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AP Statistics is part of the Master Math series. The series also includes
Basic Math, Pre-Calculus, Geometry, Trigonometry, and Calculus. This
series includes a variety of mathematical topics and should help you 
advance your knowledge of mathematics as it pertains to these subjects.

AP Statistics is written specifically with you, the AP Statistics student, in
mind. All topics of the AP Statistics curriculum are discussed within the
10 chapters of this book. These topics are explained in a manner suitable
for a wide variety of ability levels. The topics are arranged so that you
can develop an understanding of the various concepts of AP Statistics,
including Exploring Data, Sampling and Experimentation, Anticipating
Patterns, and Statistical Inference. All example problems in each chapter
include solutions with the AP Statistics Exam in mind. These solutions
will help you understand not only the concepts at hand but also how to
communicate that understanding effectively to the reader (grader) of 
the exam.

AP Statistics includes some useful appendixes. All tables given on the 
AP Statistics Exam are included in Appendix A. Appendix B includes 
all formulas needed for the AP Statistics Exam. These formulas are 
separated into two categories: those formulas that are given on the exam
and those that are not. You will also need to have a good understanding
of the “assumptions and conditions” for inference. These “assumptions
and conditions” are fully discussed within each chapter that deals with
inference and are summarized in Appendix C for quick reference. 
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A glossary is included at the end of the book as well so that you can 
reference or study any vocabulary terms.

The following section, “Preparing for the AP Statistics Exam,” is written
to help you develop a sense of how the AP Statistics Exam is organized
as well as how best to prepare yourself for the upcoming examination. 

Although AP Statistics may not totally replace your textbook, it should
provide you with some great insights on how to tackle the types of 
questions that you will likely encounter on the AP Exam. It is a 
comprehensive book that should prove to be an invaluable resource 
as you journey toward your goal of reaching your maximum potential 
on the AP Statistics Exam. Good luck!
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• Preparing thoroughly for the AP Statistics Exam is essential if you wish
to perform well on the exam and earn a passing grade. Proper preparation
begins the first day of class. Like anything worthwhile in life, reaching
your potential on the AP Statistics Exam takes hard work and dedication. 

Plan for Success

• Get motivated! Begin your preparation for the AP Statistics Exam early
by doing all of your homework on a daily basis. Doing “some” or even
“most” of the work is selling yourself short of what you are capable of
achieving. Manage your time and get all of your work done. You may
find AP Statistics to be more a little more difficult than some other math
courses you have taken, and there might be an adjustment period before
you are achieving at a high level. Be patient and keep working! 

Preparing for the 
AP Statistics Exam

xiii



• Do all of the reading assignments you are assigned. If your instructor
does not assign you to read this book or your textbook, take it upon 
yourself to do so. Not only will you learn the material, you will also
strengthen your reading comprehension and your ability to write well,
which is important on the free-response portion of the exam. It is imperative
that you can read and interpret questions effectively in order for you to
understand the information being given and what you are being asked 
to do for each problem. Discipline yourself to keep up with your daily
work, and do the appropriate reading!

• Review on a weekly basis. Even a few minutes a week spent reviewing
the topics you have learned previously will help you retain the material
that you will be tested on during the exam. If you do nothing else, study
the glossary of this book, as it will keep your vocabulary of AP Statistics
up to par. You might find it useful to review old tests and quizzes that
you have taken in class. If you’re like most students, you are very busy,
and you’ll need to really budget your time in order to review weekly and
keep up with your daily work in this and other courses. It sounds easy
enough, but again, it takes discipline!

• The more you do throughout the course, the easier your review will 
be toward the end of it. Realize, however, that you’ll probably need to do
a lot of review in the final weeks leading up to the exam. I recommend
that you do “focused,” or “intense,” review in the last three to four weeks
leading up to the exam. Don’t wait until two or three days before the
exam. “Cramming” for an exam like the AP Statistics Exam is not a good
idea. You will be tested on most if not all topics in some way, shape, or
form. Again, keep up with whatever your teacher or instructor throws
your way. 
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• You should know and understand everything in this book to the best 
of your ability. Read it and study it! Try to go back after you have read
the material and do the example problems on your own. As mentioned
earlier, know the glossary. It will help you know and understand the 
terminology of AP Statistics. Get help on any topics that you do not 
understand from your instructor. 

• Do as many “released” exam problems as you can from the College
Board’s website. Your instructor may have you do these for review, but 
if not, get on the website and do as many problems as you can. There are
free-response exam questions there from as far back as 1997, and you’ll
have plenty to choose from. This will give you a good feel for the type 
of problems you should expect to see on both the multiple-choice and
free-response portions of the exam. You will also find it useful to read
through the grading rubrics that are given along with the problems.
Doing these “released” free-response questions will help you understand
how partial credit works on the exam. I do, however, think it’s more 
important to understand the concepts of the problems that are given and
what the grading rubric answers are than how many points you would
have gotten if you had answered incorrectly. But it’s still worth a little
time to think about how you would have scored based on your answer
and the grading rubric. 

• Making your review for the AP Statistics Exam something you do
early and often will prevent you from having to “cram” for the test in 
the last couple of days before the exam. By preparing in advance, you
will be able to get plenty of sleep in the days leading up to the exam,
which should leave you well rested and ready to achieve your maximum
potential!
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How AP Grades Are Determined

• As you are reviewing for the AP Statistics Exam, it’s important that
you understand the format of the exam and a little about the grading.
Knowing the format of the exam, reading this book, and doing as many
old AP Statistics Exam questions will have you prepped for success! 

• The AP Statistics examination is divided into two sections. You will
have 90 minutes to do each section. The first section is the multiple-
choice section of the exam, which consists of 40 questions. The second
section of the exam is the free-response portion of the exam and consists
of 6 questions. The scores on both parts of the exam are combined to
obtain a composite score. 

• The multiple-choice portion of the exam is worth a total of 40 points
but is then weighted to 50 points. The score on the multiple-choice 
section of the test is calculated by using the following formula:

[Number correct out of 40 – (0.25 � Number wrong)] � 1.2500 = Multiple-Choice Score

• The adjustment to the number of correct answers you receive makes 
it unlikely that you will benefit from random guessing. If you can 
eliminate one of the choices, then it is probably to your benefit to guess.
If you cannot eliminate at least one choice, do not guess; leave it blank. 
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• The free-response portion of the exam is graded holistically. For that
reason, it is to your advantage to try every question, if possible. Even if
you don’t fully understand how to answer the question in its entirety, 
you should still try to answer it as best you can. Scores on individual
free-response questions are as follows:

4 Complete Response

3 Substantial Response

2 Developing Response

1 Minimal Response

0 No Credit

No Response

• The AP readers (graders) grade free-response questions based on the
specified grading rubric. If the question has multiple parts, each part is
usually graded as “essentially correct,” “partially correct,” or “incorrect.”
Then, depending on the rubric, you will earn a 4, 3, 2, 1, or 0 for that
particular question. Each score in the free-response question is weighted.
Problems 1–5 on the free-response contribute 7.5 percent each to the 
maximum possible composite score, and question 6 contributes 12.5
percent. It is usually recommended in the directions of the free-response
questions to spend more time on question 6 because it is worth more.
Question 6 is considered an “investigative task” question and will probably
require more in-depth thinking than the first five questions. Typically,
you will be instructed to spend about 25 minutes on question 6. That 
will leave you with about 65 minutes to do the first 5 questions, which 
is about 13 minutes each. 
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• Once both parts of your test have been graded, a composite score is
formed by weighting the multiple-choice and free-response sections
equally. You will not be given your composite score. Instead, you will
receive an AP Exam score based on the following 5-point scale:

5 Extremely Well Qualified

4 Well Qualified

3 Qualified

2 Possibly Qualified

1 No Recommendation

Don’t worry too much about how the score is calculated. Realize that there
are 40 multiple-choice questions that you must get done in 90 minutes
and use your time accordingly. Don’t spend a lot of time on a question
that you find really difficult. Move on to the other questions and then
come back to the difficult question(s) if time permits. Remember, if you
cannot eliminate any of the choices, leave the answer blank. Also realize
that you have 90 minutes to complete the free-response section of the
exam. I recommend reading all six free-response questions quickly and
starting with the one you think you have the best shot at answering 
completely and correctly. Be sure to read each question very carefully
before you actually begin the problem. You don’t want to invest a lot of
time working on a problem and later realize that your answer doesn’t
really answer the question at hand.

• Make no mistake about it: The AP Statistics Exam is tough. You need
to be ready. By reading and studying this book, doing your daily work on
a regular basis, and doing old AP Statistics Exam questions, you will be
properly prepared. Remember, the exam is designed to be tough, so don’t
get discouraged if you don’t know how to answer every single question.
Do your best! If you work hard at it and take it seriously, you’ll leave the
exam feeling good about yourself and your success. Good luck!
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Exploring and Graphing
Univariate Data

1.1 Describing Distributions

1.2 Displaying Data with Graphs

ChapterChapter
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1.1 Describing Distributions

• The organization of data into graphical displays is essential to under-
standing statistics. This chapter discusses how to describe distributions
and various types of graphs used for organizing univariate data. The
types of graphs include modified boxplots, histograms, stem-and-leaf
plots, bar graphs, dotplots, and pie charts. Students in AP Statistics 
should have a clear understanding of what a variable is and the types 
of variables that are encountered.

• A variable is a characteristic of an individual and can take on different
values for different individuals. Two types of variables are discussed in
this chapter: categorical variables and quantitative variables.

Categorical variable: Places an individual into a category or group

Quantitative variable: Takes on a numerical value

Variables may take on different values. The pattern of variation of a vari-
able is its distribution. The distribution of a variable tells us what values
the variable takes and how often it takes each value.

Shape, Center, and Spread

• When describing distributions, it’s important to describe what you see
in the graph. It’s important to address the shape, center, and spread of
the distribution in the context of the problem.

• When describing shape, focus on the main features of the distribution.
Is the graph approximately symmetrical, skewed left, or skewed right?
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Symmetric: Right and left sides of the distribution are approximately
mirror images of each other (Figure 1.1).

• Skewed left: The left side of the distribution extends further than the
right side, meaning that there are fewer values to the left (Figure 1.2).

Figure 1.2  Skewed-left distribution.

Exploring and Graphing Univariate Data 3

Figure 1.1  Symmetrical distribution.



• Skewed right: The right side of the distribution extends further than
the left side, meaning that there are fewer values to the right (Figure 1.3).

Figure 1.3  Skewed-right distribution.

• When describing the center of the distribution, we usually consider the
mean and/or the median of the distribution.

Mean: Arithmetic average of the distribution:

Median: Midpoint of the distribution; half of the observations are
smaller than the median, and half are larger.

x
x x x

n
x

x
n

n i=
+ + +

=
∑1 2    or  
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To find the median:

1. Arrange the data in ascending order (smallest to largest).

2. If there is an odd number of observations, the median is the center
data value. If there is an even number of observations, the median is
the average of the two middle observations.

• Example 1: Consider Data Set A: 1, 2, 3, 4, 5

Intuition tells us that the mean is 3. Applying the formula, we get: 

Intuition also tells us that the median is 3 because there are two values 
to the right of 3 and two values to the left of 3. Notice that the mean and
median are equal. This is always the case when dealing with distributions
that are exactly symmetrical. The mean and median are approximately
equal when the distribution is approximately symmetrical.

• The mean of a skewed distribution is always “pulled” in the direction
of the skew. Consider NFL football players’ salaries: Let’s assume the
league minimum is $310,000 and the median salary for a particular team
is $650,000. Most players probably make between the league minimum
and around $1 million. However, there might be a few players on the
team who make well over $1 million. The distribution would then be
skewed right (meaning that most players make less than a million and
relatively few players make more $1 million). Those salaries that are
well over $1 million would “pull” the mean salary up, thus making the
mean greater than the median. 

1 2 3 4 5
5

3+ + + +
=
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• When dealing with symmetrical distributions, we typically use the
mean as the measure of center. When dealing with skewed distributions,
the median is sometimes used as the measure of center instead of the
mean, because the mean is not a resistant measure—i.e., the mean 
cannot resist the influence of extreme data values.

• When describing the spread of the distribution, we use the IQR 
(interquartile range) and/or the variance/standard deviation. 

IQR: Difference of the third quartile minus the first quartile. 
Quartiles are discussed in Example 2.

Five-number summary: The five-number summary is sometimes used
when dealing with skewed distributions. The five-number summary con-
sists of the lowest number, first quartile (Q1), median (M), third quartile
(Q3), and the largest number. 

• Example 2: Consider Data Set A: 1, 2, 3, 4, 5

1. Locate the median, 3.

2. Locate the median of the first half of numbers (do not include 3 in
the first half of numbers or the second half of numbers). This is 
Q1 (25th percentile), which is 1.5. 

3. Locate the median of the second half of numbers. This is Q3
(75th percentile), which is 4.5.

4. The five-number summary would then be: 1, 1.5, 3, 4.5, 5. 

• Variance/Standard Deviation: Measures the spread of the distribution
about the mean. The standard deviation is used to measure spread when
the mean is chosen as the measure of center. The standard deviation has
the same unit of measurement as the data in the distribution. The variance
is the square of the standard deviation and is labeled in units squared. 
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The formula for variance is: 

or

The standard deviation is the square root of the variance:

or

• Example 3: Consider Data Set A: 1, 2, 3, 4, 5

We can find the variance and the standard deviation as follows:

Variance

s
x x x x x x

n
n2 1

2
2

2 2

1
=

− + − +⋅⋅⋅+ −
−

( ) ( ) ( )

s
x x

n
i2

2

1
=

−

−
∑ ( )

s
x x x x x x

n
n=

− + − +⋅⋅⋅+ −
−

( ) ( ) ( )1
2

2
2 2

1

s
x x

n
i=
−

−
∑ ( )2

1

s2
2 2 2 2 21 3 2 3 3 3 4 3 5 3

5 1
=

− + − + − + − + −
−

( ) ( ) ( ) ( ) ( )

s2 2 5= .
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Standard Deviation

It’s probably more important to understand the concept of what standard
deviation means than to be able to calculate it by hand. Our trusty 
calculators or computer software can handle the calculation for us. 
Understanding what the number means is what’s most important. It’s
worth noting that most calculators will give two values for standard 
deviation. One is used when dealing with a population, and the other is
used when dealing with a sample. The TI 83/84 calculator shows the
population standard deviation as x and the sample standard deviation as
Sx. A population is all individuals of interest, and a sample is just part 
of a population. We’ll discuss the concept of population and different
types of samples in later chapters.

• It’s also important to address any outliers that might be present in the
distribution. Outliers are values that fall outside the overall pattern of 
the distribution. It is important to be able to identify potential outliers in
a distribution, but we also want to determine whether or not a value is
mathematically an outlier.

• Example 4: Consider Data Set B, which consists of test scores from a
college statistics course:

98, 36, 67, 85, 79, 100, 88, 85, 60, 69, 93, 58, 65, 89, 88, 71, 79, 85, 73, 87,
81, 77, 76, 75, 76, 73

1. Arrange the data in ascending order. 

36, 58, 60, 65, 67, 69, 71, 73, 73, 75, 76, 76, 77, 79, 79, 81, 85, 85, 85, 87,
88, 88, 89, 93, 98, 100

s = ≈2 5 1 5811. .
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2. Find the median (average of the two middle numbers): 78.

3. Find the median of the first half of numbers. This is the first quartile,
Q1: 71.

4. Find the median of the second half of numbers, the third quartile, 
Q3: 87.

5. Find the interquartile range (IQR): IQR = Q3 – Q1 = 87 – 71 = 16.

6. Multiply the IQR by 1.5: 16 � 1.5 = 24.

7. Add this number to Q3 and subtract this number from Q1.

87 + 24 = 111  and  71 – 24 = 47

8. Any number smaller than 47 or larger than 111 would be considered
an outlier. Therefore, 36 is the only outlier in this set.

1.2 Displaying Data with Graphs

• It is often helpful to display a given data set graphically. Graphing the
data of interest can help us use and understand the data more effectively.
Make sure you are comfortable creating and interpreting the types of
graphs that follow. These include: boxplots, histograms, stemplots, 
dotplots, bar graphs, and pie charts.

Modified Boxplots

• Modified boxplots are extremely useful in AP Statistics. A modified
boxplot is ideal when you are interested in checking a distribution for
outliers or skewness, which will be essential in later chapters. To construct
a modified boxplot, we use the five-number summary. The box of the 
modified boxplot consists of Q1, M, and Q3. Outliers are marked as 
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separate points. The tails of the plot consist of either the smallest and
largest numbers or the smallest and largest numbers that are not considered
outliers by our mathematical criterion discussed earlier. Outliers appear
as separate dots or asterisks. Modified boxplots can be constructed with
ease using the graphing calculator or computer software. Be sure to use
the modified boxplot instead of the regular boxplot, since we are usually
interested in knowing if outliers are present. Side-by-side boxplots can
be used to make visual comparisons between two or more distributions.
Figure 1.4 displays the test scores from Data Set B. Notice that the test
score of 36 (which is an outlier) is represented using a separate point.

Figure 1.4  Modified boxplot of Data Set B: Test Scores.

Histograms

• Histograms are also useful for displaying distributions when the vari-
able of interest is numeric (Figure 1.5). When the variable is categorical,
the graph is called a bar chart or bar graph. The bars of the histogram
should be touching and should be of equal width. The heights of the bars
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represent the frequency or relative frequency. As with modified boxplots,
histograms can be easily constructed using the TI-83/84 graphing calcu-
lator or computer software. With some minor adjustments to the window
of the graphing calculator, we can easily transfer the histogram from
calculator to paper. We often use the ZoomStat function of the TI-83/84
graphing calculator to create histograms. ZoomStat will fit the data to the
screen of the graphing calculator and often creates bars with non-integer
dimensions. In order to create histograms that have integer dimensions,
we must make adjustments to the window of the graphing calculator.
Once these adjustments have been made, we can then easily copy the
calculator histogram onto paper. Histograms are especially useful in find-
ing the shape of a distribution. To find the center of the histogram, as
measured by the median, find the line that would divide the histogram
into two equal parts. To find the mean of the distributions, locate the
balancing point of the histogram.

Figure 1.5  Histogram of Data Set B: Test Scores.
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Stemplots

• Although we cannot construct a stemplot using the graphing calculator,
we can easily construct a stemplot (Figure 1.6) on paper. Stemplots are
useful for finding the shape of a distribution as long as there are relatively
few data values. Typically, we arrange the data in ascending order. It is
often appropriate to round values before graphing. Although our graphing
calculators cannot construct a stemplot for us, we can still create a list
and order the data in ascending order using the calculator or computer
software. Stemplots can have single or “split” stems. Sometimes split
stems are used to see the distribution in more detail. Back-to-back 
stemplots are sometimes used when comparing two distributions. A key
should be included with the stemplot so that the reader can interpret the
data (i.e: |5|2 = 52.) It is relatively easy to find the five-number summary
and describe the distribution once the stemplot is made.

Figure 1.6  Stemplot of Data Set B: Test Scores.
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Dotplots

• Dotplots can be used to display a distribution (Figure 1.7). Dotplots 
are easily constructed as long as there are not too many data values. 
As always, be sure to label and scale your axes and title your graph. 
Although a dotplot cannot be constructed on the TI-83/84, most statisti-
cal software packages can easily construct them. 

Figure 1.7  Dotplot of Data Set B: Test Scores.

Bar Graphs

• Bar graphs are often used to display categorical data. Bar graphs, 
unlike histograms, have spaces between the different categories of the
variable. The order of the categories is irrelevant and we can use either
counts or percentages for the vertical axis. There are only two categories
in this bar graph showing soccer goals scored by my two children, 
Cassidy and Nolan (Figure 1.8). It should be noted that on any given 
day Cassidy could score more goals than Nolan or vice versa. I had to
make one of them have more goals for visual effect only.
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Figure 1.8  Bar graph: Soccer goals made by Cassidy and Nolan.

Pie Charts

• Pie charts are also used to display categorical data (Figure 1.9). Pie
charts can help us determine what part of the entire group each category
forms. Again, be sure to title your graph and label or code each piece of
the pie. On the AP Statistics examination, graphs without appropriate
labeling or scaling are considered incomplete. 
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Figure 1.9  Pie chart of candy colors.
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2.1 Scatterplots

• Scatterplots are ideal for exploring the relationship between two 
quantitative variables. When constructing a scatterplot we often deal with
explanatory and response variables. The explanatory variable may be
thought of as the independent variable, and the response variable may
be thought of as the dependent variable. 

• It’s important to note that when working with two quantitative variables,
we do not always consider one to be the explanatory variable and the
other to be the response variable. Sometimes, we just want to explore 
the relationship between two variables, and it doesn’t make sense to 
declare one variable the explanatory and the other the response.

• We interpret scatterplots in much the same way we interpret univariate
data; we look for the overall pattern of the data. We address the form,
direction, and strength of the relationship. Remember to look for outliers
as well. Are there any points in the scatterplot that deviate from the 
overall pattern? 

• When addressing the form of the relationship, look to see if the data is
linear (Figure 2.1) or curved (Figure 2.2). 

Figure 2.1  Linear relationship.

18



• When addressing the direction of the relationship, look to see if the
data has a positive or negative relationship (Figures 2.3, 2.4). 

Exploring and Graphing Bivariate Data 19

Figure 2.2  Curved relationship.

Figure 2.3  Positive, curved relationship.
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Figure 2.4  Negative, slightly curved relationship.

• When addressing the strength of the relationship, consider whether 
the relationship appears to be weak, moderate, strong, or somewhere in
between (Figures 2.5–2.7). 

Figure 2.5  Weak or no relationship.
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Figure 2.6  Moderate, positive, linear relationship.

Figure 2.7  Relatively strong, negative, slightly curved
relationship.



Correlation

• When dealing with linear relationships, we often use the r-value, or 
the correlation coefficient. The correlation coefficient can be found by
using the formula:

• In practice, we avoid using the formula at all cost. However, it helps 
to suffer through a couple of calculations using the formula in order to
understand how the formula works and gain a deeper appreciation of
technology.

Facts about Correlation

• It’s important to remember the following facts about correlation (make
sure you know all of them!):

Correlation (the r-value) only describes a linear relationship. Do not
use r to describe a curved relationship.

Correlation makes no distinction between explanatory and response
variables. If we switch the x and y variables, we still get the same 
correlation. 

Correlation has no unit of measurement. The formula for correlation
uses the means and standard deviations for x and y and thus uses 
standardized values. 

If r is positive, then the association is positive; if r is negative, then
the association is negative.

–1 ≤ r ≤ 1: r = 1 implies that there is a perfectly linear positive
 relationship. r = –1 implies that there is a perfectly linear negative
relationship. r = 0 implies that there is no correlation. 
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The r-value, like the mean and standard deviation, is not a resistant
measure. This means that even one extreme data point can have a
dramatic effect on the r-value. Remember that outliers can either
strengthen or weaken the r-value. So use caution!

The r-value does not change when you change units of measurement.
For example, changing the x and/or y variables from centimeters to
millimeters or even from centimeters to inches does not change the 
r-value.

Correlation does not imply causation. Just because two variables
are strongly associated or even correlated (linear) does not mean
that changes in one variable are causing changes in another.

Least Squares Regression

• When modeling linear data, we use the Least Squares Regression
Line (LSRL). The LSRL is fitted to the data by minimizing the sum of
the squared residuals. The graphing calculator again comes to our rescue
by calculating the LSRL and its equation. The LSRL equation takes the
form of where b is the slope and a is the y-intercept. The AP*
formula sheet uses the form . Either form may be used as
long as you define your variables. Just remember that the number in front
of x is the slope, and the “other” number is the y-intercept. 

• Once the LSRL is fitted to the data, we can then use the LSRL 
equation to make predictions. We can simply substitute a value of x
into the equation of the LSRL and obtain the predicted value,

• The LSRL minimizes the sum of the squared residuals. What does this
mean? A residual is the difference between the observed value, y, and
the predicted value, In other words, residual = observed – predicted.
Remember that all predicted values are located on the LSRL. A residual
can be positive, negative, or zero. A residual is zero only when the point
is located on the LSRL. Since the sum of the residuals is always zero, 

ˆ.y

ŷ a bx= +
ŷ b b x= +0 1

ˆ.y
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we square the vertical distances of the residuals. The LSRL is fitted to
the data so that the sum of the square of these vertical distances is as
small as possible. 

• The slope of the regression line (LSRL) is important. Consider the
time required to run the last mile of a marathon in relation to the time
required to run the first mile of a marathon. The equation ,
where x is the time required to run the first mile in minutes and is the
predicted time it takes to run the last mile in minutes, could be used to
model or predict the runner’s time for his last mile. The interpretation of
the slope in context would be that for every one minute increase in time
needed to run the first mile, the predicted time to run the last mile would
increase by 1.25 minutes, on average. It should be noted that the slope 
is a rate of change and that that since the slope is positive, the time will
increase by 1.25 minutes. A negative slope would give a negative rate 
of change. 

Facts about Regression

All LSRLs pass though the point 

The formula for the slope is 

This formula is given on the AP* Exam. Notice that if r is positive,
the slope is positive; if r is negative, the slope is negative. 

By substituting into we obtain Solving
for b0, we obtain the y-intercept: This formula is also
given on the AP* Exam.

The r2 value is called the Coefficient of Determination. The r2

value is the proportion of variability of y that can be explained or
accounted for by the linear relationship of y on x. To find r2, we 
simply square the r-value. Remember, even an r2 value of 1 does
not necessarily imply any cause-and-effect relationship! Note: A

( , ).x y

b r
s
s

y

x
1 = .

y b b x= +0 1 .ŷ b b x= +0 1( , )x y
b y b x0 1= − .

ˆ .y x=1 25
ŷ
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common misinterpretation of the r2 value is that it is the percentage
of observations (data points) that lie on the LSRL. This is simply not
the case. You could have an r2 value of .70 (70%) and not have any
data points that are actually on the LSRL.

It’s important to remember the effect that outliers can have on 
regression. If removing an outlier has a dramatic effect on the slope
of the LSRL, then the point is called an influential observation.
These points have “leverage” and tend to be outliers in the x-direction.
Think of prying something open with a pry bar. Applying pressure 
to the end of the pry bar gives us more leverage or impact. These
observations are considered influential because they have a dramatic
impact on the LSRL—they pull the LSRL toward them. 

• Example: Consider the following scatterplot. 

Figure 2.8  Relatively strong, negative, linear relationship.

• We can examine the scatterplot in Figure 2.8 and describe the form,
direction, and strength of the relationship. We observe that the relation-
ship is negative—that is, as x increases y decreases. We also note that the
relationship is relatively strong and linear. We can write the equation of
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the LSRL and graph the line. The equation of the LSRL is .
The correlation coefficient is r ≈ –.9381 and the coefficient of determina-
tion is r2 = .88. Notice that the slope and the r-value are both negative.
This is not a coincidence. 

• Notice what happens to the LSRL, r, and r2 as we shift a data point
from the scatterplot that is located toward the end of the LSRL in the 
x-direction. Consider Figure 2.9. The equation of the LSRL changes to

, r changes to ≈ .5385, and r2 changes to .29. Moving the
data point has a dramatic effect on r, r2, and the LSRL, so we consider it
to be an influential observation. 

ˆ . .y x= −7 5 677

ˆ . .y x= −8 5 1 1

Figure 2.9  Influential observation.

• Moving a data point near the middle of the scatterplot does not 
typically have as much of an impact on the LSRL, r, and r2 as moving a
data point toward the end of the scatterplot in the x-direction. Consider
Figure 2.10. Although dragging a data point from the middle of the 
scatterplot still changes the location and equation of the LSRL, it does



not impact the regression nearly as much. Note that r and r2 change to 
.7874 and .62, respectively. Although moving this data point impacts
regression somewhat, the effect is much less, so we consider this data
point “less influential.”

2.2 Modeling Data

• Linear data can be modeled using the LSRL. It’s important to remember,
however, that not all data is linear. How do we determine if a line is really
the best model to use to represent the data? Maybe the data follow some
type of curved relationship? 

• Examining the scatterplot, as mentioned earlier, is the first step to
 finding an appropriate model. However, sometimes looking at the
 scatterplot and finding the r-value can be a little deceiving. Consider 
the following two scatterplots. Both contain the same data but are scaled
differently. Changing the scale of the scatterplot can make the data
 appear more or less linear than is really the case. You might guess the 
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Figure 2.10  Less influential observation.
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r-value of Figure 2.12 to be higher than that of Figure 2.11 since the 
data points “appear” closer together in Figure 2.12 than they do in 
Figure 2.11. The r-values are the same, however; only the scale has 
been changed. Our eyes can sometimes deceive us.

Figure 2.11  Figures 2.11 and 2.12 contain the same data.

Figure 2.12  The r-values are the same in Figures 2.11 and 2.12.



To help make the decision of which model is best, we turn our attention
to residual plots. 

• The residual plot plots the residuals against the explanatory variable. If
the residual plot models the data well, the residuals should not follow a
systematic or definite pattern (Figures 2.13–2.14).
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Figure 2.13  Residual plot with random scatter.
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• The next three examples will be used to aide in the understanding of
how to find an appropriate model (equation) for a given data set. The
promising AP Stats student (yes, that’s you!) should understand how to
take a given set of bivariate data, determine which model is appropriate,
perform the inverse transformation, and write the appropriate equation.
The TI-83/84 can be used to construct a scatterplot and the corresponding
residual plot. Remember that the graphing calculator will create a list of
the residuals once linear regression has been performed on the data. After
the appropriate model is determined, we can obtain the LSRL equation
from the calculator and transform it to the appropriate equation to model
the data. We use logarithms in exponential and power models because
these models involve equations with exponents. Remember that a 
logarithm is just another way to write an exponent. It’s important to 
remember the following algebraic properties of logarithms:

1. log(AB) = log A + log B

2. log(A|B) = log A – log B

3. log Xn = nlog X

Figure 2.14  Residual plot with a definite pattern.



