈N
[ak, bk]

)

and

#(Yn ∩ ∏
k∈N Xk)

#(Yn)
= 0

for k ∈ N , which follows

lim
n→∞

#(Yn ∩ ∏
k∈N Xk)

#(Yn)
= 0 < 1 = λ(

∏
k∈N Xk)

λ(
∏

k∈N [ak, bk]) .

Definition 2.2.6 Let
∏

k∈N [ak, bk] ∈ R. A family of pairwise disjoint elementary
rectangles τ = (Uk)1≤k≤n of the

∏
k∈N [ak, bk] is called the Riemann partition of the∏

k∈N [ak, bk] if ∪1≤k≤nUk = ∏
k∈N [ak, bk].

Definition 2.2.7 Let τ = (Uk)1≤k≤n be the Riemann partition of the
∏

k∈N [ak, bk].
Let �(Pri (Uk)) be a length of the i th projection Pri (Uk) of theUk for i ∈ N . We set

d(Uk) =
∑

i∈N

�(Pri (Uk))

2i (1 + �(Pri (Uk))
.

It is obvious that d(Uk) is a diameter of the elementary rectangle Uk for k ∈ N with
respect to the Tikhonov metric ρ defined as

ρ((xk)k∈N , (yk)k∈N ) =
∑

k∈N

|xk − yk |
2k(1 + |xk − yk |)

for (xk)k∈N , (yk)k∈N ∈ R∞.
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A number d(τ ), defined by

d(τ ) = max{d(Uk) : 1 ≤ k ≤ n}

is called the mesh or norm of the Riemann partition τ .

Definition 2.2.8 Let τ1 = (U (1)
i )1≤i≤n and τ2 = (U (2)

j )1≤ j≤m be Riemann partitions
of the

∏
k∈N [ak, bk]. We say that τ2 ≤ τ1 iff

(∀ j)((1 ≤ j ≤ m) → (∃i0)(1 ≤ i0 ≤ n & U (2)
j ⊆ U (1)

i0
)).

Definition 2.2.9 Let f be a real-valued bounded function defined on the∏
i∈N [ai , bi ]. Let τ = (Uk)1≤k≤n be the Riemann partition of the

∏
k∈N [ak, bk]

and (tk)1≤k≤n be a sample such that, for each k, tk ∈ Uk . Then
(i) A sum

∑n
k=1 f (tk)λ(Uk) is called the Riemann sum of the f with respect to

Riemann partition τ = (Uk)1≤k≤n together with sample (tk)1≤k≤n .
(ii) A sum Sτ = ∑n

k=1 Mkλ(Uk) is called the upper Darboux sum with respect to
Riemann partition τ , where Mk = supx∈Uk

f (x)(1 ≤ k ≤ n).
(iii) A sum sτ = ∑n

k=1 mkλ(Uk) is called the lower Darboux sum with respect to
Riemann partition τ , where mk = inf x∈Uk f (x)(1 ≤ k ≤ n).

Definition 2.2.10 Let f be a real-valued bounded function defined on
∏

i∈N [ai , bi [.
We say that the f is Riemann integrable on

∏
i∈N [ai , bi ] if there exists a real number

s such that for every positive real number ε there exists a real number δ > 0 such
that, for every Riemann partition (Uk)1≤k≤n of the

∏
k∈N [ak, bk] with d(τ ) < δ and

for every sample (tk)1≤k≤n , we have

∣
∣

n∑

k=1

f (tk)λ(Uk) − s
∣
∣ < ε.

The number s is called the Riemann integral and is denoted by

(R)

∫

∏
k∈N [ak ,bk ]

f (x)dλ(x).

Definition 2.2.11 A function f is called a step function on
∏

k∈N [ak, bk] if it can
be written as

f (x) =
n∑

k=1

ckXUk (x),

where τ = (Uk)1≤k≤n is any Riemann partition of the
∏

k∈N [ak, bk], ck ∈ R for
1 ≤ k ≤ n and XA is the indicator function of the A.
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Theorem 2.2.2 Let f be a continuous function on
∏

k∈N [ak, bk] with respect to the
Tikhonov metric ρ. Then f is Riemann integrable on

∏
k∈N [ak, bk].

Proof It is obvious that, for every Riemann partition τ = (Uk)1≤k≤n of the∏
k∈N [ak, bk] and for every sample (tk)1≤k≤n with tk ∈ Uk(1 ≤ k ≤ n), we have

sτ ≤
n∑

k=1

f (tk)λ(Uk) ≤ Sτ .

Note that if τ1 and τ2 are two Riemann partitions of the
∏

k∈N [ak, bk] such that
τ2 ≤ τ1, then

sτ1 ≤ sτ2 ≤
n∑

k=1

f (tk)λ(Uk) ≤ Sτ2 ≤ Sτ1 .

Let us show the validity of the condition

(∀ε)(ε > 0 → (∃r)(∀τ)(d(τ ) < r → Sτ − sτ < ε)),

which yields that infτ Sτ = supτ sτ .
Following Tikhonov’s theorem, the

∏
k∈N [ak, bk] is a compact set in the Polish

group R∞ equipped with the Tikhonov metric ρ.
Following Cantor’s well-known result, the function f is uniformly continuous on

the
∏

k∈N [ak, bk]. Thus for ε > 0, there exists r > 0 such that

(∀x, y)
(
x, y ∈

∏

k∈N
[ak, bk]&ρ(x, y) < r → | f (x) − f (y)| ≤ ε

λ(
∏

k∈N [ak, bk])
)
.

Thus, for every Riemann partition τ = (Uk)1≤k≤n with d(τ ) < r we get

Sτ − sτ ≤ ε

λ(
∏

k∈N [ak, bk[) ×
∑

1≤k≤n

λ(Uk) = ε.

Thus, infτ Sτ = supτ sτ .
Finally, setting δ = r and s = infτ Sτ , we deduce that for every Riemann partition

(Uk)1≤k≤n of the
∏

k∈N [ak, bk] with d(τ ) < δ and for every sample (tk)1≤k≤n with
tk ∈ Uk(1 ≤ k ≤ n), we have

∣
∣
∣

n∑

k=1

f (tk)λ(Uk) − s
∣
∣
∣ ≤ Sτ − sτ ≤ ε.

This ends the proof of Theorem 2.2.2.
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We have the following infinite-dimensional version of the Lebesgue theorem (see
[N], Lebesgue Theorem, p. 359).

Theorem 2.2.3 Let f be a bounded real-valued function on
∏

k∈N [ak, bk] ∈ R.
Then f is Riemann integrable on

∏
k∈N [ak, bk] if and only if f is λ almost continuous

on
∏

k∈N [ak, bk].
Proof (Necessity) Let f be a Riemann integrable function on

∏
k∈N [ak, bk] ∈ R.

Then, for every ε > 0 andμ > 0, there exists a Riemann partition τ = (Uk)1≤k≤n

such that

ε × μ ≥ Sτ − sτ ≥
∑

1≤k≤n

(Mk − mk)λ(Uk)

≥
∑

k∈I1
(Mk − mk)λ(Uk) ≥ μ

∑

k∈I1
λ(Uk), (2.2.1)

where I1 = {k : 1 ≤ k ≤ n &Uk contains at least one inner point p belonging to the
set Eμ}, where

Eμ =
{
x : x ∈

∏

k∈N
[ak, bk] & ω( f, x) ≥ μ

}

and

ω( f, x) = lim
δ→0

sup
x ′

,x "∈V (x,δ)∩∏
k∈N [ak ,bk ]

∣
∣ f (x

′
) − f (x ")

∣
∣.

Here, for x ∈ R∞ and δ > 0, V (x, δ) is denoted by

V (x, δ) =
{
y : y ∈

∏

k∈N
[ak, bk] &ρ(x, y) ≤ δ

}
.

Because, for k ∈ I1, p is an inner point of theUk , there exists V (p, δ(k, p)) such
that V (p, δ(k, p)) ⊆ Uk .

Inasmuch as ω( f, p) ≥ μ, we have

Mk − mk ≥ Mp − mp ≥ ω( f, p) ≥ μ,

where

Mp = sup
x∈V (p,δ(k,p))

f (x), mδ = inf
x∈V (p,δ(k,p))

f (x).
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From (2.2.1), we get

ε ≥
∑

k∈I1
λ(Uk).

Other points of the Eμ, which are not inner points of elements of the partition τ ,
may be placed on the boundary of elements of the τ , whose λ measure is zero.

Thus, for μ > 0, we have

λ(Eμ) ≤
∑

k∈I1
λ(Uk) + λ(∪1≤k≤n∂(Uk)) ≤ ε

μ
,

which yields that λ(Eμ) = 0. Because a set E of all points of discontinuity of the f
admits the representation E = ∪∞

k=1E 1
k
, we deduce that λ(E) = 0.

This ends Necessity.
Proof of the sufficiency. Let, for K ∈ R+, us have | f (x)| ≤ K whenever

x ∈ ∏
k∈N [ak, bk].

Suppose that f is λ almost continuous on
∏

k∈N [ak, bk].
For ε > 0, let μ be such a positive number that

4μλ
( ∏

k∈N
[ak, bk]

)
< ε.

Because, for a set E of all points of discontinuity of the f on
∏

k∈N [ak, bk]wehave
λ(E) = 0, we easily claim that λ(Eμ) = 0. Because Eμ is closed in

∏
k∈N [ak, bk],

we claim that Eμ is compact. Hence, for ε > 0, there exists a finite family of open
elementary rectangles in

∏
k∈N [ak, bk] whose union covers Eμ such that

λ(∪1≤k≤nUk) <
ε

4K
.

Finally, we have

∏

k∈N
[ak, bk] = ∪1≤k≤nUk ∪ F,

where F is a compact subset in
∏

k∈N [ak, bk].
It is obvious that, for every point x ∈ F , we have ω( f, x) < μ. Because F

is compact, we can choose δ > 0 such that for every x, x
′ ∈ F the condition

ρ(x, x
′
) < δ yields

∣
∣ f (x) − f (x

′
)
∣
∣ < 2λ.

F is a finite union of elementary rectangles in
∏

k∈N [ak, bk] (this follows from
the fact that the class of all elementary rectangles in

∏
k∈N [ak, bk] is a ring),

therefore there exists a partition τ1 = (Fi )2≤i≤m of the F such that, for i with
2 ≤ i ≤ m, Fi is an elementary rectangle in

∏
k∈N [ak, bk] with d(Fi ) < δ. Then

τ = {∪1≤k≤nUk, F2, . . . , Fm} will be a Riemann partition of the
∏

k∈N [ak, bk] such
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that

Sτ − sτ = (M1 − m1)λ(∪1≤k≤nUk) +
∑

1≤i≤m

(Mi − mi )λ(Fk)

≤ ε

2
+ 2μλ(

∏

k∈N
[ak, bk])) ≤ ε

2
+ ε

2
= ε.

The theorem is proved.

Remark 2.2.5 Note that Theorem 2.2.2 can be considered as a simple consequence
of Theorem 2.2.3. Now, by using Theorem 2.2.3, one can extend the concept of the
Riemann integrability theory for functions defined in the topological vector space
R∞ of all real-valued sequences equipped with Tikhonov topology.

In the sequelweneed some important notions andwell-known results fromgeneral
topology and measure theory.

Definition 2.2.12 A topological Hausdorff space X is called normal if given any
disjoint closed sets E and F , there are neighborhoods U of E and V of F that are
also disjoint.

Lemma 2.2.2 (Urysohn [Ur])A topological space X is normal if and only if any two
disjoint closed sets can be separated by a function. That is, given disjoint closed sets
E and F, there is a continuous function f from X to [0, 1] such that the preimages
of 0 and 1 under f are E and F, respectively.

Remark 2.2.6 Because all compact Hausdorff spaces are normal, we deduce that∏
k∈N [ak, bk] equipped with Tikhonov topology, is normal. By Urysohn’s lemma

we deduce that any two disjoint closed sets in
∏

k∈N [ak, bk] can be separated by a
function.

Definition 2.2.13 A Borel measure μ, defined on a Hausdorff topological space X ,
is called a Radon if

(∀Y )(Y ∈ B(X) & 0 ≤ μ(Y ) < +∞ → μ(Y ) = sup
K⊆Y

K is compact in X

μ(K )).

Lemma 2.2.3 (Ulam [Ul])Every probability Borelmeasure defined onPolishmetric
space is a Radon.

In the sequel we denote byC (
∏

k∈N [ak, bk]) a class of all continuous (with respect
to Tikhonov topology) real-valued functions on

∏
k∈N [ak, bk].
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Theorem 2.2.4 For
∏

i∈N [ai , bi ] ∈ R, let (Yn)n∈N be an increasing family of its
finite subsets. Then (Yn)n∈N is uniformly distributed in the

∏
k∈N [ak, bk] if and only

if for every f ∈ C (
∏

k∈N [ak, bk]) the equality

lim
n→∞

∑
y∈Yn f (y)

#(Yn)
=

(R)
∫
∏

k∈N [ak ,bk ] f (x)dλ(x)

λ
(∏

i∈N [ai , bi ]
)

holds.

Proof Necessity. Let (Yn)n∈N be a uniformly distributed in the
∏

k∈N [ak, bk] and let
f (x) = ∑m

k=1 ckXUk (x) be a step function. Then we have

lim
n→∞

∑
y∈Yn f (y)

#(Yn)
= lim

n→∞

∑
y∈Yn

∑m
k=1 ckXUk (y)

#(Yn)

= lim
n→∞

∑m
k=1 ck#(Uk ∩ Yn)

#(Yn)
=

m∑

k=1

ck lim
n→∞

#(Uk ∩ Yn)

#(Yn)

=
m∑

k=1

ck
λ(Uk)

λ(
∏

i∈N [ai , bi ]) =
(R)

∫
∏

k∈N [ak ,bk ] f (x)dλ(x)

λ(
∏

i∈N [ai , bi ]) .

Now, let f ∈ C (
∏

k∈N [ak, bk]). By Theorem 2.2.3 we deduce that f is Riemann
integrable. From the definition of the Riemann integral we deduce that, for every
positive ε, there exist two step functions f1 and f2 on

∏
i∈N [ai , bi ] such that

f1(x) ≤ f (x) ≤ f2(x)

and

(R)

∫

∏
i∈N [ai ,bi ]

( f1(x) − f2(x))dλ(x) < ε.

Then we have

(R)

∫

∏
i∈N [ai ,bi ]

f (x)dλ(x) − ε ≤ (R)

∫

∏
i∈N [ai ,bi ]

f1(x)dλ(x)

= λ
( ∏

i∈N
[ai , bi ]

)
× lim

n→∞

∑
y∈Yn f1(y)

#(Yn)
≤ λ

( ∏

i∈N
[ai , bi ]

)
× limn→∞

∑
y∈Yn f (y)

#(Yn)

≤ λ
( ∏

i∈N
[ai , bi ]

)
× limn→∞

∑
y∈Yn f (y)

#(Yn)
≤ lim

n→∞

∑
y∈Yn f2(y)

#(Yn)
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≤ λ
( ∏

i∈N
[ai , bi ]

)
× (R)

∫

∏
i∈N [ai ,bi ]

f2(x)dλ(x) ≤ (R)

∫

∏
i∈N [ai ,bi ]

f (x)dλ(x) + ε.

The latter relation yields an existence of the limit limn→∞
∑

y∈Yn f (y)

#(Yn)
such that

lim
n→∞

∑
y∈Yn f (y)

#(Yn)
=

(R)
∫
∏

k∈N [ak ,bk ] f (x)dλ(x)

λ(
∏

i∈N [ai , bi ]) .

This ends the proof of Necessity.

Sufficiency. Assume that (Yn)n∈N is an increasing sequence of subsets of the∏
k∈N [ak, bk] such that for every f ∈ C (

∏
k∈N [ak, bk]) the equality

lim
n→∞

∑
y∈Yn f (y)

#(Yn)
=

(R)
∫
∏

k∈N [ak ,bk [ f (x)dλ(x)

λ(
∏

i∈N [ai , bi ])
holds.

Let U be any elementary rectangle in
∏

i∈N [ai , bi ].
For ε > 0, by Ulam’s lemma we can choose such a compact set

F ⊂
∏

k∈N
[ak, bk] \ [U ]T ,

that λ((
∏

k∈N [ak, bk] \ [U ]T )\ F) < ε
2 , where [U ]T denotes completion of the setU

by Tikhonov topology in
∏

k∈N [ak, bk]. Then, by Urysohn’s lemma we deduce that
there is a continuous function g2 from

∏
k∈N [ak, bk] to [0, 1] such that the preimages

of 0 and 1 under g2 are F and [U ]T , respectively. Then, for x ∈ ∏
k∈N [ak, bk], we

have

XU (x) ≤ g2(x)

and

(R)

∫

∏
k∈N [ak ,bk ]

(g2(x) − XU (x))dλ(x) ≤ ε

2
,

where XU is an indicator of the U defined on the
∏

k∈N [ak, bk].
Now let us consider a set [∏k∈N [ak, bk] \ U ]T . Using Ulam’s lemma, we can

choose such a compact set

F1 ⊂
∏

k∈N
[ak, bk] \

[ ∏

k∈N
[ak, bk] \U

]

T

that
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λ
(( ∏

k∈N
[ak, bk] \

[ ∏

k∈N
[ak, bk] \U

]

T

)
\ F1

)
<

ε

2
.

Then, by Urysohn’s lemma we deduce that there is a continuous function g1 from∏
k∈N [ak, bk] to [0, 1] such that the preimages of 0 and 1 under g1 are [∏k∈N [ak, bk]\

U ]T and F1, respectively. Then, for x ∈ ∏
k∈N [ak, bk], we have

g1(x) ≤ XU (x)

and

(R)

∫

∏
k∈N [ak ,bk ]

(XU (x) − g1(x))dλ(x) ≤ ε

2
.

Now, we deduce that for every elementary rectangle U in
∏

i∈N [ai , bi ] there exist
two continuous functions g1 and g2 on the

∏
i∈N [ai , bi ] such that

g1(x) ≤ XU (x) ≤ g2(x)

and

(R)

∫

∏
i∈N [ai ,bi ]

(g2(x) − g1(x))dλ(x) ≤ ε.

Then we have

λ(U ) − ε ≤ (R)

∫

∏
i∈N [ai ,bi ]

g2(x)dλ(x) − ε ≤ (R)

∫

∏
i∈N [ai ,bi ]

g1(x)dλ(x)

= λ
( ∏

i∈N
[ai , bi ]

)
× lim

n→∞

∑
y∈Yn g1(y)
#(Yn)

≤ λ
( ∏

i∈N
[ai , bi ]

)
× limn→∞

#(Yn ∩U )

#(Yn)

≤ λ
( ∏

i∈N
[ai , bi ]

)
× limn→∞

#(Yn ∩U )

#(Yn)
≤ λ

( ∏

i∈N
[ai , bi ]

)
× lim

n→∞

∑
y∈Yn g2(y)
#(Yn)

= (R)

∫

∏
i∈N [ai ,bi ]

g2(x)dλ(x) ≤ (R)

∫

∏
i∈N [ai ,bi ]

g1(x)dλ(x) + ε ≤ λ(U ) + ε.

Because ε was taken as arbitrary, we deduce that

λ
( ∏

i∈N
[ai , bi ]

)
× lim

n→∞
#(Yn ∩U )

#(Yn)
= λ(U ).

This ends the proof of Theorem 2.2.4.
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Now by the scheme used in the proof of Theorem 2.2.4, one can get the validity
of an infinite-dimensional analogue of Lemma 2.2.1. In particular, the following
assertion is valid.

Theorem 2.2.5 For
∏

i∈N [ai , bi ] ∈ R, let (Yn)n∈N be an increasing family of its
finite subsets. Then (Yn)n∈N is uniformly distributed in the

∏
k∈N [ak, bk] if and only

if for every Riemann integrable function f on
∏

k∈N [ak, bk] the equality

lim
n→∞

∑
y∈Yn f (y)

#(Yn)
=

(R)
∫
∏

k∈N [ak ,bk ] f (x)dλ(x)

λ(
∏

i∈N [ai , bi ])
holds.

Definition 2.2.14 (Weyl [W]) A sequence s1, s2, s3, . . . is said to be equidistributed
modulo 1 or uniformly distributed modulo 1 if the sequence (< sn >)n∈N of the
fractional parts of (sn)n∈N ’s is equidistributed (equivalently, uniformly distributed)
on the interval [0, 1].
Lemma 2.2.4 Let

∏
k∈N [ak, bk] ∈ R. Let (x (k)

n )n,k∈N be a double sequence of ele-
ments of

∏
k∈N [ak, bk]. We set

Yn =
n∏

k=1

(∪n
j=1{x (k)

j }) ×
∏

k∈N\{1,...,n}
{x (k)

1 }.

Then (Yn)n∈N is uniformly distributed in the rectangle
∏

k∈N [ak, bk] if and only if
(x (k)

n )n∈N is uniformly distributed on the interval [ak, bk] for k ∈ N.

Proof (Sufficiency) Because (Yn)n∈N is uniformly distributed in the rectangle∏
k∈N [ak, bk], for an elementary rectangle U = ∏k−1

i=1 [ai , bi ]×][c, d][×∏+∞
i=k+1[ai , bi ] with ][c, d][⊆ [ak, bk], we have

d − c

bk − ak
= λ(U )

λ(
∏

i∈N [ai , bi [) = lim
n→∞

#(Yn ∩U )

#(Yn)
= lim

n→∞
#({x (k)

1 , . . . , x (k)
n } ∩U )

n
.

The latter relationmeans that (x (k)
n )n∈N is uniformlydistributed on the interval [ak, bk]

for k ∈ N .
Necessity. See Theorem 2.2.1.

Lemma 2.2.5 ([KN], Theorem 4.1, p. 42) Let (αn)n∈N be a sequence of differ-
ent integer numbers. Then a sequence of real numbers (αnx)n∈N is u.d. mod 1 for
l1 almost points of R.
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Definition 2.2.15 Following Brian R. Hunt, Tim Sauer, and James A. Yorke
(cf. [HSY]), a set X is called shy if it is a subset of a Borel set X ′ for which
μ(X ′ + v) = 0 for every v ∈ B and some Borel probability measure μ such that
μ(K ) = μ(B) for some compact K .

Definition 2.2.16 A Borel measure μ in V is called a generator (of shy sets) in V,
if

(∀X)(μ(X) = 0 → X ∈ S(V )),

where μ denotes a usual completion of the Borel measure μ.

Lemma 2.2.6 ([P4], Example 2.1, p. 242) “Lebesgue measure” [B1] is a generator
of shy sets.

Theorem 2.2.6 Let (α(k)
n )n∈N be an infinite sequence of different integer numbers

for every k ∈ N. Then a set of all sequences (xk)k∈N in R∞ for which a sequence of
increasing sets (Yn((xk)k∈N ))n∈N is not λ u.d. on the

∏
k∈N [ak, bk], where

Yn((xk)k∈N ) =
n∏

k=1

(∪n
j=1{< α

(k)
j xk > (bk − ak)}) ×

∏

k∈N\{1,...,n}
{ak},

is of λ measure zero, where < · > denotes the fractal part of the number.

Proof For k ∈ N , we denote Dk by
Dk = {xk : xk ∈ R & (< α(k)

j xk > (bk − ak)) j∈N is l1 u.d. on [ak, bk]}.
By Lemma 2.2.4 we have that l1(R \ Dk) = 0 for k ∈ N .
We set D = ∏

k∈N Dk . It is clear that λ(R∞ \ D) = 0. For (xk)k∈N ∈ D, we have
that (< α(k)

j xk > (bk − ak)) j∈N is l1 u.d. on [ak, bk] for every k ∈ N . By Lemma
2.2.4 we claim that (Yn((xk)k∈N ))n∈N is λ u.d. on the

∏
k∈N [ak, bk] for (xk)k∈N ∈ D.

Inasmuch as λ(R∞ \ D) = 0, Theorem 2.2.6 is proved.

Remark 2.2.7 Following Lemma 2.2.6, λ is the generator of shy sets. The latter
relation means that every set of λ measure zero is shy in R∞. Following Theorem
2.2.6, we claim that a set of all sequences (x j ) j∈N in R∞ for which a sequence of
increasing sets (Yn((x j ) j∈N ))n∈N is λ u.d. on the

∏
k∈N [ak, bk]) is the prevalent set.

2.3 Monte Carlo Algorithm for Estimating the Value
of Infinite-Dimensional Riemann Integrals

Nowwe give some basic definitions that help us define more precisely what wemean
by a Riemann integral with respect to product measure in R∞. Then we give some
conditions for the existence of the Riemann integral with respect to product measure
in R∞ and go through a certain algorithm useful in computing this integral.
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Let (Fk)k∈N be a sequence of strictly increasing continuous distribution functions
on R. Let μk be a Borel probability measure in R defined by Fk for k ∈ N. Let us
denote by

∏
k∈N μk the product of measures (μk)k∈N.

For −∞ < c < d < +∞, let ][c, d][ denote a subinterval of the real axis
(−∞,+∞) which has one of the forms [c, d], [c, d[, ]c, d[ or ]c, d]. If c = −∞
and d �= +∞, then ][c, d][ denotes a subinterval of the real axis (−∞,+∞) which
has one of the forms ]c, d] or ]c, d]. Similarly, if c �= −∞ and d = +∞, then ][c, d][
denotes a subinterval of the real axis (−∞,+∞) which has one of the forms ]c, d[
or [c, d[. Finally, if c = −∞ and d = +∞, then ][c, d][ denotes the whole real axis
(−∞,+∞).

Definition 2.3.1 A set U ∗ is called an elementary rectangle in R∞ if it admits the
following representation.

U ∗ =
m∏

k=1

][ck, dk][×RN\{1,··· ,m}, (2.3.1)

where −∞ ≤ ck < dk ≤ +∞ for 1 ≤ k ≤ m.

Definition 2.3.2 A family of pairwise disjoint elementary rectangles τ = (U ∗
k )1≤k≤n

in R∞ is called the Riemann partition of the R∞ if ∪1≤k≤nU ∗
k = R∞.

Definition 2.3.3 Let τ ∗ = (U ∗
k )1≤k≤n be the Riemann partition of R∞ and

�1(F
−1
i (Pri (U ∗

k ))) the length of the preimage of the i th projection Pri (U ∗
k ) of the

U ∗
k under mapping Fi for i ∈ N . We set

d∗(U ∗
k ) =

∑

i∈N

�1(Fi (Pri (U ∗
k )))

2i (1 + �1(Fi (Pri (U ∗
k ))))

. (2.3.2)

It is obvious that d∗(U ∗
k ) is a diameter of the elementary rectangle U ∗

k for k ∈ N
with respect to metric ρ defined as

ρ((xk)k∈N , (yk)k∈N ) =
∑

k∈N

|Fk(xk) − Fk(yk)|
2k(1 + |Fk(xk) − Fk(yk)|) (2.3.3)

for (xk)k∈N , (yk)k∈N ∈ R∞.

Remark 2.3.1 Note that metrics ρ and ρT are equivalent provided that

ρ((xk)k∈N , (yk)k∈N ) = 0

if and only if
ρT ((xk)k∈N , (yk)k∈N ) = 0.

Note also that both topologies induced by these metrics coincide.
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Definition 2.3.4 A number d∗(τ ), defined by

d∗(τ ) = max{d∗(Uk) : 1 ≤ k ≤ n} (2.3.4)

is called the mesh or norm of the Riemann partition τ ∗ of the R∞.

Definition 2.3.5 Let τ ∗
1 = (U ∗(1)

i )1≤i≤n and τ ∗
2 = (U ∗(2)

j )1≤ j≤m be Riemann parti-
tions of the R∞. We say that τ ∗

2 ≤ τ ∗
1 iff

(∀ j)((1 ≤ j ≤ m) → (∃i0)(1 ≤ i0 ≤ n & U ∗(2)
j ⊆ U ∗(1)

i0
)). (2.3.5)

Definition 2.3.6 A function f is called a step function on R∞ if it can be written as

f (x) =
n∑

k=1

ckχU ∗
k
(x), (2.3.6)

where τ ∗ = (U ∗
k )1≤k≤n is any Riemann partition of the R∞, ck ∈ R for 1 ≤ k ≤ n

and χA is the indicator function of the set A.

