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PREFACE

This book has had a long gestation period; I began writing notes for it in 1984 as
a partial distraction when my first wife was fighting a terminal illness. Although
I continued to collect material on and off over the years, I turned my attention
to writing in other fields instead. However, in my recent “retirement”, I finally
decided to bring the book to birth as I believe even more strongly now of the need
for such a book. Vectors and matrices are used extensively throughout statistics, as
evidenced by appendices in many books (including some of my own)}, in published
research papers, and in the extensive bibliography of Puntanen et al. [1998]. In
fact, C. R. Rao [1973a] devoted his first chapter to the topic in his pioneering book,
which many of my generation have found to be a very useful source. In recent
years, a number of helpful books relating matrices to statistics have appeared on
the scene that generally assume no knowledge of matrices and build up the subject
gradually. My aim was not to write such a how-to-do-it book, but simply to provide
an extensive list of results that people could look up — very much like a dictionary
or encyclopedia. I therefore assume that the reader already has a basic working
knowledge of vectors and matrices. Alhough the book title suggests a statistical
orientation, I hope that the book’s wide scope will make it useful to people in other
disciplines as well.

In writing this book, I faced a number of challenges. The first was what to
include. It was a bit like writing a dictionary. When do you stop adding material;
I guess when other things in life become more important! The temptation was to
begin including almost every conceiveble matrix result I could find on the grounds
that one day they might all be useful in statistical research! After all, the history of
science tells us that mathematical theory usually precedes applications. However,

xvi



PREFACE xvii

this is not practical and my selection is therefore somewhat personal and reflects my
own general knowledge, or lack of it! Also, my selection is tempered by my ability
to access certain books and journals, so overall there is a fair dose of randomness in
the selection process. To help me keep my feet on the ground and keep my focus on
statistics, I have listed, where possible, some references to statistical applications
of the theory. Clearly, readers will spot some gaps and I apologize in advance for
leaving out any of your favorite results or topics. Please let me know about them
(e-mail: seber@stat.auckland.ac.nz). A helpful source of matrix definitions is the
free encyclopedia, wikipedia at http://en.wikipedia.org.

My second challenge was what to do about proofs. When I first started this
project, I began deriving and collecting proofs but soon realized that the proofs
would make the book too big, given that I wanted the book to be reasonably com-
prehensive. I therefore decided to give only references to proofs at the end of each
section or subsection. Most of the time I have been able to refer to book sources,
with the occasional journal article referenced, and I have tried to give more than
one reference for a result when I could. Although there are many excellent matrix
books that I could have used for proofs, I often found in consulting a book that a
particular result that I wanted was missing or perhaps assigned to the exercises,
which often didn’t have outline solutions. To avoid casting my net too widely, 1
have therefore tended to quote from books that are more encyclopedic in nature.
Occasionally, there are lesser known results that are simply quoted without proof in
the source that I have used, and I then use the words “Quoted by ...”; the reader will
need to consult that source for further references to proofs. Some of my references
are to exercises, and I have endeavored to choose sources that have at least outline
solutions (e.g., Rao and Bhimasankaram [2000] and Seber [1984]) or perhaps some
hints (e.g., Horn and Johnson [1985, 1991}); several books have solutions manuals
(e.g., Harville [2001] and Meyer [2000b]). Sometimes I haven’t been able to locate
the proof of a fairly of straightforward result, and I have found it quicker to give
an outline proof that I hope is sufficient for the reader.

In relation to proofs, there is one other matter I needed to deal with. Initially,
I wanted to give the original references to important results, but found this too
difficult for several reasons. Firstly, there is the sheer volume of results, combined
with my limited access to older documents. Secondly, there is often controversy
about the original authors. However, I have included some names of original au-
thors where they seem to be well established. We also need to bear in mind Stigler’s
maxim, simply stated, that “no scientific discovery is named after its original dis-
coverer.” (Stigler [1999: 277]). It should be noted that there are also statistical
proofs of some matrix results (cf. Rao [2000]).

The third challenge I faced was choosing the order of the topics. Because this
book is not meant to be a teach-yourself matrix book, I did not have to follow a
“logical” order determined by the proofs. Instead, I was able to collect like results
together for an easier look-up. In fact, many topics overlap, so that a logical order
is not completely possible. A disadvantage of such an approach is that concepts are
sometimes mentioned before they are defined. I don’t believe this will cause any
difficulties because the cross-referencing and the index will, hopefully, be sufficiently
detailed for definitions to be readily located.

My fourth challenge was deciding what level of generality I should use. Some
authors use a general field for elements of matrices, while others work in a framework
of complex matrices, because most results for real matrices follow as a special case.
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Most books with the word “statistics” in the title deal with real matrices only.
Although the complex approach would seem the most logical, I am aware that I
am writing mainly for the research statistician, many of whom are not involved
with complex matrices. I have therefore used a mixed approach with the choice
depending on the topic and the proofs available in the literature. Sometimes I
append the words “real case” or “complex case” to a reference to inform the reader
about the nature of the proof referenced. Frequently, proofs relating to real matrices
can be readily extended with little change to those for the complex case.

In a book of this size, it has not been possible to check the correctness of all the
results quoted. However, where a result appears in more than one reference, one
would have confidence in its accuracy. My aim has been been to try and faithfully
reproduce the results. As we know with data, there is always a percentage that is
either wrong or incorrectly transcribed. This book won’t be any different. If you
do find a typo, I would be grateful if you could e-mail me so that I can compile a
list of errata for distribution.

With regard to contents, after some notation in Chapter 1, Chapter 2 focuses
on vector spaces and their properties, especially on orthogonal complements and
column spaces of matrices. Inner products, orthogonal projections, metrics, and
convexity then take up most of the balance of the chapter. Results relating to the
rank of a matrix take up all of Chapter 3, while Chapter 4 deals with important
matrix functions such as inverse, transpose, trace, determinant, and norm. As
complex matrices are sometimes left out of books, I have devoted Chapter 5 to
some properties of complex matrices and then considered Hermitian matrices and
some of their close relatives.

Chapter 6 is devoted to eigenvalues and eigenvectors, singular values, and (briefly)
antieigenvalues. Because of the increasing usefulness of generalized inverses, Chap-
ter 7 deals with various types of generalized inverses and their properties. Chapter
8 is a bit of a potpourri; it is a collection of various kinds of special matrices,
except for those specifically highlighted in later chapters such as non-negative ma-
trices in Chapter 9 and positive and non-negative definite matrices in Chapter 10.
Some special products and operators are considered in Chapter 11, including (a) the
Kronecker, Hadamard, and Rao-Khatri products and (b) operators such as the vec,
vech, and vec-permutation (commutation) operators. One could fill several books
with inequalities so that in Chapter 12 I have included just a selection of results
that might have some connection with statistics. The solution of linear equations
is the topic of Chapter 13, while Chapters 14 and 15 deal with partitioned matrices
and matrices with a pattern.

A wide variety of factorizations and decompositions of matrices are given in
Chapter 16, and in Chapter 17 and 18 we have the related topics of differentiation
and Jacobians. Following limits and sequences of matrices in Chapter 19, the next
three chapters involve random variables - random vectors (Chapter 20), random
matrices (Chapter 21), and probability inequalities (Chapter 22). A less familiar
topic, namely majorization, is considered in Chapter 23, followed by aspects of
optimization in the last chapter, Chapter 24.
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CHAPTER 1

NOTATION

1.1 GENERAL DEFINITIONS

Vectors and matrices are denoted by boldface letters a and A, respectively, and
scalars are denoted by italics. Thus a = (a;) is a vector with ith element a; and
A = (a;;) is a matrix with ¢, jth elements @;;. I maintain this notation even with
random variables, because using uppercase for random variables and lowercase for
their values can cause confusion with vectors and matrices. In Chapters 20 and 21,
which focus on random variables, we endeavor to help the reader by using the latter
half of the alphabet u,v,...,z for random variables and the rest of the alphabet
for constants.

Let A be an n; X ny matrix. Then any m; X my matrix B formed by deleting
any ni; — m; rows and ny — mg columns of A is called a submatriz of A. It can
also be regarded as the intersection of m rows and mo columns of A. I shall define
A to be a submatrix of itself, and when this is not the case I refer to a submatrix
that is not A as a proper submatriz of A. When m; = mo = m, the square matrix
B is called a principal submatriz and it is said to be of order m. Its determinant,
det(B), is called an mth-order minor of A. When B consists of the intersection
of the same numbered rows and columns (e.g., the first, second, and fourth), the
minor is called a principal minor. If B consists of the intersection of the first m
rows and the first m columns of A, then it is called a leading principal submatriz
and its determinant is called a leading principal m-th order minor.

A Matrix Handbook for Statisticians. By George A. F. Seber 1
Copyright © 2008 John Wiley & Sons, Inc.



2 NOTATION

Many matrix results hold when the elements of the matrices belong to a general
field F of scalars. For most practitioners, this means that the elements can be real
or complex, so we shall use F to denote either the real numbers R or the complex
numbers C. The expression F™ will denote the n-dimensional counterpart.

If A is complex, it can be expressed in the form A = B + iC, where B and C
are real matrices, and its compler conjugate is A = B —iC. We call A’ = (a;;)
the transpose of A and define the conjugate transpose of A to be A* = A’. Tn
practice, we can often transfer results from real to complex matrices, and vice versa,
by simply interchanging ’ and *.

When adding or multiplying matrices together, we will assume that the sizes
of the matrices are such that these operations can be carried out. We make this
assumption by saying that the matrices are conformable. If there is any ambiguity
we shall denote an m x n matrix A by A,,x». A matrix partitioned into blocks is
called a block matrix.

If x and y are random variables, then the symbols E(y), var(y), cov(z,y), and
E(z |y) represent expectation, variance, covariance, and conditional expectation,
respectively.

Before we give a list of all the symbols used we mention some univariate statistical
distributions.

1.2 SOME CONTINUOUS UNIVARIATE DISTRIBUTIONS

We assume that the reader is familiar with the normal, chi-square, ¢, F', gamma,
and beta univariate distributions. Multivariate vector versions of the normal and
t distributions are given in Sections 20.5.1 and 20.8.1, respectively, and matrix
versions of the gamma and beta are found in Section 21.9. As some noncentral
distributions are referred to in the statistical chapters, we define two univariate
distributions below.

1.1. (Noncentral Chi-square Distribution) The random variable z with probability
density function

f@) = 1 —o?/2,0/2)-1 ie—s/z LAY 1 .
2v/2 _ 4) i, T(iv+1)
=1 2
is called the noncentral chi-square distribution with v degrees of freedom and non-
centrality parameter §, and we write = ~ x2(J).

(a) When § = 0, the above density reduces to the (central) chi-square distribution,
which is denoted by x2.

(b) The noncentral chi-square can be defined as the distribution of the sum of the
squares of independent univariate normal variables y; (i = 1,2,...,n) with
variances 1 and respective means y;. Thus if y ~ Ng{u,1;), the multivariate
normal distribution, then z = y’y ~ x%(§), where § = p’p (Anderson [2003:
81-82)).

(c) E(z) =v+4.

Since § > 0, some authors set § = 72, say. Others use §/2, which, because of (c), is
not so memorable.
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1.2. (Noncentral F-Distribution) If z ~ x2,(6), y ~ x2, and x and y are statistically
independent, then F' = (x/m)/(y/n) is said to have a noncentral F-distribution
with m and n degrees of freedom, and noncentrality parameter §. We write F ~
Fn(6). For a derivation of this distribution see Anderson [2003: 185]. When
§ = 0, we use the usual notation F,, , for the F-distribution.

1.3 GLOSSARY OF NOTATION

Scalars

F field of scalars

R real numbers

C complex numbers

F Ror C

z=z+ 1y a complex number

Z=2—1y complex conjugate of z

2] = (2% + y?)1/? modulus of z

Vector Spaces

F™ n-dimensional coordinate space

R™ F* with F =R

cr F* with F=C

C(A) column space of A, the space spanned by
the columns of A

C(A") row space of A

N(A) {x: Ax = 0}, null space (kernel) of A

S(A) span of the set A, the vector space of all linear
combinations of vectors in A

dim V dimension of the vector space V

yt the orthogonal complement of V

x€eVY X is an element of V

VW V is a subset of W

VCcw V is a proper subset of W ( i.e., V £ W)

ynw intersection, {x : x € V and x € W}

VUW union, {x:x €V and/or x € W}

V+W sum, {x+y:x€V,y e W}

Vew direct sum, {x+y:x€V,y e W;VNW = 0}

) an inner product defined on a vector space

xly x is perpendicular to y (i.e., {x,y) =0)
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Complex Matrix

A=B+iC
A = (g;;) =B -iC
A=A =(a;;)
A=A*

A=—A*

AA* = A*A

Special Symbols

sup
inf
max
min

eI rR Y]

diag(d)

diag(dy,da, . ..,dy)
diag A

A>0

A>0

A >0, nnd
A>B,B=<A
A >0, pd.
A>-B B<A
XKy

x<Lyy
x<¥y

A’ = (az)
A—l

A-

A+

trace A

det A

rank A

per A

mod(A)

Pf(A)

p(A)

ky(A)

complex matrix, with B and C real
complex conjugate of A

conjugate transpose of A

A is a Hermitian matrix

A is a skew-Hermitian matrix
A is a normal matrix

supremum
infemum

maximum

minimum

tends to

implies

proportional to

the n x 1 vector with unit elements

the n x n identity matrix

a vector or matrix of zeros

n X n matrix with diagonal elements d’ = (dy, ..., d,),
and zeros elsewhere

same as above

diagonal matrix ; same diagonal elements as A
the elements of A are all non-negative

the elements of A are all positive

A is non-negative definite (x’Ax > 0)

A-B>ro0

A is positive definite (x’Ax > 0 for x # 0)
A-B>0

x is {strongly) majorized by y

x is weakly submajorized by y

x is weakly supermajorized by y

the transpose of A

inverse of A when A is nonsingular

weak inverse of A satisfying AAA = A
Moore-Penrose inverse of A

sum of the diagonal elements of a square matrix A
determinant of a square matrix A

rank of A

permanent of a square matrix A

modulus of A = (a;;), given by (|a;)|)

pfaffian of A

spectral radius of a square matrix A

condition number of an m X n matrix, v = 1,2, 0o
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(x,y) inner product of x and y

[Ix|| a norm of vector x (= (x,x)1/?)

Ix]|2 length of x (= (x*x)'/?)

1%l L, vector norm of x (= S, |2:{P)!/?)

1%l o0 L, vector norm of x (= max; |z;])

A, a generalized matrix norm of m x n A
(= 30 layP) e, p> 1)

A F Frobenius norm of matrix A (= (32, 32 |a;[*)'/?)

I1A]l4.in generalized matrix norm for m x n matrix A induced
by a vector norm || - ||,

| A]] i unitarily invariant norm of m x n matrix A

| Ao orthogonally invariant norm of m x n matrix A

Al matrix norm of square matrix A

AN v in matrix norm for a square matrix A induced
by a vector norm || - |},

Anixn m X n matrix

(A,B) matrix partitioned by two matrices A and B

(ai,...,a,) matrix partitioned by column vectors ay,...,a,

A®B Kronecker product of A and B

AoB Hadamard (Schur) product of A and B

AOB Rao—Khatri product of A and B

vec A, xn mn X 1 vector formed by writing the columns of A
one below the other

vech A, xm %m(m + 1) x 1 vector formed by writing the columns of the lower
triangle of A (including the diagonal elements) one below the other

Lim o) or Kom vec-permutation (commutation) matrix

G, or D, duplication matrix

P, or N, symmetrizer matrix

A(A) eigenvalue of a square matrix A

a(B) singular value of any matrix B
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CHAPTER 2

VECTORS, VECTOR SPACES, AND
CONVEXITY

Vector spaces and subspaces play an important role in statistics, the key ones being
orthogonal complements as well as the column and row spaces of matrices. Projec-
tions onto vector subspaces occur in topics like least squares, where orthogonality
is defined in terms of an inner product. Convex sets and functions arise in the
development of inequalities and optimization. Other topics such as metric spaces
and coordinate geometry are also included in this chapter. A helpful reference for
vector spaces and their properties is Kollo and von Rosen [2005: section 1.2].

2.1 VECTOR SPACES

2.1.1 Definitions

Definition 2.1. If S and T are subsets of some space V', then S NT is called the
intersection of S and T and is the set of all vectors in V common to both S and T.
The sum of S and T, written S + T, is the set of all vectors in V that are a sum of
a vector in S and a vector in 7. Thus

W=8+T={w:w=s+t,secSandteT}
(In most applications S and T are vector subspaces, defined below.)

Definition 2.2. A vector space U over a field F is a set of elements {u} called
vectors and a set F of elements called scalars with four binary operations (+, -, *,
and o) that satisfy the following axioms.

A Matriz Handbook for Statisticians. By George A. F. Seber 7
Copyright © 2008 John Wiley & Sons, Inc.
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(1) Fis a field with regard to the operations + and -.
(2) For all u and v in U we have the following:

(i) u x vel.
(i) u x v=v * u.
(iii) (u * v) x w=u * (v * w) for all w e U.
(iv) There is a vector 0 € U, called the zero vector, such that u x 0 = u for
aluel.
(v) For each u € U there exists a vector —u € U such that u x —u = 0.

(3) For all @ and 3 in F and all u and v in &/ we have:

(i) aoueV.

(ii) There exists an element in F called the unit element such that l1ou = u.
(ili) (¢ +pB)ou=(aou) » (8 ou).
(iv) @o(u * v) = (ao u) x (aov).

(v) (a-B)ou=aoc(fon).

We note from (2) that U is an abelian group under “x”. Also, we can replace “x
by “+” and remove “” and “o” wihout any ambiguity. Thus (iv) and (v) of (3)
above can be written as a(u + v) = au + av and (af)u = a(fBu), which we shall
do in what follows.

Normally F = F, where F denotes either R or C. However, one field that has
been useful in the construction of experimental designs such as orthogonal Latin
squares, for example, is a finite field consisting of a finite number of elements. A
finite field is known as a Galois field. The number of elements in any Galois field is
p™, where p is a prime number and m is a positive integer. For a brief discussion
see Rao and Rao [1998: 6-10].

If F is a finite field, then a vector space U over F can be used to obtain a finite
projective geometry with a finite set of elements or “points” S and a collection of
subsets of S or “lines.” By identifying a block with a “line” and a treatment with
a “point,” one can use the projective geometry to construct balanced incomplete
block designs—as, for example, described by Rao and Rao [1998: 48-49].

For general, less abstract, references on this topic see Friedberg et al. [2003],
Lay [2003], and Rao and Bhimasankaram [2000].

Definition 2.3. A subset V of a vector space U that is also a vector space is called
a subspace of U.

2.1. V is a vector subspace if and only if cou+ v € V for all u and v in V and all
a and § in F. Setting o = 3 = 0, we see that 0, the zero vector in U, must belong
to every vector subspace.

2.2. The set V of all m x n matrices over F, along with the usual operations of
addition and scalar multiplication, is a vector space. If m = n, the subset A of all
symmetric matrices is a vector subspace of V.

Proofs. Section 2.1.1.
2.1. Rao and Bhimasankaram [2000: 23].
2.2. Harville [1997: chapters 3 and 4].
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2.1.2 Quadratic Subspaces

Quadratic subspaces arise in certain inferential problems such as the estimation of
variance components (Rao and Rao [1998: chapter 13]). They also arise in testing
multivariate linear hypotheses when the variance-covariance matrix has a certain
structure or pattern {Rogers and Young [1978: 204] and Seeley [1971}). Klein [2004]
considers their use in the design of mixture experiments.

Definition 2.4. Suppose B is a subspace of A, where A is the set of all n x n real
symmetric matrices. If B € B implies that B2 € B, then B is called a quadratic
subspace of A.

2.3. If A; and A, are real symmetric idempotent matrices (i.e., A? = A;) with
A1A; =0, and A is the set of all real symmetric n X n matrices, then

B={a1A; + a2A, : a1 and ay real},
is a quadratic subspace of A.
2.4. If B is a quadratic subspace of A, then the following hold.
(a) If A € B, then the Moore-Penrose inverse At € B.
(b) If A € B, then AA* € B.
(c) There exists a basis of B consisting of idempotent matrices.
2.5. The following statements are equivalent.
(1) B is a quadratic subspace of A.
(2) If A,B € B, then (A + B)? € B.
(3) If A,B € B, then AB+BA € B.
(4) If A € B, then A* ¢ Bfor k=1,2,....
2.6. Let B be a quadratic subspace of A. Then:
(a) If A,B € B, then ABA € B.

(b) Let A € B be fixed and let C = {ABA : B € B}. Then C is a quadratic
subspace of B.

{¢) YA B,Cc B, then ABC+ CBA € B.
Proofs. Section 2.1.2.
2.3. This follows from the definition and noting that AsA; = 0.

2.3 to 2.6. Rao and Rao [1998: 434-436, 440].
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2.1.3 Sums and Intersections of Subspaces

Definition 2.5. Let V and W be vector subspaces of a vector space U. As with
sets, we define V + W to be the sum of the two vector subspaces. f VN W =0
(some authors use {0}), we say that V and W are disjoint vector subspaces (Harville
[1997] uses the term “essentially disjoint”). Note that this differs from the notion
of disjoint sets, namely VN W = ¢, which we will not need. When V and W are
disjoint, we refer to the sum as a direct sum and write V& W. Also VN'W is called
the intersection of ¥V and W.

The ordered pair (N, C) forms a lattice of subspaces so that lattice theory can
be used to determine properties relating to the sum and intersection of subspaces.
Kollo and von Rosen [2006: section 1.2] give detailed lists of such properties, and
some of these are given below.

2.7. Let A, B, and C be vector subspaces of U.

(a) AN B and A+ B are vector subspaces. However, AU B need not be a vector
space. Here AN B is the smallest subspace containing A4 and B, and A + B
is the largest. Also A + B is the smallest subspace containing A U B. By
smallest subspace we mean one with the smallest dimension.

(b) f U = A& B, then every u € U can be expressed uniquely in the form
u=a+b, whereac Aand b cB.

(¢c) AN(A+B)=A+(ANB) =A.
(d) (Distributive)
(i) AN(B+C) 2 (ANB)+ (ANC).
(i) A+ (BNC)C(A+B)Nn(A+C).
(e) In the following results we can interchange + and N.
iy [AN(B+C)+B=[(A+B)nC]+ B.
(i) AN[B+(ANC)=(ANB)+ (ANC).
(iii) AN(B+C)=AN[BN(A+C)] +C.
(iv) (ANB)+(ANC)+(BNC)=[A+ (BNCO)N[B+ (ANC)).
(v) ANB=[(AnB)+ (ANC)|N[(ANB)+ (BNC).
Proofs. Section 2.1.3.
2.7a. Schott [2005: 68].

2.7b. Assume u = a; + b, so that a —a; = —(b — by ), with the two vectors
being in disjoint subspaces; hence a = a; and b = b;.

2.7c~e. Kollo and von Rosen [2006: section 1.2].
2.7d. Harville [2001: 163, exercise 4].
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2.1.4 Span and Basis

Definition 2.6. We can always construct a vector space U from F, called an
n-tuple space, by defining u = (uy, uz,...,u,)’, where each u; € F.

In practice, F is usually F and U/ is F*. This will generally be the case in this
book, unless indicated otherwise. However, one useful exception is the vector space
consisting of all m x n matrices with elements in F.

Definition 2.7. Given a subset A of a vector space V, we define the span of
A, denoted by S(A), to be the set of all vectors obtained by taking all linear
combinations of vectors in A. We say that A is a generating set of S(A).

2.8. Let A and B be subsets of a vector space. Then:
(a) S(A) is a vector space (even though A may not be).

(b) A C S(A). Also S(A) is the smallest subspace of V containing A in the sense
that every subspace of V containing A also contains S(A).

(c) A is a vector space if and only if A = S(A).
(d) S[s(A)] = 5(A).

e) If A C B, then S(4) C S(B).

f) S(A)US(B) C S(AUB).

(
(
(g) S(ANB) CS(A)NS(B).

Definition 2.8. A set of vectors v; (i =1,2,...,7) in a vector space are linearly
independent if Z:Zl a;v; = 0 implies that ay = ag =--- = a, = 0. A set of vectors
that are not linearly independent are said to be linearly dependent. For further
properties of linearly independent sets see Rao and Bhimasankaram [2000: chapter
1].

The term “vector” here and in the following definitions is quite general and
simply refers to an element of a vector space. For example, it could be an m x n
matrix in the vector space of all such matrices; Harville [1997: chapters 3 and 4]
takes this approach.

Definition 2.9. A set of vectors v; (i = 1,2,...,r) span a vector space V if the
elements of V consist of all linear combinations of the vectors (i.e., if v € V, then
v =ay;vy + -+ a,v,). The set of vectors is called a generating set of V. If the
vectors are also linearly independent, then the v; form a basis for V.

2.9. Every vector space has a basis. (This follows from Zorn’s lemma, which can
be used to prove the existence of a maximal linearly independent set of vectors, i.e.,
a basis.)

Definition 2.10. All bases contain the same number of vectors so that this number
is defined to be the dimension of V.

2.10. Let V be a subspace of . Then:

(a) Every linearly independent set of vectors in V can be extended to a basis of
U.
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(b) Every generating set of V contains a basis of V.
2.11. If ¥V and W are vector subspaces of U, then:
(a) If Y C W and dimV =dimW, then V = W.

(by fV C Wand W C V, then V = W. This is the usual method for proving
the equality of two vector subspaces.

(¢) dim(V + W) = dim(V) + dim{W) — dim(V N W).

2.12. If the columns of A = (ai,...,a,) and the columns of B = (by,...,b,) both
form a basis for a vector subspace of F*, then A = BR, where R = (ry;} isr x r
and nonsingular.

Proofs. Section 2.1.4.
2.8. Rao and Bhimasankaram [2000: 25-28].
2.9. Halmos [1958].
2.10. Rao and Bhimasankaram {2000: 39].
2.11a-b. Proofs are straightforward.
2.11c. Meyer [2000a: 205] and Rao and Bhimasankaram [2000: 48].

2.12. Firstly, a; = >, byry; so that A = BR. Now assume rank R < r; then
rank A < min{rank B,rank R} < r by (3.12), which is a contradiction.

2.1.5 Isomorphism

Definition 2.11. Let V; and V, be two vector spaces over the same field 7. Then
a map (function) ¢ from V; to Vs is said to be an isomorphism if the following
hold.

(1) ¢ is a bijection (i.e., ¢ is one-to-one and onto).
(2) d(u+v) = ¢(u) + ¢(v) for all u,v e V;.
(3) ¢(au) = ag(u) for all @ € F and u € V.
V) is said to be isomorphic to Vs if there is an isomorphism from V; to V.

2.13. Two vector spaces over a field F are isomorphic if and only if they have the
same dimension.

Proofs. Section 2.1.5.

2.13. Rao and Bhimasankaram [2000: 59].
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2.2 INNER PRODUCTS

2.2.1 Definition and Properties

The concept of an inner product is an important one in statistics as it leads to ideas
of length, angle, and distance between two points.

Definition 2.12. Let V be a vector space over F (i.e., R or C), and let x, y, and
z be any vectors in V. An inner product {-,-) defined on V is a function (x,y) of
two vectors x,y € V satisfying the following conditions:

(1) (x,y) = (y,x), the complex conjugate of {y, x).
) (x,%x) > 0; (x,x) = 0 implies that x = 0.

(3) {ax,y) = a(x,y), where « is a scalar in F.

(4) x+vy,2z) = (x,2) +(y,2).

When V is over R, (1) becomes (x,y) = (y,x), a symmetry condition. Inner
products can also be defined on infinite-dimensional spaces such as a Hilbert space.
A vector space together with an inner product is called an inner product space. A
complex inner product space is also called a unitary space, and a real inner product
space is called a Fuclidean space.

The norm or length of x, denoted by ||x||, is defined to be the positive square
root of {x,x). We say that x has unit length if ||x|| = 1. More general norms, which
are not associated with an inner product, are discussed in Section 4.6.

We can define the angle 8 between x and y by

cos§ = (x,y)/(Ix[llylD-

The distance between x and y is defined to be d(x,y) = ||x — y|| and has the
properties of a metric (Section 2.4). Usually, V = R" and (x,y) = X'y in defining
angle and distance.

Suppose (2) above is replaced by the weaker condition
(2") {x,x) > 0. (It is now possible that (x,x) =0, but x # 0.)

We then have what is called a semi-inner product (quasi-inner product) and a
corresponding seminorm. We write (x,y)s for a semi-inner product.

2.14. For any inner product the following hold:
(a) (x,ay + f2) = a(x,y) + B(x,2).
(b) {x,0) = (0,x) =0.
(¢) {ox,By) = alx, By) = af(x,y).
2.15. The following hold for any norm associated with an inner product.
(a) [Ix+yll <[l x|| + llyll (triangle inequality).

(B) fx =yl + Iyl = lIx]l-
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(c) IIx+yl? + Ix — ylI* = 2|Ix[|* + 2|ly|* (parallelogram law).
(@) e+ yl2 = X2+ Iyl if (x,y) = 0 (Pythagoras theorem).
(e) (x,y) + {y,x) <2[x[-llyl-

2.16. (Semi-Inner Product) The following hold for any semi-inner product (- ,-)s
on a vector space V.

(a) (0,0), =0
(b) llx+ylls < Ilxlls + [lylls-
(¢c) N={x€V: |x|s =0} is a subspace of V.

2.17. (Schwarz Inequality) Given an inner product space, we have for all x and y

(x,9)% < (x,x)(y,y),

or
16y < DIl y

with equality if either x or y is zero or x = ky for some scalar k. We can obtain
various inequalities from the above by changing the inner product space (cf. Section
12.1).

2.18. Given an inner product space and unit vectors u, v, and w, then

V1= v)]? < V1= [{,w)]2+ /1= [(w,v)]2

Equality holds if and only if w is a multiple of u or of v.

2.19. Some inner products are as follows.
(a) If ¥V = R", then common inner products are:
(1) (x,y) =y'x =Y, 2% (= x'y). If x =y, we denote the norm by

|x||2, the so-called Euclidean norm.
The minimal angle between two vector subspaces ¥V and W in R™ is given

by 1,2
c08Bpin = max —&—
xeVyew [x[2 - lyll2

For some properties see Meyer [2000a: section 5.15].

(2) {x,y) =y Ax (=x'Ay), where A is a positive definite matrix.
(b) If V = C", then we can use (X,y) =y*x =Y ., ;¥

(c) Every inner product defined on C™ can be expressed in the form (x,y) =
y*Ax = 37,3 ai;jzj;, where A = (ay;) is a Hermitian positive definite
matrix. This follows by setting (e;,e;) = a;; for all ¢,j, where e; is the
ith column of I,. If we have a semi-inner product, then A is Hermitian
non-negative definite. (This result is proved in Drygas [1970: 29], where
symmetric means Hermitian.)
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2.20. Let V be the set of all m x n real matrices, and in scalar multiplication all
scalars belong to R. Then:

(a) V is vector space.
(b) If we define (A, B) = trace(A’B), then (,) is an inner product.

(c) The corresponding norm is ((A,A))V/2 = (S0, P a?j)l/Q. This is the
so-called Frobenius norm ||A| g (cf. Definition 4.16 below (4.7)).

Proofs. Section 2.2.1.
2.14. Rao and Bhimasankaram [2000: 251-252].

2.15. We begin with the Schwarz inequality [{(x,y)| = [{y,x)| < x| - |y |} of
(2.17). Then, since {x,y) + (y,x) is real,

(x,¥) + {y,x) < [(%y) + ¥, x| < [(x, )]+ Ky, x| < 2/x] -yl

which proves (e). We obtain (a) by writing ||x + y||* = (x + y,x +y) and
using (e); the rest are straightforward. See also Rao and Rao [1998: 54].

2.16. Rao and Rao [1998: 77].

2.17. There are a variety of proofs (e.g., Schott [2005: 36] and Ben-Israel
and Greville [2003: 7]). The inequality also holds for quasi-inner (semi-inner)
products (Harville [1997: 255]).

2.18. Zhang [1999: 155].
2.20. Harville [1997: chapter 4] uses this approach.

2.2.2 Functionals

Definition 2.13. A function f defined on a vector space V over a field F and
taking values in F is said to be a linear functional if

flaaxy + agxz) = a1 f(x1) + o f(x2)

for every x;1,x2 € V and every a;,as € F. For a discussion of linear functionals
and the related concept of a dual space see Rao and Rao [1998: section 1.7].

2.21. (Riesz) Let V be an an inner product space with inner product (,), and let
f be a linear functional on V.

(a) There exists a unique vector z € V such that
f(x) = (x,2z) for every x € V.
b) Here z is given by z = f(u)u, where u is any vector of unit length in V*.
g g

Proofs. Section 2.2.2.
2.21. Rao and Rao [1998: 71].
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2.2.3 Orthogonality

Definition 2.14. Let U be a vector space over F with an inner product (,), so
that we have an inner product space. We say that x is perpendicular to y, and we
write x Ly, if (x,y) = 0.

2.22. A set of vectors that are mutually orthogonal—that is, are pairwise orthog-
onal for every pair—are linearly independent.

Definition 2.15. A basis whose vectors are mutually orthogonal with unit length
is called an orthonormal basis. An orthonormal basis of an inner product space
always exists and it can be constructed from any basis by the Gram-Schmidt or-
thogonalization process of (2.30).

2.23. Let V and W be vector subspaces of a vector space U such that YV C W. Any
orthonormal basis for V can be enlarged to form an orthonormal basis for W.

Definition 2.16. Let U be a vector space over F with an inner product (,), and
let ¥V be a subset or subspace of U. Then the orthogonal complement of V with
respect to U is defined to be

V= {x:(x,y) =0 for all y € V}.

If V and W are two vector subspaces, we say that V 1 W if {(x,y} = 0 for all
xeVandyeW.

2.24. Suppose dim U = n and oy, 9, ...,q, is an orthonormal basis of U. If
ay,...,a, (r < n) is an orthonormal basis for a vector subspace V of U, then
Qril,...,Qy is an orthornormal basis for VL.

2.25. If S and T are subsets or subspaces of U, then we have the following results:
(a) St is a vector space.
(b) S C (S*)! with equality if and only if S is a vector space.
(¢) If S and T both contain 0, then (S +7T)*+ = St N7+,
2.26. If V is a vector subspace of U, a vector space over F, then:
(a) V' is a vector subspace of U, by (2.25a) above.
(b) (VH)t =V,

() V&Vt = U. In fact every u € U can be expressed uniquely in the form
u=x-+y,wherex€Vandy € V'

(d) dim(V) + dim(V*) = dim(U).
2.27. If V and W are vector subspaces of U, then:
(a) Y C W if and only if V L W+.
(b) V C W if and only if W+ C VL.
() WnW)t =Vt Wwhand (V+W)L =vinwt,
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For more general results see Kollo and von Rosen [2005: section 1.2].

Definition 2.17. Let V and W be vector subspaces of U, a vector space over F,
and suppose that ¥V C W. Then the set of all vectors in W that are perpendicular
to V form a vector space called the orthogonal complement of V with respect to W,
and is denoted by V+ N W. Thus

VAW ={w:weW,(w,v) =0 for every v € V}.
2.28. Let VC W. Then
(a) (i) dim(VtNW)=dim(W)— dim(V).
i) W=ve Wtnw).
(b) From (a)(ii) we have d = W WL =V e (VI nWw)e Wt
The above can be regarded as an orthogonal decomposition of U into three
orthogonal subspaces. Using this, vectors can be added to any orthonormal

basis of V to form an orthonormal basis of W, which can then be extended
to form an orthonormal basis of Y.

2.29. Let A, B, and C be vector subspaces of . If B L C and A L C, then
AN(B®aC)=ANB.

2.30. (Classical Gram-Schmidt Algorithm) Given a basis x;,%3,...,%, of an in-
ner product space, there exists an orthonormal basis q;,qz,...,q, given by q; =
XI/HXIH: q; = W]/Hw]“ (.] =2,... ,77,), where

Wi =X — (X5, q1)q1 — (Xj,d2)q2 — - — (X, Q5-1)q; 1.

This expression gives the algorithm for computing the basis. If we require an
orthogonal basis only without the square roots involved with the normalizing, we
can use w1 =x; and, for 7 =2,3,...,n,

(x5, W1)wy (%5, Wi—1)Wj—1

Also the vectors can be replaced by matrices using a suitable inner product such
as (A, B) = trace(A'B).

2.31. Since, from (2.9), every vector space has a basis, it follows from the above
algorithm that every inner product space has an orthonormal basis.

2.32. Let {a1,a2,...,a,} be an orthonormal basis of V, and let x,y € V be any
vectors. Then, for an inner product space:

(a) x = (x,0)a; + (X, a9)02 + -+ + (X, ).

(b) (Parseval’s identity) (x,y) =31 ,{x,a;){e,y).
Conversely, if this equation holds for any x and y, then oy,...,a, is an
orthonormal basis for V.

(c) Setting x =y in (b) we have

Ix]|? = (¢, @)[? + [, @) + - + [(x, e .
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k
i=1

(d) (Bessel’s inequality) 3

Equality occurs if and only if x belongs to the space spanned by the «;.

(%, 0;) < ||x]|? for each k < n.

Proofs. Section 2.2.3.
2.24. Schott [2005: 54].

2.25a. If x;,xp € S, then (x;,y) =0forally € S and (a1 x1 + aaxa,y) =
a1(x1,y) + az(x2,y) =0, Le., o1x1 + azxp € S+

2.25b. If x € S, then (x,y) =0 for ally € S* and x € (S+)*. By (a), (§1)*
is a vector space even if S is not; then use (2.26b).

2.25¢. If x belongs to the left-hand side (LHS), then (x,s +t) = (x,s) +
(x,t) =0foralls € SandallteT. Setting s =0, then (x,t) = 0; similarly,
(x,s) =0 and LHS C RHS. The argument reverses.

2.26. Rao and Rao [1998: 62-63].
2.27a-b. Harville [1997: 172].

2.27c. Harville [2001: 162, exercise 3] and Rao and Bhimasankaram [2000:
267).

2.28a(i). Follows from (2.26d) with &/ = W.

2.28a(ii). If x € RHS, then x =y +z wherey € V C W and z € W so that
x € Wand RHS C LHS. Then use (i) to show dim(RHS) = dim(LHS).

2.29. Kollo and von Rosen [2005: 29].

2.30. Rao and Bhimasankaram [2000: 262] and Seber and Lee [{2003: 338-
339]. For matrices see Harville [1997: 63-64].

2.32a—c. Rao and Rao [1998: 59-61].
2.32d. Rao [1973a: 10].

2.2.4 Column and Null Spaces

Definition 2.18. If A is a matrix (real or complex), then the space spanned by
the columns of A is called the column space of A, and is denoted by C(A). (Some
authors, including myself in the past, call this the range space of A and write
R(A).) The corresponding row space of A is C(A’), which some authors write
as R(A); hence my choice of notation to avoid this confusion. The null space or
kernel, N'(A) of A, is defined as follows:

N(A) ={x: Ax =0}.

The following results are all expressed in terms of complex matrices, but they clearly
hold for real matrices as well.

2.33. From the definition of a vector subspace we find that C(A) and N (A) are
both vector subspaces.
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2.34. Let A and B both have n columns. If any one of the following conditions
holds, then all three hold:
(1) C(AY) C C(BY).
(2) N(B) CN(A).
(3) A(I,—B™B) =

If (3) holds for a particular weak inverse B~, then (3) holds for any weak inverse
B-.

2.35. Let A be any complex matrix.

(a) N(A*A) = N(A).

(b) C(AA*) =C(A).

(¢) Two more results follow from (a) and (b) by interchanging A and A*.
In most applications A is real so that A* = A’.
2.36. N(A)CC(I-A)and N(I—A) CC(A).

2.37. If x L y when {x,y) = x*y =0, and A is an m X n complex matrix, then
N(A) = {C(A*)}*. We therefore have an orthogonal decomposition

N(A)DC(A*)=F" and dimN(A)+dimC(A*)=n

We get a further result by interchanging the roles of A and A*. Note that
dim[C(A*)] = rank A* = rank A, by (3.3¢c).

2.38. If Aism xn and Bism x p, then C(B) C C(A) if and only if there exists
an n X p matrix R such that AR = B. Furthermore, if p = n, C(A) = C(B) if
and only if there exists such a nonsingular R. Similar results are available for row
spaces by simply taking transposes. Thus if C is ¢ x n, then C(C’) C C(A’) if and
only if there exists a ¢ x m matrix S such that SA = C.

2.39. The following hold for conformable matrices:

(a) If C(A) C C(B), then C(A'B) = C(A’).

(b) C(B1) C C(B;) implies that C(A'B;) C C(A'Bz).

(¢) C(B1) = C(B3) implies that C(A'B;) = C(A’Ba).

(d) If C(A + BE) C C(B) for some conformable E, then C(A) C C(B).
(e) If C(A) C C(B), then C(A + BE) C C(B) for any conformable E.
Proofs. Section 2.2.4.

2.34. Scott and Styan [1985: 210).
2.35. Meyer [2000a: 212-213].

2.36. Note that Bx = 0 if and only if x = (I — B)x. Set B = A and
B=1I-A.
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2.37. Ben-Israel and Greville [2003: 12], Rao and Bhimasankaram {2000: 269],
and Seber and Lee [2003: 477, real case].

2.38. Graybill [1983: 90] and Harville [1997: 30].

2.39. Quoted by Kollo and von Rosen [2005: 49]. For (a) we first have
C(A'B) C C(A'). Then, from (2.35), A’x = A’Ay = A’'BRy € C(A'B), by
(2.38), i.e., C(A"} C C(A'B). The rest are straightforward.

2.3 PROJECTIONS

Definition 2.19. A square matrix P such that P? = P is said to be idempotent.
In this section we focus on the geometrical properties of such matrices, which are
used extensively in statistics. Algebraic properties are considered in Section 8.6.

2.3.1 General Projections

Definition 2.20. Let the vector space U be the direct sum of two vector spaces
V; and V; so that U =V &V, (i.e., V1 NVy = 0). Then every vector v € V has a
unique decomposition v = v; + va, where v; € V; (i = 1,2). The transformation
v — vy is called the projection of v on Vi along V. Here uniqueness follows by
assuming another decomposition v = w; + wy so that vi — w; = —(vy — wa),
which implies v; = w; for i = 1,2, otherwise V; NV # 0. Usually & = F™, and the
following hold if F is R or C.

2.40. The above projection on V; along V, can be represented by an n x n matrix
P called a projector or projection matriz so that Pv = v;. Also P is unique and
idempotent.

2.41. Using the above notation, v = Pv + (I, — P)v = v; 4+ vq, so that vy =
(I, — P)v is the projection of v on Vy along V;. Here P and I,, — P are unique and

idempotent, and
P(I,-P)=0.

2.42. Using the above notation, we can identify V; and V; as follows:
(a) C(P) =M.
(b) C(I, —P)=Vs.
(c) If P is idempotent, then from (8.61) we obtain

C(P)®N(P) =V, & V.

2.43. Using the notation of (2.42), suppose that V; = C(A), where A is n x n of
rank 7. Let A = R,,»x»C,x» be a full-rank factorization of A (cf. 3.5). Then

P =R(CR)"'C

is the projection onto V; along V.
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Proofs. Section 2.3.1.

2.40. Assume two projectors P; (i = 1,2), then (P; — Po)v =v; —v; =0
for all v so that P; = P3. Now v; = v; 4+ 0 is the unique decomposition of
v) so that P2v = P(Pv) = Pv; = v; = Pv for all v so that P2 = P.

2.41. Rao and Rao [1998: 240-241]. Multiply the first equation by P to prove
P(I,-P)=0.

2.42a. C(P) C V; as P projects onto V;. Conversely, if vi € V;, then
Pv; = vy, and V; CC(P); (b) is similar.

2.43. Meyer [2000a: 634].

2.3.2 Orthogonal Projections

Definition 2.21. Suppose U has an inner product (,), and let V be a vector
subspace with orthogonal complement V-, namely

Vi ={x:(x,y) =0, for every y € V}.

Then U = V & V* so that every v € U can be expressed uniquely in the form
v = v + vg, where v; € V and v, € V1. The vectors v; and v, are called the
orthogonal projections of v onto V and V', respectively (we shall omit the words
“along V1 and “along V", respectively). Orthogonal projections will, of course,
share the same properties as general projections. If V = C(A), we shall denote the
orthogonal projection Py, onto V by Pa. In what follows we assume that ¢ = F”.

2.44. Using the above notation, vi = Pyv and vy = (I, — Py)v, where Py and
I, — Py are unique idempotent matrices. The matrix Py is said to be the orthogonal
projector or orthogonal projection matriz of F™* onto V, while Py. =1, — Py is
the orthogonal projector of F* onto V1. As we shall see below, the definition of
orthogonality depends on the definition of (x,y).

2.45. If F* = R™ and (x,y) = x'y, then from the orthogonality we have
P,V(I - PV) = 07
and Py is symmetric as well as being idempotent.

2.46. Let F* = C™ and define (x,y) = y*Ax, where A is a Hermitian positive
definite matrix. Note that x L y if y*Ax = 0 (cf. 2.19¢).

a) Let Py be the orthogonal projection matrix that projects onto V. en
Let Py be th th 1 jecti trix that j to V. Th
P = Py and APy is Hermitian, that is,

AP, =P}A.

(Note that Py is generally not Hermitian. However, if A = I,,, then Py is
Hermitian.)

(b) C(Py) =V and C(I,, — Py) = V+ (from 2.42). Also
vA(I, —Py) = APy(I, —Py) = 0.
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{(c) Let ¥ =C(X). Then
Py = X(X"AX)"X"A,

which is unique for any weak inverse (X*AX)™ and therefore invariant. Also
PvJ. = I‘n - Pv.

(d) If V = C(X), then PyX = X.

2.47. Of particular interest is a special case of (2.46) above, namely {(x,y) =
x'V~ly, where V is positive definite and x,y € R™. Because of its statistical
importance in a variety of nonlinear models including nonlinear regression (e.g.,
generalized or weighted least squares) and multinomial models, (x,y) has been
called the weighted inner product space (Wei [1997]). We now list some special
cases of the previous general theory. Let X be n X p of rank p and V = C(X).
Then:

(a) Py = X(X’V~1X)~X'V~1, which implies P2 = Py and P{,V~! = V~IPy,
Here (X'V~1X)~ is any weak inverse of X’V ~1X. Further properties of Py,
(with V=1 replaced by V) are given by Harville [2001: 106-112].

(b) If the columns of Q and N are respectively orthonormal bases of V and V4,
then Py = QQ'V~! and Py,. = NN'V~!, where Py + Py. =1,,.
(¢) From (b), Q' V'IN = 0.
We can set V =1 is the above to get the unweighted case.

2.48. Let V be an n X n positive definite matrix, G an n X g matrix of rank ¢
(9 <n), and F an n X f matrix (f =n — g) of rank f such that G'F = 0. Then

VF(F'VF)'F + GGV !G) GV =1,.
2.49. Let F* = C", v € C", and define (x,y) = x*y, i.e,, A =1, in (2.46). Then:

(a) Py is an orthogonal projection matrix on some vector space if and only if Py
is idempotent and Hermitian.

(b) From (2.42) we have V =C(Py).

(c) Let T = (tq,t2,...,tp), where the columns t; of T form an orthonormal basis
for V. Then Py = TT*, and the projection of v onto V is v; = TT*v =

S (gt

(d) If ¥ = C(X), then Py = X(X*X)~X* = XX*, where (X*X)~ is a weak
inverse of X*X and X is the Moore-Penrose inverse of X. When the columns
of X are linearly independent, Py = X(X*X)~1X*.

(e) Let V = N(A), the null space of A. Then, since V* = C(A*) (by 2.37),
Py =1, - A"(AA*)"A.

(f) If F* = R™, then the previous results hold by replacing * by ' and re-
placing Hermitian by real symmetric. For example, if V = C(A), then
Py = A(A’A)"A’. Furthermore, x’Pyx = xP{,Pyx = y'y > 0, so that
Py is non-negative definite. This result is used frequently in this book.
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2.50. Let A be an n x m real matrix and B an n X p real matrix. Assuming that
(x,y) = X'y, let Pp denote the orthogonal projection onto C{D) for any matrix D.

(a) C(A)
(b)
(¢)
(d)

(A) N C(B) = C[A(L,, — Py)], where V = C[A’(I — Pg))].
C(A,B) =C(A)&C[(I-P4)BJ.
From (b) we have P(A B) = Pa+ P(I—PA)B-

C(A) C C(B) if and only if Pg—P 4 is non-negative definite, and C(A) C C(B)
if and only if Pg — P4 is positive definite.

The above results are particularly useful in partitioned linear models.

2.51. (Some Subspace Properties) Let w, ©, and V be vector subspaces in R"™ with
w C Q, and let P, and Pg be the respective orthogonal projectors onto w and 2
with respect to the inner product (x,y) = x'y defined on R®. Thus P, and Pq
are symmetric and idempotent. The following results hold (see also (2.53c)).

(a) PQPw = PwPQ = Pw.
(b) PwLﬁQ =Pq—-P,.
(c) APqA’ is nonsingular if and only if the rows of A are linearly independent
and C(A)YNQ+ =
(d) fw=QNAN(A), where N'(A) is the null space of A, then:
(i) wh N =C(PeA’).
(ii) Pyinn = PoA'(APqA’)” APq, where (APgA’)™ is any weak inverse
of APqA’.

(e) Let 2 = C(X) = C(X;,Xy), where the columns of n x p X are linearly
independent, and let w = C(X;), where dim(w) =r.

(i) We have from (c), with V = w' and P,, = X;(X|X;) !X} (= Py, say),
that X4(I,, — P1)X; is nonsingular.
(i) w = QNN[X(I, — Py)].
(iii) It follows from (b) and (d)(ii)) that
Po — P, = (I, — P1)Xo[X5 (I, — P1)Xo] ' X4(1, — Py).

By interchanging the subscripts 1 and 2, a further result can be obtained.

Note that (a)—(d) are used in testing a linear hypothesis for a linear regression model
(e.g., Seber [1977: sections 3.9.3 and 4.5] and Seber and Lee [2003: theorems 4.1
and 4.3]); (e) is related to subset regression (see Seber and Wild [1989: Appendix
D] for a summary).

2.52. If Q and w; (¢ = 1,2,...,k) are vector subspaces of R™ satisfying w; C £,
with inner product (x,y) = X'y, then the following results are equivalent:

(1) Pwlﬁwgﬁ-nﬂwl _— Pwlm“&m..‘nwi_l = PQ — Pwl for ’L == ]., 2, ey k’
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(2) W NQ LwiNQforalld,j=1,2....k @#].
(B) wifNQCwjforalli,j=1,2,....k i#j.

The above results are useful in testing a sequence of nested hypotheses in an
analysis of variance, when there are equal numbers of observations per cell (bal-
anced designs) leading to an underlying orthogonal structure (cf. Darroch and Silvey
[1963], Seber [1980: section 6.2], and Seber and Lee [2003: 203]).

2.53. Let w; and ws be vector subspaces of R™ with inner product (x,y) = x’y.

(a) P =P,, +P,, is an orthogonal projector if and only if w; L ws, in which
case P, + P,, =P, where w = w; § wy.

(b) If wy =C(A) and wy = C(B) in (a), then wy H w2 = C{A,B).
(c) The following statements are equivalent:

P,, — P, is an orthogonal projection matrix.
Pu,x|l2 > [|Py,x]2 for all x € R™.

(d) Pu,nw, = 2Py, (P, + P, )P, = 2P,,(P,, +P.,)TP,,. Here BT denotes
the Moore-Penrose inverse of B.

The above results hold for C™ if (x,y) = y*x and ’ is replaced by *.

Definition 2.22. (Centering) Let a = (a;) be an n x 1 real vector, and let @ =
Zle a;/n. We say that the a is centered when we transform a; to b; = a; — @.

If we have the n x p matrix A = (aj,ag,...a,) = (alV,a®, ... aP)) and
a=n"'Y" a; then we say that A is row centered if we transform it to the
matrix B = (a; —a,a; —a,...,a, —a).

If aleod) = P al)/p, then we say that A is column centered if we form the
matrix C = (a() —al®°D a® — gl a) _gleol))

We say that A is double-centered if we apply both row and column centering.

2.54. Using the above notation, we have the following results:

(a) We can write @ = 1,,a/n so that (@) = n~'1,1,a = P, a, where Py, =
n~'1,1/, represents the orthogonal projection of R" onto 1,. Furthermore,
b =a—(a) = (I,—P1,)a, where I, — P represents an orthogonal projection
perpendicular to 1,; this projection matrix is called a centering matriz.

(b) a=A’l,/nand B=A -1,3 = (I, - Py )A.
(c) al*) = Al,/p and C = A(I, — Py,).

(d) When A is double centered we obtain D = (I,—Py,)A(I,—Py,), where d;; =
aij —Q;. —E.j —-a., a;. = Zj aij/p, E.j = Zz aij/n, and @.. = Zl Zj au/(np)
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Centering is used extensively in statistics, for example linear regression (Seber
and Lee [2003: section 3.11.1 and section 11.7 for computing algorithms]) and prin-
cipal component analysis, and double centering is used in classical metric scaling,
in principal component analysis (Jolliffe [1992: section 14.2.3]), and in the singular-
spectrum analysis (SAS) of times series, where it is applied to trajectory matrices
(Golyandina et al. [2001: section 4.4, 272]).

Proofs. Section 2.3.2.
2.46. Rao [1973a: 47].
2.47. Wei [1997: 185-187].
2.48. Seber [1984: 536].
2.49. Seber and Lee [2003: Appendices B1 and B2, real case].
2.50a. Quoted by Rao and Mitra [1971: 118, exercise 7a].
2.50b—d. Sengupta and Jammalamadaka [2003: 39, 47]; (c) uses (2.44).

2.51a-d(i). Seber and Lee [2003: Appendix B3, 477-478, real case] and Seber
[1984: Appendix B3, 535, real case|.

2.51d(ii). If x € C(X;) = w, then P1x = x, X4(I, — P;)x = 0, and x €
N(X4(I,, — Py)). Conversely, if x = Xja; + Xoaz € Q and 0 = X5(I, —
P))x = X5, — P1)Xsas (since P1X; = Xy), then az = 0 (by (i)) and
X € C(Xl)

2.52. Seber [1980: section 6.2].

2.53a. P is clearly symmetric and idempotent if and only P, P, = =P, P,,,.
Multiplying on the left by P, shows that P, P, is symmetric and therefore
P, P, = 0. Furthermore, since P, is idempotent, we have from (2.35)

P,

C(Pwl + sz) =C |:(Pw17 sz) <P

>:| = C(Pwlvaz) =uwh @LUQ.

2.53b. A’B = 0 implies that PoPg = 0.

2.53c. Quoted, less generally, by Isotalo et al. [2005a: 61]. The proofs
are straightforward. For (2), note that for a symmetric idempotent matrix,
x'Ax = xX'A’Ax = ||Ax|2.

2.53d. Anderson and Duffin [1969] and Meyer [2000a: 441].

2.4 METRIC SPACES
Definition 2.23. Let S be a subset of R™. By a metric for S we mean a real-valued
function d{-,-) on S x S such that:

(a) d(x,y) > 0 for all x,y € S with equality if and only if x = y (d is positive
definite).
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(b) d(x,y) =d(y,x) for all x,y € S (d is symmetric).

(¢) d(x,y) <d(x,z) + d(y,z) for all x,y,z € S (triangle inequality).
If we replace (c) by the stronger condition

() dx,y) < max{d(x,2), d(y,2)),
d is called an ultrametric. Note that (c¢') implies (c).

Definition 2.24. A metric space is a pair (S, d) consisting of a set S and a metric
dfor S.

2.55. If d is a metric, then so are d;, da, and d3, where

dl(x’y) = d(xvy)/(1+d(x’y))a

da(x,y) = Vd(xy),
d3(x,y) = kd(x,y) (k>0).

2.56. If d is a metric, then D(x,y) = [d(x,y)]? is not necessarily a metric.

2.57. (Canberra metric) If x and y have positive elements, then the function

is a metric.

2.58. (Minkowski Metrics) The function A, is a metric, where

n

1/p
Ap(x,y) = (lez —in”> , p>0.

i=1

The most common ones are p = 1 (the city block metric) and p = 2 (the Fuclidean
metric). Various scaled versions of A; have also been used.

2.59. Ax(X,y) = Sup;ci<p [%: — ¥i|, for all x and y, is a metric.
Definition 2.25. The Mahalanobis distance is defined to be
d(x’ y) = {(x - y)lA(x - y)}1/27
where A is positive definite. Here d is a metric. The Mahalanobis angle 6 between
x and y subtended at the origin is defined by
x' Ay
(x/Ax)1/2(y/Ay)1/2 .

cosf =

Definition 2.26. A sequence of points {x;} in S for a metric space (S, d) is called
a Cauchy sequence if, for every € > 0, there exists a positive integer N such the
d(x;,x;) < eforalli,j > N.

A sequence {x;}converges to a point x if, for every ¢ > 0, there exists a positive
integer N such that d(x,x;) < e forall i > N.
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A metric space is said to be complete if every Cauchy sequence converges to a
point in S.

Definition 2.27. Let f be a mapping of a metric space (S, d) into itself. We call
f a contraction if there exists a constant ¢ with 0 < ¢ < 1 such that

d(f(x), f(y)) <ecd(x,y), forall x,ye€S.

If 0 < ¢ < 1, we say that f is a strict contraction. If f(x) = x, then x is referred to
as a fized point of f.

2.60. (Contraction Mapping Theorem) Let f be a strict contraction of a complete
metric space into itself. Then f has one and only one fixed point and, for any point
y € 5, the sequence

y, f¥), £2(), £2(y),-- -,
where f7(y) = f(f""1(y)), converges to the fixed point.

2.61. Let (S, d) be a metric space with § = C" and d(x,y) = ||x — y||2- A matrix
A is a contraction, that is

[Ax — Ay[lz < ¢llx —yll2 for 0<c<1,

if and only if omax(A) < 1, where omax(A) is the maximum singular value of A.
Further necessary and sufficient conditions for a matrix to be a contraction are
given by Zhang [1999: section 5.4].

Proofs. Section 2.4.
2.55-2.57. Seber [1984: : 392, exercises 7.4-7.6, see the solutions].

2.58. Seber [1984: 352]. Use Minkowski’s inequalities (12.17b) and x; — z; =
x; — y; + y; — 2; to prove the triangle inequality.

2.59. Use the properties of sup.
2.60-2.61. Zhang [1999: 143-144].

2.5 CONVEX SETS AND FUNCTIONS

Definition 2.28. A subset C of R" is called convez if, for any two points x;,x, €
C, the line segment joining x; and xy is contained in C, that is,

ax;1+(l—a)xoeC for 0<a<l.

We will list some properties of convex sets below. For a more comprehensive dis-
cussion see Berkovitz [2002], Kelly and Weiss [1979], Lay [1982], and Rockafellar
[1970).

2.62. If C; and C; are convex sets in R™, then:

(a) C1NCy is convex.
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(b) Cy + C3 is convex.
{¢) C1 U5 need not be convex.

These results clearly hold for any finite number of convex sets. The result (a) also
holds for a countably infinite number of convex sets.

2.63. Given any set A € R™, the set C4 of points generated by taking the conver
combination of every finite set of points x; in A, namely

a1Xy + asXg + -+ agxy  (each a; > 0 and Zai =1)

(2

is a convex set containing A. The set C4 is the smallest convex set containing
A and is called the convex hull of A. It is also the intersection of all convex sets
containing A.

Definition 2.29. Given A a set in R™, we define x to be an inner (interior) point
of A if there is an open sphere with center x that is a subset of A; that is, there
exists & > 0 such that

Ss={y:yeR", (y—x)(y —x) <8} C A

A boundary point x of A (not necessarily belonging to A) is such that every open
sphere with center x contains points both in A and in A€, the complement of A
with respect to R™.

A point x is a limit (accumulation) point if, for every § > 0, Ss contains at least
one point of S distinct from x.

The closure of set A is obtained by adding to it all its boundary points not
already in it, and is denoted by A. It can also be obtained by adding to § all its
limit points.

The set A is closed if A = A, while the set is open if A¢, the complement of A,
is closed. For any set A, A is the smallest closed set containing A.

An exterior point of A is a point in A". A point x € A is an extreme point of
A if there are no distinct points x; and x5 in A such that x = ax; + (1 — a)x; for
some a (0 < a < 1).

A set A is bounded if it is contained in an open sphere Sy for some § > 0.

A set which is closed and bounded is said to be compact. For some properties
of open and closed sets see Magnus and Neudecker [1999: 66-69].

The above results generalize to more general spaces using a more general distance
metric other than ||x — y/||2.

2.64. Let C be a convex set.
(a) The closure C is convex.
(b) C and C have the same inner, boundary, and exterior points.

(¢} Let x be an inner point and y a boundary point of C. Then the points
ax + (1 — a)y are inner points of C for 0 < a < 1 and exterior points of C
fora >1

(d) If T is an open subset of R” and T'C C, then T C C.
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2.65. (Separation theorems)

(a) Let C be a closed convex subset and suppose 0 ¢ C. Then there exists a
vector a such that a’x > 0 for all x € C.

(b) Let C be a convex set and y an exterior point. Then there exists a unit vector
u (i.e., |Ju|l2 = 1) such that
inf u'x > u'y.
Jab x>y
(c) Let C be a convex set and y a point not in C, or a boundary point if in
C. Then there exists a supporting plane through y; that is, there exists a

nonzero vector a # 0 such that a’x > a’y for all x € C, or equivalently
infyeca’x = a'y, if y is a boundary point.

(d) Let C; and Cs be convex sets with no inner point in common. Then there
exists a hyperplane a’x = b separating the two sets; that is, there exists a
vector a and a scalar b such that a’x > b for all x € C; and a’y < b for all
y € Cy. This also implies that a’x; > a’x, for all x; € C} and all x; € Cs.

If C; and Cy are also closed, we have strict separation so that there exist a
and b such that a’x > b for x € C; and a'y < b fory € Cs.

(e) Let C be a convex subset, symmetric about 0, so that if x € C, then —x € C
also. Let f(x) > 0 be a function for which (i) f(x) = f(—x), (ii) Co = {x:
f(x) = a} is convex for any positive o, and (iii) [ f(x)dx < co. Then

/Cf(x+cy)dxz/cf(x+y)dx,

forall0 <e¢<1andye€R"

2.66. (Convex Hull) If C4 is the convex hull of a subset A € R", then every point
of A can be expressed as a convex combination of at most n + 1 points in A.

2.67. (Extreme Points) If C is a closed bounded convex set, it is spanned by its
extreme points; that is, every point in C can be expressed as a linear combination
of its extreme points. Also C has extreme points in every supporting hyperplane.

Definition 2.30. A real valued function f is convez in an interval I of R if
flex+ (1 -y <af(z)+(1—a)fly), alla suchthat 0 <o <1,

for all z,y € I (z # y). The function f is said to be strictly convex if < is replaced
by < above.
We say that f is (strictly) concave if —f is (strictly) convex. A linear function is
both convex and concave. A similar definition applies if x is replaced by a vector
or matrix.

A vector convex function is defined along the same lines. We say that f is conver
if

flax + (1 — a)y) < of (x) + (1 — a)f(y)

for every a such that 0 < o <1 and x,y € R"?; f is concave if —f is convex. Here
a < b means a; < b; for all 7.
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2.68. The following functions are convex.
(a) —logz (z > 0).
(b) zP,p>1(z > 0).

They can be used to establish a number of well-known inequalities (e.g., Horn and
Johnson [1985: 535-536}).

2.69. The function
F(A) =logdet A

is a strictly concave function on the convex set of Hermitian positive definite ma-
trices.

2.70. Every convex and every concave function is continuous on its interior. How-
ever, a convex function may have a discontinuity at a boundary point and may not
be differentiable at an interior point.

2.71. Every increasing convex (respectively concave) function of a convex (respec-
tively concave) function is convex (respectively concave). Every strictly increasing
convex (respectively concave) function of a strictly convex (respectively concave)
function is strictly convex (respectively concave).

2.72. (Weirstrass’s Theorem) Let S be a compact subset of a real or complex
vector space. If f : S — R is a continuous function, then there exist points
Xmin, Xmax € S such that

F&Xmin) € f(x) < f(Xmax) forallxe S.
Definition 2.31. The numerical range (field of values) of an n x n complex matrix
Ais
{x*Ax: ||x|]| = 1,x € C"}.

2.73. (Toeplitz—Hausdorff) The numerical range of an n x n complex matrix is
a convex compact subset of C*. For further properties of a field of values see
Gustafson and Rao [1997] and Horn and Johnson [1991].

Proofs. Section 2.5.
2.62. Schott [2005: 71].

2.64a—c. Quoted by Rao [1973a: 51].

2.64d. Schott [2005: 72].

2.65a. Schott [2005: 71].

2.65b. Rao [1973a: 51].

2.65¢-d. Rao [1973a: 52] and Schott [2005: 73].

2.65e. Anderson [1955], and quoted by Schott [2005: 74].
2.66-2.67. Quoted by Rao [1973a: 53].

2.69. Horn and Johnson [1985: 466-467].

2.70-2.71. Magnus and Neudecker [1999: 76].

2.73. Horn and Johnson [1991: 8] and Zhang [1999: 88-89].
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2.6 COORDINATE GEOMETRY

Occasionally one may need some results from coordinate geometry. Some of these
are listed below for easy reference.

2.6.1 Hyperplanes and Lines

2.74. The equation of a hyperplane passing through the points x1,xs,...,%, in
R™ can be expressed in the form

det(l b 1):0.
X X1 X9 - Xp

2.75. Given the points x; = (a1,b1,¢1)" and x2 = (ag,b2,c2)’ in R3, then the
equation of the line through the points is

z~a; y—b z-0

ay — az b1—b2 Cl—Cg.

If the two points are A and B, then a; — az = ABcos#f;, and so on, so that we
can replace the denominators of the above line by the direction cosines cos8; of the
line with respect to each axis. Then cos 6? + cos 3 + cos#3 = 1. This result clearly
generalizes to two points in R™.

2.76. Given the plane az + by + cz + d = 0 in R®, a normal vector to the plane
is given by (a,b, c)’, and the perpendicular distance of the point x; = {z1, y1,21)’
from the plane is

lazy + byr + c21 + d|

Va2 + b2 + o2
This result clearly generalises to R™. Given the plane a’x + d = 0, the distance of
x; from the plane is (|a'x; + d|)/||all2.

2.77. Given 0 < @ < 1, then z = (1 — a)x + «y divides the line segment joining x
and y in the proportion « : (1 — ).

Proofs. Section 2.6.1.
2.77. Abadir and Magnus [2005: 6].

2.6.2 Quadratics

2.78. If A is an n x n symmetric indefinite matrix (i.e., has both positive and
negative eigenvalues), then (x — a)’A(x —a) < ¢ with ¢ > 0 is a hyperboloid with
center a.

2.79. If A is an n x n positive definite matrix, then (x — a)’A(x — a) < c with
¢ > 0 is an ellipsoid with center a. By shifting the origin to a and rotating the
ellipsoid, the latter can be expressed in a standard form Y | A\;27 < ¢ with A; > 0
(i=1,2,...,n), where the \; are the eigenvalues of A. Setting all the z;s equal to
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zero except z;, we see that the lengths of the semi-major axes are b; = /c/A; for
j=1,2,...,n, and the volume of the ellipsoid is

n/2 n
s
v = Fmoay bj
I(Z+1) ]1;[1 !
7rn/2cn/2
T(Z + 1)(det A)1/2’

by (6.17c). Such a volume arises in finding the constant associated with various
elliptical multivariate distributions such as the multivariate normal and the multi-
variate t-distributions (cf. Chapter 20).

2.80. (Quadrics) If x € R”, then a general quadric is @ = 0, where @ = x’Ax +
2b’x + c and A is an n X n symmetric matrix. Let x; and xs be two points in
R™ that we denote by P; and P», respectively. From (2.77), the coordinates of the
point P dividing the line P; P, in the ratio p : 1 is given by (1 4+ u)~1(x; + px2).
Let Qij = X;AXJ‘ + b’xi + b/X]' +c.

(a)

(b)

(d)

Substituting for P we find that P lies on the quadric if

12 Q22 + 2uQ12 + Qi1 = 0.

This is a quadratic in g so that an arbitrary line meets a quadric in two
points.

(Tangent Plane) If P lies on @ = 0, then @1; = 0 and one root y is zero. If
P, P, is a tangent, then the other root must also be zero; that is, the sum of
the roots is zero and @12 = 0. As P, varies subject to Q12 = 0, P; lies on
@1 =0, so that

x{Ax +b'(x; +x) +c=0,

is the tangent plane at x;.

(Tangent Cone) Suppose P; and P, are not on @ = 0, but PP, touches
the quadric so that the equation in u has equal roots, i.e., Q11Q22 = Q.
Therefore as P varies subject to this condition, we trace out the tangent cone
from Py, namely,

QuQ = Q%

(Envelope) Suppose @ = x’Ax — 1 =0, where A is nonsingular, is a central
quadric (i.e., b = 0). Then using (c), a’x = 1 touches the quadric ifa’A~!a =
1. As a varies, a’A~'a = 1 is the envelope equation.

2.6.3 Areas and Volumes

2.81. In two dimensions the area of a triangle with vertices (z;,v;), ¢ = 1,2,3 is
1A, where

1 1 n
A = det 1 Ty Y2
1 =3 ys

The three points are collinear if and only if A = 0.
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2.82. If V = (vy,vy,...,vp), where the v; are vectors in R®, then the square of
the two-dimensional volume of the parallelotope with vi,...,v, as principal edges
is det(V'V). A 2-dimensional parallelotope is a parallelogram; in this case we get
the square of the area. When p = 3 we have the conventional parallelopiped. For
statistical applications see Anderson [2003: section 7.5].

2.83. From (2.74), the four points (x;, v, 2:)’, i = 1,2, 3,4, in three dimensions are
coplanar if and only if

Ty T2 T3z T4

Y2 Yz Y4
Zr k2 23 24

det

Proofs. Section 2.6.3.
2.81. Cullen [1997: 121].

2.82. Anderson [2003: 266]. For the area of a parallelogram see Basilevsky
[1983: 64].
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CHAPTER 3

RANK

The concept of rank undergirds much of matrix theory. In statistics it is frequently
linked to the concept of degrees of freedom. Both equalities and inequalities are
considered in this chapter, and partitioned matrices play an important role.

3.1 SOME GENERAL PROPERTIES

All the matrices in this section are defined over a general field F, unless otherwise
stated.

Definition 3.1. The rank, denoted by rank A (= r, say), of a matrix A is
dim C(A), the dimension of the column space of A. Here r is also called the column
rank of A. The row rank is dimC{A’). If A is m X n of rank m (respectively n),
then A is said to have full row (respectively column) rank. An n x n matrix A is
said to be nonsingular if rank A = n.

As noted in Section 2.2.4, an associated vector space of C(A) is the null space
N(A), and its dimension is called the nullity.

3.1. rank A’ = rank A = r so that the row rank equals the column rank.
3.2. Let A be an m x n matrix of rank r (r < min{m,n}).

(a) A has r linearly independent columns and r linearly independent rows.

(b) There exists an r x r nonzero principal minor. When r < min{m,n}, all
principal minors of larger order than r are zero.
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(¢) f Bism x p and C(B) C C(A), then rank B < rank A.
3.3. Let A be an m X n matrix over F.
(a) rank A + nullityA = number of columns of A.
(b) Suppose A is real, then
rank(A’A) = rank(AA’) = rank A.

(c) Suppose A is complex, then:
(i) rank A = rank A.
(ii) Since rank A = rank A by (3.1), we have rank A = rank A*.
(iii) rank A = rank(AA*) = rank(A*A).
Thus, combining the above,

rank A = rank A = rank A* = rank(AA*) = rank(A*A).

(d) If A is complex, it is not necessarily true that rank A’A = rank A.
3.4. We consider two special cases of rank.

(a) If rank A = 0, then A = 0. This is a simple but key result that can be used
to prove the equality of two matrices.

(b) If rank A = 1, then there exist nonzero a and b such that A = ab’.

3.5. (Full-Rank Factorization) Any m X n real or complex matrix A of rank r
(r > 0) can be expressed in the form A,,«n = CyixrRyxn, where C and R have
(full) rank r. We call this a full-rank factorization. The columns of C may be an
arbitrary basis of C(A), and then R is uniquely determined, or else the rows of R
may be an arbitrary basis of C(A’), and then C is uniquely determined. Note that
C has a left inverse, namely (C'C)~!C’, and R has a right inverse, R’(RR/)~L.
Two full-rank factorizations can be obtained from the singular value decomposition
of A (cf. 16.34e).

3.6. If A and B are m X n matrices, then rank A = rank B if and only if there
exist a nonsingular m x m matrix C and an n X n nonsingular matrix D such that

A =CBD.
3.7. If C(B) = C(C), then rank(AB) = rank(AC) for all A.

3.8. If V is Hermitian non-negative definite, then V. = RR* (by 10.10) and
rank(AV) = rank(AR) for all A.

Proofs. Section 3.1.
3.1. Abadir and Magnus [2005: 77-78].
3.2. (a) and (c) follow from the definition; for (b) see Meyer [2000a: 215].

3.3a. Follows from (2.37) and (c)(ii) below. See also Seber and Lee [2003:
458).
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3.3b. Abadir and Magnus [2005: 81] and Meyer [2000a: 212].
3.3¢(i). Rao and Bhimasankaram [2000: 145].

3.3c(iil). Ben-Israel and Greville [2003: 46] and Meyer [2000a: 212].
3.3d. For a counter example consider A = (1,¢)'(1,1).

3.4b. Abadir and Magnus [2005: 80].

3.5. Ben-Israel and Greville [2003: 26], Marsaglia and Styan [1974a: theorem
1], and Searle [1982: 175].

3.6. If rank A = rank B = r, then by (16.33a) A and B are equivalent to the
same diagonal matrix. The converse follows from (3.14a).

3.7. Follows from C(AB) = C(AC).

3.8. By (10.10), V = RR* and from (2.35) we have C(V) = C(R). The result
follows from (3.7).

3.2 MATRIX PRODUCTS

All the matrices in this section are real or complex.

3.9. Given conformable matrices A and B, we have the following.
(a) rank(BA) = rank A if B has full row rank.
(b) rank(AC) = rank A if C has full column rank.
(c) rank(A’AB) = rank(AB) = rank(ABB').

3.10. Let A and B be m x n and n x p matrices, respectively. Then:
(a) rank(AB) = rank B — dim{{NV(A)]* N C(B)}.
(b) rank(AB) = rank A — dim{C(A’) N [N (B)]*}.

The above results immediately give us conditions for rank(AB) = rank A and
rank(AB) = rank B. Other conditions are given in (3.13c) and (3.13d) below.

3.11. Let A be a square matrix. If rank(A™) = rank(A™*!), then rank(A™) =
rank(A") for all n > m.

3.12. rank(AB) < min{rank A, rank B}.

3.13. Let A have n columns and B have n rows. Let A~ and B~ be any weak
inverses of A and B, respectively. Then:

0 A
rank(B In)

rank A + rank(B,I, — ATA)
A
rank < I, - BB- ) +rank B
= rank A + rank B + rank{(I,, -~ BB )(I,, — AT A)]
n + rank(AB).
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We can deduce the following.
(a) rank(B,I, — A~ A) = rank B + rank[(I,, - BB7)(I, — A~ A)].

(b) rank < I, —%B_ ) =rank A + rank[(I, — BB7)(I, - A~ A)].

(c) rank(AB) = rank A if and only if (B,I, — A~ A) has full row rank n.
(d) rank(AB) = rank B if and only if (;_ _Ag-) has full column rank n.

(e) (Sylvester)
rank(AB) > rank A + rank B — n,

with equality if and only if (I, — BB~)(I, — A~A) = 0. This result also
follows from the Frobenius inequality (3.18b) by setting B = L,,.
If AB =0, rank A + rank B < n.

3.14. Let A be any matrix.

(a) If P and Q are any conformable nonsingular matrices,

rank(PAQ) = rank A.

(b) If C has full column rank and R has full row rank, then

rank A = rank(CA) = rank(AR).

3.15. If A is p x g of rank ¢ and B is ¢ x r of rank r, then AB is p x 7 of rank 7.
3.16. If rank(AB) = rank A, then C(AB) = C(A).
3.17. Suppose that the following products of matrices exist. Then:

(a) rank(XA) = rank A implies rank(X AF) = rank(AF) for every F.

(b) rank(AY) = rank A implies rank(KAY) = rank(KA) for every K.

3.18. Let A, B, and C be conformable matrices, and let (AB)~ and (BC)™ be
any weak inverses. Then:

(a)

Il

K 0 AB
ran BC B

where L = [I - BC(BC)~|B[I - (AB)~(AB)].

rank(AB) + rank(BC) + rank L
= rank B + rank(ABC),

(b) (Frobenius Inequality) From (a) we have
rank(ABC) > rank(AB) + rank(BC) — rank B,

with equality if and only if L = 0.
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3.19. Let V be a non-negative definite n x n matrix, and let X be an n x p matrix.
Then the following statements are equivalent.

(1) rank(X'VX) = rank X.
(2) rank(X’V*X) = rank X, where V' is the Moore-Penrose inverse of V.
(3) C(X'VX) =C(X").
(4)c

Also rank(X’VX) = p if and only if rank X = p and C(X) N [C(V)]* = 0.

X) N [C(V)]* =o.

Proofs. Section 3.2.
3.9. Abadir and Magnus [2005: 82, 85].
3.10. Rao and Rao [1998: 133].

3.11. Meyer [2000a: 394] and Ben-Israel and Greville [2003: 155]; see also
Section 3.8.

3.12. Abadir and Magnus [2005: 81] and Meyer {2000a: 211].
3.13. Marsaglia and Styan [1974a: theorem 6].

3.14a. By (3.12), rank A = rank(P~!PA) < rank(PA) < rank A.
3.14b. Marsaglia and Styan [1974a: theorem 2].

3.15. Let ABx = 0. Then using (3.5), we can take a left inverse of A and
then a left inverse of B to get x = 0 so that the columns of AB are linearly
independent.

3.16. Graybill [1983: 89].

3.17. Harville [2001: 27, exercise 1], Marsaglia and Styan [1974a: theorem 2],
and Rao and Rao [1998: 133].

3.18. Harville [1997: 396] and Marsaglia and Styan [1974a: theorem 7].
3.19. Isotalo et al. {2005b: 17].

3.3 MATRIX CANCELLATION RULES

3.20. Let A be any m x n matrix over F.

(a) If C has full column rank and R has full row rank, then using left and right
inverses, respectively, we have that CA = CB implies A = B and PR = QR
implies P = Q.

(b) If rank(XA) =rank A, then XAG = XAH implies AG = AH.
(c¢) If rank(AY) = rank A, then LAY = MAY implies LA = MA.
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3.21. The following are useful for deriving some cancellation rules when the real
or complex matrix A can be a function of other matrices.

(a) A*A = 0 implies that A = 0.

(b) trace(A*A) = 0 implies that A = 0.
We can interchange A and A*.
3.22. For real or complex matrices we have the following results.

(a) If PXX* = QXX*, then from (3.21a) above and

(PXX" — QXX")(P* — Q") = (PX - QX)(PX - QX)*,
we have PX = QX. We can also replace X by X*.

(b) X*XAYY* = 0 implies XAY = 0. Special cases follow by setting X or Y
equal to the identity matrix.

(c) A’/AB = A’C if and only if AB = AATC, where At is the Moore—Penrose
inverse of A.

Proofs. Section 3.3

3.20. Harville [2001: 27, exercise 1] and Marsaglia and Styan [1974a: theorem
2].

3.21. Searle [1982: 6263, real case|; (a) implies (b).

3.22a. Searle [1982: 63, real case].

3.22b. Use (3.21b) and trace[(XAY)(XAY)*] = trace(X*XAYY*A*) = 0.
3.22c. Magnus and Neudecker [1999: 34].

3.4 MATRIX SUMS

3.23. Let A and B be any m x n matrices over F, and let (A,B)~ and (3) be
any weak inverses. Define

== (3)(8)

(a) From (2.11c), taking transposes and noting that rank C = rank C’ for any C,
we have the following results.

( o B > [12. - (A,B)"(A,B)] .

dim[C(A) N C(B)]

rank A + rank B — rank(A,B) (= ¢ say),

dim[C(A’) N C(B')]

i

A
rank A + rank B — rank (B) (= d say).

(b) 0 <rankM < min{c,d}. Hence ¢ =0 or d = 0 implies M = 0.
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(¢)

rank

W o

SR

e
I

A
rank(A, B) + rank (B) + rank M

= rank A 4+ rankB + rank(A + B).

From the above we have the following:

(i) rank(A,B) + rank (g) + rank M = rank A + rank B + rank(A + B).

(ii) rank A +rank B —c—d < rank(A + B) < rank A + rank B — max{c, d}.
Equality on the left occurs if and only if M = 0, and equality on the
right occurs if and only if rank M = min{c, d}.

(iil) rank(A + B) > rank(A,B) + rank (‘g) ~rank A —rank B,
with equality if and only if M = 0.

(d) The following hold for any A and B of the same size.

(i) rank(A + B) < rank(A,B) < rank A + rank B.
(ii) rank(A + B) < rank (4) < rank A + rank B.

(e} From the above :

(i) rank(A + B} = rank(A, B) if and only d = rank M.
(ii) rank(A + B) = rank (g) if and only if ¢ = rank M.
(

(iii) rank(A,B) =rank A + rank B if and only if ¢ = 0.
When ¢ =0, M =0 and rank M = 0 = ¢ so that

A
rank(A + B) = rank <B>
(iv) rank (4) = rank A + rank B if and only if d = 0.
When d =0, M = 0 and rank M = 0 = d so that
rank(A + B) = rank(A, B).

(v) rank(A + B) =rank A 4+ rank B if and only if c = d = 0.

3.24. If A and B are n x n matrices over F, then, since AB -1, =(A-1,)B+
B —1,,, we have from (3.23e(iii)) and (3.12) that

rank(AB — I,,) < rank(A —I,,) + rank(B — I,,).

Definition 3.2. Suppose that A = Zle A;, where each matrix is m x n. We say
that we have rank additivity if rank A = Zle rank A;.

3.25. Let A and B be nonnull m x n matrices over J with respective ranks r and
s. If any one of the following conditions hold, then they all hold.

(1) rank(A + B) = rank A + rank B (i.e., rank additivity).
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(2) There exist nonsingular matrices F and G such that

I. 0 O 0 0 O
A=F| 0 0 0 |G and B=F| 0 I, 0 |G.
0 0 0 6 0 O

The above matrices are partitioned in the same way, and the bordering zero
matrices are of appropriate size; some of the latter matrices are absent if
A + B has full rank.

(3) dim[C(A) N C(B)] = dim[C(A’) NC(B')] = 0; that is, ¢ = d = 0 in (3.23a).
(4) rank(A,B) = rank (‘g) =rank A + rank B.

5 G+ aB=(§ )

6) rank A = rank[A (I, — B™B)] = rank[(I,, - BB7)A].
rank B = rank[(B(I,, — A~ A)| = rank[(I,, — AA7)B].
rank A = rank[A(I, — B™B)] and rank B = rank|(I,, — AA7)B].

(6)
(7)
(8)
(9) rank A = rank[(I,, —- BB7)A] and rank B = rank[B(I, — A~ A)].

Here A~, B™, and (A + B)™ are any choices of weak inverses. If any one of (5) to
(9) hold for a particular pair of weak inverses, then they hold for any pair.

3.26. Suppose that A = Ele A, where matrices are all m x n over F. We now
give a number of results about rank additivity. As idempotent matrices play a role
in this theory, the reader should also refer to Section 8.6.1.

(a) The following three conditions are equivalent.

(1) We have rank additivity.
Ay

A,
(2) rank(Aj, Ag,...,Ay) =rank : = Ele rank A;.

A
(3) A;A"A;, = A, and A;A"A; =0 forall 4,5 (¢ # j) where A~ is any
choice of a weak inverse of A.

If (3) holds for a particular weak inverse, then all three conditions hold for
any weak inverse.

(b) Suppose A is idempotent (i.e., A2 = A). Then the following three conditions
are equivalent.

(1) We have rank additivity.

(2) rank(A;, Ag,...,Ag) =rank . = Zle rank A;.
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(3) A2=A; and A;A; =0 for all 4,5 (i # j).

(c) If r;, =rank A, (i =1,2,...,k), we have rank additivity if and only if there
are nonsingular matrices F and G such that

I, O 0 0
0 O 0 0
Ay = Ff : o |G
0 0 ... 00
0o o0 ... 00
o 0 ... 00
0I, ... 00
Ay = F| : |G
0 O 0 0
0 0 00
0 ... 0 O
o0 ... 0 O
Ay = F| : . |e
00 ..1 0
0 0 0 o0

Furthermore, if the A; are real (respectively complex), there exist orthogonal
(respectively unitary) P and Q and diagonal D such that F = PD and
G = Q, that is there exists a simultaneous singular value decomposition.

3.27. Let A = ZLI A;, where the matrices are real (or complex with ' replaced
by *).
(a) We assume that the matrices are not necessarily square.

(i) If AjA; =0and A;A’ =0 forall 4,5 (i # j), then the rank is additive.

(ii) If the rank is additive, then A;A’ = 0 for all 4,7 (¢ # j) if and only if
AA = AA, (G=1,...,k).

{b) We assume that the matrices are square.

(i) If rank(A?2) = rank A; and A;A; = 0 for all i,j (¢ # j), then the rank
is additive.

(ii) If the rank is additive, then A;A; = 0 for all 4, (¢ # j) if and only if
AA=AA; (=1,...,k).

(c) If the A, are all real symmetric or Hermitian non-negative definite matrices
and

k k
O cA)AT (D Aj/c)=A
i=1 =1

holds for some distinct positive scalars ¢; and for some choice of weak inverse
A~ then the rank is additive.
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Conversely, if the rank is additive, then the above equation holds for every
choice of distinct positive ¢y, ..., ¢, and for every choice of a weak inverse.
Proofs. Section 3.4.

3.23. Marsaglia and Styan [1974a: theorem 8 and corollary 8.1]; see also
Harville [1997: 442-445].

3.25. Marsaglia and Styan [1974a: theorem 11]; see also Harville [1997: 445]
for (3) and Harville [2001: 29, exercise 29] for (4) and (6)—(9).

3.26a. Marsaglia and Styan [1974a: theorem 13].

3.26b. Marsaglia and Styan [1974a: corollary 13.1]. Note that AAA = A so
that we can set A~ = A in (a).

3.26c. Marsaglia and Styan {1974a: theorem 12].
3.27a. Marsaglia and Styan [1974a: theorem 14].
3.27b. Marsaglia and Styan [1974a: theorem 15}.
3.26c. Marsaglia and Styan [1974a: theorem 16].

3.5 MATRIX DIFFERENCES

3.28. rank(A — B) > [rank A — rank B|.

3.29. Let A and B be m x n matrices over . Then results on the rank of A + B
immediately lead to the results on the rank of A — B by simply substituting —B
for B. We can also use the fact that rank(A — B) = rank A — rank B if and only if
rank(A — B) + rank B = rank A.

(a) Let

( o -B ) [T2n — (A.B) (A, B)]

Then

A
rank(A — B) = rank(A, B) + rank (B) + rank N — rank A — rank B.
(b) rank(A — B) = rank A — rank B if and only if N = 0 and rank(A,B) =
rank A = rank (‘g). Furthermore, if just the latter equation is true, then

rank N =rank(BA™B — B).

3.30. Let A and B be m x n matrices over F. If one of the following five conditions
is true, then all five are true.

(1) rank(A — B) = rank A — rank B.
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(2) C(B) C C(A),C(B’) c C(A’) and BA™B = B.

(3) rank(A,B) = rank A = rank (5) and BA"B = B.

(4) AA B=BA"A=BA B=B.

(5) rank(A — B) = rank[A(I,, — B™B)] = rank[(I,, —- BB7)A], where A~ and
B~ are any choices of weak inverses. If any one of (2) to (5) holds for any

particular set of weak inverses, then all the conditions hold for every weak
inverse.

3.31. Let A and B be m x n matrices over F with ranks r and s, respectively.
Then:

(a) rank(A —B) = rank A —rank B if and only if there exist nonsingular matrices
F and G such that

I, 0 O I, 0 O
A=F| 0 I,_, 0 ]G and B=F| 0 0 0 |G,
0O 0 0 0 0O

where the matrices are similarly partitioned and the bordering zero matrices
are of appropriate size; some are absent if A or B has full rank.

(b} If A and B are real (complex) matrices, there exist orthogonal (unitary)
matrices P and Q such that

D, 0 O 0 0 O
A=P| 0 D, 0 |Q and B=P| 0 D, 0 |Q,
0 0 0 0 0 0

where D; and D5 are nonsingular diagonal matrices.

3.32. If A and B are nonsingular n x n matrices, then from the identity A — B =
~B(A7! -~ B71)A and (3.14a),

rank(A~! — B™1) = rank(A — B) = rank(B — A).
Furthermore, A~! — B! is nonsingular if and only if B — A is nonsingular.

3.33. (Wedderburn—-Guttman) Let A be an m X n matrix of rank r, and let M
and N be m x s and n X s matrices, respectively, such that M’AN is nonsingular.
Then
rank[A — N(M'AN)"'M'A] =r — s,
with
rank[AN(M’'AN)~'!M'A] = rank[M'AN] = s.
This theorem has been used in psychometrics.

3.34. (Idempotent Matrices) Let P and Q be n x n idempotent matrices. Then

rank(P — Q) rank (g) + rank(P, Q) — rank P — rank Q

rank(P — PQ) + rank(PQ — Q)
rank(P — QP) + rank(QP — Q).

fl
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Proofs. Section 3.5.
3.28. Abadir and Magnus [2005: 81].
3.29. Marsaglia and Styan [1974a: 387-388].

3.30. Harville [2001: 200-203, exercise 30] and Marsaglia and Styan [1974a:
theorem 17].

3.31. Marsaglia and Styan [1974a: theorem 18].
3.32. Harville [1997: 420].

3.33. Takane and Yanai [2005]. They also discuss the case when M’AN is
rectangular.

3.34. Tian and Styan [2001]. They also give an extensive list of similar results
including those for P + Q.

3.6 PARTITIONED AND PATTERNED MATRICES

Some partitioned matrices have already been mentioned above in passing so there
will be a slight overlap with the following, which focuses exclusively on partitioned
matrices.

3.35. (Column Partitions) Let A be an m x n matrix and B be an m x ¢ matrix,
both over F.

(a) C(A)NC[(L,, — AA7)B] = 0, where A~ is any weak inverse of A.
(b) rank(A,B) = rank(A, (I,, - AA™)B).
(c)

rank(A,B) = rank A + rank[(I- AA7)B]
rank B + rank[(I - BB7)A].

The second result is obtained by interchanging A and B.

Note that AA~ = P, is idempotent, thus representing an (oblique) projection
onto C(A) (by 7.2¢c); also PAA = A.

3.36. (Row Partitions) Let A be an m x n matrix and C be an ¢ X n matrix, both
over F.

(a) A and C(I, — A~ A) have disjoint row spaces (i.e., only have the zero vector
in common).

o s () =k (. M)
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rank A + rank[C(I — AT A)]

]ak
n
C

Note that (A~A)" = P4+, where P4, is the (oblique) projection onto C{A’) (by
7.2¢).

rank C + rank[A(I - C~C)).

3.37. For conformable matrices A, B, and C over F and for any choice of weak
inverse A~, we have the following:

(a) rank(AB,[I — AA7]C) = rank(AB) + rank([I - AA7]C).

(b} rank (C[I ?i:‘A]> = rank(BA) + rank(C[I — A A]).

3.38. If all four matrices are conformable, we have

(ABY__ (BAY__ (CDY__ (DC
ran C D =ran D C = ran A B = ran B A .

3.39. The following hold for any conformable A, B, and C over F.

(a) For all weak inverses A~ and B,

0 A
rank(B C)

Il

rank A + rank[B,C(I — A~ A)]

A
= B k
rank B + ran <(I _ BB‘)C)

rank A + rank B + rank[(I - BB7)C(I - A~ A}]
< rank A 4+ rank B + rank C,

!

with equality if and only if C(B)NC(C) = 0 and C(A')NC(C') =0. f Bor C
(or both) is nonsingular, then the rank of the left-hand side is rank A 4+ rank B.

rank < g A > = rank C + rank[A(I — C™C)] + rank[(I — CC™)B]|
+ rankD,

for D =(I-UU)J)AC B(I-V~ V), with U =A(I-C C)and V =
(I - CC~)B. The weak inverses may be any (possibly different) choices
except that the C™ in the middle of D must be the same as that chosen in
either U or V.

3.40. (Generalized Schur Complement) Let E, F, G, and H be conformable ma-
trices over F, and let A be given by

A (B E)
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(a) We have the following results.
(i)

rank A = rank E + rank ( 0 (I-EE")F )

G(I-E'E) H-GEF

holds for any three generalized inverses E-. Here S = H— GEF is the
generalized Schur complement of A with repect to E and is written as
(A/E) (cf. Section 14.1).

(ii) If G = 0, then rank A > rank E + rank H. The same is true if we have
F = 0 instead.

(iii) Let E be a particular weak inverse of E. Then
rank A = rank E + rank(H — GEF)

if and only if

U = —(I-EE7)FSTG(I-EE)=0,

V = I-EE7)FI-S7S)=0,

W = (I-SS7)G(I-E"E)=0,
where A~ and S~ are any choices of weak inverses. Since, by (7.20),
(I-EE)E = 0 and (I - ETE)E’ = 0, the above three conditions
are satisfied when C(F) C C(E) and C(G’) C C(E’) (Schott [2005: 265]).
This is the case, for example, when A is non-negative definite and E and
H are both square, that is, G = F' (cf. 14.8¢c). The above result follows

from (iv) below. Other conditions for the above to hold that relate to
ranks are given by Tian [2002: 204].

From (3.38) we can interchange E and H, and F and G, in the above
results, as we have done in (v) and (vi) below.

(iv) Using the above notation,
rank A = rank E 4+ rank 8 + rank V 4 rank W + rank Z,

where Z = (I-VV~)U(I- W~W) and any weak inverses can be used.

(v) If E is square and nonsingular, then the three conditions of (iii) are
satisfied and

rank A = rank E + rank(H — GE™'F).

(vi) If H is square and nonsingular, then

rank A = rank H + rank(E - FH™'G).

(vii) With appropriate matrix substitutions we have from (v) and (vi)

rank ( Iér,‘ IB > = n+ rank(I,, — BB’) = m + rank(I,, — B'B).



MAXIMAL AND MINIMAL RANKS 49

(b) rank A = rank E + rank X + rank Y + rank T, where

X (I1- EE™)F,
Y G(I-EE),
T = I-YY )H-GE F)I-X"X).

1l

Any choices of weak inverses can be used.

3.41. If A is m xn and B is n x m, then

rank(I,, — AB) = rank(I,, —- BA) +m — n.

Proofs. Section 3.6.

3.35.
3.36.
3.37.
3.38.
3.39.

Harville [1997: 385] and Marsaglia and Styan [1974a: theorem 5|.
Marsaglia and Styan [ 1974a: theorem 5].

Marsaglia and Styan [ 1974a: theorem 4].

Interchange rows then columns.

Harville [1997: 388-389] and Marsaglia and Styan [1974a: theorem 19].

3.40a. Marsaglia and Styan [1974a: theorem 19 and corollary 19.1] with their
restrictions in (i} and (iv) removed by Ouellette [1981: 228-229]; (ii) is proved
by Abadir and Magnus [2005: 121-122]; (v) and (vi) are proved by Schott
[2005: 265-266] and Abadir and Magnus [2005: 123].

3.40b. Marsaglia and Styan [1974a: theorem 19] with their restrictions re-
moved by Ouellette [1981: 230].

3.41.

Abadir and Magnus [2005: 124]. See also Grof3 [1999].

3.7 MAXIMAL AND MINIMAL RANKS

This topic presents some very powerful tools for handling matrix problems, as shown
in a series of papers by Yongge Tian. For example, one can find the maximum and
minimum ranks of an expression and then find conditions when these two are equal;
this will give us the rank, subject to the conditions. One way of proving that two
matrix expressions are equal is to prove that the rank of their difference is zero.

For some history of this topic see Tian [2000], and for some detailed results see
Tian [2002).

3.42. For conformable matrices,

min
1

2

rank(A — BX; — CX,) = rank < A B ) —rank B — rank C,

C o

where the minimization is with respect to all conformable X; and Xs.
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3.43. For conformable matrices, define p(X;,Xs2) = A — B;X;C; — B2X,Co.
Then:

(a)

A
min rank[p(Xy, X2)] —rank( C; | +rank(A, B, Bs)
XI;XZ C
B, A B, B,
0 )—rank( C, 0 0 )

A B,
A B,
— rank| C; O ), rank< c, o >

+ max rank(é

C, 0

A B,

- rank( g 1?)1 ?)2 )—rank C, o

! C, 0

(b)
A
max p(X;,X3) = min( rank(A,B;,By),rank [ C; ,

X1,X, C,

A B A B,
rank( C, 0 ),rank( c, o >
3.44. (Generalized Schur Complement) Let
A B
M=(6n),
then we recall from (3.40) that the generalized Schur complement of A in M (M/A)

is SA = D — CA B, where A~ is any weak inverse A (We have changed the
notation for M to fit in with the proofs for the following results.) Then

B
max rank(Sa) = min {rank(C,D), rank (D>,rankM - rankA}

and

rlr\li_nrank(SA) = rank A + rank(C, D) + rank <]]§> rank M

Proofs. Section 3.7.

3.42. Tian [2000].
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3.43. Tian [2002]. He shows there is some simplification when C(B;) C C(B3)
and C(C;) C C(C}). By equating (a) and (b), he obtains necessary and
sufficient conditions for rank[p(X;,Xz)] to be invariant with respect to X;
and X,. He then finds similar conditions for C[p(X, X3)] to be invariant.

3.44. Tian [2002: 201]. He uses the fact that A~ is a solution of AXA = A.
He also gives necessary and sufficient conditions for the rank and column
space of Sz to be invariant with respect to the choice of A~. Some rank and
other properties of CA™B, A™B, CA~, and A — AB~ A are given by Tian
[2002: 206-207].

3.8 MATRIX INDEX

Definition 3.3. If A is an n x n, there exists a positive integer & (1 < k < n) such
that rank(A*) = rank(A**1). The smallest k for which this is true is called the
indez of A. If A is nonsingular, k = 0, where A? = I,,. The basis for the definition
comes from the following results and (3.11).

3.45. If A is an n X n complex matrix, then:
(a) N(A?) C N(A) C N(A?) C - C N(AK) C N(ARH) C -
(b) C(A®) DC(A)2C(A%) D DC(A%) 2C(A*) D ...

There is equality at some point, in fact at the same value of k in both cases. What
this means is that the index k is the smallest integer at which C(A*) stops shrinking
and N (A¥) stops growing.

3.46. Let A have index k.

(a) All matrices {A! : 1 > k} have the same rank, the same column space, and
the same null space.

(b) Their transposes {(A')’ : I > k} have the same rank, the same column space,
and the same null space.

(¢) Their conjugate transposes {(A!)* : [ > k} have the same rank, the same
column space, and the same null space.

(d) For no [ less than k do A' and a higher power of A (or their transposes or
conjugate transposes) have the same range or the same null space.

(e) Forl > k

CAHYNN(AYHY =0 and Cc(AHYoN(AH =C"

Proofs. Section 3.8

3.45-3.46. Ben-Israel and Greville [2003: 155] and Meyer [2000a: 395, real
case].
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CHAPTER 4

MATRIX FUNCTIONS: INVERSE,
TRANSPOSE, TRACE, DETERMINANT,
AND NORM

The topics considered in this chapter might be regarded as the “bread and butter”
or, changing the metaphor, the working tools for someone using linear algebra in
their research. I have not included rank, generalized inverse, and eigenvalues, as I
have a separate chapter for each of these topics.

4.1 INVERSE

Definition 4.1. An m x n matrix A is said to have a right inverse if there exists
an n X m matrix B such that AB = I,,,. It is said to have a left inverse if there
exists an n x m matric C such that CA = I,,. These inverses are generally not
unique.

4.1. An m xn matrix A has a left inverse if and only if it has full column rank (i.e.,
rank A = n, m > n), and it has a right inverse if and only if it has full row rank
(i.e., rank A = m, m < n). Examples of such inverses are, respectively, (A’A)"1A’
and A'(AA")~L

Definition 4.2. If A isnxn and rank A = n, then A is said to be nonsingular and
has an inverse denoted by A~! that satisfies AA™! = A~1A = I,,. An equivalent
definition is that A is nonsingular if and only if det A 5 0. A square matrix that is
not nonsingular (i.e., det A = 0) is said to be singular. Inverses, both algebraic and
numerical, can be computed using Matlab (Leon [2007: chapter 71], Maple (Jeffrey
and Corless [2007: chapter 72]), and Mathematica (Ruskeepdd [2007: chapter 73]).
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4.2. fAisnxnand AB=1,, then B=A"1.

4.3. If A and B are nonsingular matrices of the same size, then (AB)™! =
B'A°L

4.4. If A is nonsingular and ¢ # 0, then (cA)~! =c¢ 1AL
4.5. If A is nonsingular, then A~! is a continuous function of the elements of A.
Proofs. Section 4.1.

4.1. Harville [1997: 80].

4.2-4.4. Abadir and Magnus [2005: 83-84].

4.5. Schott [2005: 199).

4.2 TRANSPOSE

Definition 4.3. If A = (a;;) is real or complex, we define A* = (@;;) to be the
conjugate transpose of A. When A is real, A* = A’

4.6. (Basic Results)
(a) (AB)* = B*A".
(b) (aA)* = aA".
(¢) If A is a nonsingular matrix, then (A~1)* = (A*)~L.

4.7. Suppose A and B are real matrices, where A is p x m and B is p x n, with
m < n. Then AA’ = BB’ if and only if there exists an m x n matrix H with
HH' =1,, such that AH = B.

Proofs. Section 4.2.
4.6. Rao and Bhimasankaram [2000: 85, real case].
4.7. Muirhead [1982: 589].

4.3 TRACE

Definition 4.4. If A = (a;;) is an n x n matrix, then the sum of the diagonal
elements is called the trace of A and is denoted by trace A. Thus

n
trace A = E a;; = trace A'.
i=1
4.8. Let A be m x n, and let A~ be any weak inverse of A. Then, from (7.2d),

trace(A~ A) = trace(AA ™) = rank A.
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4.9. If A is real and symmetric, then

(trace A)?
kA > -—r——.
rank A 2 trace(AZ?)

For related results see (6.21).

4.10. If A is an n x n real matrix with real eigenvalues and exactly ¢ of them are
nonzero, then
(trace A)? < ttrace(A?).

4.11. Let A be an n X n real matrix.
(a) If A has real eigenvalues, then (trace A)? < rank(A) trace(A?).

(b) If A is symmetric, (trace A)?2 = rank(A)trace(A2) if and only if there is a
non-negative integer k such that A% = kA.

(c) If A is symmetric, then A2 = A if and only if rank A = trace A = trace(A?).
(d) trace(A’A) > trace(A?), with equality if and only if A is symmetric.

4.12. If A is an n X n real or complex matrix, then A can be written as A =
XY — YX for some n x n matrices X and Y if and only if trace A = 0.

4.13. Let A be m x n and B be n x m, both real or complex matrices.

(a) We have
trace(AB) = trace(BA) = trace(A'B’) = trace(B'A’)
= Z Z aijbji = Z Z ai]-bgj.
=1 j=1 =1 j=1

(b) If m = n and either A or B is symmetric, then
n n
trace(AB) = Z Z a;jbi;.
i=1 j=1
This result is particularly useful in statistics.
4.14. Suppose A is m xn, Bisn x p, and C is p x n. Then

trace(ABC) = trace(BCA) = trace(CAB).
4.15. Let C be an m X n real or complex matrix. Then
trace(C*C) = trace(CC*) = ZZ lei; |2
i=1 j=1
Hence trace(C*C) = 0 implies that C = 0.

4.16. Suppose the m x n matrix E;; has 1 in the ¢, jth position and zeros elsewhere.
If A is n x m, we have trace(E;;A) = a;; = a;j.



56 MATRIX FUNCTIONS: INVERSE, TRANSPOSE, TRACE, DETERMINANT, AND NORM

4.17. If R is n x n and nonsingular, trace(R™!AR) = trace(ARR™!) = trace A.
4.18. If A and B are real symmetric matrices, then trace[(AB)?] < trace(A2B?).

4.19. If Aisn x n, Bis m xm, and A ® B is the Kronecker product, then (cf.
11.11(ii))
trace(A ® B) = trace(A) trace(B).

4.20. If Aisnxnand x isn x 1, then X’ Ax = trace(x’Ax) = trace(Axx').
4.21. If A is m x n, then trace(AX) = 0 for every n x m X if and only if A = 0.
4.22. If A is n x n, then trace(AX) = 0 for all Hermitian X if and only if A = 0.

4.23. If A is an n x n Hermitian matrix and trace A > Re trace(AU) for all unitary
matrices U, then A is non-negative definite. Here Re is the “real part.”

4.24. Let A be an n x n matrix with singular value decomposition A = PXQ*,
where P and Q are n x n unitary matrices, ¥ = diag(o1(A),...,0n(A)), and the
0;(A) are the ordered singular values of A. Let U, be the collection of all n x n
unitary matrices. Then

max Retrace(AU) = Zai(A),
i=1

Ueldy,

and the maximum is attained at Uy = QP* (which need not be unique).

4.25. Let A be m x n and B be n x m matrices, and define U, as in (4.24) above.

Then
p

v, Re trace(AUBV) = Zz:; oi(A)o;(B),
where p = min{m,n} and o(-) is a singular value.
4.26. Let A and B be n X n non-negative definite matrices. Then:
(a) trace A > 0 with equality if and only if A = 0.
(b) trace{AB) > 0 with equality if and only if AB = 0.
4.27. Let A and B be n X n positive definite matrices. Then:
(a) trace A > 0.
(b) trace(AB) > 0.
Proofs. Section 4.3.

4.8. AA~ is a projection onto C(A) and is therefore idempotent so that its
rank equals its trace.

4.9-4.10. Graybill [1983: 303-304].
4.11a—c. Graybill [1983: 305-306].
4.11d. Follows from trace[(A—A')' (A—A’) = 2[trace(A’A)—trace(A?)] > 0.
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4.12. Horn and Johnson [1991: 288].

4.13. Abadir and Magnus [2005: 31] and Rao and Bhimasankaram {2000: 92].
We can interchange the subscripts ¢ and j.

4.14. Use (4.13a) with AB and C, and so on.
4.15. trace(C*C) = 3, > . clicji = 22, 25 Cjicji-
4.16. Use (4.13a).

4.18. Graybill {1983: 302].

4.19. Abadir and Magnus [2005: 277].

4.21. Use (4.16) for all E;;.

4.22-4.23. Rao and Rao [1998: 342-343].
4.24. Rao and Rao [1998: 347)].

4.25. Rao and Rao [1998: 357].

4.26. Graybill [1983: 306-307).

4.27a. Each a; > 0 from (10.33b).

4.27b. We have trace(AB) = trace(A/2BA/2), where (cf. 10.32) A'/? is
the positive definite square root of A, and AY2BA1/2 ig positive definite.
Now apply (a) to trace(A/2BA1/?).

4.4 DETERMINANTS

Determinants arise in many places in this book. In this section I concentrate on
some basic properties, but the reader should also refer to Chapter 14 on partitioned
matrices and Chapter 15 on patterned matrices. Determinants of special matrices
are given in Chapter 8, and the differentiation of determinants is given in Chapters
17 and 18.

4.4.1 Introduction

Definition 4.5. The determinant of a square matrix A = (a;;), denoted by
det(A), is defined as

1) det(A) = " €j15550 015,025, *** Ong,
where €5, j,...5,, is +1 or —1 according as {j1, j2 - - - jn} is an even or odd number
of permutations of the integers {1,2,...,n}, with the summation extending

over all n such possible permutations. Thus €, ;,...;, = (—1)J T2t +in,

(2} Another way of expressing det(A) is

det(A) = Z sgn(m) H Qir(i)-
kg i=1
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Here 7 is a permutation of the ordered set {1,2,...,n} and n(¢) is the ith
member of the permutation 7. The summation extends over all permutations,
and the function sgn(r) is +1 or —1 depending on whether the permutation
is even or odd.

4.28. (Basic Properties) Let A be an n x n matrix.
(a) det(A) = det(A").
(b) If two rows (columns) of A are equal, then det(A) = 0.

(c) If every element of a row (column) of A is zero, then det(A) = 0.
)

(d) If B is obtained from A by multiplying one row (column) of A by the scalar
k, then det(B) = kdet(A). In particular, det(cA) = c™ det A.

(e) If B is obtained from A by interchanging any two rows (columns), then
det(B) = — det(A).

(f) Adding to one row (column) of a square matrix any multiple of another row
(column) does not affect the value of the determinant.

(g) det(A) is a continuous function of the elements of A.

Note that the transformations (d)—(f) can be represented by matrices (cf. Section
16.2.1).

4.29. (Row-Block Operations) Some of the properties of the previous result carry
over to block multiplication. Let A be m x m and B be n x n matrices.

(a) If E is m x m, then

EA EB A B
det( cC D )zdet(E)-det(C D)'

(b} If E is n x m, then

A B A B
det<C+EA D+EB>:det<C D)'

4.30. An n x n matrix may be written as A = XYX 'Y ~! for some nonsingular
n x n matrices X and Y if and only if det(A) = 1.

4.31. If A and B are n x n matrices, then:
(a) det(AB) = det(A) det(B).
(b) det(AA') = det(AA’) = (det A)2.
(c) If A is nonsingular, then setting B = A~! gives us det(A~!) = (det A)~L.

(d) det ( A B ) — det(A + B) det(A — B).
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4.32. (Craig-Sakamoto) If A and B are n x n real symmetric matrices, and ¢ and
d are positive scalars, then

det(I,, — sA —tB) = det(I,, — sA) - det(I,, — ¢B)
for all |s| < ¢ and |¢| < d if and only if AB = 0.

4.33. Let A be an m X n matrix and B be an n x m matrix. Taking determinants
of both sides of the following equivalence

I.-AB A\ (L, 0\ (I, 0 I, A
0 L, B I,/ \B I,-BA 0o 1, )’

using (14.18) and the fact that the determinant of a triangular matrix is the product
of its diagonal elements, we get

det(I, — AB) = det(I, — BA).

Ifn=1,
det(I,, —aa’) =1—a'a.

Proofs. Section 4.4.1.

4.28a-f. Rao and Bhimasankaram [2000: 224-225] and Searle [1982: sections
4.3 and 4.4].

4.28g. Schott [2005: 198].

4.29. Abadir and Magnus [2005: 115].

4.30. Horn and Johnson [1991: 291].
4.31a—c. Searle [1982: 98-99].

4.31d. Abadir and Magnus [2005: 117-118].

4.32. Abadir and Magnus [2005: 181] and Harville [1997: 568-569; see also
the theory there on polynomials].

4.4.2 Adjoint Matrix

Definition 4.6. Let A be an n x n matrix. If a submatrix A;; is formed by
deleting the ith row and the jth column of A, then det(A;;) is called the minor of
ai; and the signed minor a;; = (~1)"*7 det(A,;) is called the cofactor of a;;. The
matrix adj(A) = (a;;) is called the adjoint (adjugate) of A.

4.34. If A is n X n, then

- det(A), ifi =k,
Zaijakj = 0
j=1 ’

otherwise.

4.35. If A isn xn, then A(adjA) = (adjA)A = det(A)L,.
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4.36. adj(adjA) = (det A)"2A.

4.37. If A is nonsingular, it follows from (4.35) above that adj(A) = (det A)A~!
and det(adjA) = {det(A)}""1.

4.38. The following hold.

(a) adj(aA) = a™ ladjA.

(b) adj(A’) = (adjA)".

(c) If A is nonsingular, then adj(A~!) = (adjA)~!.
4.39. Let A be n x n.

(a) Let rank A =n — 1, then

dA = (<11 d(A)—.

adjA = (-1) ( )W’
where k denotes the algebraic multiplicity of the zero eigenvalue of A (1 <
k < n), d(A) is the product of the n — k non-zero eigenvalues of A, (-)*

denotes the Moore-Penrose inverse, and x and y are n x 1 vectors satisfying
Ax=0and yA=0". If k =n, we put d(A) = 1.

(b} If 0 is a simple eigenvalue of A (i.e., k =1 in (a)), then rank A = n — 1 and

/

adjA = d(A)

Xy

y'x
Here d(A) is the product of the n — 1 nonzero eigenvalues and x and y are
defined in (a).

(c) If rank A <n —2, then adjA = 0.

If rank A = n — 1, then rank(adjA) = 1.

4.40. If A and B are both n x n, then adj(AB) = adjA - adjB.

Proofs. Section 4.4.2.

4.34. Abadir and Magnus [2005: 90] and Rao and Bhimasankaram [2000:
240].

4.35-4.37. Abadir and Magnus [2005: 95] and Rao and Bhimasankaram [2000:
241, 244].

4.38. Rao and Bhimasankaram [2000: 245, see solution to exercise 8|.
4.39. Magnus and Neudecker [1999: 40-43].

4.40. Abadir and Magnus [2005: 95], Harville [2001: 77, exercise 14}, and Rao
and Bhimasankaram [2000: 244].
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4.4.3 Compound Matrix

Definition 4.7. Given the m x n matrix A = (a;;), a compound matriz of A is
the array of all minors of a given size k, say, (k < min{m,n}). The M = (7))
by N = (Z) matrix is denoted by Ay = (bag), where we write symbolically o =

(i1,%2,...,0) and B8 = (j1,J2, ..., Jx). Here bygp is the determinant of the submatrix
obtained by selecting the intersection of the k rows 41,1z, ...,ix and the k& columns
J1,J2,- -+, jk. The MN elements of Ay are arranged in lexicographic order (for

a numerical example see Horn and Johnson [1985: 19-20]). Compound matrices
are useful for expressing a number of expansions of determinants like Sylvester’s
identity, the Cauchy—Binet formula and the Laplace expansion given in the next
section (cf. Rao and Rao [1998: 146-154]).

4.41. (Basic Properties)
(a) Let A%, and By, be real or complex matrices, then:
(i) (AB)j) = A By,  * < min{m,n,p}.
(ii) (cA)w =cFAp.
(b) If A is an 7 x n real or complex matrix, then (Ap)’ = (A")x.
(c) If A is a complex matrix, then (Ap)* = (A*)[)-
(d) If A is a nonsingular real or complex matrix, then (Ap)™! = (A~
Proofs. Section 4.4.3

4.41. Rao and Rao [1998: 146-154] and quoted by Horn and Johnson [1985:
19-20].

4.4.4 Expansion of a Determinant

4.42. (Expanding by Row ¢ or Column j) Referring to (4.34), we have

det(A) = Zaijaij (row )
j=1

n
Z a;ja;;  (column j).
i=1

4.43. (Expanding by the Diagonal) Consider the n x n matrix
B = A +diag(z1,22,...,Zn).
Then det(B) consists of the sum of all possible products of the z; taken r at a time

forr =n,n—1,...,2,1,0, each product being multiplied by its complementary
principal minor of order n — r in A. By complementary minor in A we mean the



62 MATRIX FUNCTIONS: INVERSE, TRANSPOSE, TRACE, DETERMINANT, AND NORM

principal minor having diagonal elements other than those associated in B with the
2’s of the particular products concerned. For example,

a1l + 3 a2 a13
det as Qg + T a23
as1 as2 a33 + T3
Q22 023
= x1%27T3 + T1T2a33 + TaT3a11 + T3T1022 + T1 det ( a a
32 Q33

a1
a21

ai1
a31

425 det < a13 ) + x3 det (
ass

When z; =25 =--- = 7, = 7, we have det(B) =Y I ;2" 's;(A), where 5;(A)
is the sum of all the principal minors of order ¢ of A. We define so(A) = 1 and
note that s, = det(A).

We can obtain an expansion of det(A) by its diagonal elements by setting a;; = 0
and z; = a;; for i = 1,2,...,n. Such an expansion is particularly useful when many
of the principal minors are zero. We note that

12 ) + det(A).
a2

n

det(A — ML) = Y (=A)""'si(A),

=0
which leads to the characteristic equation det(A\I, — A) = (—1)" det(A — AL,).

4.44. (Expanding by m Rows—Laplace Expansion) The Laplace expansion of
det(A), where A is n x n, can be obtained as follows. Firstly, consider any m
(m > 1) rows of A. They contain R = (') minors of order m. Secondly, multi-
ply each of these minors, det(A,) say (r = 1,2,..., R), by the determinant of the
complement of A, det(B,_,) say, and by a sign factor. Here the complementary
minor of A, is the (n — m)th-order minor derived from A by deleting the m rows
and columns containing A,. The sign factor is (—1)%", where a, is the sum of
the subscripts of the diagonal elements of A,. Then det(A) is the sum of such
products, namely

R
det(A) =) (—1)* det(A,)det(Bn_,).

r=1

For example, expanding by rows 2 and 3 we have

a1 Q12 @13 Qa4
a a a: a4
det 21 22 23
a3y agz2 a3z as4
41 Q42 @43 Q44
a a a a
—  det 21 22 . det 13 14 (_1)2+1+3+2
asyr as2 (43 Q44
a a a a
+ det 21 23 . det 12 14 (—1)2+1+3+3+-~+
agy ass G42 Q44
a a a ay
+ det 23 24 . det 11 2 (_1)2+3+3+4.
a3z a3q aq1 Q42
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Further extensions of the Laplace expansion method are available, many of which
are named after their originators—for example, Cauchy, Binet—-Cauchy (Harville
[1997: 200-202] and Rao and Rao [1997: 149]), and Jacobi.

