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1

Mathematical Bases

1.1. Introduction to stochastic risk analysis

1.1.1. About the subject

The concept of risk is diverse enough and is used in many areas of

human activity. The object of interest in this book is the theory of

collective risk. Swedish mathematicians Cramér and Lundberg

established stochastic models of insurance based on this theory.

Stochastic risk analysis is a rather broad name for this volume. We

will consider mathematical problems concerning the Cramér-Lundberg

insurance model and some of its generalizations. The feature of this

model is a random process, representing the dynamics of the capital of a

company. These dynamics consists of alternations of slow accumulation

(that may be not monotonous, but continuous) and fast waste with the

characteristic of negative jumps.

All mathematical studies on the given subject continue to be

relevant nowadays thanks to the absence of a compact analytical

description of such a process. The stochastic analysis of risks which is

the subject of interest has special aspects. For a long time, the most

interesting problem within the framework of the considered model was

ruin, which is understood as the capital of a company reaching a

certain low level. Such problems are usually more difficult than those

of the value of process at fixed times.

Stochastic Risk Analysis and Management, First Edition. Boris Harlamov.
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1.1.2. About the ruin model

Let us consider the dynamics of the capital of an insurance

company. It is supposed that the company serves several clients, which

bring in insurance premiums, i.e. regular payments, filling up the cash

desk of the insurance company. Insurance premiums are intended to

compensate company losses resulting from single payments of great

sums on claims of clients at unexpected incident times (the so-called

insured events). They also compensate expenditures on maintenance,

which are required for the normal operation of a company. The

insurance company’s activity is characterized by a random process

which, as a rule, is not stationary. The company begins business with

some initial capital. The majority of such undertakings come to ruin

and only a few of them prosper. Usually they are the richest from the

very beginning. Such statistical regularities can already be found in

elementary mathematical models of dynamics of insurance capital.

The elementary mathematical model of dynamics of capital, the

Cramér-Lundberg model, is constructed as follows. It uses a random

process Rt (t ≥ 0)

Rt = u+ p t−
Nt∑
n=1

Un, [1.1]

where u ≥ 0 is the initial capital of the company, p > 0 is the growth

rate of an insurance premium and p t is the insurance premium at time

t. (Un)
∞
n=1 is a sequence of suit sizes which the insurance company

must pay immediately. It is a sequence of independent and identically

distributed (i.i.d.) positive random variables. We will denote a

cumulative distribution function of U1 (i.e. of all remaining) as

B(x) ≡ P (U1 ≤ x) (x ≥ 0). The function (Nt) (t ≥ 0) is a

homogeneous Poisson process, independent of the sequence of suit

sizes, having time moments of discontinuity at points (σn)
∞
n=1. Here,

0 ≡ σ0 < σ1 < σ2 < . . . ; values Tn = σn − σn−1 (n ≥ 1) are i.i.d.

random variables with a common exponential distribution with a

certain parameter β > 0.
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Figure 1.1 shows the characteristics of the trajectories of the process.
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Figure 1.1. Dynamics of capital

This is a homogeneous process with independent increments

(hence, it is a homogeneous Markov process). Furthermore, we will

assume that process trajectories are continuous from the right at any

point of discontinuity.

Let τ0 be a moment of ruin of the company. This means that at this

moment, the company reaches into the negative half-plane for the first

time (see Figure 1.1). If this event does not occur, this moment is set as

equal to infinity.

The first non-trivial mathematical results in risk theory were

connected with the function:

ψ(u) = Pu(τ0 < ∞) (u ≥ 0),

i.e. a probability of ruin on an infinite interval for a process with the

initial value u. Interest is also represented by the function ψ(u, t) =
Pu(τ0 ≤ t). It is called the ruin function on “finite horizon”.

Nowadays many interesting outcomes have been reported for the

Cramér-Lundberg model and its generalizations. In this volume, the

basic results of such models are presented. In addition, we consider its
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generalizations, such as insurance premium inflow and distribution of

suit sizes.

This is concentrated on the mathematical aspects of a problem. Full

proofs (within reason) of all formulas, and volume theorems of the

basic course are presented. They are based on the results of probability

theory which are assumed to be known. Some of the information on

probability theory is shortly presented at the start. In the last chapter

some management problems in insurance business are considered.

1.2. Basic methods

1.2.1. Some concepts of probability theory

1.2.1.1. Random variables

The basis of construction of probability models is an abstract

probability space (Ω,F , P ), where Ω is a set of elementary events; F
is a sigma-algebra of subsets of the set Ω, representing the set of those

random events, for which it makes sense to define the probability

within the given problem; P is a probability measure on set Ω, i.e.

non-negative denumerably additive function on F . For any event

A ∈ F , the probability, P (A), satisfies the condition 0 ≤ P (A) ≤ 1.

For any sequence of non-overlapping sets (An)
∞
1 (An ∈ F) the

following equality holds:

P

( ∞⋃
n=1

An

)
=

∞∑
n=1

P (An),

and P (Ω) = 1. Random events A1 and A2 are called independent if

P (A1, A2) ≡ P (A1 ∩ A2) = P (A1)P (A2). This definition is

generalized on any final number of events. Events of infinite system of

random events are called mutually independent if any of its final

subsystem consists of independent events.

A random variable is a measurable function ξ(ω) (ω ∈ Ω) with real

values. It means that for any real x, the set {ω : ξ(ω) ≤ x} is a random
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event and hence, probability of it exists, designated as Fξ(x). Thus, the

cumulative distribution function, Fξ, is defined as follows :

Fξ(x) = P (ξ ≤ x) (−∞ < x < ∞).

It is obvious that this function does not decrease when x increases.

In this volume, we will deal with absolutely continuous distributions

and discreet distributions (sometimes with their mixtures).

For an absolutely continuous distribution, there exists its distribution

density fξ(x) = dFξ(x)/dx for all x ∈ (−∞,∞) such that∫ ∞

−∞
fξ(x) dx = 1.

For discreet distributions, there exists a sequence of points (atoms)

(xn)
∞
1 for which non-negative probabilities p(xn) = P (ξ = xn) are

defined as:

∞∑
n=1

p(xn) = 1.

The random variable is called integer if it has a discreet distribution

with atoms in the integer points of a numerical axis, denoted by Z.

If R is the set of all real numbers, ϕ is a measurable function on

R, and ξ is a random variable, then superposition ψ(ω) ≡ ϕ(ξ(ω))
(ω ∈ Ω) is a random variable too. Various compositions of random

variables are possible, which are also random variables. Two random

variables ξ1 and ξ2 are called independent, if for any x1 and x2 events

{ξ1 ≤ x1} and {ξ2 ≤ x2} are independent.

Expectation (average) Eξ of a random variable ξ is the integral of

this function on Ω with respect to the probability measure P , i.e.:

Eξ =

∫
Ω
ξ(ω)P (dω) ≡

∫
ξ dP
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(an integral of Lebesgue). By a cumulative distribution function, this

integral can be noted as an integral of Stieltjes:

Eξ =

∫ ∞

−∞
x dFξ(x),

and for a random variable ξ with absolute continuous distribution, it can

be represented as integral of Riemann:

Eξ =

∫ ∞

−∞
xfξ(x) dx.

For a random variable ξ with a discreet distribution, it is possible to

write an integral in the form of the sum:

Eξ =
∞∑
n=1

xnp(xn).

When evaluating an expectation, it is necessary to be careful in case

the integral from the module of this random variable is equal to infinity.

Sometimes it useful to distinguish three cases: an integral equal to plus

infinity, an integral equal to minus infinity and an integral does not exist.

Let us note that it is possible to consider separately a cumulative

distribution function out of connection with random variables

generating them and probability spaces. However, for any

non-decreasing, continuous from the right, function F such that

F (x) → 0 as x → −∞ and F (x) → 1 as x → ∞ (the cumulative

distribution function of any random variable possesses these

properties), it is possible to construct a probability space and with

random variable on this space, which has F as its cumulative

distribution function on this probability space. Therefore, speaking

about a cumulative distribution function, we will always mean some

random variable within this distribution. It allows us to use equivalent

expressions such as “distribution moment”, “moment of a random

variable”, “generating function of a distribution” and “generating

function of a random variable”.
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The following definitions are frequently used in probability theory.

The moment of nth order of a random variable ξ is an integral Eξn (if

it exists). The central moment of nth order of a random variable ξ is

an integral E(ξ − Eξ)n (if it exists). The variance (dispersion) Dξ of a

random variable ξ is its central moment of second order.

The generating function of a random variable is the integral

E exp(αξ), considered as a function of α. Interest represents those

generating functions which are finite for all α in the neighborhood of

zero. In this case, there is one-to-one correspondence between the set

of distributions and the set of generating functions. This function has

received the name because of its property “to make” the moments

under the formula:

Eξn =
dnE exp(αξ)

dαn

∣∣∣∣
α=0

.

A random n-dimensional vector is the ordered set of n random

variables ξ = (ξ1, . . . , ξn). Distribution of this random vector (joint

distribution of its random coordinates) is a probability measure on

space R
n, defined by n-dimensional cumulative distribution function:

Fξ(x1, . . . , xn) = P (ξ1 ≤ x1, . . . , ξn ≤ xn) (xi ∈ R, i = 1, . . . , n).

As the generating function of a random vector is called function of n
variables E exp(α, ξ), where α = (α1, . . . , αn) (αi ∈ R) and (α, ξ) =∑n

i=1 αiξi. The mixed moment of order m ≥ 2 of a random vector ξ is

called E(ξm1
1 · · · · · ξmn

n ), where mi ≥ 0,
∑n

i=1mi = m. Covariance of

random variables ξ1 and ξ2 is called central joint moment of the second

order:

cov(ξ1, ξ2) = E(ξ1 − Eξ1)(ξ2 − Eξ2).

1.2.1.2. Random processes

In classical probability theory, random process on an interval T ⊂ R

is called a set of random variables ξ = (ξt)t∈T , i.e. function of two
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arguments (t, ω) with values ξt(ω) ∈ R (t ∈ R, ω ∈ Ω), satisfying

measurability conditions. As random process, we can understand that

an infinite-dimensional random vector, whose space is designated as

R
T , is a set of all functions on an interval T . Usually, it is assumed that

a sigma-algebra of subsets of such set functions contains all so-called

finite-dimensional cylindrical sets, i.e. sets of:

{f ∈ R
T : ft1 ∈ A1, . . . , ftn ∈ An} (n ≥ 1, ti ∈ T,Ai ∈ B(R)),

where B(R) is the Borel sigma-algebra of the subsets of R (the sigma-

algebra of subsets generated by all open intervals of a numerical straight

line). For the problems connected with the first exit times, the minimal

sigma-algebra F̃ , containing all such cylindrical sets, is not sufficient.

It is connected by that the set RT “is too great”. Functions belonging

in this set are not connected by any relations considering an affinity of

arguments t, such as a continuity or one-sided continuity.

For practical problems, it is preferable to use the other definition of

the random process, namely not a set of random variables assuming the

existence of the abstract probability spaces, but a random function as

element of a certain set Ω, composed of all possible realizations within

the given circle of problems. On this function space, a sigma-algebra of

subsets and a probability measure on this sigma-algebra should be

defined. For the majority of practical uses, it is enough to take as

function space the set D of all functions ξ : T → R continuous from

the right and having a limit from the left at any point of an interval

T ⊂ R. The set D is a metric space with respect to the Skorokhod

metric, which is a generalization of the uniform metric. A narrower set,

that has numerous applications as a model of real processes, is the set

C of all continuous functions on T with locally uniform metric. In

some cases it is useful to consider other subsets of space D, for

example, all piece-wise constant function having a locally finite set of

point of discontinuities. Sigma-algebra F of subsets of D, generated

by cylindrical sets with the one-dimensional foundation of an aspect

{ξ ∈ D : ξ(t) ∈ A} (t ∈ T,A ∈ B(R)) that comprises all interesting

subsets (events) connected with the moments of the first exit from open

intervals belonging to a range of values of process.
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Random process is determined if some probability measure on

corresponding sigma-algebra of subsets of set of its trajectories is

determined. In classical theory of random processes, a probability

measure on F̃ is determined if and only if there exists a consistent

system of finite-dimensional distributions determined on cylindrical

sets with finite-dimensional foundations [KOL 36]. To represent a

measure on the sigma-algebra F , Kolmogorov’s conditions for the

coordination of distributions on the finite-dimensional cylindrical sets

are not enough. In this case, some additional conditions are required.

They, as a rule, are concerned with two-dimensional distributions

P (ξ(t1) ∈ A1, ξ(t2) ∈ A2) as |t1 − t2| → 0. In problems of risk theory

where, basically, Markov processes are used, these additional

conditions are easily checked.

1.2.1.3. Shift operator

We will assume further that T = [0,∞) ≡ R+. First, we define on

set D an operator Xt “value of process in a point t”: Xt(ξ) ≡ ξ(t).
We also use other labels for this operator, containing the information on

concrete process, for example, Rt, Nt and St. They are operators with

meaning: values of concrete processes at a point t. By an operator Xt

we will represent the set {ξ ∈ D : ξ(t1) ∈ A1, . . . , ξ(tn) ∈ An} as

{Xt1 ∈ A1, . . . , Xtn ∈ An}. Thus, finite-dimensional distribution is

possible to note as probability P (Xt1 ∈ A1, . . . , Xtn ∈ An). This rule

of denotation when the argument in the subset exposition is omitted is

also spread on other operators defined on D.

A shift operator θt maps D on D. It is possible to define function

θt(ξ) (t ≥ 0) by its values at points s ≥ 0. These values are defined as:

(θt(ξ))(s) = ξ(t+ s) (t, s ≥ 0).

Using an operator Xt this relation can be noted in an aspect

Xs(θt(ξ)) = Xt+s(ξ) or, by lowering argument ξ, in an aspect

Xs(θt) = Xt+s. We also denote this relation (superposition) as

Xs ◦ θt = Xt+s. Obviously, θs ◦ θt = θt+s.
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An important place in the considered risk models is taken by the

operator σΔ “the moment of the first exit from set Δ”, defined as

σΔ(ξ) = inf{t ≥ 0 : ξ(t) �∈ Δ}, if the set in braces is not empty;

otherwise, we suppose σΔ(ξ) = ∞.

1.2.1.4. Conditional probabilities and conditional averages

From elementary probability theory, the concept of conditional

probabilities P (A|B) and a conditional average E(f |B) concerning

event B are well-known, where A and B are events, f is a random

variable and P (B) > 0. The concept of conditional probability

concerning a final partition of space on simple events P (A | P) is not

more complicated, where P = (B1, . . . , Bn) (Bi ∩ Bj = ∅,⋃n
k=1Bk = Ω) and P (Bi) > 0. In this case, the conditional

probability can be understood as function on partition elements: on a

partition element Bi, its value is P (A|Bi). This function accepts n
values. However, in this case, there is a problem as to how to calculate

conditional probabilities with respect to some association of elements

of the partition. It means to receive a function with a finite (no more

2n) number of values, measurable with respect to the algebra of subsets

generated by this finite partition. In this way, we can attempt to apply

an infinite partition in the right part of the conditional probability.

Obviously, this generalization is not possible for non-denumerable

partition, for example, set of pre-images of function Xt, i.e.

(X−1
t (x))x∈R. In this case, conditional probability is accepted to

define a function on R with special properties, contained in the

considered example with a final partition. That is, the conditional

probability P (A |Xt) is defined as a function of ξ ∈ D, measurable

with respect to sigma-algebra, generated by all events {Xt < x} (we

denote such a sigma-algebra as σ(Xt)), which for any B ∈ B(R)
satisfies the required conditions:

P (A,Xt ∈ B) =

∫
Xt∈B

P (A|Xt)(ξ) dP ≡ E(P (A|Xt);Xt ∈ B).

This integral can be rewritten in other form, while using

representation of conditional probability in an aspect:

P (A|Xt) = gA ◦Xt,
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where gA is a measurable function on R, defined uniquely according

to the known theorem from a course on probability theory [NEV 64].

Then, using a change of variables x = Xt(ξ), we obtain the following

representation:

P (A,Xt ∈ B) =

∫
B
gA(x) pt(dx),

where pt(S) = P (Xt ∈ S) (S ∈ B(R)). The value of function gA(x)
can be designated as P (A|Xt = x). This intuitively clear expression

cannot be understood literally in the spirit of elementary probability

theory. In certain cases, it can be justified as a limit of conditional

probabilities, where the right side of conditional probability is changed

with the condition that Xt belongs to a small neighborhood of a point

x. Usually, function gA(x) may be identified using the value of

function Px(A), where A → Px(A) is a measure on F for each x ∈ R

and x → Px(A) is a B(R)-measurable function for each A ∈ F .

Hence,

gA ◦Xt = PXt(A).

1.2.1.5. Filtration

To define the Markov process, it is necessary to define the concepts

of “past” and “future” of the process, which means to define

conditional probability and average “future” relative to “past”. For this

purpose, together with a sigma-algebra F , the ordered increasing

family of sigma-algebras (Ft) (t ≥ 0) is considered. This family is

called filtration if limt→∞Ft ≡ ⋃∞
t=0Ft. For example, such a family

consists of sigma-algebras Ft. The latter is generated by all

one-dimensional cylindrical sets {Xs < x}, where s ≤ t and x ∈ R. It

is designated as σ(Xs : s ≤ t)), which is called natural filtration. The

sigma-algebra Ft contains all measurable events reflecting the past of

the process until the moment t. In relation to it, any value Xt+s

(s > 0) is reasonably called “future”.

Another feature of the considered example is a conditional

probability (average) with respect to sigma-algebra Ft. Under
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conditional probability P (A | Ft), it is understood that for such

Ft-measurable function (random variable) on D, for any B ∈ Ft the

equality is fulfilled:

P (A,B) =

∫
B
P (A| Ft)(ξ) dP ≡ E(P (A| Ft);B).

Conditional average E(f | Ft) is similarly defined. For any random

variable f , the random variable E(f | Ft) is Ft-measurable function on

D, for any B ∈ Ft the equality is fulfilled:

E(f ;B) =

∫
B
E(f | Ft)(ξ) dP ≡ E(E(f | Ft);B).

Let us note that the second definition is more general than the

conditional probability of event A because it can be presented as a

conditional average from an indicator function of the set A. Let us note

also that Ω ∈ Ft for any t, and consequently

Ef = E(f ; Ω) = E(E(f | Ft); Ω) = E(E(f | Ft)).

Existence and uniqueness (within set of a measure 0) of the

conditional average is justified by the Radon-Nikodym theorem, which

is one of the key theorems of the theory of measure [KOL 72].

1.2.1.6. Martingale

Random process (Xt) (t ≥ 0), defined on a measurable space

(D,F), supplied with filtration (Ft) (Ft ⊂ F), is called martingale, if

at any t value of process Xt measurable with respect to Ft, such that

E|Xt| < ∞ and at any s, t ≥ 0 it is fulfilled E(Xt+s | Ft) = Xt P a.s.

If for any s, t ≥ 0 E(Xt+s| Ft) ≥ Xt P -a. s, then the process X(t) is

called sub-martingale. Thus the martingale is a partial case of a

sub-martingale. However, the martingale, unlike a sub-martingale,

supposes many-dimensional generalizations. Some proofs of risk

theory are based on the properties of martingales (sub-martingales).

Further, we will use the generalization of the sigma-algebra Ft with

a random t of special aspect, which depends on the filtration (Ft). We
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consider a random variable τ : D → R̃+ such that for any t ≥ 0, the

event {τ ≤ t} belongs to Ft. It is the Markov time. In this definition,

R̃+ denotes the enlarged positive half-line where the point “infinity” is

supplemented. Therefore, we can admit infinity meanings for a Markov

time. Let τ be a Markov time. Then, we define a sigma-algebra:

Fτ = {A ∈ F : (∀ t > 0)A ∩ {τ ≤ t} ∈ Ft}.
Intuitively, Fτ is a sigma-algebra of all events before the moment

τ . Further, we will use the following properties of martingales (sub-

martingales).

THEOREM 1.1.– (theorem of Doob about Markov times) Let process

(Xt) be a sub-martingale and τ1, τ2 be Markov times, for which

E|Xτi | < ∞ (i = 1, 2). Then, on set {τ1 ≤ τ2 < ∞}
E(Xτ2 | Fτ1) ≥ Xτ1 P - a. s..

PROOF.– (see, for example, [LIP 86]).

Using evident property: if (Xt) is a martingale then (−Xt) is a

martingale too, we receive a consequence: if (Xt) is a martingale, then

on set {τ1 ≤ τ2 < ∞}:

E(Xτ2 | Fτ1) = Xτ1 P -a. s.,

and for any finite Markov time EXτ = EX0.

One of the most important properties of a martingale is the

convergence of a martingale when its argument t tends to a limit. It is

one of few processes for which such limit exists with probability 1.

THEOREM 1.2.– (theorem of Doob about convergence of martingales).
Let a process (Xt,Ft) (t ∈ [0.∞)) be a sub-martingale, for which

supt≥0E|Xt| < ∞. Then, E|X∞| < ∞ and with probability 1 there

exists a limit:

lim
t→∞Xt = X∞.
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PROOF.– (see, for example, [LIP 86]).

It is clear that a martingale with the above properties satisfies the

assertion of this theorem.

1.2.2. Markov processes

1.2.2.1. Definition of Markov process

Markov processes are defined in terms of the conditional

probabilities (averages) considered above. The random process defined

on measurable space (D,F), is called Markov, if for any t ≥ 0, n ≥ 1,

si ≥ 0, Ai ∈ B(R) (i = 1, . . . , n) and B ∈ Ft is fulfilled

P

(
n⋂

k=1

Xt+sk ∈ Ak, B

)
= E

(
P

(
n⋂

k=1

Xt+sk ∈ Ak

∣∣∣∣∣ Xt

)
;B

)
.

[1.2]

Using definition of conditional probability, it follows:

P

(
n⋂

k=1

Xt+sk ∈ Ak, B

)
= E

(
P

(
n⋂

k=1

Xt+sk ∈ Ak

∣∣∣∣∣ Ft

)
;B

)
.

Because σ(Xt) ⊂ Ft and B is an arbitrary set in Ft, it follows that

for any t ≥ 0, n ≥ 1, si ≥ 0, Ai ∈ B(R) (i = 1, . . . , n) is fulfilled

P

(
n⋂

k=1

(Xt+sk ∈ Ak)

∣∣∣∣∣ Ft

)
= P

(
n⋂

k=1

(Xt+sk ∈ Ak)

∣∣∣∣∣ Xt

)

P -a.s. (almost sure, i.e. the set where these functions differ as P -

measures zero).

A well-known Markov property: the conditional distribution of

“future” at the fixed “past” depends only on the “present”.
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Let us note that the shift operator θt, defined on set of trajectories,

defines an inverse operator θ−1
t , defined on set of all subsets of D. Thus,

{Xs ◦ θt ∈ A} = {ξ ∈ D : Xs(θt(ξ)) ∈ A} =

= {ξ ∈ D : θt(ξ) ∈ X−1
s (A)} = {ξ ∈ D : ξ ∈ θ−1

t X−1
s (A)} =

= θ−1
t X−1

s (A) = θ−1
t {ξ ∈ D : Xs(ξ) ∈ A} = θ−1

t {Xs ∈ A}.

From here,

{Xt+s1 ∈ A1, . . . , Xt+sn ∈ An} =

n⋂
k=1

{Xt+sk ∈ Ak} =

=
n⋂

k=1

{Xsk ◦ θt ∈ Ak} =
n⋂

k=1

θ−1
t {Xsk ∈ Ak} =

= θ−1
t

n⋂
k=1

{Xsk ∈ Ak} = θ−1
t S,

where S = {Xs1 ∈ A1, . . . , Xsn ∈ An} is a cylindrical set with

finite-dimensional foundation. From the well-known theorem of

extension of measure from algebra on a sigma-algebra generated by it

(see [DYN 63]), a Markov behavior condition [1.2] can be rewritten in

the following aspect:

P (θ−1
t S, B) = E(P (θ−1

t S |Xt); B) [1.3]

for any set S ∈ F , whence the relation for conditional probabilities

follows.

In terms of averages, the condition of a Markov behavior of process

looks as follows:

E(f(Xt+s1 , . . . , Xt+sn); B) = E(E(f(Xt+s1 , . . . , Xt+sn)|Xt); B).

Using a shift operator, it is possible to note that for any measurable

function f it holds:

f(Xt+s1 , . . . , Xt+sn) = f(Xs1◦ θt . . . , Xsn◦ θt) = f(Xs1 , . . . , Xsn)◦ θt.
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From here, under the extension theorem, the Markov behavior

condition can be rewritten in the following aspect:

E(g ◦ θt; B) = E(E(g ◦ θt|Xt); B), [1.4]

where g is arbitrary F-measurable function on D, whence the relation

for conditional averages follows. Let us note that the condition [1.3] can

be considered as a special case of conditions [1.4] where f = IS . In this

case, the following equality holds

E(IS ◦ θt| ·) = P (θ−1
t S| ·).

1.2.2.2. Temporally homogeneous Markov process

A temporally homogeneous Markov process is usually defined in

terms of transition functions.

A Markov transition function is called as a function P̃s,t(S |x),
where 0 ≤ t < s and

1) S → P̃s,t(S |x) is a probability measure on B(R) for each s, t and

x;

2) x → P̃s,t(S |x) is B(R)-measurable function for each s, t and S;

3) if 0 ≤ t < s < u, then

P̃ u, t(S |x) =
∞∫

−∞
P̃ s, t(dy |x) P̃ u, s(S | y) [1.5]

for all x and S.

Relationship [1.5] is called the Chapman - Kolmogorov equation.

A Markov transition function P̃s,t(S |x) is said to be temporally

homogeneous provided there exists a function Pt(S |x)
(t > 0, x ∈ R, S ∈ B(R)) such that P̃s,t(S |x) = Ps−t(S |x). For this
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case, equation [1.5] becomes:

Ps+t(S |x) =
∞∫

−∞
Ps(dy |x)Pt(S | y) [1.6]

We define the distribution of a temporally homogeneous Markov

process to within the initial distribution as a consistent measurable

family of measures (Px) on F , where Px(X(0) = x) = 1, and for any

x ∈ R, t > 0, B ∈ Ft and S ∈ F the following holds:

Px(θ
−1
t (S);B) = Ex(PXt(S);B), [1.7]

and for any measurable function f :

Ex(f ◦ θt ;B) = Ex(EXt(f);B). [1.8]

Finite-dimensional distributions of a temporally homogeneous

Markov process is constructed from the temporally homogeneous

transition functions according to the formula:

Px(Xt1 ∈ A1, . . . , Xtn ∈ An) =

=

∫
A1

pt1(dx1|x)
∫
A2

pt2−t1(dx2|x1)×· · · ··×
∫
An

ptn−tn−1(dxn|xn−1)

where pt(dx1|x0) is a transition kernel.