Definition 2.3.7 Let f be a real-valued bounded function defined on R∞. Let τ ∗ =
(U ∗

k )1≤k≤n be the Riemann partition of R∞ and (t∗k )1≤k≤n be a sample such that, for
each k, t∗k ∈ U ∗

k . Then
(i) A sum

∑n
k=1 f (t∗k )(

∏
i∈N μi )(U ∗

k ) is called the Riemann sum of the f with
respect to the Riemann partition τ ∗ = (U ∗

k )1≤k≤n together with sample (tk)1≤k≤n .
(ii) A sum Sτ ∗ = ∑n

k=1 Mk(
∏

i∈N μi )(U ∗
k ) is called the upper Darboux sum with

respect to the Riemann partition τ ∗, where Mk = supx∈U ∗
k
f (x)(1 ≤ k ≤ n).

(iii) A sum sτ ∗ = ∑n
k=1 mk(

∏
i∈N μi )(U ∗

k ) is called the lower Darboux sum with
respect to the Riemann partition τ ∗, where mk = inf x∈U ∗

k
f (x)(1 ≤ k ≤ n).

Definition 2.3.8 Let f be a real-valued bounded function defined on R∞. We say
that the f is Riemann integrable with respect to product measure

∏
i∈N μi on R∞ if

there exists a real number s such that for every positive real number ε there exists a
real number δ > 0 such that, for every Riemann partition (U ∗

k )1≤k≤n of the R∞ with
d∗(τ ∗) < δ and for every sample (t∗k )1≤k≤n , we have

∣
∣

n∑

k=1

f (t∗k )

(
∏

i∈N
μi

)

(U ∗
k ) − s

∣
∣ < ε. (2.3.7)

The number s is called the Riemann integral of f over R∞ and is denoted by

(R)

∫

R∞
f (x)d

(
∏

i∈N
μi

)

(x). (2.3.8)
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In this section we present some conditions that help us determine whether the
Riemann integral of a certain function over R∞ exists.

Theorem 2.3.1 (Riemann necessary and sufficient condition for integrability). Con-
sider the bounded function f : R∞ → R. f is Riemann integrable inR∞ with respect
to product measure

∏
i∈N μi if and only if for arbitrary positive ε there is a Riemann

partition τ ∗ of R∞ such that Sτ ∗ − sτ ∗ < ε.

The proof of Theorem 2.3.1 can be obtained by the standard scheme.

Example 2.3.1 Define u((xk)k∈N) = sin(x−1
1 ) for (xk)k∈N ∈ (0, 1)∞. Then u is

bounded (by 1) and continuous on (0, 1)∞, but it is neither uniformly continuous nor
continuously extendable to [0, 1]∞.

In the context of Example 2.3.1 the following lemma is of some interest.

Lemma 2.3.1 Let f be any bounded and uniformly continuous function on (0, 1)∞.
Then f has a unique continuous extension f to whole [0, 1]∞.

Proof For any x ∈ [0, 1]∞, find a sequence (xn) ∈ (0, 1)∞ such that limn→∞ xn = x .
Step 1. Because (xn)n∈N is Cauchy, and f is uniformly continuous, we deduce

that ( f (xn))n∈N is Cauchy.
Assume the contrary and that ( f (xn))n∈N is not a Cauchy sequence. Then for

some ε > 0 and for each natural number m there are two natural numbers n(m)
1 > m

and n(m)
2 > m such that | f (xn(m)

1
) − f (xn(m)

2
)| > ε.

Let us consider a set {xn(m)
1

, xn(m)
2

: m ∈ N}.
Because f is a uniformly continuous function on (0, 1)∞, for ε/2 there exists

δ > 0 such that if x, y ∈ (0, 1)∞ and ρT (x, y) < ε/2 then | f (x) − f (y)| <
ε/2. Inasmuch as (xn)n∈N is a Cauchy sequence we can choose such m ∈ N that
ρT (xn(m0)

1
, xn(m0)

2
) < δ. But | f (xn(m0)

1
) − f (xn(m0)

2
)| > ε and we get the contradiction.

Step 2. Define f (x) = limn→∞ f (xn).
Step 3. Let us show that this definition is independent of the choice of the sequence

(xn)n∈N.
Indeed, we have another sequence (yn)n∈N of elements of (0, 1)∞ which tends to

x . Let us show that limn→∞ f (yn) = f (x). For ε > 0 there is n(ε) such that for
each n ≥ n(ε) we get | f (xn) − f (x)| < ε/2.

Because f is uniformly continuous on (0, 1)∞ for ε/2 there is δ(ε, f ) > 0
such that if ρT (w, z) < δ(ε, f ) then | f (w) − f (z)| < ε/2. Because (yn)n∈N and
(xn)n∈N tend to x , for δ(ε, f )/2 there exists a natural number n(δ(ε, f )) such that
ρT (yn, x) < δ(ε, f )/2 and ρT (xn, x) < δ(ε, f )/2 for n ≥ n(δ(ε, f )). Then for
n ≥ n(δ(ε, f )) we get

ρT (xn, yn) ≤ ρT (xn, x) + ρT (x, yn) < δ(ε, f )/2 + δ(ε, f )/2 = δ(ε, f ) (2.3.9)

which implies | f (xn) − f (yn)| < ε/2.
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Then for n ≥ max{n(ε), n(δ(ε, f ))} we get

| f (x) − f (yn)| = | f (x) − f (xn) + f (xn) − f (yn)| ≤

| f (x) − f (xn)| + | f (xn) − f (yn)| ≤ ε/2 + ε/2 = ε. (2.3.10)

Note that f is an extension of f (i.e., it coincides with f on (0, 1)∞) because of
Step 3.

Uniqueness holds because any continuous extension of f must satisfy the equality
of Step 2; that is, if g is another continuous extension of f , then for any (xn)n∈N as
above g(x) = limn→∞ f (xn) = f (x). As for boundedness, it again follows from
Step 2. If | f (y)| ≤ M for all y ∈ (0, 1)∞, then | f (x)| = limn→∞ | f (xn)| ≤ M as
well.

Let f : R∞ → R be a real-valued function. We set f(Fi )i∈N : (0, 1)∞ → R as
follows. f(Fi )i∈N((xk)k∈N) = f ((F−1

k (xk))k∈N) if (xk)k∈N ∈ (0, 1)∞.
Now it is not hard to prove the following assertion.

Theorem 2.3.2 Let f be a real-valued bounded function on R∞ such that f(Fi )i∈N
admits the Riemann integrable (with respect to the infinite-dimensional “Lebesgue
measure” in [0, 1]∞) extension f (Fi )i∈N from (0, 1)∞ to whole [0, 1]∞. Then f is
Riemann integrable w.r.t. the product measure

∏
i∈N μi and the following equality,

(R)

∫

R∞
f (x)d

(
∏

i∈N
μi

)

(x) = (R)

∫

[0,1]∞
f (Fi )i∈N(x)dλ(x), (2.3.11)

holds true.

Theorem 2.3.3 If f is a real-valued bounded uniformly continuous function onR∞
then f is Riemann integrable w.r.t. the product measure

∏
i∈N μi and the following

equality,

(R)

∫

R∞
f (x)d

(
∏

i∈N
μi

)

(x) = (R)

∫

[0,1]∞
f (Fi )i∈N(x)dλ(x), (2.3.12)

holds true, where f (Fi )i∈N is a continuous extension of f(Fi )i∈N from (0, 1)∞ to whole
[0, 1]∞ defined by Lemma 2.3.1.

Proof Because f is bounded and uniformly continuous onR∞ with respect tometric
ρ we claim that f(Fi )i∈N is bounded and uniformly continuous on (0, 1)∞ with respect
tometricρT . ByLemma2.3.1, we know that f(Fi )i∈N has a unique bounded continuous
extension f (Fi )i∈N on [0, 1]∞. By Theorem 2.3.2 we know that f (Fi )i∈N is Riemann
integrable on [0, 1]∞ w.r.t. λ. This means that there exists a real number s such that
for every positive real number ε there exists a real number δ > 0 such that for every
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Riemann partition (Uk)1≤k≤n of the [0, 1]∞ with d(τ ) < δ and for every sample
(tk)1≤k≤n , we have

∣
∣

n∑

k=1

f (Fi )i∈N(tk)λ(Uk) − s
∣
∣ < ε. (2.3.13)

The latter relation implies that for every Riemann partition (Uk)1≤k≤n of the
[0, 1]∞ withd(τ ) < δ and for every sample (tk)1≤k≤n forwhich tk ∈ Uk∩(0, 1)∞(1 ≤
k ≤ n), we have

∣
∣

n∑

k=1

f(Fi )i∈N(tk)λ(Uk ∩ (0, 1)∞) − s
∣
∣ < ε. (2.3.14)

We have to show that s is a real number such that for every positive real number
ε, δ is a number such that for every Riemann partition τ ∗ = (U ∗

k )1≤k≤n of the R∞
with d∗(τ ∗) < δ and for every sample (t∗k )1≤k≤n with t∗k ∈ U ∗

k (1 ≤ k ≤ n), we have

∣
∣

n∑

k=1

f (t∗k )

(
∏

i∈N
μi

)

(U ∗
k ) − s

∣
∣ < ε. (2.3.15)

We set F((xk)k∈N) = (Fk(xk))k∈N for (xk)k∈N ∈ R∞.
If (U ∗

k )1≤k≤n is a Riemann partition of R∞ with d∗(τ ∗) < δ, then τ =
(Uk)1≤k≤n := (F(U ∗

k ))1≤k≤n will be a Riemann partition of (0, 1)∞ with d(τ ) < δ
and (tk)1≤k≤n = (F(∗tk))1≤k≤n will sample from the partition τ such that

∣
∣

n∑

k=1

f (t∗k ×
(

∏

i∈N
μi

)

(U ∗
k )) − s

∣
∣ = ∣

∣
n∑

k=1

f(Fi )i∈N(tk)λ(Uk) − s
∣
∣ < ε. (2.3.16)

The latter relation means that

(R)

∫

R∞
f (x)d

(
∏

i∈N
μi

)

(x) = s. (2.3.17)

On the other hand we have that

(R)

∫

[0,1]∞
f (Fi )i∈N(x)dλ(x) = s. (2.3.18)

This ends the proof of the theorem.



40 2 Infinite-Dimensional Monte Carlo Integration

The following corollary shows us how the Riemann integral can be computed
with respect to the product measure in R∞.

Corollary 2.3.1 Let f be a bounded uniformly continuous real-valued function on
R∞. Let (Yn)n∈N be an increasing family of uniformly distributed finite subsets in
[0, 1]∞. Then the equality

(R)

∫

R∞
f (x)d

(
∏

i∈N
μi

)

(x) = lim
n→∞

∑
y∈Yn f (Fi )i∈N(y)

#(Yn)
(2.3.19)

holds true.

Proof By Theorem 2.3.3 we know that

(R)

∫

R∞
f (x)d

(
∏

i∈N
μi

)

(x) = (R)

∫

[0,1]∞
f (Fi )i∈N(x)dλ(x). (2.3.20)

By Theorem 2.2.5 we have

(R)

∫

[0,1]∞
f (Fi )i∈N(x)dλ(x) = lim

n→∞

∑
y∈Yn f (Fi )i∈N(y)

#(Yn)
. (2.3.21)

This ends the proof of the corollary.

Remark 2.3.2 Let f be a bounded uniformly continuous real-valued function on
R∞. It is not hard to show that there is an increasing family of uniformly distributed
finite subsets (Yn)n∈N in [0, 1]∞ such that Yn ⊆ (0, 1)∞ for each n ∈ N . Then the
equality

(R)

∫

R∞
f (x)d

(
∏

i∈N
μi

)

(x) = lim
n→∞

∑
(yi )i∈N∈Yn f ((F−1

i (yi ))i∈N)

#(Yn)
(2.3.22)

holds true.

The following example can be considered as a certain application of the Remark
2.3.2 in mathematical analysis.

Example 2.3.2 The following equality

lim
n→∞

∑
(i1,i2,··· ,in)∈{1,··· ,n}n

∑n
k=1

{ikω}α
2k

nn
= 1

1 + α
(2.3.23)

holds true for all irrational numbers ω and positive real numbers α.
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Let f : R∞ → R be defined by f ((xk)k∈N) = ∑
k∈N Fα

k (xk)/2k, where α > 0.
Then

f ((F−1
k (yk))k∈N) =

∑

k∈N

Fα
k (F−1

k (yk))

2k
=

∑

k∈N

yα
k

2k
(2.3.24)

for (yk)k∈N ∈ (0, 1)∞.
Let ω be an arbitrary irrational number. Let Yn = {{ω}, {2ω}, . . . , {nω}}n ×

({ω}, {ω}, . . .) for n ∈ N. Then by virtue of Remark 2.3.2 we have

(R)

∫

R∞
f (x)d

(
∏

i∈N
μi

)

(x) = lim
n→∞

∑
(yi )i∈N∈Yn f ((F−1

i (yi ))i∈N)

#(Yn)
=

lim
n→∞

∑
(i1,i2,··· ,in)∈{1,··· ,n}n (

∑n
k=1

{ikω}α
2k + ∑

k>n
{ω}α
2k )

nn
=

lim
n→∞

∑
(i1,i2,··· ,in)∈{1,··· ,n}n

∑n
k=1

{ikω}α
2k

nn
. (2.3.25)

On the other hand we have

(R)

∫

R∞
f (x)d

(
∏

i∈N
μi

)

(x) = (R)

∫

[0,1]∞

∑

k∈N

xα
k

2k
dλ(x) =

∑

k∈N

1

2k
(R)

∫

[0,1]∞
xα
k dλ(x) = 1

1 + α

∑

k∈N

1

2k
= 1

1 + α
. (2.3.26)

Finally, we get the identity:

lim
n→∞

∑
(i1,i2,...,in)∈{1,...,n}n

∑n
k=1

{ikω}α
2k

nn
= 1

1 + α
. (2.3.27)

2.4 Applications to Statistics

In probability theory, there exist several different notions of convergence of
random variables. The convergence of sequences of random variables to some
limit random variable is an important concept in probability theory. Almost sure
convergence is called the strong law because random variables that converge strongly
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(almost surely) are guaranteed to converge weakly (in probability) and in distribution
(see, e.g., [Sh], Theorem 2, p. 272). Theorems that establish almost sure convergence
of such sequences to some limit random variable are called strong law type theo-
rems and they have interesting applications to statistics and stochastic processes.
The purpose of the present section is to establish the validity of essentially new and
interesting strong law type theorems in an infinite-dimensional case by using Monte
Carlo algorithms elaborated in Sect. 2.3.

Theorem 2.4.1 Let (�,F, P) be a probability space and (ξk)k∈N be a sequence
of independent real-valued random variables uniformly distributed on the interval
[0, 1] such that 0 ≤ ξk(ω) ≤ 1. Let f : [0, 1]∞ → R be a Riemann integrable
real-valued function. Then the equality:

P

{

ω : lim
n→∞

∑
(i1,i2,...,in)∈{1,...,n}n f (ξi1(ω), ξi2(ω), . . . , ξin (ω), ξ1(ω), ξ1(ω), . . .)

nn
=

∫

[0,1]∞
f (x)dλ(x)

}

= 1 (2.4.1)

holds true.

Proof Without loss of generality we can assume that

(�,F, P) = ([0, 1]∞,B([0, 1]∞), �∞
1 ), (2.4.2)

where �1 is the Lebesgue measure in (0, 1) and ξk((ωi )i∈N ) = ωk for each k ∈ N and
(ωi )i∈N ∈ [0, 1]∞. Let S be a set of all uniformly distributed sequences on (0, 1).
By Lemma1.2.4 we know that �N1 (S) = 1; equivalently, λ(S) = 1, where λ denotes
the infinite-dimensional “Lebesgue measure”. The latter relation means that

P{ω : (ξk(ω))k∈N is uniformly distributed on (0, 1)} = 1. (2.4.3)

We put

Yn(ω) = (∪n
j=1{ξ j (ω)})n × (ξ1(ω), ξ1(ω), . . .) (2.4.4)

for each n ∈ N .
Note that if the sequence of real numbers (ξk(ω))k∈N is uniformly distributed in

the interval [0, 1] then by Theorem 2.2.1, (Yn(ω))n∈N will be uniformly distributed
in the rectangle [0, 1]∞ which according to Theorem 2.2.5 implies that

∫

[0,1]∞
f (x)dλ(x) =

http://dx.doi.org/10.1007/10.1007/978-3-319-45578-5_1
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lim
n→∞

∑
(i1,i2,...,in)∈{1,...,n}n f (ξi1(ω), ξi2(ω), . . . , ξin (ω), ξ1(ω), ξ1(ω), . . .)

nn
. (2.4.5)

But the set of all ω points for which the latter equality holds true contains the set
S for which P(S) = 1.

This ends the proof of the theorem.

As a simple consequence of Theorem 2.4.1, we get the validity of the strong law of
large numbers for a sequence of independent real-valued random variables uniformly
distributed on the interval [0, 1] as follows.
Corollary 2.4.1 Let (�,F, P) be a probability space and (ξk)k∈N be a sequence
of independent real-valued random variables uniformly distributed on the interval
[0, 1] such that 0 ≤ ξk(ω) ≤ 1. Then the condition

P

{

ω : lim
n→∞

∑n
k=1 ξk(ω)

n
= 1/2

}

= 1 (2.4.6)

holds true.

Proof Let f : [0, 1]∞ → R be defined by f (x1, x2, . . .) = x1. By Theorem 2.4.1
we have

P{ω :
∫

[0,1]∞
f (x)dλ(x) =

lim
n→∞

∑
(i1,i2,...,in)∈{1,...,n}n f (ξi1(ω), ξi2(ω), . . . , ξin (ω), ξ1(ω), ξ1(ω), . . .)

nn
} = 1.

(2.4.7)

Note that
∫

[0,1]∞
f (x)dλ(x) = 1/2 (2.4.8)

and

lim
n→∞

∑
(i1,i2,...,in)∈{1,...,n}n f (ξi1(ω), ξi2(ω), . . . , ξin (ω), ξ1(ω), ξ1(ω), . . .)

nn
=

lim
n→∞

∑
(i1,i2,...,in)∈{1,...,n}n ξi1(ω)

nn
=
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lim
n→∞

nn−1 ∑n
k=1 ξk(ω)

nn
= lim

n→∞

∑n
k=1 ξk(ω)

n
. (2.4.9)

This ends the proof of Corollary 2.4.1.

The next corollary also being a simple consequence of Theorem 2.4.1 gives inter-
esting but well-known information for statisticians regarding whether the value of
m-dimensional Riemann integrals over the m-dimensional rectangle [0, 1]m can be
estimated by using infinite samples.

Corollary 2.4.2 Let (�,F, P) be a probability space and (ξk)k∈N be a sequence
of independent real-valued random variables uniformly distributed on the interval
[0, 1] such that 0 ≤ ξk(ω) ≤ 1. Let f : [0, 1]m → R be a Riemann integrable
real-valued function. Then the equality

P{ω : lim
n→∞

∑
(i1,i2,...,im )∈{1,...,n}m f (ξi1(ω), ξi2(ω), . . . , ξim (ω))

nm
=

∫

[0,1]m
f (x1, . . . , xm)dx1 . . . dxm} = 1 (2.4.10)

holds true.

Proof For (xk)k∈N ∈ [0, 1]∞ we put f ((xk)k∈N ) = f (x1, . . . , xm). Without loss of
generality we can assume that

(�,F, P) = ([0, 1]∞,B([0, 1]∞), �∞
1 ), (2.4.11)

where �1 is the Lebesgue measure in (0, 1) and ξk((ωi )i∈N ) = ωk for each k ∈ N and
(ωi )i∈N ∈ [0, 1]∞. Let S be a set of all uniformly distributed sequences on (0, 1).
By Lemma1.2.4 we know that P(S) = 1. The latter relation means that

P{ω : (ξk(ω))k∈N is uniformly distributed on the interval (0, 1)} = 1. (2.4.12)

We put

Yn(ω) = (∪n
j=1{ξ j (ω)})m × (ξ1(ω), ξ1(ω), . . .) (2.4.13)

for each n ∈ N .
Note that if (ξk(ω))k∈N is uniformly distributed on the interval (0, 1) then by

Theorem 2.2.1, (Yn(ω))n∈N will be uniformly distributed in the rectangle [0, 1]∞,
which according to Theorem 2.2.5 implies that

∫

[0,1]m
f (x1, . . . , xm)dx1 . . . dxm =

∫

[0,1]∞
f (x)dλ(x) =

http://dx.doi.org/10.1007/10.1007/978-3-319-45578-5_1
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lim
n→∞

∑
(i1,i2,...,in)∈{1,...,n}n f (ξi1(ω), ξi2(ω), . . . , ξin (ω), ξ1(ω), ξ1(ω), . . .)

nn
=

lim
n→∞

∑
(i1,i2,...,in)∈{1,...,n}n f (ξi1(ω), ξi2(ω), . . . , ξim (ω))

nn
=

lim
n→∞

∑
(i1,i2,...,im )∈{1,...,n}m nn−m f (ξi1(ω), ξi2(ω), . . . , ξim (ω))

nn
=

lim
n→∞

∑
(i1,i2,...,im )∈{1,...,n}m f (ξi1(ω), ξi2(ω), . . . , ξim (ω))

nm
. (2.4.14)

A set of all points ω for which the latter equality holds true, contains the set S for
which P(S) = 1.

This ends the proof of Corollary 2.4.2.

Corollary 2.4.3 Let (�,F, P) be a probability space and (ξk)k∈N be a sequence
of independent real-valued random variables such that the distribution function Fk

defined by ξk is strictly increasing and continuous. Let f be a real-valued bounded
function on R∞ such that f(Fi )i∈N admits such an extension f (Fi )i∈N from (0, 1)∞

to whole [0, 1]∞ that f (Fi )i∈N is Riemann integrable with respect to the infinite-
dimensional Lebesgue measure λ in [0, 1]∞. Then f is Riemann integrable w.r.t.
product measure

∏
i∈N μi and the condition

P

{

ω : lim
n→∞

∑
(i1,i2,...,in)∈{1,...,n}n f (ξi1(ω), ξi2(ω), . . . , ξin (ω), ξ1(ω), ξ1(ω), . . .)

nn
=

(R)

∫

R∞
f (x)d

(
∏

i∈N
μi

)

(x)

}

= 1 (2.4.15)

holds true.

Proof Without loss of generality we can assume that

(�,F, P) =
(

R∞,B(R∞),
∏

i∈N
μi

)

, (2.4.16)

and ξk((ωi )i∈N ) = ωk for each k ∈ N and (ωi )i∈N ∈ R∞.
Let ω be an element of the � such that (Fk(ξk(ω))k∈N is a uniformly distrib-

uted sequence on (0, 1). Note that all such points ω constitute a set D0 for which
(
∏

i∈N μi )(D0) = 1.
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According to Theorem 2.3.2, f is Riemann integrable with respect to the product
measure

∏
i∈N μi and the equality

(R)

∫

R∞
f (x)d

(
∏

i∈N
μi

)

(x) = (R)

∫

[0,1]∞
f (Fi )i∈N (x)dλ(x) (2.4.17)

holds true. For ω ∈ D0 we have

(R)

∫

[0,1]∞
f (Fi )i∈N (x)dλ(x)

= lim
n→∞

∑
(i1,i2,...,in )∈{1,...,n}n f (Fi )i∈N (F1(ξi1 (ω)), . . . , Fn(ξin (ω)), Fn+1(ξ1(ω)), Fn+2(ξ1(ω)), . . .)

nn

= lim
n→∞

∑
(i1,i2,...,in )∈{1,...,n}n f(Fi )i∈N (F1(ξi1 (ω)), . . . , Fn(ξin (ω)), Fn+1(ξ1(ω)), Fn+2(ξ1(ω)), . . .)

nn

= lim
n→∞

∑
(i1,i2,...,in )∈{1,...,n}n f (F−1

1 (F1(ξi1 (ω)), . . . , F−1
n (Fn(ξin (ω)), F−1

n+1(Fn+1(ξ1(ω)), . . .)

nn

= lim
n→∞

∑
(i1,i2,...,in )∈{1,··· ,n}n f (ξi1 (ω), . . . , ξin (ω), ξ1(ω), ξ1(ω), . . .)

nn
. (2.4.18)

This ends the proof of Corollary 2.4.3.

Remark 2.4.1 Main results of Sect. 2.3–2.4 were obtained in [P3].
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Chapter 3
Structure of All Real-Valued Sequences
Uniformly Distributed in [−1

2,
1
2] from

the Point of View of Shyness

3.1 Introduction

It is well known that nowadays the theory of uniform distribution has many inter-
esting applications in various branches of mathematics, such as number theory,
probability theory, mathematical statistics, functional analysis, topological algebra,
and so on. Therefore, research on the internal structure of all uniformly distributed
sequences has not lost relevance today. For example, in [P5] the set D of all real-
valued sequences uniformly distributed in [− 1

2 ,
1
2 ] has been studied in terms of the

Moore–Yamasaki–Kharazishvilimeasureμ (cf. [Y, K]) and it has been demonstrated
that μ almost every element of R∞ is uniformly distributed in [− 1

2 ,
1
2 ].

The purpose of the present chapter is to study structures of D and F from the
point of view of shyness [HSY], where F denotes the set of all sequences uniformly
distributed modulo 1 in [− 1

2 ,
1
2 ].

The rest of this chapter is the following.
In Sect. 3.2 we consider some auxiliary notions and facts from mathematical

analysis and measure theory. In Sect. 3.3 we prove that D is shy in RN . In Sect. 3.4,
we demonstrate that in the Solovay model [Sol] the set F is the prevalent set [HSY]
in RN .

3.2 Some Auxiliary Notions and Facts from Mathematical
Analysis and Measure Theory

Let us consider some notions and auxiliary facts from mathematical analysis and
measure theory that are useful for our further investigations.

Definition 3.2.1 A sequence of real numbers (xk)k∈N ∈ R∞ is called uniformly
distributed in [a, b] (abbreviated u.d. in [a,b]) if for each c, d with a ≤ c < d ≤ b
we have

© Springer International Publishing Switzerland 2016
G. Pantsulaia, Applications of Measure Theory to Statistics,
DOI 10.1007/978-3-319-45578-5_3
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lim
n→∞

#({xk : 1 ≤ k ≤ n} ∩ [c, d])
n

= d − c

b − a
, (3.2.1)

where #(·) denotes the counter measure of a set.

Let λ be the Lebesgue measure on [0, 1]. This measure induces the product mea-
sure λ∞ in [0, 1]∞.

Lemma 3.2.1 ([KN], Theorem 2.2, p. 183) Let S be the set of all sequences u.d. in
[0, 1], viewed as a subset of R∞. Then λ∞(S ∩ [0, 1]∞) = 1.

Let V be a complete metric linear space, by which we mean a vector space (real
or complex) with a complete metric for which the operations of addition and scalar
multiplication are continuous. When we speak of a measure on V we always mean
a nonnegative measure that is defined on the Borel sets of V and is not identically
zero. We write S + v for the translation of a set S ⊆ V by a vector v ∈ V .

Definition 3.2.2 ([HSY], Definition 1, p. 221) A measure μ is said to be transverse
to a Borel set S ⊂ V if the following two conditions hold.

1. there exists a compact set U ⊂ V for which 0 < μ(U ) < 1.
2. μ(S + v) = 0 for every v ∈ V .