A number of other expansions are available. For example, if we are interested in
relating minors of submatrices, we can use Sylvester’s Determinantal Identity (Rao
and Rao [1998: 151-153]). If C = A, pBpxn, we can expand det C in terms of
the sum of products of a minor of A times a minor of B using the Cauchy—Binet
formula (Rao and Bhimasankaram [2000: 238] and Rao and Rao [1997: 140]).

4.45. Given the skew-symmetric matrix

0 a b ¢
—a 0 d e
A= -b —d 0 f ’
—-c —e —f 0
then det(A) = (af — be + cd)?.
4.46.
2 2 2
aiy a11a12 ayo B a; a1 2
det ajlas; a11Q922 + @12021 Q12022 =4 <{det .
2 2 a1 @22
Qayq 2a21a22 a22

The above matrix occurs in genetics.

Proofs. Section 4.4.4.
4.43. Searle [1982: 106].
4.44. Harville [1997: section 13.8] and Searle [1982: 109].
4.46. Quoted by Searle [1982: 114].

4.5 PERMANENTS

Definition 4.8. Let A be an n x n real matrix. The permanent of A, denoted by

per(A), is defined by
per(A) = Z H Qin(s),

T i=1

where 7 is a permutation of the ordered set {1,2,...,n} and =(i) is the ith mem-
ber of the permutation m; the summation extends over all permutations 7. This
definition may be compared with the definition of a determinant. There [];_, @i
is multiplied by either +1 or —1 depending on whether 7 is an even or odd per-
mutation. Note that per(A) can also be defined for an m x n matrix. For general
references to permanents see Wanless {2007} and Minc [1978, 1987, and for an em-
phasis on applications in probability and statistics see Bapat [1990]. Permanents
can be used to prove a number of properties shared by doubly stochastic matrices.
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Let T and J be ordered subsets of {1,2,...,n}, each with #7 and #J ele-
ments, respectively (the cardinality of each set), and define the #Z x #.J submatrix
Az, 7y = (0ij)iez,je7. We must have #7 = #J for per(A(z, 7)) to make sense.

4.47. Let A be an n X n matrix.
(a) per(A) = per(A’).

(b) per(A) admits a Laplace expansion along any row or column. Thus, if A;;
denotes the submatrix of A obtained by deleting the ith row and the jth
column of A, then

per(A) = Z a;jperA,;.
i=1

4.48. per(A(z, 7)) does not depend on the order of elements in Z or J.

4.49. If A is an n X n non-negative matrix (i.e., a;; > 0 for all 4, j) and #T+#J =
n, then

per(A) > per(A(Z, J¢) x per(A(Z¢, J),
where Z¢ is the complement of Z,, and so on.

4.50. If A is an » x n non-negative matrix, then per(A) = 0 if and only if there
are subsets 7 and J such that

#I+#JT >n+1 and A(Z,J)=0.
4.51. Let A and B be n x n complex matrices. Then
(a)
[per(AB)|* < per(AA*)per(B*B),
with equality if and only if one of the following occurs:

(1) A row of A or a column of B is 0,
(2) No row of A and no column of B consists of 0, and A* = BDII, where

D is a diagonal matrix and II is a permutation matrix.
(b) |per(A)? < per(AA*) and |per(A)|? < per(A*A).
(c) If A is Hermitian non-negative definite, then
(i) per(A) < n~!ltrace(A™).
(ii) det A < per(A).
Proofs. Section 4.5.
4.47b. Use (4.44) with r = 1 and ignore the signs.
4.48. Follows from the definition.
4.49. Quoted by Rao and Rao [1998: 312].
4.50. Quoted by Rao and Rao [1998: 312].

4.51. Marcus and Minc [1964: 118, 120]. For (b), set B = I then A =T in
(a).
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4.6 NORMS

Norms, both for vectors and matrices, are used for measuring distance in vector
spaces and for providing a measure of how close one matrix is to another. They
can therefore be used for finding the best approximation of a matrix in a given
class of matrices by a matrix in another class (e.g., of lower rank). They can also
be used for investigating limits of matrix sequences and series. Norms, therefore,
have a role to play in statistics in the areas of inequalities, optimization, matrix
approximation, matrix analysis, and numerical analysis.

4.6.1 Vector Norms

Definition 4.9. A vector norm on a real or complex vector space V is a real-valued
function || - || satisfying the following three conditions.

(1) {Ix|| = 0 for all x € V, and ||x|| = 0 implies that x = 0 (positive definite
property).

(2) |lax|| = |a| - |||l for all @ € F and all x € V (scalar multiplication).
(3) lIx+yll < lixll + llyll (triangle inequality).

A vector norm is said to be unitarily invariant if |Ux|| = ||x|| for all x € C* and
all n x n unitary matrices U.
If (1) above is replaced by

(1a) |jx]| > 0 for all x € V,

then || - || is called a vector seminorm.

4.52. The following hold for both a norm and a seminorm for any x,y € V.
(a) | — x|t = lIx]l.
() M=l =yl < lx =yl
(©) [l =yl < fixll + lIyll-

4.53. Every vector norm on R™ or C" is uniformly continuous.

4.54. For finite-dimensional real or complex vector spaces, all vector norms are
equivalent in the sense that if || - ||, and | - || are two vector norms, then there
exist positive constants ¢; and cg such that

allxfla < %l < callxfla

for all x (cf. (4.56) below for some examples).

Definition 4.10. If p is a real number with p > 1 and x is an n x lvector, then

n 1/p
x|, = (Z mv’)

i=1
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is a norm on R™ or C" called the L, norm. Letting p — 0o, we find that

1%]|oo = ggsxnlwil

is also a norm called the L., norm. The norms most commonly used are the L1,
Ly, and L, norms. In particular, the so-called Fuclidean norm Ls is used to define
the length of a vector in R™ or C*. The function ||x||, is not a norm for 0 < p < 1.

4.55. The L, norm (p > 1) is a vector norm.
4.56. For all x € C" we have:
(2) n7 2 x(ly < llxllz < [1x]ls.
(b) lIxlloo < l1xll2 < n!/?|1xlloc.
(©) lIxllz < Ilxlly < n'/2]lx]l2.
(d) Ixlloo < lIxll1 < nlfxloo-
1/2

4.57. Every inner product induces a norm; we simply put ||x|| = (x,x)'/?. How-

ever, there are norms not induced by an inner product as in (4.58¢c) below.
4.58. (Parallelogram Law)

(a) The norm induced by an inner product on a vector space (cf. 4.57) has the

property
1+ yli? + llx = ylI* = 2/lx]* + 2|y }*.

(b) Conversely, any norm on a real or complex vector space satisfying the above
equation is induced by an inner product, namely

(x,3) = 5(llx+ylI* = x> = lly[l*)-

An alternative inner product that can be used is
(x,y) = 3(Ix +y)* = lIx - yl*).

(c) If the parallelogram rule does not hold, then there is no inner product that
induces the norm.

(d) Let 1 < p < co. Then the L, norm satisfies (a) if and only if p = 2. Thus L,
for example, does not satisfy (a) so it cannot be induced by an inner product.

4.59. The sum of two vector (semi)norms is a vector (semi)norm, and any positive
multiple of a vector (semi)norm is a also a vector (semi)norm.

4.60. Let || - || and || - ||s be vector norms on a real or complex vector space V.
The function || - || defined by

[l = max{{|x]|, [|x]|s}

is a vector norm.
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4.61. (Continuity) If {x,} and {y.} are sequences of vectors in an inner product
space such that ||x, — x|| — 0 and ||y, — y|| — 0 as n — oo, then

(@) Ixnll = lIx|l and {lyn|} — liyll.
(b) (xn,¥n) = (x,y), if [x]| < 00 and [y| < oo.

4.62. If || - || is a vector norm on C™ and R is a nonsingular n X n matrix, then
| - lm defined by
Ixllr = [Rx[, xeC"

is also a vector norm on C™.
Proofs. Section 4.6.1.
4.52a. By (2) of Definition 4.9.
4.52b. Horn and Johnson {1985: 260].
4.52¢. By (3) of Definition 4.9 with y replaced by —y.
4.53-4.54. Horn and Johnson [1985: 271, 272].

4.55. Conditions (1) and (2) of Definition 4.9 are readily verified (cf. Gentle
[1998: 71]), and (3) follows from Minkowski’s inequality (12.17a).

4.56. (b)-(d) are quoted by Golub and Van Loan [1996: 53], while (a) and
(b) are proved by Rao and Bhimasankaram [2000: 258; see the solution to
exercise 14].

4.57. Rao and Bhimasankaram [2000: 256].

4.58a. This follows by simply expanding (x + y,x +y), and so on.

4.58b. Horn and Johnson [1985: 263, exercise 10] and Meyer [2000a: 290-292].
4.58¢c. Abadir and Magnus [2005: 64].

4.58d. Rao and Bhimasankaram [2000: 258; see the solution to exercise 9.
4.59-4.60. Horn and Johnson [1985: 268].

4.61. Abadir and Magnus [2005: 65].

4.62. Horn and Johnson [1985: 268].

4.6.2 Matrix Norms

Definition 4.11. We can interpret the word “vector” as simply an element of
a vector space. In this case, an m x n complex matrix A = (a;;) is simply an
element of the space of m X n complex matrices. Alternatively, this space can also
be identified with the vector space C™" by arranging the entries of each A as an
mn-tuple in some order (e.g., vec A). When a norm applied to vec A satisfies the
conditions of a vector norm, we call the norm a generalized matriz norm. Some
examples follow.
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4.63. (Generalized Matrix Norms) Let A be an m x n matrix. Then the following
are generalized matrix norms:

(a) |Alloo = maxi<i<m,1<j<n @sj]-

(b) |A|lF = [trace(A*A)]Y/2 = (37, 37, |as;|*)!/?, the Frobenius norm. (We
use a subscript F instead of F' = 2 to avoid confusion later in dealing with
matrix norms instead of generalized ones.)

(c) flAll = (22, X lag )P (p 2 1).

Definition 4.12. (Induced Norms) Given the vector norm || - ||, the generalized
matrix norm induced by || - ||, for the m X n matrix A is defined by

A ()

where x € C". As noted by Horn and Johnson [1985: 292], we can replace “sup” by
“max” in the above definition. The most common vector norms are the L, norms
with p > 1. Note that || - || 7 is not an induced norm, and is not to be confused with

A
“A”v,in — Sllp || x”U —
x#0 ||x”v x#£0

‘: sup ||Ax|,
|

|x”v=1

4.64. The induced norm ||Aly i is a generalized matrix norm as condition (3) of
Definition 4.9 in Section 4.6.1 holds.

4.65. If A is m x n and B is n x g, then for an L, vector norm (p > 1)
|AB[p,in < {|AllpinlBllp,in-

This result does not hold for every | - |ly,in. Golub and Van Loan [1996: 55],
in quoting the above result, note that it represents a relationship between three
different norms defined on R™*4, R™*™ and R™*?, respectively. They also call
the above norm a matrix norm, which it is for square matrices (see Definition 4.13
below).

4.66. Let A be m x n. Then following are induced norms based on L, vector
norms.

(a) |Al1in = maxi<jcn Yy laij-
(b) [|Allzin = Pmax(A*A)Y? = omax(A), where Apay is the maximum eigen-
value of A*A and o,y is the maximum singular value.
(©) |Alloo,in = maxi<i<m > 5= las;]-
4.67. If A is m X n then:

(a) |All2.in < |AllF < nV?||A|l2,in. (See also (4.82) below for square matrices.)

1/2

(b) maxigi<m1<j<n [aii] < [All2n < (mn)'/? maxi<i<m,1<j<n [aijl-

() m Y2 Al < JAl2in < 02| AllLin-

(d) 272 Allooin < [Allzin < m?||Allooin-
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(e} JAllz,in < VIIAIL inllAlloo,in-

The above bounds on the norm ||A||2., are useful, because this norm is more
difficult to compute than either ||All1,in or ||Allco,in-

Definition 4.13. Let V be the vector space of n X n complex matrices. If A € V,
then the matriz norm of A, denoted by |||A]||, is any real-valued non-negative
function of A satisfying the following conditions.

(1

) |IIA]|| >0 and |||]A]|| = 0 if and only if A = 0.

(2) lieAlll = |e| - I|A]]l, where ¢ is any scalar and |¢| is its modulus.
)
)

(3) If B €V then [||A + BI|| < [||A[l} +{[IBI]].
(4) If C €V then [[[AC]|| < [IA]l - [l|CHII-

Note that the first three conditions are those of a generalized matrix norm (and of
a vector norm), which can be applied to any m x n matrix. However, condition
(4) applies to square matrices only. For a brief introduction to matrix norms see
Meyer [2000a: section 5.2].

4.68. Let ||| - ||| be any matrix norm and A any n X n matrix.

(a) (@

) p(A) < |||A]|l, where p is the spectral radius.
(i) p(A) = limg_,oo(|[|A*||))!/*.
)

)

(b) (i) From AI, = A and Definition 4.13(4) we have |||I,,||| > 1.

(ii) Repeated use of Definition 4.13(4) give us |||A*|l| < (|||A]|])* (k a posi-
tive integer).

(iii) Using AA~! =1,, and Definition 4.13(4) gives us |[|]A7Y||| = (|||A[|]) L.

(c) From A = (A — B) + B, Definition 4.13(3), and interchanging the roles of A
and B, we have | [[|A[l] - [I[B]]| | < |l|A - BI|I.

(d) lay| < 6||A]|| for all ¢ and 7, where § = maxi<icn,1<j<n |||Eslll, and E;; is

ST AT

an n X n matrix with 1 in the 4, jth position and zeros elsewhere.

(e) If |||A]|ls = |[|S~1AS]||| for all nonsingular n x n matrices S, then |||A[||s is
a matrix norm.

4.69. Let A be an n X n matrix.

(a) Al = (X, Z?zl(|aij|”)1/” is a matrix norm for 1 < p < 2. When p =2
we use the notation |||A[||f.

S _ e .
(b} If n > 2, |A]| n(1< Jnax la;;|) is a matrix norm, but ||A ||« of (4.63a)

is not, though it is a generalized matrix norm.

4.70. Result (4.69b) above can be generalized. For every generalized matrix norm
|Alla, where A is n X n, there is a finite positive constant ¢, which depends on the
norm such that ¢,||Ajjq is a matrix norm.
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4.71. An n x n matrix A is nonsingular if there is a matrix norm || - |{| such that
[[|IL, — A]|l < 1. In this case

(oo}

A=) (1, - A
k=0
4.72. Given ¢ > 0, there exists a matrix norm ||| - ||| such that

p(A) < Al < p(A) + ¢,
where p is the spectral radius (see also 4.68a).

Definition 4.14. The generalized matrix norm induced by the vector norm | - ||,
for the square matrix A is a matrix norm because it satisfies the four conditions of
Definition 4.13. We call it the induced matriz norm and we denote it by |||Al|[v,in
For further discussion of this norm see Horn and Johnson [1985: 292-295] and Rao
and Rao [1998: 367-8].

4.73. For n X n matrices, the induced matrix norm has the following properties.
(@) [[Inlfv,in = 1.
(b) [1Axllo < [l|A]lfo.in - lIxllo-
(©) llleAlllvin = lof - [[|Alllvmn-
(d) Il = Alllo,in = [I|Al[lo,n-
(&) 1En + Alllo,in < [1Tnlllvin + [[Alllv,in =1 + [[|Alllo,in
(£) 11T = Allloin < 1+ [[|Alllo,in-
(g) Suppose [[[Al]|y,in < 1.

(i) B=1, — A and I, + A are nonsingular.
(ii) From B(I, — A) = I, we can take the norm of B = I, + BA using (e)
and Definition 4.13(4) to get

1 1
S|||(I7l_AA)_1|||1/,177, S —_—
L+ |l|Alllv.in 1 —|[[A][lv,in

By replacing A by —A and using (c) above we see that the same bounds
apply for |||(Tn + A) " ||v,in-

4.74. Let A be an n x n matrix. The matrix norm induced by an L, vector norm
is given by
Alllpm = max [[Ax]p, p=1.

txllz=

Setting p = 1,2, 00, we have:

(a) (1Al = maxicjcn Yoiey lagl.

() l|All2:in = [Mmax(A*A)]Y2 = Gmax(A), where Apax is the maximum eigen-
value of A*A and 0.y is the maximum singular value. We note that Apax is
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real and non-negative as A*A is Hermitian and non-negative definite. We
note that Ayax = p(A*A), where p is the spectral radius. When A is
Hermitian, [|JA|||2in = [0(A2)]/2, which reduces to p(A) when A is also
non-negative definite. For further properties of this induced norm see Meyer
[2000a: 281-283].
This matrix norm is also called the spectral matriz norm.
(©) NAlloo,in = maxicicn Y-y las].
The inequalities given in (4.67) apply to the above matrix norms by setting m = n.
4.75. If A and B are non-negative definite n x n matrices, then:

(a) [[|A°B?|||2,in < [[|ABJ[|3;, for 0 < s < 1.
(b) If [{|AB|||2.sn < 1, then [||A*B®|||2,in < 1for 0 <s <1.

() llABI|f3 3, < [|A*B|||2,in for ¢ > 1.

4.76. Let || - | and || - ||g be two given vector norms on C”, and let ||| - |||a,in
and ||| - |||8,in denote the respective induced matrix norms on the space V of n x n
matrices.
(a) Define
[1]lo lIxlls
Ros = max and Rg, = max .
0 0 [xlls 7T 0 [l
Then A A
max H| |”am — max ||| I“ﬂ,m _ RaﬁRﬂcv

A#0 [[[Alllgin — A0 [[|Alllain

(b) |l|A}lla,in = |||A]l|g,in for all A € V if and only if there is a positive constant
¢ such that ||x||, = ¢||x|ig for all x € C.

) NAl|lain < IH1Allg,in for all A € V if and only if ||A|a:m = ||Allg,in for all
AcVy

4.77. If Q is unitary (or orthogonal), then:

(a) 1Qxl2 = [Ixl2:
(b) 11Qlll2,in = 1.
Definition 4.15. A matrix norm ||| -]|| on the class of n x n matrices is a minimal

matriz norm if the only matrix norm N(-) such that N(A) < |||A]|| for all A is

NG =111
4.78. Every induced norm is minimal and every minimal norm is induced.
Definition 4.16. If A is m X n, the Frobenius norm is defined to be
IAllF =] lag|*)'/? = [trace(A*A)]Y/? = ||A*| .
v g

When m # n, this norm is a generalized matrix norm, while if m = n, it is a matrix
norm. However, it is not an induced norm. It is often refered to as the Euclidean
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matriz norm as |[|Al|llr, like |||A|||2,:n, uses an Ly vector norm. For this reason,
Graybill [1983], for example, uses F, but we shall follow the general trend and use
the subscript F to avoid confusion. Harville [1997] refers to the Frobenius norm
as the “usual norm.” Even when m # n, the following result shows that the norm
satisfies a result like (4) of Definition 4.13.

4.79. If Aism x n and B is n x p, then |AB||r < ||Al|F - |B||F-

4.80. If A is m x n of rank r with singular values o; = 0;(A), then

|Al|% = trace(A*A) = trace(AA*) = ZO’?.

i=1
4.81. Given real symmetric A and real skew-symmetric B, both n x n, then
1A+ BllF = [ANlFE + B3
4.82. [||A]ll2in < [[|AlllF < VllIA[ll2,in-
4.83. If A and U are n x n and U is unitary, then
[A[ll2,in = [[[UA[ll2,in = [[|AU]ll2,in = [[[U*AU||2,in-
The above also holds for ||| - ||| r.

Proofs. Section 4.6.2.

4.63. Rao and Rao [1998: 363]. The results follow by applying (4.55) to
vec A.

4.64. We see that |Ax + Ayl, < ||Ax]|l, + ||Ay||, implies that max ||Ax +
Aylly < max{||Ax|l, + |Ayll,} < max||Ax]|, + max [|Ay,-.

4.65. Quoted by Golub and van Loan [1996: 55].

4.66. Horn and Johnson [1985: 294-295, the proofs hold for m # n] and
Meyer [2000a: 281-284].

4.67. Golub and Van Loan [1996: 56-57).

4.68a(i). Horn and Johnson [1985: 297], Meyer [2000a: 497], and Rao and
Rao [1998: 365).

4.68a(ii). Horn and Johnson [1985: 299], Meyer [2000a: 619], and Rao and
Rao [1998: 373].

4.68b. Horn and Johnson [1985: 290].
4.68d. Rao and Rao [1998: 365].
4.68e. Horn and Johnson {1985: 296).

4.69a. Graybill [1983: 93, p = 1], Horn and Johnson [1985: 291, p = 1, 2],
and Rao and Rao [1998: 374].

4.69b. Horn and Johnson [1985: 292].
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4.70. Horn and Johnson [1985: 323].
4.71. Horn and Johnson [1985: 301]. See also (19.16a) using an infinite series.
4.72. Horn and Johnson {1985: 297] and Rao and Rao [1998: 372].

4.73a-c. Horn and Johnson [1985: 293] and Rao and Bhimasankaram [2000:
259; see the solution to exercise 15].

4.73d. Since ||Ax||, = | — Ax],.

4.73e. From sup(a + b) < supa + supb.

4.73f. Follows from (d).

4.73g. Rao and Bhimasankaram [2000: 259; see the solution to exercise 15].
4.74a. Horn and Johnson [1985: 294] and Rao and Rao [1998: 370].

4.74b. Rao and Rao [1998: 371].

4.74¢c. Horn and Johnson [1985: 295] and Rao and Rao [1998: 368-369].
4.75. Bhatia [1997: 255-256].

4.76. Horn and Johnson [1985: 303-305, further results are given there in
section 5.6].

4.77. Gentle [2000: 73].
4.78. Horn and Johnson [1985: 306].
4.79. Harville [1997: 432].

4.80. From the singular value decomposition of A, o2 is the ith ordered
eigenvalue of AA* and the trace is the sum of the eigenvalues.

4.81. Rao and Rao [1998: 390].

4.82. Since A*A is non-negative definite it has non-negative eigenvalues A;
and trace(A*A) = > . A;. The result then follows from Amax < D, A <
NAmaz and taking square roots.

4.83. Gentle [1998].

4.6.3 Unitarily Invariant Norms

Definition 4.17. A real-valued function || - || on the vector space ¥V of m x n
complex matrices is said to be a wunitarily invariant (generalized matriz) norm,
and denoted by || - ||, if it has the following properties. We shall drop the words
“generalized matrix” below.

(1) 1Al >0 for all A € V and ||A|| =0 if and only if A = 0.
(2) |laA] = |al||Ai for every @ € C and A € V.
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(3) |JA+BJ < ||A||+ ||B]| for all A and B in V.

(4) |UAV] = ||A|| for all A € V and unitary matrices U and V of orders m x m
and n X n, respectively.

Thus a generalized matrix norm, which satisfies the first three conditions, is uni-
tarily invariant if it satisfies (4) as well. If m = n and [AB]| < ||A[|||B]| for all
n X n matrices, then || - || is @ matrix norm that we denote by ||| - |}|us-

If V is the space of real matrices, then we use the term orthogonally invariant
norm.

4.84. Let | - ||; be a unitarily invariant norm defined on V, the space of m x n
matrices. Then:

(a) |AB*|lui < 01(A)||B||.; for all A,B € V.

(b) If E;; is the matrix with 1 in the (1,1) position and zeros elsewhere, then
fAlw: = o1(A)||Eq1]w: for all A € V.

Here o1(A) is the maximum singular value of of A.

4.85. A unitarily invariant norm || - ||,; on the space V of n x n matrices is a matrix
norm if and only if ||A]lw > o1(A) (= |[|Alll2,in) for all A € V. An equivalent

condition from (4.84b) above is ||Eq1||w; > 1. Note that Bhatia [1997: 91] uses the

sufficient condition ||[Eq1]|w; = 1 in his definition of matrix norm, which leads to a
slightly different norm.

Definition 4.18. We define the term general square root of the m x n complex
matrix A to be the unique non-negative definite matrix (A*A)'/? (cf. 10.8), and
denote it by |A|.

4.86. Let A be an m X n matrix. Since (A*A)/2 has the same singular values as
A, which are the same as those of A* (cf. 16.34d), then from (4.87) below we have

ALl = | Al

for all unitarily invariant norms.

4.87. Let A = PXQ* be the singular value decomposition of an m x n matrix
A, where ¥ is diagonal and P and Q are unitary m x m and n x n matrices,
respectively. Then

Al = IP*"PEQQus = || Z]|us;
which is a function of the singular values of A. The nature of this function is
discussed below.

4.88. Let A be an m x n matrix.

(a) The Frobenius norm ||Aflr = (372, >0, lai;|?)/2 and  ||All2,in = Ormaz
(the maximum singular value of A) are both unitarily invariant generalized
matrix norms. When m = n they are both unitarily invariant matrix norms.

(b) ||A||2,in is the only unitarily invariant norm that is also an induced norm.
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Two other classes of unitarily invariant norms that seem to be of particular
interest are the Ky Fan k-norms and the Schatten p-norms (Bhatia [1997: 92] and
Horn and Johnson [1985: 441, 445]).

4.89. Suppose A and B belong to the vector space ¥V of m x n matrices and let
p = min{m,n}. In order that ||Al|,; < ||B|in for every unitarily invariant norm
| - llus on V, it is sufficient that

0,(A)<o0;B) forall i=12,...,p,
and it is necessary and sufficient that
oA+ +0;(A)<oi(B)+---+04(B), i=1,2,...,p.

We now introduce a function, called a symmetric gauge function, which is inti-
mately related to the unitarily invariant matrix norm. In fact, |A| is a unitarily
invariant norm if and only it is a symmetric gauge function of the singular values
of A (cf. (4.87) and (4.92)).

Definition 4.19. A real-valued function ¢ from R™ to R is said to be a symmetric
gauge function if it has the following properties.

(
(ax) = |a|¢(x) for all x € R™ and a € R.

(x+y) <é(x)+ ¢ly) for all x and y in R™.

(xz) = &(x) for all x € R™ and all permutations x, of the elements of x.

(Jx) = ¢(x) for all x € R™ and all diagonal matrices J with diagonal
elements +1 or —1. This is equivalent to ¢(x) = ¢(mod x), where mod x =

(lz))-
4.90. The following hold.
(a) From (1) to (3) above, ¢ is a vector norm on R™.
(b) A symmetric gauge function is continuous.

)
)

(c) The sum of two symmetric gauge functions is a symmetric gauge function.
)

(d) A positive multiple of a symmetric guage function is a symmetric gauge func-
tion.

e) The L, vector norm (p > 1) on R™ is a symmetric gauge function.
p gaug

For some examples of symmetric gauge functions, their properties, and some in-
equalities see Bhatia [1997: chapter 4].

4.91. Let ¢ be a symmetric gauge function, and let x = (z;) € R™.

(a) fy = (y;) = (psxs), where 0 < p; <1 for all 7, then

WY1y Yn) S O(T1,. .o Zn).
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(b) If 0 < z; < y; for all 4, then

(@1, 2n) < O(Y1y. - Yn)-

(¢) k( max |x;|) < plz1,...,2,) < k(z |z:]), where k = ¢(1,0,0,...,0).

1<i<n €
i=1

4.92. Let ||-||4; be any unitarily invariant norm on the vector space V of m x n real
matrices, and let p = min{m, n}. For each x = (z;) € R™ let X, x, = diag(x) and
¢(z1,...,Tm) = || X||ui- Then ¢ is a symmetric gauge function. Thus from (4.87),
with X replacing X, we have that [|Al|,; = ¢(01(A),02(A),...,0,(A)), where ¢ is
a symmetric gauge function and ¢;(A) is the ith singular value of A.

Conversely, if ¢ is a symmetric gauge function on R?, then the function defined
by

|All = ¢(o1(A), 02(A), ..., 05(A))

is a unitarily invariant norm on V.

Unitarily invariant norms and gauge functions have been found useful in multi-
variate analysis in relation to monotone properties of power functions and simulta-
neous confidence intervals (Mudholkar [1965, 1966] and Wijsmann [1979]).

4.93. The n x n matrix A has the same singular values as A* so that by (4.86)
above, [|A|lwi = ||A*]|wi for all A and all unitarily invariant norms. Such a norm is
called a self-adjoint norm.

4.94. (Ky Fan) If ¢ is a symmetric gauge function on R? and o; > g9 > --- >
0p > 0and 0] > 05 > -+ > 0, > 0 are two sets of values, then

$(o1, -, 0p) 2 bal, -+, ab)

if and only if
o1+...+o;zoi+... 4o, i=12...,p

Proofs. Section 4.6.3.
4.84. Horn and Johnson {1991: 206].
4.85. Horn and Johnson {1985: 450; 1991: 211, exercise 3].
4.87. Rao and Rao {1998: 375].
4.88a. Rao and Rao [1998: 376].
4.88b. Horn and Johnson [1985: 308].
4.89. Horn and Johnson [1985: 447] and Rao [1980: 6.
4.90. Rao and Rao [1998: 377-378].
4.91. Rao and Rao [1998: 377-378].

4.92. Horn and Johnson {1985: 438-441; 1991: 210] and Rao and Rao [1998:
378-380).

4.94. Fan [1951].
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4.6.4 M, N-Invariant Norms

Definition 4.20. Let M be a given positive definite m X m matrix and N a given
n X n positive definite matrix. A generalized matrix norm on the space V of m x n
matrices is said to be an M,N-invariant norm if, in addition to conditions (1), (2),
and (3) of Definition 4.17 in the previous section, it satisfies the following condition

IVAU| = ||A] for every A €V,

and any m x m matrix V and any n x n matrix U such that VMV = M and
U*NU = N. This norm was introduced by Rao [1979, 1980] to deal with dimension-
reducing techniques in multivariate analysis. When M and N are the identity
matrices, the A, N-invariant norm becomes the unitarily invariant norm.

4.95. Using the above notation, let M'/2, M~1/2, N¥/2 and N~1/2 be the respec-
tive positive definite square roots of M, M~!, N and N~! (cf. 10.32). Then the
following hold.

(a) If | Allq is a unitarily invariant norm of A, then ||[M'/2AN/2||, is an M, N-
invariant norm of A.

(b) If | Al|s is an M, N-invariant norm of A, then ||[M~Y/2AN~1/2| 5 is a unitarily
invariant norm of A.

Proofs. Section 4.6.4.

4.95. Rao and Rao [1998: 394-395]. They also give a number of matrix
approximations based on the M, N-invariant norm.

4.6.5 Computational Accuracy

An important question in computing is: How do errors both in the data and in
the round-off affect the computation of expression—for example, the inverse of
a nonsingular matrix? Suppose A is n x n and, instead of computing A~!, we
actually compute (A + dA)~!. Then, assuming that a particular matrix norm of
the error ||6A|| is small enough, Horn and Johnson [1985: 335-338] show that if
|6A||||A~Y]| < 1, then

IA~T - (A+6A)7Y| _ r(A) QLN
A=t T 1-w(A)(loAll/IAL) Al
where x(A) = ||A|[||A~|. The above expression bounds the relative error in the

inverse in terms of the relative error in the data. For ||§A| small, the right-hand
side of the above expression is of the order of k(A)||6A[|/||A]||. Therefore if k(A) is
not large, the relative error in the inverse is of the same order as the relative error
of the data.

One can obtain a similar result in computing an eigenvalue. For example, if
A is an eigenvalue of A + JA, where A is diagonalizable (e.g., symmetric) with
A = RAR ! and A = diag(}y,..., \,), then there is some eigenvalue A; of A such
that, for an appropriate matrix norm,

A= il < IRIRTHISA] = s(R)[6A].
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Horn and Johnson [1985: section 6.3] derive a number of perturbation results like
the one above for different properties of A and §A.

Finally, we look at a corresponding result in relation to solving linear equations.
For example, consider

(A + 6A)(x + 6x) = b + b,
Duff et al. [1986: 89-90] show that if |5A||[|A"|| < 1, then

1] K(A) _(lsA]l | léb]l
[l = T=~(A)GAT/TAT) <IIAII " Ilb||>’

In introducing x(A) in the above discussion, we have not specified the norm
[l - ||. Furthermore, in deriving the above expression it transpires that we only
require the norm to be an induced one. Also, the definition of k(A) used above is
only appropriate for nonsingular matrices. By choosing an appropriate norm, we
now generalize the definition to include nonsingular and rectangular matrices.

Definition 4.21. The condition number of an m x n real matrix A, denoted by
ka(A), is the ratio of the largest singular value to the smallest nonzero singular

value. Thus,
A\ 1/2
ma() = (722)

where Amay is the largest and Ay, is the smallest nonzero eigenvalue of A’A.
Unfortunately, this condition number is not easy to compute, and for further details
see Gentle {1998: 115-116].

4.96. When A is positive definite, its eigenvalues are positive, A’A = A2, and
Amax(A)

/\min(A)

The same is true for a Hermitian positive definite A, as we replace A’A by A*A.
Some bounds on &4 are given in (6.21b).

KZQ(A) =

4.97. If A is nonsingular, then
ka(A) = [[|Al]2,in - AT [l]2,in,

where ||| - |{|2,s» is the induced matrix norm corresponding to the L, vector norm
(cf. 4.74b).
We can also define x1(A) and £..(A) corrresponding to the L; and L, norms.

4.98. If v = 1,2, or oo, then:

A'A) = Kk2(A) > ka(A).
Proofs. Section 4.6.5.
4.98. Gentle [2000: 78].



CHAPTER 5

COMPLEX, HERMITIAN, AND RELATED
MATRICES

Although complex matrices have been refered to in previous chapters, it seems ap-
propriate to have a chapter that looks more closely at complex matrices. Complex
matrices arise, for example, in time series and the related topic of signal process-
ing, and in experimenal designs. We shall initially list some general properties
of complex matrices before looking at Hermitian matrices. The related matrices
that are considered are the skew-Hermitian, complex symmetric, real symmetric,
skew-symmetric, complex orthogonal, and normal matrices. Factorizations and
decompositions for these matrices are given in Chapter 16, while results about
eigenvalues and eigenvectors for these matrices are located in Chapter 6. Unitary
and real orthogonal matrices are considered in greater detail in Section 8.1, and
Fourier matrices are covered in Section 8.12.2. At the end of this chapter we briefly
consider quaternions, which are used, for example, in nuclear physics.

5.1 COMPLEX MATRICES

Definition 5.1. Given a complex number z = x1 + izo, where x; and x5 are both
real, then its compler conjugate is defined to be T = x; — izq, and its modulus or
absolute value is defined to be |x|, where |z| = (2% + 22)!/2. If A is complex, it can
be expressed in the form A = A; + iAs, where A; and Ay are real matrices, and
its complex conjugate is A = A; — iAy. We also define the conjugate transpose of
Atobe A*=A"

A Matriz Handbook for Statisticians. By George A. F. Seber 79
Copyright © 2008 John Wiley & Sons, Inc.
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Definition 5.2. An n x n matrix A is said to be a Hermitian matriz if A* = A
and skew-Hermitian (anti-Hermitian) if A = —A*.

A real or complex matrix A is symmetric if A = A’

A complex orthogonal n x n matrix T is a complex matrix such that T'T = L,.
We omit the word “complex” if T is real.

An n x n matrix U is called a unitary matrix if U*U =1,.

5.1.1 Some General Results
5.1. For complex scalars  and y we have:

(a) lzy| = lz|ly|.

(b) |z +yl < ||+ lyl-

(c) |z|? + |y|? > 2Re(xy), where Re is the “real part.”
5.2. A complex orthogonal matrix T need not be unitary.

5.3. (Isomorphism Between Complex and Real Matrices) Let Z = Z; +iZy be an
n x n complex matrix with Z; (¢ = 1,2) real matrices. Let

Z, -7Z

R_ 1 2
2~(7 7 )
and define X* and Y* in a similar fashion.

(a) fZ=X+7Y, then Z% = XR + YE.
(

)
b) If Z = XY, then Z® = XRYR,
c) If W=2Z"1, then WE = (Zf)~1,

(
(d) det Z® = |det Z}2.

f

)
(e) If Z is Hermitian, then ZF is symmetric.
(f) If Z is unitary, then Z# is orthogonal.

)

(g) Suppose the eigenvalues and eigenvectors of Z are A; and oy = o + oy,
j=1,2,...,n, where the a,; are real for r = 1,2, and all j. Then those of

ZFE are, respectively,

Ay (“ﬂ>; X, (“’”), i=1,2,...,n
ajg ajl

This result could be useful for carrying out numerical computations involving
complex matrices.

5.4. Let x = (21,%2,...,%,) be a complex vector with |37  z;| = >0 | |z
Then z; = 6|z;], ¢ = 1,2,...,n, for some complex number § satisfying |f| = 1.

5.5. If A is a square complex matrix and x*Ax = 0 for all complex x, then A = 0.
Thus if x*Ax = x*Bx for all complex x, then A = B. However, these results do
not necessarily hold if the matrices are real and the equalities hold for all real x.
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5.6. If A is an n x n real or complex matrix, then there exists a nonsingular matrix
S such that SAS™! is symmetric. There also exists a nonsingular matrix R such
that A’ = RAR™!

5.7. Let A be an n x n real or complex matrix. Then every product of n entries of
A taken from distinct rows and columns equals 0 (i.e., a1;,,a2i, - * - Gns, = 0), with
distinct i;, if and only if A contains an r X s zero submatrix, where r + s =n + L.

5.8. Let A = (a;;) be an n x n real or complex matrix with eigenvalues A; (i =

1,2,...,n), then
DN D lal
i=1 i=1j=1
Equality occurs if and only if A is normal (cf. Section 5.6).
Proofs. Section 5.1.1.
5.1. Abadir and Magnus [2005: 12].

5.2. For a 2 x 2 counterexample see Horn and Johnson [1985: 71, exercise 8].

5.3. Quoted by Brillinger [1975: 71] with a corrected sign change. All the
results except (c) and (d) can be verified directly, while (c) amounts to showing
that if WZ = I then WEZ! =TI; (d) follows from (5.10).

5.4. Bapat and Raghavan [1997: 19].

5.5. Davis [1979: 61-62]. For a counter example see (5.25).
5.6. Horn and Johnson {1985: 209-210).

5.7. Zhang [1999: 126-127].

5.8. Zhang [1999: 260].

5.1.2 Determinants

5.9. Let A = A{+iA,, where A; and A, are real n x n matrices. If det A = a+1b
and | - | represents the modulus, then:

(a) det A =a — ib.

(b) det A’ = det A.

(c) |det A2 = |det AJ*> = a® + b = |det A det A| = det A det A.
(d) |det Adet A = |det Adet A'| = |det(AA")] = | det(AA®)].

5.10. Let

B . _ A, A (A —Ay
A=A +iA,, B‘<—A2 A1> and C-<A2 A, >,
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where A, and A are real matrices. Then, for det A; # 0,
detB =detC and |det A|=|detB|/2 =|detC|2.

Proofs. Section 5.1.2.

5.9. The results (a)—(c) follow from the definition and the product rule for
determinants, and (d) follows from the expansion of a determinant.

5.10. Mathai [1997: 171-172].

5.2 HERMITIAN MATRICES

5.11. An n x n matrix A is Hermitian if and only if one (and therefore all) of the

following five conditions hold.
(1) x*Ax is real for all x € C™.

(2) A2 = A*A.

(3) trace(A?) = trace(A*A).

(4) A is normal and all the eigenvalues of A are real.
(5) S*AS is Hermitian for alln x n S.

5.12. Suppose A is an n X n Hermitian matrix. Then the following hold.
(a) AF is Hermitian for k =1,2,....
(

)
b) ¢A is skew-Hermitian.
(c) If A is nonsingular, then A~! is Hermitian.
(d) The diagonal elements of A are real.
(e) The eigenvalues of A are real (see Section 6.1.6 for further details).
5.13. Let A be an n X n matrix.

(a) A can be expressed uniquely in the form A = S 4 ¢T, where S and T are
Hermitian.

(b) A can be expressed uniquely in the form A = B + C, where B is Hermitian
and C is skew-Hermitian.

5.14. (Complex Householder Matrix) If A = I, — 2bb*, where b is a complex
n x 1 vector such that b*b = 1, then A is Hermitian, unitary (i.e., A*A =1,,),
and involutionary (ie., A2 =1,).

5.15. (Trace) If A is n x n, then:
(a) trace(AX) = 0 for all Hermitian matrices X if and only if A = 0.

(b) trace(AX) is real for all Hermitian X if and only if A is Hermitian.
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5.16. A square matrix A is a product of two Hermitian matrices if and only if it
is similar to A*.
Proofs. Section 5.2.

5.11. Zhang [1999: 209] proves (1)-(3), while Horn and Johnson [1985: 170~
171] prove (1), (4), and (5).

5.12. Horn and Johnson [1985: 169-170].
5.13a. Horn and Johnson [1985: 170]. We set A = $(A+A*)+i[-1(A—-A")),

and assume two such representations.
5.13b. Set A = J(A+A*) + J(A - A").
5.15. Rao and Rao {1998: 342].

5.16. Zhang [1999: 215].

5.3 SKEW-HERMITIAN MATRICES

5.17. A — A” is skew-Hermitian for all square matrices A.
5.18. Let A be skew-Hermitian.

(a) iA is Hermitian.

(b) The diagonal elements of A are all purely imaginary.

(c) Since the eigenvalues of an Hermitian matrix are real, the eigenvalues of A
(and therefore of a real skew-symmetric matrix) are purely imaginary or zero.

(d) (I, + A) is nonsingular.

5.19. Suppose A is a skew-Hermitian n x n matrix. Then, using (5.18d) above, we
have:

(a) U=(I, - AT, +A)" ' = (I, + A)"}(I, — A) is unitary as U*U =1,,.
This follows from (I, — A)(L, + A) = (L, + A)(I, — A).

b) U=[2I, - I, +A)}(I,+A)"L.

(c) From (a) we see that I, — A and (I, + A)~! commute.

(d) I, + U is nonsingular because, by (b), it equals 2(I,, + A)~L.

(
(e) The matrices U and A are in (1, 1)-correspondence on account of the pair of
equations

U = 2(In+A)_1_Ina
A = 2(L,+U)' -1,

Thus A is skew-Hermitian if and only if U is unitary.
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(f} These results hold if A is (real) skew-symmetric and U is real orthogonal.
Apparently the above results were first applied to statistics by Hsu [1953].
Proofs. Section 5.3.

5.18a. (iA)* =iA* = (—i)(—A) =iA.
5.18b. Use (a) and (5.12d).
5.18¢c. Use (5.12¢).

5.18d. The determinant of a matrix is the product of its eigenvalues. Also,
AMI,+A) =14 MA) =141ia #0, as from (c) a is real or zero.

5.4 COMPLEX SYMMETRIC MATRICES

Although real symmetric matrices play a fundamental role in statistics, we shall first
consider some results that hold for both real and complex symmetric matrices. Note
that real symmetric matrices are also Hermitian (Section 5.2), normal (Section 5.6),
and diagonalizable (Section 16.1), so that the results in those sections also apply
to symmetric matrices.

5.20. We assume that A is an n x n real or complex matrix.

(a) A is symmetric if and only if there exists an nxn matrix S such that A = S8’
We may choose S = UD, where U is unitary,
D = diag(v/01,/02,.. ., Von),
and the o; are the singular values of A, in which case
rank S = rank A.
(b) If A is symmetric, then A is diagonalizable (cf. Definition 16.3) if and only
if it is complex orthogonally diagonalizable. Thus A = SAS™? for a diagonal

matrix A of eigenvalues of A (cf. 16.17a) if and only if A = QAQ’, where Q
is an nm X n complex orthogonal matrix (i.e., Q' Q =1,).

5.21. If A and B are real or complex symmetric n X n matrices, then there exists
a nonsingular n x n matrix R such that A = RBR if and only if rank A = rank B.

5.22. By considering a 2 x 2 matrix, we see that the eigenvalues values of a complex
symmetric matrix are not necessarily real.

Proofs. Section 5.4.
5.20a. Horn and Johnson [1985: 207].

5.20b. Horn and Johnson [1985: 211-212].
5.21. Horn and Johnson [1985: 225]
5.22. For a counterexample, Abadir and Magnus [2005: 175] consider

(F1)

which has eigenvalues 1 % 1.
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5.5 REAL SKEW-SYMMETRIC MATRICES

Definition 5.3. A matrix A is said to be skew-symmetric if A’ = —A. Note that

a complex matrix like
0 a
r=(ad)

where a is complex, is skew-symmetric. However, my focus is on real matrices as
they are a special case of skew-Hermitian matrices; some of the properties in Section
5.3 will then apply for real matrices. For a factorization of a real skew-symmetric
matrix see (16.46b(ii)).

5.23. The diagonal elements of a real skew-symmetric matrix are all zero.
5.24. Let A be an n x n real skew-symmetric matrix.

(a) From (5.18c), the eigenvalues A;(A) of A are zero or purely imaginary and
occur in conjugate pairs, as the characteristic polynomial has real coeflicients.
Hence the eigenvalues take the form +ia; with a; real (i = 1,2,...,p), along
with (n — 2p) zeros. Thus:

(i) If n is odd, det(A) = 0.
(i) If n is even, det(A) > 0.
(iii) det(L, + A) = [T, (1 + A;(A)) > 1 with equality if and only if A = 0.

(b) Let n = 2m, then det(A) is the square of a polynomial of degree m in the
matrix entries (e.g., (4.45)). The polynomial is called the pfaffian of A and

is denoted by Pf(A). There are two ways of defining a pfaffian and a helpful
resource is http://en.wikipedia.org/wiki/Pfaffian. We have:

(i) det(A) = [Pf(A)]%
(i) PE(BAB') = det(B)Pf(A).
(ii) Pf(cA) = ¢™Pf(A).
(iv) PE(A") = (-1)™Pf(A).
)

(v) For an arbitrary m x m matrix C,

0 C
_ {(_1ym(m-1)/2
Pf< o >_( 1) det(C).

For further references see Halton [1966b], Mehta [2004: 543-545, examples of
computation| and Northcott [1984].

5.25. Let A be a real square matrix and x a real vector, then x’ Ax = 0 for all x
if and only if A is skew-symmetric.

Proofs. Section 5.5.
5.23. Follows from (5.18b).
5.24a(i). The determinant of a matrix is the product of its eigenvalues.

5.24a(ii). (ia)(—ia) = a?, where a may be zero.
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5.24a(iii). Use (5.18d) and (1 +ia)(1 —ia) = 1 + a®.

5.24b. Quoted in http://en.wikipedia.org/wiki/Pfaffian. Depending on the
definition used, several proofs are available for (i) (originally due to Cay-
ley); for example, Parameswaran [1954], Dress and Wenzel [1995], and Halton
[1966a]. Serre [2002: 22-23] proves (ii).

5.25. Davis [1979: 60-61].

5.6 NORMAL MATRICES

Definition 5.4. A square matrix A is said to be normal if AA* = A*A. Note
that Hermitian, skew-Hermitian, and unitary matrices are all normal, as are their
real counterparts.

5.26. An n X n matrix A with eigenvalues Ay, Ag,...., A, is normal if and only if
there exists a unitary matrix Q such that

Q*AQ = diag(/\l, /\2, ceey )‘n)

We say that A is unitarily diagonalizable. Note that this applies to Hermitian and
unitary matrices (see also (16.46)).

5.27. If A is a commuting family of n x n normal matrices (i.e., AjA2 = AzA; for
all Ay, Ay € A), then every member of A is unitarily diagonalizable by the same
unitary matrix.

5.28. In addition to being unitarily diagonalizable, normal matrices have many
unique properties, some of which are listed below. The following statements are
equivalent.

(1) A is normal.
(2) There exists a polynomial p(z) of degree at most n— 1 such that A* = p(A).
(3) The singular values of A are [A1(A)],|A2(A)],..., | (A)].

(4) A = R+ S, where R and S are real, symmetric, and commute (i.e., RS =
SR).

(5) Every eigenvector of A is an eigenvector of A*
(6) There exists a set of eigenvectors of A that form an orthonormal basis for C™.
(1) 23 5 lail? = 32, Iu(A)>.

5.29. If A is normal and p(z) is a polynomial, then p(A) is normal.

5.30. An upper-triangular matrix is normal if and only if it is diagonal.

5.31. A normal matrix is unitary if and only if its eigenvalues have absolute value
1.
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5.32. If A and B are normal, then so is their Kronecker product A ® B.
5.33. If A and B are n x n normal matrices and AB = BA, then AB is normal.

5.34. A normal matrix is Hermitian if and only if its eigenvalues are real, and it is
skew-Hermitian if and only if its eigenvalues have zero real part.

Proofs. Section 5.6.
5.26. Horn and Johnson [1985: section 2.5] and Zhang [1999: 65-66].
5.27. Horn and Johnson [1985: 103].

5.28. For these and further properties see Horn and Johnson [1985: 100-111]
and Zhang [1999: 241-242].

5.29. Horn and Johnson [1985: 110, exercise 17] and Marcus and Minc [1964:
71].

5.30. Rao and Bhimasankaram [2000: 313].

5.31. From (5.26), I = AA* = UAU*UAU* = UAAU* and AA =1

5.32. From (11.1f),
(A®B)*(A®B)=(A"9B")(A®B)=A"A®B"'B = AA* @ BB,

which, by reversing the argument, is (A @ B)(A ® B)*.

5.33. Using (5.27), we have A = UAAU*, B = UAgU~*, and AB =
UAAAgU* = UAU". Then AB(AB)* = UAAU” = UAAU" = (AB)"AB.
Also A = —A* if and only if A = —A.

5.34. If A = UAU*, then A = A* if and only if A = A.

5.7 QUATERNIONS

Definition 5.5. Just as a complex number has two components, a quaternion
number has four components

g=¢2 +qVer +qPez +¢¥es =go +q-e, say,

where the e; are quantities (not ordinary numbers) satisfying the symbolic rules
6% = 6% = eg = —1, €19 = —€2€] = €3, €2€3 = —€3€2 = €1, and €3€] — —€1€3 = €3,
where “1” is a particular unit identity. This 1 and the e; can be expressed as the

matrices C(1) = I, and the so-called Pauli matrices

C(eQ:(é _‘2) C(eg):(_(l) é) and C(e3):(3 é)

where 1 = v/—1. Then

O 4 gD @ 4 jg®
¢V +ig") ¢ +iq )
C(q) = _ ,
@ ( —¢@ +ig® ¢ — g
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is a matrix representation of the quaternion ¢. For any 2 x 2 complex matrix we
have

(b+ ¢)C(es).

(¢ 4)=4a+acm - La- a0 + 3o ICa) - §

c d
Thus ¢© = 1(a+d), ¢V = 1(a — d), and so on.
The ¢ can be real or complex. If they are all real, then we call the quaternion
real, though C(q) isn’t necessarily real. The notation for quaternions is a little dif-
ferent from the usual for complex numbers. For example, the conjugate quaternion
of a complex quaternion g = 9 4+q-eis
(0)

q:q —q-€,

which is different from its complex conjugate quaternion
q* _ q(())* + q* .e.

A quaternion with ¢* = q is real. Applying both types of conjugation together, we
obtain the Hermitian conjugate

quq* :q(O)*_q*.e.

When ¢ = g, q is called a Hermitian quaternion, and it can be shown directly after
some algebra that C(g) is a 2 x 2 Hermitian matrix. If ¢* = —g, then it is called an
anti-Hermitian quaternion and the corresponding matrix C(gq) is skew-Hermitian.
For further information about quaternions see Carmeli [1983: chapters 8 and 9],
Kantor and Solodovnikov [1989], Mehta [2004: 39], and, particularly, Zhang [1997];
for a geometrical perspective see Hanson [2006].

Since any 2n x 2n complex matrix Q can be expressed in terms of n? blocks
of 2 x 2 matrices, we can write Q = (g;;) for i, = 1,2,...,n, where g;; is a
quaternion with matrix representation C(g;;). We call Q an n x n gquaternion
matriz. Using quaternion arithmetic, we can define certain matrix properties for
quaternion matrices, namely transposition

(Q)ij = —eagjiea,
Hermitian conjugation
Q") = b,
and dual
Q%) = e2(Q)ize5 " = Gji-
If Q = QF, the matrix is said to be self-dual. For further matrix details see Mehta
[1989].
5.35. Let Q be a quaternion matrix. Then:

(a) QF = Qf is necessary and sufficient for the elements of Q to be real quater-
nions. When this holds we call such a matrix quaternion real.

(b) If Q is both Hermitian and self-dual, then it is also quaternion real. Further-

more, since quj = q;; = g;i for all 4,7, the 2 x 2 corresponding matrix qg])
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must form a real symmetric matrix, whereas ql(; ), qg), and qg) must lead

to real skew-symmetric matrices. Self-dual Hermitian quaternion matrices
have an important role in nuclear physics and are related to random matrices
(cf. Section 21.10). The corresponding 2n x 2n Hermitian matrix is called a
self-dual Hermitian matrix.

0o I,
-1, O
“®” is the Kronecker product. A real 2n x 2n matrix A is said to be Hamiltonian
if (Z1A) =7Z,A. Note that Z, is skew-symmetric. Hamiltonian matrices are used
in classical mechanics for the study of Hamiltonian dynamical systems.

5.36. [C(e2)]™! = [C(e2)] = —C(eg). Also C(es)? = —Is.
5.37. Z3 = C(e2)’ ® I, = I, ® 1, = —I, and Z;! = -Z; = Z;.

Definition 5.6. Let Z; = C(es) ® 1, = , a 2n X 2n matrix, where

5.38. Let A be an a 2n x 2n Hamiltonian matrix. Then:

(a) Since Z; A is symmetric, Z; A + A’Z, = 0 and, by (5.37), A = ~Z['A'Z, =
Z,\A'Z,.

(b) A’ is Hamiltonian.
(c) trace A = 0.
5.39. Let c b
(5 7)
where all matrices are n x n, D and E are symmetric, and C + F = 0. Then A is
Hamiltonian.

Definition 5.7. A real or complex 2n x 2n matrix B is said to be symplectic if
B'ZB = Z, where Z is a nonsingular, skew-symmetric matrix. Typically, Z = Z,,
as defined above, or Z = Z,, where

1 00 0 00
10 00 0 00
0 010 00

Z;=1,8Cle2)=| o _1 ¢ o 0o |’
00 000 -—- -1 0

a matrix used in nuclear physics. In this case, Z» can expressed as an n X n
quaternion matrix esI,, (Mehta [2004: 38-41]).

5.40. Z» has the same properties as Z; in (5.37).
5.41. If B is symplectic, then (i) B! = Z71B’Z and (ii) det(B) = 1.
5.42. The matrix Z; (i = 1,2) is symplectic.

5.43. Let H be any quaternion real 2n x 2n matrix. Then there exist a symplectic
matrix B such that H = B 1DB, where D is a real, scalar, and diagonal matrix.
Here scalar means that D = diag(d;,d,ds,ds, ..., d,,d,) so that the eigenvalues
of H consist of equal pairs. For further extensions see Carmeli [1983: 70-71].
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Proofs. Section 5.7.
5.36-5.37. These are straightforward; we use (11.1e), (11.1i), and (11.11).
5.38b. Taking transposes in (a) and using (5.37), we have A’ = Z,AZ,.
5.38c. Using (a), trace A = — trace(Z] 'A’Z;) = — trace A’ = — trace A.
5.39. Show that Z; A is symmetric.
5.40. Z2 =1, ® C(e2)? = -1, ® Iy = —I,.

5.41. The result (i) follows from the definition by multiplying on the left by
Z~! and on the right by B~1, and (ii) follows from (5.24b(ii)).

5.42. (Z\Z,)Z; = (Z;'Z,)Z; = Z,.
5.43. Carmeli [1983: 70].



CHAPTER 6

EIGENVALUES, EIGENVECTORS, AND
SINGULAR VALUES

Eigenvalues, eigenvectors, and singular values play an important role in statistics,
and they arise in most of the chapters in this book. In this chapter we deal with
these topics in a general sense. They also occur in a number of important inequal-
ities in this chapter, in Chapter 14, and in Chapter 23 on majorization, and they
underlie many of the factorizations and decompositions in Chapter 16. For those
relating to specific matrices and some patterned matrices, the reader will need to
refer to the index for those matrices. This chapter closes with a a brief introduction
to antieigenvalues and antieigenvectors, which are becoming of increasing interest
to statisticians in recent years.

6.1 INTRODUCTION AND DEFINITIONS

Definition 6.1. Let A be an n x n matrix, which we assume to have elements in
F (i.e., either R or C, unless otherwise stated). The polynomial c()\) = det(A —
AlL,) is called the characteristic polynomial. The equation ¢(A) = 0 is called the
characteristic equation, and its roots are called the eigenvalues (characteristic roots,
latent roots) of A. Many authors use f(A) = det{A\I, — A) = (—1)"det(A — AL,)
for the characteristic polynomial, as the coefficient of A™ is now 1. This alternative
version is sometimes more convenient, so both ¢(-) and f(-) are used below.
Eigenvalues may be real, complex, or a mixture of both. We shall order the
eigenvalues by their modulus values, i.e., [M| > [Az] = -+ 2 |Ax] 2 0. If Ay is
unique, we shall call it the dominant eigenvalue. In this case there exists a unique
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right eigenvector x; of unit length such that Ax; = A;x3, called the dominant
etgenvector.

The s distinct eigenvalues are denoted by g1, po, .. ., s (or p;(A), 7 =1,2,...,3),
where [u1| > |p2| > --+ > |ps] = 0. The set of p; is called the spectrum of
A, and p(A) = || = |A1| is called the spectral radius. We can therefore write
FO) =TI521 (A = )™, where 3°°_, m; = n. Here m; [or m(u;)] is called the al-
gebraic multiplicity of the eigenvalue p;. If m; = 1, y; is called a simple eigenvalue,
while if m; > 1, p; is called a multiple eigenvalue.

For every u; there exists a nonzero solution x such that Ax = p;x, and x is
called an eigenvector associated with p;. The set of all such x together with O,
namely A'(A — p;1,,) the null space of A — p;1I,,, is called the eigenspace of p;. The
dimension g; [or g(u;)] of this space is called the geometric multiplicity of p,;. To
avoid ambiguity, we shall refer to such an x as a right eigenvector. There similarly
exists a nonzero y such that y’A = p;y’ called the left eigenvector of A associated

If m(p;) = g(p;), then p; is said to be a semisimple eigenvalue.

6.1. (Multiplicities). Let A be an n x n matrix.

(a) g(p;) € m(u;); that is, the geometric multiplicity is no greater than the
algebraic multiplicity.

(b) rank(A — u;I,) =n — g{p;) > n —m(u;) for all j.

(c) If m(y;) = 1 so that u; is a simple eigenvalue, then ¢(u;) = 1 and rank(A —
w;I,) = n—1. Conversely, if rank(A —u;1,,) = n—1, then y; is an eigenvalue,
but not necessarily a simple eigenvalue.

Proofs. Section 6.1
6.1a. Schott [2005: 89] and Rao and Bhimasankaram [2000: 286].

6.1b. From (3.3a), dim C(B)+dim A/ (B) = nfor B = A—y;1,,, asdimC(A*) =
rank A* =rank A = dimC(A).

6.1c. Magnus and Neudecker [1999: 20].

6.1.1 Characteristic Polynomial

Definition 6.2. (Symmetric Functions) Given a set of constants Ay, ..., A, we
define the elementary symmetric functions as

S1= i)\i,
i=1
SQ = Z)\i)\j,

i<J

Sy = E AiyAig e Agy
i1 <ig<ne<ir

Sn = A1A2- - Ag.
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Also, let ¢(A) = (=1)"(A" + ;A" + - + ap_1A + an) = (—1)"f(\) be the
characteristic polynomial.

6.2. If the characteristic polynomial has real coefficients, then any complex eigen-
values must come in conjugate pairs.

6.3. (Cayley—Hamilton theorem) f(A)=0.

6.4. The coefficient a, (r = 1,2,...,n) is (—1)" times the sum of all the r x r
principal minors of A. These are obtained by striking out n — r rows and the same
numbered columns of A and taking the determinant of the remaining submatrix.

(a) a, = (-1)"S, (r=1,2,...,n) with a,, = (-1)" det A.
(b) From (a), S, is the sum of all the r x  principal minors of A.

(¢) It = AT+ X +...+ X forr=1,2,...,n and we define 0 = anq1 = apy2 =
.., thent.+t,_1a1+...+t1a,_1+ra. =0 (r =1,2,...). These expressions
for the a, are known as Newton’s identities (Hunter [1983a: 156-157]).

6.5. If A is n x n, and p is not an eigenvalue of A, then A — uI,, is nonsingular as
its determinant is nonzero.

6.6. If A, B, and R are n x n matrices, and B = RAR™! (ie, A and B are
similar), then A and B have the same characteristic polynomial. Note that having
the same eigenvalues is a necesssary but not sufficient condition for similarity.

6.7. If A and B are real n x n matrices, then the eigenvalues of

A B
°~(5 %)
are those of A + B and A — B.

Definition 6.3. If f is a polynomial such that f(A) = 0, we say that f annihilates
A. A polynomial is said to be monic if the coeflicient of the highest power is unity.

6.8. If A is n X n, there exists a unique monic polynomial of minimum degree no
greater than n that annihilates A.

Definition 6.4. The monic polynomial g(A) of the least degree that annihilates
A is called the minimal polynomial.

6.9. Every monic polynomial is both the minimal polynomial and the characteristic
polynomial (f(\) version) of its companion matrix (cf. 6.14).

6.10. The minimal polynomial divides every polynomial that annihilates A. It
therefore divides the characteristic polynomial f(A) (by 6.3).

6.11. If ¢()) is the minimal polynomial of A, then X is a root ¢(A) = 0 if and only
if it is an eigenvalue of A. Thus every root of the characteristic equation is a root
of g(A) = 0.

6.12. If A, B, and R are n x n matrices, then A and the similar matrix B =
RAR™! have the same minimal polynomial.
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6.13. Let A be an n x n matrix, and let A* be the first matrix for which the set

{I.,A, A% ... A} is linearly independent, that is, A* = Zf:—ol a;Af. Then the
.. . . k—1 i

minimum polynomial of A is 2 — ), a;z*.

6.14. (Companion Matrix) Consider the polynomial p,{z) = 2" + a,_12" ! +

-+« + a1z + ag. The matrix

0 0 0 0 =—ag
10 00 -—a
A=1] . . .
00 -+ 01 —ay_y
00 -+ 01 —ap,

is called the companion matriz of the polynomial p, (Golub and Van Loan [1996:
348] and Horn and Johnson [1985: 146]). However, variations on the above matrix
are also called the companion matrix, such as the transpose of A (e.g., Abadir
and Magnus [2005: 173-174] and Rao and Bhimasankaram [2000: 283, solution to
exercise 3]). Some authors take the transpose, then move the bottom row to the
top and shift the other rows down one.

If A is defined above, then:
(a) det(zI, — A) = det(zL, — A") = p,(z).
(b) pn(x) is also the minimal polynomial of A.

A version of the companion matrix can be used to find various upper and lower
bounds on the roots of f,(A) =0, as in Horn and Johnson [1985: 316-320]. Bosh-
nakov [2002] extends the above concept to multi-companion matrices.

Proofs. Section 6.1.1
6.2. Abadir and Magnus [2005: 164].
6.3. Meyer [2000a: 509, 532-533] and Rao and Bhimasankaram [2000: 292].

6.4a. Basilevsky [1983:192], Horn and Johnson [1985: 41-42], and Searle
[1982: 278).

6.4b. Horn and Johnson [1985: 42].
6.4c. Hunter [1983a: 156-157].
6.6. Horn and Johnson [1985: 45].

6.7. Let (A + B)u = Au and (A — B)v = pv. Then C has eigenvectors
(u',u’) and (v/,—v’Y.

6.8. Horn and Johnson [1985: 142] and Rao and Bhimasankaram [2000: 293].
6.9. Horn and Johnson [1985: 147].

6.10. Horn and Johnson [1985: 142-143] and Rao and Bhimasankaram [2000:
203].

6.11. Horn and Johnson [1985: 143].
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6.12. Horn and Johnson [1985: 143] and Rao and Bhimasankaram [2000:
203].
6.13. Meyer [2000a: 643].
6.14. Meyer [2000a: 648].

6.1.2 Eigenvalues
We assume that A is n x n.

6.15. For every j, and A real or complex:

(a) Aj(A) = A,(A)
(b) Aj(A) = A;(A)
(©) Aj(A*) = X;(A).
(d) A (K~'AK) = \;(A) for all j.

6.16. If A has r nonzero eigenvalues, then:

(a) rank A > r

(b) It is possible to have r = 0, but have rank A =n — 1.
6.17. We have the following:

(a) If k is a positive integer, then

n
trace A* = Z /\f.

(b) Taking k =1, traceA =31 | \;
(c) det(A) =TI, N
6.18. A is nonsingular if and only if A;(A) # 0 for all j (cf. 6.17c).

6.19. If A is triangular, then, since the determinant of the upper-triangular matrix
A — )L, is the product of its diagonal elements, the eigenvalues are the diagonal
elements of A.

6.20. If \,, = 0 is the only zero eigenvalue, then

trace(adjA) = H Aiy

where adjA is the adjoint matrix of A.
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6.21. (Bounds Using Traces) Let A be an n x n real or complex matrix with real
eigenvalues \;; for example, A is Hermitian or symmetric. Define

n

1 1
m= E;/\l = ;traceA
and Lo .
52 = E(; My —m? = - trace(A?) — m?.
(a) Then

(A) S m - s(n—1)71/2,

m— s(n—1)1/2 Amin
Amax(A) < m + s(n —1)V/2,

m+ s(n—1)"1/2

IA A

Equality on the left (respectively right) of the first equation holds if and only
if equality holds on the left (respectively right) of the second equation, if and
only if the n — 1 largest (respectively smallest) eigenvalues are equal. When
n =2 we have Apin(A) =m — s and Apax(A) = m +s.

(b) (Bounds on the Condition Number) Let A be Hermitian positive definite
with condition number #3(A) = AmaxA/Amin(A) (cf. 4.96).

(i) When n is even,

28 < k3(A).

1 o =
+ m—s(n—1)"¥/2 —

When n > 2, equality holds if and only if A = cI,,, where ¢ is a real
constant.

(ii) When n is odd, (i) holds along with

2 _ 1y-1/2
2sn(n — 1) < ra(A).

14—
m—s(n—1)"1/2 —

When n = 3, equality holds if and only if the two smallest eigenvalues
are equal. When n > 3, equality holds if and only if A = cL,.

(iit) In general,

(Qn)l/zs[m + s(n — 1)_1/2]”_1
det A ’

k2(A) < 1+

When n > 2, equality holds if and only if A = cI,,.

(iv) If A is Hermitian, trace A > 0, and (trace A)? > (n—1) trace(A?), then
A is positive definite, (i) holds, and

(2n)1/2s
A <14+ ——MF——.
ra(A) < +m—s(n—1)1/2

When n > 2, equality holds if and only if A = cI,,.
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(c) Suppose A has real eigenvalues with f eigenvalues of A positive and ¢ nega-
tive. Let trace(A?) > 0.
(i) When trace A > 0, then
(trace A)?/ trace(A?) > f,

with equality if and only if all the positive eigenvalues are equal and all
the nonpositive eigenvalues are equal.

(ii) When trace A <0, then
(trace A)%/ trace(A?) < g,

with equality if and only if all the negative eigenvalues are equal and all
the non-negative eigenvalues are equal.

(d) Let Ay > Ag > - > Ap.
(i) Then
1 1 1/2
Ak—Algsn1/2<E+m> , 1<k<li<n.

Equality occurs if and only if

AL = A== A,
Aotl = App2=---=N_1 =m,
A= Agr=eo= A

(ii) From (i) we have
AL = Ay < (20)Y2%s.

When n > 2, equality holds if and only if

Ag=Ag=-=Ap_q = %(,\1+,\n).
(iii) If n = 2q is even, then
2s S )\1 — /\n,
with equality if and only if
Al :)\2:"‘:/\(1 and  Ag4q :’\Q+2:"':)\n~

(iv) If n = 2q £ 1 is odd, the previous inequality (iii) holds and
23n(n2 — l)_l/2 <AL= A,

with equality if and only if the conditions for the equality of (iii) hold.
V)

(trace A)? n—24 (A1 + Ap)?
trace(A2) — A24 a2
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When n > 2, equality holds if and only if A; + A\, # 0 and

AP+ A2

/\2:/\3:"':/\71—1:)\1_'_)\ .

(e) The above results can be extended to complex matrices with complex eigenval-
ues. For example, if A now has complex eigenvalues |A1| > |A2| = -+ > | A4l
and we define

1 1
m = =trace A and s> = - trace(A*A) — |m/|?,
n n

then:
(i) |m| = sa(n —1)Y2 < |\,| < [trace(A*A)/n]'/2.

Equality holds on the left if and only if A is normal, Ay = Ay = --- =

An—1, and A, = e¢m for some real non-negative scalar ¢ < 1. Equality

holds on the right if and only if A is normal and [A ] = [A2] = -+ = | Al
(i) [ml < M| < m| + sa(n — D2,

Equality holds on the left if and only if Ay = Ay = --- = A,. Equality
holds on the right if and only if A is normal, A; = A3 = --- = A,, and
A1 = c¢m for scalar ¢ > 1.

(iii) If A has k nonzero eigenvalues, then
| trace A|?/ trace(A*A) < k < rank A.

Equality holds on the left if and only if A is normal and |A\;] = |A2| =
= |Ag|. Equality holds on the right if and only if rank A = rank(AZ2).

Further extensions are given by Wolkowicz and Styan [1980].

Additional results relating to sums of eigenvalues are given by Wolkowicz and Styan
[1980]. Extensions are given by Merikoski and Virtanen [2004] and are used to give
a lower bound for the Perron root of a non-negative matrix.

6.22. Let A = (a;;) and B = (b;;) be n x n matrices with eigenvalues A; and -,
respectively. Define

M= 1<idnigi<n (laij], |bi;]) and 6(A,B)

BI'—‘

n n
ZZI%‘ = byl;
=1 j=1

then
_ < 1-n~? 1/n‘
ax min A — ;| < (n+2)M 7" [5(A,B)]

6.23. Let A and B be real n x n symmetric matrices with C(A) C C(B). Suppose
that B is non-negative definite, and let X be an n X k matrix. Then:

(a) C¢(X'AX) C C(X'BX).
(b) Consider the eigenvalues of (X’BX)~X'AX for any weak inverse (X’BX)~.
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(i) The eigenvalues are all real and do not depend on the choice of general-
ized inverse.

(ii) The eigenvalues are the generalized eigenvalues of X’AX with respect
to X’BX (cf. Section 6.1.8).

(c) In|(X'BX)"X'AX)] = In(X'AX), where In(-) is the inertia.
6.24. For each 7, ); is a continuous function of the elements of A.

6.25. (Quadratic Inequalities) Suppose A is an n x n Hermitian matrix and x;
(=1,2,...,n) are a set of mutually orthonormal vectors, i.e., X;x; = d;;, then:

(a) Zle xFAx; < Zle M(A), k=1,2,...,n— 1

(b) E?:l x;Ax; = Z?:l Ai(A).

6.26. (Hirsch and Bendixson) Let A = (a;;) be an n x n complex matrix with
eigenvalues \;, and define the Hermitian matrices B = (A + A*)/2 and C =
(A — A*)/(2i). Then:

(a) [N < nn}f;x|aijl~
(b) [Re(r)| < "H}?}X|biji~
(¢) 19m(X)] < nmax|eis|.
Here Re and Sm denote the “real” and “imaginary” parts, respectively. When A

is Hermitian, the three results all reduce to (a).

6.27. (Schur) If A = (ay;) is an n X n complex matrix with eigenvalues A;, then

n
STINE DTS ayl
i=1 P

with equality if and only if A is a normal matrix.

6.28. If A is any n X n matrix, then, given € > 0, there exists an n x n matrix B
with distinct eigenvalues such that

n n
ZZ'aU — bijl < €.
i=1 j=1
6.29. (Gerdgorin) Let A = (a;;) be an n x n matrix, and let

n

Riz Z |a1~j|, i-——l,2,...,n.
J=1l:g#1

(a) All the eigenvalues of A are located in the union of n discs {called Gersgorin
discs)
U?zl{z €C: ]Z — aiil < Rl}
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Furthermore, if the union of & of these discs forms a connected region that is
disjoint from the remaining n — k discs, then there are precisely & eigenvalues
in this region.

(b) Since A and A’ have the same eigenvalues, a similar result holds with R;

replaced by

n

Cj: Z |ai]-|, j:1,2,...,n
i=1:i#7

and the union of discs by

i_1{z € C:lz—q; < Cj}.

(¢} The eigenvalues of A lie in the intersection of the above two regions.
(d) max; |\ (A)| < max; 22:1 [aj].

Some generalizations of the above results are given by Horn and Johnson [1985:
section 6.4]:

6.30. (Commuting Matrices) Let A be an n x n matrix with distinct eigenvalues,
and let B be an n X n matrix that commutes with A, that is, AB = BA. Then B
can be expressed uniquely as a polynomial in A with degree no more than n — 1.

6.31. (Perturbations) Suppose that a Hermitian n x n matrix with (real) eigen-
values A\; > --- > A, is perturbed by a Hermitian matrix E with ranked eigenvalues
€; to give B = A + E with ranked eigenvalues §;. Then

/\i+612ﬂi2/\i+6n7 i:1727~"7n'
Proofs. Section 6.1.2

6.15. Abadir and Magnus [2005: 166-167] and Horn and Johnson [1985: 57,
(a)~(c)]-

6.16a. Graybill [1983: 305]), Magnus and Neudecker [1999: 19-20], and Schott
[2005: 160].

6.16b. For a counter example see Abadir and Magnus [2005: 165, exercise
7.19).

6.17. Schott [2005: 91].

6.20. If A has nonzero eigenvalues, then trace(adjA) = trace[(det AJA~!] =
ILA Y AL Let A, — 0.

6.21. Wolkowicz and Styan [1980: (a), 474-476; (b) 484--485; (c) 480-481; (d)
482-483; and (e) 491, 495).

6.22. Ostrowski [1973]; see also Elsner [1982} for some other bounds.
6.23. Scott and Styan [1985: 212].
6.24. Schott [2005: 103].
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6.25. Rao and Rao [1998: 383].
6.26. Marcus and Minc [1964: 141].

6.27. Marcus and Minc [1964: 142] and Zbang [1997: 241]; Tsatsomeros
(2007: 14.2] also lists this and other inequalities.

6.28. Bellman {1970: 199).

6.29. Horn and Johnson [1985: 344-346] and Meyer [2000a: 498].
6.30. Zhang [1999: 59)].

6.31. Meyer [2000a: 551].

6.1.3 Singular Values

Definition 6.5. Suppose B is an m x n real or complex matrix of rank r, where
r < p = min(m,n). The p largest eigenvalues of B*B, which are the same as
those for BB* (by 6.54c) are non-negative (by 10.10 and 10.2), as B*B is non-
negative definite. Their positive square roots are called the singular values of B.
Denote these by 0, > 02 > ... > 04 > 0ry1 = -++ = 0p = 0; we shall use the
notation o; = 0;(B). (See Section 16.3 for further details and the singular value
decomposition of a matrix.) Some interesting historical comments are given by
Horn and Johnson {1991: section 3.0].

6.32. Suppose that B is an m X n matrix with singular values ¢y > g3 > --- >
op > 0, and p = min{m, n}. Let

0 B
a=(p %)

Then A is an (m + n) X (m + n) Hermitian matrix with eigenvalues

oy203220,20=--=02—-0,2—-0p_ 122> —0y,

with |m — n| zeros in the middle.

6.33. Suppose B € B, the set of all m x n matrices. Then, for every € > 0, there
exists B, € B with distinct singular values such that |B — B|| < €, where || - || is
any generalized matrix norm on B.

6.34. Let A be an n X n matrix with A;(A) and 0;(A) the ordered eigenvalues and
singular values, respectively, in decreasing order of magnitude.

(a) Hle [Ai(A)] < ]_[f:1 oi(A) for k=1,2,...,n, with equality for k = n.
(b) S5 A < F  oi(A) fork=1,2,...,n.

(¢) |trace A| < 01(A)+02(A)+---+0,(A). Equality holds if and only if A = «C
for some non-negative definite matrix C and some complex scalar « with unit
modulus. When equality holds, A is a normal matrix.
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(d) 0;(A) =0;(UAV) (1 = 1,2,...,n) for all n X n unitary matrices U and V.
() limg,_,oo[oi(AM]YM™ = |X(A)| for i =1,2,...,n.

6.35. If A is an n x n matrix and H(A) is the Hermitian matrix (A + A*), then,
fori =1,2,...,n, the following results hold.

(a) o:(A) > A(H(A)).
(b} ¢:(A) > ;[ H(UAV)] for all n x n unitary U and V.
6.36. If A is an m x n matrix, p = min{m, n}, and o; = 0;(A), then:
(@) Y5 a2 <Y 02 k=12..p
(b) ZLI ay; < Zle o, k=12,...,p

Equality in (a) holds if and only if the leading k& x k principal submatrix of A is
diagonal and |a;;| = 0; (1 = 1,2,...,k). Equality in (b) occurs when equality in
(a) holds and a;; > 0 (s =1,2,...,k).

6.37. (Bilinear Inequalities) Let A be an m x n matrix, and let p = min{m,n}.
For:=1,2,...,p, let z; = (x},y!) be any mutually orthonormal vectors, where x;
ism x 1andy; isn x 1. Then

k k
Y 2x"Ayi <Y ai(A), k=12,...,p.
=1 i=1

Equality is attained when x; and y; are, respectively, the left and right singular
vectors of A associated with o; (cf. Section 16.3).

6.38. Let A be a real or complex square matrix with numerical radius

w(A) = sup |x"Ax|

llxl|=1
Then p(A) < w(A) < opax < 2w(A), where p(A) is the spectral radius of A.
Proofs. Section 6.1.3
6.32. Horn and Johnson [1985: 418] and Rao and Rao [1998: 325].

6.33. Horn and Johnson [1985: 417].

6.34a. Horn and Johnson [1991: 171} and Rao and Rao [1998: 339-340].
6.34b. Horn and Johnson [1991: 176].

6.34c. Horn and Johnson [1991: 176] and Zhang [1999: 260-261].

6.34d. Horn and Johnson [1991: 146].

6.34e. Horn and Johnson [1991: 180].

6.35. Horn and Johnson [1991: 151].

6.36. Rao and Rao [1998: 385].

6.37. Rao and Rao [1998: 383-384].

6.38. Zhang [1999: 90].
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6.1.4 Functions of a Matrix

6.39. If Ax = \;x and k is a positive integer, then A¥x = /\fx, so that A* has
eigenvalues A¥ and the same eigenvectors as A.
If A* = 0 for some positive integer ¢, then A\;(A) = 0 for all 5.

6.40. If A has eigenvalues A\;(A), a polynomial g(A) has eigenvalues g(X;) (i =
1,2,...,n) and the same eigenvectors as A.

6.41. If A is nonsingular with eigenvalues );, then A~! has eigenvalues /\j_l.

6.42. Let A be an n x n matrix. If ag,a,...,a, are real or complex numbers,

and
B=al,+a1A+ - +a,A™,

then the eigenvalues of B are
a0+a1)u'](A)+a2.u‘?(A)++am/>t;n(A) for j:1721"'75a

where the p;(A) are the distinct eigenvalues. If B = 0, then any eigenvalue A of A
must satisfy the equation

a0+ ar+a X2+ +ap\" =0.
Proofs. Section 6.1.4
6.39. Schott [2005: 90].
6.40. Rao and Bhimasankaram [2000: 289).
6.41. Schott [2005: 90].
6.42. Quoted by Marcus and Minc [1964: 23].

6.1.5 Eigenvectors
6.43. Right (left) eigenvectors associated with distinct eigenvalues y; are linearly
independent.

6.44. The eigenspace corresponding to a distinct eigenvalue p;, say, is a vector
subspace.

6.45. Let A be a real or complex square matrix, and let x be any n x 1 nonzero vec-
tor. Then there exists an eigenvector y of A belonging to the span of {x, Ax, A%x,...}.

6.46. (Left and Right Eigenvectors) Suppose A is a complex square matrix.
(a) If Ax = \x, y*A = py*, and X # y, then x is orthogonal to y (i.e., x*y = 0).
(b) Ay = py.
Proofs. Section 6.1.5
6.43. Rao and Bhimasankaram [2000: 287].
6.44. Schott [2005: 88].
6.45. Rao and Bhimasnakaram [2000: 288] and Rao and Rao [1998: 184].
6.46. Abadir and Magnus [2005: 173].
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6.1.6 Hermitian Matrices

Hermitian matrices are also discussed in Sections 5.2.

6.47. Suppose A is an n x n Hermitian matrix. Then the following hold.
(a) The eigenvalues of A are real.

(b) Eigenvectors corresponding to different eigenvalues are orthogonal (with re-
spect to the inner product (x,y) = x*y). A right eigenvalue is also a left
eigenvalue, and vice versa.

(c) There is a complete set of n orthonormal eigenvectors.
(d) i, 2o lassl® = 20, [l

(e) There exists a unitary matrix U (ie., U*U = I,) such that U*AU = A,
where A is a diagonal matrix of the eigenvalues of A (cf. 16.44).

(f) Since A is also normal, the results relating to normal matrices apply.

6.48. (Real Symmetric Matrices) If A is an n x n real symmetric matrix, then it
is also Hermitian and all the results for Hermitian matrices in (6.47) above apply
here. However, we collect some of the results below for easy reference.

(a) The eigenvalues A; are all real and the corresponding eigenvectors can be
chosen to be real.

(b) If rank A = 7, there are r nonzero eigenvalues and A = 0 has algebraic
multiplicity (n — ).

(c) Since x’A = Mx’ if and only if Ax = Ax, right eigenvectors are also left
eigenvectors.

(d) Eigenvectors corresponding to different eigenvalues are orthogonal so that the
corresponding eigenspaces are orthogonal.

(e) There exist n mutually orthogonal eigenvectors.
(f) rank(A — A1) = n — m;, where m; is the algebraic multiplicity of A;.
(g) There exists an orthogonal matrix T such that (cf. Section 16.6)
T’ AT = diag(A1, Mg, - -5 An)-
(h) >or Yo7 af; = trace(A%) = 30, A7,

(i) If x is any nonzero vector, then, for some r > 1, the vector space spanned by
the vectors x, AX, ..., A""!x contains an eigenvector of A.

Proofs. Section 6.1.6

6.47. Horn and Johnson [1985: 169-172]. For the second part of (b), if
y*A = \y*, then Ay = A*y = Ay = Ay.

6.48a-h. Abadir and Magnus [2005: section 7.2] and Searle [1982: 290-291].
6.48i. Schott [2005: 96].
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6.1.7 Computational Methods

6.49. (Power Method) Let A be an n X n real diagonalizable matrix with real
eigenvalues and a dominant eigenvalue Ay (i.e., |A1| > |Ag] > -+ > [A\,]). Since A
is diagonalizable, there exist n real right eigenvectors vy, us, ..., u,, with u; corre-
sponding to A;, which are scaled to have unit length and are linearly independent.

(a) Lety = Y7 , a;u;, where a; > 0. Set yo = y and define z; and y;, inductively
by the following: 2z = Ayi_;1 and y, = (1/||2k|l2)zx for k = 1,2,.... Then
|zk|le — |A1] as & — oo, and ya,,, — u; as m — oo. Also yamy1 converges
to u; or —u; according as A; is positive or negative. One can determine the
sign of A; by considering successive iterations. See also Golub and Van Loan
[1996: 406].

(b) If R is any nonsingular matrix with u; as the first column, then

Aoa
-1 _ 1
R7AR = ( 0 B )

for some a and B, and the eigenvalues of A are those of B together with
A1 If u # Ap is an eigenvalue of B with v as a corresponding eigenvector,
then, setting b = (a'v)/(x — A1), we find that R(]) is an eigenvector of A
corresponding to u. This approach can be used to obtain the eigenvalues and
corresponding eigenvectors if [A;| > |A2] > -+ > |An].

(c) Suppose |[A;} > |A;] and let v, and v, be the real, left unit eigenvectors
coresponding to A; and A;, respectively. Then, since A'v; = \;v; and Au; =
Asu;, we have:

(i) (Auy)'v; = ujA'v; = M\uiv; and (Aw;)'v; = Aujvj, so that u; L v;
as )\1 76 )‘j'

(i) If B = A — A\;v;ul, then Bv; = A;v;. As in (b), this method can be
also be used for finding other eigenvalues.

6.50. (Jacobi's Method) Let A be a real symmetric matrix. Jacobi’s method is
based on the spectral decomposition of A (cf. 16.44), and the method may be
decribed broadly as follows. Let Qg be an orthogonal matrix, and consider the
iteration process Aletl) — Q;CA(k)Qk = P§c+1APk+lv where Pry1 = Q1Q2 - Qk
is orthogonal. The starting values are A(Y) = A and P, = I,. Each Q; is a Givens
rotation matrix that reduces a current off-diagonal element to zero, thus reducing
the sum of squares of the off-diagonal elements. We then find that A% tends
towards a diagonal matrix so that

klim P,AP;, =A and lkim P, =P,

where A is a diagonal matrix consisting of the eigenvalues of A, and the columns
of P are corresponding eigenvectors. Some theory is provided by Rao and Bhi-
masankaram [2000: 323-324] and a good description of the method along with
further computational details are given by Gentle {1998: section 4.2].

6.51. (QR Method) This seems to be the most common method, and it can be used
for both symmetric and nonsymmetric matrices A = (a;;), though the symmetric
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case is easier, since the eigenvalues are now real. The first step is to transform A
into upper Hessenberg form using Householder or Givens transformations. When
A is symmetric, the upper Hessenberg form is tridiagonal. For some details see
Gentle [1998: section 4.3] and Golub and Van Loan [1996: section 7.4])

Proofs. Section 6.1.7
6.49a. Rao and Bhimasankaram [2000: 326].
6.49b. Rao and Bhimasankaram [2000: 327 and exercise 3 for a correction).

6.49¢c. Gentle [1998: section 4.1].

6.1.8 Generalized Eigenvalues

Definition 6.6. If A and B are n x n matrices, we say that A is an eigenvalue of
A with respect to B if there exists a nonzero x that does not belong to both A'(A)
and A (B) such that Ax = ABx. Here A is one of the n roots of det(A — AB),
and these roots are also called the generalized eigenvalues. As p varies over R, the
matrix A — uB is called a matriz pencil.

Generalized eigenvalues are used extensively in mulitivariate analysis—for ex-
ample, in dimension-reducing techniques and for hypothesis testing in multivariate
analysis of variance (Chapter 21). In this regard, some computational aspects using
Cholesky decompositions are discussed by Maindonald [1984: section 6.5].

6.52. Let A and B be real n x n matrices with B nonsingular.

(a) The generalized eigenvalues are the eigenvalues of B~1 A, which are the same
as those of AB™1,

(b) Suppose A is symmetric and B is positive definite.

(i) The eigenvalues of AB™! are real.

(ii) From (6.54a), A(B~Y/2AB~%/2) = A(B~'A), where B'/2 is the unique
positive definite square root of B (cf. 10.32).

(c) The A(B~!A) can be computed using a Schur decomposition (cf. 16.37).

For further details see Harville [1997: section 21.14], and some computational as-
pects of the problem are discussed by Golub and Van Loan [1996: section 7.7].

Proofs. Section 6.1.8

6.52a. This follows from det(A — AB) = 0 if and only if det Bdet(B~1A —
AI) = 0 if and only if det(AB~! — AI)det B = 0.

6.52b. Graybill [1983: 404-405] for (i).
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6.1.9 Matrix Products

6.53. If A and B are real symmetric n X n matrices, then the eigenvalues of AB
are real if either A or B is non-negative definite.

6.54. Suppose A is m X n and B is n x m (m < n), both complex matrices.

(a) A" det(A\L,, — AB) = det(A\Il,, — BA),
and AB and BA have the same nonzero eigenvalues, counting algebraic mul-
tiplicities.

(b) If A is a nonzero eigenvalue of AB, then A is an eigenvalue of BA with
the same geometric multiplicity. Also, if x;,...,X, are linearly independent
eigenvectors of AB corresponding to A, then Bxy,...,Bx, are linearly inde-
pendent eigenvectors of BA corresponding to A.

(c) If Ais m x n, then AA* and A*A have the same nonzero eigenvalues.

6.55. If A and B are n x n matrices and A is nonsingular, then AB and BA have
the same eigenvalues.

6.56. (Frobenius) Let A and B be n x n matrices that commute with AB — BA.
Let f(z1,z2) be any polynomial in x; and zo with possibly complex coefficients.
Then there exists an ordering of the eigenvalues of A and B, namely (a;, 5;) for
1=1,2,...,n, such that the eigenvalues of f(A,B) are f(«a;,5;) fori=1,2,...,n.

6.57. (Von Neumann) Let A be mxn and B be n xm matrices such that AB and
BA are Hermitian non-negative definite. Let p = min{m,n} and ¢ = max{m,n}.
If we define 0;(A) = ¢;(B) = 0 for p+ 1 < j < ¢, where o(-) is a singular value,
then there exists a permutation 7 of {1,2,...,q} such that

trace(AB) = trace(BA) = > 0:(A)o(;)(B).
i=1
where 7(i) is the ith element of permutation .
Proofs. Section 6.1.9
6.53. Graybill [1983: 404-405).

6.54a. Rao and Bhimasankaram [2000: 282] and Zhang [1999: 51-53, four
proofs]|.

6.54b. Rao and Bhimasankaram [2000: 287].
6.54c. This follows from (a) with B = A*.
6.55. This follows from (6.54a) with m = n.
6.56. Quoted by Marcus and Minc [1964: 25].
6.57. Rao and Rao [1997: 348].
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6.2 VARIATIONAL CHARACTERISTICS FOR HERMITIAN MATRICES

A common statistical problem is that of finding the maximum or minimum of a
ratio of two quadratic forms subject to some linear constraints—for example, in
multivariate analysis. As we shall see below, eigenvalues and eigenvectors feature
prominently in the theory. We shall work mainly with the more general complex
quadratics as real quadratics follow as a special case. In following up proofs of
the following results, the reader should note that we rank the eigenvalues A; in
decreasing order of magnitude, whereas some authors such as Horn and Johnson
[1985] and Magnus and Neudecker [1999] do the reverse. In the latter case, we
change the sign of the suffix and add n + 1 to get corresponding results; thus A;
becomes A,+1-;. However, Horn and Johnson [1985: 419] do not reverse the order
of the singular values, but rank them in decreasing order.

6.58. Let A be an n X n Hermitian matrix with (real) eigenvalues Ay > Ap > ... >
An, and a corresponding set of orthonormal eigenvectors ug, up, -+, u, (ie., ufu; =
d;;) in C" such that Au; = Aju;. For k=1,2,...,n, let Up = (uy,ug,...,u,) and
Vi = (Ug, Ugy1,-. ., Uy). Define U =TU, = V;. In what follows, we assume that
x € C" and x # 0. We shall give properties of the ratio r(x) = x* Ax/x*x, which
is sometimes called the Raleigh (- Ritz) ratio (quotient). (In what follows some
authors use “sup” and “inf” instead of “max” and “min,” respectively. However,
these expressions are equivalent as the extrema are attained.)

The results below immediately follow for real symmetric matrices by replacing
* by . We note that r(x) does not depend on ||x||z so that if x # 0 we can
scale x to satisfy ||x||z = 1; the denominator of r(x) becomes 1. This alternative
representation will be mentioned only once below, but it holds in all the following
results. For general references see Horn and Johnson [1985: 176-180], Magnus and
Neudecker {1999: 203-207], Rao and Rao [1998: 332-335], Schott [2005: 104-110],
and Seber [1984: 525-526].

(a) (Raleigh-Ritz Theorem)
(1) A <r(x) < Ap

(i) maxx|,=1 X*AX = maxxxp 7(X) = A, and the maximum occurs when
X =uj.

(iii) mingzp 7(X) = Ap, and the minimum occurs when x = u,,.

(b) The following hold for k =2,...,n — 1.

(i) (%) = A,

max
x#0:Uy _, x=0

and the maximum is attained when x = u. Note that U}_;x = 0 im-

plies that x L {uj,ug,...,uk_1}, i.e., x € S(ug, Ug41, .-, Uy), where S
is the span.
(i1) min  7(x) = Ag,

x;éO:V;_Hx:O

and the minimum is attained when x = u;. Note that Vi ;x = 0
implies that x L {Ug41,Uks2,-.., s}, L&, X € S(ug, uz, ..., ux).
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i <A <
(€) it 00 = A = g, T

for every n x (k — 1) matrix B and n x (n — k) matrix C.

(d) (Courant-Fischer Min-Max Theorem) Let B be any n X (k — 1) complex
matrix. Then for £ = 2,...,n we have the following:

. L,
O 700 = e

and the result is attained when B = Ui_; and x = uy.

i i = An_
(ii) mgx x;eol:%l*nx=0r(x) n—k+1,

and the result is attained when B=V,,_j 0 and x = u,,_f41.

Since U;_,U,_; = V;—k+2vn—k+2 = Ix_1, we can impose the restriction
B*B = I;_; without changing the above two results. Some authors use this
formulation of the Courant-Fischer theorem (e.g., Schott [2005: 108-110]).
Rao [1973a: 62|, Seber [1984: 525-526], and Magnus and Neudecker [1999:
205-208, with the labeling A; < --- < \,] prove the above for real matrices
and Horn and Johnson [1985: 176] for the complex case. The complex case
follows directly from proofs for the real case by simply replacing z? by |z;|%.

The reader should note that there is a confusing variation in the proofs de-
pending on how the constraints are defined (in our case by B*x = 0). For
example, if B is replaced by an n x (n — k) matrix C in (ii), then A,_g41
is replaced by Ay (Abadir and Magnus [2005: 346] and Schott [2005: 108]).
Furthermore, if C is used in (i) and B in (ii), then Az now refers to the kth
largest eigenvalue rather than the kth smallest (Horn and Johnson {1985: 179]
and Magnus and Neudecker [1999: 207]). One can also replace B by a general
vector space, as in Meyer [2000a: 550] and Rao and Rao [1998: 332].

(e) The min—max theorem extends to singular values by replacing A by A*A, as
o;{A)? = X\;(A*A), and by noting that

<x*A*Ax) 3 (||Ax||2>2

X*x Ixll2 /

where [|-||2 is the Euclidean vector norm. For example, let B be any nx (k—1)
complex matrix. Then, for k = 2,...,n, we have the following.

A
(i) min  max 1A}z =
B x#0:B*x=0 ”X”2

3y , [Ax]l2) _
(11) mlgx x#01}1131px:0< ||X”2 = In—kt1-

(f) The min—max theorem also extends to the eigenvalues of the product of two
non-negative definite matrices. For details see Mékeldinen [1970: 33].

6.59. Let A be a real n X n symmetric matrix, and let B be any n x n positive
definite matrix. Let 41 > v > -+ > 7, be the eigenvalues of B~!A—that is,
v; = A;(B71A)—with corresponding right eigenvectors vy, va, ..., vy, all of which
are real by (6.52b(i)). Then



110 EIGENVALUES, EIGENVECTORS, AND SINGULAR VALUES

(a) x'Ax d . x'Ax
a) max = and min
x#0 x'Bx m x#£0 X'Bx

= Tn,

with the bounds being attained when x = v; and x = v,, respectively.
In particular, for any a we have

and the maximum occurs when x o« B~!a. The result for ~; applies to
hypothesis testing for multivariate linear hypotheses and to the dimension
reduction technique of discriminant coordinate analysis (cf. 21.49b)).

(b) Let U; = (v1,...,v;) and W; = (v;,...,vp). Then, for x # 0 and i =
2.3,....n—1,
x'Ax x'Ax

max =+; and min =
U/_,Bx=0 X'Bx Wi, Bx=0 x'Bx

Yi-

6.60. Let A be a real n X n symmetric matrix, and let B be any n x n positive

definite matrix. For i = 1,2,...,n, let B; be any n x (i — 1) matrix and C; be any
n X (n — i) matrix satisfying B;B; = I,_; and C]C; =1,,_,, respectively. Then
!
A
min  max —ox = M(BT1A)

B: x#0:Bx=0 X'Bx

and A
x'Ax

max min ——— = \(B7!A),

C; x#0:C{x=0 x'Bx

where the inner min and max are over all x # 0 when ¢ = 1 and ¢ = n, respectively.

The results will hold for Hermitian matrices with ’ replaced by *.

6.61. Let A and B be positive definite n x n matrices. Then

. (x'Ly)? 0
x#0,y#0 | X’ Ax - x'Bx mea

where Omayx is the largest eigenvalue of A"'LB~!L/, and also of B"'L’A~'L. The
maximum occurs when x is a right eigenvector of A"'LB~'L’ corresponding to
Omax, and y is a right eigenvector of B™'L/A~!L corresponding to fmac. This
result is used, for example, in applying the union—intersection method to testing
hypotheses relating to variance matrices in multivariate analysis (Seber [1984: 89]).

6.62. Let A be a real m x n matrix of rank 7 (r < min{m,n}), and let o? >
0% > --- > 02 > 0 be the nonzero eigenvalues of the symmetric matrix AA’ (and
of A’A), where o, is the ith singular value of A. Referring to the singular value
decomposition of A (Section 16.3), let t1,to,. .., t, be the corresponding orthogonal
right, eigenvectors of AA’, and let wy, wo,..., w, be the corresponding orthogonal
right eigenvectors of A’A. Define Ty = (ty,ta,...,t;) and Wy = (w1, Wa,..., W)
(k < r), and assume x # 0 and y # 0. Then

‘A 2
(a) max (Ay)” =0,
x#0,y#0 | X'x - y'y

The maximum occurs when x = t; and y = w.
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(x'Ay)*
xX'x-y'y

and the maximum occurs when x = tx; and y = wi41.

(b)  max { }—ak+1,(k—-12 r—1),

T, x=0,W,y=0

The above results are sometimes expressed in a square root version—for example,

‘A
sup {i} = 01, and so on. Another way of expressing this result is

vVxX'x-y'y

max 'Ay =0y,
ll=ll=1,llyll=1

and the t; and w; are now scaled to have unit norms. The above results are used
in the multivariate technique of canonical correlation analysis (Seber [1984: 259]).

6.63. (Some Matrix Extensions) Let A be an n x n positive definite matrix, and

let X be an n x r matrix of rank r. Then

14
Jnax det(X'AX) 1_[1)\ (A) and min det(X'AX) H/\n rri(A

Proofs. Section 6.2
6.58a. Meyer [2000a: 549] and Seber [1984: 525).
6.58b. Meyer [2000a: 549] and Seber [1984: 525, with \,_j changed to Ag].
6.58c. Abadir and Magnus [2005: 345].

6.58e. Horn and Johnson [1985: 420}, Meyer [2000a: 555], and Rao and Rao
[1998: 335].

6.59a. Rao and Bhimasankaram [2000: 348-349], Schott [2005: 121], and
Seber [1984: 526-527].

6.59b. Schott [2005: 121].

6.60. Schott [2005: 123].

6.61. Seber [1984: 527].

6.62. Rao and Bhimasankaram [2000: 349] and Seber [1984: 528].
6.63. Abadir and Magnus [2005: 349].

6.3 SEPARATION THEOREMS

In this section we follow our usual practice and rank the eigenvalues of an n X n

matrix C as A1 (C) > A2(C) > -+ > A, (C).

6.64. Let A be an n x n Hermitian or real symmetric matrix, and let Ay be the
leading principal k& x k submatrix of A, that is, Ay = (as), r,s = 1,2,...,k for
k=1,2,...,n—1; we define A, = A. Let A\1{Ax) > A2(Ag) = -+ > A (Ag) for
each k (including k = n), and let 01(Ag) > -+ > 0k (Ag) be the singular values.
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(a) (Sturmian Separation Theorem) From the Courant-Fisher theorem we ob-
tain the inequality

/\‘i+1(Ak+l) < )‘Z(Ak) < Ai(Ak-Fl)v 1= 112a R k.

(b) (Interlacing Theorem for Eigenvalues) From the left- and right-hand sides of
(a) we get

(i)
An—kti-1(An—1) <o <A (Ag)

/\n—k+i(An) S N
Ai(Agpr) <0 < N(AR).

Ai(Ak)

INIA

(i1) From (i) we get
Akri(A) S Mi(Ag) < X(A), i=1,2,... k.

(iii) If we reverse the order of listing the above inequalities in (i), we get the
alternative expression

An—it1(A) S A(Agoigr) < Aii(A), i=1,2,... k.

(c) (Interlacing Theorems for Singular Values) Let A be m x n with singular
values 01(A) > o2(A) > --- > 0,-(A), where r = min{m,n}.

(i) Let B be a p x ¢ submatrix of A with singular values o;(B) > 02(B) >
-+ > 05(B), where s = min{p, ¢}. Then

oi(A) > 0,(B), i=1,2,...,s.

(ii) Assume m > n. If B is a submatrix obtained from A by deleting one of
the columns, then

g1(A) > 01(B) > 02(A

)
> 02(B) > 03 A) > 2 Un—l(A) > Un—l(B) > Un(A)-

(iii) Assume m < n. If B is a submatrix obtained from A by deleting one of
the columns, then

0’1(A) Z 0'1(B) 2 O'Q(A) 2 UQ(B) Z e > O'm(A) > O'm(B),

which we now combine with (ii).

(iv) Suppose we extend the definition of singular values so that o;(A) =0
for j > r. Let A; be any matrix obtained from A by deleting a total of
s rows and columns (i.e., s — k rows and & columns for some 0 < k < s),
then
gi(A) > 0,(Ay) 2 0i1s(A), i=1,2,...,min{m,n}.

Note that since 0;(A’) = o(A), we can obtain the result for deleting a single
row by interchanging the two cases (ii) and (iii). Also (i)—(iii) follow from

(iv).



SEPARATION THEOREMS 113

6.65. (Eigenvalue Inequalities)

(a) (Poincaré’s Separation Theorems) Let A be be an n x n Hermitian matrix,
and let By be any n x k matrix such that BB, = I;. Then:

(i)

(i)

(iii)

Akri(A) < N(BLAB,) < M(A), i=1,2,....k.

The first equalities on the left are attained if and only if By = VU,
where U is unitary and the k£ columns of V}, are any set of right eigen-
vectors corresponding to the k smallest eigenvalues, while the second
equalities on the right are attained if and only if By = WU, where Wy
has k columns consisting of any set of right eigenvectors corresponding
to the largest k eigenvalues. Scott and Styan [1985: 213-214] give some
historical remarks on the history of the above result and use it to ob-
tain bounds on the distribution of chi-square statistics used in sample
surveys. Such inequalities are also used for the Durbin—Watson bounds
test for serial correlation in regression.

The left-hand side can also be written in the form
A—j(A) < X j(BFABy), j=0,1,...,k— 1

By setting By = (I, 0)’, we can obtain the left-hand side of (6.64b(ii)).

Summing ¢ = 1,...,k in (i), we get, for k =1,2,... ) n,

k
min _trace(B;AB,) = Z/\n—k+i(A)7
i=1

B;B,=I,

k
max_ trace(BfAB,) = Zx\i(A).
i=1

B;B, =1

The bounds are achieved by a suitable choice of By.

By setting By = (I, 0)’, we have A\, <a;; <A (1 =1,2,..n),
An-1+An < ay taj; < A1+ Ag, (’L,j =12,...,n;1¢ #]), and so on. In
particular,

k k k
Z An—kti(A) < Z ai; < Z Ai(A).
=1 i=1 =1

If P is an n x n idempotent Hermitian matrix (i.e., P2 = P) of rank &,
then
An—kti(A) S M(PAP) < M(A), i=12,... k.

(b) Let A and B be real n x n matrices with A symmetric and B non-negative
definite with Moore—Penrose inverse B¥. Also, let T be an n x k matrix of
rank k such that C(T) € C(B) and T'BT = I, and let \; = A\;(BTA). Then
the following maxima and minima with respect to T hold.

(i)
(if)

max{trace(T'AT)} = Ay + - -+ + Ag.
min{trace(T'AT)} = Ap_g41+ -+ An.
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(ii) max{trace[(T’AT)?]} = A2 + .- + AL

(iv) min{trace[(T’AT)?]} = A2 Ic+1 e+ A2

(v) max{trace[(T'AT) !} = A1, +- -+ A7, for A positive definite and
rank B = 7.

(vi) min{trace[(T'AT)"!]} =A7' +---+ A" for A positive definite.

The optimum values are reached when T = (ti,...,tg), where B'/%t; are or-
thonormal right eigenvectors of (B+)Y/2A(B™)'/2 associated with the eigen-

values \; (1 =1,2,...,k).
(¢} If A and B are n x n positive definite matrices, then:
(i) M(A*B®) < A{(AB) for 0 < s < 1.
(i) [M(AB)]* <A (A'B?Y) fort > 1

6.66. (Singular Values) Let A be an m X n matrix with singular values 0;(A). Let
B = U*AV, where U and V are m x p and n X q, respectively, such that U*U =
and V'V =1,.

(a) fr=(m-p)+(n-gq),
oi+r{A) <0;(B) <0;(A), i=12,...,min{m,n}.

(b) fp=q=k,
| det B|? = det(BB*) H/\ (BB*) =[] o2(B)
so that
|det Bl < 01(A)---ok(A).
(c) If p= g =k, we can sum in (a) and obtain, for k = 1,2,..., min{m, n},

o, |trace B} = Zai(A

6.67. Let A be an n X n real symmetric matrix, and let B be an n x n positive
definite matrix. If F is any n x k matrix of rank k, then for i =1,2,...,k,

((F/BF) " (F'AF)] < \(BA),

nd
: max M[(F'BF)"(F'AF)] = \;(B'A).

6.68. Let A and B be n x n non-negative definite matrices satisfying C(A) C C(B),
and let X be an n x k real matrix with

b=rankB and r =rank(BX).

Then
Mori(BTA) < M([(X'BX) X AX]) < (B7A), i=1,2,...,m
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In the above equation, any choices of the weak inverses B~ and (X’BX)™ may be
made. Equality occurs on the left simultaneously for all ¢ = 1,2,...,r if and only
if there exists a real n x r matrix Qg such that

QBQo=1., AQo=BQuA, and C(BQo)=C(BX).

Here Ag is an r x r diagonal matrix containing the r smallest, not necessarily zero,
generalized eigenvalues of A with respect to B.

Equality holds on the right simultaneously for all ¢ = 1,2,...,r if and only if
there exists a real » X r matrix Q3 such that

Q'BQ: =1, AQ;=BQiA;, and C(BQ)=C(BX).

Here A; is an r x r diagonal matrix containing the r largest generalized eigenvalues
of A with respect to B. Scott and Styan [1985] give an application to finding
distributional bounds on two standard asymptotic hypothesis tests in multiway
contingency tables.

6.69. A product version of (6.65a(ii)) is as follows. If A is a Hermitian positive
definite matrix and B is an n x k matrix, then

min  det(B{AB;) = IIAnk+l

B;B;=Ik
k
Bkrgfflkdet(BkABk) = 1:1

By setting By = (Ix,0)’ and defining Ay as in (6.64), we have

k k
[T rn-rsi(A) < detAp < J[M(A

i=1
Proofs. Section 6.3

6.64a. Rao and Bhimasankaram [2000: 347-348, real symmetric case with ¢
and k interchanged; the proof is identical for Hermitian matrices].

6.64b(ii). Rao and Rao [1998: 328, with Aj replaced by B] and Zhang [1999:
992-995].

6.64b(iil). Schott [2005: 112].
6.64c(i). Rao and Rao [1998: 330].
6.64c(ii)-(iti). Horn and Johnson [1985: 419] and Rao and Rao [1998: 330}].

6.64c(iv). Horn and Johnson [1991: 149], Rao and Rao [1998: 329-332], and
Zhang [1999: 229].

6.65a(i). For the real case see Abadir and Magnus [2005: 347], Schott [2005:
111}, and Rao and Bhimasankaram [2000: 348].

6.65a(ii). Abadir and Magnus [2005: 348-349].
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6.65a(iii). Abadir and Magnus [2005: 348].
6.65b. Quoted by Rao and Rao [1998: 495].
6.65¢c. Quoted by Rao and Rao [1998: 495].
6.66a. Rao and Rao {1998: 338].

6.66b. Horn and Johnson {1991: 170].
6.66c. Horn and Johnson [1991: 195].

6.67. Schott [2005: 123].

6.68. Scott and Styan [1985].

6.69. Magnus and Neudecker [1999: 212, real case, with order of eigenvalues
reversed] and quoted by Schott [2005: 136, exercise 3.54].

6.4 INEQUALITIES FOR MATRIX SUMS

6.70. (Eigenvalues) Let A and B be n x n Hermitian or real symmetric matrices,
and let C = A + B, with corresponding eigenvalues

ap>a> - 2ap; B >2P>2--20p and v 2v>-- 2,

respectively. Then:

(a)

'a1+ﬁn
s + On_
a1+ b 2 M 2 .2” B
‘an+ﬁ1
a2+ﬁn
o1 + B2 a3+ Bn_1
>
a2+,81} 72 -
\an+,32
o3+ DOn
a1 + O3 az+g .
as + B2 2 1 2 G
a3+ﬂ1 an+ﬁ3
al+ﬂn
a‘Q,fﬁ"_l > m 2 omtBa

an+ﬂl
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(b) It follows from (a) that
v L oo+ By, for §=1,2,...,4i=12,...,n,
andv; > a;+Bn_jyi, for j=ii4+1,...,ni=1,2,... n.
(¢) (Weyl’s Theorem) From (b) we have:
(i) Fori,j <n

Ai(A+B)
Xi(A +B)

M(A)+ Aioj+1(B) for j <4,

<
> Aj(A) + Auging(B) for j>i.

(ii) If in (i) we make the subscript substitution j =aand i —j+ 1 =bso
that i = a + b — 1, and then relabel, we get from the first equation

Mero 1(A+B) < A(A)+ M(B), a+b—1<n b>1.
(iii) Setting j =4 in (i) we have, fori =1,2,...,n,
Ai(A) + A (B) < Mi(A 4+ B) < Ai(A) + Mi(B).

(iv) (Monotonicity of Eigenvalues) If B is real non-negative definite and A
is real symmetric, then A\;(B) > 0 for all ¢ and, from (iii),

If B is positive definite, then the inequality is strict.

(d) (i) (Lidskil) Let iy,i,...,i be integers satisfying 1 <i; < -+ < i} < n.
Then for k=1,2,...,n

k k k
D (A) F k(B < DA (A+B) < D (N, (A) + X(B)).
j=1 J=1 i=1
(ii) (Sum of the k largest eigenvalues) For k=1,2,...,n
k k k k
D N(A) + D Anksi(B) Z (A +B) <> [X(A) + M(B)).
i=1 i=1 i=1 i=1
(e) Suppose B is a real symmetric matrix with rank B < r and A is real sym-
metric. For i =1,2,...,n — r we have:
Aivr(A) < M(A+B)
Aivr(A+B) < XN(A).

6.71. (Convexity) For any two real symmetric n x n matrices A and B, and
0<a<l,

AfecA + (1 - a)B]
AnloA + (1 — a)B]

ar(A) + (1 - o)\ (B),
o (A) + (1 — o)\, (B).

(AVARR VAN
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Hence, A; is convex and A, is concave on the space of real symmetric matrices.
Putting o = 1/2 gives us

A1(A) + Ai(B),

<
> An(A) + An(B).

6.72. (Singular Values) Let A and B be m x n matrices, and let p = min{m,n}.
Then:

(a)
0i(A+B) <o;(A)+oi;11(B), j=12,...,4i=12,...,p
Gi+j—1(A+B) <o, (A)+0;(B), 1<i,7<pmi+j<p+L
(b) In particular,

(i) o1(A +B) < 01{A) + 01(B).
(i) op(A + B) < min{o,(A) + 01(B),01(A) + 0,(B)}.
(iii) 04(A)+ 0,(B) < 0:(A +B) <o0,(A) + 01(B).

(¢) loi(A+B)—0i(A)| <0o1(B) fori=1,2,...,p.

k k
(d) > oi(A+B) <Y [oi(A) +0:(B)], k=12,...,p.
i=1

i=1
Proofs. Section 6.4

6.70a. Rao and Rao [1998: 322].

6.70c(i). Bhatia [1997: 62, with ¢ and j interchanged).

6.70c(ii). Schott [2005: 114, real case].

6.70c(iii). Schott [2005: 112, real case] and Zhang [1999: 227].

6.70c(iv). Magnus and Neudecker [1999: 208-209] and Schott [2005: 119-
120].

6.70d(i). Wielandt [1955] and Diimbgen [1995].
6.70d(ii). Schott [2005: 115-116].
6.70e. Schott [2005: 112-114].

6.71. Abadir and Magnus [2005: 344-345] and Magnus and Neudecker [1999:
205, A; and A, are interchanged)].

6.72a. Rao and Rao [1998: 326-327, 360] and Horn and Johnson [1991: 178,
subscripts reordered].

6.72b(iii). Zhang [1999: 228].
6.72c. Horn and Johnson [1991: 178].
6.72d. Horn and Johnson [1991: 196].
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6.5 INEQUALITIES FOR MATRIX DIFFERENCES

6.73. Let A, B, and A — B be Hermitian non-negative definite n X n matrices with
rank B < k. Then
Ai(A —B) > Aeti(A)

for all 7 (k + 4 < n) with equality for all ¢ if and only if

k

B = Z )\Z(A)uzui,

i=1

where uj,us,...,u, are the first k£ orthonormal eigenvectors of A (i.e., those cor-
responding to the \;(A), i =1,2,...,k).

6.74. Let A and B be m x n matrices with ranks r and s, respectively. Then:
(a)

o;(A — B) oi4s(A), i+s<r

2
> 0, i+s>r.

(b) The equalities in (a) are attained if and only if s < r and
B= Zai(B)uiu:,
=1

where the singular value decomposition of A is A =3, 5;(A)u,u;.
Proofs. Section 6.5

6.73. Quoted by Rao and Rao [1998: 382], though the proof is similar to that
of (6.74).

6.74. Rao [1980: 8-9].

6.6 INEQUALITIES FOR MATRIX PRODUCTS

6.75. Let A be an n xn non-negative definite matrix, and let B be an n x n positive
definite matrix. If 4,5,k = 1,2,...,n such that j + k£ <i+ 1, then:

(a) M(AB) < Xi(A)A(B).
() An—i+1(AB) = A jr1(A) An—k41(B).

The case when A is symmetric and B is non-negative definite is discussed in detail
by Makeldinen [1970].

6.76. If A and B are n x n Hermitian non-negative definite matrices, then
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6.77. (von Neumann) (Trace) If A and B are n x n Hermitian matrices, then

i Ai{(A)Ap—iy1(B) < trace(AB) < i/\i(A))\i(B).
i=1

i=1

Equality holds on the right when B = Y"1 , A;(B)u,u}, and equality holds on the
left when B = >~ | A,_;41(B)u;uf. Here u; is a right eigenvector of A for the
eigenvalue A\;(A),i=1,2,...,n

6.78. Let A and B be nxn non-negative definite matrices. If 1 <iy < --- < i < n,
then

with equality for k =

6.79. (Partial Sum) Let A and B be n x n (real) non-negative definite matrices.
Then

k k
D Ai(A) A1 (B) < Z (AB), k=1,2,...,n

i=1
6.80. Let A be an m x n and B an n x m real or complex matrices. Then
0i(A)om(B) < 0;(AB) < 0;,(A)01(B), i=1,2,...,m.

6.81. Let A be an m x n and B an n X m real or complex matrices, and let
p = min{m, n}. Then, for singular values (),

- ZO’Z Yo (B) < trace(AB) < Zal(A a;(B).

=1

Equality holds on the right when B = Y7 _, 0,(B)q;p}, and equality on the left
holds when B = >"*_ 5,(B)(—q;)p}, where p; and q; are the singular vectors of
A for 0;(A), 1 =1,2,...,p (cf. Section 16.3).

6.82. (Horn) Let A be an m x p and B an p x n real or complex matrices, and
let ¢ = min{m,n,p}.

) []oi(AB) < [ 0s(8)0;(B), i=12,...,q
Jj=1 i=1

If A and B are square matrices of the same order (i.e., m = n = p), then
equality holds in the above equation for i = n.

(b) Yi_ilo;(AB)P < °_ [o;(A)o;(B)]P fori=1,2,...,q and any p > 0.

Horn and Johnson [1991: 177] give some extensions to functions of the singu-
lar values.
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6.83. Let A and B be real n x n symmetric matrices, and let T be an n x n
orthogonal matrix. Then

! — . .
m'Ia‘xtrace(TAT B) = Z/\Z(A)/\l(B) and
n}gntrace(TAT'B) = Z)\ Ant1-i(B).

Setting
(Lo

-5 0)

we have

!
RIAx trace(R’AR) = Z A(A).

6.84. Let X; be an n X p; matrix of rank p; (¢ = 1,2). Then the eigenvalues of
(X5X,)71X5X (X)X, ) 1X, X, are less than or equal to one. This result arises in
the correspondence analysis of a contingency table.

6.85. If A and B are n X n real or complex matrices of which at least one is
nonsingular, then

Amin(AA*) Amin(BB*) < M (AB)X;(AB) < Amax(AA*) Amax (BB*)

for all 5. If A and B are both Hermitian, one is positive definite (say A), and the
other is non-negative definite, then

Amin (A)Amin(B) < Ai(AB) < Amax(A) Amax(B).

Proofs. Section 6.6

6.75. Schott [2005: 126-127).

6.76. Zhang [1999: 227].

6.77. Rao and Rao [1998: 386].

6.78. Lidskii [1950] and quoted by Schott [2005: 127].

6.79. Quoted by Schott {2005: 128; see also 137, exercise 3.57].

6.80. Zhang [1999: 228].

6.81. Rao and Rao [1998: 387].

6.82a. Horn and Johnson [1991: 172] and Rao and Rao [1998: 340-342].

6.82b. Horn and Johnson [1991: 177].