However, a priori a set of transition functions submitting to

coordination condition [1.6] do not necessarily define the probability

measure on set of functions with given properties. In a class of Poisson

processes, to verify the existence of a process with piece-wise constant

trajectories requires a special proof.
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1.2.3. Poisson process

1.2.3.1. Poisson distribution

The Poisson distribution is a discreet probability distribution on set

of non-negative integers Z+ with values

pn =
μn

n!
e−μ (n = 0, 1, 2, . . . ),

where μ > 0 is the distribution parameter. Let us denote a class of

Poisson distribution with a parameter μ as Pois(μ). Thus, from ξ ∈
Pois(μ) we understand that ξ has Poisson distribution with parameter

μ.

It is known that expectation, variance and the third central moment

of a Poisson distribution have the same meaning as the parameter of this

distribution, i.e.:

Eξ = Dξ = E(ξ − Eξ)3 = μ.

A mode of the Poisson distribution is nmod such that pnmod
≥ pn

for each n ∈ Z+. This integer is determined by relations

pn+1/pn =
μn+1

(n+ 1)!

/
μn

n!
=

μ

n+ 1
.

1) If μ is an integer n1 + 1, then pn1+1 = pn1 ; for n < n1, we have

pn+1/pn = μ/(n+ 1) > μ/(n1 + 1) = 1; this implies that in this case

pn increases; analogously for n > n1 + 1, pn decreases. Hence, there

are two modes: n
(1)
mod = n1 and n

(2)
mod = n1 + 1.

2) Let μ be not an integer and n1 < μ < n1 + 1; let us assume that

pn1+1 ≥ pn1 ; this means that

μn1+1

(n1 + 1)!
≥ μn1

n1!
;

which implies that μ ≥ n1 + 1; from this contradiction, it follows that

pn1+1 < pn1 ; hence, nmod = n1 is a unique mode of this Poisson

distribution.
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Generating the function of a Poisson distribution (or corresponding

random variable ξ ∈ Pois(μ)) is a function of α ∈ R:

Eeαξ =

∞∑
n=0

eαn
μn

n!
e−μ =

∞∑
n=0

(μeα)n

n!
e−μ = exp (−μ(1− eα)) .

[1.9]

Let ξ1 and ξ2 be independent Poisson variables with parameters

μ1 and μ2, respectively. Then, the sum of these variables is a Poisson

random variable with parameter μ1 + μ2. This can be proved easily by

means of a generating function. Using independence, we have:

E exp(α(ξ1 + ξ2)) = E exp(αξ1)E exp(αξ2)

= exp (−(μ1 + μ2)(1− eα)) .

This corresponds to the distribution Pois(μ1 + μ2) as the equality is

fair at any α ∈ R.

1.2.3.2. Poisson process

A non-decreasing integer random process (N(t)) (t ≥ 0) with

values from set Z+ is said to be a temporally homogeneous Poisson

process if N(0) = 0 and if its increments on non-overlapping intervals

are independent and have Poisson distributions. That is, there exists

such a positive β, called the intensity of process, that

N(t) − N(s) ∈ Pois (β (t − s)) (0 ≤ s < t). For N(t), we will also

use a label Nt. This process has step-wise trajectories with unit jumps.

By the additional definition, such a trajectory is right continuous at

point of any jump.

The sequence of the moments of jumps of the process (σn) (n ≥ 1)
completely characterizes a Poisson process. This sequence is called a

point-wise Poisson process. Let us designate Tn = σn − σn−1 (n ≥ 1,
σ0 = 0), where (Tn) is a sequence of independent and identically

distributed (i.i.d.) random variables with common exponential
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distribution P (T1 > t) = e−βt. Using a shift operator on set of sample

trajectories of a Poisson process, it is possible to note that

σn+1 = σn + σ1 ◦ θσn .

A generalization of the above process, the so-called

inhomogeneous Poisson process (N(t)), is characterized by means of

a non-constant function of intensity β(t) ≥ 0, setting Poisson

distributions as independent increments, for 0 ≤ s < t

P (N(t)−N(s) = n) =
μ(s, t)n

n!
e−μ(s,t) (n ∈ Z+),

where

μ(s, t) =

∫ t

s
β(u) du.

Gaps between unit jumps in this process are not independent and are

not identically distributed.

1.2.3.3. Stochastic continuity

A random process X(t) is called stochastically continuous from the

right at a point t0, if for any positive ε and t > t0

lim
t→t0

P (|X(t)−X(t0)| > ε) = 0.

Similarly, a stochastic continuity from the left is defined. Bilateral

stochastic continuity is both from the left and right. For a Poisson

process with locally limited intensity β(t), the stochastic continuity

from the right at a point t0 follows from inequality:

P(X(t)−X(t0) > ε) ≤ P(X(t)−X(t0) > 0) =

= 1− exp

(
−
∫ t

t0

λ(s) ds

)
=

∫ t

t0

λ(s) ds+ o(t− t0).

Stochastic continuity from the left is proved analogously.
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1.2.3.4. Composite Poisson process

A random process (Xt) (t ≥ 0) is called a temporally

homogeneous composite Poisson process if it is defined by means of

temporally homogeneous Poisson process (N(t)) (t ≥ 0) and a

sequence (Un) (n ≥ 1) of i.i.d. random variables, where (N(t)) and

(Un) are independent. By definition:

Xt =

Nt∑
n=1

Un (t ≥ 0).

Let us designate B(x) = P (U1 ≤ x) as the cumulative distribution

function of U1, μB = EU1 the expectation of U1 and μ
(n)
B = EUn

1 the

nth moment of U1 (n ≥ 1). The sequence of jump times, (σn) (n ≥ 1),
of the composite Poisson process coincides with sequence of jumps of

the original Poisson process and hence it is possible to note that:

Xt =

∞∑
n=1

Un I{σn≤t}.

From here the formula for an average follows:

EXt = μB

∞∑
n=1

P (σn ≤ t) = μB ENt = μB βt.

In the next chapters, this process will be considered in more detail.

1.2.4. Gamma process

A gamma function is called an integral depending on parameter

m > 0,

Γ(m) =

∫ ∞

0
xm−1e−x dx.

For a case where m = 1, 2, 3, . . . we have Γ(m) = (m− 1)!.
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The non-negative random variable X has a gamma distribution if its

distribution density resembles

fX(x) =
δ

Γ(γ)
(xδ)γ−1e−xδ (x > 0),

where δ is a scale parameter and γ is a form parameter of the

distribution. We designate such a class of random variables as

Gam(γ, δ).

At γ = 1, the gamma distribution coincides with a exponential

distribution with parameter δ. For the integer γ = n, where n ≥ 2, the

gamma distribution is called the Erlang distribution. It is an n-fold

convolution of exponential distributions.

Let us obtain a Laplace transformation of a gamma distribution

density:∫ ∞

0
e−λx δ

Γ(γ)
(xδ)γ−1e−xδ dx =

=

(
δ

λ+ δ

)γ ∫ ∞

0
e−(λ+δ)x (λ+ δ)

Γ(γ)
(x(λ+δ))γ−1 dx =

(
δ

λ+ δ

)γ

.

From here it follows that the sum of two independent random

variables X1 ∈ Gam (γ1, δ) and X2 ∈ Gam (γ2, δ) is a random

variable from a class Gam (γ1 + γ2, δ).

A process X(t) (t ≥ 0), possessing the following properties:

1) X(0) = 0, process trajectories do not decrease and are continuous

from the right;

2) the process has independent increments;

3) at any s ≥ 0 and t > s the increment X(t)−X(s) belongs to class

Gam (γ(t− s), δ);

is called a gamma process with parameters γ and δ.
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Let us prove that a homogeneous gamma process is stochastically

continuous in any point of the area of the representation. Designate γ1 =
γ (t−t0). We have at t > t0 and 0 < γ1 < 1 (without loss of generality):

P (|X(t)−X(t0)| > ε) = P (X(t)−X(t0) > ε) = P (X(t−t0) > ε) =

=

∫ ∞

ε

δ

Γ(γ1)
(δ x)γ1−1 e−δ x dx =

1

Γ(γ1)

∫ ∞

εδ
yγ1−1 e−y dy ≤

≤ 1

Γ(γ1)
(εδ)γ1−1

∫
εδ
e−y dy ≤ 1

Γ(γ1)
(εδ)γ1−1.

From our definition of the function Γ follows that Γ(z) → ∞ at

z ↓ 0. Hence, the inequality right member aspires to zero. The stochastic

continuity of the gamma process is proved. �

Finite-dimensional distributions of a gamma process possess good

analytical properties. The practical application of the gamma process

model is hindered a little by the property of its sample trajectories

because these trajectories may have ruptures such as in short intervals.

It is possible to tell that trajectories “consist only of positive jumps”.

The inverse gamma process is more convenient for physical

interpretation.

1.2.5. Inverse gamma process

The process X(t) (t ≥ 0) is known as the inverse gamma process if

it possesses the following properties:

1) X(0) = 0, process trajectories do not decrease and are continuous

with probability 1;

2) process X(t) possesses a Markov property with respect to the

time of the first exit from any interval [0, u);

3) the inverse process for the process X(t), i.e. the process:

Y (u) ≡ inf{t : X(t) ≥ u} (u > 0),

is a gamma process with some parameters γ and δ.
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Sample trajectories of this process are exotic enough. Almost

everywhere (concerning a Lebesgue measure) for domain of definition,

these trajectories are constant (they have zero derivatives). The

increase of these trajectories on an interval [0,∞) is ensured with the

presence of a non-enumerable set of points of growth (like in a Cantor

curve), filling any interval from the moment of first reaching level u1
(the random moment Y (u1)) until moment Y (u2), where

0 ≤ u1 < u2. Intervals of constancy of a sample trajectory of X(t)
correspond to jumps of the trajectory Y (u). It is important to note that

the beginning time of each interval of constancy of the process X(t) is

not a Markov time. Thus, it is an example of a real stopping time,

which is not a Markov time.

In modern terminology, processes such as the inverse gamma process

are known as continuous semi-Markov processes (see [HAR 07]).

1.2.6. Renewal process

Renewal theory is commonly used in risk theory. For example, a

renewal process can serve as a model when entering sequences of

claim times into an insurance company (instead of using a Poisson

process). Renewal equations arise during the analysis of probability of

ruin. The asymptotics of a solution of such an equation allows to

express probability of ruin in case of a high initial capital.

1.2.6.1. Renewal process

A simple temporally homogeneous renewal process is said to be a

non-decreasing integer random process (N(t)) (t ≥ 0). It is assumed

that N(0) = 0, where a process has jumps of unit magnitude, and where

distances in time (Tn) (n ≥ 1) between the neighboring jumps (the

renew times) are i.i.d. positive random variables, and at any jump time

a sample trajectory of the process is continuous from the right. Such a

process is determined by a distribution function of T1, such as , F (x) =
P (T1 ≤ x) (x ≥ 0). Magnitude Tk is interpreted as distance in time

between the (k − 1)th and kth process jumps, thus σn =
∑n

k=1 Tk is a

time of the nth renew.
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A temporally homogeneous Poisson process is a partial case of

renewal process. In the Poisson case, F (x) ≡ P (T1 ≤ x) = 1 − e−β x

(x ≥ 0) for some β > 0. Also for a Poisson process, we will

sometimes use the notation Nt instead of N(t).

1.2.6.2. Renewal equation

Outcomes of renewal theory are used in risk theory mainly in

connection with a solution of so-called renew equations. First, we

consider the so-called renewal function.

Renewal function H(t) (t ≥ 0) is expressed as:

H(t) ≡ 1 + ENt = 1 +
∞∑
n=1

P (σn ≤ t) =
∞∑
n=0

F (n)(x),

where F (n) is n-fold convolution of distribution functions F :

F (n)(x) =

∫ x

0
F (n−1)(x− y) dF (y) (n ≥ 1).

F (0)(x) = I[0,∞)(x), “zero convolution”. It corresponds to the sum n
of i.i.d. random variables; we will also use the notation Ht in addition to

H(t). Using a permutability of summation with convolution operation,

we obtain the equation:

H(t) = 1 +

∫ t

0
H(t− x) dF (x).

For the given cumulative distribution function F on interval [0,∞),
and a known function y(t) (t ≥ 0), the equation

Z(t) = y(t) +

∫ t

0
Z(t− x) dF (x) [1.10]

is a renewal equation concerning unknown function Z(t). The solution

of the renewal equation always exists and is unique:

Z(t) =

∫ t

0
y(t− x) dH(x).
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It is easy to prove this by substituting the right-hand-side of

equation [1.10], where the function expressed, by the whole equation

(i.e. iterating the equation).

Analytical expression for function Ht is known only in exceptional

cases. For example, if F is an exponential distribution function with

parameter β, then Ht = 1 + βt, in the a case of a Poisson process. The

basic outcome of the theory is connected with an asymptotics of the

renewal function and a limit of a solution of the equation [1.10].

THEOREM 1.3.– Elementary renewal theorem

Ht

t
→ 1

ET1
(t → ∞).

THEOREM 1.4.– Blackwell theorem

Ht+s −Ht → s

ET1
(t → ∞).

THEOREM 1.5.– Smith theorem

For any function y(t) immediately integrable by Riemann:∫ t

0
y(t− x) dH(x) → 1

ET1

∫ ∞

0
y(t) dt (t → ∞).

PROOF.– (for all the three theorems, see Feller [FEL 66]). An

immediately integrable function by Riemann on an interval (a, b) is

called a function f for which there exist identical limits

lim
n→∞

n∑
k=1

b− a

n
mk,

mk = min

{
f(x) :

b− a

n
(k − 1) ≤ x ≤ b− a

n
k

}
,

lim
n→∞

n∑
k=1

b− a

n
Mk,

Mk = max

{
f(x) :

b− a

n
(k − 1) ≤ x ≤ b− a

n
k

}
.
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A function for which this condition is fulfilled for all its restrictions

on final intervals is an immediately integrable function by Riemann on

an infinite interval. An example of such function is any monotone

function integrable by Riemann.

1.2.6.3. Direct and inverse renewal times
In risk theory, properties of the so-called direct and inverse renewal

times are used. They are as follows:

ζ(t) ≡ σNt+1 − t, η(t) ≡ t− σNt .

We have:

P (η(t) > x, ζ(t) > y) =

=
∞∑
n=1

∫ t

0
P (t− σn−1 > x, σn − t > y, σ1 ∈ ds) =

= It>xP (σ1 − t > y) +

∞∑
n=2

∫ t

0
P (t− σn−1 > x, σn − t > y, σ1 ∈ ds).

Using representation σk = σ1+σk−1 ◦ θσ1 (k ≥ 2) and property of

a renewal process concerning the time σ1, we know that this expression

is:

It>xP (σ1 − t > y) +

+
∞∑
n=2

∫ t

0
P (t− s− σn−2 ◦ θσ1 > x, s+ σn−1 ◦ θσ1 − t > y, σ1 ∈ ds) =

= It>xP (σ1 − t > y) +

+

∞∑
n=2

∫ t

0
P (t− s− σn−2 > x, s+ σn−1 − t > y)P (σ1 ∈ ds).

Designating P (η(t) > x, ζ(t) > y) = Z(t), It>xP (σ1 − t > y) =
y(t), we come to the equation [1.10] for which limit of a solution as

t → ∞ is:

1

μ

∫ ∞

0
It>xP (T1−t > y) dt =

1

μ

∫ ∞

x
P (T1 > y+t) dt =

1

μ

∫ ∞

x+y
F (t) dt,
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where μ = ET1 and F (t) = 1 − F (t). From here, both variables η(t)
and ζ(t) have the same limit distribution:

F̃ (x) =
1

μ

∫ x

0
F (t) dt.

In risk theory, the following properties of the variable ζ(t) are useful.

THEOREM 1.6.– Property of direct renewal time

For renewal process, the following limits are true:

a)
ζ(t)

t

a. s.−→ 0 (t → ∞);

b)
Eζ(t)

t
→ 0 (t → ∞).

PROOF.– (see, for example, Asmussen [ASM 00]).



2

Cramér-Lundberg Model

2.1. Infinite horizon

2.1.1. Initial probability space

The natural initial space of elementary Ω events in the

Cramér-Lundberg model is defined as a set of all sequences of view

ω = (tn, xn), where 0 ≤ t1 ≤ t2 ≤ . . . and tn → ∞ as n → ∞, and

real xn (n = 1, 2, . . . ). That is, in this case an initial probability

measure where P is defined as a distribution of a random sequence of

pairs (σn, Un), for which (σn) is a sequence of jump points of a

Poisson process (Nt) with intensity β > 0. The point σn is interpreted

as a moment of the nth claim arrival in an insurance business. (Un) is a

sequence of claim sizes; the sequence (Un) constitutes an i.i.d.

sequence of non-negative random variables with a common

distribution function B(x). The claim size sequence (Un) and the

claim arrival sequence (σn) are assumed to be mutually independent.

The random variables σn, Un are considered as functions of ω ∈ Ω,

and events connected with these random variables are measured by

using the measure P . In particular,

B(x) = P (U1 ≤ x) (x ≥ 0, B(0) = 0),

P (Tn > t) = e−βt,

where Tn = σn − σn−1 (n ≥ 1, σ0 = 0).

Stochastic Risk Analysis and Management, First Edition. Boris Harlamov.

© ISTE Ltd 2017. Published by ISTE Ltd and John Wiley & Sons, Inc. 
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2.1.2. Dynamics of a homogeneous insurance company
portfolio

On the basis of these elements, a part-wise linear random process

(Rt) (t ≥ 0) is defined as follows:

Rt = u+ p t−
Nt∑
k=1

Uk (t ≥ 0). [2.1]

This determines a reserve capital of the insurance company, where

u is an initial capital of the company and p is a premium rate.

Moreover, the sequence (σn) is a point Poisson process with some

intensity β > 0 and (Nt) is the corresponding proper Poisson process.

Thus, the sum At ≡
∑Nt

k=1 Uk is the corresponding composite Poisson

process. The process Rt is a homogeneous process with independent

increments. It means that this is a Markov process that is homogeneous

in time and space. An analysis of this process composes the main

content of investigation of the Cramér-Lundberg model. In this course,

we will consider some generalizations of this model as well. In

particular, it will be a model with the premium depending on the

current capital of a company– a Markov process homogeneous in time

but not in space.

With every initial capital u, we connect a probability measure Pu on

a set D0 of part-wise linearly increasing trajectories ξ with no positive

jumps and continuous from the right at points of discontinuity. Relations

between measures P and Pu can be described as follows: denote Ω the

set of all sequences (tn, xn) with some natural distance (metric) on this

set, which generates a sigma-algebra F . Let Xu be a map Ω → D0 such

that:

ξ ≡ Xu((tn, xn)
∞
1 ) =

(
u+ pt−

∞∑
n=1

xnItn≤t

)
t≥0

,

where IS is an indicator of the subset S ⊂ Ω. Thus, we have:

{ξ ∈ A} = {Xu(ω) ∈ A} ≡ X−1
u A
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as a measurable subset of Ω, where A is a measurable subset of the set

D0. From here,

Pu(A) ≡ P{ξ ∈ A} = P (Xu(ω) ∈ A) ≡ (P ◦X−1
u )(A).

It means that this expression defines a measure Pu ≡ P ◦X−1
u . It is

the so-called induced probability measure corresponding to the original

measure P on the set of sequences and the map Xu. In addition, for any

measurable A the function Pu(A) is measurable as a function of u.

Evidently, a shift operator θt (t ≥ 0) maps the set D0 on itself.

Consider on this set, a consistent family of measures (Pu) (u ≥ 0) of

a temporally homogeneous Markov process. This means that for any

A ∈ F and B ∈ Ft,

Pu(θ
−1
t A,B) = Eu(PRt(A); B).

By using properties of conditional probabilities, it can be shown that

this equality is equivalent to a Pu-a.s. equality of two random variables:

Pu(θ
−1
t A| Ft) = PRt(A),

where Ft is a sigma-algebra generated by all Rs (s ≤ t). Besides, the

Cramér-Lundberg process is homogeneous in space. This means that for

any u1, u2 ≥ 0, 0 ≤ t1 < t2 and x ∈ R:

Pu1(Rt2 −Rt1 < x) = Pu2(Rt2 −Rt1 < x).

It follows that all properties of the process depending on increments

relative to the initial state can be evaluated by using the measure P0

(of the process with zero initial state). A common rule of varying an

integrand expression for a process that is homogeneous in space reduces

to the following varying of operators Rt and σΔ:

Ex(f(Rt, σ(a,b))) = E0(f(Rt + x, σ(a−x,b−x))),

where f is an arbitrary measurable function. The same is true for the

equality relative to a function f with any finite number of similar
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arguments. In particular, the measure P0 determines a distribution of

the process (St), where

St =

Nt∑
n=1

Un − pt,

which is called dynamics of losses and is equal to the increment with

the opposite sign St = R0 −Rt (Figure 2.1).

�

�

���
���

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�����

�����

�

�

�

�

�

�

�

�

�

�

�

�����
����

�

�

������

������

�

������

�

�

�

�

�

�

�������

������
�

�

�

�

�

�����

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

������ � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

0

u

tτu
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Figure 2.1. Loss process in Cramér-Lundberg model

REMARK–. Along with the measure P on the set of sequences, the

family of measures (Pu) on the set of trajectories is defined.

Applicability of this family of measures has certain advantages while

analyzing homogeneous Markov processes. However, such a two-fold

interpretation implies some questions. The first is where to use a

measure on Ω, and D0. For example, we have Pu(Rt ∈ S) =
P (u + pt − At ∈ S). It would be a mistake to write P (Rt ∈ S) in the

second case, because the sense that applies to the denotation Rt is not

clear: is it only the meaning of a trajectory at the point t or is it a the

denotation of a function of ω (a sequence of view [2.1])? Such a

two-fold meaning is admissible if an event is exclusive of an initial

capital u. For example,

Pu(St ∈ S) = P0(−Rt ∈ S) = P

(
Nt∑
n=1

Un − pt ∈ S

)
.
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In this case, it is not a mistake to write P (St ∈ S) while

understanding St as a function of ω.

2.1.3. Ruin time

It can be shown [DYN 63] that the process (Rt) is a strong Markov

process (exhibiting the Markov property with respect to any Markov

time). In particular, it possesses the Markov property with respect to

the first exit time from an open interval. Besides, this process has the

Markov property with respect to the first exit time from an interval

closed from the left, because an exit from such an interval is possible

only with a jump, and a meaning of the process at the jump time does

not belong to this interval. A ruin time

τ0(ξ) ≡ σ[0,∞)(ξ) = inf{t ≥ 0 : ξ(t) 
∈ [0,∞)}
is such a time. At the ruin time, the meaning of the process passes with

a jump to the negative part of the real line. The distribution of this time

essentially depends on the initial capital of the company.

Let us denote

ψ(u) = Pu(τ0 < ∞), ψ(u, T ) = Pu(τ0 ≤ T ).

Obtaining an explicit meaning of these probabilities is possible only

in special cases. The first non-trivial results were obtained from

asymptotics of the function ψ(u) as u → ∞.

2.1.4. Parameters of the gain process

Let us denote

μ
(n)
B = EUn

1 (n ≥ 1), μB = EU1, 	 = β μB.

While deriving of the following formulas, a property of conditional

expectations Ef = EE(f | g) is used, where f and g are two random

variables. By denoting At =
∑Nt

k=1 Uk, we have:

EuRt = u+ pt− EE(At|Nt) =

= u+ pt− ENtEU1 = u+ pt− βtμB = u+ (p− 	)t, [2.2]
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DuRt ≡ Eu(Rt − EuRt)
2 = DAt = EA2

t − (EAt)
2 =

= EE(A2
t |Nt)− (EAt)

2 =

= EE(A2
t |Nt)− E(E(At|Nt))

2 + E(E(At|Nt))
2

− (EE(At|Nt))
2 = EDNtAt +DE(At|Nt)

= E(NtDU1) +D(NtEU1) =

= DU1ENt + (EU1)
2DNt = μ

(2)
B βt. [2.3]

From the definition of the Poisson process, it follows that for 0 <
z < 1:

EzNt =

∞∑
n=0

znP (Nt = n) = e−βt(1−z).

For Poisson distributions and some others, this series converges into

a finite limit when 0 < z < 1 + ε, for some ε > 0. Furthermore,

Ezpt−At = zpt
∞∑
n=0

E exp

(
n∑

k=1

Uk

)
(βt)n

n!
e−βt =

= zpt
∞∑
n=0

(E exp(−U1))
n (βt)

n

n!
e−βt

= zpt exp(βt(E exp(−U1)− 1)).

Denote z = e−α. Thus, we obtain a useful formula

Ee−α(Rt) = e−αuEe−α(pt−At) = e−αu+t κ(α), [2.4]

where

κ(α) = β(B̂(α)− 1)− pα, [2.5]

where B̂(α) ≡ ∫∞
0 eαx dB(x) < ∞ for some positive α. As it will be

shown later, the function κ(α) plays a key role in the Cramér-Lundberg

theory of ruin.
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2.1.5. Safety loading

Let us consider a coefficient η = p/	 − 1 which is called safety

loading. The asymptotics of the ruin probability depends on a sign of η.

THEOREM 2.1.– (on the safety loading) If u ≥ 0 as t → ∞ then:

a)
Rt

t
→ p− 	 Pu-a. s.;

b) if η > 0, then Rt → ∞ Pu-a. s.;

c) if η < 0, then Rt → −∞ Pu-a. s.;

d) if η = 0, then lim inft→∞Rt = −∞, lim supt→∞Rt = ∞ Pu-

a.s.

PROOF.– a) Due to the Markov property of exponential distribution,

the process Rt is a process with independent increments; it implies that

the strong law of large numbers can be applied to this process:

Pu-a.s.

Rt

t
→ lim

ERt

t
= p− 	;

b) and c) immediately follow from a); the assertion d) follows from the

theory of a random walk with zero expectation [SPI 76]. �

THEOREM 2.2.– (central limit theorem) For any u ≥ 0, as t → ∞:

Rt − t(p− 	)

σ
√
t

distr−→ Z, Pu-a. s.

where σ2 = βμ
(2)
B and Z is a standard normal random variable.

PROOF.– Because Rt is a process with independent increments, its

meaning at times t = nh (h > 0, n = 1, 2, . . . ) can be represented as

u plus summation of i.i.d. random variables to which the central limit

theorem is applicable as n → ∞:

Rnh − nh(p− 	)√
nhβμ

(2)
B

distr−→ Z (n → ∞).
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The general case reduces to application by substituting the following

estimate in this formula:

R(n+1)h − ph ≤ Rt ≤ Rnh + ph

for nh ≤ t ≤ (n+ 1)h. �

2.1.6. Pollaczek-Khinchin formula

2.1.6.1. Ladder process

According to the definition of the ruin time τ0 ≡ σ[0,∞) and the ruin

probability ψ(u) = Pu(τ0 < ∞), we represent this probability in terms

of the so-called ladder processes:

M(t) = sup
0≤s≤t

(R0 −Rt)

(this process has to be non-decreasing by tradition). It is a part-wise

constant process. Its jump times can be only positive and simultaneous

with some jumps of the original Poisson process. Let α1 be the first

jump time of the process. In this case, Rα1 < R0 and Rs ≥ R0 for all

s > α1. The time α1 is a Markov time with respect to the natural

filtration (Ft)t≥0. Due to that process, Rt possesses the Markov

property relative to this time. According to the definition,

α1(ξ) = inf{t ≥ 0 : ξ(t) < ξ(0)}. Consequently, it can be represented

as α1 = σ[R0,∞). If the nth jump time of the process M(t) is

determined and finite, then αn+1 = αn +̇α1 ≡ αn + α1 ◦ θαn

(n ≥ 1). If η > 0, the ladder M(t) has only a finite number of steps. It

means a finite number of such n, for which αn < ∞, and sequently

M(∞) < ∞. In this case, ψ(u) = Pu(M(∞) > u). Homogeneity in

space of the process (Rt) implies that ψ(u) = P0(M(∞) > u).