Definition 3.2.3 ([HSY], Definition 2, p. 222) A Borel set S ⊂ V is called shy if
there exists a measure transverse to S. More generally, a subset of V is called shy if
it is contained in a Borel shy set. The complement of a shy set is called a prevalent
set.

Definition 3.2.4 ([P4], Definition 2.4, p.237) A Borel measure μ in V is called a
generator of shy sets Generator of shy sets in V , if

(∀X)(μ(X) = 0 → X ∈ S(V )), (3.2.2)

where μ denotes a usual completion of the Borel measure μ, where S(V ) denotes
the σ ideal of all shy sets in V .

Lemma 3.2.2 ([P4], Theorem 2.4, p. 241) Every quasi-finite1 translation-quasi-
invariant2 the Borel measure μ defined in a Polish topological vector space V is a
generator of shy sets.

The key ingredient for our investigation is thewell-known lemma fromprobability
theory.

1Ameasureμ is called quasi-finite if there exists aμmeasurable set A for which 0 < μ(A) < +∞.
2A Borel measure μ defined in a Polish topological vector space V is called translation-quasi-
invariant if for each μ measurable set A and any h ∈ V , the following conditions μ(A) = and
μ(A + h) = 0 are equivalent.
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Lemma 3.2.3 ([Sh], Borelli–Cantelli lemma, p. 271) Let (Ω,F, P) be a probability
space. Let (En)n∈N be a sequence of events such that

∞∑

n=1

P(En) < ∞. (3.2.3)

Then the probability that infinitely many of them occur is 0; that is,

P

(

lim sup
n→∞

En

)

= 0. (3.2.4)

Here, “lim supn→∞” denotes the limit supremum of the sequence of events (En)n∈N
defined by

lim sup
n→∞

En =
∞⋂

n=1

∞⋃

k=n

Ek . (3.2.5)

Below we present a certain example of a translation-invariant Borel measure in
the Solovay model (SM) [Sol] which is the following system of axioms.

(ZF)&(DC)&(every subset of R is measurable in the Lebesgue sense), (3.2.6)

where (ZF) denotes the Zermelo–Fraenkel set theory and (DC) denotes the axiom
of dependent choices.

Lemma 3.2.4 ([P3], Corollary 1, p. 64) (SM) Let J be any nonempty subset of the
set of all natural numbers N. Let, for k ∈ J , Sk be the unit circle in the Euclidean
plane R2. We may identify the circle Sk with a compact group of all rotations of
R2 about its origin. Let λJ be the probability Haar measure defined on the compact
group

∏

k∈J
Sk . Then the completion λJ of λJ is defined on the power set of

∏

k∈J
Sk .

For k ∈ N , define the function fk by fk(x) = exp{2πxi} for every x ∈ R.
For E ⊂ RN and g ∈ ∏

k∈N
Sk , put

fE (g) =

⎧
⎪⎨

⎪⎩

card

((
∏

k∈N
fk

)−1

(g) ∩ E

)

, if this is finite;

+∞, in all other cases.

(3.2.7)

Define the functional μN by

(∀E)(E ⊂ RN → μN (E) =
∫

∏

k∈N
Sk

fE (g)dλN (g)). (3.2.8)
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Lemma 3.2.5 ([P3], Lemma 3, p. 65) (SM) μN is a translation-invariant measure
defined on the powerset RN such that μN ([0; 1]N ) = 1.

3.3 On the Structure of Real-Valued Sequences Uniformly
Distributed in [−1

2,
1
2 ] from the Point of View of Shyness

Lemma 3.3.1 For n ∈ N, we put En = {(xk)k∈N : (xk)k∈N ∈ RN & xn ∈
[−1/2, 1/2]}. Then D ⊆ lim supn→∞ En.

Proof Suppose that for some (xk)k∈N ∈ D we have (xk)k∈N /∈ lim supn→∞ En . This
means that there is n0 ∈ N such that xk /∈ [−1/2, 1/2] for each k ≥ n0.

Then we get

lim
n→∞

#({x1, . . . , xn} ∩ [−1/2, 1/2])
n

= lim
n→∞

#({x1, . . . , xn0 , xn0+1, . . . , xn} ∩ [−1/2, 1/2])
n

= lim
n→∞

#({x1, . . . , xn0−1} ∩ [−1/2, 1/2])
n

+ lim
n→∞

#({xn0 , xn0+1, . . . , xn} ∩ [−1/2, 1/2])
n

≤ lim
n→∞

n0 − 1

n
= 0. (3.3.1)

Because (xk)k∈N ∈ D, on the other hand, we get

lim
n→∞

#({x1, . . . , xn} ∩ [−1/2, 1/2])
n

= 1. (3.3.2)

This is the contradiction and Lemma 3.3.1 is proved.

Lemma 3.3.2 lim supn→∞ En is a Borel shy set in RN .

Proof For m ∈ R, σ > 0, we put:

(i) ξ(m,σ ) is a Gaussian random variable on R with parameters (m, σ ). Φ(m,σ ) is a
distribution function of ξ(m,σ ). γ(m,σ ) is a linear Gaussian measure in R defined
by Φ(m,σ ).

For n ∈ N , let μn be a linear Gaussian measure γ(0,σn) in R such that

1√
2πσn

∫ −1/2

−1/2
e
− t2

2σ2n dt ≤ 1

2n
. (3.3.3)
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Such a measure always exists. Indeed, we can take under μn such a linear Gaussian
measure γ(0,σn) for which σn > 2n√

2π
for each n ∈ N .

Let us show that the product-measure
∏

n∈N μn is a transverse to lim supn→∞ En .
We have to show that

(
∏

n∈N
μn

)(

lim sup
n→∞

En + (hn)n∈N
)

= 0 (3.3.4)

for each (hn)n∈N ∈ RN . Note that

lim sup
n→∞

En + (hn)n∈N = lim sup
n→∞

E (hn)
n , (3.3.5)

where

E (hn)
n =

{

(xk)k∈N : xn ∈
[

−1

2
+ hn,

1

2
+ hn

]

& xk ∈ R for k ∈ N \ {n}
}

.

(3.3.6)

Note that
(

∏

n∈N
μn

)
(
E (hn)
n

) = μn

([

−1

2
+ hn,

1

2
+ hn

])

≤ μn

([

−1

2
,
1

2

])

≤ 1

2n
.

(3.3.7)

The latter relation guarantees that

∞∑

n=1

(
∏

n∈N
μn

)
(
E (hn)
n

)
< ∞, (3.3.8)

which according to the Borelli–Cantelli lemma (cf. Lemma 3.2.3) implies that

(
∏

n∈N
μn

)

(lim sup
n→∞

E (hn)
n ) = 0. (3.3.9)

Inasmuch as En is Borel measurable in RN for each n ∈ N , we deduce that
lim supn→∞ En is also Borel measurable. Finally we claim that lim supn→∞ En is a
Borel shy set in RN because

∏
n∈N μn is the measure transverse to lim supn→∞ En .

This ends the proof of Lemma 3.3.2.

The next proposition is a simple consequence of Lemmas 3.3.1 and 3.3.2.

Theorem 3.3.1 D is a Borel shy set in RN .
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Let S come from Lemma 3.2.1. Because S = D + (1/2, 1/2, . . .) and the prop-
erty of shyness is preserved under translations, by using Theorem 3.3.1 we get the
following corollary.

Corollary 3.3.1 S is a Borel shy set in RN .

3.4 On the Structure of Real-Valued Sequences Uniformly
Distributed Modulo 1 in [−1

2,
1
2 ] from the Point

of View of Shyness

Definition 3.4.1 A sequence of real numbers (xk)k∈N ∈ R∞ is said to be uniformly
distributed modulo 1 (abbreviated u.d. mod 1) if for each c, d with 0 ≤ c < d ≤ 1
we have

lim
n→∞

#({xk : 1 ≤ k ≤ n} ∩ [c, d])
n

= d − c. (3.4.1)

The set of all sequences u.d. mod 1 is denoted by E .

Definition 3.4.2 A sequence of real numbers (xk)k∈N ∈ R∞ is said to be uniformly
distributed modulo 1 in [−1/2, 1/2] if for each c, d with −1/2 ≤ c < d ≤ 1/2 we
have

lim
n→∞

#({xk : 1 ≤ k ≤ n} ∩ [c, d])
n

= d − c. (3.4.2)

The set of all sequences u.d. mod 1 in [−1/2, 1/2] is denoted by F .

Remark 3.4.1 Note that (xk)k∈N is uniformly distributed modulo 1 if and only if
(xk)k∈N is uniformly distributed modulo 1 in [−1/2, 1/2]; that is, E = F .

In the sequel we need the following lemma.

Lemma 3.4.1 ([KN], Theorem 1.1, p. 2) The sequence (xn)n∈N of real numbers is
u.d. mod 1 if and only if for every real-valued continuous function f defined on the
closed unit interval I = [0, 1] we have

lim
N→∞

∑N
n=1 f ({xn})

N
=

∫

I
f (x)dx . (3.4.3)

Theorem 3.4.1 (SM) The set E of all real-valued sequences uniformly distributed
modulo 1 is the prevalent set in R∞.

Proof Let E0 be the set of all sequences from (0, 1)∞ that are not uniformly distrib-
uted in [0, 1]. Because the measure λ∞ from Lemma 3.2.1 and the measure μN from
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Lemma 3.2.5 coincide on subsets of (0, 1)∞ in the Solovay model, by Lemma 3.2.1
we deduce that μN (E0) = 0.

By the definition of the functional μN we have

μN (E0) =
∫

∏

k∈N
Sk

fE0(g)dλN (g)) = 0. (3.4.4)

We put

Xn =
⎧
⎨

⎩
g : g ∈

∏

k∈N
Sk & card

(
∏

k∈N
fk

)−1

(g) ∩ E0) = n

⎫
⎬

⎭
(3.4.5)

for n ∈ N ∪ {+∞}. Then we get

fE0(g) =
∑

n∈N∪{+∞}
nχXn (g). (3.4.6)

Because

μN (E0) =
∑

n∈N∪{+∞}
nλN (Xn) = 0 (3.4.7)

and

card

⎛

⎝

(
∏

k∈N
fk

)−1

(g) ∩ E0

⎞

⎠ ≤ 1 (3.4.8)

for each g ∈ ∏

k∈N
Sk , we claim that

λN (Xn) = 0 (3.4.9)

for each n ∈ (N \ {0}) ∪ {+∞}, which implies that

λN (X0) = 1. (3.4.10)

Now let E∗ be the set of all sequences of real numbers that are not uniformly
distributed modulo 1. Then we get
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fE∗(g) =
∑

n∈N∪{+∞}
nχYn (g) (3.4.11)

where

Yn =
⎧
⎨

⎩
g : g ∈

∏

k∈N
Sk & card

⎛

⎝

(
∏

k∈N
fk

)−1

(g) ∩ E∗
⎞

⎠ = n

⎫
⎬

⎭
. (3.4.12)

Let us show that X0 ⊆ Y0. Assume the contrary. Then for some g ∈ X0 and n > 0
we get

0 = card

⎛

⎝

(
∏

k∈N
fk

)−1

(g) ∩ E0

⎞

⎠ < card

⎛

⎝

(
∏

k∈N
fk

)−1

(g) ∩ E∗
⎞

⎠ = n,

(3.4.13)

which implies an existence of such a sequence (xk)k∈N ∈ (
∏

k∈N
fk)−1(g) ∩ E∗ for

which

({xk})k∈N ∈
(

∏

k∈N
fk

)−1

(g) ∩ E∗. (3.4.14)

Then we also get that

({xk})k∈N ∈
(

∏

k∈N
fk

)−1

(g) ∩ E0 (3.4.15)

which is the contradiction and we proved that X0 ⊆ Y0.
Inasmuch as X0 ⊆ Y0 and λN (X0) = 1, we claim that λN (Y0) = 1. The latter

relation implies that λN (Yn) = 0 for each n ∈ (N \ {0}) ∪ {+∞}. Finally we get

μN (E∗) =
∑

n∈N∪{+∞}
nλN (Yn) = 0. (3.4.16)

BecauseμN is the completion of a quasi-finite translation-invariant Borel measure in
RN , by Lemma 3.2.2 we easily deduce thatμN is the generator of shy sets Generator
of shy sets in RN , which implies that E∗ is shy. The latter relation implies that the
set E = RN \ E∗ is the prevalent set in R∞.

This ends the proof of the theorem.

By using Remark 3.4.1, we get the following corollary of Theorem 3.4.1.

Corollary 3.4.1 (SM) The set F of all real-valued sequences, uniformly distributed
modulo 1 in [−1/2, 1/2], is the prevalent set in R∞.
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By using Lemma 3.4.1 and Theorem 3.4.1 we get the following versions of the
strong law of large numbers in terms of the prevalent set.

Corollary 3.4.2 (SM) Let f be a real-valued continuous function f defined on the
closed unit interval I = [0, 1]. Then

{

(xn)n∈N ∈ RN : lim
N→∞

∑N
n=1 f ({xn})

N
=

∫

I
f (x)dx

}

(3.4.17)

is the prevalent set in RN .

Corollary 3.4.3 (SM) The set

∩ f ∈C[0,1]

{

(xn)n∈N ∈ RN : lim
N→∞

∑N
n=1 f ({xn})

N
=

∫

I
f (x)dx

}

(3.4.18)

is the prevalent set in RN .

Proof By Lemma 3.4.1, we know that

E ⊆
{

(xn)n∈N ∈ RN : lim
N→∞

∑N
n=1 f ({xn})

N
=

∫

I
f (x)dx

}

(3.4.19)

for each f ∈ C[0, 1]. The latter relation implies that the following inclusion

E ⊆ ∩ f ∈C[0,1]

{

(xn)n∈N ∈ RN : lim
N→∞

∑N
n=1 f ({xn})

N
=

∫

I
f (x)dx

}

(3.4.20)

holds true.
Application of the result of Theorem 3.4.1 ends the proof of the corollary.

Remark 3.4.2 Main results of Sect. 3.4 were obtained in [P6]
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Chapter 4
On Moore–Yamasaki–Kharazishvili Type
Measures and the Infinite Powers of Borel
Diffused Probability Measures on R

4.1 Introduction

Let μ and ν be non-trivial σ -finite measures on a measurable space (X, M). The
measures μ and ν are called orthogonal if there is a measurable set E ∈ M such that
μ(E) = 0 and ν(X\E) = 0. The measures μ and ν are called equivalent if and only
if the following condition

(∀E)(E ∈ M → (μ(E) = 0 ⇐⇒ ν(E) = 0)) (4.1.1)

holds true.
It is well known that the following facts are valid in an n-dimensional Euclidean

vector space Rn (n ∈ N ):

Fact 4.1.1 Letμ be a probability Borelmeasure onRwith a strictly positive continu-
ous distribution function and λn be a Lebesguemeasure defined on the n-dimensional
Euclidean vector space Rn. Then the measures μn and λn are equivalent.

Fact 4.1.2 Let (μk)1≤k≤n be a family of Borel probability measures onR with strictly
positive continuous distribution functions and λn be a Lebesgue measure defined on
the n-dimensional Euclidean vector space Rn. Then the measures

∏n
k=1 μk and λn

are equivalent.

Fact 4.1.3 Let (μk)1≤k≤n be a family of different Borel probability measures on R
with strictly positive continuous distribution functions. Then the measures μn

k and
μn
l are equivalent for each 1 ≤ k ≤ l ≤ n.

The proof of the above mentioned facts employs the following simple lemma
which is well known in the literature.

Lemma 4.1.1 Let μk and νk be equivalent non-trivial σ -finite Borel measures on
the measurable space (Xk, Mk) for 1 ≤ k ≤ n. Then the measures

∏n
k=1 μk and∏n

k=1 νk are equivalent.

© Springer International Publishing Switzerland 2016
G. Pantsulaia, Applications of Measure Theory to Statistics,
DOI 10.1007/978-3-319-45578-5_4
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Proof Note that for proving Lemma 4.1.1, it suffices to prove that if μk is absolutely
continuous with respect to νk(k = 1, 2), then so is

∏2
k=1 μk with respect to

∏2
k=1 νk .

Assume that E ∈ M1 × M2 such that μ1 × μ2(E) = 0. We have to show that
ν1 × ν2(E) = 0.

By the Fubini theorem we have

0 = μ1 × μ2(E) =
∫

X1

μ2(E ∩ ({x} × X2))dμ1(x).

This means that
μ1({x : μ2(E ∩ ({x} × X2)) > 0}) = 0 (4.1.2)

or, equivalently,

μ1(X1\{x : μ2(E ∩ ({x} × X2)) = 0}) = 0. (4.1.3)

Since ν1 	 μ1, we have

{x : μ2(E ∩ ({x} × X2)) = 0} ⊆ {x : ν2(E ∩ ({x} × X2)) = 0}. (4.1.4)

Since ν1 	 μ1 and

μ1(X1\{x : ν2(E ∩ ({x} × X2)) = 0}) = 0, (4.1.5)

we have

ν1(X1\{x : ν2(E ∩ ({x} × X2)) = 0}) = ν1({x : ν2(E ∩ ({x} × X2)) > 0}) = 0.
(4.1.6)

Finally, we get

ν1 × ν2(E) =
∫

X1

ν2(E ∩ ({x} × X2))dν1(x) =
∫

{x :ν2(E∩({x}×X2))>0}
ν2(E ∩ ({x} × X2))dν1(x)+

∫

{x :ν2(E∩({x}×X2))=0}
ν2(E ∩ ({x} × X2))dν1(x) = 0. (4.1.7)

In order to obtain the infinite-dimensional versions of Facts 4.1.1 and 4.1.2, we
must know what measures in infinite-dimensional topological vector spaces can be
taken as partial analogs of the Lebesgue measure in Rn (n ∈ N ). In this direc-
tion the results of I. Girsanov and B. Mityagyn [GM] and Sudakov [Sud] on the
nonexistence of nontrivial translation-invariant σ -finite Borel measures in infinite-
dimensional topological vector spaces are important. These authors assert that the
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properties of σ -finiteness and of translation-invariance are not consistent. Hence
one can weaken the property of translation-invariance for analogs of the Lebesgue
measure and construct nontrivial σ -finite Borel measures which are invariant under
everywhere dense linear manifolds. We wish to make a special note that Moore [M],
Yamasaki [Y] and Kharazishvili [Kh] had described the constructions of such mea-
sures in an infinite-dimensional Polish topological vector space RN of all real-valued
sequences equipped with product topology, which are invariant under the group R(N )

of all eventually zero real-valued sequences. Such measures can be called Moore–
Yamasaki–Kharazishvili type measures in RN . Using Kharazishvili’s approach [Kh],
it is proved in [GKPP] that every infinite-dimensional Polish linear space admits a
σ -finite non-trivial Borel measure that is translation invariant with respect to a dense
linear subspace. This extends a recent result of Gill, Pantsulaia and Zachary [GPZ]
on the existence of such measures in Banach spaces with Schauder bases.

In this chapter, we focus on the question whether Facts 4.1.1 and 4.1.2 admit
infinite-dimensional generalizations in terms of Moore–Yamasaki–Kharazishvili
type measures in R

N. To this end, our consideration will involve the following
problems.

Problem 4.1.1 Let μ be a probability Borel measure on R with a strictly positive
continuous distribution function and λ be a Moore–Yamasaki–Kharazishvili type
measure in R

N. Are the measures μN and λ equivalent ?

Problem 4.1.2 Let (μk)k∈N be a family of Borel probability measures on R with
strictly positive continuous distribution functions and λ be a Moore–Yamasaki–
Kharazishvili type measure in R

N. Are the measures
∏

k∈N μk and λ equivalent?

Concerning with Fact 4.1.3, it is natural to consider the following problems.

Problem 4.1.3 Let μ1 and μ2 be different Borel probability measures on R with
strictly positive continuous distribution functions. Are the measures μN

1 and μN
2

equivalent?

Problem 4.1.4 Let (μi )i∈I be a family of all Borel probability measures on R with
strictly positive continuous distribution functions. Setting S(RN ) := ∩i∈Idom(μN

i ),

where μN
i denotes a usual completion of the measure μN

i (i ∈ I ), does there exist a

partition (Di )i∈I of RN into elements of the σ -algebra S(RN ) such that μN
i (Di ) = 1

for each i ∈ I?

Problems 4.1.3 and 4.1.4 are not new and have been investigated by many authors
in more general formulations. In this direction, we should specially mention the result
of S. Kakutani [Kak] (see Theorem 4.3) stating that if one has equivalent probability
measures μi and νi on the σ -algebra Li of subsets of a set Ωi , i = 1, 2, . . . and if μ
and ν denote respectively the infinite product measures

∏
i∈N μi and

∏
i∈N νi on the

infinite product σ -algebra generated on the infinite product set Ω , then μ and ν are
either equivalent or orthogonal. Similar dichotomies have revealed themselves in the
study of Gaussian stochastic processes. C. Cameron and W.E. Martin [CM] proved
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that if one considers the measures induced on a path space by a Wiener process on
the unit interval, then, if the variances of corresponding processes are different, the
measures are orthogonal. Results of this kind were generalized by many authors (cf.
[F, G] and others). A.M. Vershik [V] proved that a group of all admissible translations
(in the sense of quasiinvariance) of an arbitrary Gaussian measure, defined in an
infinite-dimensional separable Hilbert space, is a linear manifold.

For study of the general problem of equivalence and singularity of two product
measures was carried out by various authors using different approaches, among
which are the strong law of large numbers, the properties of the Hellinger integral
[H], the zero-one laws [LM] and so on. In this chapter, we propose a new approach
for the solution of Problems 4.1.3 and 4.1.4, which uses the properties of uniformly
distributed sequences [KN].

In Sects. 4.2 and 4.3, we give solutions of Problems 4.1.1 and 4.1.2 which are due
to Yamasaki [Y]. In Sect. 4.4, we give solutions of Problems 4.1.3 and 4.1.4.

4.2 Solution of the Problem 4.1.1

A negative solution of Problem 4.1.1 is contained in the following

Fact 4.2.1 ([Y], Proposition 2.1, p. 696) Let f (x) be a measurable function on R1

which satisfies f (x) > 0 and
∫ +∞
−∞ f (x)dx = 1. Let μ be the stationary product

measure of f (i.e. dμ = ∏∞
i=1 f (xi )dxi ) and R(N) be a linear vector space of all

eventually zero real-valued sequences. Then μ is R(N)-quasi-invariant but μ has no
equivalent Moore–Yamasaki–Kharazishvili type measure.

Proof Let
∑

be the permutation group on the set of all natural numbers N =
{1, 2, . . .}. ∑

can be regarded as a transformation group on RN, and μ is
∑

-
invariant. Let

∑
0 be the subgroup of

∑
generated by all transpositions (of two

elements of N ).
∑

0 consists of such a permutation σ ∈ ∑
that satisfies σ(i) = i

except finite numbers of i ∈ N . As shown in [Sh], the measure μ is
∑

0-ergodic.
Now, we shall derive a contradiction assuming that μ has an equivalent R(N)-

invariant σ -finite measure ν. Since μ ≈ ν, where μ is
∑

0-invariant and
∑

0- ergodic,
and ν is

∑
0-invariant, we have that μ = cν for some constant c > 0. Thus, the R(N)-

invariance of ν implies that of μ, which is a contradiction.
Therefore it suffices to prove that ν is

∑
0-invariant, namely for each σ ∈ ∑

0,
τσ ν = ν, where

τσ ν(B) = ν(σ−1(B)), (4.2.1)

for each B ∈ B(RN ). Since τσμ = μ, we have τσ ν ≈ ν. On the other hand, ν is R(N)-
ergodic because μ is such. Therefore if τσ ν is R(N)-invariant, then we have τσ ν = cσ ν
for some constant cσ > 0. In particular for a transposition σ , σ 2 = l implies c2

σ = l,
hence cσ = 1. This means that ν is invariant under any transposition. Since

∑
0 is

generated by the set of all transpositions, we have proved the
∑

0-invariance of ν.
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To complete the proof of Fact 4.2.1, it remains only to prove that τσ ν is R(N)-
invariant. Since ν is R(N) -invariant, we have τxν = ν for any x ∈ R(N), where
τxν(B) = ν(B − x) for each B ∈ RN . Therefore

(∀x)(x ∈ R(N) → τσ τxν = τσ ν). (4.2.2)

However, we can easily show τσ τxν = τσ xτσ ν, so (4.2.2) implies that τσ ν is σ(R(N))-
invariant. Since σ maps R(N) onto R(N), namely σ(R(N)) = R(N) we have proved the
R(N)-invariance of τσ ν.

4.3 Particular Solution of Problem 4.1.2

Remark 4.3.1 If in the formulation of Problem 4.1.2 the equality μk = μn holds
true for each k, n ∈ N , then Problem 4.1.2 is reduced to Problem 4.1.1. Following
Fact 4.1.2 we know that the answer to Problem 4.1.1 is no.

In order to answer positively to Problem 4.1.2, we give the construction of Moore–
Yamasaki–Kharazishvili measures and formulate their some properties.

Example 4.3.1 ([P], Section1, p. 354) Let RN be the topological vector space of
all real-valued sequences equipped with the Tychonoff topology. Let us denote by
B(RN ) the σ -algebra of all Borel subsets in RN .

Let (ai )i∈N and (bi )i∈N be sequences of real numbers such that

(∀i)(i ∈ N → ai < bi ). (4.3.1)

We put

An = R0 × · · · × Rn ×
(

∏

i>n

Δi

)

, (4.3.2)

for n ∈ N , where

(∀i)(i ∈ N → Ri = R & Δi = [ai ; bi [). (4.3.3)

We put also
Δ =

∏

i∈N
Δi . (4.3.4)

For an arbitrary natural number i ∈ N , consider the Lebesgue measure μi defined
on the space Ri and satisfying the condition μi (Δi ) = 1. Let us denote by λi the
normalized Lebesgue measure defined on the interval Δi .
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For an arbitrary n ∈ N , let us denote by νn the measure defined by

νn =
∏

1≤i≤n

μi ×
∏

i>n

λi , (4.3.5)

and by νn the Borel measure in the space RN defined by

(∀X)(X ∈ B(RN ) → νn(X) = νn(X ∩ An)). (4.3.6)

Note that (see [P], Lemma 1.1, p. 354) for an arbitrary Borel set X ⊆ RN there
exists a limit

νΔ(X) = lim
n→∞ νn(X). (4.3.7)

Moreover, the functional νΔ is a nontrivial σ -finite measure defined on the Borel
σ -algebra B(RN ).

Recall that an element h ∈ RN is called an admissible translation in the sense of
invariance for the measure νΔ if

(∀X)(X ∈ B(RN ) → νΔ(X + h) = νΔ(X)). (4.3.8)

We define

GΔ = {h : h ∈ RN & h is an admissible translation for νΔ}. (4.3.9)

It is easy to show that GΔ is a vector subspace of RN .
We have the following

Lemma 4.3.1 ([P], Theorem 1.4, p.356) The following conditions are equivalent:

(1) g = (g1, g2, . . .) ∈ GΔ, (4.3.10)

(2) (∃ng)(ng ∈ N → the series
∑

i≥ng

ln(1 − |gi |
bi − ai

) is convergent). (4.3.11)

Let R(N ) be the space of all eventually zero sequences, i.e.,

R(N ) = {(gi )i∈N |(gi )i∈N ∈ RN & card{i |gi �= 0} < ℵ0}. (4.3.12)

It is clear that, on the one hand, for an arbitrary compact infinite-dimensional
parallelepiped Δ = ∏

k∈N
[ak, bk], we have

R(N ) ⊂ GΔ. (4.3.13)
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On the other hand, GΔ\R(N ) �= ∅ since an element (gi )i∈N defined by

(∀i)
(

i ∈ N → gi =
(

1 − exp

{

−bi − ai
2i

}

× (bi − ai )

))

(4.3.14)

belongs to the difference GΔ\R(N ).
It is easy to show that the vector space GΔ is everywhere dense in RN with respect

to the Tychonoff topology since R(N ) ⊂ GΔ.
Below we present an example of the product of an infinite family of Borel prob-

ability measures on R with strictly positive continuous distribution functions and a
Moore–Yamasaki–Kharazishvili type measure in R

N, such that these measures are
equivalent.