6.83. Anderson [2003: 645].

6.84. Bénasséni [2002].

6.85. Roy [1954].
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6.7 ANTIEIGENVALUES AND ANTIEIGENVECTORS

If A is an n X n positive definite matrix, then the cosine of the angle 8 between
n x 1 real vectors x and Ax is (cf. Definition 2.12 in Section 2.2.1)

x' Ax
VEX)(x'AZX)’
which has the value of unity when x is an eigenvalue of A, that is Ax = Ax for
some A. This raises the question of what value of x minimizes cos 8, or equivalently

maximises the angle beween x and Ax. This question motivates the following
definitions.

cosf =

Definition 6.7. Let Ay > A2 > --- > A\, > 0 be the eigenvalues of positive definite
A and x;,Xg,...,X, be the corresponding right eigenvectors. Referring to the
above introduction, cos 8 takes its minimum value of

2V,

M=t

by the Kantorovich inequality (12.2a) (with x = A!/2y), and the minimum is

attained at
xo YAuXiE VX 0 say
(Al + An b K M
The vectors {uy, us) are called the first antieigenvectors and u1 the first antieigen-
value. The angle 6 is called the angle of the operator of A. We then define

. x'Ax
gy = min ——————
xlxxn 4 /(x'x) (% A2X)

2v/ XAy

Ag+ Aoy’
which is attained at

\% An—lx? + \/X;xn—l

x = = (uz,uy), say.

V )\2 + )‘n—l

We call us the second antieigenvalue of A and (ug, uy) the second antieigenvectors.
We then find the third set by minimizing cos @ subject to x L {x1,%X2,Xn_1,Xn},
and carry on this process until we have p; < o < --- < p, (r = [p/2]), where

2/ Aidn—iv1

- Ai+ An_ig1

Hi

are the ordered antieigenvalues and (u;,us), (ug, u4),...(ugr—1, 09, ) are the cor-
responding pairs of antieigenvectors. When p is odd, the antieigenvalue of order
{(n+1)/2 is unity, with the corresponding antieigenvector x(,1)/2.

The above terminology and concepts were introduced by Gustafson [1968] under
the umbrella of operator trigonometry. The theory was extended to arbitrary non-
singular matrices by Gustafson [2000]. He also applied the theory to the question
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of one measure of efficiency of the ordinary least squares estimator (OLSE) with
respect to the best linear unbiased estimator (BLUE) in Gustafson [2002, 2005].
Rao [2005] also discussed this question in detail.

6.86. If A is an n x n positive definite matrix, then

A%x 2Ax

_— e —— =0
x’'A?2x  x'Ax tx

is called the Euler Equation. This equation is satisfied by all the eigenvectors x; of
A, and the only other solutions are the antieigenvectors

v /\ij + vV /\ka
VAN A+
This topic has links with canonical correlations (Gustafson [2005: 116]).

6.87. Let A be a positive definite n x n matrix. Then

max [x'Ax — (X’ A7 1x)7!] = (\//\_1 - \/2)2,

x/x=1
with the maximum occurring at
1/2 — 1/2
X:(i\//\—l ) / Xlﬂ:(———)\" ) / X.
VALV, VYRR

where x; and x,, are the eigenvectors corresponding to A; and A,, the maximum
and minimum eigenvalues of A. Rao [2005: 64-65] uses the above result to define
the first of another series of antieigenvalues that he calls the SM—-antieigenvalues,
with corresponding antieigenvectors.

Proofs. Section 6.7
6.86. Gustafson [2002, 2005].
6.87. Shisha and Mond [1967] and Styan [1983].
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CHAPTER 7

GENERALIZED INVERSES

When a matrix is not square, or square and singular, then an inverse does not
exist. However, a type of inverse does exist for these matrices called a generalized
inverse that functions very much like an inverse. Such inverses are very useful
in statistics for finding explicit solutions for a variety of problems such as the
solution of linear equations so that this chapter has close links with Chapter 13.
The reader should also consult Chapter 14 on partitioned matrices. A summary of
some computational aspects of generalized inverses, along with references, is given
by Ben-Israel and Greville [2003: chapter 7].

7.1 DEFINITIONS

Definition 7.1. A weak inverse of an m x n matrix A is defined to be any n x m
matrix G that satisfies the condition

(1) AGA = A.

Such a matrix always exists (by 7.1 below), but it is not unique. We shall write
G = A~. Many of the results below are proved by verifying, or finding conditions,
that (1) is true.

Note that the name “generalized inverse” is fairly common but not universal.
Other terms used include conditional inverse (cf. Graybill [1983: chapter 6]), pseu-
doinverse, g-inverse, and weak inverse. 1 shall use the term weak inverse to avoid
confusion.

A Matriz Handbook for Statisticians. By George A. F. Seber 125
Copyright © 2008 John Wiley & Sons, Inc.



126 GENERALIZED INVERSES

If A is real and G also satisfies
(2) GAG =A,

(3) AG is symmetric,
(4) GA is symmetric,

then we call G the Moore—Penrose inverse and write G = A*. The above definition
applies to complex matrices A if we replace “symmetric” by “Hermitian.”

There are other matrices G that satisfy just one or more of the above four
conditions, and we shall use subcripts to identify the conditions. For example, if

G satisfies at least (1) and (2) we shall call G a gyy-inverse and write G = A} ,.

Similarly we can write A~ = A7}, and refer to A~ as a g;-inverse. We shall only
use the subscript notation if there is any danger of ambiguity. For one list of the
various inverses see Rao and Rao [1998: 294].

We shall also define A{¢,j,...,p} to be the set of all matrices G which satisfy
at least the conditions (¢), (j),..., (p). Thus Ao € A{l,2}, A~ € A{1}, and so
on. We shall discuss these inverses later.

If A is square, then a generalized inverse G that satisfies (1), (2), and AG = GA
is called the group inverse, which we denote by A¥.

7.2 WEAK INVERSES

7.2.1 General Properties

Let A be an m x n real or complex matrix of rank r. Many of the following results
can be proved by simply checking that condition (1) above holds.

7.1. (Existence) From (16.33) there exist conformable nonsingular matrices B and

C such that
(L0 a0 _1
BAC-(0 0), or A=B (0 O)C .

- I, X
Then A —C(Y 7

though a weak inverse always exists, we see that it is not unique. Another version
based on the singular value decomposition is given in (7.82).

) B for arbitrary X,Y, and Z of appropriate sizes. Al-

7.2. (Basic Properties)

(a) Taking the transpose of both sides of AA~A = A, we see that A~ is a
weak inverse of A’. Although we shall write (A™)’ = (A’)”, what we mean,
technically, is that A=’ € A’{1}. This idea underlies all the results below.

(b) For k #0, k"'A~ is a weak inverse kKA.

(¢) ATA and AA™ are each idempotent. Also, since Pgay = AA™ is not
generally symmetric, it represents a nonorthogonal (oblique) projection onto
C(A). Similarly, Pc(ay = (AT A) = A’A’" represents an oblique projection
onto C(A").
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(d) rank(AA~) = trace(AA~) = trace(A~"A) = rank(A"A) = rank A <
rank(A 7).
(e) C(AA™) =C(A), N(AA™) = N(A), and C[(A~A)*] = C(A™).
(f) Taking conjugate transposes of AA~A = A we get (A*)” = (A7)~
(g) rank A = m if and only if AA~ =1, (i.e., A~ is a right inverse of A).
(h) rank A = n if and only if A~A =1, (i.e,, A™ is a left inverse of A).

(i) A(A*A)"A*A = Aand A*A(A*A)~A* = A*. This means that (A*A)~A*
is a weak inverse of A, and A(A*A)~ is a weak inverse of A*.

(j) A(A*A)” A* is Hermitian, idempotent, and invariant for any choice of the
weak inverse (A*A)™.

(k) A*AGA = A*A if and only if G is a weak inverse of A.
7.3. The following conditions are equivalent.

1) G is a weak inverse of A.

(
(

(3) GA is idempotent and rank{(GA) =rank A.

)
2) AG is idempotent and rank(AG) = rank A.
)
(4) rank(I, — GA) = n —rank A.

7.4. (Symmetric and Hermitian Matrices)

(a) A Hermitian matrix has a Hermitian weak inverse, namely %(A‘ + (A7)%).

(b) A Hermitian matrix A has a non-negative definite weak inverse if and only if
A is non-negative definite.

7.5. (Rank of Inverse)

(a) Taking X =0 and Y = 0 in (7.1) and noting that the rank is unchanged by
multiplying by a nonsingular matrix, we see that

rank(A~) =rank A + rank Z.

Since Z is arbitrary, there exists an A~ having any specified rank between
rank A and min{m,n} (Rao and Mitra [1971: 31]). In particular, we can
choose Z such that A~ has full row or column rank (i.e., the rows or columns
are linearly independent).

(b) rank(A~) =rank A if and only if A~ is also a g; s-inverse

7.6. (Representation of A{1}) Let A~ be any weak inverse of A. Then we have
the following representations.
(a) (i) A{1} ={X:X=A"+H- A AHAA ;H arbitrary}.
(i) A{1}={X: X=A"+({I-A"A)F + G(I- AA™);F,G arbitrary}.
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(b) Let AT, A5, and A3 be any (not necessarily the same) fixed weak inverses
of A. Then B; and Bs are also weak inverses of A, where

B, = Aj +F—A;AFAAj,
B, = A;+({I-A;A)F+G(I- AA;j).

Here F and G are abitrary matrices of appropriate sizes. Also, any weak
inverse of A can be written as B, and as By for some matrices F and G.

If we consider the special case of AT, A, , and A3 being all the same, we see
that B; and B, reduce to (a)(i) and (a)(ii), respectively.

(¢} If A and B are m x n matrices with A{1} = B{1}, that is every weak inverse
of of A is a weak inverse of B, and vice-versa, then A = B.

7.7. (Rank and Products)

(a) rank(ABC) = rank B implies that C(ABC)~ A is a weak inverse of B. We
canset A=TorC=1

{(b) Let V be a matrix such that rank(A*VA) = rank A (which is automatically
satisfied if A is Hermitian positive definite), then:

(i) A(A*VA)~(A*VA) = A and (A*VA)(A*VA)"A* = A*.

(ii) A(A*VA)~A* is invariant for any choice of (A*VA)~ and is of the
same rank as A. If A*VA is Hermitian, then so is A(A*VA)~A*.

7.8. If A is m x n and D is m x m, and both are of rank m, then
D '=A(A'DA)"A".
7.9. (Hermite Form)

(a) If A is n x n and B is nonsingular such that BA = Hpa, where Hy is in
Hermite form (Section 16.2.4), then B is weak inverse of A.

(b) Let A be an m x n (m > n) matrix, and let Ag = (A, Opyx(m-n)). Let By
be a nonsingular matrix such that BgAg = H, where H is in Hermite form.

Suppose By is partitioned as
B
B =
° < Bl)

where B is n x m. Then B is a weak inverse of A.
A similar result holds for m < n.

7.10. Let A and B be m x n complex matrices. Then the following statements are
equivalent:

(1) The nonzero eigenvalues of B~ A are invariant with respect to B~.
(2) trace(B~A) is invariant with respect to B™.
(3) C(A) C C(B) and C(A*) C C(B*).
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Proofs. Section 7.2.1.
7.1. Ben-Israel and Greville [2003: 41] and Graybill [1983: 136].

7.2b. The result follows from the definition of a weak inverse.

72c. ATAA"A = A"A and AATAA™ = AA~. Also P¢(a)A = A and
then take the transpose of AP’C(A,) =A.

7.2d. Graybill {1983: 134], Rao and Bhimasnakaram [2000: 195], and Schott
[2005: 203-204].

7.2e. Ben-Israel and Greville [2003: 43].

7.2¢-7.2h. Ben-Israel and Greville [2003: 43] and Schott [2005: 204)].
7.2i. Rao [1973a: 26] and Rao and Mitra [1971: 22].

7.2j. Rao [1973a: 26] and Rao and Rao [1998: 268-269).

7.2k. Rao and Mitra [1971: 22].

7.3. Rao and Bhimasankaram [2000: 195, (1)—(3)] and Rao and Mitra [1971:
21, 23).

7.4b. Arguing as in (7.21) for Hermitian matrices, we have A = UAU*, where
U is unitary and A is a diagonal matrix of non-negative eigenvalues. We then
set A~ = UA~U*, which is Hermitian non-negative definite.

7.5b. Rao and Mitra [1971: 28].

7.6a(i). Rao and Mitra [1971: 26] and Schott [2005: 204].
7.6a(ii). Rao and Mitra [1971: 26].

7.6b. Graybill [1983: 137]

7.6¢. Rao and Mitra [1971: 27] and Rao and Rao [1998: 277).
7.7a. Rao and Mitra [1971: 22] and Schott [2005: 205].

7.7b. Rao and Mitra [1971: 22].

7.8. This follows from (7.7a) by noting that rank(A’DA) = rank D, since D
is nonsingular.

7.9. Graybill [1983: 132).
7.10. Baksalary and Puntanen [1990].
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7.2.2 Products of Matrices
7.11. (Invariance Properties)

(a) The matrix BA~C is invariant for any choice of A~ if and only if C(B’) C
C(A’) and C(C) C C(A).

(b) From (a), If A is a real symmetric matrix, then B’A~B is invariant for any
choice of A~ if and only if C(B) C C(A).

(¢) From (a), if A is any n X n matrix with ¢ C C(A) and ¢ C C(A'), then c'A~¢
is invariant with respect to A~.

(d) (Regression) Let X be any real matrix and let G = (X’X)~ be any weak
inverse of X'X.

(i) If ¢ C C(X'), then ¢/(X'X)~ X' is invariant for any weak inverse of X'X.

(i) X(X'X)" X’ = XX+ is invariant and symmetric, being the orthogonal
projector onto C(X). Here X' is the Moore-Penrose inverse of X.

(iii) G’ is also a weak inverse of X'X.
(iv) (X’X)~ X' is a weak inverse of X.

(e) If rank(CAB) = rank C = rank B, then B(CAB)~C is invariant for any
choice of (CAB)~.

7.12. If P is idempotent, then P(PAP)™P is a weak inverse of PAP.

7.13. Noting that FF~ and (F~F)’ = F'F'~, being idempotent, represent (oblique)
projections onto F and F'| respectively (cf. 7.2c), we have the following for con-
formable matrices.

(a) BA~A = B if and only if C(B’) C C(A'), that is, if and only if there exists
a matrix D such that B = DA.

(b) AA™B = B if and only if C(B) C C(A), that is, if and only if there exists a
matrix D such that B = AD.

(¢) (CAB)(CAB) C = C if and only if rank(CAB) = rank C.
(d) B(CAB) (CAB) = B if and only if rank(CAB) = rank B.
7.14. Let A be an m X n matrix, B be an m x m matrix, and C be an n x n matrix.

(a) If B and C are nonsingular, (BAC)~ = C~1A~B~! for some weak inverse
A~ of A

(b) If A has rank m and B is nonsingular, then (A’'BA)~ = A"B~1A'~.
(c) (AB)” =B~ A~ if and only if P = A“ABB™ is idempotent.

7.15. Let A, B, and C be m X n, p X m, and n X ¢ matrices, respectively. If B has
full column rank m, and C has full row rank n, then

(BAC)" =C~A"B~.
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We can also get special cases by setting one of the matrices equal to the identity
matrix.
7.16. If (A’A)~ is a weak inverse of A’A, then so is (A’A)™".
7.17. The following hold for weak inverses A~ and B™.

(a) I-AA") B BA=—-(I-AA")I-B B)A.

(b) BAA-(I-B™B)=-BI-AA")I-B™B).
{(¢) (BA)) =A" B -A(I-B B)[I-AA)I-B™B)] " (I-AA")B".

(d) Let A be an m x n matrix and B be an n x p matrix. If rank B = n, then
(AB)" =BA".

(e) C(A)NC(B) =0 if and only if (AA’ + BB’)™ is a weak inverse of AA’.
Proofs. Section 7.2.2.

7.11a. Graybill [1983: 134-135, with the notation change A°® — A~ and
A~ — A7) and Rao and Mitra [1971: 21]. An alternative proof using the
idea of extremal ranks is given by Tian [2006a: 95]. He also gives necessary
and sufficient conditions for rank(BA~C) to be invariant with respect to A~.

7.11d(i). Graybill [1983: 135].

7.11d(ii)-(iv). Searle [1982: 221-222].

7.11e. Rao and Mitra {1971: 22].

7.12. Follows from the definition of a weak inverse.

7.13a-b. Schott [2005: 205] and Rao and Mitra [1971: 21-22].
7.13c—d. Harville [2001: 106, exercise 44].

7.14a. Harville [1997: 113, lemma 9.2.4].

7.14b. From (7.2g) we have AA~ =1, and then use the definition of weak
inverse.

7.14c. Harville [2001: 51, exercise 8]. If P? = P, then AP?B = APB, which
implies that (AB)™ = B A~ . The converse is stralghtforward.

7.15. We use the fact that B"B = 1,, and CC~ = I, from (7.2g) and (7.2h).
7.16. Schott [2005: 206-207].

7.17. Isotalo et al. [2005b: chapter 12| and (a)—(c) quoted by Searle [1982:
226]. For (d) we have AB(B"A7)AB = AB since BB~ =
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7.2.3 Sums and Differences of Matrices

7.18. The following conditions are equivalent for any weak inverse (A + B)

(1) (g)(A+B)‘(A,B)= ( a0 )

(2) (A + B)~ is a weak inverse of both A and B.
(3) C(A)YNC(B) =0 and C(A')NC(B’) =0.

7.19. Let A, B, C, and V be real conformable matrices with V positive definite,
and C(C) = C(A’)NC(B). Let Qg =1 — Pg, where Pg = B(B'B)"B'.

(a)
A(A'VA)"A’ - AQp(QeA'VAQR) QpA’
= A(A'VA)"C[C'(A'VA)"C]"C'(A’'VA)~A’.
(b) V-1 —Qp(QeVQg) Qe = V''B(B'V-'B)"B'V1,

Qg can be replaced by a matrix with the same range. The above results are used
in the theory of singular linear regression models.

Definition 7.2. Given A and B both m x n matrices, then A(A +B)~ B is called
the parallel sum of A and B. Some authors call (AT +B*)* the parallel sum and,
under certain conditions, the two definitions are equivalent. For properties relating
to both definitions and their equivalence, see Rao and Mitra [1971: 186-192]. They
also define a parallel difference.

7.20. For conformable matrices
(a) AA'(AA’ +BB')"BB' =BB'(AA’' + BB')"AA.
(b) [AA’(AA’+ BB')"BB’|” = (AA’)” + (BB')".
Proofs. Section 7.2.3.

7.18. Harville [1997: 421]. We obtain (2) by multipying out (1) to get A(A +
B)"A=A,B(A+B)" B=B,A(A +B)"B, and B(A + B)"A.

7.19-7.20. Kollo and van Rosen {2005: 50].

7.2.4 Real Symmetric Matrices

Let A be a real symmetric matrix.
7.21. By (16.44) there exists orthogonal T such that

vo (A O
var- (% 9)

where A, is a nonsingular 7 x r diagonal matrix consisting of the nonzero eigenvalues

of A. Then A
- X ,
(%)
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where X, Y, and Z are arbitrary. Note that A~ need not be symmetric.
(When A is Hermitian, then T is unitary and T’ is replaced by T*.)

7.22. Suppose A is n X n, P is symmetric and idempotent, A + cP is nonsingular,
and PA = 0.

(a) (A +cP)™! is a weak inverse of both A and P.

(b) In particular, if A1,, =0, J, = 1,1, (=nP), and A + dJ,, is nonsingular,
then (A +dJ n)‘1 is a weak inverse of A. Furthermore,

At = (A+dJ,)"! = (dn?)71T,.

These results are useful in experimental designs (e.g., John and Williams
[1995: 23]).

7.23. Suppose that 1 + 1 # 0 in the underlying field F. Since (A7) is a weak
inverse of A’, a symmetric weak inverse of a symmetric matrix A always exists,
namely B = [A~ + (A7)’

7.24. From the definition of a weak inverse, if A and A~ A are symmetric, then
(A7)? is a weak inverse of A2.

Proofs. Section 7.2.4.
7.21. Searle [1982: 220).
7.22. John and Williams [1995: 23].
7.23. Since A~ =A’" =A ,wehave AA-"A=Aand B=A".

7.2.5 Decomposition Methods

7.25. (Diagonalizable Matrices) If A is diagonalizable of rank r, we have from
(16.17) the spectral decomposition A = Y.° | AF; = Y1, \iF;, where A,y =
-+ =X, =0. Then:

(a) Si_, A7 'F; is a weak inverse of A.
(b) (A+>27_, ., a:;F;)7! is a weak inverse of A for all nonzero real a,11, .-, an-
7.26. There exist permutation matrices II; and Iy such that

B By )

II,AIl, =B =
ra <B21 Bao

where B1; is a nonsingular 7 X r matrix and r = rank A. Then A = II'BII} and

_ (Bt o
5= (7% o)

is a weak inverse of B. Also ;B II; is a weak inverse of A.
Proofs. Section 7.2.5.
7.25. Hunter [1983a: 150].

7.26. Searle [1982: 217-218].
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7.3 OTHER INVERSES

In this section we assume real matrices. However, many of the results hold for
complex matrices by simply replacing ’ by .
7.3.1 Reflexive (g12) Inverse

Let A be an m x n matrix and G an n X m matrix. As noted at the beginning of
this chapter, G = A, is a gio-inverse of A if AGA = A and GAG = G, i.e, if
G is a weak inverse of A and A is a weak inverse of G. Such an inverse is usually
refered to as a reflexive generalized inverse or reflexive g-inverse.

7.27. If A is m x n, we have from (3.5) the full-rank factorization A = C,,x+Ryxn,
where C and R have rank r. Let D and S be the left and right inverses of C and
R, respectively, so that DC = I, and RS = I,.. Then SD is a reflexive g-inverse
of A.

7.28. If AT and A are any (possibly different) weak inverses of A, then AT AA;
is a gyo-inverse of A.

7.29. Every reflexive g-inverse of a matrix A can be expressed in the form of
A~ AA~ for some weak inverse A~ of A.

7.30. A weak inverse G of A is a giz-inverse if and only if rank G = rank A.
7.31. If G is a gjo-inverse of A, then G’ is a gjo-inverse of A’.

7.32. (Invariance) If A, B, and C are nonzero conformable matrices, then AB],C
is invariant with respect to By, if and only if C(A’) € C(B’) and C(C) C C(B).

Proofs. Section 7.3.1.
7.27. Rao and Rao [1998: 279)].
7.28. Harville [1997: 496, lemma 20.3.2].
7.29. Rao and Mitra [1971: 28].
7.30. Harville [1997: 497] and Rao and Rao [1998: 279].
7.31. Harville [1997: 497].

7.32. Tian [2006a: 100] proved this using his extremal rank technique. He
also gave necessary and sufficient conditions for the rank to be invariant.

7.3.2 Minimum Norm (g14) Inverse

The matrix G is a g4-inverse of A if AGA = A and GA is symmetric (or Hermi-
tian if A is complex). It is usually refered to as a minimum norm g-inverse.

7.33. The following conditions are equivalent.

(1) G is a gis-inverse of A.
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(2) GAA' = A’.
(3) AA'G = A.

(4) GA = P¢(a), where Pg(ar), being symmetric and idempotent, represents
the orthogonal projection onto C(A’). (In this case GA is invariant to the
choice of G.)

In the complex case we replace ’ by *.
7.34. If G is a gy4-inverse, then x = Gy minimizes ||x||2 subject to Ax =y.

7.35. A{14} = {G: G = A, + Z(I, — AA7,)}, where Z is an arbitrary n x m
matrix.

7.36. (Product Invariance) If A, B, and C are nonzero conformable matrices, then
AB,C is invariant with respect to By, if and only if C(C) C C(B).

Proofs. Section 7.3.2.
7.33. Harville [1997: 498-499)].
7.34. Harville [1997: 497, theorem 20.3.6] and Rao and Rao [1998: 288§].
7.35. Ben-Israel and Greville [2003: 55].
7.36. Tian [2000a: 105].

7.3.3 Minimum Norm Reflexive (g124) Inverse

Let A be an m X n matrix and G an n X m matrix. As noted at the beginning
of this chapter, G is a gjo4-inverse of A if AGA = A, GAG = G and GA is
symmetric. Since it combines a g;3 and a g4 inverse, it is refered to as a minimum
norm reflexive g-inverse.

7.37. A matrix G is a gjgs-inverse of A if and only if G = A'(AA’)~ for some
weak inverse (AA’)” of AA’.

7.38. If G is a gig4-inverse of A, then C{G) = C(A').

7.39. A{124} = {G: G = A, + AL, Z(I,, — AAL,,)}, where Z is an arbitrary
n X m matrix.

Proofs. Section 7.3.3.
7.37-7.38. Harville [1997: 499).
7.39. Quoted by Ben-Israel and Greville [2003: 56).
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7.3.4 Least Squares (g13) Inverse

Let A be an m X n matrix and G an n x m matrix. As noted at the beginning
of this chapter, G is a g3-inverse of A if AGA = A and AG is symmetric. It
is usually refered to as a least squares g-inverse and is denoted by Aj;. In what
follows, we can replace ' by * in the complex case.

7.40. A p x n matrix G is a gj3-inverse of the n x p matrix X if and only if
(y — Xb)'(y — Xb) is minimized at b = Gy.

7.41. The following statements are equivalent.
(1) A matrix G is a g;s-inverse of A.
(2) A’AG = A’ or, equivalently, G'A’A = A.

(3) AG = P¢(a), where Peay = A(A’A)~ A’ represents the orthogonal projec-
tion onto C(A).

7.42. Let G be a gj3-inverse of A. Then:

(a) AG is invariant to the choice of G.

(b} C(G'A") =C(A).
7.43. (A'A)" A’ is a g3-inverse of A for any weak inverse, (A’A)~, of A’A.
7.44. A{13} = {G: G =A};+ (I, - AZA)Z},

where Z is an arbitrary n x m matrix.

7.45. (Product Invariance) If A, B, and C are nonzero conformable matrices,
then AB{;C is invariant with respect to By if and only if C(A’) C C(B’).

Proofs. Section 7.3.4.
7.40. Harville [1997: 500-501, corollary 20.3.14] and Schott [2005: 233].
7.41. Harville [1997: 500] and Rao and Rao [1998: 289-290].
7.42. Harville [1997: 501, corollary 20.3.15].
7.43. Ben-Israel and Greville [2003: 47] and Schott [2005: 207].
7.44. Quoted by Ben-Israel and Greville [2003: 55].

7.45. This result is proved by Tian [2006a] using his extremal rank method.
The same condition also applies for rank invariance.
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7.3.5 Least Squares Reflexive (g123) Inverse

Let A be an m x n matrix and G an n x m matrix. As noted at the beginning
of this chapter, G is a gja3-inverse of A if AGA = A, GAG = G, and AG is
symmetric. Such an inverse is also called a least squares reflexive g-inverse

7.46. If G is a gio3-inverse of A, then C(G') = C(A) and N(G) = [C(A)]* =
N(AY).

7.47. G is a g123 inverse of A if and only if G = (A’A)~ A’ for some weak inverse
(A’A)" of A'A.

7.48. A{123} = {G: G = A3 + (I, — A[;3A)ZAL,;}, where Z is an arbitrary
n X m matrix.

Proofs. Section 7.3.4.
7.46. Harville [1997: 501, lemma 20.3.16].
7.47. Harville [1997: 502, theorem 20.3.17].
7.48. Quoted by Ben-Israel and Greville [2003: 56].

7.4 MOORE-PENROSE (G;234) INVERSE

7.4.1 General Properties

Let A be an m X n matrix and G an n x m matrix. If G satisfies all four conditions
mentioned at the beginning of this chapter, then it is called the Moore—Penrose
inverse of A and is denoted by A*. This definition was given by Penrose [1955].
For convenience, we list the four conditions for the complex case, namely: (1)
AGA = A, (2) GAG =G, (3) AG = (AG)*, and (4) GA = (GA)~.

The Moore—Penrose inverse of a general matrix A can be obtained using a QR
decomposition (16.42) or the singular value decomposition given below (cf. 7.50).
For diagonalizable matrices, which includes symmetric matrices, see (16.17c).

Moore—Penrose inverses are particularly useful in experimental design. John
and Williams [1995] discuss the Moore—Penrose inverse of the so-called information
matriz of a design for a wide range of designs including the incomplete block, the
connected, and the cyclic designs.

There are a number of references referring to the real case, namely Abadir and
Magnus [2005: section 10.3], Graybill [1983: chapter 6, with A~ — A™], Harville
[1997: chapter 20}, Magnus and Neudecker [1999: 33, 34, 38], and Schott [2005:
section 5.2]. For the complex case see Ben-Israel and Greville [2003}, Campbell
and Meyer [1979: chapter 1], and Rao and Mitra [1971: section 3.3 and, for some
miscellaneous expansions of AT, section 3.5].

7.49. (Representation) If A is a complex matrix of rank r, then we have the
singular value decomposition of A, namely A = P,.A,.Q (cf. Section 16.3), where
P, is m x r with orthonormal columns, Q. is n X r with orthonormal columns, and
A, is an 7 X r diagonal matrix with positive diagonal elements. Then

AT = QAP
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7.50. AT is unique.

7.51. Let A be an m x n real matrix of rank r. Then A* can be computed by the
following steps.

(1
2

) Compute B = A’A.
(2) Let C; = L.
(3) Compute C;4q1 =I,(1/5) trace(C;B) — C;B, for j =1,2,...,r — L.
(4) Compute At =rC,.A’/trace(C,B).

Also C,4+1B = 0 and trace(C,B) # 0. Since C,;1B = 0, 7 does not need to
be known in advance. This result is mainly of historical interest, but it does give
a method for small matrices. Numerically stable methods for computing A™* are
given by Golub and Van Loan [1996].

7.52. Below we give some basic properties of the Moore-Penrose inverse of a single
matrix or vector. We assume matrices and vectors are complex, unless otherwise
stated. Most of the following are readily proved by showing that the four conditions
are satisfied and also invoking the uniqueness of the Moore—Penrose inverse.

(a) From (7.49) and (7.50), A™ always exists and is unique.

(b} A* is the minimum norm least-squares g-inverse of A, i.e., for every b that
minimizes (y — Ab)*(y — Ab), b*b is minimized when b = A*y.

(c) at = (a*a)”!a* and (ab*)* = (a*a)~!(b*b)~!(ba*).
(d) If ¢ # 0, then (cA)*t = (1/c)AT.

(e) If D = diag(d,dy, . ..,d,), then Dt = diag(d],dJ,...,d}), where (for i =
1,2,...,n)

o [ 1/ i di#0,
e 0, ifd;=0.
(f) A* = A~! for nonsingular A.

(g) At = A~ if the columns of A are orthogonal with respect to the inner product
<X, Y> =y'x.

(h) (A)* = A.

(i) (AT = (A*Y, (A)* = (A%), and (A*)* = (AF)".

(j) AAt = AT A ifand only if C(A) = C(A*), i.e., it holds when A is Hermitian.
(k) rank A = rank A" = rank(AA™) = rank(A*A).

(1) For any m x n complex matrix A:

(i) C(A) = C(AA*) = C(AA*).
(i) C(A*) =C(A*) =C(A+A) = C(A*A).
(iii) C(Ln — AAT) = N(AAY) = N(A*) = N(A¥).
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(iv) C(I, — A*A) = N(A+A) = N(A).

(m) AT need not be a continuous function of the elements of A. Not only can
A7 (t) be discontinuous in the sense that lim; o AT (f) # AT(0), but as A(t)
moves closer to A(0), A*(t) can move further away from AT (0). However,
AT (t) is continuous on [a, b] if and only if rank[A(#)] is constant on [a, b].

7.53. Let A be an n x n real symmetric matrix with r nonzero eigenvalues \;,
A2, - A, and let A, = diag(Aq, Az, ..., A). Then:

(a) From (16.44) there exists an orthogonal matrix Q such that
A = Qdiag(Ay, ..., Ar0,...,0)Q".

Then
A7l 0 .
+ _ r /_z: =1
A' _Q< 0 0>Q__1)\1 qlqz'

(b) From (a) we have

.
trace AT = Z/\i_l.

i=1
7.54. For any real matrix A:

(a) ATA and AAt are symmetric and idempotent, and they are equal if A is
symmetric.

(b) Since ATA and AA™T are symmetric:
(i) A/AA* = A’ = A+AA’.
(i) A/ATA* = AT = ATAT'A”.
(c) (A’A)* = A+A+ and (AA/)t = AT/AT.
(d) A* = (A’A)*A’ = A'(AA")*. Also:
(i) Tf A has full column rank, then AT = (A’A)"!A’ and ATA =1,.
(ii) If A has full row rank, then A* = A’(AA’)~! and AA*T =1,,.

(e) (AAT)T = AAT and (ATA)T = ATA.

f) A(AAYTA’A = A = AA'(AATA.

(g) 1f V is positive definite, then (X'V I X)(X'V~IX)*X' = X'.
(h) For any weak inverse A™, AT = A’(AA')"A(A’A)"A’.

(i) If A~ A is real symmetric, then it is unique and equals AT A.
(j) If rank A = 1, then AT = [trace(AA’)]"1A’.

The above results also hold for A complex if we replace ' by * and symmetric by
Hermitian.



140 GENERALIZED INVERSES

7.55. Any weak inverse of A can be expressed as
A" =AT"+H-ATAHAA",
for any H of appropriate size. This follows from (7.6a).
7.56. Let A be a real matrix. The following conditions are equivalent.
(1) A matrix G is the Moore—Penrose inverse of A.
(2) A*AG = A* and G*GA = G*~.
(3) AG = P4 and GA = Pg,

where Pa and Pg represent orthogonal projections onto C(A) and C(G),
respectively. (This was the original definition of the Moore—Penrose inverse
given by Moore [1935]. The equivalence of the two definitions is proved by
Campbell and Meyer [1979: 9] and Schott [2005: 181-182, real case].)

7.57. If A is a real normal matrix (i.e., A’A = AA’) with Moore-Penrose inverse
AT, then:

(a) ATA=AAT.
(b) (A¥)* = (A*)* for any positive integer k.
(c) If A is symmetric, it is normal and AA+ = ATA.

7.58. Let A be a real m x n matrix, and suppose that certain rows are identical
(respectively zero). Then the same rows in A’T and also in AA™ are identical
(respectively zero).

7.59. (Expressed as a Limit) If A is an m x n matrix then
At = ;i_xg(A’A +8%1,) A = lim A'(AA' +6°T,)7
7.60. (Continuity) Let A be an m x n matrix and A, A,...,... be a sequence
m x n matrices such that Ay — A as k — oo (cf. Definition 19.3), then
Af 5 At ask > o
if and only if an integer N exists such that
rank Ay =rank A for all k > N.

7.61. Given a real matrix A, let F;3 be any g;3-inverse of AA’, and let Hy4 be
any gi4-inverse of A’A. Then

At = A'Fy;3 =Hy A
7.62. (Idempotent matrices) Let A be a real matrix.
(a) If A is symmetric and idempotent, then At = A.
(b) A’A is idempotent if and only if AT = A’
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7.63. (Non-negative Definite Matrices)

(a) Suppose A is an n x n (real) non-negative definite matrix of rank ». We
can write A = R'R, where R is r x n of rank r (cf. 10.10)). Then, since
(RAR/)"! = (RR/)~? and, using (7.65a) and (7.54d), we have

AT = R/(RAR)"'R
R'(RR')"?R
RT(R).

The last result also follows directly from (7.54c).

(b) It follows from (a) that if A is non-negative definite (respectively positive
definite), then A™ is also non-negative definite (respectively positive definite).

7.64. (Non-negative Definite Difference) Suppose that A, B, and A — B are non-
negative definite matrices, then B* — A% is non-negative definite if and only if
rank A = rank B.

7.65. (Full-Rank Factorization) If A = CR is a full rank decomposition of an
n x n complex matrix of rank r, where C is m x 7 of rank r and R is 7 X n of rank
r, (cf. 3.5), then:

(a) At = R*(C*AR*)~!C* = R*(RR*)"}(C*C)~!lC*.
(b) AT =R*TCt.
We note that (7.63) is a special case of the above results.

7.66. Let A be an m X n matrix, and let B be an n x m matrix. Then B is the
Moore—Penrose inverse of A if and only if B is a least squares {g;3) inverse of A
and A is a least squares inverse of B.

Proofs. Section 7.4.1.

7.49. Abadir and Magnus [2005: 284-285] and Schott {2005: 180-181}, real
case only.

7.50. Schott [2005: 181].

7.51. This is quoted by Graybill [1983: 128] and proved by Penrose [1956).
7.52b. Campbell and Meyer [1979: 28-29].

7.52c-h. Simply check that the four conditions are satisfied.

7.52i. Take the conjugate transpose of the four conditions.

7.52j. Abadir and Magnus [2005: 290, real case].

7.52k. Abadir and Magnus [2005: 286, real case] and Schott [2005: 184].
7.52]. Campbell and Meyer [1979: 12].

7.52m. Meyer [2000a: 424] and Campbell and Meyer [1979: 225].
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7.53a. Schott [2005: 185-186].
7.54a. Follows from the definition of A™.
7.54b. Abadir and Magnus [2005: 287] and Graybill [1983: 112].

7.54c. Abadir and Magnus [2005: 287}, Graybill {1983: 109], and Schott {2005:
183).

7.54d. Abadir and Magnus [2005: 287, 288] and Schott [2005: 183].
7.54e. Graybill [1983: 110] and Schott [2005: 183).

7.54f. Abadir and Magnus [2005: 287]. Follows from the fact that A(A’A)TA
is the orthogonal projection onto C(A).

7.54g. Abadir and Magnus [2005: 287].

7.54h. Searle [1982: 216].

7.54i. Both are equal to the orthogonal projection matrix, which is unique.
7.54j. Abadir and Magnus [2005: 288].

7.56. Harville [1997: 503].

7.57a. From (2.35b), C(A) = C(AA’) = C(A’A) = C(A’); we then apply
(7.52p(i)).

7.57b. Proof can be demonstrated for k = 2. Using (a), A2(A*)2A2 =
AAATATAA = AATAAA*A = A?; then use induction.

7.58. Graybill [1983: 117-118].

7.59. Harville [1997: 508-510]. This result holds for complex matrices if we
replace ' by *, as quoted by Rao and Mitra [1971: 64].

7.60. Campbell and Meyer [1979: 217] and Penrose [1955].
7.61. Harville [1997: 506].

7.62a. Abadir and Magnus [2005: 286] and Schott [2005: 185].
7.62b. Graybill [1983: 116-117).

7.63b. Harville [1997: 505] and Searle [1982: 220].

7.64. Quoted by Schott [2005: 215, exercise 5.19].

7.65a. Ben-Israel [2003: 48], Harville [1997: 494, real case], and Searle [1982:
212, real case].

7.65b. Follows from (a) and (7.54d(i)-(ii)); see also Schott [2005: 189, real
case]. For some general conditions for (CR)* = RTC™ to hold when ranks
are not specified see Ben-Israel and Greville [2003: 160-161].

7.66. Quoted by Schott [2005: 219, exercise 5.47].
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7.4.2 Sums of Matrices

7.67. Let U and V be real m x n matrices. Define

C = (I,-UUY)YV,
M = {I,+(I,-Ccrc)yv'urutv(d, -C*C)}™ !, and
W = (I,-CtC)(MV'UTU*(L, - VC*).

(a) LUV’ =0, then

(U+V)" =U"+ (I, -U*V)(Ct+W).
(b) f UV’ =0 and U’V = 0, then
(U+V)T=UT+V™T.

7.68. (Orthogonal Sum) Let A = ZleAi, where the A; are all real m X n
matrices. If A;A% = 0 and AjA; = 0 for all i,j = 1,2,...,k,i # j, then from

(7.67b) we have
k
At =3"A}
i=1

Proofs. Section 7.4.2.
7.67a. Boullion and Odell [1971].
7.67a-b. Schott [2005: 197].

7.4.3 Products of Matrices
7.69. Suppose A is any n X n complex matrix.

(a) Let P be any r xn (r > n) matrix with orthonormal columns (i.e., P*P =1,,)
and Q be any sxn (s > n) matrix with orthonormal columns (i.e., Q*Q = 1,),
then

(PAQ*)T = QATP*.

(b) If B = U*AU for some unitary matrix U, then Bt = U*A+U.

7.70. Let A be a real m X n matrix and B be a real n x p matrix. The following
conditions are equivalent.

(1) (AB)T =BtA™T.

(2) A*ABB'A’ = BB'A’ and BB*A’AB = A’AB.

(3) ATABB' and A’/ABB™ are symmetric matrices.

(4) A*ABB'A’ABB* = BB'A’A.

(5) A*AB = B(AB)*AB and BB*A’ = A’AB(AB)™.
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7.71. Let A be an m X p real matrix, and let B be a p x n real matrix. If
B; = ATAB and A; = ABB}, then AB = A;B; and (AB)* = BfA}.

7.72. Let A be any m X n matrix, and let K be an n x n nonsingular matrix. If
B = AK, then BBT = AA™T. It may not be true that BtB = At A.

7.73. If A and B are conformable complex matrices, then
(AB)* = (A*AB)"(ABB*)" = (P¢a+yB)" (AP¢g))",

where P (g, is the orthogonal projection onto C(B), and so on (cf. 7.54a).
7.74. The following hold:

(a) A =0if and only if At =0.

(b) AB =0 if and only if BTAt =0.

(c) ATB =0 if and only if A’'B =0.

(d) If Ax = 0 for some vector x, then A*x = 0 also.
7.75. (Cancellation) Suppose we have real conformable matrices.

(a) A’/AB=A'Cif and only if AB=AA*C.

(b) If B has full row rank so that det(BB') # 0, then (AB)(AB)* = AA™.

7.76. Let A be a real m x n matrix with n < m, and let B be any real n x n matrix
satisfying (A’A)?B = A’A. Then At = B'A’.

7.77. Suppose A is a real symmetric matrix.
(a) At = B’AB, where B is any solution of A’B = A.
(b) AT = (AK)?A, where K is any solution of A2KA? = A2,
Proofs. Section 7.4.3.
7.69a. Harville [1997: 506, real case]).
7.69b. Quoted by Ben-Israel and Greville [2003: 49).

7.70. Schott [2005: 190]. For many other equivalent but more complex condi-
tions involving the Moore-Penrose inverse of products, see Tian [2006c] and
references therein. For a related paper see also Tian [2005a].

7.71. Schott [2005: 191].

7.72. Graybill [1983: 115].

7.73. Campbell and Meyer [1979: 20].

7.74. Abadir and Magnus [2005: 288].

7.75. Abadir and Magnus [2005: 291] and Magnus and Neudecker [1999: 34].
7.76-7.77. Graybill [1983: 123].
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7.5 GROUP INVERSE

We recall from Definition 7.1 that A# is the group inverse of a square real or
complex matrix A if it satisfies the three conditions

AA#*A = A, A*AA* = A¥* and AA* = A¥A.

Such an inverse is a special case of the so-called Drazin inverse, discussed by Ben-
Israel and Greville [2003: chapter 4, section 4] and Campbell and Meyer [1979:
chapters 7-9]. Group inverses are particularly useful in the theory of finite Markov
chains (cf. Meyer [1975] and Noumann and Xu [2005]).

7.78. An n x n matrix A has a group inverse if and only if C(A) & N(A) = C".
When the group inverse exists, it is unique.

7.79. A square matrix A has a group inverse if and only if rank A = rank(A2).

7.80. Let a square matrix A have a full-rank factorization A = FG (cf. 3.5). Then
A has a group inverse if and only if GF is nonsingular, in which case

A#* = F(GF)%G.

7.81. (General Properties) From the definition we have the following:

)

b) (A#)# = A

(c) (AM)* = (A%)*

(d) (A")* = (A#Y

(e) (AF)# = (A#) for every positive integer k.
)

Proofs. Section 7.5.
7.78-7.81. Ben-Israel and Greville [2003: 156-158].

7.6 SOME GENERAL PROPERTIES OF INVERSES

7.82. (Representations) The following is a useful summary from Rao and Rao
[1998: 295-296]) giving representations for all the inverses of an m x n real (respec-
tively complex) matrix A of rank 7. We begin with the singular value decomposition
of A namely

A, O
Aun =Prxm ( 0 0 ) Q/nxn?

where P is an m X m orthogonal (respectively unitary) matrix, Q is an n x n
orthogonal (respectively unitary) matrix and A, = diag(d;,62,---,8;) isan m xn
matrix with §; > 8, > -+ > 6, > 0. For complex matrices we replace ’ by *. We
shall use the notation G, to denote the n x m g, -inverse of A.
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-1
(a) G1=Q ( é )Z( ) P’, where X, Y and Z are arbitrary.
Al X , .
(b) Gi12=Q v YAX P’, where X and Y are arbitrary.
A—l
() G1a =Q ( 0 ) P’, where X and Z are arbitrary.

X
Z
X , . .

0 P’, where X is arbitary.

g ) P’, where Y and Z are arbitrary.
0
0

) P’, where Y is arbitrary.

©a-a(g o)

7.83. (Matrix Bounds) If A is mxn, then using the Léwner ordering (cf. Definition

10.1):
(a) (In — AG1) (I, — AG1) = (I, — AGy3) (In — AGy3).
(b) (In — AG1) (Im — AG1) = (I, — AG1y) (I, — AGyy).
(c)

(I, — AG)' (I, — AGy)
(I, — AG1)(I,, — AGy)

Y 1y

(d)

(Im — AG123) (I — AG123)
(Im — AG123)(Im - AG123)I-

I ~ G1A) (I, — G1A)
(I, — G1A)(I, - G1A)'

(I, — G124A) (I, — G124A)
(I, — G124A) (I, — Gig4A)".

Y 1y

(I, — AATY(IL, — AAT)
(L, — AATY(I,, — AATY
(I, - ATA)(I, — ATA)

(I, — A*A)(I, — A*A).

(In — AG) (L, — AGy)
(I — AG1)(In — AGy)’
I, - G1A) (I, - G1A)
(I, — G1A)(I, — G1A)

Y 1Y IY 1Y

(f) From (a) and (b), the first results of (c) and (d), and the first and third

results of (e) we can obtain lower bounds, as in the following example. For
any unitarily invariant norm || - ||,; on the space of all m x m matrices,

mGin “Im - AGHuz = ||Im - AG13|IUi7

where the minimum is taken over all weak inverses Gj.

Proofs. Section 7.6.

7.83. Rao and Rao [1998: 296-299].



CHAPTER 8

SOME SPECIAL MATRICES

In this chapter we put collect together a number of matrices that have a special
structure or properties. Other more general types of matrix occur elsewhere in this
book such as Hermitian, symmetric, and normal matrices in Chapter 5, various
non-negative matrices in Chapter 9, and non-negative definite matrices in Chapter
10.

8.1 ORTHOGONAL AND UNITARY MATRICES

Definition 8.1. An n x n matrix T is orthogonal if T'T = I,,. It immediately
follows by taking determinants that T is nonsingular, T/ = T~! and TT' = L,.
An n x n complex matrix is unitary if U*U = I, and then U~! = U*. Although
an orthogonal matrix can be real or complex, we shall focus on real orthogonal
matrices rather than complex orthogonal matrices in this chapter, unless otherwise
stated.

8.1. A unitary matrix is also a normal matrix so that all the properties of a normal
matrix apply. For example, if U is unitary, there exists a unitary matrix V such
that U = Vdiag(\, Ae,...,A,)V*, where the A; are the eigenvalues of U and
satisfy |A;| = 1 for all 7 (cf. 5.31). Note that if U is unitary, then so are U, U’, and
U™, the Moore-Penrose inverse.

8.2. An n X n complex matrix A is unitary if and only if {|Ax||z = ||x]||2 for all
x € C".
A Matriz Handbook for Statisticians. By George A. F. Seber 147
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8.3. Let U be a unitary matrix partitioned as
A B
v-(e )

where A is m x m and D is n x n.
(a) If m = n, then A and D have the same singular values.

(b) If m < n and the singular values of A are 01,02,...,0m, then the singular
values of D are also 01,09,...,0, together with n — m values equal to 1.

(c) det A =detD.

8.4. (Symmetric Unitary Matrix) Let U be a symmetric unitary matrix, that is,
U’ = U. Then there exists a complex matrix S with the following properties.

(a) 82=1U.

(b) S is unitary.

{(c) S is symmetric.

(d) S commutes with every matrix that commutes with U.

8.5. A unitary matrix is an isometry, that is, a linear transformation that preserves
Euclidean length.

8.6. Let T Dbe a real n x n orthogonal matrix and U a unitary matrix.

(a) Given (x,y) = x'y, the columns (rows) of T form an orthonormal set. The
same holds for U if we define (x,y) = x*y.

(b) detT = +1. If det = 1 then T represents a rotation.
(c) |det U} =1, where |- | is the complex modulus.

(d) (i) If X is an eigenvalue of T then so is A71.

(ii) The eigenvalues of T are £1 or occur in conjugate pairs * and e~ (6
real) on the unit circle, so that all the eigenvalues have unit modulus (cf.
16.46b).

(iii) It follows from (ii) that if n is odd, then at least one eigenvalue is +1 or
-1

(e) The eigenvalues of U are \; = €'Y (6 real) for all 4, so that |A| = 1.

8.7. If the n x n matrix A has all its eigenvalues equal to 1 in absolute value, then
A is unitary if [|Ax]||2 < ||x||2 for all x € C™.

8.8. Suppose C is an n X n real skew-symmetric matrix, that is, C’' = —C (cf.
(5.19) for real matrices). Then:

(a) I, + C is nonsingular.

(b) A = (I, — C)(I, + C)~! is orthogonal with det A = 1.
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(c) A = €C is orthogonal with det A = 1.

8.9. (Rotation Matrix in the Plane) The matrix

T, = ( cosf ~siné )

sin @ cos 8

represents a rotation in two dimensions in a counter clockwise direction through
an angle §. We note that TpTy = Ty and T 5 = Te"l. Every 2 x 2 orthogonal
matrix with determinant equal to +1 can be expressed in the form of Ty for some

0.
The following matrix

S, — 1 0 cosf —sinf \ cosf —sind
=\l o —1 sin 6 cos@ / \ —sinf —cosh

represents a rotation combined with a reflection in the z-axis.
A reflection matrix is symmetric; for example,

V, = ( cosf sin 6 )

sinf —cosf

represents a reflection across a line at an angle of 8/2 and has a determinant of —1.

8.10. (Helmert Matrix) We have the following orthogonal matrix T}

1 1 1 1 1 1
NG vn vn Vvn NG Vn
1 _1 0 0 0 0

V2 V2

1 1 _2 0 0 0

Ve e Yo 3

Vi3 iz iz Y%y 0 0

1 1 1 1 . 1 __(n—1)
Vrn=1)  /nn-1)  /n(n-1) /n(n-1) V/n(n-1) Vn(n-1)

This matrix has been used for proving the the statistical independence of a number
of statistics.

8.11. (Householder Transformation) This n x n orthogonal matrix is defined to be
H, = I, — 2hh’, where h’'h = 1. Since, from (4.33), det H,, = (1 — 2h’h) = -1,
H,, represents a reflection.

Given x = (x1,Z2,...,%,)" with 21 # 0, let y; = —(sign z1)vx'x, and define
hi = [3(1 — z1/y1)]V/? and h; = —x;/(2hyy1) for i = 2,3,...,n. Then H,x =
(y1,0,...,0). Similarly we can define

1 o’
H=
< 0 Hn~1 )
so that Hx = (y1,%2,0,...,0)’, where y; = z; and H is orthogonal. By using
a succession of such transformations, a matrix can be transformed to an upper-

triangular matrix. For further details see Golub and Van Loan [1996: chapter 5]
and Seber and Lee [2003: 343-347].
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8.12. (Givens Transformation) This orthogonal matrix G = (g;;) takes the form
of an identity matrix except for four elements: ¢, = gss = cosf and, for r > s,
—grs = gsr = sin§. Premultiplying by G rotates the rth and sth rows in a clockwise
direction through angle 8. An example of a 4 x 4 Givens matrix is

1 0 0 0

0 cosf O sind
G= 0 0 1 0

0 —sinf 0 cosf

Products of such matrices can be used to transform a matrix to upper-triangular
form. For further details see Golub and Van Loan [1996: 215-221] and Seber and
Lee [2003: 348-352].

8.13. If B is a real nonsingular matrix, then B(B’B)~'/2 is orthogonal (cf. 10.32).
Proofs. Section 8.1.

81. UU=UT=(UU)y =1,.

8.2. x*A*Ax = x*x for all x implies A*A =1,.

8.3. Zhang [1999: 134].

8.4. Zhang [1999: 152-153].

8.5. |Ux||%2 = x*U*Ux = ||x||2.

8.6b. Follows from (det T)? = det(T'T) = 1.

8.6c. Rao and Bhimasankaram [2000: 314] and Zhang [1999: 132]. Follows
from 1 = det(UU*) = det U - det U = (a +ib)(a — ib) = a? + b% = |U|*.

8.6d. For (i), Tx = Ax implies A"'x = T'x and det(T — AL,,) = det(T —
AL,) =0 (i.e., T and T’ have the same eigenvalues).

8.6e. Zhang [1999: 132].

8.7. Zhang [1999: 133].

8.8. Abadir and Magnus [2005: 263)].
8.9. T,Tp = L.

8.10. T'T = 1,.

8.11. H.H, =L,

8.13. Abadir and Magnus [2005: 263].
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8.2 PERMUTATION MATRICES

Definition 8.2. Let II;; be the identity matrix I, = (e1, ey, ... e,) with its ith and
jth rows interchanged. Then Hfj =1, so that II;; is a symmetric and orthogonal
matrix. Premultiplying any matrix by II;; will interchange its ith and jth rows so
that IL;; is an (elementary) permutation matrix. Postmultiplying a matrix by an
elementary permutation matrix will interchange two columns.

Any reordering of the rows of a matrix can be done using a sequence of elementary
permutations Il = IL;, ;. ---II; ;,, where

O =10, , - 10, ;00 , - M, . =1,

iKjK iKJK
The orthogonal matrix II is called a permutation matriz.
The permutation matrix IIy = (e, e1,e2,...,€,-1), which has been called the
forward shift permutation matriz (and also primary permutation matriz), is useful
in the theory of circulants.
For a helpful discussion of permutations and cyclic permutations see Davis [1979)]

and Rao and Bhimasankaram [2000: section 6.2].

8.14. II; has the following properties.
(a) HoAIN) = (@i41,;+1) with n+ 1 =1 (i.e., subscripts are taken mod n).
(b) T2 = (e _1,€n,€1," -, €n_2).
(c) My =1,.

(d) My = F*TF, where I = diag{1l,w,w?,...,w™ 1), the w' are the nth roots of
1, and F is an n x n Fourler matrix (cf. Section 8.12.2).

8.15. An n x n permutation matrix II,, has exactly one entry in each row and
colunmn equal to 1, and zeros elsewhere. For example

010
M= 1 0 0 (= (ez,e1,e3), say).
00 1

Thus II,, consists of I, with its rows resequenced. It is also I,, with its columns
resequenced, but not necessarily in the same sequence; that is, II,, is not neces-
sarily symmetric. Left multiplying an m x n matrix A by II,, produces the same
resequences of the rows of A as II,,,, while right multiplying by H,, does the same
for the columns.

8.16. If I, is a permutation matrix, then so is II¥, where k is any positive integer.

8.17. If A is n X n, then the diagonal elements of II/, AIl,, are the same elements
(rearranged) as the diagonal elements of A.

Definition 8.3. If A is n x n and II is a permutation matrix, then the matrix
I'AIl = I~ ' AII is said to be permutation similar to A. This concept is linked to
irreducibility in (8.101).

Proofs. Section 8.2.
8.14. Davis [1979: 72].
8.16-8.17. Graybill [1983: 277]



152 SOME SPECIAL MATRICES
8.3 CIRCULANT, TOEPLITZ, AND RELATED MATRICES

8.3.1 Regular Circulant

Definition 8.4. An n x n real or complex matrix A is a (regular) circulant if it
has the form

ag a) az - QAp-1
Gn—1 ag ay - Qp-2
A= Ap—-2 QAp—-1 G0 -+ Qnp-3 ’
a1 az az - ag

that is, all the elements are equal on the main diagonal and on each of the diagonals
parallel to the main diagonal. Note that A is countersymmetric as it symmetric
about its main counter (opposite) diagonal. Most authors omit the word “regular”
from the definition, but we follow Graybill [1983] and include it so as to be able
to distinguish between two types of symmetric circulant below. Thus, if we define
(j — 1) modulo n as

.~ | n+j—i, wheni>j,
(G —9)n = { j—14, wheni<j
then A is a regular circulant if and only if (j—¢)|n = (s—r)|n implies that a;; = ars.
Alternatively, A is a regular circulant if and only if a;; = a(;_;)j». Another way of
defining a regular circulant is a;; = aim, where

Tl n-(G-i+l), j<i
We can also use the notation A = circ(ag, a1, -..,a,—1). In applications the circu-
lants are generally real.
Regular circulants can arise as incident matrices of experimental designs such
as the balanced incomplete block design (BIBD) and cyclic designs (e.g., Rao and

Rao [1998: 513]). There are other types of circulant such as skew circulants (Davis
[1979: 83] and alternating circulants (Tee [2005: 136]).

Definition 8.5. The polynomial p(z) = ag + a1z + --- + a, 12"~ ! is sometimes

called the representer of the circulant and it occurs, for example, in signal process-
ing.

8.18. The forward shift permutation matrix Iy of (8.14) can be expressed as Il =
cire(0,1,...,0).

8.19. circ(ag,ai,...,an-1) = p(p) = ag + a1 Mg + a3 + - -+ + an_lﬂg‘l.
8.20. The following conditions are equivalent.

(1) A is an n x n regular circulant.

(2) TILAIT; = A.

(3) M{AII, = A.

8.21. If A is a real regular circulant, then so is the Moore-Penrose inverse A*.



CIRCULANT, TOEPLITZ, AND RELATED MATRICES 153

8.22. Let A be a regular circulant. Then:
(a) A* is a regular circulant.
(b) A* is a regular circulant, where k is a positive integer.

(c) A~!is also a regular circulant, if A is nonsingular. In this case, to compute
A~1 we only need to find its first row.

8.23. If A is a regular circulant with first row (ag,a1,a2,...,a,-1), and if

n—1

lag| > , Z [

for some q, then A is nonsingular.

8.24. If A and B are any n x n regular circulants, then AB is a regular circulant
and AB = BA.

8.25. If A is a regular circulant, then so is A* (by 8.22a) and A*A (by 8.24), with
A*A = AA*. Thus a regular circulant is a normal matrix.

8.26. Let A and C be n x n regular circulants, and suppose there exists a matrix
X such that AX = C. Then there exists a regular circulant B such that AB = C.

Definition 8.6. The n x n matrix C, (h = 1,2,...,n — 1) that has a5, = 1 and
the other a; = 0 is sometimes refered to as a basic circulant matrix. For example,
ifn=3,

ap a1 ap 010
A= a as a and C; = 0 0 1
a1 az Qo 1 0 0

Here C; = circ(0,1,0). Note that, in general, C; is the same as IIy of Definition
8.2.

8.27. If Cy =1,, then:
n—1
(a) A= Z ahCh.
h=0

(b) C,=Ch (h=1,2,...,n—1) and C, =1,, (by 8.14c).

8.28. (Eigenvalues and Eigenvectors) Referring to (8.14d), we have the following
results.

(a) The eigenvectors of C; are given by
v; = nV2(1, W W WDy

with corresponding eigenvalues A1; = w’, for j = 0,1,...,n — 1, where w =
exp(2mi/n) = cos(2n/n) + isin(27/n) and ¢ = /—1. (Note that the A;; are
the n roots of unity.)

(b) Since Cpx = Chx = Mx, the eigenvectors of C;, are still the +; with eigen-
values Apj = w? (h,j=0,1,...,n—1).
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(c) We now turn our attention to A of (8.27).

(i) A has eigenvectors -; with (not necessarily distinct) eigenvalues

n-1 n-1
Aj =Zahwjh =plw;) = Zahw;b, j=0,1,...,n—1,
h=0 h=0

where w; = w7, and p(z) is given in Definition 8.5 (above 8.18). Note
that the +; are the same for all regular circulants.

(ii) Setting j =01in (i), Ao = ao + a1 + ... + anp—1 is always an eigenvalue.
(iii) The eigenvectors are mutually orthogonal, that is, v;yx = d;«-

(iv) If F is an n x n Fourier matrix (cf. Section 8.12.2), then it is unitary and
FAF* = A, that is, AF* = F*A, where A = diag(\1, A2,...,A,). Thus
the columns of F* are a universal set of right eigenvectors for all regular
circulants. Also A = F*AF.

(v) A spectral decomposition of A is given by

n—1

A=) N

=0

Here v} is the complex conjugate of ~; obtained by replacing w; in ;
by its complex conjugate

w = exp(—2ni/n) = cos(2n/n) — isin(27/n).

(vi) The matrix ;75 is a regular circulant that can be written in the form
n—1
—hi
75 =) w MG
h=0

(g) The Moore-Penrose inverse of A, which is also a regular circulant, is given
by
-1 *
AT = Z A; Y5
where the summation is over all r nonzero eigenvalues of A, with r = rank A.
If r =n then At = A~1 = F*A"!F.

(h) A* =377 ¥nCh, where g, =n"1 Y A7 Twhd,

8.29. Let A = circ(e,c2,...,cn) be areal n x n regular circulant.
(a) If nis odd and Ag = 3., ¢; > 0 (cf. 8.28£(ii)), then det A > 0.
(b) If nis even, n = 2r + 2, Ao > 0, and

r+1 r+1

1Y esiaal 21D eal,
=1 =1

then det A > 0.
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Proofs. Section 8.3.1.
8.19. Schott [2005: 330] and Zhang [1999: 107].

8.20. Schott [2005: 329]. The second result follows by multiplying on the left
by Hj and on the right by .

8.21. Graybill [1983: 249; his A~ is our A™].

8.22. Schott [2005: 330].

8.23. Grayhbill [1983: 253] and Schott [2005: 330-331).
8.24. Graybill [1983: 236, 238] and Schott [2005: 330-331].
8.26. Quoted by Graybill [1983: 239).

8.27. We simply multiply out the expressions.

8.28. John and Williams [1995: Appendix A7]. For (c)(iv) see Davis [1979:
72|, Schott [2005: 332], and Zhang [1999: 107].

8.29. Davis [1979: 76-77].

8.3.2 Symmetric Regular Circulant

To obtain a symmetric regular circulant one writes down a regular circulant and
then determines which elements are equal to achieve symmetry; for example, we
have the following matrix

ag a1 az ai
a Gy a1 G2
a ay ag ay
ay G2 a1 Qo

Note that this matrix is symmetric about its main diagonal and about its counter
(opposite) diagonal, so it is doubly symmetric. Trivial examples are I, and J,, =
1,1,. Although our focus is on real symmetric matrices, the eigenvalue theory
below applies generally to real and complex matrices.

Symmetric regular circulants arise in cyclic designs as the product of the in-
cidence matrix and its transpose {the concurrence matriz of John and Williams
[1995: 51]). The eigenvalues are related to the so-called canonical efficiency factors.
Symmetric regular circulants also arise with variance matrices, and Khattree [1996]
gives seven applications.

8.30. (Some General Properties) Let A be an n X n symmetric regular circulant.
Then:

(a) A has at most [n/2] + 1 distinct elements, where [a] is the integral part of a.
(b) A’ is a symmetric regular circulant.

(c) If A is nonsingular, then A~! is a symmetric regular circulant.
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8.31. Let A and B be n x n symmetric regular circulants, then
(a) AB =BA.
(b) AB is a symmetric regular circulant.

(c) aA+bB, where a and b are any real numbers, is a symmetric regular circulant.
Hence al,, + bJ,,, where J,, = 1,1}, is a symmetric regular circulant.

8.32. (Eigenvalues and Eigenvectors) If A is a symmetric regular circulant, then
we have the following results.

(a) ap = an—n (h=1,2,...,m), where

" n/2, n even,
]l (n—=1)/2, mnodd

(b) The eigenvectors are vy; (j =0,1,...,n — 1) of (8.28a).
(c) The eigenvalues of A are

n—1

A=Y apcos(2mjh/n), j=0,1,...,n 1.
h=0

(d) A; = Aoy

(e) If n =2m, then A\g = ap+ 2(a1 + a2+ -+ @m_1) + G-
Ifn=2m+1, then A\g = ap+ 2(a1 + a2+ - + am).

(f) At = Y1 nCh, where oy = n~ly A7 ' cos(2mjh/n). Here we have
used (d) so that the sum is over all nonzero eigenvalues, but only choosing
one of A; and A,_;.
Proofs. Section 8.3.2.
8.30-8.31. Graybill [1983: 242].

8.32. John and Williams [1995: appendix AT].

8.3.3 Symmetric Circulant

Definition 8.7. A matrix is a symmetric circulant if a;; = a(;1;—2)jn- An example
of an n X n symmetric circulant is

ao ay az Gpn—1

ay az as - ag

A = ag as Q4 e a)
an-1 Ay @1 - QAp-2

Note that the elements on each of the counterdiagonals are equal.
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8.33. The Moore-Penrose inverse AT of a symmetric circulant is a symmetric
circulant.

8.34. If A is a symmetric circulant and is nonsingular, then A~ is a symmetric
circulant.

8.35. Let A be an nxn symmetric circulant with first row elements ag, a1, ..., 0, 1
and eigenvalues Ao, A1,..., Apo1. Hwj =w? (j=0,1,...,n — 1; w% = 1) are the n
roots of unity, then

n—1 n—1 n—1

2 _ .0 2, o 2 ,

Al = Wy E aj + w; E a5(j4+1)|n T W; E :a]a(j+2)|n
=0 =0 =0

n—1
n—1
+-tw; E @5 +n—1)|n-
j=0

Also \g =a,+a1+ -+ an_1.

8.36. If A and B are n x n symmetric circulants, then AB is a regular circulant,
but, in general, AB # BA.

8.37. If B is a regular circulant and C is a symmetric circulant, then BC and CB
are symmetric circulants and, in general, BC # CB.

8.38. Combining the above two results, we have that the product of an even number
of symmetric circulants is a regular circulant, and the product of an odd number
of symmetric circulants is a symmetric circulant.

8.39. Let A be an n x n regular circulant, C be an n x n symmetric circulant, and
suppose there is a solution X to the matrix equation AX = C. Then there exists
an n X n symmetric circulant B such that AB = C.

8.40. Let A be a regular circulant, and let B be a symmetric circulant with the
same first row ag, a1, ..., @,_1. If the matrices are both n x n, then

det A = (—1)[("1/2 get B,
where [(n - 1)/2] is the integral part of (n — 1)/2.

8.41. Let A be an n xn matrix that is both a symmetric circulant and a symmetric
regular circulant. If n is odd, then A takes the form a;; = a for all ¢, j. If n is even,
then A takes the form a;; = ag if ¢ + j is even and a;; = a; if i + 7 is odd.

Proofs. Section 8.3.3.
8.33. Graybill [1983: 249, his A~ is our A*].
8.34. Graybill [1983: 243].
8.35. Graybill [1983: 246-247).
8.36-8.39. Graybill [1983: 244-245].
8.40-8.41. Graybill [1983: 248-249].
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8.3.4 Toeplitz Matrix

Definition 8.8. An n x n matrix A is a Toeplitz matrix if all the elements on the
main diagonal are equal, all the elements on each superdiagonal are equal, and all
elements on each subdiagonal are equal, that is, a;; = a;44 ;45 for all 4,7,s. For
example,

ag a a2 as o OGn-1

a_ ag ai az o Anp-2
A= a_ a_) ag a; RIS

A_(n-1) Q-(n-2) Q_(n-3) CG-(n-q) ' Qo

is a Toeplitz matrix. The general term is a;; = a;_; for some sequence
a_(n-1),0—(n-2),"""»4-1,80,01,802,...,0n-2,8n_1 e C.

For general references see Grenander and Szeg6 [1958], Bottcher and Silbermann
[1999], and Widom [1965].

A symmetric Toeplitz matrix has a;; = aj;, and there are at the most n “free”
elements in the matrix. In the above example these would be the first row of
elements. An example of a symmetric Toeplitz matrix arises in the study of a

stationary process consisting of a set of random variables {u; | t = 1,2,...,n} with
cov(us + 7,us) = k(|7]). Then the variance matrix of u = (uy,ug,...,u,) is the
positive definite Toeplitz matrix
k(0) k(1) k(2) s k(n=1)
var(u) = K,(.l) n(.O) Ii('l) k(n .— 2)
kn—1) k(n-2) kn-3) --- «k(0)

When k(0) = 1, n = p, and (i) = p; for each ¢, the above matrix comes from the so-
called Yule- Walker equations that arise in the study of a pth-order autoregressive
(AR(p)) time series. Algorithms for solving these and similar equations, and for
inverting a symmetric positive definite Toeplitz matrix, are given by Golub and
Van Loan [1996: section 4.7].

8.42. Let
01 0 O 0 0 0 0 0 O
0 0 1 0 1 0 0 0 0
B=| 200 0 g w0 000
0 0 0 0 1 o0 --- 1 00
00 0 0 0 o0 --- 0 10

Then B and F are Toeplitz matrices, and are sometimes referred to as backward shift
and forward shift matrices because of their effect on the elements of the columns
of I, = (e1,ez,...,e,). Then A, defined in the above definition 8.8, satisfies

n—1 -1
A= Z a,Fi + nz a;B".
=0 =0
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8.43. A regular circulant is a Toeplitz matrix, but a Toeplitz matrix is not nec-
cessarily a regular circulant, though it is sometimes approximated by a regular
circulant (cf. Brillinger [1975: 73-74] and the references therein). Any symmetric
regular circulant is a symmetric Toeplitz matrix.

8.44. Let A be a Toeplitz matrix.
(a) A’ is also a Toeplitz matrix.
(b) Any symmetric Toeplitz is also doubly symmetric.
(¢) If ay; is defined by a;; = a);_j|, then A is a symmetric Toeplitz matrix.
The case when A is tridiagonal is considered in (8.110).
Proofs. Section 8.3.4.
8.44. Graybill [1983: 284-287].

8.3.5 Persymmetric Matrix

Definition 8.9. An n x n matrix B = (b;;) is called persymmetric (countersym-
metric) if bij; = by_j11,n—s41 for all ¢,j. Such a matrix is symmetric around the
counter diagonal. An example is

a b ¢

B= d e b

f d a

8.45. Let

En = (enven—h-"yel)
o 0 --- 01
_ 0 0 1 0
10 --- 00

the so-called ezchange permutation matriz. Then, if B is n X n, it is easy to show
the following.

(a) I x' = (z1,22,...,2,), then (E,X) = (Tn, Zn—1,...,%1).
(b) E;! = E,.
(b) B is persymmetric if and only if B = E,B'E,,.

)
(c) If B is persymmetric and nonsingular, then B™" is persymmetric.
) If

(d T is an n x n Toeplitz matrix, then T is persymmetric. The converse is

not necessarily true.
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8.3.6 Cross-Symmetric (Centrosymmetric) Matrix

Definition 8.10. An m x n matrix A = (a;;) is said to be cross-symmetric (cen-
trosymmetric) if a;; = @m41-in+1-; for all ¢, and, we call it a C-matrix. For a
list of examples of such matrices in statistics and time series see Dagum and Lu-
ati [2004]. They also consider a useful transformation and its properties, called a
t-transformation, which takes a;; — am41-int+1-;5-

Note that when m = n:

(1) The elements of the first column read downwards are the same as the ele-
ments read upwards in the nth column; the elements in the second column
read downwards are the same as the elements read upwards in the (n — 1)th
columns; and so forth.

(2) The elements read from left to right in the first row are the same as the
elements read from right to to left in the nth row; the elements in the second
row read from left to right are the same as the elements read from right to
left in the (n — 1)th row; and so forth.

(3) If n is odd, then the middle row (and column) are symmetric about the
diagonal element.

An example is

a0 8
oA o
2 a0

8.3.7 Block Circulant

Definition 8.11. Given an n x n regular circulant matrix with first row elements
ag,as, . ..,an_1, we can construct an nk x nk block circulant matrix A by replacing
aj by a k x k matrix A; (j=0,1,...,n—1). Thus

Ay A A - A

Anr Ay A - A

A= An—2 An—l AO T An—3
Ay A, Ay --- A

Note that A is not necessarily a regular circulant. Typically each A; is also a regular
circulant or Toeplitz matrix, or it may even be a block circulant with components
which are also regular circulants or Toeplitz matrices. For example, in experimental
designs we might encounter the symmetric block matrix (n = 2,k = 3)

_{ Ay Ay
TUAL Ay )7

NN O OO
O N OO
ODNN| DO
S O NN O
S = O N O N
B~ O o ONN
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Block circulants are used, for example, in n-cyclic designs (cf. John and Williams
[1995: 57-58]), while block Toeplitz matrices occur in vector-valued time series.

8.46. A regular circulant of (composite) order n = pg, where p and ¢ are integers,
is automatically a block circulant in which each block is Toeplitz. The blocks are
of order ¢, and the arrangement of blocks is p x p (cf. Davis [1979: 70-71]). The
family of such circulants we denote by B, 4.

8.47. If A € B, 4, then we have the sum of Kronecker products
A=LQA+Ti QA +I2Q A+ -+ ' 0 A, |,

where Iy is the forward shift permutation matrix of order p (cf. Definition 8.2 in
Section 8.2), and the A; are Toeplitz of order g.

8.48. If A,B € B, , and the o; are scalars, then A, A*, 1A + 0B, AB, p(A) =
S a;A', AT and A~! (if it exists) all belong to B, ,,. We can use the relationship
(8.47) so that AB = BA if A;B, = By A, for all j,k.

8.49. Let Cj, be a basic circulant of order ny, (cf. Definition 8.6 below (8.26)), and
define the n x n Kronecker product matrix

Ch=Ch ®Ch,®---QCp,,,
where n = nina - - - n,,. Then a block circulant matrix A of order n can be defined

by

ni—lng—1 Ny, —1

A= Z Z Z ahlhz...thh.

h1=0 ha2=0 hm=0

The eigenvalues and eigenvectors of A can then be readily found (cf. John and
Williams [1995: 232] and Tee [2005]).

Proofs. Section 8.3.7.
8.47. Davis [1979: 178].
8.48. Davis [1979: 181].

8.3.8 Hankel Matrix

Definition 8.12. A Hankel matrix A = (a;;) has the following structure:

ap a a2 te aK—1
@y a2 as te aK
A= a2 as a4 e GK+1 ,
ar—-1 ar Gar41 -+ AK4L-2

where a;; = a;4;_2, so that the elements are equal on each of the counterdiag-
onals i + j = const. This matrix arises, for example, from a real time series
X = (ag,a1,...,an—1) of length N with L the window length (1 < L < N) and



162 SOME SPECIAL MATRICES

K = N — L+ 1; it is called the trajectory matriz of X. If N and L are fixed, then
there is a one-to-one relationship between A and X (cf. Golyandina et al. [2001:
16}).

If L = K =n, so that A is n x n, then the general term is given by a;; = a;;_2
for some given sequence ag, a1, .. .,d2,—3,d2,—2. In this case A is symmetric.

For further details about Hankel matrices and structured matrices in general see
Bini et al. [2001].

8.50. Let Il = (en,€n—1,...,€1) be the backward identity permutation matrix.
Then:

(a) IT is a Hankel marix for any Toeplitz matrix T.
(b) IIH is Toeplitz matrix for any square Hankel matrix H.

(¢) SincelI =1I' = II~! and square Hankel matrices are symmetric, any Toeplitz
matrix is product of two symmetric matrices (Il and a Hankel matrix).

Proofs. Section 8.3.8.
8.50. Quoted by Horn and Johnson [1985: 28].

8.4 DIAGONALLY DOMINANT MATRICES

Definition 8.13. Let A = (a;;) be a real or complex n X n matrix (n > 2), and
define

n n
R, = Z lap;| and  Cj= Z |aiq]
J=Ll:j#p i=1l:zq

to be, respectively, the sum of the absolute values of the off-diagonal elements of
the pth row of A, and the sum of the absolute values of the off-diagonal elements of
the gth column of A. (In the above, |z| denotes the modulus of z if  is not real.)

Considering first the rows, if |ay,| > Rp, then the pth row is said to have a
strictly dominant diagonal. If |app| > R, for p = 1,2,...,n, then A is said to be
(row) diagonally dominant, while if |ays| > R, for p=1,2,...,n, then A is said to
be strictly (row) diagonally dominant; we denote this by r.d.d. Some authors omit
the word “row” and then do not refer to columns. However, there is a corresponding
set of definitions for columns. For example, if |aqq| > Cy, then the gth column of A
is said to have a dominant diagonal, while if |agq| > Cy for ¢ = 1,2,...,n, then A
is said to be strictly column diagonally dominant and we write c.d.d. If A is either
r.r.d. or c.d.d., we say that A is d.d.

8.51. Let A be any n X n matrix (real or complex).

(a) If IT is any n X n permutation matrix and A is r.d.d. (respectively c.d.d.),
then II' ATl is r.d.d. (respectively c.d.d.).

(b) If D is any » x n nonsingular diagonal matrix and A is r.d.d. (respectively
c.d.d.), then DA (respectively AD) is r.d.d. (respectively c.d.d.).

(c) If any diagonal element of A is zero, then A is neither r.d.d. nor c.d.d.
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(d) If A is any eigenvalue of A, then A — AL, is neither r.d.d. nor c.d.d.

(e) If A isr.d.d. (respectively c.d.d.), then at least one column (respectively row)
must have a dominant diagonal.

(f) If A is a regular circulant with first row elements ag, ay, ..., a,-1 such that

for some j, then A is nonsingular.

Definition 8.14. Let A a matrix such that

n

lail > > lanyl.

h=1:h#i
Then the jth column is said to have a dominant element, and it is in the ith row.
8.52. (Conditions for Nonsingularity) Let A be n x n.

(a) (Levy-Desplanques) If A is d.d., then A is nonsingular. Conversely, if A is
singular, then A is neither r.d.d. nor c.d.d. This result is linked to (6.29) as
0 cannot then lie in any closed Gersgorin disc, so that 0 is not an eigenvalue.

(b) If R and S are any nonsingular n x n matrices and RAS is a d.d. matrix,
then A is nonsingular. Conversely, if A is nonsingular, there exist nonsingular
matrices R and S such that RAS is d.d.

(c) Suppose each row, except one (say the kth row), has a strictly dominant
diagonal, and suppose the kth row is such that 0 < |agx| = Rix. Then A is
nonsingular. A similar theorem exists for columns.

(c) If each column of A has a strictly dominant element, and each row contains
one of the dominant elements, then A is nonsingular. This result also holds
if each row has a strictly dominant element and these are in distinct columns.

(d) Suppose that for one value of j = 1,2,...,n, say j =t, either of the following
equations hold, namely

O<|att|<Rt and |aii|~|att| > RRy fori=1,2,...,ni#t
0 < |ag| < Cy and |ai| - |ae] > CiCy fori=1,2,...,n;1#¢,
then A is nonsingular.

(e) Suppose that all the elements of A are nonzero. If A is diagonally dominant
(i.e., not strictly so), and |a;;| > R; for at least one value of i = 1,...,n, then
A is nonsingular.

8.53. (Positive Determinant) Let A be an n x n real matrix that is d.d. and has
positive diagonal elements.

(a) det A > 0.
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(b) If A, is any 7 x r principal submatrix, then det A, > 0.

(c) If the signs of any set of off-diagonal elements are changed, then
det A > 0.

(d) The real part of each eigenvalue of A is positive. Thus all real eigenvalues
are positive. If, instead, the diagonal elements of A are all negative, then the
real parts of all eigenvalues are negative.

(e} From (d) it follows that if A is also Hermitian and all its main diagonal
elements are positive, then all the eigenvalues of A are real and positive.

8.54. If A isn x n and T'AT is d.d. with positive diagonal elements, where T is
any orthogonal matrix, then det A = det |T|?det A = det(T'AT) > 0 (by 8.6b).
Note that T could be a permutation matrix.

8.55. Let A be an n X n matrix that is d.d., and let D be a diagonal matrix with
the same diagonal elements as A. Then p(B) < 1, where B=1, — D~ A and p is
the spectral radius of B.

8.56. (Linear Equations) Let A be an n x n real matrix with positive diagonal
elements and nonpositive off-diagonal elements. For each n x 1 vector b with non-
negative elements, there exists a unique vector x with non-negative elements that
is a solution to Ax = b if A is d.d.

Proofs. Section 8.4.

8.51. Graybill [1983: section 8.11, here dominant means strictly dominant,
and the complex case is mentioned in the note on p. 261].

8.52. Graybill [1983: 251-256, here dominant means strictly dominant]; also
Horn and Johnson [1985: 302 and 355, for (a) and (b) respectively].

8.53. Graybill [1983: 258-261; here dominant means strictly dominant].
8.54. Graybill [1983: 260)].
8.55. Graybill [1983: 262).
8.56. Graybill [1983: 265).

8.5 HADAMARD MATRICES

Definition 8.15. An n x n Hadamard matriz H is a matrix with elements all +1
such that H'H = HH' = nl,,, that is, n=!/2H is orthogonal. If all the elements
of the first column are equal to +1, then H is called a seminormalized Hadamard
matriz. If all the elements in the first row and column are equal to +1, then H
is said to be normalized. These matrices are closely linked to balanced incomplete
block designs, group divisible designs, Youden designs, 2" factorial experiments,
optimal weighing designs, and response surface methodology. For further details
and applications see Agaian [1985].
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8.57. We have the following properties of an n x n Hadamard matrix H.
(a) H and nH~! are Hadamard matrices.

(b) If D; and D4 are diagonal matrices with diagonal elements +1, then D; HDy
is a Hadamard matrix. We can set D; =1, for ¢ = 1 or 2.

(c) n must equal 1 or 2 or be a multiple of 4.
(d) From det(H'H) = n™, det H = £n™/2,

(e) (Hadamard) If A is a real n x n matrix with |a;;| < 1, then | det A| < n"/2.
We find that the Hadamard family is the only family of matrices which attains
the upper bound.

(f) If Hy and Hy are ny x n; and n2 x no Hadamard matrices, respectively, then
H; ® H;, (the Knonecker product) is an ninz x niny Hadamard matrix.

(g) Setting n = 2 and applying (f) repeatedly, we see that there is a 2F x 2*
Hadamard matrix for every positive integer k.

(h) If an n x n Hadamard matrix exists, then an n x n normalized Hadamard
matrix exists.

8.58. In digital signal processing, Hadamard matrices, H,, say, are restricted to be
of order 2™ given by the recursion

(1 1 _( H  Hi\_
Hl - ( 1 -1 ) ) H2 - < H1 —H1 ) - Hl ® Hla
H, = Hi®H,_;.

Also Hy- is symmetric so that H3. = 2"I,.

8.59. Let H,, be defined in (8.58) above, and consider the iteration

x1:<—1i\/§) and  xp = ((—1f7y§l)xn—1)'

Then H,, has eigenvalues +2"/2 and —2%/2, each of multiplicity 2"~!, and an
eigenvector x, corresponding to the positive eigenvalue on/2,

8.60. If H is an m x m Hadamard matrix that contains J,, = 1,1}, then m > n2.
Proofs. Section 8.5.

8.57. Graybill [1983: section 8.14 for (a)-(c)] and Schott [2005: 334-335, for
(e)-(H)].
8.59-8.60. Zhang [1999: 120-121].
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8.6 IDEMPOTENT MATRICES

8.6.1 General Properties

Definition 8.16. An n X n real or complex matrix is said to be idempotent if
A? = A. In Section 2.3 we called such a matrix a projection matrix. If A is
also real and symmetric (with (x,y) = X'y), or Hermitian (with (x,y) = y*x),
it represents an orthogonal projection matrix. Some other geometrical properties
of such matrices are given in Section 2.3. We assume below that A is real, unless
otherwise stated, though many of the following results hold for complex matrices.

8.61. The following statements are equivalent.
(1) An n X n matrix P is idempotent.
(2) L, — P is idempotent.
3) c(P)nC(l, - P) =0.
(4) ¢(P) =N(I, - P).
(5) C(L, - P) = N'(P).
8.62. The following statements are equivalent.
(1) A is an n x n idempotent matrix of rank r with Moore—Penrose inverse A*.
(2) There exist orthogonal projection matrices R and S such that AT = RS.
(3) ATA'= AT,
(3) A’/AT = AT,
(4) A =BC’, where C'B =1,. with B and C being n x r matrices.
(

5) The Jordan canonical form of A (cf. 16.7) can be written as

(50)

(6) There exists an orthogonal matrix T such that

I, K /
aor( K

where K is 7 x (n —r).
For further results and discussion see Trenkler [1994].

8.63. If A is an n x n idempotent matrix of rank r, then there exist nonsingular
R and unitary U such that

-1 I, O I. Q
AR = (00> and U*AU = (0 0

for some Q. If A is symmetric, we can replace R by an orthogonal matrix.
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8.64. An n x n matrix A is idempotent if and only if rank A + rank(I, — A) = n.
8.65. Let A be an n x n idempotent (real or complex) matrix of rank r, then:

(a) A has r eigenvalues equal to 1 and n — r eigenvalues equal to 0. Also, if A is
real and symmetric, then it is idempotent if and only if each eigenvalue of A
is 1 or 0.

(b) det A% =det A and det A is 0 or 1. If det A =1 then, by (a), A =L,.

(c) From (8.63) we have rank A = trace A =r.

(d) I, — A is idempotent and, from (c), rank(I, — A) = n — rank A.
)

(e} A can be expressed in the form A = QR*, where Q and R are n x r and
R*Q=1I,.

(f) There exists a Hermitian positive definite matrix C such that A = C™'A*C.

8.66. Let A be an n x n matrix with Moore-Penrose inverse A*. Then A is a
real symmetic idempotent matrix if and only if one of the following conditions is

satisfied.
1) A’/A=A.
2) I — A is symmetric and idempotent.

4

)
)
3) A is idempotent and AA’ = A’A.
) A and A’A are idempotent.

)

5) AA’A = A and A is idempotent.

(
(
(
(
(
(6) A’AA’ = A’ and A is idempotent.

(7) A and (A + A’) are idempotent.

(8) AA’ + A’A = A+ A’ and A is idempotent.

(9) I, — 2A is a symmetric, orthogonal matrix.
(10) A% = A’ and A is tripotent (i.e., A3 = A).
(11) AA’ = A’AA’.

(12) A is idempotent and rank(I, - A’A} =n —rank A.
(13) A is idempotent and ||Ax||s < ||x]|2 for all x € R™.
(14) xX’A’Ax = x’Ax for all x € R"™.
(15) A is idempotent and x’Ax > 0 for all x € R™.
(16) ||y — Ay|l2 < |ly — x|z for all y € R™ and all x € C(A).
(17) A is idempotent and A = A™.
(18) A is idempotent and AA’ = AA™T.



168 SOME SPECIAL MATRICES

19) AT = Aand A2= A’

20) A and A" are idempotent.

23) A = B(B’'B)~!B for some n x m matrix B of rank m.

See Trenkler [1994] for these and further results of a similar nature. He also gives
necessary and sufficient conditions that a symmetric matrix is idempotent.

8.67. (Generalized Inverse and Idempotency) Let A be m x n with Moore-Penrose
inverse A™. Then the following conditions are equivalent.

(1) A’A is idempotent (i.e., is an orthogonal projection matrix, because it is
symmetric).

(2) AA’ is idempotent.

(3) AA’A = Ajthat is, A’ is a weak inverse of A.

(4) A’ = A+,
8.68. If A is m x n with any weak inverse A~, then N(A) =C(I - A~ A).
8.69. If (CB)™! exists, then B(CB)~!C is idempotent.

8.70. Let A be an n x n symmetric idempotent matrix, and let B be an n x m
matrix of rank m.

(a) If AB = B and rank A = rank B, then A = B(B'B)"'B'.
(b) If AB = 0 and rank A + rank B = n, then A =1, —- B(B'B)"'B".

8.71. (Symmetric Matrix) Let A be an

n x 1 symmetric idempotent matrix of rank r, where » < n. Then we have the
following.

(a) 0<ay<1lfori=12,...,n

(b) If aj; = 0 or a;; = 1, then a;; = 0 for all 7, j # 4.
(¢ is non-negative definite.
(

d) If T is orthogonal, then P = T’AT is a symmetric idempotent matrix.

f

)
) A
)
(e) If R is nonsingular, then P = R™!AR is idempotent.
(f) Q =1, — 2A is a symmetric orthogonal matrix.

)

(g) We can write A = T, T,, where T, T, = I, and the columns of T, form
an orthonormal basis for C (A). This result holds if A is Hermitian and we
replace T/ by T*.

(h) If V is positive definite, then

rank(AVA) = trace(AV).
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8.72. Let A be a symmetric matrix that satisfies A¥*! = AF for some positive
integer k. Then A is idempotent.

8.73. Let A, and A; be nxn symmetric idempotent matrices, and suppose A1 —A,
is non-negative definite.

(a) A1A2 = A2A1 = A2.
(b) A; — A, is a symmetric idempotent matrix.

8.74. Suppose A and B are n x n matrices. If AB = A and BA = B, then A and
B are both idempotent.

8.75. (Kronecker Products) Let A be mxn and B be mxp real matrices. Let AQB
be their Kronecker product, and denote by Pa, Pg, and Pagp the symmetric
idempotent matrices that project orthogonally onto C(A), C(B), and C(A ® B).
Then:

(a) Pags = Pa ® Pp.
(b) Pagi =PAa®L
(c) If Q =I— P in each case, then

QacB=QAa®Qp +Qa ®Pp+Pa ®Qp.

8.76. Let A and B be n x n symmetric matrices, with B positive definite. Then
AB is idempotent if and only if each eigenvalue of AB is 0 or 1.

Proofs. Section 8.6.1.
8.61(2). Follows directly from (1).
8.61(3). Harville [1997: 384, lemma 17.2.6].

8.61(4). Let P2 = P. If y = Px then (I, — P)y = (I, — P)Px = 0 and
y € N(I,, — P). Conversely, if (I, — P)y = 0 then y = Py € C(P).

8.61(5). Similar to (4); see Harville [1997: 146).
8.62. Trenkler [1994].
8.63. Abadir and Magnus {2005: 234} and Schott [2005: 396].

8.64. Abadir and Magnus [2005: 235], Harville [1997: 435], Rao and Rao
[1998: 253], and Trenkler [1994].

8.65a. Abadir and Magnus {2005: 233] and Schott [2005: 397).
8.65e—f. Rao and Rao {1998: 251].

8.66. Trenkler [1994].

8.67. Trenkler {1994: 266].

8.68. Harville [1997: 140].
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8.69. Simply square the matrix.

8.70. Abadir and Magnus [2005: 236].

8.71a-b. Schott [2005: 399].

8.71c. Follows from x’Ax = xX’A’Ax =y'y.

8.71d-e. We have P?2 = P.

8.71f. We show that Q' Q =1I,,.

8.71g. Rao and Rao [1998: 252] and Seber and Lee [2003: 475, real case).

8.71h. Harville [2001: 82, exercise 10]. We have trace(AVA) = trace(AV/2V1/2A) =

trace(V1/2A2V1/2) = trace(V/2AV/2) = trace(AV).
8.72. Schott [2005: 399].

8.73. Seber and Lee [2003: 465].

8.74. Abadir and Magnus [2005: 236].

8.75. Quoted by Rao and Rao [1998: 262].

8.76. Schott [2005: 397).

8.6.2 Sums of ldempotent Matrices and Extensions

There are many results given for sums of idempotent matrices, and these are of-
ten expressed with different conditions. We give several versions of these below,
and there is some overlap. For a very general investigation of a linear combination
of two projectors see Baksalary and Baksalary [2004a] and the references therein.
Questions relating to the nonsingularity of such combinations of idempotent matri-
ces, including just sums and differences, are considered by Baksalary and Baksalary
[2004b] and Koliha et al. [2004]. We assume below that all matrices are real, unless
otherwise stated, though some of the results hold for complex matrices as well.

8.77. If A and B are n x n idempotent matrices, then A + B is idempotent if and
only if AB = BA = 0. We generalize this result below.

8.78. (Cochran’s Theorem) Suppose Aj, Ag,..., A is a sequence of symmetric
nxn matrices such that Zle A; =1,. Then the following conditions are equivalent
(i.e., each one implies the other two).

(1) A2=A; fori=1,2,... k.
(2) A;A; =0forall 4,5, # j.
(3) Zle rank A; = n.

This can be derived from (8.79) below.
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8.79. Let A = Zle A; , where each A; is a symmetric n X n matrix. Any two of
the following three conditions implies the third.

(1) A= A2

(2) A2=A;fori=1,2,...,n.

(3) AjA; =0forall4,j, ¢ # 7.
From (8.80) we can include further results involving

(4) rank A = 32 rank A,

For example, any two of (1), (2), and (3) implies all four. Furthermore, (1) and (4)
imply (2) and (3) (Rao [1973a: 28]). We can relate this theorem to the previous
one by defining Ag = I, — A so that Zf:o A; = I,. Alternatively, we can set
A=1,.

8.80. Let A; be an n x n matrix (¢ =1,2,...,k), and let A = Zle A,
(a) If A2 = A, then the following conditions are equivalent.

(1) A;A; =0, for all 4,4,7 # j, and rank A? = rank A; for i = 1,2,... k.
(2) A2=A;fori=1,2,... k.
(3) rank A = Zle rank A;.

If A =1, then the condition on A is automatically satisfied and rank A = n.
Furthermore, if each A; is also symmetric, then A? = A/A;, which implies
rank A? = rank A;, and condition (1) reduces to the condition

AA; =0 forall 4,7,i#3.

(b) If the A; are all idempotent and A;A; =0 for all ¢,7,¢ # j, then
(i) A2=A.
(ii) rank A = Zle rank A,.

(¢) Suppose V is an n x n non-negative definite matrix, and let R be any matrix
such that V.= R'R (cf. 10.10). Then (a) and (b) still hold if we replace each
A; by RA;R’ throughout and A by RAR'.

8.81. Let A; (i = 1,2,...,k) be square (not necessarily symmetric) matrices, and
let A = Zle A;. Consider the following conditions:

(1) A2=A;,i=1,2,... .,k

(2) AjA; =0 for all i # j.

(3) A= A.

(4) >, rank A; =rank A.

(5) rank(A%) =rankA; ,i=1,2,... k.
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Then
(1),(2) — (3),(4),(5),
(1),(3) — (2),(4),05),
(2),(3),(5) — (1),(4),
(3),(4) — (1),(2),(5).

For references to extensions of these results see Tian and Styan [2006]. They also
add a new rank subtractivity condition of the form rank(I,,—A) = n—Zle rank A,.

8.82. Let A; (i =1,2,...,k) be p x ¢ matrices, and let A = Zle A;. Consider
the following conditions:

(1) AA A =A;,,i=12,...,k
(2) A;A"A; =0forall 4,5, # j.
(3) rank(A;A”A;) =rankA,;,:=1,2,... k.
(4) > ,rank A; =rank A,
for some weak inverse A~ of A. Then
1) - @60,
2,3 — 1),4)
4 — (1),(2),0).

If (1) or if (2) and (3) hold for some weak inverse A~, then (1), (2), and (3) hold
for every weak inverse A~.

)

8.83. Let A; (¢ =1,2,...,k) be an n x n matrix, let A = Zle A;, and let V be
a non-negative definite matrix.

(a) If VAVAV = VAV, then each of the following three conditions implies the
other two.

(1) VA, VA;V =0 for all 4,5, # j, and rank(VA;VA;V) = rank(VA;V)
fori=1,2,... k.
(2) VA, VA, V=VA,V fori=1,2,...,k.
(3) rank(VAV) = 3 | rank(VA,; V).
When the A; are symmetric, condition (1) reduces to VA;VA;V = 0 for all
LHEFE T
(b) If VA, VA,V = VA,V for all ¢ and VA, VA;V =0 for all 4, 5,7 # j, then:
(i) VAVAV = VAV.
(ii) rank(VAV) = Zle rank(VA;V).
A generalization of the above results involving rectangular matrices and an arbitrary

rectangular V is given by Tian and Styan [2006]. For related results see Tian and
Styan [2005)].
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8.84. Let A be an n xn symmetric idempotent matrix, and let B be a non-negative
definite n x n matrix. If I, — A — B is non-negative definite, then AB = BA = 0.

8.85. Let A; be a symmetric idempotent n x n matrix of rank r; (i = 1,2,...,k),
and let Agy; be an n X n non-negative definite matrix such that I,, = Zf:ll A; =
A+ Ay, say. Then:

(a) A;Aj=0foralld,j=1,2,...,k+1,9i5#7.
(b) Akt is symmetric and idempotent of rank n — Zle ;.

8.86. Let A = Ele A;, where each A; is an n X n non-negative definite matrix
(i=1,2,...,k), and let A2 =A. If

k
trace A < trace(z A?),

i=1
then:
(a) A2 =A; fori=1,2,...,k.
(b) AjA; =0foralld,j,i+# 7.

8.87. Let A; (1 =1,2,...,k) be symmetric idempotent matrices such that
k
AA; =0, alli,j,(i #j), and > A;=I,
i=1

Then, for positive o; (i =1,2,...,k), Zle o; A; is positive definite.

8.88. Let A; (i =1,2,...,k) be symmetric idempotent matrices such that A;A; =
0 for all 4,7, ¢ # 7, and let a;, i = 0,1, ..., k, be positive scalars. Then:

(a) V=apl, + Ele a;A; is positive definite.
(b) V=1 = BoL, + 3 | A, where

-1 —Oy .
=q and B =—7-—, i=12,...,k.
/80 0 51. a0(00+ai)

8.89. Let A be any n x n symmetric matrix of rank r with nonzero eigenvalues ),

(¢=1,2,...,7). Then, since A is diagonalizable, A can be expressed in the form
(cf. 16.17)
T
A=) \E,
i=1
where, for each i = 1,2,...,r, E; is symmetric and idempotent and E;E; = 0 for

all 4,7, 1 # 7. If A is also idempotent, then

A= ZT:E,
=1
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8.90. Let A; be an n x n symmetric idempotent matrix of rank r; (1 = 1,2,... k)
such that Ele A; =1,, and let C; (i = 1,2,...,k) be a p X p square matrix
(possibly complex). If

k k
=) (Ai®C) and =) (C;®A;)
i=1

i=1
are np X np, then:
(a) From (8.78) we have A;A; =0 for all i # j, and Zle T =n.

(b) The eigenvalues of £2; and €9 are the eigenvalues of Cy, . .., Cg with respective
algebraic multiplicities r1,...,7%.

(c) det @ = det R, = [TE (det C)™.

(d) The matrices §2; and €9 are nonsingular if and only if all the C; (i =

1,2,...,k) are nonsingular, in which case
k k
07 =) (A;®CY) and 0;'=) (C7'®A,).
i=1 i=1

This result is used in multivariate error component analysis.
Proofs. Section 8.6.2.
8.77. Harville [1997: 435] and Schott [2005: 398].
8.79. Graybill [1983: 421] and Schott [2005: 401].
8.80. Harville [1997: 435-438].
8.81. Anderson and Styan [1982: 3].
8.82. Anderson and Styan [1982: 4].
8.83. Harville [1997: 439].

8.84. C = A(I, - A-B)A = —ABA = 0 as C is non-negative definite.
Then AB!/2 =0 and AB = 0.

8.85. Quoted by Graybill [1983: : 423]. For (a) we consider I, — A; — A; =
(A—A,;—Aj)+ Ay, which is non-negative definite for all 4,5 = 1,2,...,k+1,
(i # j), as each A; is non-negative definite, and then use (8.84). For (b),
A;y =1, - A where A is idempotent with rank A = trace A.

8.86-8.88. Graybill [1983: 423, 425-426).
8.90. Magnus {1982: 242, 270].
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8.6.3 Products of ldempotent Matrices

8.91. Every singular n x n matrix can be written as the product of idempotent
matrices.

8.92. If A and B are n x n idempotent matrices, then AB is idempotent if AB =
BA.

Proofs. Section 8.6.3.
8.91. Ballantyne [1978].
8.92. Schott [2005: 398].

8.7 TRIPOTENT MATRICES

Definition 8.17. An nxn matrix is said to be tripotent if A® = A. A nonsingular
tripotent matrix A is called a involutionary matriz and satisfies A2 = I,,. An
idempotent matrix is also tripotent.

8.93. (General Properties) Let A be an n x n tripotent matrix.
(a) rank A = trace(A?).

(b) The eigenvalues of A are +1 or 0. If n; are equal to +1, ny equal to —1 and
ng equal to 0, then:

(c) A is equal to a weak inverse of itself if and only if A is tripotent.
(d) If A is nonsingular, then:

(i) A" = A.

(i) A2 =1,.

(i) (A+1I,)(A-1,)=0.
(e) If T is orthogonal, then T'AT is tripotent.
(f) If R is nonsingular, then R™'AR is tripotent.
(g) A? is idempotent.

(h) —A is tripotent.

8.94. Let A and B be n X n matrices.

(a) If A is symmetric, then A is tripotent if and only if its eigenvalues can only
take the values +1, —1, or 0.
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(b) If A is symmetric, then A is tripotent if and only if there exists two symmetric
n X n idempotent matrices C and D such that A = C — D and CD = 0.
These two matrices are unique with C = %(A2 +A)and D = %(A2 — A).
This result has been generalized by Baksalary et al. {2002}, and they give
conditions for when a linear combination of an idempotent and tripotent
matrices is idempotent.

(c) A is tripotent if and only if A? is idempotent.

(d) If A is symmetric, then A is tripotent if and only if rank A = rank(A + A?)+
rank(A ~ A?).

(e) If A and B are symmetric idempotent matrices and AB = BA, then A — B
is a symmetric tripotent matrix.

8.95. Let A, (: =1,2,...,k) be square matrices (not necessarily symmetric), and
let A = Ele A,;. Consider the following conditions:

(1) A3=A;,i=12,... .k
(2) A;A; =0, forall i # 5.
(3)

(4) >, rank A; =rank A.

(5)

(6) A2A=A;,i=1,2,...,k.
(7) A,A=AA,; i=12,.. .,k

Then (1) and (2) hold if and only if (3), (4), and (5) hold. Condition (5) may
be replaced by (6) or (7). Anderson and Styan [1982] prove the above result and
a similar result for symmetric matrices. An extension is also given to r-potent
matrices, which have the property that A™ = A, where 7 is a positive integer.

Proofs. Section 8.7.
8.93. Graybill [1983: section 12.4].
8.94a-b. Graybill [1983: 432].

8.94c. If A% = A, then (A?)2 = A2. Conversely, if A2 is symmetric and
idempotent, its eigenvalues are 0 and there exists orthogonal T such that

I. O
A? = T'ATT'AT = (0 0)

and the eigenvalues of A are 0, +1; then use (a).
8.94d. Anderson and Styan [1982: 13].
8.94e. We multiply out (A — B)3.
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8.8 IRREDUCIBLE MATRICES

Definition 8.18. An n x n matrix A is said to be reducible if and only if, by
permuting a set of rows and the corresponding set of columns, A can be transformed

to a matrix of the form
B=— B11 0
By Ba /°

_({ B Byp
where B1; and Bog are square matrices, i.e., there exists a permutation matrix II

such that IIAII' = B. When n = 1 we have A = 0. A matrix that is not reducible
is said to be irreducible.

8.96. Given mod(A) = (|a;;|), where A is a real n x n matrix (cf. Section 9.1.2),
then A is irreducible if and only if (I, + mod(A))"~! > 0 (i.e., every element is
positive) or, equivalently, if [I,, +Z(A)]*~! > 0, where Z(A) is the indicator matrix
of A (each nonzero element is replaced by 1).

or equivalently of the form

8.97. Let A be any n x n real matrix.

(a) If A has no zero elements, then it is irreducible.

(b) If A has zero diagonal elements and nonzero off-diagonal elements, then A is
irreducible.

(¢) If A is reducible, it must have at least n — 1 elements equal to zero.

(d) if A has at least one row (column) of zeros, then A is reducible.

8.98. Let A be an n x n irreducible real matrix and let R; be the sum of the
absolute values of the off-diagonal elements of the ith row and C; the same for the
jth column. Suppose that either |a;| > R; for i = 1,...,n with |a;| > R; for at
least one value of ¢, or |a;;| > Cj for j = 1,...,n with |a;;| > C; for at least one
value of j. Then A is nonsingular.

8.99. An nxn (n > 2) matrix A = (a;;) is reducible if a;; =0 fori € Sand j ¢ S
for some nonempty proper subset S of {1,2,...,n}.

8.100. The forward shift permutation matrix Ily = (e,,e1,...,e,_1) is irreducible.

8.101. A permutation matrix is irreducible if and only if it is permutation similar
(cf. Definition 8.3 below (8.17)) to a forward shift permutation matrix.

8.102. An n X n permutation matrix is irreducible if and only if its eigenvalues are
l,w,...,w™ !, where w is the nth primitive root of unity.

Proofs. Section 8.8.
8.96. Horn and Johnson [1985: 361].

8.97-8.98. Graybill [1983: 264].
8.99. Bapat and Raghavan [1997: 2].
8.100-8.102. Zhang {1999: 124-125].
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8.9 TRIANGULAR MATRICES

Definition 8.19. A matrix is lower-triangular if the elements above the main
diagonal are all zero. The transpose of this is said to be upper-triangular. A
triangular matrix need not be square. A wunit triangular matrix is a triangular
matrix with unit diagonal elements, and a strictly triangular matriz is a triangular
matrix with zero diagonal elements.

8.103. (Basic Properties)

(a) The determinant of a square triangular matrix is the product of the diagonal
elements.

(b) The eigenvalues of a square triangular matrix are the diagonal elements.

(¢) The inverse of a nonsingular lower (respectively upper) triangular matrix is
a lower (respectively upper) triangular matrix.

(d) The product of a finite number of square lower (respectively upper) triangular
matrices of the same order is a lower (respectively upper) triangular matrix.

(e) The product of two square unit upper (respectively lower) triangular matrices
is unit upper (respectively lower) triangular.

(e) If B is an n x n triangular matrix with inverse C = B!, then b;ci; = 1 for
1=1,2,...,n.

(f) From (e), the inverse of a nonsingular unit triangular matrix is also unit
triangular.

8.104. If K is a real lower (upper) triangular matrix and if K'K = KK/, then K
is a diagonal matrix.

8.105. (Factorization) Let A be a real square matrix such that every leading prin-
cipal minor (excluding A itself) is nonzero.

(a) Then A can be written as the product of a real lower-triangular matrix L and
a real upper-triangular matrix U, that is,

A =LU.

Furthermore, if each of the diagonal elements of L (or U) is set equal to unity,
then the two triangular matrices are unique. It should be noted that A does
not need to be square to have such a factorization, and the reader is referred
to Section 16.4 for further details.

(b) If A is also symmetric, then there exists a real upper-triangular matrix U
and a diagonal matrix D with diagonal elements equal to £1 such that

A =UDU.

8.106. Every real square matrix A is similar to a triangular matrix (either upper
or lower) whose diagonal elements are the eigenvalues of A, that is, there exists a
nonsingular matrix R (not necessarily real) such that R"!AR = K, where K is
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triangular (and not necessarily real). If the eigenvalues of A are real, then R and
K are both real (cf. 16.1e).

8.107. If A is a real n X n matrix with real eigenvalues, then there exists an
orthogonal matrix T such that T'AT is upper-triangular with diagonal elements
the eigenvalues of A (cf. 16.37b).

8.108. (Block Triangular Matrices) An upper block triangular matrix takes the
form

Ay Ap - Ay
A = 0 A22 e A2P ,
0 0 - A,

where the diagonal blocks are all square matrices of possibly different sizes. We
have that

P
det A = ] det As.
i=1
Thus A is nonsingular if and only if all the A;; are nonsingular. In this case A~
is also upper block triangular. An algorithm for computing the inverse is given by
Harville [1997: 94]. Similar results apply for lower block triangular matrices, as the
inverse is also lower block triangular.
Proofs. Section 8.9.
8.103a. Simply expand the determinant by the first row or column depending
on whether the matrix is lower- or upper-triangular, respectively.
8.103b. Follows from (a).
8.103c. We use the identity AA~! =1,,.
8.103d. Prove for just two matrices first.
8.103e. Use BC =1,.
8.104. Graybill [1983: 212].
8.105. Graybill [1983: 207, 210].

8.106. Quoted by Graybill [1983: 211-212] and proved by Rao and Bhi-
masankaram [2000: 288-289].

8.107. Muirhead [1982: 587].

8.10 HESSENBERG MATRICES

Definition 8.20. An n x n matrix A is said to be an upper Hessenberg matrix
if all its elements below the subdiagonal are zero (i.e., a;; = 0 for ¢ > j + 1).
Its transpose is called a lower Hessenberg matrix. Upper Hessenberg matrices
play an important role in the QR decomposition (Meyer {2000a: 536-538]). Many
eigenvalue algorithms reduce their input to a Hessenberg form as a first step, and
the latter play a similar role in the Schur decomposition (Golub and Van Loan
[1996: section 7.4). Hessenberg matrices appear elsewhere in this book.
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8.11 TRIDIAGONAL MATRICES

Definition 8.21. An n X n matrix A is tridiagonal if all its elements are zero
except those in the middle three diagonals, (ie., a;; #0if [{ —j| < land a;; =0
if |§ — j| > 1). Tridiagonal matrices play a role in matrix decompositions and
factorizations—for example, (16.43), (16.45), and (16.46b).

8.109. If A = (a;;) is tridiagonal, then expanding c,(A) = det(Al, — A) by the
last column we find that

C()(/\) = 1, Cl()\) = ()\ — au) and

ci(A) = (A—ai)ci-1(A) — aii-18i-1:¢-2(A), 1=2,3,...,n.

8.110. Suppose that the n x n tridiagonal matrix A is given by

a b0 - 0 00
c a b -0
0 ¢ a - 0 0 O

o
o

o

0 0 - ¢ a b
00 0 - 0 ¢ a

where a, b, and ¢ are real or complex. This matrix is both a Toeplitz matrix and a
regular circulant.

(a) Then
a” if bec=0,
det A =¢ (n+1)(a/2)" if a2 = 4be,
(@™l — gty /(o — B) if a2 # 4dbe,
where
a+ Va2 — 4bc a—va?— 4bc
= and B = —

(b) If a is real and bc > 0, the eigenvalues of A are
Aj = a+2Vbceos(jr/(n+1)), j=1,2,...,n

(c) Let b = c so that A is symmetric. Then A is positive definite if and only if
the eigenvalues are positive (i.e., a+2bcos(j7/(n+1)) > 0for j = 1,2,...,n).
A sufficient condition is a > 0 and |b/a] < 1.

(d) If A is positive definite and b # 0, then B = A~! is given by b;; = bj; for
1> j and
(1 _ 72n—2j+2)(,yj+i+1 _ ,yj—i+1)

- o
R (7 e B

where v = (£)(v/1— 4(b/a)? - 1).

8.111. Given A in (8.110), with a real and bc > 0, then A has real eigenvectors.
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8.112. The tridiagonal matrix

0 1 0 0 0 o0
—Cp 0 1 0 0 0
A= 0 —c,.l_l 0 . 0 0 0 ’
0 0 0 - =3 0 1
0 0 0 - 0 —C2 (1

is called the Schwartz matriz. It often arises in stability analysis. A is positive
stable if and only if ¢icg - - - ¢, > 0 (cf. Section 8.14.4).

8.113. The inverse of a symmetric n x n matrix B is tridiagonal if and only if for
1=2,3,...,n,
bij/bljzﬁi, b]j#o for ZS]STL

This condition means that all the elements on and to the right of the diagonal
element in the ¢th row of B have a constant relation to the corresponding elements
of the first row.

If B satisfies the above condition, then the inverse B~! = (b%) is given by

b= —6y(b1a — bab11)
r br—1,r4+1 — Ory1b1 -1
b - _(br—l,r _erbl,r—l)(b'r,r+1 _9r+1bl,r) fOFT=2737-~~,n— 1,
L bl,n—l
bl,n(bnfl,n - enbl,n——ly
bnr*l = br—l,r = (br—l,r — 0Tb1,r_1)_1 for r = 2, 3, ey N
b9 = 0 forli—j|> 1.

8.114. (Applications of the Above Result) In all of the following cases we can
simply confirm that BB~! = 1.

(a) If

n n—1 n—2 n—3 1

n—1 2(n—-1) 2(n—-2) 2(n-3) 2

B_ n—2 2(n—-2) 3(n-2) 3(n-3) 3

Tl n=3 2(n-3) 3n-3) 4(n-3) 4 |

1 2 3 4 eeon
then B! is tridiagonal with b® = 2/(n 4+ 1) for i = 1,2,...,n, and b~ =
boitl = —1/(n+1) fori =2,3,...,n—1. (B is the variance matrix of ordered

observations from a random sample of size n from a uniform distribution.)

(b) The autocorrelation matriz of an AR(1) time series is the symmetric Toeplitz
matrix o2B, where

1 p p2 p3 pn—l

p 1 p P pr?

B=| p* p 1 p o pE
pn—l pn—2 pn—3 pn—4 1
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and |p| < 1, that is, b;; = p/*~JI. Then

1 —p 0 0 0
—p 14+p* —p 0 0
B l=(1-p)"" 0 —p 14p 0 0
0 0 0 —p 1
Also B! = (1 - p?)7!L'L, where
V1i-p2 0 0 0 0 0
5 10 0 0 0
L= . .. . o
0 00 -p 1 0
Then det L = /1 — p? and det B = (1 — p?)" L.
(c) If
1 111 1
1 2 2 2 2
2 1 2 3 3 3
B=c" 1 2 3 4 4 |
1 2 3 4 n
then
2 -1 0 0
-1 2 -1 0
e R
0 0 0 -1
0 0 0 2
(d) It
a%bl (12(11b1 analbl
a1a2bl a%(bl + b2) ana2(b1 + b2)

B= ayazby a2a3(b1 + b2)

a1anb;  agan(by + by)

where none of the a; or b; is zero, then

1ol 1 .1

E%—(bl j_ by ) (ilﬂlzbzl

" arazby E(E . [

B_1 —_ 0 _a2a3b3
0 0
0 0

ana3(b1 + by + b3) R

a%(bl + -+ by)

0
1

" azas

1,1

230+
0
0

by
1
bs

)
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Also, det B = TI™_, (a2b;). A special case of the above result holds for the
variance matrix of order statistics for a random sample of size n from an
exponential distribution by setting

ap=ay=--=a,=1 and b;=1/(n—i+1)? (i=1,2,...,n).

Proofs. Section 8.11.
8.109. Cullen [1997: 311]
8.110a. Zhang [1999: 101].
8.110b-d. Graybill [1983: 284-286).
8.111. Basilevsky [1983: 221-224].
8.112. Quoted by Horn and Johnson [1991: 111, exercise 9].
8.113. Ukita [1955] and Guttman [1955].

8.114a. Quoted by Graybill [1983: 200-201] and proved by Greenberg and
Sarhan {1959)].

8.114b. Graybill [1983: 201].
8.114c. We check that BB~ ! =1.
8.114d. Graybill [1983: 187-188, 202] and Roy and Sarhan[1956].

8.12 VANDERMONDE AND FOURIER MATRICES

8.12.1 Vandermonde Matrix

Definition 8.22. Let a1,az,...,a, be a set of real numbers, and let
1 1 1 ‘e 1
a1 a2 as Qn
2 2 2 2
V = aj a; az an
a'it—l ag-—l ag,—-l az—l

Then V and V' are called n x n Vandermonde matrices. The matrix V' arises in
relation to the Lagrange interpolation polynomial (Meyer [2000a: 186]). Note that
every k X k leading principal submatrix is also a Vandermonde matrix. A helpful
notation on occasion is V(ay,as,...,a,), which we shall use below.

8.115. det V=[] (a;—ai).

1<i<j<n

8.116. If there are r distinct a; values, then rank A = r.
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8.117. If V,, is an n x n Vandermonde matrix, then
detV, = (an —a1)(an —a2) - (@n — Gn_1)det V4.

8.118. Let V be an n x n Vandermonde matrix with distinct a; (i.e., the inverse
exists), and define

n
P(z) = H (z —aj), fori=1,2,...,n
j=lg#i
n

= E bijxj_l, say.
=1

IfC= V_l, then Cij = bz]/PZ(al)
8.119. (Extended Vandermonde Matrix) Let

1 1 1 1
ai a2 as 17
2 2 2 2

V = a3 az L

- p—1
a3 as Ap,

be an p X n matrix (n > p). Then rank V = min(p, d), where d is the number of
distinct values of a;. Note that V' is the regression matrix for a (p — 1)th-degree
polynomial regression model.

Proofs. Section 8.12.1.
8.115. Graybill [1983: 266], Schott [2005: 335-336], and Zhang [1999: 111].

8.116. Suppose a1,...,a, are distinct, then the leading principal r x r sub-
matrix is nonsingular (by 8.115).

8.117. Harville [1997: section 13.6].

8.118. Graybill [1983: 270]. For another formulation of this result see Zhang
(1999: 114].

8.119. Graybill [1983: 269).

8.12.2 Fourier Matrix
Definition 8.23. Let w = *™/" = cos(27/n) + isin(27/n), where i = v/—1, so

that @ = e~2™/"; also w" = cos(2nr/n) + isin(27r/n). Then
F=n"Y?V(1,5,@%...,@" )
is defined to be a Fourier matriz. Since F is symmetric, we have

1 1 1 - 1
1 w w? . w!
F-=F 1 1 w? w? . w2

i w".Al w2é—2 w(n_1.)(n_1)



VANDERMONDE AND FOURIER MATRICES 185

The (i,7)th element is n~1/2w(-DU-1) Note that w" = 1, @ = w™!, w22 =

w2, D= = T = WP W = cos(277/n) + isin(27mr/n), and we have

"1 =0ifn>1andiis an integer such that 0 < i < n (w° = 1). Note that

3
Graybill [1983: 271] interchanges w and @ in his notation so that F looks like F*
above, although it is not. Schott [2005: 331] interchanges F and F*, while Meyer
[2000a: 357] uses @ = w™! and omits n~/2 as a multiplier.