Let us consider distribution of M(∞). By using the strong Markov

property of the process Rt and setting α0 = 0, we have for x > 0:

P0(M(∞) ≤ x) =

∞∑
n=0

P0(αn < ∞, −Rαn ≤ x, αn+1 = ∞) =
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= P0(α1 = ∞) +
∞∑
n=1

P0(αn < ∞, Rαn ≥ −x, α1 ◦ θαn = ∞) =

= P0(α1 = ∞) +

∞∑
n=1

E0(PRαn
(α1 = ∞); αn < ∞, Rαn ≥ −x) =

= P0(α1 = ∞) +
∞∑
n=1

P0(αn < ∞, Rαn ≥ −x)P0(α1 = ∞).

We will substitute Mn = R0 −Rαn . Then, by using the formula:

Rτ1+̇τ2
= Rτ2 ◦ θτ1

which is natural generalization of the formula Rt+s = Rs ◦ θt
[HAR 07], we have for n ≥ 1:

P0(αn < ∞, Mn ≤ x) = P0(αn < ∞, Rαn ≥ −x) =

= P0(α1 < ∞, αn−1 ◦ θα1 < ∞, Rαn−1 ◦ θα1 ≥ −x) =

= E0(PRα1
(Rαn−1 ≥ −x, αn−1 < ∞); α1 < ∞) =

=

∫ 0

−∞
Py(Rαn−1 ≥ −x, αn−1 < ∞)P0(Rα1 ∈ dy, α1 < ∞) =

=

∫ 0

−∞
Py(Rαn−1 −R0 ≥ −x− y, αn−1 < ∞)P0(Rα1 ∈ dy, α1 < ∞) =

=

∫ 0

−∞
P0(Mn−1 ≤ x+ y, αn−1 < ∞)P0(−M1 ∈ dy, α1 < ∞) =

=

∫ ∞

0
P0(Mn−1 ≤ x− y, αn−1 < ∞)P0(M1 ∈ dy, α1 < ∞).

By substituting G+(y) = P0(M1 ≤ y, α1 < ∞) and defining a

convolution in standard manner, we obtain:

P0(αn < ∞, Rαn ≥ −x) = G
(n)
+ (x) =

∫ x

0
G

(n−1)
+ (x−y) dG+(y),
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and derive:

P0(M(∞) ≤ x) = (1−G+(∞))

∞∑
n=0

G
(n)
+ (x),

where G
(0)
+ = I[0,∞). From here,

P0(M(∞) < ∞) = (1−G+(∞))

∞∑
n=0

G
(n)
+ (∞).

For η > 0, this probability equals to 1, which implies the Pollaczek-

Khinchin formula:

ψ(u) = P0(M(∞) > u) = 1− P0(M(∞) ≤ u) =

= (1−G+(∞))

∞∑
n=1

(G
(n)
+ (∞)−G

(n)
+ (x)) =

= (1−G+ (∞))

∞∑
n=1

G
(n)
+ (x)), [2.6]

where G
(n)
+ (x)) = G

(n)
+ (∞)−G

(n)
+ (x).

2.1.7. Sub-probability distribution G+

By substituting Δn,kN = Nk/n − N(k−1)/n, Δn,kR = Rk/n −
R(k−1)/n, we have for x > 0:

P0(M1 > x, α1 < ∞) = P0(Rα1 < −x, α1 < ∞) =

= lim
n→∞

∞∑
k=1

∫ ∞

0
P0(Rs ≥ 0 (∀s < (k − 1)/n), R(k−1)/n ∈ dy,

Δn,kN ≥ 1, Δn,kR < −(y + x)) =

= lim
n→∞

∞∑
k=1

∫ ∞

0
P0(Rs ≥ 0 (∀s < (k− 1)/n), R(k−1)/n ∈ dy)×

×P0(Δn,1N ≥ 1, Δn,1R < −(x+ y)) =
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= lim
n→∞

∞∑
k=1

∫ ∞

0
P0(Rs ≥ 0 (∀s < (k− 1)/n), R(k−1)/n ∈ dy)×

× (βB(x+ y)/n+ o(1/n)) =

=

∫ ∞

0

∫ ∞

0
P0(Rs ≥ 0 (∀s < t), Rt ∈ dy)βB(x+ y) dt =

=

∫ ∞

0
βB(x+ y)Q(dy),

where Q(A) =
∫∞
0 P0(Rs ≥ 0 (∀s < t), Rt ∈ A) dt (A ⊂ [0,∞)).

Let us consider the measure Q(A). Denote R∗
s = Rt − Rt−s

(0 ≤ s ≤ t). We have R∗
0 = 0 and R∗

t = Rt on the set {R0 = 0}.

Besides, due to this transformation of the process on interval [0, t] it

corresponds to the inversion of time and does not change the

distribution of the composite Poisson process on this interval. Thus, we

have:

P0(Rs ≥ 0 (∀s < t), Rt ∈ A) = P0(R
∗
s ≥ 0 (∀s < t), R∗

t ∈ A) =

= P0(Rt −Rt−s ≥ 0 (∀s < t), Rt ∈ A) =

= P0(Rt −Rs ≥ 0 (∀s < t), Rt ∈ A) =

= P0(Rt ≥ Rs (∀s < t), Rt ∈ A) = E0IY ,

where Y ≡ {Rt ≥ Rs (∀s < t), R∗
t ∈ A}. It follows that:

Q(A) = E0

∫ ∞

0
I{Rt≥Rs (∀s<t), Rt∈A} dt = |A|/p,

where |A| is Lebesgue measure of A. The latter equality can be

understood from Figure 2.2.

While restoring the distribution G+,we have:

P0(M1 > x, α1 < ∞) =
β

p

∫ ∞

0
B(x+ y) dy =

β

p

∫ ∞

x
B(y) dy.
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Figure 2.2. Construction of measure Q(A)

From here,

P0(α1 < ∞) =
β

p

∫ ∞

0
B(y) dy =

βμB

p
,

and by using denotation 	 = β μB , we obtain

G+(x) =
	

pμB

∫ x

0
B(y) dy. [2.7]

Let us denote B0(x) = μ−1
B

∫ x
0 B(y) dy (probability distribution)

and then, the Pollaczek-Khinchin formula obtains its final view

ψ(u) =

(
1− 	

p

) ∞∑
n=1

(
	

p

)n

B∗n
0 (u). [2.8]
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2.1.8. Consequences from the Pollaczek-Khinchin formula

2.1.8.1. Zero initial capital

In terms of the Cramér-Lundberg model, it is not necessary to be

ruined if the initial capital is equal to zero. In this case, if η > 0, then

ψ(0) = (1− 	/p)

∞∑
k=1

(	/p)n = 	/p.

2.1.8.2. Exponential distribution B

Let B(x) = 1 − e−δx. Then, B0(x) = B(x). It is well known that

B(n)(x) represents a distribution function of gamma-distribution with

form parameter n and scale parameter δ (another name is the Erlang

distribution of order n). If bn(x) is a density of this distribution, then

bn(x) = b(n)(x) =
δ

Γ(n)
(δx)n−1e−δx,

where Γ(n) = (n − 1)!. By using permutability of summing and

integration, we obtain:

ψ(u) = (1− 	/p)

∞∑
n=1

(	/p)n
∫ ∞

u
δe−xδ (xδ)

n−1

(n− 1)!
dx =

=
	δ

p

(
1− 	

p

)∫ ∞

x
e−xδ

∞∑
n=0

(
	

p

)n (xδ)n

n!
dx =

=
	δ

p

(
1− 	

p

)∫ ∞

x
e−xδ(1−�/p) dx =

	

p
e−xδ(1−�/p).

2.1.8.3. Incomplete renewal equation

Denoting M ≡ M(∞) and Mn ≡ M(αn), from equality,

Rαn = Rα1+̇αn−1
= Rαn−1 ◦ θα1

we have for u ≥ 0:

ψ(u) = P0(M > u) = P0(M > u, α1 < ∞) =
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= P0(M1 > u, α1 < ∞) + P0(M > u, M1 ≤ u, α1 < ∞) =

= P0(M1 > u, α1 < ∞)+

+

∞∑
n=1

P0(Mn−1 ≤ u, Mn > u, αn < ∞, αn+1 = ∞) =

= G+(u) +

∞∑
n=1

∫ 0

−u
P0(Rα1 ∈ dx, Mn−1 ≤ u, Mn > u, αn

< ∞, αn+1 = ∞) =

= G+(u) +
∞∑
n=2

∫ 0

−u
P0(Rα1 ∈ dx, α1 < ∞)×

×Px(Mn−2 ≤ u, Mn−1 > u, αn−1 < ∞, αn = ∞) =

= G+(u) +

∞∑
n=1

∫ u

0
×

×Px(Mn−1 ≤ u, Mn > u, αn < ∞, αn+1 = ∞) dG+(x) =

= G+(u) +

∞∑
n=1

∫ u

0
×

×P0(Mn−1 ≤ u−x, Mn > u−x, αn < ∞, αn+1 = ∞) dG+(x) =

= G+(u) +

∫ u

0
ψ(u− x) dG+(x).

Thus, an integral equation relative to ψ is derived as follows:

ψ(u) = G+(u) +

∫ u

0
ψ(u− x) dG+(x). [2.9]

Such an equation is called to be an incomplete renewal equation. Its

difference from a proper renewal equation is only the property

G+(∞) < 1, i.e. this distribution function is not probabilistic.
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By denoting ϕ(u) = 1 − ψ(u) and because of G+(u) + G+(u) =
P0(α1 < ∞), we derive an integral equation relative to probability for

absence of ruin:

ϕ(u) = P0(α1 = ∞) +

∫ u

0
ϕ(u− x) dG+(x).

2.1.8.4. Probabilistic case

Given the safety loading η < 0, the ruin probability ψ(u) equals

to 1 for any u ≥ 0. It implies that the ladder process M(t) tends to

infinity and distribution G+ is probabilistic. Such a process determines

two renewal processes. The first one is the process along the X-axis

(abscissa) with points α1, α2, . . . . The second one is that along the

Y -ax (ordinate) with points M1,M2, . . . . Let us consider the second

renewal process with respect to measure P0 by denoting it as N
(M)
x . We

have M1 = −Rα1

distr
= −Rα1−0+U1 as the magnitude of the jump over

the cross at the time of the first exit from [0,∞). The second time of the

vertical renewal process is the meaning of the process −Rt at the time

of its first exit from interval (−∞,M1], and so on. Due to homogeneity

in the space of the process Rt, the differences (Mk − Mk−1) (k ≥
1,M0 = 0) are independent and identically distributed with common

distribution function G+. If we consider the horizontal level u > 0, we

can see that, for the process N
(M)
x , it is a distance from u up to the

nearest after its jump, i.e. it is a direct renewal time. For the process

−Rt, it is a magnitude of the jump over the cross line u. If u is the

initial capital, then ζu is a value of debt at the ruin time of the insurance

company. From the renewal theory, it follows that for η < 0 and u → ∞

ζu
u

a. s.→ 0,
E0ζu
u

→ 0. [2.10]
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2.1.9. Adjustment coefficient of Lundberg

2.1.9.1. Adjustment coefficient

Let us consider a generating function of the process Rt:

EeαRt ,

represented by formula [2.12]. The linear dependence of logEeαRt on t
shows that Rt is a process with independent increments. Let us denote:

B̂(α) :=

∫ ∞

0
eαt dB(t),

if this integral exists, and

κ(α) := β(B̂(α)− 1)− pα.

A special interest challenges the first positive root γ of this

function, if this root exists. The first who noted its interesting

properties was Lundberg.

Evidently, that κ(0) = 0. A derivative of this function at zero

depends on the adjustment coefficient:

κ′(0) =
∂

∂α
(β(B̂(α)− 1)− αp)

∣∣∣∣
α=0

=

= β

∫ ∞

0
x eαx dB(x)− p

∣∣∣∣
α=0

= 	− p = −η	.

Consider this function under a positive safety loading. That is, the

ruin probability does not reduce to the trivial meaning 1. Thus, in this

case, the derivative of the function κ at zero is negative. Noting that the

second derivative of this function is positive on its domain of definition,

we see that a positive root of this function exists at least for the case

κ(α) → ∞ as α → ∞ (Figure 2.3). We will call this root as adjustment

coefficient of Lundberg.
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Figure 2.3. Adjustment coefficient of Lundberg

2.1.10. Lundberg inequality

The next theorem was the first non-trivial result in the theory of risk.

THEOREM 2.3.– (Lundberg inequality). If η > 0 and a positive root γ
of the function κ(α) exists, then

ψ(u) ≤ e−γu. [2.11]

PROOF.– For given u > 0, let us denote:

ψ(u) = lim
n→∞ψn(u),

where ψn(u) = Pu(τ0 ≤ σn). Prove that ψn(u) ≤ e−γu for any n ≥ 1
and u > 0. We will prove it by induction. This inequality holds for

n = 0. Let it hold for some n ≥ 0. We have:

ψn+1(u) = Pu(Rσ1 < 0) + Pu(Rσ1 ≥ u, τ0 ≤ σn+1) =

= P0(Rσ1 < −u) + P0(Rσ1 ≥ −u, τ−u ≤ σn+1).
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Denoting F (x) = P0(Rσ1 ≤ x) and noting that on the set {σ1 <
τ−u} the representation τ−u = σ1 +̇ τ−u ≡ σ1 + τ−u ◦ θσ1 is fulfilled,

and also σn+1 = σ1 +̇σn, we obtain:

ψn+1(u) = F (−u) + E0(PRσ1
(τ−u ≤ σn); Rσ1 ≥ −u) =

= F (−u) +

∫ ∞

−u
Px(τ−u ≤ σn) dF (x) =

= F (−u) +

∫ ∞

−u
P0(τ−u−x ≤ σn) dF (x) =

= F (−u) +

∫ ∞

−u
ψn(u+ x) dF (x).

By inductive proposition it is fair that:

ψn+1(u) ≤ F (−u) +

∫ ∞

−u
e−γ(u+x) dF (x) ≤

≤
∫ −u

−∞
e−γ(u+x) dF (x) +

∫ ∞

−u
e−γ(u+x) dF (x) =

= e−γu

∫ ∞

−∞
e−γx dF (x) = e−γuE0e

−γRσ1 .

On the other hand,

E0e
−γRσ1 = E0 exp(−γ(pσ1 − U1))

= E exp(−γ(pσ1))E exp(γU1) =

=
β

β + γp
B̂(γ) = 1.

The latter inequality follows from the definition of γ as a positive

root of equation κ(α) = 0, where κ(α) = β(B̂(α)− 1)− αp. �

2.1.11. Cramér asymptotics

The next theorem is called to be the best theorem of the risk theory.
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THEOREM 2.4.– (theorem of Cramér). For η > 0, there exists a limit:

lim
u→∞ψ(u)eγu = C,

where

C =
p− 	

βγ
∫∞
0 x exp(γx)B(x) dx

.

PROOF.– Formerly in [2.9] it was proved that:

ψ(u) = G+(u) +

∫ u

0
ψ(u− x) dG+(x).

Denote Z(x) = ψ(x)eγx (x ≥ 0). We have:

Z(u) = G+(u)e
γu +

∫ u

0
Z(u− x) eγxdG+(x).

Consider a function F (y) =
∫ y
0 eγxdG+(x). Evidently, this

function does not decrease with respect to y. Besides, from formula

[2.7], it follows that:

F (∞) =

∫ ∞

0
eγxdG+(x) =

∫ ∞

0
eγx

	

pμB
B(x) dx =

=
	

pμB

(
eγx

γ
B(x)

∣∣∣∣∞
0

+

∫ ∞

0

eγx

γ
dB(x)

)
.

Noting that:

eγxB(x) ≤
∫ ∞

x
eγs dB(s) → 0 (x → ∞),

we obtain:

F (∞) =
	

pμB

(
−1

γ
+

1

γ
B̂(γ)

)
=

β

p γ
(B̂(γ)− 1) = 1.
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Hence, the function Z(x) satisfies a renewal equation (see section 1)

with a known function y(x) = G+(x)e
γx and a distribution function

F (x) on half-line. From the theorem of Smith, it follows that:

Z(u) → C ≡ 1

μF

∫ ∞

0
y(x) dx.

According to [2.7], we have:

μF =
β

p

∫ ∞

0
x eγxB(x) dx.

We also have:∫ ∞

0
y(x) dx =

∫ ∞

0
eγx

	

pμB

∫ ∞

x
B(s) ds =

=
β

p

∫ ∞

0
B(s)

∫ s

0
eγx dx ds

=
β

p

∫ ∞

0
B(s)

1

γ
(eγs − 1) ds =

=
β

γp

(
1

γ
(B̂(γ)− 1)− μB

)
=

1

γp
(p− 	),

what implies C. Further simplification of this equation is possible only

in exclusive cases. �

2.1.11.1. Exponential B

Let B(x) = e−δx. Then,∫ ∞

0
xeγxB(x) dx =

∫ ∞

0
xe−(δ−γ)x dx =

1

(δ − γ)2
.

From here,

C =
(p− 	)(δ − γ)2

βγ
.
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Let us find the meaning of γ for this case. We have μB = 1/δ, and

also

B̂(α) =

∫ ∞

0
eαxδe−δx dx =

δ

δ − α
,

κ(α) ≡ β(δ/(δ − α)− 1)− pα = 0, α > 0 ⇒ α ≡ γ = δ − β/p,

C =
(p− β/δ)(δ − (δ − β/p))2

β(δ − β/p)
=

β

δp
=

	

p
.

2.2. Finite horizon

In this subsection, the main object of investigation will be the

random value τ0 on a set {τ0 < ∞}. We will use a technical device,

which essentially simplifies proofs of some useful theorems. This

device is called to be the change of measure of a process and is a

generalization for the change of measure of a random value.

2.2.1. Change of measure

Let us consider a random value X with a distribution function F .

Assume that there exists a generating function of this function

depending on α for any α in the region of the zero-point. Denote

κ̃(α) = lnEeαX . Then, for any λ > 0, the distribution

dFλ(x) ≡ eλx−κ̃(λ)dF (x)

is a distribution function of some random value Rλ. If the generating

function of this distribution exists for given α, then

κ̃λ(α) ≡ lnEeαRλ =

= ln

∞∫
−∞

eαxeλx−κ̃(λ) dF (x) = κ̃(α+ λ)− κ̃(λ). [2.12]

A useful generalization of such a method for random processes is

shown to be as follows: let P (T ) and P (L,T ) be projections of measures
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P and P (L) (for some random processes) on interval [0, T ]. This means

the latter measures are considered only on sigma-algebra FT . Let us

assume that the measure P (L,T ) is absolutely continuous with respect to

P (T ) and L(T ) is the derivative of Radon-Nikodym denoted as:

L(T ) =
dP (L,T )

dP (T )
.

Thus, for any A ∈ FT

EL(A) = E(L(T ); A) [2.13]

From this assumption, it follows that L(T ) is a martingale with

respect to measure P . It means that:

E(L(t); A) = E(E(L(t+ s) | Ft); A)

for all t ≥ 0 and A ∈ Ft.

In fact, the main property of projections is:

P (L,t)(A) = P (L,t+s)(A) = P (L)(A) (A ∈ Ft, t, s ≥ 0).

From the definition of the Radon-Nikodym derivative, it follows that:

P (L,t)(A) = E(L(t);A), P (L,t+s)(A) = E(L(t+ s);A).

From the definition of conditional expectation, it follows that:

E(L(t+ s);A) = E(E(L(t+ s) | Ft);A).

Noting that D0 ∈ Ft (D0 is the set of all trajectories), we obtain

EL(t) = 1 for any t ≥ 0.

Besides, we can prove that there exists a random process with

measure P (L). The proof reduces to showing that Kolmogorov

conditions hold in this case which is equivalent to equality:

PL,t(A) = PL,t+s(A)
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for any A ∈ Ft, s, t ≥ 0. It follows from equalities:

PL,t+s(A) = E(L(t+ s);A) = E(P (L(t+ s) | Ft);A)

= E(L(t);A) = PL,t(A).

From the general theory of martingales, it follows that ELτ = 1 for

any Markov time τ and

E(LT | Fτ ) = Lτ

on the set {τ ≤ T}. Further, we will use the next useful result.

THEOREM 2.5.– (direct and inverse transformations). If there exists a

martingale (Lt) and measures P and P (L) with property [2.13], then for

any Markov time τ and a set G ∈ Fτ such that G ⊂ {τ < ∞} it holds

the following expressions:

P (L)(G) = E(Lτ ; G), [2.14]

P (G) = E(L)

(
1

Lτ
; G

)
. [2.15]

PROOF.– Let G ⊂ {τ < T} for some finite T . By using property G ∈
Fτ and the martingale property with respect to τ < T , we obtain:

E(L)

(
1

Lτ
; G

)
= E

(
LT

Lτ
; G

)
=

= E

(
E(LT | Fτ )

1

Lτ
; G

)
= P (G).

In the general case, we apply the last equality to set G ∩ {τ ≤ T}.

Thus,

E(L)

(
1

Lτ
; G ∩ {τ ≤ T}

)
= P (G ∩ {τ ≤ T}).

Noting that both sides of this equality increase monotonically with

respect to T → ∞, we obtain the equality for limit expressions. �
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It is interesting to consider the transformation of measure Pu of the

process (Rt) with the help of the random function Λz(t) = ezSt−tκ(z),

where

St =

Nt∑
k=1

Uk − p t, κ(z) = β(B̂(z)− 1)− p z (z ≥ 0).

With respect to the original measure P (without lower index) on the

set of sequences (tn, xn), determining the composite Poisson process,

this random function is a martingale with expectation 1. In fact,

E(ezSt−tκ(z)) = e−tκ(z)E(ezSt) = e−tκ(z)etκ(z) = 1,

and by using a property of conditional expectation, we obtain:

E(ezSt+s−(t+s)κ(z)| Ft) = ezSt−tκ(z)E(ez(St+s−St)−sκ(z)| Ft) =

= ezSt−tκ(z)E(ezSs◦ θt−sκ(z)| Ft) =

= ezSt−tκ(z)E(ezSs−sκ(z)) = ezSt−tκ(z).

Let us call the transformation defined by this martingale as the

standard change of measure. Denote P
(z)
u as a standard change of

measure Pu with the help of this martingale

THEOREM 2.6.– (transformed risk process). A Cramér-Lundberg

process of risk with parameters

1) βz = βB̂(z) (intensity of the Poisson process),

2) dBz(x) =
exκ(z)

B̂(z)
dB(x) (common function of the distribution of a

claim size) and

3) pz = p (premium rate size)

has a distribution, which is equal to that of the transformed process with

a standard change of measures (P
(z)
u ) (u ≥ 0).

PROOF.– In order to prove it, we need to construct the family of

measures (P̃
(z)
u ) (u ≥ 0) of the corresponding process of risk and to
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find (if it exists), for any t > 0, a Radon-Nikodym derivative with

respect to the t-projection of the original measure.

Let us consider the Cramér-Lundberg process of risk with

parameters βz , Bz , pz . Denote (P̃
(z)
u ) (u ≥ 0) as a family of measures

of this process. A generating function of the random value St for this

process is equal to:

Ẽ(z)
u eαSt = etκ̃z(α),

where κ̃z(α) = βz(B̂z(α)− 1)− pα. We have:

κ̃z(α) = β(B̂(α+ z)− B̂(z))− pα =

= β(B̂(α+ z)− 1)− p (α+ z)− β(B̂(z)− 1) + p z

= κ(α+ z)− κ(z).

On the other hand, as it was shown earlier [2.12], the same meaning

has the corresponding function κz(α) of the last process, for which the

distribution of St is transformed by the above method:

dF
(z)
St

(x) = exz−tκ(z)dFSt(x).

Consequently, the P̃
(z)
u -distribution of this random value has view

dF
(z)
St

(x). Further, an assertion of the theorem is equivalent to equality:

Ẽ(z)
u (Z) = Eu(e

z St−t κ(z)Z)

for any Ft-measurable random value Z.

From the general theory of measures, it is well-known that this

equality is sufficient to prove for the F (n)
t -measurable random value Z,

where F (n)
t is a sigma-algebra, generated by random values Rkt/n

(k = 1, . . . , n), or (it is the same) by increments of the process (Rs)
t
0

at points kt/n. A general view of such a function is:

Z = g(St/n, S2t/n − St/n, . . . , St − S(n−1)t/n).
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Due to independence and identical distribution of increments of (St),
we have:

Ẽ(z)
u (Z) =

∫
R

n
g(x1, x2, . . . , xn)×

× dF
(z)
St/n

(x1) dF
(z)
S2t/n−St/n

(x2) . . . dF
(z)
St−S(n−1)t/n

(xn) =

=

∫
R

n
g(x1, x2, . . . , xn) e

z (x1+x2+···+xn)−t κ(z)×

× dFSt/n
(x1) dFS2t/n−St/n

(x2) . . . dFSt−S(n−1)t/n
(xn) =

= Eu(e
zSt+t κ(z)Z).

�

From the theorem 2.5, it follows that for any τ and G ⊂ {τ < ∞}:

Pu(G) = E(z)
u (e−zSτ+τκ(z); G).

The same equality holds in terms of expectations

Eu(f ; τ < ∞) = E(z)
u (f e−zSτ+τκ(z); τ < ∞). [2.16]

2.2.2. Theorem of Gerber

The following theorem can be considered as the Lundberg inequality

for a finite interval. It is a very good example of using the change of

measure.