Let (cn)n∈N be a sequence of positive numbers such that 0 < cn < l. On the real
axis R, for each n consider a continuous function fn(x) which satisfies:

0 < fn(x) < 1,

∫ +∞

−∞
fn(x)dx = 1, (4.3.15)

fn(x) = ck for x ∈ [0, 1]. (4.3.16)

Such a function fn(x) exists certainly for any n ∈ N .
For n ∈ N , let us denote by μn a Borel probability measure on R defined by the

distribution density function fn .

Fact 4.3.1 If
∏

n∈N cn > 0, then the measures
∏

n∈N μn and ν[0,1]N are equivalent.

Proof By the Fubini theorem, one can easily prove that the measure
∏

n∈N μn is R(N )-
quasiinvariant. According to [Sh], every product measure on RN is R(N )-ergodic.
Therefore,

∏
n∈N μn , hence ν[0,1]N , too is R(N )- ergodic.

For x = (xn) ∈ RN , define a function f (x) by:

f (x) =
∏

n∈N
fn(x). (4.3.17)

Since 0 < f (xn) < 1, the partial product decreases monotonically, so that the infinite
product in (4.3.1) exists certainly. If x ∈ An , then xk ∈ [0, 1] for k > n, so we have

f (x) =
n∏

k=1

fk(xk)
∏

k>n

ck > 0. (4.3.18)

Thus f (x) is positive on An , hence positive on ∪n∈N An , too. On the other hand,
since ν[0,1]N (RN\∪n∈N An) = 0, we see that f (x) is positive for ν[0,1]N -almost all x .
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Now, define a measure ν
′
on RN by

ν
′
(X) =

∫

X
f (x)dν[0,1]N (x) (4.3.19)

for X ∈ B(RN ).
Let us show that

∏
n∈N μn = ν

′
. For this it suffices to show that for each A ∈ B(Rn)

we have
ν

′
(A × RN\{1,...,n}) =

∏

n∈N
μn(A × RN\{1,...,n}). (4.3.20)

Indeed, we have

ν
′
(A × RN\{1,...,n}) =

∫

A×RN\{1,...,n}
f (x)dν[0,1]N (x)

= lim
m→+∞

∫

Am∩(A×RN\{1,...,n})
f (x)dν[0,1]N (x)

= lim
m→+∞

∫

A×∏m
k=n+1 R×∏

k>m [0,1]
f (x)dν[0,1]N (x)

= lim
m→+∞

∫

A×∏m
k=n+1 R×∏

k>m [0,1]
f (x)d

(
m∏

k=1

μk ×
∏

k>m

λk

)

= lim
m→+∞

∫

A×∏m
k=n+1 R

(∫

∏
k>m [0,1]

f (x)d
∏

k>m

λk

)

d
m∏

k=1

μk

= lim
m→+∞

∫

∏
k>m [0,1]

∏

k>m

fk(xk)d
∏

k>m

λk

× lim
m→+∞

∫

A×∏m
k=n+1 R

m∏

k=1

fk(xk)d
m∏

k=1

μk

= lim
m→+∞

∫

∏
k>m [0,1]

∏

k>m

fk(xk)d
∏

k>m

λk

× lim
m→+∞

∫

A

n∏

k=1

fk(xk)d
n∏

k=1

μk ×
∫

∏m
k=n+1 R

m∏

k=n+1

fk(xk)d
m∏

k=n+1

μk

= lim
m→+∞

∏

k>m

ck ×
n∏

k=1

μk(A) =
n∏

k=1

μk(A) =
∏

k∈N
μk(A × RN\{1,...,n}). (4.3.21)

This ends the proof of Fact 4.3.1.

Remark 4.3.2 Let the product-measure
∏

k∈N μk comes from Fact 4.3.1. Then by
virtue of Lemma 4.3.1, we know that the group of all admissible translations (in
the sense of invariance) for the measure ν[0,1]N is l1 = {(xk)k∈N : (xk)k∈N ∈
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RN &
∑

k∈N |xk | < +∞}. Following Fact 4.3.1, the measures
∏

k∈N μk and ν[0,1]N
are equivalent, which implies that the group of all admissible translations (in the
sense of quasiinvariance) for the measure

∏
k∈N μk is equal to l1.

For (xk)k∈N ∈ l1, we set νk(X) = μk(X − xk) for each X ∈ B(R). It is obvious
that μk and νk are equivalent for each k ∈ N . For k ∈ N and x ∈ R, we put
ρk(x) = dνk (x)

dμk (x)
. Let us consider the product-measures μ = ∏

k∈N
μk and ν = ∏

k∈N
νk .

On the one hand, following our observation, the measures μ and ν are equivalent.
On the other hand, by virtue of Kakutani’s well known result (see, [Kak]), since
the measures μ and ν are equivalent, we deduce that the infinite product

∏

k∈N
αk is

divergent to zero, where αk = ∫

R

√
ρk(xk)dμk(xk). In this case rn(x) =

n∏

k=1
ρk(x) is

convergent (in the mean) to the function r(x) =
∞∏

k=1
ρk(x) which is the density of

the measure ν with respect to μ, i.e.,

r(x) = dν(x)

dμ(x)
. (4.3.22)

Remark 4.3.3 The approach used in the proof of Fact 4.3.1 is taken from [Y] (see
Proposition 4.1, p. 702).

In the context of Fact 4.3.1 we state the following

Problem 4.3.1 Do there exist a family (μk)k∈N of linear Gaussian probability mea-
sures on R and a Moore–Yamasaki–Kharazishvili type measure λ in RN such that
the measures

∏

k∈N
μk and λ are equivalent?

4.4 Solution of Problems 4.1.3 and 4.1.4

We present a new approach for the solution of Problems 4.1.3 and 4.1.4, which is quite
different from the approach introduced in [Kak]. Our approach uses the technique
of the so-called uniformly distributed sequences. The main notions and auxiliary
propositions are taken from [KN].

Definition 4.4.1 ([KN]) A sequence (xk)k∈N of real numbers from the interval (a, b)
is said to be equidistributed or uniformly distributed on an interval (a, b) if for any
subinterval [c, d] of (a, b) we have

lim
n→∞ n−1#({x1, x2, . . . , xn} ∩ [c, d]) = (b − a)−1(d − c), (4.4.1)

where # denotes the counting measure.
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Now let X be a compact Polish space and μ be a probability Borel measure on X .
Let R(X) be a space of all bounded continuous measurable functions defined on X .

Definition 4.4.2 A sequence (xk)k∈N of elements of X is said to be μ-equidistributed
or μ-uniformly distributed on X if for every f ∈ R(X) we have

lim
n→∞ n−1

n∑

k=1

f (xk) =
∫

X
f dμ. (4.4.2)

Lemma 4.4.1 ([KN], Lemma 2.1, p. 199) Let f ∈ R(X). Then, forμN -almost every
sequence (xk)k∈N ∈ XN , we have

lim
n→∞ n−1

n∑

k=1

f (xk) =
∫

X
f dμ. (4.4.3)

Lemma 4.4.2 ([KN], pp. 199–201) Let S be a set of allμ-equidistributed sequences
on X. Then we have μN (S) = 1.

Corollary 4.4.1 ([ZPS], Corollary 2.3, p. 473) Let 
1 be a Lebesgue measure on
(0, 1). Let D be a set of all 
1-equidistributed sequences on (0, 1). Then we have

N1 (D) = 1.

Definition 4.4.3 Let μ be a probability Borel measure on R with a distribution
function F . A sequence (xk)k∈N of elements of R is said to be μ-equidistributed or
μ-uniformly distributed on R if for every interval [a, b](−∞ ≤ a < b ≤ +∞) we
have

lim
n→∞ n−1#([a, b] ∩ {x1, . . . , xn}) = F(b) − F(a). (4.4.4)

Lemma 4.4.3 ([ZPS], Lemma 2.4, p. 473) Let (xk)k∈N be an 
1-equidistributed
sequence on (0, 1), F be a strictly increasing continuous distribution function on
R and p be a Borel probability measure on R defined by F. Then (F−1(xk))k∈N is
p-equidistributed on R.

Corollary 4.4.2 ([ZPS], Corollary 2.4, p. 473) Let F be a strictly increasing contin-
uous distribution function on R and p be a Borel probability measure on R defined
by F. Then for a set DF ⊂ RN of all p-equidistributed sequences on R we have:
(i) DF = {(F−1(xk))k∈N : (xk)k∈N ∈ D};
(ii) pN (DF ) = 1.

Lemma 4.4.4 Let F1 and F2 be different strictly increasing continuous distribution
functions on R, and p1 and p2 be Borel probability measures on R defined by F1

and F2, respectively. Then there does not exist a sequence of real numbers (xk)k∈N

which simultaneously is p1-equidistributed and p2-equidistributed.

Proof Assume the contrary and let (xk)k∈N be such a sequence. Since F1 and F2 are
different, there is a point x0 ∈ R such that F1(x0) �= F2(x0). The latter relation is not
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possible under our assumption because (xk)k∈N simultaneously is p1-equidistributed
and p2-equidistributed, which implies

F1(x0) = lim
n→∞ n−1#((−∞, x0] ∩ {x1, . . . , xn}) = F2(x0). (4.4.5)

The next theorem contains the solution of Problem 4.1.3.

Theorem 4.4.1 Let F1 and F2 be different strictly increasing continuous distribution
functions on R and p1 and p2 be Borel probability measures on R, defined by F1

and F2, respectively. Then the measures pN
1 and pN

2 are orthogonal.

Proof Let DF1 and DF2 denote p1-equidistributed and p2-equidistributed sequences
on R, respectively. By Lemma 4.4.4 we know that DF1 ∩ DF2 = ∅. By Lemma 4.4.2
we know that pN

1 (DF1) = 1 and pN
2 (DF2) = 1. This ends the proof of the theorem.

Definition 4.4.4 Let {μi : i ∈ I } be a family of probability measures defined on a
measure space (X, M). Let S(X) be defined by

S(X) = ∩i∈Idom(μi ),

where μi denotes a usual completion of the measure μi . We say that the family
{μi : i ∈ I } is strongly separated if there exists a partition {Ci : i ∈ I } of the space
X into elements of the σ -algebra S(X) such that μi (Ci ) = 1 for each i ∈ I .

Definition 4.4.5 Let {μi : i ∈ I } be a family of probability measures defined on a
measure space (X, M). Let S(I ) denote a minimal σ -algebra generated by singletons
of I and the σ -algebra S(X) of subsets of X be defined by

S(X) = ∩i∈Idom(μi ),

where μi denotes a usual completion of the measure μi for i ∈ I . We say that a
(S(X), S(I ))-measurable mapping T : X → I is a well-founded estimate of an
unknown parameter i (i ∈ I ) for the family {μi : i ∈ I } if the following condition

(∀i)(i ∈ I → μi (T
−1({i}) = 1) (4.4.6)

holds true.

One can easily get the validity of the following assertion.

Lemma 4.4.5 ([ZPS], Lemma 2.5, p. 474) Let {μi : i ∈ I } be a family of proba-
bility measures defined on a measure space (X, M). The following propositions are
equivalent:

(i) The family of probability measures {μi : i ∈ I } is strongly separated;
(ii) There exists a well-founded estimate of an unknown parameter i (i ∈ I ) for the

family {μi : i ∈ I }.
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The next theorem contains the solution of Problem 4.1.4.

Theorem 4.4.2 Let F be a family of all strictly increasing and continuous distrib-
ution functions on R and pF be a Borel probability measure on R defined by F for
each F ∈ F. Then the family of Borel probability measures {pN

F : F ∈ F)} is strongly
separated.

Proof We denote by DF the set of all pF -equidistributed sequences on R for each
F ∈ F. By Lemma 4.4.4 we know that DF1 ∩ DF2 = ∅ for each different F1, F2 ∈ F.
By Lemma 4.4.2 we know that pN

F (DF ) = 1 for each F ∈ F. Let us fix F0 ∈ F and
define a family (CF )F∈F of subsets of RN as follows: CF = DF for F ∈ F\{F0}
and CF0 = RN\ ∪F∈F\{F0} DF . Since DF is a Borel subset of RN for each F ∈ F,

we claim that CF ∈ S(RN) for each F ∈ F\{F0}. Since pN
F (RN\ ∪F∈F DF ) = 0

for each F ∈ F, we deduce that RN\ ∪F∈F DF ∈ ∩F∈Fdom(pN
F ) = S(RN ). Since

S(RN) is an σ -algebra, we claim that CF0 ∈ S(RN ) because pN
F (RN\∪F∈F DF ) = 0

for each F ∈ F(equivalently, RN\ ∪F∈F DF ∈ S(RN )), DF0 ∈ S(RN ) and

CF0 = RN\ ∪F∈F\{F0} DF = (RN\ ∪F∈F DF ) ∪ DF0 . (4.4.7)

This ends the proof of the theorem.

By virtue of the results of Lemma 4.4.5 and Theorem 4.4.2 we get the following

Corollary 4.4.3 Let F be a family of all strictly increasing and continuous distribu-
tion functions on R. Then there exists a well-founded estimate of an unknown distrib-
ution function F (F ∈ F) for the family of Borel probability measures {pN

F : F ∈ F}.
Remark 4.4.1 The validity of Theorem 4.4.2 and Corollary 4.4.3 can be obtained
for an arbitrary family of strictly increasing and continuous distribution functions
on R. Note that Corollary 4.4.3 extends the main result established in [ZPS] (see
Lemma 2.6, p. 476).

Remark 4.4.2 The requirements in Theorem 4.4.2 that all Borel probability measures
on R are defined by strictly increasing and continuous distribution functions on
R and the measures under consideration are infinite powers of the corresponding
measures are essential. Indeed, let μ be a linear Gaussian measure on R whose

density distribution function has the form f (x) = 1√
2π
e− x2

2 (x ∈ R). Let δx be a
Dirac measure defined on the Borel σ -algebra of subsets of R and concentrated at
x (x ∈ R). Let D be a subset of RN defined by

D =
{

(xk)k∈N : lim
n→∞

∑n
k=1 xk
n

= 0

}

. (4.4.8)

It is obvious that D is a Borel subset of RN. For (xk)k∈N ∈ D we set μ(xk )k∈N =∏
k∈N δxk .

1 Let us consider the family of Borel probability measures {μN }∪{μ(xk )k∈N :

1Note that
∏

k∈N δxk = δ(xk )k∈N .
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(xk)k∈N ∈ D}. It is obvious that it is an orthogonal family of Borel product-measures
which is not strong separable. Indeed, assume the contrary and let {C} ∪ {C(xk )k∈N :
(xk)k∈N ∈ D} be such a partition of RN into elements of the σ -algebra S0(RN ) =
∩(xk )k∈N∈Ddom(μ(xk )k∈N ) ∩ dom(μN ) that μ(xk )k∈N (C(xk )k∈N ) = 1 for (xk)k∈N ∈ D

and μN (C) = 1. Since (xk)k∈N ∈ C(xk )k∈N for each (xk)k∈N ∈ D we deduce that
D ∩ C = ∅. This implies that μN (C) ≤ μN (RN\D) = 0 because by the strong law
of large numbers we have that μN (D) = 1. The latter relation is a contradiction and
Remark 4.4.2 is proved.

Remark 4.4.3 By using Glivenko–Canteli theorem we can obtain the solution of
Problem 1.4 in more general formulation. More precisely, if F is any family of dif-
ferent distribution functions on R and pF denotes Borel probability measure on
R defined by F for each F ∈ F, then the family of Borel probability measures
{p∞

F : F ∈ F)} is strongly separated. Indeed, for F ∈ F we put

DF =
{

(xk)k∈N : (xk)k∈N ∈ R∞ & lim
n→∞ sup

x∈R
|#({x1, . . . , xn} ∩ (−∞, x])

n
− F(x)| = 0

}

.

By Glivenko–Canteli theorem we get

P∞
F (DF ) = 1.

Now let show that DF1 ∩ DF2 = ∅ for different F1, F2 ∈ F. Indeed, assume the
contrary and let (xk)k∈N ∈ DF1 ∩ DF2 . Let x0 ∈ R be such a point that F1(x0) �=
F2(x0). Then for each n ∈ N we get

|F2(x0) − F1(x0)| = ∣
∣
(

F2(x0) − #({x1, . . . , xn} ∩ (−∞, x0])
n

)

−
(

F1(x0) − #({x1, · · · , xn} ∩ (−∞, x0])
n

)
∣
∣

≤ |F2(x0) − #({x1, . . . , xn} ∩ (−∞, x0])
n

|

+ |F1(x0) − #({x1, . . . , xn} ∩ (−∞, x0])
n

|

≤ sup
x∈R

|F2(x) − #({x1, . . . , xn} ∩ (−∞, x])
n

|

+ sup
x∈R

|F1(x) − #({x1, . . . , xn} ∩ (−∞, x])
n

|. (4.4.9)

Finally we get
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|F2(x0) − F1(x0)|
≤ lim

n→∞ sup
x∈R

|F2(x) − #({x1, . . . , xn} ∩ (−∞, x])
n

|

+ lim
n→∞ sup

x∈R
|F1(x) − #({x1, . . . , xn} ∩ (−∞, x])

n
| = 0, (4.4.10)

which is the contradiction. Remark 4.4.3 will be proved if we will use the construction
used in the proof of Theorem 4.4.2.
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Chapter 5
Objective and Strong Objective Consistent
Estimates of Unknown Parameters
for Statistical Structures in a Polish Group
Admitting an Invariant Metric

5.1 Introduction

In order to explain the big gap between the theory of mathematical statistics and
results of hypothesis testing, concepts of subjective and objective infinite sample
consistent estimates of a useful signal in the linear one-dimensional stochastic model
were introduced in [PK1]. This approach essentially used the concept of Haar null
sets in Polish topological vector spaces introduced by J.P.R. Christensen [Chr1].

The Polish topological vector spaceRN of all real-valued sequences (equivalently,
of infinite samples) equipped with the Tychonoff metric plays a central role in the
theory of statistical decisions because a definition of any consistent estimate of an
unknown parameter in various stochastic models without infinite samples is simply
impossible.

From the point of view of the theory of Haar null sets in RN we now clear up
some of the confusions that were described by Jum Nunnally [N] and Jacob Cohen
[Coh]:

Let x1, x2, . . . be an infinite sample obtained by observation of independent and
normally distributed real-valued random variables with parameters (θ, 1), where θ
is an unknown mean and the variance is equal to 1. Using this infinite sample we
want to estimate an unknown mean. If we denote by μθ a linear Gaussian measure

on R with the probability density 1√
2π
e− (x−θ)2

2 , then the triplet

(
RN ,B

(
RN

)
, μN

θ

)
θ∈R

(5.1.1)

stands for a statistical structure described in our experiment, where B(RN ) denotes
the σ -algebra of Borel subsets of RN . By virtue of the strong law of large numbers
we know that the condition

μN
θ

({

(xk)k∈N : (xk)k∈N ∈ RN & lim
n→∞

∑n
k=1 xk
n

= θ

})

= 1 (5.1.2)
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holds true for each θ ∈ R.
Taking into account the validity of (5.1.2), for construction of a consistent infinite

sample estimation of an unknown parameter θ , as usual, a mapping T defined by

T ((xk)k∈N ) = lim
n→∞

∑n
k=1 xk
n

, (5.1.3)

is used in the theory of statistical decisions. It is well known that null hypothesis
significance testing in the case H0 : θ = θ0 assumes the procedure: if an infinite
sample (xk)k∈N ∈ T−1(θ0) then the H0 hypothesis is accepted and the H0 hypothesis
is rejected, otherwise. There naturally arises a question askingwhether JacobCohen’s
statement [Coh]: “… Don’t look for a magic alternative to NHST [null hypothesis
significance testing] … It does not exist” can be explained. Note that a set S of all
infinite samples (xk)k∈N for which there exist finite limits of arithmetic means of
their first n elements constitutes a proper Borel measurable vector subspace of RN .
Following Christensen [Chr1], each proper Borel measurable vector subspace of an
arbitrary Polish topological vector space is a Haar null set and inasmuch as S is a
Borel measurable proper vector subspace of RN we claim that the mapping T is not
defined for “almost every” (in the sense of Christensen1) infinite sample. The latter
relation means that for almost every infinite sample we reject the null hypothesis H0.
This discussion can also be used to explain Jum Nunnally’s [N] conjecture.

If the decisions are based on convention they are termed arbitrary or mindless
while those not so based may be termed subjective. To minimize type I I errors,
large samples are recommended. In psychology practically all null hypotheses are
claimed to be false for sufficiently large samples so …it is usually nonsensical to
perform an experiment with the sole aim of rejecting the null hypothesis.

Now let T1 : RN → R be another infinite sample consistent estimate of an
unknown parameter θ in the above-mentioned model; that is,

μN
θ ({(xk)k∈N : (xk)k∈N ∈ RN & T1((xk)k∈N ) = θ}) = 1 (5.1.4)

for each θ ∈ R. Here a question naturally arises about the additional conditions
imposed on the estimate T1 under which the above-described confusions will be
settled.

In this direction, first note that there must be no parameter be set, because then for
almost every infinite sample null hypothesis H0 : θ = θ0 will be rejected. Second,
there must be no parameter θ1 ∈ R for which T−1

1 (θ1) is a prevalent set (equivalently,
a complement of a Haar null set) because then for almost every infinite sample null
hypothesis H0 : θ = θ2 will be rejected for each θ2 �= θ1. These observations lead us
to additional conditions imposed on the estimate T1 which assumes that T−1

1 (θ)must

1We say that a sentence P(·) formulated in terms of an element of a Polish group G is true for
“almost every” element of G if a set of all elements g ∈ G for which P(g) is false constitutes a
Haar null set in G.
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be neither Haar null nor prevalent for each θ ∈ R. Following [BBE], a set which is
neither Haar null nor prevalent is called a Haar ambivalent set. Such estimates first
were adopted as objective infinite sample consistent estimates of a useful signal in
the linear one-dimensional stochastic model (see, [ZPS], Theorem 4.1, p. 482).

It was proved in [ZPS] that Tn : Rn → R (n ∈ N ) defined by

Tn(x1, . . . , xn) = −F−1(n−1#({x1, . . . , xn} ∩ (−∞; 0])) (5.1.5)

for (x1, . . . , xn) ∈ Rn , is a consistent estimator of a useful signal θ in the one-
dimensional linear stochastic model

ξk = θ + Δk (k ∈ N ), (5.1.6)

where #(·) denotes a counting measure, Δk is a sequence of independent identically
distributed random variables on R with strictly increasing continuous distribution
function F , and expectation of Δ1 does not exist. The following two examples of
simulations of a linear one-dimensional stochastic model (5.1.6) have been consid-
ered in [ZPS].

Example 5.1.1 ([ZPS], Example 4.1, p. 484) Because a sequence of real numbers
(π ×n−[π ×n])n∈N , where [·] denotes an integer part of a real number, is uniformly
distributed on (0, 1) (see [KN], Example 2.1, p. 17), we claim that a simulation of
a μ(θ,1) equidistributed sequence (xn)n≤M on R (M is a “sufficiently large” natural
number and depends on a representation quality of the irrational number π ), where
μ(θ,1) denotes a θ shift of the measure μ defined by distribution function F , can be
obtained by the formula

xn = F−1
θ (π × n − [π × n]) (5.1.7)

for n ≤ M and θ ∈ R, where Fθ denotes a distribution function corresponding to
the measure μθ .

In this model, θ stands for a “useful signal”.
We set:

(i) n: The number of trials
(ii) Tn: An estimator defined by the formula (5.1.5)
(iii) Xn: A sample average

When F(x) is a standardGaussian distribution function, by usingMicrosoft Excel
we have obtained numerical data placed in Table5.1.

Note that the results of computations presented in Table5.1 show us that both
statistics Tn and Xn give us good estimates of the useful signal θ whenever a gener-
alized white noise in that case has a finite absolute moment of the first order, and its
moment of the first order is equal to zero.

Now let F be a linear Cauchy distribution function on R; that is,
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Table 5.1 Estimates of the useful signal θ = 1 when the white noise is a standard Gaussian random
variable

n Tn Xn n Tn Xn

50 0.994457883 1.146952654 550 1.04034032 1.034899747

100 1.036433389 1.010190601 600 1.036433389 1.043940988

150 1.022241387 1.064790041 650 1.03313984 1.036321771

200 1.036433389 1.037987511 700 1.030325691 1.037905202

250 1.027893346 1.045296447 750 1.033578332 1.03728633

300 1.036433389 1.044049728 800 1.03108705 1.032630945

350 1.030325691 1.034339407 850 1.033913784 1.037321098

400 1.036433389 1.045181911 900 1.031679632 1.026202323

450 1.031679632 1.023083495 950 1.034178696 1.036669278

500 1.036433389 1.044635371 1000 1.036433389 1.031131694

Table 5.2 Estimates of the useful signal θ = 1 when the white noise is a Cauchy random variable

n Tn Xn n Tn Xn

50 1.20879235 2.555449288 550 1.017284476 41.08688757

100 0.939062506 1.331789564 600 1.042790358 41.30221291

150 1.06489184 71.87525566 650 1.014605804 38.1800532

200 1.00000000 54.09578271 700 1.027297114 38.03399768

250 1.06489184 64.59240343 750 1.012645994 35.57956117

300 1.021166379 54.03265563 800 1.015832638 35.25149408

350 1.027297114 56.39846672 850 1.018652839 33.28723503

400 1.031919949 49.58316089 900 1.0070058 31.4036155

450 1.0070058 44.00842613 950 1.023420701 31.27321466

500 1.038428014 45.14322051 1000 1.012645994 29.73405416

F(x) =
∫ x

−∞
1

π(1 + t2)
dt (x ∈ R). (5.1.8)

Numerical data placed in Table5.2 were obtained by using Microsoft Excel and
a high-accuracy Cauchy distribution calculator [K].

On the one hand, the results of computations placed in Table5.2 do not contradict
the above-mentioned fact that Tn is a consistent estimator of the parameter θ = 1.
However, we know that a sample average Xn does not work in that case because the
mean and variance of the white noise (i.e., Cauchy random variable) are not defined.
For this reason attempts to estimate the useful signal θ = 1 by using the sample
average will not be successful.

In [ZPS] it has been established that the estimators limT̃n := infn supm≥n T̃m and
limT̃n := supn infm≥n T̃m are consistent infinite sample estimates of a useful signal
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θ in the model (5.1.6; see [ZPS], Theorem 4.2, p. 483). When we begin to study
properties of these infinite sample estimators from the point of view of the theory of
Haar null sets in RN , we observe a (for us) surprising and an unexpected fact that
both these estimates are objective (see [PK3], Theorem 3.1).

As the described approach naturally divides a class of consistent infinite sample
estimates into objective and subjective estimates should not seem excessively high
showed our suggestion that each consistent infinite sample estimate must pass the
theoretical test on objectivity.

The present chapter introduces the concepts of the theory of objective infinite
sample consistent estimates in RN and gives its extension to all nonlocally compact
Polish groups admitting an invariant metric.