8.120. Suppose F is defined above.
(a) F and F* are both symmetric.
(b) F is unitary, i.e., FF* =1,.
(c) F~!
(d) F?2 = F*? =11, where II is the n X n permutation matrix
I=(e,en,€n_1,-.-,€2),
and e; is the ith column of I,,.
(e) FA=F**=1,.
(f) F* can be written as n'/?F* = C +iS, where C and S are real matrices with
cij = cos2m(i — 1)(7 — 1)/n] and s;; = sin[27(¢ — 1)(j — 1)/n].
Also CS = SC so that from nFF* we get C? + §% = nl,,.
(g) The eigenvalues of F are 1 and +¢ with appropriate algebraic multiplicities.

8.121. Let c,()\) = det(A, — F*). Then

= O(mod4): ¢, (A)=(M—-12%A—9)A+1)(A* - 1)/~
= 1(mod 4): c,(A\)=(A—-1\ - 1)/an-1)

= 2mod 4): ¢, (A) = (A -1\ - )I/D=2)

= 3(mod 4): c,(A) = (A—i)(A2-1)(M* — 1)I/D(m=3)

3 3 3 3

Definition 8.24. Let y and z be n-dimensional vectors, and let F be an n x n
Fourier matrix. Then y = Fz is known as the discrete Fourier transform of the
elements of z. Typically, z = (2(0), 2(1),...2(n — 1))’, a times series sequence, or
else z = z(t) (¢t = 0,1,...,T — 1), where z(t) is vector time series. The Fourier
transform can be computed using a so-called Fast Fourier Transform Algorithm
in which one reduces the calculation of the discrete Fourier transform for a long
stretch of data to the calculation of successive transforms of shorter sets of data (cf.
Brillinger [1975: section 3.5] and Meyer [2000a: section 5.8]). One can also make
use of the fact that a Fourier matrix of order 2" can be expressed as Kronecker
products (Davis [1979: 36-37]).

Other applications of the transform include the convolution of two time series,
computing filtered values from a transfer function, the estimation of the mixing
distribution of a compound distribution, and the determination of the cumulative
distribution of a random variable from its characteristic function (Brillinger [1975:
67-69]).
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8.122. If y = Fz then z = F~ly = F*z,

8.123. Let p(z) = ap + a1z + a2z + -+ + an_12""! be a polynomial of degree
n — 1. It will be determined uniquely by specifying its values p(z) at n distinct

points 2, (k=1,2,...,n) in the complex plane. Suppose we select these points as
the n roots of unity, namely, 1,w,w?,...,w" . Then
ag p(1)
ay p(w)
nl/ZF* ) — ) ,
Qn—1 p(wn—l)
so that
ao p(1)
ai p(w)
=n"?F .
n—1
an—1 p(w )

This gives a relationship between the coefficients of p(z) and its values.
Proofs. Section 8.12.2.

8.120. Davis [1979: 31-37] and Graybill [1983: 272-273, with corrections in
()
8.121. Carlitz [1959].

8.13 ZERO-ONE (0,1) MATRICES

A matrix whose elements are all 0 or 1 is called a (0,1) matriz. I have highlighted
this topic as such matrices occur widely throughout statistics. Examples of such
matrices are the permutation matrices in this chapter as well as the various vec-
permutation and commutation matrices in Chapter 11. There is also the so-called
incidence matrix discussed in (8.124) below, and there are Boolean matrices, both
of which occur in combinatorial and graph theory. Zero-one matrices play an im-
portant role in the solution of equations with large sparse matrices (e.g., Duff et al.
[1986]).

8.124. (Incidence Matrix)

(a) (Experimental Design) The incidence matrix for a block design has a row for
each treatment and a column for each block. Thus a 1 for the (¢, j)th element
of the matrix tells us that the ith treatment is applied to the jth block (cf.
John and Williams [1995: chapter 1]).

(b) (Non-negative Matrix) As noted by Seneta [1981: 55|, many properties of
a non-negative matrix A depend only on the positions of the positive and
zero elements within the matrix, and not on the actual size of the positive
elements. Also, those positions will determine the corresponding positions in
all powers A*, with k a positive integer. This means that in the investigation
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of the properties of irreducibility and primitivity, the classification of indices
into essential and inessential (cf. Section 9.3), and the periodicity of indices
that communicate with each other, depend only on the location of the positive
elements of A. Therefore given a non-negative matrix A (i.e., all its elements
are non-negative), then the matrix obtained by replacing each positive ele-
ment by 1 is called the incidence matriz of A. Particular matrices for which
incidence matrices have useful applications are stochastic and Leslie matrices.
A related (0, 1) matrix is the indicator matrix, whereby the nonzero elements
of any matrix are replaced by 1. For a non-negative matrix, the indicator
matrix is the same as the incidence matrix.

8.125. Let A be an n x n (0,1) matrix. If J,, = 1,1, and
AA =K1, + 1,
for some positive integer k, then A is a normal matrix, that is, AA’ = A’A.

8.126. If A and B are n X n (0,1) matrices such that AB = J,, — I,,, then
AB = BA.

Definition 8.25. (Boolean Matrix) The binary Boolean algebra B consists of the
set {0,1}, together with the usual operations of addition and multiplication (i.e.,
1+0=1,0+0=0,1x0=0,0x0=0,1x1=1), except that 1+1=1. A
Boolean matriz is a (0,1) matrix over B. Boolean matrices have some properties
that differ from matrices over R; for example, the row rank need not equal the
column rank. Some properties of Boolean matrices and Boolean vector spaces are
given by Bapat and Raghavan [1997: section 5.6].

8.127. If T is the incidence matrix of the non-negative matrix A, then T* is the
incidence matrix of A* when T is a Boolean matrix.

Proofs. Section 8.13.
8.125. Zhang [1999: 251].
8.126. Zhang [1999: 252-253].
8.127. Seneta [1981: 56].

8.14 SOME MISCELLANEOUS MATRICES AND ARRAYS

8.14.1 Krylov Matrix
Definition 8.26. If x € R” and A is an n X n matrix, then the matrix
(x,Ax,A%x,..., A" 'x)

is called a Krylov matriz. This matrix arises in the so-called Lanczos method of
obtaining approximations for some eigenvalues and eigenvectors, especially for large
sparse matrices (Slapnicar [2007: chapter 42, 8]). The column space of the Krylov
matrix is called Krylov subspace, and it is associated with the solution of linear
equations (Greenbaum [2007: section 41.1]).
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8.14.2 Nilpotent and Unipotent Matrices

Definition 8.27. An n x n real or complex matrix is nilpotent if A*¥ = 0 for some
positive integer k, and is unipotent if A2 = I,,. For example,

(o 5)

is unipotent. For a nilpotent matrix, the smallest k such that A*¥ = 0 is called the
index of nilpotency.

8.128. The eigenvalues of a nilpotent matrix are all zero.

8.129. Let A be a real or complex n X n singular matrix with matrix index & (cf.
Section 3.8) such that rank(A*) = r. Then there exists a nonsingular matrix R

such that c
1 _ 0
R AR = ( 0 N ),

where C is a nonsingular r x r matrix and N is nilpotent with & its index of
nilpotency.

8.130. If A and B are nilpotent matrices, then so is A + B.

8.131. Any Jordan block J,,()) (cf. Definition 16.2) can written as J,,,(A) = AL, +
A, where A,, is nilpotent as (A,,)™ = 0.

More generally, a Jordan matrix can be written as J = D + N, where D is
diagonal matrix whose main diagonal is the same as that of J, and N = J — D.
Here N is nilpotent as N* = 0, where k is the order of the largest Jordan block in
J.

8.132. Any strictly upper-triangular n x n matrix A is nilpotent with index of
nilpotency at most n (as A™ = 0). If r; = rank(A’), then r;1; <r; if r; > 0.

Proofs. Section 8.14.2.
8.128. Ax = A\x implies that x # 0 and 0 = A*x = \x.
8.129. Meyer [2000a: 397].
8.130. A" = 0 and B® = 0 for some r and s, which imply (A + B)"** = 0.
8.132. Abadir and Magnus [2005: 183).

8.14.3 Payoff Matrix

Definition 8.28. Suppose we have a game consisting of two players I and II. At
each stage of the game, Player I chooses a strategy j with probability y; (7 =
1,2,...,n), where Z?:l y; = 1, and Player II independently chooses a strategy
i with probability z; (i = 1,2,...,m), where " z; = 1. Player II then pays
Player I the amount a;;, or if a;; is negative Player I pays Player II (—a,;). The
m X n matrix A = a;; is called a payoff matriz. (Some authors reverse the roles of
the two players so that Player I chooses a strategy i, etc.) The expected income to
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Player I is Z?=1 a5y, and the game is called a matriz game. Optimal strategies
exist for each player, as is proved in (8.133) below.

Let x = (x1,2Z2,...,Zm) and y = (y1,¥2,...,y»)’. If x has more than one
nonzero element, then the stratgy is called a mized strategy. If all the elements are
positive (i.e., x > 0), the strategy is said to be completely mized. A matrix game is
called a completely mized game if every optimal strategy x for Player II and y for
Player I are completely mixed. For further details see Bapat and Raghaven [1997:
chapter 1].

8.133. (Minimax Theorem—von Neumann) Let A be an m x n payoff matrix.
There exists a unique constant v, called the value of the matriz game A, and mixed
strategies x for Player II and y for Player I such that

n n
ZaijijU, i=1,2,...,m, and Zaijxigv, i=12...,n.
j=1

i=1

The strategy x is called an optimal strategy for Player II and y is called an optimal
strategy for Player 1.

8.134. Let v be the value of a matrix game A, and suppose some optimal strategy
of Player II is completely mixed. Then, for any optimal strategy y of Player I,
Ay =vl.

8.135. Let the value of the m x n matrix game A be zero (i.e., v = 0), and suppose
that every optimal strategy for Player II is completely mixed. Then m — 1 <
rank A < n — 1. If rank A = m — 1, then the optimal strategy for Player II is
unique.

8.136. Let A be an n x n matrix with cofactors A;;. If the matrix game A is
completely mixed, then Y 7", Z;;l A;; is nonzero and the value v of the game is

given by

i=1 j=1
Proofs. Section 8.14.3.
8.133. Parthasarathy and Raghaven [1971].
8.134-8.136. Bapat and Raghaven [1997: 10-11, 14].

8.14.4 Stable and Positive Stable Matrices

Definition 8.29. An n X n real or complex matrix A is said to be stable if every
eigenvalue of A has a negative real part. The matrix is said to be positive stable if
every eigenvalue has a positive real part. These concepts are related to the long-
term equilibrium of a dynamical system, and are discussed in detail by Horn and
Johnson [1991: chapter 2]. For a further discussion see Meyer [2000a: section 7.4].

8.137. exp(At) — 0 as t — oo if and only if A is stable (cf. Section 19.6).
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8.138. If A is an n x n real or complex matrix and

n

Re(au) <— D lail, i=12,...,n,

j=lijzi
where Re is the real part, then A is stable.
8.139. Suppose A is a positive stable matrix.
(a) A=, A* and A’ are all positive stable.
(b) det A > 0.
(c) Re(trace A) > 0.
(d) det(AF) > 0 for any positive integer k.
8.140. If A is Hermitian positive definite, then A is positive stable.

8.141. (Lyapunov’s Equation) Suppose X, A, and C are all n X n matrices such
that XA + A*X = C (see also (13.17c) for further details).

{a) A is positive stable if and only if there exists an Hermitian positive definite
solution X such that C is Hermitian positive definite.

(b) Suppose X and C are Hermitian and C is positive definite. Then A is positive
stable if and only if X is positive definite.

(c) If A is positive stable, then given C, there is a unique solution X to Lya-
punov’s equation. If C is Hermitian, then X is Hermitian, while if C is
Hermitian positive definite, then X is Hermitian positive definite.

(d) A special case of the above is when C = I,,, which is Hermitian and positive
definite.

Horn and Johnson [1991: 96-98] give a number of generalizations of the above
theory.

Proofs. Section 8.14.4.
8.137. Horn and Johnson [1991: 92].
8.138. Marcus and Minc [1964: 159)].
8.139. Horn and Johnson [1991: 93].
8.140. Horn and Johnson [1991: 95].
8.141. Horn and Johnson [1991: 96-98].
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8.14.5 P-Matrix

Definition 8.30. An n x n real matrix A is called a P-matriz if all its k x k
principal minors are positive for k = 1,2,...,n.

8.142. Let A be an n x n P-matrix. Then:
(a) A’ is also a P-matrix.

(a) DA and AD are also P-matrices, where D is a diagonal matrix with positive
diagonal elements.

(b) Every principal submatrix of A is also a P-matrix.
(¢) az >0fori=1,2,...,n.
(d) If II is any n x n permutation matrix, then II'AIl is a P-matrix.

(e) A+D isa P-matrix, where D is a diagonal matrix with non-negative diagonal
elements.

8.143. Let A be a real n x n matrix. Each of the following conditions is necessary
and sufficient for A to be a P-matrix.

(1) For every n x 1 vector x, there is an element in x (say the gth) and the
corresponding element in y = Ax such that z,y, > 0.

(2) For every x # 0, there exists a diagonal matrix D, a function of x, with
positive diagonal elements such that X’ DAx > 0.

(3) For every x # 0, there exists a diagonal matrix D, a function of x, with
non-negative diagonal elements such that xX’ DAx > 0.

{4) Every real eigenvalue of A and of each principal submatrix of A is positive.
Proofs. Section 8.14.5.

8.142. These results quoted by Graybill [1983: 376] follow directly from the
definition.

8.143. Graybill [1983: 377] and Horn and Johnson [1991: 120].

8.14.6 Z- and M-Matrices

Definition 8.31. An n x n real matrix A = (a;;) for which a;; < 0 for all 4, j,
i # j is called a Z-matriz. Note that if B is an ML-matrix (cf. Definition 9.11
above (9.43)) then A = —B is a Z-matrix, and vice versa.

A Z-matrix A is called a (nonsingular) M-matriz if it is a nonsingular Z-matrix
and A~! > 0 (i.e., has non-negative elements). This was the definition introduced
by Ostrowski in 1937. An equivalent definition used by Horn and Johnson [1991:
113] is that A is an M-matrix if it is a Z-matrix and positive stable (cf. Section
8.14.4). I have included the word “nonsingular” to avoid ambiguity as definitions
vary in the literature. For example, Bapat and Raghavan [1997: section 1.5] allow
an M-matrix to be singular and use a different definition. For general references
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relating to M-matrices see Varga [1962] and Berman and Plemmons {1994]. Non-
singular M-matrices arise in game theory (Bapat and Raghavan [1997: section 1.5]).

8.144. A is a Z-matrix if and only if A = sI,, — B for some B > 0 and some real
s.

8.145. Let A be an n X n Z-matrix such that A = LU, where L is lower-triangular
and U is upper riangular, both with positive diagonal elements. Then:

(a) A has positive leading principal minors including det A itself.
(b) L and U are nonsingular.
(c) The off-diagonal elements of both L and U are nonpositive.

)

(d) No element of L' or U™! is negative, and the diagonal elements of L™! and
U~! are all positive.

8.146. Let A be an n X n Z-matrix such that each real eigenvalue of A is positive.
Let B be a Z-matrix such that A < B (i.e., a;; < b;; for all ¢, j). Then:

(a) A and B are nonsingular.
(b) 0<B !<A7!(ie, A" -B!>0).
(c) Each real eigenvalue of B is positive.

(d) detB > det A > 0.

8.147. (Equivalence of Definitions) Let A be a Z-matrix. Then A is an M-matrix
if and only if Re(A\) > 0 (where Re is the real part) for all eigenvalues A, that is, if
and only if A is stable.

8.148. Let A be a Z-matrix. Then each of the following conditions is necessary
and sufficient for A to be an M-matrix.

(1) All principal minors of A are positive, including det A; that is, A is a P-
matrix.

2) The leading principal minors of A are all positive, including det A.

3) Every real eigenvalue of A is positive.

5

(2)

(3)

(4) A +tI, is nonsingular for all £ > 0.

(5) A + D is nonsingular for every non-negative diagonal matrix D.
(6)

6) There exists an x > 0 such that Ax > 0.
(7) Ax > 0 implies x > 0.

8.149. If A is a Z-matrix, then it is a (nonsingular) M-matrix if and only if it can
be expressed in the form A = sI,, — B, where B > 0 and s > p(B), with p(B)
being the spectral radius of B.

8.150. If A is an M-matrix, then so is every principal submatrix.
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8.151. If A is an M-matrix, it is also a P-matrix.

8.152. Let A and B be n x n Z-matrices. If A is an M-matrix and B > A (i.e,,
bij > a;; for all 4, 7), then:

(a) B is an M-matrix.

(b) A"t >B7!>0.

(c) detB > det A > 0.
)

(d) The matrix A satisfies the Hadamard inequality

det A < Q11222 Apnp.

(e) AT'B>1,and BA™ ! >1,.
(fy BT'A<I,and AB!<TI,.
(g) AB~! and B! A are M-matrices

8.153. Let A be an M-matrix. Then there exists a positive eigenvalue of A, Ag
say, such that the real part of any eigenvalue of A is greater than or equal to Ag.

Proofs. Section 8.14.6.

8.144. Horn and Johnson [1991: 113]. Take ¢;; = max{—a;;,0} and s >
max;{a;} so that A = sI,, — (C + sI,, — diag(ai1, - - -, @nn)-

8.145. Graybill [1983: 380].
8.146. Graybill [1983: 380-381].
8.147. Meyer [2000a: 626].

8.148. For further equivalent conditions and details see Horn and Johnson
[1991: 114-115]. Some proofs are also given by Graybill [1983: section 11.3]
and Meyer [2000a: 626]. A game theoretic proof for some of the results like
these are given by Bapat and Raghavan [1991: 25-28].

8.149-8.150. Horn and Johnson [1991: 113] and Meyer [2000a: 626).

8.152. Graybill [1983: 386, (a)—(g) except (d)] and Horn and Johnson [1991:
117, (2)-(d)].

8.153. Quoted by Graybill [1983: 385].
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8.14.7 Three-Dimensional Arrays

In nonlinear regression models, the expected value of a random response variable
y; is usually of the form f;(x;;8), and this leads to looking at 0f;/00;00, which
is a 3-dimensional array. Such arrays have been used for a wide variety of models
including nonlinear models (cf. Seber and Wild [1989] and Wei [1997]) and multi-
nomial models (e.g., Seber and Nyangoma [2000] and Wei [1997: section 7.2]).

Definition 8.32. Consider the n x p x p array W = {(w,s)} made up of ap x p
array of n-dimensional vectors w,s (r,s = 1,2,...p). If w;ys is the ith element of
Wrs, then the matrix of ith elements W; = (w;,s) is called the ith face of W. We
now define two types of multiplication. Firstly, if B and C are p X p matrices, then

V ={(vss)} = BWC

denotes the array with ith face V; = BW,C, ie.,
— 5 b
« B

Secondly, if D is a ¢ X n matrix, then we define square bracket multiplication by

the equation
[DIV] = {(Dwy,)},

where the right-hand side is a ¢ X p X p array.
We can also define trace W, a vector with ith element trace W;, and vec W,
which is a p? X n matrix with ith column vec W;.

8.154. Using the above notation, we have the following.
(a) [LJV] =
(b) [aB + CIW] = a[BJW] + B[CI W]
(c) trace[BW] = trace[WB|.
(d) Btrace W = trace([B]|[W]).
(e) vec([B][W]) = (vec W)B".
(f) [DJ[BWC] = BD]WIC.
(g) vec((BWC]) = (C' ® B)vec W, where “®” is the Kronecker product.
(h) [DB][W] = [D][{(Bw.»)}] = DI[BIIV]
(i) aWb=3% 3 aubyWyy.
(3) [d'}1[W] is a matrix with (r, s)th element Y, diwirs.
Proofs. Section 8.14.7.

8.154. Seber and Wild [1989: 692, (h)-(j)] and Wei [1997: 188-191, (a)~(j)].



CHAPTER 9

NON-NEGATIVE VECTORS AND MATRICES

Any matrix of probabilities has non-negative entries and is therefore a non-negative
matrix. Consequently, such matrices play a varied role in probability and statis-
tics. For example, they are used in genetic and population growth models, general
stochastic processes, and various scaling problems. Such matrices are also encoun-
tered in the previous chapter where a number of matrices were mentioned such as
permutation matrices, where the elements are zero or one. Non-negative matrices
also play an important role in combinatorics (e.g., Sachkov and Tarakonov [2002]).
In this chapter we look at a wide range of such matrices. For a concise reference to
the subject see Rothblum [2007: chapter 9].

9.1 INTRODUCTION

Definition 9.1. A nonzero matrix A = (a;;) is said to be non-negative (positive)
if a;; > 0(> 0) for all 4, 5. We write A > 0(> 0). Also we say that A < 0(< 0)
if a;; < 0(< 0). The same definition applies to vectors, namely a > 0 if a; > 0 for
all 7, and a # 0. Finally we say that A <B ifand onlyif B— A > 0.

In most applications, A is square. Unless stated otherwise, we shall assume that
A is n x n. Although certain aspects of the general theory of non-negative matrices
extend to countably infinite matrices, we shall consider only infinite stochastic
matrices (Section 9.6.3).
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9.1. (Frobenius-Konig) If A > 0, then per(A) = 0, where per(A) is the permanent
of A (cf. Section 4.5), if and only if A has an 7 X s zero submatrix with r+s = n+1.

Proofs. Section 9.1.

9.1. Bapat and Raghavan [1997: 62].

9.1.1 Scaling

Definition 9.2. Let A > 0 be an m x n matrix. The problem of scaling A to
obtain a non-negative m x n matrix B with prescribed row and column sums will
be called the scaling problem.

A and B are said to have the same pattern if a;; = 0 if and only if b;; = 0 for
all 7,7.

The procedure whereby we alternatively scale the rows of A to give the required
rows sums, then scale the columns sums of the new A to give the required column
sums (this will upset the row sums), and then continuing to repeat these two oper-
ations, we shall call the iterative scaling algorithm. Under certain conditions, this
procedure converges to give a solution to the scaling problem. Of related interest
is the doubly stochastic matrix discussed in Section 9.7.

Scaling problems arise in many contexts. For example, Bapat and Raghavan
[1997: chapter 6] mention budget allocations, probability estimation in Markov
chains, Leontief input-output systems, estimating cell entries in contingency tables,
and transportation planning.

9.2. (Bacharach) Let A > 0 be m x n with no zero row or column, and let Z and
J be subsets of {1,2,...,m} and {1,2,...,n}, respectively, with complements Z°¢
and 7¢. Let x and y be fixed m x 1 and n x 1 positive vectors, respectively. Then
there exists an m x n matrix B > 0 such that a;; = 0 = b;; = 0, with B1,, =x >0
and 1/, B =y’ > 0’ if and only if

a;; =0forallieZ¢jeJ implies inS Zyjand ZL’ZZW

ieTe JjETC €T jed

Here a;; is to be understood as zero if ¢ or § € ¢, as is summation over an empty
set. Using a concept relating to the elements of A called “connectedness,” Seneta
[1981: 70-77] gives a number of general theorems to establish the convergence of
the iterative scaling algorithm to the matrix B described above with prescribed
row and column sums. If A > 0, then A is connected, and the theory simplifies. A
different approach to this problem is embodied in the next two results.

9.3. Let K be a nonempty, bounded polyhedron given by
K={weR":7 >0, Cr=b},

where C = (¢;;) is an m X n matrix and b € R™ is a nonzero vector. Let y € K.
Then, for any x > 0 with the same pattern as y, there exist z; > 0 (i = 1,2,...,m)
and 7 € K such that
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Furthermore, any « € K of the above type is unique. Bapat and Raghavan [1997:
247] show how to use this theorem to prove the existence of a solution to the scaling
problem.

9.4. Let A and B be any pair of positive m x n matrices. Then there exists a
unique matrix C = D; ADs, where D; and D5 are diagonal matrices with positive
diagonal entries, and C and B have the same row and column sums. Also the
iterative scaling algorithm applied to A converges to C.

Proofs. Section 9.1.1.
9.2. Bacharach [1965] and Seneta [1981: 79, exercise 2.34].
9.3. Bapat and Raghavan [1997: 247].
9.4. Bapat and Raghavan [1997: 251, 260).

9.1.2 Modulus of a Matrix

Definition 9.3. The modulus of any a real or complex matrix A = (a;;) is the
matrix of absolute values, namely mod(A) = (Ja;;{). Thus mod{A) > 0. Schott
[2005: 318] uses the term abs(A).

9.5. Clearly A < mod(A).
9.6. The following are readily proved using (5.1).
(a) If A and B are any two conformable matrices, then
mod(AB) < mod(A)mod(B).
Here B could also be a vector.
(b) If A is square, mod(A*) < [mod(A)}*.
{(c) If A and B are n x n matrices such that mod(A) < mod(B), then
[lmod(A)||r < [|mod(B)|£,
where || - || represents the Frobenius norm.
Proofs. Section 9.1.2.
9.6. Quoted by Rao and Rao [1998: 470].

9.2 SPECTRAL RADIUS

9.2.1 General Properties

We recall that the spectral radius p(A) of a square matrix A is the maximum
of the absolute values of the eigenvalues of A. Note that p(A) need not be an
eigenvalue of A, though we note below that it can be an eigenvalue in the case of
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non-negative matrices. Although the emphasis is on non-negative matrices in this
chapter, further results concerning the spectral radius are given in Section 4.6.2
(e.g., 4.68a) on matrix norms.

9.7. Let A = (a;;) be a complex matrix and B = (b;;) > 0 be a real matrix, both
n X n, such that mod(A) < B. Then:

(a) p(A) < p[mod(A)] < p(B).

(b) (Ky Fan) Every eigenvalue of A lies in the region
U {2 €C:|z—ay| < p(B) — bi;}.
9.8. Let A and B be n x n non-negative matrices. If 0 < A < B, then

p(A) < p(B);
that is, p(+) is monotonically increasing on the set of all » xn non-negative matrices.
9.9. Let A > 0 be an n X n matrix.

(a) If C is a principal submatrix of A, then p(C) < p(A). In particular,

<
2o 0 < P(A).

(b) Let r; be the row sum of row ¢ and ¢; be the column sum of column j. Then:

i < <
0 2, ro< o) = e

< <
(ii) mlg ¢; < p(A) max ¢.

(iii) If r; = a for all ¢, then p(A) = a. If ¢; = 3 for all j, then p(A) = 3.
(c) Let x = (z1,22,...,%n) > 0. Then:

1
(1) m1n—§ax< <max—§a--ac'.
18i<n ; %5 < p(A 1SS 27 Rt

. a‘l]
< <

(ii) mln |z g p(A) < leja<xn x; E :cz

(iii) If A has a posmve right eigenvector, then

n

1

A:ma,xmin—gaac—mmmax—-—gaz
p(A) x>0 1<i<n &; £ U T x>0 1<i<n 25 = Eth
e =

(d) p(In + A) =1+ p(A)

9.10. Let A > 0 with maximum and minimum row sums of R and r, respectively,
and let m = min; ; a;;. Then

r+m(h—1) < p(A) S R-m(1-g7"),
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where

_B—-2m+/R*—4m(R—r) h_—r+2m+ r24+4m(R—r)
9= 2(r —m) ’ B

There exist matrices for which the bounds are attained.
Proofs. Section 9.2.1.

9.7a. Horn and Johnson [1985: 491], Meyer [2000a: 619], and Rao and Rao
[1998: 471).

9.7b. Horn and Johnson [1985: 501] and Marcus and Minc [1964: 152].
9.8. Horn and Johnson [1985: 491].
9.9a. Horn and Johnson [1985: 491 and Rao and Rao [1998: 471].

9.9b. Horn and Johnson [1985: 492-493], Rao and Rao [1998: 471], and
Schott [2005: 318-319].

9.9c. Horn and Johnson [1985: 493], Rao and Rao [1998: 472, for (i) and (ii)],
and Schott [2005: 318-319].

9.9d. Horn and Johnson [1985: 507] and Rao and Rao [1998: 475].
9.10. Marcus and Minc [1964: 155].

9.2.2 Dominant Eigenvalue

Definition 9.4. If |Ay| > |Ag| = - > |A,|, then A; is called the dominant eigen-
value of A. We note that |A;]| is also the spectral radius p(A) of A.

9.11. (Perron-Frobenius Theorem for Non-negative Matrices) If A > 0, then the
following hold.

(a) A has a real eigenvalue p > 0.

(b) With p can be associated non-negative left and right eigenvectors (which need
not be unique even when scaled to have unit length).

c) If A hasa positive eigenvector, then the COI‘I‘eSpOIldiIl eigenvalue is 25 that
g
iS, if Ax=Ax and x > 0, then A = p.

(d) |A| < p for any eigenvalue X of A, i.e., p is the spectral radius of A.
(d) If 0 < B < A and 8 is an eigenvalue of B, then [§] < p.

Seneta [1981: 25-26] gives a helpful history of this and related results.

There is a corresponding theorem, originally proved by Perron in 1907 for positive
matrices; for recent proofs see Bapat and Raghavan [1997: 5-6], Rao and Rao [1998:
473] and Schott [2005: section 8.8]. However, when A > 0, A is also irreducible and
primitive (see below for definitions), so that a more general theorem is therefore
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given in (9.30). For completeness, we give some related results for A > 0 below in
(9.16) from Horn and Johnson [1985] and Schott [2005].

9.12. If A > 0 and s > p, where p is defined in (9.11) above, then (sI,, — A) has
an inverse and
(sI, —A)"! >0.

9.13. Let A > 0 with spectral radius p, and let adj(A) denote the adjoint matrix.
Then:

(a) B(s) = adj(sI,, — A) > 0 for s > p.
(b) %@20fors>p.
(c) B(p) 2 0.
(d) & (5L, — A)omp > 0.

9.14. Let A > 0 have spectral radius p.
(a) Suppose x > 0 and o, 8 > 0. Then:

(i) Hax < Ax < fx,thena < p < 4.
(ii) If ax < Ax, then a < p
(iii) If Ax < fx, then p < §.

(b) If x > 0 (x #0) and Ax > ax for some «, then p > .
9.15. Let A > 0.

(a) (I, — A)~! exists and is non-negative if and only if there exists x > 0 such
that x > Ax.

(b) If each of the row sums of A is less than 1, then (I, — A)~! exists and is
non-negative. The same is true if each of the columns sums is less than 1.

(¢) Consider the equation (I, —A)y = b, where b > 0. If (I, — A) ™! exists and is
non-negative, then there is a unique non-negative solution y = (I, — A)~!b.
This result applies, for example, to Leontief’s input-output economic model.

An irreducible version of the above theorem is given in (9.36) below.

9.16. (Perron’s Theorem for Positive Matrices, with Additions) Suppose A > 0
with spectral radius p = p(A). Then:

(a) p is positive and is an eigenvalue.
(b) There are positive right and left eigenvectors A corresponding to p.
(c) Suppose |A| = p, with any corresponding eigenvector x. Then:

(i) Amod(x) = pmod(x), where “mod” is defined in Definition 9.3 above.

(ii) There exists an angle 6 such that e=*x > 0.

(d) The eigenvalue p has algebraic and geometric mutliplicities both equal to 1.
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(e) If X is an eigenvalue of A and A # p, then |A| < p.

(f) Suppose x and y are positive vectors such that Ax = px, y’A = py’, and
x'y = 1. Then:

(i) (A —pxy)F =AF - prxy’ fork=1,2,....
(1i) Each nonzero eigenvalue of A — pxy’ is an eigenvalue of A.
(iii) p is not an eigenvalue of A — pxy’.
(iv) p(A —pxy’) <p.
(v) limg_oo(p 1A = xy’.

Proofs. Section 9.2.2.

9.11. Debreu and Herstein [1953], Meyer [2000a: 670, (a) and (b)], and quoted
by Seneta [1981: 28, exercise 1.12]. Horn and Johnson [1985: 493] prove (c).

9.12. Bapat and Raghavan [1997: 35].

9.13. Bapat and Raghavan [1997: 37].

9.14. Horn and Johnson [1985: 493, 504].

9.15. Rao and Rao [1998: 479-480].

9.16. Horn and Johnson [1985: 495-500] and Schott [2005: 319-323].

9.3 CANONICAL FORM OF A NON-NEGATIVE MATRIX

Definition 9.5. Let A = (a;;) > 0 be n x n, and define A™ = (ag-”)). If az(-;-n) >0
for some positive integer m (a function of ¢ and j), we say that ¢ leads to j or ¢ can
reach j (or state i can reach state j in the case of a Markov chain and its transition
matrix; see Definition 9.16 in Section 9.6), or j is accessible from i, and we write
it — 3. Ifi — j and j — %, we say that the i and j communicate and write ¢ < 5. If
i + 4, the period of index ¢ is defined to be d(i) = ged{k : ag-c) > 0}—that is, the
greatest common divisor of those positive integers k such that agf ) > 0. If d(i) > 1,
then i is said to be periodic (cyclic), while if d(i) = 1, then i is said to be aperiodic
(acyclic). Clearly, if there exists at least one j such that ¢ < j, we must have 7 < 1.

The indices can be classified as essential or inessential. If ¢ — j, but j /4 i
for some j, then 7 is called inessential, and an index which leads to no index
at all is also called inessential; otherwise, an index is called essential. Essential
indices can be divided into self-communicating classes where all the indices within
the class communicate with each other, but do not communicate with any indices
outside the class. Similarly, inessential indices (if any) can also be divided into self-
communicating classes in which an index in a class can reach another index outside
the class, but can’t get back, together with a class of individuals that communicate
with no index (Seneta [1981: 12]).

9.17. If A > 0 has at least one positive entry in each row, then it possesses at
least one essential class of indices.
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9.18. If A = (a;;) > 0 and © < j, then d(7) = d(j).

9.19. (Canonical Form) Given A > 0, there exists a permutation matrix ITI such

that
A, 0 .- 0 | O
0 A, - 0 | O
0O 0 -~ A, | O
R | Q
where the A; (i = 1,2,...,r) correspond to the r self-communicating classes of

essential indices, and Q corresponds to the inessential indices, with R # 0 in
general. The matrix B is simply A with the indices reordered, and Q has a structure
similar to A, except that there may be nonzero elements to the left of any of its
diagonal blocks, that is,

Q o0 --- 0
Q=] * ® 0
C Qs

In practice the matrix (R | Q) in B may be missing from B and we could have
r=1. Also

A¥ o .. 0 | o .
0 A .-~ 0 | o Qr o 0
g - o | |aagr=]| © Q -~ 0
k Qs
Ry | QF

Proofs. Section 9.3.

9.17-9.19. Seneta [1981: 14-17].

9.4 IRREDUCIBLE MATRICES

9.4.1 Irreducible Non-negative Matrix

In Section 8.8 we introduced the concept of irreducibiblity for general matrices.
In this section we concentrate on non-negative matrices, the major application of
irreducibility, and recall the following definition.

Definition 9.6. An n X n non-negative matrix A is said to be reducible if there
exist a permutation matrix II such that

B 0
B = IIALl' = 1
( Bz Ba /'’

where By; and By, are square matrices. A matrix which is not reducible is said to
be irreducible. We note that if B has the general canonical form (9.19), then it is
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reducible. Some authors use the equivalent definition
_{ B Bp

An equivalent but more useful definition of irreducibility in the present context
is as follows. The n x n matrix A > 0 is irreducible if and only if every pair of
indices in its index set communicate, that is, for every pair ¢, j there exists a positive
integer m (< n), a function of ¢ and j, such that ag") > 0. The equivalence of the
two definitions is proved by Bapat and Raghavan [1997: 2-4].

An irreducible non-negative matrix is said to be periodic (cyclic) with period d

if the period of any one (and so of each one, by (9.18)) of its indices satisfies d > 1,
and it is said to be aperiodic (acyclic) if d = 1.

9.20. An irreducible non-negative matrix cannot have a zero row or column.

9.21. If the matrix A = (a;;) > 0 is reducible, then so is A* for any positive
integer k.

9.22. An n x n non-negative matrix A is irreducible if and only if (I, + A)"~! > 0.
9.23. If A is irreducible, then so is A’.

Definition 9.7. The matrix A > 0 is said to be primitive if there exists a positive
integer p such that A? > 0. (Thus if A is primitive, it is irreducible as ag-’ )'> 0 for
all 7,7.) Clearly, if A > 0, then A is primitive.

An alternative but equivalent definition is that A > 0 is primitive if it is ir-
reducible and it has only one eigenvalue of maximum modulus. The equivalence
follows from (9.26) below.

The smallest positive integer g such that A? > 0 is called the index of primitivity.

9.24. If A > 0 is primitive, then A* is non-negative, irreducible, and primitive for
all k=1,2,....

9.25. If A > 0 is primitive, then A* > 0 for some integer k < (n — 1)n"™.

9.26. A non-negative matrix A is primitive if and only if it is irreducible and
aperiodic.

9.27. If A > 0 has a;; > 0 for all ¢, then A~ > 0 and A is primitive.

9.28. (Limit Theorem for Primitive Matrices) Let A be an n X n primitive non-
negative matrix with distinct eigenvalues p, Ag,..., A¢ (¢ < n), where p > |Ag] >
Azl = -+ > |A]- In the case |A2] = |A3| (A2 # As) we stipulate that the algebraic
multiplicity mo of Ay is at least as great as that of A3 and of any other eigenvalues
having the same modulus as A,. By (9.30) there exist positive vectors x and y such
that Ax = px, YA = py’ and X'y = 1. We then have the following:

(a) Suppose Az # 0.

(i) As k — oo,
AF = pFxy’ + O(k°|Ao|")

elementwise, where s = mgy — 1.
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(i)

Ak
lim — =xy’.
i, e =

(b) Suppose Ay =0, then for k > n —1,
AF = pFxy’.

For matrix limits see Section 19.2.

Definition 9.8. An irreducible non-negative matrix that is periodic is said to
be imprimitive. Thus irreducible matrices can be subdivided into primitive or
imprimitive matrices depending on whether they are aperiodic or periodic.

9.29. The powers of an imprimitive matrix may be studied in terms of powers of
primitive matrices.

9.30. (Perron-Frobenius Theorem for Irreducible Matrices) Let A > 0 be an irre-
ducible matrix. Then we have the following.

(a) A has a real positive eigenvalue p.
(b) With p can be associated strictly positive left and right eigenvalues.
(c) |M < p for any eigenvalue A of A. Thus p is the spectral radius of A.

(d) p has geometric multiplicity 1, that is, the left and right eigenvectors associ-
ated with p are unique to constant multiples.

(e) p has algebraic multiplicity 1, that is, p is a simple root of the characteristic
equation.

(f) If 0 < B < A and § is an eigenvalue of B, then || < p. Moreover, |3] = p
implies B = A so that p increases when any element of A increases.

(g) (Primitive matrices) If A is primitive then (a)—(f) still hold except that (c)
is replaced by |A| < p for any eigenvalue A # p.

Definition 9.9. We call p the Perron-Frobenius eigenvalue of an irreducible non-
negative matrix, and its corresponding positive eigenvectors are called the Perron-
Frobenius eigenvectors. As noted above, p is the spectral radius.

9.31. Let A > 0 be an irreducible n xn matrix with Perron—Frobenius eigenvalue p,
and let x and y be the right and left Perron—Frobenius eigenvectors of A satisfying
x'y = 1. Then:

(a) yAx = p < X'Ay.
(b) (Limit Theorem) If L = xy’, then

N
: 1 -1 k _
dm, 2 A =L
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9.32. (Subinvariance Theorem and Variations) Let A > 0 be an irreducible matrix
with Perron-Frobenius eigenvalue p. Let ¢ > 0.

(a) If Ax < ex for any nonzero x > 0, then p < ¢ and x > 0. Furthermore, p = ¢
if and only if Ax = ¢x.

(b) If Ax > ¢x for any nonzero x > 0, then p > ¢. Also p = c if and only if
Ax = cx.

(c) If Ax < ex (# ex) for some x > 0, then p < c.
(d) If Ax > cx (5 ¢x) for some x > 0, then p > c.

9.33. (Bounds on p) Let A > 0 be irreducible with Perron-Frobenius eigenvalue
p. Then (9.9b) holds with p(A) = p. In the case of (i) and (ii), equality on one
side implies equality on both sides, that is, p can only be equal to a maximal or
minimal row (respectively column) sum if all the row (respectively column) sums
are equal. The same is true for (c)(i).

9.34. Let P = {x : x > 0}. Then:
(a)

x€P U T; x€P 1 z;

n n
sup min {“ijl %3 } = p= inf max { 2g=1 %% }

There also exists an x € P for which both the supremum and the infimum
are attained.

(b)

. Y AXx . y'Ax
sup q inf ~— =p= inf ¢ sup —; .
xeP (YEP y'X x€P |yep Y X

9.35. Let A > 0 be irreducible with Perron-Frobenius eigenvalue p, and let E > 0
(E#0). If § > 0, then B = A + §E is irreducible with a Perron-Frobenius
eigenvalue that, by a suitable choice of 4, may be made equal to any positive
number exceeding p.

9.36. Let A > 0 be irreducible with Perron-Frobenius eigenvalue p.

{(a) A necessary and sufficient condition for a solution x (x > 0,x # 0) to the
equation (sI, — A)x = c to exist for any ¢ > 0 (¢ # 0) is that s > p. In this
case, there is only one solution x that is strictly positive, and it is given by

x = (sI, - A)7lc.

(b) Of those real numbers s for which the inverse exists, (sI — A)~! > 0 if and
only if s > p.

(c) If s = 1, then p < 1 if none of the row (or column) sums of A exceed 1, and at
least one is less than 1. For applications see Leontief’s input-output economic
model and an extension described by Bapat and Raghavan [1997: chapter 7],
Rao and Rao [1998: 477-481], and Seneta [1981: chapter 2].
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9.37. Let A > 0 be irreducible with Perron-Frobenius eigenvalue p = 1. Then the
sequence {A¥} converges if and only if A is primitive.

9.38. If A > 0 is irreducible with Perron-Frobenius eigenvalue p, and A*¥ = (ag.c)),
then for each pair (4, j) the power series

oo
k
Aii(s) = al(j)sk
k=0
all have the same radius of convergence R = p~ 1.

9.39. Suppose A > B > 0 and A # B. If A + B is irreducible, then p(A) > p(B),
where p(-) is the dominant eigenvalue of the appropriate matrix.

Proofs. Section 9.4.1.
9.20. Seneta [1981: 18].

9.21. We take powers of B in the definition (e.g., B? = IMAII'TIAII =
IAZIT).

9.22. Bapat and Raghavan [1997: 3], Rao and Rao [1998: 469], and Schott
[2005: 324).

9.23. This follows from either definition of irreducibility.
9.24-9.25. Horn and Johnson [1985: 518].

9.26. Seneta [1981: 21].

9.27. Horn and Johnson [1985: 517].

9.28. Seneta [1981: 9].

9.29. Seneta [1981: 21].

9.30. Bapat and Raghavan [1997: 17, proved the result using the theory of
completely mixed matrix games], Horn and Johnson [1985: 508, for (a)—(e)],
Schott [2005: 325-3286, for (a)-(e)], and Seneta [1981: 22, 3-7].

9.31a. Bapat and Raghavan [1997: 121, with x and y interchanged).
9.31b. Horn and Johnson [1985: 524].

9.32a. Seneta [1981: 23].

9.32b. Quoted by Seneta [1981: 29, exercise 1.17].

9.32¢—d. Debreu and Hurstein [1953].

9.33. Quoted by Seneta [1981: 27, exercise 1.7].

9.34-9.35. Birkhoff and Varga [1958] and quoted by Seneta [1981: 27, exer-
cises 1.7 and 1.8].

9.36. Seneta [1981: 30-31].
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9.37. Hunter [1983a: 170].
9.38. Quoted by Seneta [1981: 29, exercise 1.14].
9.39. Quoted by Seneta [1981: 29, exercise 1.16].

9.4.2 Periodicity

Definition 9.10. If A > 0 is irreducible, then by (9.18) each index 7 has the same
period, d, say, which we call the period of A.

9.40. Let A > 0 be an irreducible matrix with h eigenvalues whose moduli are
equal to the spectral radius p. We know from (9.30c) that h > 1. Then h = d, the
period of A (cf. (9.41b) below).

9.41. Let A > 0 be an n x n irreducible matrix with period d.
(a) A is primitive if and only if d = 1.

(b) If d > 1, there exist d distinct eigenvalues with |A| = p, where p is the spectral
radius. These eigenvalues are pexpi(2nk/d), k = 0,1,...,d — 1, the d roots
of M — pd = 0.

(c) If X # 0 is any eigenvalue of A, then the numbers Aexp[i(27k/d)], k =
0,1,...,d — 1, are also eigenvalues.

(d) The set of n eigenvalues when plotted as points in the complex A-plane is
invariant under a rotation of the plane through the angle 27/d.

(e) Combining (b) and (¢),

det(A\I, — A) = A" (\? — p?) 11[(,\‘1 -9,

i=1
where || < pfori=1,2,...,7r and m =n — (r + 1)d.
9.42. Let A > 0 be irreducible with period d (d > 1).

(a) There exists a permutation matrix II such that

0 B, 0 -- 0
0 0 By ... 0
ALl = . . . . (= B),
0 0 0 - Bg_14
By O o - 0

where the zero submatrices on the main diagonal are square. Note that II
permutes the rows, while II' permutes the columns in the same order.

(b) Conversely, suppose A > 0 and there exists a permutation matrix such
that ITAII' = B, as defined in (a). If A has no zero rows or columns and
B12Bas - Bi_1,4Bai is irreducible, then A is irreducible.
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Proofs. Section 9.4.2.
9.41a. Seneta [1981: 21].
9.41b. Horn and Johnson [1985: 510, 512] and Seneta [1981: 23].
9.41c. Seneta [1981: 24].
9.41d. Bapat and Raghavan [1997: 41-42].
9.41e. Bapat and Raghavan [1997: 43].
9.42a. Bapat and Raghavan [1997: 41-42].
9.42b. Seneta [1981: 29, exercise 1.18].

9.4.3 Non-negative and Nonpositive Off-Diagonal Elements

Definition 9.11. An nxn real matrix B = (b;;) for which b;; > 0, for all 4, j (¢ # j)
is called an ML-matriz. This matrix arises in the theory of Markov processes.

9.43. If B is an ML-matrix, there exists a non-negative a sufficiently large so that
T=al,+B>0.

Definition 9.12. An ML-matrix B is said to be an #rreducible ML-matriz if T =
al, + B > 0 is irreducible. By taking o > max; |b;;|, we can make the irreducible
T aperiodic and primitive.

9.44. Suppose B is an nxn irreducible ML-matrix. Then there exists an eigenvalue
7 with the following properties.

(a) 7 is real.

(b) With 7 are associated stricly positive left and right eigenvectors, which are
unique to constant multiples.

(c) T is greater than the real part of any other eigenvalue A of B, A # 1.
(d) 7 is a simple root of the characteristic equation of B.

{e) 7 < 01if and only if there exists y > 0 (y # 0) such that By < 0, in which
case y > 0; and 7 < 0 if and only if there is a strict inequality in at least one
position in By < 0.

(f) 7 < 0if and only if A; > 0,i=1,2,...,n, where A, is the principal minor
of —B formed from the first i rows and columns of —B.

(g) 7 <0 if and only if —-B~* > 0.

9.45. An ML-matrix B is irreducible if and only if eB* > 0 for all ¢ > 0 (see Section
19.6 for matrix exponentials). In this case

eBt = eftwv’ + O(elt?)
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elementwise as t — 0o, where w and v’ are the positive right and left eigenvectors
of B corresponding to the dominant eigenvalue p of B, normed so that v'w = 1,
and having t; < p.

Proofs. Section 9.4.3.
9.43. Choose o = max; |b;;|.

9.44-9.45. Seneta [1981: 46-48].

9.4.4 Perron Matrix

Definition 9.13. An n X n matrix A is said to be a Perron matriz (polynomially
positive matrix) if f(A) > 0 for some polynomial f with real coefficients. A matrix
A is called a power-positive matriz if A*¥ > 0 for some positive integer k.

9.46. If A is an irreducible ML-matrix, then it is is a Perron matrix. Also B = —A
is a Perron matrix.

9.47. If A > 0 is irreducible, then f(A) =" | A*> 0 and A is a Perron matrix.

9.48. A power-positive matrix is a Perron matrix. Setting k = 1, we see that this
includes positive matrices.

9.49. If A is a Perron matrix, then there exists an eigenvalue 7 such that:
{(a) 7 is real.

(b) With 7 can be associated strictly positive left and right eigenvectors, which
are unique to constant multiples.

(c) 7 is a simple root of the characteristic equation of A.

9.50. Let A be a Perron matrix with 7 defined above, and let adj denote an adjoint
matrix.

(a) (i) min Zj a;; < 7 < max; Ej aij.
(il) min; >, a; <7 < max; Yy, ag5.
(b) Either adj(rI, — A) > 0 or —adj(sI, — A) > 0.

(c¢) If Ax < cx for some nonzero x > 0 and scalar ¢, then ¢ > 7; ¢ = 7 if and
only if Ax = cx.

Proofs. Section 9.4.4.

9.46. From Definition 9.12 we see that A can be written in the form T — oI,
a > 0, where T is non-negative and primitive, so that for some positive integer
k, (A + aI,,)* > 0, which is a real polynomial.

9.47. Seneta [1981: 49].
9.48. Set f(x) = z*.

9.49. Bapat and Raghavan [1997: 44, proof using matrix game theory] and
Seneta [1981: 49)].

9.50. Seneta [1981: 52].
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9.4.5 Decomposable Matrix

Definition 9.14. An square matrix A is called partly decomposable if there exist
permutation matrices II; and Il such that

. B 0
L AL, = < B> B )’

where B1; and Bos are square matrices. A matrix is said to be fully indecompos-
able if it is not partly decomposable. Clearly an irreducible matrix is also fully
indecomposable, but not necessarily vice versa. A major role of indecomposability
is in investigating the combinatorial properties of non-negative matrices.

9.51. If A > 0 is n x n and fully indecomposable, then A”~! > 0.

9.52. If A and B are non-negative n X n fully indecomposable matrices, then so is
AB. (This result is not necessarily true for irreducible matrices.)

Proofs. Section 9.4.5.
9.51. Bapat and Raghavan [1997: 66].
9.52. Bapat and Raghavan [1997: 67].

9.5 LESLIE MATRIX

Definition 9.15. A k x k Leslie matriz for population growth in animal or human
populations is a matrix A of the form

Hh f2 fs .. fecr fr

pp 0 0 ... O 0
A=| 0 p 0 ... 0 0o 1,
0 0 0 ... pp1 O
where, for i = 1,2,...,k, f; is the average number of daughters born to a single

female during the time she is in age class 4, and p; is the proportion of females
in the ith age class expected to survive and pass into the next age class. (Some
authors start the sequences with fy and py.) These fertility and survival rates are
said to be age-specific. Here each f; > 0 and 0 < p; < 1, so that A > 0. In some
cases ¢ may refer to a state (stage) rather than age class, and the model is then
stage-specific.

The matrix A, and those like it that describe population growth, are sometimes
called population projection matrices. Typically, they will contain further non-
negative elements such as down the diagonal.

9.53. Let n(t) = (n1(t), na(t),...,nk(t))’, where n;(t) is the number of females in
the ith age class at time ¢ (¢ a positive integer). Then

n(t) = An(t — 1) = A'n(0),
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where A is a population projection matrix. The case when A is singular and we
require n(¢ — 1) from n(t) is considered by Campbell and Meyer [1979: 184-187].

9.54. A sufficient condition for the Leslie matrix A to be primitive is that two
consecutive f;’s, say f; and f;11, are positive.

9.55. Suppose A is primitive (i.e., AP > 0 for some positive integer p). In fact, most
population projection matrices are primitive, and the only significant exceptions are
age-classified matrices with a single reproductive age class (Caswell [2001: 81]).

{(a) By (9.30g), there is a positive dominant eigenvalue p that is simple with
|A| < p for every eigenvalue A different from p.

(b) Setting 23 = 1 and successfully solving Ax = px using the second through to
the kth rows, a positive right eigenvector corresponding to p is

x=(Lpip ', pip2ep™%,....p1p2 'pk—lp_(k_l))/~

(c) Let y be the positive left eigenvector corresponding to p and scaled so that
x"y = 1. Then, from (9.28),

t

A
Jim ?n(O) = xy'n(0) = kx, say.

Thus for large ¢, n(t) = A'n(0) =~ ptkx, and n(t) ~ pn(t — 1).
(d) If n(t) = kx, then
n(t+1) = An(t) = kAx = kpx,

and a population with age distribution determined by x is said to have a stable
age distribution as the age structure remains unchanged. According to (c),
we see that as ¢ — oo the age distribution tends to the stable age distribution
irespective of the starting age distribution. Once the population reaches the
stable age distribution, it increases, decreases, or remains constant in size
depending on whether p > 1, p < 1, or p = 1. When p = 1, the population is
said to be stationary. Also, r = Inp is called the intrinsic rate of increase.

9.56. (Diffusion Model) Suppose we have two identical patches of organisms cou-
pled by diffusion. Suppose there are s stages and that the within-patch demography
is described by the population projection matrix A. Let D = diag(dy,ds,...,ds)
be an s X s diffusion matrix, where d; is the probability that an individual in stage
i leaves its patch to go to the other patch. If n;(¢) is the stage abundance vector
in patch ¢, then

(mien) = ("” %) (0 X) (i)
(K®DA+IS®A)(n1(t)>, K=<‘1 1)

ny(t) 1 -1
- 5(20)
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where B > 0 and “®” is the Kronecker product. For a general modeling method
for patches and stages, see Hunter and Caswell [2005].

An important application of the above theory is the life cycle graph described, for
example, by Caswell [2001: chapter 4], where a matrix like A or B is constructed
from the graph. A life cycle can also be described as an absorbing finite-state
Markov chain, which involves a transition matrix (described below). Caswell [2006]
discussed this demographic role of Markov chains in ecology.

Proofs. Section 9.5.
9.54. Demetrius [1971].
9.55. Caswell [2001: 84, section 4.5.2].
9.56. Caswell [2001: 65-66].

9.6 STOCHASTIC MATRICES

9.6.1 Basic Properties

Definition 9.16. A non-negative matrix with each of its row sums equal to 1 is
called a (row) stochastic matriz. A common application is the transition matriz
of a finite (discrete time) Markov chain in which the 7, jth element of the matrix
is the probability of going from state i to state j. In what follows, P isan n x n
stochastic matrix with P1,, = 1,,. When the Markov chain is homogeneous, we are
interested in powers P* of P. For example, if p;q is the probability that the Markov
chain is initially in state 4, then p(o) = (P10,P20,--.,Pno)" is the initial probability
distribution; after k transitions, the corresponding probability distribution is py,
where p(k = p 0{) . If, as k — 00, p) tends to a limit that does not depend on
the initial proba 1hty distribution, we say that the process has the ergodic prop-
erty. Ergodicity and the so-called coefficient of ergodicity play an important role
in more general processes such as inhomogeneous Markov processes and products
of inhomogeneous non-negative matrices (cf. Seneta [1981].) The matrix I — P is
called the Markovian kernel of the chain, and it has a useful group inverse as well
as the usual weak inverse.

If p(gy is such that p) = p(o) for all k, we say that p@ is stationary, and a
Markov chain with such an initial distribution is said to be stationary. We shall
denote this stationary distribution by 7, where (setting ¥ = 1) «'P = «’ and
7', =
9.57. If P = (p;;) is a stochastic matrix and p = min;(p;;), then any eigenvalue
A; of P satisfies [A; — p| < 1 —p. If p; and p;; are the smallest main diagonal
elements, then all the eigenvalues of P lie in the interior or on the boundary of the
oval

|z — pusllz — pj;| < (1~ pi)(1 = pjj)-
9.58. A stochastic matrix P is irreducible and aperiodic if and only if P* > 0 for
some positive integer k—that is, if and only if P is primitive.

9.59. If P is a stochastic matrix, then so is P™ for any positive integer m.
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9.60. For any stochastic matrix P,

1
lim Z(I, + P+ P? 4+ ... + PF"1) =R,

k—oo k
where R is stochastic and RP = PR = R = R2.
Proofs. Section 9.6.1.
9.57. Quoted by Marcus and Minc [1964: 161].
9.58. Bapat and Raghavan [1997: 49].
9.59. P"1, =P™ 1, =... =1,.
9.60. Bapat and Raghavan [1997: 50].

9.6.2 Finite Homogeneous Markov Chain

There is a substantial literature on Markov chains, for example, Hunter [1983b],
and more recently, Ching [2006], Herndndez and Lasserre [2003], and Norris [1997],
so that I shall consider just some basic results in this section.

9.61. Suppose P, the n xn transition matrix of a finite Markov chain, is irreducible.

(a) Since P1, = 1,, P has an eigenvalue equal to 1. However, since the row
sums are all equal, it follows from (9.9b(iii)) that p = 1 with a positive right
eigenvector of 1,. If q is a positive left eigenvector (i.e., ¢'P = q'), we can
scale q such that q'1, = 1; thus q represents a probability distribution.

(b) q/Pk — q/Pk—l _ ... = q/.

(¢) The irreducible Markov chain has a unique stationary distribution 7, the
solution of #'P = 7’ and ©'l,, = 1. We can identify & with q of (a).

9.62. Suppose that the n x n transition matrix P is irreducible with stationary
distribution 7r. Then:

(a) If t and u are any n X 1 vectors, then (I, — P+ tu’) is nonsingular if and only
if 't # 0 and u'l, # 0. If the latter conditions hold, then (I, — P + tu’)~!
is a weak inverse of I,, — P. Furthermore, any weak inverse can be expressed
in the form

(L, —P+tu) ' + 1, +gn',
where f and g are arbitrary vectors.

1,7

b) At=(1,-P+nl,)"! .
(b) A* = (I, - P+a1) "+ -2
In addition to the above weak and Moore—Penrose inverses, Hunter [1988] gives
expressions for other types of generalized inverses. For further results see Hunter
[1990, 1992].

9.63. Suppose P is a primitive stochastic matrix (i.e., irreducible and aperiodic).
Using the above notation, we have the following special case of (9.28).
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(a) lim P* = 1,7 (= Qq, say), where 7 is the unique stationary distribution.

k=00
(b) If p is a probability distribution (i.e., p’1,, = 1), then
kli'rgo pPF=p'1,n' ==’
{¢) Qo is idempotent.
(d) PQT = QoP™ = Qo for all integers m > 1.
() Qo(P —Qo)=0.
(f) Every nonzero eigenvalue of P — Qg is also an eigenvalue of P.

9.64. Suppose that a general stochastic matrix P is expressed in the canonical
form of (9.19), where Q # 0. Here Q refers to the submatrix of P associated with
transitions between the inessential states, and P is reducible.

(a) QF — 0 elementwise and geometrically fast as k — co.

(b) (I, — Q)~! exists. In finite absorbing chains, this matrix is sometimes called
the fundamental matriz of absorbing chains.

Definition 9.17. An n x n stochastic matrix P is said to be regular if its essential
indices form a single class that is aperiodic. In this case P can be expressed in the

canonical form {cf. 9.19)
(P O
P-(% a)

where P, is a stochastic irreducible aperiodic (primitive) matrix.

9.65. Suppose P is regular with canonical form described above. Let q; be the
unique stationary distribution of Py, and define ¢’ = (q1,0’) to be an 1 x n vector.
Then, as kK — oo,

Pk N lnq’

elementwise, where q' is the unique stationary distribution corresponding to the
matrix P, the approach to the limit being geometrically fast. Thus the regularity
of P is a sufficient condition for ergodicity; it is also a necessary condition.

9.66. If an n-state homogeneous Markov chain contains at least two essential
classes, then any weighted linear combination of the stationary distribution vec-
tors corresponding to each class, each appropriately augmented by zeros to give an
n x 1 vector, is a stationary distribution of the chain.

Proofs. Section 9.6.2.
9.61. Seneta [1981: 118-119)].
9.63. Rao and Rao [1998: 483, with Q instead of Qo].
9.64. Seneta [1981: 120-123].
9.65. Seneta [1981: 127; 134, exercise 4.9)].
9.66. Quoted by Seneta [1981: 134, exercise 4.12].
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9.6.3 Countably Infinite Stochastic Matrix

In this section we consider a stochastic matrix with a countable (i.e., finite or
denumerably infinite) index set {1,2,...}, with our focus on the infinite case. The
matrix P = (p;;) will still represent a stochastic matrix, but with infinite row sums
adding to unity. As matrix multiplication readily extends to infinite matrices,
= (pgc)) is well-defined for k = 1,2,..., and it is also stochastic (Seneta [1981:
chapter 5}). However, a more sensitive classification of indices is now required.

Definition 9.18. Let

) =py and 15V =3 1Fpy, k=12,
rir#EL

with l,g-]) = 0, by definition, for all 4,5 € {1,2,...}. Define, for each ¢ and j,

L;; = Zl(k) and p; = Zklgf) < oo.
k=1

An index ¢ (or state 7) is said to be recurrent if L; = 1 and transient if L;; < 1.
A recurrent index i is said to be positive- or null-recurrent depending on whether
Wi < 00 or p; = 00, respectively. Here p; is called the mean recurrence measure of
1. Note that in the Markov chain context, ZEJ’-C) is the probability of going from state
1 to state j in k steps (or in time k), without revisiting ¢ in the meantime. Thus L;;
can be regarded as the probability of staying in or returning to state ¢ for the first
time. Also u; is the mean recurrence time of state i. Thus a state 7 is recurrent if,
starting from state i, we will eventually return to state ¢ with certainty. If state ¢
is transient, then there is a positive probability that the system will never return

to state 1.
9.67. An inessential index is transient and a recurrent index is essential.

9.68. If ¢ is a recurrent aperiodic index and j is any index such that j — 4 (cf.
second part of Definition 9.5 in Section 9.4.1), then

)

llm p(k = 1Lu

In particular

hrn p(k) = u[l

Proofs. Section 9.6.3.
9.67. Seneta [1981: 165-166].
9.68. Seneta [1981: 171].

9.6.4 Infinite Irreducible Stochastic Matrix

The definition of irreducibility given by Definition 9.6 (second definition) applies
to infinite matrices; that is, A > 0 is irreducible if and only if every pair of indices
¢ and j communicate.
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9.69. The following hold for an infinite irreducible stochastic matrix.
(a) Every index has the same period.
(b) The indices are all transient, or all null-recurent, or all positive-recurrent.

Definition 9.19. In the light of (9.69b) we say that an irreducible P is a transient,
or null-recurrent, or positive-recurrent matriz depending on whether any one of its
indices is transient, or null-recurrent, or positive-recurrent.

If v'P = v’ and v is a nonzero non-negative (countably infinite) vector, we call
v an invariant measure. Note that a multiple of such a measure is still a measure.

9.70. (General Ergodic Theorem) We have the following series of limits.

(a) Let P be a primitive (i.e., irreducible and aperiodic) stochastic matrix. If P is

transient or null-recurrent, then for any pair of indices %, j, we have pg?) — 0
as k — oo. If P is positive-recurrent,

) _ -1

lim p*
o Dij IR

and the vector x = (; ') is the unique stationary distribution (invariant
vector) satisfying x'P = x’ and } ;o, z; = 1. The question of computing a
finite dimensional approximation for x is discussed by Seneta [1981: section
7.2).

(b) If P is irreducible and periodic with period d, then
. dk
Jm P = d/p.

9.71. If P is an irreducible transient or null-recurrent matrix, then there exists no
invariant measure v’ satisfying v'1 < co.
Proofs. Section 9.6.4.

9.69. Seneta [1981: 172].

9.70. Seneta [1981: 177 for (a); 196, exercise 5.1, for (b)].

9.71. Seneta [1981: 178].

9.7 DOUBLY STOCHASTIC MATRICES

Definition 9.20. A square n X n matrix A = (a,;) is doubly stochastic if A > 0
and all its column sums and row sums are 1. Some examples of doubly stochastic
matrices are given by Marshall and Olkin [1979: 45-48]. For a reference to doubly
stochastic matrices see Bapat and Raghavan [1997: chapter 2].

Definition 9.21. The diagonal of a matrix A associated with the permutation
7 is the set {@1x(1),@2x(2),---» Gnr(1)}, and the corresponding diagonal product is
H?zl a;n(s)- A diagonal is said to be positive if each element a;(;) in the diagonal
is positive.
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Definition 9.22. The matrix A is said to have a doubly stochastic pattern if there
exists a doubly stochastic matrix with the same pattern of zeros as A.

9.72. A doubly stochastic matrix has a positive diagonal. An algorithm for finding
such a diagonal is also available.

9.73. Let A = (a;;) be an n x n doubly stochastic matrix, and let y; > y2 > -+ >

Yn- Then
k k n
Zyizzzaijyj, k:1,2,...,n.
i=1 i=1 j=1

9.74. The product of a finite number of doubly stochastic matrices is doubly
stochastic.

9.75. If n x n A is doubly stochastic and nonsingular, then A~! has row and
column sums equal to 1, but it need not have non-negative elements.

9.76. If A > 0 is n x n matrix with row totals and column totals not exceeding
unity, then there exists a doubly stochastic n x n matrix B such that B > A.

9.77. (Scaling) If A is a non-negative n X n matrix with doubly stochastic pattern,
then there exist diagonal matrices D; and D, with positive diagonal elements such
that C = D; ADs is doubly stochastic.

9.78. If A is non-negative definite and doubly stochastic and has a;; < 1/(n - 1)
for each 4, then the non-negative definite square root A'/2 (cf. 10.8) is doubly
stochastic.

9.79. Every permutation matrix is a doubly stochastic matrix, because there is a
single 1 in every row and column and the remaining elements are zero.

9.80. (Birkhoff-von Neumann) A matrix is doubly stochastic if and only if it is a
convex combination of the permutation matrices.

9.81. The set of doubly stochastic matrices is the convex hull of all n x n permu-
tation matrices (of which there are n), and the latter constitute the extreme points
of this set.

9.82. Let A = (a;;) be a doubly stochastic n x n matrix.

(a) The permanent (cf. Section 4.5) of A is positive.

n,

(b) per(A) > =

with equality if and only if a;; =n~! for all 4, j.

9.83. The matrix (a;;) = (n~') is the unique irreducible idempotent n x n doubly
stochastic matrix.

9.84. If T = (t;;) is a real orthogonal matrix, then A = (tZ,) is doubly stochastic.

9.85. If A > 0isnxn (A # 0), then A has a doubly stochastic pattern if and
only if every positive entry of A is contained in a positive diagonal.
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Definition 9.23. A matrix A = (a;;) is said to be orthostochastic if there exists an
orthogonal matrix T such that a;; = ;. If there exists a unitary matrix U = (us)

such that a;; = |u;|?, then A is said to be unitary-stochastic (Marshall and Olkin
[1979: 23)).

Definition 9.24. A square matrix A is said to be doubly substochastic if A > 0
and all row and column sums are at most 1.

9.86. The set of all n x n doubly substochastic matrices is a convex set.

9.87. From the definition we have that any square submatrix of a doubly sub-
stochastic matrix is doubly substochastic.

9.88. If A = (ay;) is doubly substochastic, then there exists a doubly stochastic
matrix B = (bl]) such that aij S bij for all Z,_]

9.89. If A = (ai;) and B = (b;;) are doubly substochastic, then their Hadamard
(Schur) product A o B = (a;;b;;) is doubly substochastic.

Proofs. Section 9.7.
9.72. Bapat and Raghavan [1998: 63-66].
9.73. Anderson [2003: 646].
9.74. Marshall and Olkin [1979: 20].
9.75. Al, = 1,, implies 1,, = A~11,,, and A’l,, = 1, implies 1, = A~V1,,.
9.76. Bapat and Raghavan [1997: 75].
9.77. Bapat and Raghavan [1997: 87].
9.78. Marshall and Olkin [1979: 51].

9.80. Bapat and Raghavan [1997: 63], Rao and Rao [1998: 314-315], and
Zhang [1999: 127].

9.81. Marshall and Olkin [1979: 19] and Rao and Rao [1998: 308-309].
9.82. Bapat and Raghavan [1997: 93] and Rao and Rao [1998: 314].
9.83. Marshall and Olkin [1979: 19].

9.84. Follows from the fact that the rows and columns of an orthogonal matrix
each have unit length.

9.85. Bapat and Raghavan [1997: 68].
9.86. Follows immeditately from the idea of a convex combination.
9.88. Horn and Johnson [1991: 165] and Marshall and Olkin [1979: 25].

9.89. Since bij < 1, aijbij S Qi .



CHAPTER 10

POSITIVE DEFINITE AND NON-NEGATIVE
DEFINITE MATRICES

Quadratic forms that are non-negative definite play an important role in statistical
theory, particularly those related to chi-square distributions. They can also be used
for establishing a wide variety of inequalities, such as those in Chapter 12.

10.1 INTRODUCTION

Definition 10.1. Let A be an n x n Hermitian matrix, and let x € C*. Then
x*Ax is said to be a Hermitian non-negative definite (n.n.d.) quadratic form if
x*Ax > 0 for all x. If x* Ax is Hermitian n.n.d. we say that A is Hermitian n.n.d.
and we write A > 0. (Some authors use the term positive semi-definite instead of
n.n.d. We reserve the former for the following definition.)

If A is Hermitian and n.n.d., and there exists x, x # 0 such that x*Ax = 0, we
say that A is Hermitian positive semidefinite or positive indefinite. An alternative
definition is that A is n.n.d. and det A = 0.

If x*Ax > 0 for all x # 0, then we say that A is Hermitian positive definite
(p.d.) definite and write A > 0.

Given n x n Hermitian matrices A and B, we say that A - Bif A—B > 0.
Similarly we say that A > B if A — B > 0. This is referred to as the (partial)
Léwner ordering of matrices. There are many applications of Lowner ordering in
statistics such as estimability and efficiency of estimation.

In most applications, A is a real symmetric matrix, in which case we simply
replace * by ’, assume x € R", and drop the term Hermitian in the above definitions

A Matriz Handbook for Statisticians. By George A. F. Seber 219
Copyright © 2008 John Wiley & Sons, Inc.



220 POSITIVE DEFINITE AND NON-NEGATIVE DEFINITE MATRICES

and in what follows. Thus a positive definite matrix without the adjective Hermitian
will always represent a real symmetric matrix. The same is true for a non-negative
definite matrix.

10.1. The following matrices are all assumed to be Hermitian.
(a) A, > B;and A; = B, 1mply that A; + Ay > By + Bs.
(b) If A > B and B > C, then A > C.

(¢) A; = By and A, > Bs do not necessarily imply that A; A2 > B;Bg, even
if A;As and BB, are Hermitian. Thus A > B does not neccessarily imply
that A2 > B2.

Proofs. Section 10.1.
10.1a. Consider the corresponding quadratics.

10.1b. x*(A—C)x = x*(A—B+B - C)x = x*(A—B)x+x*(B—C)x > 0.

10.2 NON-NEGATIVE DEFINITE MATRICES

10.2.1 Some General Properties

In this section we assume that A is a Hermitian n X n matrix, unless otherwise
stated. The results hold for a real symmetric matrix if we replace * by ’.

10.2. A > 0 if and only if all its eigenvalues are real and non-negative .
10.3. If A = 0, then from (10.2), det A = [, A; > 0.
10.4. If A = 0, then traceA =}, A; > 0.

10.5. Given A > 0, then any principal submatrix of A, including A itself, is
non-negative definite. In particular, the diagonal elements of A are non-negative.

10.6. A > 0if and only if all principal minors (including A itself) of A, and not just
0 o0
0 -1
leading principal minors including A itself, but it is not non-negative definite.

the leading ones, are non-negative. Note that A = < has non-negative

10.7. (Fejer) A > 0 if and only if

D

i=1j

az-jbij > 0
1

n n

for all n x n non-negative definite matrices B = (b;;).

10.8. If A > 0 and k is a positive integer, there exists a unique non-negative
definite matrix A/* > 0 such that (A'/*)* = A. In particular, if A = UAU*,

where A = diag(\1, ..., An) and the A; are the non-negative eigenvalues of A, then
Ak = UAY*U*, where AVF = diag(/\}/k,..., ,17,/’6). The case k = 2 arises

frequently in statistics. We note the following.
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(a) A and AY* commute.
(b) The eigenvalues of A/* are the kth roots of those of A.

)
)
(c) rank A = rank(A'/k).
(d) Tf A is real, then so is Al/%.
)

(e) For k = 2 and A real, another way of deriving A1/? is to obtain the Cholesky
decomposition A = RR’. Then, if R = PXQ’ is the singular value decom-
position of R, we have A'/2 = PXP’ as (A'/?)?2 = PX?P’ = RR/.

(f) If A > 0, then (A~1)1/2 = (A1/2)~1,

10.9. If A > 0, then the matrix (afj) for k a positive integer is non-negative
definite.

10.10. If A is of rank 7, then A > 0 if and only if A = RR*, where R is n x n of
rank 7. The result is also true if we replace R by an n X r matrix of rank r, as we
have a full-rank factorization of A.

10.11. A > O is of rank r if and only if there exists an n X r matrix S of rank r
such that S*AS =1,.

10.12. Let A > 0.
(a) CAC* >~ 0.
(b) If CAC* =0, then CA = 0; in particular, CC* = 0 implies that C = 0.
(¢} rank(C*AC) = rank(AC).

10.13. If A = 0 and a;; = 0, then a;; = 0 for all j = 1,2,...,n. Since A is
Hermitian, a;; = 0 if and only if the row and column containing a;; consist entirely
of zeros.

10.14. If A > 0, then A* > 0 for k a positive integer.

10.15. If trace A > Retrace(AU) for all unitary matrices U (i.e., U*U = L,),
then A is non-negative definite. (Here Re denotes “real part of.”)

10.16. Let A be any m x n real matrix, and let V be an m X m non-negative
definite matrix. If Z is any matrix such that C(Z) = M(A') (i.e., the columns of Z
span the null space of A’), then C(A)NC(VZ) = 0 and

C(A,V)=C(A,VZ)=C(A)aC(VZ).
We can express Z in the form Z =1 — (A’)~ A"

10.17. Let A = (a;;) > 0. If f(2) = ap + a1z + a22? + ... is an analytic function
with non-negative coefficients and radius of convergence R > 0, then the matrix
with (4, j)th elements f(a;;) is n.n.d. if all |a;;} < R.

10.18. We have the following results.
(a) Given the real matrix A > 0, then

C(BAB') =C(BA) and rank(BAB’) = rank(BA) = rank(AB’).
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(b) If ( 5o ) is n.n.d., then CB) C C(A) and C(B') C C(C).

10.19. Let A be an n X n real symmetric idempotent matrix, and suppose that

{B1,Ba,...,Bx} is a set of real n X n non-negative definite matrices such that
k
IL,=A+) B.

Then AB; =B, A=0fori=1,2,...,k.
Proofs. Section 10.2.1.
10.2. Horn and Johnson [1985: 402] and Rao and Rao [1998: 181].
10.5. Set appropriate elements of x in x*Ax equal to zero.
10.6. Abadir and Magnus [2005: 223} and Zhang [1999: 160].
10.7. Horn and Johnson [1985: 459).

10.8. Horn and Johnson [1985: 405 for (a—(d)], Golub and Van Loan [1996:
149 for (e)], and Abadir and Magnus [2005: 221 for (f)],

10.9. Horn and Johnson [1985: 461].

10.10. Seber and Lee [2003: 460, real case]. We can also choose R such that
R*R = A, where A is a diagonal matrix with diagonal elements the positive
eigenvalues of A. (cf. Abadir and Magnus [2005: 219]).

10.11. Seber and Lee [2003: 460, real case].
10.12. Abadir and Magnus [2005: 221, real case].
10.13. Zhang [1999: 161].

10.14. From (10.8) with B = A'/2 we have A* = (B?)* = (B*)? = C2, say,
where C is symmetric.

10.15. Rao and Rao [1998: 343].
10.16. Harville [1997: 387].
10.17. Rao and Rao [1998: 214].

10.18. Sengupta and Jammalamadaka [2003: 45, A and B interchanged in
(a)).
10.19. Graybill {1983: 398).
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10.2.2 Gram Matrix

Definition 10.2. Let {v;,va,...,vk} be a set of n vectors in an inner product
space V with inner product {-,-). Then the Gram matrix of the vectors v; is the
k x k matrix G = (gs;), where gg; = (v;, v;).

10.20. Let G be the Gram matrix of the vectors {wy,ws,...,wg} in C" with
respect to the inner product (-,-), and let W = (wy,wa,...,Wg) be an n x k
maftrix.

(2) G is Hermitian non-negative definite.
(b) G is nonsingular if and only if the vectors wy, ..., W are linearly independent.

(c¢) There exists a Hermitian positive definite n x n matrix A such that

G =W'AW.

(d) If r is the maximum number of linearly independent vectors in the set of
vectors {wy,...,w}, then rank G = rank W = r.

(e) If {x,y) = x*y, then A =1, in (c).
Proofs. Section 10.2.2.
10.20. Horn and Johnson {1985: 407-408].

10.2.3 Doubly Non-negative Matrix

Definition 10.3. A (real) non-negative definite matrix that is also non-negative
(i.e., A > 0 with non-negative elements) is referred to as doubly non-negative
matrix. A square matrix A is said to be completely positive if there exists an n x k
matrix B such that B > 0 and A = BB’. (The smallest value of & is called the
cp-rank of A and its properties are considered by Berman and Shaked-Monderer
[2003: chapter 3].)

Completely positive matrices arise in relation to graph theory, block designs,
some maximum efficiency-robust tests, and in a Markovian model for DNA evolu-
tion (cf. Berman and Shaked-Monderer [2003: 68-70], who also give further refer-
ences). The following results make full use of (10.10).

10.21. It follows immediately from the definition that A is completely positive if
and only if it can be expressed in the form

k
A=>"bbl, b;>0, i=1,..,k
=1

where b, is the ith column of B.

10.22. A completely positive matrix is doubly non-negative. However, the converse
is not necessarily true, except in some cases. For example, a rank 1 or rank 2 doubly
non-negative matrix is completely positive.
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10.23. We have the following results for completely positive matrices.

(a)
(b)

()

(f)

The sum of completely positive matrices is completely positive.

The Kronecker product of two completely positive matrices is completely
positive.

If A is a completely positive n x n matrix, and C is an m X n non-negative
matrix, then CAC’ is completely positive. Two special cases that are of
interest when m = n are when C is a permutation matrix, or a diagonal
matrix with non-negative elements.

If A is completely positive, then so is A*, where k is a positive integer.

Let A and B be n x n completely positive matrices with columns a; and b;,
respectively. Then the Hadamard product

AoBzii a; obj)(a; ob;)’

is also completely positive.

The principal submatrices of a completely positive matrix are completely
positive.

10.24. If A is a symmetric n X n totally non-negative matriz (i.e. every minor is
positive), then A is completely positive. Furthermore, since A = BB’, we can
choose B to be either a non-negative upper-triangular matrix or a non-negative
lower-triangular matrix.

Proofs. Section 10.2.3.

10.22. Berman and Shaked-Monderer [2003: 64].

10.23a. This follows from (10.21).

10.23b. This follows from (BB') ® (CC’) = (B® C)(B® C)'.

10.23c. Since A = BB/, the result follows from CBB'C’ = (CB)(BC)'.
10.23d. The result is obvious when k = 2! and follows from (c) when k = 2{+1.

10.23e. This follows from (10.21) and the fact that cc’, where ¢ = a; o by,
is non-negative definite and the sum of non-negative definite matrices is non-
negative.

10.23f. Berman and Shaked-Monderer [2003: 64-66).
10.24. Berman and Shaked-Monderer [2003: 126].
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10.3 POSITIVE DEFINITE MATRICES

In this section we assume that A is a Hermitian n x n matrix, unless otherwise
stated. Note that the eigenvalues of a Hermitian matrix are real.

10.25. There exists a real number a such that I, + aA > 0.

10.26. (Kato) If A has no eigenvalue in the interval [a,b], then (A — al,,)(A —
bI,,) > 0.

10.27. If A = (a;;) > 0, then so are A’, A = (a;;), and A~L.

10.28. Given the inner product {x,y) = x*y, then A > 0 if and only if A is the
Gram matrix (cf. Section 10.2.2) of n linearly independent vectors.

10.29. A > 0 if and only if all its eigenvalues are positive.

10.30. A > 0 if and only if there exists a nonsingular matrix R such that A =
RR*.

10.31. Let A > 0, and let C be p X n of rank g (¢ < p). Then:

(a) CAC* = 0.
(b) rank(CAC*) = rank(C).
(c) CAC* ~0if g =p.

(d) B*AB =0 if and only if B = 0.

10.32. If A > 0 and k is a positive integer, then, arguing as in (10.8), there exists
a unique A'/* > 0 such that (A'/%)* = A. A particularly useful case is k = 2.

10.33. Consider the quadratic x* Ax, where A is Hermitian.

(a) By relabeling the elements of x, we see that if A > 0, then so is any matrix
obtained by interchanging any rows and the corresponding columns.

(b) By setting some of the z; equal to zero, we see that the principal submatrices
of A are all Hermitian p.d. In particular, the diagonal elements of A are all
positive.

10.34. If A > 0 then, since the diagonal elements are positive, we have:

(a) (Hadamard) 0 < det A < ajia22---ann, With equality if and only if A is
diagonal (see also (12.27)).

(b) trace A > 0.
(€) laij| < Jaaa;; < max{ai, aj;}, i # 7.

10.35. A > 0 if and only if all the leading principal minors are positive (including
det A).

10.36. A >~ 0 if and only if the principal minors in any nested sequence of n
principal minors are positive.
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10.37. If A > 0, then from (10.27) we have A~! = (a*) > 0. Furthermore:
(a) a'ay; > 1.
(b) If A is real and a;; < 0 for all ¢ # j, then a¥/ > 0 for all ¢, 5.
(c) Let
As Ay B;; B

where Ay, and B;; are m x m matrices. Then the ith diagonal element of
A is greater than or equal to the ith diagonal element of B!

A:<A11 A12> and A_1=B:(B11 B12>’

10.38. If A = 0, then A + A1 > 2I,,.

10.39. If A > 0 is a real n x n matrix, then
log(det A) < trace A — n,
with equality if and only if A =1,,.

10.40. If A > 0 is a real n X n matrix, o a real scalar, and a a real n x 1 vector,
then
aA —aa’ >0 ifandonlyif a’A la<a.

10.41. If A is a real symmetric matrix, then there exists a scalar ¢ such that
A +tl, ~ 0.

10.42. If A is any m X n matrix of rank r, then, from the corresponding quadratic
form, A*A is Hermitian n.n.d. of rank r if < n and Hermitian p.d. if r = n.

10.43. (Otrowski-Taussky) If A is any n xn matrix such that B = %(A+A*) =0,
then
det B < |det A|,

with equality if and only if A is Hermitian.

10.44. If A is an n X n real symmetric matrix that is d.d. namely, strictly row or
column diagonally dominant (cf. Section 8.4) and if a;; > 0 for all i = 1,2,...,n,
then it follows from (8.53b) and (10.35) that A > 0.

Definition 10.4. (Hilbert Matrix) The n x n matrix H(n) = (h;;), where hy; =
1/(i +j — 1), is called a Hilbert matriz of order n. It is well known that H(n) is
highly ill-conditioned (e.g., Seber and Lee [2003: 166, 372]) and has a condition
number of approximatelye35”® for large n. It arises in the fitting of polynomial
regression models.

10.45. The Hilbert matrix H(n) is positive definite.
Proofs. Section 10.3.

10.25. Abadir and Magnus [2005: 218].

10.26. Abadir and Magnus [2005: 218, real case].

10.27. We have aj; = @;; so that > ) (a:;; + Gi;)Z;ix; is unchanged if we
replace a;; by aj; or @;;. Also, if x = Ay, then x*A~!x = y*Ay.
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10.28. Quoted by Berman and Shaked-Monderer [2003: 16] and proved by
Horn and Johnson [1983: 407-408].

10.29. Horn and Johnson [1983: 402].
10.30. Horn and Johnson [1983: 406].

10.31. Abadir and Magnus [2005: 221, real case], Horn and Johnson [1983:
399, complex case|, and Seber and Lee [2003: 461, real case].

10.34a. Abadir and Magnus [2005: 337] and Horn and Johnson [1983: 477).
10.34b. The eigenvalues are positive so that their sum (the trace) is positive.
10.34c. Harville [2001: 101, exercise 39].

10.35. Abadir and Magnus [2005: 223] and Horn and Johnson [1983: 404].

10.36. Permute rows and corresponding columns and note that II'AII > 0
if and only if A > 0 for the permutation matrix II; see Horn and Johnson
[1985: 404].

10.37. Graybill {1983: 402-403, real case].

10.38. This follows from U*(A + A~1)U - 2I,, = A + A~ - 2I,, = 0, since
N+ AT 2= (A2 AT >0,

10.39. Abadir and Maganus [2005: 333].
10.40. Farebrother [1976].

10.41. Graybill [1983: 408-409].

10.43. Horn and Johnson [1985: 481].

10.45. This follows from the fact that if V is the space of continuous functions
on [0, 1], with inner product

(f.q) = / f(2)g(x) dz,

then H(n) is the Gram matrix of fi(z) = "%, i = 1,...,n (Berman and
Shaked-Monderer [2003: 16}).

10.4 PAIRS OF MATRICES

10.4.1 Non-negative or Positive Definite Difference

In this and subsequent sections I give a number of results for pairs of matrices. I
have tried to be systematic with the consequence that some of the results overlap.

10.46. Suppose A and B are Hermitian n x n matrices.

(a) A > B if and only if R*AR > R*BR for nonsingular R.
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{b) Let S be any n x m matrix, then:
(i) A > B implies that S*AS > S*BS.
(ii) If m < n and rank S = m, then A > B implies S*AS ~ S*BS.
10.47. Let A and B be n x n Hermitian matrices.
(a) If A > B, then the following hold.

(1) A(A) > Ai(B), where in each case the A; are ordered A\ > dg > -+ >
An.
(ii) From (i) and (6.17b) we have trace A > trace B.

(iii) From (i) and (6.17a) we have |A|lr > ||B||r, where ||-|| ¢ is the Frobenius
norm.

(iv) If A > B, then the above inequalities are strict.
(b) If A\;(A) > Ai(B) for each i, then there exists a unitary matrix U such that
U*AU > B.
10.48. Let A and B be Hermitian non-negative n x n matrices. If A > B, then
the following hold.
(a) rank A > rank B.

(c) AY2 = B2 (cf. 10.8).

)
(b) det A > det B.
)
(d)

trace A > trace B.
(e) Tt is not true in general that A% > B2
(f) Suppose A and B commute, then A* = B* for k =2,3,.. ..

10.49. Suppose A and B are Hermitian n x n matrices. If B > 0 and A > B,
then:

() A=A-B+B>0.

(b) If A, is a principal submatrix of A of order r and B, is the corresponding
submatrix of B, then A, > B,.

10.50. Let B > 0 be Hermitian and A be Hermitian n.n.d. (respectively p.d.).

(a) The eigenvalues of AB~!, namely the roots of det(A — AB) = 0, are real
and non-negative (respectively positive) because they are the same as those
of B-1/2AB~Y/2, which is n.n.d. (respectively p.d.)

(b) B — A is n.n.d. (respectively p.d.) if and only if the eigenvalues A\; of AB™!
all satisfy A; < 1 (respectively A; < 1).

10.51. Let A and B be n x n Hermitian p.d. matrices. Then:
(a) A > Bifandonlyif B! > A~L
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(b) A > B if and only if B! » A"l
(c) If A > B, then X;(A) > A;(B) > 0 (cf. 10.47a(i)).

(d) If A > B, then, from (c), trace A > trace B and (from 6.17¢) det A > det B.
Equality occurs in each case if and only if A = B.

10.52. Let A and B be n x n real n.n.d. matrices.
(a) The following two statements are equivalent:
(1) A>B.
(2) C(B) C C(A) and Apmax(BA™) < 1, where Apax(BA7™) is independent

of the choice of weak inverse A~. For example, we can choose A*, the
Moore—Penrose inverse.

(b) If A = B > 0, then Bt = AT if and only if C(A) = C(B).
10.53. If A and B are real symmetric n X n nonsingular matrices and A > B, then
B! AL
10.54. Given real n x n matrices A > 0 and symmetric B = (b;;}, then A-B > 0

provided that the |b;;| are all sufficiently small. In particular, A — ¢tB > 0 for |¢|
sufficiently small. Similarly, for sufficiently small positive t, A +¢tB > 0.

10.55. (Regression) Let V > 0 be n x n, and let X be an n X p matrix of rank p.
Then:

(a) V= X(X'V-1X)"1X".
(b) X'VX » (X'V~!X)~! for any X such that X'X =1I,,.
Proofs. Section 10.4.1.

10.46. Horn and Johnson [1985: 470]. We have x*R*ARx = y*Ay and
x =0 if and only if y = 0.

10.47a(i). Horn and Johnson {1985: 182, with A and B relabeled, B becoming
A — B = 0, and eigenvalues in the reverse order] and Zhang [1999: 227].

10.47b. Zhang [1999: 235].

10.48. Abadir and Magnus [2005: 332, for (c), (e), and (f)] and Zhang [1999:
169-170, for (a)-(d)].

10.49a. We have x*(A — B)x + x*Bx > x*Bx > 0.
10.49b. This follows by appropriately choosing x in x*(A — B)x.

10.50. Dhrymes [2000: 86-89, real case] and Horn and Johnson [1985: 471,
with A and B interchanged).

10.51. Dhrymes [2000: 89, for (a)} and Horn and Johnson [1983: 471].
10.52. Liski and Puntanen [1989).

10.53. Graybill [1983: 409].

10.54. Graybill [1983: 409] and Seber [1977: 388].

10.55. Abadir and Magnus [2005: 342].
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10.4.2 One or More Non-negative Definite Matrices

In this section we consider a number of inequalities for non-negative definite ma-
trices. For further such inequalities, the reader should refer to Chapter 12, and to
Chapter 6 for those relating to eigenvalues.

10.56. Suppose A and B are n x n Hermitian matrices with B > 0.

(a) M(A+B) > N(A),i=1,2,...,n, where A\; > A3 > ... > ), are the (real)
ordered eigenvalues of the particular matrix. If B > 0, then the inequality is
strict.

(b) From (a) we have trace(A + B) > trace A.
(c¢) |A+BJ|lg = ||Allr, where || - || is the Frobenius norm.
10.57. Let A and B be n x n Hermitian matrices.

(a) The eigenvalues of AB are real if either A or B is Hermitian non-negative
definite.

(b) If B > 0, then the roots of det(A — AB) = 0 are real.

10.58. Let A > 0 and B > 0 be n x n Hermitian matrices. Then:
(a) A+ B> 0.
(b} det(A + B) > det A with equality if and only if B = 0.
(c) If A — B > 0, then det(A — B) < det A.

10.59. Suppose A >~ 0 and B > 0 are Hermitian n X n matrices.
(a) The eigenvalues of AB are non-negative.
(b) trace(AB) < trace A trace B.

(c) det(A + B) > det A + det B with equality if and only if A + B is singular
orA=00orB=0.

(d) 2(A"'+B7!) > (A+B)~! if A and B are nonsingular, with equality if and
only if A = B.

10.60. Given a real symmetric matrix A > O and real skew-symmetric B (i.e.,
= —B), then det(A + B) > det A with equality if and only if B = 0.

10.61. Given real symmetric A > 0 and B > 0, then

A7 '+ (1-a)B™' = [eA + (1 - a)B] !
for all 0 < o < 1. A special case of historical interest is & = § (cf. (10.59d)).
10.62. If A > 0 and A + B > O are real symmetric matrices, then

det(A + B)/(det A) < expltrace(A™'B)],

with equality if and only if B =0
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10.63. (Haynsworth) If A, B, and A — B are all real n x n p.d. matrices, then
det(A + B) > det A + ndet B.
10.64. (Hartfiel) If A and B are real n X n p.d. matrices, then
det(A + B) > det A + det B + (2" — 2)(det A - det B)}/2.
10.65. (Olkin) If A > 0 and B is symmetric with det(A 4+ B) # 0, then
A7' - (A+B)"' >~ (A+B)"'B(A+B)"L
The inequality is strict if and only if B is nonsingular.

10.66. Let A and B be n x n real non-negative definite matrices. Then any two
of the following conditions implies the third.

(1) rank A = rankB.
2y A=-B>=o0.
(3) Bt = AT = 0.

10.67. Let C be any real symmetric matrix. There exist two unique matrices
A > 0 and B > 0 such that AB = 0 and

C=A-B.
Proofs. Section 10.4.2.

10.56a. Horn and Johnson [1985: 182] and Magnus and Neudecker [1999:
208, real case].

10.56¢c. Follows from (10.47a(iii)} by relabelling B - A, A — B — B and
A - A+B.

10.57. Graybill [1983: 404, real case].
10.58a. Use x*(A + B)x > x*Ax.

10.58b. Follows from (10.56a) as A;(A) > 0. Magnus and Neudecker [1999:
21, real case].

10.58¢c. We replace A by A — B in (b) and (a).
10.59. Zhang [1999: 166, 168-169].

10.60. det(A +B) = det A det(I,, + A~/2BA~1/2) > det A by (5.24c), since
A~1/2BA~1/? ig skew-symmetric.

10.61. Marshall and Olkin [1979: 469-471 and Styan 1985: 41].
10.62. Abadir and Magnus [2005: 339].

10.63. Ouellette [1981: 216].

10.64. Ouellette [1981: 218].

10.65. Abadir and Magnus [2005: 340].

10.66. Oeullette [1981: 251] and Styan [1985: 47].

10.67. Graybill [1983: 339-401].
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CHAPTER 11

SPECIAL PRODUCTS AND OPERATORS

In order to handle a number of complicated manipulations, which typically arise
for example in multivariate statistical analysis, a number of special products and
operators have been developed, along with rules for using them. Being able to treat
a matrix like a stacked vector is one such example that arises when one is finding
derivatives and Jacobians in later chapters.

11.1 KRONECKER PRODUCT

11.1.1 Two Matrices

We shall consider a number of operators on pairs of matrices that have the following
product properties shared by the real numbers, R.

(i) The product is associative, i.e., a(bc) = (ab)c for all a,b,c € R.

(ii) The product is distributive with respect to addition, that is, a(b+c¢) = ab+ac
and (a +b)c =ac+befor all a,b,c € R.

(iil) There exist 0 and 1 such that for all ¢ € R, a(0) = 0 and a(1) = a.

The following product has these properties.
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Definition 11.1. If A is an m x n and B is p x ¢, then the Kronecker product of
A and B is defined by the mp X ng matrix

(111B (112B ce alnB
a1B axpB - a,B

Aop=| @B =B owB | g
amlB am2B e amnB

The matrices A and B may be complex and we note that, in general, AQB # BQA.
Also A and B can be replaced by vectors in the above definition.

The terms direct product and tensor product are also used in the literature. It
should be noted that Graybill [1982: 216] defines the direct product to be AxB,
which is actually B® A in our notation. Although Kronecker’s name is associated
with the above product, Henderson et al. [1983] suggest that Zehfuss should perhaps
have the honor (see also Horn and Johnson [1991: 254]). In addition to the following
results, further properties are listed in this chapter under star product, vec and vech
operators, vec-permutation matrix, Jacobians and matrix linear equations. Many of
the proofs of the properties given below are straightforward, and details are given in
Abadir and Magnus [2005: chapter 10], Brewer [1978], Harville [1997: chapter 16],
Horn and Johnson [1991: section 4.2, complex case], Kollo and von Rosen [2005:
chapter 1], Magnus and Neudecker [1999: chapter 2], and Schott [2005: chapter 8].
The product rule of (11.11a) is particularly useful.

Knonecker products have been used extensively in statistics—for example, in
experimental design, analysis of variance modeling (e.g., Rogers [1984], Ryan [1996],
and Schott [2005: 288-290]), and multivariate moment problems.

Definition 11.2. If A; isn; xn; (i=1,2,...,7), then

A, 0 .- 0
diag(A,,... A)=| O A2 0
0 0 - A,
is said to be the direct sum of Ai,...,A,, and is sometimes written in the form

diag(A,..., A )=A;1 8 --BA,.
11.1. (General Properties)
(a) cRA=cA=A®ec
b) xXQy=yx'=yx
(¢) cA ®bB = abA ® B.
(d) I, ® L, =L,
e) (A®B)Y =A'@B'".
)

f) (A®B)=A®Band (A®B)* = A*®B*. Here A is the complex conjugate
of A and A* is the conjugate tranpose.

(

(

(g) (A®B)” = A~ ® B, where A~ and B~ are any weak inverses of A and
B, respectively.
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(h) (A®B)t = AT @ BT, where At and B* are Moore-Penrose inverses.

(i) If A and B are nonsingular, then so is A ® B and
(A®B)"'=A"1g@B L

(j) B® A =H;A ® BH;, where H; and H; are permutation matrices that are
independent of A and B except for their sizes.

(k) rank(A ® B) = rank(A)rank(B).
() If A is m x m and B is p x p, then

(i) det(A @ B) = (det A)P(det B)™.
(ii) trace(A ® B) = trace(A) trace(B).

(m) ||A ® B||r = ||A||[rB||F, where || - || r is the Frobenius norm.
(n) I, ® A = diag(A, A, ..., A), where there are n diagonal blocks.
(o) (A ®B)* = Ak @ B*, for positive integer k.

11.2. (Direct Sum) (A®B)®C = (A® C) @ (B ® C). However, in general,
A BoC)£(A®B)8(A®C).

11.3. (Partitioned Matrices)
(a) (Al,AQ) ®B= (Al RB,A; ® B)
(b) (Avx)B=(A®x)(B®1l)=AB®x

(c) Suppose A is partitioned into submatrices, say

Ay - Ay
A= e ’
Arl Ars
then
A jeB - A, ®B
A®B= . .
Arl®B Ars®B

(d) fB=(B1,By,...,B;), thena®@B=(a®By,...,a® B,).

11.4. (Singular Value Decomposition) Let A be an m x n matrix of rank r; with
a singular value decomposition A = V;X; W7, and let B be a p x ¢ matrix of rank
79 with singular value decomposition B = VX, W3, where V; and W; (i = 1,2)
are unitary matrices. Let ¢;(C) be the ith singular value of C for C = A or B.
Then

ARB=(V;®V3)(Z ®3)(W; @ Wy)™,

where the nonzero singular values of AQB are the r17, positive numbers {o;(A)o;(B)}
(i=1,...,r1;5 = 1,...,72) (including multiplicities). Zero is a singular value of
A ® B with multiplicity min{mp,ng} — rir2. In particular, the singular values of
A ® B are the same as those of B® A, and rank(A ® B) = rank(B ® A) = rir3.
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11.5. (Eigenvalues and Vectors) Let {A;} and {x;} be the eigenvalues and the
corresponding right eigenvectors of the m x m matrix A, and {u;} and let {y;} be
the eigenvalues and corresponding right eigenvectors for the n x n matrix B.

(a) A®B has eigenvalues { ;4 } (including algebraic multiplicities), and {x;Qy;}
(i =1,2,...,m;5 = 1,2,...,n) are right eigenvectors of A ® B (but not
necessarily all of them). Note that B ® A also has eigenvalues {\;u;}. It
should be noted that not every eigenvector of A ® B is of the form x ® y,
where x is an eigenvector of A and y is an eigenvector of B. Abadir and
Magnus [2005: 279] give a counterexample.

(b) The so-called Kronecker sum (A ® I, + I, ® B) has eigenvalues {X; + p;}
with corresponding right eigenvectors {x; ® y;}.

11.6. Let A be m x m and B be n X n matrices. We have the following results,
some of which are also listed elsewhere under the appropriate matrix topic.

(a) If A and B are both diagonal matrices, then so is A ® B.

(b) If A and B are both upper (respectively lower) triangular matrices, then
A ® B is also upper (respectively lower) triangular.

(c) If A and B are non-negative definite (respectively positive definite), then so
is A®B.

(d) If A and B are both symmetric (respectively Hermitian), then so is A ® B.
(e) If A and B are both orthogonal (respectively unitary), then so is A ® B.
(f) If A and B are idempotent, then so is C = A ® B. In fact

Pc=Pa®Pg,
where P is the projection onto C(C).

11.7. If A and B are non-negative definite, then A ® A > B ® B if and only if
A > B, where A > B means that A — B is non-negative definite.

11.8. If A and B are n x n non-negative definite matrices, then:
(a) trace(A ® B) < }(trace A + trace B)2.
(b) trace(A ® B) < 1 trace(A ® A + B® B).

Definition 11.3. The function f is analytic in an open set if it can be expressed
as a power series, namely f(z) = ag + a1z + agz® + - -.

11.9. If f is analytic and f(A) exists, where A is m X m, then:
(a) f(I, ® A) =1, ® f(A).
(b) F(ABL) = f(A) @],

For example,

(i) exp(I, ® A) =1, @ exp(A).
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(i) (ADF=A*QL k=1,2,....
Proofs. Section 11.1.1.

11.1. For proofs see Abadir and Magnus [2005: section 101, Harville {1997:
section 16.1], Rao and Rao [1998: chapter 6], and Schott [2005: section 8.2].
Some of the results follow using the product rule (A®B)(C®D) = AC®BD)
from (11.11a). For example, to prove (g), (A @ B)(A- ® B")}(A ® B) =
AA-A®BB B = A ®B; (h) is similar. For (i), (A~! @ B-)(A @ B) =
A-'A®@B !B =1; (k) and (1) are proved by Schott [2005: 286-2880]; and
(m) is proved by Harville [2001: 143, exercise 9].

11.3c. Abadir and Magnus [2005: 278] and Harville [1997: 338-339)].
11.3d. Harville {1997: 339] and Turkington [2002: 9].
11.4. Horn and Johnson [1991: 246].

11.5a. Horn and Johnson [1991: 245, m and n interchanged] and Rao and
Rao [1998: 195]. For eigenvalues see Schott [2005: 286].

11.5b. Horn and Johnson [1991: 268-269, A and B interchanged].

11.6. The proofs follow by checking the appropriate property using (11.1) and
applying the product rule (11.11a). For example, if A and B are orthogonal,
then from (11.1e) we have (A Q@ B)(A®B) = A’A ® B'B = I,. For (¢)
use A = RR*, and so on, and apply (11.1f) and (11.1k). Also, for (d),
(A®B)* = A* ® B* = A ® B. Harville [2001: 141, exercise 6] proves the
second part of (f).

11.7. Abadir and Magnus [2005: 280].

11.8a. We use (11.1{(ii)), namely , trace(A ® B) = trace A traceB, and
expand (trace A — trace B)? > 0.

11.8b. Use the trace of a sum is the sum of the traces, and apply trace(A ®
B) = trace A trace B.

11.9. Expand f(B) as a matrix power series, apply the product rule to each
term, as for example in (ii), and then use (11.10b). For (i) we use the power
series given in Section 19.6.

11.1.2 More than Two Matrices

The following apply to any conformable matrices, provided the appropriate prod-
ucts and additions exist.

11.10. (Distributive Rules)
(a) Let A be m xn, B be pxgq, and C be r x s. Then
A®(BaC)=(AB)®C.

We can therefore write each expression as A ® B ® C.
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(b) Let A and B be m x n, and let C and D be p X ¢, then
(A+B)(C+D)=A®C+A®D+BC+BaD.
Special cases follow by setting A =0 or C = 0.
() A® (X Bi) =21, (A®B;) and (37, A;) ® B =3]_,(A; ®B).
(d) (Cim A9 ® (22:1 B;) =3 Zgzl(Ai ® B;).
11.11. (Mixed Product)

(a) (Product Rule) Let A, B, C, and D be m xn, px g, n x r, and ¢ X s,
respectively. Then

(A®B)(CeD)=ACQ®BD.
This leads to the following special cases.
(i) From (11.15¢), (A ® b’)(c ® D) = Acb'D.
(ii) If A is m x n and B is p x g, then

A®B=(A®L){,®B).

(b) (A1 ®B1)(A2®B3)--- (Ax ®Bx)=A1Ay- A, ® BBy By,

11.12. Let L be a nonsingular n X n matrix (n > 2), A and B be m x m matrices,
and a and b be n x 1 vectors. Then the nm x nm matrix

G=L®B+ab' ®A

has determinant
det G = (det L)™(det B)" ! det C,

where
C=B+aA and a=bL7'a

If G is nonsingular, then
Gl!=L!9B!'-L 'abL!®E,

where

E=C'AB'=B'AC™' = B'AB™' if a=0,
1
= ~(B'-C!) if a#0.
o
Definition 11.4. The Kronecker power of an m x n matrix A is defined as follows:

Al — A®A,
Al — A®A®...®A:A®A[k_1]:A[k_1]®A7

for k=2,3,....
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11.13. (AB)H = AKIBE for k =1,2,....

11.14. If A and B are non-negative definite, then A — B is non-negative definite
if and only if and Al — BP! is non-negative definite.

Proofs. Section 11.1.2.

11.10. Prove directly from the definition of the Kronecker product (cf. Abadir
and Magnus [2005: 275-276].

11.11. Harville [1997: 337].

11.12. Magnus [1982: 243, 271].

11.13. Follows from the product rule (11.11a).
11.14. Abadir and Magnus [2005: 280].

11.2 VEC OPERATOR

Definition 11.5. Let A = (a;,as,...,a,) be an m X n matrix. Then vec A is a
vector obtained by stacking the columns of A, namely

a

a.
vecA = 2 ,

an

an mn X 1 vector. Various other notations have been used for the above concept,
and some history and references are given by Henderson and Searle [1981a). Here
vec A stands for “vector of columns of A”.

Turkington [2002: 10] introduced the operator devecA that stacks the rows of
A alongside each other so that (vec A’) = devecA.

The following properties are proved by Henderson and Searle [1979: 67]), except
where labeled otherwise. We assume that A,,xn is m X n, Brygisn x g, and Cyx»r
is g xr.

11.15. (Some General Properties)
(a) vecA = (I, ® A)vecl,, = (A’ ® L,,)vecl,,.
(b) vecx = veex’ = x.
{c) vec(xy') =y ®x.
(d) From (c),

vec [(Ax)(y'B)] = (B'y) ® (Ax) = (B’ ® A)(y ®x) = (B’ ® A)vec (xy’).

(e) If A is nonsingular, we apply (11.16b) to vec (A"1AA™1) to get

veceATl = (ATV @ A" Yvec A.
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Ab,;
Ab,
(f) vec [A(bl, bg, PN abq)] =
Ab,
11.16. (Products)
(a)
vec (AmxnBnxq) = (I;® A)vecB
= (B'®A)vecl,
(B'® I,)vec A.

(b) We highlight the following result as it is used extensively.

vec (AmxnBrxqCqyxr) = (C' ® A)vecB.

(c¢) Using (a), we have

vec (AanBHXquxr) - (Ir ® AB)vec C

(C'B' ®1,)vecA.
(d) Using the above results, we obtain
vec (AmananqurDTXS) = (I®ABC)V€CD
= (D'®AB)vecC
= (D'C’'®A)vecB
= (D'C'B'®I)vecA.

(e) Using (a), we have

vec [(A 4+ B)(C + D)] [(I® A)+ (I® B)][vecC + vec D]

(C'®I) + (D' ®I)][vec A + vecB].

f

Clearly, (a), (b), and (c¢) can be deduced from (d) by replacing appropriate matrices
by identity matrices. However, (a)—(c) are listed for convenient reference.

11.17. (Trace)

(a) trace(AmxnBnxq) = (vec A’)'vec B = (vec B')'vec A.

As noted by Henderson and Searle [1979: 67], the above can be expressed in
an alternative form that is easier to remember, namely

trace(A’B) = (vec A)'vec B.

This result can be used along with (11.16) to deduce the following.
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(vec A') (I, ® B)vec C
(vecB')(I® C)vec A
(vecC'Y(I® A)vecB
(vec A" (C' @ I)vec B
( (
( (

trace(AxnBnxgCaxs)

vecB'Y (A’ @ I)vec C
vec C')' (B’ ® I)vec A.

il

We can use such results as trace{ ABC) = (vec A’)'vec (BC) and trace(ABC) =
trace(BCA) = trace(CAB).

(¢)

trace(ABCD) {vec A"Y (D' @ B)vecC
trace(D(ABC)) = (vecD')(C' ® A)vec B

trace(D'(C'B’A’)) = (vec D) (A ® C')vecB'.

(d) From {c) and (11.16b) we have:

(i) trace(AXBX'C) = trace(X’CAXB) = (vecX)'(B’ ® CA)vec X.
(ii) trace(AX'BXC) = trace(X’BXCA) = (vec X)) (A'C’ ® B)vec X.

The above can also be transposed to obtain further results.
Proofs. Section 11.2.

11.15a. Follows from (11.16a) with A=Tor B=1

11.15d-e. Use {11.16b) with a suitable substitution.

11.16a. Abadir and Magnus [2005: 282] and Magnus and Neudecker [1999:
31].

11.16b. Harville [1997: 341].
11.16¢c-d. Dhrymes [2000: 118-120].
11.16e. Expand and use (a).
11.17b. Dhrymes [2000: 121].

11.17c. Abadir and Magnus [2006: 283], Harville [1997: 342], Magnus and
Neudecker [1999: 31], and Schott [2003: 294].

11.17d. We use a result like trace(X’'CAXB) = (vec X)'vec (CAXB) (Hen-
derson and Searle [1979: 67]).
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11.3 VEC-PERMUTATION (COMMUTATION) MATRIX

We now introduce a permutation matrix that is particularly useful for dealing with
matrices of random variables and their moments.

Definition 11.6. Let A be an m X n matrix. We define L., ,,y as the the mn xmn
permutation matrix such that vec A = I, »yvec A’. Henderson and Searle [1979,
1981a], who give a useful historical background and a summary of its properties, call
I(1n.n) the vec-permutation matriz. It is also called a commutation matriz by Abadir
and Magnus [2005], Magnus and Neudecker [1999], and Schott [2005], who denote it
by K, and, when m = n, K,,; we shall mention both notations in our discussion.
(Many of the results given in this section are also proved in Graybill [1983: section
9.3], though, as previously mentioned, he uses an alternative definition, namely
A xB instead of B® A.) The use of of the commutation matrix in statistics was
discussed in Magnus and Neudecker [1979)].

a a a
IfAgez=( 10 ™12 %13} then
a21 Qa2 423

an 100000 an
asni 00 0100 a2
_ a2 _ 01 0 0 0O ais _ 1;
vecAgyg = am | =1 000 0 1 0 day =TIy 3)vec A’
a3 001000 a2
as3 0 0 0 0 01 as3

Thus I(,, ) is a rearrangment of I,,,, obtained by taking every nth row starting at
the first, then every nth row starting at the second, and so on. Thus I3 3y consists of
rows 1,4,2,5,3,6 of Is. As a permutation matrix, it has all the standard properties
of a permutation matrix (cf. Section 8.2).

11.18. (Some Basic Properties)
(8) Imn) (= Knm) is orthogonal, being a permutation matrix.

(b) I(m,n)I(n,m) = Lun (i.e., K.nK, = Imn) so that

(i =Inm (e, K, = Kpun).

(m n) (m n)

) 1
(ii) vec A’ =Ty myvec A.
(iif) I, o) = Lin,n)-

(iv) I(n n) = =)
(©) Im,1) =Tam) = Im.

(d) If E;; is the m xn matrix with 1 in the the ¢, jth position and zeros elsewhere,

then o
Limn) = ZZ (E; ®Eyj) (= KpLn)-
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In particular (Harville [1997: 345, transposed]),

Ein En - Em

I _ | Ei2 Ez2 -+ Ep
(m,n) = . . e .

Eln E2n e Emn

As already noted,

Koo = 33 (B 0 )

1=1 j=1
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This result can be used to define K,,,, and Schott [2005: 308] proves the

equivalence of the two definitions.

(e) If e; m is the ith column of I, and e;,, is the jth column of I, then

m

Ly = Y (6,01, ®ein)
=1

Y (ejm®Ln@e),).

=1

(f) (i) detIpny = (=1)2m DD det I, 4y = (~1)imm=Hnn=1),

(i) detI, ) = (—1)37(-1.

(g) (1) tra’ce(l(m,n)) =1+ g(m - 17 n-— 1)7

where g(a, b) is the greatest common divisor of a and b.

(ii) traceI(pn) = n.

(h) I, . has eigenvalues &1 with respective multiplicities 3n(n + 1).

11.19. Let A,,x, and B,y be m x n and p x ¢ matrices, and let aand b be m x 1

and p x 1 vectors.
(a) I(m,p)(Amxn ® Bpxq) = (Bpxe ® Amx")l("vQ)'
(b) I(m,p)(Amxn ® Bpxq)I(q,n) = Bpxq ® Apixn-
(c) We have the following special cases of the above.

(1) I(m,p)(Amxn R bpxl) = bpxl ® Amxn~

(ii) Multiplying (i) on the left by I, .y and using (11.18b) gives us

(iii) ( mxn @bl (pny =b' @ A
(iv) (W@ A)I,,)=A®b.
(V) I(mp)(amxl®bpxl) bpxl Q@ amx1-

11-20. Amxm ® Bpxp = I(p,m) (Ip ® Amxm)I(m,p)(Im b2 BPXP)'
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11.21. For handling more than two matrices, we introduce Iigpny = Ipmny(=
K.n), where m = ab. Since I,y ) = I(pm,s), We can interchange m and p in
some of the following results.

a) Ipme)l(m,ps) = Limp,s) = Lim.ps)L(p,ms)-

(©) Imp,s) = Tip,s) @ L) (Ip @ L 5)) = (Lm,s) @ Lp)(Iin @ I p,6))-

(a)
(b) Lm,ps) Lip,5m)X(s,mp) = Limp,s)-
)
(d) Any two I matrices with the same set of three indices commute, for example,

Lin ps) Lip,sm) = Lip,sm)L(m,ps)-

11.22.

Csxt 2 Amxn D Bpxq = I(mp,s)[(Amxn & Bpxq) 29 Csxt]I(t,nq)
= I(p,ms)[Bpxq ® (Csxt ® Amxn]I(nt,q)-

11.23. Using (11.16b), we obtain
(Bpxg ® Amxnlvec X, iy = vec(AXB')
I(m,p)vec (BX’A/)
I(m’p)(A ® B)vec X’
= I(m,p) (A [02] B)I(q,n)vec X.

11.24. vec (Apmxn @ Bpxg) = (In @ Iim,q) ® Ip) (vec Amxn @ vec Byxg).
11.25. (Products)
(a)

WrXsstt ®Xm><nYn><p =
L ® (vec Y') ][I, ® vec X' (vec Z') ® I)|[vec W' & I,;].

(Wrxszsxt & xmannxp)I(p,t) =
L ® (vec Z') ][I @ (X Q L) (5,0) (1 @ Y) @ L] [vec W' ® Ly].

Ipm)(BpxgCqxs ® AmxnDnxi) = (A ® B)I, ) (C®D)
= (AD®BO)I,, = (I, ® BC)I(, (I, ® AD)

(d) I(m,n)(Amxp ® bnxlcllxq) =b® A®c and I(n_m)(bc’ ® A) =c ®@A®b.

11.26. (Trace) For any m X n matrices A and B we have

trace[(A’ ® B)I(,, m)] = trace[l(, ,,))(A' ® B)]
trace(A'B).
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Proofs. Section 11.3.

11.18. For proofs see Magnus [1988: chapter 3] and Magnus and Neudecker
[1979]. Also some proofs are given by Abadir and Magnus [2005: section 11.1],
Harville {1997: section 16.3], Harville [2001: 149-153], Magnus and Neudecker
[1999: 47], and Schott [2005: 306-307, 310].

11.19. Abadir and Magnus [2005: 301], Harville [1997: 347-348], and Schott
(2005: 308].

11.20. Use (A ® L,)(I,, ® B) = A ® B and (11.19b).

11.21. Abadir and Magnus [2005: 306] and Henderson and Searle [1981a:
284-285).

11.22. Henderson and Searle [1981a: 284] and Magnus [1988: 44].
11.23. Henderson and Searle [1981a: 281] and Magnus [1988: 44].
11.24. Harville [1997: 349], Magnus [1988: 43}, and Schott [2005: 309].
11.25a-b. Rogers [1980: 23].

11.25¢-d. Abadir and Magnus [2005: 302, 304].

11.26. Abadir and Magnus [2005: 304].

11.4 GENERALIZED VEC-PERMUTATION MATRIX

Definition 11.7. Let I,y be the matrix obtained from L. by taking every nth
row starting with the first, then every nth row starting with the second, and so
on (cf. Tracey and Dwyer [1969] and Henderson and Searle [1981a]). Then I,
is called a generalized vec-permutation matrix. For example, if r = 5 and n = 3,
I;3) = (e1, €4, €z, €5, €3), where the e; are the columns of I,.

We can apply the same procedure to any matrix M and obtain M. In fact,
My = [(nyM. We can also define My, ) = I nyM. When r = mn, Iy 0y =
I(»), and when M has mn rows, My, n) = M(y,) .

11.27. In the following, A ism xn, Bispx ¢, Cis s xt, aism x 1, and b is

px 1
(a) vecA = (vec A')(m n)-
(b A®B)(mp) = (B ®A/)(qn

)
) (
(¢) (a®B)(mp) =Imn(a®B)=B®a.
(d) (A®b)mp =Imp(A@b)=boA.
) (2®@Db)imp) =Imp(a®@b)=boa
(f) (@b @C)n,s =(ab' @ C)ms =b' ®C®a

11.28. I(m,n) = (Im ®In)(m,n)~
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Proofs. Section 11.4.

11.27. Henderson and Searle [1981a: 283-284 and equation (49)]. Use (11.1b)
for (f).

11.5 VECH OPERATOR

Definition 11.8. If A is an nxn matrix, then vech A (vector-half) is the k = n(n+
1)/2 -dimensional vector obtained by stacking the columns of the lower triangle of
A, including the diagonal, one below the other; Magnus and Neudecker [1999] and
Schott [2005] use the notation v(A). For example, if

a1 a2 433
A=| a2 ax a3
a3y az2 a33

is symmetric, then

ai

az

vechA = | %!

a2

as32

as3
This approach is useful for symmetric and lower-triangular matrices; for upper-
triangular matrices we use vech (A').