• Linear Model: Consider the data in Figure 2.15. Examining the
 scatterplot of the data reveals a strong, positive, linear relationship. 
The lack of a pattern in the residual plot confirms that a linear model 
is appropriate, compared to any other non-linear model. We should be
able to get pretty good predictions using the LSRL equation. 
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x y

1 0 2.8

2 1 4.1

3 2 11.0

4 3 11.9

5 4 18.5

6 5 21.7

7 6 26.0

Figure 2.15  Scatterplot of linear data and “random”
residual plot.



• Exponential Model: Consider the data in Figure 2.16. There appears
to be a curved pattern to the data. The data does not appear to be linear.
To rule out a linear model, we can use our calculator or statistical software
to find the LSRL equation and then construct a residual plot of the 
residuals against x. We can see that the residual plot has a definite pattern
and thus contradicts a linear model. This implies that a non-linear model
is more appropriate. 
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Figure 2.16  The original data is curved; the residual 
plot shows a definite pattern.

x y log_y

= log(y)

1 1 6.36 0.803457

2 2 13.03 1.11494

3 3 27 1.43136

4 4 55 1.74036

5 5 111 2.04532

6 6 230 2.36173



An exponential or power model might be appropriate. Exponential
growth models increase by a fixed percentage of the previous amount. 
In other words,

and so on. These percentages are approximately equal. This is an indication
that an exponential model might best represent the data. Next, we look 
at the graph of log y vs. x (Figure 2.17). Notice that the graph of log y
vs. x straightens the data. This is another sign that an exponential model
might be appropriate. Finally, we can see that the residual plot for the
exponential model (log y on x) appears to have random scatter. An 
exponential model is appropriate.

230
111

2 0721 111
55

2 0182 55
27

2 0370≈ ≈ ≈.   .   .
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Figure 2.17  Scatterplot of log y vs. x and residual plot 
with random scatter.
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We can write the LSRL equation for the transformed data of log y vs. x.
We then use the properties of logs and perform the inverse transformation
as follows to obtain the exponential model for the original data. 

1. Write the LSRL for log y on x. 

Your calculator may give you , but remember that
you are using the log of the y values, so be sure to use not just

2. Rewrite as an exponential equation. Remember that log is the
common log with base 10.

3. Separate into two powers of 10.

4. Take 10 to the .4937 power and 10 to the .3112 power and
rewrite.

Our final equation is an exponential equation. Notice how well the graph
of the exponential equation models the original data (Figure 2.18).

ˆ . .y x= +4937 3112
log ˆ,y

ˆ.y

log ˆ . .y x= +4937 3112

ˆ . .y x= +10 4937 3112

ˆ . .y x= ⋅10 104937 3112

ˆ . .y x= ⋅3 1167 2 0474
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Figure 2.18  Exponential equation models the data.

• Power Model: Consider the data in Figure 2.19. As always, remember
to plot the original data. There appears to be a curved pattern. We can
confirm that a linear model is not appropriate by interpreting the residual
plot of the residuals against x, once our calculator or software has created
the LSRL equation. The residual plot shows a definite pattern; therefore a
linear model is not appropriate. 
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Figure 2.19  The original data is curved; the residual plot shows a definite
pattern.

x y log_x log_y

= log(x) log(y)

1 1 3.9 0 0.591065

2 2 16.2 0.30103 1.20952

3 3 35.5 0.477121 1.55023

4 4 64.5 0.60206 1.80956

5 5 99.6 0.69897 1.99826

6 6 145.0 0.778151 2.16137

7 7 192.0 0.845098 2.2833



We can then examine the graph of log y on x. Notice that taking the log
of the y-values and plotting them against x does not straighten the data—
in fact, it bends the data in the opposite direction. What about the residual
plot for log y vs. x? There appears to be a pattern in the residual plot
(Figure 2.20); this indicates that an exponential model is not appropriate. 
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Figure 2.20  Scatterplot of log y vs. x. The residual plot 
shows a definite pattern.

Next, we plot log y vs. log x (Figure 2.21). Notice that this straightens the
data and that the residual plot of log y vs. log x appears to have  random
scatter. A power model is therefore appropriate.



We can then perform the inverse transformation to obtain the appropriate
equation to model the data. 

1. Write the LSRL for log y on log x. 

Remember we are using logs!

2. Rewrite as a power equation.

3. Separate into two powers of 10.

ˆ . . logy x= +10 5970 2 0052

log ˆ . . logy x= +5970 2 0052

ˆ . . logy x= ⋅10 105970 2 0052
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Figure 2.21  Scatterplot of log y vs. log x. The residual plot 
shows random scatter.



4. Use the power property of logs to rewrite.

5. Take 10 to the .5970 power and cancel 10 to the log power.

Our final equation is a power equation. Notice how well the power
model fits the data in the original scatterplot (Figure 2.22).

ˆ . .y x= ⋅3 9537 2 0052

ˆ . log .

y x= ⋅10 105970 2 0052
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Figure 2.22  The power model fits the data.
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3.1 Density Curves

• Density curves are smooth curves that can be used to describe the
 overall pattern of a distribution. Although density curves can come in
many different shapes, they all have something in common: The area
under any density curve is always equal to one. This is an extremely
important concept that we will utilize in this and other chapters. It is
usually easier to work with a smooth density curve than a histogram, 
so we sometimes overlay the density curve onto the histogram to
 approximate the distribution. A specific type of density curve called 
a normal curve will be addressed in section 3.2. This “bell-shaped” 
curve is especially useful in many applications of statistics as you will
see later on. We describe density curves in much the same way we
 describe distributions when using graphs such as histograms or 
stemplots.

• The relationship between the mean and the median is an important
concept, especially when dealing with density curves. In a symmetrical
density curve, the mean and median will be equal if the distribution is
perfectly symmetrical or approximately equal if the distribution is
 approximately symmetrical. If a distribution is skewed left, then the
mean will be “pulled” in the direction of the skewness and will be less
than the median. If a distribution is skewed right, the mean is again
“pulled” in the direction of the skewness and will be greater than the
median. Figure 3.1 displays distributions that are skewed left, skewed
right, and symmetrical. Notice how the mean is “pulled” in the direction
of the skewness.
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Figure 3.1  The relationship of mean and median in skewed and symmetrical
distributions.
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• It’s important to remember that the mean is the “balancing point” of
the density curve or histogram and that the median divides the density
curve or histogram into two parts, equal in area (Figure 3.2).

3.2 Normal Distributions

• One particular type of density curve that is especially useful in statistics
is the normal curve, or normal distribution. Although all normal distrib-
utions have the same overall shape, they do differ somewhat depending
on the mean and standard deviation of the distribution (Figure 3.3). If we
increase or decrease the mean while keeping the standard deviation the
same, we will simply shift the distribution to the right or to the left. The

Figure 3.2  The mean is the “balancing point” of the distribution. The
median divides the density curve into two equal areas.



more we increase the standard deviation, the “wider” and “shorter” the
density curve will be. If we decrease the standard deviation, the density
curve will be “narrower” and “taller.” Remember that all density curves,
including normal curves, have an area under the curve equal to one. 
So, no matter what value the mean and standard deviation take, the area
under the normal curve is equal to one. This is very important, as you’ll
soon see. 
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Figure 3.3  Two normal distributions with different standard deviations.

The equation for the standard normal curve is: y e
x

=
−1

2

2
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π



The Empirical Rule (the 68, 95, 99.7 Rule)

• All normal distributions follow the Empirical Rule. That is to say that
all normal distributions have: 68% of the observations falling within 
σ (one standard deviation) of the mean, 95% of the observations falling
within 2σ (two standard deviations) of the mean, and 99.7% (almost all)
of the observations falling within 3σ (three standard deviations) of the
mean (Figure 3.4). 

• Example 1: Let’s assume that the number of miles that a particular
tire will last roughly follows a normal distribution with μ = 40,000 miles
and σ = 5000 miles. Note that we can use shorthand notation N(40,000,
5000) to denote a normal distribution with mean equal to 40,000 and
standard deviation equal to 5,000. Since the distribution is not exactly
normal but approximately normal, we can assume the distribution will
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Figure 3.4  About 68% of observations fall within one standard deviation,
95% within two standard deviations, and 99.7% within three
standard deviations.



roughly follow the 68, 95, 99.7 Rule. Using the 68, 95, 99.7 Rule we can
conclude the following (see Figure 3.5):

About 68% of all tires should last between 35,000 and 45,000 miles
(μ ± σ)

About 95% of all tires should last between 30,000 and 50,000 miles
(μ ± 2σ)

About 99.7% of all tires should last between 25,000 and 55,000 miles
(μ ± 3σ)

Using the 68, 95, 99.7 Rule a little more creatively, we can also conclude:

About 34% of all tires should last between 40,000 and 45,000 miles.

About 34% of all tires should last between 35,000 and 40,000 miles.

About 2½ % of all tires should last more than 50,000 miles.

About 84% of all tires should last less than 45,000 miles.
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Figure 3.5  Application of the Empirical Rule.

15000 20000 25000 30000 35000 40000 45000 50000 55000 60000
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3.3 Normal Calculations

• Example 2: Referring back to Example 1, let’s suppose that we want
to determine the percentage of tires that will last more than 53,400 miles.
Recall that we were given N(40,000, 5000). To get a more exact answer
than we could obtain using the Empirical Rule, we can do the following:

Solution: Always make a sketch! (See Figure 3.6.)

Shade the area that you are trying to find, and label the mean in the
center of the distribution. Remember that the mean and median are
equal in a normal distribution since the normal curve is symmetrical.

Obtain a standardized value (called a z-score) using z x
=

−μ
σ

.

Figure 3.6  Make a sketch and shade to the right of 53,400.

15000 20000 25000 30000 35000 40000 45000 50000 55000 60000

a = 0.0037



Using substitution, we obtain 

Notice that the formula for z takes the difference of x and μ and
 divides it by σ. Thus, a z-score is the number of standard deviations
that x lies above or below the mean. So, 53,400 is 2.68 standard 
deviations above the mean. You should always get a positive value 
for z if the value of x is above the mean, and a negative value for z if
the value of x is below the mean.

When we find the z-score, we are standardizing the values of the
 distribution. Since these values are values of a normal distribution,
the distribution we obtain is called the standard normal distribution.
This new distribution, the standard normal distribution, has a mean of
zero and a standard deviation of one. We can then write N(0,1)

The advantage of standardizing any given normal distribution to the
standard normal distribution is that we can now find the area under
the curve for any given value of x that is needed. 

We can now use the z-score of 2.68 that we obtained earlier. Using
Table A, we can look up the area to the left of z = 2.68. Notice that
Table A has two sides—one for positive values for z and the other 
for negative values for z. Using the side of the table with the positive
 values for z, follow the left-hand column down until you reach 2.6.
Then go across the top of the table until you reach .08. By cross-
 referencing 2.6 and .08, we can obtain the area to the left of z = 2.68,
which is 0.9963.

In other words, 99.63% of tires will last less than 53,400 miles. We
want to know what percent of tires will last more than 53,400 miles,
so we subtract 0.9963 from 1. Remember that the total area under any
density curve is equal to one.

We obtain 1 – 0.9963 = 0.0037.

z =
−

=
53 400 40 000

5000
2 68, , .
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Conclude in context.

That is, only 0.37% of tires will last more than 53,400 miles. We can
also state that the probability that a randomly chosen tire of this type
will last longer than 53,400 miles is equal to 0.0037.

• Example 3: Again referring to Example 1, find the probability that a
randomly chosen tire will last between 32,100 miles and 41,900 miles.

Make a sketch. (See Figure 3.7.)

Locate the mean on the normal curve as well as the values of 32,100
and 41,900. Shade the area between 32,100 and 41,900.

Calculate the z-scores. 

and z =
−

=
41 900 40 000

5000
0 38, , .z =

−
= −

32 100 40 000
5000

1 58, , .

Figure 3.7  Make a sketch and shade between 32,100 and 41,900.

15000 20000 25000 30000 35000 40000 45000 50000 55000 60000



Find the areas to the left of –1.58 and 0.38 using Table A.

The area to the left of –1.58 is equal to 0.0571, and the area to the left
of 0.38 is equal to 0.6480. 

Since we want to know the probability that a tire will last between
32,100 and 41,900 miles, we will subtract the two areas. Remember
that any area that we look up in Table A is the area to the left of z.

0.6480 – 0.0571 = 0.5909

Conclude in context:

The probability that a randomly chosen tire will last between 
32,100 miles and 41,900 miles is equal to 0.5909.

• Example 4: Consider a national mathematics exam where the 
distribution of test scores roughly follows a normal distribution with
mean, μ = 320, and standard deviation, μ = 32. What score must a
 student obtain to be in the top 10% of all students taking the exam?

Make a sketch! (See Figure 3.8.)
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Figure 3.8  Make a sketch and shade the top 10%.
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Shade the appropriate area.

Use the formula for z. 

Using substitution, we obtain:

In order to solve for x, we need to obtain an appropriate value of z.
Using Table A “backwards,” we look in the body of the table for the
value closest to 0.90, which is 0.8997. The value of z that corresponds
to an area to the left of 0.8997 is 1.28, so z = 1.28. Again, remember
that everything we look up in Table A is the area to the left of z, so we
look up what’s closest to 0.90, not 0.10. 

Substituting for z, we obtain:

Solving for x, we obtain:

x = 360.96

Conclude in context.

A student must obtain a score of approximately 361 in order to be in
the top 10% of all students taking the exam.

1 28 320
32

. =
−x

z x
=

−μ
σ

z x
=

−320
32
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• Example 5: Consider the national mathematics test in Example 4. The
middle 90% of students would score between which two scores?

Make a sketch! (See Figure 3.9.)

Shade the appropriate area.

Use the formula for z. 

Using substitution, we obtain:

In order to solve for x, we need to obtain an appropriate value of z.
Consider that we are looking for the middle 90% of test scores.
 Remembering once again that the area under the normal curve is 1,
we can obtain the area on the “outside” of 90%, which would be 10%.
This forms two “tails,” which we consider the right and left tails.

z x
=

−μ
σ

z x
=

−320
32

Figure 3.9  Make a sketch and shade the middle 90%.
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These “tails” are equal in area and thus have an area of 0.05 each. We
can then use Table A, as we did in Example 4, to obtain a z-score that
corresponds to an area of 0.05. Notice that two values are equidistant
from 0.05. These areas are 0.0495 and 0.0505, which correspond to 
z-scores of –1.64 and –1.65, respectively. Since the areas we are look-
ing up are the same distance away from 0.05, we split the difference
and go out one more decimal place for z. We use z = –1.645.

Solving for x, we obtain:

We can now find the test score that would be the cutoff value for the
top 5% of scores. Notice that since the two tails have the same area,
we can use z = 1.645. The z-scores are opposites due to the  symmetry
of the normal distribution.

Solving for x, we obtain:

Conclude in context.

The middle 90% of students will obtain test scores that range from
approximately 267 to 373. 

1 645 320
32

. =
−x

x = 372 64.

x = 267 36.

− =
−1 645 320
32

. x
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Assessing Normality

• Inferential statistics is a major component of the AP Statistics
 curriculum. When you infer something about a population based on
 sample data, it is often important to assess the normality of a population.
We can do this by looking at the number of observations in the sample
that lie within one, two, and three standard deviations from the mean. 
In other words, use the Empirical Rule. Do approximately 68, 95, and
99.7% of the observations fall within μ ± 1σ, μ ± 2σ, and μ ± 3σ ?
Larger data sets should roughly follow the 68, 95, 99.7 Rule while smaller
data sets typically have more variability and therefore may be less likely
to follow the Empirical Rule despite coming from normal populations. 

• We can also look at a graph of the sample data. By constructing a
 histogram, stemplot, modified boxplot, or line plot, we can examine the
data to look for strong skewness and outliers. Non-normal populations
often produce sample data that have skewness or outliers or both. Normal
populations are more likely to have sample data that are symmetrical and
bell-shaped and usually do not have outliers.

• Normal probability plots can also be used to assess the normality 
of a population through sample data. A normal probability plot is a
 scatterplot that graphs a predicted z-score against the value of the
 variable. Most graphing calculators and statistical software packages are
capable of constructing normal probability plots. You should be much
more concerned with how to interpret a normal probability plot than with
how one is constructed. Again, technology helps us out in constructing
the plot. 



• Interpret the normal probability plot by assessing the linearity of 
the plot. The more linear the plot, the more normal the distribution. 
A non-linear probability plot is a good sign of a non-normal population.
Consider the following data taken from a distribution known to be
 uniform and non-normal (Figure 3.10). The accompanying normal
 probability plot is curved and is thus a sign that the data is indeed taken
from a non-normal population. 
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Figure 3.10  The non-linearity of the normal probability plot suggests that
the data comes from a non-normal population.
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• It is imperative that we follow proper data collection methods when
gathering data. Statistical inference is the process by which we draw
conclusions about an entire population based on sample data. Whether
we are designing an experiment or sampling part of a population, it’s
critical that we understand how to correctly gather the data we use.
 Improper data collection leads to incorrect assumptions and predictions
about the population of interest. If you learn nothing else about statistics,
I hope you learn to be skeptical about how data is collected and to inter-
pret the data correctly. Properly collected data can be extremely useful 
in many aspects of everyday life. Inference based on data that was 
poorly collected or obtained can be misleading and lead us to incorrect
conclusions about the population.

4.1 Sampling

• You will encounter certain types of sampling in AP Statistics. As always,
it’s important that you fully understand all the concepts discussed in this
chapter. We begin with some basic definitions. 

• A population is all the individuals in a particular group of interest. We
might be interested in how the student body of our high school views a
new policy about cell phone usage in school. The population of interest 
is all students in the school. We might take a poll of some students at
lunch or during English class on a particular day. The students we poll
are considered a sample of the entire population. If we sample the entire
student body, we are actually conducting a census. A census consists 
of all individuals in the entire population. The U.S. Census attempts 
to count every resident in the United States and is required by the 
Constitution every ten years. The data collected by the U.S. Census 

Master Math: AP Statistics58



will help determine the number of seats each state has in the House of
Representatives. There has even been some political debate on whether
or not the U.S. should spend money trying to count everyone when infor-
mation could be gained by using appropriate sampling techniques. 

• A sampling frame is a list of individuals from the entire population
from which the sample is drawn. 

• Several different types of sampling are discussed in AP Statistics. 
One type often referred to is an SRS, or simple random sample. An
SRS is a sample in which every set of n individuals has an equal chance
of being chosen. Referring back to our population of students, we could
conduct an SRS of size 100 from the 2200 students by numbering all
students from 1 to 2200. We could then use the random integer function
on our calculator, or the table of random digits, or we could simply draw
100 numbers out of a hat that included the 2200 numbers. It’s important
to note that, in an SRS, not only does every individual in the population
have an equal opportunity of being chosen, but so does each sample. 

• When using the table of random digits, we should remember a few
things. First of all, there are many different ways to use the table. We’ll
discuss one method and then I’ll briefly give a couple examples of
 another way that the table might be used. Consider our population of
2200 students. After numbering each student from 0001 to 2200, we 
can go to the table of random digits (found in many statistics books). We
can go to any line—let’s say line 145. We can look at the first four-digit
number, which is 1968. This would be the first student selected for our
sample. The next number is 7126. Since we do not have a student num-
bered 7126, we simply skip over 7126. We also skip 3357, 8579, and
5806. The next student chosen is 0993. We continue in this fashion until
we’ve selected the number of students we want in our sample. If we get
to the end of the line, we simply go on the next line. This is only one
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method we could use. A different method might be to start at the top with
line 101. Use the first “chunk” of five digits and use the last four digits of
that five-digit number (note that the numbers are grouped in groups of
five for the purpose of making the table easier to read). That would give
us 9223, which we would skip. We could then either go across to the next
“chunk” of five digits or go down to the “chunk” of five digits below our
first group. No matter how you use the random digit table, just remember
to be consistent and stay with the same system until the entire sample 
has been chosen. Skipping the student numbered 1559 because he’s your 
old boyfriend or she’s your old girlfriend is not what random sampling 
is all about.

• A stratified random sample could also be used to sample our student
body of 2200 students. We might break up our population into groups
that we believe are similar in some fashion. Maybe we feel that freshmen,
sophomores, juniors, and seniors will feel different about our new policy
concerning cell phones. We call these homogeneous groups strata.
Within each stratum, we would then conduct an SRS. We would then
combine these SRSs to obtain the total sample. Stratified random sampling
guarantees representation from each strata. In other words, we know that
our sample includes the opinions of freshmen, sophomores, juniors, and
seniors.

• A cluster sample is similar to a stratified sample. In a cluster sample,
however, the groups are heterogeneous, not homogeneous. That is, we
don’t feel like the groups will necessarily differ from one another. Once
the groups are determined, we can conduct an SRS within each group
and form the entire sample from the results of each SRS. Usually this
method is used to make the sampling cheaper or easier. We might sample
our 2200 students during our three lunch periods. We could form three
SRSs from our three lunch groups as long as we feel that all three lunch
groups are similar to one another and all represent the population equally. 
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• Systematic sampling is a method in which it is predetermined how 
the sample will be obtained. We might, for example, sample every 25th

student from our list of 2200 students. We should note that this method is
not considered an SRS since not all samples of a given size have an equal
chance of being chosen. Think about it this way: If we sample every 25th

student of the 2200, that’s 88 students. The first 25 students on the list of
the 2200 students would never be chosen together, so technically it’s not
an SRS.

• A convenience sample could also be conducted from our 2200 students.
We would conduct a convenience sample because it’s, well, convenient.
We might sample students in the commons area near the cafeteria because
it’s an easy thing to do and we can do so during our lunch break. It should
be noted, however, that convenience samples almost always contain bias.
That is to say that they tend to systematically understate or overstate 
the proportion of people that feel a certain way; they are usually not 
representative of the entire population. 

• A voluntary response sample could be obtained by having people
respond on their own. We might try to sample some of our 2200 students
by setting up an online survey where students could respond one time to
a survey if they so choose. These types of samples suffer from voluntary
response bias because those that feel very strongly either for or against
something are much more willing to respond. Those that feel strongly
against something are actually more likely to respond than those that
have strong positive feelings. 

• A multistage sample might also be used. This is sampling that combines
several different types of sampling. Some national opinion polls are 
conducted using this method.
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• We should also be concerned with how survey questions are worded.
We should ensure that the wording is not slanted in such a way as to
sway the person taking the survey to answer the question in a particular
manner. Poorly worded questions can lead to response bias. Training
sometimes takes place so that the person conducting the survey interview
uses good interviewing techniques.

• Undercoverage occurs when individuals in the population are
excluded in the process of choosing the sample. Undercoverage can 
lead to bias, so caution must be used.

• Nonresponse can also lead to bias when certain selected individuals
cannot be reached or choose not to participate in the sample.

• Our goal is to eliminate bias. Through proper sampling, it is possible 
to eliminate a good deal of the bias that can be present if proper sampling
is not used. We must realize that sampling is never perfect. If I draw a
sample from a given population and then draw another sample in the
exact same manner, I rarely get the exact same results. There is almost
always some sampling variability. Think about sampling our student
body of 2200 students. If we conduct an SRS of 25 students and then
conduct another SRS of 25 students, we will probably not be sampling
the same 25 students and thus may not get the exact same results. More
discussion about sampling viability will take place in later chapters. Re-
member, however, that larger random samples will give more accurate
results than smaller samples conducted in the same manner. A smaller
random sample, however, may give more accurate results than a larger
non-random sample.
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4.2 Designing Experiments

• Now that we’ve discussed some different types of sampling, it’s time
to turn our attention to experimental design. It’s important to understand
both observational studies and experiments and the difference between
them. In an observational study, we are observing individuals. We are
studying some variable about the individuals but not imposing any treat-
ment on them. We are simply studying what is already happening. In an
experiment, we are actually imposing a treatment on the individuals and
studying some variable associated with that treatment. The treatment is
what is applied to the subjects or experimental units. We use the term
“subjects” if the experimental units are humans. The treatments may
have one or more factors, and each factor may have one or more levels. 

• Example 1: Consider an experiment where we want to test the 
effects of a new laundry detergent. We might consider two factors: water
temperature and laundry detergent. The first factor, temperature, might
have three levels: cold, warm, and hot water. The second factor, detergent,
might have two levels: new detergent and old detergent. We can combine
these to form six treatments as listed in Figure 4.1. 

Figure 4.1  Six treatments.
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• It’s important to note that we cannot prove or even imply a cause-and-
effect relationship with an observational study. We can, however, prove a
cause-and-effect relationship with an experiment. In an experiment, we
observe the relationship between the explanatory and response variables
and try to determine if a cause-and-effect relationship really does exist. 

• The first type of experiment that we will discuss is a completely ran-
domized experiment. In a completely randomized experiment, subjects
or experimental units are randomly assigned to a treatment group. Com-
pletely randomized experiments can be used to compare any number of
treatments. Groups of equal size should be used, if possible.

• Example 2: Consider an experiment in which we wish to determine
the effectiveness of a new type of arthritis medication. We might choose
a completely randomized design. Given 600 subjects suffering from
arthritis, we could randomly assign 200 subjects to group 1, which would
receive the new arthritis medication, 200 subjects to group 2, which
would receive the old arthritis medication, and 200 subjects to group 3,
which would receive a placebo, or “dummy” pill. To ensure that the
 subjects were randomly placed into one of the three treatment groups, we
could assign each of the 600 subjects a number from 001 to 600. Using
the random integer function on our calculator, we could place the first
200 subjects whose numbers come up in group 1, the second 200 chosen
in group 2, and the remaining subjects in group 3. It should be noted that
a placebo is used to help control the placebo effect, which comes into
play when people respond to the “idea” that they are receiving some 
type of treatment. A placebo, or “dummy” pill, is used to ensure that the
placebo effect contributes equally to all three groups. The placebo should
taste, feel, and look like the real medication. The subjects would take the
medication for a predetermined period of time before the effectiveness of
the medication was evaluated. We can use a diagram to help outline the
design (see Figure 4.2).



To describe an experiment, it can be useful (but not essential) to use a
diagram. Remember to explain how you plan to randomly assign individ-
uals to each treatment in the experiment. This can be as simple as using
the table of random digits or using the random integer function of the
graphing calculator. Be specific in your diagram, and be sure to fully
 explain how you are setting up the experiment.

• Example 3: Let’s reconsider Example 2. Suppose there is reason to
believe that the new arthritis medication might be more effective for 
men than for women. We would then use a type of design called a block
 design. We would divide our group of 600 subjects into one group of
males and one group of females. Once our groups were blocked on
 gender, we would then randomly assign our group of males to one of 
the three treatment groups and our group of females to one of the three
treatment groups. It’s important to note that the use of blocking reduces
variability within each of the blocks. That is, it eliminates a confounding
variable that may systematically skew the results. For example, if one is
conducting an experiment on a weight-loss pill and blocking is not used,
the random assignment of the subjects may assign more females to the
 experimental group. If males and females respond differently to the
 treatment, you will not be able to determine whether the weight loss is
due to the drug’s effectiveness or due to the gender of the subjects in the
group. Be sure to include random assignment in your diagram, but make
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Figure 4.2  A completely randomized design.



sure that you’ve done so after you’ve separated males and females. There
are often a few students who get in a hurry on an exam and randomly
place subjects into groups of males and females. It’s good that they
 remember that random assignment is important, but it needs to come
after the blocking, not before.

• The arthritis experiment in Examples 2 and 3 might be either a 
single-blind or double-blind experiment. In a single-blind experiment,
the person taking the medication would not know whether they had the
new medication, the old medication, or the placebo. If a physician is used
to help assess the effectiveness of the treatments, the experiment should
probably be double-blind. That is, neither the subject receiving the treat-
ment nor the physician would know which treatment the subject had
been given. Obviously, in the case of a double-blind experiment, there
must be a third-party member that knows which subjects received the
various treatments.

• Example 4: A manufacturer of bicycle tires wants to test the durability
of a new material used in bicycle tires. A completely randomized design
might be used where one group of cyclists uses tires made with the old
material and another group uses tires made with the new material. The
manufacturer realizes that not all cyclists will ride their bikes on the
same type of terrain and in the same conditions. To help control for these
variables, we can implement a matched-pairs design. Matching is a
form of blocking. One way to do this is to have each cyclist use both
types of tires. A coin toss could determine whether the cyclist uses the
tire with the new material on the front of the bike or on the rear. We
could then compare the front and rear tire for each cyclist. Another way
to match in this situation might be to pair up cyclists according to rider
size and weight, the location where they ride, and/or the type of terrain
they typically ride on. A coin could then be tossed to decide which of the
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two cyclists uses the tires with the new material and which uses the tires
with the old material. This method might not be as effective as having
each cyclist serve as his/her own control and use one tire of each type.

• When you’re designing various types of experiments, it’s important to
remember the four principles of experimental design. They are:

1. Control. It is very important to control the effects of confounding
variables. Confounding variables are variables (aside from the
explanatory variable) that may affect the response variable. We often
use a control group to help assess whether or not a particular treat-
ment actually has some effect on the subjects or experimental units.
A control group might receive the “old” (or “traditional”) treatment,
or it might receive a placebo (“dummy” pill). This can help compare
the various treatments and allow us to determine if the new treatment
really does work or have a desired effect.