The rest of Chap.5 is the following.
In Sect. 5.2 we give some notions and facts from the theory of Haar null sets

in complete metric linear spaces and equidistributed sequences on the real axis R.
Concepts of objective and strong objective infinite sample consistent estimates for
statistical structures are also introduced in this section. Section5.3 presents a cer-
tain construction of the objective infinite sample consistent estimate of an unknown
distribution function that generalizes the recent results obtained in [ZPS]. There we
prove an existence of the infinite sample consistent estimate of an unknown distribu-
tion function F(F ∈ F) for the family of Borel probability measures {pN

F : F ∈ F},
where F denotes the family of all strictly increasing and continuous distribution
functions on R and pN

F denotes an infinite power of the Borel probability measure
pF on R defined by F . Section5.4 presents an effective construction of the strong
objective infinite sample consistent estimate of the useful signal in a certain lin-
ear one-dimensional stochastic model. An infinite sample consistent estimate of an
unknown probability density is constructed for the separated class of positive con-
tinuous probability densities and a problem about existence of an objective one is
stated in Sect. 5.5. In Sect. 5.6, by using the notion of a Haar ambivalent set intro-
duced in [BBE], essentially new classes of statistical structures having objective
and strong objective estimates of an unknown parameter are introduced in a Polish
nonlocally compact group admitting an invariant metric and relations between them
are studied in this section. An example of a weakly separated statistical structure is
constructed for which a question asking whether there exists a consistent estimate of
an unknown parameter is not solvable within the theory (ZF)& (DC). These results
extend recent results obtained in [PK2]. In addition, we extend the concept of objec-
tive and subjective consistent estimates introduced for RN to all Polish groups and
consider a question asking whether there exists an objective consistent estimate of an
unknown parameter for any statistical structure in a nonlocally compact Polish group
with an invariant metric when a subjective one exists. We show that this question is
answered positively when there exists at least one such a parameter, the preimage
of which under this subjective estimate is a prevalent. In Sect. 5.7 we consider some
examples of objective and strong objective consistent estimates in a compact Polish
group {0; 1}N . In Sect. 5.8 we present a certain claim for theoretical statisticians in
which each consistent estimation with domain in a nonlocally compact Polish group
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equipped with an invariant metric must pass the certification exam on the objectivity
before its practical application and give some recommendations.

5.2 Auxiliary Notions and Facts from Functional
Analysis and Measure Theory

Let V be a complete metric linear space, by which we mean a vector space (real
or complex) with a complete metric for which the operations of addition and scalar
multiplication are continuous. When we speak of a measure on V we always mean
a nonnegative measure that is defined on the Borel sets of V and is not identically
zero. We write S + v for the translation of a set S ⊆ V by a vector v ∈ V .

Definition 5.2.1 ([HSY], Definition 1, p. 221) A measure μ is said to be transverse
to a Borel set S ⊂ V if the following two conditions hold.

(i) There exists a compact set U ⊂ V for which 0 < μ(U ) < 1.
(ii) μ(S + v) = 0 for every v ∈ V .

Definition 5.2.2 ([HSY], Definition 2, p. 222; [BBE], p. 1579) A Borel set S ⊂ V
is called shy if there exists a measure transverse to S. More generally, a subset of
V is called shy if it is contained in a shy Borel set. The complement of a shy set is
called a prevalent set. We say that a set is Haar ambivalent if it is neither shy nor
prevalent.

Definition 5.2.3 ([HSY], p. 226) We say that “almost every” element of V satisfies
some given property, if the subset of V on which this property holds is prevalent.

Lemma 5.2.1 ([HSY], Fact 3
′′
, p. 223) The union of a countable collection of shy

sets is shy.

Lemma 5.2.2 ([HSY], Fact 8, p. 224) If V is infinite-dimensional, all compact sub-
sets of V are shy.

Lemma 5.2.3 ([Kh], Lemma 2, p. 58) Let μ be a Borel probability measure defined
in complete separable metric space V . Then there exists a countable family of com-
pact sets (Fk)k∈N in V such that μ(V \ ∪k∈N Fk) = 0.

Let RN be a topological vector space of all real-valued sequences equipped with
Tychonoff metric ρ defined by ρ((xk)k∈N , (yk)k∈N ) = ∑

k∈N |xk − yk |/2k(1+|xk −
yk |) for (xk)k∈N , (yk)k∈N ∈ RN .

Lemma 5.2.4 ([P2], Lemma 15.1.3, p. 202) Let J be an arbitrary subset of N . We
set

AJ = {(xi )i∈N : xi ≤ 0 for i ∈ J & xi > 0 for i ∈ N \ J }. (5.2.1)

Then the family of subsets Φ = {AJ : J ⊆ N } has the following properties.
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(i) Every element of Φ is Haar ambivalent.
(i i) AJ1 ∩ AJ2 = ∅ for all different J1, J2 ⊆ N.
(i i i) Φ is a partition of RN such that card(Φ) = 2ℵ0 .

Remark 5.2.1 The proof of Lemma5.2.4 employs an argument stating that each
Borel subset of RN which for each compact set contains its translate is a nonshy set.

Definition 5.2.4 ([KN])A sequence (xk)k∈N of real numbers from the interval (a, b)
is said to be equidistributed or uniformly distributed on an interval (a, b) if for any
subinterval [c, d] of (a, b) we have

lim
n→∞ n−1#({x1, x2, . . . , xn} ∩ [c, d]) = (b − a)−1(d − c), (5.2.2)

where # denotes a counting measure.

Now let X be a compact Polish space and μ be a probability Borel measure on
X . Let R(X) be a space of all bounded continuous functions defined on X .

Definition 5.2.5 A sequence (xk)k∈N of elements of X is said to beμ equidistributed
or μ uniformly distributed on the X if for every f ∈ R(X) we have

lim
n→∞ n−1

n∑

k=1

f (xk) =
∫

X
f dμ. (5.2.3)

Lemma 5.2.5 ([KN], Lemma 2.1, p. 199) Let f ∈ R(X). Then, forμN almost every
sequence (xk)k∈N ∈ XN , we have

lim
n→∞ n−1

n∑

k=1

f (xk) =
∫

X
f dμ. (5.2.4)

Lemma 5.2.6 ([KN], pp. 199–201) Let S be a set of allμ equidistributed sequences
on X. Then we have μN (S) = 1.

Corollary 5.2.1 ([ZPS], Corollary 2.3, p. 473) Let 	1 be a Lebesgue measure
on (0, 1). Let D be a set of all 	1 equidistributed sequences on (0, 1). Then we
have 	N1 (D) = 1.

Definition 5.2.6 Let μ be a probability Borel measure on R and F be its cor-
responding distribution function. A sequence (xk)k∈N of elements of R is said
to be μ equidistributed or μ uniformly distributed on R if for every interval
[a, b](−∞ ≤ a < b ≤ +∞) we have

lim
n→∞ n−1#([a, b] ∩ {x1, . . . , xn}) = F(b) − F(a). (5.2.5)
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Lemma 5.2.7 ([ZPS], Lemma 2.4, p. 473) Let (xk)k∈N be an 	1 equidistributed
sequence on (0, 1), F be a strictly increasing continuous distribution function on R,
and p be a Borel probability measure on R defined by F. Then (F−1(xk))k∈N is p
equidistributed on R.

Remark 5.2.2 It can be shown that Definitions5.2.5 and 5.2.6 are equivalent.

Corollary 5.2.2 ([ZPS], Corollary 2.4, p. 473) Let F be a strictly increasing contin-
uous distribution function on R and pF be a Borel probability measure on R defined
by F. Then for a set DF ⊂ RN of all p equidistributed sequences on R we have:
(i) DF = {(F−1(xk))k∈N : (xk)k∈N ∈ D}, where D comes from Corollary5.2.1.
(ii) pN

F (DF ) = 1.

Lemma 5.2.8 Let F1 and F2 be two different strictly increasing continuous distrib-
ution functions on R and p1 and p2 be Borel probability measures on R defined by
F1 and F2, respectively. Then there does not exist a sequence of real numbers (xk)k∈N
that is simultaneously p1 equidistributed and p2 equidistributed.

Theorem 5.2.1 Let F1 and F2 be two different strictly increasing continuous distri-
bution functions on R and p1 and p2 be Borel probability measures on R defined by
F1 and F2, respectively. Then the measures pN

1 and pN
2 are orthogonal.

Definition 5.2.7 Let {μi : i ∈ I } be a family of probability measures defined on
a measure space (X, M). Let L(I ) denote a minimal σ -algebra generated by all
singletons of I and S(X) be the σ -algebra of subsets of X defined by

S(X) = ∩i∈I dom(μi ),

where μi denotes the completion of the measure μi for i ∈ I .
We say that an (S(X), L(I )) measurable mapping T : X → I is a consistent (or

well-founded) estimate of an unknown parameter i (i ∈ I ) for the family {μi : i ∈ I }
if the condition

(∀i)(i ∈ I → μi (T
−1({i}) = 1)) (5.2.6)

holds true.

Lemma 5.2.9 ([ZPS], Lemma 2.5, p. 474) Let {μi : i ∈ I } be a family of prob-
ability measures defined on a measure space (X, M). The following sentences are
equivalent.
(i) The family of probability measures {μi : i ∈ I } is strongly separated.
(ii) There exists a consistent estimate of an unknown parameter i (i ∈ I ) for the
family {μi : i ∈ I }.

Now let X1, X2, . . . be an infinite sampling of independent, equally distributed
real-valued random variables with unknown distribution function F . Assume that
we know only that F belongs to the family of distribution functions {Fθ : θ ∈ Θ},
where Θ is a nonempty set. Using these infinite samplings we want to estimate an
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unknown distribution function F . Let μθ denote a Borel probability measure on the
real axis R generated by Fθ for θ ∈ Θ . We denote by μN

θ an infinite power of the
measure μθ ; that is, μN

θ = μθ × μθ × · · · .
The triplet (RN ,B(RN ), μN

θ )θ∈Θ is called a statistical structure describing our
infinite experiment.

Definition 5.2.8 A Borel measurable function Tn : Rn → R (n ∈ N ) is called a
consistent estimator of a parameter θ (in the sense of everywhere convergence) for
the family (μN

θ )θ∈Θ if the condition

μN
θ ({(xk)k∈N : (xk)k∈N ∈ RN & lim

n→∞ Tn(x1, . . . , xn) = θ}) = 1 (5.2.7)

holds true for each θ ∈ Θ .

Definition 5.2.9 A Borel measurable function Tn : Rn → R (n ∈ N ) is called a
consistent estimator of a parameter θ (in the sense of convergence in probability) for
the family (μN

θ )θ∈Θ if for every ε > 0 and θ ∈ Θ the condition

lim
n→∞ μN

θ ({(xk)k∈N : (xk)k∈N ∈ RN & |Tn(x1, . . . , xn) − θ | > ε}) = 0 (5.2.8)

holds true.

Definition 5.2.10 A Borel measurable function Tn : Rn → R (n ∈ N ) is called a
consistent estimator of a parameter θ (in the sense of convergence in distribution)
for the family (μN

θ )θ∈Θ if for every continuous bounded real-valued function f on
R the condition

lim
n→∞

∫

RN

f (Tn(x1, . . . , xn))dμN
θ ((xk)k∈N ) = f (θ) (5.2.9)

holds.

Remark 5.2.3 Following [Sh] (see Theorem 2, p. 272), for the family (μN
θ )θ∈R we

have:
(a) An existence of a consistent estimator of a parameter θ in the sense that

everywhere convergence implies an existence of a consistent estimator of a parameter
θ in the sense of convergence in probability

(b) An existence of a consistent estimator of a parameter θ in the sense of con-
vergence in probability implies an existence of a consistent estimator of a parameter
θ in the sense of convergence in distribution

Now let L(Θ) be a minimal σ -algebra of subsets generated by all singletons of
the set Θ .

Definition 5.2.11 A (B(RN ), L(Θ))-measurable function T : RN → Θ is called
an infinite sample consistent estimate (or estimator) of a parameter θ for the family
(μN

θ )θ∈Θ if the condition
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μN
θ ({(xk)k∈N : (xk)k∈N ∈ RN & T ((xk)k∈N ) = θ}) = 1 (5.2.10)

holds true for each θ ∈ Θ .

Definition 5.2.12 An infinite sample consistent estimate T : RN → Θ of a para-
meter θ for the family (μN

θ )θ∈Θ is called objective if T−1(θ) is a Haar ambivalent
set for each θ ∈ Θ . Otherwise, T is called subjective.

Definition 5.2.13 An objective infinite sample consistent estimate T : RN → Θ of
a parameter θ for the family (μN

θ )θ∈Θ is called strong if for each θ1, θ2 ∈ Θ there
exists an isometric (with respect to the Tychonoff metric) transformation A(θ1,θ2) of
RN such that A(θ1,θ2)(T

−1(θ1))ΔT−1(θ2) is shy.

Definition 5.2.14 Following [IS], the family (μN
θ )θ∈Θ is called strictly separated if

there exists a family (Zθ )θ∈Θ of Borel subsets of RN such that

(i) μN
θ (Zθ ) = 1 for θ ∈ Θ .

(ii) Zθ1 ∩ Zθ2 = ∅ for all different parameters θ1 and θ2 from Θ .
(iii) ∪θ∈Θ Zθ = RN .

Remark 5.2.4 Note that an existence of an infinite sample consistent estimator of
a parameter θ for the family (μN

θ )θ∈Θ implies that the family (μN
θ )θ∈Θ is strictly

separated. Indeed, if we set Zθ = {(xk)k∈N : (xk)k∈N ∈ RN & T ((xk)k∈N ) = θ} for
θ ∈ Θ , then all conditions participating in Definition5.2.14 will be satisfied.

Remark 5.2.5 Note that the test on objectivity for an infinite sample consistent esti-
mate T : RN → Θ of a parameter θ for the family (μN

θ )θ∈Θ is as follows. For each
θ ∈ Θ , the set T−1(θ) must be a Haar ambivalent set.

5.3 An Objective Infinite Sample Consistent Estimate
of an Unknown Distribution Function

Theorem 5.3.1 Let F be a family of distribution functions on R satisfying the fol-
lowing properties.

(i) Each element of F is strictly increasing and continuous.
(ii) There exists a point x∗ such that F1(x∗) �= F2(x∗) for each different F1, F2 ∈ F.

Setting Θ = {θ = F(x∗) : F ∈ F} and Fθ = F for θ = F(x∗), we get the
following parameterization F = {Fθ : θ ∈ Θ}. We denote by μθ a Borel probability
measure in R defined by Fθ for θ ∈ Θ . Then a function Tn : Rn → R, defined by

Tn(x1, . . . , xn) = #({x1, . . . , xn} ∩ (−∞; x∗])
n

(5.3.1)

for (x1, . . . , xn) ∈ Rn (n ∈ N ), is a consistent estimator of a parameter θ for the
family (μN

θ )θ∈Θ in the sense of almost everywhere convergence.
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Proof It is clear that Tn is Borel measurable function for n ∈ N . For θ ∈ R, we set

Aθ = {(xk)k∈N : (xk)k∈N is μθ − equidistributed on R}. (5.3.2)

Following Corollary5.2.2, we have μN
θ (Aθ ) = 1 for θ ∈ Θ .

For θ ∈ Θ , we get

μN
θ ({(xk)k∈N ∈ RN : lim

n→∞ Tn(x1, . . . , xn) = θ}) = μN
θ ({(xk)k∈N ∈ RN :

lim
n→∞ n−1#({x1, . . . , xn} ∩ (−∞; x∗]) = Fθ (x∗)}) ≥ μN

θ (Aθ ) = 1. (5.3.3)

The following corollaries are simple consequences of Theorem5.3.1, Corol-
lary5.2.2, and Remarks5.2.3 and 5.2.4.

Corollary 5.3.1 An estimator Tn defined by (5.3.1) is a consistent estimator of a
parameter θ for the family (μN

θ )θ∈Θ in the sense of convergence in probability.

Corollary 5.3.2 An estimator Tn defined by (5.3.1) is a consistent estimator of a
parameter θ for the family (μN

θ )θ∈Θ in the sense of convergence in distribution.

Theorem 5.3.2 Let F = {Fθ : θ ∈ Θ} and (μN
θ )θ∈Θ come from Theorem5.3.1.

Fix θ0 ∈ Θ and define an estimate T (1)
θ0

: RN → Θ as follows. T (1)
θ0

((xk)k∈N ) =
limT̃n((xk)k∈N ) if limT̃n((xk)k∈N ) ∈ Θ \ {θ0} and T (1)

θ0
((xk)k∈N ) = θ0, otherwise,

where limT̃n = infn supm≥n T̃m and

T̃n((xk)k∈N ) = n−1#({x1, . . . , xn} ∩ (−∞; x∗])) (5.3.4)

for (xk)k∈N ∈ RN . Then T (1)
θ0

is an objective infinite sample consistent estimator of
a parameter θ for the family (μN

θ )θ∈Θ .

Proof Following [Sh] (see p. 189), the function limT̃n is Borel measurable which
implies that the function limT̃n is (B(RN ), L(Θ)) measurable. Following Corol-
lary5.2.2, we haveμN

θ (Aθ ) = 1 for θ ∈ Θ , where Aθ is defined by (5.3.2). Therefore
we get

μN
θ ({(xk)k∈N ∈ RN : T (1)

θ0
(xk)k∈N = θ}) ≥ μN

θ ({(xk)k∈N ∈ RN : limT̃n(xk)k∈N = θ})
≥ μN

θ ({(xk)k∈N ∈ RN : limT̃n(xk)k∈N = limT̃n(xk)k∈N = Fθ (x∗)})
≥ μN

θ (Aθ ) = 1

for θ ∈ Θ .
Thus we have proved that the estimator T(1)

θ0 is an infinite sample consistent
estimator of a parameter θ for the family (μN

θ )θ∈Θ .
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Now let us show that T(1)
θ0 is an objective infinite sample consistent estimator of

a parameter θ for the family (μN
θ )θ∈Θ .

Let us show that B(θ) := (
T(1)

θ0

)−1
(θ) is a Haar ambivalent set for each θ ∈ Θ .

Let (xk)k∈N be a μθ equidistributed sequence on R. Then we get

lim
n→∞ n−1#({x1, . . . , xn} ∩ (−∞; x∗]) = θ. (5.3.5)

Let consider a set

C(θ) = {(yk)k∈N : yk ≤ xk if xk ≤ x∗ & yk > xk if xk > x∗}. (5.3.6)

Setting J = {k : xk ≤ x∗}, we claim that C(θ) − (xk)k∈N = AJ , where AJ comes
from Lemma5.2.4. Because any translate of a Haar ambivalent set is again a Haar
ambivalent set, we claim that C(θ) is a Haar ambivalent set. A set B(θ) that contains
the Haar ambivalent set C(θ) is nonshy. Because θ ∈ Θ was taken arbitrarily we
deduce that each Bθ is a Haar ambivalent set. The latter relation means that the
estimator T(1)

θ0 is an objective infinite sample consistent estimator of a parameter θ
for the family (μN

θ )θ∈Θ .

Theorem 5.3.3 Let F = {Fθ : θ ∈ Θ} and (μN
θ )θ∈Θ come from Theorem5.3.1. Fix

θ0 ∈ Θ and define an estimate T(2)
θ0 : RN → Θ as follows. T(2)

θ0((xk)k∈N ) =
limT̃n((xk)k∈N ) if limT̃n((xk)k∈N ) ∈ Θ \ {θ0} and T(2)

θ0((xk)k∈N ) = θ0 otherwise,
where limT̃n = supn infm≥n T̃m and

T̃n((xk)k∈N ) = n−1#({x1, . . . , xn} ∩ (−∞; x∗]) (5.3.7)

for (xk)k∈N ∈ RN . Then T(2)
θ0 is an objective infinite sample consistent estimator of

a parameter θ for the family (μN
θ )θ∈Θ .

Proof Following [Sh] (see p. 189), the function limT̃n is Borel measurable which
implies that the function limT̃n is (B(Rn), L(Θ)) measurable. Following Corol-
lary5.2.2, we have μN

θ (Aθ ) = 1 for θ ∈ Θ , where Aθ is defined by (5.3.2). Thus we
get

μN
θ ({(xk)k∈N ∈ RN : T(2)

θ0 (xk)k∈N = θ}) ≥ μN
θ ({(xk)k∈N ∈ RN : limT̃n(xk)k∈N = θ})

≥ μN
θ ({(xk)k∈N ∈ RN : limT̃n(xk)k∈N = limT̃n(xk)k∈N = Fθ (x∗)})

≥ μN
θ (Aθ ) = 1

for θ ∈ Θ .
Thus we have proved that the estimator T(2)

θ0 is an infinite sample consistent
estimator of a parameter θ for the family (μN

θ )θ∈Θ .
Now let us show that T(2)

θ0 is an objective infinite sample consistent estimator of
a parameter θ for the family (μN

θ )θ∈Θ .

Let us show that B(θ) = (
T(2)

θ0

)−1
(θ) is a Haar ambivalent set for each θ ∈ Θ .
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Let (xk)k∈N be a μθ uniformly distributed sequence. Then we get

lim
n→∞ n−1#({x1, . . . , xn} ∩ (−∞; x∗]) = θ. (5.3.8)

Let us consider a set

C(θ) = {(yk)k∈N : (yk)k∈N ∈ RN & yk ≤ xk if xk ≤ x∗ & yk > xk if xk > x∗}.
(5.3.9)

Setting J = {k : xk ≤ x∗}, we deduce that C(θ) − (xk)k∈N = AJ , where AJ

comes from Lemma5.2.4. Because any translate of a Haar ambivalent set is again a
Haar ambivalent set, we claim that C(θ) is a Haar ambivalent set. A set B(θ) that
contains the Haar ambivalent set C(θ) is nonshy. Because θ ∈ Θ was taken arbitrary
we deduce that each Bθ is a Haar ambivalent set. The latter relation means that the
estimator T(2)

θ0 is an objective infinite sample consistent estimator of a parameter θ
for the family (μN

θ )θ∈Θ .

Remark 5.3.1 It can be shown that Theorems5.3.2 and 5.3.3 extend the recent
result obtained in [PK3] (see Theorem 3.1). Indeed, let us consider the linear one-
dimensional stochastic system

(ξk)k∈N = (θk)k∈N + (Δk)k∈N , (5.3.10)

where (θk)k∈N ∈ RN is a sequence of useful signals, (Δk)k∈N is a sequence of inde-
pendent identically distributed random variables (the so-called generalized “white
noise”) defined on some probability space (Ω,F, P) and (ξk)k∈N is a sequence of
transformed signals. Let μ be a Borel probability measure onR defined by a random
variable Δ1. Then the N power of the measure μ denoted by μN coincides with the
Borel probability measure on RN defined by the generalized white noise; that is,

(∀X)(X ∈ B(RN ) → μN (X) = P({ω : ω ∈ Ω & (Δk(ω))k∈N ∈ X})), (5.3.11)

where B(RN ) is the Borel σ -algebra of subsets of RN .
Following [IS], a general decision in information transmission theory is that the

Borel probability measure λ, defined by the sequence of transformed signals (ξk)k∈N
coincides with

(
μN

)
θ0
for some θ0 ∈ Θ provided that

(∃θ0)(θ0 ∈ Θ → (∀X)(X ∈ B(RN ) → λ(X) = (
μN

)
θ0
(X))), (5.3.12)

where
(
μN

)
θ0
(X) = μN (X − θ0) for X ∈ B(RN ).

Reference [ZPS] has considered a particular case of the above model (5.3.10) for
which

(θk)k∈N ∈ {(θ, θ, . . .) : θ ∈ R}. (5.3.13)

For θ ∈ R, a measure μN
θ defined by
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μN
θ = μθ × μθ × . . . , (5.3.14)

where μθ is a θ shift of μ (i.e., μθ(X) = μ(X − θ) for X ∈ B(R)), is called the N
power of the θ shift of μ on R.

Denote by Fθ a distribution function defined byμθ for θ ∈ Θ . Note that the family
F = {Fθ : θ ∈ Θ} satisfies all conditions participating in Theorem5.3.1. Indeed,
under x∗ we can take the zero of the real axis. Then following Theorems5.3.2 and
5.3.3, estimators T (1)

θ0
and T (2)

θ0
are objective infinite sample consistent estimators

of a useful signal θ in the linear one-dimensional stochastic system (5.3.10). Note
that these estimators exactly coincide with estimators constructed in [PK3] (see
Theorem5.3.1).

Theorem 5.3.4 Let F be a family of all strictly increasing and continuous distrib-
ution functions in R and pF be a Borel probability measure on R defined by F for
each F ∈ F. Then the family of Borel probability measures {pN

F : F ∈ F)} is strong
separated.

Remark 5.3.2 By virtue of the results of Lemma5.2.9 and Theorem5.3.4 we get that
there exists a consistent estimate of an unknown distribution function F (F ∈ F)
for the family of Borel probability measures {pN

F : F ∈ F}, where F comes
from Theorem5.3.4. This estimate T : RN → F is defined by T ((xk)k∈N ) = F
if (xk)k∈N ∈ CF , where the family (CF )F∈F of subsets of RN also comes from
Theorem4.4.2. Note that this result extends the main result established in [ZPS] (see
Lemma 2.6, p. 476).

At end of this section we state the following.

Problem 5.3.2 LetF be a family of all strictly increasing and continuous distribution
functions onR and pF be a Borel probabilitymeasure inR defined by F for each F ∈
F. Does there exist an objective infinite sample consistent estimate of an unknown
distribution function F for the family of Borel probability measures {pN

F : F ∈ F)}?

5.4 An Effective Construction of the Strong Objective
Infinite Sample Consistent Estimate of a Useful Signal
in the Linear One-Dimensional Stochastic Model

In [PK1], the examples of objective and strong objective infinite sample consistent
estimates of a useful signal in the linear one-dimensional stochastic model were
constructed by using the axiom of choice and a certain partition of the nonlocally
compact Abelian Polish group RN constructed in [P3].

In this section, in the same model we present an effective example of the strong
objective infinite sample consistent estimate of a useful signal constructed in [PK2].

For each real number a ∈ R, we denote by {a} its fractal part in the decimal
system.

http://dx.doi.org/10.1007/978-3-319-45578-5_4
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Theorem 5.4.1 Let us consider the linear one-dimensional stochasticmodel (5.3.10),
for which white noise has a infinite absolute moment of the first order and its moment
of the first order is equal to zero. Suppose that the Borel probability measure λ,
defined by the sequence of transformed signals (ξk)k∈N coincides with

(
μN

θ0

)
for some

θ0 ∈ [0, 1]. Let T : RN → [0, 1] be defined by: T ((xk)k∈N ) = {limn→∞
∑n

k=1 xk
n }

if limn→∞
∑n

k=1 xk
n �= 1, T ((xk)k∈N ) = 1 if limn→∞

∑n
k=1 xk
n = 1, and T ((xk)k∈N ) =

∑
k∈N

χ(0,+∞)(xk )
2k , otherwise, where χ(0,+∞)(·) denotes an indicator function of the set

(0,+∞) defined on the real axis R. Then T is a strong objective infinite sample con-
sistent estimate of the parameter θ for the statistical structure (RN ,B(RN ), μN

θ )θ∈Θ

describing the linear one-dimensional stochastic model (5.3.10).

Proof Step 1. We have to show that T is an infinite sample consistent estimate
of the parameter θ for the statistical structure (RN ,B(RN ), μN

θ )θ∈Θ and T−1(θ) is
a Haar ambivalent set for each θ = ∑∞

k=1
θk
2k ∈ Θ , where

∑∞
k=1

θk
2k is a representation

of the number θ in the binary system.
Indeed, we have

(∀θ)(θ ∈ (0, 1) → T−1(θ) = (BH(θ) \ S) ∪ ∪z∈Z Sθ+z), (5.4.1)

where H(θ) = {k : k ∈ N & θk = 1}, BH(θ) = (θk)k∈N − AH(θ), AH(θ) comes from
Lemma5.2.4,

S =
{

(xk)k∈N ∈ RN : exists a finite limit lim
n→∞

∑n
k=1 xk
n

}

(5.4.2)

and

Sθ+z =
{

(xk)k∈N ∈ RN : lim
n→∞

∑n
k=1 xk
n

= θ + z

}

(5.4.3)

for each θ ∈ Θ and z ∈ Z . Note that the set S like ∪z∈Z Sθ+z is a Borel shy set (see
[PK1], Lemma 4.14, p. 60). Taking into account this fact, the results of Lemma5.2.4,
invariance of Haar ambivalent sets under translations and symmetric transformation
and the simple statement that difference of nonshy and shy sets is nonshy, we deduce
that T−1(θ) is a Borel measurable Haar ambivalent set for each θ ∈ Θ .