11.5.1 Symmetric Matrix

A major application of the above definition is to symmetric matrices, so we now
assume A = A’. For this case, vech A lists all the distinct elements of A. As the
elements of vec A are those of vech A with some repetitions, it follows that vec A
and vech A are linear transformations of one another. This leads to the following
definitions.

Definition 11.9. We have vech A = H, vec A and vecA = G, vechA. The
matrix H,, is k x n?, and Magnus and Neudecker [1999: 48-51] call the n? x k
matrix G, the duplication matriz D,, (see also Magnus [1988: chapter 4] and Schott
[2005: section 8.7]). We shall also use the term duplication matrix. Examples of
G, and H,, for n = 3 (k = 6) together with I(3,3), with which they have several
relationships, are

Dy =G39x6)=| - - - 1 .- .|,
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1
(03] . 1-— [0 %]
a2 . - 1—a»
H3(6 X 9) = 1 5
a3 . 1- (%3
1
and
1 )
1 .
1
1
Igay=| - - - 1. A
1 )
1 .
1
where the dots represent zeros and the «;’s are arbitrary, except for 0 < a; < 1
(:=1,2,3).

The matrix G,, can be described as follows (e.g., Harville [1997: 352, with a
correction]). For i > j, the [(j — 1)n +4]th and [(i — 1)n+ j]th rows of G,, equal the
[(F —1)(n — j/2) +d]th row of I, that is, they equal the k-dimensional row vector
whose [(j — 1)}(n — j/2) + {]th element is 1 and whose remaining elements are zero.
For j > i the [(j — 1){n — j/2) + i]th column is an n2?-dimensional column vector
whose [(j — 1)n + ¢]th and [(¢ — 1)n + j]th elements are 1 and whose remaining
elements are 0.

Another related matrix is N,,, where N,, = vec (%(A + A’) transforms A into
a symmetric matrix. This matrix is called the symmetrizer. As shown below, N,
turns out to be symmetric and idempotent, so I shall also denote it by P, to remind
us that it represents an orthogonal projection (see also Schott [2005: 312]).

11.29. (General Properties) For handy reference, we frequently have in the liter-
ature G, = D,,, H, =D}, and P,, = N,;; also k = n(n + 1)/2.

(a) H, is a left inverse of G, i.e., H,G, = I;. Thus H,, is a weak inverse of
G, as G,H,G, = G,,.

(b) Every row of G, contains only one nonzero element, so that the columns of
G, are orthogonal.

(c) The n? x k matrix G,, is unique, of rank .

(d) I(n,n)Gn = Gn (i.e., KnnDn = Dn)

1 0 0
(e) Gy 1Gry1=[ 0 2, 0O
0 0 G.,G,
1 0 0
() (G 1Gns1) ' =G GH = 0 LI, 0
0 0 (G,G,)
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(g) The k x n? matrix H,, is not unique and has rank k.

(h) A useful form of H, is H,, = G} = (G! G,)"'G/,, the Moore-Penrose inverse
of G, (Schott [2005: 313]). (This is the form taken by H3(6 x 9) above when
all the o;’s are set equal to 1.) Then:

(i) GG, =I4.
(ii) GnG = (T2 + I n))(= Py).
(ili) Gl = GE.
(i) P, = GG} = G,(G/,G,,)"1G,. Then:
(i) P,G, =G, and G}'P,, = G}.
(ii) Ppvec A = vec[$(A + A’)] for any n x n matrix A.

(iii) The symmetrizer P, is symmetric and idempotent, that is, a projection
matrix projecting orthogonally onto C(G,).

(iv) rank P, = trace P, = n(n +1).

(v) Pplinpn) = Pn =In Py (e, NpKpy = N, = K Ny).

(vi) If A and B are n X n, then P,(A® B)P,, =P,(B® A)P,, and
P.AQAP,=P,(AQRA)=(AQA)P,.

For further properties of G,,, G, G, GG, and G,G/,, where G,, = D,,,
see Abadir and Magnus [2005: section 11.3] and Magnus [1988: chapter 4].

11.30. Suppose A and X are both n x n, and X is symmetric, then

vech (AXA') H,vec (AXA)
H(A ® AjvecX
H,(A® A)G,vechX

= CvechX, say.

Properties of C are given in (11.31c) below.
11.31. Suppose A is n x n. Then:
(a) GR,GI(A® A)G, = (A® A)G,.
(b) G,GHARA)GH =(A®A)G}.
(¢) Let C =H,(A ® A)G,, a k X k matrix, where k =n(n + 1)/2. Then:

(i) Cis invariant with respect to the choice of Hy,, so we can choose H = G
(cf. 11.29h).

(ii) C is nonsingular if and only if A is nonsingular. Then
C'=GIHAT'®ATHG,.

(iii) If A is upper-triangular, lower-triangular, or diagonal, then C is re-
spectively upper-triangular, lower-triangular, or diagonal with diagonal
elements a;;a;;,1=1,2,...,n;,7=1,2,...,n.
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(iv) The eigenvalues of C are A;A; (1 < j < i< n), where A; (1 =1,2,.

are the eigenvalues of A.
(v) det C = det[G} (A ® A)G,,] = (det A)"F1.
(vi) trace C = 1[(trace A)? + trace(A?)].
(vii) rank C = 1[(rank A)? + rank A.
(vii) C~ =H,(A™ ® A7)G,, is a weak inverse of C.

(d) If A is nonsingular, then:

(i) [GLA®A)G,]"' = GHA ' ® A~1)GH.
(ii) det[G (A ® A)G] = 2-(n=1)/2(det A)™+1,

11.32. If A is any n x n matrix, then the following hold.
(a) (A® A)G, =G, H,(A® A)G,.
(b) G,H,(A® A)=(A® A)G,H,.
(¢) H(A® A)=H,(A® A)G,H,.

We can set H,, = G in the above.
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.m)

For some properties of GI{I, ® A + A ® I,)G,,, G (A ® B)G,,, and some
related matrices (with D, = G,,), including further relationships between D, 1,

and D,,, see Magnus [1988: 65-72].

Proofs. Section 11.5.1.

11.29a. vech A = H,, vec A = H,,G,vech A for all symmetric A. Henderson

and Searle [1979: 69].

11.29b. Follows from the definition of G,,.
11.29¢. Schott [2005: 313].

11.29d. Henderson and Searle [1979: 69].

11.29¢. Harville [1997: 355], Magnus [1988: 72|, and Magnus and Neudecker

[1999: 51].
11.29f. Magnus [1988: 72] and Magnus and Neudecker [1999: 51].
11.29g. Henderson and Searle [1979: 69).

11.29h. Abadir and Magnus [2006: 312-313], Harville [1997: 354-357], and
Magnus [1988: 56].

11.29i. Abadir and Magnus [2005: 307], Magnus [1988: 48-49], and Schott
[2005: 312]. For (v) see also Abadir and Magnus [2006: 308] and Magnus and
Neudecker [1999: 50].

11.31a-b. Abadir and Magnus [2006: 315], Magnus [1988: chapter 3], and
Magnus and Neudecker [1999: 49-50].
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11.31¢(i). Henderson and Searle [1979: 70].

11.31c(ii). Abadir and Magnus [2006: 315], Harville [1997: 358], Magnus
[1988: chapter 3], and Magnus and Neudecker [1999: 49-50].

11.31c(iii). Magnus [1988: 63].
11.31¢c(iv). Magnus [1988: 64].

11.31c(v). Abadir and Magnus [2006: 316], Harville [1997: 362], Henderson
and Searle [1979: 70}, and Magnus [1988: 64-65].

11.31c¢(vi). Abadir and Magnus [2005: 316], Harville [1997: 358], and Magnus
[1988: 64].

11.31¢(vii)—(viii). Harville [1997: 358].

11.31d. Abadir and Magnus [2005: 317], Magnus [1988: 65], and Schott [2005:
315].

11.32. Harville [1997: 358] and Henderson and Searle [1979: 70].

11.5.2 Lower-Triangular Matrix

Definition 11.10. Let A be an n x n lower-triangular matrix. If k = n(n +1)/2,
the k x n? matrix L, is called the elimination matriz if vec A = L/ vech A. The
difference between G,, and L], is that vec A now contains some zeros. Thus L],
can be obtained from G,, (= D,,) by replacing n(n — 1)/2 rows of G,, by zeros; (d)
below gives a clearer picture.

11.33. We have the following properties for L,,.
L., has full row rank k.
b) LL
(c
(d) From (b) we have vech A = L,vec A, so that L,, eliminates the zeros from
vec A.

(e) L,Gp =1, k=n{n+1)/2.
(f) G,LnP, = Py, where P, = 1 (1,2 + I, ) (ice., DL, N, = Ny,).
(

(a
( = Ix.

)
)
) L
)

g) G} =L,P,.

Similar properties apply to the situation where A is strictly lower-triangular, that
is lower-triangular but with zero diagonal elements (Schott 2005: 317-318]). Tri-
angular matrices, and in fact any patterned matrix can be handled using a general
kind of vec operator (cf. Section 18.3.5).

Proofs. Section 11.5.2.
11.33. Magnus [1988: 77, 80] and Schott [2005: 316-317].
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11.6 STAR OPERATOR

Definition 11.11. Let A = (a;;) be m x n and B be mp x ng. Then we define
the p x ¢ matrix (MacRae [1974])

AxB= iiaijBij,
i=1 j=1

where B;; is the (4, j)th submatrix of B when B is partitioned into submatrices of
size p X q.
When A and B are the same size, A x B = trace(A’B).

11.34. f Cisr x s, then (A*B)® C=A x (B® C).
11.35. A*B =B x* (A ® vecI,(vecl,)’).
11.36. If xisp x 1 and y is ¢ X 1, then
X(A*B)y = Ax*(,2x)BI,Qy)

= I,®x)AI,®y')*B.

11.37.
XoxnYnxpZpxg = Y xvecX(vecZ')

- Y (28I (XBL,).

Proofs. Section 11.6.
11.34-11.37. MacRae [1974].

11.7 HADAMARD PRODUCT

We now consider a particular product that arises in a wide variety of mathematical
applications such as covariance matrices for independent zero mean random vectors
and characteristic functions in probability theory (Horn and Johnson [1985: 301,
393-394]). Further mathematical applications are described by Horn and Johnson
[1985: 455-457] and Horn and Johnson [1991: chapter 5]. The Hadamard product
appears in several places in this book. In this section A > B means that A — B is
non-negative definite.

Definition 11.12. If A = (a;;) and B = (b;;) are m X n real or complex matrices,
then their Hadamard product (also referred to as the Schur product) is the m x n
matrix A o B = (a;;b;;). The results below, where proofs are not referenced, follow
from the definition by simply multiplying out the appropriate matrices.

11.38. Let A and B be m x n matrices, and let e; be the ith column of I,,.
(a) Let ®,, = > 1" e;(e; ®e;) =" e;(vecE;)’, where E;; = e;e]. Then:
(i) AocB=4%,,(A®B)®,.
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(i) ©,,9/, =1,,.
(iil) If C = (ci5) is m x m, then
¥, vecC = (c11, €02, + Cum)” = (diag C)1,,.
(iv) Onlimm) = ¥m.
(b) A o B is a submatrix of A @ B. In fact
AoB=(A®B),g,

where (o, ) denotes the submatrix formed by the intersection of the rows of
A ®B in a with the columns in 8, where a = {1,m+2,2m+3,...,m?} and
B={l,n+2,2n+3,...,n?}.

(¢) If m =n, then A o B is a principal submatrix of A @ B.
The above results can be used to prove results about A o B using A ® B.
11.39. Let A and B be m X n matrices. Then the following hold.
(a) AocB=BoA.
(b
(c) trace(AB’) =1/ (Ao B)1,.

)
) (AeB) =A'oB.
(d) rank(A oB) < rank A - rank B.
11.40. If all matrices are the same size, then
(A+B)o(C+D)=AcC+AcD+BoC+BoD.
11.41. If A, B, and C are all m x n matrices, then
trace[(A o B)C'] = trace[(A o C)B].

11.42. (Multiplication by Diagonal Matrices) Suppose A and B are m x n, D is
m x m, and E is n x n, where D and E are diagonal matrices, then

D(A oB)E = (DAE)oB = (DA) o (BE) = (AE) o (DB) = A o (DBE).
11.43. If A is square, then Ao11' = A =11"c A.

11.44. (Quadratics) Let A and B be n x n matrices, and suppose y,z € C".
Then
y*(A o B)z = trace(Dy AD,B’),

where Dy, = diag(y) and D, = diag(z).
11.45. If A and B are Hermitian matrices, then so is A o B.

11.46. Let A and B be Hermitian non-negative definite n x n matrices, that is,
A > 0 and B > 0. Then:

(a) AoB > 0. The same results apply to AoAo---0A to any number of terms.
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(b) det(AoB)+det A-detB > bi1bag-- - bppdet A + a11a93 - - - apy det B.

(c) ﬁ a;;b;; > det{A o B) > by1bos -+ - by det A > det A det B.
2=Nlote that A and B can be interchanged.) The left-hand side follows from
(12.27).
(d) A20B2> (AoB)2
(e) If A and B are positive definite, then:
(i) A oB is positive definite.
(i) A7'o B! > (AoB)~ L.
(f) If A > 0, and B > 0 with r nonzero diagonal entries, then rank(A o B) = r.
(¢) If B> 0, and A > 0 with positive diagonal elements, then A oB > 0.

(h If A > 0, then Ao A™! = I, = (A" o A)~!. Horn and Johnson {1991:
section 5.4] discuss the properties of Ao A~! and Ao (A1)

11.47. (Fejer’s Theorem) Let A be any n x n matrix. Then A is Hermitian non-
negative definite if and only if trace(A o B) > 0 for all Hermitian non-negative
definite n X n matrices B.

11.48. (Eigenvalues) Let A and B be n x n Hermitian non-negative definite
matrices.

(a) Let bmax and byin be maximum and minimum entries of the diagonal elements
of B. Then, for all j,

bmin/\min(A) S )\j (A & B) S bmax/\max(A)'
(5) Amin(A) Amin(B) < Xi(A 0 B) < Anax(A)Amax(B) for all j.
{c) Let R = (p;;) be any n X n correlation matrix.

(i} Since p;; = 1 for all 4, it follows from (a) that
Amin(A) € A;(A o R) < Apax(A).

(i) Setting R =1I,, we have Amin(A) < aj; < Amax(A).
(d) Amin(A oB) > A\nin(AB).

11.49. (Singular Values) Let A and B be m x n matrices, and let 0;(C) be the
jth singular value of C, where the singular values are listed in decreasing order of
magnitude. Then

ZU]'(AOB) < Zaj(A)oj(B), i=12,...,n
j=1 j=1

11.50. If A and B are real or complex m x n matrices, then

(AA*)o (BB*) = (Ao B)(A* o B*).
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11.51. Let A and B be n x n Hermitian positive definite matrices, and let C and
D be any m x n real or complex matrices. Then

(CA™IC*) o (DB™!D*) = (CoD)(A oB)"}(CoD)*.
Proofs. Section 11.7.
11.38a. Magnus [1988: 110] and Schott [2005: 297, (i)] .
11.38b—c. Horn and Johnson [1991: 304].

11.39. Here (a) and (b) are obvious, (c) and (d) are given by Schott [2005:
297], and (d) is given by Horn and Johnson [1991: 307].

11.40. Follows directly from the definition of “o”.
11.41. Horn and Johnson [1991: 305-306].

11.42. Let C = Ao B. Then (DCE);; = Y. > , dircrsesj, which can be
expressed in the form > 3" dirarses; - brs = [(DAE) o B];;, and so on.

11.43. Follows from a;; - 1 = a;;.
11.44. Horn and Johnson [1991: 306] and Schott {2005: 298].

11.46a. Horn and Johnson [1985: 458], Rao and Rao [1998: 204, 215], Schott
[2005: 299, real case], and Zhang [1999: 192].

11.46b. Rao and Rao [1998: 212].

11.46c. Rao and Rao [1998: 210}, Schott [2005: 302], and Zhang [1999: 200}.
11.46d. Zhang [1999: 193].

11.46e(i). Abadir and Magnus [2005: 340] and Rao and Rao [1998: 204].
11.46e(ii). Horn and Johnson [1985: 475] and Zhang [1999: 193].

11.46f. Rao and Rao {1998: 213].

11.46g. Horn and Johnson [1991: 309] and Schott [2005: 300, real case].

11.46h. Horn and Johnson [1985: 475], Schott [2005: 304], and Zhang [1999:
193].

11.47. Rao and Rao [1998: 214).

11.48a. Rao and Rao [1998: 206] and Schott [2005: 303, real case].
11.48b. Horn and Johnson [1991: 312] and Rao and Rao [1998: 207].
11.48¢c. Rao and Rao [1998: 207).

11.48d. Bapat and Raghavan [1997: 142, real case] and Schott [2005: 305,
real case].

11.49. Horn and Johnson [1991: 334].
11.50. Zhang [1999: 194].
11.51. Zhang [1999: 198].
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11.8 RAO-KHATRI PRODUCT

Definition 11.13. Let A = (a;,az,...,a,) be apxn and B = (by,bsy,...,b,)
be m x n matrices. Then the Rao-Khatri product, denoted by A©® B, of A and B
is the mp x n partitioned matrix

AOB-= (a1 ®b1,a2®b2,...,an®bn).
11.52. Let Apxn, Bmxn, Cmxp, and Dy, ypy, be four matrices. Then
(C ® D)mnxmp(A O] B)mpxn = (CA)mxn O] (DB)nxn

11.53. Let A and B be non-negative definite n x n matrices of ranks r and s,
respectively. Let A = R'R, where Ris r x n, and let B = S’S, where Sis s x n
[ef. (10.10)]. Then

AoB=(ROS)(ROS).

Proofs. Section 11.8.

11.52-11.53. Rao and Rao [1998: 216].



This Page Intentionally Left Blank



CHAPTER 12

INEQUALITIES

Inequalities are used extensively in statistics and, because they relate to almost
every chapter in this book, they are difficult to categorize. Those concerned with
general inner products and norms are considered in Sections 2.2.1 and 4.6. Those
involved with ranks are discussed in Chapter 3, while those for eigenvalues appear in
Chapter 6. Some inequalities for non-negative definite matrices appear in Chapter
9, and those relating to majorization appear in Chapter 23. There are a large
number of inequalities involving probability and random variables and a selection of
these appear in Chapters 22 and 23. Optimization in Chapter 24 generates further
inequalities. So what is in this chapter? I have collected here some of the more
traditional inequalities such as Cauchy—-Schwarz, Kantorovich, Holder, Minkowski,
and so on, and their extensions. At the end I have listed a few identities that can
be useful in setting up inequalities.

12.1 CAUCHY-SCHWARZ INEQUALITIES

The inequalities given below are fairly basic ones. However, for further extensions
and refinements, including those for complex numbers, the reader is referred to
Dragomir [2004: chapters 1-3].

A Matriz Handbook for Statisticians. By George A. F. Seber 257
Copyright © 2008 John Wiley & Sons, Inc.
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12.1.1 Real Vector Inequalities and Extensions

12.1. Let x = (z;) and y = (y;) be real n-dimensional vectors. In addition to the
basic inequality in (a) below, we can obtain various extensions from (2.17) by using
a different vector space and a different inner product.

(a) (Cauchy-Schwarz) (x'y)? < (x'x)(y'y),
with equality if and only if x « y. Many different proofs of this result are
available. For example, we can use Lagrange'’s identity of (12.44a). Alterna-
tively, we also have

x'x - (xl)')(y/)’)_l(ylx) =x'(In - Py)x >0,

since the projection matrix I,, — Py, = P¢(y). that projects orthogonally onto
C(y)* is non-negative definite (cf. 2.49f).

(b) Let A be non-negative definite and, using (10.10), let A = B’B.

(i) (X'Ay)? < (xX'Ax)(y'Ay), with equality if and only if Bx & By. A
sufficient condition for equality is x o« y. Furthermore, if A is positive
definite, then

A 2
sup (x,—y) =y'Ay.
x:x7#0 x'Ax

(i) From (i) we can deduce |a;;| < max; |a;;|.
(c) If A is non-negative definite and y € C(A), then for any weak inverse A™,
(x'y)? < (xX'Ax)(y'A7y),
with equality if and only if y o Ax.
(d) If A is positive definite, then
(x'y)? < (x'Ax)(y'A"y),
with equality if and only if x o« A~y or, equivalently, y o« Ax.
(e) If A is positive definite, then from (d) we have
(x'x)? < (X' Ax)(x'A7'x),
with equality when x oc Ax, that is, when x is an eigenvector of A.

(f) Let a; > 0 (i = 1,2,...,n) such that Y .a; = 1. Let 21, 22,..., 2, be real
numbers.

(1) Setting z; = v/e; and y; = V/a,2; in (a) leads to
O ez) <Y i,

with equality if and only if 21 = 2z = - -+ = 2z,,.
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(il) We can set o; = 1/n to get

n 2 n
(Z z,) < nsz,
i=1 i=1

with equality if and only if the z;s are all equal.

(iii) If all the eigenvalues A; of the n x n matrix A are real, then, from (i)
with a; = n~! and z; = \;, we have

1 21
<— trace A) < = trace(A?),
n n

with equality if and only if the eigenvalues are all equal.

(iv) If A is symmetric and nonzero with rank r, then, from (ii) with n = r, we

have (327_, Mi)? < rY.i_, A2, where the ); are the nonzero eigenvalues

of A. Hence ( 2

trace A

rank A > ————

~ trace(A?)

Equality occurs if and only if A is proportional to a symmetric idempo-
tent matrix.

(g) If p; > O for all 4, then, replacing z; by \/psx; and y; by \/p:y; in (a), we have
n n n
O pima)® < O piz))O_pivd).
i=1 i=1 i=1

(h) Suppose z; > 0 for all ¢ and p = (u;) is arbitrary. Then, replacing z; by
V/Zi/p: and y; by 1//Z; in (a)(i) and rearranging, we get

n

SarH T < QDO w2
i=1 t=1

=1

If E(z;) = ws, then taking expected values shows that expected value of a
harmonic mean does not exceed the harmonic mean of their expected values.

(i) (Constrained Version) Let A be an n X n matrix, and let y € C(A). If
P4 represents the orthogonal projection onto C(A), so that we have Py =
A(A’A)"A (cf. 2.49f), then

(x'y)? < (X' Pax)(y'y).
Equality occurs when y o< Pax.
(j) When A is positive definite and x"y = 0, then

A=A

(x'Ay)? < <>\1 Y ) x'Ax-y'Ay,

where A\, and A, are the maximum and minimum (positive) eigenvalues of A.
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12.2. (Some Lower Bounds) The results above give us upper bounds for (x'x)?
and (x'y)2. We now consider some lower bounds. Further details and extensions
are given by Dragomir [2004: chapters 4 and 5].

(a) (Kantorovich) Let A be an n x n real positive definite (p.d.) matrix with
maximum and minimum eigenvalues of A; and A,, respectively. Let x and y
be any nonzero vectors in R™.

: 7 \2 A, ’ a1
(i) (x'x)* > m(x Ax)(x'A™x).

There is a unit vector x for which there is an equality. The result also

holds for a Hermitian p.d. matrix with ’ replaced by *. For a generaliza-

tion see Pronzato et al. {2005].

(ii) If A = diag(a) (a > 0), then the ordered eigenvalues are the same as

the ordered a; for a diagonal matrix. Let amq., = max;{a;}, and so on.
Then, from (i), we obtain

4amazmi ~ L
(x'x)? 2 2 (O ) () apad).
max min i=1 i=1

(iii) If z; =1 for all ¢ in (ii), we have

n n

e (3 a3 a)

- (amaz + Amin L .
i=1 i=1

(b) (Polya—Szegd) Let x and y have positive elements. Then

4mminxmazyminymaz

; ’
x'x)(y'y).
(wmazymaz + xminymin)2 ( )( )

(x'y)* >

(¢) (Greub and Rheinboldt) Let A and B be n x n positive definite commuting
matrices (AB = BA) with eigenvalues \y > --- > A, >0 and py > -+ 2>
1n > 0, respectively. Then AB is symmetric and

4 n n
(x'ABx)? > %(X'AZX)(X'B2X).

(d) If A is an n x n nonsingular matrix with maximum and minimum singular
values of o1 and o, respectively, then
(X'AY)(yY'A"'%) _ (01 +00)?
(xx)(y'y) T dowon

Rao {2005: 67] uses the above result to define antisingular values and vectors.

(e) Suppose x = (z;) > 0,y = (y;) > 0, and w = (w;) > 0. Let

m:min{—li} and M:max{ic—i}.
¢ Yi B Yi

T oz SL iyl (m+ M)?
S wimy)? T 4mM

Then
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Proofs. Section 12.1.1.
12.1a. Abadir and Magnus [2005: 7].
12.1b. Abadir and Magnus [2005: 323].

12.1c. Neudecker and Liu [1994: 351]. Use y’Ay = y’AA~ Ay in (b)(i) and
set z = Ay.

12.1d. Replace x by A/2x and y by A~'/2y in (a).

12.1f(iv). Abadir and Magnus [2005: 324].

12.1h. Rao and Rao [1998: 461].

12.1i. Use (b) with A replaced by Pa. If y € C(A), then y = Pay.
12.1j. Drury et al. {2002: 97].

12.2a. Abadir and Magnus [2005: 331], Horn and Johnson [1985: 444], Rao
and Rao [1998: 462], and Zhang [1999: 204].

12.2b. Dragomir [2004: 93] and quoted by Rao and Rao [1998: 456].

12.2¢c. Greub and Rheinbolt [1959] and quoted by Rao and Rao [1998: 456).
12.2d. Strang [1960] and quoted by Rao and Rao [1998: 465].

12.2e. Dragomir [2004: 91].

12.1.2 Complex Vector Inequalities

Many of the above inequalities can be generalized to the complex case. By the same
token, the following results for complex vectors will hold for their real counterparts.

12.3. Let x and y be two complex vectors in C™, and let A be a Hermitian non-
negative definite n x n matrix.

(a) There are two versions of the Cauchy-Schwarz inequality.
(i) Using the inner product (x,y) = x*y, we have from (2.17) that
x"x = (x*y)(y"y) M (y™x) 2 0.

Equality occurs when x o< y.
(i) Since |ab| = |a||b|, we have from (5.1b),

n n n n
> el < O lwaw)? <Yl D lwl®.
i=1 i=1 i=1 =1

Equality occurs when x = ¢y for any complex scalar c.

(b) |x*y]? < (x*x)(y*y). Equality occurs when x x y.



262 INEQUALITIES

(c) |x*Ay|? < (x*Ax)(y*Ay), with equality when x o y.
(d) Let A be Hermitian positive definite.

(i) |x*y|? < (x*Ax)(y*A~'y). Equality occurs when y o« Ax.

(i) (x*x)? < (x*Ax)(x*A~!x), which implies (x*Ax)~! < x*A~'x when
x*x = 1. Equality occurs when x o« Ax, that is, when x is an eigenvec-
tor.

(e} (Wielandt) If A is Hermitian positive definite and x*y = 0, then

* 2 ’\1_)‘71 2 * *
Ix"Ay[® < SV (x"Ax)(y*Ay).

Equality occurs when x = (x1 4 X,)/v2 and y = (x; — Xn)/V2, where x;
and x,, are the eigenvectors corresponding to A\; and A,, respectively, the
maximum and minimum eigenvalues of A. Rao [2005: 63] applies the above
result to sphericity tests in multivariate analysis. Along with references, he
also gives a matrix generalization of the above result (Rao [2005: 62]).

Note that | - | represents the modulus.

12.4. Let A and C be Hermitian positive definite n x n and m X m matrices,
respectively, and let B be n x m. The following statements are equivalent:

(1) (x*Ax)(y*Cy) > |x*By|? forall x € C" and all y € C™.
(2) x*Ax+y*Cy > 2|x*By| for all x € C" and all y € C™.
(3) p(B*A~IBC™!) < 1, where p(-) is the spectral radius.

(4) < 1‘; g > > 0 (i.e., non-negative definite).

Proofs. Section 12.1.2.

12.3. For (a) see Dragomir [2004: 2-3]; for (a)—(d) see Zhang {1999: 203] (and
quoted by Rao and Rao [1998: 455]); and for (e), Horn and Johnson [1985]
and Rao [2005: 61, real case].

12.4. Horn and Johnson [1985: 473].

12.1.3 Real Matrix Inequalities

In this section we give a number of matrix inequalities that might be regarded as
extensions of the Cauchy—Schwarz inequality for vectors.

12.5. Let A and B be any real m x n matrices.

(a) (trace A'B)? < (trace A’A)(trace B'B), with equality if and only if one of
the matrices is a multiple of the other.
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This inequality can also be expressed in the form (A, B)| < ||A||7||B||F (cf.
(2.20) and Harville [1997: 62]), where || - || ¢ is the Frobenius norm. For some
generalizations see Rao and Rao [1998: 494-495].

(b) trace[(A’B)?] < trace[(A’A)(B’B)], with equality if and only if AB’ is sym-
metric. Furthermore, since trace(A’B) = trace(B'A) = trace(AB’), we have

trace[(A'B)?] < trace[(AA’)(BB')],

with equality if and only if A’B is symmetric.

Setting m = n and A = I,,, we have
trace(B?) < trace(B'B),
with equality if and only if B is symmetric.

(c) (det A'B)? < (det A’A)(det B'B), with equality if and only if A’A or B'B
are singular, or if B = AR for some nonsingular R.

(d) From (2.15a) we have |[A+B| ¢ < ||A||r+|/B| r, where {|-]| ¢ is the Frobenius
norm.

(e) A'll,,—B(B'B)"B’|A = A'(I,, —Pg)A is non-negative definite since (I,, —
Pg) is non-negative definite (cf. 2.49f). Hence, from (10.48b),

det(A’A) > det(A’B(B'B)"B'AJ.

12.6. (Measures of Relative Efficiency in Regression) Consider the linear regres-
sion model of Section 20.7, namely y = X3+ €, where X is n X p of rank p, var(e) =
¢%?V, and V is positive definite. We define the eigenvalues of V to be X\; = X;(V)
and we impose the usual order A\; > Ay > --- > A, > 0. Then the variance matrix
of the generalized (weighted) least squares estimate of 3 is (X'V~1X)~! and that
of the ordinary least squares estimator is (X'X)~}(X'VX)(X'X)~!. Measures of
the relative efficiency of the ordinary least squares estimate with respect to the
generalized least squares estimate have been based on the roots of

det[(X'X) " {(X'VX)(X'X)™! —9(X'V!X) ] = 0.
Four such measures E; (i = 1,2, 3,4) taken from Rao and Rao [1998: 464] are given
below.
det(X'VX)det(X'V-IX) £

QX 110 1s = min{pn - p), hen

(a) El =

/\ + )\n H—l
< <
! El H 4\ /\n i+1

P
(b) E2:ZG-L'. If s = min{p,n —p},t=0if s=p,andt=2p—nif s=n—p,
=1
then

P ()\-i-)\n ,+1
S; <Z_: Dot
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(¢) Ez = trace[(X'X) ' (X'VX)(X'X)™! - (X'V7IX)~ 1.

When X'X =1,
0<E3 < Z(\/X* VAnoit1)?
=1

where s = min{p,n — p}.

(d) E, = trace[PV2P — (PVP)(PVP)], where P = X(X’'X)~ !X’ represents the
orthogonal projection onto C(X). Then

s

1
0<Es < 1 Z(/\z - An—it1)?

=1

12.7. (Matrix Kantorovich Inequality) Let A be a positive definite n x n matrix,

and let U be an n x p matrix such that U'U = I,. If A} = Apax(A) and A, =

/\min(A)y then

(/\1 + )‘n)z
4\,

Interchanging A and A™! so that A\]! = Apin(A™!) and A;! = Anax(A71), we
have

U'AU < (UA-lu) L

(’\1 + )‘n)2

U'A~U <
= A,

(U'AU)" L.
Also
(UAU)"' < UA7'U.

(Note that B < C means that C—B is non-negative definite.) For further extensions
see Baksalary and Puntanen [1991] and Drury et al. [2002)].

12.8. (Further Matrix Kantorovich-Type Inequalities)

(a) Let A, B, and C be n x n positive definite matrices, and let X be an n x k
matrix of rank k. Then:

(i)

det(X’'B_'AB~'X) det(X'A"'X) _ i (i + pn—iz1)?

su
X [det(XB-TX)]? e T
where m = min{k,n — k} and p1 > -+ > p, > 0 are the roots of

det(B — pA) = 0, that is, the eigenvalues of BA~™! (and of A~!B).
(i)

L, det(X'B?X) det(X'C?X) X’”: (i + pnis1)?
u =
X |det(X’BCX)J2 Aftitin—ir1

1=1

where m = min{k,n — k}, BC = CB, and the y; are the eigenvalues of
BC-L
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(b) Let B be an n x n non-negative definite matrix of rank b, and let A be
n x r of rank a (a < min{b,r}) such that C(A) C C(B). Furthermore, let
A1 > - > A > 0 be the eigenvalues of B. Then, if A™ and Bt are Moore-
Penrose inverses, we have:

2
() ArB(ary < ALEMT gy
44X A

with equality if and only if A = 0, or A'BA = 1(A\; + X\y)A’A and

— At
A'BTA = {5 AA

(i) ATB(A*) — (A'BTA)Y < (VA — V)P (A'A)Y,
with equality if and only if A =0, or A\ = XA, or A/BA = (A + X —
VA6 A’A and A/BTA = (A \)"V2AA.

The above, along with two further results, are quoted by Rao and Rao [1998:
496]. They also give a Kantorovich-type inequality for complex matrices. See
also Liu [2002a] and Liu and Neudecker [1996).

Proofs. Section 12.1.3.

12.5a-b. Abadir and Magnus [2005: 325] and Magnus and Neudecker [1999:
201-202).

12.5¢c. Abadir and Magnus [2005: 330] and Magnus and Neudecker [1999:
201].

12.6a. Bloomfield and Watson [1975] and Knott [1975].
12.6b. Khatri and Rao [1981, 1982].

12.6c. Rao [1985]; see also Drury et al. [2002: section 3] for further details
and related work.

12.6d. Bloomfield and Watson [1975].
12.7. Marshall and Olkin [1990] and Zhang [1999: 204].
12.8a(i). Lin [1984].

12.8a(ii). Khatri and Rao [1981]. This result follows from (i) by replacing
A~' by C? and B~! by BC. Here BC is symmetric and positive definite
when BC = CB as the eigenvalues of B1/2CB'/? are positive.

12.1.4 Complex Matrix Inequalities

12.9. Let X and Y be n x p and n x ¢ complex matrices, respectively. Then
generalizing (12.5¢), we have

XX - X'Y(Y*Y) Y*X = X*(I, - Py)X = 0,

i.e., non-negative definite as the orthogonal projector I,, — Py is Hermitian non-
negative definite (cf. 2.49f). Equality occurs if and only if C(X) € C(Y). A gener-
alization of this result follows.
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12.10. Let A be an n x n Hermitian non-negative definite matrix with P =
A(A*A)"A*, and let U be an n x p matrix. Then

U*ATU = U'PAU(U*AU)TU*PL U,
with equality if and only if C(AU) = C(PAU).
12.11. Let A be an n X n Hermitian positive definite matrix, and let X be n x p
and Y be n x ¢ satisfying X*Y = 0. Then
A= An
A+ A

(X*AY)(Y*AY) (Y*AX) < ( )2 X*AX,

where (Y*AY)™ is any weak inverse, with equality when
(u; +u,,) x (A\['Pu; + A, 'Puy,).

Here P = X(X*X)~X* is the orthogonal projector onto C(X) and A; and A, are the
largest and smallest eigenvalues, respectively, of A with corresponding eigenvectors
u; and u,.

12.12. Let A and B be n x n real or complex matrices.
(a) |trace(AB)|? < trace(A*A)trace(B*B).
(b) If A and B are Hermitian, then
trace[(AB)?] < trace(A?B?),
with equality if and only if AB = BA. For a generalization see (12.33d).

12.13. (Unitarily Invariant Norm) Let || - ||,; be any unitarily invariant norm
defined on the vector space of m X n complex matrices (Section 4.6.3), and let A
and B be m x n matrices.

(a) If |A| represents the general square root of A (i.e., |A| = (A*A)!/2), then:
() Il JA*BP |1 < [[(A*A)P|lu; [|(B*B)P|lu;  for all p>0.
(ii) Setting p = % in (i) and using || |A||lui = ||Allu; (cf. 4.86), we have
IABIZ |15 < A llus [1Bllu:-
(il) If p =1 in (i), we have a Cauchy—Schwarz type of inequality
IA*BIZ; < |A™Aflui | B*Bllus.
(b) (Hadamard Product) ||A o B2, < |[AA*|ly; |B*B||u:.
Proofs. Section 12.1.4.

12.10. Baksalary and Puntanen [1991: 104], who also give some special cases
and variations on the result.

12.11. Wang and Ip [2000] (see also Drury [2002]).

12.12. Zhang [1999: 25, 213].

12.13a. Horn and Johnson [1985: 212, exercises 6 and 7, hint for proof only].
12.13b. Horn and Johnson [1991: 212, exercise 8, hint for proof only].
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12.2 HOLDER'S INEQUALITY AND EXTENSIONS

Let a,b,...,g be m real n x 1 vectors of non-negative elements, and let «; > 0
(i=1,2,...,n) such that 3" a; = 1.
12.14.

n n

n n
[Tae + T 0s + + [T o8 < JJCas+bi+--- + g0
i=1 i=1

i=1 i=1

Equality occurs if and only if either every pair of vectors a, b, and so on, are
proportional, or thereis a k such that ay = by =--- =g, =0. f A =(a,b,...,g),
then the conditions for equality are either rank A = 1 or A contains a row of zeros.

12.15. Interchanging the rows and columns of A in the previous result leads to
the following.

n n n n
() D af b gfm < Qe (Db (g,
i=1 i=1 i=1 i=1
with equality if and only if rank A = 1 or A contains a column of zeros.

(b) Putting m = 2 in (a) leads to

n

i‘%‘ab}_a < (Zn: ai)a(z b)) (0<a<l),
=1 =1 =1

with equality if and only if a = kb.

(c¢) (Holder’s Inequality) Replacing a; by a;/a and b; by b;/(l_a) in (b) leads to
Zaibi < (Z ail/a)a(z bil/(lfa))l—a
i=1 =1 i=1

(Z ar)l/r(z bs)l/s,

i=1 i=1

where r (= 1/a) > 1 and v~ ' + s7! = 1. Equality occurs if and only if
al = kbf for i = 1,2,...,n, or either a or b is 0. The inequality in (c) is
reversed if 7 # 0, r < 1 (and s < 0). We can deduce the previous results from

(c).

(d) If a and b are vectors of complex numbers, then replacing a; by |a;|, and so
on, in (c), we have for r > land r~1 + 57! =1,

> aibil < O las)MY Y Ibal) Ve
i=1 =1 i=1

Equality occurs if and only if

la;|” = klbs]*

for:=1,2,...,n, and arg(a;b;) is independent of 1.
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12.16. (Matrix Analogues) Let A and B any two n x n non-negative definite
matrices, and let 0 < a < 1.

(a) (Magnus) trace(A®B!™%) < (trace A)*(trace B)! @

with equality if and only if B = kA for some k& > 0.
(b) trace(A*B'~*) < trace[eA + (1 — a)B|

with equality if and only if A = B.

(¢) (det A)*(det B)'~* < det(aA + (1 — a)B)
with equality if and only if A = B or det(c¢A + (1 — a)B) = 0. The re-
sult is obviously true if either A or B is singular, so it is more applicable

to positive definite matrices. In this case it follows that ¢(A) = logdet A is
concave on the space of positive definite matrices.

{(d) Let A; be positive definite and o; > 0 for (i = 1,2,...,k), where >, a; = 1.
Then

(det Aq)**(det Ap)*? .- (det Ag)®* < det(a1 Ay + azAz + -+ arAg),
with equality if and only if the A; are all equal.
Proofs. Section 12.2.

12.14. Hardy et al. [1952: section 2.7] and Magnus and Neudecker [1999:
220-221].

12.15¢c. For a direct proof see, for example, Marcus and Minc [1964: 108],
Rao and Bhimasankaram [2000: 254], and Rao and Rao [1998: 457].

12.16a. Magnus and Neudecker [1999: 221].
12.16b. Magnus and Neudecker [1999: 222].

12.16c. Abadir and Magnus {2005: 334] and Magnus and Neudecker [1999:
229).

12.16d. Abadir and Magnus [2005: 334-335].

12.3 MINKOWSKI'S INEQUALITY AND EXTENSIONS

12.17. Let X be an m x n real matrix whose elements are non-negative and not
all zero. If p > 1, then

n

DBOBENEDODEARS
j=1 j=1

i=1 j i=1

with equality if and only if rank X = 1. The inequality reverses if p < 1 (p #£0). If
p < 0, then the z;; are assumed to be all positive. A number of special cases follow
below.
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(a) Putting n = 2, a; = x;1, and b; = x;, we have

m m

D (e + 6717 < Q- a) P+ (oY (o> 1),

i=1 i=1 i=1
with equality if and only if a; = kb; for i = 1,2,...,n.

(b) Putting m = 2, ¢; = 15, and d; = x5, we have
Q)P+ Q_d)PIP <D (G +d) P (p>1),
j=1 j=1 j=1

with equality if and only if ¢; = kd; for j =1,2,...,n.
() f a; > 0 (¢ = 1,2,...,m) such that >." a; = 1, then replacing z;; by

1/p

o, x;; leads to

m

[Z ai(z i )PP < Z(Z aixfj)l/” p>1),

i=1 j=1 Jj=1 i=1

with equality if and only if rank X = 1. The inequality reverses for p < 1
(p #0).

12.18. (Matrix Analogues) Let A and B any two n x n Hermitian non-negative
definite matrices.

(a) (Magnus) [trace(A + B)P]Y/P < (trace AP)'/P 4 (trace B)P)P  (p > 1),
with equality if and only if A = kB for some k > 0.

(b) [det(A + B)]Y™ > (det A)Y/™ + (det B)'/",
with equality if and only if det(A + B) = 0 or A = kB for some k& > 0.

(c¢) [det(aA + (1 — @)B)]Y/™ > a(det A)V/" + (1 — a)(det B)/*, 0 < a < 1.
Proofs. Section 12.3.

12.17. Hardy et al. [1952: 30] and Marcus and Minc {1964: 109, p > 1]. See
also Rao and Bhimasankaram [2000: 254] for (c).

12.18a. Magnus and Neudecker {1999: 224].

12.18b. Abadir and Magnus [2005: 329] and Magnus and Neudecker {1999:
227].

12.18¢c. Marcus and Minc [1964: 115].
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12.4 WEIGHTED MEANS

Let z;, 2, ..., 2z, be non-negative real numbers, and let a; >0 (1 = 1,2,...,n) be
such that 3, a; = 1. Define

_ Hz xiaiv p = Oa
MP(X) - { (Zl aizf)l/p’ P 7& 0.

If p < 0, we assume that the x;s are all positive. An important special case is
a; = 1/n for all i. For further details see Bullen [2003], Hardy et al. [1952: chapter
11}, and Magnus and Neudecker [1999: 227-231].

12.19. For every A > 0, M,(Ax) = AM,(x).

12.20. Equality occurs in each of the following two inequalities if and only if the
z;’s are all equal.

(a) Mo(x) < Mi(x), so that [], 2 <>, ey,

Setting each a; = n~!, we see that the geometric mean is less than or equal

to the arithmetic mean. Note the special case 2%y!~® < az + (1 — a)y.
(b) My(x) < My(x) for p < q.

Setting each o; = n~!, p = —1, and q = 0, we see that the harmonic mean is
less than or equal to the geometric mean.

(¢) (Matrix Version) If A; (¢ = 1,2,...,n) are positive definite pairwise com-
muting matrices (i.e., A;A; = A A, for all 4, 5,7 # j), then

—1
1 n n
EZ;Af = <A1~~An)”"tn<;A-l> '

Equality occurs if and only if the A; are all equal. (Here A > B means that
A — B is non-negative definite.)

12.21. (Limits)
(a) limp_o Mp(x) = Mo(x).
(b) Let Tmin be the smallest z; and mayx the largest. Then

lim Mp(x) = Zmax, lim Mp(x) = Zmin, and Zmin < Mr(x) < Tmax.
p—oo p——o0

12.22. M,(x) is a concave function of x for p < 1 and a convex function for p > 1.
In particular,
Mp(x) + Mp(y)
Mp(x) + Mp(y)

Mpy(x+y) (p<1)

<
> My(x+y) (p>1),

with equality if and only if x and y are linearly dependent.
Also plog M, (x) is a convex function of p.
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Proofs. Section 12.4.
12.19. Magnus and Neudecker [1999: 228].
12.20a. Magnus and Neudecker [1999: 202].

12.20b. Magnus and Neudecker [1999: 230]. These inequalities can also be
deduced from likelihood ratio test inequalities (Stefanski [1996]).

12.20c. Rao and Rao [1998: 499].
12.21. Magnus and Neudecker {1999: 228-229).
12.22. Magnus and Neudecker 1999: 230-231].

12.5 QUASILINEARIZATION (REPRESENTATION) THEOREMS

The representation of a nonlinear function as an envelope of linear functions is called
quastlinearization or representation. The method is useful in proving a number of
inequalities.

12.23. Let p>1,¢g=p/(p—1),and a; > 0fori =1,2,...,n. Then

n

i a;x; S (Z af)l/p
i=1

i=1

for every set of non-negative 1,2, ..., z, satisfying . 27 = 1. Equality occurs if
and only if all the a; are zero or

xqzn—p fori=1,2,...,n.

Hence
n

n
maxE aixi:(g a?)i/p,
RO

im

i=1
where R is the region defined by Y, 27 =1, 2, >0 (:=1,2,...,n).
12.24. (Matrix Versions) Let A be a non-negative definite n x n matrix.
(a) Ip>1and ¢g=p/(p—1), then
trace(AX) < (trace AP)V/P

for every non-negative definite n x n matrix X satisfying trace(X?) = 1.
Equality occurs if and only if X = AP /(trace A?). Hence

max trace(AX) = (trace AP)V/P

where R is the region of all non-negative definite matrices X of the same size
satisfying trace X9 = 1.
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(b) If A is also positive definite, then for every positive definite n x n matrix X
satisfying det X = 1 we have

~!trace(AX) > (det A)¥/™,

with equality if and only if X = (det A)Y/"A~L.

If X =1, then n~!trace(A) > (det A)/" with equality if and only if A =
kI, for some k > 0.

Therefore, given A positive definite, we have

m%n n~! trace(AX) = (det A)V/",
where the minimization is over the space of all positive definite matrices X
such that det X = 1.

(c) If A is a positive definite n X n matrix and B is any m x n matrix of rank m,
then
trace(X’'AX) > trace[(BA™!B’)7]

for every n x m matrix X satisfying BX = I,, with equality if and only if
X = A"'B/(BA!B)!

(d) Let A be an nxn symmetric matrix with (not necessarily distinct) eigenvalues
A > A2 > - > A,. Then, for any n x k matrix X such that X'X = I
(k < n), we obtain

trace(X'AX) Z iy
with equality when the columns of X are orthonormal right eigenvectors cor-
responding to Ay, ..., Ak, respectively.
Proofs. Section 12.5.
12.23. Magnus and Neudecker [1999: 218].
12.24a. Magnus and Neudecker [1999: 219)].

12.24b. Abadir and Magnus [2005: 328] and Magnus and Neudecker [1999:
225).

12.24¢c. Quoted by Magnus and Neudecker [1999: 237, exercise 10].
12.24d. Harville [1997: 556].

12.6 SOME GEOMETRICAL PROPERTIES

12.25. (Ellipsoids) Let a, y, and 8 be n-dimensional real vectors, and let L be a
positive definite n X n matrix. Then, for r > 0, 8 satisfies

a'y — r(a’La)/? < a’'@ < a'y + r(a’La)'/?
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for all a if and only if (y —8)'L~!(y —8) < r%. Geometrically, this result states that
a point y lies in an ellipsoid with center @ if and only if it lies between every pair of
parallel tangent planes. This result was originally proved geometrically by Scheffé
[1953]. When L = I,,, the ellipsoid becomes a sphere, and Hsu [1996: 231-233]
gives a simple proof of this case.

12.26. (Rectangles) Let a, ¢ (c > 0), and z be n-dimensional real vectors, then
max |2] <¢; if and only if Ja'z| < Zci|ai| for all a.

1<i<n :
i=1

This result is useful for the construction of simultaneous confidence intervals (Hsu
[1996: 233]).

Proofs. Section 12.6.
12.25. Seber and Lee [2003: 123].
12.26. Miller [1981: 74].

12.7 MISCELLANEQUS INEQUALITIES

12.7.1 Determinants

12.27. (Hadamard) Let A = {a;;) be a non-negative definite n x n Hermitian
matrix. Then
det A < ajzaze - Gnn,

with equality if and only if some a;; = 0 or A is diagonal.

12.28. (Hadamard) If A = (a;;) is any n x n complex matrix, then

|det Al < ][O lay»)'* and

i=1 j=1
|det Al < J]O lay»)?,
j=1 i=1

with equality if and only if AA* is diagonal or A has a zero row; alternatively, if
A*A is diagonal or A has a zero column.

12.29. Let A and B be Hermitian non-negative definite n x n matrices. Then:

(a) det(A+B) > det A+det B, with equality if and only if n = 1 or det(A+B) =
0.

(b) If A — B is non-negative definite, then det A > det B with equality if and
only if A and B are nonsingular (i.e., positive definite) and A = B, or if A
and B are both singular.
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12.30. If A and B are n X n real or complex matrices, then
det(I, + AA*)det(I, + B*B > | det(A + B)|? + |(det(I, — AB*)|?,
with equality if and only if n=1,or A+ B =0, or AB*=1,.

12.31. If X is m x n and Y is n X p, both real or complex matrices, then from
(12.9) we have that X*X - X*Y(Y*Y)~Y*X is non-negative definite. Hence, by
(12.29b),

det(X*X) > det(X*Y(Y"Y)"Y*X),

with equality when C(X) C C(Y).
Proofs. Section 12.7.1.
12.27. Horn and Johnson [1985: 477] and Zhang [1999: 176].

12.28. This follows from the previous inequality (12.27) applied to AA*, and
so on. See also Basilevsky [1983: 100}, Horn and Johnson [1985: 477-47§],
and Magnus and Neudecker [1999: 214, real case].

12.29. Abadir and Magnus [2005: 326, real case].
12.30. Zhang [1999: 184-185].

12.7.2 Trace

12.32. If A = (ay;) is a non-negative definite matrix, then

trace(A?) > Y af,  (p>1),

it
i=1

with equality if and only if A is diagonal.
12.33. Let A and B be n X n non-negative definite matrices.
(a) 0 < trace(AB) < (trace A)(trace B).

(b) /trace(AB) < 1(trace A + trace B), with equality if A = 0 and trace B =0,
or if B =0 and trace A = 0, but also if A = B = aa’ for some a # 0.

(¢) (Araki-Lieb—Thirring)
trace[(BY2ABY/?)%] < trace[(B¥/2A*B/?)?],
where s and t are positive real numbers with £ > 1.
(d) (Lieb—Thirring) Let m and k be positive integers with m > k. Then

trace[(A*B*)™] < [trace(A™B™))*.
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In particular,
trace[(AB)™] < trace(A™B™).
Proofs. Section 12.7.2.
12.32. Magnus and Neudecker [1999: 217).
12.33a—b. Abadir and Magnus [2005: 329-330].
12.33c. Quoted by Bhatia [1997: 258].
12.33d. Quoted by Bhatia [1997: 279].

12.7.3 Quadratics

12.34. (Bergstrom) If A and B are both positive definite, then

A" Ix)(x'B71x)
'(A+B)x< & .
X (A+B) xs x (A1 +B-1)x

12.35. Let A > O (i.e., has non-negative elements) be an n x n matrix and let
x > 0 be an n x lvector. Then, for any positive integer k,

(x'A*x)(x'x)F1 > (x’Ax)¥,
with equality if and only if x is an eigenvector of A.
Proofs. Section 12.7.3.
12.34. Abadir and Magnus [2005: 323].
12.35. Mulholland and Smith [1959].

12.7.4 Sums and Products
12.36. (Triangle Inequality) For all a;,b;,...,9; (i=1,2,...,n),

n 1/2 n n n
(Z(ai b4t gi)2> <O a2+ O P+ Qg
=1 =1 i=1

i=1
12.37. For all non-negative a;, b;,...,9; (i=1,2,...,n),

n

n n n
Z(ai+bi+"'+gi)r > Za:—}—Zb:‘F“'-i-ng, r>1,
i=1 i=1 i=1

i=1
n n n
Zaf+2b§+--~+29{, 0<r<l,
i=1 i=1 i=1

n
D (@i b+ +gi)

with equality if and only if all the numbers but one of each set aj,b;,...,9; (j =

1,2,...,n) are zero.

IN

i=1
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12.38. (Ordered Numbers) Leta; > a2 > - >a, >0and by > by > ... > b, >

0. If . .
HalSHb“ k=12,...,n,

i=

._.
~
I
-

then

12.39. (Information Inequalities) Let a = (a1,a2,...,a,) and b = (b1, bo,.. .,
b,) be two vectors.

(a) Suposea > 0andb > 0 (i.e., have positive elements) such that > >, a; > >, b;.
Then
g a;log =~ <0,
i=1 %

with equality being attained if and only if a; = b; for all ¢. Also, if a; < 1 and
b; <1 for all 7, then

Q;ai logz—: < ;ai(ai — bi)2

(b) Supposea > 0 and b > 0 (i.e., have non-negative elements) such that y . a; =

>, b: >0, then
n n
[Tee = I]o,
i=1 i=1

with equality if and only if a =b.

12.40. (Jensen) Let z; >0 (i=1,2,...,n), then

(Z Dy Zw e, 0<r<s,

i=1
with equality if and only if all the z; are zero except one. Also

n

lim ( g 20)Y" = max z;.
e et i
im

12.41. If Ay > Ao > - > A, > 0, then

i+ 2021 (O +An)?
mi}"[ ZS VSV BV VW

12
12.42. If z; > 0 for i = 1,2,...,n, then
n
[0 +z) > 0+ @z z)™),
i=1

with equality if and only if 1 = 29 = -+ = z,,.
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12.43. Suppose Ty > Xy > - 2 xy > 0 and y;/z; is decreasing in i. Let o; > 0
fori=1,2,...,n such that Zl 1o =1, and define

(el X aay)) VT, i #£0,
g(’r)—{ T, =/ T v, if r=0.
Then g(r) increases as r increases.
Proofs. Section 12.7.4.
12.36. Follows from (12.17).
12.37. Hardy et al. [1952: 32|.
12.38. Horn and Johnson [1991: 174].
12.39a. Rao and Rao {1998: 458].
12.39b. Bapat and Raghavan [1997: 81].
12.40. Hardy et al. [1952: 28].
12.41. Quoted by Rao and Rao [1998: 466].
12.42. Marshall and Olkin [1979: 72].
12.43. Marshall and Olkin [1979: 131].

12.8 SOME IDENTITIES

12.44. Let a = (a;) and b = (b;).
(a) (Lagrange Identity)
(i) (Real Vectors) (a’a)(b’b) — (a’b)? = 13", >, (ab; — a;b;)?.

(ii) (Complex Vectors)
Sl X bl = 1Y aibil? = % 2 Zj l@ib; —a;bil?.
(b) (Abel’s Identity)

T "

a’b= Z ai—ai1) Y b | +any b
7j=1 j=1

12.45. If a, b, and c are n x 1 vectors then
Zalza]b ¢ — Zalb Zajc] ZZan bi)(ci —¢j).

12.46. If A is symmetric and nonsingular, we have from (24.26a)

x'Ax —2b'x = (x — A"'bYA(x ~ A" 'b) —b’A"'b.
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12.47. Suppose that A and B are n X n symmetric matrices, and A + B is non-
singular. Let a, b, and x be n x 1 vectors. Then

(x—a)A(x—a)+ (x—b)B(x-b)
=(x-c)(A+B)(x—c)+(a—b)A(A +B)"'B(a—b),
where ¢ = (A + B)"!(Aa + Bb).

12.48. Suppose A and B positive definite matrices, and let a, b, and x be n x 1

vectors. Define
C!'=A1'+B7! and D=A+B.

Then
(x—a)A" (x—a)+(x—b)B~!}(x—b) = (x—¢)'C ! (x—c)+(a—b)'D ! (a-b),
where ¢ = C(A~'a+ B~ 'b).
Proofs. Section 12.8.
12.44a. Dragomir [2004: 3].
12.44b. Rao and Rao [1998: 385).
12.46. Usex =x— A~ b+ A~'b.
12.47. Multiply out and use (15.4c).

12.48. Abadir and Magnus [2005: 217]. Follows from (12.47) by replacing A
by A~! and B by B~! and using A"}(A7! + B7!)"!B~! = (A + B)~! (cf.
15.4¢).



CHAPTER 13

LINEAR EQUATIONS

In this chapter we investigate the solution of various linear equations with a vector
or matrix of unknown variables. Nonlinear matrix equations are not considered
in this book except in (13.24) and (13.25), and the reader is referred to Horn and
Johnson [1991: Section 6.4] for some background on this topic.

13.1 UNKNOWN VECTOR

13.1.1 Consistency

Definition 13.1. In this section we consider the problem of solving the equation
A xnXnx1 = bmxi for x when rank A = r (r < min(m,n)) and b # 0. The
equation is said to be consistent if there exists at least one solution. Otherwise, the
equation is said to be inconsistent. Clearly we must have b € C(A) for consistency.
Note that this section is a special case of Section 13.2, which considers the equation
AXB =C.

13.1. Using the above notation, the following are equivalent.
(a) The equation Ax = b is consistent.
(b) rank(A,b) = rank A.
(c) AA"b = b, where A~ is any weak inverse of A.
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13.2. From (16.33) we can find nonsingular P and Q such that

I. O
PAQ = ( 0 0 ) .
Then the equation Ax = b is consistent if and only if the last m — r elements of

Pb are zero.

13.3. The equation Ax = b has a unique solution if and only if A has full column
rank (i.e., n = r). When A has full column rank, it has a left inverse L such
that LA = I,,. Then X = Lb is the solution. In particular, we can choose L =
(A'A) 1A

Proofs. Section 13.1.1.
13.1. Graybill {1983: 151-152], Schott [2005: 222], and Searle [1982: 232].
13.2. Searle [1982: 232].
13.3. Schott [2005: 227).

13.1.2 Solutions

13.4. All possible solutions of the consistent equation Ax = b can be generated

from
x=A"b+{I,—AA)z

for any specific weak inverse A~ by using all possible values of the arbitrary n x 1
vector z (including z = 0). Thus every solution of Ax = b can be expressed in the
above form for some z.

13.5. All possible solutions of the consistent equation Ax = b can be generated
from x = A~b by using all possible weak inverses A~ of A.

13.6. If x1,Xs,...,X; are any t solutions of the consistent equation Ax = b, then
S, ai%; is a solution if and only if 3°;_, a; = 1

13.7. If A is m x n of rank r, the consistent equation Ax = b has exactly n—r+1
linearly independent solutions.

(a) One possible set of such solutions is A~b along with the set
% =Ab+(I,-AA)z;, i=12...,n—r

where the z; are arbitrary, but chosen so that the (I, — A~ A)z; are all linearly
independent.

(b) Every solution can be expressed as a linear combination of the linearly inde-
pendent solutions.

13.8. The value of a’x is the same for all solutions X to Ax = b if and only ifa’ =
a’A~ A. There are only r linearly independent vectors a; satisfying a; = alA~A.
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13.9. (Methods of Solution for Consistent Equations) These methods generally
involve some factorization of A.

(a) (Singular Value Decomposition) Suppose A is m x n with singular value
decomposition A = PXQ’, where P and Q are orthogonal m x m and n x n
matrices, respectively, with columns p; and q;, and ¥ is an m x n diagonal
matrix with positive or zero diagonal elements o;, the singular values of A.
Then Ax = b implies that ¥Q'x = P’b, or Xy = c¢. This simplified form
can be used to determine the nature of the solutions of the original equations
(Schott [2005: 242]).

If A is nonsingular and n x n, and P = (p1,p2,...,Pn), then

n b
x=A"b=QE 'Pb=) P2q,
i-1 7
so that if o,,, the smallest singular value of A, is small, a small change in A
or b can induce a relatively large change in x (Golub and Van Loan {1996:

80]).

(b) (LU Factorization) We can use the factorization A = LU, where L is a lower-
triangular matrix with unit diagonal elements and U is an upper-triangular
matrix (cf. Section 16.4). Since Ax = LUx = Ly = b, we simply solve
Ly = b for y and Ux = y for x. The process used for carrying out the
calculations is called Gaussian elimination with the related ideas of pivoting
and sweeping. It can also be applied to m x n matrices (Golub and Van Loan
[1996: chapter 3] and Rao and Bhimasankaram [2000: section 5.6]). The
method can be used for solving normal equations that arise in least squares
estimation for linear regression {Seber and Lee [2003: section 11.2]).

Proofs. Section 13.1.2.
13.4-13.5. Schott [2005: 225] and Searle [1982: 238].
13.6. Searle [1982: 238].
13.7. Schott [2005: 228] and Searle [1982: 240-241].
13.8. Searle [1982: 242-244].

13.1.3 Homogeneous Equations

13.10. We consider solutions of Ax = 0, where A is m x n of rank r.

(a) The solutions form the null space N(A) of A of dimension n — r. Any
orthonormal basis for N(A) will give a set of n — r orthogonal solutions.

(b) A nonzero solution exists if and only if det A = 0.

(c) All the solutions to Ax = 0 are of the form xo = (I, — A~ A)z for arbitrary
z and any weak inverse A~ of A. For z; # 0, there exist ¢ — 7 linearly
independent such solutions (I,, — A~ A)z;.

Proofs. Section 13.1.3.
13.10. Searle [1982: section 9.7].



282 LINEAR EQUATIONS

13.1.4 Restricted Equations

13.11. Given A is m X n, we wish to solve the consistent equation Ax = b with
the restriction that x € V, a vector subspace of R™. Here V could represent the
column space or null space of a matrix.

{(a) If Py is the orthogonal projection onto V, then I, — Py is the orthogonal
projection onto V1. We are now interested in the solution of

((I «A;wx) - @

(b) The restricted equation is consistent if and only if the equation APyz = b is
consistent. If this is the case and zg is a solution of the latter equation, then
Xp is a solution of the restricted equation if and only if xqg = Pyzg.

(¢) If the restricted equations are consistent, then a general solution is
{XO 1 Xg = Pv(APv)hb + Pv[I - (APv)_APv]y,
where y is an arbitrary n x 1 vector and (APy,)~ is any weak inverse of APy,.

Proofs. Section 13.1.4.
13.11. Ben-Israel and Greville [2003: 88-89].

13.2 UNKNOWN MATRIX

We are interested in solving the equation A, xnXnxpBpxg = Cmxg. When the
appropriate matrices are square, special cases follow by setting A =TI or B =1,
and using I~ = I in the result below. We note that if x = vec X and ¢ = vecC,
then, by 11.16b),

(B’ ® A)x = vec (AXB) = vec C = c,

which reduces the problem to the case considered in the previous section. More
generally, consider the system

iAIXBI + XS:L]‘X,M]' =C,

i=1 j=1

where the A; are m x n, the B; are p x g, the L; are m x p, and the M; are n x q.
This can be reexpressed in the form (cf. 11.18b(ii))

T ]
Y B®A)+ ) (ML) | Ipn px=c.
i=1 j=1
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13.2.1 Consistency

13.12. The equation AXB = C is said to be consistent if it has at least one
solution for X.

(a) A necessary and sufficient condition for AXB = C to be consistent is that
AA~CB™ B = C for any particular pair of weak inverses A~ and B™.

(b) AXB = C is consistent if and only if C(C) C C(A) and C(C’) C C(B').

(¢) If the equation AXB = C is consistent, then the following are general solu-
tions for X with X = A"CB™.
(i) Xo+ W — A"AWBB~ for conformable arbitrary W.

(ii)) Xo+(I—~A"A)U+V(I-BB~) for conformable arbitrary U and V.
This result can also be expressed in the form A“CB™ + Z, where Z
is a solution of AZB = 0.

(iii) Xo+ ATAR(I-BB")+(I- A A)SBB-+(I-A"A)T(I-BB™),
for conformable arbitrary R, S, and T.

(d) A number of special cases follow from the above results—for example, the
general solution of AX =0is X = (I - A7”A)U, where U is arbitrary.

Proofs. Section 13.2.1.
13.12a-b. Harville [1997: 125-126].

13.12¢. Harville [1997: section 11.12]. In each case we simply check that the
solution satisfies AXB = C using (a) for Xg. For the second part of (i), we
simply show that AZyB = 0 using AA~A = A, and so on.

13.2.2 Some Special Cases

13.13. Setting B = I in (13.12) above, we see that the following conditions are
equivalent.

(1) The equations AX = C are consistent (i.e., have a solution).
(2) ¢(C) C C(A).
(3) AA~C = C for any particular weak inverse A~ (cf. 13.12a).

(4) K'C = 0 for every row vector k' such that k’A = 0. Harville [1997: 73] calls
the equations compatible if they have this property.

The equations are also consistent if the rows of A are linearly independent.

13.14. Let A be an n X n matrix, which is possibly complex, of rank n — 1. Let u
and v be any eigenvectors of A associated with the eigenvalue zero {not necessarily
simple) such that Au = 0 and v*A = 0’. Then the general solution of AX =0
is X = uz’, where z is arbitrary. Similarly, the general solution of XA = 0 is
X = wv*, where w is arbitrary. Finally, the general solution of the equations
AX =0 and XA =0is X = cuv”, where c is an arbitrary constant.
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13.15. Let X be an unknown n x p matrix. For any m x n matrix A and any
m X p matrix C, the equations A’AX = A’C are consistent since from (2.35)
C(A’) = C(A’A). These equations arise in multivariate least squares estimation.

13.16. If the following matrices are conformable and C(C) C C(L'), then the equa-

tions
A'A L X\ A'B
L' o Y/ \ C

are consistent for the unknowns X and Y. This result is used for restricted least
squares theory.

13.17. Suppose X is an unknown m X n matrix.

(a) If “®” is the Kronecker product, then, using (11.16a}, the equation A, xm X+
XB,,xn = Cyuxn can be expressed in the form

(I, A+B ®1,)vecX = vecC,

or Fx = c, say, where F is called the Kronecker sum. Some properties of
F are given by Horn and Johnson [1991: section 4.4]. The equation has a
unique solution if and only if A and —B have no eigenvalues in common.

(b) We also have from (a),
(SAS™HSXT + SXT(T 'BT) = SCT,

which may be rewritten as A;X; + X;B; = C;. With suitable similarity
transformations, the transformed equation may be easier to handle; the orig-
inal solution is then readily recovered (Horn and Johnson [1991: 256]).

(c) A related equation is Lyapunov’s equation
XA +A*X=H,

where A, X, and H are all n x n, and H is Hermitian. This equation arises in
the study of matrix stability and is discussed in detail by Horn and Johnson
[1991: chapter 4]. The equation

XA+A'X=C

has a unique solution for any n x n matrix C if and only if A and —\ are not
both eigenvalues of A.

13.18. If X and A are n x n, and the eigenvalues of A are A;, then the equation
AX - XA =aX
has a nontrivial solution if and only if a = A; — A;.

13.19. Suppose A is m x m, X is m x n, and B is n x n. If A and B have no
eigenvalues in common, then AX — XB = 0 has a unique solution X = 0. A
nonzero solution exists if there are eigenvalues in common.
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13.20. AX4+YB =Cifand only if I® A)vecX + (B’ ®I)vecY = vec C, where
“®" is the Kronecker product.

13.21. The equation AX — YB = C has a solution for X and Y if and only if

A C A 0
rank<0 B)-rank<0 B)'

13.22. The matrix equation

(& 0)G)- ()

B 0 X} G, )’

in X; and X5, where A, B, G, and G2 are given matrices of approriate orders
and A is non-negative definite, has a solution if and only if

C(G)) cC(A,B) and C(G4) C C(B),
in which case the general solution is
X, = G(NT-N'BC*B'N")+G,C*"B'N*t + Q;(I- NN™) and
X, = G N'BC'+Gy(I-C")+Qq(I-B'B),

where N = A + BB, C = B'N*B, and Q; and Q, are arbitrary matrices of
appropriate orders. (Note that N, Nt NNt BB, C, and C* are all symmetric.)
Special cases are:

(a) If C(B) C C(A), then we can take N = A.

(b) If Gy = 0, then the original equations have a solution if and only if C(G%) C
C(B’), in which case the general solution for X; is

X, = Go(B'/NTB)*B/N* + Q(I - NN*),

where N = A + BB’ and Q is arbitrary of appropriate order. If, in addition,
C(B) C C(A), then the general solution can be written as

X; = Gy(B'ATB)"B’AT + Q(I- AAT).
13.23. The equations AX = C and XB = D have a common solution if and only if

each equation separately has a solution and AD = CB, in which case, the general
expression for a common solution is

X = A C+DB —AADB™ +(I-A"A)Z(I1-BB")
= Xo+(I-A"A)Z(I-BB"),

where Xy is a common solution and Z is arbitrary.
13.24. If B is m x n and X is n X m, then the general solution X of XBX = X is
X = C(DBC);,D,

where (-)15 is the reflexive inverse, and nx p C and ¢ xm D are arbitrary matrices.
The solution has the same rank as DBC.
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13.25. If B is m x n and X is n x m, then the general solution of XBX = 0
is X = YC, where p as well as the p x m matrix C are arbitrary, and Y is an
arbitrary solution of CBY = 0. If X also has to satisfy WBX = 0, then Y is now

an arbitrary solution of
C
BY =0.
(w)

13.26. The equations A;XB; = C; and A, XB; = C, have a common solution if
and only if each equation is consistent and

A:XByrc, rank(C1 — A1 XB,) =0,

which is equivalent to

C, 0 A, A
rank 0 -C, A, =rank (A1> + rank(B;, Bs).
B, B, 0 2

A proof and further details relating to this problem are given by Tian [2002: 197]

13.27. (Two Unknowns) We wish to consider the solution of the matrix equation
AXB + CYD = M for X and Y. Since vec (AXB) = (B’ ® A)vecX, we can
rewrite the matrix equation in the form

(B'® A, D'®0C) (:Zzi) = vec M,
which is solvable if and only if (cf. 13.1c)
(B A,D'®C)B' ® A,D’'® C) vecM = vec M.
In this case, from (13.4), the general solution is

<vec X

ecY) =(B'®A,D'®C)veeM+[I- (B'®A,D'®C)"(B'® A, D' ®C)]v,
Vi

where v is an arbitrary vector. Using his extremal ranks method, Tian [2006b]
gives necessary and sufficient rank conditions for solutions X and Y to exist and
also provides methods for finding solutions.

Proofs. Section 13.2.2.
13.13. Harville [1997: 73).
13.14. Magnus and Neudecker [1988: 44].
13.16. Harville [1997: 75-76].
13.17a. Graham [1981: 38-39] and Horn and Johnson [1991: 270].
13.17¢. Horn and Johnson [1991: 270].
13.18. Graham [1981: 40].
13.19. Zhang [1999: 139] and (b) quoted by Horn and Johnson [1991: 270].
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13.20. Horn and Johnson [1991: 255].

13.21. Horn and Johnson [1991: 281-283].

13.22. Magnus and Neudecker [1999: 60-62].

13.23. Ben-Israel and Greville [2003: 54] and Rao and Mitra [1971: 25].

13.24-13.25. Rao and Mitra [1971: 56-57]. They also give solutions to
XBXB = XB, BXBX = BX, BXBXB = BXB, and XBXBX = XBX.
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CHAPTER 14

PARTITIONED MATRICES

Partitioned matrices arise frequently in statistics, especially in proofs. For some
partitions and their relationship with ranks, the reader should consult Section 3.6.
This chapter is closely linked to the next chapter on patterned matrices.

14.1 SCHUR COMPLEMENT

E F
»~(en)

where A is possibly rectangular. If E is square and nonsingular, then

Definition 14.1. Let

S=H-GE"'F = (A/E)

is called the Schur complement of E in A. If H is nonsingular (instead of, or in
addition to, E), then
T=E-FH !G = (A/H)

is the Schur complement of H in A.

Schur complements occur in various places in this book, sometimes using a dif-
ferent notation. Because of the wide applicability of Schur complements, we have
collected some of the results together here in one place using the present notation,
which is the one used in three key references, namely Ouellette [1981], Puntanen

A Matriz Handbook for Statisticians. By George A. F. Seber 289
Copyright © 2008 John Wiley & Sons, Inc.
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and Styan, [2005b], and Styan [1985]. These writers show how the Schur comple-
ment can be used to prove a number of matrix results that are typically proved by
other methods. They also show how Schur complements arise naturally in statistics,
especially in multivariate analysis and in linear models.

14.1. (Determinants) If A is nonsingular, we have that (see also 14.17)

detE - det(A/E), if E is nonsingular,

det A = { det H - det(A/H), if H is nonsingular.

Therefore if A and E are nonsingular, then so is A/E. The same applies to A and
H.
14.2. (Ranks) From (3.40a{vi) and (3.40(vii)) we have:
(a) If E is nonsingular, rank A = rank E 4 rank(A/E).
(b) If H is nonsingular, rank A = rank H + rank(A /H).
14.3. (Inverses) If A, E, and H are all nonsingular, then:
(a) (A/H)"! =E"' +E"'F(A/E)"'GE~L.
(b) (A/E)y"' =H ' +H'G(A/H)"'FH L.

14.4. (Inertia) We recall that the inertia Zn(A) of a symmetric matrix A is given
by the triple (ry,r_, 7o), where r; is the number of positive eigenvalues, r_ is the
number of negative eigenvalues, and rg is the number of zero eigenvalues. Then, if
A is symmetric and E is nonsingular,

In(A) = In(E) + In(A/E).

Ouellette [1981: 207-210] extends the above result to the case when (A/E) is also
partitioned.

14.5. (Non-negative Definite Matrices) Suppose A is symmetric and E is positive
definite.

(a) A is non-negative definite if and only if (A/E) is non-negative definite.
(b) A is positive definite if and only if (A/E) is positive definite.

14.6. (Subpartition) Suppose that

. K L F,
E : F .
A= = M N . Fy ,
G : H )
G1 G2 : H

where E and K are nonsingular. Then (E/K) is a nonsingular leading principal
submatrix of (A/K), and

(A/E) = (A/K)/(E/K)).
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14.7. (Sum) Let

E F K L
A:<F, H) and B:(L, N)

be symmetric (m + n) x {(m + n) matrices, where E and K are m x m. Suppose
that A and B are non-negative definite (n.n.d.) and E and K are positive definite.

(a) FET'F+L'K 'L — (F+L)(E+K) (F+L) is n.n.d. with the same rank
as F — EK™!L.

(b) (A +B)/(E+K))— (A/E) — (B/K) is n.n.d.

det(A+B) _detA detB

(c) detl(A+B)/(E+K)] = 3/ 5% % dE T dt K’

Definition 14.2. (Generalized Schur Complement) Referring to Definition 14.1,
if E is rectangular, or square and singular, then we replace E~! by any weak inverse
E~ and call (A/E) the generalized Schur complement of E in A. We have a similar

definition for (A/H).
We shall use the following notation below:

S=(A/JE)=H-GEF and T=(A/H)=E=FH G.
14.8. (General Properties of the Generalized Schur Complement)

(a) If A and E are both square and either C(F) C C(E) or C(G') C C(E'), then
S is invariant for all weak inverses E~ and

det A = detE - det S.

(b) If A and H are both square and either C(G) C C(H) or C(F') C C(H'), then
T is invariant for all weak inverses H™ and

det A =detH  detT.
(c) If A is non-negative definite and E and H are both square (i.e., G = F'),
then C(F) C C(E) and C(F') C C(H); also (a) and (b) hold.

14.9. Suppose A is non-negative definite and E and H are both square, then:
(a) S and T are invariant with respect to the weak inverses E~ and H™.
(b) (Rank)

(i) rank A = rank E 4 rank(A/E) .

(ii) rank A = rank H + rank(A /H).
(c¢) (Inertia)

(i) In(A) =In(E)+ In(A/E).

(ii) In{A) =In(H) +In(A/H).
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(d) If v(A) refers to the nullity of A, then:

(i) v(A) = v(E) + v[(A/E)).
(i) v(A) = v(H) + v[(A/H)).

Proofs. Section 14.1.
14.1. Ouellette [1981: 195, 209).
14.2. Ouellette [1981: 199].
14.3. Abadir and Magnus [2005: 107]. See also (15.3c).
14.4. Ouellette [1981: 207-210]
14.5. Abadir and Magnus [2005: 228-229] and Ouellette [1981: 208].
14.6. Ouellette [1981: 210].
14.7. Ouellette [1981: 211-212).
14.8a-b. Ouellette [1981: 224-225].
14.8c. Follows from (a) and (b) and (14.26g).

14.9a-d. Puntanen and Styan [2005b: section 6.0.4]; for {a) see Ouellette
[1981: 242] and Styan [1985: 45]; for (b) see Styan [1985: 45] and (4.40a(iii));
for (c) see Ouellette [1981: 238, theorem 4.7]; and (d) follows from (b) and
the fact that the rank plus the nullity of a matrix is equal to the number of
columns.

14.2 INVERSES

The notation used so far for Schur complements is sometimes not so helpful for the
more general results in this section, as it is not easy to see the patterns. I now
introduce a subscript notation as well, as both are used in the literature. Some of
the above results will appear again under a different guise. The results on inverses
in this section are established by simply checking that AA~! = I. The other results
are verified by multiplying out the matrices concerned and using (14.11).

An Ap
A= ,
( Ag Ax
where A, A1, and Ay, are all real or complex matrices that are not necessarily
square.

14.10. Let

(a) If Ay, is nonsingular and Ay, = Ay, — Ay AT'A (= A/A4)), then

oA I 0 A, © I A7'A,
W A= < A21Aﬁ1 1 ) < 0 Ay, ) ( 0 I ’

This is sometimes called the Aitken block-diagonalization formula. When
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A is non-negative definite, the above result still holds with Az = Af,
and AT} replaced by A}, throughout.

N Al o (1 A{lAL,
(i) <_A21A1_1l 1 )%= o Az, )7

(iii) If A~! exists, then

Al = < I —AA, ) ( _1Al_11 . (_)1 )
0 I —Ana Ay AT Ay

(iv) If A~! exists, then
- A 0 -AT'A _ -
Al = ( 61 o ) + ( li 12 >A221.1(_A21A111»I)~
(v) If A and Ay; have rank r and Ay is 7 x 7, then Age.q = 0.
(b) If A,, is nonsingular and Aj12 = A;; — A ,A' A, (= (A/As), then

(i) A= I ALAL Ajjg O I ]
0 I 0 A, ALA,, 1)

When A is non-negative definite, the above result still holds with Ay =
A, and AQ_Z1 replaced by A,, throughout.

N I 0 \ _ [ Ana ApAL
(i) A( ~AZ Ay AZ )‘( o 1 )

(iii) If A™! exists, then

Al = I 0 A, —ATLARAS
—An Ay I ! '

(iv) If A~} exists, then

A= (0 au ) ( _ada, ) A -anaz).
(v) If A and Agj have rank r and Agy is 7 x 7, then Aj;.0 = 0.
14.11. Suppose A is partitioned as above and is nonsingular.
(a) If Ay, is nonsingular and Asgg.; = Ay — AglAfllAlg, then

A—l < All +A111A12A22 1A21A1_1 A111A12A22 1 ) .

_A22 1A21A A22 1

(b) If Ass is nonsingular and Aq1.0 = Ay — A12A2_21A21, then

Al ( AL, A A AL )
—AR Ay AL, Ay AL AATLA LAY
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{c) If A, and A,, are both nonsingular, then we have the following.
(i) Agy = Az + AR Ay AT ARAS.
(i1} Interchanging 1 and 2 above,
ATl = AT + AT ARAG Ap AT

When A;; and Ay, are both nonsingular, the two representations of
A~! given by (a) and (b) above are identical, by the uniqueness of the
inverse, even though the off-diagonal blocks may not look equal. Thus,
for example, it can be shown that

(i) Az Ag AL = Ap Ay AT,

For this reason the reader will find various versions of A~! in the literature.
(e.g., compare Graybill [1983: 184] and Muirhead [1982: 580] with Anderson [2003:
638] and Zhang [1999: 184, where A is positive definite). When A is symmetric or
Hermitian we have Ay = AJ,.

Some special cases follow.

14.12. If A,; and A,, are nonsingular, then the following inverses below exist (by
14.18) below, and

(2 ) - Codllnr &)
A21 A22 _‘A2_21 ‘A21‘A1_11 ‘A2_21 ’

—1 _ _ _
All A12 — 'All1 _A111A12A221
0 A, 0 A :

Similarly,

We get special cases if we set Aq; and/or Ay, equal to identity matrices.
Nonsingular block-triangular matrices with more than two blocks can be inverted
by applying the above method iteratively (cf. Harville [1997: 94]).

14.13. Suppose A and D are nonsingular.
(a) If o = d — /A~!b # 0, we have from (14.10a(iv))

-1 _
A b (AT O 1/ATDY
(23) (% §)ra(t)err

(b) If 3 =a —b'D~c # 0, we have from (14.10b(iv))

a ' [0 O 1/ -1 —
(e5) (8 o5 ) +5lng)crre
14.14. Let (A, B) be an n x (k + m) matrix of full column rank, where A is n x k.
Define

Z = (A,B)(A,B) = ( A'A A'B )

B'A BB
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Let M¢ = I, - C(C'C)~1C for C = A,B, and define E = B'MB and F =
A'MgA. Then, from (14.11a,b),
(A'/A)"1 + (A'A)"'A’'BE"'B’A(A’A)"! —(A’A)"'A’BE-!
—E'IB'A(A'A)“1 E-!
F-! _F'A’B(B'B)"!
~(B'B)"'B’AF-! (B'B)"! + (B'B)"'B/AF-'A’B(B'B)"!

Z—l

14.15. Given conformable matrices and the existence of the appropriate inverses,
we have

A B c\™
B D o
C 0 E

Q—l _Q—IBD—l _Q—ICE—I
-D_IB/Q_I Dt +D—IB/Q~IBD—I D—IB/Q—ICE—l ,
—'E_IC/Q_I E—lc/Q-lBD~1 E—l +E—10/Q—ICE—1

where Q = A — BD™!B’ — CE~!(C’.
14.16. (Powers) Suppose A is m x m and D is n X n.

(a)
A B\ [ AF Q. b1 9
0 D/ “\ o Dt/ "TH%
where Q;, = ¥ | A¥~iBDi~1,

(b) If, in (a), D =1, and I,, — A is nonsingular, then

Qk = (Im - A)_I(Im - Ak)B'

(c) If A and B are nonsingular,

A B\"* [A* R,
(o 5) =(% o)
where Ry = — Zle A-(k=i+BD 7,
Proofs. Section 14.2.
14.10a(v) and b{v). Graybill [1983: 126-127].
14.13. Abadir and Magnus [2005: 105).
14.14. Abadir and Magnus [2005: 107].
14.15. Magnus and Neudecker [1999: 12].
14.16. Abadir and Magnus [2005: 109].
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14.3 DETERMINANTS

14.17. Suppose A is partitioned as in (14.10).
(a) If A,; is nonsingular,
det A = det(A,;)det(Asza.1).
If, in addition, A is nonsingular, then so is Agzy.1, the Schur complement of
A
(b) If A,, is nonsingular,
det A = det(A,;) det(Aq1.2).

If, in addition, A is nonsingular, then so is Ajj.2, the Schur complement of
A,

(c) If A}, and A, are any weak inverses of A; and Ays, then:
(i) If C(A21) C C(Ag2) or C(A],) C C(AL,), we have
detA = (det Agg) det(An — A12A2_2A21).
(ll) If C(Alg) - C(All) or C(AIZI) C C(A/u), we have
det A = (det All) det(AQQ — A21A1_1A12).

14.18. The following two results are often useful.

(a) If A and B are m x m and n x n, respectively, then, for conformable matrices,

A O A F
det(E B):det<0 B)zdetA-detB.

We can set A or B equal to the identity matrix.

Note that the two matrices on the left are nonsingular if and only if both A
and B are nonsingular.

(b) Using a similar notation to (a),

0 F B E mn
det(E B)zdet(F 0)2(—1) detE - det F.

14.19. If B and C are n x n matrices, then

0 B
det( I, C ) =det B.

14.20. If C = (A, B) is square, then from det(CC’) = det(C’'C) = det(C)? we
have
B'A B'B

/ !
det(AA’ + BB') :det( A'AAB )



DETERMINANTS 297

14.21. Let A and D be square matrices. Then:

(a) det< 3 2 ) =ddet A — c’(adjA)b,

or det A(d — ¢’A~!b) if A is nonsingular, where adjA is the adjoint matrix
of A.

!
b) det| ° by det D(a — b'D~1c) if D is nonsingular.
c D

-1

E F
r(6n)

be an n X n matrix such that E is m x m. If

. E1 Fu
adJA_<G1 H1>’

(c) From (a) we have det ( 3 v ) = —det(A + uu’).

14.22. (Adjoint) Let

where E; is m x m, then:
(a) detH; = (det A)""™~!detE form=0,1,2,...,n— 1.
(b) det E; = (det A)™detH, for m = 0,1,2,...,n— 1.
14.23. If AC = CA, then

A B
det( c D ) = det(AD - CB).

If we set A =1, then the above is true.

14.24. If A and B are n x n matrices, then

A B
det( B A > = det(A + B) - det(A — B).

14.25. The determinant of the matrix inversed in (14.15) is
detD - detE - det(A — BD'B’ - CE~!C').
Proofs. Section 14.3.

14.17a. We take determinants in (14.10a(i)) and use the fact that the deter-
minant of a triangular matrix is the product of its diagonal elements.

14.17b. Similar to (a), but using (14.10b(i)).
14.17¢. Schott {2005: 263]; see also (14.8a,b).

14.18a. Harville [1997: 185], Rao and Bhimasankaram [2000: 234], and Searle
[1982: 97].
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14.18b. Harville [1987: 187].

14.19. This follows from (14.18b) and the fact that n? +n = n(n+1) is even.
See also Searle [1982: 98].

14.21. Abadir and Magnus [2005: 113].
14.22. Ouellette [1981: 205-206].

14.23. Abadir and Magnus [2005: 116].
14.24. Abadir and Magnus [2005: 117].
14.25. Abadir and Magnus [2005: 118].

14.4 POSITIVE AND NON-NEGATIVE DEFINITE MATRICES

Schur complements arise in this section using a different notation, and the results
should be compared with those in Section 14.1. Note that A > B means that A—B
is non-negative definite.

14.26. Let
Ay Ap
A_ =
< Az Ay
be a real symmetric matrix (i.e., A;2 = A};, with Aj; and Ao square matrices).

(a) A > O (i.e., is positive definite or p.d.) if and only if A;; and Agp —
A21A1_11A12 (Z (A/All) are pd

b) A > 0 if and only if Ay and Aj; — Aj2AL Ay are p.d.
22

(c) If A > 0, then
Ay = Ay — Ay ATl Ag.

(d) If A = 0 and A!! is the leading principal submatrix of A~! with the same

size as A, then
A - A7l >-0.

(e) (Fischer Inequality) If A > 0, then
det A S det All - det A22,

with equality if and only if both sides vanish or A2 = 0.

(f) If A > 0 and the blocks A1, A1y, and Ay are square matrices of the same

size, then
I det A12|2 < det Ay; det Ags.

(g) If A > 0, then C(A12) € C(A11) and C(Aa1) C C(Ag).

The above results will also hold if A is Hermitian.
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14.27. Let the real symmetric matrix A be partitioned as in (14.10) above, where
A1 = 0. Then for any square matrix Agy = O,

A >0 ifandonlyif Ao > A21A1_11A12.

A A )
A =
(A %)
where A1 is a non-negative definite m x m matrix and A, is m xn. The symmetric
(m+n) x (m+n) matrix A is sometimes referred to as a borderd Gramian matriz.

14.28. Let

(a) A is nonsingular if and only if rank Ao = n and A1 + Aj2A, is positive
definite.

(b) If A is nonsingular, and setting Ao; = A’,, then
A-l = ( B —131111‘:;12B5211A21B;11 B;llAlglig; )
B3y Aa1By I, — By,
where By; = Aj; + ApAg; and By = Ay B A,
(¢} If B4y above is nonsingular, then

det A = (—1)” detB11 - det B22.

(d) If A is nonsingular, then
det A = (—1)"det Ay, - det(Ag A Ago).

3 lc) ), where A, b, and ¢ are

14.29. Let A be positive definite and let B = (
real.
(a) detB = det A(c — b’A~'b) < cdet A, with equality if and only if b = 0.
(b) B is positive definite if and only if det B > 0.
(c) If ¢ = b’A~1b, then B is non-negative definite.
(d) x’Ax —2b'x > —-b’A~'b.

14.30. Let A and B be real n x n matrices, and let

A a _{ B by
A-(a,l a) and B—(b,1 b)’

where A and B are positive definite. Then
ajAT'a; +bB7'b; — (a; + by) (A; +B;) " !(a; + by)
= (A7'a; - B;'by)'(A;'+ B ) (AT a; — By 'by).

Anderson [2003: 419] gives an application to testing that several multivariate nor-
mal populations are identical.



300 PARTITIONED MATRICES

14.31. Let A and B be n x n positive definite matrices. There exists a unique
matrix C such that

cj = ai, (4,7)€{1,2....,t}
Moo= b, (i,7) € {1,2,...,¢}

where C™! = ¢ and B~! = b¥. This result has an application to graphical models
for determining patterns of independence.

Proofs. Section 14.4.

14.26a. Horn and Johnson [1985: 472, complex case] and Zhang [1999: 175,
complex case].

14.26b. Same as (a) with the subscripts 1 and 2 interchanged.

14.26¢. Horn and Johnson [1985: 474, in proof of theorem 7.7.8] and Zhang
[1999: 175, complex case].

14.26d. Follows from (14.11a); see also Zhang [1999: 175, complex case].
14.26e. Horn and Johnson [1985: 478] and Zhang [1999: 175, complex case].
14.26f. Abadir and Magnus [2005: 228, 341].

14.26g. Sengupta and Jammalamadaka [2003: 45]; see also (14.8c).

14.27. Zhang [1999: 178, complex case].

14.28. Abadir and Magnus [2005: 230-231].

14.29. Magnus and Neudecker [1988: 23-24].

14.30. Anderson [2003: 419].

14.31. Anderson [2003: 614, 616].

14.5 EIGENVALUES

In this section we assume that the n X n matrix A is partitioned as in (14.10) with
A;; being n; X n, for i = 1,2 (n; + ngy = n). We also continue with the notation
A(A) > -+ 2 A, (A) for ordering the eigenvalues when they are real, which is the
case for a symmetric matrix.

14.32. Suppose A is non-negative definite. If h and ¢ are integers between 1 and
n inclusive, then:

(a) Antic1(A) S Ap(A) + Ai(Ag), ifh+i<n+1,
(b) /\h+i—n(A) > )\h(All) + )\i(A22), fh+i>n+1,
where /\h(All) =0if h > (31 and )\i(Agg) =0ifi > n9.
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14.33. Suppose A is non-negative definite and i;,42,...,%; are distinct integers
beween 1 and n, inclusive. Then for £k =1,2,...,n,
k k
i, (A1) + Anke(Az)] < DA (A)
j=1 j=1
k
< Y [ (An) + A (Az)),

.
l

where /\j(Au) =0 lf] > ny and /\j(AgQ) =0 lf] > ng.
14.34. Suppose A is symmetric and A, (A11) > A1(Agg).

(a) For j =1,2,...,ni,

)‘1(1L121L112)
0<A(A) = Ai(Ay) < ,
— ]( ) J( 11)—)\].(&.11)_—)\1(5‘22)

and for j =1,2,...,n2,

< A1 (A12A%,)
= An (A1) = Anp—jri(Age)

0 < Apyojr1(Ao2) — Anj41(A)

Tighter bounds are given by Diimbgen [1995]. The above bounds are use-
ful in obtaining the asymptotic distribution of the eigenvalues of a random
symmetric matrix (Eaton and Tyler [1991]).

(b) For k =1,2,...,m,

3 Y51 Aj(A1AL,)
0< ;D\j(A) BRI By e wywwt

14.35. Suppose A is positive definite, and let B; = A3 — A12A2_21A21, B, =
Ago — Ay AT} Aqg, and C = —B7'A A5, where Ajp = Aj). Then if A\(By) <
)‘"2(B2)7

, )\ztl—k-i-l(Bl)

0< Y Pnj1(Br) = dajri(A)] < I
st ni—k+1

k

(Bl) _ /\T_Lzl(B2) ;)\j(Cc/),

fork=1,2,...,n,.

Proofs. Section 14.5.
14.32-14.34. Schott [2005: 271-273].
14.35. Schott [2005: 275-276].
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14.6 GENERALIZED INVERSES

14.6.1 Weak Inverses
14.36. Let A = (A;;,A5), where Ay; is nonsingular. Then

- _ (AR -ATARY
A _( Y

is a weak inverse of A for arbitrary Y.

A

14.37. Let A =
(A21

>, where A1; is nonsingular. Then

A" = (A1_11 - XAzlAl_llax)
is a weak inverse of A for arbitrary X.
14.38. Let A be m x n.
(2) (B_) is a weak inverse of (A, B) if and only if AA"B =0 and BB-A =0.
(b) (A~,C7) is a weak inverse of (3) if and only if CA"A = 0 and AC™C = 0.
For conditions on the ranks for the above weak inverses to hold, see Tian [2005b].

14.39. Let

_ (Ar@xn)
A pxn G=(G G
(1k2(4><n) and ( Hoxe 2("><‘1))’

with p+ ¢ =m. Then C(A])NC(A%) = 0 and G is a weak inverse of A if and only
if

A1G1A1 = Al, A2G1A1 = 0, A2G2A2 = AQ, and A1G2A2 =0.
If rank A, = p, the first two equations above become A1 Gy =1, and A;G, = 0.

14.40. Let

Gipxm
A = (Ai(mxp), A2(mxq)) and G=(G1(”X )),
2(gxm)

with p+ ¢ = n. Then C{(A;)NC(Az) =0 and G is a weak inverse of A if and only
if

A1G1A1 = Al, A1G1A2 = 0, A2G2A2 = Ag, and A2G2A1 = 0.
If rank A = p, the first two equations above become G1A; =1, and G;A; = 0.
14.41. Let A be partitioned in the form of (14.10).

(a) If C(A12) C C(Aq1), C(AL) C C(AY;), Ay; is a particular weak inverse of
Aj,and Ay, = Ay, — Ay AT A, we have

A- — (Af1+Af1A12A2_2-1A21Af1 _A1_1A12A2_2.1>

_A2_2‘1A21A1_1 A2_2~1
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(b) If C(A21) C C(Ag2), C(A},) C C(AL,), Ay, is a particular weak inverse of
Agz,and Aj 1, =A;; —A,ApA,,, we have

A — ( Al —AL2ALA
—AnAyAT, ApntAynAyAliLApAy,

Necessary and sufficient conditions are given in (14.44) below using a different
notation. Some rank conditions for the above to hold are given by Tian and Takane
[2005).

14.42. Let A be an n X n non-negative definite matrix partitioned as in (14.10),
where A1 is p X p. Suppose that the n X n matrix G is a weak inverse of A and is
partitioned in exactly the same way as A. If each of the first p rows of A is nonzero
and is not a linear combination of the remaining rows of A, then

Gi1 = (A1 — AppAsAy) ™!

for any weak inverse A}, of Agy. Also Gy is unique.

_(V X _f{ G G2
A—<X, 0) and G_<G21 G22>,

where V is an n x n non-negative definite matrix, X is n x p, and Gy is n X n.

14.43. Let

(a) If G is a weak inverse of A, we have the following.

(i) Gi2 is weak inverse of of X'.
(i1) Go; is weak inverse of of X.
(ii) VG2 X' = XGg1V = ~XGpX'.
(iv) VG11X =0,X'G;;V=0,and X'G; X = 0.
(v) V= VG,V — XGgpX'.
(vi) VG1V, VG12X', XG2;V, and XGo X' are symmetric and invariant

to the choice of the weak inverse G.

(b) If U is any p x p matrix such that C(X) C C(V +XUX'), and W is any weak
inverse of V + XUX', then

( W - WX(X'WX)"X'W  WX(X'WX)~ )
(X'WX)"X'W —(X'WX)~ +U

is a weak inverse of A.

14.44. Let
E F
(5 )
(a) Let E be a particular weak inverse of E and S = H — GEF, the generalized
Schur complement. Then

B E+EFS"GE -EFS-
- ~S~GE S- ’
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is a weak inverse of A for a particular weak inverse S~ if and only if rank is
additive on the Schur complement (i.e., rank A = rank E + rank S), and then
B is a weak inverse of A for any weak inverse S™. Sufficient conditions are
C(F) CC(E) and C(G') C C(E'), as in (14.41a).

(b) Let H be a particular weak inverse of H and T = E — FHG, the generalized
Schur complement. Then

C— T _ -T"FH
“\ “HGT- H+HGTFH /’

is a weak inverse of A for a particular weak inverse T~ if and only if rank is
additive on the Schur complement (i.e., rank A = rank H+rank T), and then
C is a weak inverse of A for any weak inverse T~. Sufficient conditions are
C(G) CC(H) and C(F') C C(H'), as in (14.41D).

We can obtain (b) from (a) by simply interchanging E and H, F and G, and
Sand T.

Proofs. Section 14.6.1.
14.36-14.37. Harville [1997: 111].
14.38. Harville [1997: 119].
14.39. Rao and Rao [1998: 270, 272].
14.40. Rao and Rao [1998: 271, 273].
14.41. Schott [2005: 267-268].
14.42. Rao and Rao [1998: 275].
14.43. Harville [1997: 473-476).

14.44. Harville [2001: 41, exercise 8] and Marsaglia and Styan [1974b: 438-
439).

14.6.2 Moore—Penrose Inverses

We consider just a few special cases below. For further results relating to partitioned
matrices see Baksalary and Styan [2002] and Grof [2000]. The Moore-Penrose
inverse of (A, B) is considered in detail by Campbell and Meyer [1979: 58-59] and
Schott [2005: 192-195]. A number of general rank conditions for Moore-Penrose
inverses to exist are given by Tian [2004].

14.45. Let A and B be defined as in (14.44) above.
(a) B= A" if and only if E = E*, S~ = 8%,

F
rank (2) =rank(E,F) =rankE and rank (H) = rank(G, H) = rank S.
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(b) Since AT is unique, we get the same result if we do the interchanges described
at the end of (14.44). This leads to the following result.

IfS=H-GE*F and T =E - FH'G, then

At = T+ —EtFS*
-\ -H*GT+ st :

if and only if
E
rank cl= rank(E,F) = rank E = rank T

and

F
rank <H> = rank(G, H) = rank H = rank S.

14.46. If A = (2) and BC' = 0, then
(a) AT =(BY,C")
(b) AtA=B*B+C*C.
()

AA+_(BB+ 0 )

0 cct
14.47. Suppose A is an m X n matrx of rank r, where r < min{m,n}, and A is
partitioned as
A Ay
A= ,
( Ay Aoy
where A;; is 7 x 7 of rank . Then

A+ — ( AlllBAlll AIIIBAIQI )
AIIQBAIII A,IZBA/21 ’

where
B = (A A} + ApAlL) AL (AL AL + AL AT

Proofs. Section 14.6.2.
14.45. Ouellettte [1981: 233-234].
14.46a. Quoted by Dhrymes [2000: 104].
14.46b—c. Quoted by Graybill {1983: 115; his A~ is our A™].
14.47. Graybill [1983: 127].
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14.7 MISCELLANEOUS PARTITIONS

We close this chapter with a few partitions that may provide some ideas in algebraic
manipulations.

14.48. A+B = (A,B)G) = (L) (g).

I -A 0 AB I 0 -ABC 0
14'49'<0 I)(BC B>(—C I>:< 0 B)'

We can set B =1

woo (1) (4 8)-(2 %)



CHAPTER 15

PATTERNED MATRICES

15.1 INVERSES

Matrices that have a particular pattern occur frequently in statistics. Such matrices
are typically used as intermediary steps in proofs and in perturbation techniques,
when one is interested in the effect of making a small structural change to a ma-
trix. Patterned matrices also occur in experimental designs and in certain variance
matrices of random vectors. A related chapter is Chapter 14.

15.1. (Some Identities) There are a number of identities that are useful and which
can be used to prove the results in this section. It is assumed that all inverses exist.

(a) (i) VA"Y(A-UD'V)=(D-VA~'UD 'V,
or taking the inverse of both sides,
(ii) D~!'V(A-UD"'V)~"! = (D - VA-!U)VA~L

(b) Setting A =1, D = —I, and interchanging U and V in (a)(ii), we have that
U(I+VU) ' =(1+UV) U
(¢) If I+ U is nonsingular,
I+U) ' =1-(I1+U)'U=1-UI+U)"L

(d) UAT'UI+UAU) 1 =1- I+ U AU~

A Matriz Handbook for Statisticians. By George A. F. Seber 307
Copyright © 2008 John Wiley & Sons, Inc.
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(e)

(f)

15.2.

PATTERNED MATRICES

If A and B are n x n complex matrices, then

I,+AA* = (A+B)(I,+B*'B)"}(A+B)
+(I, — AB*)(I, + BB*) (I, — AB")".

Note that the right-hand side does not depend on of B.
(al, — A) 1 — (B, - A)"! = (8- a)(BT, — A) " Y(ol, — A)~L.

If A is nonsingular and the other matrices are conformable square or rect-

angular matrices (e.g., Aisnxn, Uisn xp, Bispx g, and V is ¢ x n), then we
have the following inverses from Henderson and Searle [1981b: 57-58].

(a)

(b)

(A+UBV)"! = A™'—(I+A'UBV) 'A"'UBVA™!
= A'-AY 1+ UBVA~)'UBVA!
= A!'-A'UI+BVAT'U)'BVAT!
= A'-AT'UBI+VATIUB) VAl
= A" - AT'UBV(I+A'UBV) A~}
= A'-AT'UBVAT!(I1+UBVA™H)™!

All results follow from the first by repeatedly applying (15.1b).

If the left-hand side exists, then the inverses on the right-hand side exist. This
is because each inverse on the right-hand side is the inverse of the sum of I
and a cyclic permutation of AT'UBYV, and it exists because its determinant
is nonzero. For example,

det(I+ A"'UBV) = det(A ™) det(A + UBV) # 0.
We can then obtain the other determinants using
det(I + CD) = det(I + DC)

from (4.33) and (15.10b)

A number of special cases are readily available by setting B = I and/or V =1,
and replacing matrices by vectors. For example, Steerneman and van Perlo-
ten Kleij [2005] consider a matrix of the form V = A — XY*, where V is a
nonsingular complex matrix and X and Y are n x p complex matrices. They
consider various special cases, and give eigenvalues and eigenvectors of the
real matrix D — xy’, where D is diagonal matrix (cf. 15.6).

We can also set V = U’ in (a), in which case we get (A + UBU’)~! that
arises, for example, as a dispersion matrix for many mixed models in the
analysis of variance. The following are special cases of (a).

(i) (Sherman-Morrison)

(A+buv) ' =A"1 —pAuv' A /(1 + v A7 ).
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This is used as an “updating” formula discussed further in (15.11). The
situation when A or the modified matrix is singular is investigated by
Baksalary and Baksalary [2004c] (see also Section 15.5.2).

x’A-1x
14+xA-1x’
(i) (A +UBU’)"!=A~! — A-'UB(I+ U'A~'UB) 'U'A 1.

(i) X' (A +xx)"'x =

For a good historical discussion and further results see Henderson and Searle
[1981b]. They also give some statistical applications of these identities such as
inverting the variance matrix for a multinomial vector, inverting a matrix with
the pattern of an intraclass correlation matrix, and obtaining the generalized least
squares estimates for a variance component model.

15.3. Another set of results can be derived by assuming that B is also nonsingular.
From the fourth equation of (15.2a) we have:

(a) (i) (A+UBV)'=A"l_A-1UB(B+BVA-'UB)"!BVA-!.
(i) (A+UBV)~!=A~1 - A-1UB! + VA-1U)"'VA~!

(iii) Setting B = I, we have the so-called Sherman-Morrison-Woodbury for-
maula

(A+UV) ' =A"T - A7'UT+ VAU lvATL
This result also holds with A Hermitian.
(iv) Setting A and B equal to identity matrices in (i) or (ii}, we have

I+UV)"!=1-U(I+VU)'V.

b) Setting V = in (a)(ii) gives us
S U’
(i) (A+UBU ) '=A"1 - A-1UB !+ UA-U)IUA-L
-1

(i) If C = (U’A~1U)~! exists, then using (15.4b) with B and C instead of
A and B, we have

It

(A +UBU) ! A7l - AT'UB T IUAT

= A'-A'UBB+CO)"lCcUA™!

= A'-A'UB+C-C)(B+C)ICUA™!
= A'-AlucuAl+AT'UCB+0O)!

xCU' AL,
(iii) In particular,
(A+B)'=A"1-A YA +BHIATL

We can also interchange A and B and can replace A by A~! and B by
B~

We note that in (b) (and (a)) we can replace B by —B.
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(c) Setting B = —D~! in (a)(ii) leads to a number of results like the following;
(i) (A-UD"'V)~l = A~ 4+ A-1U(D — VA-!U)" VAL,

Note that the left-hand side of the above is the inverse of a Schur com-
plement. As a special case we have

(i) I-0UV)"!=1+U(I-VU)" 'V, asin (a)(iv) with a sign change.

15.4. Gentle [1998: 62] notes that in linear regression we often need inverses of
various sums of matrices and gives the following additional identities for nonsingular
A and B.

(a) (A+BB)"'B=A"'B(I+B'A"'B)".
(b) (A"'+B )" =A(A+B)'B.

(c) A(AA+B)"'B=B(A+B)'A.

(d) A +B'=A"A+B)B!
We can also add, for nonsingular A + B,

(e) A— A(A+B)"'!A=B-B(A+B)"'B.
15.5. (Non-negative Definite Matrices)

(a) If A is positive definite, then A — bb’ is positive definite if and only if
b’A"1b < 1.

(b) If A is non-negative definite (n.n.d.), then A — bb’ is n.n.d. if and only if
beC(A)and A b <1

15.6. If A = diag(a;,ag,...,a,) is a nonsingular diagonal matrix and C = A +
auv’, then we have the following.

(a) C' = A7 +af Mg, where f = ~(1+ a 3I_, (uvifai) (#0), fi = ui/ai,
and g; = v;/a;.

(b) detC = (1+ai %) ﬁai.
i=1 '/ i=1

(¢) The characteristic equation of C is given by

det(C—AL,) = (1+a) a“”“A) [T -»=o0.
i—1 P

i=1

For further details relating to the eigenvalues and eigenvectors of C see
Steerneman and van Perlo-ten Kleij [2005) and the references therein.

(d) If ay = a2 = --- = an, = a, then C has n — 1 eigenvalues equal to a and one
eigenvalue equal to a + ay ., u;v;.
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15.7. Let p; > 0fori=1,2,...,k—1, where Zfz_ll p; < 1,andlet p, = 1—2;:11 D;.
Then the variance matrix for a nonsingular (k—1)-dimensional multinomial random
variable is

V = n{diag(p1,p2, ..., pk-1) —PP'},

where p’ = (p1,p2,...,pk—1). From (15.6a) with n = k — 1 and o = —1, we have

(pf1+lp;1) 1,,,;1 1 ”’:1 p,:i
Py (P2 g ) Pe Pk |
N Pr Py (ps” +p) - Pk |
=n Py P Pr Pr
0 z - : -
P pkl pkl ce (pk.l.l + Dy 1)

Proofs. Section 15.1.
15.1a. Henderson and Searle [1981b: 56].
15.1b. Henderson and Searle [1981b: 57].

15.1c. Use the identity I = I+ U — U, multiply on the left by (I+U)~!, and
then multiply on the right.

15.1d. We take the inverse term on the right-hand side over to the left.
15.1e. Zhang [1999: 185].

15.1f. Multiply (8L, — A) — (al, — A) = (8~ a)I, on the left by (8L, — A)~!
and on the right by (oI, — A)7L.

15.3a. Harville [1997: 424-425).

15.4a. We take the inverses of both sides.
15.4b. Take inverses of both sides.

15.4c. Interchange A and B in (b).
15.4d. Simply multiply out.

15.4e. This follows from (A + B)(A + B)"!C = C for C = A,B and from
().

15.5. Abadir and Magnus [2005: 227] and Rao and Bhimasankaram [2000:
345, see solution to exercise 15].

15.6. Graybill [1983: 189, 203, 206].
15.7. Graybill [1983: 189].
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15.2 DETERMINANTS

15.8. If A has rank 1, then from (3.4b) and (4.33),
det(I, + zA) = 1 + z trace(A).
15.9. For general A, det(I + zA) = 1 + ztrace A + O(z?).

15.10. Suppose Cisnxm,Dismxn,uisnx1,wisn x l,and v is m x 1, then
we have the following results.

I, C
(a) det(I,, + CD) = det ( D L, >

(b) We have from (4.33), det(I,, £ CD) = det(I,, £ DC).
(c) Setting C = u’ and D = v'A, we have from (b) and (15.8)

det(I, £ uv'A) = det(1 £ v'Au) = 1 + trace(v'Au) = 1 + v'Au.

(d) If Aisn xn, Bis m x m, and A and B are nonsingular, then

det(A + UBV) = det(A)det(I,, + VA~'UB)
* det(A)det(B™! + VA~'U) det(B).

We have the following special cases.
(i) det(A + uu’) = det(A)(1 £u’A"1u).
(i) WA lu=1- (det(A — uu’}/ det(A)).
(iii) det(A+ouw’) = det(A){(1+aw’A~lu) = det(A)+aw'(adjA)u, where
adjA is the adjoint matrix of A.
Proofs. Section 15.2.
15.8. Abadir and Magnus [172-173].
15.9. Anderson [2003: 646].
15.10a-b. Muirhead [1982: 578].

15.10d. Harville [1997: 416].

15.3 PERTURBATIONS

Definition 15.1. Suppose we have a matrix A involved in a system of equations
and we wish to know what happens to the system if we change A to A + §A. If
the matrix A is of rank one (cf. (3.4b)), then it is called a rank one perturbation.
Other kinds of perturbations may consist of adding or subtracting an observation to
see what effect this has on any inference or diagnostics. Clearly, such perturbations
have many uses in statistics, and although the theory underlying these is given
above and elsewhere, it is helpful to collect some of the results used generally and
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in linear regression together here. For a historical overview and some computational
aspects see Hager [1989].

15.11. (General) Let A be an n x n nonsingular matrix. We consider the effect
on the inverse of A of three modifications using (15.2b(i)).

(a) (Add to an Element) If we add h to a;j, then A becomes A +hE;; = A +
heie;-, where e; is the ith colum of I,, and
hA~'e;e;A™!

At hee,) t=A1 o T
(A + hee}) 1+he;A—1ei

(b) (Add to a Column}) If f is added to the jth column of A, then

A'lfe;A‘1

Atfe) t=A"t I
(A +1e) L+ e/ AT

(¢) (Add to a Row) If row g’ is added to the ith row of A, then

A leg/A™?

Ateg)l=A" .
( +eg) +1+g,A_lei

(d) (Diagonal Increment) If the inverses exist, we have from (15.3a(ii}),

(A+ kL) '=A1—A (k"I + A"H) A

It is assumed that all the above denominators are nonzero.

15.12. (Sample Mean and Variance Matrix) Suppose we have a set of d-dimensional
observations X1, Xo, ..., Xy, and we define

W, = iwi, Xp = zn:wixi/Wn, and S, = iwi(xi — %) (% — X,) .
=1 =1

i=1

We want to know what happens to these quantities when we add an observation
X,41 Or subtract x,. Setting d,,.11 = X,41 — X, and f, = x,, — X,,, we have the
following.

(a) (Add an Observation)

N = Wn 41
(i) Xp41 =Xn + Wz+1dn+1.

(ii) Snt+1 = Sn + wns1(1 — P )dpyady iy

(b) (Subtract an Observation)
(i) Xn-1 =% — 2 fa.

(il) Sn1=Sn ~ wn(l — G2-£,f).

(c) (Equal Weights) With equal weights we have w; = 1/n, W,, = 1, and so on.
Let X = Zle x;/kand S = Zle(xi—ik)(xi—ik)’/k fork=n—1,n,n+1.
Then:
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N = < 1 < < 1
(i) Xpng1 =%n + n_Hdn+1 and X, 1 = X, — ;=5 fn.

(i) 28,41 = Sp + piydnsid,,, and 2218, 1 =S, — Jf.f.

15.13. (Regression) Let X = (x1,X2,...,%,) = (x(,x®) .. x®)) be an n x p
matrix of rank p. We are interested what in happens to (X'X)~! and related
quantities when the rows and columns of X are modified.

(a) (Add or Delete a Row) Suppose that ith row x| is deleted giving us X(7)
instead of X, then X (i)'X(i) = X'X — x;x}. Let h;; = x}(X'X) " x;.

(X'X) 1y xi(X'X) !
1—hy '
(i) det(X'X — x;x})) = det(X'X)(1 — h;;) (from 15.10d(iii)).
(iil) If an extra row x’ is added to X, then one simply replaces x; by x and
changes all the signs in (i) and (ii) above.

(iv) Let B = (X’X)~ !X’y and B(i) = (X(:)'X(s)) !X (:)'y (), where y(i) is
y without its 7th element y;. Here B and ﬁ(z) are the respective least
squares estimates of 3 under a regression model with full rank design
matrix X, and under the same model but with the ith case deleted, the
so-called leaving-one-out model. Then

() (XX —xx)) ™ = (XX) 7 +

S (X'X) k(g — x(B)
fy = - XX mlu - xh)

This result forms the basis of a number of regression diagnostics (e.g.,
Seber and Lee [2003: section 10.6]).

(b) (Substitute One Row for Another) If we replace row x_ by row x/,, we can
combine (a)(ii) and (iii) to get
det(X'X + x,x, —x_x_) = det(X'X) [(1+x/ (X'X) 'x4
—x (X'X) " 'x_ (14 %, (X'X) " 'xy)
+(x (X'X) " 'x2)?],
a result given by Gentle [1998: 171]. He indicates how this result is used

in a stepwise method for maximizing det(X’'X), a problem that arises, for
example, in optimal design theory (D-optimality, cf. Section 24.5).

(¢) (Add or Delete a Column)
(i) If an extra column x is added to X giving X; = (X, x), then by (14.11),
XX Xx\7
xX x'x
( (X'X)"! +vud!, —vu )

—vu’, v

(X1X;)™!

with u = (X'X)"1X'x, v = [x'(I, — P)x]7!, and P = X(X'X)~1X".
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(ii) Suppose the last column x = x(?) is deleted from X giving us X so
that X = (X x). Then

n X®exP Xy

XX= ( x'X(P) x'x ’

and we can use (i) with X now playing the role of X; to pick out from
(X’X)~! the values of u and v and obtain (X®'X®))~1 by subtraction.

(d) (Diagonal Increments) The expression (X’'X + kI,)~! occurs in the context
of ridge regression and Bayes regression estimators, and can be expressed in
terms of {X'X)~! using (15.11d) above.

The above expressions do not indicate how they are actually computed, as one
avoids finding the inverse of a matrix directly. Computational details are given by
Seber and Lee [2003: section 11.6; they involve using the sweep operator (Seber
[1977: 351] or Seber and Lee [2003: 335]) and modifiying the QR decomposition.
One can also use a weighted least squares approach (Escobar and Moser [1993]). The
above theory applies to the linear model (y, X3, 021,,) (cf. Section 20.7), where X
has full column rank. For updates relating to the more general model (y, X3, 0%V),
with X being less than full rank and V being possibly singular, the reader is ref-
ered to Sengupta and Jammalamadaka [2003: chapter 9], who also include changes
produced in various other statistics.

15.14. (Interchanges in Design Models) Let A = X'PX, where X isnx p, P is an
n X n symmetric idempotent matrix, and Al, = 0. Suppose we interchange two
rows of X so that A becomes A;. We can assume, without any loss of generality,
that it is the first two rows. Let X and P be partitioned as follows:

x} aa e d}
X=1] xb and P=| ¢ ¢z dj
X3 d; d; Ds

Then we find that
A—As=(c1 —3)(x1%X] —x2x3) + B+ B/,

where
B = (Xl — Xg)(d] —- dQ)/X3.

Suppose that the spectral decomposition of the symmetric matrix A — As is TATY,
where A is a diagonal matrix whose diagonal elements are the eigenvalues of A— A,
with corresponding eigenvectors given by the columns of the orthogonal matrix T.
Then, from (15.25),

Al = (A—TAT)" = At + ATTEHT/AY,

where ¥ = A~! — T'A*T, provided C(TAT’) C C(A). For further computa-
tional details and applications with regard to experimental designs with blocking
structure, see John [2001]. This method of interchanging two rows is particularly
useful in searching for the most efficient designs. It has been also applied to so-
called a-designs, where one is involved with block circulants and Hermitian matrices
(Williams and John [2000]).
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15.15. (Perturbed Identity Matrix) Let T() = I, — fe;e}; be an n x n matrix,
where 6 is a real scalar and e, is the rth column of I,.

(a) If i # 7, then T~1(6) = T(-6).