THEOREM 2.7.– (theorem of Gerber). For the Cramér-Lundberg

process under positive safety loading and adjustment coefficient γ, we

have:

ψ(u, yu) ≤ e−γyu, y <
1

κ′(γ)
, [2.17]

ψ(u)− ψ(u, yu) ≤ e−γyu, y >
1

κ′(γ)
, [2.18]
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where κ(α) ≡ β(B̂(α)−1)−pα (α > 0); γy is an intersecting point of

the abscissa axis and a tangent to the curve κ(α) at the point αy, which

is disposed to the right of a point of minimum of the curve κ(α); 1/y is

angular coefficient of the tangent (Figure 2.4).
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Figure 2.4. For Gerber theorem

PROOF.– Note that at the ruin time τ(−u), the random value Sτ(−u) can

be represented in view of u+ζ−u, where ζ−u ≡ ζ(−u) > 0 is a value of

the jump over the cross line (−u). Consider the first case 1/y > κ′(γ).
We have κ(αy) > 0, and consequently by using the change of measure

with parameter αy, we obtain:

ψ(u, yu) = E0(τ(−u) ≤ yu) =

= e−αyuE
(αy)
0

(
e−αyζ(−u)+τ(−u)κ(αy); τ(−u) ≤ yu

)
≤

≤ e−αyuE
(αy)
0

(
eτ(−u)κ(αy); τ(−u) ≤ yu

)
≤ e−αyu+yuκ(αy) = e−γyu,

because γy is a root of the tangent equation κ(αy) + (α− αy)/y = 0.
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Consider the second case 0 < 1/y < κ′(γ). In this case, κ(αy) is

less than zero. We have:

ψ(u)− ψ(u, yu) = E0(yu ≤ τ(−u) < ∞) =

= e−αyuE
(αy)
0

(
e−αyζ(−u)+τ(−u)κ(αy); yu ≤ τ(−u) < ∞

)
≤

≤ e−αyuE
(αy)
0

(
eτ(−u)κ(αy); yu ≤ τ(−u) < ∞

)
≤

≤ e−αyu+yuκ(αy) = e−γyu. �

2.2.3. Change of measure with parameter gamma

Especially convenient to use the change of measure with z = γ
(coefficient of Lundberg). In this case,

Eu(f ; τ < ∞) = E(γ)
u (f e−γSτ ; τ < ∞). [2.19]

Let us use this property for the short proof of Lundberg inequality.

THEOREM 2.8.– (another proof of Lundberg inequality). For the

Cramér-Lundberg process of risk with parameter η > 0 and coefficient

of Lundberg γ, it is fair that:

ψ(u) ≤ e−γu.

PROOF.–

ψ(u) = Pu(τ0 < ∞) = P0(τ−u < ∞) = E
(γ)
0 (e−γSτ(−u) ; τ−u < ∞).

From here,

ψ(u) = e−γuE
(γ)
0 (e−γζ(−u); τ−u < ∞) ≤ e−γu. �

Another important property of this transformation consists in the

difference of safety loadings signs between the original and

transformed processes. In fact,

ηγ =
p− βγμBγ

βγμBγ

.
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We have:

βγμBγ = β

∫ ∞

0
xeγx dB(x) = βB̂′(γ).

On the other hand, κ′(γ) = βB̂′(γ)− p > 0. Hence, ηγ < 0.

2.2.4. Exponential distribution of claim size

Assume that for the original process of the risk B(x) = 1 − e−δx.

Then, B̂(α) = δ
δ−α (α < δ). From here, κ(α) = β

(
δ

δ−α − 1
)
− pα,

and the coefficient of Lundberg is equal to

γ = δ − β

p
. [2.20]

Further 	 ≡ β μB = β/δ, and the safety loading is equal to:

η =
p δ − β

β
. [2.21]

For the transformed process with measures P
(z)
u (0 < z < δ), we

have:

βz = βB̂(z) =
βδ

δ − z
> β,

B̂z(α) =
B̂(α+ z)

B̂(z)
=

δ − z

δ − α− z
,

which represents the generating function of an exponential distribution

with parameter δ − z. Hence, μBz = 1/(δ − z), and also:

	z ≡ βzμBz =
βδ

(δ − z)2
> 	,

ηz ≡ p/	z − 1 =
p(δ − z)2

βδ
− 1.
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This safety loading of the transformed process can have any sign at

the expense of p.

For a process with measures P
(γ)
u , we have βγ = p δ,

B̂γ(α) = β
β−pα , which represents a generating function of the

exponential distribution with parameter β/p. Hence, μBγ = p/β, and

also:

	γ = p2δ/β, ηγ =
β − p δ

p δ
.

Thus, we can see again that the safety loading of a transformed

process with parameter γ has the opposite sign, comparative with that

of the original one [2.21].

An exponential distribution of jump sizes of the process (Rt) has yet

another important consequence. The value of the jump over the cross

line zero ζ0 = u − Rτ0 has the same distribution as that of U1. In fact,

taking into account the independence of components, we have:

Pu(ζ0 > x, τ0 < z) =
∞∑
n=1

Pu(ζ0 > x, τ0 = σn, σn < z) =

=

∞∑
n=1

∫ ∞

0
Pu(Un − y > x, Rσn−0 ∈ dy, τ0 > σn−1, σn < z) =

=
∞∑
n=1

∫ ∞

0
e−δ(x+y)Pu(Rσn−0 ∈ dy, τ0 > σn−1, σn < z) =

= e−δx
∞∑
n=1

∫ ∞

0
Pu(Un > y, Rσn−0 ∈ dy, τ0 > σn−1, σn < z) =

= e−δx
∞∑
n=1

Pu(τ0 = σn, σn < z) = e−δxPu(τ0 < z).

Hence, for any z > 0 (including z = ∞):

Pu(ζ0 > x| τ0 < z) = e−δx, [2.22]
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which implies also that ζ0 and τ0 are independent with respect to

measure Pu on a set τ0 < ∞.

THEOREM 2.9.– (conditional distribution of a ruin time). For the

Cramér-Lundberg process of risk with a claim distribution

B(x) = 1− e−δx and safety loading η > 0, the following expression is

fair that:

Eu(τ0| τ0 < ∞) =
uβ + p

p2 δ − p β
. [2.23]

PROOF.– According to formula [2.16], and due to the negativeness of

ηγ (from which follows ruin with probability 1), we have:

Eu(τ0; τ0 < ∞) = E(γ)
u (τ0e

−γSτ0 ; τ0 < ∞) = E(γ)
u (τ0e

−γSτ0 ) =

= e−γuE(γ)
u (τ0e

−γζ0) = e−γuE(γ)
u e−γζ0E(γ)

u (τ0) =

= E(γ)
u e−γSτ0E(γ)

u (τ0) = E(γ)
u (e−γSτ0 ; τ0 < ∞)E(γ)

u (τ0) =

= Eu(τ0 < ∞)E(γ)
u (τ0),

hence, Eu(τ0| τ0 < ∞) = E
(γ)
u (τ0). On the other hand, the process Rt

with respect to the family (P
(γ)
u ) is a homogenous process with

independent increments for which the identity of Wald is fair:

E(γ)
u Sτ0 = E(γ)

u S1E
(γ)
u τ0 = (	γ − p)E(γ)

u τ0.

Consequently,

E(γ)
u τ0 =

E
(γ)
u Sτ0

	γ − p
=

u+ μBγ

	γ − p
=

u+ p/β

p2δ/β − p
=

uβ + p

p2δ − p β
. �

REMARK.– The identity of Wald for a discrete Markov time and an

homogeneous process with independent increments (Yt) can be proven
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as follows: let τ = Nh, where N is an integer-valued Markov time:

{N = n} ∈ Fnh, and h > 0 is a given value. In this case,

EYτ = EYNh =
∞∑
n=1

E

(
n∑

k=1

Δk; N = n

)

=
∞∑
k=1

∞∑
n=k

E(Δk; N = n) =

=

∞∑
k=1

E(Δk; N ≥ k),

where Δk = Ykh − Y(k−1)h. Noting that {N ≥ k} = {N > k − 1} ∈
F(k−1)h, and by using independence Δk from the past, we obtain:

EYτ = E(Δk)EN = hEY1EN = EY1Eτ.

In a general case, Wald’s identity can be proven with the help of

passage to a limit as h → 0. �

THEOREM 2.10.– (Laplace transformation of ruin time) For the

Cramér-Lundberg process of risk with a claim distribution

B(x) = 1 − e−δx and with safety loading η > 0, the next

representation of the Laplace image of the ruin time is true

Eue
−λτ0 = e−z(λ)u δ − z(λ)

δ
(λ ≥ λ0), [2.24]

where

λ0 = min{k(α) : 0 < α < δ},

z(λ) =
1

2p

(
p δ − β − λ+

√
(p δ − β − λ)2 + 4pδλ

)
,

PROOF.– According to formula [2.16], for any positive z:

Eue
−λτ0 = Eu(e

−λτ0 ; τ0 < ∞) = Eu(e
−λτ0−zSτ0+τ0κ(z); τ0 < ∞).
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Choose z in such a way that κ(z) = λ for all λ from the minimal

meaning λ0 up to infinity. Thus, z is a positive root of the equation:

βz

δ − z
− p z = λ,

By solving this square equation, we obtain z(λ), appearing in

assertion of the theorem. Hence,

Eue
−λτ0 = E(z(λ))

u (e−z(λ)Sτ0 ) =

= E(z(λ))
u (e−z(λ)(u+ζ0)) = e−z(λ)uE(z(λ))

u (e−z(λ)U1) =

= e−z(λ)u

∫ ∞

0
e−z(λ)x(δ − z(λ)) e−(δ−z(λ))x dx

= e−z(λ)u δ − z(λ)

δ
. �

2.2.4.1. Arbitrary distribution of claim size

For the Cramér-Lundberg process of risk with claim size

distribution B of the general view and with a finite first moment, we

will consider some results for limit behavior of ruin probability

ψ(u, T ) under consistent tending u and T to infinity.

THEOREM 2.11.– (law of large numbers). For the Cramér-Lundberg

process with safety loading η < 0, the following limits hold:

a) τ−u/u → m P0 − a.s.;

b) Euτ0/u → m;

c)
τ−u −mu√

u

distr−→ σZ

as u → ∞, where m = 1/(	 − p); σ2 = β μ
(2)
B m3; Z is a standard

normal random value.

PROOF.– Due to condition η < 0, the ruin has probability 1. Besides,

due to the homogeneity of the process in space and in time for any
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M > 0, we have Pu(τ0 < M) = P0(τ−u < M) → 0 (u → ∞) tending

to infinity in probability. Because τ−u is a non-decreasing random value,

convergence in probability implies convergence with probability 1.

a) According to theorem 2.1, and due to P0-a.s. convergence of τ−u

to infinity, we have:

m = lim
t→∞(a. s.)

t

St
= lim

u→∞(a. s.)
τ−u

Sτ−u

= lim
u→∞(a. s.)

τ−u

u+ ζ−u
,

where ζ−u is a value of the jump over the cross line −u at the first

crossing time of this level. Because ζ/u
a.s.→ 0 by formula [2.10], the

assertion is proved.

b) By using Wald’s identity, we have:

u+ E0ζ−u = E0Sτ−u = E0τ−u · E0S1 = (	− p)E0τ−u.

According to property [2.10], it follows that E0ζ−u/u → 0 (u →
∞). From here, the second assertion follows:

c) by using theorem 2.2:

St − t(	− p)√
t

distr−→ σZ (t → ∞),

where σ2 = β μ
(2)
B and Z is a standard normal random value. Evidently,

in this relation, argument t can be replaced on a random argument

tending to infinity (see Remark). From here,

u+ ζ−u − τ−u/m√
τ−u

distr−→ σZ (u → ∞).

By multiplying the last expression by m and changing the sign, we

obtain:

τ−u −mu√
τ−u

distr−→ mσZ,

By multiplying it by
√
m, we obtain:

τ−u −mu√
u

distr−→ m3/2σZ. �
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REMARK.– Replacing t by τ−u is possible due to the following reason:

denote Ω1 = {f(t) → c (t → ∞)} and Ω2 = {g(u) → ∞ (u → ∞)}.

If P0(Ω1) = P0(Ω2) = 1, then P0(Ω1 ∩ Ω2) = 1. But Ω1 ∩ Ω2 ⊂
{f(g(u)) → c (u → ∞)}. Hence, P0(f(g(u))

u→∞−→ c) = 1.

THEOREM 2.12.– (conditional law of large numbers). For the Cramér-

Lundberg process with parameter η > 0, when u → ∞, the fraction

τ−u/u tends to mγ ≡ 1/(	γ−p) in conditional probability with respect

to condition {τ−u < ∞}, i.e. for any ε > 0:

P0

(∣∣∣ τ−u

u
−mγ

∣∣∣ > ε
∣∣∣ τ−u < ∞

)
→ 0.

Besides,

ψ(u, αu)

ψ(u)
→

{
0 α < mγ ,
1 α > mγ .

PROOF.– By using change of measure, we have:

P0

(∣∣∣τ−u

u
−mγ

∣∣∣ > ε
∣∣∣ τ−u < ∞

)
=

=
e−γu

ψ(u)
E

(γ)
0

(
e−γζ−u ;

∣∣∣τ−u

u
−mγ

∣∣∣ > ε
)
≤

≤ e−γu

ψ(u)
P

(γ)
0

(∣∣∣τ−u

u
−mγ

∣∣∣ > ε
)
→ 0,

because the first fraction tends to C−1 (C is Cramér’s limit) and the

second multiplier tends to zero, according to theorem 2.11(a). Besides,

ψ(u, αu)

ψ(u)
= P0

(τ−u

u
< α

∣∣∣ τ−u < ∞
)
,

which in the first case is equal to:

P0

(
mγ − τ−u

u
> mγ − α

∣∣∣ τ−u < ∞
)
→ 0,

in the second case:

1− P0

(τ−u

u
−mγ ≥ α−mγ

∣∣∣ τ−u < ∞
)
→ 1. �
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2.2.5. Normal approximation

Special properties of value mγ were already remarked above. Now,

we consider further specifications of these properties.

2.2.5.1. Lemma of Stamm and theorem of Segerdal

The theorem of Segerdal can be called as a generalization of theorem

of Cramér for the ruin on a finite interval.

THEOREM 2.13.– (theorem of Segerdal). For any Cramér-Lundberg

process with η > 0, if Lundberg root γ exists, then it is true

eγuψ(u, umγ + yσγ
√
u) → CΦ(y) (u → ∞), [2.25]

where σ2
γ = βγE

(γ)U2
1m

3
γ and C is the limit of Cramér; Φ is the

standard normal distribution function.

LEMMA 2.1.– (lemma of Stamm). If η < 0, then ζ−u and τ−u are

asymptotically independent. It means that, for all continuous and

bounded function f determined on [0,∞), and continuously

differentiable and bounded functions g with bounded derivatives,

determined on (−∞,∞), there are limits:

Ef(ζ−∞) = lim
u→∞Ef(ζ−u),

E

(
f(ζ−u) g

(
τ−u −mu

σ
√
u

))
→ Ef(ζ−∞)Eg(Z),

where σ2 = βμ
(2)
B m3, m = (	− p)−1; Z is a standard normal random

variable.

PROOF OF LEMMA.– Existence of the first limit follows from the

renewal theory (see [2.10] and above). Denote u′ = u − u1/4 and

Zu = (τ−u − mu)/(σ
√
u). Let us estimate this difference (in what

follows, we will write τ−u ≡ τ(−u), ζ−u ≡ ζ(−u)). By using the

strong Markov property, and homogeneity in space and
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theorem 2.11(b), we obtain:

E0(τ(−u)− τ(−u′)) = E0(τ(−u) ◦ θτ(−u′); τ(−u) > τ(−u′)) =

= E0(ERτ(−u′)τ(−u); Rτ(−u′) ≥ −u) =

=

∫ −u′

−u
E0(E0τ(−u− x); Rτ(−u′) ∈ dx)

≤ E0τ(−u1/4) = O(u1/4).

Furthermore,

g(Zu) = g(Zu′) + g′(c)(Zu − Zu′) =

= g(Zu′)+g′(c)

(
τ(−u)− τ(−u′)

σ
√
u

+
m(u′ − u)

σ
√
u

+

(√
u′√
u

− 1

)
Zu′

)
,

where c is a point posed between Z(u) and Z(u′). From here,

|E0f(ζ(−u))(g(Zu)− g(Zu′)| ≤

≤ max
x,c

(|f(x)| · |g′(c)|)
(
E0(τ(−u)− τ(−u′))

σ
√
u

+
mu−1/4

σ
+

+

(
1−

√
u′

u

)
E0|Zu′ |

)
→ 0 (u → ∞),

the latter summand tends to zero due to convergence E0|Zu| to E0Z
and boundedness of the latter member. Now, we consider this

expression with change Zu by Zu′ . By applying formulas

τ(−u) = τ(−u′) +̇ τ(−u), and Rτ(−u′) +̇ τ(−u) = Rτ(−u) ◦ θτ(−u′),

and by using the Markov property, we obtain:

E0(f(ζ(−u))g(Zu′)) = E0(f(−u−Rτ(−u))g(Zu′)) =

= E0(f(−u−Rτ(−u)) ◦ θτ(−u′) · g(Zu′)) =

= E0(ERτ(−u′)f(−u−Rτ(−u)) · g(Zu′)) =
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=

∫ −u′

−∞
E0(E0f(−u− (Rτ(−u−x) + x)) · g(Zu′); Rτ(−u′) ∈ dx) =

=

∫ −u′

−∞
E0f(ζ(−u− x)) · E0(g(Zu′); Rτ(−u′) ∈ dx).

Let us split this interval into two parts:

(−∞, −u′) = (−∞,−u+ u1/4/2) ∪ [−u+ u1/4/2, −u′).

On the first interval, Rτ(−u′) < −u+u1/4/2. It means that ζ(−u′) ≡
−u′−Rτ(−u′) > −u′+u−u1/4/2 = u1/4/2. The measure of this event

tends to zero as u → ∞ according to the limit theorem of the renewal

theory for a direct renewal time. For additional events with its measure

tending to 1, the argument −(u+ x) of the function ζ is posed between

−u + u′ = −u1/4 and −u − (−u + u1/4/2) = −u1/4/2. Hence, it

tends to infinity as u → ∞. Consequently, the first integrand tends to a

limit, which was denoted as E0ζ(−∞). The second integrand tends to

E0g(Z) by theorem 2.11(c). �

PROOF OF THEOREM.– We have:

eγuψ(u, mγu+ yσγ
√
u) = eγuP0(τ(−u) ≤ mγu+ yσγ

√
u) =

= eγuP0

(
τ(−u)−mγu

σγ
√
u

≤ y

)
= eγuP0(Zu ≤ y),

where Zu = (τ(−u) − mγu)/(σγ
√
u). The latter probability can be

written as expectation E0(I(−∞,u](Zu)). By using the change of

measure, we obtain:

eγuψ(u, mγu+ yσγ
√
u) = E

(γ)
0 (e−γζ(−u)I(−∞,u](Zu)).

This expression initates the expression considered in Lemma of

Stamm. We have ηγ < 0. A decreasing exponent plays a role of f . As a

function g, we would take I(−∞,u], but the latter function is not
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continuous. Due to this, we will consider a sequence of admissible

functions converging (non-uniformly) to the indicator. Define:

gε(x) =

∫ ∞

x

1√
2πε

exp

(
−(y − s)2

2ε

)
ds ≡ Φ

(
x− y√

ε

)
.

For ε → 0, this function converges to the indicator of interval

(−∞, y] everywhere except the point y. For any ε > 0, this function is

bounded, continuous and has bounded and continuous derivatives.

Given ε > 0, the convergence to limit as u → ∞ follows from Lemma
of Stamm. We have:

E
(γ)
0 e−γζ(−u)gε(Zu) → E

(γ)
0 e−γζ(−∞)E0gε(Z).

According to the theorem of Cramér in this expression:

E
(γ)
0 e−γζ(−∞) = lim

u→∞E
(γ)
0 e−γζ(−u) = lim

u→∞ eγuE0(τ(−u) < ∞) = C.

From the proof of Lemma of Stamm, it follows that a set on which

E
(γ)
0 e−γζ(−u) converges to a limit does not depend on choice of g.

Hence, it is sufficient to estimate the convergence of E
(γ)
0 gε(Zu). By

denoting distribution functions of Zu and Z as FZu and FZ

correspondingly, we have:

E
(γ)
0 gε(Zu) =

∫ ∞

−∞
Φy,ε(x) dFZu(x) =

=

∫ ∞

−∞

∫ ∞

x

1√
2πε

exp

(
−(s− y)2

2ε

)
ds dFZu(x) =

=

∫ ∞

−∞
1√
2πε

exp

(
−(s− y)2

2ε

)∫ s

−∞
dFZu(x) ds =

=

∫ ∞

−∞
1√
2πε

exp

(
−(s− y)2

2ε

)
FZu(s) ds.
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The similar formula can be applied to for Z. Thus, we have:

|E(γ)
0 gε(Zu)− E

(γ)
0 gε(Z)| ≤

≤
∫ ∞

−∞
1√
2πε

exp

(
−(s− y)2

2ε

)
|FZu(s)− FZ(s)| ds ≤

≤ sup
s

|FZu(s)− FZ(s)|,

which implies that, for u → ∞, the value E
(γ)
0 e−γζ(−u)gε(Zu)

converges to its limit uniformly on ε > 0. Remark that when ε → 0, the

following is true:

E
(γ)
0 gε(Z) → E

(γ)
0 I(−∞, y](Z) = P (Z ≤ y) = Φ(y).

However, the passage to this limit from the original expression have

to be justified, because we came to it by the passage firstly when u →
∞, and secondly when ε → 0. But, we must go firstly when ε → 0, and

secondly when u → ∞. A uniform convergence for u → ∞ saves us.

In this case,

|eγuψ(u, mγu+ yσγ
√
u)− CΦ(y)| ≤

≤ |eγuψ(u, mγu+ yσγ
√
u)− eγuE0gε(Zu)|+

+ |eγuE0gε(Zu)− C E
(γ)
0 gε(Z)|+ |C E

(γ)
0 gε(Z)− CΦ(y)|.

For any δ > 0, there is u0, that for all u > u0 and ε > 0, the second

member is less than δ/3. For any δ > 0 and u > 0, there is ε0, that for

all ε < ε0, both the first member and the third one are less than δ/3.

Thus, the convergence is proved. �

2.2.6. Diffusion approximation

For Cramér-Lundberg processes, there is no compact formula for

the first exit time from an interval. Thus, it is constructed more

complexly than, for example, that of the homogeneous Wiener process
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for which such a formula exists. On the other hand, the

Cramér-Lundberg process as a homogeneous process with independent

increments for some parameters is a good approximation for the

Wiener process. It is reasonable to suppose that distributions of the first

exit times of Cramér-Lundberg processes are similar to those of the

Wiener process.

Consider this nearness.

THEOREM 2.14.– (theorem of Donsker) Let (Xn)
∞
0 be a simple random

walk (its sequence of increments (Xn − Xn−1) is a sequence of i.i.d.

random variables); μ = E(Xn −Xn−1), σ
2 = D(Xn −Xn−1). Then,

(
1

σ
√
c
(X[tc] − t c μ)

)
t≥0

distr→ (Wt)t≥0 (c → ∞), [2.26]

where (Wt) is a standard Wiener process.

PROOF.– (see in Billingsley [BIL 70]). The first application of the

Donsker’s theorem relates to a family of Cramér-Lundberg processes

with safety loadings near zero.

THEOREM 2.15.– (process with drift) Let R
(p)
t be a Cramér-Lundberg

process with a premium rate p and positive η. And then, given R
(p)
0 = 0

(
p− 	

σ2
R

(p)
tσ2/(p−�)2

)
t≥0

distr→ (Wt + t)t≥0 (p ↓ 	), [2.27]

where p− 	 = E0R
(p)
1 , 	 = β μB , σ2 = D0R

(p)
1 = β μ

(2)
B .

PROOF.– We have E0R
(p)
t = (p − 	)t. Denote Xt = R

(p)
t /(p− 	).

According to Donsker’s theorem applied to the process with

independent increments (Xt),(
Xtc − tc√
cD0X1

)
→ (Wt) (c → ∞)
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in distribution. By substituting c =
√
cD0X1 (i.e. c = D0X1), we note

that c = σ2/(p− 	)2 → ∞ as p → 	. Hence,(
Xtc − tc√
cD0X1

)
=

(
Xtc√
cD0X1

− t

)
=

=

(
p− 	

σ2
R

(p)
tσ2/(p−�)2

− t

)
→ (Wt) (p ↓ 	),

what is equivalent to the assertion of the theorem. �

2.2.7. The first exit time for the Wiener process

Taking into account the nearness of the Cramér-Lundberg process

with Wiener process, we would await that their hitting time of a given

level be near.

Let us consider the distribution of the first hitting of a level b > 0 for

a standard Wiener process. For given t > 0,

P
(W )
0 (Wt > b) =

∫ t

0
P

(W )
0 (σ(−∞,b) ∈ ds)P

(W )
b (Wt−s > b) =

=
1

2
P

(W )
0 (σ(−∞,b) ≤ t).

Hence,

P
(W )
0 (σ(−∞,b) ≤ t) = 2

∫ ∞

b

1√
2πt

e−x2/2t dx.

Differentiating with respect to t, we obtain a distribution density for

this time:

gb(t) = 2

∫ ∞

b

∂

∂t

(
1√
2πt

e−x2/2t

)
dx =

=
1√
2π

∫ ∞

b

(
−t−3/2e−x2/2t + x2t−5/2e−x2/2t

)
dx =
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=
1√
2π

∫ ∞

b

(
−t−3/2e−x2/2t − xt−3/2

(
e−x2/2t

)′)
dx =

= − 1√
2π

∫ ∞

b
t−3/2e−x2/2tdx− 1√

2π

(
xt−3/2e−x2/2t

∣∣∣∞
b
−

−
∫ ∞

b
t−3/2e−x2/2tdx

)
=

b√
2πt3

e−b2/2t.

Thus, the distribution density of the first hitting time of level b > 0
for a standard Wiener process is expressed by the formula:

gb(t) =
b√
2πt3

e−b2/2t. [2.28]

For a Wiener process with a constant multiplier of view W
(0,σ)
t ≡

σWt (t ≥ 0), the corresponding formula follows by using similarity

principle

σ(ac,ab)(aζ) = σ(c,b)(ζ) (a > 0, c < b, ζ ∈ D), [2.29]

from which it follows:

P
(W (0,σ))
0 (σ(−∞,b) ≤ t) = P

(W )
0 (σ(−∞,b)(σζ) ≤ t) =

= P
(W )
0 (σ(−∞,b/σ)(ζ) ≤ t)

and density of this distribution:

g
(0,σ)
b (t) = gb/σ(t) =

b√
2πσ2t3

e−b2/2σ2t.

Let us consider the Wiener process with constant drift, i.e. a process

W
(a)
t ≡ W

(a,1)
t = Wt + at (a �= 0). The distribution density for the

meaning of the process at time t is equal to:

f
(a)
t (x) =

1√
2π

e−(x−at)2/2t.
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We will investigate the first hitting time problem for this process.