2. Randomization. It’s critical to reduce bias (systematic favoritism) 
in an experiment by controlling the effects of confounding variables.
We hope to spread out the effects of these confounding variables by
using chance to randomly assign subjects or experimental units to the
various treatments. 

3. Replication. There are two forms of replication that we must
 consider. First, we should always use more than one or two subjects
or experimental units to help reduce chance variation in the results.
The more subjects or experimental units we use, the better. By
increasing the number of experimental units or subjects, we know
that the difference between the experimental group and the control
group is really due to the imposed treatment(s) and not just due to
chance. Second, we should have designed an experiment that can be
replicated by others doing similar research. 
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4. Blocking. Blocking is not a requirement for experimental design, 
but it may help improve the design of the experiment in some cases.
Blocking places individuals who are similar in some characteristic 
in the same group, or “block.” These individuals are expected to
respond in a similar manner to the treatment being imposed. For
example, we may have reason to believe that men and women will
differ in how they are affected by a particular type of medication. 
In this case, we would be blocking on gender. We would form one
group of males and one group of females. We would then use ran-
domization to assign males and females to the various treatments.

4.3 Simulation

• Simulation can be used in statistics to model random or chance behavior.
In much the same way an airplane simulator models how an actual aircraft
flies, simulation can be used to help us predict the probability of some
real-life occurrences. For our purposes in AP Statistics, we’ll try to keep
it simple. If you are asked to set up a simulation in class or even on an
exam, keep it simple. Use things like the table of random digits, a coin, a
die, or a deck of cards to model the behavior of the random phenomenon.

• Let’s set up an example: As I was walking out of the grocery store a
few years ago, my two children, Cassidy and Nolan (ages 5 and 7 at the
time), noticed a lottery machine that sold “scratch-offs” near the exit of
the store. Despite explaining to them how the “scratch-offs” worked and
that the probability of winning was, well … not so good, they persuaded
me to partake in the purchase of three $1 “scratch-offs.” Being an AP
Stats teacher and all, I knew I had a golden opportunity to teach them a
lesson in probability and a “lesson” that gambling was “risky business.”
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Sure, we might win a buck or two, but chances were pretty good that
we’d lose, and even if we did win, the kids would hopefully lose interest
since we would most likely just be getting our money back. Once we
were in the car, the lesson began. “Hmmm …“Odds are 1:4,” I told them.
That means that on average, you win about one time for every five times
you play. I carefully explained that the chances of winning were not very
good and that if we won, chances were pretty good that we would not
win a lot. Two “scratch-offs” later … two winners, $1 each. Hmmm.…
Not exactly what I had planned, but at least I had my $2 back. “Can we
buy some more?” they quickly asked. I told them that the next time we
stopped for gas, we could buy two more “scratch-offs” but that was it.
Surely they’d learn their lesson this time. Two weeks later, we purchased
two more $1 “scratch-offs.” Since I was in a hurry, I handed each of
them a coin and a “scratch-off” and away we drove. Unfortunately for
Nolan, his $1 “scratch off” resulted in a loss. I felt a little bad about his
losing, but in the long run it would probably be best. Moments later, 
Cassidy yells out, “I won a hundred dollars!” Sure, I thought. She’s 
probably just joking. “Let me see that!” I quickly pulled over at the next
opportunity to realize that she had indeed won $100! Again, not exactly
what I’d planned, but hey … it was $100! What are the chances of 
winning on three out of four “scratch-offs?” Let’s set up a simulation to
try to answer the question.

• Example 5: Use simulation to find the probability that someone who
purchases four $1 “scratch-offs” will win something on three out of the
four “scratch-offs.” Assume the odds of winning on the “scratch-off” 
are 1:4. 

Solution: If the odds of winning are 1:4, that means that in the long 
run we should expect to win one time out of every five plays. That is, 
we should expect, out of five plays, to win once and lose four times, 



on average. In other words, the probability of winning is 1/5. Sometimes
we might win more than expected and sometimes we might win less than
expected, but we should average one win for every four losses. We can
set up a simulation to estimate the probability of winning.

Let the digits 0–1 represent a winning “scratch-off.”

Let the digits 2–9 represent a losing “scratch-off.”

Note that 0–1 is actually 2 numbers and 2–9 is 8 numbers. Also note 
that 1:4 odds would be the same as 2:8 odds. We have used single-digit
numbers for the assignment as it is the simplest method in this case. 
We could have used double-digit numbers for the assignment, but this
would be unnecessary. Several different methods would work as long as
the odds reduce to 1:4. To make it easier to keep track of the numbers,
we will group the one-digit numbers in “chunks” of four and label each
group “W” for win and “L” for lose. Each group of four one-digit
 numbers represents one simulation of purchasing four “scratch-offs”
(Figure 4.3). Starting at line 107 of the table of random digits, we obtain:
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Figure 4.3  “Scratch-off” probability simulation.

L L L L L L L
8273 9578 9020 8074 7511 8167 6553

L L L L L L L
6094 0720 2417 8682 4943 6179 0906

L L L L L L L
3600 9193 6515 4123 9638 8545 3468

L L L L L L L
3844 8487 8918 3382 4697 3936 4420

L L L L L W L
8148 6694 8760 5130 9297 0041 2712



Figure 4.3 displays 50 trials of purchasing four “scratch-off” tickets.
Only one of the 50 trials produced three winning tickets out of four.
Based on our simulation, the probability of winning three out of four
times is only 1/50. In other words, Cassidy and Nolan were pretty lucky.
Students sometimes find simulation to be a little tricky. Remember to
keep it as simple as possible. A simulation does not need to be compli-
cated to be effective.
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5.1 Probability and Probability Rules

• An understanding of the concept of randomness is essential for tackling
the concept of probability. What does it mean for something to be random?
AP Statistics students usually have a fairly good concept of what it
means for something to be random and have likely done some probability
calculations in their previous math courses. I’m always a little surprised,
however, when we use the random integer function of the graphing 
calculator when randomly assigning students to their seats or assigning
students to do homework problems on the board. It’s almost as if students
expect everyone in the class to be chosen before they are chosen for the
second or third time. Occasionally, a student’s number will come up two
or even three times before someone else’s, and students will comment
that the random integer function on the calculator is not random.
Granted, it’s unlikely for this to happen with 28 students in the class, 
but not impossible. Think about rolling a standard six-sided die. The
outcomes associated with this event are random—that is, they are 
uncertain but follow a predictable distribution over the long run. The
proportion associated with rolling any one of the six sides of the die 
over the long run is the probability of that outcome.

• It’s important to understand what is meant by in the long run. When 
I assign students to their seats or use the random integer function of the
graphing calculator to assign students to put problems on the board, we
are experiencing what is happening in the short run. The Law of Large
Numbers tells us that the long-run relative frequency of repeated, inde-
pendent trials gets closer to the expected relative frequency once the
number of trials increases. Events that seem unpredictable in the short
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run will eventually “settle down” after enough trials are accumulated.
This may require many, many trials. The number of trials that it takes
depends on the variability of the random variable of interest. The more
variability, the more trials it takes. Casinos and insurance companies use
the Law of Large Numbers on an everyday basis. Averaging our results
over many, many individuals produces predictable results. Casinos are
guaranteed to make a profit because they are in it for the long run
whereas the gambler is in it for the relative short run. 

• The probability of an event is always a number between 0 and 1, 
inclusive. Sometimes we consider the theoretical probability and other
times we consider the empirical probability. Consider the experiment 
of flipping a fair coin. The theoretical probability of the coin landing 
on either heads or tails is equal to 0.5. If we actually flip the coin a 100
times and it lands on tails 40 times, then the empirical probability is
equal to 0.4. If the empirical probability is drastically different from the
theoretical probability, we might consider whether the coin is really fair.
Again, we would want to perform many, many trials before we conclude
that the coin is unfair. 

• Example 1: Consider the experiment of flipping a fair coin three
times. Each flip of the coin is considered a trial and each trial for this
experiment has two possible outcomes, heads or tails. A list containing
all possible outcomes of the experiment is called a sample space. An
event is a subset of a sample space. A tree diagram can be used to 
organize the outcomes of the experiment, as shown in Figure 5.1. 
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Tree diagrams can be useful in some problems that deal with probability.
Each trial consists of one line in the tree diagram, and each branch of the
tree diagram can be labeled with the appropriate probability. Working our
way down and across the tree diagram, we can obtain the eight possible
outcomes in the sample space. S = {HHH, HHT, HTH, HTT, THH, THT,
TTH, TTT} To ensure that we have the correct number of outcomes 
listed in the sample space, we could use the counting principle, or
multiplication principle. The multiplication principle states that if you
can do task 1 in m ways and you can do task 2 in n ways, then you can 
do task 1 followed by task 2 in m � n ways. In this experiment we have
three trials, each with two possible outcomes. Thus, we would have 
2 � 2 � 2 = 8 possible outcomes in the sample space. 

• Example 2: Let’s continue with the experiment discussed in Example 1.
What’s the probability of flipping the coin three times and obtaining
heads all three times? 
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Solution: We can answer that question in one of two ways. First, 
we could use the sample space. HHH is one of eight possible (equally
likely) outcomes listed in the sample space, so P(HHH) = 1⁄8. The 
second method we could use to obtain P(HHH) is to use the concept of
independent events. Two events are independent if the occurrence or
non-occurrence of one event does not alter the probability of the second
event. The trials of flipping a coin are independent. Whether or not the
first flip results in heads or tails does not change the probability of the
coin landing on heads or tails for the second or third flip. If two events
are independent, then P(A ∩ B) = P(A and B) = P(A) • P(B). We can
apply this concept to this experiment. P(HHH) = (1⁄2) • (1⁄2) • (1⁄2) = 1⁄8.
Later on, in Example 11, we will show how to prove whether or not 
two events are independent.

• Example 3: Again consider Example 1. Find the probability of
 obtaining at least one tail (not all heads).

Solution: The events “all heads” and “at least one tail” are complements.
The set “at least one tail” is the set of all outcomes from the sample
space excluding “all heads.” All the outcomes in a given sample space
should sum to one, and so any two events that are complements should
sum to one as well. Thus, the probability of obtaining “at least one tail”
is equal to: 1 – P(HHH) = 1 – 1⁄8 = 7⁄8. We can verify our answer by 
examining the sample space we obtained in Example 1 and noting that 
7 out of the 8 equally likely events in the sample space contain at least
one tail. Typical symbols for the complement of event A are: Ac, A', or A–.

• Example 4: Consider the experiment of drawing two cards from a
standard deck of 52 playing cards. Find the probability of drawing two
hearts if the first card is replaced and the deck is shuffled before the
 second card is drawn. The following tree diagram can be used to help
answer the question.
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Solution: Let H = “heart” and Hc = “non – heart” Notice that the 
probability of the second card being a heart is independent of the first
card being a heart. Thus, P(HH) = 1⁄4 • 1⁄4 = 1⁄16. 

• Example 5: How would Example 4 change if the first card were not
replaced before the second card was drawn? Find the probability of
drawing two hearts if the first card drawn is not replaced before the 
second card is drawn. Notice how the probabilities in the tree diagram
change depending on whether or not a heart is drawn as the first card. 

Figure 5.2  Tree diagram with replacement.

Figure 5.3  Tree diagram without replacement.



When two events A and B are not independent, then P(A ∩ B) = 
P(A) • P(B | A) This is a conditional probability, which we will 
discuss in more detail in section 5.2. Applying this formula, we obtain
P(HHH) = 13⁄52 • 12⁄51 = 1⁄17. 

• Example 6: Suppose that in a particular high school the probability
that a student takes AP Statistics is equal to 0.30 (call this event A), and
the probability that a student takes AP Calculus is equal to 0.45 (call this
event B.) Suppose also that the probability that a student takes both AP
Statistics and AP Calculus is equal to 0.10. Find the probability that a
student takes either AP Statistics or AP Calculus. 

Solution: We can organize the information given in a Venn diagram as
shown in Figure 5.4.
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Notice the probability for each section of the Venn diagram. The total
circle for event A (AP Statistics) has probabilities that sum to 0.30 and
the total circle for event B (AP Calculus) has probabilities that sum to
0.45. Also notice that all four probabilities in the Venn diagram sum to 1.
We can use the General Addition Rule for the Union of Two Events.
P(A ∪ B) = P(A) + P(B) – P(B) – P(A ∩ B) Note that ∪ (union) means
“or” and ∩ (intersection) means “and.” We could then apply the formula
as follows:

P(A ∪ B) = 0.30 + 0.45 – 0.10 = 0.65.

If you consider the Venn diagram, the General Addition Rule makes
sense. When you consider event A, you are adding in the “overlapping”
of the two circles (student takes AP Stats and AP Calculus), and when
you consider event B, you are again adding in the “overlapping” of the
two circles. Thus, the General Addition Rule has us subtracting the 
intersection of the two circles, which is the “overlapping” section. 

• Example 7: Reconsider Example 6. Find the probability that a student
takes neither AP Statistics nor AP Calculus. 

Solution: From the Venn diagram in Figure 5.4 we can see that the prob-
ability that a student takes neither course is the area (probability) on the
outside of the circles, which is 0.35. We could also conclude that 20% of
students take AP Statistics but not AP Calculus and that 35% of students
take AP Calculus but not AP Statistics. 
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• Example 8: Referring again to Example 6, suppose that AP Statistics
and AP Calculus are taught only once per day and during the same period.
It would then be impossible for a student to take both AP Statistics and
AP Calculus. How would the Venn diagram change? 

Solution: We could construct the Venn diagram as shown in Figure 5.5. 
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Figure 5.5  Venn diagram for disjoint (mutually exclusive) events.

Notice that the circles are not overlapping since events A and B cannot
occur at the same time. Events A and B are disjoint, or mutually exclusive.
This implies that P(A ∩ B) = 0. Applying the General Addition Rule, we
obtain: P(A ∪ B) = 0.30 + 0.45 = 0.75. Notice that we do not have to
subtract P(A ∩ B) since it is equal to 0. Thus, for disjoint events:

P(A ∪ B) = P(A) + P(B).



• Don’t confuse independent events and disjoint (mutually exclusive)
events. Try to keep these concepts separate, but remember that if you
know two events are independent, they cannot be disjoint. The reverse 
is also true. If two events are disjoint, then they cannot be independent.
Think about Example 8, where it was impossible to take AP Statistics
and AP Calculus at the same time (disjoint events.) If a student takes 
AP Statistics, then the probability that they take AP Calculus changes
from 0.35 to zero. Thus, these two events, which are disjoint, are not
independent. That is, taking AP Statistics changes the probability of 
taking AP Calculus. It’s also worth noting that some events are neither
disjoint nor independent. The fact that an event is not independent does
not necessarily mean it’s disjoint and vice versa. Consider drawing two
cards at random, without replacement, from a standard deck of 52 play-
ing cards. The events “first card is an ace” and “second card is an ace”
are neither disjoint nor independent. The events are not independent 
because the probability of the second card being an ace depends on
whether or not an ace was drawn as the first card. The events are not
disjoint because it is possible that the first card is an ace and the second
card is also an ace. 

5.2 Conditional Probability and Bayes’s Rule

• Example 9: Example 5 is a good example of what we mean by 
conditional probability. That is, finding a given probability if it is
known that another event or condition has occurred or not occurred.
Knowing whether or not a heart was chosen as the first card determines
the probability that the second card is a heart. We can find P(2nd card
heart | 1st card heart) by using the formula given in Example 5 and 
solving for P(A | B), read A given B.

Thus, P A B P A B
P B

( / ) ( )
( )

.=
∩
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When applying the formula, just remember that the numerator is always
the intersection (“and”) of the events, and the denominator is always the
event that comes after the “given that” line. Applying the formula, we
obtain:

The formula works, although we could have just looked at the tree 
diagram and avoided using the formula. Sometimes we can determine a
conditional probability simply by using a tree diagram or looking at the
data, if it’s given. The next problem is a good example of a problem
where the formula for conditional probability really comes in handy.

• Example 10: Suppose that a medical test can be used to determine 
if a patient has a particular disease. Many medical tests are not 100% 
accurate. Suppose the test gives a positive result 90% of the time if the
person really has the disease and also gives a positive result 1% of the
time when a person does not have the disease. Suppose that 2% of a
given population actually have the disease. Find the probability that 
a randomly chosen person from this population tests positive for the 
disease.

Solution: We can use a tree diagram to help us solve the problem 
(Figure 5.6).

P nd card heart st card heart P nd card heart st( / ) (2 1 2 1
=

∩ ccard heart
P st card heart

)
( )1

12
51

12
51

13
52

13
52

=
⋅

=

Figure 5.6  Tree diagram for conditional probability.



It’s important to note that the test can be positive whether or not the 
person actually has the disease. We must consider both cases. Let event
D = Person has the disease and let event Dc = Person does not have the
disease. Let "pos" = positive and "neg" = negative.  

P(pos) = 0.02 • 0.90 + 0.98 • 0.01 = 0.0278

Thus, the probability that a randomly chosen person tests positive for the
disease is 0.0278. 

• Example 11: Referring to Example 10, find the probability that a
 randomly chosen person has the disease given that the person tested
 positive. In this case we know that the person tested positive and we 
are trying to find the probability that they actually have the disease. This
is a conditional probability known as Bayes’s Rule.

You should understand that Bayes’s Rule is really just an extended
 conditional probability rule. However, it’s probably unnecessary for 
you to remember the formula for Bayes’s Rule. If you understand how 
to apply the conditional probability formula and you can set up a tree
diagram, you should be able to solve problems involving Bayes’s Rule.
Just remember that to find P(pos) you have to consider that a positive
test result can occur if the person has the disease and if the person does
not have the disease.

• Again, in some problems you may be given the probabilities and 
need to use the conditional probability formula and in others it may be
unnecessary. In the following example, the formula for conditional
 probability certainly works, but using it is unnecessary. All the data
needed to answer the conditional probability is given in the table 
(Figure 5.7).

P D pos P D pos
P pos

( / ) ( )
( )

. .
. . .

=
∩

=
⋅

⋅ +
0 02 0 90

0 02 0 90 0 98⋅⋅
≈

0 01.
.0.6475
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• Example 12: Consider a marathon in which 38,500 runners participate.
Figure 5.7 contains the times of the runners broken down by age. Find
the probability that a randomly chosen runner runs under 3 hours given
that they are in the 50+ age group. 
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18–29 30–49 50+ Total

Under 3 Hrs. 451 527 19 997

3 – Under 4 3,280 4,215 1,518 9,013

4 – Under 5 5,167 10,630 3,563 19,360

Over 5 Hrs. 4,219 3,879 1,032 9,130

Total 13,117 19,251 6,132 38,500

Figure 5.7  Age and time of runners in a marathon.

Solution: Although we could use the conditional probability formula, 
it’s really unnecessary. It’s given that the person chosen is in the 50+ age
group, which means instead of dividing by the total number of runners
(38,500) we can simply divide the number of runners that are both 50+
and ran under 3 hours by the total number of 50+ runners. 

Thus, the probability that a randomly chosen person runs under 3 hours
for the marathon given that they are 50 or older is about 0.0031. 

P Under hrs( / )3 50 19
6132

+ =



• Example 13: Let’s revisit independent events. Is the age of a runner
independent of the time that the runner finishes the marathon? It doesn’t
seem likely that the two events are independent of one another. We would
expect older runners to run slower, on average, than younger runners.
There are certainly exceptions to this rule, which I am reminded of when
someone ten years older than me finishes before me in a marathon! Are
the events “finishes under 3 hours” and “50+ age group” independent of
one another?

Solution: Remember, if the two events are independent then: 

P(A ∩ B) = P(A) • P(B)

Thus, P(under 3 hrs and 50+) = P(under 3 hrs) • P(50+)

We can again use the table values from Figure 5.7 to answer this 
question.

0.0004935 ≠ 0.0041245

Since the two are not equal, the events are not independent.

19
38 500

997
38 500

6132
38 500, , ,

= ⋅
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5.3 Discrete Random Variables

• Now that we’ve discussed the concepts of randomness and probability,
we turn our attention to random variables. A random variable is a
 numeric variable from a random experiment that can take on different
values. The random variable can be discrete or continuous. A discrete
random variable, X, is a random variable that can take on only a
 countable number. (In some cases a discrete random variable can take on
a finite number of values and in others it can take on an infinite number
of values.) For example, if I roll a standard six-sided die, there are only
six possible values of X, which can take on the values 1, 2, 3, 4, 5, or 6. 
I can then create a valid probability distribution for X, which lists the
values of X and the corresponding probability that X will occur 
(Figure 5.8). 
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x 1 2 3 4 5 6

P(x) 1/6 1/6 1/6 1/6 1/6 1/6

Figure 5.8  Probability distribution.

The probabilities in a valid probability distribution must all be between 
0 and 1 and all probabilities must sum to 1. 



• Example 14: Consider the experiment of rolling a standard (fair) 
six-sided die and the probability distribution in Figure 5.8. Find the 
probability of rolling an odd number greater than 1. 

Solution: Remember that this is a discrete random variable. This means
that rolling an odd number greater than 1 is really rolling a 3 or a 5. Also
note that we can’t roll a 3 and a 5 with one roll of the die, which makes
the events disjoint or mutually exclusive. We can simply add the proba-
bilities of rolling a 3 and a 5. 

P(3 or 5) = 1⁄6 + 1⁄6 = 1⁄3

• We sometimes need to find the mean and variance of a discrete random
variable. We can accomplish this by using the following formulas:

Mean or 

Variance or 

Std. Dev

Recall that the standard deviation is the square root of the variance, so
once we’ve found the variance it is easy to find the standard deviation.
It’s important to understand how the formulas work. Remember that the
mean is the center of the distribution. The mean is calculated by sum-
ming up the product of all values that the variable can take on and their
respective probabilities. The more likely a given value of X, the more
that value of X is “weighted” when we calculate the mean. The variance
is calculated by averaging the squared deviations for each value of X
from the mean. 

μx n nx p x p x p= + + +1 1 2 2 ... x P x⋅∑ ( )

σ μ μ μx x x n x nx p x p x p2
1

2
1 2

2
2

2= − + − + + −( ) ( ) ... ( )

σ μx xx P x2 2= − ⋅∑ ( ) ( )

σx Var X= ( )
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• Example 15: Again consider rolling a standard six-sided die and the
probability distribution in Figure 5.8. Find the mean, variance, and
 standard deviation for this experiment.

Solution: We can apply the formulas for the mean and variance as 
follows:

Notice that since the six sides of the die are equally likely, it seems
 logical that the mean of this discrete random variable is equal to 3.5. As
always, it’s important to show your work when applying the appropriate
formulas. Note that you can also utilize the graphing calculator to find
the mean, variance, and standard deviation of a discrete random variable.
But be careful! Some calculators give the standard deviation, not the
variance. That’s not a problem, however; if you know the standard
 deviation, you can simply square it to get the variance.You can find the
standard deviation of a discrete random variable on the TI83/84 graphing
calculator by creating list one to be the values that the discrete random
variable takes on and list two to be their respective probabilities. You 
can then use the one-variable stats option on your calculator to find the
standard deviation. Caution! You must specify that you want one-
variable stats for list one and list two (1-Var Stats L1,L2). Otherwise 
your calculator will only perform one-variable stats on list one. 

σx
2 2 1

6
2 1

6
2 1

61 3 5 2 3 5 6 3 5= − + − + + − ≈( . ) ( ) ( . ) ( ) ... ( . ) ( ) 22 9167.

σx ≈1 7078.

μx = + + + =1 2 6 3 51
6

1
6

1
6( ) ( ) ... ( ) .
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• Example 16: Suppose a six-sided die with sides numbered 1–6 is
loaded in such a way that in the long run you would expect to have twice
as many “1’s” and twice as many “2’s” as any other outcome. Find the
probability distribution for this experiment, and then find the mean and
standard deviation.

Solution: See Figure 5.9.
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x 1 2 3 4 5 6

P(x) 2x 2x x x x x

Figure 5.9  Probability distribution for Example 16.

Since we are dealing with a valid probability distribution, we know that
all probabilities must sum to 1. 

2x + 2x + x + x + x + x = 8x

8x = 1

x = 1⁄8

We can then complete the probability distribution as follows 
(Figure 5.10).



We can then find the mean and standard deviation by applying the 
formulas and using our calculators.

Notice that the mean is no longer 3.5. The loaded die “weights” two sides
of the die so that they occur more frequently, which lowers the mean
from 3.5 on the standard die to 3 on the loaded die.

5.4 Continuous Random Variables

• Some random variables are not discrete—that is, they do not always
take on values that are countable numbers. The amount of time that it
takes to type a five-page paper, the time it takes to run the 100 meter
dash, and the amount of liquid that can travel through a drainage pipe 
are all examples of continuous random variables. 

σx
2 2 1

4
2 1

4
2 1

81 3 2 3 6 3 3= − + − + + − ≈( ) ( ) ( ) ( ) ... ( ) ( )

σx 1≈ .77321

μx = + + + =1 2 6 31
4

1
4

1
8( ) ( ) ... ( )
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x 1 2 3 4 5 6

P(x) 2/8 2/8 1/8 1/8 1/8 1/8

Figure 5.10  Probability distribution for Example 16.



• A continuous random variable is a random variable that can take 
on values that comprise an interval of real numbers. When dealing with
probability distributions for continuous random variables we often use
density curves to model the distributions. Remember that any density
curve has area under the curve equal to one. The probability for a given
event is the area under the curve for the range of values of X that make
up the event. Since the probability for a continuous random variable is
modeled by the area under the curve, the probability of X being one
 specific value is equal to zero. The event being modeled must be for a
range of values, not just one value of X. Think about it this way: The
area for one specific value of X would be a line and a line has area equal
to zero. This is an important distinction between discrete and continuous
random variables. Finding P(X ≥ 3) and P(X > 3) would produce the
same result if we were dealing with a continuous random variable since
P(X = 3) = 0.Finding P(X ≥ 3) and P(X > 3) would probably produce
different results if we were dealing with a discrete random variable. 
In this case, X > 3 would begin with 4 because 4 is the first countable
number greater than 3. X ≥ 3 would include 3.

• It is sometimes necessary to perform basic operations on random
 variables. Suppose that X is a random variable of interest. The expected
value (mean) of X would be �x and the variance would be �x

2. Suppose
also that a new random variable Z can be defined such that Z = a � bx.
The mean and variance of Z can be found by applying the following
Rules for Means and Variances:

�x = a � b�x

�z
2 = b2�x

2

�z = b�x
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• Example 17: Given a random variable X with �x = 4 and �x = 1.2,
find �z, �z

2 and �z given that Z = 3 + 4X.

Solution: Instead of going back to all values of X and multiplying all
values by 4 and adding 3, we can simply use the mean, variance, and
standard deviation of X and apply the Rules for Means and Variances. 

Think about it. If all values of X were multiplied by 4 and added to 3, the
mean would change in the same fashion. We can simply take the mean of
X, multiply it by 4, and then add 3.

�z = 3 + 4(4) = 19

The variability (around the mean) would be increased by multiplying 
the values of X by 4. However, adding 3 to all the values of X would
increase the values of X by 3 but would not change the variability of the
values around the new mean. Adding 3 does not change the variability, so
the Rules for Variances does not have us add 3, but rather just multiply
by 4 or 42 depending on whether we are working with the standard 
deviation or variance. If we are finding the new standard deviation, we
multiply by 4; if we are finding the new variance, we multiply by 42 or
16. When dealing with the variance we multiply by the factor squared.
This is due to the relationship between the standard deviation and 
variance. Remember that the variance is the square of the standard 
deviation. 

�z
2 = 42(1.44) = 23.04

�z = 4(1.2) = 4.8

Notice that 4.82 = 23.04.
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• Sometimes we wish to find the sum or difference of two random
 variables. If X and Y are random variables, we can use the following 
to find the mean of the sum or difference:

�X+Y = �X + �Y

�X–Y = �X – �Y

We can also find the variance by using the following if X and Y are inde-
pendent random variables.

�2
�+Y = �2

� + �2
Y

�2
�–Y = �2

� + �2
Y

This is not a typo! We always add variances!

If X and Y are not independent random variables, then we must take into
account the correlation �. It is enough for AP* Statistics to simply know
that the variables must be independent in order to add the variances. You
do not have to worry about what to do if they are not independent; just
know that they have to be independent to use these formulas. 

• To help you remember the relationships for means and variances of
random variables, consider the following statement that I use in class:
“We can add or subtract means, but we only add variances. We never,
ever, ever, ever, never, ever add standard deviations. We only add 
variances.” This incorrect use of the English language should help you
remember how to work with random variables. 

• Example 18: John and Gerry work on a watermelon farm. Assume 
that the average (expected) weight of a Crimson watermelon is 30 lbs.
with a standard deviation of 3 lbs. Also assume that the average weight
of a particular type of seedless watermelon is 25 lbs. with a standard
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deviation of 2 lbs. Gerry and John each reach into a crate of watermelons
and randomly pull out one watermelon. Find the average weight, variance,
and standard deviation of two watermelons selected at random if John
picks out a Crimson watermelon and Gerry picks out one of the seedless
watermelons. 

Solution: The average weight of the two watermelons is just the sum of
the two means.

�X+Y = 30 + 25 = 55

To find the variance for each type of melon, we must first square the
standard deviation of each type to obtain the variance. We then add the
variances.

�2
X+Y = 32 + 22 = 13

We can then simply take the square root to obtain the standard deviation.

�X+Y ≈ 3.6056 lbs.

Thus, the combined weight of the two watermelons will have an
expected (average) weight of 55 lbs. with a standard deviation of 
approximately 3.6056 lbs. 