(b) Let A = (a;;) be an n x n upper-triangular matrix. When i < j,

T~ (0)AT(0) = A + 6(e;e}A — Ae;e)) = A + 6P,

where
—ai; 0 . 0
0 Q —a9; 0 e 0
P= 0 0 , Q= . . ... . ,
—@i1,i 0 .. 0
Aj5 — @i Qjj+1 0 Qyn

and the the submatrices in P have i and #n —irows,and j — 1 and n — 7 + 1
columns, respectively.
(¢) If ai; # aj; and 6 = a5/(ai; — a;;), then [T"1(#)AT(6)];; = 0 and the only
elements in A to be disturbed are in row 4 to the right of a;; and in column
J above a;;.
15.16. The effect of a perturbation on a finite irreducible discrete time Markov
chain is examined by Hunter [2005] with reference to mean first passage times and
the stationary distribution. He also gives references to the literature on the subject.

In a random environment there could be small random perturbations to a transition
matrix and an example of this is considered by Hoppensteadt et al. [1996].

Proofs. Section 15.3.

15.12. Clarke [1971], Seber [1984: 15], and Trenkler and Puntanen [2005:
145).

15.13a. Seber and Lee [2003: 268].
15.15. Abadir and Magnus [2006: 184-185].

15.4 MATRICES WITH REPEATED ELEMENTS AND BLOCKS

ol, bl,

15.17. If A = ( oL, dI,

), then det A = (ad — bc)™.
15.18. Let J,, , be an m x n matrix of ones, i.e., J,, ,, = 1,,1,, and define J,, to
be Jin,m. We now consider a number of results that use these matrices.

(a) If A = aI, + bJ, (b # 0), that is, we have a + b on the diagonal and b
everywhere else, then:

(i) det A =a""1(a+ nb).
(i) A7 = 1 (In b J"), (a # 0,a # ~nb).

a a+nb
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(iii) det(M, —A) = (A—a—nb)(A—a)""!, so that the eigenvalue a +nb has
algebraic multiplicity 1 and a has multiplicity n — 1. The eigenvector
n~1/21,, corresponds to the eigenvalue A = a +nb. A set of eigenvectors
of A are the rows of the Helmert matrix (8.10).

(iv) Sometimes we have ¢ on the diagonal and b everywhere else. In this
case we set a = ¢ — b in the above. For example, a common case is the
correlation matrix that arises, for example, in a one-way random effects
model, namely

R=(1-pI,+pdJ,.

This has eigenvalues (1—p) and 1+ p(n—1), so that R is positive definite
if the eigenvalues are positive, that is, when

1
—-———<p<l.
n—1
(b) If
mIm JTrL,m—l Jm,m—l
A= 3 Mmooy Jmmet |,
;n,m—l Jm—l,m mIm—l
then
Im + %Jm _Jm,m—l _Jm,m—l
mA™! = —J a1 Lot +Jmoa 0
_J/m,mfl 0 Im—l + Jm—l

This kind of pattern arises in Latin square designs.

(c) Consider the (m + n) x (m + n) matrix

_ aIIm a2Jm,n
A= ( agJ;mn a31n > ’
where a; # 0 and a3 # 0.
(i) If d = aya3 — mna3 # 0,

Al = al_llm +bdy b2Jm,n
- bodl, a3'l, + b33, )’
where b; = na2/(a1d,), b2 = —az/d and by = ma3/(azd).
(i) det A =a]* ta} " 'd.
(iii) The matrix A above occurs in the form X’'X, where X is the so-called
design matrix, in a 2-way ANOVA with equal numbers of observations

per cell by setting a; = n, ag = m, and ag = 1. This matrix is singular
as d = 0, and it is in fact non-negative definite. A generalized inverse is

(5 el)

where C,, is the centering matrix (I, — 1,1/, /n).
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(iv) If we set a; = a3 = 1, and ap = p, we get the so-called intraclass correla-
tion matriz. The eigenvalues of A are then 1 with algebraic multiplicity
m+n — 2 and 1 + py/mn, each with multiplicity 1. A is then positive
definite if and only if

—(mn)"Y? < p < (mn)~V2,
(d) Let
ai (121;,n aglin s anlil
asl,, bl +cod, b3l +c3dm oo by L, 4 cpdnm
A= azly,, b3k, +c3d, dsL,+esd, - dpln+edm
anly by +epdnm dolp +endm - yulm + 200,

If the inverse of A exists, then it has the same pattern as A. For example,

a b1, _, O e 1,
bln—l (C - d)In—l + dJn—l :| N l: f]-n—l (g - h)In—l + th—l ’
where e = L[14+ A% (n—1)], f = =Ab, g = 5[1 - A(ad = b?)], b = L A(b? —
ad), and A = {a(c—d)+(n—1)(ad—b?)}~!. This example arises in Latin square
models and response surfaces; Graybill [1983: 195-196] gives a numerical
example.

15.19. Let A and B be m X m matrices, and let

A+B B .- B B
c=| B AfB BB
B B ... B A+B

where C has n diagonal blocks.

(a) (i) detC = (det A)"!det(A + nB).
(ii) C has eigenvalues A; (i = 1,2,...,m) each of algebraic multiplicity 1
and eigenvalues y; (i =1,2,...,m) each of multiplicity n — 1, where the
A; are the eigenvalues of A + nB and the u; are the eigenvalues of A.

(b) Consider the special case A + B =1,, and B = J,,.
(i) Using (15.18a(i)),

detC = det(A+B-B)" 'det[A +B+ (n—1)B]
= (1-m)"'1+mn-1).

(ii} C is nonsingular if and only if m > 1.
(ili) If C~! exists, it has the same block structure as C with I,, + aJ,, in
each of the diagonal block positions and bJ,, in all the off-diagonal block
positions, where
_m(m—-1)(n-1)

_ —=(m-1)
a—m and b—m—l(m—l)



MATRICES WITH REPEATED ELEMENTS AND BLOCKS 319

15.20. Let
a1b; 0 0 0
e Bt £
anbl anb2 aan anbn

where all the a; and b; are nonzero. Then det A =[]}, (a;b;) and

((llbl)_l 0 0 0 0
—(albz)_l (agbz)_l 0 0 0
A_l _ 0 —(a2b3)_1 (a3b3)_1 0 0
0 0 0 (an_lbn_l)“l 0
0 0 0 v —(an_1by)Tt (anby) 7t

For other patterned matrices that are either tridiagonal or have a tridiagonal inverse
see Section 8.11.

15.21. Let A = (a;;) be any n x n matrix. If B = (a;; — as.a.;/a..), where
a;. = Z]- Aij, Q.5 = 21 Ay, and a.. = Zz E]- Qij, then

B=A-A1,(1,A1,) 1/ A.
Proofs. Section 15.4.

15.17. Graybill [1983: 185].

15.18a. Graybill [1983: 191, 204, and a special case of 206, with a — b replaced
by a].

15.18b. Roy and Sarhan [1956: 230].

15.18¢(i)—(ii). Graybill [1983: 193, 205] and Roy and Sarhan [1956].
15.18c(iii). Ouellette [1981: 284].

15.18¢(iv). Ouellette [1981: 285].

15.18d. Roy and Sarhan [1956: 230].

15.19a(i). Graybill [1983: 231, with A — B replaced by A].
15.19a(ii). Simply replace A by A — AL, in (a).

15.19b. Graybill [1983: 231].

15.20. Graybill [1983:186] and Roy and Sarhan {1956].

15.21. Given the vector n x 1 vector x = (z;), we have ) . z; = 1/ x. We use
this for the rows and columns of A.
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15.5 GENERALIZED INVERSES

15.5.1 Weak Inverses

15.22. Suppose that C(UBV) C C(A) (or equivalently AA-UBV = UBV) and
C[(UBV)] C C(A") (or equivalently UBVA~A = UBV), then we have the fol-
lowing weak inverses of (A + UBV).

Gy = AT-A(AT+ATUBVA7)"A"UBVA™,
G, = AT-AU(U+UBVA U) UBVA™,
G; = AT -AUB(B+BVA"UB) BVA™,
Gy = AT -AUBV(V+VATUBV) VA™,
Gs; = AT-AUBVA (AT+AUBVA7) A"
The above sufficient conditions are satisfied if A is nonsingular.
15.23. Let X be an n x p matrix of rank r, and let H be a ¢ x p matrix of rank
p — r such that C(X')NC(H') = 0.
X ' 1T i :
(a) H has rank p so that A = X'X + H'H is nonsingular.

(b) A~!is a weak inverse of X'X.

( X'X H
9l m o
inverse of

) is nonsingular if ¢ = p — r, and its inverse is then a weak

the matrix X’'X.

The above results arise in studying identifiability constraints in analysis of variance
models.

15.24. Let A be m x n, and let x and y be m x 1 and n x 1 vectors, respectively.
If either x € C(A) or y € C(A’), then, for any weak inverse A~ of A,

A~xy A~

A N"T=AT -
(A+xy) T yAx
provided 1 + yA~x # 0.

Proofs. Section 15.5.1.

15.22. Quoted by Henderson and Searle [1981b: 58]; see also Harville [1997:
426-428] for some proofs.

15.23. Seber [1977: 74, 77].

15.24. Quoted in Rao and Rao [1998: 281]. Setting C = A+xy’, we can show,
after some algebra, that CC~C = C. We make use of the fact that AA~
projects onto C(A). In particular, if x = Ay, then AA"x = AA Ay =
Ay =x.
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15.5.2 Moore—Penrose Inverses
15.25. If B is nonsingular,
(A+UBU)" = AT - ATUB ! + UATU)TUAT,

if and only if C(UBU’) C C(A), or equivalently At AUBU’ = UBU’. The result
also holds if A is Hermitian (Williams and John [2000: 697]).

15.26. Let A be an n x n nonsingular matrix, and let ¢ and d be n x 1 vectors.
Then A + ed’ is singular if and only if 1 +d’A~'c = 0 and, if this is the case, then

(A+ Cd,)+ = (I — yy+)A_1(In - XX+),
where x = A~!d, y = A~ l¢, and x* = (x'x) " 'x’ etc.

15.27. Let A be an n x n symmetric matrix, and suppose that ¢ and d are n x 1
vectors in C(A). If 1 +d’Atc # 0, then

Ated’At

/+:A+_7
(A +cd) 1+d’Atc’

15.28. Let A be an m x n complex matrix, ce C™,d e C*, and 3 =1+d*A*c.
Define k = Atc, h' =d*A*, u= (I, — AA%")c, and v/ = d*(I, — ATA). Then:

(a) rank(A +c¢d”) = rank( :;t _; ) —1.

(b) (A+cd")* = At —kut — (hv*)' + gvt/u™.
Note that x* = x*/(x*x).

15.29. If A is block diagonal, then A™ is also block diagonal. For example,

A, 0 O Af 0 o
A=| 0 A; O ifandonlyif A*t=1 0 A} 0
0 0 O 0 0 O

15.30. (Multinomial Distribution) Consider the variance matrix ¥ = (o;;) of an
n-dimensional (singular) multinomial distribution. Here o;; = np;(1 — p;)} and
oi; = —np;pj (i # j), where 0 < p; < lforalliand py +pa+---+p, =1 If
D, = diag(p1,p2,...,Pn), then ¥ = n{Dy, — pp’) is singular and

¥t =n"'1, - n '1,1,)D; (1, ~ n ' 1,1},).

v c
(e 9)

where V is n X n Hermitian non-negative definite and C is r x n. Then

. 0 ct L, N
BT ={ g+ _ctver T oty QI -VTO),

where E=1, — C*C and Q = (EVE)™*.

15.31. Let
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Proofs. Section 15.5.2.

15.25. John [2001: 1175].
15.26. Schott [2005: 197-198].

15.27. Quoted by Schott [2005: 217, exercise 5.32]. Can be proved in a
manner similar to that of (15.24).

15.28. Campbell and Meyer [1979: 47-48]. They also list several special cases
in which one or more of u, v, and 3 are zero. They also give Moore—Penrose

. ¢ A ¢
inverses o 4 o )

15.30. Follows from (15.26) above, along with D;'p = 1,,.
15.31. Campbell and Meyer [1979: 64].



CHAPTER 16

FACTORIZATION OF MATRICES

The factorization of a matrix A can be expressed two ways; either as a reduction
XAY = C or as a factorization A = URV. In many cases these are equivalent
because of the presence of nonsingular matrices—for example, A = X !CY ! if
X and Y are nonsingular. Authors tend to have different preferences for which
form they use. Useful summaries of some of the factorizations are given by Abadir
and Magnus [2005: 158}, Horn and Johnson [1985: 157], and Rao and Rao [1998:
190-193].

16.1 SIMILARITY REDUCTIONS

As eigenvalues are used in this section, we remind the reader of Definition 6.1. In
what follows, we assume that an n x n matrix has eigenvalues A1, Ag, ..., A, with
[A1] = |A2] > -+ > |An] = 0 and has distinct eigenvalues ui, pa, ..., fs, similarly
ordered, with algebraic and geometric multiplicities m(y;) and g(u;), respectively.

Definition 16.1. Let A and B be n xn matrices over 7. We say that A is stmilar
to B if there exists a nonsingular matrix K over F such that K"!AK = B.

16.1. Let A be an n x n real or complex matrix.
(a) A is similar to its transpose.
(b) A*A is similar to AA*.

A Matriz Handbook for Statisticians. By George A. F. Seber 323
Copyright (©) 2008 John Wiley & Sons, Inc.



324 FACTORIZATION OF MATRICES

(¢) AA is similar to AA.
(d) A is similar to a symmetric matrix.

(e) A is similar to a complex triangular matrix (either upper or lower) whose
diagonal elements are the eigenvalues of A.

16.2. Let A and B be real n x n matrices. If R is a complex nonsingular matrix
such that R"'AR = B, then there exists a real nonsingular matrix S such that
S !AS=B.

16.3. Let A be an upper-triangular matrix with distinct diagonal elements diag(A ).
Then there exists a unit upper-triangular matrix R (i.e., with ones on the diagonal)
such that R"!AR = diag(A).

Definition 16.2. Let J,,(A) be an m x m matrix of the form

A1 0 -~ 0 0

0O A1 -. 00
.= - - -« . ],

000 -~ A1

060 --- 0 A

where J1(A) = A. Then J,,(A) is said to be a Jordan block matriz. We find it
convenient to include the case m = 1.

16.4. Every Jordan block J,,,(A) (m > 1) is not diagonalizable because it has only
one linearly independent eigenvector x = (21,0, ...,0)/, where z; is arbitrary (cf.
Definition 16.3 above (16.10)). This follows from the fact the diagonal elements of
the upper-triangular matrix J,,, () are its eigenvalues, so that it has one eigenvalue
A repeated m times, and x satisfies J,, (A\)x = Ax.

16.5. Every Jordan block is permutation similar to its transpose since J,,()\)' =
LY., (M, where II = (e, €m_1,...,€1) is the backward identity permutation
matrix, where (ej,€s,...,€,) = L.

16.6. Let x = (z;) be an m x 1 vector. The Jordan block J = J,,,(0) has the
following properties.

(a) IJx = (z2,23,...,Zm,0), representing a forward shift.

(b) J'x = (0,21,%2,...,Zm—1), representing a backward shift.

(¢) (I, —J)x = (z1,29 — T1,&3 — T2,...,Tm — Tm—_1) , tepresenting a difference
operator.

(d) Iy —J) " 'x = (21,71 + T2, 71 + T3+ T3,..., 81 + T2+ -+ + Ty,)’, which can
be called a partial sum operator.

16.7. (Jordan Canonical Form) If A is a real or complex n X n matrix, then there
exists a nonsingular matrix R such that

Jn, (A1) 0
0 J,(A2)

=)

R !AR =

- Q@

. .. :JO’
0 0 - Ju(w)
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where Zf: 1 n; = n and the A; are the (not necessarily distinct) eigenvalues of A;
that is, A is similar to Jo. The matrix Jo is said to be in Jordan canonical form,
which is unique apart from the order of the blocks. One application of the Jordan
canonical form is in the analysis of a system of ordinary differential equations with
constant coefficients (Horn and Johnson [1985: 132-133]). The topic of Jordan
chains is considered by Abadir and Magnus [2005: section 7.6]

If py, pg, - . ., s are the distinct A;, then we have the following.

(a) The number k of Jordan blocks (including multiple occurrences of the same
blocks) is the number of linearly independent eigenvectors of Jo.

(b) The matrix Jo is diagonalizable (cf. Definition 16.3 above (16.10)) if and only
ifk=n.

(¢) The number of Jordan blocks correponding to u; is the geometric multiplicity
g(p;). The sum of the orders (sizes) of all the Jordan blocks corresponding
to p; is the algebraic multiplicity m(u;).

(d) Jo is not completely determined in general by a knowledge of the eigenvalues
and their algebraic and geometric multiplicities. We must also know the sizes
of the Jordan blocks corresponding to each A;.

(e) The minimal polynomial of Jo (and therefore of A, as similar matrices have
the same minimal polynomial, cf. (6.12)) is

8

F) =T —w),

j=1
where r; is the order of the largest Jordan block of Jo corresponding to u;.

(f) The sizes of the Jordan blocks corresponding to a given 4, are determined by
a knowledge of the ranks of certain powers.

(g) If A is a real matrix with only real eigenvalues, then the similarity matrix R
can be taken to be real.

(h) It is convenient to standardize the order of the Jordan blocks as follows. For
each p; we have g(u;) blocks that we order in decreasing size, and we order
these s groups of blocks according to our convention |py| > -+ > |usl; Jo is
then unique.

16.8. If A and B are n x n similar matrices, then they have the same Jordan
canonical form.

16.9. Let A be an n X n upper-triangular matrix with zeros on the main diagonal
(sometimes called a strictly upper-triangular matriz).

(a) There exists a nonsingular n x n matrix S and integers ni,ny,...,n,, with
ny>ng > - > ny and np +ng9 + - -+ +n,, = n such that

J.,,00 o - 0

sias=| O Jn® - 0

0 0 - J..(0)
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(b) If A is nilpotent with nilpotency index k, then m = dim N (A), the size of
the largest block is k£ x k, and each block is nilpotent.

Definition 16.3. If A is similar to a diagonal matrix, then A is said to be diag-
onalizable. Other terms used are diagonable, simple, semi-simple or nondefective.
Note that A can be real or complex.

16.10. A is diagonalizable if and only if one, and hence all, of the following equiv-
alent conditions are satisfied (cf. Definition 6.1):

(1) m(p;) = g(u;) for each j; that is, the eigenvalues of A are all regular.
(2) g(ur)+g(p2)+- - +g(us) = n, that is the sum of the eigenspaces of A is C".

(3) rank(A — u;1,) = n—m(y;) for j = 1,2,...,s. The equivalence with (1)
follows from (6.1b)

(4) A possesses n linearly independent right (respectively left) eigenvectors.

16.11. If A has n distinct eigenvalues, then they are simple and therefore regular,
so that by (16.10(1)) above A is diagonalizable.

16.12. A matrix A is diagonalizable if and only if h(A) = 0, where

hz) = (& — m)(z — p2) - (& — ps),

and the p; are the distinct eigenvalues of A. If h(A) = 0, then h(\) = g(A), the
minimal polynomial.

16.13. It follows from (16.12) above that an idempotent matrix A is diagonalizable
since h(A) = 0, where
h(z) =z(z — 1),

and the eigenvalues of A are A =0, 1.

16.14. (Product) Suppose A and B are n x n Hermitian matrices with A positive-
definite. Then AB has real eigenvalues and is diagonalizable. Also, AB has the
same number of positive, negative, and zero eigenvalues as B. Furthermore, any
diagonalizable matrix with real eigenvalues is the product of a positive definite
Hermitian matrix and a Hermitian matrix.

16.15. (Approximation) Let A = (a;;) be an n x n matrix. For every € > 0,
there exists a matrix A(e) = (a;;(€)) with distinct eigenvalues (and is therefore
diagonalizable) such that

n n

Z Z |aij — aij(e)|2 < €.

i=1 j=1

16.16. Let A be n x n and B be m x m matrices, and let

c:(‘g‘ ]g).

Then C is diagonalizable if and only if A and B are both diagonalizable.
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16.17. (Spectral Decomposition) Suppose A is diagonalizable of rank r.

(a} There exist linearly independent right eigenvectors x1, xa, ..., X, and linearly
independent left eigenvectors yi,y5, ...,y such that y;x; = §;;, where §;; =
1 when ¢ = j and 0 otherwise. Also

A = i/\ixiyg
i=1
i=1

- ZAF
i=1

for nonzero A;, where the rank one F; are not unique unless all the eigen-
values are distinct. Here the F; are idempotent, mutually orthogonal, and
St F =1 IfR = (x1,X2,...,%,) and 8 = (y1,y2,...,¥n)’, then
A = RAS, where SR = I, implies that S = R™!. Note that as the rank is
unchanged when multiplying by a nonsingular matrix, rank A = rank A, and
rank A is the number of nonzero eigenvalues of A.

(b} (Unique Decomposition)

(i) We can also write
A=Y uE,,
j=1

where E; represents the sum of the F; corresponding to the same eigen-
value and the p; are the distinct eigenvalues (including zero). The E;,
called the spectral set, are unique, idempotent, and mutually orthogonal
(ie., E;E; = §;4E;) and satisfy 3 7| E; = I,.

(ii) Also, for k=1,2,...,

AF =" ufE;.
j=1

(c) If A is nonsingular, then
AT =) i 'E;
Jj=1

If A is singular, then
At = Z.u'j_lEjv
J

where the summation is over the nonzero eigenvalues, and A™ is the Moore-
Penrose inverse of A. This is proved directly from the definition of A™.

For a spectral decomposition of an arbitrary matrix see Rao and Mitra [1971: 38].
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16.18. Suppose A is an n X n diagonalizable matrix with distinct eigenvalues A;.
Then the Vandermonde matrix {cf. Section 8.12.1)

1 1 1
)\1 ,\2 /\n
B= A2 A2 A2
L P

is nonsingular with inverse B~! = (8;;), say. From the previous result (16.17b),
with s = n and E; = F;, we have

I'n. Fl

A Fo
= (B ® In) : 3

An—l Fn

where “®” is the Knonecker product. Now B ® I,, can be expressed symbolically
as (b;;I,) so that using (B®1,)"! = B™! ® I, and defining A® = I,, we have

n
j=1
Substituting in A* from (16.17b(ii)) gives us
n n .
AF=3 T MB AT k=12,
i=1 j=1

16.19. If A is real symmetric (respectively Hermitian) n x n matrix with distinct
eigenvalues p; (7 = 1,2,...,s), then m(u;) = g(p;) for j = 1,2,...,s. Hence, by
(16.10(1)) above, all real symmetric (respectively Hermitian) matrices are diago-
nalizable.

Proofs. Section 16.1.

16.1a. Horn and Johnson [1985: 134-135], Meyer [2000a: 596], and Zhang
(1999: 83].

16.1b—c. Zhang [1999: 83].

16.1d. Quoted by Rao and Rao [1998: 192].
16.1e. Rao and Bhimasankaram [2000: 288-289).
16.2. Zhang [1999: 152].

16.3. Abadir and Magnus [2006: 186].

16.5. Horn and Johnson [1985: 134].

16.6. Abadir and Magnus [2005: 193].
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16.7. For proofs, references, and comments see Abadir and Magnus [2005:
section 7.5], Horn and Johnson [1985: section 3.1], Meyer [2000a: sections 7.7
and 7.8], and Rao and Bhimasankaram [2000: section 8.6].

16.8. The result follows from the uniqueness of the Jordan canonical form.

16.9a. Abadir and Magnus [2005: 195-196] and Horn and Johnson [1985:
123).

16.9b. Meyer[2000a: 579].
16.10. Rao and Bhimasankaram [2000: 296-297].
16.11. Horn and Johnson [1985: 48].

16.12. Horn and Johnson {1985: 145] and Rao and Bhimasankaram [2000:
296-297).

16.13. Rao and Bhimasankaram [2000: 297].
16.14. Horn and Johnson [1985: 465].

16.15. Horn and Johnson [1985: 89].

16.16. Horn and Johnson [1985: 49].

16.17a. Harville [1997: section 21.5].

16.17b. Rao and Bhimasankaram [2000: 299-300}.

REDUCTION BY ELEMENTARY TRANSFORMATIONS

16.2.1 Types of Transformation

Definition 16.4. An elementary row transformation of an m X n matrix A over
F is one of the following operations:

(1)

@)

3)

Multiply row ¢ by a scalar ¢ in F. This achieved by left-multiplying A by the
identity matrix I, with its ith diagonal element replaced by c¢. The latter
has determinant c.

Add row j to row i. This is achieved by left-multiplying by the matrix
I, + E;;, where E;; has 1 in the (¢, j)th position and zeros elsewhere. This
transformation has determinant 1.

Interchange the ith and jth rows. This is achieved by left-multiplying by
the permutation matrix II;;, where II;; is I, with its ith and jth rows in-
terchanged. (Technically the third transformation can be carried out using
a sequence of the previous two transformations, but that route is less conve-
nient.)

These operations can also be extended to submatrices of partitioned matrices (cf.
Zhang 1999: 30]).
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16.20. Note the following:
(a) II; is symmetric and orthogonal so that H;jl = I1;;.
(b) E?] =0 and (Im + CEi]')¥1 = Im - CEij.

Definition 16.5. An elementary (row) transformation matriz M is defined to be
one of the above three types of matrices, referred to as types (1), (2), and (3). For
further details see, for example, Abadir and Magnus [2005: section 6.1]

Elementary column transformations can be carried out by right-multiplying A
by an elementary transformation matrix (but using E;; = E;; instead of E;;).

16.21. The inverse of an elementary transformation matrix is also an elementary
transformation matrix. Also, as such matrices are all nonsingular, a product of
such matrices is nonsingular. Therefore multiplying A by such a matrix does not
change the rank of A (cf. 3.14a).

16.2.2 Equivalence Relation

Definition 16.6. Let A and B be m x n real or complex matrices. If B is obtained
from A by elementary row or column transformations matrices, then A is said to
be equivalent to B, and we write A ~ B.

16.22. Any one of the following statements implies the other two.
(1) A~B.
(2) B = RAS for some non-singular matrices R and S.
(3) rank A = rank B (cf. 3.14a).

Definition 16.7. From (16.22(2)) above we see that: (i) A ~ A (reflexive), (ii)
if A ~ B, then B ~ A (symmetric), and (iii) if A ~ B and B ~ C, then A ~ C
(transitive). Any relation that satisfies these three conditions is called an SRT
relation. Thus the equivalence relation “~” is an SRT relation.

Other SRT relations for square matrices are summarised as follows:

(1) If B = R!AR for nonsingular R, then B is said to be similar to A. This is
discussed in Section 16.1 above.

(2) If B = R’AR for nonsingular R, then B is said to be congruent to A. Its
main application is for real matrices. If A and B are complex matrices such
that B = R*AR, then B is said to be Hermitian congruent to A.

(3) If B = U*AU, where U is unitary, then B is said to be unitarily similar to
A. If, for real matrices, B = T'AT, where T is orthogonal, we say that B is
orthogonally similar to A.

16.2.3 Echelon Form

Definition 16.8. Using elementary row transformations, a real or complex m x n
matrix A can be reduced to a matrix B with the following properties:

(1) If a row contains at least one nonzero entry, then the first nonzero entry is 1.
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(2) The zero rows, if any, come last.

(3) In any two consecutive nonzero rows, the leading 1 in the lower row occurs
further to the right than the leading 1 in the upper row.

A matrix in the above form is said to be in (row) echelon form. For example,

B, =

cocCco
oo o
o O O *
SO = %
O = % %
S ¥ * ¥

where the elements denoted * are arbitrary. If we now subtract multiples of the
second and third rows from the first, we obtain

01
B, =

O - O o

(=N

0
1
0
0

o oo
oo O
(==

This matrix has the additional property:
(4) Each column that contains a leading 1 has zeros elsewhere.

A matrix with the above four properties is said to be in reduced (row) echelon
form We shall omit the word “row” in using the above definitions. Rao and Bhi-
masankaram [2000: 167-170] give a number of algorithms for carrying out various
reductions. It should be noted that the terminology relating to echelon forms is
not consistent in the literature.

We see that the first three rows of By give a row basis for the original matrix
A, and the three columns each containing 1 form a column basis for A.

16.23. Any matrix A can be reduced to a unique matrix in reduced echelon form
by elementary row transformations.

16.24. The rank of a matrix in reduced echelon form is the number of nonzero
rows. This is the same as the rank of the original matrix.

16.25. If A is a nonsingular matrix of order n, then its reduced echelon form is
I,. Hence there exist elementary transformation matrices My, k = 1,2,..., K,
such that MgMg_1---M;A =1, ie., MA = 1I,, where M is nonsingular.
Also, taking A over to the right-hand side, MgMpg_1 ---M;I, = A~L. Thus any
sequence of elementary row transformations that transforms A to I, transforms I,
to AL

16.26. For any two n x p matrices A and B, the following statements are equivalent.
(1) C(A")y =C(B').
(2) The reduced echelon forms of A and B are the same.
(3) B can be obtained from A by a finite sequence of elementary row operations.

(4) B = KA for some nonsingular matrix K.
Proofs. Section 16.2.3.
16.23. Rao and Bhimasankaram [2000: 172].

16.26. Rao and Bhimasankaram [2000: 171-172].
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16.2.4 Hermite Form

Definition 16.9. A square matrix H is said to be in (upper) Hermite form if (a)
it is upper-triangular, (b) its principal diagonal elements are all zeros or ones, (c)
when a diagonal element is zero the entire row is zero, and (d) when a diagonal
element is one, the rest of the elements in the column are all zeros. For example, a
Hermite form for a 5 x 5 matrix A could take the form

0 0 00O

Hp =

ooCc oo
OO ¥ *
— o OO

0
1
0
0

oo O -

where the starred elements are arbitrary. If H comes from A we shall write Hp .

There is a close relationship between the reduced echelon form and the Hermite
form of a matrix. For example, the reduced echelon form corresponding to Ha
would be

01 0 x 0
0 01 x 0
B=] 00 0 01
000 O0O
00 0O0O

We see that Ha can be obtained from B by simply interchanging rows, i.e., by
carrying out elementary row transformations. This is the case in general so that
many of the results for reduced echelon forms apply to Hermite forms, as we shall
see later.

16.27. H3 = Hj.

16.28. If A is a square matrix over F, there exists a nonsingular matrix K such
that KA = Ha. The matrix K is a product of elementary row transformation
matrices.

16.29. Two real n x n matrices A and B have the same Hermite form if and only
if C(A") = C(B’). The following are consequences of this result.

(a) A'A, A~ A and A have the same Hermite form.

(b) If B is nonsingular, then BA and A have the same Hermite form.
16.30. Let A be n x n. Since H3 = Hpa we have the following.

(a) AHy = A.

(b) The identity matrix I, is the only n x n matrix in Hermite form that is
nonsingular. Thus if A is nonsingular, then Hp =1I,.

16.31. (Rank)
(a) rank Ha =rank A.

(b) The rank of a matrix in Hermite form is the number of non-null rows in it,
or the number of diagonal elements equal to one. Thus reducing a matrix to
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echelon form is a method of finding its rank. (For an algorithm see Rao and
Bhimasankaram [2000: 181-182].)

(c) If the 41,19,...,4, diagonal elements of Ha are each equal to one, and the
remaining diagonal elements of Hp are equal to zero, then the 4,1,,..., 4
columns of A are linearly independent.

16.32. (Idempotency)
(a) A is idempotent if and only if Ha is a weak inverse of A.
(b) A is idempotent if and only if HA A = Hjx.

Definition 16.10. An n x n matrix H is said to be in (upper) Hermite canonical

form if takes the form
I. C
H = ( L c ) .

By looking at the example given in Definition 16.9, we see that a Hermite form
can be transformed into a Hermite canonical form by carrying out suitable row and
column interchanges. This process can be carried further to transform C into the
zero matrix, as we see in the next result.

16.33. (Reduction to Diagonal Form) Let A be an m x n matrix of rank r defined
over F.

(a) There exist nonsingular matrices F and G of sizes m x m and n X n, respec-

tively, such that
IL. 0
ma= (5 0),

so that A is equivalent to a diagonal matrix. Thus
I. 0
-1 T -1
F ( - ) a

I, 0
R ( 0 o ) S,
say. (Some bordering matrices are absent if A has full row or column rank.)

The matrices F and G and their respective inverses R and S are all products
of elementary transformation matrices.

A

(b) (Full Rank Factorization) From (a) we have

I, O S
A:(RI,R2)< o o ) (sl) =R,S;,

where R; is m x r of rank r and S; is an r X n of rank 7.

(c¢) (Singular Value Decomposition) If A is real (respectively complex), we can
choose R with orthogonal columns and S with orthogonal rows. If we then
incorporate the lengths of the columns of R and the rows of S into I, we get
what is effectively the singular value decomposition of A, namely
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_ D. 0
A=P ( 0 o ) Q,
where P and Q are orthogonal (respectively unitary) matrices and D, is a

diagonal matrix with positive elements. This decomposition is discussed in
more detail in Section 16.3. We note that

A= (P1:P2) < ]?)T g > <g;> = (PlDi/Z)(Di/QQl) =P3Q,.

Thus A can be expressed in the form P2Qs, where P; has orthogonal columns
and Q2 has orthogonal rows. We can choose P, (respectively Qz) to have
orthonormal columns (respectively rows).

Proofs. Section 16.2.4.
16.27. Quoted by Graybill [1983: 131].
16.28. Graybill [1983: 130] and Rao [1973: 18].
16.29-16.31. Graybill [1983: 138-140].
16.32. Graybill [1983: 140-141].
16.33a. Marsaglia and Styan [1974a: 280, theorem 10] and Rao [1973: 19].
16.33b. Marsaglia and Styan [1974a: 271, theorem 1] and Rao [1973: 19).

16.3 SINGULAR VALUE DECOMPOSITION (SVD)

The singular value decomposition is regarded by many as one of the most useful
factorizations for real or complex matrices. For example, the SVD has many ap-
plications in statistics such as SAS (single-spectrum analysis) in times series {cf.
Golyandina et al. [2001: chapter 4]), matrix approximation in dimension reduction
techniques, least squares approximation of a square matrix by a scalar multiple of
an orthogonal or unitary matrix (Horn and Johnson [1985: 429], and procrustes
analysis (Gower and Dijksterhuis [2004] and Seber [1984: section 5.6]). It is also
a useful computational tool for calculating various quantities. In what follows, we
interpret the transpose as conjugate transpose when dealing with complex matrices.

Definition 16.11. Any m x n real (respectively complex) matrix of rank r (r <
p = min{m,n}) can be expressed in the form

’
Amxn = memEanannv

where P is an m x m orthogonal (respectively unitary) matrix, Q is an n x n
orthogonal (respectively unitary) matrix, and £ = (o;;) is an m x n matrix with

11 > 022 2 Opp > 0 =0pq1741 = = 0Opp, and 05 =0 for all 4, 5,7 # j.
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This factorization of A is called the singular value decomposition. The o;;, abbre-
viated to g; = 0;(A) (i = 1,2,...,p), are called the singular values of A, which
are defined to be the positive square roots of the ranked eigenvalues of AA’. These
eigenvalues are non-negative as AA’ is non-negative definite (by 10.10).

The columns of p; of P are the orthonormalized right eigenvectors associated
with AA’, and the columns q; of Q are the orthonormalized right eigenvectors
associated with A’A. The first » columns in each case correspond to the nonzero
a;. Note that Aq; = o;p; and A'p; = 0;q; (i = 1,2,...,r). The vectors p; and q;
are also called the left and right singular vectors, respectively, associated with o;.

We note that AA’ and A’A have p common eigenvalues (cf. 6.54c), including
some zeros when r < p. Any remaining eigenvalues of AA’ (if m > n) or A’A (if
m < m) are zero.

Existence proofs are given by Horn and Johnson [1985: 411}, Rao and Rao [1998:
172, complex case], Schott [2005: 140-141, real case], Searle [1982: 316, real case],
and Seber and Lee [2003: 471, real case]. For some computational details see Gentle
[1998: section 4.4], Golub and Van Loan [1996], and Stewart [1998, 2001].

In practice, several versions of the SVD are given in the literature, which we give
below.

(1) Let A, = diag(oq,02,---,0;). If p=n < m, then
A,
A :P( o )Q’ =P,A.Q,

where the m x n matrix P,, consists of the first n columns of P, and A,, and
Q are both n x n. The zero matrix is omitted if m = n. If p = m < n, then

A =P(A,,00Q =PA,.Q,,

where Q,, consists of the first m columns of Q. We note that P, P,, = I,, and
Q.. Q.. = I,. These two versions are often referred to as the thin singular
value decompositions.

Is the decomposition unique? If m > n (i.e., p = n), then ¥ will be unique
as the eigenvalues of A’A are unique. However, the eigenvectors making
up P, and Q will not be unique unless the eigenvalues are distinct and an
appropriate sign convention is adopted for eigenvectors.

(2) If P = (p;;) and Q = (g;;), with respective columns p; and q;, then
A, 0 .
A:P( 0 o >Q/:PTATQ;:,;U’€pkq;c

and a;; = Y_;_, OkDikGjk-
If A is complex and P and Q are unitary matrices, then A = }:;:1 OLPkq)

T —
and a;; = Dy OkPikTjk-

Note that AA'P,. = P.A2 and A’AQ, = Q,AZ. The correct procedure is to find
P, and Af from AA’P, = P,.A? and then define Q, = A'P,.A7L. Alternatively,
we can obtain Q, and A? from A’AQ, = Q,A?Z and then define P, = AQ,A?
(Abadir and Magnus [2005: 226]).
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16.34. Let A be an m x n matrix. From the above we have the following useful
information.

(a) The number of nonzero singular values is the rank of A. This provides a
useful computational method for finding the rank of a matrix.

(b) The r columns of P, and Q, are orthonormal bases for C(A) and C(A’),
respectively, while the remaining columns of P and Q span N(A’) and N{A),
respectively.

(c) Pa =P, P., the orthogonal projection onto C(A).
(d) A and (A*A)'/? have the same singular values.
(e) Two full-rank factorizations of A (cf. 3.5) are (P, A, )(Q.) and (P, )(A,QL).
Proofs. Section 16.3.
16.34a-b. Schott [2005: 140-141].
16.34c. Sengupta and Jammalamadaka [2003: 43].

16.34d. Follows from the fact that (A*A)Y/2((A*A)Y/2)* = A*A is Hermi-

tian with eigenvalues o2(A).

16.4 TRIANGULAR FACTORIZATIONS

16.35. (LU and LDU factorizations) Under certain conditions, a real or complex
m X n matrix can be expressed in the form A = L;U;, where L; is lower-triangular
and U, is upper-triangular. If m < n, then L; is m x m, while if m > n, L; is
m X n.

(a) A sufficient condition for such a factorization to exist is that for k = 1,2,...,p
(p = min{m,n}), each k x k leading principal submatrix Ay of A is nonsin-
gular.

(i) The usual factorisation is to have either the diagonal elements of L, all
ones (and written as L), or the diagonal elements of Uy all ones (and
written as U) so that

A=LU=LU.

(ii) If we put the diagonal elements from both matrices into a single diagonal

matrix D, then o
A =1LDU.
(b) If m < n, which is often the case, and Ay is nonsingular for k = 1,2,...,m,
then A = LU, where L is m x m and nonsingular, U is an m X n matrix such

that the first m columns form an upper-triangular matrix with unit diagonal
elements, and L and U are unique.

(c) A typical application of the above theory is the solution of linear equations,
for example Bx = b. If we set A = (B, I,,,b) and then factorize A, we can
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obtain B™! as a bonus (Rao and Bhimasankaram [2000: 213]). Tf B is square
and nonsingular and B = LU, then we can solve Ly = b for y using forward
substitution and solve Ux = y for x by back substitution. The process is
usually refered to as Gaussian elimination.

(d) The matrix My = I, — Te}, where 7 € R™ and e, has 1 for its kth element
and zeros elsewhere, is a Gauss transformation if the first k elements of 7 are
zero. If this is the case, and 7, = x; /2 (zx #0) for i =k +1,...,n, then

!
Mix = (21, 29,...,2k,0,...,0)".

16.36. (Square Matrix LU Factorizations) Let A be a real or complex n x n
matrix and let Ay be its leading k£ x k principal submatrix.

(a) Suppose A has rank r. If A is nonsingular for k = 1,2,...,r, then A may be
factored as A = LU, where L and U are n xn. Furthermore, the factorization
may be chosen so that either L or U is nonsingular. Both L and U can be
chosen to be nonsingular if A is nonsingular (i.e., r = n).

(b) There exist n x n permutation matrices II; and Ils such that A = II; LUI,.
If A is nonsingular, it may be written as

A =1II,LU.

(c) Suppose Ay is nonsingular for £ =1,2,...,n — L.

(i) A can be expressed in the form A = LU = LU, where all the triangular
matrices are unique.

(ii) Also, A can also be expressed in the form A = I:DfJ, where D is
diagonal and all the matrices are unique. (Note that it is possible for A
be singular.)

(iii) If A is a real symmetric matrix, then we can also write A = U'D,U,
where U is real and the diagonal matrix D; has elements 1.

(d) Suppose A is nonsingular and A = LU. If L = ({s5), then, since det A =
detL - det U, we have det A = []" li # 0, detAy = [[5, L # 0 for
k=1,2,...,n—1, and L and U are unique, by (c).

(e) If A is Hermitian with an LDU factorization, then we can express it in the
form A = U*DyU, where D is a diagonal matrix.

16.37. (Schur Decomposition Theorems) We now consider a series of powerful
theorems that can be used to provide shorter proofs for a wide range of other
results (e.g., Abadir and Magnus [2005: section 7.4]).

Let Ay, A2,..., A, be the eigenvalues of the n x n matrix A in a prescribed order.

(a) If A is a real or complex matrix, there exists a unitary matrix Q such that
Q*AQ = T is upper-triangular with diagonal elements the eigenvalues of A
in the same order. Neither Q nor T are unique.

{b) If A is real with real eigenvalues, then Q can be chosen to be real and or-
thogonal. The upper-triangular matrix is also real.
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(¢) I A is real with k real eigenvalues Ay, Ag,..., A\r and complex eigenvalues
x; + ty; for j > k, there exists a real orthogonal T such that T'AT = R,
where R resembles an upper-triangular matrix, but with diagonal blocks of
the form Ri1,Rag, ..., Ry Here Rj; = Aj, for j =1,2,...,k; and for j > k

R;; = ( _IZ 2]_ >7 Vbici = Y5,
7 Ty

where b; > ¢; and bjc; > 0. The elements below these blocks are zero so

that R is of upper Hessenberg form. Golub and Van Loan [1996: 341] refer

to such a matrix as quasi-triangular and show how to compute it using QR

iterations (cf. Section 16.5). For an application to probability theory see

Edelman [1997].

16.38. (Cholesky Decomposition for Non-negative Definite Matrices) If A is an
n X n non-negative definite matrix, there exist n x n upper-triangular matrices U
and U; with non-negative diagonal elements such that

A=U'U=UU,

If A is positive definite, the matrix U is unique if its diagonal elements are all
positive (or all negative); the same applies to U;. Some writers prefer to use lower-
triangular matrices L = U’ or Ly = U}. The result also holds for A Hermitian
non-negative definite, that is, there exists an upper-triangular matrix U such that
A = U*U. If A is positive definite, then U is unique if its diagonal elements are
positive (Rao and Rao [1998: 173]). For some computational aspects when A is
non-negative definite see Smith [2001].

16.39. A scaled version of the above when A is positive definite is also used. If

D = diag(ui1,u22, - ., Unn ), then D has an inverse. Let
1t @3 - Uin
U=D-U = 0 1 @93 ... Uon ’
0 0 - . 1
so that

A =U'U=U'D?*U =U'DU = LDL/,
where D is a diagonal matrix with positive diagonal elements.

16.40. {Algorithm for the Cholesky Decomposition) If A is a positive definite nxn
matrix, and the diagonal elements of U are all positive, we have the following steps.

Step 1: Set
1/2
uilr = (11{7
ayj .
u; = —% (j=2,3,...,n).
Uil

Step 2: Fori=2,3,...,p— 1 set

Uiy = 0 (j=1,2,...,i—].),
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Step 3: Set
n—1 1/2
o = ( . Zuk) |
k=1

The decomposition A = U'DU can be used to avoid the computation of square
roots. This modification is called the Banachiewicz factorization or the root-free
Cholesky decomposition (Gentle [1998: 93-94]).

16.41. (Matrix Inverse) If A = U'U is a positive definite n x n matrix, we have
A-! =U~Y(U)"! = TT', where T is upper-triangular. From UT = L, we find
that T is given by

tii = uizl ('L.=1,2,...,TL),
ty = 0 (i>)),
J
—it1 Yiktkj .
tiy = —@ G=i+1,...,n).
Uj;
Then
n
(Aﬁl)rs = Ztrkt;cs
k=s

n
Ztrktsk (s=rr+1,...,n),
k=s

which is the product of the rth and sth rows of T.
Proofs. Section 16.4.
16.35a. Golub and Van Loan [1996: 102].
16.35b. Rao and Bhimasankaram [2000: 211-212].
16.35¢. Golub and Van Loan [1996: 838-103].
16.35d. Golub and Van Loan [1996: 94-95].
16.36a. Horn and Johnson [1985: 160].
16.36b. Horn and Johnson [1985: 163].
16.36¢(i). Graybill [1983: 207] and Rao and Bhimasankaram [2000: 216].
16.36¢(iii). Graybill [1983: 210].
16.36d. Golub and Van Loan [1996: 97].
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16.37a. Abadir and Magnus [2005: 187], Horn and Johnson [1985: 79|, Rao
and Rao [1998: 174-175|, Schott [2005: 157}, and Zhang [1999: 64-65].

16.37b. Muirhead [1982: 587] and Schott [2005: 158].
16.37c. Rao and Rao [1998: 189-190].

16.38. For an inductive proof for the positive-definite case see Schott [2005:
147] and Seber [1977: 388].

16.40. Seber and Lee {2003: 336].
16.41. Seber [1977: 305-306].

16.5 ORTHOGONAL-TRIANGULAR REDUCTIONS

The so-called QR decomposition plays an important role in the analysis of regres-
sion models, particularly in statistical computing packages. In fact, many of the
regression theorems can actually be derived via the QR decomposition (e.g., Ansley
[1985], Eubank and Webster [1985], Mandel {1982], and Nelder {1985]).

Definition 16.12. Any n X p real matrix A of rank r can be expressed in the form
A = QR, where Q is an n x n orthogonal matrix and R is an n X p upper-triangular
matrix. This is called the QR decomposition. If n > p, then

R
@)1y
QPR17

where Q,, consists of the first p columns of Q, and R; is a p X p upper-triangular
matrix. Harville {1997: 66-68|, Horn and Johnson [1985: 112-113], and Seber and
Lee [2003: 338] give algorithmic proofs, while Seber [1977: 388] gives an inductive
proof. Some authors refer to A = Q,R; as the QR decomposition.

If n < p, we replace R by (R3, S), where Ry is an n x n upper-triangular matrix.
The above results and those below are also true for complex A if QQ is now unitary
and we replace ' by * (cf. Rao and Rao [1998: 168]).

Note that Q'A = R, and the reduction of A can be carried out using a variety
of algorithms. For example, the orthogonal matrix Q' could consist of a product
of Householder reflections or Givens rotations, or one could use the Gram—Schmidt
algorithm. For further details of the real case see Seber and Lee [2003: chapter 11].

QR

16.42. We use the above notation in what follows, and we assume n > p.
(a) Suppose r = p.

(1) Since R; has full rank p, A’A = R'lQ;,QpRl = R}R,; is positive def-
inite, and R{R; is the Cholesky decomposition of A’A. Therefore, if
the diagonal elements of R, are all positive (or all negative), then R is
unique and Q, = AR;1 is unique. Hence the decomposition A = Q,R;
is also unique. However, the matrix Q,_, is not unique because any per-
mutation of its columns will still give A = QR.
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The Moore-Penrose inverse of A is
At =(R;7,0)Q =R{'Q,.

If A is n x n and nonsingular, then

det A = det Qdet Ry = [ ] rii,

=1

where R1 = (r;;). This is a useful method of finding a determinant. One
application in statistics is in optimal experimental designs. For example,
the D-optimal criterion chooses the design matrix X such that det(X'X)
is maximized.

(b) Suppose r < p.

(i)

(i)

We first note that A’A = R{R, as above, but now A’A is non-negative
definite. However, R/ R is still the Cholesky decomposition of A’A and
R, is unique if the diagonal entries are non-negative. An inductive proof
for the case n = p is given by Graybill [1983: 210].

We can permutate the columns of A by postmultiplying by a permu-
tation matrix II so that the first r columns of the permutated matrix
A = AII are linearly independent. Then A = QR, where

-~ Rii Ry
R 5.

and Ry; is an r x 7 nonsingular upper-triangular matrix. Thus R is
upper-triangular, but with its bottom n — r rows all zeros. Since II™! =
I’ we have

A = QRII
_ Ri1 Ryp /
- o )
Q- (Rq1, Ry)IT,

where Q, consists of the first 7 columns of Q. As II is not unique, Q.
will not be unique.

A weak inverse of A is given by
_ R 0
A =1 < o o9

as AATA = Al
Additional orthogonal transformations can be applied to A = QRII’ to

get
_ RO 0 7
a2
where P is orthogonal and Ry is 7 X r and nonsingular. This is a conve-
nient method of finding r.
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(v) From (iv),
R;' 0
+_ 0 !
At = P( 0 )Q.
For further computational details see Gentle [1998: 95-102] and Golub and
Van Loan [1996: section 5.2].

There is also a symmetric QR iterative process that is a useful computational tool
{Golub and Van loan {1996: section 8.2]).

16.43. (Tridiagonal Matrix) If T = QR is a QR decomposition of a symmetric
tridiagonal matrix T, all matrices being n x n, then Q has lower bandwidth 1, R
has upper bandwidth 2, and

T. =RQ=(QQRQ=Q'TQ

is also symmetric and tridiagonal. (The upper bandwidth is the number of nonzero
diagonals above the main diagonal, and the lower bandwidth is the number of
nonzero diagonals below the main diagonal; all other elements except possibly those
in the main diagonal are zero.) The factorization can be computed by applying a
sequence of n — 1 Givens rotations.

Proofs. Section 16.5.
16.42a(ii). Bates [1983].
16.42a(iii). Gentle [1998: 115].
16.42b(i)—(iii). Gentle [1998: 96].
16.42b(iv). Gentle [1998: 115].
16.43. Golub and Van Loan [1996: 417].

16.6 FURTHER DIAGONAL OR TRIDIAGONAL REDUCTIONS

16.44. (Spectral Decomposition Theorem) Let A be any n x n real symmetric
(respectively Hermitian) matrix. Then there exists an orthogonal (respectively
unitary) matrix Q = (q1,9qs, - - . , 4» ) such that

Q'AQ = diag(\1, A1, ..., M) = A, say,

where A\; > Ay > -+ > A, are the ordered eigenvalues of A (which we know are
real). When A is Hermitian, Q' is replaced by Q*. With the above ordering, A is
unique and Q is unique up to a postfactor of

S; 0 -+ 0
s= O % 2] seqm),
0 0 --- S
where k is the number of different eigenvalues of A; my, ma,. .., my are the algebraic

multiplicities, that is Ay = Ao = - = Ajp, > A1 = -+ = Apy, +my, and so on;
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and Q(m;) stands for the set of all m; x m; orthogonal (respectively unitary)
matrices.

If all the eigenvalues are distinct, each m; = 1 and S reduces to a diagonal matrix
with diagonal elements equal to £1. In this case the columns q; of Q are unique
except for their signs. If we stipulate, for example, that the element of q; with the
largest magnitude is positive, then S = I, and Q is unique. We note that:

(a) A=QAQ =37, hiqid, = > ., \iFi, where the F; are symmetric, idem-
potent, and satisfy F;F; = 0 for all ¢,7,j # 1.

(b) If x = Qy, then X¥Ax = yQ'AQy = My? + -+ + A\y2. An algorithm
for carrrying out this reduction by completing the square rather than finding
eigenvalues and eigenvectors (known as Lagrange’s reduction) is described by
Rao and Bhimasankaram [2000: 333].

(c) If A has rank r, A, contains the r nonzero eigenvalues, and Q, contains the
corresponding right eigenvectors of A, then A = Q,A,.Q/., where Q.Q, = I,..

16.45. (Tridiagonal Reduction) Suppose A is a real symmetric n x n matrix.
(a) There exists an orthogonal matrix Q such that
Q'AQ =B,

where B is tridiagonal. This is a very useful reduction used in numerical anal-
ysis because it provides an intermediate step for speeding up a diagonalization
process. If Q = (qi1,4z,.--,9n), then the q; are called Lanczos vectors (cf.
Golub and Van Loan [1996: 473])

(b) If q1 is defined in (a), then

QI(QhAQI» .- -:An_l(h) = R7

where R is upper-triangular. The matrix in brackets is a Krylov matrix. If
R is nonsingular, then B of (a) has no zero subdiagonal elements.

16.46. (Normal Matrix)

(a) (Diagonal Reduction) An n x n complex matrix is normal (i.e., AA*
A*A) if and only if there exists a unitary matrix Q such that Q*AQ
diag(A1, A2, ..., An), where the X; are the eigenvalues of A.

I

(b) (Tridiagonal Reduction)

(i) Let A be a real n X n matrix. Then A is normal (i.e., AA" = A’A) if
and only if there is a real orthogonal matrix Q such that

Q'Adeiag(Al,Ag,...,Ak):Dl, ISkSn,

where tridiagonal D, is a real block-diagonal matrix, and A; is either a
real 1 x 1 matrix or a real 2 x 2 matrix of the form

_( a B
A= 0.
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(ii) If A is a real skew-symmetric matrix (i.e., A’ = —A), then A is normal.
It then follows that A is skew-symmetric if and only if there exists a real
orthogonal matrix Q such that

QIAQ = dlag(0,0, PN ,O,Al,Az, .. .,At) = Dg,

where Dy is a real block diagonal matrix with each A; having the form

_( 0 5
Aj—<—f’j 0])

(iii) If A is an orthogonal matrix, then it is normal. It follows that A is
orthogonal if and only if there exists a real orthogonal matrix Q such
that

QIAQ = dlag()\“ )\2, ceay )\T,Al, AQ, ey As) = D37

where D3 is a real block diagonal matrix with each A; = £1 and each
matrix A; having the form

Aj:( cos 0; sin@-)'

—sinf@; cos;

16.47. (Hermitian matrix) If A is an n x n Hermitian matrix of rank r, then there
exists a nonsingular matrix S such that S*AS = D, where

D = diag(1,1,...,1,-1,-1,...,-1,0,0,...,0).

The number of +1’s and —1’s are the same as the number of positive and negative
eigenvalues of A (say r4 and r_, respectively), and the number of zeros is ro = n—r.
The result obviously holds for a real symmetric matrix and real S (e.g., Anderson
[2003: 640]). Clearly the signature, defined below, is unique.

Definition 16.13. Refering to (16.47) above, if A is a Hermitian matrix, the triple
(ry,7_,70) is called the inertia of A, while r. —r_ is called the signature of A.

Proofs. Section 16.6.
16.44. Harville [1997: 534-539).
16.45a. Golub and Van Loan {1996: 414].
16.45b. Golub and Van Loan [1996: 416].

16.46a. Rao and Bhimasankaram [2000: 313] and Rao and Rao [1998: 175,
190].

16.46b(i). Horn and Johnson [1985: 105].
16.46b(ii). Horn and Johnson [1985: 107-108].
16.46b(iii). Horn and Johnson {1985: 108].
16.47. Horn and Johnson [1985: 221-222].
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16.7 CONGRUENCE

16.48. (Sylvester’s Law of Inertia) Let A and B be n x n Hermitian matrices.
There exists an n X n nonsingular matrix S such that A = SBS* if and only if A
and B have the same inertia (cf. 16.47).

16.49. (Ostrowski) Let A be Hermitian and S nonsingular, both n x n matrices.
Then, for each i = 1,2,...,n, there exists a positive real number #; such that
Amax (SS*) > 0; > Anin(SS*) and

Xi(SAS*) = 6,;(A).

16.50. Let A and B be n X n real or complex symmetric matrices. There exists a
nonsingular S such that A = SBS’ if and only if A and B have the same rank.

Proofs. Section 16.7.

16.48-16.50. Horn and Johnson [1985: 223, 224, 225].

16.8 SIMULTANEOUS REDUCTIONS

16.51. Let A and B be n x n real symmetric matrices.

(a) (i) There exists a real orthogonal matrix Q such that Q'AQ and Q'BQ are
both diagonal if and only if AB = BA (that is AB is symmetric).

(ii) The previous result holds for more than two matrices. A set of real
symmetric matrices are simultaneously diagonalizable by the same or-
thogonal matrix Q if and only if they commute pairwise.

(iii) The above result also holds for Hermitian matrices and unitary Q.

(b) If a real linear combination of A and B is positive definite, then there exists
a nonsingular matrix R such that R’"AR and R/BR are diagonal.

(c) If A is also positive definite, there exists a nonsingular S such that S'AS =1,
and S'BS = diag(\1, Ag, ..., Ay), where the \; are the roots of |]AA — B| =0,
i.e., are the eigenvalues of A~!B (or BA™! or A"Y/2BA~1/2). The \; are

real.

(d) If A and B are both non-negative definite, there exists a nonsingular matrix
R such that R’AR. and R'BR. are both diagonal.

16.52. Let A and B be n x n complex matrices.

(a) If A and B are both symmetric, there exists a unitary U such that UAU’
and U!3U’ are both diagonal if and only if AB is normal; that is, ABBA =
BAAB.

(b) If A is Hermitian and B is symmetric, there exists a unitary U such that

UAU* and UBU'’ are both diagonal if and only if AB is symmetric; that is
AB =BA.



346 FACTORIZATION OF MATRICES

(c) If A is Hermitian positive definite and B is symmetric, then there exists a
nonsingular matrix S such that S*AS and S'BS are both diagonal.

(d) Let A be a Hermitian matrix, B be a Hermitian non-negative definite matrix
with rank 7 < n, and N be an n X n — r matrix of rank n — r such that
N*B = 0. Then:

(i) There exists an n x r matrix L such that L*BL = I, and L*AL = A,
where A is an r x r diagonal matrix.

(ii) A necessary and sufficient condition that there exists a nonsingular ma-
trix R such that R*AR and R*BR are both diagonal is that

rank(N*A) = rank(IN*AN).

(iii) A necessary and sufficient condition that there exists a nonsingular ma-
trix R such that R*BR and R"!A(R™!)* are both diagonal is

rank(BA) = rank(BAB).

(iv) If, in addition, A is Hermitian non-negative definite, there exists a non-
singular matrix R such that R*AR and R*BR are both diagonal.

(v) If, in addition, A is Hermitian non-negative definite, then there exists
a nonsingular matrix R such that R*BR and R™'A(R~!)* are both
diagonal.

For other results like (a)-(c) see the table of Horn and Johnson [1985: 229).

16.53. (Simultaneous Upper-Triangular Reductions) Let A and B be n x n com-
plex matrices.

(a) There exist unitary matrices P and Q such that P*AQ = T and P*BQ =S
are upper-triangular. If the diagonal elements s;; of S are all nonzero, then
)\Z(AB;I) = tii/sii fori=1,2,...,n.

(b) If A and B are real, there exist real orthogonal matrices P and Q such that
P*AQ is upper quasi-triangular (upper Hessenberg) and P'BQ is upper-
triangular.

(c) If AB = BA, then there exists a unitary matrix U such that U*AU and
U*BU are both upper-triangular. This result holds for any family of com-
muting matrices (Horn and Johnson [1985: 81]).

16.54. (Simultaneous Singular Value Decompositions)

(a) (Two Matrices) Let A and B be mxn matrices. There exist unitary matrices
P..xm and Q,,x, such that A = PX;Q* and B = PX,Q*, where ¥; (i = 1, 2)
are m x n diagonal matrices, if and only if if AB* and B*A are both normal.

(b) (More Than Two Matrices) Given m x n matrices A; (¢ =1,2,...,k), there
exist unitary matrices P and Q such that A = PX;Q"* for all ¢, where the ¥;
are all diagonal, if and only if each AJA; (i # j) is normal and all the pairs
of A;A} (i # j) commute.
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16.55. (Diagonalizable Matrices)

(a) (Two Matrices) Two diagonalizable n x n matrices are simultaneously diag-
onalizable; that is, there is a single nonsingular matrix R such that R"'AR
and R™!BR are diagonal, if and only if A and B commute (i.e., AB = BA).
Commuting matrices play a major role in simultaneous factorizations as we
have seen in (16.53c) and (16.54) above. For details see Horn and Johnson
[1985: chapter 2].

b) Let S be an arbitrary finite or infinite) set of n X n matrices in which every
pair commutes. Then:

(i) There is a vector x € C™ that is an eigenvector of every A € S.

(ii) The members of S can be simultaneously diagonalized.
Proofs. Section 16.8.
16.51a(i). Abadir and Magnus [2005: 180] and Searle [1982: 312-313].

16.51a(il). Rao and Bhimasankaram [2000: 355-356] and Schott [2005: 163
165].

16.48a(iii). Horn and Johnson [1985: 228; they also give other equivalent
conditions for the simultaneous diagonalization of two Hermitian matrices]
and Rao and Rao [1998: 185-186].

16.51b. Horn and Johnson [1985: 465, complex case with a real linear com-
bination and R* instead of R’} and Schott [2005: 161-162, real case].

16.51c. Abadir and Magnus [2005: 225] and Searle [1982: 313]. This result
also holds for Hermitian matrices (cf. Horn and Johnson [1985: 250-251] and
Rao and Rao [1998: 185-186]).

16.51d. Schott [2005: 162] and Searle [1982: 313-314].
16.52a-b. Horn and Johnson [1985: 235).
16.52¢. Horn and Johnson [1985: 466].

16.52d. For proofs of (d) and further results, see Rao and Mitra [1971: chapter
6].

16.53a. Golub and Van Loan [1996: 377].

16.53b. Stewart [1972].

16.53¢c. Zhang [1999: 61] and Meyer [2000a: 522, exercise 7.2.15].

16.54a. Horn and Johnson [1985: 426, exercise 26].

16.54b. Quoted by Rao and Rao [1998: 192].

16.55a. Horn and Johnson [1985: 50} and Meyer [2000a: 522, exercise 7.2.16).
16.55b. Horn and Johnson [1985: 51-52).
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16.9 POLAR DECOMPOSITION

16.56. Let A be an m x n complex matrix of rank r (r < min{m,n}).

(a) Suppose m < n. Then, using the thin complex version of the singular value
decomposition (cf. Section 16.3) we have the polar decomposition

A =PALQ, = (PALP")(PQ;,) = BW,

where B = (AA*)'/? is an m x m unique Hermitian non-negative definitive
matrix of rank r, and W is m x n with orthonormal rows (that is, WW* =
I,,). If rank A = m, then the matrix W is unique and B is Hermitian positive
definite. If A is real, then both B and W can be taken as real.

(b) If m = n, then W is unitary. Furthermore, if A is nonsingular, then W is
uniquely determined as B7!A.

(c) Let m > n. By applying (a) to A* we can write A = VC, where the m x n
matrix V has orthonormal columns and C is an n X n unique non-negative
definite Hermitian matrix of rank r. If A nonsingular, then V = W.

(d) B = C if and only if A is normal.

16.57. Suppose that the n x n matrix A has a polar decomposition A = BW.
Then it follows from (16.56d) above that A is normal if and only if BW = WB.

Proofs. Section 16.9.
16.56. Horn and Johnson {1985: 412-414].

16.57. Abadir and Magnus [2005: 226, real case] and Horn and Johnson [1985:
414).

16.10 MISCELLANEOUS FACTORIZATIONS

16.58. (Takagi Factorization) Let A = (a;;) be a real or complex symmetric n x n
matrix. Then A can be expressed in the form A = QDQ’ (note Q' and not
Q*), where Q is an n X n unitary matrix and D is a real non-negative diagonal
matrix. The columns of Q are an orthogonal set of right eigenvectors of AA, and
the corresponding diagonal elements of D are the non-negative square roots of the
corresponding eigenvalues of AA.

16.59. Any square matrix A can be factorized as A = SQDQ’'S™!, where S
is nonsingular, Q is unitary, and D is diagonal with non-negative main diagonal
entries; all matrices are n x n.

16.60. For any square matrix A, there exists a unitary Q and upper-triangular
matrix V such that A = QVQ/’, where all matrices are n x n, if and only if the
eigenvalues of AA are real and non-negative. When this condition is true, the main
diagonal elements of V may be chosen to be non-negative.
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16.61. If H is Hermitian, there exists a unitary marix Q such that Q*AQ is
tridiagonal (and also Hermitian).

16.62. (Upper Hessenberg Reduction) For any square matrix A there exists a
unitary matrix Q such that QAQ* is upper Hessenberg.

Proofs. Section 16.10.

16.58. Horn and Johnson [1985: 157, 204] and quoted by Rao and Rao [1998:
192].

16.59. Horn and Johnson [1985: 157, 210].
16.60. Quoted by Rao and Rao [1998: 192].

16.61. Quoted by Rao and Rao [1998: 190]. The real case (Jacobi’s reduction)
is discussed by Meyer [2000a: 353].

16.62. Quoted by Rao and Rao [1998: 190]. It is also described by Meyer
[2000a: 351, real case].
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CHAPTER 17

DIFFERENTIATION

Methods of differentiation and differentials involving scalars, vectors, and matrices
are used extensively in statistics. Applications include maximum likelihood and
least squares estimation, large sample theory, statistical computing, and Jacobians,
the subject of the next chapter. Turkington [2002], for example, applies first and
second order differentiation to find maximum likelihood estimates and variance
estimates for linear regression models, autoregressive time series, seemingly unre-
lated regression equations, and linear simultaneous equations models. Magnus and
Neudecker [1999] do a similar thing with multivariate models, errors-in-variables
models, nonlinear regression, and simultaneous equation models.

Differentiation is also used in sensitivity analysis and perturbation methods,
which endeavor to determine the perturbation in a system when there are small
changes in the parameters. It is also used in the derivation of elasticities (a term
from economics), where one determines the proportional perturbation when there
is a proportional change in a parameter. Some examples are model fittting (e.g.,
Seber and Wild [1989: 121-126, 668]), ecolological population dynamics (Caswell
[2001, 2007]), and multivariate elliptical linear regression models (Liu [2002b]). The
chapter closes with a few results on difference equations.

17.1 INTRODUCTION

I have endeavored to categorize the methods of differentation for easy reference,
though some results, especially relating to a function of a function, fit into more than
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one category. There is also some overlap of topics as one can consider differentiation
either with respect to a vector or matrix, or with respect to an element of a vector
or a matrix. A helpful survey of the subject including an historical overview is given
by Nel [1980]. He also considers differentiation with respect to patterned matrices
(cf. Section 18.3.5).

17.2 SCALAR DIFFERENTIATION

For some analytical background to the subject in a statistical context, the reader is
referred to Abadir and Magnus [2005: chapter 13], Magnus and Neudecker [1999],
and Schott [2005: chapter 9].

17.2.1 Differentiation with Respect to

Definition 17.1. We first define the derivative of a matrix or vector with respect
to a scalar. If A(t) = (a;;(t)), then OA(t)/0t is defined to be (8a,;(t)/0t); that is,
the derivative of A(t) is obtained by differentiating each element of A. The same
is true for a vector a(t) = (a;(t)).

Unless specified (e.g., A is symmetric), we assume that the elements of all the
matrices differentiated are functionally independent (i.e., unconstrained). Also, the
following apply when we have a vector t = (t;,ta,...,t,)" and Ot is replaced by Jt;.

17.1. We have from the definition:
o {AX(t)B} _ ABX(t)B

@) =% ot
Ovec X(t) oX(t)
(b) 5 = vec — =

17.2. (Products) Noting that & is the Kronecker product, the following result is
used extensively in the next section.

(a) JAWBHICH) )ai C) _ %BC+A%C+AB%.
(b) 3(A(t)£>]3( ) %A®B+A®%_1t3

17.3. (Inverse)

(a) Differentiating AA~! = I for nonsingular A(t), we get

OATNt) 1 0A(t) ,
e T

(b) If R does not depend on ¢, then differentiating [R’A(t)R]"'R’'A(t)R =1
gives us

8[R/ o R] [R/ () ] 1R/8A(t) [ /A(t)R]Al
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(c) If A is symmetric and B(¢t) = R[R’A(¢)R]!R’, where R does not depend
on t, then, using (b), we obtain
0B _0A

5t - Ba b

(d) If A~ (¢t) is a weak inverse of A(t), then differentiating AA~A = A gives us

PN UYL
ot ot
Further details are given in (17.8) below.
/ — 7
(e) A%A’ =—-A(A'A)” 6(1(5;:& )(A’A)‘A’.

17.4. (Determinants) If A(¢) is nonsingular, then

—__Blog(detA) = trace A_I% .
ot ot

The result is also true if A is symmetric. A further result follows by noting that

Odet A =detAalOg(detA).
ot ot
- Oltrace(A(t)] OA(t)
17.5. (Trace) ot = trace 5 |
At
17.6. (Exponential) 8(6% = Aeht

Proofs. Section 17.2.1.
17.2. Graham [1981: 38].
17.3d—e. Searle [1982: 335].
17.4. Searle [1982: 337-338].
17.6. Abadir and Magnus [2005: 368].

17.2.2 Differentiation with Respect to a Vector Element

We now consider the special case when ¢ is an element of an n x 1 vector x = (z;).
The results in this section still apply if F is a matrix function of a matrix X = (z;;),
and we replace z; by z;;.

17.7. Let F be a square matrix function of a vector x = (x1,22,...,Z»)’, then
from (17.4) and (17.3a) we have the following.

(a) ———a“a;f(x)] — trace (%)
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(b) Suppose F is nonsingular.

O det|F(x)] = (det F') trace (F—1 oF >

%

8zi
Ologdet[F(x)] 1 OJdetF _ _, 0F
= F .
(i) oz; " detF dz; trace T
... OF! , OF 1
(lll) 8_:131 =-F~ a,’l,‘lF
1 -1
(iv) Ologdet(AF™ B) = — trace [F_IB(AF"IB) AF! QF]
ox; Ti
(v) If adjF is the adjoint matrix of F, then adjF = (det F)F~! and
dadjF  OdetF__, oF 1
= F F .
a.’lfi 81‘1 +det axi
(c) (Kronecker Product) Let F and G be p X ¢ and r X s matrix functions of x.
IF®G) 8G OF
e =F
(1) ox; ® or; 8z

We can replace F by vecF and G by vec G in the above equation.

(i) Ovec (F @ G) O(vecF ® vec G)
8.’131' amz ’

where K, (= I, 5)) is the commutation matrix.

=L ®K,01h)

17.8. Let F be a p x ¢ matrix function of x. If F~ is a weak inverse of F, then, un-
der certain analytical conditions including continuous differentiability and constant
rank in some neighborhood, we have

OF~ OF
F F=-FF" F™F.
ox; Ox;
In particular, there exists a weak inverse G of F such that Z—G = —GS—FG.
X X

17.9. Let F be a p x ¢ matrix function of x. If F* is the Moore-Penrose inverse of
F, then, under certain analytical conditions including continuous differentiability
and constant rank in some neighborhood, we obtain

OFt
c’)xi o

OF

OF o+ +FH(EFEY (a

_Ft—
axi

OF

) (I, —-FF")+ (I, - F*F) ( ) (FT)FT.
L
17.10. (Eigenvalue and Eigenvector) Let F be a symmetric matrix function of
an n X 1 vector x. Let A be a simple eigenvalue of F (i.e., one with an algebraic
multiplicity of 1) and corresponding right eigenvector u of unit length. Then, given
Fu = \u and H*, the Moore—Penrose inverse of H = F — \I, we obtain

oA OF Ou 8F

=4 T _ _Ht
oz; “ami“ and ox; H 63:2
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17.11. Consider the idempotent matrix P = X(X'WX)~X'W, where X is n x p
and W is an n X n positive definite matrix such that the elements of W and/or
X are functions of a vector z. Then, under certain analytical conditions including
continuous differentiability and constant rank in some neighborhood, we obtain

8P _ 6X 7 — 12 i — ax I
e = (- PS5 (XWX) X'W 4 X(X'WX) (5 W(T, - P)
FX(X'WX)~ X/ 88‘:’ (I, - P).

17.12. Suppose X = X(¢), where X is n x p of rank p and is a function of
¢ = (¢1,62,...,0%). Then,

O0det(X'X) , L 0X
o det(X'X) trace (X 56, )’

where X+ is the Moore—Penrose inverse of X. This theory arises in nonlinear
modeling.

Proofs. Section 17.2.2.
17.7. Harville [1997: 305, 307-308] and Harville [2001: 158, exercise 32].
17.8. Harville [1997: 312].
17.9. Harville [1997: 511].
17.10. Harville [1997: section 21.15 for proofs and analytical background].
17.11. Harville [1997: 315]. Derivatives are also given for WP and W — WP.

17.12. Bates and Watts [1987] and Bates and Watts [1988: chapter 4] give
further details. For a summary see Seber and Wild [1989: 543-544].

17.2.3 Differentiation with Respect to a Matrix Element

Definition 17.2. We define the matrix E;; to be an m x n matrix with 1 in the
i, jth position and zeros elsewhere. Thus E;; = ei,me;,j, where e; ,, is the ith
column of I,,, and e; 5, is the jth column of 1,,.

In what follows, we consider the special case of t = x;;, an element of the real
mxn matrix X, and include differentiation with respect to a vector element. Results
in this section can be derived using the properties given in the previous section along
with (17.13) below. We assume that the elements of X are functionally independent
(i.e., are “unconstrained’), unless stated otherwise. When m = n, then E;; = E,.

17.13. (Basic Result)
(a) It is straightforward to show that

X _ Eij, X unconstrained,
dzr;; | Eij + Ej; —0;;E;, X symmetric,

where d;; = 1 when ¢ = j and 6;; = 0 when i # j.
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5). ¢ axy'
T i
(¢} To convert a result given below about an unconstrained X into one for sym-
metric X, we simply replace E;; by E;; + E;;j — 0;;Ey.

17.14. (Products) We assume that the following matrices are conformable and X
is unconstrained. The results follow directly from (17.1) and (17.2). Further results
can be obtained by setting A and/or B equal to the identity matrix.

8(AXB) X

—=A B = AE;;B.
(a) al‘ij 811,'1'_7' 7
(AX'B) ,
—— = AE,.B.
) =5 ’
' I
o QXAXB) X, OAXB) o ivn  XARLB.
Bxij 8£E1‘j 61'1']' J
’
(d) 8(X8A—XB) =E;;AX'B + XAE/,B.
Tij

AXX'B XX/
4 ) = A(9 B = AE;;X'B+ AXEQJ-B.

(e)

8(L‘ij 61‘1']‘
X
(f) IXAXB) _ E;;AXB + XAE,;B.
8.’Eij
I(X'AX'B
(g) (—823;7—) = EngX'B + X'AE;;B.
XX'X
8£Eij J

17.15. (Inverses)

(a) If BXC is nonsingular, we differentiate (BXC)(BXC)™! = I to get (cf.
17.3a)
o{A(BXC)"'D}

A(BXC) !'BE;;C(BXC) 'D.
ailfi]'

(b) Suppose X is m x m and nonsingular. From (a) we have

oX~!

8.73,‘]'

= -XTEyX ' = -X"le; e, X = —yiz],
where y; is the ith column and 2, is the jth row of X1

If X is symmetric, then using (17.13c) we have

ox-1! _{ —viyh, if i=j,
8.’L‘ij _Yiy;"'y‘jyév if i>j7

where y; is the ith column of X 1.
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17.16. (Determinants) Suppose X is square and &;; is the cofactor of z;;. Then

ddetX &, X unconstrained,
or;; | (2-6i)&, X=X,

where d;; = 1 when ¢ = j and 0 otherwise.
17.17. (Powers) Let X be nonsingular, and let k& be a positive integer.
(a) We can prove by induction that

k-1
— Z XTE” Xk*‘r*l
=0

0l‘i]'
for k=1,2,..., where X =1,.
(b) Differentiating X¥X % =T gives us

oX 7k _ _X_kaxk Xk
axij 8$ij '

17.18. {Some Matrix Functions) Let Y be a nonsingular matrix function of X,
where X is unconstrained.

(a) ddetY
& 8z,~]~

ay

611,‘”'

— trace [(ade) ( oY ] .

)] = (det Y) trace [Y_IE
When X is symmetric we can use {17.13c) in the following applications.
(i) Y = AXB, then (from 17.14a)

ddet(AXB)
(’)xij

det(AXB) trace[(AXB) ' AE;;B]

det(AXB){[B(AXB)'Al'};;.

(ii) f Y = X’AX, then (from 17.14c)

8 det(X'AX)

5 = det(X'AX) trace{(X'AX) "} [E[;AX + X'AE]}.
Tij

ovecY oY
(b) Tl] = vec a(L‘” .

(©) OtraceY trace oY
(9:[1']‘ N 6xij '

oY ! LOY
=Y 'Yyl

We can get a corresponding result for (Y ')/ by simply replacing Y by Y’,
as (Y1) = (Y/)~L.
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17.19. (Eigenvalue and Eigenvector) Let X be a symmetric n x n matrix with
simple eigenvalue A (i.e., has an algebraic multiplicity of 1), and corresponding
eigenvector u = (u;) of unit length. Then

OA

8{Eij

f i (022 2
= 2uu’ — diag(uf, u3, ..., us).

Also, if g; is the jth column of H*, the Moore—Penrose inverse of H = X — A,

we have
ou _ [ —wg, if j =i,
—(ujgs +wigy), if j <.

O
Proofs. Section 17.2.3.

17.14. Graham [1981: 60-64, 69).
17.15b. Harville {2001: 130, exercise 21].
17.16. Searle [1982: 336].
17.17. Graham [1981: 67-68].
17.18. Harville [1997: section 15.8].
17.19. Harville [1997: 567).

17.3 VECTOR DIFFERENTIATION: SCALAR FUNCTION

17.3.1 Basic Results

Definition 17.3. If f is a function of x, we denote the vector of partial derivatives

(8f/0z;) by the column vector 8f/0x, that is, g—i = (gﬂ{) We also define the
row vector 8f/dx’ = (0f/0x). Some authors (e.g., Dhrymes [2000]) reverse the

notation.

17.20. (Basic Results) Let x and a be n x 1 vectors, and let A an n X n matrix.

(a) ox’'a a da'x
2 O = Ox
Ox'Ax

(b) o (A + A')x, or 2Ax if A is symmetric.
X

17.21. (Chain Rule) If 2 is a differentiable scalar function of y, and y is a differ-
entiable function of x, then

0z Z Oz Oy,
8mi - 7 Oyj aiL'i’
which can be expressed in the form of the row vector

o o2 oy
ax' By Ox'’
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In terms of column vectors,

0z ([ Oy " Bz

Ox  \ox' ) 8y’
The function z might include functions such as the trace, the determinant, and
quadratic expressions.

Proofs. Section 17.3.1.

17.20. Abadir and Magnus {2005: 356, transposed].

17.3.2 x = vec X

In applying the following results using the chain rule above, it can be more con-
venient to work with & (vecX)’ instead of dvecX. The right-hand side is then
transposed, as indicated in (17.22) below. Some authors use the reverse notation
(e.g., Dhrymes [2000]). Note that the following derivatives are all column vectors.

17.22. If f(X) is a scalar function of the matrix X, then

et = (%o ) = (ky) -

17.23. (Trace)

(a) 0 trace(AXB)
OvecX

We can obtain this result directly by noting that

= vec (A'B’).

trace(AXB) = trace(BAX) = vec (A'B’)'vec X,
and using (17.20a). We can set A or B equal to 1.

dtrace(X'AXB)

(b) Hvec X =[(B'®A) + (B® A)]vecX.

Provided that the appropriate matrices are square, other results follow from trace(CD) =
trace(DC) and trace C = trace C’. For example,

trace(X’AXB) = trace(AXBX’) = trace(XBX'A) = trace(BX'AX).
17.24. (Determinants and Log Determinants) The following matrices X and Y
are nonsingular, and we use the result vec (AXB) = (B’ ® A)vecX.

(a) ddet X
Jdvec X

(b) Y = X'AX, then

= vec [(adjX)’] = (det X)vec (X ™).

OdetY

— -1 -1 U
Svec X detY(Y /' ®A)+ (Y ' ® Al)]vec X.
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When A is symmetric, then Y is also symmetric and

OdetY

— = Y[(Y! .
FvecX 2det YJ( ® A)vecX

(¢) If Y = XBX/, then

OdetY

— Y —1y/ ! ~1 .
Fvec X detYBR (Y ) +(B'® Y ")]vecX

When B is symmetric, then Y is symmetric and

OdetY

——= =2detY -1 .
Fvoc X detYB® (Y™ )vecX

(d) If Y is one of the above functions, then

O(logdet Y) 1 OdetY

dvecX  detY dvecX’

Proofs. Section 17.3.2.
17.23. Dhrymes [2000: 156-157, transposed] and Rogers [1980: 54].
17.24a. Rao and Rao [1998: 229] and Schott [2005: 360).
17.24b. Abadir and Magnus [2005: 372-373, transposed].
17.24a—d. Turkington [2002: chapter 4],

17.3.3 Function of a Function

17.25. Suppose y = w' Az, where A is m X n and w, z, and A are all functions of
x. We wish to find the row vector dy/9x’. We first note from (11.16b) and (11.15c)

that
y=vecy = (z' @ w)vec A = (z® w)'vec A = [vec (wz')]'vec A.

Then using w/Az = 2’ A’'w, we get

oy ow dvec A 0z

& = ZIA/@ + [vec (WZI)]/W —+ WIAQ
17.26. Let y = trace[F(Z)], where F is a square matrix function of Z and Z is a
function of x. Then, by the chain rule (17.21), we obtain

9y Ay dvecZ

x'  O(vecZ) ~ ox

where 0y/d(vecZ) can be obtained from (17.23) and transposing. We give three
examples from Dhrymes [2000: section 5.4].

dtrace(AZB)
R

,0vecZ

= vec (A'B’) e
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Otrace(AZ'BZ) VoA NOvecZ
(b) e = (vecZ)(A’®B+A®B )W
OdetZ ,0vecZ

(c) e = Ve [(adjZ)'] N
Proofs. Section 17.3.3.
17.26. Dhrymes [2000: section 5.4].
17.26a. The result follows from (17.23a).
17.26b. We use (17.23b) transposed with A and B interchanged.
17.26c. We use (17.24a).

17.4 VECTOR DIFFERENTIATION: VECTOR FUNCTION

Definition 17.4. Let x and y be n x 1 vectors. We define

dy ([ Oy

ox (8:6]-) '
I find this notation easy to remember because y, being a column vector, means
that i refers to the row number, and x’, being a row vector, means that j refers to
the column number. This notation is used, for example, by Magnus and Nuedecker
[19] and Harville [1997]. However, other notations are used in the literature. For
example, Dhrymes [200] calls the above expression dy/9x, while Graham [1981],
Searle [1982], and Turkington [2002] define dy/dx = (dy;/0x;), the transpose of
our definition. However, such a definition does not adapt so well to the chain rule
below in (17.29) and in the derivation of Jacobians, which are discussed in the next
chapter.

If Y = F(X) is a matrix function of X, we shall also be interested in the
derivative dvec Y /(0 vec X)'. Rao and Rao [1998: Section 6.5] denoted the latter
expression by *0Y /90X and list a number of results. The Kronecker product “®” is
very useful in this regard, along with (17.60). Many of the results are proved using
the method of differentials (Section 17.8).

17.27. Since the Kronecker product x ® a is a vector, we have the following.

O{x®a)
(a) T = In ® a.

Ola®@x)
(b) T —~a®1n.

17.28. If y = Ax, then
dy/ox = A.
Similarly, if vec Y = Bvec X, then

dvecY
d(vecX)
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17.29. (Chain Rule) If z is a differentiable vector function of y and y is a differ-
entiable function of x, then, arguing as in (17.21),

9 _0n 0y
ox! ~ fy' ox'’
This result also holds if z is a scalar (cf. 17.21), and then 8z/0x’ is a row vector.

17.30. (Matrices with Functionally Independent Elements) In what follows we can
obtain special cases by putting some of the matrices equal to the identity matrix.
Also I, ny(= Kmr) is the vec-permutation (commutation) matrix.

Jdvec X

(a) m =1

(b) If' Y = AXB, then from (11.16b), vecY = (B’ ® A)vecX and

dvecY

VY _B®A.
O(vec X)! ®

(c) fY = AX'B and X is m x n, then vecY = (B’ ® A)vec X/, vecX’' =
I(nmyvec X and, from (a) and (11.16b),

dvecY

IVECL (B @ A ().
d(vec X)! (B ® A)ln.m)

is nonsingular an = ~'B, then
(d) X ingul dY = AX"IB, th

dvecY i,y 1

Wecanset A=B =1.

(e) If X is nonsingular and Y = X*, where k is a positive integer, then

dvecY ul Nk—i i
ey ~ 2(X) XD,
i=1

(f) f X is m xnand Y = X’AX, then

OvecY
— . = (X'AQL), .+ (I, X'A).
d(vee X)’ ( @ In)lmm + (In ® )
If A is symmetric, we get (I,2 + I, n)) (I, @ X'A).
(g) f Xis m x n and Y = XBX/', then

OvecY

VY (XB'®1L,) + (In ® XB)p ).
SvecXy ~ KB ETn) + In & XB)lm)

If B is symmetric, we get (Im2 + I m))(XB ® In,).
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(h) If X is m x n, U is a p X ¢ matrix function of X, and V is a ¢ x r matrix
function of X, then

Ovec (UV) , OvecU OvecV
O(vecX)’ (Vel) O(vec X)/ +LsU) O(vec X)
17.31. Let F(X) = Z(Y (X)), then by the chain rule (17.29),

OvecF  OvecZ(V) Ovec Y (X)
AvecX)' ~ O(vec VY v=y(x) O(vecX)

17.32. (Symmetric Matrices) Let X be an n x n symmetric matrix.

(a) 'Y = AXA’, then vechY = H, (A ® A)G, vech X (cf. 11.30), where H,,
can be replaced by G} (= D), and

Ovech’Y
——— =H, (AR A)G,.
d(vech XY (A A)

Here G, is the duplication matrix.
(b) f Y =X7! then Y = X" !XX™!, and from (a),

JvechY

ovechy -1 —1
vech Xy ~ Hn(XT 8 XT)Gn.

(¢) Y =X* where k =2,3,..., then

OvechY

k
k—i i1
J(vech X)) g (X @ X )G,

(d) If Y = X*, then

OvechY

——— = GH{X'X*e(,-XX
Hvech X)' n X @ )

+(I, - XXT) @ Xt XL, , — (X ® X1)}Gy,
where I, ) is the vec-permutation (commutation) matrix.

17.33. Let F be a p x ¢ matrix whose elements are a function of x = (z1,x2,. ..
z,)’. (Here x can be vec X.) The following results mirror (17.30) and (17.32):

?

Ovec (AFB) , dvecF
—=(B'®A)————
(a) W ( ® ) o
F-1
(b) If F is nonsingular, 8‘/%_ _(FV@F" 1)3V6CF
F
(C) IfF=Xand x= vec X, then a_g_ic/_ — Ipq-

(d) If F is n x n, then

Hvec (F¥) -

o = D_(FT) @ FF

i=1

6vec/F (FO = 1L,).
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{e) If F is symmetric and n x n, then:

., Ovech(AFA’) dvech F
(i) a0 = H,(A® A)G, RPN
... OvechF! _ _ dvech F

(11) T = —Hn(F ! ® F 1)GHT

17.34. Let F and G be m x n and p X ¢ matrices, respectively, which are functions
of x.

(a) (Kronecker Product) From (17.7c) we have:

ovec G OvecF ® G
o o vec .

., Ovec(F®G) d(vecF ® vec G)
(ii) o (In ®@Img) ® Ip)‘"‘-“a;“"‘““

(b) (Hadamard Product) If F and G are both m x n matrix functions of x, then

d(vecF ® vec G)
ox’

(i) = (vecF ®

Ovec(FoG) Jvec G dvecF
T ow - PE) g TP

where “o” represents the Hadamard product, and for any m X n matrix A,

D(A) = dia‘g(a117a127 ceey 010,821,022, --.,020, - -, A1, Bm2,y - - - 1amn)-

17.35. Suppose y = Az, where A is m x n and A and z are functions of x. We
want to find dy/0x’. Since y = vecy = vec (Az) = (2’ ® I,,)vec A, we have

oy O vec (Az) 0(Az)
ax  ox t o
X X z constant X" ] A constant
dvec A 0z
_ ' gveca oz
= (z'®Iy) e Aax/.

Proofs. Section 17.4.

17.30b. Abadir and Magnus {2005: 362], Harville [1997: 366], and Henderson
and Searle [1979: 73].

17.30d. Abadir and Magnus [2005: 366] and Turkington [2002: 73, trans-
posed].

17.30e. Abadir and Magnus [2005: 362-363] and Henderson and Searle [1979:
73).

17.30f-g. Abadir and Magnus [2005: 366] and Turkington [2002: 74, trans-
posed].

17.30h. Rao and Rao [1998: 234, with typo corrected].

17.32a. Harville [1997: 366] and Henderson and Searle [1979: 74].
17.32b. Harville [1997: 368].

17.32c. Henderson and Searle [1979: 74].
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17.32d. Schott [2005: 364].

17.33. Harville [1997: section 16.6]; for (d) see Harville [2001: 157, exercise
31].

17.34a(ii). Harville [2001: 158, exercise 32].
17.34b. Quoted by Rao and Rao [1998: 235).

17.5 MATRIX DIFFERENTIATION: SCALAR FUNCTION

17.5.1 General Results

Definition 17.5. Let y = f(X) be a scalar function of the elements z;; of the
m x n matrix X. Then the derivative of y with respect to X, written dy/0X, is
the matrix with (4, j)th element dy/dz;;, that is,

> (24).

If X is a vector x, then we write dy/0x, a column vector with ith element dy/0z;.
Thus
0f(x) _ <3f(X)>
ox - 8131, '

It is assumed that X and x have functionally dependent elements, unless stated to
the contrary (e.g., X is symmetric). Note that

u- (5

A special case is when y.s = F.s(X), where y,; is the (7, s)th element of Y = F(X).

We remind the reader that diag(A) is the diagonal matrix whose diagonal el-
ments are the same as the diagonal elements of A. Such matrices feature frequently
below. Many of the results in this section can be derived using the method of dif-
ferentials, as demonstrated in (17.57).

17.36. (Chain Rules)

0z 0Oz 6y

— == hich leads t
9z, Oy Bx” which leads to

(a) fy= f(X) and z = g(y), then

%_82 ay

X 9y X’

(b) fY = F(X) and z = ¢(Y), then

_ZZ 02 Nrs _ trace (220X
3:&3 ayrs 81‘1] N aY 6.’E1] .
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We can also write the above equation in the form

og(Y) g Oyrs

L)

Nel [1980: 150-151] used this equation to derive some of the results below.

17.37. (Symmetric X) If y = f(X), where X is symmetric, then

ﬁ‘{aﬂy) af(Y)—diag<af(Y)>} '
Y=X

oX | dY aYy’ oY

In working out the derivative 8f(Y)/9Y, we pretend that the function f(-) is
defined on the class of matrices Y with all independent components, and then the
derivative is formed. Rao and Rao [1998: 231] give some helpful examples of the
method.

Proofs. Section 17.5.1.
17.37. Rao and Rao [1998: 230-231].

17.5.2 f = trace

We now give various matrix derivatives for the trace of matrix products. Vari-
ations of the following can be obtained by using the results trace C = trace C’,
trace(DE) = trace(ED), trace(AXB) = trace(BAX), and a’Xb = trace(a’Xb)
for square C, DE, and AXB. In what follows, we assume X to be m X n and un-
constrained, unless otherwise stated. If X is symmetric, we assume it to be n X n.
We can also set A =1I,, and/or B = I, to get special cases. The following can be
readily derived from the basic simple result

JtraceY trac oY
8Iij - ¢ 61:1']‘

and then using the results of (17.13¢) and (17.14). We also use the fact that if W =
(wij), then trace(E;; W) = trace(WE;;) = w;; and trace(E;; W) = trace(WE;) =
wy;, where E;; has 1 in the i, jth position and zeros eslewhere.

17.38. If y = trace[(U(X)V(X)], where U and V are matrix functions of X, then

Oy _ Otrace[U(X)V(Y)] O trace[U(Y)V(X)]
ax X rex+ X he=x.

17.39. Using (17.14a) and (17.13), we obtain

Otrace(AXB) C, X unconstrained
X T 1 C+C' —diagC, X symmetric; A, B square,
where C = BA.

To obtain further results we use trace(AX’B) = trace(B’XA’), and also set A
or B equal to I.
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17.40. If A is m x m, B is n x n, and X is unconstrained, we have from (17.14c)
that

Otrace(X’AXB) Jtrace(XBX'A)

= AXB + A'XB'.
X X *
An important special case is when B = I, and A is symmetric. Then
Otrace(X'AX)
— 2 = 2AX.
X
17.41. Using (17.14f) and (17.13), we obtain
Jtrace(XAXB) H', X unconstrained ,
X T | H+ H —diagH, X symmetric,

where H = BXA + AXB. We can get the special case of trace[(AX)?] by noting
that trace[(AX)?] = trace(AXAX) = trace(XAXA). Also, we can set B =1.

17.42. If X is nonsingular and unconstrained, we have from (17.15a):

dtrace[A(BXC)™'D] _

(@) e [C(BXC)~'DA(BXC)'BY.
-1

(b) From (a) we have w = —(X"'BAX"Y.
X—l

(c) A useful special case is m%;—(— = —(X7?).

(d) When X is symmetric, we have from (17.13) that

Otrace X! 2 . 9

17.43. Using (17.17a) and (17.13), we have for k = 2,3,...

dtrace Xk k(XkE-1y X unconstrained,
oX | 2kX*7! - kdiag(X*~1), X symmetric.

17.44. Suppose X is unconstrained.
X

Jtracee
() —5x — =)
race(X?
() 2T pemeng

Proofs. Section 17.5.2.
17.38. Rao and Rao [1998: 232].
17.39. Harville [2001: 116, exercise 8].
17.40. Graham [1981: 77-78].
17.44a. Abadir and Magnus [2005: 368, exercise 13.29).

17.44b. The derivative is etraeX*)g trace(X?2)/8X, and then use (17.14f)
with A=B =L
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17.5.3 f = determinant

In this section we assume that all the determinants are nonzero and that X is uncon-
strained, unless otherwise stated. Most of the following results for X unconstrained
are derived in Dwyer [1967]. The constrained case follows from the unconstrained
case using (17.13) above.

17.45. From (17.18a(i)),

0detX [ (adjX)' = (detX)(X~!'), X unconstrained,
X | det(X)[2X~! —diag(X~!)], X symmetric.

17.46. From (17.45),

dlog(det X) (det X)~! ddetX (X-1y, X unconstrained,
ax X | 2X~! —diag(X~!), X symmetric.
17.47.
Odet(AXB) det(AXB) C/, X unconstrained,
X ] det(AXB)[C + C’ —diag C], X symmetric,

where C = B(AXB) 'A.

17.48. If k is a positive integer and X is unconstrained,

8(det X)* o 0detX
——— =k{detX —_—
oX (et X" —5x
In particular,
O(det X)* 2 e —1rs
17.49. Assuming X'AX is nonsingular,
/
(a) w =det(X’AX){AX(X'AX) ! + A’X[(X'AX)7Y]'}).

This result is linked to (17.24Db).
(b) Setting A =T we get

8 det(X'X)

X = 2[det(X'X)|X(X'X)!

= 2det(X'X) X",

where Xt is the Moore—Penrose inverse of X (cf. 17.57¢). Bates [1983] gave
computational details.

(¢) Replacing X by X', we get

8 det(XX)

X = 2[det(XX)}(XX') "' X.
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17.50. Let F(X) be a square nonsingular matrix function of X, and let G(X) =
C[F(X)]7!A. Then

9 det{(F(X) det[F(X))(GXB + G'XB'), if F(X)=AXBX'C,
IR — { det[F(X)|(BXG + B'XG'), if F(X)=AX'BXC,
ox det[F(X)|(GXB + BXG), if F(X)=AXBXC.

17.51. If X is nonsingular,

ddet(AX'B) —det(AX~!B)C/, X unconstrained,
X —det(AX~!B)[C + C’ — diag C], X symmetric,

where C = [X"1B(AX !B)"!AX1].
17.52. If F is a nonsingular matrix function of X with det F > 0, then

10detF
X

Ologdet F _
) (detF)

This can be applied to all the previous results.
Proofs. Section 17.5.3.
17.45. Mathai [1997: 9] and Searle [1982: 337]; see also (17.57b).

17.46. Henderson and Searle [1979: 76] and Searle [1982: 33|; see also
(17.57d).

17.47. Rogers [1980: 52]; see also (17.57d).

17.48. Graham [1981: 75-76] and Magnus and Neudecker [1999: 179, k& = 2].
17.49a. This result also follows from (17.50).

17.49b. Magnus and Neudecker [1999: 179] and Rogers [1980: 52].

17.49¢c. Magnus and Neudecker [1999: 179).

17.50. Quoted by Magnus and Neudecker [1999: 180].

17.51. Rogers [1980: 52].

1754 f= y,,

17.53. In what follows we assume that X and E;; (with 1 in the (4, j)th position
and zeros elsewhere) are both m x n matrices.

H(AXB),,

= A'E,,B.
() ——3x .
JAX'B)rs -,
(b) === = BELA.
H(AX"'B),,

(c) = —(XT)A'E,B(X7).
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(@) %ﬁ — AXE., + A'XE,,.

(@g%%h:EJ%%NXE&

(f) % = AX'E, + E.,X'A".

(g) If k is a positive integer, 3()8(;%5 = kil(xl)jErs(X/)”_j_l, where
J=0

X’ =1
Proofs. Section 17.5.4.
17.53. Graham [1981: 60-68].

17.5.5 f = eigenvalue

17.54. If X is a nonrepeated (simple) eigenvalue of the square matrix X with left
eigenvector v and right eigenvector u, then

(a)
oA _ N1t
a—x = V(V u) u.

b) If A; is a simple eigenvalue, X is symmetric, and ug is the normalized right
Y g
eigenvector (i.e., ugug = 1), which is also the left eigenvalue, then

oA
X

= upuy.

Proofs. Section 17.5.5.
17.54a. Lancaster [1964] and Nel [1980: 141].
17.54b. Lancaster [1964] and Magnus and Neudecker [1999: 180).

17.6 TRANSFORMATION RULES

We now give some transformation rules that enable us to use the results from one
type of differentiation to obtain results for other types.

17.55. Let X be an m X n matrix, and let Y be a function of X. The following
equivalent expressions (adapted from Graham’s {1981: 65, 74] two “transformation
principles”) apply for all conformable A, B;, C,, and D,, including functions of
X, and are simply different ways of writing 8y,s/9z;;. If we obtain an expression
like (1) or (2) below, for example, in the process of differentiation, then we can
immediately obtain (3), which may be more difficult to get directly.
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Oyr
(1) ;’XS =Y A/E.B;+)Y C,E.D,.
t v

oY )
(2) oz = zt: AE;B; + Y D,E[C,.

dvecY ,
() Frveox) = 2Bl @At Y Tonn)(Dy & C,).
t v

It should be noted that E., and E;; may be of different sizes. We also recall (cf.
11.19a) that if C and D are both m x n, then

I(m,n)(D & C/) = (Cl Y D)I(n,m)~

17.7 MATRIX DIFFERENTIATION: MATRIX FUNCTION

Definition 17.6. Let Y = F(X), where Y is p x ¢ and X is m x n. Then the
derivative of Y with respect to X can be defined in different ways. One method is
to use the mp x ng matrix (MacRae [1974] and Rogers [1980])

Oy11 dyiz .. Oug

X oX oX
dY 9y21 8y22 . 83123 % ® (9
- = X oX X = -
dX . . e . X’

Ayp1 Oyp2 . SYpa

X oX oX

where the multiplication of a matrix element by a derivative operator corresponds
to the operation of differentiation. Some authors—for example, Vetter [1970] —
have used the reverse order (0/0X)® Y in the above definition. Rogers defines the
latter to be

Y aYy . Y
ox11 Ox12 OT1n
aY 8y ... Y
axgl 6122 BZQn
oY oYy . oY
OZm1 OLma OLamn

This is the definition for dY/dX used by Graham [1981: chapter 6].

The above definitions can also be used when X or Y are vectors. Magnus and
Neudecker [1999: chapter 9] and Rao and Rao [1998: 233] discuss the relative merits
of the above definitions and recommend a third alternative definition of a matrix
derivative, namely @ vec 'Y /8(vec X)’ as the only appropriate definition. This ties in
nicely with the use of Jacobians; such derivatives and Jacobians are discussed in the
next chapter. Kollo and von Rosen [2005: 127] define dY /dX = d(vec Y)'/OvecX,
the transpose of the former definition. Their notation has the advantage in that it
is consistent with the case 9¢(X)/0vec X, where ¢ is a scalar function. For those
interested in results relating to the two previous displayed definitions, the reader
is referred to Graham [1981], MacRae [1974], Neudecker [2003], Rogers [1980], and
the references therein.
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17.8 MATRIX DIFFERENTIALS

We mentioned some transformation rules for finding matrix derivatives in (17.55)
above. There is, however, another powerful method for finding derivatives based
on matrix differentials using another transformation rule given in (17.60) below.
They can be used to derive some of the expressions given above, as indicated in the
next chapter, Section 18.2. A good reference for this method is Abadir and Magnus
[2005: chapter 13]).

Definition 17.7. If y = f(x) is a scalar function of x = (21, z2,...,2,)’, then the
differential dy is defined to be

dy = Z 8y dxz

If X = (z;;) is an m X n matrix, then we define the differential dX to be the matrix
of differentials dz;;, that is, dX = (dz;;). In the case of a vector x = (z;), we
have dx = (d=;), so that we can therefore express dX as a vector using vecdX (=
dvec X). For some analytical details see Abadir and Magnus [2005: chapter 13|,
Magnus and Neudecker [1999], and Schott [2005: sections 9.2, 9.3]. In what follows,
X can be replaced by F(X), a matrix function of X, when obtaining differentials
so that dX is replaced by dF'.

17.56. (Basic Properties) Let X be an m x n matrix.

(a) If A is a matrix of constants, then d(AX) = AdX.
(b) d(X £Y)=dX £dY.
(¢) d(XY) = (dX)Y + XdY.
(d) d(X') = (dX)".
(e) dvec X = vecdX.
(f) dvec X' = vec (dX') = I, myvec (dX) (cf. Definition 11.6 above (11.18)).
(g) If X is an n x n matrix, we obtain

d(trace X) = trace(dX) = trace(I,dX) = vec (I,,)'d(vec X},
from (11.17a).

(h) (Kronecker product) d(X®Y)=(dX)® Y + X ®dY.
(i) (Hadamard product) d{XoY)=(dX)oY + X odY.
(j) d(det X) = (det X) trace(X~1dX).

(k) dX~! = —X~1(dX)X 1.
17.57. (A Scalar Transformation Rule) If y = f(X) is a scalar function of X, then

dy = trace(A’dX) if and only if of

X A. Furthermore, from (11.17a), we have

dy = trace(A’dX) = (vec A)'dvec X if and only if % = vec A.
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Here A may be a function of X. Examples follow with X unconstrained {(Abadir
and Magnus [2005: 357]).

(a) If y = trace(X’X), then dy = 2 trace(X'dX) (by (17.56¢) and (17.56g)), from
which we get g—)‘y( = 2X.

(b) If y = det X, where X is nonsingular, then dy = (det X) trace(X~tdX) (by
o
17.56j) and 8—1 = (det X)X ~!’. We also have

dlog(det X) = (det X)~'d(det X).

(c) If y = trace(XAX'B), then

dy

trace[d(XAX'B)| = trace{(dX)AX'B] + trace[X A (dX)'B]
trace{(AX'B + A'X'B’)dX]

and
9y = (AX'B + A'’X'B’)
X '
(d) If y = det(AXB), where Y = AXB is nonsingular, then from (b)

d(detY) = detY trace(Y 'dY)
= detY trace[Y ' A(dX)B]
= detY trace[B(AXB) ' AdX]
= detY trace(CdX), say,

and % = (det Y)C', where C = B(AXB) !A.

(e) If y = det(X'X), where Y = X’X is nonsingular, then from (a) we obtain

d(detY) = detY trace(Y~'dY)
= detY trace[Y 1d(X'X)]
2det Y trace[Y ' X'dX]

Il

dy _ -1

17.58. (A Vector Transformation Rule) If the vector y is a differentiable function
of the vector x, then we have dy = Adx if and only if

9y () _ 4
ox’ Oz
Here A can be a function of x, and we can substitute x = vec X, and so on, as in

the next result. For example, if y = Ax, where A is a function of x, then since
(dA)x = vec [(dA)x], we have from (11.16a, third equation)

dy = (dA)x + Adx = (x’ ® I)dvec A + Adx
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and 5 Bvec A
y vec
o~ XD

17.59. (A Matrix Transformation Rule) Let Y be a differentiable function of
Xnxn. Then we have the following:

+ A

(a) dvecY = vec(dY) = Bvec(dX) = B vecdX if and only if
dvecY
d(vecX)
(b) vec (dY) = Bvec (dX') = Bl ) vec (dX) (by 17.56f) if and only if

dvecY

Blvec Xy ~ DL

In the above, B may be a function of X, but not of dX.

17.60. (Equivalent Representations) Let X be m x n. If “®” is the Kronecker
product, then the following three statements are equivalent.

(1) dY = A(dX)B + C(dX')D.
(2) vec(dY) = (B’ ® A)vec (dX) + (D’ ® C)vec (dX').

OvecY

Here I(;, m) is the vec-permutation (commutation) matrix, and the matrices A, B,
C, and D may all be functions of X. Examples follow for X unconstrained.

(a) Let R, S, and T be matrices of constants. If Y = RX'SXT, where X is
m x n, then from (17.56a) and (17.56¢) above we obtain

dY = RX'S(dX)T + Rd(X')SXT,
and by (17.60(3)) we obtain

dvecY

_ ' ’
~—8(vec X)’ T ® (RX'S) + [(SXT)' ® R]I(n’m).

(b) If X and C are m x n, B is an m x m symmetric matrix, and Y = (X -
C)'B(X — C), then from (a) with D = B(X — C) we have

dY = (dX)'D + D'dX,

so that

dvecY

SV - LoD + (D' eL), .,
d(vec X') @D+ (D' @ L)l m)
I(n’n)(ln ® D,) + 1,2 (In ® D’)

2P, (I, ® D).
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Here P,,(= N,,) is the symmetrizer matrix in Definition 11.9 (see also (11.29h(ii)).
The case Y = X'X was given by Abadir and Magnus [2005: 363].

(¢) f Y = X!, where X is nonsingular, then from (17.56k) we have
dY = -X"1(dxX)Xx~L

Ovec X!
) ———— =—-(X"VoXx1).
(@) O(vec X)! ( ® )
(i) trace[X d(X™1)] = — trace[XX 1 (dX)X '] = — trace(X ~*dX).
(d) If T is orthogonal and det(T +I) # 0, then there exists a one-to-one relation
between T and the skew symmetric matrix S, namely, S = 2(T 4+ I)~! -1,
where T = 2(S +I)~! — I (cf. 5.19). Then from (b),

dT = —%(T + T)(dS)(T + ).

17.61. (Moore~Penrose Inverse) If X is m x n with Moore-Penrose X*, then,
provided that rank X is constant (over a suitable set), we obtain

dXt = (I, - Xt X)(dXH) XXt + XXV (dX')(I, - XX) - XT(dX)Xt.
Hence, using rule (3) in (17.60), we have

———8V€CX+ b & + + +y+7 +7 +
d(vec X)’ = {XTXT @I - XTX) + (I;n = XXT) @ X" X" H ;) — (X7 @ XT).

17.62. (Idempotent Matrix) Let X = (xy,X2,...,X,) be nxp of rank p, and define
M=1I, - X(X'X)"!X'. Then:

(a) dM = —M(dX)(X'X)"1X’' — X(X'X)~1(dX)'M.

(b) %ﬁ—yy = —(Lnz + I [X(X'X) ™ @ M.

(c) From dX = (dx;)e}, we obtain

dM = —M(dx;)e}(X'X) X' — X(X'X)"e;(dx;)'M,
where e; is the jth column of I,,.

dvecM _
(d) ax; = _(In2 + I(n,n))[x(xlx) lej ® M]

17.63. (Eigenvalue and Eigenvector) Let X be a symmetric n x n matrix with dis-
tinct eigenvalue A; and corresponding normalized eigenvector ~; (with unit length).
Then:

(a) dA; = ~4/(dX)y; and dA; = dvecA; = (v ® ¥))dvecX. Since vecX =
G, vech X we have 5
s

i (4 @A
OvechX (7 ®7:)Gn,
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(b) dvi = —(X = AT)*(dX)y; and = = ~{7] ® (X = A,L,)T}G,,

O
dvechX
where (X — \;I,,)T is the MoorePenrose inverse of (X — M1, ).
17.64. (Sensitivity Analysis in Regression) From Section 20.7.1, the ordinary least
squares (OLS) estimate of a full-rank regression model is 8 = (X'X)~'1X'y, where
X = (x1,X2,...,Xp) is nxp of rank p, and the residualisr = (I,—X(X'X)"!X')y =
My. Then:

(a) 8(%(’:6)()’ = (Xlx)—l ®r — [ﬁ’(@(X/X)_IX']_

(0) 25— XX BX et

or . ar . Iney—1 ’

o -
(@) 57 = —(BM+X(X'X) et
J

Proofs. Section 17.8.
17.56. Abadir and Magnus [2005: 355, 362, 369] and Schott [2005: 356].
17.57b. Mathai [1997: 71]
17.57c. Abadir and Magnus [2005: 359)].
17.60d. Deemer and Olkin [1951: 364-365].
17.61. Magnus and Neudecker {1999: 154] and Schott [2005: 361].
17.62. Abadir and Magnus [2005: 365-366].

17.63. Magnus and Neudecker [1999: 159-160, differentials only; they also
give the complex case, and some second differentials] and Schott {2005: 369).

17.64. Abadir and Magnus [2006: 375-376).

17.9 PERTURBATION USING DIFFERENTIALS

An important problem is that of finding a Taylor expansion for a function of X +dX,
when the elements of dX are small. We begin by writing dX = €Y, where € is small,
so that X + €Y represents a small perturbation of X. If f is a vector function of
X, then a Taylor expansion would take the form

f(X +€Y) = f(X) + i egi(X,Y),

i=1
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where g;(X,Y) represents some vector function of X and Y. Similarly, if we have
a matrix function F, then the expansion would take the form

F(X +¢Y)=FX) + i €Gi(X,Y),

i=1

where G; is now a matrix function. Schott [2005: section 9.6] demonstrated the
method with several examples, and some of the results of these are given below.
He also demonstrated how the method can be used for finding differentials and,
ultimately, Jacobians.

17.65. Suppose that X is nonsingular and F(X) = X~!. Then

(X +dX)™! = X' -X'MdX)X P4+ XM dX)XHdX)X !
X 1dX)X1dX) X HdX)X 7 4 -

17.66. Let X be a real symmetric n x n matrix with spectral decomposition X =
QAQ’, where A = diag(A1, A2,...,An) and A; = A(X) is a distinct eigenvalue of
X corresponding to the eigenvector q;, the ith column of Q. Let A;(X 4 dX) and
7 be the eigenvalue and corresponding eigenvector of X + dX. If dX = Q'WQ,
where W is “small” and symmetric, then we have the following:

(a) (X +dX) =X +qWq, +---
(b) (X +dX) =q; — (Z — \L,)TWq; +---.
Proofs. Section 17.9.
17.65-17.66. Schott [2005: 369].

17.10 MATRIX LINEAR DIFFERENTIAL EQUATIONS

17.67. If x = x(t) is an n X 1 vector with elements that are functions of ¢t and A
is an n X n constant matrix, then

ox(t

20 —ax,  x0)=x0

has a formal solution x = eAtxy. If A is not a diagonal matrix, then the system

of equations is said to be coupled. This coupling, which links 9x;(t)/8t to the
other components of x(t), makes the solution harder to actually find. If A can be
transformed to a diagonal or near diagonal form, then the problem may be easier
to solve. For example, if A = SJpS~!, where Jo is the Jordan canonical form of
A, then the differential equation becomes

ay(t

O _ Sy, y©0)=yo,
where x(t) = Sy(t) and yg = S™1xp. However, if A is diagonalizable, then Jo =
diag(Aq, ..., An), where the A; are the eigenvalues of A. The transformed equations

are now uncoupled and have solutions

y:(t) = w(0)eNt, i=1,2,...,n
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For further details see Horn and Johnson [1985: 133-134].

ox(t) _

17.68. If x = x(t), then Ax(t) + b(t) and x(t5) = x¢ has solution

t
X(t) — eA(t—to)xO + eAt/ e_Asb(S)dS.
to

Further details are given by Seber and Wild [1989: section 8.3]. For solutions of

the more general case

ox(t)
ot

where A may be nonsingular, see Campbell and Meyer [1979: section 9.2].

A

+Bx(t) = b(t),

17.69. If X = X(¢) is an m x n matrix with elements that are functions of t, then

aX (%)
ot

has solution X = eAt X eBt.

— AX+XB, X(0)=X,

Proofs. Section 17.10.
17.68. Bellman [1970: 173] and Gantmacher [1959: 116-124, 153-154].
17.69. Graham [1981: 41] and Horn and Johnson [1991: 503-511].

17.11 SECOND-ORDER DERIVATIVES

Second-order derivatives are often required for determining the stationary values of
a function. Below we give some techniques for finding Hessians.

Definition 17.8. Let f(X) be a scalar function of the m x n matrix X that is
twice differentiable inside the domain of f. Then the Hessian of f is defined to be

0*f(X)
Ovec X d(vec X)'

_ 9 9f(X)
T OvecX \O(vecX) )’
If X is a vector, say x, then

_ o f _ o f
Vi) = oxox’ (3;8,-81:]-) '

V2 £(X)

If Y is a matrix function of X, we also define the second differential d*Y = d(dY);
and in deriving this in applications, we note that d*X = 0. For some analytical
details see Abadir and Magnus [2005: chapter 13], Harville [1997: section 15.1],
Magnus and Neudecker [1999: chapter 6], and Nel [1980]. A number of examples
are given by Nel [1980: section 7.2].
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17.70. The Hessian as defined above is symmetric.
17.71. (Identification Rules)
(a) d*f(X) = (vecdX)'B(vecdX) if and only if V?f(X) = 1(B+ B'), where B
may depend on X but not on dX.

For example, if f(X) = trace(AXBX'C), where A, B, and C are square ma-
trices (not necessarily of the same size) of constants, then taking differentials
twice and setting d*X = 0 and d(dX)’ = O we have, interchanging “d” and
“trace”, and noting that trace F = trace F,

df(X) = trace[A(dX)BX'C + AXB(dX)'C],
and

d?f(X) 2trace[A (dX)B(dX)'C]

2 trace[(dX)'CA(dX)B
2(vecdX)' (B’ ® CA)(vecdX),

H

since trace(D'E) = (vecD)’vecE) and vec (DEF) = (F/ ® D)vecE. Here
“®” is the Kronecker product. We thus have from (a) the following rule:

(b) d*f(X) = trace[A (dX)B(dX)'C] if and only if
Vf(X)=1(B'® CA+B®A'C)).
Similarly, by using trace(FG) = trace(GF), we see that
d?f(X) = trace[B(dX’)C(dX)] if and only if

VifX)=1iB'®C+B®C).

For example, if f(X) = trace(X’AX), then d*f(X) = 2trace[(dX’)AdX)
e VIf(X)=1® (A +A).
(c) d*f(X) = trace[B(dX)C(dX)] if and only if
V2f(X) = 11 (B’ ® C+ C' @ B),

where X is m x n and I, ») is the commutation (vec-permutation) matrix.
We have the following examples for n x n X.

(i) If f(X) = trace(X 1), then d®f(X) = 2trace[X 2(dX)X'dX] and
V2F(X) =1 (X?@X 1+ X7 @X7?).
(ii) If f(X) = det X, then

V2F(X) = —det X[I( o) (X7 @ X71) — (vee X' (vec X' 71)].
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(d) We also have the following special case for vectors.
d?f(x) = (dx)’A(dx) if and only if VZf(x) = (A +A').

For example, if f(x) = x'Bx, where B is a symmetric constant matrix, then
df = 2x'Bdx and d*f = 2(dx)'Bdx. Here A can be a function of x.

17.72. Suppose X has L-structure (e.g., is symmetric or triangular) so that vec X =
Ap(X) (cf. Section 18.3.5 for notation), then

0*f(X)
dp(X)0( (X))’

If X is symmetric and n X n, then ¢(X) = vechX and A = G, the duplication
matrix.

We demonstrate the above theory with the example f(X) = trace(X~!). From
(17.71c(i)) we obtain

= A'V2f(X)A

VX)) =X '@ X2+ X 20X,
If X is symmetric, then

0*f(X)
IP(X)O(D(X))’

since I(nn)A = I(n,n)Gn = Gn = A, by (1129d)

= AV f(X)A =20/ (X1 ® XA,

17.73. Let F(t), with r, sth elements f,.;(t), be a nonsingular matrix function of
t.

(a)
0*detF
otot;
O°F JF OF
~1 -1 1=
(det F) [trace (F 0, > + trace <F 5‘ti) trace <F at]->
OF OF
_ 19 o
trace (F o, F- 5% )]
(b)

2 2
Flog(det ) _ e (B2 )} _ trace (P Ep-19F)
8ti8tj 8t2~8t]~ i

LOF _LOF__OF__,
F .
ot 5 @t at P et et
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17.74. Let d(8) = det[X(6)'X(8)], where X is n x p of rank p for 8 € Q, and let
k(6) = 3 logd(6). Then from (17.12),

_ k()

kr 50, trace(X*tX,.),
where X, = §X/86,. Also
b — 0?k(0)
06,08,
= —trace(X"X, X" X,) + trace[XT(X1)' X/ (I, - XX)X,]
+trace(X T X,,),

where XV is the Moore-Penrose of X. The Hessian H(8) = (h,,) of d(8)is given

by
02d(0)
hrs = Sgrgg. = 24(60) (kv + 2kk.).
Proofs. Section 17.11.
17.70. Magnus and Neudecker [1999: 105-106].