Note that
T−1(1) = (BH(1) \ S) ∪ S1 = (BN \ S) ∪ S1 (5.4.4)

and

T−1(0) = (BH(0) \ S) ∪ ∪z∈Z\{1}S0+z = (B∅ \ S) ∪ ∪z∈Z\{1}S0+z, (5.4.5)

which are also Borel measurable Haar ambivalent sets.
Now it is not hard to show that T is (B(RN ), L(Θ))measurable because the class

B(RN ) is closed under a countable family of set-theoretical operations and each
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element of L(Θ) is countable or cocountable in the interval Θ = [0, 1]. Because
Sθ ⊆ T−1(θ) for θ ∈ Θ , we deduce that μθ(T−1(θ)) = 1. The latter relation means
that T is an infinite sample consistent estimate of a parameter θ .

Step 2. Let us show that for each different θ1, θ2 ∈ [0, 1] there exists an isometric
(with respect to the Tychonoff metric) transformation A(θ1,θ2) such that

A(θ1,θ2)(T
−1(θ1))ΔT−1(θ2) (5.4.6)

is shy.
We define A(θ1,θ2) as follows. For (xk)k∈N ∈ RN we put A(θ1,θ2)((xk)k∈N ) =

(yk)k∈N , where yk = −xk if k ∈ H(θ1)ΔH(θ2)(:= (H(θ1)\H(θ2))∪(H(θ2)\H(θ1))
and yk = xk otherwise. It is obvious that A(θ1,θ2) is an isometric (with respect to the
Tychonoff metric) transformation of the RN .

Note that

A(θ1,θ2)(T
−1(θ1))ΔT−1(θ2) ⊆ ∪k∈N {0}k × RN\{k} ∪ S. (5.4.7)

Both sets ∪k∈N {0}k × RN\{k} and S are shy, therefore by Lemma5.2.1 and
Definition5.2.2 we claim that the set

A(θ1,θ2)(T
−1(θ1))ΔT−1(θ2) (5.4.8)

is also shy.
This ends the proof of the theorem.

5.5 Infinite Sample Consistent Estimates of an Unknown
Probability Density Function

Let X1, X2, . . . be independent identically distributed real-valued random variables
having a common probability density function f . After a so-called kernel class
of estimates fn of f based on X1, X2, . . . , Xn was introduced by Rosenblatt [R],
various convergence properties of these estimates have been studied. The stronger
result in this direction was due to Nadaraya [N], who proved that if f is uniformly
continuous then for a large class of kernels the estimates fn converge uniformly on
the real line to f with probability one. In [Sc] it has been shown that the above
assumptions on f are necessary for this type of convergence. That is, if fn converges
uniformly to a function g with probability one, then g must be uniformly continuous
and the distribution F from which we are sampling must be absolutely continuous
with F

′
(x) = g(x) everywhere. When in addition to that mentioned above, it is

assumed that f and its first r + 1 derivatives are bounded, it is possible to show
how to construct estimates fn such that f (s)

n converges uniformly to f (s) at a given
rate with probability one for s = 0, . . . , r. Let fn(x) be a kernel estimate based on
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X1, X2, . . . , Xn from F as given in [R]; that is,

fn(x) = (nan)
−1

n∑

i=1

k

(
Xi − x

an

)

(5.5.1)

where (an)n∈N is a sequence of positive numbers converging to zero and k is a
probability density function such that

∫ +∞
−∞ |x |k(x)dx is finite and k(s) is a continuous

function of bounded variation for s = 0, . . . , r . The density function of the standard
normal, for example, satisfies all these conditions.

In the sequel we need the following wonderful statement.

Lemma 5.5.1 ([Sc], Theorem 3.11, p. 1194) A necessary and sufficient condition
for

lim
n→∞ sup

x∈R
| fn(x) − g(x)| = 0 (5.5.2)

with probability one for a function g is that g be the uniformly continuous derivative
of F.

Let X1, X2, . . . be independent and identically distributed real-valued random
variables with an unknown probability density function f . Assume that we know
that f belongs to the class of probability density function SC, each element of which
is uniformly continuous.

Denote by 	∞(R) an infinite-dimensional nonseparable Banach space of all
bounded real-valued functions on R equipped with norm || · ||∞ defined by

||h||∞ = sup
x∈R

|h(x)| (5.5.3)

for all h ∈ 	∞(R). We say that (	∞(R)) limn→∞ hn = h0 if limn→∞ ||hn − h0||∞ =
0.

Theorem 5.5.1 Let φ denote a normal density function. We set Θ = SC. Let μθ

be a Borel probability measure on R with probability density function θ ∈ Θ . Fix
θ0 ∈ Θ . For each (xi )i∈N we set: TSC((xi )i∈N ) = (	∞(R)) limn→∞ fn if this limit
exists and is in Θ \ {θ0}, and TSC((xi )i∈N ) = θ0, otherwise. Then TSC is a consistent
infinite-sample estimate of an unknown parameter θ for the family (μN

θ )θ∈Θ .

Proof By Lemma5.5.1, for each θ ∈ Θ we have

μN
θ ({(xi )i∈N ∈ RN : TSC((xi )i∈N ) = θ}) ≥ μN

θ ({(xi )i∈N ∈ RN : (	∞(R)) lim
n→∞ fn = θ})

= μN
θ ({(xi )i∈N ∈ RN : lim

n→∞ || fn − θ ||∞ = 0}) = 1.

This ends the proof of the theorem.
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Regarding Theorem5.5.1 we state the following problems.

Problem 5.5.3 LetTSC come fromTheorem5.5.1. IsTSC anobjective infinite sample
consistent estimate of the parameter θ for the family (μN

θ )θ∈Θ?

Problem 5.5.4 Let the statistical structure {(RN ,B(RN ), μN
θ ) : θ ∈ Θ} come from

Theorem5.5.1. Does there exist an objective (or strong objective) infinite sample
consistent estimate of the parameter θ for the family (μN

θ )θ∈Θ?

Let X1, X2, . . . be independent and identically distributed real-valued random
variables with positive continuous probability density function f . Assume we know
that f belongs to the separated class A of positive continuous probability densities
provided there is a point x∗ such that g1(x∗) �= g2(x∗) for each g1, g2 ∈ A. Suppose
we have an infinite sample (xk)k∈N and we want to estimate an unknown probability
density function. SettingΘ = {θ = g(x∗) : g ∈ A}, we can give parameterization of
the familyA as follows:A = { fθ : θ ∈ Θ}, where fθ is a unique element f from the
familyA for which f (x∗) = θ . Let μθ be a Borel probability measure defined by the
probability density function fθ for each θ ∈ Θ . It is obvious that {(RN ,B(RN ), μN

θ ) :
θ ∈ Θ} will be the statistical structure described in our experiment.

Theorem 5.5.2 Let (hm)m∈N be a sequence of a strictly decreasing sequence of
positive numbers tending to zero. Let us fix θ0 ∈ Θ . For each (xk)k∈N ∈ RN we put

T ((xk)k∈N ) = lim
m→∞ lim

n→∞
#({x1, . . . , xn} ∩ [x∗ − hm, x∗ + hm])

2nhm
(5.5.4)

if this repeated limit exists and belongs to the set Θ \ {θ}, and T ((xk)k∈N ) = θ0,
otherwise. Then T is an infinite sample consistent estimate of the parameter θ for
the family (μN

θ )θ∈Θ .

Proof For each θ ∈ Θ , we put

Aθ = {(xk)k∈N : (xk)k∈N ∈ RN & (xk)k∈N is μθ − equidistributed}. (5.5.5)

By Corollary5.2.2 we know that μN
θ (Aθ ) = 1 for each θ ∈ Θ .

For each θ ∈ Θ , we have

μN
θ (T−1(θ)) = μN

θ ({(xk)k∈N ∈ RN : T ((xk)k∈N ) = θ})
≥ μN

θ ({(xk)k∈N ∈ Aθ : T ((xk)k∈N ) = θ})
= μN

θ

({

(xk)k∈N ∈ Aθ : lim
m→∞

Fθ (x∗ + hm) − Fθ (x∗ − hm)

2hm
= θ

})

= μN
θ

({

(xk)k∈N ∈ Aθ : lim
m→∞

∫ x∗+hm
x∗−hm

fθ (x)dx

2hm
= θ

})

= μN
θ ({(xk)k∈N ∈ Aθ : fθ (x

∗) = θ})
= μN

θ (Aθ ) = 1
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Regarding Theorem5.5.2 we state the following problems.

Problem 5.5.5 Let T come from Theorem5.5.2. Is T an objective infinite sample
consistent estimate of the parameter θ for the family (μN

θ )θ∈Θ?

Problem 5.5.6 Let the statistical structure {(RN ,B(RN ), μN
θ ) : θ ∈ Θ} come from

Theorem5.5.2. Does there exist an objective (or strong objective) infinite sample
consistent estimate of the parameter θ for the family (μN

θ )θ∈Θ ?

Example 5.5.1 Let X1, X2, . . . be independent normally distributed real-valued ran-
domvariableswith parameters (a, σ )where a is amean and σ is a standard deviation.
Suppose that we know the mean a and want to estimate an unknown standard devi-
ation σ by an infinite sample (xk)k∈N . For each σ > 0, denote by μσ the Gaussian
probability measure on R with parameters (a, σ )(here a ∈ R is fixed). Let (hm)m∈N
be a sequence of a strictly decreasing sequence of positive numbers tending to zero.

By virtue of Theorem5.5.2 we know that for each σ > 0 the following condition

μN
σ

({

(xk)k∈N ∈ RN &

lim
m→∞ lim

n→∞
#({x1, . . . , xn} ∩ [a − hm, a + hm])

2nhm
= 1√

2πσ

})

= 1

holds true.
Fix σ0 > 0. For (xk)k∈N ∈ RN we put

T1((xk)k∈N ) = lim
m→∞ lim

n→∞
2nhm√

2π#({x1, . . . , xn} ∩ [a − hm, a + hm]) (5.5.6)

if this limit exists and belongs to the set (0,+∞) \ {σ0}, and T1((xk)k∈N ) = σ0,
otherwise. Then for each σ > 0 we get

μN
σ ({(xk)k∈N : (xk)k∈N ∈ RN & T1((xk)k∈N ) = σ }) = 1 (5.5.7)

whichmeans that T1 is an infinite sample consistent estimate of the standard deviation
σ for the family (μN

σ )σ>0.

Theorem 5.5.3 Let X1, X2, . . . be independent normally distributed real-valued
random variables with parameters (a, σ ), where a is a mean and σ is a standard
deviation. Suppose that we know the mean a. Let (an)n∈N be a sequence of positive
numbers converging to zero and φ be a standard Gaussian density function in R.
We denote by μσ a Borel Gaussian probability measure in R with parameters (a, σ )
for each σ ∈ � = (0,∞). Fix σ0 ∈ � and define an estimate T (1)

σ0
: RN → �

as follows. T (1)
σ0

((xk)k∈N ) = lim˜T (1)
n ((xk)k∈N ) if lim˜T (1)

n ((xk)k∈N ) ∈ � \ {σ0} and
T (1)

σ0
((xk)k∈N ) = σ0, otherwise, where lim

˜T (1)
n := infn supm≥n

˜T (1)
m and
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˜T (1)
n ((xk)k∈N ) = T (1)

n (x1, . . . , xn) = 1√
2π(nan)−1

∑n
i=1 φ( xi−a

an
)

(5.5.8)

for (xk)k∈N ∈ RN . Then T (1)
σ0

is an infinite sample consistent estimator of a parameter
σ for the family (μN

σ )σ∈� .

Proof Following [Sh] (see p. 189), the function lim˜T (1)
n is Borel measurable which

implies that the function lim˜T (1)
n is (B(RN ), L(�)) measurable.

For each σ ∈ � we put

Aσ =
{

(xk)k∈N ∈ RN : limn→∞(nan)
−1

n∑

i=1

φ

(
xi − a

an

)

= fσ (a)

}

. (5.5.9)

Because uniform convergence implies pointwise convergence, by Lemma5.5.1 we
deduce that μN

σ (Aσ ) = 1 for σ ∈ � which implies

μN
σ

({

(xk)k∈N ∈ RN : T (1)
θ0

(xk)k∈N = σ

})

≥ μN
σ

({

(xk)k∈N ∈ RN : lim
˜

T (1)
n (xk)k∈N = σ

})

≥ μN
σ

({

(xk)k∈N ∈ RN : lim
˜

T (1)
n (xk)k∈N = lim

˜

T (1)
n (xk)k∈N = σ

})

= μN
σ

({

(xk)k∈N ∈ RN : lim
n→∞

˜

T (1)
n ((xk)k∈N ) = σ

})

= μN
σ

({

(xk)k∈N ∈ RN : lim
n→∞

1√
2π(nan)−1

∑n
i=1 φ( xi−a

an
)

= σ

})

= μN
σ

({

(xk)k∈N ∈ RN : lim
n→∞(nan)

−1
n∑

i=1

φ

(
xi − a

an

)

= 1√
2πσ

})

= μN
σ

({

(xk)k∈N ∈ RN : lim
n→∞(nan)

−1
n∑

i=1

φ

(
xi − a

an

)

= fσ (a)

})

= μN
σ (Aσ ) = 1.

(5.5.10)
The following theorem gives a construction of the objective infinite sample con-

sistent estimate of an unknown parameter σ in the same model.

Theorem 5.5.4 Let X1, X2, . . . be independent normally distributed real-valued
random variables with parameters (a, σ ), where a is a mean and σ is a stan-
dard deviation. Suppose that we know the mean a is nonzero. Let Φ be a standard
Gaussian distribution function in R. We denote by μσ a Borel Gaussian probability
measure in R with parameters (a, σ ) for each σ ∈ � = (0,∞). Fix σ0 ∈ � and

define an estimate T (2)
σ0

: RN → � as follows. T (2)
σ0

((xk)k∈N ) = lim˜T (2)
n ((xk)k∈N ) if

lim˜T (2)
n ((xk)k∈N ) ∈ � \ {σ0} and T (2)

σ0
((xk)k∈N ) = σ0, otherwise, where lim

˜T (2)
n :=

infn supm≥n
˜T (2)
m and

˜T (2)
n ((xk)k∈N ) = T (2)

n (x1, . . . , xn) = − a

Φ−1
( #({x1,...,xn}∩(−∞,0])

n

) (5.5.11)
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for (xk)k∈N ∈ RN . Then T (2)
σ0

is an objective infinite sample consistent estimator of
a parameter σ for the family (μN

σ )σ∈� .

Proof Following [Sh] (see p. 189), the function lim˜T (2)
n is Borel measurable which

implies that the function lim˜T (2)
n is (B(RN ), L(�)) measurable.

For each σ ∈ � we put

Aσ = {(xk)k∈N ∈ RN : (xk)k∈N is μσ − equidistributed in R}. (5.5.12)

By Corollary 5.2.16 we know that μN
σ (Aσ ) = 1 for σ ∈ � which implies

μN
σ

({

(xk)k∈N ∈ RN : lim
˜

T (2)
n (xk)k∈N = σ

})

≥ μN
σ

({

(xk)k∈N ∈ RN : lim
˜

T (2)
n (xk)k∈N

= lim
˜

T (2)
n (xk)k∈N = σ

})

= μN
σ

({

(xk)k∈N ∈ RN : lim
n→∞

˜

T (2)
n ((xk)k∈N ) = σ

})

= μN
σ

({

(xk)k∈N ∈ RN : lim
n→∞ − a

Φ−1
(

(#({x1,...,xn }∩(−∞,0]))
n

) = σ

})

= μN
σ

({

(xk)k∈N ∈ RN : lim
n→∞ Φ−1

(
(#({x1, . . . , xn} ∩ (−∞, 0])

n

)

= − a

σ

})

= μN
σ

({

(xk)k∈N ∈ RN : lim
n→∞

(#({x1, . . . , xn} ∩ (−∞, 0])
n

= Φ

(

− a

σ

)})

= μN
σ

({

(xk)k∈N ∈ RN : lim
n→∞

(#({x1, . . . , xn} ∩ (−∞, 0])
n

= Φ(a,σ )(0)

})

≥ μN
σ (Aσ ) = 1. (5.5.13)

The latter relation means that lim˜T (2)
n is a infinite sample consistent estimate of a

parameter σ for the family of measures (μN
σ )σ>0.

Show that lim˜T (2)
n is objective.

We have to show that for each σ > 0 the set (lim˜T (2)
n )−1(σ ) is a Haar ambivalent

set.
Let (xk)k∈N be a μσ equidistributed sequence. Then we get

lim
n→∞

(#({x1, . . . , xn} ∩ (−∞, 0])
n

= Φ(a,σ )(0) (5.5.14)

which means

T (2)
σ0

((xk)k∈N ) = lim˜T (2)
n ((xk)k∈N ) = σ. (5.5.15)

Setting Jσ = {i : xi ≤ 0}, it is not hard to show that a set

BJσ
= {(yi )i∈N : yi ≤ xi for i ∈ Jσ &yi > xi for i ∈ N \ Jσ } (5.5.16)

is a Haar ambivalent set.
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It is also clear that for each (yi )i∈N ∈ BJσ
we have

T (2)
σ0

((yk)k∈N ) = lim˜T (2)
n ((yk)k∈N ) = σ,

which implies that BJσ
⊆ (lim˜T (2)

n )−1(σ ).

Because {(lim˜T (2)
n )−1(σ ) : σ > 0} is a partition of the RN and each of them con-

tains a Haar ambivalent set BJσ
we deduce that (lim˜T (2)

n )−1(σ ) is a Haar ambivalent
set for each σ > 0.

This ends the proof of the theorem.

Theorem 5.5.5 Let X1, X2, . . . be independent normally distributed real-valued
random variables with parameters (a, σ ) where a is a mean and σ is a standard
deviation. Suppose that both parameters are unknown. LetΦ be a standardGaussian
distribution function in R. We denote by μσ a Borel Gaussian probability measure
in R with parameters (a, σ ) for each σ ∈ � = (0,∞) and a ∈ R. Fix σ0 ∈ � and

define an estimate T (3)
σ0

: RN → � as follows. T (3)
σ0

((xk)k∈N ) = lim˜T (3)
n ((xk)k∈N ) if

lim˜T (3)
n ((xk)k∈N ) ∈ � \ {σ0} and T (3)

σ0
((xk)k∈N ) = σ0, otherwise, where lim

˜T (3)
n :=

infn supm≥n
˜T (3)
m and

˜T (3)
n ((xk)k∈N ) = T (3)

n (x1, . . . , xn) = −
∑n

i=1 xk

nΦ−1
( #({x1,...,xn}∩(−∞,0])

n

) (5.5.17)

for (xk)k∈N ∈ RN . Then T (3)
σ0

is an infinite sample consistent estimator of a parameter
σ for the family (μN

σ )σ∈� .

Proof Following [Sh] (see p. 189), the function lim˜T (3)
n is Borel measurable which

implies that the function lim˜T (3)
n is (B(RN ), L(�)) measurable.

For each σ ∈ � we put

Aσ = {(xk)k∈N ∈ RN : (xk)k∈N is μσ − equidistributed in R} (5.5.18)

and

Bσ =
{

(xk)k∈N ∈ RN : lim
n→∞

∑n
k=1 xk
n

= a}. (5.5.19)

By Corollary5.2.2 we know that μN
σ (Aσ ) = 1 for σ ∈ �. On the other hand,

by the strong law of large numbers we know that μN
σ (Bσ ) = 1 for σ ∈ �. These

relations imply that
μN

σ (Aσ ∩ Bσ ) = 1 (5.5.20)

for σ ∈ �.
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Taking into account (5.5.20), we get

μN
σ

({

(xk)k∈N ∈ RN : lim
˜

T (3)
n (xk)k∈N = σ

})

≥ μN
σ

({

(xk)k∈N ∈ RN : lim
˜

T (3)
n (xk)k∈N

= lim
˜

T (3)
n (xk)k∈N = σ

})

= μN
σ

({

(xk)k∈N ∈ RN : lim
n→∞

˜

T (3)
n ((xk)k∈N ) = σ

})

= μN
σ

({

(xk)k∈N ∈ RN : lim
n→∞ −

∑n
k=1 xk
n

Φ−1( (#({x1,...,xn }∩(−∞,0]))
n )

= σ

})

≥ μN
σ

({

(xk)k∈N ∈ Aσ ∩ Bσ : lim
n→∞ Φ−1

( (#({x1, . . . , xn} ∩ (−∞, 0])
n

)

= − lim
n→∞

∑n
k=1 xk
n

σ

})

= μN
σ

({

(xk)k∈N ∈ Aσ ∩ Bσ : lim
n→∞ Φ−1

( (#({x1, . . . , xn} ∩ (−∞, 0])
n

)

= − a

σ

})

= μN
σ

({

(xk)k∈N ∈ RN : lim
n→∞

(#({x1, . . . , xn} ∩ (−∞, 0])
n

= Φ(a,σ )(0)

})

= μN
σ (Aσ ∩ Bσ ) = 1. (5.5.21)

The latter relation means that T (3)
σ0

is an infinite sample consistent estimate of a
parameter σ for the family of measure s (μN

σ )σ>0.
This ends the proof of the theorem.

Example 5.5.2 Because a sequence of real numbers (π × n − [π × n])n∈N , where
[·] denotes an integer part of a real number, is uniformly distributed on (0, 1)(see
[KN], Example 2.1, p. 17), we claim that a simulation of a μ(3,5) equidistributed
sequence (xn)n≤M on R (M is a “sufficiently large” natural number and depends on
a representation quality of the irrational number π ), where μ(3,5) denotes a linear
Gaussian measure with parameters (3, 5), can be obtained by the formula

xn = Φ−1
(3,5)(π × n − [π × n]) (5.5.22)

for n ≤ M , where Φ(3,5) denotes a Gaussian distribution function with parameters
(3, 5).

Suppose that a = 3 and we want to estimate an unknown standard deviation σ .
We set: n, the number of trials; Sn , a square root from the sample variance; S

′
n ,

a square root from the corrected sample variance; T (1)
n , an estimate defined by

the formula (5.5.11); T (3)
n , an estimate defined by the formula (5.5.17); and σ , an

unknown standard deviation.
The numerical data placed in Table5.3 were obtained by using Microsoft Excel.

Note that the results of computations presented in Table5.3 show us that both
statistics T (1)

n and T (3)
n work correctly.

At end of this section we state the following.

Problem 5.5.7 Let D be a class of positive continuous probability densities and p f

be a Borel probability measure on R with probability density function f for each



96 5 Objective and Strong Objective Consistent Estimates …

Table 5.3 Estimates of an unknown standard deviation σ = 5

n Sn S
′
n T (1)

n T (3)
n

200 4.992413159 5.004941192 5.205401325 4.895457577

400 4.992413159 5.004941192 5.141812921 4.835655399

600 5.10523925 5.109498942 5.211046737 4.855457413

800 5.106390271 5.109584761 5.19369988 4.92581015

1000 5.066642282 5.069177505 5.028142523 4.944169095

1200 5.072294934 5.074409712 5.235885276 4.935995814

1400 5.081110418 5.082926073 5.249446371 4.96528786

1600 5.079219075 5.080807075 5.205452797 4.9564705

1800 5.060850283 5.06225666 5.207913228 4.963326232

2000 5.063112113 5.064378366 5.239119585 4.981223889

f ∈ D. Does there exist an objective (or a subjective) infinite sample consistent esti-
mate of an unknown probability density function f for the family of Borel probability
measures {pN

f : f ∈ D)}?

5.6 Orthogonal Statistical Structures in a Nonlocally
Compact Polish Group Admitting an Invariant Metric

Let G be a Polish group, by which we mean a separable group with a complete
invariant metric ρ (i.e., ρ( f h1g, f h2g) = ρ(h1, h2) for each f, g, h1, h2 ∈ G)
for which the transformation (from G × G onto G) that sends (x, y) into x−1y, is
continuous. Let B(G) denote the σ -algebra of Borel subsets of G.

Definition 5.6.1 ([M]) A Borel set X ⊆ G is called shy, if there exists a Borel
probability measure μ over G such that μ( f Xg) = 0 for all f, g ∈ G. Ameasure μ
is called a testing measure for a set X . A subset of a Borel shy set is also called shy.
The complement of a shy set is called a prevalent set.

Definition 5.6.2 ([BBE]) A Borel set is called a Haar ambivalent set if it is neither
shy nor prevalent.

Remark 5.6.1 Note that if X ⊆ G is shy then there exists a testing measure μ for a
set X that has a compact carrier K ⊆ G(i.e., μ(G \ K ) = 0). The collection of shy
sets constitutes the σ ideal, and in the case when G is locally compact, a set is shy
iff it has Haar measure zero.

Definition 5.6.3 If G is a Polish group and {μθ : θ ∈ Θ} is a family of Borel
probability measures on G, then the family of triplets {(G,B, μθ ) : θ ∈ Θ}, where
Θ is a nonempty set equipped with the σ -algebra L(Θ) generated by all singletons
of Θ , is called a statistical structure. A set Θ is called a set of parameters.
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Definition 5.6.4 (O) The statistical structure {(G,B(G), μθ ) : θ ∈ Θ} is called
orthogonal if the measures μθ1 and μθ2 are orthogonal for each different parameter
θ1 and θ2.

Definition 5.6.5 (WS) The statistical structure {(G,B(G), μθ ) : θ ∈ Θ} is called
weakly separated if there exists a family of Borel subsets {Xθ : θ ∈ Θ} such that
μθ1(Xθ2) = δ(θ1, θ2), where δ denotes Kronecker’s function defined on the Cartesian
square Θ × Θ of the set Θ .

Definition 5.6.6 (SS) The statistical structure {(G,B(G), μθ ) : θ ∈ Θ} is called
strong separated (or strictly separated) if there exists a partition of the group G into
the family of Borel subsets {Xθ : θ ∈ Θ} such that μθ(Xθ ) = 1 for each θ ∈ Θ .

Definition 5.6.7 (CE) A (B(G), L(Θ)) measurable mapping T : G → Θ is called
a consistent estimate of an unknown parameter θ ∈ Θ for the statistical structure
{(G,B(G), μθ ) : θ ∈ Θ} if the condition μθ(T−1(θ)) = 1 holds true for each
θ ∈ Θ .

Definition 5.6.8 (OCE) A (B(G), L(Θ)) measurable mapping T : G → Θ is
called an objective consistent estimate of an unknown parameter θ ∈ Θ for the
statistical structure {(G,B(G), μθ ) : θ ∈ Θ} if the following two conditions hold.
(i) μθ(T−1(θ)) = 1 for each θ ∈ Θ .
(ii) T−1(θ) is a Haar ambivalent set for each θ ∈ Θ .

If Condition (i) holds but Condition (ii) fails, then T is called a subjective
consistent estimate of an unknown parameter θ ∈ Θ for the statistical structure
{(G,B, μθ ) : θ ∈ Θ}.
Definition 5.6.9 (SOCE) An objective consistent estimate T : G → Θ of an
unknown parameter θ ∈ Θ for the statistical structure {(G,B(G), μθ ) : θ ∈ Θ}
is called strong if for each θ1, θ2 ∈ Θ there exists an isometric Borel measurable
bijection A(θ1,θ2) : G → G such that the set A(θ1,θ2)(T

−1(θ1))ΔT−1(θ2) is shy in G.

Remark 5.6.2 Let G be a Polish nonlocally compact group admitting an invariant
metric. The relations between statistical structures introduced in Definitions5.6.4–
5.6.9 for such a group can be represented by the following diagram.

SOCE → OCE → CE ↔ SS → WS → O (5.6.1)

To show that the converse implications sometimes fail we consider the following
examples.