• Example 19: Consider a 32 oz. soft drink that is sold in stores. 
Suppose that the amount of soft drink actually contained in the bottle 
is normally distributed with a mean of 32.2 oz. and a standard deviation
of 0.8 oz. Find the probability that two of these 32 oz soft drinks chosen
at random will have a mean difference that is greater than 1 oz. 
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Solution: The sum or difference for two random variables that are 
normally distributed will also have a normal distribution. We can there-
fore use our formulas for the sum or difference of independent random
variables and our knowledge of normal distributions. 

Let X = the number of oz. of soft drink in one 32 oz. bottle. We are trying
to find: 

P(�x1 – �x2) > 1

We know that the mean of the differences is the difference of the means:

�x – �x2 = 0

We can find the standard deviation of the difference by adding the 
variances and taking the square root.

var(X1 – X2) = �2
x1 + �2

x2 = 0.64 + 0.64 = 1.28 

Std Dev (�1 – �2) ≈ 1.1314

We can now use the mean and standard deviation along with a normal
curve to obtain the following:

Using Table A and subtracting from 1 we obtain:

1 – 0.8106 = 0.1894

P z >
−⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
=

1 0
1 1314

0 88
.

.
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The probability that two randomly selected bottles have a mean difference
of more than 1 oz. is equal to 0.1894.

5.5 Binomial Distributions

• One type of discrete probability distribution that is of importance is 
the binomial distribution. Four conditions must be met in order for a
distribution to be considered a binomial. These conditions are:

1. Each observation can be considered a “success” or “failure.”
Although we use the words “success” and “failure,” the observation
might not be what we consider to be a success in a real-life situation.
We are simply categorizing our observations into two categories.

2. There must be a fixed number of trials or observations.

3. The observations must be independent.

4. The probability of success, which we call p, is the same from one
trial to the next.

• It’s important to note that many probability distributions do not fit a
binomial setting, so it’s important that we can recognize when a distribu-
tion meets the four conditions of a binomial and when it does not. If a
distribution meets the four conditions, we can use the shorthand notation,
B(n, p), to represent a binomial distribution with n trials and probability
of success equal to p. We sometimes call a binomial setting a Bernoulli
trial. Once we have decided that a particular distribution is a binomial
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distribution, we can then apply the Binomial Probability Model. The
formula for a binomial distribution is given on the AP* Statistics formula
sheet. 

• P(X = k) = pk(1 – p)n–k where:

n = number of trials

p = probability of "success"

1 – p = probability of "failure"

k = number of successes in n trials

• Example 20: Consider Tess, a basketball player who consistently
makes 70% of her free throws. Find the probability that Tess makes
 exactly 5 free throws in a game where she attempts 10 free throws. 
(We must make the assumption that the free throw shots are independent
of one another.) 

Solution: We can use the formula as follows:

There are 10 trials and we want exactly 5 trials to 

be a we want exactly 5 trials to be a “success.” means we have 

a combination of 10 things taken 5 at a time in any order. Some textbooks
write this as 10C5. We can use our calculator to determine that there are in
fact 252 ways to take 5 things from 10 things, if we do not care about the

n
k

n
n k k

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

=
−( )

!
! !

10
5

70 305 5
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
(. ) (. )

n
k

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

10
5

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
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order in which they are taken. For example: Tess could make the first 5
shots and miss the rest. Or, she could make the first shot, miss the next 5,
and then make the last 4. Or, she could make every other shot of the 
10 shots. The list goes on. There are 252 ways she could make exactly 
5 of the ten shots.

Notice that the probabilities of success and failure must add up to one
since there are only two possible outcomes that can occur. Also notice
that the exponents add up to 10. This is because we have 10 total trials
with 5 successes and 5 failures.

We should be able to use our calculator to obtain:

This is the work we would want to show on the AP* Exam! 

We could also use the following calculator command on the TI 83/84:
binompdf(10,.7,5). We enter 10 for the number of trials, .7 for the 
probability of success, and 5 as the number of trials we are going 
to obtain.

However, binompdf(10,.7,5) does not count as work on the AP* Exam.

You must show even though you might not actually 

use it to get the answer. Binompdf is a calculator command specific to
one type of calculator, not standard statistical notation. Don’t think 
you’ll get credit for writing down how to do something on the calculator.
You will not! You must show the formula or identify the variable as a
binomial as well as the parameters n and p.
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• Example 21: Consider the basketball player in Example 20. What is
the probability that Tess makes at most 2 free throws in 10 attempts?

Solution: Consider that “at most 2” means Tess can make either 0, 
or 1, or 2 of her free throws. We write the following:

Always show this work.

We can either calculate the answer using the formula or use:
binomcdf(10,.7,2) Notice that we are using cdf instead of pdf. The “c” 
in cdf means that we are calculating the cumulative probability. The
graphing calculator always starts at 0 trials and goes up to the last 
number in the command. Again, the work you show should be the
work you write when applying the formula, not the calculator 
command!

Either way we use our calculator we obtain:
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• Example 22: Again consider Example 20. What is the probability that
Tess makes more than 2 of her free throws in 10 attempts?

Solution: Making more than 2 of her free throws would mean making 
3 or more of the 10 shots. That’s a lot of combinations to consider and
write down.

It’s easier to use the idea of the complement that we studied earlier 
in the chapter. Remember that if Tess shoots 10 free throws she could
make anywhere between none and all 10 of her shots. Using the  concept
of the complement we can write:

That’s pretty sweet. Try to remember this concept. It can make life a little
easier for you!

• Example 23: Find the expected number of shots that Tess will make
and the standard deviation. 

The following formulas are given on the AP* Exam:

Remember that the expected number is the average number of shots that
Tess will make out of every 10 shots. 
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Thus, Tess will make 7 out of every 10 shots, on average. Seems 
logical!

Using the formula for standard deviation, we obtain:

5.6 Geometric Distributions

• Example 24: Consider Julia, a basketball player who consistently
makes 70% of her free throws. What is the probability that Julia makes
her first free throw on her third attempt? 

• How does this example differ from that of the previous section? In this
example there are not a set number of trials. Julia will keep attempting
free throws until she makes one. This is the major difference between
binomial distributions and geometric distributions.

• There are four conditions that must be met in order for a distribution to
fit a geometric setting. These conditions are:

1. Each observation can be considered a “success” or “failure.” 

2. The observations must be independent.

3. The probability of success, which we call p, is the same from one
trial to the next.

4. The variable that we are interested in is the number of observations it
takes to obtain the first success.

σ = ≈10 0 7 0 3 1 4491( . )( . ) .
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• The probability that the first success is obtained in the nth observation
is: P(X = n) = (1 – p)n–1 p. Note that the smallest value that n can be is 
1, not 0. The first success can happen on the first attempt or later, but
there has to be at least one attempt. This formula is not given on the
AP* Exam! 

• Returning to Example 24:

We want to find the probability that Julia makes her first free throw on
her third attempt.

Applying the formula, we obtain: 

P(x = 3) = (1 – .7)3–1 (.7) ≈ 0.063

We can either use the formula to obtain the answer or we can use:

Geompdf(0.7,3) Notice that we drop the first value that we would have
used in binompdf, which makes sense because in a geometric probability
we don’t have a fixed number of trials and that’s what the first number in
the binompdf command is used for. 

Once again, show the work for the formula, not the calculator 
command. No credit will be given for calculator notation.

Probability 103



• Example 25: Using Example 24, what is the probability that Julia
makes her first free throw on or before her fifth attempt?

Solution: This is again a geometric probability because Julia will keep
shooting free throws until she makes one. For this problem, she could
make the shot on her first attempt, second attempt, and so on until the
fifth attempt. Applying the formula, we obtain:

P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4) + P(X = 5)

or

(1 – .7)0(.7)1 + (1 – .7)1(.7)1 + (1 – .7)2(.7)1 + (1 – .7)3(.7)1 + 
(1 – .7)4(.7)1 ≈ 0.9976

We could also use the following formula, which is the formula for 
finding the probability that it takes more than n trials to obtain the first
success:

P(X > n) = (1 – p)n

Using this formula and the concept of the complement, we obtain:

1 – P(X > 5) = 1 – (1 – .7)5 ≈ 0.9976

Either method is OK as long as you show your work. If I used the first
method, I would show at least three of the probabilities so that the grader
of the AP* Exam knows that I understand how to apply the formula. 
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• Example 26: Using Example 24, find the expected value (mean) and
the standard deviation. 

Solution: The mean in this case is the expected number of trials that it
would take before the first success is obtained. The formulas for the
mean and standard deviation are:

Applying these formulas (which are not given on the AP formula sheet),
we obtain:

and
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6.1 Sampling Distributions

• Understanding sampling distributions is an integral part of inferential
statistics. Recall that in inferential statistics you are making conclusions
or assumptions about an entire population based on sample data. In this
chapter, we will explore sampling distributions for means and proportions.
In the remaining chapters, we will call upon the topics of this and previous
chapters in order to study inferential statistics. 

• From this point on, it’s important that we understand the difference
between a parameter and a statistic. A parameter is a number that describes
some attribute of a population. For example, we might be interested in
the mean, �, and standard deviation, � , of a population. There are many
situations for which the mean and standard deviation of a population 
are unknown. In some cases, it is the population proportion that is not
known. That is where inferential statistics comes in. We can use a 
statistic to estimate the parameter. A statistic is a number that describes
an attribute of a sample. So, for the unknown � we can use the sample
mean, , as an estimate of �. It’s important to note that if we were 
to take another sample, we would probably get a different value for .
In other words, if we keep sampling, we will probably keep getting 
different values for (although some may be the same). Although �
may be unknown, it is a fixed number, as a population can have only 
one mean. The notation for the standard deviation of a sample is s. 
(Just remember that s is for “sample.”) We sometimes use s to estimate 
� , as we will see in later chapters. 

x

x
x
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• To summarize the notation, remember that the symbols � and �
(parameters) are used to denote the mean and standard deviation of a
population, and and s (statistics) are used to denote the mean and 
standard deviation of a sample. You might find it helpful to remember 
that s stands for “statistic” and “sample” while p stands for “parameter”
and “population.” You should also remember that Greek letters are 
typically used for population parameters. Be sure to use the correct 
notation! It can help convince the reader (grader) of your AP* Exam 
that you understand the difference between a sample and a population. 

• Consider again a population with an unknown mean, �. Sometimes it
is simply too difficult or costly to determine the true mean, �. When this
is the case, we then take a random sample from the population and find
the mean of the sample, . As mentioned earlier, we could repeat the
sampling process many, many times. Each time we would recalculate 
the mean, and each time we might get a different value. This is called
sampling variability. Remember, � does not change. The population
mean for a given population is a fixed value. The sample mean, , on 
the other hand, changes depending on which individuals from the popu-
lation are chosen. Sometimes the value of will be greater than the 
true population mean, �, and other times will be smaller than �. 
This means that is an unbiased estimator of �.

• The sampling distribution is the distribution of the values of the 
statistic if all possible samples of a given size are taken from the 
population. Don’t confuse samples with sampling distributions. When 
we talk about sampling distributions, we are not talking about one 
sample; we are talking about all possible samples of a particular size
that we could obtain from a given population. 

x
x
x

x

x

x
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• Example 1: Consider the experiment of rolling a pair of standard 
six-sided dice. There are 36 possible outcomes. If we define � to be the
average of the two dice, we can look at all 36 values in the sampling
distribution of (Figure 6.1). If we averaged all 36 possible values of 

, we would obtain the exact value of �. This is always the case. x
x
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1 2 3 4 5 6

1 (1,1) (1,2) (1,3) (1,4) (1,5) (1,6)

2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)

3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)

4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)

5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)

6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

Figure 6.1  Possible outcomes, , and dotplot when rolling a pair of dice.x



• As mentioned, sometimes the value of is below �, and sometimes 
it is above �. In Example 1, you can see that the center of the sampling
distribution is exactly 3.5. In other words, the statistic, , is unbiased
because the mean of the sampling distribution is equal to the true value
of the parameter being tested, which is �. Although the values of may
differ, they do not tend to consistently overestimate or underestimate the
true mean of the population. 

• As you will see later in this chapter, larger samples have less variability
when it comes to sampling distributions. The spread is determined by
how the sample is designed as well as the size of the sample. It’s also
important to note that the variability of the sampling distribution for a
particular sample size does not depend on the size of the population 
from which the sample is obtained. An SRS (simple random sample) of
size 4000 from the population of U.S. residents has approximately the
same variability as an SRS of size 4000 from the population of Indiana
residents. However, in order for the variability to be the same, both 
samples must be the same size and be obtained in the same manner. 
We want our samples to be obtained from correct sampling methods and
the sample size to be large enough that our samples have low bias and
low variability. 

6.2 Sample Means and the Central Limit Theorem

• The following activity will help you understand the difference between
a population and a sample, sampling distributions, sampling variability,
and the Central Limit Theorem. I learned of this activity a few years 
ago from AP Statistics consultant and teacher Chris True. I am not sure
where this activity originated, but it will help you understand the concepts
presented in this chapter. If you’ve done this activity in class, that’s
great! Read through the next few pages anyway, as it will provide you
with a good review of sampling and the Central Limit Theorem.

x

x

x
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• The activity begins with students collecting pennies that are currently
in circulation. Students bring in enough pennies over the period of a 
few days such that I get a total of about 600 to 700 pennies between all
of my AP Statistics classes. Students enter the dates of the pennies into
the graphing calculator (and Fathom) as they place the pennies into a
container. These 600 to 700 pennies become our population of pennies.
Then students make a guess as to what they think the distribution of our
population of pennies will look like. Many are quick to think that the
distribution of the population of pennies is approximately normal. After
some thought and discussion about the dates of the pennies in the popula-
tion, students begin to understand that the population distribution is not
approximately normal but skewed to the left. Once we have discussed
what we think the population distribution should look like, we examine 
a histogram or dotplot of the population of penny dates. As you can see
in Figure 6.2, the distribution is indeed skewed to the left. 
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Figure 6.2  Population distribution for 651 pennies.



• It’s important to discuss the shape, center, and spread of the distribution.
As just stated, the shape of the distribution of the population of pennies 
is skewed left. The mean, which we will use as a measure of center, is 
� = 1990.5868. Since we are using the mean as the measure of center, 
it makes sense to use the standard deviation to measure spread. For this
population of 651 pennies, � = 12.6937 years.

• Once we’ve discussed the shape, center, and spread of the population
distribution, we begin sampling. Students work in pairs and draw out
several samples of each of the sizes: 4, 9, 16, 25, and 50. Sampling 
variability becomes apparent as students repeat samples for the various
sample sizes. We divide up the sampling task among the students in class
so that when we are done we have about 100 to 120 samples for each
sample size. We graph the sampling distribution for each sample size and
compute the mean and standard deviation of each sampling distribution.

• We can then analyze the sampling distribution for each sample size.
We begin with n = 4 (Figure 6.3).
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Figure 6.3  Sampling distribution for samples of size n = 4.



• Again, think about the shape, center, and spread of the distribution.
Remember, this is a sampling distribution. This is the distribution 
of about 100 samples of size 4. As you can see in Figure 6.3, the shape 
of the sampling distribution is different from that of the population. 
Although the shape of the population is skewed left, the shape of the 
sampling distribution for n = 4 is more symmetrical. The center of the
sampling distribution is �x– = 1990.6636, which is very close to 
the population mean, �. The spread of the sampling distribution is 
� x– ≈ 6.6031. We can visualize that the spread of the sampling distribution
is less than that of the population and that the mean of the sampling 
distribution (balancing point) is around 1990 to 1991. Note that if 
we had obtained all samples of size 4 from the population, then

�x– = � = 1990.5868 and 

Although it’s impractical to obtain all possible samples of size 4 from the
population of 651 pennies, our results are very close to what we would
obtain if we had obtained all 7,414,857,450 samples. That's right; from 
a population of 651 pennies, the number of samples of size 4 you could
obtain is 

• The following sampling distribution is for samples of size n = 9 
(Figure 6.4).
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• The sampling distribution for samples of size n = 9 is more symmetrical
than the sampling distribution for n = 4. The mean and standard deviation
for this sampling distribution are �x– ≈ 1990.1339 and � x– ≈ 4.8852.
Again, we can visualize that the mean is around 1990 to 1991 and that
the spread is less for this distribution than that for n = 4.

• The following sampling distribution is for samples of size n = 16 
(Figure 6.5).
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Figure 6.4  Sampling distribution for samples of size n = 9.

Figure 6.5  Sampling distribution for samples of size n = 16.



• The sampling distribution for samples of size n = 16 is more symmetrical
than the sampling distribution for n = 9. The mean and standard deviation
for this sampling distribution are �x– ≈ 1990.4912 and � x– ≈ 4.3807.
Again, we can visualize that the mean is around 1990 to 1991 and that
the spread is less for this distribution than that for n = 9.

• Notice the outlier of 1968. Although it’s possible to obtain a sample of
size n = 16 with a sample average of 1968 from our population of pennies,
it is very unlikely. This is probably a mistake on the part of the student
reporting the sample average or on the part of the student recording the
sample average. It’s interesting to note the impact that the outlier has 
on the variability of the sampling distribution. The theoretical standard
deviation for the sampling distribution is 

Notice that the standard deviation of our sampling distribution is greater
than this value, which is due largely to the outlier of 1968. This provides
us with a good reminder that the mean and standard deviation are not
resistant measures. That is to say that they can be greatly influenced by
extreme observations.

• The following is the sampling distribution obtained for n = 25
(Figure 6.6).
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• The mean and standard deviation for this sampling distribution are 
�x– ≈ 1990.75 and � x– ≈ 2.5103. The shape of the sampling distribution is
more symmetrical and more normal. We can visualize that the center of
the distribution is again around 1990 to 1991 and that the variability is
continuing to decrease as the sample size gets larger. 

• The following is the sampling distribution obtained for n = 50 
(Figure 6.7).
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Figure 6.6  Sampling distribution for samples of size  n = 25.

Figure 6.7  Sampling distribution for samples of size  n = 50.



• The mean and standard deviation for this sampling distribution are 
�x– ≈ 1990.4434 and � x– ≈ 3.0397. The shape of the sampling distribution
is more normal than that of any of the sampling distributions of smaller
sample sizes. The center can again be visualized to be around 1990 to
1991, and the spread can be visualized to be smaller that that of the 
sampling distributions of smaller sample sizes. Notice, however, that the
standard deviation of the sampling distribution is actually larger than that
of size n = 25. How can this happen? Notice that there are two outliers.
My students called them “super outliers.” These are responsible for 
making the standard deviation of the sampling distribution larger than it
would be theoretically. These outliers are very, very unlikely. We would
be more likely to be struck by lightning twice while winning the lottery
than to obtain two outliers as extreme as these. The outliers are probably
due to human error in recording or calculating the sample means. 

• The penny activity is the Central Limit Theorem (the Fundamental
Theorem of Statistics) at work. The Central Limit Theorem says that as
the sample size increases, the mean of the sampling distribution of
approaches a normal distribution with mean � and standard deviation, 

This is true for any population, not just normal populations! How large
the sample must be depends on the shape of the population. The more
non-normal the population, the larger the sample size needs to be in order
for the sampling distribution to be approximately normal. Most textbooks
consider 30 or 40 to be a “large” sample. The Central Limit Theorem
allows us to use normal calculations when we are dealing with non-
normal populations, provided that the sample size is large. It is important 

to remember that �x– ≈ � and for any sampling distribution of the

mean. The Central Limit Theorem states that the shape of the sampling
distribution becomes more normal as the sample size increases.
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6.3 Sample Proportions and the Central Limit Theorem

• Now that we’ve discussed sampling distributions, sample means, and
the Central Limit Theorem, it’s time to turn our attention to sample 
proportions. Before we begin our discussion, it’s important to note that
when referring to a sample proportion, we always use When referring
to a population proportion, we always use p. Note that some texts use 
� instead of p. In this case, � is just a Greek letter being used to denote
the population proportion, not 3.1415 …

• The Central Limit Theorem also applies to proportions as long as the
following conditions apply:

1. The sampled values must be independent of one another. Sometimes
this is referred to as the 10% condition. That is, the sample size must
be only 10% of the population size or less. If the sample size is larger
than 10% of the population, it is unlikely that the individuals in the
sample would be independent.

2. The sample must be large enough. A general rule of thumb is that 
np ≥ 10 and n(1 – p) ≥ 10. As always, the sample must be random.

• If these two conditions are met, the sampling distribution of should
be approximately normal. The mean of the sampling distribution of is
exactly equal to p. The standard deviation of the sampling distribution is
equal to: 

• Note that because the average of all possible values is equal to p, 
the sample proportion, , is an unbiased estimator of the population 
proportion, p.
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• Also notice how the sample size affects the standard deviation. 

Notice that as n gets larger, the fraction gets smaller. 

Thus, as the sample size increases, the variability in the sampling 
distribution decreases. This is the same concept discussed in the penny
activity. Note also that for any sample size n, the standard deviation is
largest from a population with p = 0.50.

p p
n

( )1−
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7.1 The t-Distributions 

• The Central Limit Theorem (CLT) is a very powerful tool, as was
evident in the previous chapter. Our penny activity demonstrated that 
as long as we have a large enough sample, the sampling distribution 
of is approximately normal. This is true no matter what the population
distribution looks like. To use a z-statistic, however, we have to know the
population standard deviation, � . In the real world, � is usually unknown.
Remember, we use statistical inference to make predictions about what
we believe to be true about a population. 

• When � is unknown, we estimate � with s. Recall that s is the sample
standard deviation. When using s to estimate � , the standard deviation of 

the sampling distribution for means is When you use s to

estimate � , the standard deviation of the sampling distribution is called the
standard error of the sample mean, .

• While working for Guinness Brewing in Dublin, Ireland, William S.
Gosset discovered that when he used s to estimate � , the shape of the
sampling distribution changed depending on the sample size. This new
distribution was not exactly normal. Gosset called this new distribution
the t-distribution. It is sometimes referred to as the student’s t. 

• The t-distribution, like the standard normal distribution, is single-
peaked, symmetrical, and bell shaped. It’s important to notice, as 
mentioned earlier, that as the sample size (n) increases, the variability 
of the sampling distribution decreases. Thus, as the sample size increases,
the t-distributions approach the standard normal model. When the 
sample size is small, there is more variability in the sampling distribution,
and therefore there is more area (probability) under the density curve 
in the “tails” of the distribution. Since the area in the “tails” of the 
distribution is greater, the t-distributions are “flatter” than the standard
normal curve. We refer to a t-distribution by its degrees of freedom.
There are n–1 degrees of freedom. The “n–1” degrees of freedom 

x
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are used since we are using s to estimate � and s has n–1 degrees of 
freedom. Figure 7.1 shows two different t-distributions with 3 and 12
degrees of freedom, respectively, along with the standard normal curve.
It’s important to note that when dealing with a normal distribution, 

and when working with a t-distribution, 

Using s to estimate � introduces another source of variability into the
statistic.

z x
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t x
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Figure 7.1  Density curves with 3 and 12 degrees of freedom. Notice how
the t-distribution approaches the standard normal curve as the
degrees of freedom increases.



7.2 One-Sample t-Interval for the Mean

• As mentioned earlier, we use statistical inference when we wish to 
estimate some parameter of the population. Often, we want to estimate the
mean of a population. Since we know that sample statistics usually vary,
we will construct a confidence interval. The confidence interval will give
a range of values that would be reasonable values for the parameter of
interest, based on the statistic obtained from the sample.In this section, we
will focus on creating a confidence interval for the mean of a population. 

• When dealing with inference, we must always check certain assumptions
for inference. This is imperative! These “assumptions” must be met for
our inference to be reliable. We confirm or disconfirm these “assumptions”
by checking the appropriate conditions. Throughout the remainder 
of this book, we will perform inference for different parameters of 
populations. We must always check that the assumptions are met before
we draw conclusions about our population of interest. If the assumptions
cannot be verified, our results may be inaccurate. For each type of 
inference, we will discuss the necessary assumptions and conditions.

• The assumptions and conditions for a one-sample t-interval or one-
sample t-test are as follows:
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Assumptions Conditions
1. Individuals are independent 1. SRS and <10% of population

(10n<N)

2. Normal population assumption 2. One of the following:
– Given a normal population
– Graph of sample data is 

symmetric with no outliers
– Sample is large enough 

(n ≥ 30) that the sampling
distribution of is 
approximately normal

x



• The t-procedures (t-interval and t-test) are robust, meaning that the
results of our t-interval or t-test would not change very much even though
the assumptions of the procedure are violated.

• Let’s discuss the assumptions and conditions. The first assumption is that
the individuals or observations are independent. This should be true if our
sample data is an SRS or if our data comes from a randomized experiment
and if the sample size is less than 10% of the population size. The second
assumption is that the population is normal. We may know or be given that
the population is normal. If this is the case, we state this in our problem. If
we do not know or if we are not told that the population is normal and the
sample size is small, we must then look at a graph of the sample data. A
histogram or a modified boxplot is probably best suited for looking at the
sample data. If the sample size is less than 30, we must be cautious of out-
liers or skewness in the data. Since normal distributions drop off quickly, it
is unlikely to take a sample from a normal population and have the sample
contain outliers or skewness. Outliers and strong skewness in a sample can
be an indication that the population from which the sample is drawn might
be non-normal. If the sample is large, we know that no matter what the pop-
ulation distribution looks like, we are guaranteed that the sampling distribu-
tion will be approximately normal. If you are asked to work on a problem
for which the assumptions cannot be verified, state that this is the case and
that the results of the inference being performed may be inaccurate. 

• The following example involves finding a confidence interval. As 
you solve statistical inference problems in this and the following
chapters, keep in mind the following three steps:

1. Identify the parameter of interest, choose the appropriate inference
procedure, and verify that the assumptions and conditions for that
procedure are met.

2. Carry out the inference procedure. Do the math! Be sure to apply the
correct formula.

3. Interpret the results in the context of the problem.
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• Example 1: Nolan wanted to estimate the average number of miles
that a typical Indiana high-school male cross-country runner would run
over a one-week period. The following is a random sample of the number
of miles per week run by 20 male high-school cross-country runners in
the state of Indiana. Find a 90% confidence interval for the average 
number of miles run per week for all male high-school cross-country
runners in the state of Indiana. 

20, 30, 35, 40, 40, 45, 45, 45, 50, 50, 50, 50, 52, 54, 55, 
60, 60, 60, 70, 75

Solution: 

Step 1: Find a 90% confidence interval for � the mean number of miles
run per week by a male high-school cross-country runner in the state of
Indiana. Since � is unknown, we will use a one-sample t-interval for the
mean. We must check the assumptions and conditions.

Assumptions and conditions that verify:

1. Individuals are independent. We are given that the sample is random,
and we can safely assume that there are more than 200 male cross-
country runners in the state of Indiana (10n < N).

2. Normal population assumption. We are given a small sample, but a
modified boxplot of the sample data appears to be symmetric with no
outliers (Figure 7.2). We should be safe using t-procedures.
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Step 2: Since the conditions are met, we will construct the confidence
interval for the population mean, �, using:

with 20 – 1 = 19 df

t* = 1.729 can be found by using the t-distribution table. Use 19 df and
cross-reference with 90% confidence at the bottom of the table. Study 
the table. Notice how the t* values increase and approach z* as the 
degrees of freedom and the sample size increase. Remember that the 
t-distributions approach the normal distribution when the sample size
gets large.

x t s
n

n± ×−1
*

49 3 1 729
20

. .±
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

12.8968

44.314, 54.286( )

Figure 7.2 The sample data appears symmetrical 
with no outliers.



Step 3: Conclude in context! We are 90% confident that the true average
number of miles that Indiana high-school male cross-country runners 
run in a given week is between 44.314 and 54.286 miles (“true average”
refers to the average of all Indiana male cross-country runners). 

• Notice that the sample mean, , is the center of the confidence interval.
The distance between the ends of the confidence interval and the center 

is called the margin of error. Thus, is the margin of error.

• I highly recommend using the three-step process when doing inference.
Some textbooks write up the inference problems a little differently. As
long as you have all the essentials of the inference procedure, it doesn’t
make a huge difference how you organize it. I have found it best to find 
a system you can use so that you don’t leave out any of the essentials 
of inference, including the assumptions and conditions. Always show
your work!

• Refer to Example 1; it’s important to note several things. First of all,
make sure you define any variables you use. State what procedure you
are going to use and, of course, make sure you check the assumptions and
conditions. If you refer to a histogram, modified boxplot, or any type of
graph of the data, make sure to include the graph. Don’t assume that the
reader (grader) will know what you are talking about. Always plot 
the data if you are given a small sample. If the sample is over 30 (some
books say 40), then you do not have to plot the sample data. Remember
that if the sample is “large enough,” then the sampling distribution should
be approximately normal, no matter what the sample data looks like. 
If the population is given to be normal, you don’t have to worry about
skewness or outliers either. If you are not given a normal population and
the sample is less than 30, then you must plot the sample data to look for
skewness and outliers. 

x

t s
n

n− ×1
*
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• Note that a graphing calculator could be used to find the confidence
interval. It can also perform various tests of significance. The graphing
calculator is a powerful tool, but it doesn’t take the place of applying
formulas and showing our work.