For this aim, we will use a change of measure with the help of a
martingale. We need to evaluate a derivative of Radon-Nikodym for the
distribution of the process with drift with respect to the process without
drift. Consider projections of this measures on sigma-algebra FT .
According to well-known results of the measure theory [BIL 70], this
derivative is equal to:

dP
(W (a))
0,T

dP
(W )
0,T

= lim
n→∞

f
(a)
t1,...,tn(Xt1 , . . . , Xtn)

ft1,...,tn(Xt1 , . . . , Xtn)
=

= lim
n→∞

n∏
k=1

f
(a)
tk−tk−1

(Xtk −Xtk−1
)

ftk−tk−1
(Xtk −Xtk−1

)
=

= lim
n→∞

n∏
k=1

exp

(
− (Xtk −Xtk−1

− a(tk − tk−1))
2

2(tk − tk−1)
+

(Xtk −Xtk−1
)2

2(tk − tk−1)

)
=

= lim
n→∞

n∏
k=1

exp

(
a(Xtk −Xtk−1

)− a2

2
(tk − tk−1)

)
= eaXT−a2T/2,

where tk = Tk/n. Form here, for S ∈ FT , a following probability

occurs:

P
(W (a))
0 (S) = P

(W (a),T )
0 (S) = E

(W,T )
0 (eaXT−a2T/2; S) =

= E
(W )
0 (eaXT−a2T/2; S).

Let us prove that Mt ≡ eaXt−a2t/2 is a martingale. For this, it is

sufficient to control the martingale equality E(Mt+s| Ft) = Mt. By

using the homogeneous Markov property of the Wiener process, we

have for S ∈ Ft:

E
(W )
0 (eaXt+s−a2(t+s)/2; S) = e−a2(t+s)/2E

(W )
0 (eaXs◦θt ; S) =

= e−a2(t+s)/2E
(W )
0 (E

(W )
Xt

eaXs ; S) =

= e−a2(t+s)/2

∫ ∞

−∞
E

(W )
0 (E(W )

x eaXs ; S, Xt ∈ dx) =
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= e−a2(t+s)/2

∫ ∞

−∞
E

(W )
0 (E

(W )
0 ea(Xs+x); S, Xt ∈ dx) =

= e−a2(t+s)/2E
(W )
0 (eaXtE

(W )
0 eaXs ; S).

In the latter expression,

E
(W )
0 eaXs =

1√
2πs

∫ ∞

−∞
eax−x2/2s dx = ea

2s/2.

Hence, we obtain:

E
(W )
0 (eaXt+s−a2(t+s)/2; S) = E

(W )
0 (eaXt−a2t/2; S),

Because S is arbitrary, the martingale equality is proved.

Now, we can apply theorem 2.5, and obtain for a Markov time τ ≡
σ(−∞,b):

P
(W (a))
0 (τ < t) = E

(W )
0 (eaXτ−a2τ/2; τ < t)

= E
(W )
0 (eab−a2τ/2; τ < t) =

= eab
∫ t

0
e−a2s/2 b√

2πs3
e−b2/2s ds.

Thus, the distribution density of the first exit time for the Wiener

process with drift is equal to:

g
(a)
b (t) = eabe−a2t/2 b√

2πt3
e−b2/2t =

b√
2πt3

e−(b−at)2/2t.

For fullness of picture, we consider also the Wiener process with

constant drift and linear dispersion (such that DW (t) = σ2t). The

distribution of such a process equals to the distribution of linear

transformation of the standard Wiener process W
(a,σ)
t = σWt + at

(t ≥ 0). Because

W
(a,σ)
t = σ(Wt + ta/σ) = σW

(a/σ,1)
t ≡ σW

(a/σ)
t ,
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we can use the similarity principle [2.29]:

P
(W (a,σ))
0 (σ(−∞,b) ≤ t) = P

(W (a/σ))
0 (σ(−∞,b)(σζ) ≤ t) =

= PW (a/σ)

0 (σ(−∞,b/σ)(ζ) ≤ t),

hence,

g
(a,σ)
b (t) = g

(a/σ)
b/σ (t) =

b√
2πσ2t3

e−(b−at)2/2σ2t. [2.30]

2.2.7.1. Estimation of ruin probability

In order to use the last result for estimation of ruin probability, we

need in analytical form of distribution function of the first hitting time

for a process W (a). For given level b, this function has view:

IG (t| a, b) ≡ P
(W (a))
0 (σ(−∞,b) ≤ t) =

= 1− Φ
(
b− at√

t

)
+ e2abΦ

(
−b− at√

t

)
(t > 0), [2.31]

where Φ is the standard normal distribution function.

In fact, IG (0| a, b) = 0, and for a positive IG (∞| a, b) = 1, and

also:

∂

∂t
IG (t| a, b) = 1

2
Φ′

(
b− at√

t

)
(bt−3/2 + at−1/2)−

− 1

2
e2abΦ′

(−b− at√
t

)
(−bt−3/2 + at−1/2) =

=
1

2
√
2π

exp(−(b− at)2/2t)(bt−3/2 + at−1/2)−

− 1

2
√
2π

exp(−(b+ at)2/2t+ 2ab)(−bt−3/2 + at−1/2) =

=
1

2
√
2π

exp(−(b− at)2/2t)2bt−3/2 =
b√
2π

e−(b−at)2/2t.
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Distribution IG (t| a, b) is called to be an inverse Gaussian

distribution.

Note that, for a < 0, the function IG (t| a, b) is a defective

distribution, because IG (∞| a, b) = e2ab < 1.

In the following theorem, we represent asymptotics of ruin

probability, when the premium rate tends to 	.

THEOREM 2.16.– (diffusion asymptotics). For a family of

Cramér-Lundberg processes with parameter p ↓ 	, it is true that:

ψ(p)

(
uσ2

p− 	
,

Tσ2

(p− 	)2

)
→ IG (T | − 1, u),

where σ2 = βμ
(2)
B .

PROOF.– We have:

ψ(p)

(
uσ2

p− 	
,

Tσ2

(p− 	)2

)
= P

(p)
0

(
τ

(
− uσ2

p− 	

)
<

Tσ2

(p− 	)2

)
=

= P
(p)
0

(
inf{Rt : 0 < t < Tσ2/(p− 	)2} < −u

)
=

= P
(p)
0

(
inf

{
p− 	

σ2
Rt : 0 < t < Tσ2/(p− 	)2

}
< −u

)
=

= P
(p)
0

(
inf

{
p− 	

σ2
Rsσ2/(p−�)2 : 0 < s < T

}
< −u

)
.

According to theorem 2.15, the latter expression has a limit, which is

obtained by the change argument of operator inf by using the expression

Ws + s; it means that this limit is equal to:

P
(W (1))
0 (σ(−u,∞) < T ) = P

(W (−1))
0 (σ(−∞,u) < T ) = IG (T |−1, u).

�
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From the last theorem, a practical estimate for ruin probability is as

follows:

ψ(u, T ) ≈ IG (T (p− 	)2/σ2 | − 1, u(p− 	)/σ2), [2.32]

and also

ψ(u) ≈ IG (∞| − 1, u(p− 	)/σ2) = e−2u(p−�)/σ2. [2.33]



3

Models With the Premium
Dependent on the Capital

3.1. Definitions and examples

In this chapter, a generalization of the Cramér–Lundberg model in

the case of a non-constant premium rate, namely if the premium rate

depends on the current capital of the insurance company, is considered:

Rt = R0 +

∫ t

0
p(Rs) ds−

Nt∑
k=1

Uk, [3.1]

where Nt is the Poisson process for considering the number of claims

(requirements, suits) that have arrived up to moment t; (Un) is

independent of the (Nt) sequence of i.i.d. positive random variables

(claim sizes) executed by the insurance company; p(x) (x ∈ R) is a

measurable positive function setting dependence of the premium rate

on the current capital of the company. Such a process is defined as a

temporally homogeneous Markov process, which, however, does not

possess a homogeneity in space. This will be determined by a

consistent set of probability measures (Px), where Px(R0 = x) = 1.

These probability measures are set on the initial space of elementary

events. Such an elementary event is a sequence of pairs (tn, xn)
∞
0 ,

where t0 = 0 < t1 < t2 < . . . tn → ∞, and xn > 0. Process

trajectories are piecewise continuously increasing curves with negative

Stochastic Risk Analysis and Management, First Edition. Boris Harlamov.
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jumps. As before, the probability of ruin of the insurance company is

the main interest. These are functions ψ(u) = Pu(τ0 < ∞) and

ψ(u, T ) = Pu(τ0 < T ), where τ0(ξ) ≡ σ[0,∞)(ξ) = inf{t : ξ(t) < 0}
(ξ ∈ D), and T ≥ 0.

EXAMPLE 3.1.– Let us assume that the company changes the premium

rate at the moment its capital reaches the level v > 0. Let us denote:

p(x) =

{
p1 x ≤ v,
p2 x > v,

,

where p1 > p2. Such a policy can be called a competition reason, as it

gives them advantages over other companies in a competitive struggle.

Another possible interpretation is a payment of dividends to members

of the company when the capital of the company goes beyond a certain

level. This example will be discussed further in more detail.

EXAMPLE 3.2.– (Constant percent). In addition to the basic source of

income as premium rates, paid by clients, the company uses a constant

income without risk from the location of the capital of the company in

bank at a percentage ε > 0. In this case, it is possible to suppose

p(x) = εx.

This example will also be considered further.

3.1.1. General properties

3.1.1.1. Comparison theorems

Let us assume further that function p(x) is bounded and∫ ∞

0
p(x) dx = ∞,

provided that process Rt with probability 1 goes beyond any limited

interval, and with positive probability through any of the two boundaries

of an interval.
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Let us compare ψ(u) and ψ(v) at u > v. We have

ψ(v) = Pv(τ0 < ∞) = Pv(Rσ[0,u)
< 0) + Pv(Rσ[0,u)

= u, τ0 < ∞) =

= Pv(Rσ[0,u)
< 0) + Pv(Rσ[0,u)

= u, τ0 ◦ θσ[0,u)
< ∞) =

= Pv(Rσ[0,u)
< 0) + ψ(u)Pu(Rσ[0,u)

= u) =

= 1− Pv(Rσ[0,u)
= u) + ψ(u)Pv(Rσ[0,u)

= u),

Thus, considering inequality 0 < Pv(Rσ[0,u)
= u) < 1, we obtain

an alternative:

or (∀u > v ≥ 0) 0 < ψ(u) < ψ(v) < 1,

or (∀u ≥ 0) ψ(u) = 1.

THEOREM 3.1.– (comparison theorem). Under the set conditions it

holds:

a) if p(x) ≤ βμB for all large enough x, then ψ(u) ≡ 1;

b) if there exists ε > 0, for which p(x) ≥ βμB+ε for all large enough

x, then ψ(u) < 1 and Pu(Rt → ∞ (t → ∞)) > 0.

PROOF.–

a) For all x ≥ u and p(x) ≤ 	 ≡ βμB , we will denote

R̃t = u+ 	t−
Nt∑
k=1

Uk.

It is obvious that R̃t > Rt at all 0 < t ≤ τu and, hence, τ̃u >
τu for the corresponding moments of the first exit from [u,∞). Let us

denote (P̃x) as a set of measures of the Cramer–Lundberg process with

a constant premium rate equal to 	. Then,

Pu(τu < ∞) = Pu(inf{Rt : t > 0} < u)

≥ Pu(inf{R̃t : t > 0} < u) =
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= P̃u(inf{R̃t : t > 0} < u)

= P̃0(inf{Rt : t > 0} < 0) = ψ̃(0 = 1.

We have furthermore

ψ(u) = Pu(τ0 < ∞) = Pu(Rτu < 0, τu < ∞)

+ Pu(Rτu ∈ [0, u), τ0 < ∞).

By denoting the first term of the sum r(u) and using the identity

τ0 = τu + τ0 ◦ θτu , we have:

ψ(u) = r(u) +

∫ u

0
Pu(Rτu ∈ dx, τu < ∞, τ0 ◦ θτu < ∞) =

= r(u) +

∫ u

0
Px(τ0 < ∞)Pu(Rτu ∈ dx, τu < ∞).

We note that for x ∈ [0, u):

Px(τ0 < ∞) = Px(Rσ[0,u)
< 0) + ψ(u)Px(Rσ[0,u)

= u).

From here, ψ(u) = r(u)+

+

∫ u

0
(Px(Rσ[0,u)

< 0)+ψ(u)Px(Rσ[0,u)
= u))Pu(Rτu ∈ dx, τu < ∞).

We note that Pu(τu < ∞) is equal to:

r(u)+

∫ u

0
(Px(Rσ[0,u)

< 0)+Px(Rσ[0,u)
= u))Pu(Rτu ∈ dx, τu < ∞).

As Pu(τu < ∞) = 1, we obtain a relation:

1− ψ(u) = (1− ψ(u))p1,

where

p1 =

∫ u

0
Px(Rσ[0,u)

= u)Pu(Rτu ∈ dx, τu < ∞).
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This integral is less than 1 (at least because Px(Rσ[0,u)
= u) < 1).

From here, we obtain ψ(u) = 1 and by the property proved earlier, this

equality is true for all u ≥ 0.

b) Using the fact that Rt ≥ R̃t ≡ u+ (	+ ε)t−∑Nt
k=1 Uk up to the

moment τ̃u, we obtain τu ≥ τ̃u and

Pu(τu < ∞) ≤ Pu(τ̃u < ∞) < 1.

Pu(τ0 < ∞) = Pu(τu < ∞, τ0 ◦ θτu < ∞) ≤ Pu(τu < ∞) < 1.

Let Pu(τu < ∞) = 1−ε1, where ε1 > 0. Using relations from point

a), we obtain:

(1− ψ(u))(1− p1) = ε1 > 0.

As (1−p1) > 0, it is true that ψ(u) < 1, and on the property proved

earlier, this inequality is true for all u ≥ 0. Furthermore, for any x ≥ 0
and homogeneous process with a positive factor of safety, we have:

P̃x(Rt → ∞) = P̃x(Rt/t → p−	, τ0 = ∞) = P̃x(τ0 = ∞) > 0.

From here, the latter statement for all initial points y ≥ u is justified.

For x < u, we have:

Px(Rt → ∞) ≥ Px(Rt → ∞, Rσ[0,u)
= u) =

= Px(Rσ[0,u)+t → ∞, Rσ[0,u)
= u) =

= Ex(Rt ◦ θσ[0,u)
→ ∞; Rσ[0,u)

= u) =

= Pu(Rt → ∞)Px(Rσ[0,u)
= u) > 0. �

3.1.2. Accumulation process

In the book [ASM 00], its author presents a method of how to use

the duality between an accumulation process and the corresponding

risk process in order to evaluate ruin probability ψ(u). The
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accumulation process is constructed by the same probability measure

on the space of all sequences of pairs (tn, xn) as the risk process. The

probability measure P on this space is set by the Poisson condition of

the sequence (tn) with the known parameter β, and by the i.i.d.

condition of the sequence (xn) with the known common distribution

function B. These sequences are assumed to be mutually independent.

Keeping the previous labels, we will define the accumulation process

as a non-negative process (Vt), defined by a stochastic integral

equation:

Vt = V0 −
∫ t

0
p+(Vs) ds+

Nt∑
k=1

Uk (t ≥ 0),

where

p+(x) =

{
0 x = 0,
p(x) x > 0.

According to the definition, this process is a temporally

homogeneous Markov process. It begins with zero and remains equal

to zero until the moment of the first “inflow”. At this moment, the

stock increases instantaneously and at once begins “to be spent”. If the

interval of time to the following “inflow” is large enough, such that the

accumulated stock is completely “spent”, the process keeps a zero

value to the following “inflow”. The “inflow” moments represent a

Poisson point process.

In Figure 3.1, an accumulation process is represented in the form of a

bold dotted non-increasing line on a segment [0, T ]. Asmussen proposed

to connect some risk processes (R∗
t ) with this accumulation process. He

considered a risk process in the opposite time direction beginning from

the point T , where this process has a value u. In Figure 3.1, we have

two such processes beginning from points u1 and u2 respectively.

It is obvious that the graph of the risk process in the opposite time

direction beginning from the point T , where it has a value u1 < VT ,

is situated below the graph of the accumulation process and reaches
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an area of negative value at some point T − τ0. This point of ruin takes

place necessarily because the process Vt begins from the interval of zero

values.
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Figure 3.1. Accumulation process

Moreover, it is obvious that the graph of the process in the opposite

time direction beginning from the point T , where it has a value u2 ≥ VT ,

is not anywhere below the graph of accumulation process. Hence, it does

not reach an area of negative values on an interval [0, T ].

Clearly, the distributions of the process of risk in direct and opposite

time with respect to the measure P coincide. Thus, the formula is true:

Pu(τ0 < T ) = P0(VT > u). [3.2]

Evaluation of the distribution of VT is not easier than evaluation of

the distribution of τ0. The sense of this formula is uncovered when

T → ∞. At the suppositions made, there is a function G of limiting

distribution of the random variable VT . It is much easier to discover

than to prelimit. In a limit, we have ψ(u) = G(u). Obviously, function

G has some positive jump γ0 in zero. Furthermore, it will be

established that the distribution of positive values of an argument is set
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by some density g. Our next problem is to discover an integral equation

concerning these parameters of the risk process.

Limiting distribution is a one-dimensional stationary distribution of

a homogeneous Markov process. According to the Kolmogorov–

Chapman equation, parameters of limiting distribution satisfy the

equation:∫ ∞

y
g(x) dx = γ0Ph([y,∞) | 0) +

∫ ∞

0+
Ph([y,∞) |x)g(x) dx.

It is possible to present a transition function of this process in an

aspect:

ph([y,∞) | 0) = βhB(y) + o(h),

ph([y,∞) |x) = (1− βh)I[y,∞)(x− p(x)h) + βhB(y − x) + o(h).

From here, we obtain the right member of an equation:

γ0βhB(y)+

∫
x−p(x)h≥y

(1−βh)g(x) dx+βh

∫ ∞

0
B(y−x)g(x) dx+ o(h).

Supposing B(y − x) = 1 at x ≥ y, we obtain the equation:

(1βh)

∫ ∞

y
g(x) dx = γ0βhB(y) + (1− βh)

∫
x−p(x)h≥y

g(x) dx+

+ βh

∫ y

0
B(y − x)g(x) dx+ o(h)

or

(1− βh)

∫
y<x<y+p(x)h

g(x) dx

= γ0βhB(y) + βh

∫ y

0
B(y − x)g(x) dx+ o(h).
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Let us consider an integral in the left part of the equation. Let

functions p(x) and g(x) be continuous in some neighborhood of a

point y. Then p(x) = p(y) + ε, where ε → 0 at x → y, and, hence, at

h → 0 thanks to the boundedness of function p(x). From here, the

integration area in the first integral has an order p(y)h+ o(h). Hence,

1

h

∫
y<x<y+p(x)h

g(x) dx → p(y)g(y) (h → 0),

Thus, we obtain the equation:

p(y)g(y) = γ0βB(y) + β

∫ y

0
B(y − x)g(x) dx. [3.3]

With respect to g(x), this equation is called an integral equation of

Volterrá. Its analytical solution is known only in exceptional cases.

EXAMPLE 3.3.– Let B(x) = e−δx. We have:

g(y)p(y) = γ0βe
−δy + β

∫ y

0
e−δ(y−x)g(x) dx.

Multiplying both parts of equality on eδy, we obtain:

g(y)eδy =
γ0β

p(y)
+

β

p(y)

∫ y

0
g(x)eδx dx.

By denoting

f(y) = γ0 +

∫ y

0
g(x) eδx dx,

we see that, from an initial integral equation, the differential equation

follows:

f ′(y) =
β

p(y)
f(y), f(0) = γ0,

whose solution is:

f(y) = γ0 exp

(∫ y

0

β

p(x)
dx

)
,
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and, hence,

g(y) =
βγ0
p(y)

exp

(∫ y

0

β

p(x)
dx− δy

)
.

The probability γ0 is found from a normalization condition:

γ0 +

∫ ∞

0
g(y) dy = 1.

From this, it follows that:

γ−1
0 = 1 +

∫ ∞

0

β

p(y)
exp

(∫ y

0

β

p(x)
dx− δy

)
dy. �

Further simplifications are connected with an integration possibility

at a given function p(x).

Let us note that ω(x) =
∫ x
0 1/p(s) ds is possible to interpret as time

during which the capital will grow on value x, if there are no single

payments at the request of clients.

3.1.3. Two levels

Let us assume that the premium rate can accept two values:

p(x) =

{
p1 x ≤ v,
p2 x > v.

We will denote (Px) as the set of measures of such a process. In

addition, two processes homogeneous in space (P
(1)
x ) and (P

(2)
x ) with

respective premium rates p1 and p2 will be considered. The

probabilities of ruin connected with these measures will be denoted as

ψ(u), ψ1(u), ψ2(u). The following theorem expresses ψ(u) through

(P
(1)
x ) and (P

(2)
x ).
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THEOREM 3.2.– (theorem of two levels). Let 0 ≤ x < v ≤ y. Then,

ψ(x) = ψ(v)− q(x)(1− ψ(v)),

ψ(y) = p(y) + ψ(v)(ψ2(y − v)− r(y)),

ψ(v) =
r(v)

1− ψ2(0) + p(y)
,

where

q(x) =
ψ1(x)− ψ1(v)

1− q(x)
,

r(y) = P (2)
y (τv < ∞, Rτv < 0)

+

∫ v

0
(1− q(x))P (2)

y (τv < ∞, Rτv ∈ dx);

Thus, p(y) is a probability that the moment of reaching a negative

half-plane will be before the moment of intersection of level v from

below.

PROOF.– We have:

ψ1(x) = P (1)
x (Rσ[0,v)

< 0) + P (1)
x (Rσ[0,v)

= v, τ0 ◦ θσ[0,v)
< ∞) =

= 1− P (1)
x (Rσ[0,v)

= v) + ψ1(v)P
(1)
x (Rσ[0,v)

= v).

Let us denote P
(1)
x (Rσ[0,v)

= v) = q(x) that corresponds to the

definition of this value in the theorem condition. As measures Px and

P
(1)
x coincide up to the moment of the first exit from set [0, v) (i.e. on a

sigma-algebra Fσ[0,v)
),

ψ(x) = 1− Px(Rσ[0,v)
= v) + ψ(v)Px(Rσ[0,v)

= v) =

= 1− P (1)
x (Rσ[0,v)

= v) + ψ(v)P (1)
x (Rσ[0,v)

= v)

= 1− q(x) + ψ(v)q(x).
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Furthermore,

ψ(y) = Py(τv < ∞, Rτv < 0)

+ Py(τv < ∞, Rτv ∈ [0, v), Rτv+̇σ[0,v)
< 0)+

+ Py(τv < ∞, Rτv ∈ [0, v), Rτv+̇σ[0,v)

= v, τ0 ◦ θτv+̇σ[0,v)
< ∞).

By denoting p(y) for the sum of first two items, we have:

ψ(y) = p(y) + ψ(v)Py(τv < ∞, Rτv ∈ [0, v), Rτv+̇σ[0,v)
= v) =

= p(y) + ψ(v)(Py(τv < ∞, Rτv ∈ [0, v))−
− Py(τv < ∞, Rτv ∈ [0, v), Rτv+̇σ[0,v)

< 0)) =

= p(y) + ψ(v)(Py(τv < ∞)− Py(τv < ∞, Rτv < 0)

− Py(τv < ∞, Rτv ∈ [0, v), Rτv+̇σ[0,v)
< 0)) =

= p(y) + ψ(v)(Py(τv < ∞)− p(y)).

We note that the measure Py coincides with a measure P
(2)
y up to

the moment of the first exit from set [v,∞), from which it follows that

Py(τv < ∞) = P
(2)
y (τv < ∞), and because of homogeneity in space

of the second process, the latter expression is equal to

P
(2)
y−v(τ0 < ∞) = ψ2(y − v). The value of probability ψ(v) turns out

to be an equation solution in which the second formula is reduced at

y = v. Using representation Rτv+̇σ[0,v)
= Rσ[0,v)

◦ θτv and the Markov

property of process, we obtain the second member in representation of

p(y):

Py(τv < ∞, Rτv ∈ [0, v), Rτv+̇σ[0,v)
< 0) =

= Ey(PRτu
(Rσ[0,v)

< 0); τv < ∞, Rτv ∈ [0, v)) =

=

∫ v

0
P (1)
x (Rσ[0,v)

< 0)P (2)
y (τv < ∞, Rτv ∈ dx) =
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=

∫ v

0
(1− q(x))P (2)

y (τv < ∞, Rτv ∈ dx). �

EXAMPLE 3.4.– Let B(x) = e−δx. Then,

ψ1(u) =
β

p1δ
e−γ1u, ψ2(u) =

β

p2δ
e−γ2u,

where γi = δ − β/pi (i = 1, 2). From here, we deduce the formula

for q(x) at 0 ≤ x < v. Furthermore, at y ≥ v, thanks to the special

property of the exponential distribution with independent time of ruin

and value of the capital (debt) at the moment of ruin, we have:

P (2)
y (τv < ∞, Rτv < s) = P

(2)
y−v(τ0 < ∞, Rτ0 + v < s) =

= P
(2)
y−v(τ0 < ∞)P (−U1 < s− v) = ψ2(y − v)e−δ(v−s).

From here,

r(y) = ψ2(y − v)

(
e−δv +

∫ v

0
(1− q(x))δe−δ(v−x) dx

)
=

= ψ2(y − v)

(
1−

∫ v

0
q(x)δe−δ(v−x) dx

)
=

=
ψ2(y − v)

1− βe−γ1v/(p1δ)

(
1− βe−γ1v

p1δ

−
∫ v

0

(
1− βe−γ1x

p1δ

)
δe−δ(v−x) dx

)
=

=
ψ2(y − v)

1− βe−γ1v/(p1δ)
e−γ1v

(
1− β

p1δ

)
=

=
β

p2δ
e−γ2(y−v)−γ1v 1− β/(p1δ)

1− βe−γ1v/(p1δ)
. �
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3.1.4. Interest rate

Let us consider a model with the premium rate defined by formula

p(x) = p + εx (example 2). In this case, the current capital satisfies a

stochastic integral equation:

Rt = R0 + pt+ ε

∫ t

0
Rs ds−

Nt∑
k=1

Uk,

which can be considered as the determinate integral equation for each

sample sequence (tn, xn) and an initial point u. The random series of

pairs is denoted as (σn, Un). We will further use the same labels also for

sample sequences, stipulating the sense of a label every time it can lead

to a misunderstanding. Therefore, at points t = σk, the process Rt has

negative jumps Rσk
− Rσk−0 = Uk, and on each interval (σk, σk+1),

the sample function Rt satisfies a differential equation:

f ′ = p+ εf, f(σk) = Rσk
,

and, hence, it is given by:

Rt = Rσk
eε(t−σk) +

p

ε

(
eε(t−σk) − 1

)
.

EXAMPLE 3.5.– Let B(x) = e−δx and p(x) = p+ εx (x ≥ 0, p > 0).
According to example 3:

g(x) =
γ0β

p+ εx
exp

(∫ x

0

β

p+ εs
ds− δx

)
=

=
γ0β

p+ εx
exp

(
β

ε
log(p+ εx)− β

ε
log p− δx

)
=

γ0β

pβ/ε
(p+ εx)β/ε−1e−δx.