17.71a. Abadir and Magnus [2005: 353] and Magnus and Neudecker [1999:
190].

17.71b. Magnus and Neudecker [1999: 192-193].

17.71c. Abadir and Magnus [2005: 380-381] and Magnus and Neudecker [1999:
192].

17.71d. Abadir and Magnus [2005: 353]

17.72. Magnus [1988: 155].

17.73. Harville [1997: section 15.9].

17.74. Bates and Watts [1985] and Seber and Wild [1989: 543].

17.12 VECTOR DIFFERENCE EQUATIONS

Definition 17.9. The vector difference equation
Aoyt + Aryi—1 +... + Aryer = g(t),

with A¢ nonsingular and all vectors n-dimensional functions of ¢, is called an rth-
order vector difference equation with constant coefficients. Since Ay is nonsingular,
we can set Ag = Iz without loss of generality. Difference equations arise in discrete
time stochastic processes and in iterative procedures that converge. The case when
Ay is singular can be handled using the Drazin inverse of Ay (Campbell and Meyer
[1979: 181-184]).
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17.75. The above difference equation can be reduced to a first-order equation as
follows. Let z, = (y,,¥i_1,---,¥Vi_rp1) and

—A; —A, ... —A,_; —-A,
B= 1, 0 e 0 0
0 0 1; 0
Then z; = Bz;—1 + €, ® g(t), where e, is an r-dimensional vector (1,0,...,0)" and

“®” is the Kronecker product. The solution of this was studied by Dhrymes [2000:
175-178]. He applies it to the general linear structural econometric model.

17.76. If x, = Ax,_; +d, where A and x( are known, then provided that A — 0
ast — oo and (I — A)~! exists, we have x; = Afxg+ (I- A%)(I- A)"'d and
x — (I-A)"dast— oo

Definition 17.10. (Linear Stationary Iterations) Let Ax = b, with A n x n and
expressible in the foorm A = M — N, where M™! exists. Let H = M™!N, the
iteration matriz, and let d = M~!b. Given an initial n x 1 vector X(0), then a
linear stationary iteration is

X = Hx_1y +d, £=1,2,3,....

17.77. Given the notation above, if p(H) < 1, where p is the spectral radius, then
A is nonsingular and

lim X(k) =X = A 'b

k—o00

for every initial vector xg). For details and methods see Meyer [2000a: 620-626].
Proofs. Section 17.12.

17.76. Searle [1982: 289].

17.77. Meyer [2000a: 621].



CHAPTER 18

JACOBIANS

Jacobians play a fundamental role in statistical distribution theory. Formulae for
Jacobians and their proofs are given in many places, especially in the appendices of
statistics books. In the case of complicated transformations, it is not always clear
what the sign of the Jacobian is as it will depend on how the variables are ordered.
Fortunately, the ordering only affects the sign of the Jacobian, which usually does
not matter as in applications we are mainly interested in the absolute value of the
Jacobian.

18.1 INTRODUCTION

Before listing a number of results, we look at the meaning of a Jacobian and give
a number of different techniques for finding Jacobians.

Definition 18.1. Suppose f : x — y = f(x}, where x and y belong to R", is a one-
to-one (bijective) differentiable function, i.e., it has an inverse function g = f~'.
Then Ox/8y’ = (Oz;/0y;) is called the Jacobian matriz of the transformation
x — y, and its determinant

Jx—;y = det (%)

is called the Jacobian of the transformation. (Some authors call the absolute value
|Jx — y| the Jacobian.) For further comments on this definition see Section 17.7.

A Matriz Handbook for Statisticians. By George A. F. Seber 383
Copyright (© 2008 John Wiley & Sons, Inc.
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In the above definition we want to differentiate x with respect to y, so it is
more natural to use x = g(y), as does Muirhead [1982: chapter 2|, for example.
However, as most of the references use y = f(x), I have decided to stay with the
latter in this chapter. As it can be a source of possible confusion, Daniel L. Solomon
gives the following mnemonic rule (Searle [1982: 339]) to help get the order of the
variables right: If “0” represents the old coordinates (x) and “n” represents the
new cordinates (y), then Jo — n is correct, but Jpn — o is not (spells no).

If we interchange two elements of y, we change the sign of J,_,.. Since, in prac-
tice, we are generally more interested in the absolute value of the Jacobian, |Jy_x|,
it does not matter in what order we list the elements of x and y. Several authors—
for example, Mathai [1997], whom I will refer to frequently in this chapter—get
around this problem by stating that the sign of a particular Jacobian should be
ignored. I shall tend to use absolute values throughout.

As already mentioned, if we want to differentiate x with respect to y, we can
endeavor to express the transformation in the form x = g(y). However, it may be
easier to find Jy — x firstas Jx — y = J}?l_, x- To see this, we have x = g(f(x))

and
[0z dg; Oy, \ Ox Oy
L= (axj) B (; Ay, Br]> - Oy’ ox'’

Ox Oy ox Oy | _
l—dt{a,-ax/} det{ay} dt{ax}—Jx—;ny—»x.

We note that Jy — x will be expressed in terms of x, which in applications usually
has to be replaced by its function of y. For example, two important statistical
applications of Jacobians are (i) change of variables in integration,that is,

/~/h(x1,x2,..., n)dzidzs - - dacn—/ /h NNJIx — yldyidyz - - - dyn,

and (ii) probability density functions for functions of random variables, namely

fy(Y) = fx(gy))lJx — y|-
If x and y are replaced by matrices with Y = F(X), we define

dvecX
Jx—v = Jvec x—vecy € (6(vecY)’>

Then

and, if X and Y are symmetric or lower-triangular, we define

OvechX
Ix—v = Jyech x—.vech y = det (8(vech Y)/)

For upper-triangular matrices we can use vech (X’).

In order to evaluate the above Jacobians, various properties of the Kronecker
product and of the vec and vech operators are required from Chapter 11. In this
chapter we shall concentrate on finding Jy_x or |Jy_x|, which can then be in-
verted. Unless otherwise stated, all matrices and scalars are real. We now give
some techniques for finding Jacobians; some of these techniques are demonstrated
by Olkin [2002].
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18.2 METHOD OF DIFFERENTIALS
Differentials were introduced in Section 17.8 along with some rules that provide a
powerful method for finding Jacobians.

18.1. A key result from (17.28) for vectors is as follows. If dy = Adx, where A
may be a function of x, then

Oy
I =A and Jy_.x =detA.
In the case of matrices, if dvec’Y = BdvecX, then
OvecY
——— =8B _x = B
Bvec X) and Jy_x =detB,

where B may be a function of X. Also dvec X = vec (dX).
18.2. We recall the following equivalent statements from (17.60), where X is m x n.
(1) dY = A(dX)B + C(dX")D.
(2) vec(dY) = (B’ ® A)vec (dX) + (D’ ® C)vec (dX'), or, equivalently,
dvecY = {(B'® A) + (D' ® C)I,, sy }d vec X.
3) aa(vv:Cc ;)
When the above hold, we see from (2) and (3) that

=B @A+ (D’ X C)I(n,m).

JY——+X = Jvec Y—-vecx — Jdvec vy—dvecx:

We demonstrate how these results can be used by working through two examples.

Example 1 Let Yxn = AmxmXmxnBnxn, where A and B are nonsingular.
Then dY = A(dX)B and vec(dY) = (B’ ® A)vec (dX). Using (17.11(ii)), we get

Jy—x = det(B' ® A) = (det B)™(det A)™.

Thus, Jx—v = (det B) " (det A)™".
Example 2 Let Y = X!, where X is a nonsingular nxn matrix. Since YX =1,
we have 0 = d(YX) = YdX + (dY)X, or dY = —X"}(dX)X"!. Thus, from
Example 1 with A = —X~! and B = X!, we have

Jy—x = (=1)" (det X) 2",

and Jx_y = (—1)"*(det Y)~ 2",

18.3 FURTHER TECHNIQUES

In addition to the method of differentials, there are a number of other useful related
techniques that we now describe.
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18.3.1 Chain Rule

One useful technique makes use of the chain rule (17.21). This rule leads to the
result that if we have the transformations x — y and y — 2z, then Jx — z =
Jx - yJy — 2, ie, Jacobians multiply. If the Jacobian of x — z is hard to derive,
it may be possible to find an intermediary variable y such that Jx — y and Jy —z
are easy to find. This method was used frequently by Deemer and Olkin [1951] and
Olkin [1953], and several examples of it appear later.

18.3.2 Exterior (Wedge) Product of Differentials

This elegant technique is described in detail by Muirhead [1982: chapter 2] and
used extensively by Mathai [1997] . We assume that y and x are n x 1 vectors,
and we introduce a skew-symmetric product “A” of differentials called the erterior
or wedge product, satisfying (i) dy; A dy; = —dy; A dy; and (ii) dy; Ady; = 0 (a
consequence of (1)). To evaluate det(dy/0x’), we begin with

and multipy these together using the above two properties of the exterior product
to get

dy1 Adys A -+ Ady,, = det <%> dzi Adza A--- Adxy,.
This result is readily demonstrated for n = 2. We have
Ay Oy Oy2 Y2
d — — A(==d —d
y1 A dyz (Ekcldxl + B2, dza (6$1 T + oy Z2)
Oy1 Oy Oy1 Oy
= — . =2=d d == . =22dz; Ad
1 On 71 A dzy + Oxr; Oz, 1 T2
dy1  Oye Oy1  Oy2
= . ==d —= . —=Zdzs Ad
25 Ba, zy Adzy + B2, Ozs dzs To

_ Oy1 Oy Oy Oy
= O+(8$1 61‘2 81‘2 8_.’131 d.’IJl /\dLL‘2+0

TR
5] 3]
= det 1 2 dz; Adxy
% Oy
8301 8:52

0
= det (%) dz; Adxs.

We shall define the wedge product for a vector x as
de = /\inzld.’lji.

This approach extends to matrices by setting y = vecY and defining d,Y =
Ai,jepdys;, where D denotes the ordered set of distinct elements of Y, ordered ac-
cording to y. I have deliberately made this notation different from that of Muirhead
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[1982] and Mathai [1997] to avoid confusion, because they use brackets like (dX)
with opposite meanings.

If Y is symmetric or lower-triangular, we can use y = vechY for the distinct
elements of Y and define d,, Y = dy = dyvech Y. In the case of a skew-symmetric
matrix, the diagonal elements are ignored, as they are zero. However, as already
noted, the order in which the distinct elements of these matrices are listed is not
important in applications.

18.3. It follows from the above that if vecY =y and vec X = x, then

24
dwY = det (@) dwx

Since, as already mentioned, the order of the variables can be arbitrary, we have

d,Y = (det C)dpX = |Jy_x|=|detC].

Example 3 Let (y1,y2,..-,¥n) = Y = AX = (Ax;,AX3,...,AX,). Then,
from (18.1), d,y; = (det A)d,,x;, so that d,,Y = AP dyy; = (det A)"d,, X, and
|Jy—x| = |det A|*. Alternatively, vecY = diag(A,A,...,A)vecX and, from
(18.1), | det C| = | det{diag(A, A, ..., A)}| = |det A|", as before.

Example 4 Let Y = BX, where the matrices are all nxn lower-triangular matrices
so that (y1,y2,...,¥n) = (Bx1,Bx2,...,Bx,). Forr = 1,2,...,n, let y,y =
(yrwr,yrﬂyr,...,ynw)’ be y, without its leading zeros; x(,y is similarly defined.
Note that y(n) = Yn.n = bunTnn = bnnX(m). Then

a, = det (g‘zz:) =byn

det (a(yn—l,n—lv yn—l,n))>

a(xn—l,n—ly Tn—1,n

bp_1n- brn_1,n
det ( 8 ! bn,lr: ) = bn,nbn—l,n—lv

Gn_1

and so on. Hence

n

d, Y = /\:.lzldw)’(r) = H aidwy(r) = ﬁ b:,rdwx

r=1 r=1

and |Jy_x| = |17, o750l

18.3.3 Induced Functional Equations

Olkin and Sampson [1972] described a method whereby one sets up an equation
satisfied by the Jacobian and then solves the equation.

Example 5 Suppose Y = AXA’', where A is nonsingular and Y is symmetric. To
find the Jacobian of this transformation, let Z = BYB’, where B is nonsingular
and Z is symmetric, so that Z = ABX(AB)'. Then

|Jz—x| = |Jz—v| - |Fy—x]-
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As the transformation is linear in X, |Jy_x| is a positive function of A above, say
h(A). Then, by the above equation,

h(AB) = h(A)h(B),

which, for this example, has solution h(A) = |det A|°, for some c. Setting A =
diag(a, 1,1,...,1) and finding Jy_,x for this simple case, leads to ¢ = n+ 1 (Olkin
and Sampson [1972: 263]).

Olkin and Sampson [1972] derive solutions of the equation hA(CD) = h(C)h(D)
for diagonal, triangular, orthogonal, and symmetric matrices. Their paper can be
referred to for details (see also Mathai [1997: 40-44] for a summary of the main
results).

18.3.4 Jacobians Involving Transposes

Consider the transformation Y = X’, where X is an m X n unconstrained matrix.
Then, by (11.18b(i)) and (11.18f(i)),

vecY = vecX' = I, myvec X,

Jy_x = det I(n,m) = (_1)%m(m—l)n(n—1)7 and IJY—‘X| =1

Example 6 Consider the transformation Y ,xn = ApnxnX), «nBrxn, where A
and B are nonsingular. Setting W = X’ and Y = AWB, we have, from Example

1 above and the chain rule (17.21),
Jy—x = Jy—w Jwox = (det B)™(det A)"(—1)am{m=n(n=1)

In practice, we are more interested in absolute values so that we do not need to
distinguish between X and X' in linear transformations like the above, as | Jw_x| =
'Jx/_,x| =1 and IJY—>X| = |JY—>W|~

Example 7 Suppose we know the Jacobian for the transformation Y = AX, and
we want to find the Jacobian for Y = X A. Taking transposes, we obtain Y’ = A’X/
or W =A'Z. Then

Jyox = JyovJvox Jxox

Jy_vy Jwoz Jxox

and, by Example 6, |Jy_x| = |Jw-z|. Hence the absolute value of the Jacobian
for Y = XA can be obtained from the one for Y = AX by simply replacing A
by A’. Example 7 is, of course, a special case of Example 6, but the method is
instructive.

18.3.5 Patterned Matrices and L-Structures

Sometimes the matrices involved are “patterned” or structured in some way such
as symmetric or triangular. We are therefore interested in this case where vec X
(where X is m x n) will be in a linear subspace D5 of R™”. For example, if X
is n x n and lower-triangular, then vec X will contain zeros in a certain pattern.
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Magnus [1988] proposed a method based on linear structures, a linear structure
being the set of all real matrices of a specified order, say m x n, that satisfy a set
of linear restrictions. He gives the following definition.

Definition 18.2. Let Dy be an s-dimensional subspace of R™" and let 81, 4o, ...,
d, be a set of basis vectors for Ds;. Then the mn x s matrix

Amnxs - (617627 M ] 63)
is called a basis matrix for D;, and the collection of real m x n matrices
L(Annxs) = {X: X e R™*" vecX € Dy}

is called a linear structure (L-structure), s is called the dimension of the L-structure,
and m x n is called the order of the L-structure. Here A is not unique, but ,once
defined, there exists a unique s x 1 vector ¢(X) such that vecX = A¢(X) or
¢(X) = AtvecX, where At is the Moore~Penrose inverse. Typically, ¢(X) is the
vector containing the “free” elements of X in an appropriate order so that A is
then unique.

For example, if X is a real symmetric n x n matrix, then among its n? elements
z;; there exist %n(n — 1) linear relationships of the form z,; = z;; (i < j). Here
s =n?~in(n—1) = 3n(n+ 1). In particular, for n = 2, D3 C R* and a basis

matrix for Dy is the 4 x 3 matrix

1 0 0
Ayxsz = 8 i 8
0 01
Thus if (a,b,c)’ € R3, then
a a
Ayxs lc) = z = vec ( Z IC) ) = vec X.
c

We note that
¢(X) = (aa ba C)l = vech X, and A4X3 = GZ’

the so-called duplication matrix. A general theory for finding such basis matrices
is given by Kollo and von Rosen [2005: section 1.3.6]. We now give a key result.

18.4. Suppose Y = F(X) is a one-to-one function representing a relationship be-
tween s variables z;; and s variables y;;, where Y € L(A;) for every X € L(Ay)
with the dimensions of L(A;) and L(Ag3) both equal to s. Then, from Magnus
[1988: 34],

4 OvecY

JY_.X = det [A2 m 1,

ovecy

Bvec Xy is calculated ignoring the a priori knowledge about the L-structures.

where
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Henderson and Searle [1979: 74-76] discussed the same idea, but from a slightly
different perspective. They define vecp,(Z) as the vector of the distinct elements
with pattern p,, where Z =X or Y (they use X; and X5). Then

vecp,(Z) = PyvecZ and vecZ = Qzvecp,(Z) = QP vec Z,

where P, and Q, correspond to H and G of Section 11.5.1. In particular, P,Q, =1,
Q. has full column rank, and P, = (Q,Q.) Q. is one possible choice for P,.

Finally,
OvecX

*O(vecY) Qy] '

Derivatives for patterned matrices are also discussed by Nel {1980: section 6].
Kollo and von Rosen [2005: 135-149] develop derivatives for structured matrices,
but use a derivative notation Y ® 9/0X.

We are now going to systematically list Jacobians. If the order of the variables
is not well defined, |J| will be quoted instead of J.

Jx_vy = det [P

18.4 VECTOR TRANSFORMATIONS

The following transformations between n x 1 vectors are one-to-one.

18.5. If y = Ax, where A is nonsingular, then from (17.28) we have
[Jy—x| = |det A|.
When A = al,, |Jyx| = |a|™

18.6. (Symmetric Functions) Let y; = z(x) , ¢ = 1,2,...,n, where z(;y) is the
so-called (elementary) symmetric function representing the sum of all the products
of x; taken i at a time. Thus y; = z; +- - + 2y, Yo = T1T2 + T1T3 + - + Tp- 1T,
and y, = r122 -+ - Tn. Then for each z; > 0,

|Jy x| = H H |zs — ;1.

i=1 j=i+1
18.7. If
y1 = Ti+T2t 0+ T,
Ynor = oyl 4ap i
Yn = T1T2' " Tn,

then, for each z; > 0,

n-1 n
| Jy—x| = (n—1), H H |z — ;]

i=1 j=i+1
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18.8. (Polar Coordinates)

{(a) Consider the transformation

xy = rsinfysinfy---sinf,_osinf,_q,
o = rsinfysinfy---sind, _5cos,_1,
r3 = rsinfysinfy---cosb,_o,

Tp_1 = rsinfcosbs,
T, = rcosb,

wherer > 0,0< 8; <w(i =12,...,n—2),and 0 < 8,,_7 < 27. Then, if
6 = (61,0s,...,0,), we have

I

X — 1, ol = ™ (sin 6;)" " 2(sinf3)" 3 - - - sin B, _s|

(b) If we reverse the order of the x; and replace 6; by 5 — 6; in (a), we get

ry, = rsinfy,
z; = rcosficosfy---cosb;_isind;, j=2,3,...,n—1,
I, = rcosficosby---cosb,_1,

where r >0, -3 <0, <5 (i=1,...,n—2),and —7 < 8,_; <. Then

.

X = 7, ol = " (cos ;)" 2(cos )" 3 - - - cos B, _s.

Proofs. Section 18.4.
18.6. Mathai [1997: 43]
18.7. Mathai [1997: 45].
18.8a. Mathai [1997: 45] and Muirhead [1982: 55].
18.8b. Mathai [1997: 45].

18.5 JACOBIANS FOR COMPLEX VECTORS AND MATRICES

We demonstrate the meaning of a Jacobian for complex variables using a simple
example taken from Mathai [1997: 175-176]. Let y = y; + ¢y2 and x = x1 + X2,
where the x; and y, are all real n x n vectors. Consider the transformation y = Ax
where A is real. Then y; = Ax; fori=1,2, and

yizy (A 0 X1\ _ Bx

y2 B 0 A X2 - '
We define the Jacobian of the transformation to be Jy, y,x; ,x,- From (18.5) this
is det B = (det A)? (= |det A|?, say).
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If A is complex and A = A; +17A5, then

Yy = yi1+iys = (A1 +iAp)(x1 +ixp)
(A1x; — Agxo) + i(A1xg + Agxy),

and we have y; = A1x; — Agxp and y2 = A;x2 + Agx;. Then dy,/0x] = A4,
O0y1/0x5 = — Ay, 8y2/0x] = A,, and 8y,/0x), = A;. Hence, from Section 5.1.2,

A, -A *
|JY1Y)’2-*X1,X2| = .det ( A; A12 )’ = (|det A|)2 = |det(AA )I

Thus the above equation is true for both the real and complex cases.

When vectors are replaced by matrices, the expression Jy, v,.x, x, denotes
the Jacobian of the transformation, where Y; and Y, are written as functions of
X; and X5, or where Y = Y; +14Y5 is a function of X = X3 4 iX,, the elements
of X being functionally independent. As we have seen from the above example, we
can typically go from the real to the complex case by squaring absolute values of
determinants or by replacing |det A| by |det AA*| = |det A|?. We shall also see
below that a term like |z;;| for a real diagonal element x;; remains the same for a
complex element except that | - | now refers to the modulus of a complex number.

18.6 MATRICES WITH FUNCTIONALLY INDEPENDENT ELEMENTS
18.9. If Y.uxn = aXimxn, then Jy_x = a™" and |Jy_x| = |a|™". For complex
matrices the latter Jacobian becomes |a|*™".

18.10. f Y, uxn = AmuxmXmxnBnxn, where A and B are nonsingular then, from
Example 1 above in Section 18.2,

|Jy_x|=|det B|™ - |det A|™.
The transformation is clearly one-to-one. In particular, if y = Ax, then

dy
|Jy—>X| = |37

| = |det A|.

Other cases follow by setting A or B equal to the identity matrix.
If the matrices are complex, we find that we simply replace A by AA* and B
by BB* in the above expressions.

18.11. Let Y = AXA’'+BXB/’, where all the matrices are n xn and AQA+B®RB
are nonsingular. Then vecY = (A ® A + B® B)vec X, so that the transformation
is one-to-one, and

\Iy x| = [T lese; + 8:851,

i=1j=1
where the a; and ; are the respective eigenvalues of A and B.

18.12. Let Y = X}, where X is n x n and nonsingular.

(a) From Example 2 in Section 18.2 above, |Jy_x| = (| det X|)~2".
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(b) When X is complex, we replace X by XX*.

18.13. Let Y = (detX)X !, where X is n x n, and det X > 0 to ensure the
transformation is one-to-one.

(a) (i) If X is real, |Jy_x| = (n — 1)(| det X|)*(»=2),
(i1) If X is complex, then

|JY1,Y2—*X1,X2| = (Tl - 1)2| det Xl2n(n_2)'
(b) (i) If X isreal and Z=Y~! = X/det X, then
|Jz—x| = (n — 1)| det X|™™".
This follows from JZ—»X = Jz_¢y.]y_,x and (18.12).

(i) When X is complex, |Jz, z,-x, X,| = (n — 1)?| det X|~2"

18.14. f Y = AX™!B and all matrices are n x n and nonsingular, then the
transformation is one-to-one and

|Jy x| = |(det B)"(det X) " (det A)™|.
This can be proved from (18.12) using Y = AZB, Z = X!, and the chain rule.
18.15. Let Y = X*, where X is n x n and nonsingular, and k is a positive integer.

(a) If X has nonzero, not necessarily distinct, real eigenvalues A1, Ag, ..., A,, then
. n k k—ryr—1
3 [Jy-x|= |H?=1 Hj:l Do A )‘j |-

We note that the transformation is generally not one-to-one.

(ii) If the eigenvalues are distinct, an alternative expression is given by

non Ak k)2
k" (det X)* T 11 <,\»—,\J-> |
i=1j=i+1 ¢ J

[k (det X)*~ 1HH< _ Ak)

i=1j#1i

H

which, by noting that det X = [], A;, is readily shown to be the same as
the expression in (i).

(b) Suppose k = 2, that is, Y = X2
(i) From (a),

|JY—»X| = H H |/\Z‘ + /\j|.

i=1j=1
(ii) When X is complex and the eigenvalues are distinct, then

[ Tysvo—x x| = [T 12 + 0%

i=1j=1
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Proofs. Section 18.6.

18.9. Deemer and Olkin [1951: 347] and Mathai [1997: 177-178, complex
case].

18.10. Abadir and Magnus [2005: 373], Henderson and Searle [1979: 72|, and
Muirhead [1982: 58 [1997: 177]. The complex case is given by Mathai [1997:
177).

18.11. Mathai [1997: 75-77).

18.12a. Abadir and Magnus [2005: 373} and Mathai [1997: 54].
18.12b. Mathai [1997: 190].

18.13a(i). Abadir and Magnus [2005: 373] and Mathai [1997: 72].
18.13a(ii). Mathai [1997: 205].

18.14. Henderson and Searle [1979: 73] and Mathai [1997: 60-61].
18.15a(i). Henderson and Searle [1979: 73].

18.15a(ii). Mathai [1997: 98].

18.15b(i). Henderson and Searle [1979: 73].

18.15b(ii). Mathai [1997: 209).

18.7 SYMMETRIC AND HERMITIAN MATRICES

Let X and Y be n X n real symmetric matrices, unless otherwise stated. We note
that if X = X; + iX, is Hermitian, then X, is real symmetric and X, is real
skew-symmetric.

18.16. The following transformations are one-to-one.

(a) If Y = aX, then |Jy_x| = |a™("t1)/2].

(b) If Y = AX A/, where A is nonsingular, then [|Jy_x|= (|det A)[**1.

(c) f Y = AX!A’, where A and X are nonsingular, then

|Jy _x| = | (det A)" 1 (det X)~ (D).

(d) If X = X; + ¢Xy is Hermitian, then Y =Y; +i{Y; = AXA* is Hermitian

and |JY1,Y2—>X1,X2| = ]detA|2".

18.17. Let A and B be real nonsingular matrices, and assume that AQ AT B®B
are nonsingular.

(a) The transformation Y = AXA’ + BXB' is one-to-one since, from (11.30),

vechY =  H(A® A + B ® B)GJvechX.
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The matrix in square brackets is nonsingular because, from (11.29¢) and
(11.29¢)}, H has full row rank and G full column rank.

(i) If A\; (: =1,2,...,n) are the eigenvalues of AB™!, then

n n

[Jx—v| = | (det B)"* TTTJ(1 £ X:p)l-

i=1j=4i

(i) Alternatively, if &; and 3; ( = 1,2,...,n) are the eigenvalues of A and
B, respectively, then

[Ix—v|=| [] [T(cue; % 8:8:))-
i=1 =i

When B = 0, it can be shown that the above result reduces to (18.16b).

(iii) If A and B are lower-triangular with respective diagonal elements a;;
and b;;, then

Iy x| = | [T [T(asas; % bidss)l.

i=17=1
This is the same as (ii) as the diagonal elements of a triangular matrix
are its eigenvalues.

(b) IfY = AXB' + BXA’, then
n n
[Jx—v| = (det B)"™ TT [T 2 + M),
=1 j=1¢

where ; (i = 1,2,...,n) are the eigenvalues of AB~!. We need BRA+A®B
to be nonsingular for the transformation to be one-to-one.

18.18. Suppose Y = X!, where X is nonsingular and symmetric.

(a) From (18.16c) with A =1, |Jy_x| = |det X|~(»+1),

(b) If X = X; + ¢X; is Hermitian, then Y = Y + 7Y is also Hermitian and

|J¥ 1, Yo%y, X, | = | det(XX*)| ™" = | det X[ 7™

18.19. Let Y = (det X)X ™!, where X is positive definite. (The latter condition is
sufficient for the transformation to be one-to-one.)

{a) We have:

(i) detY = (det X)"~! and
[Jy_x| = (n — 1)(det X)(n+1(n=2)/2

(ii) If X = X; 4 iX3 is Hermitian and positive definite, and Y = Y; +:Y5,
then
|JY1,Y2—‘X17X2I = (n - 1)| det XIn(n_Q)'
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(b) Suppose Z = Y~! = X/det X. Then

(i) |Jz—x| = (n = 1)]det X| (*+1)/2,

(il If X = X4 +¢X; is Hermitian and positive definite, and Z = Z; + iZo,
then
—_n?
|JZ1,Z2—'X1,X2| = (n - 1)' det X| .

18.20. Let Y = X* k=2,3,...,and let \; (i = 1,2,...,n) be the eigenvalues of
X.

(@) () [Fy—x|=k"|(detX)*"NTT TT Iwasls
i=1j=i+1
where

- )\’“)/(/\ Aj), A #E N,
g = kAR if A = A,

(i) If the eigenvalues are distinct, then k™(det X)*~! =[], kA¥~! and

[Jy-x| = |H H { }ﬁw g

1=1 j=i4+1

= |ﬁﬂ(x§-1+Af—2xj+...+A§-1)|
1=1j=1

— |HHZ/\I€ r/\r 1|
i=1j=tr=1

(b) When k = 2 we have:
(i)
n n
|Jy—x| =[] I%+ Ml

i=1j=i

The transformation Y = X2 is generally not one-to-one.
{(ii) When X = X, + ¢X5 is Hermitian, and Y =Y; +¢Yy, then

n n
I‘]Yl,Yz—’xl,Xz] :2n]detX|H H |)‘1+/\JI2
=1 j=it1

18.21. If Y = XAX, where A is symmetric, and A; (i = 1,2,...,n} are the
eigenvalues of XA, then, since det(XA) =[], A;, we have

| Fy—x| = 2% det(A) detX) [T TT + 201 = 1T T+ )]

i=1j=i+1 i=1j=i

If A and X are positive definite and the A; are such that A; > --- A, > 0, then the
transformation is one-to-one.
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Proofs. Section 18.7.
18.16a. Mathai [1997: 32].

18.16b. Abadir and Magnus [2005: 373], Magnus [1988: 128], and Mathai
[1997: 32].

18.16¢c. Mathai [1997: 60].
18.17a(i). Magnus [1988: 128].
18.17a(ii). Mathai [1997: 75-77].
18.17a(iii). Magnus [1988: 128].
18.17b. Magnus [1988: 128].
18.18b. Mathai [1997: 190].

18.19a(i). Deemer and Olkin [1951: 357, theorem 4.4; they also give the
Jacobian of Y™! in corollary 4.4], Magnus [1988: 128], and Mathai [1997:
74].

18.19a(it). Mathai [1997: 206].

18.19b(i). Mathai [1997: 75].

18.19b(ii). Mathai [1997: 206].

18.20a(i). Magnus [1988: 128].

18.20a(ii). Henderson and Searle [1979: 79] and Mathai [1997: 98].
18.20b(i). Mathai [1997: 66, 69].

18.20b(ii). Mathai [1997: 209].

18.21. Magnus [1988: 128] and Mathai [1997: 70].

18.8 SKEW-SYMMETRIC AND SKEW-HERMITIAN MATRICES

Let X and Y be n x n matrices with X real skew-symmetric, that is, X' = ~X.
Then, for the following transformations, Y is also skew-symmetric. Note that if
X = X + iX5 is skew-Hermitian, then X; is real skew-symmetric and X; is real
symmetric.

18.22. If Y = aX, then |Jy_x| = |a[*(*~1)/2,
18.23. Let Y = AXA’. Then the following hold.
(a) [Jx—x| = (|det A[)" .

(b) If X = X; +iXgy is skew-Hermitian and Y =Y; +iYy = AXA* then Y is
skew-Hermitian and

|Jy_x| = | det(AA*)|" = |det A|*",
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which is the same as for the Hermitian case (cf. 18.16d).

18.24. Let A and B be nonsingular, and let A; (i = 1,2,...,n) be the eigenvalues
of AB7L.

(a) If'Y = AXA’+BXB’, then |Jx_y| = | (det B)" ' [T [T}, (1 £ A:A)I.
If A and B are lower-triangular, then

[Jy—x|=1] T (auas; £ bibss)l.
i=1j=i+1

The above transformations are one-to-one if (A® A £+ B®B) are nonsingular.

(b) 'Y = AXB’ + BXA’, then
|Jx—y| =[(det B)" T [T i+l
i=1 j=i+1
The above transformation is nonsingular if (B ® A + A ® B) is nonsingular.
18.25. Let Y = AX"!A’, where A is nonsingular.

(a) |Jy—x|=|det A|*"!|det X|~(~ D),
(b) If Y = X!, we can set A =L in (a).

() |Jy—x|=|detX|~(1.

(i) If X = X — 14 iXy is skew-Hermitian and Y = Y; + 7Yy, then
Iy, YooX, X, = |det(XX*)|™™ = |det X|™2", the same as for the
Hermitian case of (18.18b).

18.26. If Y = (det X)X !, where det X # 0, then
|Jy x| = (n —1)| det X|(n~D(=2)/2,
18.27. Let Y =X* £k =35,...,and let \; (i = 1,2,...,n) be the eigenvalues of

X. Then we have .
Jy—xt=T] TI #i

i=1j=i+1
where

[ EE O N), AN
g = AR=L, i A = —Aj.

If Y = X2, then Y is symmetric and the transformation is not one-to-one.
18.28. If Y = XAX, where A is skew symmetric, then
n n
y—x|=IT] TT Qu+ 21,
i=1j=i+1

where \; (i =1,2,...,n) are the eigenvalues of XA.
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Proofs. Section 18.8.
18.22. Mathai [1997: 36).

18.23a. Deemer and Olkin [1951: 349], Magnus [1988: 135], Mathai [1997:
36], and Olkin and Sampson [1972: 263].

18.23b. Mathai [1997: 185).
18.24. Magnus [1988: 135].
18.25a. Mathai [1997: 60].
18.25b(ii). Mathai [1997: 190].
18.26. Magnus [1988: 136].
18.27. Magnus [1988: 136].
18.28. Magnus [1988: 135].

18.9 TRIANGULAR MATRICES

Any matrix with a “tilde”—for example, X—will denote a n x n nonsingular lower-
triangular matrix. Results for upper-triangular matrices can be obtained by taking
transposes. In what follows we assume that the elements in the lower triangle
of X are unconstrained (functionally independent). Also, the product of lower-
triangular matrices is lower-triangular, and the inverse of a lower-triangular matrix
is also lower-triangular.

18.9.1 Linear Transformations
18.29. Let Y = PXQ, where P and Q are lower-triangular and nonsingular.

(a) If the matrices are all real,
kid .
Wy_xl =] phap .
i=1

We get special cases by setting P =1,, or Q=1L,.

(b) If the matrices are all complex (i.e., Y =Y, +4Y,, etc.), then we have the
following results.

(i) Y = PX, then |Jg, v, %, %, = [Tiey Ipasl®
(or T, Ipii|* =1 if the p;i’s and z;;’s are real).
(ii) 'Y = XQ, then |Jg, 3, %, x,| = [Ty lgus? 7+

(or T, |gss|*™ =9+ if the gi;’s and z;’s are real).
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(c¢) Given real matrices, if X, and therefore Y, has fixed diagonal elements, then
Y-»X, l Hpu qu

(d) Given real matrices, if Y = aX, then
[y x| = la|" "+ D/2,

When the matrices and a are complex, we get |a[*("+1),

18.30. (Upper-Triangular) If Z=P'X Q’ , where P and Q are nonsingular, then
Z is upper-triangular.

(a) For real matrices,
n
[Jax!| =T dpi -
i=1

By interchanging P and Q, taking the transpose, and noting that |J; | =
|J5_,%/|, we see that the above result is equivalent to (18.29a), but for upper-
triangular matrices.

(b) The results for complex matrices are similar to those given in (18.29a) by
transposing, and interchanging (i) and (ii).

18.31. Let Y = PXQ + RXS, where the matrices are all real.

(@) g_x| =TT T ®ugs; +rasi)l-

i=1j=1
The transformation is one-to-one if Q' ® P + S’ ® R is nonsingular. Also, if
R =0,
H H Pqu] = P11 P22Q11p22Q22)(P33Q11P33Q22p33433 HID”Q" 1+17
i=1j=1

as in (18.29a).
(b) If X has fixed diagonal elements, then
n i—1

x| =T [ (®iiass + raisis)l-

i=1j=1

Proofs. Section 18.9.1.

18.29a. Magnus {1988: 131], Mathai [1997: 29|, and Olkin and Sampson
[1972: 264].

18.29b. Mathai [1997:179-180].
18.29¢. Magnus [1988: 137].
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18.20d. Mathai [1997: 179].
18.30a. Mathai [1997: 29].
18.30b. Mathai [1997: 180-181].
18.31a. Magnus [1988: 132].
18.31b. Magnus [1988: 137].

18.9.2 Nonlinear Transformations of X

All matrices are real, unless otherwise stated.

18.32. Let Y = XPX.

(a) [Jy_x|=2"|(det P)(det X) H H (pisxis + pj255)|-
i=1 j=it1

(b) If X has fixed diagonal elements, then

y_x! =TT I iz + piszinl-
i=1 j=i+1
18.33. Let Y = X 1.
(a) We have

n — 1
Vx| = IdetXI‘“)I—IH st
i=1

(b) If X has fixed diagonal elements, then

k13
g x| = | det X[~ = | T 2™
=1

18.34. Let Y = (det X)X~!, where Y and X are both lower- or both upper-
triangular matrices.

(a) Then detY = (det X)*~!
(i)
[Jg _x| = (n = 1)| det X+ D=2/,
Note that (det X)+t1)(*=2) > 0 as (n+1)(n — 2) is divisible by 2, so we
take the positive square root. For the transformation to be one-to-one,
we assume det X > 0 (for example, z;; > 0 for all 7) so that detY > 0,

and define det X = (det Y)/(»~1_ the (n — 1)th positive root of det Y.
We can then write

n
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Similar comments apply to (b) and (c) below.
(ii) When X =X, +iX; is complex and Y = Y7 + Y5, then

|J?1’Y24.(1,X2| = (n—1)|det Xl(n+1)(n—2)'

(b) If X has fixed diagonal elements, then

Vx| = (n = 1)| (det X)(»~D(n=2)/2)

() HZ=Y ! =X/detX, then
(i) 1Jz_x| = (n = 1)] (det X)~n(+1)/2),
(ii) When X = X; +iX, is complex and Z = Z; + iZ,

V3, 2,5, %, | = (0 — 1)] det X7 HD.,

18.35. Let Y =X*k k=23,....
(a) [Jy_x|=k"|(det X)khl I, H?:iﬂ Hijl, where
i = { (@h —2§)/(zu — x55),  if 2y # 25,

k-1 : _
kxii 5 if Ty = Ty .

(b) If X has fixed diagonal elements, then
gkl =TT TI il
i=1j=i+1
Proofs. Section 18.9.2.
18.32a. Magnus [1988: 132).
18.32b. Magnus [1988: 137].
18.33a. Magnus [1988: 132] and Olkin and Sampson [1972: 265].
18.33b. Magnus [1988: 137].
18.34a(i). Magnus [1988: 132] and Mathai [1997: 65].
18.34a(ii). Mathai [1997: 201].
18.34b. Magnus [1988: 137].
18.34c(i). Mathai [1997: 65).
18.34c(ii). Mathai [1997: 199).
18.35a. Magnus [1988: 132].
18.35b. Magnus [1988: 137].
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18.9.3 Decompositions with One Skew-Symmetric Matrix

If S is an n x n skew-symmetric matrix, then I,, + S is nonsingular (cf. 5.19). Also,
T = 2(S +1,,)"! — I, is orthogonal and represents a one-to-one transformation as
S = 2(T+1I,) ! —1,. (This is a special case of the Caley transformation mentioned
in Section 18.12.) Any nonsingular matrix Y can expressed in the form Y = XT,
where X is a nonsingular lower-triangular matrix. This representation is unique
under two situations (Mathai [1997: 100]):(1} z;; > 0 for ¢ = 1,2,...,n — 1, and
(2) the elements of X are unrestricted, but the elements of S are restricted in some
way. For example, the elements of the first row of (S+1,,)7!, except the first, being
of a specific sign such as all negative (Mathai [1997: 99]) or all positive (Deemer
and Olkin {1951: 361]).

18.36. Assuming that the appropriate conditions above hold so that the represen-
tation Y = X[2(S+L,)"! - L,] = X(I,, - S)(I, + S) ™! is unique (i.e., one-to-one),

then
[y -x sl = 27070 {H“’ZJ} det(S + L)~

i=1
(Note that YY' = XX'.)
18.37. Y = TXT = [2(S+1L,) ' — L,]X[2(S + L,)"! — L,)', then

lJY—»)M(,S[ — gn(n=1)/2 | det(T,, + S)*(n_l) H H (zii — 1']_1_)'.

i=1j=i+1

If Y = TVT, where V is upper-triangular, then transposing we have Z = TXT,
where Z =Y’ and X = V’. This implies that the absolute value of the Jacobian is
the same as above.

18.38. Let Y = TD, T = [2(S+I,)"! — L,]Dx[2(S + I,) ! —L,]’ be a symmetric
matrix, where x = (z1,2,...,2,) with 1 > 22 > ... > z,, and Dy = diag(x).
If the elements of the first row of (S + I,,)~! except the first are of a specific sign,
then

IJX—>S,x| — 9on(n—1)/2 |det( + S —(n—-1) H H o 1‘_7

i=1j=1i+1

The decomposition of Y is unique if we add the condition that Y should not
belong to a set of symmetric matrices that constitutes a set of measure zero in the
n{n+1)/2-dimensional space. Olkin and Sampson [1972: 273] also quote the result,
but their constant term is incorrectly inverted.

Proofs. Section 18.9.3.
18.36. Deemer and Olkin [1951: 358] and Mathai [1997: 101].
18.37. Mathai [1997: 109] and Olkin [1953: 46).
18.38. Deemer and Olkin [1951: 360-361] and Mathai [1997: 106]
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18.9.4 Symmetric Y

18.39. Let Y be symmetric, and let P = (ps;) and Xbenxn nonsingular lower-
triangular matrices. Conditions for the following transformations to be one-to-one
can be found using vec and vech as in (18.11) and (18.17). For example, in (a) below,
vecY = (L2 + I, ny)vec X, where Iy, ,) is the vec-permutation (commutation)
matrix. We also have vechY = H,vecY and vec X = G,vech X. The following
matrices are all real, unless otherwise stated.

(a) fY =X + X/, then |Jy_ x| = 2".
(b) Suppose X = X, 4+ X, is complex.

(i) The Jacobian is either 22" or 2" if the z;;’s are real.

(i) f Y = X + X*, then Y is now Hermitian and the transformation is no
longer one-to-one unless the z;; are real. In the latter case the Jacobian
is 2™.

(c) If Y = XP + P'X’ and P is nonsingular, then
[Jy_x|=2" [ lpsl" """
=1

(d) 'Y = PX + X'P’, then
|Jy x| =2"] H Ipul".

(e) Y = X’P + P'X, then
Y_.x| 2" H Ipu .

(f) If Y = PX’ + XP’, then

Iy x| =2" [ lpasl® ="+

i=1

18.40. Let Y be symmetric, and let 15, Q, R, and X be nonsingular lower-
triangular matrices. Conditions for the following transformations to be one-to-one
can be found using vec and vech.

(a) Y = QXP +P'X'Q, then

n—1

|Jy_x| = 2" |det P(det Q)" [ ] det C(y|,

=1

where C;) is the ith (i x 1) leading principal minor of C = PQ-L.
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(b) 'Y = R'QXP + P’X'Q'R, then

Y—»X' 2n| H QiiTis ZP“ l+1|~

(c) 'Y = RXPQ' + QP'X'R/, then
|y x| = 2" H(Piiqii)"”iﬂrzi :
i=1
Proofs. Section 18.9.4.
18.39a. Mathai [1997: 28].
18.39b(i). Mathai [1997: 179].
18.39b(ii). Mathai [1997: 181].
18.39c. Mathai [1997: 32].
18.39d. Mathai [1997: 32].
18.3%. Mathai [1997: 37] and Olkin [1953: 43].
18.39f. Deemer and Olkin [1951: 349] and Mathai [1997: 37].
18.40. Magnus [1988: 133].

18.9.5 Positive Definite Y

18.41. Let Y be positive definite, and let X be lower-triangular and nonsingular,
with positive diagonal elements (which implies the existence of a unique Cholesky
decomposition).

(a) If Y = X'X, then
|y _x|=2" H:r;
i=1
(b) If Y = XX’, then

n n—i+1
Jy_x|l=2 Hx .

Let Y = XX’ where y;; = 1, and x =1 1,2,...,n). Then
7=1

Proofs. Section 18.9.5.
18.41a. Magnus [1988: 134], Mathai [1997: 56], and Olkin [1953: 43].

18.41b. Deemer and Olkin [1951: 349], Magnus [{1988: 133], and Mathai
[1997: 56].

18.41c. Olkin [1953: 44, theorem 5].
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18.9.6 Hermitian Positive Definite Y

18.42. Suppose Y is an Hermitian positive definite matrix. Let X =X;+iXsbea
complex lower-triangular matrix, with X; a real lower-triangular matrix (i = 1, 2},
and let V be a complex upper-triangular matrix. Both X and V are assumed
to have real positive diagonal elements, which implies the existence of the unique
Cholesky decompositions given below.

2(n—1)+1

%

(a) I Y = XX*, then |Jy., y. %, %,/ =2"T] =

If, in addition, y; = 1 and 22:1 TiTik = 22:1 |zi[?=1fori=1,2,...,n,
then

n
2(n—i) _
|JY1,Y2—»)-(1,)'(2| = qun : y 1 = 1.
i=1
* 2(i—1)+1
(b) Y =VV™*, then |JY1,Y2A5(],)"(QI =27 [, vii(l +1

If, in addition, y;; = 1 and Y . _, Jvi|? = 1 for i = 1,2,...,n, then

n
_ 2(i-1) _
|JY1,Y2—»X1,5(2| = H:Eii v Tpn =1

=1
Proofs. Section 18.9.6.
18.42. Mathai [1997: 187, 194].

18.9.7 Skew-Symmetric Y

18.43. Let X be lower-triangular with fixed diagonal elements, let P, Q, and R
be lower-triangular, and let Y be skew-symmetric.

(a) 'Y = B'’XA — A’X'B, then

n—1
|Jy_x|=1det B*"* ] det C(l,

i=1

where C;) is the ith (i x ¢) leading principal minor of C = AB™.
(b) If Y = R'QXP — P’X'Q'R, then

n
[y _x| =T [(gura) " P57
=1

(c) f Y = RXPQ' — QP'X'R/, then

y_x| =1 [(@aa)"*ris M-

i=1
Proofs. Section 18.9.7.
18.43. Magnus [1988: 138].
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18.9.8 LU Decomposition

18.44. Let Y be any nxn nonsingular matrix. Then, from Section 16.4, Y can
be expressed uniquely as a lower-triangular L with unit diagonal elements and an
upper-triangular U, that is, Y = LU (or Y = UL, with different U and I~J) In
general, if L is lower-triangular with fixed diagonal elements (not necessarily equal
to unity), then we have the following.

(a) Y = f‘U’ then |JY_.L,U| |Hz U o uy ‘.
(b) Y = Ui‘v then IJY—>I:,U| IHz 1 lzz 21 Y.
Proofs. Section 18.9.8.

18.44. Magnus [1988: 139]. The case when L has unit diagonal elements is
proved by Mathai [1997: 92].

18.10 DECOMPOSITIONS INVOLVING DIAGONAL MATRICES

18.10.1 Square Matrices

In what follows, we define D, = diagw = diag(w, wa,...,w,), where the w; are
functionally independent, distinct, and nonzero. We can also use |Jy_y+| =1 for
any matrix Y. Unless stated otherwise, all matrices are real. When all the matrices
are complex, we assume that X = X; + Xy, w = w; +iwg,and Y = Y; +:Y,,
where the X;, w;, and Y; are all real.

18.45. Let X and Y be n x n matrices with X having unit diagonal elements.
(a) Let Y = D, X.
(i) 1Iy—wx| = [T, lwi|"~!. Since z;; = yi;/yi; for i # j, and w; = y;; for
all 4, the transformation is one-to-one.
(ii) For complex matrices, |Jy, v,—wi,ws X1 Xa| = [ L1y [wi|?® ™. The re-
sult is still true if the y;; and w,; are all real and positive.
(b) If Y = XDy, we get the same answers as for (a).
(c) Let Y = Dy XDy, with y; >0 and w; >0fori=1,2,...,n
(i) |Jy—wx| = 2"[I}-, wi !. The transformation is one-to-one as w; =

Vi for all i and z;; = ylj/(,/yii,/yjj) for ¢ # j.
(i1) For complex X and Dy,

n
IJYl‘Y2—’W1,W2,X1,x2| = 2% H |wi|2(2n_1)'
i=1

If y;; and w; are real and positive, the corresponding value is 2" Hl 1 w4" 3
when Y = Dy XDy, and 2" [\, w?" ™" when Y = D XD, with Her-

mitian X. The transformation is no longer one-to-one.
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Proofs. Section 18.10.1.
18.45a(i). Mathai [1997: 86].
18.45a(ii). Mathai [1997: 215].
18.45¢(i). Mathai [1997: 86].
18.45¢(iil). Mathai [1997: 215, 217)].

18.10.2 One Triangular Matrix

18.46. Suppose Y is a lower-triangular matrix and X is lower-triangular with
fixed diagonal elements (for example, unit elements). All matrices are real, unless
otherwise stated. Note that det X =[], z;.

(a) Let Y = Dy, X.
(i) We have
|J?—>w,)-(| = | det X| H |’wi]i_1.
i=1

(i) If the matrices are complex and X = X; + X, has unit diagonal ele-

ments, then
n

19, ¥smowrowa Ko Kol = L] 10
=1

|2(i—1).

(b) Let Y = XD,,.
(i) We have

Vg x| = |det X| H ||
=1

(ii) If the matrices are complex and X has unit diagonal elements, then

n

-
19, %3 —swwa K X = L] lwil 277
=1

The above transformations are one-to-one. The results for upper-triangular ma-
trices are obtained by taking the transposes of the above. For example, if Z =
UD,, = X’Dw, where Z and U are upper-triangular, then Z’ = DX and the
Jacobian is given by (a). If Z = D, U, then the Jacobian is given by (b).

(c) Let Y = XDy X/, then

(i) 1Ty x| = (det X)? [Ti; [(wizs) ™"

(ii) When X has unit diagonal elements, the Jacobian becomes [T}, |w;|" "
This case is also given below.
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18.47. Let X be lower-triangular with unit diagonal elements, and suppose y;; > 0
and w; >0 fori=1,2,...,n

(a) If X is real, we have the following Jacobians.
(i) If Y = XDy X/, then |Jy _,, % = [Tie, wi ™"
(i) If Y = X'DyX, then |Jy_, %, = [Tie; wi ™"

(iii) I Y = DY/*XX'DY?, then | Jy_,, 5 = [Ty w72

)

= [I- w(n D/ that is, the

. 172511 1/2
(iv) If Y = DY’X'XDy/?, then |Jy "

same as (lit).

—>w,)~(|

The above transformations are one-to-one as we can express Y (which is
positive definite) in either the form ZZ' or Z'Z, where Z is lower-triangular
with positive diagonal elements, that is, a unique Cholesky decomposition
{Section 16.5).

To get the results for upper-triangular matrices, we simply write U = X'
For example, if Y = UD,,U’, the Jacobian is given by (ii) as |Jx_ x| = 1.
Similarly, if Y = U'D,, U, the Jacobian is given by (i).

(b) Suppose X = X, + iXj is complex, but w; > 0 for all 5. Then:

K ~ ~ " n 2(n—1
() Y = XDW X", Uy 0 ] = [Ty w20

(i) Y = DY*XXDY?, |y %, 5,0 = [T 0l

{(c) Suppose U = U; + iU, is upper-triangular and complex with unit diagonal
elements, and the w; are real, positive, and distinct for all 4.

(1) Ify = UDWU*, ]JY'*"W,Ul,Ugl _ H?zl wlZ(z—l)

(i) I Y = DY?UU'DY?, |Jy wunu,| = [T, wi ™t
18.48. Let Y and X be real nonsingular lower-triangular matrices with distinct,
positive diagonal elements, and let Y be a positive definite matrix. Also, suppose
that 22:1 wfj =1(@G=12,...,n), and the w; ( = 1,2,...,n) are distinct and
positive.

(a) 'Y = DX, then

1 -1
IJY—»W,)U = H:L lwl Tij -

(For the transformation to be one-to-one we require the condition w; > 0

for all . To see this we set z;; = (1 — Z] 1 %)Y/, which leads to w; =

(E;Zl yfj)l/2 and x;; = y;;/w; for ¢ > j, so that the inverse function exists.)

(b) Y =XD,, then |Jg_, | = [T, w}z;"
() Y = DY/?X, then g wxl =27 [Tz (w 1/2)’ 2zt (This follows from
(a) by replacing w; by w, /2 and noting that dwl/2 = §w 1/2dw1 )

n

(d) If Y = XDY2, then |Jg_, x| = 27" [T\, (w)/?)n 1oL,



410 JACOBIANS

(e) I Y = DY*XX'DY/?, then [y _wxl=TI% w2t

=1 Wy i
(f) 'Y = DY’X'XDy? then, Jy_, g = [I1, w2zt
(g) 'Y = X'DyX, then |Jy_, x| = [Tr (wizii)' 1.
(h) Y = XD, X/, then |Jy_, x| = [T, (wizii)™ "
(i) If X is complex and Z;=1 |z:;]> = 1, we replace w; by w? in the Jacobians
for (a) and (b).
Proofs. Section 18.10.2.
18.46a(i). Magnus [1988: 141].
18.46a(ii). Mathai [1997: 211].
18.46b(i). Magnus [1988: 141].
18.46b(ii). Mathai [1997: 211].
18.46¢(i). Magnus [1988: 141].
18.46¢(ii). Olkin [1953: 45].
18.47a. Mathai [1997: 85].
18.47b. Mathai [1997: 214].
18.47c. Mathai [1997: 215].
18.48. Mathai {1997: 88-90, 218 for (i)).

18.10.3 Symmetric and Skew-Symmetric Matrices

18.49. Let Y = D XDy, where X is symmetric with z;; =1 (¢ =1,2,...,n) and
D,, = diag(w), with the w; being distinct. Then

Py o, x| = 27 [ ] sl

i=1

If we also add w; > 0 for each i, then w; = \/%;; and x;; = ys;/(\/¥ii1/¥;;) 50 that
the transformation is one-to-one as the inverse function exists.

18.50. Let Y = Dy + DX — XDy, where X is skew symmetric and D, =
diag(p1,p2,-..,pn) is fixed. Then

ly—xxl =[] I lpi —pil-
i=1j=it1
Proofs. Section 18.10.3.
18.49. Mathai [1997: 86] and Olkin [1953: 44].
18.50. Magnus [1988: 140}.
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18.11 POSITIVE DEFINITE MATRICES
18.51. If Y = (det X)X !, where X (and therefore Y), is positive definite, then
| Fy—x| = (n— D] (det ) DO=D/2),

18.52. Let Y = XAX, where all three matrices are positive definite. Then

ly—x| =TT + M),

i=1j=i

where the \; are the eigenvalues of XA, and are positive. An important special
case is when A =1I,, and X is the positive definite square root of Y.

18.53. If Y = X*, where k = 2,3,..., and X is positive definite with distinct
eigenvalues \;, then Y is positive definite and |Jy x| is given by (18.20). Let
(Y)¥/* denote the kth positive definite root of Y, and g; (j = 1,2,...,n) the
eigenvalues of Y. Then the transformation Y = X* is one-to-one, and |Jy_x| can

be expressed in terms of Y by noting that det X = (det Y)/* and \; = p;/k.
Proofs. Section 18.11.

18.51. Deemer and Olkin {1951: 357] and Mathai [1997: 74].

18.52. Olkin and Sampson [1972: 269].

18.53. Mathai [1997: 98, example 2.5].

18.12 CALEY TRANSFORMATION

18.54. In this section we consider a particular transformation, called the Caley
transformation, for nonsymmetric, symmetric, and triangular matrices, and their
complex versions.

(a) Let Y = (A + X)"1(A — X) [= 2(A + X)"*A — 1,,], where the matrices are
n X n and inverses exist so that the transformation is one-to-one.

(i) For real matrices we have
| Jy—x| =27 (|det A)|™(| det(A + X)|~2".

The same result holds for Y = (A — X)(A + X)7L.
(i) If the matrices are complex, we replace A by AA*, A + X by (A +
X)(A* + X*), and on’ by 227’ to get |Jyv, v,mX,, X, |-

(b) Let Y = (I, + X)7'(I, — X) = 2(I, + X)~! — I, where X and Y are
symmetric.

(i) [Jx—v| = 2+D/2| det(L, + X)| =+,
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(i) If X = X; + ¢X5 is Hermitian and Y = Y; +4Y3, then
vy Yo Xs x| = 27 | det {(Tn + X) (I + X)) |

(¢) Let Y = (~A +X)" (A - X), where X, A, and Y are all lower-triangular, A
and A + X are nonsingular, and all matrices are real. Then

vl = 9MnFD/2| det(A + X)|—("+1) H lass P,
=1

where det(A+X) = [T, (ai;+®:;). When the matrices are upper-triangular,
we see, by taking transposes, that the Jacobian is given by (d).

(d) Let \? = (:& —X)(A +X)~!, where X, A, and Y are all lower-triangular, A
and A + X are nonsingular, and all matrices are real. Then

n
gyl =27 H072 det(A + Y)| =) [T aal*.
i=1

When the matrices are all upper-triangular, the equation then becomes Y =
(A’=X')(A’+X)"! so that, taking transposes, we get Y = (A+X) " (A—X),
and the Jacobian is given by (c) above. We now look at the complex versions
of (¢) and (d).

18.55. Let X, A,fmd }7 be complex lower-triangular matrices with Aand A+X
nonsingular, and Y = Y; +¢Y5 etc.

(a) Let Y = (A + X)"1(A - X).
(i) If all the elements are complex
1%, %2 —%, % |

200 dot { (A + R)(A + X)"} 170 - T a2+,

i=1

(ii) If all the diagonal elements of X and A are real and the others complex,
then

n n
2 _ .
U?l,?z_.)‘(l,i(2| =2" I I laii + i) e I l |‘lii|2(n Rans

i=1 i=1

When the matrices are upper-triangular, we find, by taking transposes, that
the Jacobians are given by (b) below.

(b) Let Y = (A — X)(A 4+ X)~!. Then:
(i) If all the elements are complex,
Vg1 %%, %

= 9n(nHD)| et {(A +X)(A + X)*} =D T aws .
=1
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(ii) If the diagonal elements of X and A are real and the other elements
complex, then

n "

2 .
g, 2o, %, =27 [[laii + @l 7" [ lausl*.

i=1 i=1

When the matrices are upper-triangular, we find, by taking transposes, that
the Jacobians are given by (a) above.

Proofs. Section 18.12.
18.54a(i). Mathai [1997: 61] and Olkin [1953: 45].
18.54a(ii). Mathai [1997: 193].
18.54b(i). Mathai [1997: 61] and Olkin [1953: 45].
18.54b(ii). Mathai [1997: 193].
18.54c. Mathai [1997: 62-63] and Olkin [1953: 45].
18.54d. Mathai [1997: 62-63].
18.55. Mathai [1997: 195-196].

18.13 DIAGONALIZABLE MATRICES

18.56. Let X be a nonsingular diagonalizable matrix with real distinct eigenvalues
Al > Aa > ... > A, > Ojthat is, there exists a nonsingular R such that X =
RD,\R™!, where D, = diag(\;, A2, ..., A\n). Let Y = F(X), where F is such that
F(X) =RDj)R™!, [ is differentiable, and D s(») = diag(f(A1), f(X2), ..., f(An))-
Then, assuming f( ) f( j)#0and f/(A)#0foralli#j (4,5 =1,2,...,n),

AJ) B )
i=1j=1i+1 =1
(b) For example, if Y = X*, k a positive integer, then with f(A) = A¥,

X* = (RD,R H)(RD,R)---(RD,R™)
= RD)\kR‘l(:RDf(/\)R_l).

Hence

et = T {3 } o

i=1j=1i+1

= ﬁ ]n"[(,\f—1 RED V) VNSRS A;?-l)
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The reader is also refered to (18.15a).

(¢) In some applications, Y is a random matrix whose eigenvalues are distinct
with probability 1. The Jacobian |Jx_.y| is then given by |Jy_x|~!, but it
is expressed in terms of the eigenvalues of X rather than Y, which is not so
convenient in applications.

(d) If X is symmetric, then

et = LI {PSE22 TR

1=1j=i+1 i=1

Proofs. Section 18.13.
18.56a. Mathai [1997: 96] and Olkin and Sampson [1972: 267, lemma 9].
18.56b. Henderson and Searle [1979: 73]).
18.56d. Mathai [1997: 96] and Olkin and Sampson [1972: 268, lemma 10].

18.14 PAIRS OF MATRICES

18.57. Let Y, and Y be positive definite n x n matrices. If det(Y; —AY3) = 0 has
n distinct roots A; > Ag > ... > A, > 0, there exists a unique matrix W = (w;;),
with wy; > 0 (1 = 1,2,...,n), such that Y, = WDyW’' Y, = WW' and
D) = diag(A1, ..., An) (cf. 16.51¢). Then

Iy, v,-w.p,) = 2" [(det W)™ T T] (= M)l
i=1j=i+1

18.58. Let X; and X5 be positive definite.

(a) Y, = X2_1/2X1X2_1/2 and Y, = X5, then Y; and Y, are positive definite
and
|JY1YY2—'X17X21 = 'det XQ'_(n+1)/2‘

(b) IfY;: = (Xl + XQ)_1/2X1(X.1 + )(2)_1/2 and Yy = X; + X5, then Y; and
Y, are positive definite and

|y, e Xa Xo| = | det(X; + Xg)|~H1)/2,

18.59. Let X; and X, be n x n positive definite matrices. If Y; = X; and
Y, = X; + Xo, then Y; and Y, are positive definite and there exists a nonsingular
V such that Y1 = VD V', Yy = VV’, and Dy = diag(é1,...,¢,), where 1 >
¢1 > ¢a > ... > ¢, > 0 are the roots of det(X; — ¢(X; + X3)) = 0. Then (cf.
18.57)

Iy, Y,v.p,| = 27 [(det V)™ 2 T ] (¢ - ¢))I-

i=1j=i+1
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Proofs. Section 18.14.
18.57. Deemer and Olkin [1951: 350].
18.58a. Mathai [1997: 148].
18.58b. Mathai [1997: 149] and Seber [1984: 532].
18.59. Mathai [1997: 151] and Olkin and Sampson [1972: 270, lemma 14].
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CHAPTER 19

MATRIX LIMITS, SEQUENCES, AND SERIES

Asymptotic theory and large sample approximations play a key role in statistical
distribution theory. In this chapter we apply some of theory of limits to vectors
and matrices.

19.1 LIMITS

Definition 19.1. Let A(t) = (ai;(t)). We say that lim,.,, A(t) = A if a;;(t)) —
a;; for all 4,7. Of particular interest is the case when t = ¢ and ¢y = 0, as in the
following result.

19.1. Suppose A = (a;;) is nonsingular,
(a) The elements of A~! are continuous functions of the a;;.
(b) If lim. .o A(¢) = A, then lim,_o[A(e)] ! = A~ L.

(c) lime_o(A —el)7t = A~L
)

(d) If A is m x n and B is n x m, both independent of ¢, then
-1
. I, €A _
eh—r»r(l)< eB I, ) = Imn.

A Matriz Handbook for Statisticians. By George A. F. Seber 417
Copyright © 2008 John Wiley & Sons, Inc.
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19.2. (Continuity Argument) A number of matrix results can be proved by taking
limits when continuity can be assumed, as was the case in (19.1) above. For exam-
ple, a particular result may be true for a nonsingular matrix A. If A is singular,
we can choose € > 0 such that A + eI is nonsingular (Abadir and Magnus [2005:
165]), set up the appropriate equation, and then let € — 0. We may find that the
result is then true for singular matices. For an example of this technique see Zhang
[1999: 56].

Proofs. Section 19.1.

19.1. Quoted by Zhang [1999: 58].

19.2 SEQUENCES

Sequences of vectors and matrices occur in many parts of statistics, especially in
the development of asymptotic results. In particular, we are often interested in
the limit of powers of matrices, as in stochastic processes where the focus is on
transition matrices. We first of all consider convergence of a sequence of vectors
with respect to a norm.

Definition 19.2. Let V be a vector space over F, and let || - || be a norm on V.
We say that the sequence of vectors {x(k)} in V converges with respect to the norm
to a vector x € V if and only if ||x*) — x|| — 0 as k — co. It should be noted that
X is just an element of a vector space so that it can be regarded as either a real or
complex vector or matrix, with an appropriate norm.

19.3. From (4.54) we see that if the sequence {x(¥)} converges to a vector x for
one vector norm, it converges to x for any vector norm. Choosing the L, norm we
see that, for all vector norms on R™ or C", limg_, x®) = x with respect to any
vector norm if and only if

(k)

lim z;”" =z;, forall ¢=1,2,...,n

k—o00
The extension from vectors to matrices is straightforward.

Definition 19.3. Let {Ar} (k= 1,2,...) be a sequence of m x n matrices, and let
agf) denote the (4, j)th element of Ay. The sequence {Ar} converges to A = {a;),
that is limy ..o Ax = A, if

Jim al = a;; for all 4, .
A sequence that does not converge is said to diverge. The same definitions obviously
apply to vectors as well. We shall assume that m = n, unless otherwise stated. If

A is a square matrix and limg_,., A¥ = 0, then we say that A is convergent.

19.4. Using the above notation, suppose limg_,o, Ax = A and limg_,, Bx = B.
Let o and 3 be any constants, and let P and Q be any n x n matrices. From the
limiting properties of scalars, the following results are straightforward.

(a) limg_,o(@Ak + 6Bk) = aA + §B.
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(b) limg_,o AxBr = AB.
(¢) limg—co PALQ =PAQ.

19.5. The sequence {A*} converges if and only if the following hold.
(1) Each eigenvalue X of A satisfies either |A\| < 1or A =1.

(2) When A = 1 occurs, the algebraic and geometric multiplicities of the eigen-
value 1 are the same.

19.6. If there is a matrix norm ||| - ||| such that {||]A]|| < 1, then A is convergent.

19.7. A is convergent if and only if all the eigenvalues A are less than 1 in modulus
(i.e., p(A) < 1, where p(A) is the spectral radius of A).

19.8. If the eigenvalue 1 occurs with algebraic and geometric multiplicity ¢ (i.e., is
semisimple), and all other eigenvalues are less than 1 in modulus, then

lim A* = X(Y'X)"'Y,

k—oo
where X and Y are the n x t matrices of ¢ linearly independent right, respectively,
left eigenvectors associated with the eigenvalue 1.

19.9. Let A ben xn, let {Ax} (k=1,2,...) be a sequence of real n x n matrices,
and let |[|-]||p,in be an matrix norm induced by the L, vector norm. If p = 1,2, or co
(cf. 4.74), then

(a) limg—oo Ag = 0 if and only if limg_,o ||| Ak|||p,in = 0.

(b) limg_,. Ax = A if and only if limg_ ||| Ak — Alllp,in = 0. If we use ||Ay —
A||r, then this result also applies to m x n matrices; cf. Harville [1997: 431].)

(c) If limy_ 0o Ak = A, then limg_,oo |||Ak]||lp,in = [[|Alllp,in- (The converse may
not be true.)

19.10. The following result is useful in the context of limits. Suppose C is a square
matrix and (I — C)~! exists. If

Az(é g) then Ak:((I—C)“ll(I—Ck)B é]k)-

19.11. H [|| - ||| is any matrix norm, then
p(A) = lim |||A%||'/%,
k—oo

where p is the spectral radius.
Proofs. Section 19.2.
19.3. Horn and Johnson [1985: 273].
19.5. Hunter [1983a: 151-152] and Meyer [2000a: 629-630].
19.6. Harville {1997: 431-432] and Horn and Johnson [1985: 298].
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19.7. Graybill [1983: 98-99], Horn and Johnson [1985: 298], and Meyer
[2000a: 617].

19.8. Hunter [1983a: 153].
19.9. Graybill [1983: 96-97].
19.10. We use (19.14).
19.11. Meyer [2000a: 619].

19.3 ASYMPTOTICALLY EQUIVALENT SEQUENCES

There are situations where an n X n matrix A is difficult to work with, but a related
matrix is easier to use that gives approximately the same result when n is large.
This idea is made rigorous below.

Definition 19.4. Let {A(,} and {B} be two sequences of real matrices, where
Ay and By are both k& x k, and let |[|Af||, denote a matrix norm. The two
sequences of matrices are defined to be asymptotically equivalent if and only if they
satisfy the following two conditions (Graybill [1983: 101]).

(1) N[Awlllz £ ¢ < o0, [[IBylllz < ¢ < oo for k = 1,2,..., where ¢ is a real
number that does not depend on k.

(2) limg—oo k7 2|||(A@wy — Byl = 0.

19.12. Let {A )} and {B)} be two asymptotically equivalent sequences of k x k
matrices.
(a) Then limg_ o k~Y2]||Ak|l|F = limg—oo £~ 1/2|||Bk|| |-
(b) Suppose A(_kl) and B(‘kl) exist for each k = 1,2,.... If |||A¢lll2 < ¢ < 00 and
[[IBilll2 < ¢ < oo for k = 1,2,..., where ¢ is a real number that does not
depend on k, then {A(_kl)} and {B(_kl)} are asymptotically equivalent.

19.13. Let {An)}, {Bwy}, {F(k)}, and {Gr)} be sequences of k x k matrices.

(a) If {A(k)} is asymptotically equivalent to {B}, and {F()} is asymptoti-
cally equivalent to {Gx)}, then {A)F} is asymptotically equivalent to
{BtyG}-

(b) If, in (a,) {B(x)} is asymptotically equivalent to {C(x)}, then { A4} is asymp-
totically equivalent to {Cy)}.

(¢) If {Ax)Bk)} is asymptotically equivalent to {D)}, and |||A(7C1)|||2 < ¢ < o0,
where ¢ is a constant that does not depend on &, then {Bx)} is asymptotically
equivalent to {A@l)D(k)}.

Proofs. Section 19.3.
19.12. Graybill [1983: 101-102].

19.13. Graybill [1983: 102).
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19.4 SERIES

Definition 19.5. Let S, = A;+ Ao+ -+ Ay, where the A; are n x n. The series
Sy, is said to converge to, or have sum, S if limy_,o, S = S; we write S = Z,;“;l Ay
A series that does not converge is said to diverge. (In what follows we recall that
p(A) is the spectral radius of A.)

19.14. If S, = I, + A+ A%+ ...+ A* then
Sk = (I — A) /(I - AMY) = (I, - AMH (I, — A)7,
provided (I, — A)~! exists.
19.15. The following conditions are equivalent.
(1) (Newmann Series) I, + A + A2 4 ... converges.
(2) p(A) <1.
(3) limg_oo A* = O,that is, A is convergent.
Moreover, when one {and hence all) of these conditions are satisfied, then
(a) I, — A is nonsingular.
(b) I, + A + A% +--- converges to (I, — A)~L.

19.16. Let A € V be the vector space of n x n matrices, and let ||| - ||| be any
matrix norm defined on V.

(a) If [||A]l| < 1, then (I,, — A)~! exists and is given by

oo

I, —A)"1=) Ak

k=0
We can obtain another result by setting A =1I,, — B.

(b) Suppose B € V and B is nonsingular. If F = B! A, then the infinite series
B 1+FB ! +F?B-! +... converges if and only if limy_,o, F* = 0, in which
case B — A is nonsingular and

0o
-1 _ FkB—l.

Replacing A by —A we get

o

(A+B)~ Z MB-L.

If A is small, we have the approximation (A + B)"! =~ B! - B !AB-!.

If A is the matrix that is nonsingular, we interchange A and B.

(¢} If {ar}, £ =0,1,... is a sequence of scalars, then zk arAF converges if the
series Y po o lak] - |||A|||k of real numbers converges; A0 =1I,.
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(d) >-pe,axA¥ converges absolutely if 3"po  ak|p® < oo, where p = p(A) is
the spectral radius of A.

Proofs. Section 19.4.
19.14. Consider (I, — A)Si and Sg(I, — A) and use Definition 19.3.
19.15. Graybill [1983: 100], Hunter [1983a: 154], and Meyer [2000a: 618].
19.16a. We combine (19.6) with (19.15).
19.16b. Harville [1997: 430].
19.16¢c. Rao and Rao [1998: 366].
19.16d. Abadir and Magnus [2005: 260].

19.5 MATRIX FUNCTIONS

Many functions f(t), whether polynomial or nonpolynomial like exp(t), sin t, and so
on, can be generalized to have a matrix argument. Horn and Johnson [1991: chapter
6] have a good discussion on the meaning of f(A) and associated properties. They
also define a primary matriz function f(A) associated with the scalar-valued stem
function f(t) using the Jordan canonical form of A, and their book should be
consulted for details. We shall only consider some nonpolynomial functions. The
following theorem is helpful in this respect.

19.17. Let f(¢) be a scalar-valued function with power series representation f(t) =
ag+ait+agt?+- - that has a radius of convergence R > 0. If A is nxn and p(A) <
R, where p(-) is the spectral radius, the matrix power series ag + a1 A + aA%+ ...
converges with respect to every norm on the set of n x n matrices, and its sum is
denoted by the primary matrix function f(A).

19.18. Let A be n x n with eigenvalues \;, and suppose f(A) = 3 e, cxAF and
FA) =502 ciAF.

(a) Since A = RJpoR ™!, where Jo is the Jordan canonical form of A, we have
f(A)=Rf(Jo)R™".

(b) det f(A) = detR - det f(Jo) - (det R)™! =det(Jo) = [, f(N)-
(c) trace f(A) = trace(R"Rf(Jo)) = trace(f(Jo)) = S0, F(N).
See also (19.21).

A number of functions with power series expansions fall into the above category,
the most common being the exponential function. In fact (I, + A)Y, exp(A),
log A, sin A, and cos A can all be defined as primary matrix functions. However,
using the Jordan canonical form, we find that all functions f satisfying certain
derivative conditions have the property that f(A) can be expressed as a polynomial
in A (Meyer [2000a: 603-607]). For further details see Abadir and Magnus [2005:
chapter 9] and Meyer [2000a: sections 7.3 and 7.9].
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Proofs. Section 19.5.
19.17. Horn and Johnson {1991: 412].

19.18b. The determinant is the product of its eigenvalues, which are the
diagonal elements of the upper-triangular matrix Jo.

19.18¢c. As in (b), except that the trace is the sum of the eigenvalues.

19.6 MATRIX EXPONENTIALS
Matrix exponentials typically arise as solutions of differential equations (cf. Section
17.10).
Definition 19.6. If A is an n X n matrix, we define
2, .

exp(At) =1, +tA + §TA +'”+'ﬁA 4+, —o0 <t < oo
This series converges absolutely for p(A) < oo (by 19.16d).
19.19. Setting t = 1, we have the following.

(a) The eigenvalues of exp(A) are exp(A;) (¢ = 1,2,...,n), where the ); are the
eigenvalues of A.

(b) If A is symmetric, then exp(A) is positive definite as each eigenvalue A; of A
is real and exp();) is positive.

(c) The matrix exp(A) is always nonsingular (as from (a) the eigenvalues are
nonzero) and

[exp(A))! = exp(~A).
(d) exp(kA) = [exp(A)]* for k a positive or negative integer.

(e) [exp(A)]" = exp(A7).
It then follows that exp(A) is Hermitian if A is Hermitian, and it is unitary
if A is skew-Hermitian.

(f) Every n x n unitary matrix U can expressed as exp({A), where A is some
Hermitian n x n matrix. Note that A is skew-Hermitian.

(g) If U is an n x n symmetric unitary matrix, there exists a real symmetric
matrix A such that U = exp(iA).

(h) As the determinant of a matrix is the product of its eigenvalues, it follows
from (a) that
detlexp(A)] = exp(trace A).

since [], exp(X;) = exp(D_; Ai)-

(i} If A is real skew-symmetric, then exp(A) is orthogonal and its determinant
is 1.
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(j) If A is skew-Hermitian, then C = exp(A) is unitary with |det C| = 1.
19.20. Let A and B be n x n matrices.
(a) If AB = BA, then
exp(A + B) = exp(A) exp(B) = exp(B) exp(A).

Although commutativity is a sufficient condition for the above to hold, it is
not necessary.

(b) We can have exp(A)exp(B) = exp(B)exp(A), but AB # BA. For an
example see Abadir and Magnus [2005: 256].

(c) detlexp(A + B)] = det[exp(A)] det[exp(B)].
This follows from (19.19g) above irrespective of whether (a) holds or not.

(d) (Lie Product Formula) lim,_. [exp(%)exp(%)]n = exp(A + B).

19.21. Let A be an n x n diagonalizable matrix with eigenvalues A;; that is, there
exists a nonsingular matrix R such that

A = RAR™!=Rdiag(\,)s,..., )R],
A¥ = RAFR™!
and exp(A) = Rdiag(e™,...,e’)RI =ReARL,  say.

{This method avoids using a power series expansion, and it can be generalized to any
function f(z) of a diagonalizable matrix by defining f(A) = diag(f(M\), f(X2), -,
f(\n)) and setting f(A) = Rf(A)R~!.) For nondiagonalizable matrices, we can
replace A by its Jordan form Jo and use (19.18).

19.22. For general t:

(a) The matrix exp(At) is nonsingular for all finite ¢. Noting that its eigenvalues
are exp(tA;), we have from (19.19g),

det (exp(At) = exp(ttrace A), —oo <t < o0.
(b) Using power series expansions, exp(At;) exp(Ats) = exp[A(t1 +t2)] for all ¢
and to.
(c) [exp(At)]~! = exp(—At).
(d) If “®” is the Kronecker product, we have from (11.9):

(i) exp(I, ® At) = I, ® exp(At).
(ii) exp(At®1,) = exp(At) ® L,,.

These results hold for any primary matrix function f(-) and not just for exp(-).
(e) exp(At)exp(Bt) = exp[(A +B)t] for all finite ¢t € R if and only if AB = BA.

19.23. (Inequalities)
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(a) Let A be any n X n matrix. For any matrix norm ||| - |||,

Il exp(A)|[] < exp([/[A]l])-

(b) If A and B are n x n Hermitian matrices, then

|| exp(A + B)lu: < [| exp(A) exp(B)lui,

for any unitarily invariant norm || - ||, -

19.24. Let f be a continuous function from the space of n x n complex matrices
to C with the following properties.

(1) fIXY)=f(YX) forall X and Y.
(2) |(f(X?¥)] < f([XX*]*) for all X and for all k = 1,2,....
Then:
(a) f(XY) > 0 for all Hermitian non-negative definite X and Y. In particular,

flexp(A)) 20

for all Hermitian A.
(b) |f(exp(A))| < f(ReA) for all A.
(c) |f(exp(A + B))| < f(Re(A + B)) < f(Re A)f(ReB) for all A,B.
(d) 0 < f(exp(A + B) < f(exp(A)exp(B)) for all Hermitian A, B.

Here Re means the “real part of.” Note that (a) and (d) hold when f is the trace or
the determinant. The above inequalities arise in statistical mechanics, population
biology, and quantum mechanics.

Proofs. Section 19.6.

19.19a. Follows from the fact that A*x = Mfx for all K = 1,2,..., and for
some X. See also Meyer [2000a: : 525]

19.19c. Horn and Johnson [1991: 435].

19.19d. Abadir and Magnus [2005: 262] and Horn and Johnson [1991: 435].
19.19e. Quoted by Horn and Johnson [1991: 439, exercise 9].

19.19f. Quoted by Horn and Johnson [1991: 440, exercise 10].

19.19i. Abadir and Magnus [2005: 263].

19.19j. Abadir and Magnus {2005: 264].

19.20a. Abadir and Magnus [2005: 252-53] and Horn and Johnson [1991:
435).

19.20b. Quoted by Horn and Johnson [1991: 442, exercise 22].
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19.20c. Bhatia [1997: 254] and Horn and Johnson [1997: 496].
19.21. Abadir and Magnus [2005: 260] and Meyer [2000a: 525, 601].
19.22¢. Use (e) to verify that exp(—At) is the inverse.

19.22d. Quoted by Horn and Johnson [1991: 440, exercise 13].
19.22e. Abadir and Magnus [2005: 252].

19.23a. Horn and Johnson [1991: 501, equation (6.5.25)].

19.23b. Horn and Johnson [1991: 499].

19.24. Horn and Johnson [1991: 497).



CHAPTER 20

RANDOM VECTORS

20.1 NOTATION

In this chapter we do not use the convention that random variables have capital
letters because of the problem of distinguishing between a random matrix and its
observed value in the next chapter. As a rough rule, we generally reserve the latter
part of the alphabet, u,v, ...,z for random vectors and the rest of the alphabet for
constants, including matrices of constants.

20.2 VARIANCES AND COVARIANCES

Definition 20.1. If x = (z;) is a vector of random variables, then we define
E(x) = (E(z;)), the vector of expected values.

20.1. For conformable vectors and matrices, E(Ax + b) = AE(x) + b.

20.2. Let S be a convex subset of R™ and x an n X 1 random vector with finite
E(x). If pr(x € S} =1 then E(x) € S.

Definition 20.2. If x and y are vectors of random variables, we define the matrix
with (4,7)th elements cov(z;,y;) to be cov(x,y), the covariance matriz of x and
y. When x = y, we define var(x) = cov(x,x) to be the variance matriz of x.
(The terms variance—covariance matriz, covariance matriz and dispersion matric
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are also used in the literature for var(x).) In the following, we recall that A = B
implies that A — B is non-negative definite.

20.3. Let var(x) = X. Since, by (20.6b), 0 < var(a’x) = a’Xa, we have that X is
non-negative definite. It is nonsingular (i.e., positive definite) if and only if there
do not exist constants a (# 0) and b such that a’x = b (i.e, var{a’x) = 0).

20.4. If E(x) = p and var(x) = X, then x — g € C() or equivalently x € C(u, X),
with probability 1.

20.5. Let E(x) = py and E(y) = p,,.
(a)
cov(x —a,y = b) = cov(x,y)

E[(x — px)(y — ty)]
= E(xy') — pxpty.

I

(b) The above result also holds if x =y so that:
(i) var(x — a) = var(x).
(i1) var(x) = E(xx') — thxptl.
20.6. The following results are extremely useful.
(a) cov(Ax,By) = Acov(x,y)B".
(b) From (a), var(Ax) = Avar(x)A’.
(c) var(y — Ax) = var(y) — Acov(x,y) — cov(y,x)A’ + Avar(x)A’.

20.7. If x and y are random vectors with respective means pyx and py, then
E((y — Ax—a)(y — Ax — a)'] = var(y — Ax) + (ny — Apx — a)(py — Apx — a)'.

20.8. If a, b, ¢, and d are constants, then
cov(ax + by, cu+dv)
= accov(x,u) + adcov(x, V) + bcecov(y,u) + bdcov(y, v).
In particular, var(u + v) = var(u) + cov(u, v) + [cov(u, v)]’ + var(v).

20.9. (Partitioned Vector) Let z = (x',y’)’ be a random vector with mean p, =
(15, pry)’, where x is m x 1 and y is p x 1. Then:

R e R (o B

where 3, = 37, .
(b) C(Zzy) CC(Tzz) and C(yz) C C(Xyy).

(c) If E(x) = 0, then cov(y — Ax,x) = 0 if and only if Ax = Bx with probability
1, where B = %, ¥, and X is any weak inverse of ¥, (i.e., o X7, 30 =
Yoz)-
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(d) Using (20.8) and (c),

var[(y — Bx) + (B — A)x)
var(y — Bx} + var[(B — A)x]
var(y — Bx).

var(y — Ax)

Y

for all A.

(e) By (20.6b) we have var(X,, %7, x) = var(Bx) = X,, 37 ¥_,. This matrix and
the generalized Schur complement ¥,,., = %, — %,,X_ ¥;, are invariant
with respect to the choice of weak inverse X7, (by (14.8) and (20.9b)).

(f) var(y — Bx) = Byy.z (= var(y — py — Zya X (x — p1x)), by (20.5b(i)).
(g) (Best Linear Predictor) From (20.7) and (d),
E[(y - Ax-a)(y — Ax—a)’] » var(y - Ax)
b E[(y - yx)(y - yx)l] = Eyy'z

for all conformable A and a, where ¥x = py + X5, X (x — px) is called the
best linear predictor as it minimizes the left-hand side of the above expression,
the so-called mean squared prediction error matriz.

Proofs. Section 20.2.
20.2. Schott [2005: 377].
20.3. Seber and Lee [2003: §].
20.4. Rao [1973a: 522] and Sengupta and Jammalamadaka [2003: 56).
20.6a. Seber and Lee [2003: 7).
20.6¢c. Expand cov(y — Ax,y — Ax).

20.7. We use (20.5b(1)) with x replaced by y — Ax, and then use (20.5b(ii))
with x replaced by y — Ax — a.

20.8. Seber and Lee [2003: 7].

20.9b. Sengupta and Jammalamadaka [2003: 56, with the roles of z and y
interchanged].

20.9c. Sengupta and Jammalamadaka [2003: 57].

20.9d. Use (20.9¢) to prove that the covariance term is zero.

20.9e. var(Bx) = B¢, B’ = 2o 57, 320 (85,) Bay = Bye (B 2203, (1)) By,
where (¥.,) = oy
metric. Then C =X ¥, % . isa weak inverse of ¥, as ¥;,C¥p = Xz,

zx(1)

20.9f. Using (c) and B = ¥, 2, we obtain

say, for some weak inverse E;I(l) of ¥, as Xy, issym-

cov(y — Bx,y — Bx) = cov(y — Bx,y) = var(y) — Beov(x,y) = Zyy.z.

20.9g. E[(y — Ax —a)(y — Ax — a)/] = var(y — Ax), by (20.7), and var(y —
Ax) > var(y — Bx), from (f).
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20.3 CORRELATIONS

20.3.1 Population Correlations

Definition 20.3. If x and y are random variables, then their population correla-
tion coefficient is defined to be p(z,y) = cov(z,y)/[var(z)var(y)]V/2(= 04y /(0.0,),
say).

20.10. p = p(z,y) has the following well-known properties.
(a) —1<p<+1.

(b) p? = 1if and only if z and y are linearly related.
If p=+1, then y — py = 4 (2 — pz).
if p=—1, then y — py = —2(z — py).

(c) plaz,by) = sign(ab) [ab] p(z, y).

Definition 20.4. Suppose x has variance matrix ¥ = (oy;). If corr(x) = (pi;),
where p;; = 0;/(0::0;;)!/%, then corr(x) is called the population correlation matriz
of x.

20.11. Let C = corr(x) = (pi;) be an n x n correlation matrix.

(a) C = Dgs 1 2ED; Y 2, where D, is a diagonal matrix with positive diagonal
elements o = diag{c11,092,...,0nn)-

(b) C is non-negative definite (as ¥ is).

(¢) pis =1 and |py;| < 1 (for all 4,4, j # 1).
{d) The largest eigenvalue of C is less than n.
(e) 0 <detC < 1.
)

(f) A well-known correlation matrix is of the form C = (1 — p)I,, + pJ,, where
J,, is an n x n matrix with all its elements equal to 1. For C to be positive
definite we must have —1/(n — 1) < p < 1. For further details about this
matrix see (15.18a).

Definition 20.5. Let x be a d-dimensional random vector with E(x) = g and
var(x) = X, where X is positive definite. Consider the partitions

T H1 011 UiQ
= ' = ) d Y= i
* (X2> o <H2) o < o1z Lo )

where xp = (xa,...,24), 2 = (u2,...,pq)" and Xoz is (d — 1) x (d — 1). Here
var(z1) = 011, 012 is the vector of covariances betweem z; and each of the variables
in xo, and var(xs) = Xao. The (population) multiple correlation coefficient between
z1 and Xz, denoted by pj.23...4, is the maximum correlation between x; and any
linear function a’xy of z,...,z4. Thus

cov(zy,a'xs) a'gia

R = p1.93...4 = Max = ma :
P1.23...d ’ [var(zl)var(a’xQ)]1/2 \ax (01, a’Spa)1/2
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Also, R? is sometimes called the (population) coefficient of multiple determination,
and R is the positive square root (Muirhead [1982: section 5.2] and Anderson [2003:
section 2.5]).

20.12. R has the following properties.
(a) R = (6E92012/011)/2.
(b 0<R <1
(c) If o!! is the first diagonal element of £71, then, from (14.11),

11 /oe—1 -1
o = (011 — 012355 012)

and 1 —R? = 1/(c' o).

(d) When x has a nonsingular multivariate normal distribution Ng(u, ¥) we have
from (20.23f) that

E(z1 | x2) = p1 + 01,55, (x2 — p2)

and
! -1
var(z1 | X2) = 011.23..d = 011 — 013325 O12.

Then:
(l) 1- R2 = 0'11.23...,1/(711.
(ii) o11.28...4 < 011
(iii) R is the correlation beween z; and E(z; | xg).
(e) When d = 2, R = |p1.2] = |p(z1,z2)].

Definition 20.6. The previous Definition 20.5 can be readily generalized. Let x
be a d-dimensional random vector with E(x) = g and positive definite variance
matrix . Consider the partitions

X1 251 X X
= ) = i d ¥= ’
* <x2> # <H2> o ( ¥o1 T2 >

where x; is k x 1, xg is (d — k) X 1, and so on, and let z; be a variable in x; (5 =

1,2,...,k). The (population) multiple correlation coefficient between z; and the
variables Zg41,...,2q in X2, denoted by R; k11 k+2,....d, is the maximum correlation
between z; and any linear function a'xe of zx41,...,24. Note that Ri2. 4 =TR.

Definition 20.7. Using the notation of the previous definition, let ¥;;.0 = 3¢y —
21222_21221(: (045 k+1....,d), say). Given x ~ Ng(p, ), then X159 = var(x; | x2)
(cf. 20.23f). We define the (population) partial correlation coefficient p;j.x41,....d t0
be the correlation coefficient between z; and z;, components of x1, in the condi-
tional distribution of x; given x5, that is,

Oij-k+1,...,d
Oii-k+1,...,d Oj5- k+1,...,d)1/2

Pij-k+1,....d = (

This is the correlation beween z; and z; holding x, fixed.
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20.13. Let o} be the ith row of Xis.
(8) Giikt1k42,..d = (Ci — 01555 ;).
(b) Rikit k42,4 = (01805 05/0:) /2.
(€) 1= RZ i1 ko, a= (0u — 0125, 0:) /0.
(d) RZ i1 a = (0u = Tsikrr,..d)/0u.

2 _ . . .
(e) 1 = P k1kt2,.d = (Ciikt1,..4/Cii -k+2,...4)- In particular, with ¢ = 1 and

1= plosa.. a= (002, .a/013,.d)

(f) 1- R%z,&..,d =(1- P§2-3,4,...,d)(1 - P%344,5,.‘.,d) (1= p%,d—Ld)(l - P%d)-
Pijk+2,....d = Pik+1-k+2,...,d Pjk+1-k+2,..

4=
\/1 sz+1k+2 \/1 p]k+1k+2 d

P12 — P13P23
[(1 — p3s)(1 — p33)]1/2
Proofs. Section 20.3.1.

(8) pijrk+1k+2,..

(h) p12.3 =

20.11d. The eigenvalues A; of C are non-negative and ) . A; = trace C = n.

20.11e. Follows from (I]; A;)'/™ < XA = 1 (as the geometric mean does not
exceed the arithmetic mean) and det C =[], A;.

20.12. Muirhead [1982: section 5.2).
20.13. Anderson [2003: 38-41]; see also Muirhead [1982: 194].

20.3.2 Sample Correlations

Definition 20.8. If x = (z;) and y = (y;) are nx 1 vectors representing univariate
random samples of size n, then their sample correlation coefficient is defined to be

Z? 1(931_ )( y)
oY) = S Y (i )R

20.14. r = r(x,y) has the following properties.

(a) 72 < 1. When 7% = 1, there is a linear relation between the y; and the z; as
n (20.10b), but with parameters replaced by their estimates.

(b) r(ax,by) = sign(ab) |ab| r(x,y).

Definition 20.9. Let x;,X2,...,X, be a random sample from a d-dimensional
distribution with mean p and positive definite variance matrix X, and let 8§ = (s;;)
be the sample covariance matrix given by S = Y| (x; — X)(x; — X)'/(n — 1). Let
T = sij/(siisjj)l/z, where rj; = 1 for i =1,2,...,d. Then R = (r;) is called the
sample correlation matriz. It does not matter if we use n instead of (n — 1), that
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is, use f], the maximum likelihood estimate of ¥ under normality, instead of S as
(n — 1) cancels out of R. Note that S is a random matrix so that it is considered
again in the next chapter.

20.15. We now introduce an important device that allows the properties of pop-
ulation parameters to be carried over directly to their sample estimates. Consider
the discrete random variable y with probability function

, t=1,2,...,n.

Then
E(y) _ szﬁ =% and var(y) = Z(Xz _ i)(xz - SE)/E = 2
pt i=1

We can therefore “translate” sample properties into population properties using an
appropriate discrete population.

Definition 20.10. Using the notation of the previous definition, consider the

partition
S — S11 S'12 )
s12 S22
The sample multiple correlation coefficient between z; and x2, 3, ..., x4 is defined
to be

R = (s1,85's12/s11)"/%.

Under normality, R is the maximum likelihood estimate of R, the population mul-
tiple correlation. For further details see Anderson [2003: section 4.4].

Sample versions of the other correlations and partial correlations can be defined
in a similar manner. One simply replaces ¥ by S or ¥ in the population defini-
tions. For example, replacing ¥ by S in Definition 20.7, we have the sample partial

correlation
Sij k+1,..,d

[Sis -k+1,....d Sjj-kt1,....d)

For further details see Anderson [2003: section 4.3].

Tij k+1,....,d = 12"

20.16. Using the method of (20.15), all the results and optimal properties for
population parameters hold for the sample equivalents. For example, from (20.13b),

Tiktlkta,. 4 = (8,858 /8:)" /%
Proofs. Section 20.3.2.
20.14a. Proved using the Cauchy—Schwarz inequality or using (20.15).
20.16. Muirhead [1982: 188].
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20.4 QUADRATICS

20.17. Let x be an d-dimensional random vector with E(x) = p and var(x) = X
a non-negative definite matrix of rank r < d. Let A be a real d x d symmetric
matrix, and let ¥ = BB’ {cf. 10.10), where B is d x r and B’AB # 0. Then:

(a) With a suitable transformation of the form x = BPz we find that

xXAx = a-{—QZb z,+z/\z

i=1
T

= Z)\(zl +(“_Z%)v N#0, i=1,2,....r

=1

= Z)\,zf for p=20,

where b’ = (b1, bo,...,b) = p’ABP, z = (21,29,...,2.), E(z) = 0, var(z) =
I, P'B’ABP = diag(A1, Az, ..., ), the A; are the elgenvalues ofB AB (ie.,
of ZA), P is r X r and orthogonal (i.e., PP’ =1,), and a = /A p.

(b) If ¥ is positive definite, we can choose B to be triangular (Cholesky decom-
position) or £1/2 (cf. 10.32). In the latter case, we find that

d
x'Ax = Z Nilug + ),
i=1

where the ); are the eigenvalues of Z/2AX!Y? (ie., of £A), E(u) = 0,
var(u) = Iy, ¢’ = (¢, ¢2,-..,¢q) = (P’27/2u) and PP’ = 1,.

20.18. Let x have mean p and non-negative definite variance matrix X, and let
Q =E[(x —a)A(x — a)] (= E[trace{(x — a)’A(x — a)}]).

(a) Using (20.7),
E(Q) = trace{ AB[(x — a)(x — a)’]} = trace(AZ) + (n — a) A(u —a)'.

(b) If £ = o1, we have the useful rule E(Q) = 0? trace A + Qx_Ewx)

20.19. Let x be a d X 1 random vector with mean g, variance matrix ¥, and finite
fourth moments, so that E(xx') and E(xx’ ® xx’) exist, where “®” refers to the
Kronecker product. If A and B are real symmetric d x d matrices, then

cov(x'Ax,x'Bx) = trace{(A ® B)E(xx' ® xx')}
—{trace(AX) + p' Au}{trace(BE) + p'Bu}.
20.20. Let x be a random vector with elements x,,zs,...,x, distributed as in-
dependent random variables with means 6y, 82, ...,f,, common variance uo, and

common third and fourth moments about their means, p3 and pq4, respectively (i.e.,
wr = E|(z; — 6;)7]). Let A be any symmetric n X n matrix, and let a = diag A be
the column vector of the diagonal elements of A.
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(a) We have
var(x'Ax) = (s — 3p2)a’a + 2k trace(A?) + 4u20'A%0 + 430" Aa.
(b) If the z; are each normally distributed as N(0,0?%), then pz = 0, pg = 343,

Mo = o?, and
var(x’ Ax) = 20* trace(A?).

If B is also a symmetric n X n matrix, then
cov(x’Ax, x'Bx) = 20° trace(AB).
These results are generalized in (20.25).

(c) Let vo = (uq — 3u2)/u3 be the common kurtosis, and let P; (i = 1,2) be sym-
metric idempotent matrices with p; = diag(P;), rankP; = f; (= trace P;),
and PPy, = 0. If P;@ = 0, then from (a) we have:

(i) var(y'Piy) = 20*(fi + 372PiPi)-
(ii) cov(y'P1y,y'Pa2y) = o*v.p}p2.

This result is useful in examining the robustness of the F-test for a linear
hypothesis and a linear model.

Proofs. Section 20.4.
20.17a. Mathai and Provost [1992: 36].
20.17b. Mathai and Provost {1992: 28-29].
20.18. Schott [2005: 414] and Seber and Lee [2003: 9].
20.19. Schott [2005: 414].

20.20a. Quoted by Atiqullah [1962] and derived in Seber and Lee [2003: 10-
11].

20.20b. Seber and Lee [2003: 16].

20.20c. Atiqullah [1962] and Seber and Lee [2003: 236-237]. Here (ii) is
obtained from 1{var[(y'(P1 + P2)y] — >_; var(y'P:y)}.

20.5 MULTIVARIATE NORMAL DISTRIBUTION

20.5.1 Definition and Properties

Definition 20.11. Let x be a dx1 random vector with mean p and variance matrix
3, which is positive definite. Then x is said to have a (nonsingular) multivariate
normal (or multinormal) distribution if its probability density function is given by

f(x) = flz1,22,...,24)
(2m)~%2(det B) 7/ exp{(x — )’ T3 (x — )}
(~oo <z <00, 1=1,2,...,d).
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We write x ~ Ng(u,X). When d = 1, we replace N; by N, the univariate normal
distribution. Note that x ~ Ng(0,1;) if and only if the z; are independently
distributed as N(0,1). If x ~ Ny(p, %), then y = £-Y2(x — pu) ~ N4(0,1,).
Sampling from a normal distribution is discussed in Section 21.3.

If ¥ is positive semi-definite (i.e., singular), then the probability distribution
still exists, but not the density function. However, we can extend our definition to
include the so-called singular multivariate normal distribution using one of the two
following equivalent definitions, which includes both the nonsingular and singular
cases.

1. The random vector x is multivariate normal if and only if y = a’X is univariate
normal for all a. If y = b we define y to be N(b,0).

2. A random dx1 vector x with mean g and variance matrix ¥ has a multivariate
normal distribution if it has the same distribution as Az + u, where A is any
d x m matrix satisfying ¥ = AA’, and z ~ N,,,(0,L,,).

The singular normal distribution occurs in many places in statistics, for example
the distribution of residuals from linear models (Seber and Lee [2003]) and the
distribution of the estimated cell proportions from sample survey data (Rao and
Scott {1984]). For a general reference on the multivariate normal see Tong [1990].

20.21. Adopting the notation of Definition 20.11, suppose that ¥ is singular of
rank r (i.e., positive semi-definite). Then, from (20.4), x — pu € C(X) and we can
express ¥ = RR/, where R is d X r of rank » (cf. 10.10). Hence if Py is the
orthogonal projector onto C(X) (cf. 2.49d), we have, for (I; — Pg)(x — u) = 0, the
density function

f(x) = (2m)"*[det(R'R)] "2 exp[— 3 (x — )2~ (x — p))],
and 0 otherwise. Here ¥~ is a weak inverse of X.

20.22. (A Useful Integral) If A and B are symmetric n x n matrices and B is
positive definite, then using the multivariate normal density function we have

+oo +o00
/ e / (x'Ax +a'x + ag) exp[— (x'Bx + b'x + bp)] dz; - - - dzn,

= in"?B|7Y?exp(1b'B~'b — by)
x[trace(AB™') —a’'B~'b + sb’'B"'AB~'b + 2ay].
20.23. Let x ~ Ny(p, X), where the distribution may be singular or nonsingular.

(a) The moment generating function of x is E[exp(t'x)] = exp(t'u+ 1t'St). This
uniquely determines the (nonsingular) distribution when ¥ is positive definite.

(b) If C is m x d, then Cx ~ N,,,(Cu, CZC’). The distribution is nonsingular if
Y is positive definite and C has rank m.

(c) Any subset of a multivariate normal distribution is multivariate normal.

(d) If the covariance of any two vectors that contain disjoint subsets of x is zero,
then the two vectors are statistically independent.
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(e) If cov(Ax,Bx) = 0, then Ax and Bx are statistically independent.

(f) Suppose ¥ is positive definite, and let

X1 I 3 X
X = N = 5 and E = 5
(o) v () (3 32)
where x; and p; are d; x 1, X is d; x d; (1 = 1,2), and dy +dy = d. We then
have the following conditional distribution

X2 | X1 ~ Ny, (2.1, B22.1),

where MH2.1 = H2 + 2212;11(X1 - [Ll) and 222_1 = 222 — 22121_11212. Note
that Yo 1 is the Schur complement of 17 in X, and it is frequently expressed
in the form (X/%;1) (cf. Section 14.1).

(g) The result (f) still holds if ¥ is singular and we replace £;;! by £7,, any weak
inverse of ;.

20.24. (Moments) If x ~ Ny(0,X), where ¥ is positive definite, and P4 = %(Idz +
Ii4.4)) (= Ng, the symmetrizer of (11.29h-i)), then:

(a) E(x®x) = vecX.
(b) E(xx’ ® xx') = 2P4(Z ® X) + (vec X)(vec XY
If just one of any of the x’s is replaced by a constant vector, then the answer
is 0.
(c) var(x @ x) = 2P4(Z ® X).
(d) Suppose x ~ Ny(p, X) and ¥ is positive definite.
(i) E(x®x)=E(z®z)+ pQ@pu =vecX + (L ® ), where z =x — .
(ii) var(x @ x) =2P4(E @ T+ 2@ pp' + pp' ® X).

(e) Higher moments are given by Graybill [1983: section 10.9] for the case x ~
Ny(0,1,).

Proofs. Section 20.5.1.
20.21. Sengupta and Jammalamadaka [2003: 58].
20.22. Graybill [1983: 342] and Harville [1997: 322].

20.23. Anderson [2003: chapter 2] and Seber and Lee [2003: chapter 2]. For
(f) see Schott [2005: 260-261] and Seber and Lee {2003: 25-26], and for (g)
see Sengupta and Jammalamadaka [2003: 59).

20.24a-c. Schott [2005: 416].
20.24d(i). Schott [2005: 416].
20.24d(ii). Abadir and Magnus [2005: 310].
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20.5.2 Quadratics in Normal Variables
20.25. Let x ~ Ny(p, X), where ¥ is positive definite.

(a) We have (x — u)’Z~1(x — p) ~ x2 and x’E71x ~ x3(§), the noncentral
chi-squared distribution with noncentrality parameter § = u/X ™.

(b) Using the notation of (20.23f), we have the following:
(1) Q1= (x1 — p1)'Bt(x1 — pa) ~ Xz211 (by 20.23c and (a) above).

(i) Let Q2 = (x — p)’S Y (x — p) ~ (%1 — p1)'E7(x1 — p1). Then, from
(20.23f), x5 | x; ~ Ny, {(pt2.1, Ba2.1) and, conditional on x;,

Q2= (%2 — H2-1)/22_21-1(x2 - p21) ~ X¢212~

Since this distribution is not a function of x1, it is also the unconditional
distribution; (iii) below holds for the same reason.

(iii) @1 and Q2 are statistically independent.
(c¢) Let A and B be d x d matrices.
(i)
E(x’Ax - x'Bx) = trace(AX)trace(BX)+ 2trace(AXBY)
+ trace(AX)p'Bu + trace(BE)u' Ap
+4p/ AZBp + (W Ap)(W'Bp).
(ii) cov(x’Ax,x'Bx) = 2trace(AXBY) + 4u’AXBpu.
(iii) Setting A = B in (ii), we have
var(x' Ax) = 2trace{{AX)?] + 4 AZAp.
(d) Let x ~ N4(0,1;), and let A, B, and C be all d x d symmetric matrices.
(i)
E(x'Ax - x'Bx - x'Cx)
= trace A trace B trace C + 2 trace A trace(BC)

+2 trace B trace(AC) + 2 trace C trace(AB)
+8trace{ABC).

(ii) If x ~ Ng(0,X), we replace A, B, and C in the right-hand side of (i) by
AY, BX, and CX, respectively.

(e) If x ~ N4(0,%), then:
(i)
cov[(x'Ax)?, (x'Bx)]
= 4trace(AY)trace(AXBEX) + Strace[(AX)’BY].
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E[(x’ Ax)?]
= [trace(AZ)]® + 6 trace(AR) trace[(AX)?] + 8 trace[(AX)).

(f) (Moment Generating Function) If Q = x’Ax + a’x + d, where A is real and
symmetric, then the moment generating function (m.g.f.) of @ is

Mq(t) = Elexp(Qt)]
= [det(I; — 2tAZ)] Y2 exp{— 3 ('Z " p — 2td)
+1(n+ tSa) (I, — 24AD) 'S~ (u + tZa)}
= [det(Iy — 2tBV/2AEY2)" V2 exp{t(d + ' Ap + a'p)
+L(22a 4 282 Ap) (I, - 282 A81/2)
x(EY%a + 282 A u)}

d
= exp{t{d+p'Ap+a'p)+ % Zcf(l —2t\) 7'}
i=1

d
x [T —2tx)" V2,

i=1

where
T'SV2ARY2T = diag(Ay, ..., M),

T is orthogonal, and
c=(c1,...,ca) =T (ZV%a+ 282 Ap).

Note that

d
H(1 —2tA\) Y2 = [det(Iy — 2tEV2ARY2)) 712 = [det(Iy — 2tAX)] V2

i=1
The m.g.f. can be used to obtain moments of the quadratic form—for example,
{c)(iii). Thus if @y = x’ Ax we have:
(i) E(Qo) = trace(AX) + p'Ap.
(i) E[(Qo)?] = 2trace[(AX)?] + 4u/(AX)Ap + {trace(AX) + p'Ap}?.
(iii)
Bl(Qu)] = S{tracel(AZ)?]+ 34/ (AT) Aps}
+ 6{trace[(AX)?] + 2u'ASu}{trace(AX) + p'Apu}
+{trace(AX) + p' Apu}d.
General expressions for E(Qf) and E(Q") are given by Mathai and Provost

[1992: 53-54], who also give formulae for E(Q;"), where h > 0 and can be a
fraction (Mathai and Provost [1992: 56-59]).
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20.26. Let x have the singular normal distribution Ny(g,¥), where ¥ is non-
negative definite of rank r (r < d).

(a) xX'E*x ~ x2(d), the noncentral chi-squared distribution with noncentrality
parameter § = u'Sp. Here BV is the Moore-Penrose inverse of X.

(b) (Moment Generating Function) Let ¥ = BB’ (cf. 10.10), where B is d x r
of rank » and B'AB # 0. If A is a d X d real symmetric matrix, then the
moment generating functiom (m.g.f.) of @ = x’Ax+a’x+d is

Mg(t) = [det(I, — 2tB'AB)] Y2 exp{t(u'Ap +a'p + d)
+L(B'a+2B'Ap) (I, — 2tB’AB) "} (B'a + 2B'Ap)}.
An alternative expression in terms of eigenvalues is given by Mathai and

Provost [1992: 46-47]. Positive, negative, and fractional moments of Qy =
x'Ax are given by Mathai and Provost [1992: 54-55, 61-65].

The characteristic function of @ is obtained from the m.g.f. by replacing ¢ by

it, where 1 = /—1.

20.27. Let Q; = x'A;x + ajx + d;, where A; is a real d X d symmetric matrix
(1 =1,2), and suppose x ~ Ng{p, ).

(a) If ¥ is positive definite, then the joint moment generating function (m.g.f.)
of @, and @ is
Mg, ,(t1,ta) = [det(L, — 2t; A% — 2t,A,%)] /2
X exp{—%(u'E_lp, — 2t1dy — 2tads)
+%(t12a1 +toBay + p) (Ig — 26, A1 8 — 26, A.8) 7!
xE7Ht, Bay + taBas + p)}.

(b) If ¥ is non-negative definite and £ = BB’ (cf. 10.10), where B is d X r of
rank 7 (r < d), then the joint m.g.f. of Q; and Q3 is

Mo, .0,(t1,t2) = [det(I, — 2t:B’A B — 2t2BfA2B)]—1/2
x exp{t (i Arps + s+ dy) + t2 (' Aops + apps + )
+16'(I, - 21,B'AB - 2t,B'AB)g},

where

8= (L —2t,B'A,B — 2t,B'A,B)"!
x(tlB’al + 2t2BIA1;L + tQB,aQ + 2t2BIA2[.L).

Note that (a) follows from (b) by setting B = B’ = £/2 (cf. 10.32). We can obtain
various special cases, for example: (i) if we set a; = 0 and d; =0 for ¢ = 1,2, and
@ = 0, we get the joint m.g.f. of x’ A x and x'Asx, or (ii) if we set Ay = 0 we get
the joint m.g.f. for a quadratic and a linear form.

In (a) and (b), the joint characteristic function is obtained by replacing ¢; and
t2 by 3¢, and ity, respectively where i = /—1.

The above results were proved by Mathai and Provost [1992: 66, section 3.2¢]
and extended to more than two quadratics. They can also be used to obtain various
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product moments, for example if ¥ is positive definite or non-negative definite we
have

(i) cov(x’Ax,a'x) =2py'A¥a.
(ii) cov(x’A;x, x'Asx) = 2trace(A; TALX) + p' A1 TA .

The m.g.f.s can also be used to obtain cumulants. The reader is referred to Mathai
and Provost [1992: sections 3.2d and 3.3] for further details.

20.28. (Distribution of a Quadratic) If x ~ Ny(u, X), where X is positive definite,
and A is a d x d symmetric matrix, then from (20.17b) we have the representation

d
Q=x"Ax = Z)‘j(ui +¢)?,

i=1
where the \; are the eigenvalues of £1/2A%/2 (ie., of BA), u = (uy,uz, ..., uq)’
is distributed as Ny(0,1;), ¢ = (¢;) = P’27Y/2pu, and P is orthogonal. Here
the u? are independently and identically distributed as x3, while the (u; + ¢;)?
are independently distributed as non-central chi-square x%(c?) with noncentrality
parameter c?.

(a) When g = 0, then ¢ = 0 and we find that @ is a linear combination of
statistically independent x? variables. If the distinct eigenvalues are p; with
algebraic multiplicity m; (j = 1,2,...,s), then Q ~ ijl NjX?n]»

(b) If & # 0, then @ is a linear combination of statistically independent non-
central chi-square variables, each with one degree of freedom.

The above results can be used to find various infinite series expansions, including
one in terms of chi-square densities, and some approximations for the distribution of
Q. If, in (a), m; is even (m; = 2v;, say), then a finite expression for the distribution
of Q is available. Details of all this material including expressions for the case when
¥ is singular and results on ratios of quadratics are given by Mathai and Provost
[1992: chapter 4]. They also give extensive reference lists.

Proofs. Section 20.5.2.
20.25a. Muirhead [1982: 26-27].

20.25b. Schott [2005: 261].
20.25¢. Graybill [1983: 367] and Schott [2005: 418-419].

20.25d. Graybill [1983: 368] and Schott [2005: 420, the expected value of the
product of four quadratics is also given|. Magnus [1978] gives an expression
for the expectation of the product of any number of quadratics.

20.25e. Graybill [1983: 368].

20.25f. Mathai and Provost [1992: 40, 42].

20.26a. Schott [2005: 405, he calls §/2 the noncentrality parameter].
20.26b. Mathai and Provost [1992: 45].

20.27a-b. Mathai and Provost [1992: 67-68].
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20.5.3 Quadratics and Chi-Squared
20.29. Suppose x ~ Ny(p, %) and A is a d x d real symmetric matrix.

(a) If ¥ is positive definite, then x’Ax ~ x2(4), where r = rank A (= rank(AX))
and 6 = p’Ap, if and only if AY is idempotent, namely AXAY = AY, (ie.,
AXA = A). We get two special cases by setting (i) o = 0 (i.e., § = 0 and
the distribution is central chi-square, x2) and (i) & = I,.

(b) If ¥ is non-negative definite, then x'Ax ~ x?2(§), the noncentral chi-square
distribution with noncentrality parameter § = p’ Ay, if and only if:

(1) SAZAY = BAY,
(2) W'ASAY = /AT,
(3) WAZAp = p'Ap,

(4) trace(AX) =s.

Note that when X is positive definite, the four conditions reduce to (i) AXA =
A and (ii) trace(AX) = 7.

The above results for x’ Ax extend to Q = x’Ax + a’x + d (Mathai and Provost
[1992: 201-214]).

20.30. If x ~ N4(0,1,;), then x’Ax is distributed as the difference of two indepen-
dently distributed chi-squared variables if and only if A®> = A (i.e., A is tripotent).
If x ~ Ng(p, 1), then the chi-squared distributions are noncentral. This follows
from (8.94b) and (20.29a) above.

Proofs. Section 20.5.3.
20.29a. Muirhead [1982: 31] and Schott [2005: 403].

20.29b. Christensen [2002: 10], Mathai and Provost [1992: 199], and Schott
[2005: 405-406.

20.5.4 Independence and Quadratics
20.31. Let x ~ Ny(p, X), and let A; and A be d X d symmetric matrices.

(a) (Craig-Sakamoto) If ¥ is non-negative definite, then x’A;x and x’A,x are
statistically independent if and only if

)]
(p,’) AlEAQ(E, /j.) = 0,

or, equivalently,

(1) TA;ZA,3 =0,
(2) TAZAu =0,
(3) TAZA; 1 =0,
(4) W'AZAp=0.
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When g = 0, these reduce to XA1¥A-¥ = 0, and if ¥ is positive definite,
the first equation reduces to A; XA =0 (or A2XA; =0).

(b) We can extend (a) as follows. If ¥ is non-negative definite and Q; = x’A;x+
ajx +d; (i = 1,2), then Q1 and Q- are statistically independent if and only
if:

(1) TA1ZAY =0,
(2) 2A12(2A2H + ag) = EAQE(QAI[J + al) =0.
(3) (a1 + 2A1[J)12(ag + 2A2[J) =0.

These are the same as (a) when a; = a; = 0. The presence of the constants
dy and d do not affect independence. Note also the following.

(i) If rank(XA;) = rank A; or rank(XA;¥) = rank(¥A;), then TA; XA X
0 implies that A;XA,¥ = 0.

(1) If rank(XA3) = rank Aj or rank(¥A;X) = rank(¥A;), then XA; T A ¥
0 implies that TA; XA, = 0.

(¢) If T is non-negative definite and C is a p x d matrix, then x’Ax and Cx are
statistically independent if

CZA(Z,p) = 0.

If X is positive definite, then the two conditions reduce to just one condition,
namely CXA =0, or CA =0 when ¥ =1,.

(d) If ¥ is non-negative definite, then setting A2 = 0 in (b), X’ A;x + alx + d;
and abx + dy are statistically independent if and only if
(i) A Xa; =0.
(it) (a1 +2A.u)'Zaz = 0.
Setting A, = 0 as well, we see that ajx + d; and ajx + do are statis-

tically independent if and only if aj¥a; = 0.

20.32. (Bilinear Forms) Suppose x; ~ Ny, (0,%;;), where ¥;; is positive definite
(i = 1,2), and x; and x; are statistically independent.
(a) The joint moment generating function of @4 = x]Ax; and Qp = x|Bx; is
Mg .05t ta) = {det[ly, — £35° (1A + toB) 11 (11 A + t,B) 7]}~ /2,

(b) Q4 and @p are statistically independent if and only if A’E;B = 0 and
BX;A’' = 0.

20.33. (Hadamard Product) Suppose x ~ Ny(u,X) and A and B are m x d
matrices. Now y = (Ax) o (Bx) = #,,,(Ax ® Bx)®] (cf. 11.38a) with ®; = 1, and
we have the following.

(a) E(y) = D1,, + (Apu) o (Bu), where D is the diagonal matrix with diagonal
elements equal to those of BXA'.
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(b)
var(AxoBx) = [A(Z+ pu')A| o [B(E + pp)B']
+[B(X + pp')A] o [A(Z + pp')B]
—[App'A'l o [Bup'B'] — [App/B'] o [Bup'A'].
Proofs. Section 20.5.4.

20.31a. Schott [2005: 408, 412-413], Driscoll and Krasnicka [1995], and
Mathai and Provost [1992: 209-211].

20.31b. Mathai and Provost [1992: 224-225].
20.31c. Quoted by Schott [2005: 413].
20.32. Mathai and Provost [1992: 230-231].

20.33a. Quoted by Schott [2005: 439, exercise 10.44]. Using the multiplication
rule for the Kronecker product,

E(y) = ¥.(A®B)E(x®x)
= ¥,(A®B)(vecZ+ p®p) by (20.24d(i))
= W,,vec(B'SA)+ ApoBy,
then use (11.38a(iii)).