Interpreting Confidence Intervals

• It is highly likely that your understanding of how to interpret a confidence
interval will be tested on the AP* Exam. What exactly can we say when
we interpret the confidence interval in the context of the problem? In
Example 1, we concluded, with 90% confidence, that � was between
44.314 and 54.286 miles. That is, the average number of miles run by a
typical male high-school cross-country runner in the state of Indiana is
between 44.314 and 54.286. What exactly does this mean? Here’s what
we can say: We can say that if this process were repeated many times,
approximately 90% of all confidence intervals that we construct would
contain the true mean. That is, if we were to obtain 100 different samples,
find the mean of each sample, and construct 100 different confidence
intervals, we would expect about 90 of them to contain the true population
mean, �. That is also to say that about 10 of our confidence intervals
would not contain the true population mean. No matter how carefully 
we obtain our random sample, there will always be sampling variability,
and this variability makes the process imperfect. Be Careful! We cannot
say that there is a 90% probability that the true mean is between 44.314
and 54.286 miles. We cannot say that 90% of all males cross-country
runners in the state of Indiana run between 44.314 and 54.286 miles per
week on average. These and comments like these are common on multiple-
choice questions on exams. We can only say that if this process were
repeated many times, 90% of all confidence intervals that we construct
would contain the true population mean (Figure 7.3).
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Figure 7.3  18 out of 20 confidence intervals contain the true 
population mean.



7.3 One-Sample t-Test for the Mean

• The following example (Example 2) will be used to outline the essentials
of a one-sample t-test. This is an example of a hypothesis test, or test 
of significance. We use this form of statistical inference when we wish 
to test a claim that has been made concerning a population. As with 
confidence intervals, we use sample data to help us make decisions about
the population of interest. In other words, we use the sample data to see
if there is enough “evidence” to support the claim or to reject it. 

• We will use the same basic three-step method for hypothesis testing
that we used for confidence intervals with some minor modifications.
Remember, it’s not the numbering of the steps that’s important; it’s what’s
in the three steps. Make sure that no matter how you solve inference
problems, you include all the essentials.

• Use the following three-step method when performing a hypothesis
test for the mean of a population:

1. Identify the parameter of interest, choose the appropriate inference
procedure, and verify that the assumptions and conditions for that
procedure are met. Define any variables of interest. State the 
appropriate null and alternative hypotheses.

2. Carry out the inference procedure. Do the math! Calculate the test
statistic and find the p-value.

3. Interpret the results in context of the problem. This is by far the most
important part of inference. Be sure that your decision to reject or
fail to reject the null hypothesis is done in context of the problem
and is based upon the p-value.
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• As noted in step 1, hypothesis testing typically involves a null hypothesis
and an alternative hypothesis. It’s important to note that we are not
proving anything; we are simply testing to see if there is enough evidence
to reject or fail to reject the null hypothesis. The null hypothesis is denoted
by H0, pronounced H-nought. The alternative hypothesis is denoted by
Ha.

• The null hypothesis should always include an equality (like ≤, =, or ≥)
and must always be written using parameters and not statistics! Of course,
you should define any variables you use. For example: H0 : � = �0,
where �0 is the hypothesized value. 

• The alternative hypothesis can be one-sided or two-sided. A one-sided
alternative would be either Ha : � < �0 or Ha : � > �0. A two-sided 
alternative would be: Ha : � ≠ �0.

• The same assumptions and conditions must be met for a hypothesis test
as for a confidence interval. Remember: Always check the assumptions
and conditions!

• When the conditions for using one-sample t-procedures are met, we 

can use the test statistic with n–1 degrees of freedom.

• We use the p-value to determine if we reject or fail to reject the null
hypothesis. The p-value is the probability of obtaining a sample statistic
as extreme or more extreme than we have obtained, given that the null
hypothesis is true. The smaller the p-value, the more evidence we have 
to reject the null hypothesis. Most graphing calculators will calculate the
p-value for us, but it’s important that we understand how it is calculated.
We will discuss how the p-value is calculated after we’ve completed
Example 2. 

t x
s

n

=
−μ ,
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• Example 2: A recent news broadcast stated that the typical U.S. teen
plays an average of 15 hours of video games per week. A group of parents,
at a meeting discussing the broadcast, believe that teens actually play
more than 15 hours of video games per week. A random sample of 42
teens is selected, and it is determined that the average number of hours
that video games are played is 16.5 hours with a standard deviation of
4.5 hours. Is there evidence to support the parents’ claim at the 5% level
of significance?

Solution: 

Step 1: We will conduct a one-sample t-test.

Let � = mean number of hours that a typical teen plays video games
per week.

H0 : � = 15
Ha : � > 15

Assumptions and conditions that verify:

1. Individuals are independent. We are given that the sample is 
random, and we can safely assume that there are more than 
420 teenagers in the U.S. (10n < N).

2. Normal population assumption. We are given a large sample;
therefore the sampling distribution of should be approximately
normal. We should be safe using t-procedures. 

x
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Step 2: ≈ 2.1602  df = 41

p ≈ 0.0183

Step 3: With a p-value of 0.0183, we reject the null hypothesis at the 5%
level. There appears to be enough evidence to reject the null hypothesis
and conclude that the typical teen plays more than 15 hours of video
games per week. 

• Let’s return to the p-value. What does a p-value of 0.0183 really mean?
Think about it this way. If the typical teen really does play an average of
15 hours of video games a week, the probability of taking a random 
sample from that population and obtaining an value of 16.5 or more 
is only 0.0183. In other words, it’s possible, but pretty unlikely. Only
about 1.83% of the time can we obtain a sample average of 16.5 hours 
or greater, if the true population mean is 15 hours.

• In Example 2, we rejected the null hypothesis at the 5% level (this is
called the alpha level, �). The most common levels at which we reject
the null hypothesis are the 5% and 1% levels. That’s not to say that we
can’t reject a null hypothesis at the 10% level or even at the 6% or 7%
levels; it’s just that 1% and 5% happen to be commonly accepted levels
at which we reject or fail to reject the null hypothesis. 

x

t x
s

n

=
−

=
−μ 16 5 15

4 5
42

.
.
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• You may struggle a little while first using the p-value to determine
whether you should reject or fail to reject the null hypothesis. Always
compare your p-value to the given � – level. In Example 2, we used an
� – level of 0.05. Our p-value of 0.0183 led us to reject at the 5% level
because 0.0183 is less than 0.05. We did not reject at the 1% level 
because 0.0183 is greater than 0.01. To reject at a given � – level, the 
p-value must be less than the � – level.

• If an � – level is not given, you should use your own judgment. You
are probably safe using a 1% or 5% alpha level. However, don’t feel
obligated to use a level. You can make a decision based on the p-value
without using an alpha level. Just remember that the smaller the p-value,
the more evidence you have to reject the null hypothesis.

• The p-value in Example 2 is found by calculating the area to the right
of the test statistic t = 2.1602 under the t-distribution with df = 41. If we
had used a two-sided alternative instead of a one-sided alternative, we
would have obtained a p-value of 0.0367, which would be double that of
the one-sided alternative. Thus, the p-value for the two-sided test would
be found by calculating the area to the right of t = 2.1602 and combining
that with the area to the left of t = –2.1602.

7.4 Two-Sample t-Interval for the Difference Between
Two Means

• We are sometimes interested in the difference in two population means,
�1 – �2. The assumptions and conditions necessary to carry out a confi-
dence interval or test of significance are the same for two-sample means
as they are for one-sample means, with the addition that the samples
must be independent of one another. You must check the assumptions
and conditions for each independent sample. 

Inference for Means 135



• The assumptions and conditions for a two-sample t-interval or two-
sample t-test are as follows:
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Assumptions Conditions

1. Samples are independent 1. Are they? 
of each other Does this seem reasonable?

2. Individuals in each sample 2. Both SRSs and both <10% 
are independent population (10n<N for both 

samples)

3. Normal populations 3. One of the following:
assumption – Given normal populations

– Graph of data for both samples
shows no outliers or strong
skewness

– Samples are both large (n ≥ 30); 
therefore the sampling distribu-
tion of is approximately
normal

x x1 2−

• Remember that the mean of the sampling distribution of is 
�1 – �2.

• The standard deviation of the sampling distribution is 

x x1 2−

σ σ1
2

1

2
2

2n n
+ .



Remember that the population standard deviations are usually unknown.
Recall that when this is the case, we use the sample standard deviation to
estimate the population standard deviation. Thus, the standard error

(SE) of the sampling distribution is 

• Once we’ve checked the assumptions and conditions, we can proceed
to finding the confidence interval for the difference of the means of

the two independent groups. We can use . 

The t* value depends on the particular level of confidence that you want
and on the degrees of freedom (df ).

• To find the degrees of freedom of a two-sample t-statistic, we can use
one of two methods: 

Method 1: Use the calculator-generated degrees of freedom. This gives
an accurate approximation of the t-distribution based on degrees of 
freedom from the data. Usually, we obtain non-whole number values
using this method. The formula our calculator uses is somewhat complex,
and we probably don’t need to be too concerned with how the degrees 
of freedom are calculated. Make sure, however, that you always state 
the degrees of freedom that you are using, regardless of what method 
you use.

Method 2: Use the degrees of freedom equal to the smaller of the two
values of n1 – 1 and n2 – 2. This is considered a conservative method.
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• Example 3: Two high-school cross-country coaches from different
teams are discussing their boys’ and girls’ teams. One coach believes that
male and female cross-country runners in the state of Indiana differ in 
the number of miles they run, on average, each week. The other coach
disagrees. He feels that male and female cross-country athletes run 
about the same number of miles per week, on average. Construct a 95%
confidence interval for the difference in average weekly mileage between
male and female cross-country runners in the state of Indiana. Consider
the data obtained from two independent random samples:

Boys: 20, 30, 35, 40, 40, 45, 45, 45, 50, 50, 50, 50, 52, 54, 55, 
60, 60, 60, 70, 75

Girls: 20, 20, 30, 35, 35, 40, 40, 40, 45, 45, 45, 50, 50, 50, 52, 
60, 60, 60, 60, 60

Solution:

Step 1: 

Let �1 = mean weekly mileage for male runners.

Let �2 = mean weekly mileage for female runners.

Find the mean difference, �1 – �2, in weekly mileage between male and
female high-school cross-country runners in the state of Indiana. 

Assumptions and conditions that verify:

Samples are independent of one another. We are given that the samples
are independent of one another. 

Individuals are independent. We are given that the samples are random,
and we can safely assume that there are more than 200 male and 200 female
cross-country runners in the state of Indiana (10n < N for both samples).

Master Math: AP Statistics138



Inference for Means 139

Normal population assumption. We are given small samples, but modi-
fied boxplots for each sample appear to be symmetric with no outliers.
We should be safe using t-procedures.

Figure 7.4  Modified boxplots show neither 
outliers nor strong skewness.



Step 2: Since the assumptions and conditions have been met, we will
construct a two-sample t-interval.

df = 37.9738 from calculator

(–3.7, 12.6)

Note that it would also be acceptable to use 19 degrees of freedom, as it
is the smaller n–1.

Step 3: We are 95% confident that the true difference in the means of
male and female high-school cross-country runners in the state of Indiana
is between –3.7 miles and 12.6 miles. 

• Does our confidence interval shed any light on the coaches’ discussion
concerning whether male and female runners differ in weekly average
mileage? We can see from our interval that males run between –3.7 miles
to 12.6 miles more than their female counterparts. Think about it! What
does it mean for male runners to run –3.7 miles more than females? 
It means that they are running 3.7 miles less than females. Equally 
important is the fact that zero is contained in the confidence interval,
which means that male and female cross-country runners in the state 
of Indiana might run the same number of weekly miles, on average. 
Remember, we are not 100% sure of anything. Recall that a 95% confi-
dence interval implies that if we were to construct many, many confidence
intervals using the same process, about 95 out of every 100 confidence
intervals would contain the true mean difference in the amount of miles
run by male and female high-school cross-country runners in the state 
of Indiana.
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• In the next section, we will perform a two-sample t-test using the 
same data as the previous problem. We will outline the appropriate steps
of inference and then show how the confidence interval relates to the
significance test. 

7.5 Two-Sample t-Test for the Difference Between 
Two Means

• The assumptions and conditions for a two-sample hypothesis test for
means are the same as the assumptions and conditions for a two-sample
t-interval. The null hypothesis for this type of test can be written as: 
H0 : �1 = �2 or H0 : �1 – �2 = 0

As with a one-sample t-test, the alternative hypothesis can be written
with ≠, <, or >. Once the appropriate assumptions and conditions have
been met, we can calculate the two-sample t-statistic as follows:

• Example 4: Let’s revisit Example 3. Two cross-country coaches from
different teams are discussing their boys’ and girls’ teams. One coach
believes that male and female cross-country runners in the state of Indiana
differ in the number of miles they run, on average, each week. The other
coach disagrees. He feels that male and female cross-country athletes run
about the same number of miles per week, on average. Is there reason to
believe that male and female cross-country runners in Indiana differ in
the number of miles they run, on average, each week? Give appropriate
statistical evidence to support your answer.
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Solution: 

Step 1: To answer the question, we will perform a two-sample t-test. 
We have already defined our variables and checked the appropriate 
assumptions and conditions for this type of inference in Example 3. 
We state the null and alternative hypotheses:

H0 : �1 = �2

H0 : �1 ≠ �2 

Step 2: Since the assumptions and conditions have been met, we can
calculate the test statistic as follows:

t ≈ 1.1053  p ≈ .2760 (p-value)

Step 3: With a p-value of approximately 0.2760, we fail to reject the 
null hypothesis at any reasonable level of significance. We conclude that
male and female cross-country runners do not differ in average weekly
mileage. 
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• Consider what the p-value really means in this case. If the null hypothesis
were really true—that is, male and female cross-country runners in Indiana
really do not differ in weekly mileage—the probability of obtaining two
samples with average values as different as those obtained is approximately
27.60%. In other words, more than 25% of the time, when sampling, we
would obtain sample values from these populations that are as different
as or more different than we have obtained. There is not enough statistical
evidence to support the claim that males and females differ in weekly
average mileage. Remember, typical p-values that lead to rejection of the
null hypothesis are usually l0% or less.

• In the previous section (Example 3), we constructed a 95% confidence
interval for the difference in mean weekly mileage between the male 
and female cross-country runners. Recall that the 95% confidence 
interval we obtained in Example 3 contained zero. If the difference 
between �1 and �2 were really zero, we could conclude that there was 
no difference between the means. That is exactly what our results from
the significance test in Example 4 are telling us. 

• Understand the connection between a confidence interval and a test 
of significance. A 95% confidence interval is equivalent to a two-sided
significance test at the 5% level. A 90% confidence interval is equivalent
to a two-sided significance test at the 10% level or to a one-sided test 
at the 5% level. Make sure you understand the connection between 
confidence intervals and tests of significance.
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7.6 Matched Pairs (One-Sample t)

• Recall Example 4 from Chapter 4, concerning a matched-pairs experi-
ment. A manufacturer of bicycle tires wants to test the durability of a 
new material used in bicycle tires. A completely randomized design
might be used where one group of cyclists uses tires made with the 
“old” material, and another group uses tires made with the “new” 
material. The manufacturer realizes that not all cyclists will ride their
bikes on the same type of terrain and in the same conditions. To help
control these variables, we can implement a matched-pairs design.
Recall that matching is a form of blocking. One way to do this is to have
each cyclist use both types of tires. A coin could be used to determine
whether the cyclist uses the tire with the new material on the front of the
bike or on the rear. We could then compare the front and rear tires for
each cyclist.

• Suppose in this experiment that the researcher has kept track of the
number of miles that each tire lasted before needing to be replaced. We
might consider looking at the average number of miles that the tires with
the new material lasted and compare that with the average number of miles
that the tires with the old material lasted. However, we should realize that
the assumption of independence has been violated because each cyclist 
is using one tire with the old material and one tire with the new material.
Since the data comes from matching, the data sets are not independent.
When this happens, we take the difference for each pair of data and use a
one-sample t-procedure, instead of a two-sample t-procedure. Remember:
Matched pairs are always a one-sample t-procedure, not a two-sample
t-procedure!
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• Example 5: Find a 90% confidence interval for the mean difference in
the mileage obtained for tires with the new material and tires with the old
material. Following are the paired differences (new minus old) for each
of the 17 riders, chosen at random, who took part in the experiment:

50, 45, 50, 50, 100, 100, 100, –10, 75, –25, 0, 25, 75, 25, 50, 40, 35 

Solution:

Step 1: We want to estimate �, the mean difference in the number of
miles obtained from tires using the new material and tires using the old
material. It’s common to use �d or �diff to show that we are interested 
in the mean difference. Since we are using data from a matched-pairs
experiment, we will check the assumptions and conditions for a one 
sample t-interval.

Assumptions and conditions that verify:

Individuals are independent. We are given that the sample is random.
We can safely assume that there are more than 170 cyclists who might
use these types of tires (10n < N).

Normal population assumption. We are given a small sample, but a
modified boxplot of the differences (Figure 7.5) appears to be fairly 
symmetric with no outliers. We should be safe using t-procedures.
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Step 2: Since the assumptions and conditions are met, we will construct
a one-sample t-interval for the differences.

df = 16

(30.537, 61.816)

Step 3: We are 90% confident that the mean difference in the number 
of miles that tires manufactured with the new material lasted compared
to those constructed with the old material is between 30.537 and 
61.816 miles.
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Figure 7.5  A modified boxplot of the differences 
shows little skewness and no outliers.



7.7 Errors in Hypothesis Testing: Type I, Type II, 
and Power

• No matter how carefully we set up an experiment or how carefully 
we obtain a sample, we can always make a mistake when conducting a
hypothesis test. Due to sampling variability, we sometimes reject the null
hypothesis when we should fail to reject it and sometimes fail to reject
the null hypothesis when we should reject it. These types of mistakes are
called type I and type II errors. 

A type I error occurs when we reject the null hypothesis when, in fact, it
is actually correct. The probability of making a type I error is equal to the
significance level (� – level) of the test. 

A type II error occurs when we fail to reject the null hypothesis when,
in fact, the null hypothesis is false. The probability of a type II error is
referred to as �.

• Finding the probability of a type I error is as simple as stating the 
significance level of the test. Students are not responsible for calculating
the probability of a type II error, but you should understand the concepts
of both type I and type II errors and be able to explain them in context of
the problem. You should also understand that the probability of a type II
error is dependent upon the chosen alternative value of the given 
parameter. 

• The power of the test is the probability of rejecting the null hypothesis
given that a particular alternative value is true. The power of the test is
equal to 1 – �. We want the power of the test to be relatively high. Think
of it this way: If the null hypothesis is not true and a particular alternative
value is true, then we should be rejecting the null hypothesis. Typically,
we want the power of the test to be around 80% or above. 
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• There are four ways we can increase the power of a hypothesis test.
The first two are probably the most important for you to remember. 

1. Increase the � – level. Increasing the � – level is one method of
increasing the power of the test.

2. Increase the sample size. Increasing the sample size makes us 
more confident about our decision to reject or fail to reject the null
hypothesis. Cost sometimes prohibits increasing the sample size.

3. Decrease the standard deviation. Sometimes it is possible to
decrease the standard deviation, and sometimes it is not. Machinery
can sometimes be finely tuned so that the production of goods can 
be more precise, which can in turn reduce the variability.

4. Choose a different alternative value. Choosing an alternative 
value that is further away from the value of the null hypothesis 
will increase the value of the power. The power is affected by the
difference between the hypothesized value and the true value of 
the parameter.
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8.1 One-Sample z-Interval for Proportions

• Now that we’ve discussed various statistical inference procedures for
population means, it’s time to turn our attention to statistical inference
involving proportions. We are often concerned about the unknown pro-
portion of the population that has some particular outcome of interest. 

• Remember the appropriate statistical notation when dealing with 
proportions. Always use when referring to a sample proportion and 
p when referring to a population proportion.

• As discussed in Chapter 6, the sampling distribution of is 
approximately normal, provided that np and n(1 – p) are at least 10. 
The standard deviation of the sampling distribution of is 

as long as the population is at least 10 times the sample size. 

When dealing with confidence intervals, we do not know p. Because 
is an unbiased estimator of p, we use to estimate p. These two values
should be close in value, provided that the sample is large enough. 

We can then use the standard error of , which is: 

• When constructing a one-proportion z-interval, we use:

p̂

p̂

p̂

p p
n

( )1−

p̂
p̂

p̂ SE p p
n

=
−ˆ( ˆ ) .1

ˆ ˆ( ˆ )*p z p p
n

±
−1
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• As with any type of inference, always check the assumptions and 
conditions of the inference procedure. The assumptions and conditions
for a one-proportion z-interval or test are:
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Assumptions Conditions
1. Individuals are independent 1. SRS and n < 10% of population

2. Sample is large enough 2. np ≥ 10 and n(1 – p) ≥ 10
Use for C.I. and p0 for testsp̂

• To ensure that we include all the essentials of inference, we will follow
the 3-step method used in Chapter 7. 

1. Identify the parameter of interest, choose the appropriate inference
procedure, and verify that the assumptions and conditions for that
procedure are met.

2. Carry out the inference procedure. Do the math! Be sure to apply the
correct formula.

3. Interpret the results in context of the problem.

• Example 1: Cassidy is interested in knowing the percentage of 
fourth graders in the Indianapolis area who own a cell phone in hopes 
of convincing her parents that she should own one too. With the help of
her favorite statistician, she gathers information from a random sample
of 100 fourth graders in the Indianapolis area. She finds that 18 of the
100 fourth graders sampled do indeed own a cell phone. Construct a 
90% confidence interval for the true proportion of fourth graders who
own cell phones.



Solution: 

Step 1: We want to estimate p, the true proportion of fourth graders who
own cell phones. We must check the assumptions and conditions.

Assumptions and conditions that verify:

1. Individuals are independent. We are given a random sample, and
we are safe to assume that there are more than 1000 fourth graders in
the Indianapolis area (10n<N).

2. Sample is large enough:

100(.18) = 18 ≥ 10 and 100(.82) = 82 ≥ 10. Hence, we are safe to
assume that the sampling distribution of is approximately normal.

Step 2: Since the assumptions and conditions for inference have been
met, we will construct the one-proportion z-interval.

Step 3: We are 90% confident that the true proportion of fourth graders
who own cell phones in the Indianapolis area is between 11.68% and
24.32%. Cassidy will remain one of those “unfortunate” fourth graders
who do not own a cell phone.

ˆ .p = =
18

100
0 18

p̂

ˆ ˆ( ˆ )*p z p p
n

±
−1

0 18 1 645 18 1 18
100

. . . ( . )
±

−

0 11681 0 24319. , .( )
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Margin of Error

• Now that we’ve discussed how to construct a one-sample t-interval 
for the mean of a population and a one-proportion z-interval for the 
population proportion, it’s time to discuss the margin of error. When
dealing with a one-proportion z-interval, the margin of error is the 
distance from the endpoints of the confidence interval to the center of 
the interval, . The margin of error is the product of the z* value and 
the standard error and is affected primarily by the sample size and the 
z* value (confidence level). The margin of error for a t-interval is
affected in a similar fashion by the sample size and the level of 
confidence.

• We know that as the sample size increases, the variability of the 
sampling distribution decreases. The effects of changing the sample 
size on the confidence interval become evident if we change the sample
size while keeping the standard deviation and confidence level the same.
Consider Example 1: How does the confidence interval change when we
increase the sample size in Example 1 from 100 to 500? What happens 
if we increase the sample size in Example 1 to 1000?

90% C.I. n = 100 (0.1168, 0.2432)

90% C.I. n = 500 (0.1517, 0.2083)

90% C.I. n = 1000 (0.1600, 0.2000)

p̂

0 18 1 645 18 1 18
100

. . . ( . )
±

−

0 18 1 645 18 1 18
500

. . . ( . )
±

−

0 18 1 645 18 1 18
1000

. . . ( . )
±

−
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Notice that as the sample size increases, the width of the confidence 
interval decreases. This is due to the fact that there is less sampling 
variability in larger samples than in smaller samples. Thus, the standard
deviation of the sampling distribution is smaller, and, consequently, the
margin of error is smaller. This causes the confidence interval to be 
narrower. It’s easy to see the advantage of using larger samples when
performing inference. Cost and other factors sometimes prohibit using
larger samples. 

• What about the level of confidence for the interval? How does the 
confidence interval in Example 1 change if we keep the sample size of
100 but change the level of confidence to 95%? What happens to the
confidence interval if we change the level of confidence to 99%? 

90% C.I. n = 100 (0.1168, 0.2432)

95% C.I. n = 100 (0.1047, 0.2553)

99% C.I. n = 100 (0.0810, 0.2790)

Notice that as the confidence level increases, so does the width of the
confidence interval. Mathematically, this is the result of using a different
value for z*. Recall that z* is the number of standard deviations from the
mean. To be more confident that our interval contains the true population
proportion, the interval must be wider. Realize that the cost of increasing
the level of confidence is that the interval becomes wider as the level
increases. 

0 18 1 645 18 1 18
100

. . . ( . )
±

−

0 18 1 960 18 1 18
100

. . . ( . )
±

−

0 18 2 576 18 1 18
100

. . . ( . )
±

−
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• We are sometimes required to find the sample size needed to obtain 
a desired margin of error. The next example illustrates how to find the
needed sample size when dealing with proportions. A similar method is
used to find the sample size when dealing with means.

• Example 2: A polling organization wants to determine the sample 
size needed to estimate p, the proportion of voters who plan to vote 
for a particular candidate. The organization wants to estimate p with 
98% confidence and a margin of error of no more than 3%. How large 
of a sample is needed?

Solution: We can use the formula for the margin of error.

Using 2.326 (98% confidence) for z and 0.5 for p*

Solving for n, we obtain:

n ≥ 1502.8544

Because the number of people surveyed must be a whole number, we
round to 1503. It should be noted that 0.5 is used for p*. If previous 
sampling had been done and an estimate of p had been obtained, that
estimate could be used instead of 0.5. However, 0.5 will always give 
a sample size that is larger than any other value used for p*. So if in
doubt, use 0.5.

z p p
n

m*
* *( )1−

≤

2 326 5 1 5 0 03. (. ) ( . ) .−
≤

n
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• As mentioned earlier, we can find a desired sample size needed for a
particular margin of error when dealing with means in the same manner
as we do proportions. Just use the part of the formula that comes after the
� in the appropriate confidence interval and solve for n. Always round
your answer up to the next whole number.

8.2 One-Sample z-Test for Proportions

• Hypothesis testing for a one-proportion z-test is similar to that of a
one-sample t-test, at least to some extent. The difference is that we are
dealing with proportions instead of means. The assumptions and conditions
are the same for a one-proportion z-test as they are for a one-proportion
z-interval. Keep in mind, however, that since we do not know the true
population proportion, p, we use the hypothesized value, p0, when 
checking the assumptions and conditions. We also use p0 for calculating
the standard error of the sampling distribution of . As with a one-sample
t-test, we use an equality when stating the null hypothesis and an
inequality when stating the alternative hypothesis. We will use the same
three-step process for organizing the inference procedure as we have
done thus far to help ensure that we include the essentials of inference. 

• Provided that the assumptions and conditions for a one-proportion 
z-test are met, we can calculate the test statistic using:

p̂

z
p p

p p
n

=
−

−

( ˆ )

( )
0

0 01
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We then obtain a p-value based on the value of z and make a decision
whether to reject or fail to reject the null hypothesis. Consider the 
following example.

• Example 3: A beverage company claims that 45% of adults drink diet
soda. Skeptical about the claim, Addison obtains a random sample of
1000 adults and finds that 419 of them drink diet soda. Is there evidence
to support Addison's suspicion that less than 45% of adults drink diet
soda?

Solution: 

Step 1: We will conduct a one-proportion z-test. 

Let p = proportion of all adults who drink diet soda

H0 : p = 0.45

Ha : p < 0.45

Assumptions and conditions that verify:

1. Individuals are independent. We are given a random sample, and
we are safe to assume that there are more than 10,000 adults who
drink diet soda (10n<N).

2. Sample is large enough:

1000(.419) = 419 ≥ 10 and 1000(.581) = 581 ≥ 10. Be sure to 
show the actual numbers! Therefore, we are safe to assume that the
sampling distribution of is approximately normal.

ˆ .p = =
419

1000
0 419

p̂
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Step 2: The assumptions and conditions for inference have been met; we
will perform a one-proportion z-test.

Step 3: With a p-value of 0.0244, we reject the null hypothesis at the 
5% level. We conclude that the proportion of adults who drink diet soda
is less then 45%.

• Remember, a p-value of 0.0244 would allow us to reject the null 
hypothesis at the 5% level, but not at the 1% level. A sample value 
of 0.419 or less would occur only about 2.44% of the time, purely due 
to chance, if the true proportion of all adults who drank diet soda really
were 45%. This gives us evidence to reject the null hypothesis at the 
5% level.

z
p p

p p
n

=
−

−

( ˆ )

( )
0

0 01

z =
−

−

(. . )
. ( . )

419 45
419 1 419

1000

z ≈−1 9705. p ≈ 0 0244.

p̂
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8.3 Two-Sample z-Interval for Difference Between 
Two Proportions

• We are sometimes interested in comparing the proportion of successes
between two groups. For example, we might be interested in knowing the
difference in the proportion of males and females who text while driving.
Or, we might be interested in the difference between the portion of college
and high-school students who use laptops on a regular basis in their classes. 

• We use the statistic to estimate the true difference in the 
population proportions, . Remember that is an unbiased
estimator of .

• The standard deviation of the sampling distribution of is 

.

When dealing with a confidence interval, the values of p1 and p2 are 
unknown. For this reason, we use the standard error of the statistic

:

• The formula for the confidence interval for comparing two proportions is:

ˆ ˆp p1 2−
p p1 2− . ˆ ˆp p1 2−

p p1 2− .