From here,

ψ(u) =

∫ ∞

u
g(x) dx =

γ0β

pβ/ε

∫ ∞

u
(p+ εx)β/ε−1e−δx dx.
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By substituting s = (p+ εx)δ/ε, we have:

ψ(u) =
γ0β

ε

(
ε

δp

)β/ε

epδ/εΓ

(
δ(p+ εu)

ε
,
β

ε

)
,

where Γ(x, a) =

∫ ∞

x
ta−1e−t dt (x > 0, a > 0) is an incomplete

gamma function. The parameter γ0 is determined from expression:

1

γ0
= 1 +

β

pβ/ε

∫ ∞

0
(p+ εx)β/ε−1e−δx dx ≡

≡ 1 +
β

ε

(
ε

δp

)β/ε

epδ/εΓ

(
δp

ε
,
β

ε

)
,

form which follows

ψ(u) =
Γ(δ(p/ε+ u), β/ε)

(δp/ε)β/εe−pδ/εε/β + Γ(δp/ε, β/ε)
.

�

3.1.5. Shift on space

It is interesting to compare the sample trajectory beginning from

value u > 0, with the selective trajectory that begins with zero. We will

prove the formula:

R
(u)
t = eεtu+R

(0)
t . [3.4]

Let us denote R̃
(u)
t as the expression on the right-hand side. Both

processes begin with the value u at t = 0. Both have negative jumps of

the same magnitude in the same places. In this case:

R̃
(u)
t = u

(∫ t

0
εeεs ds+ 1

)
+ pt+ ε

∫ t

0
R(0)

s ds−At =

= u+ pt+ ε

∫ t

0
(R(0)

s + eεsu) ds−At

= u+ pt+ ε

∫ t

0
R̃(0)

s ds−At,
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where At =
∑Nt

k=1 Uk. Thus, R̃
(u)
t satisfies the same integral equation,

as R
(u)
t . Hence, they are equal to each other. �

NOTE.– Furthermore, we denote R
(u)
t (u ≥ 0) as the function set on

space Ω of all admissible sequences of pairs (tn, xn) on which the

measure P is set; similarly, let us denote Rt as the sample function

from space D on which the family of measures Pu (u ≥ 0) is set. The

relation of measures follows from the obvious identity:

Pu(Rt ≥ x) = P (R
(u)
t ≥ x).

From formula [3.4], it follows that Euf(Rt) = E0f(Rt+ueεt) (ε ≥
0). In particular, at ε = 0, we come to a rule of replacement of argument

in a set of measures of space homogeneous processes. The moment of

the first exit from the given interval is transformed by replacement of

a measure for a process with the interest rate in a more difficult way.

That is, the interval with constant boundaries will be transformed to an

interval with variable boundaries to which corresponds the first exit. In

the given course, we will not introduce special labels for such Markov

moments.

3.1.6. Discounted process

Let us consider a process with an exponential multiplier:

Zt = e−εtR
(0)
t , [3.5]

that is usually interpreted as a discounting initial cost (according to the

previous note, Zt is understood as a function on Ω).

Let R̃t = R̃0 + pt − At (t ≥ 0) be the Cramér–Lundberg process

corresponding to process Rt. We will prove the formula:

Zt =

∫ t

0
e−εs dR̃(0)

s , [3.6]

that represents a stochastic integral concerning a process with locally

limited variations, such as R̃t (note that in formula [3.6], the increment



Models With the Premium Dependent on the Capital 93

dR̃
(0)
s can be substituted by dR̃

(u)
s ). Let us denote Z̃t as a right member

of this equality. At t = 0, both parts of equality are equal to zero. In

a point σk, increments of both processes are equal to −Uk. At a point

t ∈ (σk, σk+1), we have:

Z ′
t = −εe−εtR

(0)
t + e−εt(p+ εR

(0)
t ) = e−εtp,

Z̃ ′
t =

(∫ t

0
e−εs d(ps)

)′
= e−εtp,

from which the demanded equality for each sample trajectory (i.e. for

any sequence (σn, Un)) follows. �

On the basis of the proved formula, it is obvious to derive the

formulas expressing the probability of ruin in terms of the associated

Cramér–Lundberg process. We denote:

Z =

∫ ∞

0
e−εs dR̃(0)

s ,

if this integral exists in the sense of convergence P -a.s. Let H(z) =
P (Z ≤ z) be a cumulative distribution function of Z and Ĥ(α) =
EeαZ .

THEOREM 3.3.– (convergence of the discounted process). For a

considered process of risk:

Zt
a.s.→ Z,

Ĥ(α) = exp

(∫ ∞

0
κ(−αe−εt) dt

)
exp

(∫ α

0

1

εy
κ(−y) dy

)
,

where κ(α) = β(B̂(α)− 1)− pα.

PROOF.– Denote Mt = At− 	t (	 = βμB). It is obvious that (Mt) is a

martingale concerning natural filtration. From the theory of martingales,

it follows that the stochastic integral of this martingale is a martingale

too. For example:

Xt =

∫ t

0
e−εs dMs.



94 Stochastic Risk Analysis and Management

In this case:

EXt = 0, DXt =

∫ t

0
e−2εsβμ

(2)
B ds =

βμ
(2)
B

2ε
(1e−2εt).

Under the well-known theorem on the convergence of quadratically

integrable martingales [LIP 86], [HAR 06], we have:

Zt =

∫ t

0
e−εs dR̃(0)

s =

=

∫ t

0
e−εs ((p− 	)ds− dMs)

a.s−→
∫ ∞

0
e−εs ((p− 	)ds− dMs) =

=

∫ ∞

0
e−εs dR̃(0)

s = Z.

On the other hand, using the independence of increments, we have:

EeαZ = E exp

(
α

∫ ∞

0
e−εt dR̃

(0)
t

)
=

= lim
h→0

E exp

(
α

∞∑
n=1

e−εnh(R̃
(0)
nh − R̃

(0)
(n−1)h)

)
=

= lim
h→0

∞∏
n=1

E0 exp(αe
−εnhR̃

(0)
h ) = lim

h→0

∞∏
n=1

exp(hκ(−αe−εnh)) =

= lim
h→0

exp

( ∞∑
n=1

hκ(−αe−εnh)

)
= exp

(∫ ∞

0
κ(−αe−εt) dt

)
.

By applying replacement y = αe−εt, we obtain the second

representation of Ĥ(α). �

In the following theorem, the probability of ruin is presented through

a conditional average.
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THEOREM 3.4.– (representation of probability of ruin). For a

considered process:

ψ(u) =
H(−u)

Eu(H(−Rτ0) | τ0 < ∞)
.

PROOF.– From formulas [3.5] and [3.6], it follows that

Zt + u = e−εtR
(u)
t . This formula remains true at replacement t on any

finite function τ(ω) (ω ∈ Ω). From here,

Z + u = (Zτ + u) + (Z − Zτ ) = e−ετR(u)
τ +

∫ ∞

τ
e−εt dR̃

(0)
t =

= e−ετ

(
R(u)

τ +

∫ ∞

τ
e−ε(t−τ) dR̃

(0)
t

)
=

= e−ετ

(
R(u)

τ +

∫ ∞

τ
e−ε(t−τ) dR̃

(u)
t

)
.

It is possible to write the latter expression as a function of a set of

the trajectories which go out at point u, and for which it makes sense to

consider τ ≡ τ0. Therefore,

H(−u) = P (Z + u < 0)

= Pu

(
e−ετ0

(
Rτ0 +

∫ ∞

τ0

e−ε(t−τ0) dR̃t

)
< 0

)
=

= Pu

(
Rτ0 +

∫ ∞

τ0

e−ε(t−τ0) dR̃t < 0

)
.

Let us note that Z depends only on the increments of process Rt and

consequently has the same value at different initial points of a trajectory.

From here,

Pu(τ0 = ∞, u+ Z < 0) = Pu((∀t)Rt ≥ 0, u+ Z < 0) =

= P ((∀t)R(u)
t ≥ 0, u+ Z < 0)

= P ((∀t) eεtu+R
(0)
t ≥ 0, u+ Z < 0) =

= P ((∀t)u+ Zt ≥ 0, u+ Z < 0) = 0.
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Hence,

H(−u) = Pu

(
Rτ0 +

∫ ∞

τ0

e−ε(t−τ0) dR̃t < 0, τ0 < ∞
)
.

Changing the variables t1 = t−τ0 and using representation Rτ+t1 =
Rt1 ◦ θτ0 , in this expression, it is possible to present an integral in an

aspect:∫ ∞

0
e−εt1 dR̃t1 ◦ θτ0 = Z ◦ θτ0 .

Thus, using the Markov property, we obtain:

H(−u) =

∫ 0

−∞
Px(x+ Z < 0)Pu(Rτ0 ∈ dx, τ0 < ∞),

and as Px(x+ Z < 0) = P (x+ Z < 0) ≡ H(−x),

H(−u) =

∫ 0

−∞
H(−x)Pu(Rτ0 ∈ dx, τ0 < ∞) =

= Eu(H(−Rτ0), τ0 < ∞) = ψ(u)Eu(H(−Rτ0) | τ0 < ∞).

�
EXAMPLE 3.6.– Let B(x) = e−δx and p(x) = p+ εx (x ≥ 0, p > 0).
We use theorem 3.4 for the determination of the probability of ruin. We

have:

κ(c) = βc/(δ − c)− pc,

Ĥ(α) = exp

(∫ α

0

1

εx
κ(−x) dx

)
= exp

(∫ α

0

(
− β/ε

δ + x
+

p

ε

)
dx

)
=

= exp

(
pα

ε
− β

ε
log(δ + α) +

β

ε
log δ

)
= epα/ε

(
δ

δ + α

)β/ε

.
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From the latter expression, it follows that Z is distributed like

p/ε −X , where the random variable X has a gamma distribution with

parameters β/ε (forms) and δ (scale), whence, in particular, it follows

that Z ≤ p/ε. Hence,

H(−u) = P (p/ε−X ≤ −u) = P (X ≥ p/ε+ u) =

=

∫ ∞

p/ε+u

δβ/ε

Γ(β/ε)
xβ/ε−1e−δx dx =

Γ(δ(p/ε+ u), β/ε)

Γ(β/ε)
.

Using independence Rτ0 and τ0 and that −Rτ0 and U1 have the same

exponential distribution, we obtain:

Eu(H(−Rτ0) | τ0 < ∞) = E(H(U1)) =

∫ ∞

0
P (Z ≤ x)δe−δx dx =

=

∫ ∞

0
P (X ≥ p/ε− x)δe−δx dx =

= −e−δxP (X ≥ p/ε− x) |∞0 +

∫ ∞

0
e−δx(P (X ≥ p/ε− x))′x dx.

The derivative of the integrant is equal to zero at x ≥ p/ε. By

denoting f as the density of a gamma distribution, the estimated

magnitude becomes equal to:

P (X ≥ p/ε) +

∫ p/ε

0
e−δxf(p/ε− x) dx =

=
Γ(δp/ε, β/ε)

Γ(β/ε)
+

∫ p/ε

0
e−δx δβ/ε

Γ(β/ε)
(p/ε− x)β/ε−1e−δ(p/ε−x) dx =

=
Γ(δp/ε, β/ε)

Γ(β/ε)
+

δβ/ε

Γ(β/ε)
e−δp/ε

∫ p/ε

0
(p/ε− x)β/ε−1 dx =

=
Γ(δp/ε, β/ε)

Γ(β/ε)
+

δβ/ε

Γ(β/ε)
e−δp/ε

∫ p/ε

0
xβ/ε−1 dx =

=
Γ(δp/ε, β/ε)

Γ(β/ε)
+

δβ/ε

Γ(β/ε)
e−δp/ε (p/ε)

β/ε

β/ε
.
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As a result, we obtain:

ψ(u) =
Γ(δ(p/ε+ u), β/ε)

Γ(δp/ε, β/ε) + e−δp/ε(pδ/ε)β/εε/β

which coincides with the expression found in example 5. �

3.1.7. Local factor of Lundberg

We consider the local factor of Lundberg as a positive solution of an

equation:

β(B̂(α)− 1)− p(x)α = 0.

Let us denote:

J(u) =

∫ u

0
γ(x) dx,

where γ(x) is a local factor of Lundberg at a preset value p(x) (x ≥ 0).
Let us consider some problems of the risk theory with the premium rate

depending on the current capital in which function J(u) is used for an

estimation of the probability of ruin.

EXAMPLE 3.7.– Again, we will consider B(x) = e−δx. In this case,
γ(x) = δ − β/p(x) and J(u) = δu − βω(u), where
ω(u) =

∫ u
0 p(x)−1dx. We will assume that J(∞) = ∞. Then, from

the outcomes of example 3.3, it follows that:

1

γ0

∫ ∞

u

g(x) dx =

∫ ∞

u

β

p(x)
exp

(
β

∫ x

0

p(s)−1ds− δx

)
dx =

=

∫ ∞

u

(
exp

(
β

∫ x

0

p(s)−1ds

))′
e−δxdx =

= exp

⎛⎝β

x∫
0

p(s)−1ds− δx

⎞⎠∣∣∣∣∣∣
∞

u

+ δ

∞∫
u

exp

⎛⎝β

x∫
0

p(s)−1ds− δx

⎞⎠ dx =
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= − exp

(
β

∫ u

0

p(s)−1ds− δx

)
+ δ

∫ ∞

u

exp

(
β

∫ x

0

p(s)−1ds− δx

)
dx =

= −e−J(u) + δ

∫ ∞

u

e−J(x)dx,

and also

1

γ0
= 1+

∫ ∞

0

β

p(x)
exp

(
β

∫ x

0
p(s)−1ds− δx

)
dx = δ

∫ ∞

0
e−J(x)dx.

Hence,

ψ(u) =
−e−J(u) + δ

∫∞
u e−J(x)dx

δ
∫∞
0 e−J(x)dx

=

= e−J(u)−1 + δ
∫∞
0 exp

(− ∫ x
0 γ(u+ s) ds

)
dx

δ
∫∞
0 e−J(x)dx

. �

3.1.7.1. Generalization of Lundberg’s inequality and Cramér’s
theorem

THEOREM 3.5.– (generalization of Lundberg’s inequality). Let us

assume that p(x) is a non-decreasing positive function of x. Then,

ψ(u) ≤ e−J(u). [3.7]

PROOF.– Denoting γ1(u) as a positive solution of the next equation with

respect to α:

E exp(−α(R(u)
σ1

− u)) = 1 (α > 0).

LEMMA 3.1.– (comparison of local factors). If p(x) is a non-decreasing

function of x, then:

a) γ(x) and γ1(x) are non-decreasing functions of x;

b) γ(x) ≤ γ1(x).
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PROOF OF LEMMA.–

a) Function γ(x) does not decrease because values of this function

are abscissas of cross points of the non-decreasing convex (downwards)

function β(B̂(α) − 1) and a ray p(x)α, going out of one point. For

analysis of function γ1(x), we will note, at first, that, up to the moment

of the first jump (a point σ1), it is true that R
(u)
t ≤ R

(v)
t as 0 ≤ u < v,

which follows from a solution uniqueness theorem for the differential

equation f ′ = p(f). Furthermore, both functions fu(t) = R
(u)
t − u

and fv(t) = R
(v)
t − v at t = 0 are equal to zero, and, at any t > 0

on the given segment, f ′
u(t) ≤ f ′

v(t). From here, fu(t) ≤ fv(t) on this

segment. Hence,

E exp(−α(R(u)
σ1

− u)) ≥ E exp(−α(R(v)
σ1

− v)) (α ≤ γ1(u)),

from which it follows that γ1(v) ≥ γ1(u) because the second derivative

with respect to α is positive.

b) As p(x) does not decrease, R
(u)
t − u ≥ p(u)t (0 ≤ t < σ1). This

is enough to compare initial points and derivatives of these functions.

From here,

1 = E exp(−γ1(u)(R
(u)
σ1

− u))

= E exp(−γ1(u)(R
(u)
σ1−0 − U1 − u)) ≤

≤ E exp(−γ1(u)(p(u)σ1 − U1)) =
β

β + γ1(u)p(u)
B̂(γ1(u)),

that is:

β(B̂(γ1(u))− 1)− γ1(u)p(u) ≥ 0,

from which it follows that γ1(u) ≥ γ(u). �

Prolongation of the proof of the theorem. Let

ψn(u) = Pu(τ0 ≤ σn).

Let us prove on an induction that for any n ≥ 0:

ψn(u) ≤ exp(−
∫ u

0
γ1(x) dx).
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It is true for n = 0. Let it be true for n. We denote:

Fu(x) = P (u−R(u)
σ1

≤ x).

We have:

ψn+1(u) = Pu(Rσ1 < 0) + Pu(Rσ1 ≥ 0, τ0 ≤ σn+1) =

= Pu(Rσ1 − u < −u) + Pu(Rσ1 − u ≥ −u, τ0 ◦ θσ1 ≤ σn ◦ θσ1) =

= Pu(u−Rσ1 > u) + Eu(PU−(u−Rσ1 )
(τ0 ≤ σn); u−Rσ1 ≤ u) =

= F u(u) +

∫ u

−∞
ψn(u− x) dFu(x) ≤

≤
∫ ∞

u
dFu(x) +

∫ u

−∞
e−

∫ u−x
0 γ1(s) ds dFu(x) =

= e−
∫ u
0 γ1(s) ds

(∫ ∞

u
e
∫ u
0 γ1(s) dsdFu(x) +

∫ u

−∞
e
∫ u
u−x γ1(s) ds dFu(x)

)
.

We note that in the first integral:∫ u

0
γ1(s) ds ≤ γ1(u)u ≤ γ1(u)x,

and in the second integral:∫ u

u−x
γ1(s) ds ≤ γ1(u).

From here,

ψn+1(u) ≤ e−
∫ u
0 γ1(s) ds

∫ ∞

−∞
eγ1(u)x dFu(x) =

= e−
∫ u
0 γ1(s) dsEeγ1(u)(u−R

(u)
σ1

) = e−
∫ u
0 γ1(s) ds,

and, as (∀x) γ(x) ≤ γ1(x), inequality [3.7] is proved. �

The following theorem shows that the boundary of probability of

ruin obtained from the previous theorem, can be reached by a process
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with a non-increasing premium rate with both sufficiently big

frequency streams of requirements and sufficiently small values of

requirements themselves. Let (P
(ε)
x ) be a set of measures of risk

process with parameters βε ≡ β/ε (intensity of a Poisson stream of

requirements), Bε(x) ≡ B(x/ε) (a cumulative distribution function of

a required value) and p(x) be a non-decreasing function which is a

premium rate of the risk process, dependent on the current capital.

Other functions of the process with a given set of measures will also be

denoted with the index ε.

THEOREM 3.6.– (ruin at the big frequency of requirements). The

probability of ruin of a process with measures (P
(ε)
x ) satisfies a

condition:

lim
ε↓0

ε logψε(u) = −J(u).

PROOF.– We have B̂ε(α) = B̂(αε). Furthermore,

0 = βε(B̂ε(γε(x))− 1)− γε(x)p(x)

= β(B̂(εγε(x))− 1)− εγε(x)p(x) =

= β(B̂(γ(x))− 1)− γ(x)p(x).

From here, εγε(x) = γ(x) and Jε(x) = J(x)/ε. Based on the

previous theorem, it follows that:

ψε(u) ≤ e−J(x)/ε,

Thus,

lim inf
ε↓0

(−ε logψε(u)) ≥ J(u).

It remains to prove that the upper bound of the considered function

is no longer J(u). We have:

ψ(u) = Pu(τ0 < ∞) ≥ Pu(Rσ[u−r,u+r)
< u− r, τ0 < ∞) ≥

≥
∫ u−r

−∞
ψ(x)Pu(Rσ[u−r,u+r)

∈ dx)

≥ ψ(u− r)Pu(Rσ[u−r,u+r)
< u− r).
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From here, at r = u/n (n ≥ 2) and uk = ku/n, we obtain:

ψ(u) ≥
n∏

k=1

Puk
(Rσ[uk−r,uk+r)

< uk − r).

Furthermore, having designated mk = p(uk + r) and R̃
(uk)
t,k a

trajectory of the Cramér–Lundberg process with an initial point uk and

parameters β, B, mk (premium rate), we have R̃
(uk)
t,k ≥ R

(uk)
t , at

t ≤ σ[uk−r,uk+r) concerning a measure P , from which it follows that:

Puk
(Rσ[uk−r,uk+r)

< uk − r) = P (R(uk)
σ[uk−r,uk+r)

< uk − r) ≥

≥ P (R̃
(uk)
σ[uk−r,uk+r),k

< uk − r) = P̃ (k)
uk

(Rσ[uk−r,uk+r)
< uk − r),

where (P̃
(k)
x ) is a set of measures of the Cramér–Lundberg process

with parameters β, B, mk. Hence, using a homogeneity in the space of

Cramér–Lundberg processes, we obtain:

ψ(u) ≥
n∏

k=1

P̃ (k)
uk

(Rσ[uk−r,uk+r)
< uk−r) =

n∏
k=1

P̃ (k)
r (Rσ[−0,2r)

< 0).

Having designated (P̃
(k,ε)
x ) as a set of measures of a Cramér–

Lundberg process with parameters βε, Bε, mk, we obtain a similar

formula:

ψε(u) ≥
n∏

k=1

P̃ (k,ε)
r (Rσ[0,2r)

< 0).

On the other hand, having designated ψ̃k,ε(u) as the corresponding

probability of ruin, we have:

ψ̃k,ε(r) = P̃ (k,ε)
r (τ0 < ∞) =

= P̃ (k,ε)
r (Rσ[0,2r)

< 0) + P̃ (k,ε)
r (Rσ[0,2r)

= 2r, τ0 < ∞) =

= P̃ (k,ε)
r (Rσ[0,2r)

< 0) + ψ̃k,ε(2r)P̃
(k,ε)
r (Rσ[0,2r)

= 2r) ≤
≤ P̃ (k,ε)

r (Rσ[0,2r)
< 0) + ψ̃k,ε(2r).
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Thus,

P̃ (k,ε)
r (Rσ[0,2r)

< 0) ≥ ψ̃k,ε(r)− ψ̃k,ε(2r).

It should be noted that replacement of the measure in the initial

probabilistic space which determines the passage from parameters β,

B to parameters βε, Bε, corresponds to the time change t 
→ t/ε in the

Poisson process and scale change Uk 
→ Ukε in the sequence of

independent variables, and consequently:

ψ̃k,ε(u) = P̃ (k,ε)
u ((∃t ≥ 0)Rt < 0) =

= P (ε)

(
(∃t ≥ 0)u+mkt−

Nt∑
i=1

Ui < 0

)
=

= P

⎛⎝(∃t ≥ 0)u+ (mkε)(t/ε)−
N(t/ε)∑
i=1

εUi < 0

⎞⎠ =

= P

(
(∃t ≥ 0)u+mkεt−

Nt∑
i=1

εUi < 0

)
=

= P

(
(∃t ≥ 0)u/ε+mkt−

Nt∑
i=1

Ui < 0

)
= ψ̃k(u/ε).

According to Cramér’s theorem:

ψ̃k(u/ε) ∼ Cke
−γku/ε (ε → 0),

where γk corresponds to mk, which is equal to γ(uk + r). From here,

ψ̃k,ε(r)− ψ̃k,ε(2r) ∼ Cke
−γkr/ε (ε → 0),

and, hence,

− logψε(u) ≤ −
n∑

k=1

log(ψ̃k,ε(r)− ψ̃k,ε(2r)) ∼

∼
n∑

k=1

γk r/ε−
n∑

k=1

logCk.
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From here, it follows that:

lim sup
ε↓0

(−ε logψε(u)) ≤
n∑

k=1

γ((k + 1)u/n)u/n.

Directing n to infinity and using a monotonicity of γ(x), we obtain:

lim sup
ε↓0

(−ε logψε(u)) ≤
∫ u

0
γ(x) dx ≡ J(u). �



4

Heavy Tails

4.1. Problem of heavy tails

Among the general stream of requirements on compensation of

damage resulting from an insured event, there exist rare, but very big

requirements that result from force-major circumstances, such as

earthquakes, tsunamis, hurricanes (typhoons, cyclones, storms),

flooding, tornadoes, fires, acts of terrorism, revolts, wars and technical

catastrophes. These cases sharply change the statistical picture made

under simple requirements. Such modifications call into question the

basic premise of the theory of Cramér-Lundberg; that the magnitude of

the requirement as the random variable belongs to the so-called class

of Cramér (the supposition about generating function existence).

Therefore, there is a necessity to develop a section of the risk theory

without this supposition. The risk theory in the presence of heavy tails

of requirement magnitude distributions is such a theory.

4.1.1. Tail of distribution

A tail of distribution P (X ∈ dx) of a positive random variable X
was fixed to the function F (x) = P (X > x). The tail is called heavy if

EeαX = ∞ for any α > 0. An example of a distribution with a heavy

tail is the log-normal distribution, which is the distribution of the

random variable X = eZ , where Z is a standard normal variable. Other

popular distributions with heavy tails are Pareto, Weibool and

Stochastic Risk Analysis and Management, First Edition. Boris Harlamov.
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log-gamma distributions, each of which will be dealt with explicitly in

frames of two basic classes of distributions with heavy tails:

subexponential and regularly varying.

Log-normal distribution:

Let Y = eX , where X ∈ N(a, σ2). We have:

FY (x) ≡ P (Y ≤ x) = P (X ≤ log x),

fY (x) = F ′
Y (x) = fX(log x)/x

=
1

xσ
√
2π

exp(−(log x− a)2/2σ2),

and for any positive α, it holds that:

EeαY =

∫ ∞

0

1

yσ
√
2π

exp

(
αy − (log y − a)2

2σ2

)
dy ≥

≥
∫ ∞

0

1

yσ
√
2π

exp(αy) dy = ∞.

Log-gamma distribution:

It is a distribution of the random variable Y = eX , where

X ∈ Gam(a, δ) (a gamma distribution with the form parameter a and

the scale parameter δ). The density of this distribution is given by:

fX(x) =
δ

Γ(a)
(ax)a−1e−δx (a, δ > 0).

Thus,

EeαY =

∫ ∞

0
eαy

δ

Γ(a)
(ay)a−1e−δy dy = ∞

at any α > 0.
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4.1.2. Subexponential distribution

4.1.2.1. Maximum and the sum

Let positive random variables X1, X2, . . . , Xn be independent and

have cumulative distribution functions B1, . . . , Bn respectively. Then,

P (max{X1, . . . Xn} > x) = P

(
n⋃

k=1

{Xk > x}
)

=

=
n∑

k=1

Bk(x)
k−1∏
i=1

Bi(x) =
n∑

k=1

Bk(x)(1 + o(1)) (x → ∞).

In addition,

P (max{X1, . . . Xn} > x) ≤ P

(
n∑

k=1

Xk > x

)
≡ B1 ∗ · · · ∗Bn(x).

From here, we have:

lim inf
x→∞

B1 ∗ · · · ∗Bn(x)∑n
k=1Bk(x)

≥ 1. [4.1]

Let all Bi be identical and equal to B. Then,

P (max{X1, . . . Xn} > x) = nB(x)(1 + o(1)) (x → ∞).