Example 5.6.1 �(WS ← O) Let F ⊂ G be a closed subset of the cardinality 2ℵ0 .
Let φ : [0, 1] → F be a Borel isomorphism of [0, 1] onto F . We set μ(X) =
λ(φ−1(X ∩ F)) for X ∈ B(G), where λ denotes a linear Lebesgue measure on
[0, 1]. We put Θ = F . Fix θ0 ∈ Θ and put μθ = μ if θ = θ0, and μθ = δθ |B(G),
otherwise, where δθ denotes a Dirac measure on G concentrated at the point θ and
δθ |B(G) denotes the restriction of the δθ to the classB(G). Then the statistical structure
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{(G,B, μθ ) : θ ∈ Θ} stands for O which is not WS. Indeed, if we assume there is
a family of Borel subsets {Xθ : θ ∈ Θ} for which μθ1(Xθ2) = δ(θ1, θ2) for each
θ1, θ2 ∈ Θ , then we get that μθ(Xθ0) = 0 for each θ ∈ Θ \ {θ0}. The latter relation
means that {θ}∩ Xθ0 = ∅ for each θ ∈ Θ \{θ0}. Hence,Θ \{θ0}{θ}∩ Xθ0 = ∅which
implies that μθ0(Xθ0) = 0 because Θ \ {θ0} is a carrier of μθ0 and its intersection
with the set Xθ0 is emptyset.

Example 5.6.2 (SM) �(SS ← WS) Following [P1] (see Theorem 1, p. 335), in the
system of axioms (ZFC) the following three conditions are equivalent.

(1) The continuum hypothesis (c = 2ℵ0 = ℵ1).
(2) For an arbitrary probability space (E; S;μ), the μ measure of the union of any

family (Ei )i∈I of μ measure zero subsets, such that card(I ) < c, is equal to
zero.

(3) An arbitrary weakly separated family of probability measures, of cardinality
continuum, is strictly separated.

The latter relation means that under the continuum hypothesis in ZFC we have
SS ← WS. This is just Skorohod’swell-known result (see [IS]).Moreover, following
[P1] (see Theorem2, p. 339), if (F, ρ) is a Radonmetric space and (μi )i∈I is aweakly
separated family of Borel probability measures with card(I ) ≤ c, then in the system
of axioms (ZFC)&(MA), the family (μi )i∈I is strictly separated.

Let us consider a counterexample to the implication SS ← WS in the Solovay
model (SM) [Solovay] which is the following system of axioms. (ZF) + DC +“every
subset of the real axisR is Lebesguemeasurable,” where (ZF) denotes the Zermelo–
Fraenkel set theory and (DC) denotes the axiom of dependence choices.

For θ ∈ (0; 1), let bθ be a linear classical Borel measure defined on the set
{θ} × (0; 1). For θ ∈ (1.2), let bθ be a linear classical Borel measure defined on the
set (0; 1) × {θ − 1}. By λθ we denote a Borel probability measure on (0; 1) × (0; 1)
produced by bθ ; that is,

(∀X)(∀θ1)(∀θ2)(X ∈ B((0; 1) × (0; 1)) & θ1 ∈ (0; 1) & θ2 ∈ (1; 2) →

λθ1(X) = bθ1(({θ1}×(0; 1))∩X)& λθ2(X) = bθ2(((0; 1)×{θ1−1})∩X)). (5.6.2)

If we put θ = (0; 1) ∪ (1; 2), then we get a statistical structure

((0; 1) × (0; 1),B((0; 1) × (0; 1)), λθ )θ∈Θ. (5.6.3)

Setting Xθ = {θ} × (0; 1) for θ ∈ (0; 1), and Xθ = (0; 1) × {θ − 1} for θ ∈ (1.2),
we observe that for the family of Borel subsets {Xθ : θ ∈ Θ} we have λθ1(Xθ2) =
δ(θ1, θ2), where δ denotes Kronecker’s function defined on the Cartesian square
Θ ×Θ of the setΘ . In other words, (λθ )θ∈Θ is weakly separated. Now let us assume
that this family is strong separated. Then there will be a partition {Yθ : θ ∈ Θ}
of the set (0; 1) × (0; 1) into Borel subsets (Yθ )θ∈Θ such that λθ(Yθ ) = 1 for each
θ ∈ Θ . If we consider A = ∪θ∈(0;1)Yθ and B = ∪θ∈(1;2)Yθ then we observe by the
Fubini theorem that 	2(A) = 1 and 	2(B) = 1, where 	2 denotes the 2-dimensional
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Lebesgue measure defined in (0; 1)× (0; 1). This is the contradiction and we proved
that (λθ )θ∈Θ is not strictly separated. An existence of a Borel isomorphism g between
(0; 1) × (0; 1) and G allows us to construct a family (μθ )θ∈Θ in G: μθ(X) =
λθ(g−1(X)) for each X ∈ B(G) and θ ∈ Θ which is WS but not SS(equivalently,
CE). By virtue of the celebrated result of Mycielski and Swierczkowski (see [MS])
who asserted that under the axiom of determinacy (AD) every subset of the real
axis R is Lebesgue measurable, the same example can be used as a counterexample
to the implication SS ← WS in the theory (ZF) + (DC) + (AD). The answer to
the question asking whether (μθ )θ∈Θ has a consistent estimate is yes in the theory
(ZFC) & (CH), and no in the theory (ZF) + (DC) + (AD), we deduce that this
question is not solvable within the theory (ZF) + (DC).

Example 5.6.3 �(OCE ← CE) Setting Θ = G and μθ = δθ |B(G) for θ ∈ Θ ,
where δθ denotes a Dirac measure in G concentrated at the point θ and δθ |B(G)
denotes its restriction to B(G), we get a statistical structure (G,B(G), μθ )θ∈Θ . Let
L(Θ) denote a minimal σ -algebra of subsets of Θ generated by all singletons of Θ .
Setting T (g) = g for g ∈ G, we get a consistent estimate of an unknown parameter θ
for the family (μθ )θ∈Θ . Note that there does not exist an objective consistent estimate
of a parameter θ for the family (μθ )θ∈Θ . Indeed, if we assume the contrary and that
T1 is such an estimate, we get that T−1

1 (θ) is a Haar ambivalent set for each θ ∈ Θ .
Because T1 is a consistent estimate of an unknown parameter θ for each θ ∈ Θ , we
get that the condition μθ(T

−1
1 (θ)) = 1 holds true which implies that θ ∈ T−1

1 (θ)
for each θ ∈ Θ . Fix any parameter θ0 ∈ Θ . Because T−1

1 (θ0) is a Haar ambivalent
set there is θ1 ∈ T−1

1 (θ0) which differs from θ0. Then T−1
1 (θ0) and T−1

1 (θ1) are not
disjoint because θ1 ∈ T−1

1 (θ0) ∩ T−1
1 (θ1) and we get the contradiction.

Remark 5.6.3 Note that if (Θ, ρ) is a metric space and if in Definition5.6.7 the
requirement of a (B(G), L(Θ))measurability is replaced with a (B(G),B(Θ))mea-
surability, then the implication SS → CE may be false. Indeed, let G be a Polish
group and f : G ← Θ(:= G) be a nonmeasurable(in the Borel sense) bijection.
For each θ ∈ Θ denote by μθ the restriction of the Dirac measure δ f (θ) to the
σ -algebra of Borel subsets of the group G. It is clear that the statistical structure
{(G,B(G), μθ ) : θ ∈ Θ} is strictly separated. Show that a consistent estimate for
that statistical structure does not exist. Indeed, let T : G → Θ be a (B(G),B(Θ))
measurable mapping such thatμθ({x : T (x) = θ}) = 1 for each θ ∈ Θ . Because the
measure μθ is concentrated at the point f (θ) we have that f (θ) ∈ {x : T (x) = θ}
for each θ ∈ Θ which implies that T ( f (θ)) = θ for each θ ∈ Θ . The latter relation
means that T = f −1. Inasmuch as f is not (B(G),B(Θ))measurable, we claim that
f −1 = T is also not (B(G),B(Θ)) measurable and we get the contradiction.

There naturally arises a question of whether there exists a statistical structure
{(G,B, μθ ) : θ ∈ Θ} in a Polish nonlocally compact group admitting an invariant
metric that has an objective consistent estimate of a parameter θ . To answer this
question positively, we need the following two lemmas.

Lemma 5.6.1 ([Sol], Theorem, p. 206) Assume G is a Polish, nonlocally compact
group admitting an invariant metric. Then there exists a closed set F ⊆ G and a
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continuous function φ : F → 2N such that for any x ∈ 2N and any compact set
K ⊆ G there is g ∈ G with gK ⊆ φ−1(x).

Lemma 5.6.2 ([D], Proposition 12, p. 87) Let G be a nonlocally compact Polish
group with an invariant metric. Then any compact subset (and hence any Kσ subset)
of G is shy.

Remark 5.6.4 In [PK2] (see proof of Theorem 4.1, Step 2) a partition Φ = {Aθ :
θ ∈ [0, 1]} of the RN into Haar ambivalent sets has been constructed such that for
each θ1, θ2 ∈ [0, 1] there exists an isometric (with respect to the Tychonoff metric
which is invariant under translates) Borel measurable bijection A(θ1,θ2) of R

N such
that A(θ1,θ2)(Aθ1)ΔAθ2 is shy. In this context and regarding Lemma5.6.1 it is natural
to ask whether an arbitrary Polish nonlocally compact group with an invariant metric
admits a similar partition intoHaar ambivalent sets. Note that we have no information
in this direction.

Theorem 5.6.1 Let G be a Polish nonlocally compact group admitting an invariant
metric. Then there exists a statistical structure {(G,B, μθ ) : θ ∈ Θ} in G that has
an objective consistent estimate of a parameter θ such that:

(i) Θ ⊆ G and card(Θ) = 2ℵ0 .
(ii) μθ is the restriction of the Dirac measure concentrated at the point θ to the Borel

σ -algebra B(G) for each θ ∈ Θ .

Proof By virtue of Lemma5.6.1, there exists a closed set F ⊆ G and a continuous
function φ : F → 2N such that for any x ∈ 2N and any compact set K ⊆ G there is
g ∈ G with gK ⊆ φ−1(x). For x ∈ 2N \ {(0, 0, . . .)} we put

Xx = φ−1(x). (5.6.4)

We set X(0,0,...) = φ−1((0, 0, . . .))∪(G \F). Thus we have a partition {Xx : x ∈ 2N }
of G into Borel subsets such that each element of the partition is Borel measurable
and a Haar ambivalent set. Let {θx : x ∈ 2N } be any selector. We put Θ = {θ :
θ = θx for some x ∈ 2N } and denote by μθ the restriction of the Dirac measure
concentrated at the point θ to the σ -algebra B(G). Thus we have constructed a
statistical structure {(G,B, μθ ) : θ ∈ Θ} in G. We put T (g) = θ for each g ∈ Xθ .
Now it is obvious that T is the objective consistent estimate of a parameter θ for the
statistical structure {(G,B, μθ ) : θ ∈ Θ} in G such that Conditions (i) and (ii) are
fulfilled.

Theorem 5.6.2 Let G be a Polish nonlocally compact group admitting an invariant
metric. Let μ be a Borel probability measure whose carrier is a compact set K0(i.e.,
μ(G \ K0) = 0). Then there exists a statistical structure {(G,B, μθ ) : θ ∈ Θ} in G
that has an objective consistent estimate of a parameter θ such that

(i) Θ ⊆ G and card(Θ) = 2ℵ0 .
(ii) μθ is a θ -shift of the measure μ (i.e., μθ(X) = μ(θ−1X) for X ∈ B(G) and

θ ∈ Θ).
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Proof By virtue of Lemma5.6.1, there exists a closed set F ⊆ G and a continuous
function φ : F → 2N such that for any x ∈ 2N and any compact set K ⊆ G there is
g ∈ G with gK ⊆ φ−1(x). For x ∈ 2N \ {(0, 0, . . .)} we put Xx = φ−1(x). We set
X(0,0,...) = φ−1((0, 0, . . .)) ∪ (G \ F). Thus we have a partition {Xx : x ∈ 2N } of G
into Borel subsets such that each element of the partition is Borel measurable, a Haar
ambivalent set, and for any x ∈ 2N and any compact set K ⊆ G there is g ∈ G with
gK ⊆ Xx . If we take a set K0 under K , then for any x ∈ 2N there is g(K0, x) ∈ G
with g(K0, x)K0 ⊆ Xx . We put Θ = {θ : θ = g(K0, x) & x ∈ 2N }. For each θ ∈ Θ
and X ∈ B(G), we put μθ(X) = μ(θ−1X). For g ∈ Xx we put T (g) = g(K0, x).
Let us show that T : G → Θ is an objective consistent estimate of a parameter θ .
Indeed, for each θ ∈ Θ we have

μθ(T
−1(θ)) = μg(K0,x)(T

−1(g(K0, x))) = μg(K0,x)(Xx ) = μ(g(K0, x)
−1Xx ) ≥

μ(g(K0, x)
−1g(K0, x)K0) = μ(K0) = 1, (5.6.5)

which means that T : G → Θ is a consistent estimate of a parameter θ . On the other
hand, for each θ = g(K0, x) ∈ Θ we have that a set T−1(θ) = T−1(g(K0, x)) = Xx

is Borel measurable and a Haar ambivalent set which together with formula (7.6.5)
implies that T : G → Θ is an objective consistent estimate of a parameter θ . Now it
is obvious to check that for the statistical structure {(G,B, μθ ) : θ ∈ Θ} Conditions
(i) and (ii) are fulfilled.

The next theorem shows whether an objective consistent estimate can be con-
structed by virtue of some consistent estimates in a nonlocally compact Polish group
admitting an invariant metric.

Theorem 5.6.3 Assume G is a nonlocally compact Polish group admitting an
invariant metric. Let card(Θ) = 2ℵ0 and T : G → Θ be a consistent estimate of
a parameter θ for the family of Borel probability measures (μθ )θ∈Θ such that there
exists θ0 ∈ Θ for which T−1(θ0) is a prevalent set. Then there exists an objective
consistent estimate of a parameter θ for the family (μθ )θ∈Θ .

Proof For θ ∈ Θ we put Sθ = T−1(θ). Because Sθ0 is a prevalent set we deduce that

∪θ∈Θ\{θ0} Sθ = RN \ Sθ0 (5.6.6)

is shy in G.
By Lemma5.2.3 we know that the measure μθ0 is concentrated on a union of a

countable family of compact subsets {F (θ0)
k : k ∈ N }. By Lemmas5.2.1 and 5.6.2,

we know that ∪k∈N F (θ0)
k is shy in G.

We put S̃θ = Sθ for θ ∈ Θ \ {θ0} and S̃θ0 = ∪k∈N F (θ0
k . Clearly, S = ∪θ∈Θ S̃θ is

shy in G.
By virtue of Lemma5.6.1, there exists a closed set F ⊆ G and a continuous

function φ : F → 2N such that for any x ∈ 2N and any compact set K ⊆ G there is
g ∈ G with gK ⊆ φ−1(x). Let f : 2N → Θ be any bijection. For θ ∈ Θ we put
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Bθ = (φ−1( f −1(θ)) \ S) ∪ Sθ . (5.6.7)

Note that (Bθ )θ∈Θ is a partition of G into Haar ambivalent sets. We put T1(g) = θ
for g ∈ Bθ (θ ∈ Θ). Because

μθ(T
−1
1 (θ)) = μθ(Bθ ) ≥ μθ(Sθ ) = 1 (5.6.8)

for θ ∈ Θ , we claim that T1 is a consistent estimate of a parameter θ for the family
(μθ )θ∈Θ . Because T

−1
1 (θ)) = Bθ is a Borel and Haar ambivalent set for each θ ∈ Θ

we end the proof of the theorem.

Example 5.6.4 Let F be a distribution function onR such that the integral
∫
R xdF(x)

exists and is equal to zero. Suppose that p is a Borel probability measure on R
defined by F . For θ ∈ Θ(:= R), let pθ be a θ shift of the measure p(i.e., pθ (X) =
p(X − θ) for X ∈ B(R)). Setting, G = RN , for θ ∈ Θ we put μθ = pN

θ , where pN
θ

denotes the infinite power of the measure pθ . We set T ((xk)k∈N ) = limn→∞
∑n

k=1 xk
n ,

if limn→∞
∑n

k=1 xk
n exists, is finite and differs from the zero, and T ((xk)k∈N ) = 0,

otherwise. Note that T : RN → Θ is a consistent estimate of a parameter θ for the
family (μθ )θ∈Θ such that T−1(0) is a prevalent set. Indeed, by virtue of the strong
law of large numbers, we know that

μθ

({

(xk)k∈N : lim
n→∞

∑n
k=1 xk
n

= θ

})

= 1 (5.6.9)

for θ ∈ Θ .
Following [PK1] (Lemma 4.14, p. 60), a set S defined by

S =
{

(xk)k∈N : lim
n→∞

∑n
k=1 xk
n

exists and is finite

}

, (5.6.10)

is a Borel shy set. This implies that RN \ S is a prevalent set. Because RN \ S ⊆
T−1(0), we deduce that T−1(0) is a prevalent set. Because for the statistical structure
{(RN ,B(RN ), μθ ) : θ ∈ Θ} all conditions of the Theorem 7.6.3 are fulfilled, we
claim that there exists an objective consistent estimate of a parameter θ for the family
(μθ )θ∈Θ .

Note that in Theorem5.4.1 (see also [PK2], Theorem 3.1, p. 117) has been con-
sidered an example of a strong objective infinite sample consistent estimate of an
unknown parameter for a certain statistical structure in the Polish nonlocally compact
Abelian group RN . In the context of this example we state the following.

Problem 5.6.8 Let G be a Polish nonlocally compact group admitting an invari-
ant metric. Does there exist a statistical structure {(G,B(G), μθ ) : θ ∈ Θ} with
card(Θ) = 2ℵ0 for which there exists a strong objective consistent estimate of a
parameter θ?
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5.7 Objective and Strong Objective Consistent Estimates
of an Unknown Parameter in a Compact Polish Group
{0, 1}N

Let x1, x2, . . . , xk, . . . be an infinite sample obtained by coin tosses. Then the statis-
tical structure described in this experiment has the form:

{({0, 1}N , B({0, 1}N ), μN
θ ) : θ ∈ (0, 1)} (5.7.1)

whereμθ({1}) = θ andμθ({0}) = 1−θ . By virtue of the strong law of large numbers
we have

μN
θ

({

(xk)k∈N : (xk)k∈N ∈ {0, 1}N & lim
n→∞

∑n
k=1 xk
n

= θ

})

= 1 (5.7.2)

for each θ ∈ (0, 1).
Note that for each k ∈ N , Gk = {0, 1} can be considered as a compact group

with an addition group operation (mod 2). Hence the space of all infinite samples
G := {0, 1}N can be presented as an infinite product of compact groups {Gk : k ∈ N };
that is,G = ∏

k∈N Gk . Note also that the groupG admits an invariantmetricρ defined
by ρ((xk)k∈N , (yk)k∈N ) = ∑

k∈N
|xk−yk (mod 2)|

2k+1(1+|xk−yk (mod 2)|) for (xk)k∈N , (yk)k∈N ∈ G. It
is obvious that the measure λk on Gk defined by λk({0}) = λk({1}) = 1/2 is a
probability Haar measure in Gk for each k ∈ N and for the probability Haar measure
λ in G the following equality λ = ∏

k∈N λk holds true, and equivalently, λ = μN
0,5.

By virtue of (5.7.2) we deduce that the set

A(0, 5) =
{

(xk)k∈N : (xk)k∈N ∈ {0, 1}N & lim
n→∞

∑n
k=1 xk
n

= 0, 5

}

(5.7.3)

is prevalence. Because A(θ) ⊂ G \ A(0, 5) for each θ ∈ (0; 1) \ {1/2}, where

A(θ) =
{

(xk)k∈N : (xk)k∈N ∈ {0, 1}N & lim
n→∞

∑n
k=1 xk
n

= θ

}

, (5.7.4)

we deduce that they are all shy (equivalently, of Haar measure zero) sets. In terms of
[HSY], this phenomenon can be expressed in the following form.

Theorem 5.7.1 For almost every sequence (xk)k∈N ∈ {0, 1}N its Cezaro means

(
∑n

k=1 xk
n )n∈N converges to 0, 5 whenever n tends to ∞.

By virtue of the strong law of large numbers, we get the following.

Theorem 5.7.2 Fix θ0 ∈ (0, 1). For each (xk)k∈N ∈ G, we set T ((xk)k∈N ) =
limn→∞

∑n
k=1 xk
n if this limit exists and differs from θ0, and T ((xk)k∈N ) = θ0, oth-

erwise. Then T is a consistent estimate of an unknown parameter θ for the statistical
structure {(G,B(G), μθ ) : θ ∈ Θ}.
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Remark 5.7.1 Following Definition5.6.8, the estimate T is subjective because
T−1(1/2) is a prevalent set. Unlike Theorem5.6.3, there does not exist an objec-
tive consistent estimate of an unknown parameter θ for any statistical structure
{(G,B(G), μθ ) : θ ∈ Θ} for which card(Θ) > ℵ0, where ℵ0 denotes the car-
dinality of the set of all natural numbers. Indeed, assume the contrary and let T1
be such an estimate. Then we get the partition {T−1

1 (θ) : θ ∈ Θ} of the compact
group G into Haar ambivalent sets. Because each Haar ambivalent set is of positive
λ measure, we get that the probability Haar measure λ does not satisfy the Suslin
property provided that the cardinality of an arbitrary family of pairwise disjoint Borel
measurable sets of positive λ measure in G is not more than countable.

Remark 5.7.2 Let us consider a mapping F : G → [0, 1] defined by F((xk)k∈N ) =∑
k∈N

xk
2k for (xk)k∈N ∈ G. This a Borel isomorphism between G and [0, 1] such that

the equality λ(X) = 	1(F(X)) holds true for each X ∈ B(G). By virtue of the latter
relation, for each natural number m, there exists a partition {Xk : 1 ≤ k ≤ m} of the
group G into Haar ambivalent sets such that for each 1 ≤ i ≤ j ≤ m there is an
isometric Borel measurable bijection f(i, j) : G → G such that the set f(i, j)(Xi )ΔX j

is shy, equivalently, of the λ measure zero.

By the scheme presented in the proof of Theorem5.6.3, one can obtain the validity
of the following assertions.

Theorem 5.7.3 Let Θ1 be a subset of the Θ with card(Θ) ≥ 2. Then there exists an
objective consistent estimate of an unknown parameter θ for the statistical structure
{(G,B(G), μθ ) : θ ∈ Θ1} if and only if card(Θ1) ≤ ℵ0 and 1/2 /∈ Θ1.

Theorem 5.7.4 LetΘ2 be a subset of theΘ card(Θ) ≥ 2. Then there exists a strong
objective consistent estimate of an unknown parameter θ for the statistical structure
{(G,B(G), μθ ) : θ ∈ Θ2} if and only if card(Θ2) < ℵ0 and 1/2 /∈ Θ2.

Remark 5.7.3 Main results of Chap.5 were obtained in [KKP].

5.8 Conclusion

LetNHSTbeassociatedwith a statistical structure (G,B(G), μθ )θ∈Θ and a consistent
estimation T : G → Θ , when G is a Polish group equipped with an invariant metric.
A certain claim in that each consistent estimation T must pass the certification exam
on objectivity before its practical application can be given as follows. First, note
that if there is a parameter θ0 ∈ Θ for which T−1(θ0) is a shy set in G, then the
acceptance region for the parameter θ0 under null hypothesis H0 : θ = θ0 will be
small and correspondingly, for almost every (in the sense of [HSY]) sample we reject
the null hypothesis H0 : θ = θ0 losing an objectivity of the hypothesis testing. Just
here it is pertinent to mention the quote from [N]: “… it is usually nonsensical to
perform an experiment with the sole aim of rejecting the null hypothesis.” Second,

http://dx.doi.org/10.1007/978-3-319-45578-5_5
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note that if there is a parameter θ1 ∈ Θ for which T−1(θ1) is a prevalent set in G then
the acceptance region for parameter θ1 under null hypothesis H0 : θ = θ1 will be
large and correspondingly, for almost every (in the sense of [HSY]) sample we accept
null hypothesis H0 : θ = θ1 again losing an objectivity of the hypothesis testing. In
that case, I conjecture that “It is usually nonsensical also to perform an experiment
with the sole aim of accepting the null hypothesis”, and really, it is difficult-won’t
agree with me. Not losing an objectivity of the hypothesis testing, for each θ ∈ Θ
a set T−1(θ) must be neither shy nor a prevalent set in G which [BBE] called a
Haar ambivalent set in G. The latter observation directly leads us to the notion of the
objectivity of the consistent estimation T and NHST, respectively.

We briefly discuss what we recommend to statisticians from the point of view of
practical applications of NHST at this stage:

• Recommendation 5.8.1. If G is locally compact and card(Θ) > ℵ0, then do not
try to construct an objective NHST because it does not exist. (This claim is similar
to the proof of Remark5.7.1.)

• Recommendation 5.8.2. If G is nonlocally compact then the consistent estimation
T must pass an exam on the objectivity provided that we must choose the validity
of the condition

(∀θ)(θ ∈ Θ → T−1(θ) a Haar ambivalent set in G). (5.8.1)

• Recommendation 5.8.3. If G is nonlocally compact and the consistent estimation
T satisfies Condition (5.8.1) then NHST is objective and we can use it for our
practical purposes.

• Recommendation 5.8.4. If G is nonlocally compact and the consistent estimation
T does not satisfy Condition (5.8.1) but satisfies the condition

(∃θ0)(θ0 ∈ Θ → T−1(θ0) is prevalent set), (5.8.2)

then we must construct its modification T satisfying Condition (5.8.1; cf.
Theorem5.6.3), and only after this can NHST (with the objective estimation T )
be used for our practical purposes.