ˆ ˆp p1 2−

p p
n

p p
n

1 1

1

2 2

2

1 1( ) ( )−
+

−
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p p

n
p p

n
=

−
+

−ˆ ( ˆ ) ˆ ( ˆ )1 1

1

2 2

2

1 1
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1 1
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• The assumptions and conditions for inference when working with two
proportions are as follows:
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Assumptions Conditions
1. Samples are independent of 1. Is this reasonable?

each other

2. Individuals in each sample 2. Both samples are SRSs and 
are independent n<10% of population for both 

samples

3. Both samples are large enough 3. np ≥ 10 and n(1 – p) ≥ 10
for both samples

• Example 4: Nolan hopes to determine the difference in the proportion
of males and females who play video games at least 4 days per week.
Two independent random samples of size 200 are obtained. Of the 
200 girls surveyed, 158 play video games at least 4 days per week. 
Of the 200 boys surveyed, 176 play video games at least 4 days per week.
Construct a 99% confidence interval to help answer Nolan’s question. 

Solution:

Step 1: We want to estimate p1 – p2.

p1 = the proportion of boys who play video games at least 
4 days per week

p2 = the proportion of girls who play video games at least 
4 days per week

ˆ . ˆ .p and p1 2

176
200

0 88 158
200

0 79= = = =



Assumptions and conditions that verify:

1. Samples are independent of each other. We are given that the 
samples are independent of one another.

2. Individuals in each sample are independent. Both samples are
given to be random, and we can safely assume that there are more
than 2000 boys and 2000 girls in the population (10n<N for both
samples).

3. Both samples are large enough: 200(0.88) ≥ 10 and 200(0.12) ≥ 10.
200(0.79) ≥ 10 and 200(0.21) ≥ 10.

Step 2: The assumptions and conditions are met; we are safe to construct
a two-proportion z-interval.

Step 3: We are 99% confident that the true difference in the proportion
of boys and girls who play video games at least 4 days per week is 
between –.49% and 18.49%. 

• Keep in mind that the interval contains zero. This means that zero is a
plausible value for the difference in the proportion of boys and girls who
play video games at least 4 days per week. Zero is contained in the inter-
val, and we are 99% confident that the true difference is captured in the
confidence interval that we have obtained. Note that a 95% confidence
interval (0.00429, 0.17571) does not contain zero.

ˆ ˆ *
ˆ ( ˆ ) ˆ ( ˆ )

p p z
p p

n
p p

n1 2
1 1
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2 2

2
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−
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8.4 Two-Sample z-Test for Difference Between 
Two Proportions

• We are sometimes interested in knowing whether or not two population
proportions are really different from one another. Remember that when
sampling, we always encounter sampling variability. When we find the
sample proportions, we want to determine if there really is a difference
between the population proportions or if the difference between the
 obtained sample proportions is purely due to chance. 

• The null hypothesis for a two-proportion z-test is H0 : p1 = p2. 
The alternative hypothesis can be one- or two-sided. To conduct the 
hypothesis test, we need to standardize the test statistic, . If the
null hypothesis is true, then the observations from each sample actually
belong to a singe population. Therefore, instead of estimating each 
sample proportion separately, we use the pooled sample proportion. 
To find the pooled sample proportion, we use:

• Once the pooled sample proportion is calculated, we can then find 
the standard error of the sampling distribution. Recall that for the 
two-proportion z-interval, we used:

ˆ ˆp p1 2−

p̂ combined successes in both samples
combined observ

=
aations in both samples

SE
p p

n
p p

n
=

−
+

−ˆ ( ˆ ) ˆ ( ˆ )1 1

1

2 2

2

1 1
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Replacing each sample proportion with the pooled proportion, we obtain:

We can simplify the standard error to obtain:

• The assumptions and conditions for inference for a two-proportion 
z-test are the same as those for a two-proportion z-interval. Provided 
the assumptions and conditions for inference are met, we can use the 
test statistic:

• Example 5: A local college is interested in knowing if the proportion
of high school students taking a fourth year of math is greater for students
in suburban schools than in rural schools. To help answer this question,
the college obtains a random sample of 500 senior students from suburban
school districts and a random sample of 450 senior students from rural
school districts across the country. The survey reveals that, of the 
500 suburban students, 323 are taking a fourth year of math while only
279 of the 450 rural students are taking a fourth year of math. Is there
evidence to suggest that the proportion of seniors taking a fourth year of
math in suburban school districts is greater than the proportion of seniors
taking a fourth year of math in rural school districts at the 5% level?

SE p p
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p p
n
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Solution: 

Step 1: 

p1 = proportion of seniors taking a fourth year of math 
in suburban schools

p2 = proportion of seniors taking a fourth year of math 
in rural schools

H0 : p1 = p2

Ha : p1 > p2

Assumptions and conditions that verify:

1. Samples are independent of each other. We can assume that the 
samples are independent of one another because they are taken from
school districts in different areas.

2. Individuals in each sample are independent. Both samples are 
given to be random, and we can safely assume that there are more 
than 5000 seniors in suburban school districts and 4500 seniors in 
rural school districts (10n<N for both samples).

3. Both samples are large enough: 500(0.646) ≥ 10 and 500(0.354) ≥ 10.
450(0.62) ≥ 10 and 200(0.38) ≥ 10.

ˆ .p1

323
500

0 646= =

ˆ .p2

279
450

0 62= =
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Step 2: Because the assumptions and conditions for inference have been
met, we should be safe to perform a two-sample z-test.

Step 3: With a p-value of 0.2031, we fail to reject the null hypothesis at
the 5% level. We conclude that the proportion of seniors taking a fourth
year of math in suburban schools is not greater than the proportion of
seniors taking a fourth year of math in rural schools.

z
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Inference for Related
Variables: Chi-Square

Distributions

9.1 The Chi-Square Statistic

9.2 Chi-Square Test for Goodness of Fit

9.3 Chi-Square Test for Homogeneity of Populations

9.4 Chi-Square Test for Independence/Association
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9.1 The Chi-Square Statistic

• When our inference procedures involve categorical variables and our
data are given in the form of counts, we turn to the chi-square statistic
(�2). The chi-square statistic is actually a family of distributions and is
always skewed to the right. Each of these distributions is classified by 
its degrees of freedom. Like the t-distributions, the distribution changes
shape based on the degrees of freedom. As the degrees of freedom increase,
the chi-square distributions become less skewed and become more sym-
metrical and more normal, as seen in Figure 9.1. All chi-square density
curves start at zero on the x-axis, are single peaked, and approach the 
x-axis, asymptotically, as x increases (except when df = 1).

• The chi-square test statistic can be found using:

where O is the observed count and E is the expected count.

• We will discuss three types of tests involving the chi-square distributions.
These include: Chi-Square Test for Goodness of Fit, Chi-Square Test for
Homogeneity of Populations, and the Chi-Square Test of Association/
Independence. All three of these tests involve finding the same test statistic.
We can find the p-value of each test by calculating the area under the 
chi-square distribution to the right of the test statistic. Remember that,
like any density curve, the area under the chi-square distribution is 
equal to one. 

χ2

2

=
−( )

∑
O E

E
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Figure 9.1  Chi-square distributions with 5, 9, and
14 degrees of freedom.

df = 5

df = 9

df = 14



• When performing chi-square tests of significance, we will use the 
familiar three-step format that we have used for all inference procedures.
Again, there’s nothing magical about the three steps; it’s just a system
you can use to ensure that you are always including the essentials of 
inference and that you are doing so in an organized fashion. The outline
of the three steps is as follows:

1. Identify the appropriate type of chi-square test and verify that the
assumptions and conditions for that test are met. State the null and
alternative hypotheses in symbols or in words. Define any variables
that you use. 

2. Carry out the inference procedure. Do the math! Be sure to apply the
correct formula and show the appropriate work.

3. Interpret the results in context of the problem.

9.2 Chi-Square Test for Goodness of Fit

• We sometimes want to examine the proportions in a single population.
In this case, we turn to the Chi-Square Test for Goodness of Fit. You may
have used or seen the chi-square test for goodness of fit in your biology
class, for it is often used in the field of genetics. The goodness of fit test
can be used by scientists to determine whether their hypothesized ratios
are indeed correct. The null hypothesis in a goodness of fit test is that 
the actual population proportions are equal to the hypothesized values.
The alternative hypothesis is that the actual population proportions are
different from the hypothesized values.
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• We can use the goodness of fit test to determine how well the observed
counts match the expected counts. A classic example of the goodness of
fit test is the M&M’s candy activity. In this activity, we want to determine
whether the M&M’s candies are really manufactured in the proportions
claimed by the manufacturer. This activity will help you understand when
to use the goodness of fit test and how the goodness of fit test works. It
could be implemented with any type of M&M’s candies as long as you
know the claimed proportions for each color. Skittles or any other type 
of candy or cereal could also be used provided you know the claimed
proportions for each color. We will use this activity in Example 1 to 
perform a goodness of fit test.

• As with all inference, we must be sure to check the assumptions and
conditions of the test. Following are the assumptions and conditions for
the chi-square goodness of fit test:
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Assumptions Conditions
1. Data are in counts 1. Is this true?

2. Data are independent 2. SRS and <10% of population
(10n<N)

3. Sample is large enough 3. All expected counts ≥ 5



• Once we have checked the assumptions and conditions for inference,
we can calculate the chi-square test statistic to test the hypothesis of 
either a uniform distribution for the given categories or some specified
distribution for each category. We can use the test statistic:

The chi-square statistic for a goodness of fit test has n–1 degrees of free-
dom, where n is the number of categories (not the sample size).

• We can calculate the p-value of the test by looking up the critical value
with the correct degrees of freedom in the chi-square table of values or
by using the graphing calculator �2 cdf command. We will discuss how
to use the table of chi-square values in Example 1. 

• Example 1: Mars Candy claims that plain M&M’s candies are manu-
factured in the following proportions: 13% brown and red, 14% yellow,
24% blue, 20% orange, and 16% green. Using a 1.69-ounce bag of plain
M&M’s, test the manufacturer’s claim at the 5% level of significance.
For this example, we will use the following counts obtained from a 
1.69-ounce bag of plain M&M’s. We can find the expected number for
each color by multiplying the total number of M&M’s in the bag by the
claimed proportion for each color. There were 56 M&M’s in the bag.
Figure 9.2 contains the observed counts as well as the expected counts
for each of the six different colors. The expected counts for each color
can be found by multiplying 56 (the total number of M&M’s in the bag)
by the corresponding claimed proportion for each color.
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Solution: 

Step 1: We will use a chi-square goodness of fit test to test the manufac-
turer’s claim for the proportion of brown, red, yellow, orange, green, and
blue M&M’s. 

H0 : The manufacturer’s claim for the given proportions are correct
That is:

pbrown = 0.13 pred = 0.13 pyellow = 0.14 pblue = 0.24 porange = 0.20 pgreen = 0.16

Ha : At least one of these proportions is incorrect

Assumptions and conditions that verify:

1. Data are in counts. We can count the number of brown, red, yellow,
orange, green, and blue M&M’s in our sample.

2. Data are independent. We must consider our bag of M&M’s to be a
random sample. There are certainly more than 560 M&M’s in the
population of all plain M&M’s (10n<N).

3. Sample is large enough. All expected counts in Figure 9.2 are
greater than 5.
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Red Yellow Brown Orange Green Blue

Observed 6 6 5 15 9 15

Expected 7.28 7.84 7.28 11.2 8.96 13.44

Figure 9.2  Observed and expected counts from a randomly selected 
1.69-once bag of plain M&M’s.



Step 2: With the assumptions and conditions of inference met, we should 
be safe to conduct a chi-square goodness of fit test. We find the test statistic
using:

with n–1 degrees of freedom

df = 5  There are six categories (six colors).

Step 3: With a p-value of approximately 0.7244, we fail to reject the 
null hypothesis at the 5% level of significance. We conclude that 
the proportions of colors of M&M’s candies are not different from 
the proportions claimed by the manufacturer.

• In step 2, we obtained a p-value of 0.7244. We can interpret the p-value 
to mean the following: If repeated samples were taken (that is, many 
different bags of M&M’s), we would anticipate observed counts as 
different or more different from the expected counts as we have obtained
about 72% of the time, given that the claimed proportions by the manu-
facturer are really true. In other words, it’s quite likely that the difference 
we are observing between the observed counts and expected counts is 
really just due to chance (sampling variability). 

p ≈ 0 7244.
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• How do we obtain the p-value of 0.7244? There are two methods, as
mentioned earlier in this chapter. The first method is to use the �2 table
of values to approximate the p-value. Remember that we are testing 
the manufacturer’s claim at the 5% level. To use the table, we need to
determine the critical value. The critical value is based, in part, by the
level of significance at which we want to test our claim, and in part to 
the degrees of freedom. Using the �2 table of values, we can locate the
critical value by cross-referencing 0.05 at the top of the table with 5 
degrees of freedom. The corresponding critical value is 11.07. If we 
obtain a �2 test statistic greater than the critical value of 11.07, then 
we know that the corresponding p-value would be less than 0.05, which
would lead us to reject the null hypothesis. Because our �2 value was
only 2.8415, which is less than 11.07, we know the p-value is greater
than 0.05. In fact, if we examine the table a little more closely, we can
see that the smallest critical value for 5 degrees of freedom is 6.63. Our
�2 value of 2.8415 is smaller than 6.63. We can therefore conclude that
the p-value for our test will be greater than .25. Thus, we fail to reject the
null hypothesis at the 5% level of significance. Using the critical value to
estimate the p-value can also be used when working with t-distributions.
Typically, we use our calculators to find the p-value by performing the
appropriate test command.

• The second and most common way of finding the p-value for a chi-square
goodness of fit test is to use the graphing calculator. Some graphing 
calculators have the goodness of fit test built into them. This makes it
easy to find both the test statistic and the p-value. Some TI calculators
have this test; others do not. Because some do not, we will briefly describe
how to obtain the p-value for the goodness of fit test when the test is not
built into the calculator. 
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• The TI-83 and TI-84 are both capable of creating lists. Place the observed
values in List 1 and the expected values in List 2. Define List 3 to be 

We can then use the sum command, which is found under 2nd STAT
(LIST), MATH. The value obtained for the sum of List 3 is the test 
statistic. We then use the command 2nd VARS (DISTR) and use the �2

command to determine the p-value. 

9.3 Chi-Square Test for Homogeneity of Populations

• In Chapter 8, we discussed how to compare two proportions from 
two different groups using two-proportion z-procedures. We sometimes
need to compare proportions across multiple groups. When we want to
know if category proportions are the same for each group, we use the
Chi-Square Test for Homogeneity. The data typically appear in two-way
tables, as there are sometimes several categories. The chi-square test 
of homogeneity of populations eliminates the problem of comparing
proportion 1 to proportion 2, proportion 1 to proportion 3, proportion 
2 to proportion 3, and so on, as would be the case using multiple 
z-proportions. 

L L
L

1 2

2

2

−( )
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• Although we are trying to determine whether the proportions for 
multiple populations are the same, it’s important to remember that we 
are still working with counts. The expected counts for a chi-square test 
of homogeneity are not found in the same manner as they are in a 
goodness of fit test. To find the expected counts for a chi-square test 
of homogeneity, we use the following:

• The degrees of freedom are also calculated differently in a chi-square
test of homogeneity than they are for a goodness of fit test. To find the
degrees of freedom for a chi-square test of homogeneity, we use the 
following:

Degrees of freedom = (# of rows – 1)(# of columns – 1) = (r – 1)(c – 1)

• The null hypothesis for a chi-square test of homogeneity is that the
distribution (proportion) of the counts for each group is the same. The
alternative hypothesis is that the distribution for the counts for each
group is not the same. We can write the null and alternative hypotheses 
in words or symbols.

• Because we are working with observed and expected counts, the 
chi-square test for homogeneity uses the same test statistic as the 
goodness of fit test.

Expected cell count
row total column total

overal
=

( )( )
ll total( )
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• As is the case for all inference procedures, we must always check the
assumptions and conditions. The assumptions and conditions for a 
chi-square test of homogeneity are:
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• Consider the following hypothetical example involving the comparison
of three proportions from three different populations.

• Example 2: A group of physicians specializing in weight loss is 
interested in knowing whether appetite suppressants are effective in 
helping people lose weight. They are curious to know if they should 
recommend regular exercise, appetite suppressants, or both to their 
patients. Suppose that a controlled experiment were conducted yielding
the following results (see Figure 9.3). We will consider the proportion 
of those who lose at least 10 lbs. in a four-week period of time to be a
success.

Assumptions Conditions
1. Data are in counts 1. Is this true?

2. Data in each sample are 2. SRS’s and each sample <10%
independent of population (10n<N)

3. Samples are large enough 3. All expected counts ≥ 5



Solution: 

Step 1: We want to compare the proportions of patients who lost at least
10 lbs. in a four-week period in the populations of patients who used 
exercise only (p1), did not exercise but took an appetite suppressant (p2),
exercised and took the suppressant (p3), exercised and took a placebo
(p4), and took a placebo only (p5). We will use a chi-square test for 
homogeneity of populations. 

H0 : p1 = p2 = p3 = p4 = p5

Ha : Not all five proportions are equal
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Treatment Success Failure Total

Exercise Only 96 (94.576) 144 (145.42) 240

Drug Only 89 (94.576) 151 (145.42) 240

Exercise & Drug 103 (96.547) 142 (148.45) 245

Exercise & Placebo 95 (90.636) 135 (139.36) 230

Placebo Only 82 (88.665) 143 (136.33) 225

Total 465 715 1180

Figure 9.3  Homogeneity.



Assumption and conditions that verify:

Data are in counts. All sample data given in the two-way table are 
in counts.

Data are independent. We are given that the patients were randomly
assigned to the treatment groups. We are safe to assume that the 
population of people for each group is easily 10 times the sample 
size (10n<N).

Sample is large enough. All expected counts in Figure 9.3 are
greater than 5.

Step 2: With the assumptions and conditions met, we will conduct a 
chi-square test for homogeneity of populations. We can find the test 
statistic using:

Step 3: With a p-value of 0.6512, we fail to reject the null hypothesis.
We conclude that there is not a difference in the proportions of patients
who would lose at least 10 lbs. in a four-week period in the populations 
of patients who: exercise only (p1), do not exercise but take an appetite
suppressant (p2), exercise and take the suppressant (p3), exercise and take 
a placebo (p4), and take a placebo only (p5). The appetite suppressant
does not appear to help patients lose weight.

χ2 2 4636 0 6512≈ ≈. .p
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9.4 Chi-Square Test for Independence/Association

• We use a Chi-Square Test for Independence/Association to determine
whether there is an association between two categorical variables in a
single population. As with the chi-square test for homogeneity, the data
are usually given in two-way tables. When testing for independence/
association, the two-way tables are called contingency tables because
we are classifying individuals into two categorical variables.

• When do you use a chi-square test of homogeneity, and when do you
use a chi-square test for independence/association? In order to differentiate
between the two types of tests, you need to think about the design of 
the study. 

• Remember that in a test of independence/association, there is a single
sample from a single population. The individuals within the samples are
classified according to two categorical variables. The chi-square test for
homogeneity, on the other hand, takes only one sample from each of the
populations of interest. Each individual from the sample is categorized
based on a single variable. Thus, the null and alternative hypotheses 
differ depending on how the study was designed. 

• The null hypothesis for a chi-square test of association/independence 
is that there is no relationship between the two categorical variables of
interest. The alternative hypothesis is that there is a relationship between
the two categorical variables of interest. We typically write the null and
alternative in one of the following two ways:
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H0 : The two categorical variables are independent

Ha : The two categorical variables are not independent

or

H0 : There is no association between the categorical variables

Ha : There is an association between the categorical variables

• We will use the same three-step procedure we have used for all 
inferences thus far, including the assumptions and conditions for the 
chi-square test for independence/association. The assumptions and 
conditions for this test are:
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• Since the data are in counts, we continue to use the same chi-square
test statistic:

• Example 3: You wish to evaluate the association between a person’s
gender and attitude toward spending money on public education. You
obtain a random sample from your community and construct the 
contingency table shown in Figure 9.4.

χ2

2

=
−( )

∑
O E

E

Assumptions Conditions
1. Data are in counts 1. Is this true?

2. Data are independent 2. SRS and <10% of population 
(10n<N)

3. Sample is large enough 3. All expected counts ≥ 5
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Opinion Female Male Total

Spend Less 40 (32.828) 28 (35.172) 68

Spend Same 14 (14.483) 16 (15.517) 30

Spend More 16 (22.69) 31 (24.31) 47

Total 70 75 145

Figure 9.4  Association/Independence.

Is there a relationship between gender and attitudes toward educational
spending? Conduct an appropriate test to answer this question. 

Solution:

Step 1: We are interested in knowing whether there is an association
between a person’s gender and attitude toward spending money on 
public education. We have obtained a single sample from a single 
population, so we will conduct a chi-square test for association/
independence. The null and alternative hypotheses are:

H0 : There is no association between gender and attitudes toward
educational spending

H0 : There is an association between gender and attitudes toward
educational spending

We can check the appropriate assumptions and conditions.



Assumption and conditions that verify:

Data are in counts. All sample data given in the two-way table are 
in counts.

Data are independent. Our sample is random. We are safe to assume 
that the population of people is 10 times the sample size (10n<N).

Sample is large enough. All expected counts in Figure 9.4 are greater 
than 5.

Step 2: We have verified the conditions for inference for a chi-square 
test of association/independence. We are safe to find the chi-square test 
statistic:

Step 3: With a p-value of 0.0322, we reject the null hypothesis. There 
appears to be significant evidence (small p-value) to suggest that there 
is an association between a person’s gender and attitudes toward spending
money on public education.
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Inference for Regression
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10.1 The Regression Model

• Inference for regression is the final type of inference discussed in 
AP Statistics. We use inference for regression when dealing with two
quantitative variables. In Chapter 2, we discussed how to model data 
by using linear, exponential, and power functions. This chapter focuses
on how to create confidence intervals for the slope of the least-squares
regression line, You will also learn how to perform a 
hypothesis test for the slope of a linear relationship. 

• In Chapter 2, we created the least-squares regression line,
from the sample data collected from the population. As such, the slope b,
and the y-intercept a, are statistics, not parameters. Remember that, due
to sampling variability, the statistics a and b would probably take on
different values if we took multiple samples. In other words, if another
sample were taken, different data points would produce a different least-
squares regression line and, consequently, different values of a and b.
Recall that the least-squares regression line is formed by making the 
sum of the squares of the residuals as small as possible. Also remember
that a residual is the difference in the observed value and the predicted
value of y. 

• Remember that we use the least-squares regression line to make 
predictions of the response variable, y, based on the explanatory variable,
x. We will use the statistics a and b as unbiased estimates of the true
slope and y-intercept, which are the unknown parameters, � and �. 
The mean, �y, of all responses has a linear relationship with x that 
represents the true regression line where:

�y = � + �x

ˆ .y a bx= +

ŷ a bx= +

residual observed y predicted y y y= − = − ˆ

Master Math: AP Statistics186



• Now that we’ve discussed how to estimate the slope and y-intercept of
the true regression line, it’s time to discuss the third parameter of interest
in inference for regression, the standard deviation, �. The standard devia-
tion, �, is used to measure the variability of the response variable y about
the true regression line. Remember that the predicted values, are on
the regression line. The observed values of y vary about the regression
line for any given value of x. 

• If we are given n data points, there will be n residuals. Since � is the
standard deviation of the responses about the true regression line, we
estimate � by using the standard deviation of the residuals of the sample
data. Because we are using an estimate for �, we call the standard 
deviation the standard error as we have done in previous chapters. 
We refer to the standard deviation of the response variable as s.

• The standard error about the regression line is:

or

• Typically, we use our calculators to find the value of s. In some problems,
the value of s will be given. 

• Notice that the formula for the standard deviation involves averaging
the squared residuals (deviations) from the line. When we find the average
of these squared deviations, we are dividing by n – 2. Because we are
working with two variables, we use n – 2 degrees of freedom instead of
n – 1 degrees of freedom. Be sure to state the degrees of freedom when
performing inference for regression.

ˆ,y

s
n

residual=
− ∑1

2
2

s
n

y y=
−

−( )∑1
2

2
ˆ
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• The next two sections of this chapter will outline the steps of inference
for a confidence interval for the slope � as well as a hypothesis test. To
be consistent, we will outline the procedures using the familiar three-step
process that we have utilized in previous chapters. Recall the following
steps:

1. Identify the parameter of interest, choose the appropriate inference
procedure, and verify that the assumptions and conditions for that
procedure are met.

2. Carry out the inference procedure. Do the math! Be sure to apply the
correct formula.

3. Interpret the results in context of the problem.

• As always, we must check the assumptions and conditions for inference.
The following are the assumptions and conditions necessary for inference
for regression:
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Assumptions Conditions
1. Relationship has linear form 1. Scatterplot is approximately 

linear

2. Residuals are independent 2. Residual plot does not have a
definite pattern

3. Variability of residuals is 3. Residual plot has even spread
constant

4. Residuals are approximately 4. Graph of residuals is approx-
normal imately symmetrical and

unimodal, or normal probability
plot is approximately linear



10.2 Confidence Intervals for the Slope �

• Of the three parameters discussed in this chapter, the slope is the 
primary focus of inference when it comes to inference for regression 
in AP Statistics. Remember that the slope is a rate of change. It is the
average rate of change in the response variable, y, as the explanatory
variable, x, increases by one unit. Because the slope of the true regres-
sion line is unknown, we often want to estimate it using a confidence
interval. 

• When the conditions for regression inference are met, the estimated
regression slope follows a t-distribution with n – 2 degrees of freedom.
When finding a confidence interval for the slope of the least squares
regression line, we use the familiar form: estimate � margin of error. 
The formula is:

b � t* SEb where SEb is the standard error of the slope. We can find SEb
by using the following formula:

• It is very unlikely that you would have to use this formula on the 
AP* Exam, as it tends to be a tedious calculation, even with a calculator.
Regression software, like Minitab, is capable of giving the needed values. 

• Example 1: A group of teachers is interested in knowing whether a
relationship exists between the average number of hours studied per week
and high school cumulative grade point average (G.P.A.). The teachers
obtain a random sample of students and determine the average number 
of hours each student studies along with the student’s cumulative high

SE s

x x
b =

−( )∑
2
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school G.P.A. Construct a 95% confidence interval for the true slope of
the regression line to help answer the teachers’ question. Figure 10.1
presents a data table containing the average number of hours studied 
per week and the corresponding G.P.A for the 20 high-school students 
in the sample, along with a scatterplot of the data.
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Figure 10.1  A scatterplot of the data appears roughly linear with no
apparent outliers.

Ave_Hrs GPA
1 10.5 4.571
2 3.0 2.800
3 6.5 3.888
4 8.0 4.055
5 8.5 3.920
6 2.5 3.134
7 9.5 4.445
8 1.0 1.777
9 4.6 2.770

10 3.5 3.112
11 2.2 2.308
12 6.0 3.665
13 8.0 4.500
14 6.0 3.333
15 5.0 3.100
16 3.0 2.723
17 5.0 3.888
18 4.0 3.500
19 9.0 4.334
20 7.0 3.388



Solution: 

Step 1: We want to estimate �, the true slope of the regression line for
the linear relationship between the average amount of time spent study-
ing per week and the cumulative G.P.A. As always, we will check the 
assumptions and conditions necessary for inference.

Assumptions and conditions that verify:

1. Relationship has a linear form. The scatterplot in Figure 10.1
appears to be roughly linear.

2. Residuals are independent. The residual plot in Figure 10.2 shows
no obvious pattern.
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Figure 10.2  The residual plot shows no definite pattern 
and appears to have even spread.

3. Variability of residuals is constant. The residual plot in Figure 10.2
appears to have even spread.

4. Residuals are approximately normal. The normal probability plot
(Figure 10.3) is approximately linear.



Step 2: With the assumptions and conditions for regression inference
met, we are safe to construct a 95% confidence interval for the slope of
the true regression line.

b � t* SEb with n – 2 degrees of freedom

(0.1975,0.3151)

Step 3: We are 95% confident that the slope of the true regression line is
between 0.1975 and 0.3151. 

• Note that 0 is not included in the confidence interval. This implies that
the slope of the regression line is not equal to zero. This means that there
does appear to be a relationship between the average amount of time
spent studying per week and a student’s cumulative grade point average.

0 2563 2 101 0 3277
11 7604

. . .
.

±
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Figure 10.3  The normal probability plot of the residuals 
appears to be roughly linear.



• In order to find SEb and s, run the linear regression t-test on your graphing 

calculator, which gives s. You can then find by defining a

list to be . For example, you could define L3 = (L1 – 5.64)2 and
then use the sum and square root functions on your calculator. Again, in
most cases, SEb and s will be given as computer output, and you’ll just
have to substitute them into the formula.

10.3 Hypothesis Testing for the Slope �

• We are now ready to discuss hypothesis testing for the slope �. If 
there is a relationship between the two quantitative variables of interest,
the slope of the regression equation should be significantly different 
from zero.

• The null and alternative hypotheses for such a test are as follows:

H0 : � = 0

Ha : � ≠ 0 (or < 0 or > 0)

As usual, the alternative hypothesis can be one-sided or two-sided.

• The test-statistic associated with a test for the slope � is:

where  

• The assumptions and conditions for testing the slope � are the same as
those for a confidence interval.

x x−( )∑
2

x x−( )
2

t b
SEb

=
−β

SE s

x x
b =

−( )∑
2
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• Example 2: Is there reason to believe that a relationship exists
between heights of fathers and the heights of their sons? To answer this
question, use the following data in Figure 10.4, obtained from a random
sample of 10 men and their sons. Test at the 5% level of significance. 
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Father_Height Sons_Height
1 65 66
2 64 63
3 68 69
4 73 72
5 72 73
6 67 66
7 71 72
8 75 75
9 70 69

10 69 70

Figure 10.4  Heights of 10 randomly selected
men and their sons.