P (max{X1, . . . Xn} > x) ≤ B(n)(x),

where B(n) is the n-fold convolution of a cumulative distribution

function B. From here, we have:

lim
x→∞

P (max{X1, . . . Xn} > x)

B(x)
= n,

lim inf
x→∞

B(n)(x)

B(x)
≥ n.
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DEFINITION 4.1.– The distribution P of a positive random variable X
is called a subexponential distribution if for any n ≥ 2,

B(n)(x)

B(x)
→ n (x → ∞).

Furthermore, the adjective “subexponential” will also be used in

relation to the corresponding cumulative distribution function and to

the random variable. We will denote S as the class of subexponential

distributions on (0,∞).

DEFINITION 4.2.– The distribution tail B is said to be regularly varying

(at infinity) with an index α > 0 if

B(x) =
L(x)

xα
(x → ∞),

where L is a slowly varying function (by Karamata), i.e. for any t > 0,

L(xt)

L(x)
→ 1 (x → ∞).

Let us denote RVα as the class of all regularly varying functions with

an index α; thus, RV0 is the class of all the functions slowly varying at

infinity.

An example of a slowly varying function is any function having a

non-zero limit at infinity, and also log x, any finite degree of a logarithm

and any finite iteration of a logarithm (i.e. log(n)(x), where log(1)(x) =
log(x), log(n+1)(x) = log(log(n)(x)) for n ≥ 1 and at x for which this

operation is determined).

EXAMPLE 4.1.– Pareto distribution

It is a distribution with a tail B(x) = (c/(c + x))a (c > 0, a > 0).
A tail of this distribution is a regularly varying function with an index a
and with a slowly varying function L(x) = (cx/(c+ x))a → ca.
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LEMMA 4.1.– If B1, B2 ∈ RVα, then B1 ∗B2 ∈ RVα and

B1 ∗B2(x)

B1(x) +B2(x)
→ 1 (x → ∞),

where B1 ∗B2 is a convolution of these functions.

PROOF.– Let X1 and X2 be the positive random variables with

regularly varying tails B1, B2 with the same index α. If δ ∈ (0, 1/2)
and X1 + X2 > x, then either the two magnitudes are greater than δx
or at least one of the magnitudes is greater than (1 − δ)x (Figure 4.1).

It means that:

P (X1+X2 > x) ≤ B1((1−δ)x)+B2((1−δ)x)+B1(δx)B1(δx) =

= (L1((1− δ)x) + L2((1− δ)x))(1 + o(1))/((1− δ)x)α ∼
∼ (L1(x) + L2(x))(1 + o(1))/((1− δ)x)α (x → ∞).
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Figure 4.1. Graphical representation of theorem 4.1

From here and from an inequality (4.1), we obtain a comparison:

1 ≤ lim inf
x→∞

P (X1 +X2 > x)

B1(x) +B2(x)
≤ lim sup

x→∞
P (X1 +X2 > x)

B1(x) +B2(x)
≤ (1−δ)−α.
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Supposing δ → 0, we obtain:

lim
x→∞

P (X1 +X2 > x)

B1(x) +B2(x)
= 1.

It is obvious that the sum of slowly varying functions is a slowly

varying function too. From this, we can see that B1 ∗B2 is a regularly

varying function with an index α, and

B1 ∗B2(x) ∼ B1(x) +B2(x) (x → ∞). �

THEOREM 4.1.– (on a regularly varying tail). If the cumulative

distribution function B has a regularly varying tail with an index

α > 0, then B ∈ S .

PROOF.– Using lemma 4.1 and a mathematical induction, we obtain for

any n ≥ 2,

B(n)(x) ∼ nB(x) (x → ∞),

thus it follows that B ∈ S . �

In the following theorem, the tail asymptotics are estimated.

THEOREM 4.2.– (difference tail).

If B(2)(x)/B(x) → 2, then for any y0 > 0,

B(x− y)

B(x)
→ 1 (x → ∞)

uniformly on y ∈ [0, y0].

PROOF.– It is given that:

B(2)(x)

B(x)
= 1+

B(x)−B(2)(x)

B(x)
= 1+B(x)−1

∫ x

0
(1−B(x−s)) dB(s) =
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= 1+B(x)−1

∫ y

0
B(x−s) dB(s)+B(x)−1

∫ x

y
B(x−s) dB(s) ≥

≥ 1 +B(y) +
B(x− y)

B(x)
(B(x)−B(y)).

At a large enough value of x, B(x)−B(y) > 0. From here, we have:

1 ≤ B(x− y)

B(x)
≤

(
B(2)(x)

B(x)
− 1−B(y)

)
(B(x)−B(y))−1.

The right-hand side member of this inequality tends to 1 as x → ∞.

From this, it follows that there is a limit to this ratio which is equal to 1.

In addition, for any y ∈ (0, y0),

B(x− y)/B(x)− 1 ≤ B(x− y0)/B(x)− 1,

a uniform convergence at y results from this interval. �

THEOREM 4.3.– (convolution tail). If B(2)(x)/B(x) → 2 as x → ∞,

then B ∈ S .

PROOF.– Let B(n−1)(x)/B(x) → n − 1 as x → ∞ for some n > 2.

Then,

B(n)(x)

B(x)
= 1 +

∫ x

0

B(n−1)(x− s)

B(x)
dB(s) =

= 1 +

∫ x−y

0

B(n−1)(x− s)

B(x− s)

B(x− s)

B(x)
dB(s)+

+

∫ x

x−y

B(n−1)(x− s)

B(x− s)

B(x− s)

B(x)
dB(s).

Let us denote J1(x, y), J2(x, y) as the first and second integrals

respectively. We have in the first integral y ≤ x − s ≤ x and,

consequently,

inf
s>y

B(n−1)(s)

B(s)

∫ x−y

0

B(x− s)

B(x)
dB(s) ≤ J1(x, y) ≤
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≤ sup
s>y

B(n−1)(s)

B(s)

∫ x−y

0

B(x− s)

B(x)
dB(s).

Thus,∫ x−y

0

B(x− s)

B(x)
dB(s) =

B(x)−B(2)(x)

B(x)
−
∫ x

x−y

B(x− s)

B(x)
dB(s) → 1,

as according to theorem 4.2 at any y > 0,∫ x

x−y

B(x− s)

B(x)
dB(s) ≤ (B(x)−B(x− y))B(x− y)

B(x)
→ 0 (x → ∞).

From here, it follows that:

inf
s>y

B(n−1)(s)

B(s)
≤ lim inf

x→∞ J1(x, y) ≤ lim sup
x→∞

J1(x, y) ≤ sup
s>y

B(n−1)(s)

B(s)
.

Also, the second integral at any y > 0 is given by:

J2(x, y) ≤ sup
s≥0

B(n−1)(s)

B(s)

∫ x

x−y

B(x− s)

B(x)
dB(s) → 0 (x → ∞).

If we choose a high enough value of y, we are convinced that the

limit at x → ∞ of the ratio B(n)(x)/B(x) differs from n on any

ε > 0. �

THEOREM 4.4.– (subexponential decrease of a tail).

If B ∈ S , then eεxB(x) → ∞ (x → ∞) and B̂(ε) = ∞ at any

ε > 0, i.e. the distribution has the heavy tail.

PROOF.– From the theorem 4.2, it follows that for any δ ∈ (0, ε), there

exists n0 such that at all n ≥ n0, it is true that B(n)/B(n+ 1) ≤ eδ.

From here, it follows that B(n+ 1) ≥ e−δB(n) and for any m ≥ 1,

B(n+m) ≥ e−δmB(n).
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From this, it follows that for some c > 0, B(x) ≥ ce−δx, and, hence,

eεxB(x) → ∞ (x → ∞). From here, we have:∫ ∞

0
eεs dB(s) ≥

∫ ∞

x
eεs dB(s) ≥ eεxB(x) → ∞ (x → ∞).

�

The following theorem characterizes a class of subexponential

distributions by properties of “hazard rate”, i.e. a conditional

distribution density function of the claim value λ(x) = b(x)/B(x)
concerning a condition that the magnitude of the claim exceeds the

given level (here b(x) = B′(x)).

THEOREM 4.5.– (theorem of Pitman). Let B have a derivative b, and

suppose that the hazard rate λ(x) strictly decreases as x → ∞ since

some x0 ≥ 0 and∫ ∞

0
exλ(x)b(x) dx < ∞.

Then B ∈ S .

PROOF.– According to theorem 4.3, it is enough to prove that the ratio

B(2)(x)/B(x) tends to 2 as x → ∞. Without loss of generality, it is

possible to consider that λ(x) does not increase from zero. We have:

B(2)(x)

B(x)
− 1 =

∫ x

0

B(x− s)

B(x)
dB(s) =

=

∫ x

0
eΛ(x)−Λ(x−s)−Λ(s)λ(s) ds,

where Λ(x) =
∫ x
0 λ(s) ds. From here, we see that the integral is equal

to:∫ x/2

0
eΛ(x)−Λ(x−s)−Λ(s) λ(s) ds +

∫ x

x/2
eΛ(x)−Λ(x−s)−Λ(s)λ(s) ds =

=

∫ x/2

0
eΛ(x)−Λ(x−s)−Λ(s)λ(s) ds+

∫ x/2

0
eΛ(x)−Λ(x−z)−Λ(z)λ(x−z) dz,
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where the replacement x−s = z is used. At s < x/2 in the first integral,

Λ(x)− Λ(x− s) =

∫ x

x−s
λ(y) dy ≤ λ(x− s) · s ≤ λ(s) · s.

From here, it follows that:∫ x/2

0
eΛ(x)−Λ(x−s)−Λ(s) λ(s) ds ≤

∫ ∞

0
eλ(s)s b(s) ds < ∞.

Hence, in the first integral it is possible to pass to a limit of the

integrand as x → ∞. We obtain:∫ ∞

0
I[0,x/2)(s)e

Λ(x)−Λ(x−s)−Λ(s)λ(s) ds → 1,

because for any s > 0, the limit of the integrand is equal to b(s). At

z < x/2 in the second integral, λ(x−z) ≤ λ(z) and Λ(x)−Λ(x−z) ≤
λ(x− z) · z ≤ λ(z) · z. From here, it follows that:∫ x/2

0
eΛ(x)−Λ(x−z)−Λ(z)λ(x− z) dz ≤

∫ ∞

0
eλ(x)xb(x) dx < ∞.

Passing to a limit of the integrand as x → ∞, we see that the second

integral tends to zero. From here, it follows that B(2)(x)/B(x) → 2. �

EXAMPLE 4.2.– Weibool distribution

Let us consider the Weibool distribution. It is a distribution with a

tail:

B(x) = e−αxβ
,

where α, β > 0. For this distribution, the hazard rate is equal to:

λ(x) ≡ b(x)/B(x) = αβxβ−1,

where b(x) = −(B(x))′. We have:∫ ∞

0
exλ(x)b(x) dx =

∫ ∞

0
eαβx

β
αβxβ−1e−αxβ

dx =
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=

∫ ∞

0
eα(β−1)xβ

αβxβ−1 dx,

which is equal to a finite value at β < 1. In this case, according to the

theorem of Pitman, this distribution is subexponential and, hence, it has

a heavy tail according to theorem 4.4.

4.1.3. Cramér-Lundberg process

4.1.3.1. Theory of the process
LEMMA 4.2.– (geometrical decrease of the ratio). If B ∈ S , then for

any ε > 0, there exists K ≡ Kε such that for any n ≥ 2 and x > 0,

B(n)(x)

B(x)
≤ K(1 + ε)n.

PROOF.– For any given ε > 0, there exists T > 0 such that at any

x ≥ T ,

B(x)−B(2)(x)

B(x)
< 1 + ε.

From here, it follows that:

αn ≡ sup
x≥0

B(n)(x)

B(x)
= sup

x≥0

(
1 +

∫ x

0

B(n−1)(x− s)

B(x)
dB(s)

)
≤

≤ 1 + sup
x<T

∫ x

0

B(n−1)(x− s)

B(x)
dB(s)+

+ sup
x≥T

∫ x

0

B(n−1)(x− s)

B(x− s)

B(x− s)

B(x)
dB(s) ≤

≤ 1 + (B(T ))−1 + αn−1 sup
x≥T

∫ x

0

B(x− s)

B(x)
dB(s) ≤

≤ 1 + (B(T ))−1 + αn−1(1 + ε) ≤

≤ (1 + (B(T ))−1)
n−2∑
k=0

(1 + ε)k + α1(1 + ε)n−1 ≤ K(1 + ε)n,
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where α1 = 1 and K = (1 + (B(T ))−1)/ε. �

LEMMA 4.3.– (convolution of a random number of distributions). Let

Y1, Y2, . . . be the i.i.d. random variables with the common cumulative

distribution function G ∈ S , and let Z be a non-negative integer random

variable independent of (Yn) such that EsZ < ∞ for some s > 1. Then,

P (Y1 + · · ·+ YZ > x)

G(x)
→ EZ (x → ∞).

PROOF.– According to lemma 4.2 for any s > 1, there exists K such

that:

G(n)(x)

G(x)
≤ Ksn

for any x > 0. From here, it follows that:

P (Y1 + · · ·+ YZ > x)

G(x)
=

∞∑
n=0

P (Z = n)
G(n)(x)

G(x)
≤

≤ K
∞∑
n=0

P (Z = n)sn ≡ KEsZ < ∞.

Hence, it is possible to pass to a limit of the summand:

P (Y1 + · · ·+ YZ > x)

G(x)
→

∞∑
n=0

P (Z = n) · n = EZ.

�

In the following theorem, notations and some outcomes presented in

Chapter 2 are used. First of all, it is a formula of Pollaczek-Khinchin:

ψ(u) = (1− 
/p)
∞∑
k=1

(
/p)kB
(k)
0 (u),

where 
 = βμB , B0(x) = μ−1
B

∫ x
0 B(s) ds.
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THEOREM 4.6.– (probability of ruin).

If B0 ∈ S , then

ψ(u) ∼ 


p− 

B0(u) (u → ∞).

PROOF.– Derivation of the Pollaczek-Khinchin formula is based on the

representation of the ladder height process in an aspect:

M = Y1 + · · ·+ YZ

where Z is the random number of steps of a ladder. It has a geometrical

distribution with parameter 
 /p, so:

P (Z = k) = (
 /p)k(1− 
 /p) (k ≥ 0).

The conditional cumulative distribution function of the kth step, if it

exists, is found to be B0. By lemma 4.3, it follows that:

ψ(u) = P (Y1 + · · ·+ YZ > u) ∼ B0(u)EZ (u → ∞).

Thus,

EZ = (1−
 /p)

∞∑
k=1

k(
 /p)k = (1−
 /p)
 /p

( ∞∑
k=0

xk

)′∣∣∣∣∣
x=� /p

=

=
(1− 
 /p) 
 /p

(1− 
 /p)2
=




p− 

.

�

The following theorem shows that the tail B0 is somewhat “heavier”

than the tail B(x).

THEOREM 4.7.– (comparison of tails).

If B ∈ S , B0(x)/B(x) → ∞ as x → ∞.
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PROOF.– According to theorem 4.2, we have at any a > 0:

B0(x)

B(x)
≥

∫ x+a

x

B(s)

μBB(x)
ds ≥ B(x+ a) a

μBB(x)
→ a

μB
(x → ∞).

From here, it follows that:

lim inf
x→∞

B0(x)

B(x)
≥ a

μB
(x → ∞).

However, a can be more then M for any M > 0. �

4.1.4. Examples

EXAMPLE 4.3.– Let us consider the Weibool distribution with the tail

B(x) = e−αxβ
, where α > 0 and 0 < β < 1. Using the replacement

αsβ = y, we have:

μBB0(x) =

∫ ∞

x
e−α sβ ds = α−1/ββ−1

∫ ∞

αxβ

y1/β−1e−y ds =

= α−1/ββ−1Γ(αxβ , 1/β).

From here, it follows that μB = α−1/ββ−1Γ(1/β) and B0(x) =
Γ(αxβ , 1/β)/Γ(1/β). For the application of the theorem of Pitman, the

equivalence is used:

Γ(x, a) ∼ γ(x, a), [4.2]

where γ(x, a) = xa−1e−x and Γ(x, a) is a corresponding incomplete

gamma function. In fact, by using the rule of L’Hospital, we have:

Γ(x, a)

γ(x, a)
∼ Γ(x, a)′

γ(x, a)′
=

−γ(x, a)

−γ(x, a) + (a− 1)xa−2e−x
=

=
1

1− (a− 1)/x
→ 1 (x → ∞).

Thus, we have at β < 1,

λ0(x) ≡ −B0(x)
′

B0(x)
=

γ(αxβ , 1/β) · αβxβ−1

Γ(αxβ , 1/β)
∼ αβxβ−1 (x → ∞).
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Thus,∫ ∞

0
eλ0(x)x γ(αx

β , 1/β) · αβxβ−1

Γ(1/β)
dx =

=

∫ M

0
eλ0(x)x γ(αx

β , 1/β) · αβxβ−1

Γ(1/β)
dx+

+

∫ ∞

M
eαβx

β (αxβ)(1/β−1)e−αxβ · αβxβ−1

Γ(1/β)
dx+ o(M) =

=

∫ M

0
eλ0(x)x γ(αx

β , 1/β) · αβxβ−1

Γ(1/β)
dx+

+

∫ ∞

M
eα(β−1)x α1/ββ

Γ(1/β)
dx+ o(M) < ∞,

where o(M)/M → 0 as M → ∞. According to the theorem of Pitman,

it follows that B0 ∈ S and theorem 4.7 is applicable to the Weibool

distribution. �

EXAMPLE 4.4.– Let us consider a class of regularly varying functions

with an index α. If f ∈ RMα, then at any t > 0,

f(tx)

f(x)
→ t−α (x → ∞).

On the other hand, if this condition is fulfilled, then f ∈ RVα. The

corresponding slowly varying function has a kind of f(x)xα. Now let

us consider a cumulative distribution function B with a tail belonging

to a class RVα. Let B(x) = L(x)/xα, where L(x) is a slowly varying

function. We have:

B0(xt) =
1

μB

∫ ∞

xt
L(s)/sα ds = t−α+1 1

μB

∫ ∞

x
L(st)/sα ds,

thus, for any ε > 0, there exists x0 such that at any x > x0,

(1− ε)t−α+1B0(x) ≤ B0(xt) ≤ (1 + ε)t−α+1B0(x).
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From here, it follows that B0(x) ∈ RVα−1, and if α > 1, then

B0 ∈ S . In the latter case, theorem 4.7 is applicable to this distribution.

Hence, this theorem is applicable to the Pareto distribution with an index

α > 1. �

EXAMPLE 4.5.– Let us consider a log-gamma distribution. Let

Y = eX , where X ∈ Gam(a, δ) (a gamma distribution with the form

parameter a and the scale parameter δ). Using equivalence (4.2), we

have:

F Y (x) ≡ P (Y > x) = P (X > lnx)

=
Γ(δ lnx, a)

Γ(a)
∼ γ(δ lnx, a)

Γ(a)
=

=
(δ lnx)a−1e−δ lnx

Γ(a)
=

L(x)

xδ
(x → ∞),

where L(x) = (δ lnx)a−1/Γ(a) is a slowly varying function. Thus,

F Y (x) is a regularly varying function with an index δ, and if B = FY ,

then B0 ∈ RVδ−1 (see example 4.4). Thus, according to theorem 4.1, if

δ > 1, then B0 ∈ S , and theorem 4.7 is applicable to the log-gamma

distribution. �

EXAMPLE 4.6.– Let us consider the log-normal distribution. We have

Y = ea+σX (σ > 0), where X is a standard normal random variable.

Then,

B(x) ≡ P (Y > x) = Φ((lnx− a)/σ).

By denoting ϕ as the density of the standard normal distribution, we

have:

μBB0(x) =

∫ ∞

x
Φ((ln s−a)/σ) ds =

∫ ∞

x

∫ ∞

(ln s−a)/σ
ϕ(y) dy ds =
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=

∫ ∞

(lnx−a)/σ
ϕ(y)

∫ ey σ+a

x
ds dy =

∫ ∞

(lnx−a)/σ
ϕ(y)(ey σ+a − x) dy =

=

∫ ∞

(lnx−a)/σ

1√
2π

e−y2/2+y σ+a dy − xΦ((lnx− a)/σ) =

=

∫ ∞

(lnx−a)/σ

1√
2π

ea+σ2/2e−(y−σ)2/2σ2
dy − xΦ((lnx− a)/σ) =

= ea+σ2/2Φ((lnx− a)/σ − σ)− xΦ((lnx− a)/σ).

From here, in particular, it follows that μB = ea+σ2/2, and also

λ0(x) =
Φ((lnx− a)/σ)

ea+σ2/2Φ((lnx− a)/σ − σ)− xΦ((lnx− a)/σ)
.

For the determination of asymptotics of the hazard rate at infinity,

we use the well-known equivalence:

Φ(x) ∼ ϕ(x)/x (x → ∞), [4.3]

(Mill’s ratio). In fact, by using the rule of L’Hospital, we have:

Φ(x)

ϕ(x)/x
∼ −ϕ(x)

−ϕ(x)− ϕ(x)/x2
=

1

1 + 1/x2
→ 1 (x → ∞).

Thus,

ea+σ2/2Φ((lnx− a)/σ − σ) ∼

∼ ea+σ2/2 1√
2π

e−((lnx−a)/σ−σ)2/2/((lnx− a)/σ − σ) =

=
x√
2π

e−((lnx−a)/σ)2/2/((lnx− a)/σ − σ) =

= xϕ((lnx− a)/σ)/((lnx− a)/σ − σ) ∼

∼ xΦ((lnx− a)/σ)
(lnx− a)/σ

(lnx− a)/σ − σ
(x → ∞).
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Substituting this value in the formula for λ(x), we obtain:

λ(x) ∼ lnx− a− σ2

xσ2
∼ lnx

xσ2
(x → ∞).

Let us verify the convergence of an integral of Pitman. It is enough to

estimate a tail of this integral for a large value of M when it is possible

to substitute the integrands by their asymptotic values:

μ−1
B

∫ ∞

M
eλ(x)xΦ((lnx− a)/σ) dx

∼ μB

∫ ∞

M
elnx/σ2 ϕ((lnx− a)/σ)

(lnx− a)/σ
dx ≤

≤ C1

∫ ∞

M
e−(lnx−a−1)2/2σ2

dx < ∞,

where C1 is a positive number. Hence, according to the theorem of

Pitman, B0 ∈ S , and theorem 4.7 is applicable to the log-normal

distribution. �

4.2. Integro-differential equation

This section of the theory does not provide any restrictions on a

distribution tail. However, the basic preconditions of the

Cramér-Lundberg theory remain. Let us consider a process with the

premium rate depending on the current capital. Let β be the intensity

of the Poisson process of the moments of suit inflow, and (Un) be the

independent sequence of i.i.d. random variables with the common

cumulative distribution function B. They represent the values of suits.

Let p(x) be a premium rate, ψ(u) = 1− ϕ(u), 
 = βμB , μB = EU1.

THEOREM 4.8.– (integro-differential equation). If p(x) > 
 at all x ≥ 0
and the function p is continuous, then

ϕ(u) =
β

p(u)

(
ϕ(u)−

∫ u

0
ϕ′(u− x) dB(x))

)
, [4.4]
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and if (∀x ≥ 0) p′(x) ≥ β, then

ψ(u) ≤ β

∫ ∞

u

B(x) dx

p(x)− 

(p(u)− 
 ≥ 0).

PROOF.– It follows that at u ≥ 0,

ψ(u) = Pu(Rσ[u,u+r)
< 0)

+

∫ u

0
Pu(Rσ[u,u+r)

∈ dx, τ0 ◦ θσ[u,u+r)
< ∞)+

+ Pu(Rσ[u,u+r)
= u+ r, τ0 ◦ θσ[u,u+r)

< ∞)) =

= Pu(Rσ[u,u+r)
< 0) +

∫ u

0
ψ(x)Pu(Rσ[u,u+r)

∈ dx)+

+ ψ(u+ r)Pu(Rσ[u,u+r)
= u+ r) = β

r

p(u)
B(u)+

+ β
r

p(u)

∫ u

0
ψ(u− x) dB(x) +

(
1− β

r

p(u)

)
ψ(u+ r) + o(r).

From here, it follows that the continuous and differentiable solution

satisfies the equation:

−ψ′(u) =
β

p(u)

(
B(u)− ψ(u) +

∫ u

0
ψ(u− x) dB(x)

)
,

which can be rewritten in an aspect:

ϕ′(u) =
β

p(u)

(
ϕ(u)−

∫ u

0
ϕ(u− x) dB(x)

)
.

Let us estimate the sign of a flexion function (second derivative). We
have:

ϕ′′(u) = −p′(u)
p(u)

ϕ′(u)+
β

p(u)

(
ϕ′(u)− ϕ(0)b(u)−

∫ u

0

ϕ′(u− x) dB(x)

)
.

The condition p′ ≥ β guarantees the negativity of the flexion on all

semi-axes. Rewriting formula (4.4) in an aspect, we have:

ϕ′(u) =
β

p(u)

(
ϕ(u)B(u) +

∫ u

0
(ϕ(u)− ϕ(u− x)) dB(x)

)
.
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Under the condition of the theorem, the integrand difference of the

integral on the right-hand side of this equation is not less than ϕ′(u)x,

which leads to a differential inequality:

ϕ′(u)
(
1− β

p(u)

∫ u

0
x dB(x)

)
≥ β

p(u)
ϕ(u)B(u).

Supposing ϕ(∞) = 1, we obtain a solution of this inequality:

ϕ(u) ≥ exp

(
−
∫ ∞

u

βB(x)

p(x)− β
∫ x
0 s dB(s)

dx

)
,

thus it follows that:

ψ(u) ≤ 1− exp

(
−
∫ ∞

u

βB(x)

p(x)− β
∫ x
0 s dB(s)

dx

)
≤

≤
∫ ∞

u

βB(x)

p(x)− β
∫ x
0 s dB(s)

dx ≤
∫ ∞

u

βB(x)

p(x)− βμB
dx. �

Let us note that for the evaluation of an inequality from formula

(4.4), a convexity upwards of the function ϕ(u) on ray u ≥ 0 is used.

The method of the proof and an asymptotic inequality remain true if the

convexity upwards begins from some u0 > 0, i.e. for any u ≥ u0. The

condition p′ ≥ β is too burdensome. Thanks to it, the unique positive

item in the sum of negative magnitudes is cleared. The account of these

magnitudes depends on the factor:

f(u) ≡ ϕ′(u)− ϕ(0)b(u)−
∫ u

0
ϕ′(u− x) dB(x),

which in the given course is not analyzed.

At a constant premium rate p(x) ≡ p, it is possible to use a Laplace

transformation for the solution of equation (4.4). Using the formula,∫ ∞

0
e−λuϕ′(u) du = −ϕ(0) + λϕ̂(λ) (λ > 0),
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where ϕ̂(λ) is a Laplace image of a function ϕ, we have:

−ϕ(0) + λϕ̂(λ) =
β

p
(ϕ̂(λ)− ϕ̂(λ)B̂(−λ)),

thus,

ϕ̂(λ) =
ϕ(0)

λ− (β/p)(1− B̂(−λ))
.