References

[BBE] Balka, R., Buczolich, Z., Elekes, M.: Topological hausdorff dimension and level sets
of generic continuous functions on fractals. Chaos Solitons Fractals 45(12), 1579–1589
(2012)

[Chr1] Christensen, J.R.: Measure theoretic zero sets in infinite dimensional spaces and appli-
cations to differentiability of Lipschitz mappings. Publ. Dep. Math. 10(2), 29–39 (1973)

[Coh] Cohen, J.: The Earth is round (p < .05). Am. Psychol. 49(12), 997–1003 (1994)
[D] Dougherty, R.: Examples of non-shy sets. Fund. Math. 144, 73–88 (1994)
[HSY] Hunt, B.R., Sauer, T., Yorke, J.A.: Prevalence: a translation-invariant “almost every” on

infinite-dimensional spaces. Bull. Am. Math. Soc. 27(2), 217–238 (1992)



106 5 Objective and Strong Objective Consistent Estimates …

[IS] Ibramkhallilov, I.S., Skorokhod,A.V.:OnWell-off Estimates of Parameters of Stochastic
Processes (in Russian). Naukova Dumka, Kiev (1980)

[K] Kaisan, C.: High accuracy calculation, Cauchy distribution (percentile). http://keisan.
casio.com/has10/SpecExec.cgi

[Kh] Kharazishvili, A.B.: Topologicheskie aspekty teorii mery (Russian). [Topological
aspects of measure theory]. Naukova Dumka, Kiev (1984)

[KKP] Kintsurashvili, M., Kiria, T., Pantsulaia, G.: On objective and strong objective consistent
estimates of unknown parameters for statistical structures in a Polish group admitting
an invariant metric. J. Stat. Adv. Theory Appl. 13(2), 179–233 (2015)

[KN] Kuipers, L., Niederreiter, H.: Uniform Distribution of Sequences. Wiley, New York
(1974)

[MS] Mycielski, J., Swierczkowski, S.: On the Lebesgue measurability and the axiom of
determinateness. Fund. Math. 54, 67–71 (1964)

[M] Mycielski, J.: Some unsolved problems on the prevalence of ergodicity, instability, and
algebraic independence. Ulam Quart. 1(3). 30 ff. approx. p. 8 (1992) (electronic only)

[N] Nadaraya, E.: On non-parametric estimates of density functions and regression curves.
Theor. Prob. Appl. 10, 186–190 (1965)

[N] Nunnally, J.: The place of statistics in psychology. Educ. Psychol. Measur. 20(4), 641–
650 (1960)

[P1] Pantsulaia,G.R.:On separation properties for families of probabilitymeasures.Georgian
Math. J. 10(2), 335–342 (2003)

[P2] Pantsulaia, G.R.: Invariant and quasiinvariant measures in infinite-dimensional topolog-
ical vector spaces. Nova Science Publishers Inc., New York (2007)

[P3] Pantsulaia, G.: On a certain partition of the non-locally compact abelian polish group
RN . Proc. A. Razmadze Math. Inst. 149, 75–86 (2009)

[PK1] Pantsulaia, G., Kintsurashvili, M.: Why is null hypothesis rejected for “almost every”
infinite sample by some hypothesis testing of maximal reliability? J. Stat. Adv. Theory
Appl. 11(1), 45–70 (2014). www.scientificadvances.co.in

[PK2] Pantsulaia, G., Kintsurashvili, M.: An effective construction of the strong objective
infinite sample well-founded estimate. Proc. A. Razmadze Math. Ins. 166, 113–119
(2014)

[PK3] Pantsulaia, G., Kintsurashvili, M.: An objective infinite sample well-founded estimates
of a useful signal in the linear one-dimensional stochastic model Rep. Enlarged Sess.
Semin. I. Vekua. Appl. Math. 28, 90–93 (2014)

[R] Rosenblatt, M.: Remarks on some nonparametric estimates of a density function. Ann.
Math. Stat. 27, 832–837 (1956)

[Sc] Schuster, E.F.: Estimation of a probability density function and its derivatives. Ann.
Math. Stat. 40, 1187–1195 (1969)

[Sh] Shiryaev, A.N.: Problems in Probability. Problem books in mathematics. Springer,
New York (2012)

[Solovay] Solovay, R.M.: Amodel of set theory in which every set of reals is Lebesguemeasurable.
Ann. Math. 92, 1–56 (1970)

[Sol] Solecki, S.: On haar null sets. Fund. Math. 149(3), 205–210 (1996)
[ZPS] Zerakidze, Z., Pantsulaia, G., Saatashvili, G.: On the separation problem for a family of

Borel and Baire G-powers of shift-measures on R. Ukr. Math. J. 65(4), 470–485 (2013)

http://keisan.casio.com/has10/SpecExec.cgi
http://keisan.casio.com/has10/SpecExec.cgi
http://www.scientificadvances.co.in


Chapter 6
Why Null Hypothesis Is Rejected
for Almost Every Infinite Sample
by the Hypothesis Testing
of a Maximal Reliability

6.1 Introduction

Criticism of statistical hypothesis testing has been considered in [Ch, LMS, K, MZ,
MH, O], citing 300–400 primary references. Many of the philosophical criticisms of
hypothesis testing contain the general point of view that the theory of mathematical
statistics and results of testing are inconsistent in many situations. Various different
reasonable statistical methods in many expensive experiments led to inconsistent
decisions, causing great alarm among mathematicians and statisticians. It would be
ridiculous and practically impossible to explain all the paradoxes that underlie the
existence of a big gap between theory and practice. Here we do not consider in detail
all the issues that summarize such a criticism. We focus our attention on a certain
confusion described in the works of Jum Nunnally [N] and Jacob Cohen [Coh]. As
quoted earlier, in [Coh] Jacob Cohen said, “…Don’t look for a magic alternative
to NHST [null hypothesis significance testing] … It does not exist.” In [N] Jum
Nunnally conjectured,

If the decisions are based on convention they are termed arbitrary or mindless while those
not so based may be termed subjective. To minimize type II errors, large samples are recom-
mended. In psychology practically all null hypotheses are claimed to be false for sufficiently
large samples so … it is usually nonsensical to perform an experiment with the sole aim of
rejecting the null hypothesis.

A question naturally arises here as to whether concepts of the theory of statistical
decisions for infinite samples can be introduced and whether Jacob Cohen’s and Jum
Nunnally’s above-mentioned conjectures are valid. To confirm the validity of their
predictions, for a linear one-dimensional stochastic system, we consider a certain
hypothesis testing for infinite samples such that the sum of errors of I and II types
is equal to zero. (We call such tests, tests of a maximal reliability.) Furthermore, we
explain why a null hypothesis is claimed to be false for almost every [HSY] infinite
sample.

First, note that in many cases even information advising us that some phenomenon
happens with probability 1 can be quite poor can be considered an essential reason
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for all inconsistent statistical decisions. Indeed, let X be an infinite-dimensional
topological vector space. Let P be any sentence formulated for elements in X and
let μ be any probability Borel measure on X. Let us discuss what information the
following sentence yields.

“μ-almost every element of X satisfies the property P.”

If X is separable then an arbitrary nonzero σ -finite Borel measure defined on X is
concentrated on the union of countable compact subsets (Fk)k∈N in B (cf. [Kh]) and
for arbitrary k ∈ N there exists a vector vk ∈ X which spans a line Lk such that every
translation of Lk meets Fk in at most one point (cf.[70], p.225, Fact 8). In such a way,
the support of μ may be regarded as the union of a countable family of “surfaces”.
Therefore the information described by the above-mentioned sentence, in general,
may be very poor. For this reason to study the behavior of various general systems
defined in infinite-dimensional separable topological vector spaces in terms of any
partial σ -finite Borel measure (e.g., Gaussian measure that is concentrated on a poor
set) is not recommended and needs to extend the measure-theoretic terms “measure
zero” and “almost every.” This phenomenon was first noted by J. Christensen (1973)
[Ch1] and more lately by B.R. Hunt, T. Sauer, J.A. Yorke (1992) [HSY], J. Mycielski
(1992) [M], R. Dougherty (1994) [D], and other well-known mathematicians. As with
the concept of “Lebesgue almost every” on finite-dimensional spaces, their notion of
“prevalence” is translation-invariant. Instead of using a specific measure on the entire
space, they have defined prevalence in terms of the class of all probability measures
with compact support. Prevalence is a more appropriate condition than the topological
concepts of “open and dense” or “generic” when one desires a probabilistic result
on the likelihood of a given property on a function space.

The purpose of the present chapter is an application of the approach of “almost
every” in studying structures of domains of some infinite sample statistics and in
explaining why the null hypothesis is rejected for “almost every” infinite sample by
the hypothesis testing of a maximal reliability.

The rest of this chapter is the following.
In Sect. 6.2 we give auxiliary notions and facts from functional analysis and mea-

sure theory.
In Sect. 6.3 we consider consistent estimators of a useful signal in the linear one-

dimensional stochastic model when the expectation of the transformed signal is not
defined.

In Sect. 6.4 we consider an example of hypothesis testing of high reliability for
a linear one-dimensional stochastic model and explain why the null hypothesis is
rejected for “almost every” infinite sample. Also, we consider some well-known
infinite sample statistics and study structures of their domains in terms of “preva-
lence.”
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6.2 Auxiliary Notions and Facts from Functional
Analysis and Measure Theory

Let V be a complete metric linear space, by which we mean a vector space (real
or complex) with a complete metric for which addition and scalar multiplication
are continuous. When we speak of a measure on V we always mean a nonnegative
measure that is defined on the Borel sets of V and is not identically zero. We write
S + v for the translate of a set S ⊆ V by a vector v ∈ V.

Definition 6.2.1 ([HSY], Definition 1, p. 221) A measure μ is said to be transverse
to a Borel set S ⊂ V if the following two conditions hold.

(i) there exists a compact set U ⊂ V for which 0 < μ(U) < 1;
(ii) μ(S + v) = 0 for every v ∈ V.

Definition 6.2.2 ([HSY], Definition 2, p. 222) A Borel set S ⊂ V is called shy if
there exists a measure transverse to S. More generally, a subset of V is called shy if it
is contained in a shy Borel set. The complement of a shy set is called a prevalent set.

Definition 6.2.3 ([HSY], p. 226) We say “almost every” element of V satisfies a
given property, if the subset of V on which the property holds is prevalent.

Lemma 6.2.1 ([HSY], Fact 3′′, p. 223) The union of a countable collection of shy
sets is shy.

Lemma 6.2.2 ([HSY], Fact 8, p. 224) If V is infinite-dimensional, all compact sub-
sets of V are shy.

Definition 6.2.4 ([HSY],Definition 6, p. 225) We call a finite-dimensional subspace
P ⊂ V a probe for a set T ⊂ V if a Lebesgue measure supported on P is transverse
to a Borel set that contains the complement of T .

Remark 6.2.1 Note that a sufficient (but not necessary) condition for T to be preva-
lent is for it to have a probe.

One can consult [HSY] in order to see whether the validity of the following
assertions can be obtained by constructing the appropriate probes.

Example 6.2.1 ([HSY], Proposition 1, p. 226) “Almost every” function f : [0; 1] →
R in L1 satisfies

∫ 1
0 f (x)dx �= 0.

Example 6.2.2 ([HSY], Proposition 2, p. 226) For 1 < p ≤ ∞ “almost every”
sequence (ai)i∈N in �p has the property that

∑∞
i=1 ai diverges.

Example 6.2.3 ([HSY], Proposition 4, p. 226) “Almost every” continuous function
f : [0, 1] → R is nowhere differentiable.

Lemma 6.2.3 ([Kh], Lemma 2, p. 58) Let μ be a Borel probability measure defined
in complete separablemetric spaceV. Then there exists a countable family of compact
sets (Fk)k∈N in V such that

μ(V \ ∪k∈NFk) = 0.



110 6 Why Null Hypothesis Is Rejected …

6.3 Consistent Estimators of a Useful Signal
in a One-Dimensional Linear Stochastic Model
When the Expectation of the Transformed Signal
Is Not Defined

Suppose that Θ is a vector subspace of the infinite-dimensional topological vector
space of all real-valued sequences RN equipped with the product topology.

In information transmission theory we consider the linear one-dimensional sto-
chastic system

(ξk)k∈N = (θk)k∈N + (Δk)k∈N, (6.3.1)

where (θk)k∈N ∈ Θ is a sequence of useful signals, (Δk)k∈N is a sequence of inde-
pendent identically distributed random variables (the so-called generalized “white
noise”) defined on some probability space (Ω,F,P), and (ξk)k∈N is a sequence of
transformed signals. Let μ be a Borel probability measure on R defined by a random
variable Δ1. Then the N power of the measure μ denoted by μN coincides with the
Borel probability measure on R

N defined by the generalized “white noise”; that is,

(∀X)(X ∈ B(RN) → μN(X) = P({ω : ω ∈ Ω & (Δk(ω))k∈N ∈ X})), (6.3.2)

where B(RN) is the Borel σ -algebra of subsets of RN.
In information transmission theory, the general decision is that the Borel proba-

bility measure λ, defined by the sequence of transformed signals (ξk)k∈N coincides
with

(
μN

)
θ0

for some θ0 ∈ Θ provided that

(∃θ0)(θ0 ∈ Θ → (∀X)(X ∈ B(RN) → λ(X) = (
μN

)
θ0
(X))), (6.3.3)

where
(
μN

)
θ0
(X) = μN (X − θ0) for X ∈ B(RN).

Here we consider a particular case of the above model when a vector space of
useful signals Θ has the form

Θ = {(θ, θ, . . .) : θ ∈ R}. (6.3.4)

For θ ∈ R, a measure μN

θ , defined by

μN
θ = μθ × μθ × · · · ,

where μθ is a θ -shift of μ (i.e., μθ(X) = μ(X − θ) for X ∈ B(R)), is called the N

power of the θ -shift of μ on R. It is obvious that μN

θ = (
μN

)
(θ,θ,...)

.

As usual, the following main statistical decision, a triplet (RN,B(RN), μN

θ )θ∈R is
called a statistical structure describing the linear one-dimensional stochastic system
(6.3.1).
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Definition 6.3.1 A Borel measurable function Tn : Rn → R (n ∈ N) is called a
consistent estimator of a parameter θ for the family (μN

θ )θ∈R if the condition

μN

θ ({(xk)k∈N : (xk)k∈N ∈ R
N & lim

n→∞ Tn(x1, . . . , xn) = θ}) = 1 (6.3.5)

holds for each θ ∈ R.

Theorem 6.3.1 Let F be a strictly increasing continuous distribution function on
R and μ be a Borel probability measure on R defined by F. For θ ∈ R, we set
Fθ (x) = F(x − θ)(x ∈ R) and denote by μθ the Borel probability measure on R

defined by Fθ (obviously, this is an equivalent definition of the θ -shift of μ). Then a
function Tn : Rn → R, defined by

Tn(x1, . . . , xn) = −F−1(n−1#({x1, . . . , xn} ∩ (−∞; 0])) (6.3.6)

for (x1, . . . , xn) ∈ R
n (n ∈ N), is a consistent estimator of a parameter θ for the

family (μN

θ )θ∈R.

Definition 6.3.2 Following [IS], the family (μN

θ )θ∈R is called strongly separated in
the usual sense if there exists a family (Zθ )θ∈R of Borel subsets of RN such that

(i) μN

θ (Zθ ) = 1 for θ ∈ R.
(ii) Zθ1 ∩ Zθ2 = ∅ for all different parameters θ1 and θ2 from R.

(iii) ∪θ∈RZθ = R
N.

Definition 6.3.3 Following [IS], a Borel measurable function T : RN → R is called
an infinite sample consistent estimator of a parameter θ for the family (μN

θ )θ∈R if the
condition

(∀θ)(θ ∈ R → μN

θ ({(xk)k∈N : (xk)k∈N ∈ R
N & T((xk)k∈N) = θ}) = 1) (6.3.7)

is fulfilled.

Remark 6.3.1 The existence of an infinite sample consistent estimator of a parameter
θ for the family (μN

θ )θ∈R implies that the family (μN

θ )θ∈R is strongly separated in a
usual sense. Indeed, if we set Zθ = {(xk)k∈N : (xk)k∈N ∈ R

N & T((xk)k∈N) = θ} for
θ ∈ R, then all the conditions of Definition 6.3.3 will be satisfied.

By using the strong law of large numbers one can easily obtain the validity of the
following assertion.

Lemma 6.3.1 Let F be a strictly increasing continuous distribution function on R

and μ be the Borel probability measure on R defined by F. Suppose that the first-
order absolute moment of μ is finite and the first-order moment of μ is equal to zero.
For θ ∈ R, we set Fθ (x) = F(x − θ)(x ∈ R) and denote by μθ the Borel probability
measure on R defined by Fθ . Then the estimators limT̃n := infn supm≥n T̃m and
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limT̃n := supn infm≥n T̃m are infinite sample consistent estimators of a parameter θ
for the family (μN

θ )θ∈R, where T̃n : RN → R is defined by

(∀(xk)k∈N)

(

(xk)k∈N ∈ R
N → T̃n((xk)k∈N) = n−1

n∑

k=1

xk

)

. (6.3.8)

Lemma 6.3.2 ([ZPS], Theorem 4.2, p. 483)Let F be a strictly increasing continuous
distribution function onR andμ be the Borel probability measure onR defined by F.
For θ ∈ R, we set Fθ (x) = F(x − θ)(x ∈ R) and denote by μθ the Borel probability
measure on R defined by Fθ . Then the estimators limT̃n := infn supm≥n T̃m and
limT̃n := supn infm≥n T̃m are infinite sample consistent estimators of a parameter θ
for the family (μN

θ )θ∈R, where T̃n : RN → R is defined by

(∀(xk)k∈N)((xk)k∈N ∈ R
N → T̃n((xk)k∈N)= − F−1(n−1#({x1, . . . , xn} ∩ (−∞; 0]))).

(6.3.9)

Remark 6.3.2 By Remark 6.3.1 and Lemmas 6.3.1 and 6.3.2, we deduce that the
families of powers of shift measures described in corresponding lemmas are strongly
separated in the usual sense.

6.4 Some Statistical Tests and Their Criticism
from the Point of View of Functional Analysis

Let us recall some notions of the theory of statistical decisions.
Let (RN,B(RN), μN

θ )θ∈R be a statistical structure described by the linear one-
dimensional stochastic system (6.3.1).

Definition 6.4.1 Let a null hypothesis H0 be defined by H0 : θ = θ0, where θ ∈ R.
A triplet (T ,U0,U1), where

(i) T : RN → R is a statistic (equivalently, Borel measurable function);
(ii) U0 ∪ U1 = R

N, U0 ∩ U1 = ∅ and U0 ∈ B(RN)

is called a statistical test (or criterion) for acceptance of null hypothesis H0(or equiv-
alently, HT(hypothesis testing)).

For (an infinite) sample x ∈ R
N, we accept null hypothesis H0 if T(x) ∈ U0 and

reject it otherwise.
T is called a statistic of the criterion (T ,U0,U1).
U0 is called the region of acceptance for null hypothesis H0.
U1 is called the region of rejection (equivalently, critical region) for null

hypothesis H0.

Definition 6.4.2 A decision obtained by the criterion (T ,U0,U1) is called an, if null
hypothesis H0 has been rejected whenever null hypothesis H0 was true.
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Definition 6.4.3 A decision obtained by the criterion (T ,U0,U1) is called an error
of type II , if null hypothesis H0 has been accepted whenever null hypothesis H0 was
false.

Definition 6.4.4 The value

μN

θ ({x : T(x) ∈ U1|H0}) = α (6.4.1)

is called the size (equivalently, significance level) of the test T .

Definition 6.4.5 The value

μN

θ ({x : T(x) ∈ U0|H1}) = β (6.4.2)

is called the power of the test T .

In many cases it is not possible to reduce values α and β simultaneously. For
this reason we fix the probability α of the error of type I and consider such critical
regions U1 for which the following condition

μN

θ ({x : T(x) ∈ U1|H0}) ≤ α (6.4.3)

holds. Furthermore, between such critical regions we choose a region U∗
1 for which

the error of type II is maximal.
We show that for a model (6.3.1) there exists a “good” HT (equivalently, HT of

a maximal reliability) for which α + β = 0. Furthermore, in terms “almost every”
introduced in Definition 6.2.3, we try to explain why an application of such a “good”
HT leads us to confusion.

Example 6.4.1 Let us consider the linear one-dimensional stochastic system (6.3.1)
for which F is a linear standard Gaussian (or Cauchy) distribution function on R.

For θ ∈ R we put

Dθ = {(xk)k∈N : (xk)k∈N ∈ R
N & limT̃n((xk)k∈N) = θ} (6.4.4)

where the estimator limT̃n comes from Lemma 6.3.1 (or Lemma 6.3.2). By Lemma
6.3.1 (or Lemma 6.3.2) we know that

μN

θ (Dθ ) = 1. (6.4.5)

On the other hand, by Lemma 6.2.3 we know that for each θ ∈ Θ , there exists a
countable family of compact sets (F(θ)

k )k∈N such that

μN

θ (RN \ ∪k∈NF(θ)
k ) = 0. (6.4.6)
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Finally, for θ ∈ Θ we put

Cθ = Dθ ∩ ∪k∈NF(θ)
k . (6.4.7)

It is obvious that (Cθ )θ∈Θ is a family of pairwise disjoint Fσ sets such that

μN

θ (Cθ ) = 1. (6.4.8)

Regarding Example 6.4.1, we consider the following two statistical tests.

Test 6.4.1 (The decision rule for null hypothesis H0 : θ = θ0)
Null Hypothesis: H0 : θ = θ0

Alternative Hypothesis: H1 : θ �= θ0

Test Statistic: T((xk)k∈N) = limT̃n.
Alternative Critical Region: U1 = R

N \ Cθ0

Test 6.4.2 (The decision rule for a countable competing hypothesis {Hi : θ = θi :
i ∈ N})

ith Hypothesis: Hi : θ = θi
Test Statistic: T((xk)k∈N) = limT̃n.
Acceptance Region For Hi: Ui = Cθi

Alternative Critical Region: V = R
N \ ∪i∈NUi

Because the family of probability measures (μN

θ )θ∈R is strongly separated (see
Remark 6.3.2), by the general assumption (6.3.3) we deduce that the sum of errors of
I and II types for Test 6.4.1 is equal to zero. However, the following result is valid.

Theorem 6.4.1 For “almost every” infinite sample the null hypothesis is rejected
by Test 6.4.1.

Proof We have to show that an alternative critical region U1 is prevalent because it
coincides with a set of all samples for which the null hypothesis is rejected by Test
6.4.1. Because the set Cθ0 is covered by the union of the countable family of compact
sets (F(θ0)

k )k∈N, by Lemmas 6.2.1 and 6.2.2 we deduce that a Borel set Cθ0 as a subset
of the Borel shy set ∪k∈NF(θ0)

k (see Definition 6.2.2) is also shy. The latter relation
implies that U1 is prevalent because it is a complement of the shy set Cθ0 . This ends
the proof of the theorem.

Because the family of probability measures (μN

θ )θ∈R is strongly separated (see
Remark 6.3.2), by the general assumption (6.3.3) we deduce that the sum of errors
of all types for Test 6.4.2 is equal to zero. However, the following result is valid.

Theorem 6.4.2 For “almost every” infinite sample each hypothesis Hi(i ∈ N) is
rejected by Test 6.4.2.
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Proof We have to show that an alternative critical region V is prevalent because it
coincides with a set of all samples for which Hi(i ∈ N) is rejected by Test 6.4.2.
Because for i ∈ N the set Cθi is covered by the union of the countable family of
compact sets (F(θi)

k )k∈N, by Lemmas 6.2.1 and 6.2.2 we deduce that a set Cθi as a
subset of the Borel shy set ∪k∈NF(θi)

k (see Definitions 6.2.1 and 6.2.2) is also shy. By
Lemmas 6.2.1 and 6.2.2 we know that ∪i∈NUi = ∪i∈NCθi is a shy set which implies
that V as a complement of the shy set ∪i∈NUi is prevalent. This ends the proof of the
theorem.

Remark 6.4.1 Note that Theorems 6.4.1 and 6.4.2 well explain the meaning of Jum
Nunnally’s conjecture [N] which asserted that . . . in psychology practically all null
hypotheses are claimed to be false for sufficiently large samples . . ..

Theorem 6.4.3 Let T : RN → R be an infinite sample average defined by

T((xk)k∈N) = lim
n→∞

∑n
k=1 xk
n

. (6.4.9)

Then for “almost every” infinite sample the statistic T does not exist.

Proof Let S be defined by

S = {(xk)k∈N : (xk)k∈N ∈ R
N & there exists a finite limit lim

n→∞

∑n
k=1 xk
n

}.
(6.4.10)

It is obvious that S is a vector subspace of RN. Indeed, if (xk)k∈N and (yk)k∈N are
elements of S then for α, β ∈ R we get

lim
n→∞

∑n
k=1 αxk + βyk

n
= lim

n→∞

∑n
k=1 αxk
n

+ lim
n→∞

∑n
k=1 βyk
n

=

α lim
n→∞

∑n
k=1 xk
n

+ β lim
n→∞

∑n
k=1 yk
n

, (6.4.11)

which means that S is a vector subspace of RN.
We have to show that S is Borel subset of RN.
For i ∈ N, we denote by Pri the ith projection on R

N defined by

Pri((xk)k∈N) = xi (6.4.12)

for (xk)k∈N ∈ R
N.

We put Sn =
∑n

i=1 Pri
n for n ∈ N. Then the set of all infinite samples x ∈ R

N for
which there exists a finite limit limn→∞ Sn(x) coincides with S. On the other hand,
taking into account that Sn : RN → R is a continuous function for n ∈ N and the
equality
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S = ∩∞
p=1 ∪∞

n=1 ∩∞
q=n ∩∞

m=1 {x : x ∈ R
N & |Sq+m(x) − Sq(x)| ≤ 1/p} (6.4.13)

holds, we claim that S is Borel subset of RN.
We put v = (1, 2, 3, . . .). Let us show that v spans a line L such that every translate

of L meets S in at most one point; in particular, L is a probe for the complement of
S. Indeed, assume the contrary. Then there will be an element (zk)k∈N ∈ R

N and
two different parameters t1, t2 ∈ R such that (zk)k∈N + t1(1, 2, 3, . . .) ∈ S and
(zk)k∈N + t2(1, 2, 3, . . .) ∈ S. Because S is a vector space we deduce that (t2 −
t1)(1, 2, 3, . . .) ∈ S. Using the same argument we claim that (1, 2, 3, . . .) ∈ S because
t2 − t1 �= 0, but the latter relation is false because

lim
n→∞

∑n
k=1 k

n
= lim

n→∞
n + 1

2
= +∞. (6.4.14)

This ends the proof of the theorem.

By the scheme presented in the proof of Theorem 6.4.3, we can get the validity
of the following assertion.

Theorem 6.4.4 Let T = limT̃n be the statistic from Lemma 6.3.1. Then for “almost
every” infinite sample the statistic T does not exist.

Theorem 6.4.5 Let T : RN → R be an infinite sample statistic defined by

T((xk)k∈N) = lim
n→∞

∑n
k=1 xk√
nσ

, (6.4.15)

where σ > 0. Then for “almost every” infinite sample the statistic T does not exist.

Proof Let S be defined by

S = {(xk)k∈N : (xk)k∈N ∈ R
N & there exists a finite limit lim

n→∞

∑n
k=1 xk√
nσ

}.
(6.4.16)

It is obvious that S is a vector subspace of RN . Indeed, if (xk)k∈N and (yk)k∈N are
elements of S then for α, β ∈ R we get

lim
n→∞

∑n
k=1 αxk + βyk√

nσ
= lim

n→∞

∑n
k=1 αxk√
nσ

+ lim
n→∞

∑n
k=1 βyk√
nσ

=

α lim
n→∞

∑n
k=1 xk√
nσ

+ β lim
n→∞

∑n
k=1 yk√
nσ

, (6.4.17)

which means that S is a vector subspace of RN.
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We have to show that S is Borel subset of RN.
For i ∈ N, we denote by Pri the ith projection on R

N defined by

Pri((xk)k∈N) = xi (6.4.18)

for (xk)k∈N ∈ R
N.

We put Sn =
∑n

i=1 Pri√
nσ

for n ∈ N. Then, on the one hand, the set of all infinite

samples x ∈ R
N for which there exists a finite limit limn→∞ Sn(x) coincides with S.

However, taking into account that Sn : RN → R is a continuous function for n ∈ N

and the equality

S = ∩∞
p=1 ∪∞

n=1 ∩∞
q=n ∩∞

m=1 {x : x ∈ R
N & |Sq+m(x) − Sq(x)| ≤ 1/p} (6.4.19)

holds, we claim that S is a Borel subset of RN.
We put v = (1, 2, 3, . . .). Let us show that v spans a line L such that every translate

of L meets S in at most one point; in particular, L is a probe for the complement of
S. Indeed, assume the contrary. Then there will be an element (zk)k∈N ∈ R

N and
two different parameters t1, t2 ∈ R such that (zk)k∈N + t1(1, 2, 3, . . .) ∈ S and
(zk)k∈N + t2(1, 2, 3, . . .) ∈ S. Because S is a vector space we deduce that (t2 −
t1)(1, 2, 3, . . .) ∈ S. Using the same argument we claim that (1, 2, 3, . . .) ∈ S because
t2 − t1 �= 0, but the latter relation is false because

lim
n→∞

∑n
k=1 k√
nσ

= lim
n→∞

(n + 1)
√
n

2σ
= +∞. (6.4.20)

This ends the proof of the theorem.

Remark 6.4.2 Note that Theorems 6.4.3 and 6.4.5 contain interesting information
(in terms of “prevalence”) about the structures of domains of some infinite sample
statistics that help us well explain the meaning of Jacob Cohen’s conjecture [Coh]
which asserted that null hypothesis significance testing does not exist.

Remark 6.4.3 Note that main results of Chap. 6 were obtained in [PK].
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