Solution: 

Step 1: We want to test the claim that there is a relationship between the
heights of fathers and their sons. Let � = true slope of the least-squares
regression line.

H0 : � = 0

Ha : � ≠ 0

Assumptions and conditions that verify:

1. Relationship has a linear form. The scatterplot in Figure 10.5
appears to be roughly linear.
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Figure 10.5  The scatterplot of father and son 
heights appears roughly linear.

Figure 10.6  Residual plot shows no definite pattern 
and appears to have even spread.

2. Residuals are independent. The residual plot in Figure 10.6 shows
no obvious pattern.



3. Variability of residuals is constant. The residual plot in Figure 10.6
appears to have even spread.

4. Residuals are approximately normal. The normal probability plot
(Figure 10.7) is somewhat linear. Remember, if in doubt, you can
always check a modified boxplot and look for skewness and outliers.
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Figure 10.7  The normal probability plot of the residuals 
appears to be somewhat linear.

Step 2: With the assumptions and conditions for regression inference
met, we are safe to proceed with the test for the true slope of the 
regression line.

t b
SE

df
b

=
−

=
β 8

t =
−1.0145

0.1003
0

t ≈10.1193 p ≈ × ≈−7.7685 10 06



Step 3: With a p-value of almost zero, we reject the null hypothesis at 
the 5% level. We conclude that the slope of the true regression line is
different from zero and that there is a relationship between the heights 
of fathers and their sons. 

• Note that the exact same procedures could be used to conduct a 
hypothesis test on rho, the correlation coefficient for the population.

• Statistics for regression are often given in the form of a Minitab 
printout. You will come across these printouts as you do “released” 
exam questions in both the multiple-choice and free-response sections.
Be sure to work through a few “released” exam questions that include
these printouts. Your instructor will likely provide you with such 
printouts as well. Remember that there are almost always some “extra”
statistics that you do not need. Don’t feel obligated to use all of the 
information from the printout. There may also be some statistics given
that are not part of the AP Statistics curriculum. You can ignore what 
you don’t need. You’ll do great!
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Table value for z is the probability to the left of z.

z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

–3.4 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0002
–3.3 .0005 .0005 .0005 .0004 .0004 .0004 .0004 .0004 .0004 .0003
–3.2 .0007 .0007 .0006 .0006 .0006 .0006 .0006 .0005 .0005 .0005
–3.1 .0010 .0009 .0009 .0009 .0008 .0008 .0008 .0008 .0007 .0007
–3.0 .0013 .0013 .0013 .0012 .0012 .0011 .0011 .0011 .0010 .0010

–2.9 .0019 .0018 .0018 .0017 .0016 .0016 .0015 .0015 .0014 .0014
–2.8 .0026 .0025 .0024 .0023 .0023 .0022 .0021 .0021 .0020 .0019
–2.7 .0035 .0034 .0033 .0032 .0031 .0030 .0029 .0028 .0027 .0026
–2.6 .0047 .0045 .0044 .0043 .0041 .0040 .0039 .0038 .0037 .0036
–2.5 .0062 .0060 .0059 .0057 .0055 .0054 .0052 .0051 .0049 .0048

–2.4 .0082 .0080 .0078 .0075 .0073 .0071 .0069 .0068 .0066 .0064
–2.3 .0107 .0104 .0102 .0099 .0096 .0094 .0091 .0089 .0087 .0084
–2.2 .0139 .0136 .0132 .0129 .0125 .0122 .0119 .0116 .0113 .0110
–2.1 .0179 .0174 .0170 .0166 .0162 .0158 .0154 .0150 .0146 .0143
–2.0 .0228 .0222 .0217 .0212 .0207 .0202 .0197 .0192 .0188 .0183

–1.9 .0287 .0281 .0274 .0268 .0262 .0256 .0250 .0244 .0239 .0233
–1.8 .0359 .0351 .0344 .0336 .0329 .0322 .0314 .0307 .0301 .0294
–1.7 .0446 .0436 .0427 .0418 .0409 .0401 .0392 .0384 .0375 .0367
–1.6 .0548 .0537 .0526 .0516 .0505 .0495 .0485 .0475 .0465 .0455
–1.5 .0668 .0655 .0643 .0630 .0618 .0606 .0594 .0582 .0571 .0559

–1.4 .0808 .0793 .0778 .0764 .0749 .0735 .0721 .0708 .0694 .0681
–1.3 .0968 .0951 .0934 .0918 .0901 .0885 .0869 .0853 .0838 .0823
–1.2 .1151 .1131 .1112 .1093 .1075 .1056 .1038 .1020 .1003 .0985
–1.1 .1357 .1335 .1314 .1292 .1271 .1251 .1230 .1210 .1190 .1170
–1.0 .1587 .1562 .1539 .1515 .1492 .1469 .1446 .1423 .1401 .1379

–0.9 .1841 .1814 .1788 .1762 .1736 .1711 .1685 .1660 .1635 .1611
–0.8 .2119 .2090 .2061 .2033 .2005 .1977 .1949 .1922 .1894 .1867
–0.7 .2420 .2389 .2358 .2327 .2296 .2266 .2236 .2206 .2177 .2148
–0.6 .2743 .2709 .2676 .2643 .2611 .2578 .2546 .2514 .2483 .2451
–0.5 .3085 .3050 .3015 .2981 .2946 .2912 .2877 .2843 .2810 .2776

–0.4 .3446 .3409 .3372 .3336 .3300 .3264 .3228 .3192 .3156 .3121
–0.3 .3821 .3783 .3745 .3707 .3669 .3632 .3594 .3557 .3520 .3483
–0.2 .4207 .4168 .4129 .4090 .4052 .4013 .3974 .3936 .3897 .3859
–0.1 .4602 .4562 .4522 .4483 .4443 .4404 .4364 .4325 .4286 .4247
–0.0 .5000 .4960 .4920 .4880 .4840 .4801 .4761 .4721 .4681 .4641

Table A: Standard Normal Probabilities
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Table value for z is the probability to the left of z.

z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

0.0 .5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5359
0.1 .5398 .5438 .5478 .5517 .5557 .5596 .5636 .5675 .5714 .5753
0.2 .5793 .5832 .5871 .5910 .5948 .5987 .6026 .6064 .6103 .6141
0.3 .6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517
0.4 .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879

0.5 .6915 .6950 .6985 .7019 .7054 .7088 .7123 .7157 .7190 .7224
0.6 .7257 .7291 .7324 .7357 .7389 .7422 .7454 .7486 .7517 .7549
0.7 .7580 .7611 .7642 .7673 .7704 .7734 .7764 .7794 .7823 .7852
0.8 .7881 .7910 .7939 .7967 .7995 .8023 .8051 .8078 .8106 .8133
0.9 .8159 .8186 .8212 .8238 .8264 .8289 .8315 .8340 .8365 .8389

1.0 .8413 .8438 .8461 .8485 .8508 .8531 .8554 .8577 .8599 .8621
1.1 .8643 .8665 .8686 .8708 .8729 .8749 .8770 .8790 .8810 .8830
1.2 .8849 .8869 .8888 .8907 .8925 .8944 .8962 .8980 .8997 .9015
1.3 .9032 .9049 .9066 .9082 .9099 .9115 .9131 .9147 .9162 .9177
1.4 .9192 .9207 .9222 .9236 .9251 .9265 .9279 .9292 .9306 .9319

1.5 .9332 .9345 .9357 .9370 .9382 .9394 .9406 .9418 .9429 .9441
1.6 .9452 .9463 .9474 .9484 .9495 .9505 .9515 .9525 .9535 .9545
1.7 .9554 .9564 .9573 .9582 .9591 .9599 .9608 .9616 .9625 .9633
1.8 .9641 .9649 .9656 .9664 .9671 .9678 .9686 .9693 .9699 .9706
1.9 .9713 .9719 .9726 .9732 .9738 .9744 .9750 .9756 .9761 .9767

2.0 .9772 .9778 .9783 .9788 .9793 .9798 .9803 .9808 .9812 .9817
2.1 .9821 .9826 .9830 .9834 .9838 .9842 .9846 .9850 .9854 .9857
2.2 .9861 .9864 .9868 .9871 .9875 .9878 .9881 .9884 .9887 .9890
2.3 .9893 .9896 .9898 .9901 .9904 .9906 .9909 .9911 .9913 .9916

2.4 .9918 .9920 .9922 .9925 .9927 .9929 .9931 .9932 .9934 .9936
2.5 .9938 .9940 .9941 .9943 .9945 .9946 .9948 .9949 .9951 .9952
2.6 .9953 .9955 .9956 .9957 .9959 .9960 .9961 .9962 .9963 .9964
2.7 .9965 .9966 .9967 .9968 .9969 .9970 .9971 .9972 .9973 .9974
2.8 .9974 .9975 .9976 .9977 .9977 .9978 .9979 .9979 .9980 .9981

2.9 .9981 .9982 .9982 .9983 .9984 .9984 .9985 .9985 .9986 .9986
3.0 .9987 .9987 .9987 .9988 .9988 .9989 .9989 .9989 .9990 .9990
3.1 .9990 .9991 .9991 .9991 .9992 .9992 .9992 .9992 .9993 .9993
3.2 .9993 .9993 .9994 .9994 .9994 .9994 .9994 .9995 .9995 .9995
3.3 .9995 .9995 .9995 .9996 .9996 .9996 .9996 .9996 .9996 .9997
3.4 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9998

Table A: Standard Normal Probabilities (continued)



Master Math: AP Statistics202

101 19223 95034 05756 28713 96409 12531 42544 82853
102 20826 04475 94351 33439 06175 03307 66233 22350
103 32071 50612 05952 30176 81471 85492 19221 57168
104 21199 86409 30003 05822 51816 41862 34876 76020
105 10455 84585 08091 48657 09879 32897 08853 62247
106 63443 55127 53478 41514 51995 07788 76625 79847
107 82739 57890 20807 47511 81676 55360 94072 02417
108 86824 94361 79090 63600 91936 51541 23963 88545
109 34683 84484 87891 83382 46973 93644 20814 86694
110 87605 13092 97004 12712 89090 34265 57676 08708
111 81486 69487 60513 09297 00412 71238 27649 39950
112 43857 27768 14703 90602 46070 36974 74691 79843
113 30596 91595 16816 21290 02139 39693 15210 67003
114 19762 60189 66177 65805 19248 68403 75439 53656
115 23720 26018 93503 26463 87803 71190 22160 87096
116 53696 38126 21384 38418 16164 69209 75415 76349
117 75230 18842 44098 40784 72352 42232 47847 85306
118 70494 19004 08513 16998 29286 06732 49386 06967
119 37863 76884 98089 18779 03689 77790 33927 95962
120 58433 44928 03929 27859 97915 52224 44127 18994
121 29690 37087 48463 02226 56877 22366 93941 74584
122 21123 86170 53411 30529 97469 24365 49980 95663
123 88890 58862 23433 47347 70805 22045 04481 06427
124 61999 42290 25045 80833 66492 48399 57551 87185
125 73846 21500 27562 03460 21513 50913 39017 46856
126 59321 17125 05234 13443 14507 39680 24430 49485
127 45415 07837 42078 93921 54639 76462 30303 38530
128 20766 40730 22023 50998 13032 37150 85029 55129
129 25942 85230 00761 84894 77771 60839 76961 98370
130 27900 40660 16853 06842 05640 21090 66672 35358
131 51643 57697 43214 90366 19817 43734 98927 15045
132 21683 72667 15479 11720 89142 59861 43415 48417
133 58974 43986 23733 01102 55638 46270 99271 40082
134 17761 08361 01221 72309 17597 48752 73073 03052
135 04460 63771 03141 70392 18954 44344 16167 01776
136 23626 34712 17032 17810 34740 26053 93307 16285
137 32790 17033 55420 97717 61006 64560 22480 07641
138 43736 71972 47283 53324 93486 10687 36572 22854
139 93745 92391 77040 95992 83135 30714 06719 59096
140 47160 09855 48906 85728 84229 80628 03316 57587
141 23867 62845 04461 57908 32363 29866 43069 00888
142 31972 82955 23581 26219 32396 98106 03259 13009
143 69479 02023 42240 58720 78179 51440 83402 34979
144 28722 34202 77501 93305 53698 55189 23017 53861
145 19687 12633 57857 95806 09931 02150 43163 58636
146 22232 22320 40740 78321 65478 77484 33012 69691

Table B: Random Digits
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Table entry for p is the point t* with probability p to the right. 

Upper tail probability p

df .25 .20 .15 .10 .05 .025 .02 .01 .005 .0025 .001 .0005

1 1.000 1.376 1.963 3.078 6.314 12.71 15.89 31.82 63.66 127.3 318.3 636.6
2 .816 1.061 1.386 1.886 2.920 4.303 4.849 6.965 9.925 14.09 22.33 31.60
3 .765 .978 1.250 1.638 2.353 3.182 3.482 4.541 5.841 7.453 10.21 12.92
4 .741 .941 1.190 1.533 2.132 2.776 2.999 3.747 4.604 5.598 7.173 8.610
5 .727 .920 1.156 1.476 2.015 2.571 2.757 3.365 4.032 4.773 5.893 6.869

6 .718 .906 1.134 1.440 1.943 2.447 2.612 3.143 3.707 4.317 5.208 5.959
7 .711 .896 1.119 1.415 1.895 2.365 2.517 2.998 3.499 4.029 4.785 5.408
8 .706 .889 1.108 1.397 1.860 2.306 2.449 2.896 3.355 3.833 4.501 5.041
9 .703 .883 1.100 1.383 1.833 2.262 2.398 2.821 3.250 3.690 4.297 4.781

10 .700 .879 1.093 1.372 1.812 2.228 2.359 2.764 3.169 3.581 4.144 4.587

11 .697 .876 1.088 1.363 1.796 2.201 2.328 2.718 3.106 3.497 4.025 4.437
12 .695 .873 1.083 1.356 1.782 2.179 2.303 2.681 3.055 3.428 3.930 4.318
13 .694 .870 1.079 1.350 1.771 2.160 2.282 2.650 3.012 3.372 3.852 4.221
14 .692 .868 1.076 1.345 1.761 2.145 2.264 2.624 2.977 3.326 3.787 4.140
15 .691 .866 1.074 1.341 1.753 2.131 2.249 2.602 2.947 3.286 3.733 4.073

16 .690 .865 1.071 1.337 1.746 2.120 2.235 2.583 2.921 3.252 3.686 4.015
17 .689 .863 1.069 1.333 1.740 2.110 2.224 2.567 2.898 3.222 3.646 3.965
18 .688 .862 1.067 1.330 1.734 2.101 2.214 2.552 2.878 3.197 3.611 3.922
19 .688 .861 1.066 1.328 1.729 2.093 2.205 2.539 2.861 3.174 3.579 3.883
20 .687 .860 1.064 1.325 1.725 2.086 2.197 2.528 2.845 3.153 3.552 3.850

21 .686 .859 1.063 1.323 1.721 2.080 2.189 2.518 2.831 3.135 3.527 3.819
22 .686 .858 1.061 1.321 1.717 2.074 2.183 2.508 2.819 3.119 3.505 3.792
23 .685 .858 1.060 1.319 1.714 2.069 2.177 2.500 2.807 3.104 3.485 3.768
24 .685 .857 1.059 1.318 1.711 2.064 2.172 2.492 2.797 3.091 3.467 3.745
25 .684 .856 1.058 1.316 1.708 2.060 2.167 2.485 2.787 3.078 3.450 3.725

26 .684 .856 1.058 1.315 1.706 2.056 2.162 2.479 2.779 3.067 3.435 3.707
27 .684 .855 1.057 1.314 1.703 2.052 2.158 2.473 2.771 3.057 3.421 3.690
28 .683 .855 1.056 1.313 1.701 2.048 2.154 2.467 2.763 3.047 3.408 3.674
29 .683 .854 1.055 1.311 1.699 2.045 2.150 2.462 2.756 3.038 3.396 3.659
30 .683 .854 1.055 1.310 1.697 2.042 2.147 2.457 2.750 3.030 3.385 3.646

40 .681 .851 1.050 1.303 1.684 2.021 2.123 2.423 2.704 2.971 3.307 3.551
50 .679 .849 1.047 1.299 1.676 2.009 2.109 2.403 2.678 2.937 3.261 3.496
60 .679 .848 1.045 1.296 1.671 2.000 2.099 2.390 2.660 2.915 3.232 3.460
80 .678 .846 1.043 1.292 1.664 1.990 2.088 2.374 2.639 2.887 3.195 3.416

100 .677 .845 1.042 1.290 1.660 1.984 2.081 2.364 2.626 2.871 3.174 3.390
1000 .675 .842 1.037 1.282 1.646 1.962 2.056 2.330 2.581 2.813 3.098 3.300
∞ .674 .841 1.036 1.282 1.645 1.960 2.054 2.326 2.576 2.807 3.091 3.291

50% 60% 70% 80% 90% 95% 96% 98% 99% 99.5% 99.8% 99.9%

Table C: t Distribution Critical Values

Confidence level C
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Table entry for p is the value χ2 with probability p to the right.

Tail probability p

df .25 .20 .15 .10 .05 .025 .02 .01 .005 .0025 .001

1 1.32 1.64 2.07 2.71 3.84 5.02 5.41 6.63 7.88 9.14 10.83
2 2.77 3.22 3.79 4.61 5.99 7.38 7.82 9.21 10.60 11.98 13.82
3 4.11 4.64 5.32 6.25 7.81 9.35 9.84 11.34 12.84 14.32 16.27
4 5.39 5.99 6.74 7.78 9.49 11.14 11.67 13.28 14.86 16.42 18.47
5 6.63 7.29 8.12 9.24 11.07 12.83 13.39 15.09 16.75 18.39 20.51

6 7.84 8.56 9.45 10.64 12.59 14.45 15.03 16.81 18.55 20.25 22.46
7 9.04 9.80 10.75 12.02 14.07 16.01 16.62 18.48 20.28 22.04 24.32
8 10.22 11.03 12.03 13.36 15.51 17.53 18.17 20.09 21.95 23.77 26.12
9 11.39 12.24 13.29 14.68 16.92 19.02 19.68 21.67 23.59 25.46 27.88

10 12.55 13.44 14.53 15.99 18.31 20.48 21.16 23.21 25.19 27.11 29.59

11 13.70 14.63 15.77 17.28 19.68 21.92 22.62 24.72 26.76 28.73 31.26
12 14.85 15.81 16.99 18.55 21.03 23.34 24.05 26.22 28.30 30.32 32.91
13 15.98 16.98 18.20 19.81 22.36 24.74 25.47 27.69 29.82 31.88 34.53
14 17.12 18.15 19.41 21.06 23.68 26.12 26.87 29.14 31.32 33.43 36.12
15 18.25 19.31 20.60 22.31 25.00 27.49 28.26 30.58 32.80 34.95 37.70

16 19.37 20.47 21.79 23.54 26.30 28.85 29.63 32.00 34.27 36.46 39.25
17 20.49 21.61 22.98 24.77 27.59 30.19 31.00 33.41 35.72 37.95 40.79
18 21.60 22.76 24.16 25.99 28.87 31.53 32.35 34.81 37.16 39.42 42.31
19 22.72 23.90 25.33 27.20 30.14 32.85 33.69 36.19 38.58 40.88 43.82
20 23.83 25.04 26.50 28.41 31.41 34.17 35.02 37.57 40.00 42.34 45.31

21 24.93 26.17 27.66 29.62 32.67 35.48 36.34 38.93 41.40 43.78 46.80
22 26.04 27.30 28.82 30.81 33.92 36.78 37.66 40.29 42.80 45.20 48.27
23 27.14 28.43 29.98 32.01 35.17 38.08 38.97 41.64 44.18 46.62 49.73
24 28.24 29.55 31.13 33.20 36.42 39.36 40.27 42.98 45.56 48.03 51.18
25 29.34 30.68 32.28 34.38 37.65 40.65 41.57 44.31 46.93 49.44 52.62

26 30.43 31.79 33.43 35.56 38.89 41.92 42.86 45.64 48.29 50.83 54.05
27 31.53 32.91 34.57 36.74 40.11 43.19 44.14 46.96 49.64 52.22 55.48
28 32.62 34.03 35.71 37.92 41.34 44.46 45.42 48.28 50.99 53.59 56.89
29 33.71 35.14 36.85 39.09 42.56 45.72 46.69 49.59 52.34 54.97 58.30
30 34.80 36.25 37.99 40.26 43.77 46.98 47.96 50.89 53.67 56.33 59.70

40 45.62 47.27 49.24 51.81 55.76 59.34 60.44 63.69 66.77 69.70 73.40
50 56.33 58.16 60.35 63.17 67.50 71.42 72.61 76.15 79.49 82.66 86.66
60 66.98 68.97 71.34 74.40 79.08 83.30 84.58 88.38 91.95 95.34 99.61
80 88.13 90.41 93.11 96.58 101.9 106.6 108.1 112.3 116.3 120.1 124.8

100 109.1 111.7 114.7 118.5 124.3 129.6 131.1 135.8 140.2 144.3 149.4

Table D: χ2 Critical Values
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Many formulas are given on the AP Statistics Exam. The first section of
this appendix provides the formulas that you will be given during the 
AP Exam. The second section of this appendix is a summary of formulas
not given on the AP Exam. You should be familiar with the formulas 
that will be given on the exam (but there’s no need to memorize them).
You will probably not use all of the formulas that are given. In fact, you
may never use a few of them in the entire course. You should also know
and understand all of the formulas in the second section of this appendix,
because those will not be given to you on the exam. Knowing the 
formulas that will not be on the exam will put you at ease when solving
problems and will let you focus on answering the questions and doing 
so in context. Also notice that some of the formulas given on the exam
will help you remember the formulas that are not on the exam.

Formulas Given on the AP Exam

The following formulas for Descriptive Statistics, Probability, and 
Inferential Statistics are given on the AP Statistics Exam:
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Descriptive Statistics
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ŷ b b x= +0 1

b
x x y y

x x

i i

i

1 2
=

−( ) −( )
−( )

∑

∑

b y b x0 1= −

r
n

x x

s

y y

s
i

x

i

y

=
−

−⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟

−⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟∑1
1 ⎟⎟⎟

b r
s

s
y

x
1 =

s

y y

n

x x
b

i i

i

1

2

2

2=

−( )
−

−( )

∑

∑

ˆ

x
x

n
i= ∑

s
n

x x
x i

=
−

−( )∑1
1

2

Formulas 207



Probability

The following formulas are given and should be used if X has a binomial
distribution with parameters n and p:

If is the mean of a random sample of size n from an infinite population
with mean � and standard deviation �, then:

P A B P A P B P A B∪( )= + − ∩( )( ) ( )

P A B
P A B

P B
/

( )
( )=

∩( )

E X x p
x i i

( ) = = ∑μ

Var X x p
x i x i

( ) = = −( )∑σ μ2 2

P X k n
k

p pk n k
=( )=

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

−( ) −
1

μ
x

np=

σ
x

np p= −( )1

μ
p̂

p=

σ
p̂

p p

n
=

−( )1

x

μ μ
x

=

σ
σ

x n
=

Master Math: AP Statistics208



Inferential Statistics

Standardized test statistic:  

Confidence interval:  

Single-Sample

Statistic Standard Deviation of Statistic

Sample mean

Sample proportion

Two-Sample

Difference of sample means

Difference of sample means

(Special case when )

Difference of sample proportions 

Difference of sample proportion 

(Special case when )

Chi-square test statistic

statistic parameter

std deviation of statistic
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Formulas Not Given on the AP Exam

The following formulas are not given on the AP Exam. Be sure to know
and understand how they work and how to apply them.

Normal Distribution 

For normal distributions, use

z-score

Probability 

Probability that any two events A and B happen together:

P(A ∩ B) = P(A) • P(B / A)

Notice that this formula is given on the AP Exam, but in the following
form:

Probability that two independent events A and B happen together:

P(A ∩ B) = P(A) • P(B)

General addition rule for the union of two events:

P(A ∪ B) = P(A) + P(B) – P(A ∩ B)

Note that ∪ (union) means “or” and ∩ (intersection) means “and.”

z
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P A B
P A B

P B
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If the events A and B are disjoint (mutually exclusive):

P(A ∪ B) = P(A) + P(B)

Rules for means and variances of random variables for fixed
numbers a and b:

�z = a � b�x

�z
2 = b2�x

2

�z = b�x

Addition rule for variances if X and Y are independent random
variables:

� 2
X+Y = �2

X + �2
Y

� 2
X–Y = �2

X + �2
Y

(This is not a typo! We always add variances!)

Binomial distribution formula:

n = number of trials

p = probability of “success”

1 – p = probability of “failure”

k = number of successes in n trials

Notice that the formula for the binomial distribution is given on the
AP Exam. It’s given in this section again to ensure that you understand
the notation correctly.
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Geometric distribution formulas

The probability that the first success is obtained on the 
nth observation:

P(X = n) = (1 – p)n–1 p

Probability that it takes more than n trials to obtain the first 
success:

P(X > n) = (1 – p)n

Formulas for the mean and standard deviation of a geometric
distribution:

Central limit theorem

The central limit theorem says that as the sample size increases, 
the mean of the sampling distribution of approaches a normal 
distribution with mean, �, and standard deviation, 

Standard error

When using s to estimate �, the standard deviation of the sampling 

distribution for means is When using s to estimate 

�, the standard deviation of the sampling distribution is called the
standard error of the sample mean, .
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Inferential Statistics

The following formulas are used for inferential statistics:

Mean(s)

One sample t-interval:

with n–1 degrees of freedom

One sample t-test:

with n–1 degrees of freedom

Two sample t-interval:

The t* value depends on the particular level 

of confidence that you want and on the degrees of freedom (df ).

Two sample t-test:
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Proportion(s)

Standard deviation of the sampling distribution of :

When dealing with confidence intervals, we do not know p. Because
is an unbiased estimator of p, we use to estimate p. These two

values should be close in value, provided that the sample is large
enough. We can then use the standard error of :

One-proportion z-interval:

One-proportion z-test:

Note that p0 is the value of the proportion in the null hypothesis.

Two-proportion z-interval:
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When dealing with a confidence interval, the values of p1 and p2
are unknown. For this reason, we use the standard error of the 
statistic 

Two-proportion z-test:

Use the pooled sample proportion when using a two-proportion
test. To find the pooled sample proportion, we use:

Regression

Mean of all responses of a linear relationship with x that represents
the true regression line:

�y = � + �x

Standard error about the regression line:

or
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p p

n

p p

n
=

−
+

−ˆ ( ˆ ) ˆ ( ˆ )1 1

1

2 2

2

1 1

z
p p

p p
n n

=
−

−( ) +
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

ˆ ˆ

ˆ ˆ

1 2

1 2

1 1 1

p̂
combined successes in both samples

combined observ
=

aations in both samples

s
n

residual=
− ∑1

2
2

s
n

y y=
−

−( )∑1
2

2
ˆ

Formulas 215



Confidence interval for the true slope (�) of the regression line:

where SEb is the standard error of the slope. We can find SEb by using
the following formula:

• You probably will not need to find SEb, as it is typically given on the
exam.

Test for the slope �:

where 

b t SE
b

± *

SE
s

x x
b

=
−( )∑

2

t
b

SE
b
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−β

SE
s

x x
b
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−( )∑

2
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Assumptions and
Conditions for Inference
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The following are the assumptions and conditions essential for proper
statistical inference. Be sure that you know and understand all of the
assumptions and conditions for the various types of confidence intervals
and tests. Make certain that you check them accordingly when conducting
inference on the AP Exam. It will be assumed that you know that the
assumptions and conditions should always be checked when doing 
inference. The test questions about inference will probably not remind
you to check them.

One-sample t-interval or one-sample t-test 
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Assumptions Conditions
1. Individuals are independent 1. SRS and <10% of population

(10n<N)

2. Normal population assumption 2. One of the following:
–Given a normal population
–Graph of data is symmetric
with no outliers

–Sample is large enough (n ≥ 30)
that the sampling distribution
of x– is approximately normal

Remember that matched pairs are a one-sample t-procedure. Check the
assumptions and conditions for a one-sample t-procedure when doing
matched pairs. You should also be sure to state that the “data are
matched,” as this is an added assumption.



Two-sample t-interval or two-sample t-test 

Assumptions and Conditions for Inference 219

Assumptions Conditions
1. Samples are independent of 1. Are they? Does this seem 

each other reasonable?

2. Individuals in each sample 2. Both SRSs and both <10% 
are independent population (10n<N for both 

samples)

3. Normal populations assumption 3. One of the following:
–Given normal populations
–Graph of data for both samples
shows no outliers or strong
skewness

–Samples are both large (n ≥ 30);
therefore the sampling 
distribution of x–1 – x–2 is
approximately normal

One-proportion z-interval or test

Assumptions Conditions
1. Individuals are independent 1. SRS and n < 10% of population

2. Sample is large enough 2. np ≥ 10 and n(1 – p) ≥ 10
Use for C.I. and p0 for Testsp̂



Two-proportion z-interval or test
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Assumptions Conditions
1. Samples are independent of 1. Is this reasonable?

each other

2. Individuals in each sample 2. Both samples are SRSs and 
are independent n < 10% of population for both 

samples

3. Both samples are large enough 3. np ≥ 10 and n(1 – p) ≥ 10
for both samples

Assumptions Conditions
1. Data are in counts 1. Is this true?