Let us obtain the value ϕ(0). Integrating equation (4.4) on an

interval (0, u), we obtain:

ϕ(u)− ϕ(0) =
β

p

∫ u

0
ϕ(x) dx+

β

p

∫ u

0

∫ x

0
ϕ(x− s) dB(s) dx =

=
β

p

∫ u

0
ϕ(x) dx+

+
β

p

∫ u

0

(
ϕ(0)B(x)− ϕ(x) +

∫ x

0
ϕ′(x− s)B(s) ds

)
dx =

=
βϕ(0)

p

∫ u

0
B(x) dx+

β

p

∫ u

0

(∫ u

s
ϕ′(x− s) dx

)
B(s) ds =

=
βϕ(0)

p

∫ u

0
B(x) dx+

β

p

∫ u

0
(ϕ(u− s)− ϕ(0))B(s) ds.

Passing to a limit as u → ∞ and using the convergence of the

integrand as a limit, we obtain the equation:

1− ϕ(0) =
βϕ(0)

p
μB +

β

p
(1− ϕ(0))μB,

from which

ϕ(0) = 1− 


p
.

Hence,

ϕ̂(λ) =
p− 


λp− β(1− B̂(−λ))
. [4.5]



128 Stochastic Risk Analysis and Management

Let us note that to derive this formula, the membership condition B
to Cramér’s class is not used. �

EXAMPLE 4.7.– Let B(x) = e−δx. Thus, B̂(−λ) = δ/(δ + λ), and

also

ϕ̂(λ) =
p− 


λ(p− β/(δ + λ))
= 1/λ− β/δ

p(δ + λ)− β
=

= 1/λ−
(

β/δ

pδ − β

)
δ − β/p

λ+ δ − β/p
.

The first member is the Laplace image of unit, and the second

member is the Laplace image of an exponential function. That is,

ϕ(u) = 1− β/δ

pδ − β
exp(−(δ−β/p)u) = 1− 


δ(p− 
)
exp(−δ(1−
/p)u),

where β/δ = 
. �



5

Some Problems of Control

5.1. Estimation of probability of ruin on a finite interval

For practical calculations, the probability of ruin on a finite interval

can be easily obtained by a Monte-Carlo imitation method that

simulates the dynamics of the company capital (Rt) by using

pseudo-random numbers in a computer. The algorithm of such an

estimation is transparent enough.

At first, in the program, the minor cycle “while” should be provided

for deriving two sums:

1) The sum of independent pseudo-random variables Δk (k ≥ 1)
distributed exponentially (with parameter β) that corresponds to

observation time intervals of the pointwise Poisson process (σk)
(where Δk = σk − σk−1 and σ0 = 0);

2) The sum of independent pseudo-random variables ck = pΔk −
Uk, where (Uk) is a sequence of independent positive pseudo-random

numbers distributed according to the common cumulative distribution

function B(x). The number ck is an income (which can be negative)

over one exponential time interval.

The minor cycle comes to the end when the sum of incomes Sn =
u +

∑n
k=1 ck becomes negative for the first time (the first reason for

Stochastic Risk Analysis and Management, First Edition. Boris Harlamov.
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stopping; it is an event A1). We denote n0 as the number of the event A1

step and τ0 =
∑n0

k=1Δk ≡ σn0 (it is an instant of ruin). In the program,

the possible variant of “cycling” (when at any n magnitude, Sn is non-

negative) should be provided. This event has positive probability when

p > βμ, where μ = EU1. In order to prevent cycling, it is necessary

to provide some computer “actual infinity”, i.e. some positive numbers

T∞. The minor cycle comes to the end when the condition σk > T∞ is

satisfied for the first time (the second reason for stopping).

Secondly, in the program, the major cycle “for to” should be

provided. It consists of the independent and identically distributed

minor cycles with their finishing sums (τ
(k)
0 ) (k is an order number of

the minor cycle). The major cycle proceeds until some determinate

number N . For any x < T∞, the random variable

N1(x) =
∑N

k=1 I(A1, τ
(k)
0 <x)

(where IA is an indicator of the set A) is

calculated. The statistic N1(x)/N represents a consistent

(pseudo-consistent) estimate of the probability P (τ0 < x). Other

statistics can be constructed analogously.

The estimation of these probabilities becomes particularly relevant

for a problem concerning the optimal credit amount which the insurance

company intends to take in the beginning of its business.

5.2. Probability of the credit contract realization

When starting a new business, the company is interested in its

reliability in the long run. The company hopes that bank credit can

help them. Let the magnitude of the company’s initial resources be

close to zero, but the company has a perspective business plan, and it

goes to the bank for credit.

The credit contract provides three cores: (1) the credit sum, u, (2)

the return time of the credit, T , and (3) the share in relation to the credit

sum (usually in percentage expression) which the company has to pay

over the credit sum, γ. A company that has satisfied a condition of the

credit contract can expect with a new credit contract with the same or
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with a different bank, as it is a “good” client. Therefore, the company is

interested in the greatest probability of realization of the credit contract.

Thus, dynamics of the company capital that uses the credit is a

random process R(t) (t ≥ 0), with a measure Pu, and the probability

of realization of the credit contract is equal to

Pu(τ0 > T, R(T ) > u + γu), where τ0 is a time of the first exit from

the interval [0,∞). We will consider a situation when the parameters T
and γ are defined by the bank, and the client can choose the magnitude

u at his own discretion. A problem for the management of the company

is choosing the optimum magnitude of the credit. In this case, the

optimum means to define such credit u such that it ensures a maximum

value of the function r(u), where

r(u) ≡ Pu(τ0 > T, R(T ) > u+ γu) (u ≥ 0).

We will assume that the process (R(t)) is homogeneous in space

(as considered in Chapter 2). For such a process, the following

representation holds:

r(u) = P0(τ−u > T, R(T ) + u > u+ γu) =

= P0(τ−u > T, R(T ) > γu),

where τ−u is the moment of the first exit from the interval [−u, ∞).

We know that usually it is impossible to count on a continuity of a

sample trajectory of the process (see, for example, the

Cramér-Lundberg process). Therefore, we will demand only the

condition of a stochastic continuity. Moreover, under this supposition

(taking into account some additional conditions that are fulfilled for the

Cramér-Lundberg process), the function r(x) is continuous on its

domain. For such functions, the aforementioned problem about a

maxima point makes sense. In our case, the maximum point xmax of

the function r(x) exists and belongs to an interval [0,∞). In fact, it is

evident that as u → ∞,

r(u) ≤ P0(R(T ) > γu) → 0.



132 Stochastic Risk Analysis and Management

On the other hand, r(u) ≤ 1 and is non-negative at any u ≥ 0. Thus,

the possibility that xmax = 0 is not excluded, i.e. it is not reasonable to

take the credit. In certain cases, it is possible to prove that xmax > 0
and to estimate its value with a computer, using a mathematical software

package.

5.2.1. Dynamics of the diffusion-type capital

We will use the results of Chapter 2 relating to the diffusion-type

approximation (see theorem 2.15, Chapter 2) in order to show that a

diffusion representation is reasonable.

THEOREM 5.1.– (consequence of the Donsker theorem). Let (X(t)) be

a process with independent increments for which the asymptotics are

true:

(∀t > 0) αX(t/α2)
distr−→ W (t) + t (α → 0).

where (W (t)) is a standard Wiener process. Then, for any σ > 0 and

A �= 0, it is true that:

(∀t > 0) σ α1X(t/α2
1)

distr−→ σW (t) +At (α → 0),

where α1 = ασ/A.

PROOF.– According to the condition, it follows that:

σ α1X(t/α2
1) =

σ2

A
(αX(t1/α

2)),

where t1 = tA2/σ2. Thus,

σ α1X(t/α2
1)

distr−→ σ2

A
(W (t1) + t1) = σ

(
σ

A
W

(
t
A2

σ2

))
+At.

From here, using the auto-model property of a standard Wiener

process, it follows that:

(∀t > 0), (∀b �= 0) bW (t/b2)
distr
= W (t),

we thus obtain the assertion of the theorem. �
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From this outcome, we can see which transformations of the Cramér-

Lundberg process lead to a process with a distribution arbitrarily close

to a distribution of the Wiener process with constant values of drift and

local variance. It has been noted above that for the Cramér-Lundberg

classical process with a positive factor of safety, the probability of ruin

on an infinite interval is less than 1 even in the case when the company’s

initial capital is equal to zero. In the case where the dynamics of the

capital is considered as a homogeneous diffusion process X(t), a zero

initial capital guarantees ruin of the company with probability 1 on any

interval of positive length. That is, at any ε > 0 with probability 1, there

exists a point t1 ∈ (0, ε), such that X(t1) < 0.

The aforementioned problem about an optimum choice of the

magnitude of the credit is considered in the case of a homogeneous

diffusion process expression in analytical terms. That is, for the

process W (t) +At, it is true that:

r(u) = P0(X(T ) > γu)− P0(τ−u < T,X(T ) > γu) =

= Φ

(
γu−AT√

T

)
−

−
∫ T

0

u√
2πt3

exp

(
−(u+At)2

2t

)
Φ

(
u+ γu−A (T − t)√

T − t

)
dt,

where for any x and y

Φ(x) ≡ 1

2
erfc

(
x√
2

)
, erfc(y) ≡ 2√

π

∫ ∞

y
e−s2 ds.

We do not know an analytical representation for the maximum point

of the function r(u). For its numerical evaluation, we used a software

package MatLab13. In the examples considered, it is accepted that γ =
10%, T = 2, A = 1 and A = 3, where u is expressed in number of

million units, T in years and A in (million units)/year.

A graphical representation of the function r(u) for two values of the

parameter A (on interval (0, 0.1)) is shown in Figure 5.1. The whole

graph at another scale along the time axis (u ∈ (0, 100) ) is shown in

Figure 5.2.
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Figure 5.1. Part of the graph close to zero time

Figure 5.2. Full graph of the probability r(u)
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The maximum value of the function r(u) for A = 1 is found to be at

u = 0.98 and is equal to 0.89650. . . . This maximum value for A = 3
is found to be at point u = 2.04 and is equal to 0.99997. . . .

5.3. Choosing the moment at which insurance begins

5.3.1. Model of voluntary individual insurance

5.3.1.1. About the insurance contract

The problem concerning the time at which insurance begins is

considered. It is assumed that information about the degree of

deterioration is accessible for the insurant. Insurance considers the

presence of two subjects: insured (the client named further by the

insurant) and insuring (insurer). Thus, it is supposed that the danger of

the insurance event (refusal) is proportional to the degree of

deterioration and is known to the insurant. The insurant endeavors to

reduce the risk connected with the loss of some value. He is ready to

pay to the insurer the defined sum until the moment of the occurrence

of an event leading to the loss of value. He hopes that in the case of an

occurrence of an event, the insurer would compensate his loss

completely or partially. The insurer agrees to pay the insurance

compensation in the hope that the insurance event will not happen. The

typical insurance contract is made up to a certain term, for example for

a year. The cost of the insured value and a share of this cost are fixed,

determining an insurance payment (the insurance tariff). In a discrete

model of insurance, the insurant pays to the insurer an insurance

payment (premium) at the beginning of each time unit from the

insurance contract term. He renews the contract after the outflow of a

certain term of insurance if there is no insurance event. In a continuous

model of insurance, the insurant continuously pays to the insurer a

premium rate until the moment of the insurance event. The insurer pays

insurance compensation of the fixed size if the insurance event happens

after the contract conclusion and before a certain term is finished.
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5.3.1.2. Continuous model

The following model of voluntary insurance without a fixed

termination date of insurance is considered. An insurance event

(refusal) occurs at a random instant ζ. This moment may depend on

different exterior and interior conditions. The insurant concludes the

insurance contract at the moment τ (τ < ζ). From the moment τ and

until the moment ζ, the client pays an insurance payment (insurance

premium) with intensity V (payment in unit of time). At the moment ζ,

the insurant receives insurance compensation W from the insurer.

Expenditures of the insurant at this moment are equal to:

Xτ = V (ζ − τ) + (H −W ) I{ζ>τ},

where H is the real damage evoked by an insurance event;

x+ ≡ max{0, x} and IA is the indicator of event A. Average losses of

the insurant are given by:

EXτ = V E(ζ − τ ; ζ > τ) + (H −W )P (ζ > τ).

Our problem consists of justifying a choice of the moment of

conclusion of the insurance contract τ from the insurant’s point of

view.

5.3.1.3. The model improvement

In our model, it is supposed that the danger of occurrence of an

insurance event (hazard rate) is proportional to the degree of

deterioration of some responsible detail, serving as the diagnostic

parameter of the product. Such proportionality represents the sense of

the so-called model of Cox in the reliability theory (see, for example,

[KOV 07]). So, let us suppose that the insurant observes a continuous

non-decreasing random process ξ(t), using the hazard rate of the

product. Thus, the following reliability function is known to the

insurant:

P (ζ > t) = exp

(
−
∫ t

0
ξ(s) ds

)
.
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The time of the beginning of insurance τ , under our supposition, is

a Markov time (concerning a natural filtration) for the random process

ξ. Thus, τ = τ(ξ), and the conditional probability that the potential

insurant will be insured before the insurance event is equal to:

P (ζ > τ | ξ) = exp

(
−
∫ τ(ξ)

0
ξ(s) ds

)
,

and the conditional expectation of the duration of phase insurance is

equal to:

E(ζ− τ ; ζ > τ | ξ) =
∫ ∞

τ(ξ)
(t− τ(ξ))ξ(t) exp

(
−
∫ t

0
ξ(s) ds

)
dt.

Integrating piecemeal and assuming that:

x exp

(
−
∫ x

0
ξ(s) ds

)
→ 0,

as x → ∞, we obtain:

E(ζ − τ ; ζ > τ | ξ) =
∫ ∞

τ(ξ)
exp

(
−
∫ x

0
ξ(s) ds

)
dx.

Unconditional probability and expectation are found as a result of the

integration of these expressions on some measure Q, i.e. the distribution

of the process ξ:

P (ζ > τ) = E(Q)(P (ζ > τ | ξ)),
E(ζ − τ ; ζ > τ) = E(Q)(E(ζ − τ ; ζ > τ | ξ)).

Hereinafter, we apply a notation:

E(Q)(f) ≡
∫
D
f(ξ)Q(dξ),

where f is an integrable function and D is a set of possible realizations

of the process ξ (usually, it is the Skorokhod space).
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5.3.1.4. Strategy of the insurant

Taking into account the distribution of ξ, we obtain the average

losses of the insurant as:

EXτ = E(Q)

(∫ ∞

τ
exp

(
−
∫ t

0
ξ(s) ds

)
(V + (H −W ) ξ(t)) dt

)
.

This magnitude is positive if H ≥ W (real loss more than

insurance compensation). In this case, the potential insurant does not

always take the profit. We will consider a situation where because of

the insufficient knowledge of the insurer who concludes the contract,

the actual inequality H < W is fulfilled, and the potential insurant

knows about it. In this case, the problem of the insurant consists of

choosing τ (the moment of conclusion of the insurance contract) in

order to minimize the magnitude EXτ .

The necessary condition for a minimum of a functional EXτ at a

point τ is a realization of two conditions:

lim inf
h→0

1
h(EXτ+hη − EXτ ) ≥ 0, [5.1]

lim inf
h→0

1
h(EXτ−hη − EXτ ) ≥ 0, [5.2]

for any measurable, bounded, non-negative function η(ξ). In this case,

1

h
(EXτ+hη − EXτ ) =

=
1

h
E(Q)

(∫ ∞

τ+hη
exp

(
−
∫ t

0
ξ(s) ds

)
(V + ξ(t) (H −W ))DT −

−
∫ ∞

τ
exp

(
−
∫ t

0
ξ(s) ds

)
(V + ξ(t) (H −W )) dt

)
=

=
1

h
E(Q)

(
−
∫ τ+hη

τ
exp

(
−
∫ t

0
ξ(s) ds

)
(V + ξ(t) (H −W )) dt

)
→

→ E(Q)

(
−η exp

(
−
∫ τ

0
ξ(s) ds

)
(V + ξ(τ) (H −W ))

)
.
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Thanks to the arbitrariness of η from condition [5.1], it follows that

V + ξ(τ) (H − W ) ≤ 0 Q - almost sure. Similarly, from [5.2], it

follows that V + ξ(τ) (H −W ) ≥ 0 Q - almost sure. Hence,

V + ξ(τ) (H −W ) = 0

Q - almost sure. Under the condition W > H , it means that for Q -

almost all functions ξ the equality is fulfilled ξ(τ) = V/(W − H).
For a stochastically continuous, non-decreasing process ξ in a class of

Markov times, τ is only the moment where level b = V/(W − H) is

first reached by this process.

Let us denote τb(ξ) ≡ σ(−∞,b)(ξ) (the moment of the first exit from

an interval (−∞, b)).

Let us note that for a stochastically continuous non-decreasing

process for almost all trajectories ξ, the moment τb (where b > 0) does

not belong to an interval of constancy of this trajectory. Thus, for any

ε > 0, a strict inequality ξ(τb + ε) > b is fulfilled Q - almost sure.

It is easy to verify that EXτb < 0 at b = V/(W −H). It means that

such an insurance strategy is profitable to the insurant (negative loss is

a positive profit).

Usually, a determination of an explicit analytical expression EXτb

as a function of b is impossible, or represents a difficult analytical

problem. We will consider how this dependence is affected if Q is the

distribution of the continuous semi-Markov process with

non-decreasing trajectories.

5.3.2. Non-decreasing continuous semi-Markov process

The random process Xt (t ≥ 0) is called a continuous semi-Markov

process if it possesses the Markov property concerning the moment of

the first exit from any open set [HAR 07]. Such a process is determined

by the consistent family of measures (Qx), where (x ≥ 0) is an initial

point of a trajectory. This set of measures is called the distribution of

process within its initial point. This process is not obliged to be
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Markov with respect to a non-random (fixed) instant. However, any

strictly Markov process will be at the same time a continuous

semi-Markov one. Among the continuous semi-Markov processes,

one-dimensional monotone processes are most simply arranged. An

example of such a process is an inverse gamma process, as mentioned

in Chapter 1. Generally, a non-decreasing semi-Markov process

represents a converted process with independent strictly positive

increments (not necessarily a gamma process). It means that the

function τy (y ≥ 0) defined earlier represents a proper (not converted)

process with independent positive increments. Thus, an argument y
(the reached level) plays the role of time. The process (τy) is

convenient for setting using semi-Markov transition functions of the

process Xt. We will consider the process τy as a temporally

homogeneous process. For such a process, it is a true Levy-Khinchin

expansion: for any λ ≥ 0, and y > 0

E0 exp(−λ τy) = exp(−y β(λ)), [5.3]

where

β(λ) ≡ λm+

∫ ∞

0+
(1− e−λu)n(du),

m ≥ 0 is a non-negative quantity (drift parameter), and n(du) is the

so-called Levy-Khinchin measure, such that∫ ∞

0+
min{1, u}n(du) < ∞

(see, for example, [SKO 64]).

THEOREM 5.2.– Let τy be a homogeneous strictly increasing process

with independent increments with a parameter m, and a measure n(du)
for which the function β(λ) is continuous. Then,

P (ζ > τy) = exp

(
−
∫ y

0
β(x) dx

)
, [5.4]

E(ζ − τy; ζ > τy) =

∫ ∞

y
exp

(
−
∫ x

0
β(u) du

)
β(x)

x
dx. [5.5]



Some Problems of Control 141

PROOF.– 1) Let 0 = y0 < y1 < · · · < yn = b (for simplification of

notations, we sometimes use a label y(k) ≡ yk). From identity (true for

non-decreasing processes), we have:

τyk = τyk−1
+ τΔk

◦ θτy(k−1)

(where θt is a shift operator on D and Δk ≡ yk − yk−1). From a

condition of the Markov behavior of a process with independent

increments and from formula [5.3], it follows that:

E
(Q)
0 exp

(
−
∫ τb

0
ξ(t) dt

)
=

= E
(Q)
0 exp

(
−

n∑
k=1

∫ τyk

τyk−1

ξ(t) dt

)
=

= E
(Q)
0

n∏
k=1

exp

(
−
∫ τyk

τyk−1

ξ(t) dt

)
=

=

n∏
k=1

E
(Q)
0 exp

(
−
∫ τyk

τyk−1

ξ(t) dt

)
≤

≤
n∏

k=1

E
(Q)
0 exp

(−ξ(τyk−1
)(τyk − τyk−1

)
)
=

=
n∏

k=1

E
(Q)
0 exp

(−yk−1 (τyk − τyk−1
)
)
=

=

n∏
k=1

E
(Q)
0 exp

(
−yk−1 τΔk

◦ θτy(k−1)

)
=

=
n∏

k=1

E(Q)
yk−1

exp (−yk−1 τΔk
) .

From the homogeneity in space of a process and from the Levy-

Khinchin formula, the latter expression is equal to:

n∏
k=1

E
(Q)
0 exp (−yk−1 τΔk

) =
n∏

k=1

exp (−Δk β(yk−1)) =
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= exp

(
−

n∑
k=1

Δk β(yk−1)

)
→ exp

(
−
∫ b

0
β(y) dy

)

as a fineness of a partition tends to zero.

Similarly, we obtain:

E
(Q)
0 exp

(
−
∫ τb

0
ξ(t) dt

)
≥

≥ exp

(
−
∫ b

0
β(y) dy

)
.

2) It is further given by:

E
(Q)
0

(∫ ∞

τy

exp

(
−
∫ t

0
ξ(s) ds

)
dt

)
≤

≤ E
(Q)
0

(∫ ∞

τy

exp

(
−
∫ t

τy

ξ(s) ds

)
dt

)
≤

≤ E
(Q)
0

(∫ ∞

τy

exp (−y (t− τy)) dt

)
=

1

y
→ 0 (y → ∞).

From here, it follows that:

E
(Q)
0

(∫ ∞

τb

exp

(
−
∫ t

0
ξ(s) ds

)
dt

)
=

= E
(Q)
0

(∫ τy

τb

exp

(
−
∫ t

0
ξ(s) ds

)
dt

)
+O(1/y) =

=
n∑

k=1

E
(Q)
0

(∫ τyk

τyk−1

exp

(
−
∫ t

0
ξ(s) ds

)
dt

)
+O(1/y) =
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=
n∑

k=1

E
(Q)
0 exp

(
−
∫ τyk−1

0
ξ(s) ds

)
×

×
(∫ τyk

τyk−1

exp

(
−
∫ t

τyk−1

ξ(s) ds

)
dt

)
+O(1/y) =

=

n∑
k=1

E
(Q)
0 exp

(
−
∫ τyk−1

0
ξ(s) ds

)
×

× E
(Q)
0

(∫ τyk

τyk−1

exp

(
−
∫ t

τyk−1

ξ(s) ds

)
dt

)
+O(1/y) ≤

≤
n∑

k=1

E
(Q)
0 exp

(
−
∫ τyk−1

0
ξ(s) ds

)
×

× E
(Q)
0

(∫ τyk

τyk−1

exp
(−yk−1(t− τyk−1))

)
dt

)
+O(1/y) =

=
n∑

k=1

E
(Q)
0 exp

(
−
∫ τyk−1

0
ξ(s) ds

)
×

× E
(Q)
0

1

yk−1
(1 exp(−yk−1(τyk − τyk−1

)) +O(1/y) =

=

n∑
k=1

E
(Q)
0 exp

(
−
∫ τyk−1

0
ξ(s) ds

)
E

(Q)
0

1

yk−1
×

× (1 exp(−yk−1(τΔk
◦ θτy(k−1)

))) +O(1/y) =

=

n∑
k=1

E
(Q)
0 exp

(
−
∫ τyk−1

0
ξ(s) ds

)
1

yk−1
×

×
(
1− E

(Q)
0 exp(−yk−1(τΔk

))
)
+O(1/y) =

=

n∑
k=1

E
(Q)
0 exp

(
−
∫ τyk−1

0
ξ(s) ds

)
1

yk−1
×

× (1− exp(−Δk β(yk−1))) +O(1/y).



144 Stochastic Risk Analysis and Management

Considering only the first and second terms of the Taylor expansion

of exponential members, and supposing that the partition fineness tends

to zero, and also formula [5.4], we obtain a limit of the previous sum:∫ y

b
exp

(
−
∫ x

0
β(t) dt

)
β(x)

x
dx+O(1/y).

Supposing y → ∞, we obtain formula [5.5]. �

Varying the diagnostic parameter under the law of the inverse

process with independent positive increments seems quite justified. For

example, for abrasive wear, the sense of this supposition is that times

of deterioration, not intersected portions of a material, represent

independent random variables. This supposition proves to be true for

statistical data such as deterioration of automobile tires or contact

brushes in electric motors.

5.3.2.1. Examples

Examples of monotone continuous semi-Markov processes can be

found in [HAR 07].

1) One such process is an inverse gamma process, which is a

homogeneous monotone semi-Markov process with independent

positive increments of a random function τx (x > 0), distributed

according to a density:

fτx(t) =
δ

Γ(xγ)
(δt)xγ−1e−δt (t > 0),

where Γ(x) is a gamma function, γ > 0 is the form parameter and δ > 0
is the scale parameter.

Gamma distribution application in the reliability theory is justified

in a number of works (see, for example, [GRA 66]).

The indicator of Levy-Khinchin’s exponential representation of this

process is of the form:

β(λ) =

∫ ∞

0
(1− e−λu)

γe−δ u

u
du = γ ln

δ + λ

δ
.
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(see [HAR 07], p. 333). It can easily be proved by Taylor expansion of

both members of this equality with respect to λ. The probability that

the potential insurant will be insured before the insurance event [5.4] is

equal to:

P (ζ > τb) = exp

(
−γ(δ + b) ln

δ + b

δ
+ γ b

)
.

Using this formula, it is possible to obtain numerically on a computer

the conditional expectation time of occurrence of the insurance event

after the conclusion of the insurance contract (using formula [5.5]). This

integral cannot be considered in a general view for the inverse gamma

process.

2) The following example is associated with the so-called

homogeneous process of Gut and Ahlberg [GUT 91], where the

process of this aspect has been used for the summation of a random

number of random summands. This process has been applied as a

model of chromatography separations (see, for example, [HAR 07],

p. 325). Trajectories of this process are continuous, do not decrease,

and consist of independent intervals of linearly increasing movement

(with exponentially distributed lengths), and independent intervals of

constancy between increasing intervals with exponentially distributed

lengths. For this process, the indicator of the Levy-Khinchin

representation is equal to (within the magnitudes of three non-negative

parameters):

β(λ) = mλ+ v

∫ ∞

0+
(1− e−λu) e−k u du = m λ+

v λ

k(k + λ)
.

It is not necessary to take an inverse Laplace transformation for the

process of Gut and Ahlberg. The evaluation of numerical values of the

probability that the potential insurant will conclude the insurance

contract before the insurance event [5.4], and the conditional

expectation time of the occurrence of the insurance event after the

moment of an inference of the insurance contract [5.5] is possible,

using any popular package of mathematical programs.
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