2. Data are independent 2. SRS and <10% of population
(10n<N)

3. Sample is large enough 3. All expected counts ≥ 5

Assumptions Conditions
1. Data are in counts 1. Is this true?

2. Data in each sample are 2. SRSs and each sample <10%  
independent of population (10n<N)

3. Samples are large enough 3. All expected counts ≥ 5

Chi-square goodness of fit (one variable from one sample)

Chi-square test for homogeneity 
(samples from many populations)



Chi-square test for independence/association
(one sample from one population classified on two variables)

Assumptions and Conditions for Inference 221

Regression (t) 

Assumptions Conditions
1. Data are in counts 1. Is this true?

2. Data are independent 2. SRS and <10% of population
(10n<N)

3. Sample is large enough 3. All expected counts ≥ 5

Assumptions Conditions
1. Relationship has linear form 1. Scatterplot is approximately

linear

2. Residuals are independent 2. Residual plot does not have a
definite pattern

3. Variability of residuals is 3. Residual plot has even spread
constant

4. Residuals are approximately 4. Graph of residuals is 
normal approximately symmetrical and

unimodal, or normal probability
plot is approximately linear
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Alternative hypothesis  Hypothesis that contains the value of the parameter to accept if
the null hypothesis has been rejected.

Binomial distribution (Bernoulli trial)  Four conditions must be met in order for a
distribution to be considered a binomial. These conditions are:

1. Each observation can be considered a “success” or “failure.” 
2. There must be a fixed number of trials or observations.
3. The observations must be independent.
4. The probability of success, which we call p, is the same from one trial to the next.

Block (blocking)  Used in experiments when it is believed that subjects or experimental
units are different in some way that may affect the results of the experiment.

Categorical variable  Variable that places an individual into a category or group.

Census Consists of all individuals in the entire population.

Center of the distribution The mean and/or the median of the distribution is usually
considered the center of the distribution.

Central limit theorem The central limit theorem states that as the sample size
increases, the mean of the sampling distribution of approaches a normal distribution
with mean, �, and standard deviation, 

This is true for any population, not just normal populations!

Chi-square statistic ( )  The chi-square statistic is a family of distributions and is
always skewed to the right. Each of these distributions is classified by its degrees of 
freedom. The chi-square test statistic can be found using:

where O is the observed count and E is the expected count.

x

σ
σ

x n
= .

χ2.

χ2

2

=
−( )

∑
O E
E
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Cluster sample  Similar to a stratified sample. In a cluster sample, however, the groups
are heterogeneous, not homogeneous. That is, the groups will not necessarily differ from
one another. Once the groups are determined, we can conduct an SRS within each group
and form the entire sample from the results of each SRS.

Coefficient of determination  The r2 value (coefficient of determination) is the amount
of variability of y that can be explained or accounted for by the linear relationship of y on
x. To find r2, we simply square the r-value. Remember, even an r2 value of 1 does not
necessarily imply any cause-and-effect relationship!

Complement  The complement of event E is the event that E does not occur. The 
complement of event E is written as Ec.

Completely randomized experiment Subjects or experimental units are randomly
assigned to a treatment group. Completely randomized experiments can be used to 
compare any number of treatments. Groups of equal size should be used, if possible. 

Conditional probability Probability of an event if it is known that another event or
condition has occurred or not occurred.

Confidence interval  The confidence interval gives a range of values that would be
reasonable values for the parameter of interest, based on the statistic obtained from the
sample. 

Confounding variables Variables, aside from the explanatory variable, that may affect
the response variable. 

Continuous random variable Random variable that can take on values that comprise
an interval of real numbers. 

Control group  Used to help compare the various treatments. The control group can be
used to help determine if the new treatment really does work or have a desired effect.

Convenience sample  Sample conducted due to the ease of data collection. Conve-
nience samples typically contain bias.

Correlation coefficient  The correlation coefficient can be found by using the formula:

Remember that correlation refers only to a linear relationship. Do not use the correlation
coefficient to describe non-linear relationships! Correlation does not imply causation. Just
because two variables are strongly associated or even correlated (linear) does not mean that
changes in one variable are causing changes in another.

Counting principle or multiplication principle  The multiplication principle states 
that if you can do task 1 in m ways and you can do task 2 in n ways, then you can do task
1 followed by task 2 in m � n ways.
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Degrees of freedom The number of values in the final calculation of a statistic that are
free to vary.

Density curve Smooth curve that can be used to describe the overall pattern of a 
distribution. The area under any density curve is always equal to one.

Direction Used to describe the relationship between two quantitative variables. The
direction of the relationship is described as positive or negative. 

Discrete random variable  Random variable that can take on only a countable number.

Disjoint (mutually exclusive)  Two events are considered disjoint or mutually exclusive
if they cannot occur at the same time.

Distribution  The distribution of a variable tells us what values the variable takes and
how often it takes each value.

Double-blind experiment  A double-blind experiment is an experiment in which neither
the subjects nor the evaluators know which treatment the subjects have been given.

Empirical Rule (68, 95, 99.7 Rule)  All normal distributions follow the Empirical Rule.
That is to say that all normal distributions have: 68% of the observations falling within 
� (one standard deviation) of the mean, 95% of the observations falling within 2�
(two standard deviations) of the mean, and 99.7% (almost all) of the observations falling
within 3� (three standard deviations) of the mean. 

Experiment  A controlled procedure in which a treatment is imposed on the experimen-
tal units or subjects.

Explanatory variable May be thought of as the independent variable. 

Exponential model  Equation used to make predictions when the data are exponential
or approximately exponential.

Extrapolation  Extrapolation refers to making predictions about the response variable
based on the explanatory variable when the value of the explanatory variable is outside of
the domain of the x values. This can be dangerous, as the relationship between x and y
can change for extreme values of x.

Event Subset of a sample space. 

Factor(s)  Explanatory variable or variables in an experiment.

Five-number summary The five-number summary is sometimes used when dealing
with skewed distributions. The five-number summary consists of the lowest number,
first-quartile (Q1), median (M), third-quartile (Q3), and the largest number. 

Form  Used to describe the relationship between two quantitative variables. The terms
“linear” or “curved” are typically used to describe the form of the relationship. 
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Geometric distribution There are four conditions that must be met in order for a distri-
bution to fit a geometric setting. These conditions are:

1. Each observation can be considered a “success” or “failure.” 
2. The observations must be independent.
3. The probability of success, which we call p, is the same from one trial to the next.
4. The variable that we are interested in is the number of observations it takes to

obtain the first success.

Hypothesis test or test of significance Form of statistical inference used when testing a
claim that has been made concerning a population.

Independent events  Two events are independent if the occurrence or non-occurrence
of one event does not alter the probability of the second event. 

Inferential statistics Conclusions or assumptions about an entire population based on
sample data.

Influential observation  Observation that has a dramatic impact on the correlation
coefficient and the least squares regression line.

Intersection  The intersection of two events contains all outcomes that belong to both
events. 

Law of Large Numbers The Law of Large Numbers states that the long-run relative
frequency of repeated, independent trials gets closer to the expected relative frequency
once the number of trials increases.

Least Squares Regression Line (LSRL)  The LSRL is fitted to the data by minimizing
the sum of the squared residuals. The LSRL equation takes the form of where
b is the slope and a is the y-intercept. The AP formula sheet uses the form . 

Levels  Actual values for the factors of an experiment. Each factor can have one or
more levels.

Linear model  Equation used to make predictions for data that is linear or approximately
linear.

Margin of error When dealing with a one-proportion z-interval, the margin of error is
the distance from the endpoints of the confidence interval to the center of the interval, 
The margin of error is the product of the z* value and the standard error and is affected
primarily by the sample size and the z* value (confidence level.) The margin of error for
a t-interval is affected in a similar fashion by the sample size and the level of confidence. 

Matched-pairs experiment  Type of blocked experiment. The subject can serve as
his/her own control, or each subject can be “matched” with another subject on some
common characteristic that might affect the experiment. If each subject serves as his/her
own control, then the order of the treatment received is randomized. If two subjects are
matched, then the treatments are randomly assigned to each of the subjects.

ŷ a bx= +
ŷ b b x= +0 1

ˆ.p
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Mean Arithmetic average of the distribution

or

Median Midpoint of the distribution; half of the observations are smaller than the
median and half are larger. To find the median: Arrange the data in ascending order
(smallest to largest). If there are an odd number of observations, the median is the center
data value. If there is an even number of observations, the median is the average of the
two middle observations.

Multistage sample  Sampling method that combines several different types of sampling.
Some national opinion polls are conducted using this method.

Nonresponse Nonresponse can lead to bias when certain individuals who have been
selected cannot be reached or choose not to participate in a sample.

Normal distribution  Continuous probability distribution. The graph of a normal 
distribution is bell shaped and follows the 68, 95, 99.7 Rule.

Normal probability plot Used to assess the normality of a population through sample
data. A normal probability plot is a scatterplot that graphs a predicted z-score against the
value of the variable.

Null hypothesis  Hypothesis that states that there is no change or effect in the population.
The null hypothesis always includes an equality.

Observational study   A type of study where individuals are observed or certain outcomes
are measured. No treatment is imposed.

Outcomes  Results of the trials of the experiment.

Outliers Values that fall outside the overall pattern of the distribution.

P-value Probability of obtaining a sample statistic as extreme as or more extreme than
has been obtained, given that the null hypothesis is true. The smaller the p-value, the more
evidence to reject the null hypothesis.

Parameter Number that describes some attribute of a population.

Placebo  “Dummy pill” used in place of actual medication to help control for the psy-
chological effect of taking medication. The placebo should look and taste just like the
treatment being tested.

Placebo effect  The placebo effect results when subjects show a response because they
believe that they are receiving the actual treatment or medication.

Population All individuals in a particular group of interest.

Power model  Equation used to make predictions when data is curved but not exponential.

x
x
n

i= ∑x
x x x

n
n=

+ + +1 2 ...
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Power of the test Probability of rejecting the null hypothesis given that a particular
alternative value is true. The power of the test is equal to 1 – �.

Probability  A measure of how likely a particular event is to occur. Probability is always
a number between 0 and 1, inclusive.

Quantitative variable  Variable that takes on a numerical value.

Random events Events that are uncertain but follow a predictable distribution over the
long run. 

Random variable  Variable from a random experiment that can take on different values.
The random variable can be discrete or continuous. 

Replication There are two forms of replication to consider. One type refers to increasing
the number of experimental units or subjects, so that it is known that the difference between
the experimental group and the control group is really due to the treatment(s) being imposed
and not just due to chance. The second type refers to designing an experiment that can be
replicated by others doing similar research. 

Residual Difference between the observed value, y, and the predicted value, In other
words, residual = observed – predicted. Remember that all predicted values are located
on the LSRL. A residual can be positive or negative. 

Resistant measure  Measurements that resist the influence of extreme data values.
Examples of resistant measurements are mean, standard deviation, and the correlation
coefficient.

Response bias  Type of bias that results when respondents answer questions in a manner
they believe the questioner wants them to answer. Response bias usually occurs due to
poorly worded survey questions.

Response variable May be thought of as the dependent variable. 

Robust  The t-procedures are robust. Robust means that the results of our t-interval or 
t-test would not change very much even though the assumptions of the procedure are
violated.

Sample Part of a population.

Sample space  A list containing all possible outcomes of the experiment.

Sampling distribution Distribution of the values of the statistic if all possible samples
of a given size are taken from the population. 

Sampling frame List of individuals from the entire population from which the sample
is drawn. 

Sampling variability  Variability that results when repeated samples are taken from the
same population. Sampling distributions obtained with smaller sample sizes contain more
sampling variability than those obtained from larger samples.

ˆ.y
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Simple random sample (SRS) Sample in which every set of n individuals has an equal
chance of being chosen.

Simulation  Used to imitate events that involve change behavior.

Single-blind experiment  Experiment in which the subjects do not know which treat-
ment they have received. An experiment is also considered single blind if the subjects do
know which treatment they have received but the evaluators do not know which treat-
ment has been given.

Skewed left The left side of the distribution extends further than the right side, meaning
that there are fewer values to the left. 

Skewed right The right side of the distribution extends further than the left side, 
meaning that there are fewer values to the right. 

Spread of the distribution Refers to the variability of the distribution. Typically, the
IQR and/or the variance/standard deviation are used to measure the spread of the 
distribution.

Standard deviation/variance  Measures the spread of the distribution about the mean.
The standard deviation is used to measure spread when the mean is chosen as the measure
of center. The standard deviation has the same unit of measurement as the data in the
distribution. The variance is the square of the standard deviation and is labeled in units
squared. 

The formula for variance is: 

or

The standard deviation is the square root of the variance.

or

Standard error  When s is used to estimate �, the standard deviation of the sampling
distribution is called the standard error of the sample mean, 

Standard normal distribution  Normal distribution with mean of zero and a standard
deviation of one. The notation used to denote the standard normal distribution is N (0,1).

Statistic Number that describes an attribute of a sample.

Statistical inference Process by which we draw conclusions about an entire population
based on sample data. 

Stratified Random Sample (SRS) Sample in which the population is divided into
groups that are believed to be similar in some fashion. These homogeneous groups are
called strata. Within each stratum, an SRS is obtained. These SRS’s are then combined 
to obtain the total sample.
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Strength Used to describe the relationship between two quantitative variables. The
strength of the relationship is typically described as weak, moderate, strong, or somewhere
in between. 

Symmetric distribution  Distribution in which the right and left sides are approximately
mirror images of each other.

Systematic sampling Sampling method in which it is predetermined how the sample
will be obtained. For example, you might sample every 25th unit or subject from a given
population. 

t-distribution Used when the population standard deviation, �, is unknown. Like the
standard normal distribution, the t-distribution is single-peaked, symmetrical, and bell
shaped. As the sample size (n) increases, the variability of the sampling distribution
decreases. Thus, as the sample size increases, the t-distributions approach the standard
normal model. When the sample size is small, there is more variability in the sampling
distribution, and therefore there is more area (probability) under the density curve in the
“tails” of the distribution.

Trial  A single attempt of a random event.

Type I error  Occurs when we reject the null hypothesis when, in fact, it is actually
correct. The probability of making a type I error is equal to the significance level, 
(� – level) of the test. 

Type II error  Occurs when we fail to reject the null hypothesis when, in fact, the null
hypothesis is false. The probability of type II error is referred to as �.

Unbiased estimate  An estimate is considered unbiased if it does not systematically
tend to overestimate or underestimate the parameter of interest.

Undercoverage Undercoverage occurs when individuals in the population are excluded
in the process of choosing the sample. Undercoverage can lead to bias, so caution must
be used.

Union  The union of two events is the event that at least one of the events has occurred. 

Voluntary response sample  Sampling method where people respond strictly on a
voluntary basis. Voluntary response samples usually include bias, which is referred to as
voluntary response bias.

z-score  Standardized normal random variable found by using 

A z-score is the number of standard deviations a given value is from the mean. Positive 
z-scores result when an observation is above the mean, and negative z-scores result when
an observation is below the mean.

z x
=

−μ
σ

.
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A
accessing normality, 55–56
alternative hypothesis, 132
association

chi square statistics, 221
tests for, 181–184

assumptions, 98, 108
chi-square

goodness of fit, 171, 173
tests of homogeneity, 178

independence/association, 182
for inference, 124
inferences, 188, 217–221
matched pairs, 145
normal population, 139
one-proportion z-intervals, 151
proportions, 160
t-tests, 133
two-sample confidence interval for means,

136
verifying, 126
z-tests, 157, 164

B
back-to-back stemplots, 12
balancing points, 44. See also means
bar graphs, 13–14
Bayes’s rule, 82–86
bell-shaped curves, 42
Bernoulli trials, 97
bias, 61

voluntary response, 61

binomial distributions
formulas, 211
probability, 97–102

bivariate data, 18–39
modeling data, 27–39
scatterplots, 18–27

block design, 65
blocking, 68

matched pairs, 144
boxplots, modified, 9–10

C
calculations

normal, 48–54
p-values, 132

categorical variables, 2
categories, numbers of, 172
cause-and-effect relationships, 24
census, 58
centers, distributions, 2–6
Central Limit Theorem, 122

sample means, 111–118
sample proportions, 119–120

charts, pie, 14–15
chi square statistics, 167–184

association/independence, 221
formulas, 209
goodness of fit, 170–176, 220
tests

for homogeneity, 176–180, 220
for independence/association, 181–184

clusters, samples, 60
Coefficient of Determination, 24

IndexIndex
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complements, 77
completely randomized experiments, 64
conclusions, 108
conditional probability, 79, 82–86
conditions

assumptions, 124
for binomial distributions, 97
chi-square goodness of fit, 171, 173
chi-square tests of homogeneity, 178
geometric distributions, 102
independence/association, 182
inference for regression, 188
inferences, 217–221
matched pairs, 145
one-proportion z-intervals, 151
proportions, 160
t-tests, 133
two-sample confidence interval for means,

136
verifying, 126
z-tests, 157, 164

confidence intervals, 124–130
one-sample confidence interval for propor-

tions, 150–156
for the slope ß, 189–193
two-sample confidence interval for means,

135–141
confounding variables, 67
contingency tables, 181, 183
continuous random variables, 91–97
control, 67
convenience samples, 61
correlation, scatterplots, 22–23
counting principles, 76
counts, observations, 179
critical value, 175
curved relationships, 19
curves

bell-shaped, 42
density, 42–44
normal, 42
standard normal, 45

D
data. See also graphs

bivariate, 18–39. See also bivariate data
displaying, 9–15
modeling, 27–39
points, 25

degrees of freedom, 122
chi-square statistics, 167
finding, 137
regression models, 187
t-distributions, 123

density curves, 42–44
descriptive statistic formulas, 207
design

experiments, 63–69
matched pairs, 144

deviations, standard, 6, 8
normal distributions, 45

diagrams
conditional probability, 83
trees, 75, 78
Venn, 79, 80, 81

differences, 146
two-sample confidence intervals for differ-

ences in proportions, 159–161
two-sample z-test for differences of two

proportions, 162–165
direction of relationships, 18, 19
discrete random variables, 87–91
disjoint events, 81
displaying data, 9–15
distributions

binomial, 97–102
chi-square statistics, 167
formulas, 211
geometric, 102–105, 212
graphs, viewing, 9–15
normal, 42–56

accessing normality, 55–56
density curves, 42–44
Empirical Rule, 46–47
formulas, 210
normal calculations, 48–54
standard, 123

overview of, 2–9
populations, 112
probability, 87
sampling, 108–120

sample means, 111–118
sample proportions, 119–120

skewed-left, 3
skewed-right, 4
standard normal, 49
symmetrical, 3
t distribution critical value tables, 203–204
t-distributions, 122–123
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dotplots, 13
double-blind experiments, 66
dummy pills. See placebos

E
effects, placebo, 64
empirical probability, 75
Empirical Rule, 46–47

normal calculations, 48–54
normality, accessing, 55

equations
curves standard normal, 45
normal calculations, 48–54

errors
in hypothesis tests, 147–148
margin of error, 153–156
regression lines, 187
standard, 122, 137, 189

estimators, unbiased, 109
events, 75

disjoint, 81
independent, 77, 86
mutually exclusive, 81
random, 74

exam preparation, xiii–xviii
expected counts, 179
experiments

completely randomized, 64
design, 63–69
double-blind, 66
single-blind, 66

explanatory variables, 18
exponential models, 32

F
facts

about correlation, 22–23
about regression, 24

finding
confidence intervals, 125
degrees of freedom, 137
medians, 4

five-number summary, 6
form of relationships, 18
formulas, 205–216

binomial distributions, 97, 211
chi square statistics, 209
descriptive statistics, 207
geometric distributions, 103, 212

inferential statistics, 209, 213–216
means, 213
normal distributions, 210
probability, 208, 210–211
proportions, 214–215
regression, 215–216

four principles of experimental design, 67
frames, sampling, 59
frequency, 11
functions, ZoomStat, 11

G
General Addition Rule for the Union of Two

Events, 80
geometric distributions

formulas, 212
probability, 102–105

goodness of fit, chi square statistics for,
170–176, 220

grades, how they are determined, xvi–xviii
graphs

bar, 13–14
displaying, 9–15

H
histograms, 10–11
homogeneity

chi square statistics test for, 220
of populations, tests, 176–180

homogeneous groups, 60
hypothesis tests, 131–135

errors in, 147–148
slope ß, 193–197
two-sample hypothesis test for means,

141–143

I
independence

chi square statistics, 221
tests for, 181–184

independent events, 77, 86
independent random variables, 94
inferences

assumptions, 217–221
conditions, 217–221
means, 121–148

confidence intervals, 124–130
errors in hypothesis tests, 147–148
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inferences (continued)
hypothesis tests, 131–135
matched pairs (one-sample t), 144–146
t-distributions, 122–123
two-sample confidence interval for

means, 135–141
two-sample hypothesis test for means,

141–143
proportions, 149–165

confidence intervals for the slope ß,
189–193

hypothesis testing for the slope ß,
193–197

one-sample confidence interval for pro-
portions, 150–156

one-sample z-test for proportions,
156–158

two-sample confidence intervals for dif-
ferences in proportions, 159–161

two-sample z-test for differences of two
proportions, 162–165

regression, 185–197
statistical, 122
variables, 167–184

inferential statistics, 108, 209, 213–216
influential observations, 25, 26
interpreting confidence intervals, 129
interquartile range (IQR), 9
intervals, confidence, 124–130

one-sample confidence interval for propor-
tions, 150–156

two-sample confidence interval for means,
135–141

L
Law of Large Numbers, 74
least squares regression, scatterplots, 23–27
Least Squares Regression Line (LSRL), 23
left tails, 53
less influential observations, 27
levels, 63
linear models, 31
linear relationships, 18
logs, scatterplots, 37

M
margin of error, 153–156
matched-pairs design, 66
matched pairs (one-sample t), 144–146

means, 4
formulas, 213
inferences, 121–148

confidence intervals, 124–130
errors in hypothesis tests, 147–148
hypothesis tests, 131–135
matched pairs (one-sample t), 144–146
t-distributions, 122–123
two-sample confidence interval for

means, 135–141
two-sample hypothesis test for means,

141–143
medians, relationships between, 42
one-sample hypothesis tests for, 131–135
rules, 92
samples, 111–118
two-sample confidence interval for,

135–141
two-sample hypothesis test for, 141–143

measures, resistant, 116
medians, 4

finding, 4
mean, relationships between, 42

modeling data, 27–39
models

exponential, 32
linear, 31
power, 35

moderate relationships, 20, 21
modified boxplots, 9–10
multiplication principles, 76
multistage samples, 61
mutually exclusive events, 81

N
negative, slightly curved relationships, 20
nonresponse, 62
no relationships, 20
normal calculations, 48–54
normal curves, 42
normal distributions, 42–56

density curves, 42–44
Empirical Rule, 46–47
formulas, 210
normal calculations, 48–54
normality, accessing, 55–56
standard, 123

normal population assumptions, 126, 139
normal probability plot, 196
null hypothesis, 132, 134
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numbers
of categories, 172
five-number summary, 6
Law of Large Numbers, 74
random digit tables, 200

O
observational study, 63
observations

counts, 179
Empirical Rule, 46–47
influential, 25, 26

one-proportion z-interval test, 219
one-sample confidence interval for proportions,

150–156
one-sample hypothesis tests for means, 131–135
one-sample t-interval test, 218
one-sample t (matched pairs), 144–146
one-sample z-test for proportions, 156–158
outcomes, 75

sampling distributions, 110
outliers, 8

boxplots, 9–10

P
parameters, 108
patterns

residual plots, 30
scatterplots, 18. See also scatterplots

pie charts, 14–15
placebos, 64
planning for exam success, xiii–xv
plots

normal probability, 196
probability, 55–56
residuals, 29, 195

points, data, 25
pooled sample proportions, 162
populations, 8, 58, 108

distributions, 112
normal population assumptions, 139
single, 181
tests for homogeneity of, 176–180

positive, curved relationships, 19
positive relationships, 21
potential outliers, 8
power models, 35
power of tests, 147
principles

counting, 76

of experimental design, 67
multiplication, 76

probability, 74–105
binomial distributions, 97–102
conditional, 79, 82–86
continuous random variables, 91–97
discrete random variables, 87–91
formulas, 208, 210–211
geometric distributions, 102–105
plots, 55–56
rules, 74–82
simulation, 69
standard normal, 201–203

proportions
formulas, 214–215
inferences, 149–165

confidence intervals for the slope ß,
189–193

hypothesis testing for the slope ß,
193–197

one-sample z-test for proportions,
156–158

two-sample confidence intervals for 
differences in proportions, 159–161

two-sample z-test for differences of two
proportions, 162–165

pooled sample, 162
samples, 119–120

p-values, 132, 134
null hypothesis, 143

Q
quantitative variables, 2
quartiles, 6

R
random digits, tables, 200
random events, 74
randomization, 67
random samples, 111
random scatter, 29
random variables

continuous, 91–97
discrete, 87–91
independent, 94

ranges, interquartile range (IQR), 9
regression, 221

formulas, 215–216
inferences, 185–197
least square scatterplots, 23–27
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relationships
cause-and-effect, 24
curved, 19
direction of, 18, 19
form of, 18
linear, 18
between mean and median, 42
strength of, 18, 20

relative frequency, 11
relatively strong, negative, linear relationships,

25
relatively strong, negative, slightly curved rela-

tionships, 21
replacement, tree diagrams with, 78
replication, 67
residuals, 23, 192

plots, 29, 195
resistant measures, 6, 23, 116
response variables, 18
right tails, 53
robust t-procedures, 125
rules

Bayes’s, 82–86
Empirical Rule, 46–47
General Addition Rule for the Union of Two

Events, 80
means, 92
probability, 74–82
variances, 92

r-values, 22–23, 28

S
samples, 8, 108

clusters, 60
convenience, 61
means, 111–118
multistage, 61
one-sample hypothesis tests for means,

131–135
pooled sample proportions, 162
populations, 58
proportions, 119–120
simple random sample (SRS), 111
spaces, 75
voluntary response, 61

sampling, 58–62
distributions, 108–120

sample means, 111–118
sample proportions, 119–120

frames, 59
systematic, 61

variability, 62, 109
scatterplots, 18–27, 190

correlation, 22–23
least squares regression, 23–27
linear models, 31
logs, 37

shapes
distributions, 2–6
stemplots, 12

simple random sample (SRS), 59, 111
simulation, 68–71
single-blind experiments, 66
single populations, 181
single stems, 12
68, 95, 99.7 Rule, 47. See also Empirical Rule
skew, 2
skewed-left distributions, 3
skewed-right distributions, 4
slope ß

confidence intervals, 189–193
hypothesis testing for the, 193–197

slopes of regression lines, 24
split stems, 12
spreads, distributions, 2–6
standard deviations, 6, 8

normal distributions, 45
standard errors, 122, 137, 189

regression lines, 187
standard normal distributions, 49, 123
standard normal probabilities, tables, 201–203
statistical inference, 122
statistics

chi square, 167–184. See also chi square
statistics, 209

formulas
descriptive, 207
inferential, 209, 213–216

inferential, 108
unbiased, 111

stemplots, 12
strata, 60
stratified random samples, 60
strength of relationships, 18, 20
strong relationships, 20
student’s t, 122
summaries, five-number summary, 6
symmetrical distributions, 3
systematic sampling, 61

T
table of random digits, using, 59
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tables
contingency, 181, 183
random digits, 200
standard normal probabilities, 201–203
t distribution critical values, 203–204
X2 critical values, 204

tails, 53
t distribution critical value tables, 203–204
t-distributions, 122–123
tests

chi-square statistics, 167
for homogeneity of populations, 176–180
hypothesis, 131–135

errors in, 147–148
slope ß, 193–197

for independence/association, 181–184
one-sample z-test for proportions, 156–158
of significance. See hypothesis tests
two-sample z-test for differences of two

proportions, 162–165
theoretical probability, 75
t-intervals, 124
t-procedures, 125, 139

matched pairs, 144
trails, 75
treatments, 63
trees

conditional probability, 83
diagrams, 75, 78

trials, Bernoulli, 97
True, Chris, 111
t-tests, 124, 133
two-proportion z-interval test, 220
two-sample confidence interval for means,

135–141
two-sample confidence intervals for differences

in proportions, 159–161
two-sample hypothesis test for means, 141–143
two-sample t-interval test, 219
type I errors, 147
type II errors, 147
types

of experiment design, 65
of graphs, 9–15
of probability, 75
of sampling, 59
of variables, 2

U
unbiased estimators, 109
unbiased statistics, 111
undercoverage, 61

V
values

continuous random variables, 92
critical, 175
medians, finding, 4
null hypothesis, 143
outliers, 8
p-values, 132, 134
r-values, 22–23, 28
sampling distributions, 109
t distribution critical value tables, 203–204
X2 critical value tables, 204

variability, sampling, 62, 109
variables

confounding, 67
explanatory, 18
inferences, 167–184
random

continuous, 91–97
discrete, 87–91
independent, 94

response, 18
types of, 2

variances, 6, 7
rules, 92

Venn diagrams, 79, 80, 81
verifying

assumptions, 126
conditions, 126

viewing graphs, 9–15
voluntary response bias, 61
voluntary response samples, 61

W
weak relationships, 20

X
X, random variables, 87
X2 critical value tables, 204

Z
ZoomStat function, 11
z-scores, 49, 50, 54
z-tests

one-sample z-test for proportions, 156–158
two-sample z-test for differences of two

proportions, 162–165
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