20.33b. Using (20.6b), we obtain
var(y) = ¥,(A®@B)var(x®x)(A' ® B")¥,.

Now substitute for var(x ® x) using (20.24d(ii)) with 2Pg = Iz + I(4,4) and
I(4,4) the commutation matrix. We then have (A ® B)I(gq) = L(4,0)(B® A)
and, from (11.38a(iv)), ¥, I(q 4y = ¥y, Finally, multiply out and reintroduce

“ 9
o7,

20.5.5 Independence of Several Quadratics

20.34. Suppose x ~ Nyg(p,X), where ¥ is positive definite. Let A; be a d x d
symmetric matrix of rank r;, for ¢ = 1,2,...,k, and let A = A; +--- + Ay be of
rank r. Let x2(6) denote the noncentral chi-square distribution with v degrees of
freedom and noncentrality parameter §. Consider the following conditions:

(1) A;% is idempotent for each i (ie., A;XA; = A;),
(2) AX is idempotent. (i.e., AZA = A)
(3) A;ZA; =0, for all 4,5,7 # 7,
@) r=%5m
If any two of (1), (2), and (3) hold, or if (2) and (4) hold, then
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(a) x"Aix ~ x2 (' A;p) for all 3.
(b) x'Ax ~ X (' Ap).
(¢) x'A1x,...,x"Aix are statistically independent.

The extension of the above result to the case when ¥ is non-negative definite is
considered by Mathai and Provost [1992: 239]. When g = 0 and ¥ may be singu-
lar, further conditions for quadratics to be independently distributed as chi-square
variables are given by Rao and Mitra [1971: section 9.3].

Proofs. Section 20.5.5.
20.34. Schott [2005: 413].

20.6 COMPLEX RANDOM VECTORS

Complex random vectors arise in several places in statistics, the most notable being
multivariate time series (cf. Brillinger [1975: 89]) and random matrices (Mehta
[2004]).

Definition 20.12. (Complex Random Vectors) Let x = x; +ix2 and y = y, +iy,
be complex random vectors, where the x; and y; are all real random vectors. We
then define the following:

E(x) = E(x1)+:E(x2),
var(x) = E[(x-Ex)(x~Ex)*], and
cov(x,y) = E[(x-Ex)(y~Ey)*],

where x* = x| ~ ix}.

20.35. Using the notation in the above definition, we readily obtain:
(a) var(x) = Vi1 + Voo +i(=Via + Vy), where V;; = cov(x;, x;), 4,7 = 1,2.
(b) cov(x,y) = cov(x1,y1) + cov(xa, y2) + i[—cov(x1,y2) + cov(xa,¥1)].

Definition 20.13. (Complex Normal Distribution) Let x; and x; be d x 1 (real)
random vectors such that (x},x5) is Nog(p, ), where p = (pf, p) and

r -&
(s 1)

where T' is non-negative definite, and ® = —®’ (i.e., real skew-symmetric). Then
x = X1 +1iX3 is said to have a complex normal distribution with mean py = g1 +ipo
and variance matrix E[(x — ptx)(x — p1x)*] = E,, where . = ¥, +1%, is Hermitian
non-negative definite. Here £; = 2I' and X5 = 2% are real matrices. We say that
x ~ Nf(px, Bx). Thus x; + ix2 is complex normal if and only if

)~ ()5 (3 30))
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From (20.35) we can identify
¥, =var(x;) + var(xz) and Xo = —cov(xy,X2) + cov(xz, X1).
See Mathai {1997: 406-409] for further details.

20.36. Using the above notation, and assuming that ¥ is Hermitian positive
definite (i.e., ¥, is positive definite), we have:

(a) (det x)? = det(2%).
(b) Bl = (B + TaB18y) 7 — 218y (3y + BB E,) L
(c) The probability density function of x can be written as

1 *gr—1

Taers P00 = 1) " (x — ).

(d) If x ~ N§{psx, Zx) and A is ¢ x d, then Ax ~ N§{Apy, AZ A*). It follows
that the marginal distributions of a multivariate complex normal are complex
normal.

(e) If ¥; =0, then x; and x are statistically independent.

(f) The characteristic function of x is
Eexp[i Re(t*x)] = exp[i Re(t™px) — t*Bit],
where Re is the “real part.”

For further background see Krishnaiah [1976]. Brillinger [1975: 313-314] gives some
asymptotic results for comparing two vector times series.

Proofs. Section 20.6.
20.36. Quoted by Anderson [2003: 64-65].

20.7 REGRESSION MODELS

The study of random vectors would not complete without some discussion of re-
gression models. 1 shall consider mainly linear models, because matrices play a
prominent role in these models. Also, other models can sometimes be transformed
into linear ones, or else, with large samples, can be approximated by linear ones.
There are many good books on linear regression with several different approaches. 1
personally prefer a geometrical approach using orthogonal projections as developed
by Seber [1977, 1980, 1984] and, to a lesser extent, by Seber and Lee [2003]. This
approach is being used a lot more in texts because it avoids some of the algebraic
manipulations. For the various kinds of linear model see, for example, Christensen
[1997, 2001]. An extensive and detailed theoretical treatment of all aspects of linear
models is given by Sengupta and Jammalamadaka [2003]. For results on modifying
a linear model by, for example, adding or deleting an observation see Section 15.3.
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A typical regression model takes the form y = p + €, where p = (y;) is an
n X 1 vector of unknown parameters, y = (y;), and € = (¢;) are n x 1 random
vectors with E(€) = 0 and var(e) = 02V, where 02 is generally unknown and n x n
V may be known. This is usually known as a generalized (weighted) least squares
model (cf. Kariya and Kurata [2004], for example). If u; = f(x;;8), where f is a
nonlinear function, x; is a known observation, and 8 is unknown, we have a typical
nonlinear regression model. The theory of such models is discussed in detail by,
for example, Seber and Wild [1989]. In some models, V is known function of u,
and quasi-likelihood methods can be used (Seber and Wild [1989: section 2.3]).
Sometimes V can be a function of other parameters such as autocorrelations in
time series models (Seber and Wild [1989: chapter 6]) and variances in components
of variance models (Sengupta and Jammalamadaka [2003: section 8.3] and Faraway
[2006]). We can also have errors-in-variables models where, for example, the x;s are
measured with error (Seber and Wild [1989: chapter 10] and Carroll et al. [2006]).
Other models where g may contain random components are, for example, mixed
models and components of variance models (e.g., P.S.R.S Rao [1997] and Searle et
al. [1992]).

We get another type of nonlinear model when E(y;) = g, but now g(u;) =
a + B'x; and the distribution of y; belongs to the exponential family. This is
called a generalized linear model, and such models are discussed by McCullagh and
Nelder [1989] and Dobson [2001]. Other transformation methods are described
by Carroll and Ruppert [1988], and another approach is via generalized additive
models (Tibshirani and Hastie [1990] and Wood {2006]).

Finally, applying large sample maximum likelihood theory to very general prob-
ability distributions, we can prove the asymptotic equivalence of large sample tests
for nonlinear hypotheses such as the Likelihood ratio, Wald and Score (Lagrange
multiplier) tests by asymptotically linearizing the model and hypothesis. In the
linear case, all three test statistics are equivalent (Seber and Wild [1989: section
12.4] and Seber [1980: chapter 11]). Examples using this linearization technique
are given by Seber [1967, 1980] and Lee et al. [2002]. We shall now consider the
linear regression model.

Definition 20.14. We call the above model y = 8 + € the general linear model if
0 = X3, where X is a known n x p matrix of rank r (r <p < n),and Bisapx1
vector of unknown parameters. We also assume that V is non-negative definite of
rank v, and we shall be interested in testing a linear hypothesis A3 = ¢, where A is
gxpofrank s (s < q < p)and ¢ € C(A). We shall refer to the general linear model
as M = (y,XB,0%V) and the linear hypothesis as Hy. For making inferences, we
shall also assume that y is multivariate normal, namely N,(X3,s%V).

There have been a large number of theoretical results proved for the above general
setup and its special cases. However, my approach to linear models when V is
a known nonsingular matrix is somewhat pragmatic: Formulate the theoretical
model and hypothesis (e.g., Seber and Lee [2003: section 6.4]) and use a statistical
computer package such as R to get the required results as well as the diagnostics
for validating the model.

If V is a known positive definite matrix, there exists a unique positive defi-
nite square root (cf. 10.32) V1/2 so that making the transformation V~1/2y =
V12X 3 + V~1/2¢ we get the model

z=WpgB+1n, where var(n)=V Y2yVv /2=,
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We therefore begin with the model (y, X3, 0%1,,).

With regard to Hy, we frequently have ¢ = 0. If not we can “remove” ¢ as follows.
Let 3y satisfy ABg = ¢ and consider the model z = Xy + €, where z =y — X3,
and v = 3 — By. Then Hy becomes Ay = 0, so for the moment we assume ¢ = 0,
which fits in with the method of least squares described below. It should be noted
that we can incorporate c if we use a different method of estimation, namely we
find affine unbiased estimators that satisfy a minimum trace criterion (Magnus and
Neudecker [1999: chapter 13]).

20.7.1 V Is the ldentity Matrix

20.37. (Estimation) Consider the model (y, X3, 02I,,), where X is n x p of rank
r and 8 = X8.

(a) Assume 7 < p.

(i) |ly — 8|2 is minimized uniquely subject to 8 € C(X) = €, say, at 8, the
least squares estimate of 8, where

6 =Pqay, Pg=XX'X) X,

and Pq is the unique symmetric idempotent matrix representing the
orthogonal projection of Y onto ; (X’X)~ is any weak inverse of X'X.
Note that y = 6+ (y - 5) is an orthogonal decomposition of y, and
PaX = X. The matrix Pg is also referred to as the hat matriz in
regression diagnostics (Seber and Lee [2003: section 10.2]).

Other norms and measures can be used for the minimization process to

produce alternative estimators to least squares (cf. Gro8[2003], Rao and
Tountenburg [1999], and Seber and Lee [2003: section 3.13].

(ii) If 6 = X, then 3 is not unique. Since X'(y — 5) = 0, [ satisfies
the so-called normal equations X'X3 = X'y, which have a solution
B=XX)Xy=(XX)"XPqy = (XX)"X'6.

(iii) @ = |ly — 5”% =y'(I, — Pa)y = € (I, — Pg)e, since (I, — Pq)8 = 0.

(iv) o? is usually estimated by its unbiased estimate s2 = Q/(n — r), which

has certain optimal properties. For example, it is the MINQUE of ¢?
(Rao and Rao [1998: section 12.6]).

Vyr=y-— 0 = (I. — Pq)y is called the residual vector and is used for
diagnostic purposes.
Q = r'r is usually called the residual sum of squares and is often denoted
by RSS.

(vi) E(r) = 0 and var(r) = o2(I, — Pg).

(vii) For any a, é = a’'0 = a’Pgy is a linear estimate of ¢ = a'0 (i.e., linear

in y) and is unbiased as PoX = X implies that E(¢) = ¢.

(viii) (Gauss-Markov) Of all linear unbiased estimates of ¢, ¢ is the unique
estimate with minimum variance. We refer to ¢ as the BLUFE (Best
Linear Unbiased Estimate) of ¢.
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(ix) If By is any unbiased estimate of 6, then
D = var(By) — var(a)

is non-negative definite (n.n.d.) and D = 0 if and only if By = 6. We
call 8 the BLUE of 6.

(x) Let y = X3+ ou, where the elements of u are i.i.d. with mean zero and
variance 1, and density h(-) satisfying h(—u) = h(u) for all u. Then,
provided it exists, the expected information matrix for the parameter

vector (3',0%)" is
X'X 0
0 n[az ’

When u is normal, ¢ = 02 and I,> = 1/(20%).

(b) When X has full rank (i.e., 7 = p) then (X'X)~ = (X’X)~! and we have the
following:

(i) B=(X'X)"1X0.

(i) 8= (X'X)™'X'y, E(B) = B, and var(B) = o*(X'X)~".
) From (a) (viii) we find that b/A is the BLUE of b/83.
)

(iv Suppose the y; are independent random variables with common vari-
ance 0% and common third and fourth moments, u3 and p4, respectively,
about their means. Then s? is the unique non-negative quadratic unbi-
ased estimate of o2 with minimum variance when p4 = 304 or when the
diagonal elements of Po = X(X'X) !X’ are all equal.

(iii

(v) If, as n — 0o, n1X’X converges to a finite positive definite matrix V.,

and the largest diagonal element of Pg goes to zero, then \/ﬁ(ﬁ -B)
converges in distribution to N4(0,5%V,).

(¢) If X has full rank and y ~ N,(Xg3,0%L,), then the following hold:

() B~ Np(B,0*(X'X)7).

(ii) B is statistically independent of s2

(i) Q/0% = (n—p)s?/0? ~ Xy

(iv) B and Q/n are the maximum likelihood estimates of 3 and o2, respec-
tively, and are also sufficient statistics.

(v) ﬁ is the best unbiased estimate of 3 in the sense that, for any b, b’ B is the
estimate of b’3 with minimum variance among all unbiased estimates,
and not just among linear ones; that is, it is the MINVUE of b’3.

(vi) s is the MINVUE of o2.

Definition 20.15. Let X be n x p of rank r. The function b’8 of 8 is said to
be estimable if it has a linear unbiased estimate, ¢'y, say. Then b'3 = E(cy) =
c¢’X for all B so that b’ = ¢'X. Let A’ = (aj,ap,...,a,) be a ¢ X p matrix.
The hypothesis Hy : A3 = 0 is said to be testable if each a3 is estimable for
i=1,2,...,q, that is A3 is estimable. If X has full column rank, then A3 is
always estimable.
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20.38. Suppose that r < p. The following conditions are equivalent.
(1) Ap is estimable.

(2) The rows of A are linearly dependent on the rows of X, that is, there exists
a g X n matrix L such that A = LX. If rank A = ¢, then rankL = ¢ (as
rank A < rankL, by (3.12)). Note that Ly is a linear unbiased estimator of

AB.
(3) C(A") cC(X).
4) AR is invariant for any choice of 8 = (X'X)~X'y.
(5) A(X'X)"X'X = A.
20.39. If r < p and Af is estimable, then from (20.38(2)) above we have:
(a) AB =L =LPoy = LX(X'X) X'y = A(X'X)"X'y.
(b) E(AB) =E(LA) = L6 = AS.

(c) var(AB) = var(L) = o?LPoL’ = ¢2A(X'X)~A’. For a single estimable
function, A reduces to a’.

20.40. (Estimation with Constraints) Suppose r < p. We wish to find the least
squares estimate of 3 subject to the g estimable constraints A3 = 0, that is, subject
to0=AB=LX3=L6, or 8 c N(L).

(a) {|ly — 8]|3 is uniquely minimized subject to 8 € N'(L) N Q = w, say, when
0 = 8y, where 8y = P,y and P, represents the orthogonal projection onto
w.

(b) Qu = lly = 8alf =y'(I. - Pu)y.
(¢) From (2.51b) and (2.51d), Pq — P, = P,1nq, where w! N Q = C(B) and
B =PgL/.

(d) From (c),

BH = Pwy

Poy — Pyinay

6 — B(B'B) By

= 6 - PoL/(LPoL/)"LPgqy.

I

(e) From (d) and A = LX,
P, o= XXX)"AJAX'X)"A|TAX'X)"X.
(f) If 8 = XBy, we have from (d) and (e)

XBr = XB - X(X'X)~A'[A(X'X)"A|"AB.
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If A has full row rank, [A(X'X)~A’]” = [A(X'X)~A']"L. If, in addition, X
has full column rank, then multiplying by X/,

Br =B (X'X)'A'[A(X'X)T AT AB.
We can also obtain this result using Lagrange multipliers (cf. Seber and Lee

[2003: 60].

(g) If we now want to change the constraints to A3 = ¢, where ¢ € C(A), we

replace ,6 by ,3 Bo (where A3y = ¢ for some Fy), Aﬁ by Aﬁ —c,and y by
y =y — X8y Qg then becomes §'(I, — P, )y, and @ remains unchanged as
(I, = Po)y = (In — Po)y.

(i) Given the estimable constraints A = c, another approach is to note that
AB=cifandonlyif 3 = A c+(I,— A~ A)¢, where (cf. 13.4) ¢ is arbitrary,
and A~ is any weak inverse of A. Substituting for 3, the constrained model

then becomes
(y - XA ¢, X(I, - A"A)¢,0°L,).

A reasonable choice for A~ is A’(AA')".
A second approach is use the model (y., X.3,5%V), where

= (D x=() v (5 5)

and V is singular (Sengupta and Jammalamadaka [2003: 123, 125, 244]).

20.41. (Hypothesis Testing) Suppose we wish to test Hy : A = ¢ (¢ # 0), where
H, is testable, and A is ¢ x p of rank s (s < q).

(a) From (20.40g) and (20.40e),
Qu ~Q=5Puina¥ = (AR~ ¢) [A(X'X)"A| (AB o).

(b) E(Qn — Q) = 0%s + (AB — ¢ [A(X'X)A"]"(AB - c).
(c) The test statistic for Hy is

(Qu —Q)/s

F=Qm-n

(d) When Hj is true, we have the following.

(i) Pyrney = Puinaly—XB—(XB-XBy)] = P16, since from (20.40d)
with B’ = LPg, we have

LPoX(B - Bo) =LX(8—Bo) =AB—-c=0

(ii) fy ~ N,(XB,021,), then from (i) the following ratio has an F-distribution,
that is,
. €P,1nq€/s
€I, — Pqle/(n—r)

~ Fs,n-r~
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Definition 20.16. (Multiple Correlation) Consider the linear model y; = Gy +
Brzs + Poxio + -+ + Bp_1Zip—1 + € so that X = (ln,x(l),...,x(”_l)), where
rank X = p. If we define y = 5, the correlation coefficient of y and the fitted model
y is called the multiple correlation coefficient, and is denoted by R. Its square R?,
is called the coefficient of (multiple) determination.

20.42. If y =Y, yi/n, then:
(a) (y —-¥)'1,=0.
(b) >y —9)% = i (vi — B:)* + 25, (B — §)%

2@ —9)°
il —9)*

(d) RSS = 21(% - gz)Q =(1- RQ) 21(3/2 - 37)2'
Proofs. Section 20.7.1.

(c) R* =

20.37a(i). Seber and Lee [2003: 36-37].
20.37a(ii). Seber and Lee [2003: 38].
20.37a(iv). Seber and Lee [2003: 44].

(
(
(
20.37a(vi). Use (20.6b). Seber and Lee [2003: section 10.2].
20.37a(viii). Seber and Lee [2003: 42-43].

(

20.37a(ix). Pg is symmetric and idempotent. Because By is unbiased, (I, —
B)@ = 0, so that C[(I, — B)'] L @ and Pq = PoB’ = BP. This leads to
D = B(I, — Pq)B’, which is non-negative definite (n.n.d.) as I, — Pg is
n.n.d. Finally, D = 0 if and only if (I, — Po)B’ =0 or B = Pq.

20.37a(x). Sengupta and Jammalamadaka [2003: 133; they omit the word
“expected”] and Seber and Lee [2003: 49, for the normal case].

20.37b(ii). Seber and Lee [2003: 42].
20.37b(iv). Seber and Lee [2003: 45].
20.37b(v). Sen and Singer [1993: section 7.2].

20.37c. Seber and Lee [2003: 47-48 for (i)-(iii); section 3.5 for (iv); 50 for
(v)] and Rao [1973a: 319 for (vi)].

20.38. Searle [1971].

20.41b. Use (20.18b) with E(AB) = AB and trace P .qq = s.
20.41d(ii). Seber [1977: section 4.5].

20.42. Seber and Lee [2003: 111-113].
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20.7.2 V Is Positive Definite

20.43. The results for V, a known positive definite matrix, follow directly from
the results for V = I,, by replacing y by V~'/2y, 8 by V~1/20, and X by V—1/2X
through all the previous theory. For example, we now minimize (y —8)'V~!(y —8)
subject to 8 € Q to obtain 8, say. We can do this by changing the inner product
space or, more simply, by using the transformation V~1/2 so that X'X becomes
X'V-1X and X'y becomes X'V ~ly, giving us

V-2 = vI2X(X'VTIX) X'V ly.
Assuming rank X = p, and setting 6 = X3, we now have two unbiased estimates
of 3, namely
(X’X)"'X'y and
= (X'VIX)"'X'Vly.

W)
It

Then using (20.6b),
var(8) = e2(X’X) 1 X'VX(X'X)™! and var(8) = o*(X'VX)~!

The above estimators are often called the ordinary least squares estimate OLSE(8) =
B and the generalized least squares estimate GLSE(3) = B. As 3 is the BLUFE of

3, we can expect this estimator to be more efficient in some sense than ﬁ Various
measures of efficiency are given in (12.6), and a popular one is the Watson efficiency
¢ = 1/Ey, where

_ det[var(Bgrg)l [det(X'X)]?
det[var(Bprg)]  detX'VX) - det(X'V-IX)’
From (12.6a),
a“ 4); /\n i+1
> ¢ > 1—
tzez H (i + An—igr)? III( o),
where m = min{p,n — p} and A\; > Ay > --- > X, > 0 are the eigenvalues of V.

E; =1 if and only if the two estimators are the same. The ratios 4\ A,_;y1/(Ai +
An_iy1)? are the squared antieigenvalues of V (cf. Sectlon 6.7), and the p; can be
taken as the canonical correlations between the OLSE 6 and its residual r = y— 0.
For references on the topic see Drury et al. [2002] and the survey by Chu et al.

[2005b].
The Watson efficiency has also been applied to partitioned regression models

X3 =(X1,X3)8 =X 81 + X208,

where X and V have full rank. A subset Watson efficiency can be defined for the
estimate of 3;, and the overall efficiency factorized into components. For details
and examples see Chu et al. [2004; 2005a,b].
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20.7.3 V Is Non-negative Definite

We now assume that V is a known singular matrix of rank v (v < n) and that
rank X < rankV. For a thorough review and historical summary of the topic
see Puntanen and Styan [1989]. Theoretical details are given by Sengupta and
Jammalamadaka [2003: chapter 7], Baksalary et al. [1990], and, more briefly,
by Christensen [2002]. Singular models arise, for example, in finite population
sampling, in some experimental designs, in some state-space models, and in models
where some of the y-variables are virtually error-free and are effectively constants.

20.44. Consider the model (y,X3,0%V), where V is singular and rank X = r
(r <p). Let H=Pgand M =1, - Pg = I, — H, so that from (20.37a(i))

o~

6 = Hy.

(a) The model is consistent (i.e., the inference base is not self-contradictory) if
y € C(X,V) with probability 1. This follows from the fact that y — X3 €
C(V) with probability 1.

(b) One expression for the best linear unbiased estimate (BLUE) @' of 6 takes
the form 87 = Gy if and only if G(X, VM) = (X, 0) (Puntanen et al. [2000]).
The numerical value of 87 is unique with probablity 1, but G is unique if and
only if C(X,V) = R™.

When V is nonsingular, 81 = 8 (cf. 20.43).
(c) One general solution to G(X, VM) = (X, 0) is
G=1,-VM(MVM) M + F[I, - MVM(MVM)™ M,
where F' is arbitrary.

(d) (i) Some representations of 81 are

' = §-HVMMVM) My
6 - HVYM(MVM)*My

= §-HVM(MVM)ty

= y— VM(MVM) My

(ii) Also
' = X(X'WX)"X'Wy,

where W = V 4+ XUX' and U is an arbitrary matrix such that C(W) =
C(X,V).

(e) If X has full column rank and 87 = X317, then 87 = (X'X)~1X'61.
(f) @' is invariant to the choice of (MVM)~.

(g) Asymptotic theory for 8! is given by Sengupta and Jammalamadaka [2003:
522].

(h) (Mean and Variance)
(i) Since E(My) = MX8 = 0, it follows from (d) that E(8T) = 6.
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(ii) From {(d) and HM = 0,

var(8') = o*[HVH - HVM(MVM) MVH]
= ¢’[lV-VM(MVM) MV]
= FX(X'W™X)"X' - XUX/.

(iii) If X has full column rank and 6 = X3, then
var(8") = var(8) — (X'X)"'X'VM(MVM)"MVX(X'X) !,
where var(8) = (X'X) " 1X'VX(X'X)~1.
(i) The residual is

r = y—6t
My + HVM(MVM) My
VM(MVM) My,

and
var(r) = c°’VM(MVM)"MV.

(j) Let f =rank(V,X) — rank X. The weighted residual sum of squares is
Q'=(y-6")V (y-6")=yMMVM) My,

and

E(Q'/f) =0
(k) If A3 is estimable, then the BLUE of A3 is
(AB) = AX~[I, - VM(MVM) M)]y.
Furthermore,

var[(AB)'] = 62 AX [V - VM(MVM) MV](AX™)".

(1) (Inverse Partitioned Matrix Approach) Let

V X\ _[C G
X 0 T\C; -C4 /)
(i) ' = XChy = XCay.
(i) var(8') = 6*XC4X'.
(iii) r = VC1y.
(iv) Referring to (j), @' = y'Cyy.
(m) 87 = 0 if and only any one of the following conditions hold.

(1) HV = VH.
(2) VV = HVH.
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(3) HVM = 0.
(4) C(VX) C C(X).

For these and further conditions see Puntanen and Styan [1989, 2006] and
Isotalo et al. [2005b: chapter 6].

20.45. If X has full column rank p and C(X) C C(V), the so-called weakly singular
model, then the Watson efficiency is

[det(X'X))]?
det(X'VX) - det(X'V+X)”

¢ =

IfrankV=v (p+1<v<n),

m )\ A h

> > v— z+1 — 1-— 2

>¢> ];[ SR W g( p?),
where m = min{p, v — p} and h is the number of nonzero canonical correlations be-
ween the ordinary least squares estimate and its residual (Chu et al. [2004, 2005a]).
These authors have also applied the Watson efficiency to partitioned regression
models for the case when V is positive definite. The result about the canonical
correlations still applies. For other bounds on the efficiency for the singular model
see Sengupta and Jammalamadaka [2003: 316-318].

20.46. Let U = {U:0 < U <X V,C(U) C C(X)}, where A < B means that B— A
is non-negative definite. The maximal element U in I is called the shorted matriz
(operator) with respect to X, and is denoted by S(V | X). Then

var(0') = S(V | X).

For further references relating to shorted matrices see Mitra and Puntanen [1991],
Mitra and Puri [1979], and Mitra et al. [1995].

20.47. (Linear Restrictions) Suppose that we are interested in the linear (es-

timable) restrictions A3 = c. Let QL be the residual sum of squares after fitting
the model subject to the constraints.

(a) Q}J - Q' =[(AB)! — ][0~ 2var(AB) 1]~ [(AB)T - cl.

T

the F-distribution, where f = rank(V,X) — rank X, m = rank[var(AB)'],
and Q' is given in (20.44j).
Proofs. Section 20.7.3.
20.44a. Christensen [2002: 10] and Rao [1973a: 297].
20.44b. GroB [2004], Puntanen et al. [2000], and Rao [1973b: 282].
20.44c. Rao [1978: 1202).

20.44d. See Rao [1973b]. The last expression for 8% is derived by Sengupta
and Jammalamadaka [2003: 252, with L =1I].
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We use the fact that (MA)TM = (MA)* for any A such that (MA)7 exists,
since (MA)1TM satisfies the four conditions for it to be the Moore-Penrose
inverse of MA, and M is idempotent.

20.44f. Sengupta and Jammalamadaka [2003: 252].

20.44h(jii). Isotalo et al. [2005b: 11].

20.44i. Sengupta and Jammalamadaka [2003: 253-255].

20.44j. Sengupta and Jammalamadaka [2003: 259-260].

20.44k. Sengupta and Jammalamadaka [2003: 252, 255].

20.441. Rao [1973b] and Sengupta and Jammalamadaka [2003: 269).

20.47. Sengupta and Jammalamakada [2003: 277, 288].

20.8 OTHER MULTIVARIATE DISTRIBUTIONS

In this section we consider a number of continuous multivariate distributions. These
distributions can be regarded as special cases of matrix variate distributions (cf.
Section 21.9).

20.8.1 Multivariate t-Distribution

Definition 20.17. A d x 1 random vector x = 21,22, ...,24)" has a multivariate
t-distribution if its probability density function is given by

L(3v +d))
(mv)4/2T (3v)(det B)1/2
(-

f(x) 1+ l/_l(x _ IJ:)/E_I(X _ “)]—(u+d)/2

co<z;<oo, t=12,...,d),

where ¥ = (0;;) is positive definite and I'(:) is the Gamma function. We write
x ~ tyg(v,4,E). The distribution t4(1,0,I4) is called the multivariate Cauchy
distribution.

20.48. Suppose x ~ t4(v, u, ), then:
(a) E(x) = p and var(x) = vX/(v — 2) (n > 2).

(b) (x; — pi)/+/Tii ~ t,, where £, is the univariate t-distribution with v degrees
of freedom.

(c) (x—p)'E"Yx—p)/d~ F;,, where F,, is the univariate F-distribution with
d and v degrees of freedom, respectively.

(d) Any subset of x has a multivariate ¢-distribution.

For further details see Kotz and Nadarajah [2004]. They also give a number of
probability integrals and discuss the noncentral ¢-distribution.
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20.8.2 Elliptical and Spherical Distributions

Definition 20.18. A dx 1 random vector x is said to have an elliptical distribution
with parameters p (d X 1) and V {d x d) positive definite if its density function is
of the form

ca(det V)™2R[(x — p)' V7 (x — )]

for some function h. We will write x ~ E4(u, V) to denote that the distribution
belongs to the class of elliptical distributions. The name comes from the fact that
the above probability density function is constant on concentric ellipsoids

(x—p)VHx—p)=c,

and an alternative name is elliptically contoured distribution. The multivariate t,
multivariate normal, the contaminated normal, and a mixture of normal distribu-
tions are examples of elliptical distributions. Fang et al. [1990], Gupta and Varga
[1993], and Kollo and von Rosen [2005: section 2.3] discuss these and other ex-
amples of elliptical distributions. The kurtosis for elliptical distributions need not
be zero, so that its typical bell-shaped surface can be more or less peaked than
the multivariate normal. This flexibility allows one to study the robustness of sta-
tistical inference based on the normal distribution. For the theory and statistical
inference based on samples from elliptical distributions see Anderson [1993; 2003,
section 3.6], Fang and Anderson [1990], and Kariya and Sinha [1989]. For some
asymptotic theory see Anderson [2003: 102, 1568]. Matrix versions of the elliptical
distribution are also available (Anderson [2003] and Girko and Gupta [1996]).

20.49. Let x ~ Eg(pu, V).

(a) For some function 1, the characteristic function of x is
B(t) = E(e*) = e # (1 V).

(b) From (a) we have that any subset of x has an elliptical distribution of the
same form. For example, if x; and p, are the first k elements of x and u
respectively, and Vy; is the leading principal k£ x k submatrix of ¥, then
x1 ~ Ex(pe1, V).

(¢) Provided they exist, E(x) = p and var(x) = aV for some constant a. In
terms of the characteristic function a = —2¢/(0).

(d) It follows from (c) that all distributions in the class Fq(p, V) have the same
mean g and the same correlation matrix corr(x) = (p;;). Since a cancels out,
we have Pig = vij/(v“vjj)lﬂ.

(e) Let ¥ = —2¢'(0)V = (04;) be the variance matrix of x, and suppose that x
has finite fourth moments. Then:

(i) The marginal distributions of the z; all have zero skewness and the same

kurtosis 31(0) — /(0]
Y2 = m2)? W(0)2 =3k, say,

where K, is the rth cumulant.
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(it} All fourth-order cumulants are determined by k, namely
ikl . O O
Ki111 = K(0ij0k + Oik0jt + Oudjk).

This result is useful in asymptotic theory relating to smooth functions of
elements of the sample variance matrix.

20.50. Let x ~ Eg(p, V), where V is diagonal. If zy,x9,...,2, are mutually
independent, then x is multivariate normal.

20.51. Suppose x ~ Eg(p, V) and x, p, and 'V are partitioned as follows:

X1 w Vi1 Vi
= y = f d V = )
* <X2> # (Mz) o < Va1 Vo2 >
where x; and p; are k X 1 and Vy; is k X k. Provided the following exist, then:

(a) E(x1 | x2) = p1 + V12 V3, (x2 — pa).

(b) var(xy | x2) = g(x2)(V11 — V12V3; Var)
for some function g. Moreover, the conditional distribution of x; given x3 is
k-variate elliptical. If g(x2) is a constant so that var(x;|x;) does not depend
on X, then x must be normal.

Definition 20.19. A d x 1 random vector x is said to have a spherical distribution
if x and Tx have the same distribution for all d x d orthogonal matrices T. If x
has a density function, then this function depends on x only through x’x. The
multivariate normal Ny(0,%1;) and the multivariate ¢, t4(v, 0, 021;), are spherical
distributions.

20.52. If x ~ E4(0,1), then x has a spherical distribution with a density function
of the form cgh(x'x). Let

1 = rsind;sinfy---sinfy_ssinfy_,
Tg = 7rsinf;sinfy---sinfy_ocosby_
r3 = rsinfysinfy---cosfy_o

Tg—1 = rsinfcosby

g = Trcosb,

where r > 0,0 < 6; <« (i = 1,2,...,d - 2), and 0 < 64-1 < 27. Then r,
01,0s,...,04_; are independent, and the distributions of 8, ...,04_1 are the same
for all x, with 8y having a probability density function proportional to sin? 1% g,
(so that 64_; is uniformly distributed on (0, 27)). Also y = x'x = r? has probability
density function

f) = S5 4y, (y > 0)

y\y) = F(%d) y Y) Yy .

In particular, if x ~ Ng(0,14), we have h(y) = e~¥/2 leading to the familiar result
that y ~ x2.
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20.53. Let x have a d-dimensional spherical distribution with pr(x = 0) = 0.

(a) Ifu = ||x||2 = (x'x)"/2 and y = ||x||; 'x, then y is uniformly distributed over
a d-dimensional sphere located at the origin with unit radius, and y and u
are independent.

(b) If v = a’x/||x||2, where a € R? and a’a = 1, then

— vy2_ v
w=(d-1) =) ta—1,
the ¢-distribution.

(c) If A is a d x d symmetric idempotent matrix of rank k&, then z = x’ Ax/x'x
has a beta distribution with parameters 3k and 3(d — k).

Proofs. Section 20.8.2.
20.49. Muirhead [1982: 34-42].
20.50. Muirhead [1982: 35].
20.51. Muirhead [1982: 36].

20.52. Anderson [2003: 47-48] and Muirhead [1982: 36-37].

20.53. Muirhead [1982: 38-39).

20.8.3 Dirichlet Distributions

Definition 20.20. Let x = (x1,22,...,24) be a d x 1 random vector. Then x is
said to have a Type-1 Dirichlet distribution if its density function is given by

NG + -t ag )a— P o B
It = Ig(él)'“l"(ad;l) o e T (L = )T

O<zy<li=1,...;djz1+ - +z4<1, and oy >0for i=1,...,d+1)

We shall write x ~ D1(d, @), where o = (o).
Also x is said to have a Type-2 Dirichlet distribution if its density function is
given by
Do+ + @a41) _ay-1 ag—1 —(ar 4
x) = gl g 1421+ +z aydtadt)
7 T(a)---Tlegs) o ' 2
(0<zi<oo,i=1,...,d, and o >0fori=1,2,...,d+1.

We shall write x ~ Dy(d, ). The above are special cases of the matrix versions in
Section 21.9.

20.54. Let y1,a, ..., Ym be independently distributed as x? variables with degrees
of freedom a, s, ... o, respectively. If z; = y,/Z;":1 yjfori=1,2,...,.m—1,
then x ~ Di(m — 1, a/2).

Proofs. Section 20.8.3.
20.54. Anderson [2003: 290, quoted in exercise 7.36].



CHAPTER 21

RANDOM MATRICES

21.1 INTRODUCTION

Matrices of random variables occur frequently in statistics, especially in the sub-
ject of multivariate analysis. Because the latter is a large subject with numerous
reference books, I have had to be somewhat selective in my choice of topics. In this
chapter, as in the previous one, the upper- and lowercase letters of the alphabet
from a to t, excluding Q, refer to constants, while the remainder generally refer to
random variables. Unless otherwise stated, all vectors and matrices are real.

Definition 21.1. Let

X = (zi5) = . = (x(l),x(z), e ,x(‘i))

be an n x d matrix of random variables with rows that all have the same variance
matrix ¥ and are uncorrelated,that is,

cov(Xr, Xs) = 0,55,

where é,; = 1 for r = s and 6,5, = 0 for r # s. We shall call a matrix with the
above properties a data matriz.

A Matriz Handbook for Statisticians. By George A. F. Seber 461
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In practice, the x, are usually a random sample, which implies they are indepen-
dently and identically distributed, that is, i.i.d. However, this won’t be assumed
unless indicated.

21.1. If x; defined above has mean p; for each 4, then E(xix;) = 0;53 + pip;.

21.2. (Some Vec Properties) Let X be a data matrix as defined above; that is, the
columns of X’ are uncorrelated and have the same variance matrix ¥. Here “®” is
the Kronecker product.

(a) var(vecX) =32 Q®1I, and var(vecX’') =1, ® Z.

(b) Using vec(AXB) = (B’ ® A)vecX, we have, from (20.6b), (11.1e), and
(11.11a),

var[vec (AXB)] = (B'® A)(E®L,)(B'® A) = (B'EB) @ (AA’).

(¢) var[vec (AX'B)] = var[(B’ ® A)vecX'] = (B'B) @ (AXA').
(d) cov[vec (AXB),vec (CXD)] = (B'ED)® (AC').

(e) From (d) we see that if U = AXB and V = CXD, then U and V are
pairwise uncorrelated, that is cov(u;;, v,s) = 0 for all ¢, j, 7, and s, if AC' =0

and/or B'YD = 0.
Proofs. Section 21.1.
21.1. Set x; = x; — p; + p; and use (20.5).

21.2. For (a), see Henderson and Searle [1979: 78, with our X being their
X']; using (20.6), the proofs of (¢) and (d) are similar to (b); and (e) follows
from (d).

21.2 GENERALIZED QUADRATIC FORMS

21.2.1 General Results

Definition 21.2. If X = (x;,X2,...,X,) is an n X d data matrix and A = (a,;) is
a symmetric 7 x n matrix, we shall call the expression X'AX =371 | 377 a;XX]
a generalized quadratic.

21.3. Using the above notation, let X = Y_.-_ , x;/n and X=(x-%,...,Xp—%).

Then:

n n

(a) X'X =) (x; —®)(x; — %) = )_x;x; —n¥X = X'AX (= Q, say),

i=1 i=1

where A = (a;;) and a;; = §;; —n~'. Thus, A =1, - 1,1, /n=1, - P,

is the so-called centering matrix, where Py is the orthogonal projection onto
C(1,).

(b) Suppose the x; are i.i.d. with mean g and variance matrix ¥, and 8 = Q/(n—
1). Then
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so that S, the so-called sample variance matriz, is an unbiased estimator of
Y. Some writers define ¥ = (n — 1)S/n to be the sample variance matrix; it
is the maximum likelihood estimator of ¥ under normality assumptions.

(c) If diag(s) is the diagonal matrix whose elements are the diagonal elements of
S, then the sample correlation matrix is given by

R = [diag(s)]~*/*S|diag(s)]~"/*.

(d) The (sample) Mahalanobis distance
D? = (x; —x)'S7!(x; — %)

(2

is the ith diagonal element of (n — 1)X(X’X)~!X, and it is often used for
diagnostic purposes.

(e) (i) Taking the trace of (a) and using trace(ed’) = trace(d’c) = d’c, we get

E (x; —X)'( E xxl—nxx

Z )(xr - xs)l = % (xr - xs)(xr - xs)/
r=1s= + oy
= nZ(xi -X)(x; —x)
i=1

(iii) Taking traces in (ii),
Z Z I =% = nZ i — =]|2.
r=1s=r+1
This result arises in cluster analysis.
We obtain the corresponding univariate cases by taking d = 1 in the above results.

21.4. (Asymptotic Sample Theory) Suppose that the d x 1 vectors x1,Xz2,...,Xn
are independently and identically distributed (i.i.d.) with mean g and variance
matrix X.

(a) Asn — oo, \/n(X — ) is asymptotically distributed as Ny(0, X).
(b) Let Q = (n — 1)S.
(i) Asn — oo, n~/?(vec Q — nvec X) is asymptotically Nyz(0, V), where
V = var{vec [(x; — p)(x; — )]} = var[(xi — p) ® (xi — )],

by (11.15¢).
(ii) Interms of S, we have (n—1)1/2(vec S—vec ) is asymptotically Nz2(0, V).
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(¢) f A is a real symmetric n x n matrix, then, under certain conditions, Q =
X’'AX is asymptotically normal as n — co.
For further details and references see Mathai and Provost [1992: section 4.6b].

21.5. (Asymptotic Theory) Suppose /n(y — 6) is asymptotically Ny(0,X), and
let f(u) be a ¢-dimensional vector-valued function of u such that each component
fj(u) has a nonzero differential at u = 8. If F = (fi;), where f;; = 0f;(u)/0ui,
then

Vnlf(u) — £(0)) is asymptotically N,(0, F’SF).

21.6. Suppose X' has columns x;, then

E(X/AX) = i i [12%] COV(Xi, X]') + E(X’)AE(X)

i=1 j=1

21.7. Suppose the x;, the columns of X', are statistically independent and var(x;) =
¥, for i =1,2,...,n. Then, from (21.6),

(a) E(X'AX) = i ai%; + E(X')AE(X).

i=1
(b) If ¥; = X for all 4, then from (a) we have

E(X'AX) = (trace A)Y + E(X')AE(X).

(¢) Suppose that the x; are i.i.d. with mean 0 and variance matrix . If V = X'X
and E(x;x] ® x;x}) = ¥, then

var(vec V) = n[¥ ~ (vec X)(vec X)'].

21.8. (Independence) Let X' = (x;,X2,...,X,), where the x; are independently
distributed as Ng(pi, %) (i =1,2,...,n) and X is positive definite. Suppose A and
B are n x n symmetric matrices and C is a k x n matrix. Then:

(a) X’AX and X'BX are statistically independent if and only if AB = 0.

(b) CX and X’AX are statistically independent if and only if CA = 0.
Setting C = b’, we have that X'b and X’AX are statistically independent if
and only if Ab = 0.

More generally:

(c) Let Q; = X'A, X+ %(LiX—FX’L;) + C;, where A; and C; are real symmetric
matrices (i = 1,2). Then Q; and Q are statistically independent if and only
if

A1A2 = 0, L]Ag = 0, L2A1 = 0, and LlLé = 0.
We can get various special cases by setting A; = 0 or L; = 0. Mathai and
Provost [1992: 286—-287] also give results for the case when ¥ is singular.
Proofs. Section 21.2.1.

21.3a-b. Seber [1984: 8-9].
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21.4a. Anderson [2003: 86-87] and Muirhead [1982: 15].

21.4b. Anderson [2003: 87] and Muirhead [1982: 18].

21.5. Anderson [2003: 132].

21.6. Mathai and Provost [1992: 244].

21.7a. Seber [1984: 6-T7].

21.7c. Schott [2005: 424-425].

21.8a-b. Mathai and Provost [1992: 285] and Schott [2005: 422-424].
21.8c. Mathai and Provost [1992: 286-287).

21.2.2 Wishart Distribution

Definition 21.3. Let X = (x7,%2,...,Xy) be an m x d matrix with rows which
are independently and identically distributed (i.i.d.) as the multivariate normal
distribution N4(0,X), subject to two conditions, namely (i) d < m and (ii) ¥ is
positive definite. If W = X’X| then W is said to a have a (nonsingular) Wishart
disribution with m degrees of freedom and we write W ~ Wy(m,X). The joint
probability probability density function of the distinct elements of the symmetric
matrix W (the 3d(d + 1) variables in the upper triangle, say) is given in (21.67).
This Wishart distribution can, of course, be defined directly in terms of its den-
sity function, though the above represention is more convenient for developing the
theory, especially in the singular case. If at least one of the two conditions does
not hold, then the distribution is said to be singular (cf. Srivastava [2003] for some
details). We use m instead of n here as X is used as a “representation” rather
than coming from a particular random sample of size m. If W ~ Wy(m, X), then
we can simply choose any matrix X with rows which are ii.d. Ng(0,%). Then
X’X has the same distribution as W and can be used as a “proxy” for the latter.
For this reason, most authors simply set W = X'X (e.g., Seber [1984: 21]). For
other general references relating to the Wishart distribution see Anderson [2003]
and Muirhead [1982]; in fact most theoretical books on multivariate analysis cover
the Wishart distribution in detail.

If the x; are independently distributed as Ny(gp;, £) with X positive definite, then
W = X’X has a noncentral Wishart distribution, generally written as Wy(m, Z; A),

where
A=3"12MMEV2 M= (p1, ..., pm) = E(X),

and X'/? is the positive square root of £ (cf. 10.32). Here A is called the noncen-
trality matriz and, since the distribution of W depends only on the eigenvalues of
A, other expressions are used for the noncentrality parameter (Seber [1984: sec-
tion 2.3.3)). Muirhead [1984: section 10.3] defines A = X~'M'M and gives the
probability density function of the noncentral distribution and its properties.

When W has a nonsingular distribution, W~! is said to have an inverted
Wishart. For some details see Anderson [2003: section 7.7] and Muirhead [1982:
113, exercise 3.6]. A generalized version also exists (Brown [2002]).
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21.9. An important special case is when the x; are all N4(0,0%I;). Then the
elements of X are all i.i.d. N(0,02) and X'X ~ Wy(m, 1,).

21.10. If the x; (1 = 1,2,...,m) are independently distributed as Ni(g;, ¥) with
¥ positive definite, then using (21.2a) we have

vec (X') ~ Nypal{vec (M), I, ® X),

where M = (g1, 2, -« ., ftm)’
21.11. Suppose W = X'X ~ Wy(m, X; A), where X is defined above. Then:

(a) E(W) = mX + M'M, where M is defined above. For this reason, some
authors define the noncentrality parameter to be ® = M'M or even %‘D (e.g.,
Schott [2005: 422]), which have some advantages, as demonstrated in (21.12)
below.

(b) var(veeW) = 2P,,[d(E® X) + ¥ @ M'M + M'M ® 3], where P,, is the
symmetrizer matrix defined in Section 11.5.1.

21.12. If we redefine the parameters of a noncentral Wishart and write W ~
Wa(m, Z; ®), where ¥ is positive definite and ® = M'M, and C is g x d of rank g,
then CWC’ ~ Wy(m,CEC’; C®C’). In terms of the previous notation, we have
A = (CTC)~\/2ceC/(CcEC)~1/2,

21.13. Suppose W = (w;;) has a nonsingular Wishart distribution Wy(m, X).
(a) W is positive definite with probability 1.
(b

)

) The eigenvalues of W are distinct with probability 1.
(c) E(W) = mX, which still holds if W is singular.

)

(d) Let C be a g x d matrix of rank q.

(i) CWC’' ~ Wy(m,CXEC’) and is nonsingular. We have the following
special cases.

(ii) Setting C = a’ (a # 0), we have a’Wa ~ 02x2,, where o2

= a’Ya.

(iii) By choosing C = (I,,0) (r < d), or an appropriate permutation of its
columns, we see that an r X r principal submatrix of W has the Wishart
distribution W,(m, ), where X, is the corresponding r x r principal

submatrix of X.

(iv) If W is singular and rank C < ¢, then CWC’ has a singular Wishart
distribution.

(e) wyj/oj; ~ X%, (7 =1,2,...,d). However, they are not statistically indepen-
dent. Also w;;/0y; is not chi-square for ¢ # j.

(f) det W/ det X is distributed as a product of d independent chi-square variables
with respective degrees of freedom m,m —1,...,m —d + 1.
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(g) The moment generating function (m.g.f.) of W = (w;;) is

k d
E |exp Zthkwjk

j=1 k=1
= E{exp[trace(UW)]|}
[det(I, — 2UX)]~™/2,

M(T)

where U = U, u;; = t;; and ujx = ug; = 3tk (j < k). Since this moment
generating function exists in a neighborhood of T = 0, it uniquely determines
the (nonsingular) probability density function of W and can therefore be used
for deriving a number of results given below. The characteristic function is
derived by Muirhead [1982: 87].

We have essentially found the m.g.f. of X’X when the columns of X' are i.i.d.
N4(0, %), where X is positive definite. The m.g.f. of X’AX+%(LX+X’L’)+C
when the columns of X’ are i.i.d. Ng(u, X) is given by Mathai and Provost
[1992: section 6.4]. They also give results for the cases when the x; are
correlated and X is singular.

21.14. Let W ~ Wy(m, X), where X is possibly singular, and let A be a d x d (not
necessarily symmetric) matrix. Then:

(a) E(WAW) = m[ZAY + trace(AX)A] + m*TAZ.

(b) If m > d+ 1, and X is nonsingular, then

(i) E(WAW~!) = %[mZAE‘I — A — (trace A)Ly].
m—d_—
1
(ii) EW™'AW) = T[mz:-lAz: — A’ — (trace A)I,).
m_d—

(¢) If m > d+ 3, and ¥ is nonsingular, then
E(W IAW™!)

(m—d—-2)S71AZ 1 + E71A'S"! — trace(AZ1)E !
(m—-d)(m-d—-1}(m—d-3) ’

21.15. Suppose that the columns x; (i = 1,...,m) of X’ are independently dis-
tributed as Ng(p;, ¥) with ¥ positive definite, and A is a symmetric d x d matrix
of rank r. Then, if A is idempotent, we have

X'AX ~ Wy(m, 3; A),
the noncentral Wishart distribution with
A=3"V2MAME Y2 and M = (p1, 2, .-, tm).

The case when the x; are not independent and % is non-negative definite is consid-
ered by Vaish and Chaganty [2004: 382].

21.16. Suppose that m columns of X’ are i.i.d. as N4(0,X), where X is positive
definite, and let A and B be m x m symmetric matrices.
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(a) Let X’AX and X’BX have Wishart distributions. They are statistically
independent if and only if AB = 0. (This result is generalized in (21.17).)

(b) Let X’AX have a Wishart distribution. Then X’b is statistically independent
of X’AX if and only if Ab =0.

21.17. Suppose that the columns x; (i = 1,...,m) of X’ are independently dis-
tributed as Ny(p;, X), and let Ay, Ao, ..., A, be a sequence of n x n symmetric ma-
trices with ranks rq,7r5...., 7 such that Z:=1 A; =1,. If one (and therefore all) of
the conditions of (8.78) hold, then the X'A;X (i = 1,2,...,t) are independently dis-
tributed as the noncentral Wishart, Wy(r;, 3; A,), where A; = £-1/2M/A;MX~1/2
is the noncentrality parameter and M = (py, tb2, ..., m)’. An extension of this
result to the case when the x; are not independent and ¥ is non-negative definite
is given by Vaish and Chaganty [2004: 383] and Tian and Styan [2005: 391].

21.18. If W; ~ Wy(m;,X) (i = 1,2), and W, and Wy are statistically indepen-
dent, then Wi + Wy ~ Wy(m; + mg, E).

21.19. Let

_f Wi Wy
W = ( Wi, Wa ) ~Wy(m,X), m<d,

where X is positive definite, W; is d; x d;, (i = 1,2), and dy + d» = d. Suppose X

is partioned in the same way as W and X392, = Xgo — 22121_11212.

(a) We have Way; = Way — Wy W W o ~ Wy, (m — di, Zo2.1),
and Wgq.1 is statistically independent of (W11, W13). Note that W1, = W),

(b) If 212 = 0, then Y = W21W;11W12 ~ Wdz (dl,zgz) and Y is statistically
independent of Was.y.

Definition 21.4. (Hotelling’s Distribution) Supposey ~ Ng(0,X), W ~ Wy(m, X),
y is statistically independent of W, and both distributions are nonsingular. Then

T2 — mylw—ly
is said to have a Hotelling’s distribution, and we write T? ~ T .

T; —d+1
21.20. Referring to the above definition, F = Zdm modt ]

m d
F-distribution with d and m — d + 1 degrees of freedom, respectively.
If, instead, y ~ Ng(6,%), then F ~ Fy,,_4415, the noncentral F-distribution
with noncentrality parameter § = 8'%8.

~ Fgm_dqy1, the

21.21. (Eigenvalues)

(a) If the probability density function of the m x d matrix Y is f(Y'Y), then the
probability density of B = Y'Y is
7.l_dm/2
Z _ (detB (m—d-1)/2 B

where I'4(-) is given by (21.67).
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(b) If the real symmetric d x d matrix C has a probability density function of the
form g(A1, Az, ..., Aq), where Ay > Ay > --- > A4 are the eigenvalues of C,
then the probability density function of the eigenvalues is

xd/2

m g(A1, ... /\d)HA -

1<j

(c) Suppose W ~ Wy(m,1;). Using (a) and (b), the probability density function
of the eigenvalues of W is

d2/2H . )‘(m d-1)/2 . d
i= LN 0TI = ).
24m/2T 4 (Lm)Ty(3d exp(~3 ) 11 i)

=1

(d) Suppose W ~ Wy(m, X), where m > d and X is positive definite. Then the
probability density function of the eigenvalues of W is

7rd2/2 Hd /\(m—d—l)/Q d

i=1 "M A=A Fd _1A72—1’ AL > > Mg > 0),
i g (G L 2 oA B0, 2>0)

where X = diag(A1, ..., Aq) and o Fy is a two-matrix hypergeometric function.
When ¥ =1I,,, we have

oF¢(—3A,1y) = o Fy(—3A,) = exp(—7 trace A),
which gives us (c).

21.22. (Generalized Eigenvalues) Let W; (i = 1,2) be independently distributed
as nonsingular Wy(m;, T) (i.e., m1,mg > d and X positive definite). The probability
density function of the generalized eigenvalues, namely the roots of

det(W; — AWy) = 0,

is

2 1
d /2Fd(§(771/1 +m2 ) H)\(ml —d— 1)/2H )\ +1 —(m1+m2)/2 H A _ )\
Ta(imi)Ca(3me)la(3 i

for Ay >--->Xg>0.

Definition 21.5. (Complex Wishart Distribution) Suppose x;,Xs,..., Xy, are
independently and identically distributed as the complex multivariate normal dis-
tribution N§(0,Zx) (cf. Section 20.6), then W = > x;x} is said to have a
complex Wishart distribution denoted by W5{m, 3y ). It is used in approximating
the distributions of estimates of spectral density matrices in multivariate time series
and in random normal (Gaussian) processes generally. Some of the properties of
the (real) Wishart distribution carry over into the complex case. For a number of
references see Brillinger [1975: 90].

21.23. Suppose W = (w;;) ~ W5(m,X), where m > d and Xy is Hermitian
positive definite. Then:
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(a) The probability density function of the distinct elements of W is

(det W)™~ exp[—1 trace(T; W)
ndld=1/2(det By )™ [T§_, D(m — 5 +1)

(b) E(W) = m3,.

Proofs. Section 21.2.2.
21.11a. Follows from (21.7b) with A = I,,.
21.11b. Schott [2005: 425].
21.12. Schott [2005: 423].
21.13. Seber [1984: 21, 27, 56].
21.14. Styan [1989].
21.15. Schott [2005: 422].
91.16. Schott [2005: 422] and Seber [1984: 24-25].

21.18. This can be readily proved using moment generating functions (cf.
21.13g).

21.19a. Seber {1984: 50-51] and Schott [2005: 423-424].

21.19b. Seber [1984: 51-52].

21.20. Seber [1984: 30-31].

21.21a. Anderson [2003: 539, with Y — Y’ and p — dJ.

21.21b. Anderson [2003: 538-539] proves this using (a).

21.21c. Anderson [2003: 539] and Muirhead [1982: 389, with A = 1,nl; = A;].
21.21d. For details see Muirhead [1982: 388-389, with A; = nl;].

21.22. Anderson [2003: section 13.2, and section 13.6 for some asymptotic
theory].

21.23. Srivastava {1965].

21.3 RANDOM SAMPLES

21.3.1 One Sample

21.24. Let x;, i = 1,2,...,n, be a random sample from a d-dimensional distribu-
tion with mean p and variance matrix ¥. Let X = (x1,%2,...,X,)" be the data
matrix and let z; = x; — p (¢ = 1,2,...,n). Suppose that the following third and
fourth moment matrices exist, namely

® =E(z;®2z;z,) and ¥ =E(zz]® z;2)),
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where “®” is the Kronecker product. Let z = (z,25,...2)) = vec(X')—1,®pu so

that E(z) = 0 and E(zz") = var(vec X’) = I,®X (by (21.2a). Define ¥, = E(z®zz')
and ¥, = E(zz’ ® zz’). Then:

(a) If Kan (I(n,q)) is the commutation (vec-permutation) matrix, E; = e;e] is
an n x n matrix with 1 in the (4,4)th position and zeros elsewhere, and G =
(E11,Eg, ..., By, ), then

(b) If Rnn = Z:LZI(E“ ® E”), then
¥, = (Leg+Kngnd)I 2RI, ®F) + [vec (I, ® X)|[vec (I, ® X))

(I, @ Kgn @ L) {Knn @ [¥ — (I + Kgg)(EQ X)
—(vec E){vec T'|H{I, @ Kpg ® 1).

(¢) Under normality we have the following results.

(i) e=9.=0.
ii) If Pg = (I;2 + Kgq) (the symmetrizer matrix), then, from (20.24b),
2

¥ =2P,(XQ®X) + (vecX)(vec X)'.

(iii) ¥, = 2P (I, 9 T ® L, ® T) + [vec (I, ® T)][vec (I, ® X)]".

Methods for finding E(x ® x ® x), E(x ® x® x ® x), and higher moments are given
by Meijer [2005].

21.25. Let x;, ¢ = 1,2,...,n, be a random sample from a nonsingular normal
distribution N4(g, ). Then:

(a) X ~ Nyg(p,X/n).
(b) Q={(n—-1)S ~ Wy(n—1,%).

(¢) From (b) we can obtain the probability density function of the eigenvalues of
Q, and therefore those of S. As this joint distribution is rather intractable,
asymptotic theory has been developed for large n for both the eigenvalues and
eigenvectors of S, especially as related to providing approximate inferential
procedures for principal component analysis. The reader is referred to Seber
[1984: 197-199] for a summary of the results, and to Anderson [2003: section
13.5], Muirhead [1982: chapter 9], and Schott [2005: 427-429] for further
details and some derivations.

(d) We consider some properties of S. Here P, is the symmetrizer matrix (cf.
20.24b) and Gy is the duplication matrix.

(i) var(vecS) = (n — 1) "12P4(Z® X) = (n — 1)712P4(T ® X)P,.
(ii) We note that the above matrix in (i) is singular as S is symmetric, which

implies that vec S has repeated elements. We can get round this by using
the vector vech S. Then

2
var(vech S) = mG;Pd(E ® Z)P,G.
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(iii) As n — oo, (n — 1)/2(vecS — vec X) is asymptotically distributed as
Ng2(0,V), where V =2P4(2 ® X).

(iv) From vechS = G}vecS, (20.6b), and (iii), (n — 1)"/?(vech S — vech %)
is asymptotically distributed as Ni(0, G} VG]'), where k = d(d+1)/2.

(v) If s = diagS and o = diag ¥, then

E(s) = and var(s) = (ToX:),

n—1

“on

where “o” is the Hadamard product. Also, as n — oo, (n — 1)1/%(s — o)
is asymptotically distributed as Ny4(0,2X o X).

(vi) Schott [2005: 431-432] gives the asymptotic variance matrices for vec R
and vech R, where R is the sample correlation matrix.
(e) X and S are statistically independent.
(f) X and S are jointly sufficient and complete for p and X.
(g) A useful statistic is
(i) T = n(X — u)S™'(X — p) ~ T3, _; (cf. 21.20). This statistic can be
used for testing the null hypothesis Hy : p = pg.
(ii) When the underlymg data come from an elhptlcal distribution, T2
asymptotically x3.

(h) If Hy : u € V, where V is a p—dirﬁensional vector subspace of R?, then we
have the following.

2 : 2 2
( ) Tmm - mln“evT ~ Td—p,n—l'

(ii} If we have Hy : u = K3, where K is a known d x p matrix of rank p and
B is a vector of p unknown paramters, then V = C(K) and

T2, =n(XS X —-X'S'KB"),

min

where 8* = (K'S71K)"'K'S~!x.
(iii) Suppose we have Hy : Ap = 0, where A is d ~ p x d of rank d — p, so
that ¥V = A(A), the null space of A. Then

2
Tmm

= n(AX) (ASA)'AX.
A slight generalization of this is given in (i) below.
(i) Let A be a ¢ x d matrix of rank g. Then:

(i) n(AX—Ap)'(ASA')"'(AX—Ap) ~ T2, . This can be used for testing
Hy:Ap=c.

(if) If A is a matrix of contrasts so that Aly = 0, then
n(i’S‘lld)2

— B g Ju
X'A'(ASA)Y TAX = nX'S7'x — 7S 11,
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Proofs. Section 21.3.1.
21.24. Neudecker and Trenkler [2002].
21.25a-b. Seber [1984: 63].
21.25d(i)-(v). Schott [2005: 426-427].
91.25d(vi). Schott [2005: 431-432].
21.25e. Seber [1984: 63].
21.25f. Anderson [2003: 84].
21.25g(i). Seber [1984: 63].
21.25g(ii). Anderson [2003: 199-200].
91.25h. Seber [1984: 77-79).
21.25i(i). Seber [1984: 72].
21.25i(ii). Seber [1984: 124].

21.3.2 Two Samples

21.26. Let vi,Va,...,V,, be a random sample from Ng(p1, X), wi, wa, ..., Wy,
be an independent random sample from Ng{us,¥), and 8 = g1 — po. Also define
Q1 = Z:lzll(vl — V)(Vi — V)/ and Q2 = Z:Zl(wl — W)(Wz -~ W)/. Then:

(a) ¥ =W ~ Ng(8,(n;! +n;1)E).

(b) Q=Q1 + Q2 ~ Wy(n, +ny - 2,%).

(c) mina(ni+n2) ' (V-w—-0)'S, ' (V-—W—-0)~T; ., _,, the T? distribution
{cf. 21.20), where
Sy =Q/(n1 +ny —2).

We can use this statistic to test Hy : 8 = c.
(d) If C is a ¢ x d matrix of rank ¢ (¢ < d), then

nin2

m[o(v - W) - CO)'(CS,C) 'C(V-W)—COl ~ T2, 1,2

This can be used to test Hy : CO = 0. When C is an appropriate d — 1 x d
contrast matrix then the methodology relating to Hy is referred to as profile
analysis.

The topic of more than two samples is best handled as a special case of the multi-
variate linear model described in the next section.

Proofs. Section 21.3.2.
21.26. Seber [1984: 108, 117].
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21.4 MULTIVARIATE LINEAR MODEL

21.4.1 Least Squares Estimation

Definition 21.6. Let Y = @+ U, where ® = XB, B is a p x d matrix of unknown
parameters, X is an n x p known matrix of constants of rank r (r < p), U =
(ay,...u) = (u®,. .., ul®), and the u; are a random sample from a distribution
with mean 0 and variance matrix 3. Then Y = XB + U is called a multivariate
linear model. When d = 1, this reduces to the univariate linear model of Section
20.7.

We have introduced a change in notation in this section. Up till now, X has
represented a matrix of random variables, whereas now we assume it to be a matrix
of constants. This will be the case if we can carry out any analysis conditional on
the observed value of X. However, the use of X is traditional for linear models,
and in some cases the elements of X take only values 0 or 1, thus representing
qualitative variables. In this case, X is sometimes referred to as the design matriz,
though, as Kempthorne [1980: 249] argues, a better term is perhaps model matriz.
The matrix Y now takes over the role of a data matrix. In what follows we let
2 =C(X).

Definition 21.7. If we partition Y, ©, and B in the same way that we partitioned
U, then the jth column of the multivariate linear model is the univariate model
y@ =80 = XBU) + ul¥), where u¥) has mean 0 and variance matrix o;;L,. If
Poy) is the (ordinary) least squares estimate of 8() (cf. 20.37a), where Pg =

X(X'X)"X', we say that 0= PqY is the least squares estimate of ©. When
7 = p, then setting ® = XB we have B = (X’X)"!1X'® = (X'X)"!X'Y, called the
least squares estlmate of B. If r < p, then B is not unique and we can use (as in
the unvariate case) B = (X'X)~X'Y, where (X'X)~ is any weak inverse of (X'X).

21.27. y; = B'x; + u;, where x; is the ith row of X.
21.28. If X has full rank, then E(B) = B.
21.29. We have the following covariance properties.
(a) cov(y,,ys) = cov(u,,us) = 6,s%, where é,s = 1 when r = s and 0 otherwise.
(b) cov(yW,y®) = cov(u®, u®)) = g1, for all j, k= 1,...,d.
(¢) If X has full rank p, then 3 = (X’'X) "X’y and
cov(BY, %)) = g (X'X)"! (all j,k=1,...,d).

21.30. Let G(©) = (Y — O)' (Y — ©).
(a) (i) E=G(®)=Y'(I, -~ Pa)Y = U'(I, — Py)U.
(i) E(E) = (n—1)X.
(iii) E is positive definite with probability 1.
Here E is sometimes referred to as the error matriz or residual matriz.

(b) G(@®)— G(@) = (@ - ) (G) @) is positive semidefinite for all ® = XB, and
equal to 0 if and only if © = ©. We can say that © is the minimum of the
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matrix G(0). As a consequence we have the following properties of the least
squares estimate from (10.48b,d) and (10.47a(iii)).

(i) trace G(®) > trace G(O).

(i) det G(O®) > det G(O).

(ii) |G(®)||F > HG(@)HF, where [|A|lF = {trace(A'A)}1/2 and || - ||F is the
Frobenius norm.

Any of these three results could be used as a definition of 0.

21.31. (Generalized Gauss—Markov Theorem) If ¢ = Z?zl h;-O(j ), a linear com-

bination of all the elements of ©, then ¢ = ijl h;é(j) is the BLUE of ¢ (i.e., the
linear unbiased estimate with minimum variance).

21.32. (Two-Sample Case) Setting V' = (vy,va,..., vy, ), W = (w1, wa,...,wy,),
and Y = (V', W’)’ we see that the two-sample problem (cf. 21.26) is a special case
of the multivariate model with

_ 1"1 0 u'll
XB‘(O 1m>(u’2 '

The extension to n samples is straightforward.

Definition 21.8. If X has less than full rank, then each univariate model also has
less than full rank. From (20.38(2)), a/3%) is estimable for each i = 1,2,...,q and
each model j = 1,2,...,d if a; € C(X'). Let A’ = (a;,az,...,a,). Combining
these linear combinations, we say that AB is estimable if A’ = X'L’ or A = LX
for some ¢ x n matrix L.

21.33. Suppose AB is estimable.
(a) If A is ¢ X p of rank ¢, then L has rank g by (20.38(2)).

(b) AB = LX(X'X)"X'Y = LPoY = (PoL/)'Y is invariant for any choice of
weak inverse (XX’)™ as Pgq is invariant. Here PoL’ is unique (but not L,
unless X has rank p) and has full row rank.

(c) ¢ = a’ABb = a’L@b is the BLUE of ¢ = a’ABb = a’L@b.
(d) A(X’X)~" A =LPuL' = (PoL')PgL’ is invariant and nonsingular by (b).
(¢) E(AB) = LPXB = LXB = AB, since PoX = X.
Proofs. Section 21.4.1.
21.27-21.29. Seber [1984: 400].
21.30a. Seber [1984: 398, 402].
21.30b. Seber [1984: 397-398].
21.31. Seber [1984: 400-401].
21.32. Seber [1984: section 8.6.4].
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21.33b. E(AB) = (PoL')'®. If (PoM')'Y is another estimate, then [PoM’ —
PoL')'® = 0 and C[Po(M’ — L']) L C(X) as the columns of @ are in C(X).
Thus, PoM’ ~ PL’ = 0 as C[Po(M’ — L] C C(X).

21.33c. The result follows from (21.31) by relabeling.

21.4.2 Statistical Inference

Let Y = © 4+ U. In this section we now assume that the underlying distribution of
the columns u; of U’ is a (nonsingular) multivariate normal distribution Ny4(0, X).
The case when X is singular is considered by, for example, Srivastava and von
Rosen [2002]. The multivariate model can be expressed in terms of the univariate
model vecY = vec (XB) + vec U, where from (21.2a) vec (XB) = (I ® X)vecB
and var(vecU) = ¥ ® I, (cf. Searle [1978]). A more general model in which
var(vecU) = X ® V, with V and X possibly singular, is considered by Sengupta
and Jammalamakada [2003: chapter 10].

21.34. The likelihood function for Y, the density function of vecY (or, more
conveniently, vec (Y’)) is the joint distribution of the independent y;, and it can
be expressed in the form

(2m) " "Y2(det X)""/% exp{trace[~ 1 (Y — @)L} (Y - ©)]}.

21.35. Suppose ® = XB, where X has rank 7, and let E be given by (21.30a). We
assume n — r > d. Then:

(a) E ~Wy(n—rX).
(b) E is statistically independent of 5} (and of B if X has full rank p).

(¢) The maximum likelihood estimates of ¥, ©, and B (if X has full rank),
are ¥ = E/n, ©, and B. The maximum value of the likelihood function
is (2m)~"4/2(det £)~"/2e~"4/2, (This corrects a typo in Seber [1984: 407].)

(d) If X has full rank, then (B, $) is sufficient for (B, X).
(e) Referring to the jth column of B, if X has full rank (cf. 21.29c¢),
B9 ~ Nn(ﬂ(j),ajj(X’X)_l).

21.36. Suppose that @ = XB, where X has rank r. Let A be a known ¢ X p matrix
of rank ¢, and let AB be estimable. We are interested in testing Hy : AB = C,
where C is a constant matrix. Then:

(a) Referring to (21.30), the minimum Eg, say, of G(XB) subject to AB = C
occurs when B equals

By =B — (X'X)"A'[A(X'X)"A|"Y(AB - ©).

Although B and I@H are not unique when r < p, ©® = XB and @H = X@H
are unique. Also Ey is positive definite with probability one.
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(b) H=Ey —E = (AB - CY[A(X'X)"A'|"}(AB - C).
H is positive definite with probability one.

(¢) E(H) = ¢ + (AB — C)'[A(X'X)"A’]"}(AB — C) = ¢X + D, say, and D is
positive definite.

(d) H and E are statistically independent.

() When Hy is true, H ~ Wy(q,X). When Hj is false, H has a noncentral
Wishart distribution Wy(q, ¥; A), with noncentrality matrix given by A =
y-1/2py-1/2,

(f) Let E;I/Q be the positive definite square root of Eg (cf. 10.32). Then, when
Hy is true, V = Ef_{l/ QHE;/ % has a d-dimensional matrix variate Type-1
beta distribution with degrees of freedom ¢ and n — r (cf. Section 21.9)

21.37. Four different criterion are usually computed for testing Hp, and are ex-
pressed as functions of eigenvalues of V given in (21.36(f)) above.

1. Roy’s maximum root test ¢pqz, the maximum eigenvalue of HE!, based on
the so-called union—intersection principle.

2. Likelihood ratio test (det E/det Ez)™/2.
3. The Lawley-Hotelling trace (n —r)trace(HE™1).
4. Pillai’s trace trace(HE').

These tests are summarised by Seber [1984: chapter 8], but for further details and
distribution theory see Muirhead [1982: chapter 10].

Proofs. Section 21.4.2.
21.34. Seber [1984: 406].
21.35. Seber [1984: section 8.4].
21.36. Seber [1984: section 8.6].

21.4.3 Two Extensions

We give two extensions to the theory, which demonstrate how matrix theory can
be applied.

21.38. (Generalized Hypothesis) Suppose we want to test Ho : ABD = 0, where
A is ¢ x p of rank ¢ (¢ < p) and D is a known d x v matrix of rank v (v < d). To
do this, let Yp = YD so that the linear model Y = XB + U is transformed to

Yp = XBD + UD = XA + U,

say, where the columns of Uj are i.i.d. N,(0,D'ED). Then Hy becomes AA =0
and we can apply the previous theory of (21.36) to this transformed model.
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(a) H now becomes Hp = D'HD = (ABD)'[A(X'X)"*A’]"'ABD and E be-
comes Ep = D’ED ~ W, (n — r, D'ED).

(b) When ABD = 0 is true, Hp ~ W,(q,D’ED). The only change to the
previous theory is to replace Y by Yp and d by v.

{c¢) The above theory reduces to that of Section 21.4.2 if we set D = I; and v = d.

This hypothesis is used for carrying out a profile analysis of more than two popu-
lations (Seber [1984: section 8.7)).

21.39. (Generalized Model and Hypothesis) Consider the model
Y = XAK' + U,

where X is a known n x p of rank p, A is p X k matrix of unknown parameters,
K’ is a known k x d of rank k (k < d), and the rows of U are independently and
identically distributed (i.i.d.) as Ny4(0,X). We wish to test the hypothesis

HoiAAD :0,

where A is ¢ X d of rank ¢ and D is k x v of rank v. This model is usually called the
growth curve model and it is considered, along with extensions, by Pan and Fang
[2002] and Kollo and van Rosen [2005: chapter 4]. A brief discussion is given by
Seber [1984: section 9.7].

One simple approach to the above model when there are appropriate rank con-
ditions is to transform the model to remove K’ using a right inverse of K. One
method, suggested by (Potthoff and Roy [1964] and described in detail by Seber
[1984: 479], is to choose a nonsingular d x d matrix G (usually positive definite)
such that the k x k matrix K'G~'K is nonsingular, and transform y; to Ciy;,
where C; = G'K(K'G'K)™! is d x k of rank k. Then K'C; = I so that

Y, =YC, = XAK'C; + UC; = XA + Uy,

where the columns of UY, namely Cju,, are i.i.d. Ng(0,%;) with ¥; = C{XC;.
We have now reduced the model to the previous case, and the theory used there
for testing Hy can be applied here with Y replaced by Y; and d by k.

21.5 DIMENSION REDUCTION TECHNIQUES

21.5.1 Principal Component Analysis (PCA)

Given a data set of interrelated variables represented by an n x d data matrix X =
(x1,X2,...,Xp) , the aim of principal component analysis (PCA) is to reduce the
dimensionality d of the data set, while still retaining as much of the variation present
in the data set as possible. This is achieved by transforming to a new set of variables,
called the principal components, which are uncorrelated and are ordered so that the
first few retain most of the variation present in all of the original variables. Also,
we would hope that the components may have some physical interpretation.

We shall first look at the underlying population model that generates the data,
and then consider the sample estimates of various quantites. There are numerous
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books on multivariate analysis that contain chapters or sections on principal compo-
nents, e.g., Anderson [2003], Krzanowski [1988], Muirhead [1982], and Seber [1984]
(which happen to be in my office when writing this). However, more specialized
books are available such as Flury [1988] and Jolliffe [2002].

Definition 21.9. Let x be a random d-dimensional vector with mean p and vari-
ance matrix X. Let T = (tq,tq,...,ty) be an orthogonal matrix such that, by the
spectral theorem (cf. 16.44), we have

Etj = /\jt]' and TlET =A= diag(/\l, )\2, ceey /\d)7

where Ay > A2 > --- > A4 are the ordered eigenvalues of ¥. The sum trace X is
sometimes called the total variance. If y = (y;) = T'(x — p), then y; = t};(x — u)
(1 =1,2,...,d) is called the jth population principal component of x. In developing
the population theory there is no loss of generality in assuming g = 0.

A major drawback to the above approach is that it can be sensitive to the units of
measurement used for each z;. For this and other reasons some authors work with
the population correlation matrix corr(x) rather than the variance matrix X. For
a discussion of the relative merits of the two approaches see Jolliffe [2002: section
2.3]. The optimal properties described below for ¥ also apply to corr(x) if we use
the standardized vector z = (z;), where z; = (x; — p3)/+/04, instead of x.

21.40. (Population Properties)
(a)  =TAT =% | Atit).

(b) The principal components define the principal axes of the family of ellipsoids
x — pu)'E "1 (x — p) = const.
(x—n) [

¢) Since t; has unit length, y; is the length of the orthogonal projection of x —
J y n
in direction t;.

(d) As var(y) = A, the y; are uncorrelated and var(y;) = A;.

(e) Z?:I var(y;) = Z?zl var(z;) = traceX, the total variance. We can use
A;/ trace ¥ to measure the relative manitude of A;. If the A; (i =k+1,...,d)
are relatively small so that the corresponding y; are “small” (with zero means
and small variances), then y) = (y1,%2,...,yx) can be regarded as a k
dimensional approximation for y. Thus y ) can be used as a “proxy” for x
in terms of explaining a major part of the total variance.

It should be noted that the last few components are likely to be more useful
than the first few in detecting outliers that are not apparent from the original
variables (Jolliffe [2002: 237]).

(f) Let Ty = (t1,...,tx). Then:

(i) max var(a'x) = var(t{x) = var[t] (x — p)] = var(y;) = A1,
so that y; is the normalized linear combination of the elements of x —
with maximum variance A;.

(ii) max var(a'x) = var(tyx) = var(yx) = Ak, so that t}(x — p)
a’a:l,Tzk_l)az
is the normalized linear combination of the elements x — p uncorrelated

with ¥1,¥2, ..., ¥k—1 With maximum variance Ag.
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The above results can be expressed in several different ways (e.g., Jolliffe
[2002: 11-12]).

(g) (Predictive Approach) Let B be a d x k& matrix, and consider the “best”
linear predictor of x — p on the basis of B(x — u). The Frobenius norm of
the variance matrix of the prediction error is

|= - EB(B'EB)'B'S||r = [|EV2(14 — Pgi2p) 22| r,

where Py1/25 is a symmetric idempotent matrix representing the orthogonal
projection onto C(3'/?2B). The norm is a minimum when B is equivalent to
T (). Moreover, minimizing the trace of the variance matrix of the prediction
error—that is, maximizing trace(Pgi/2g¥)—yields the same result (Jolliffe
[2002: 17)).

The results (f) and (g) above are optimal properties shared by principal compo-
nents, and {e) was used by Hotelling [1933] to define principal components. For
further properties see Jolliffe [2002: section 2.1] and Seber [1984: section 5.2]. A
key theorem for developing such properties is given next.

21.41. Let f be a function defined on P, the set of all d x d non-negative definite
matrices. For any C € P, let A;(C) > A2(C) > --- > A4(C) > 0 be the eigenvalues
of C. Then f is strictly increasing and invariant under orthogonal transformations
if and only if f(C) = g[A:(C),...,As(C)] for some g that is strictly increasing in
each argument. This means that minimizing f(C) with respect to C is equivalent
to simultaneously minimizing the eigenvalues of C. The functions trace C, ||C||r =
[trace(CC’)]}/2, and det C satisfy the conditions on f.

21.42. Suppose f satisfies the conditions in (21.41) above and vy is a k-dimensional
vector. Then

fvar[x — p — Avy])
is minimized when Av(y = Tyyw) = T(k)Tzk)(x — p) = P(x — p), where P
represents the orthogonal projection of x — p onto C(T ).

Definition 21.10. (Sample Components) In practice, i and ¥ are unknown and
have to be estimated from a sample x1, X9, ..., X,, that is the x; are assumed to be
independently and identically distributed. We can estimate u by ft =X and ¥ by
$ = X'X/n, where X is the centered matrix X = (x; — X, - X). Carrying
out a 31mllar factorization on % as we did for 3, we obtam the elgenvalues )\1 >
)\2 > ... > )\d > 0 and an orthogonal matrix T = (tl,tQ, .. td) of corresponding
elgenvectors. For each observation x; we can define a vector of sample (estimated)
principal components y; = T/ (x; — X), which gives us

Y = (51,52, ...,¥.) = T'X".

Many authors prefer to use the unbiased estimator S of ¥ instead of $ in defining
the sample components. In this case

St; = ﬁﬁgj = (""—5\1'> t,

and the eigenvalues of S are nj\j/(n —1).
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The question arises as to whether we should use S or the sample correlation
matrix R. However, it is much easier to base any inference about the population
components on S rather than on R using large sample theory. A key result is that
if x ~ Ng(p,¥), then from (21.25b), (n — 1)S ~ Wy(n — 1,X). For aspects of
large sample theory see Seber [1984: section 5.2.5] for a brief summary. For further
details see Anderson [2003: section 11.6] and Muirhead [1982: chapter 9], and see
Kollo and Neudecker [1993, 1997] with regard to elliptical distributions. We note
that the theory can be modified to handle dependent data such as a time series
(Jolliffe [2002: chapter 12]). Also, PCA can be used in conjunction with other
multivariate techniques (Jolliffe [2002: chapter 9]. With some adaption, it can be
used for discrete data like contingency tables, in which case it is related to the
method of correspondence analysis and is mentioned briefly in (21.48) below (cf.
Jolliffe [2002: sections 5.4 and 13.1}).

21.43. The score of the jth element of the ith sample observation, given by §;; =
t’:(x; — X), is related to the orthogonal projection of x; —X onto C(t;), namely (cf.
2.49b)

Pe]_ (Xi - f) = £]£;(Xl — f) = Qijtj-

21.44. Using the result (20.15), we can show that the sample components are the
population components for a discrete distribution so that all the optimal properties
of population components hold for the sample components. For example, if v is
a random vector taking the values x; (i = 1,2,...,n) with probability n~1, then
E(v) =X and var(v) = . Applying {(20.6b), we have for a'a =1,

- 1< .
var(a'v) = a'var(v)a = a’Sa = - Zl[a’(xi -%))?,

which takes its maximum value of Xl when a = fl. For further details see Jolliffe
[2002: section 3.7).

21.45. A sample analogue of (21.40g) can be stated as follows. Let G be an n x d
matrix with orthonormal columns. We wish to minimize the sum of the squared
distances x; — X from C(G); that is, we wish to minimize ||X’ — PgX'||F, where
Il - {7 is the Frobenius norm and P¢ represents the orthogonal projection onto G.
The minimum is given by G = ’/I\'(k).

21.46. Let X {which has rank d with probability 1) have a singular value decom-
position (thin version; cf. Section 16.3) X,xq = UpxdAaxaVyygs Where U has

orthogonal columns and V is an orthogonal matrix. Setting T = V, we have
Y = XT = UA and

A = diag(o1,02,...,04) = \/ﬁdiag(;\}/z,;\é/z, . ,5\3/2) = /nA'/?,

the diagonal matrix of singular values of )~(, which are the square roots of the
eigenvalues of X'X (= nX). For applications see Jolliffe [2002: 45].

21.47. If the ;\j (j =k+1,...,d) are small relative to trace s (cf. 21.40e), we can
approximate ¥; by its first k elements y;x), say.
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21.48. (Contingency Tables) Consider a discrete data set of n frequency observa-
tions arranged in an r x ¢ two-way contingency table with n;; in the (3, j)th cell.
Let N = (n;;) and define P = n~!N, D, = diag(r), where r = P1,, D, = diag(c),
where ¢ = P'1,, and X = P — rc’. If the variable defining the rows of the contin-
gency table is independent of the variable defining the columns, then the matrix of
‘expected counts’ is given by nrc’. Thus, X is a matrix of the residuals that remain
when the ‘independence’ model is fitted to P. If we apply the singular value de-
composition to a redefined X = D;I/ZXD;1/2 in (21.46), we get the components
?, which are the same as those obtained by correspondence analysis (Jolliffe [2002:
sections 5.4 and 13.1]).

Proofs. Section 21.5.1.
21.40b. This follows from
(x— )7 (x—p) =y'T'E'Ty =y'A"ly.
See also Jolliffe [2002: 18].
21.40c. We use t};(x — p) = ||t ] - [|(x — )| cos 6.
21.40d. Seber [1984: 176].
21.40e. Seber [1984: 181-183].
21.40f. Seber [1984: 181, the inequality should be reversed in line —1].
21.41. Okamoto and Kanazawa [1968] and Seber [1984: 177-178].
21.42. Seber [1984: 179].

21.5.2 Discriminant Coordinates

Definition 21.11. Suppose we have n d-dimensional observations of which n;
belong to group ¢ (i = 1,2,...,¢9; n = Y_9_, n;). Let x;; be the jth observation in
group ¢, and define

g

n
_ 1 _ 1 g 1
X, = — xX;; and X.=— X;5.
J E :E : 3]
5 n
j=1

i=1 j=1

Let W = 7 | Z;l;l(xij — X;.)(xi; — X;.)', the within-groups matrix, and let
B =7  n(X. —X.)(X;. —X..)', the between-groups matrix. Since W and B
are generally positive definite with probability 1, the eigenvalues of W~!B (which
are the same as those of W~1/2BW~1/2) are positive and distinct with proba-
bility 1, say Ay > Az > --- > Ag > 0. Let W™'Be, = \c, (r = 1,...,d),
where the ¢, are suitably scaled eigenvectors, and define the k x d (k < d) matrix
C = (cy,cz,...,cx) . If we define z;; = Cx;j, then the k elements of z;; are called
the first k discriminant coordinates. (Some authors have used the term canonical
variates, which I have reserved for Section 21.5.3.) These coordinates are deter-
mined so as to emphasize group separation, but with decreasing effectiveness, so
that k& has to be found. The coordinates can be computed using an appropriate
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transformation combined with a principal component analysis. Typically, the c;
are scaled so that CSC’ =1, where S = W/(n — g). For further details see Seber
[1984: section 5.8].

21.49. The above theory is based on the following results.

(a) Setting x;; — X.. = X4; — X;. + X;. — X.., squaring, and summing over ¢ and j,
we get

Z Zl(x“ - i.)(xij - f..)l = an(iz - f)(il - i.,)l

i=1j=1
g ny
+ZZ(X2']' —'fi.),

i=1 j=1

(b) Let A = maxa.azo{a’Ba/a’Wa), where the maximum occurs at a = ¢, say.
Differentiating (a’Ba/a’"Wa) with respect to a we obtain Bc — AWe = 0 so
that W~ 1Bc = Ac.

21.5.3 Canonical Correlations and Variates

Definition 21.12. Let z = (x/,y’)’ be a d-dimensional random vector with mean
p and positive definite variance matrix ¥. Let x and y have dimensions d; and
dy = d — dy, respectively, and consider the partition

1 ¥
z= < Yo1 o2 ) ’
where X;; is d; x d; and 13 = X},. Let p% be the maximum value of the squared
correlation between arbitrary linear combinations a’x and B'y, and let o = a; and
3 = by be the corresponding maximizing values of & and 3. Then the positive
square root \/p-f is called the first (population) canonical correlation between x and
v, and u; = ajx and v; = by are called the first (population) canonical variables.
Let p2 be the maximum value of the squared correlation between a’x and 3y,
where a’x is uncorrelated with ajx and B’y is uncorrelated with bly, and let
up = ahx and vz = bhy be the maximizing values. Then the positive square root
\/p? is called the second canonical correlation, and u, and v are called the second
canonical variables. Continuing in this manner, we obtain r pairs of canonical
variables u = (uy,ug,...,u,) and v = (v1,vg,...,v,)’. We can then regard u and
v as lower-dimensional “representations” of x and y. We shall see below that (i)
the elements of u are uncorrelated, (ii) the elements of v are uncorrelated, and (iii)
the squares of the correlations between u; and v; {(j = 1,2,...,r) are collectively
maximized in some sense. The mathematics is summarised in the following result.

21.50. Let 1 > pf > p% > e 2 pfn > 0, where m = rank X5, be the m
nonzero eigenvalues of 21_1121222_21 Yo (and of 22“2122121_11212). Let the vectors
aj,as,...,a,;, and by, by,...,b,, be the respective corresponding eigenvectors of
21_1121222_21221 and 22_2122121“11212. Suppose that o and 3 are arbitrary vectors
such that for < m, &'x is uncorrelated with each a/x (j = 1,2,...,7 — 1), and
B'y is uncorrelated with each bly (j = 1,2,...,7—1). Let u; = ax and v; = b;-y,
for j =1,2,...,r. Then we have the following results.
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a) The maximum squared correlation between a’x and B’y is given by p? and
T
it occurs when a = a, and 3 = b,..

) cov(u;,ur) =0 for j # k, and cov(v;,vg) = 0 for j 5 k.

) The squared (population) correlation beween u; and v; is p?-.
(d) cov(u;,v;) =0 fori##j.

)

Since pjz- is independent of scale, we can scale a; and b; such that a}Ellaj =1
and b;»)]mbj = 1. The u; and v; then have unit variances. Alternatively, we

can standardize so that the a; and b; all have unit lengths.

(f) If the d; x d2 matrix ¥;2 has full row rank, and d; < da2, then we have
m = d;. All the eigenvalues of 21_1121222'21221 are therefore positive, while
22_21 22121_11212 has d; positive eigenvalues and dz —d; zero eigenvalues. How-
ever, the rank of X2 can vary as there may be constraints on X5 such as

%12 = 0 (rank 0) or X5 = 0?1, 1/ (rank 1).
21.51. Given the above notation, suppose that ¥ is non-negative definite and

singular.

a) The key matrix is now A = X7;X;2¥5,%5;. The nonzero eigenvalues and
y 11 22 3
rank of this matrix are invariant under any choices of the weak inverses X3

and X5,.

(b) The eigenvalues of A are the squares of the canonical correlations between x
and y.

{c) The number of canonical correlations equal to 1 is

k = rank ¥, + rank ¥9o — rank ¥.

(d) If ¥ is positive definite, then k = 0.

21.52. Suppose x and y have means p, and py, respectively. Let u = A(x — px)
and v = B(y — py), where A and B are any matrices, each with 7 rows that are
linearly independent, satisfying A¥;; A" = I, and BE2,B’ = I.. Then E[(u —
v)'(u — v)] is minimized when u and v are vectors of the canonical variables.
21.53. Suppose z' = (x’,y’)’ has a positive definite variance matrix ¥. Then x
and y have the same canonical correlations as two random vectors xy and y¢ with
variance matrix 71, where (x}, y5) is partitioned in the same way as (x’,y’). This
result has been extended to the case of a singular ¥ using generalized inverses by
Latour et al. [1987].

Definition 21.13. (Sample Estimates) Let z,2s,...,2, be a random sample
from the distribution described in Definition 21.12. Let z = (X',¥’)’ and T =
St (zi —Z)(2; — Z)'/n, where $ is partitioned in the same way as X, namely

S i= 1X1—X)(X'—i) Y (X =Xy —¥)
o= ( l_l(yz ¥)(x: — %) Z?:i(Yi_y)(}'i_y)l)

r<z

7)

NIN

OO A

11
21

Y
a)
Q22
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say, where Q;; is d; x d; and Q12 = Q% is d1 x da . We can assume that d; <
da. Then given that ¥ is positive definite and n — 1 > d, we know that, with
probability 1, nX is positive definite and there are no constraints on Q;>—that is,
rank Qi = dy. Let r} > 73 > .- > 1] > 0 be the eigenvalues of Q7' Q12Q5, Qa1
with corresponding eigenvectors a;,ap,...,a4,. We define u;; = é;(xi — X), the
ith element of u; = )~(é]-, where 4; is scaled so that

n
N TSNS PR L 2 Y S
;End; =n" 4 X'X4; = E ug;/n = uju;/n.

Then r is called the jth sample canonical correlation and these correlations are
distinct w1th probability 1. We call u;; the jth sample canonical variable of x;. In
a similar fashion we define v;; = b/, (yz —¥), the ith element of v; = YbJ, to be
the jth sample canonical variable of y;, where by, bo,.. b,,l1 are the corresponding
eigenvectors of Q22 Q21Q11 Q2. The u;; and v;; are called the scores of the ith
observation on the jth canonical variables. In computing the sample eigenvalues
and eigenvectors we can use Qgup, Zap = Qqp/n 01 Sgp = Qup/(n — 1) (a,b,=1,2),
as the factors n and n — 1 cancel out. Some computer packages use the sample
correlation matrix R instead of £. For further details see Seber [1984: section 5.7).

21.54. Using the method of (20.15), the sample canonical variables have the same
optimal properties as those described for the population variables, except that
population variances and covariances are replaced by their sample counterparts.

21.55. We have the following properties of r;.
(a) The r? are distinct with probability 1.

(b) rf- is the square of the sample correlation between the canonical variables
whose values are in the vectors u; and v;.

Proofs. Section 21.5.3.
21.50. Seber [1984: section 5.7; for {d) see 278, solution to exercise 5.28].
21.51. Rao [1981] and Styan [1985: 50-52].
21.52. Brillinger [1975: 370).
21.53. Jewell and Bloomfield [1983].

21.5.4 Latent Variable Methods

Latent variable methods are similar to PCA in that they endeavor to reduce the
dimensionality of the data. However, they do this by imposing a model structure on
the data that relates some observed variables to some underlying latent or hidden
variables. When the latent variables are continuous or discrete, the method is called
factor analysis, while if the latent variables are categorical, the method is usually
referred to as latent class analysis. For general references see Bartholomew [1987]
and Everitt [1984].



486 RANDOM MATRICES

Definition 21.14. (Factor Analysis) Let x = (z1,%2,...,z4)" be a random vector
with mean g and variance matrix X. Let £ = (f1, f2, ..., fm)' be an m-dimensional
random vector with mean 0 and variance matrix I,,,. The factor analysis model is
defined to be

x=pu+TIf+e,

where € is assumed to be uncorrelated with f and has a diagonal variance matrix
¥ = diag(y?,43,...,12). Here I = (v;;) is a d x m unknown matrix of constants.
The elements of £ are called (common) factors or latent variables, the elements of
€ are usually called specific or unique factors, and v;i is called the weight or factor
loading of x; on the factor fy.

21.56. ¥ =TI'T" + ¥, which leads to

m

2 2 2 2

05 = Y Vak + 97 = 3 + 95,
k=1

say, where h? is called the communality or common variance and 1/)J2- is called the
residual variance or unique variance. The aim of factor analysis is to see if & can
be expressed in the above form for a reasonably small value of m and to estimate
the elements of T and ¥.

21.57. The model is not unique as T'f = (TL)L'f = I'ofy for any orthogonal L with
var{fy) = L'var(f)L = L', L = L. It is therefore usual to impose the constraint
that I® T has positive diagonal elements; under certain conditions this constraint
may provide a unique I'. Although factor analysis is very different from PCA, it is
often confused with PCA (Jolliffe [2002: chapter 7] and Srivastava [2002: chapter
12]).

21.58. Let f = A(x—p) = Ay be alinear “estimate” of f. Then the mean square
error is .
E(||f — £]|3) = trace(A’AX) — 2trace(AT) + m.
This is minimzed when
A=T2"!=(T,+Te'r)y"'ret
Proofs. Section 21.5.4.
21.58. Seber [1984: 221].

21.5.5 Classical (Metric) Scaling

Definition 21.15. Given a set of n objects, a prozimity measure §,5 is a measure
of the “closeness” of objects r and s; here closeness does not necessarily refer to
physical distance. A proximity &, is called a dissimilarity if 6, = 0, 6,5 > 0, and
8rs = dgp, for all r,s = 1,2,...,n; the matrix D = (§,;) is called a dissimilarity
matriz. We say that D is Euclidean if there exists a p-dimensional configuration
of points yi1,y2,...,¥n for some p such that the interpoint Euclidean distance

drs = ||yr - YSI|2 = 0ps.
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21.59. Let A = (a;;) be a symmetric n X n matrix, where a,; = —%533. Define
brs = ars — Gy. — Q.5 + G.. SO that
B = (b,) = CAC,
where C = (I, ~ n~!1,1}), the usual centering matrix.
(a) D is Euclidean if and only if B is non-negative definite.
(b) When 62, = ||x, — x4, X = (x; — X, X — X,..., %X, —X)', and A = (62,), we

find that e . .

A =1,1, diag(XX') - 2XX' + diag(XX')1,1,,.
Then B = —%CAC = f()f(v’, where X1, = 0. For further details and
extensions (e.g., using weights), see Takane [2004]. The next result looks at
the reverse of the above process.

21.60. If B of (21.59) is non-negative definite, then we can find the y; as follows.
There exists an orthogonal matrix V = (vi,va,...,v,) such that
s (T O
V'BV = < 0 0 ) (= A, say),

where I' = diag(vy1,72,-..,7) and 71 > 72 > ... > 7 > 0 are the positive
eigenvalues of B. Let V| = (vy,va,...,v,) and

Y = (ﬁvlzﬁgv27"'7ﬁvp)
(y(l),y@), o ’y(p))
(Y1,¥2;---,¥n)'s say.

Then:
(a) B1, =0, since C1,, = 0.
(b) B= VAV =YY"
(¢) n*¥'y = (Y'1,)(Y'1l,) =1,B1, =0, so that y = 0.

() llyr —ysll3 = 6%

21.61. If D is not Euclidean, then some of the eigenvalues of B will be neg-
ative. However, if the first & eigenvalues are comparatively large and positive,
and the remaining positive or negative eigenvalues are near zero, then the rows of
Y, =y, y@ ... y*)) will give a reasonable k-dimensional configuration. If the
original objects are d-dimensional points x; (i = 1,2,...,n) so that [|x,—x||? = 62,
then the n rows of Y, will give an approximate k-dimensional reduction of a d-
dimensional system of points. The above procedure is often referred to as classical
scaling or principal coordinate analysis (Jolliffe {2002: section 5.2] and Seber [1984:
section 5.5.1]). Jolliffe [2002: section 5.5] notes that principal coordinate analysis
is similar to principal component analysis for certain types of similarity matrix.

Proofs. Section 21.5.5.
21.59a. Seber [1984: 236].
21.59b. Takane [2004].
21.60. Seber [1984: 237].
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21.6 PROCRUSTES ANALYSIS (MATCHING CONFIGURATIONS)

Classical multidimensional scaling of Section 21.5 can be regarded as a technique
for trying to match one set of n points in d-dimensional space by another set in
a lower dimensional space. A related technique, commonly known as procrustes
analysis, refers to the problem of matching two configurations of n points in d-
dimensional space where there is a preassigned correspondence between the points
of one configuration and the points of the other.

21.62. Let A be areal dxd matrix with a singular value decomposition A = PXQ’,
where P and Q are d x d orthogonal matrices and X = diag(o1,02,...,04), where
the o; are the singular values. Then, for all orthogonal T,

trace(AT) = trace(TA) < trace[(A’A)'/2],
with equality if T = T = QP’. At the maximum,
AT = PEQ'QP’ = PSP/,

which is non-negative definite. In fact trace(AT) is maximized if and only if AT is
non-negative definite.
If A is nonsingular, then TA = (A’A)'/? has a unique solution

T = (A’A)"/2A.

21.63. Given two sets of d-dimensional points x; and y; (i = 1,2,...,n), we wish
to move the y; relative to the x; through rotation, reflection and translation, i.e.,
by the linear transformation T'y; + ¢, where T is an orthogonal matrix, such that
S lIxi — T'y; — c||3 is minimised. The answer is ¢ = X — ¥ together with the
minimum of X7, |lx; =X — T’ (y: - ¥ = || X — YT||% with respect to orthogonal
T, where || - || is the Frobenius norm. Here

[X-YT|% = trace[(X —YT) (X -YT)]
= trace(X'X) + trace(Y'Y) — 2 trace(X'YT),
where X/ = (x1—%X,...,X, —X) and Y is similarly defined. We have to maximize
trace(TX'Y) = trace(TA), where A = X'Y, with respect to T. From (21.62) the

answer is T = QP’. If A is nonsingular, we also have that the minimizing T for
our original problem is

T = (Y'XX'Y) V2(Y'X).
For further details concerning various aspects of procrustes analysis such as scaling,

rotations and/or reflections, projections, and nonorthogonal transformations, see
Gower and Dijksterhuis [2004].

Proofs. Section 21.6.
21.62. Gower and Dijksterhuis [2004: section 4.1] and Seber [1984: 254-255].
21.63. Seber [1984: 253].



SOME SPECIFIC RANDOM MATRICES 489

21.7 SOME SPECIFIC RANDOM MATRICES

21.64. Let A(z) be a matrix whose elements are function of a random variable z.
If A is positive definite for all z, then, provided that the expectations exist,

E(A™Y) - [E(A))7' = 0,
that is, is non-negative definite.

21.65. (Generalized Quadratics)

(a) (Positive Definite) Suppose that the columns of X' = (x;,x2,...,X,) are
statistically independent and A is an n x n non-negative definite matrix of
rank r (r > d). If for each x; and all b (# 0) and ¢, pr(b’x; = ¢) = 0, then

X’'AX is positive definite with probability 1.

(b) Let X' be defined as in (a), and let A be a symmetric matrix of rank r. If the
joint distribution of the elements of X is absolutely continuous with respect
to the nd-dimensional Lebesque measure, then the following statements hold
with probability 1:

rank(X’AX) = min{d,r}

and the nonzero eigenvalues of X’AX are distinct.
Proofs. Section 21.7.
21.64. Groves and Rothenberg [1969)].

21.65a. DasGupta [1971: theorem 5] and Eaton and Perlman [1973: theorem
2.3].

21.65b. Okamoto [1973)].

21.8 ALLOCATION PROBLEMS

There is a subject area, which is mentioned for completeness, that sometimes uses
dimension reducing techniques. This might be described generally as allocation,
and includes two topics, discriminant analysis and cluster analysis, for which there
are very extensive literatures. The emphasis tends to be on vectors rather than ma-
trices. In essence, discriminant analysis is the problem of allocating an observation
to one of two (or more) multivariate distributions, given samples from each distri-
bution. Cluster analysis is a method of partitioning a cluster of observations into
“sensible” groupings or classes (e.g., classifying psychiatric illnesses). Both topics
are discussed in Seber [1984: chapters 6 and 7]. For further practical overviews of
cluster analysis see Everitt [1993], Gordon [1999], and Kaufmann and Rousseeuw
[1990]. Discriminant analysis is considered in detail by McLachlan [1992].
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21.9 MATRIX-VARIATE DISTRIBUTIONS

In this section we give the density functions of some well known matrix distributions.

Definition 21.16. (Matrix-Variate Normal) A random matrix p X n matrix Y
with E(Y) = M is said to have a matriz-variate normal distribution if y = vecY ~
Npn{vecM, ¥ ®X). Following Kollo and von Rosen [2005: section 2.2], we say that
Y ~ Npn(M, X, ¥). These authors show in detail that many of the properties
of the multivariate normal carry over to the matrix normal distribution. They
also give moments for generalized quadratics and describe matriz-variate elliptical
distributions (see also Gupta and Varga [1993]). If p; is the ith column of M and
¥ =1, then the columns of Y are independently distributed as Np(u;, ) and Y’
is now the data matrix. In this case we can identify Y = X’ and p = d, where X
is the data matrix.

21.66. Using the above notation, if ¥ and ¥ are positive definite so that T ® X is
positive definite, and m = vec M, then the probability density function of y = vecY
is

fy) (2m)7P"/2[det(¥ @ £)] 72 exp[—5(y — m)' (¥ ® )" (y — m)]

(2m) P2 (det ) "P/2(det B) " 2etr[- 127N Y - M)T (Y - M),

I

where etr= e!race,

21.67. (Wishart Distribution) In Section 21.2.2 we introduced the random sym-
metric d X d matrix W, which has a distribution Wy(m, X). When X is positive
definite and m > d, we can obtain the probability density function of vech W (the
distinct elements of W) as

f(vech W) = ¢~ !(det W)(m‘d“l)/Qetr(—%E"IW),

where ¢ = 2™4/2(det £)™/2T 4(3m), “etr ” is defined in (21.66) above, and

d
Tyfa) = D4 [ Ta - 35 - 1))

j=1

Definition 21.17. (Matrix-Variate Gamma Distribution) Let X be a positive
definite d x d random matrix and B a positive definite d x d matrix of constants.
Then X is said to have a matriz-variate gamma distribution if the probability
density function of x = vech X is

1

= (detX)* @)/ 2etr(—BX
(et B)—Ty(a) 9t %) etr(-BX),

fx) =

where @ > (d — 1)/2. For some applications see Mathai [1991].

Definition 21.18. (Matrix-Variate Beta Distributions) A d x d positive definite
random matrix U such that V = I; — U is positive definite is said to have a matriz-
variate Type-1 beta distribution with a and b degrees of freedom (a,b > (d — 1)/2)
if the density function of u = vech U is

1 _ —
F(w) = g (et 0) D 2 et — ),
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where ' y(a)Ta(b)
d(a)lq
By(a,b) = Tula+b)’

and [y(a) is given in (21.67). Note that V =1 — U also has a matrix-variate beta
Type-1 distribution with b and a degrees of freedom, respectively. Mathai [1997:
259-260] proves that f(u) is a density function.

The positive definite random d x d matrix Y is said to have a matriz-variate
Type-2 beta distribution with a and b degrees of freedom (a,b > (d — 1)/2) if the
density function of y = vechY is

d < 2a,2b

fly) = Bd(iz ) (det V)2~ (@+D/2[det [T, + Y])~(e+D).

For further details see Mathai [1997: 262-264].

21.68. Suppose, for i = 1,2, that W; has a nonsingular Wishart distribution
Wa(m;, X) (¥ positive definite, mi,ma > d) and W; and Wy are statistically
independent. Since, by (21.61a), W, is positive definite (with probability 1), then
s0is W1+ Wy, Let V = (W, + W) V2W (W, +W,)~1/2 where (W +W;)!/2
is the positive definite square root of W1 + Wy (cf. 10.32). Then:

a) 'V has a matrix-variate Type-1 beta distribution defined above with 2m; and
) 2
smg degrees of freedom, respectively.

(b) The eigenvalues A; of V are distinct with probablity 1 and can be ordered
1> X1 > X -+ > Ag > 0 (cf. 21.65Db)

(c) The joint probability density function of the A; is
d (m1—d-1)/2 d (m2—d—1}/2 d
fA)=ct (H m) [H(l - 91-)] 116: -5,
i=1 i=1 i<j
where ¢ = W_dz/zBd(%mu img)Ta(3d).

(d) Y = W;1/2W1W2_1/2 has a matrix-variate Type-2 beta distribution with
%ml and %mg degrees of freedom, respectively.

Definition 21.19. (Matrix-Variate Dirichlet Distributions) A set of positive def-

inite p x p random matrices Xy, Xo,..., Xy (i.e., each X; > 0) is said to have a
matriz-variate Type-1 Dirichlet distribution with parameter o = (aa,...,ak+1),
where o; > %1 for i =1,2,...,k + 1, if their joint density function is
k
Fplar +az + -+ akti) _pfL
le,...,Xk = P . det X, )¢ 5
( ) Ip{ar)Tp(az) - Tplaktr) ll:[l( ¢
x{det(I, — Xy — -+ — Xp)]*k+1 5%,
k

0<X; <1, (i=1,2,... k), 0<in<lp,
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The X; are said to have a matriz-variate Type-2 Dirichlet distribution with param-
eter a if their joint density function is

_ Dplartes+- - toggr) 5 o BEL
J Xa) = Tp(e1)Tp(az) - Iplakt1) {g(dew{l) }

x[det(I, + X1 + -+ + X)] T Fress) each X - 0,
where o; > %1 fori=1,2,...,k+1 (Mathai [1997: section 5.1.8]).

21.69. Let the pxp random matrices Xy, ..., Xy have a joint matrix-variate Type-1
Dirichlet distribution.

(a) Any subset of the k matrices also has a joint matrix-variate Type-1 Dirichlet
distribution.

(b) U =X+ +X\ has a matrix-variate Type-1 beta distribution with degrees
of freedom ay + -+ + ax and ag41, respectively.

21.70. Let X;,...,X} have a joint matrix-variate Type-2 Dirichlet distribution
with parameter o, and let Xg = X; +---+Xy. Then the Y; = (I+Xo)~/2X,(I1+
Xo)~Y/2 (i = 1,2,...,k) are jointly distributed as a matrix-variate Type-1 Dirichlet
distribution with parameter c.

Proofs. Section 21.9.

21.66. The second equation follows from (¥®X)~! = ¥-!®%~! and applying
(11.17d(ii)).

21.68. Mathai and Provost [1992: 256-257] and Seber [1984: 33-36].
21.69. Mathai [1997: 276-277].
21.70. Mathai {1997: 278].

21.10 MATRIX ENSEMBLES

In some situations an n X d matrix X is simply a matrix of random variables rather
than a data matrix involving random vectors. In the former case, some distribution
theory for sucn a random matrix, including X'X, is given by Olkin [2002]. However,
random matrices have seen an upsurge of interest in nuclear physics and related
topics. Random matrix ensembles were first introduced in physics by Wigner to
describe the correlations of nuclear spectra. Underlying the subject is the idea
that the characteristic energies of chaotic systems behave locally as if they were
the eigenvalues of a very large matrix with randomly distributed elements. The
dynamical systems considered are characterized by their Hamiltonians, which in
turn are represented by Hermitian matrices. There are also some curious links such
as that between certain zeros of the Riemann zeta function and eigenvalues of a
random matrix. For an introduction to these ideas see Mehta [2004: chapter 1].
The reader should also refer to Section 5.7 for the definition of terms.
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Definition 21.20. A Gausssian orthogonal ensemble is a set of real symmetric
n X n matrices of random variables, H = (h;;) say, where H

(1) has a probability distribution that is invariant under transformations T=1HT,
where T is a real orthogonal matrix (i.e., T~! = T'),

(2) and all the h;; (i < j) are statistically independent.

This model applies when the dynamical system is “symmetric under time reversal”.

When there is no time reversal symmetry, we can have a Gaussian unitary en-
semble with H a Hermitian matrix and T replaced by U, a unitary matrix (with
U~! = U*). There is also a Gaussian symplectic ensemble with H a self-dual Her-
mitian matrix and invariance with respect to the transformation WEFHW, where
W is any symplectic matrix and WF is its dual (i.e., W®W = I). This ensemble
arises when there is time reversal symmetry and the total spin is a half-integer.

We define 3 to be the number of variables representing the number of components
making up the particular entity under consideration. Thus § = 1 for real numbers,
8 = 2 for complex numbers and 3 = 4 for quaternions.

21.71. Given any one of the three Gausssian ensembles above, then the probability
density function of H satisfies

f(vech Z) = exp(—atrace(H?) + btrace H + ¢),

where a is real and positive, b and ¢ are real, and b is usually zero. In each of the
three cases, the eigenvalues of H are real. The total number of real variables in H
consists of n diagonal elements and %n(n — 1) off-diagonal elements. Also

n n
trace(H?) = Z A and traceH = Z i
i=1 i=1

where the \; are the eigenvalues of H. By choosing %n(n — 1)8 certain angular
parameters together with the )A;, and making the transformation to these new
parameters, the Jacobian can be found. This leads to the density function of the
A; as
n
cBmep(=3_ A T[T -l
i=1 1<i<j<n

It is these eigenvalues that are of interest in nuclear physics (Mehta [2004: 53, 56,
58]).
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CHAPTER 22

INEQUALITIES FOR PROBABILITIES AND
RANDOM VARIABLES

Inequalities arise in many places in probability and statistics. For example, Tong
[1980: chapter 8] gives a number of applications of probability inequalities to si-
multaneous confidence regions, hypothesis testing and simultaneous comparisons,
ranking and selection problems, and reliability and life testing. Some of the re-
sults in this chapter can be proved using the concept of majorization and Schur
convexity, discussed in Chapter 23.

22.1 GENERAL PROBABILITIES

Let E; (i=1,2,...,n) be any events.
22.1. (Boole’s Formula)

n

n—1 n
pr(U,E;) = > pr(E) - Y pr(EiNE;)
i=1 i=1 j=i+1

n—2 n-—1 n

+3° 3 Y pr(EiNE; N Ex) — -+ (1) pr{(Mi, E).

i=1 j=i+1 k=j+1

From this we can derive the following inequalities:
n
pr(UiL, E;) < Z pr(E;),
i=1

A Matriz Handbook for Statisticians. By George A. F. Seber 495
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pr(UL, B > Y pr(E) - pr(BiNEy),
i=1 i<j

pr(U,E)) < pr(E) - pr(BiNE;)+ Y pr(E:iNE; N Ey),
i=1

i<j i<j<k
and so on
22.2. Let E; be the complement of E;.
(a) pr(NfyB:) = 1 — pr(NiL, Ey) = 1 - pr(Ul, E;).
(b) This leads to the Kounias inequality
pr(N?,E;) >1— Zpr(Ei) + m]axz pr(E;NE;).
i=1 i#j

22.3. Since the probability of the union of disjoint events is the sum of the indi-
vidual probabilities, we have

pr(E1) + pr(E2NE) + -+ pr(En NEy_1 N--- N EY)

he]
=3
C
S
s
I

pr(E1) + Zpr(Ei NE;_1N---NEy).
i=2

(b) If (i) denotes an arbitray index in the set {1,2,...,% — 1} (i > 1), then

pr(U,E;) < pr[Ei]+ Z pr(E; N Ey)
i=2

= Z pr(Ei) — Z Pr(Ei n E(i))'
i=1 i=2

Since the labeling of the E; is arbitrary we have the following generalization.

22.4. (Hunter-Worsley Inequality) Let G be a graph representing events Ei,....E,
as vertices with E; and E; joined by an edge e;; if and only if E; N E; # ¢. Then,
for any spanning tree T' of G,

n

pr(N?_,E) >1- Zpr(Ei) + Z pr(E; N Ej).
i=1 (i,7):es; €T

In the class of the above bounds, the sharpest bound is obtained by finding the
spanning tree T for which the term

Z pr(E; N E;)

(i,7):ei;€T
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is maximum (cf. Hochberg and Tamhane [1987: 364 for further details]). The
Kounias inequality (cf. 22.2b) is never sharper as it uses the maximum only over a
subset of all spanning trees.

Proofs. Section 22.1.
22.1. This result can be readily proved by induction.
22.2. Hochberg and Tamhane [1987: 363].

22.3a. We Eike the union of _tPe events on tﬁe rig_ht-hand side and use results
like E1U(E2NE) = EyUEs and E; N (E2N Ey) = ¢, and so on, to show
that the events are disjoint.

22.3b. Follows from pr(E;) = pr(E; N Egy) + pr(E; N E)).

22.2 BONFERRONI-TYPE INEQUALITIES

22.5. We have the following results.
(a) (Degree-One Inequality) If p, = pr(E;), i =1,2,...,k, then

k
pr(nE,B) =1 -3 (1 - py).

i=1

(b) (Degree-Two Inequality) Let g; = pr(E;) = 1—p; and ¢i; = g;; = pr(E:NE;)
fori,j =1,2,...,k. Then

(i)

Q3
1-Q) <pr(M | E)<1— —2L
Q< pr(fic By < Q1 +2Q-
where
n n i—1
Q=) ¢ and Q=Y > ai=Y a;
=1 i=2 j=1 j<i

Note that @ + 2Q> is simply > -, Z]"'=1 gij, Where g;; = g; for all 4.
Also, from (22.2a), we obtain

n g%
£ > -
pr [U,ZlE,] 2 071 20,

(i) f g = (q1,92;---,9») and Q = (gi;) is nonsingular, then
pr(U,E:) > 4'Q7'g,

by (12.1d). The nonsingularity condition for Q was removed as follows.

(iii) pr(U,E;) > q'Q~q, where Q™ is a weak inverse of Q.
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(iv) The lower bound given in (a) is sharpened in the following result.
1-Q1+ max. Z;,e 2ij <pr(Ni Bi) <1-Q1+ Q2.
R3]

This is equivalent to

Q1 — Q2 <pr(UL E;) <Q1 — JZax 2#: qij-
IRE]

The above results are called second degree because they require only knowl-
edge of pairwise intersections of events. For further information on higher
degree inequalities see Tong[1980: 147-148]. Some statistical applications
of Bonferroni inequalities to simultaneous confidence inervals are given by
Galambos and Simonelli [1996: chapter 8].

Proofs. Section 22.1.
22.5a. Tong [1980: 143, theorem 7.1.1]
22.5b(i). Tong [1980: 143, theorem 7.1.2].
22.5b(ii). Tong [1980: 145, lemma 7.1.1].
22.5b(iii). Kounias [1968] and quoted by Tong [1980: 146, theorem 7.1.3].
22.5b(iv). Tong [1980: 147, theorem 7.4.1].

22.3 DISTRIBUTION-FREE PROBABILITY INEQUALITIES

22.3.1 Chebyshev-Type Inequalities
If z is a random variable with mean x and variance o2, then for a > 0,
prf|z — p| < ao] > 1-1/a%

This is known as the univariate Chebyshev inequality. A one-sided version is given
by
prjz — pu < ao] > 1—1/(1 + a?),

and a multivariate version (with equal variances and common correlation) is con-
sidered by Tong [1980: 155, lemma 7.2.1]. We now consider further generalizations
of these from Tong [1980: section 7.2].

22.6. Let x = (1, Z2)' be a random vector with mean p = (uy, u2)’, variances o7
and o2, and correlation p. Then:

(a) For all a; >0,

prini_y (|2 — ] < ai01)] 2 1-{(a] +a3) +[(a} +43)* —4p’ala]'/*}/(2a1a3).

(b) When a; = ag = a, pr[n2_;(jz; — ] < acy)] > 1—[1+ (1 - p?)V/?]/a?.
The equality is attainable.
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22.7. Let x = (1,2, ..., %n) be arandom vector with mean vector ¢ and variance
matrix ¥ = (0i;). If 02 = 0; and a; > 0 for all 4, then

a;

n
1
pr (M (Jz; — pi] < ai03)] > 1 Z —.
i=1 %

Tong [1980: 153] described a more general result that gives the sharpest lower
bound.

22.8. Let x = (z1,%2,...,%,)" be a random vector with mean u, variances o?
(i =1,2,...,n), and common correlation p, where p € [-1/(n — 1),1] (to ensure

that the variance matrix is positive definite; cf. 15.18a(iv)). Then, for a satisfying
a> (n=1)[(1 - p)/n]*/?,
we have

prini; (z: < pi + aoy)]
{[(1 + (n = 1)p)(a® — w)]/2 +a(n — 1)(1 - p)*/?}?
n{a? +[1 + (n —1)p]/n}? ’

>1-—

where u ={(n—1)(1-p) - L.
22.9. Let x = (x1,%2,...,Z,) be a random vector with mean p.

(a) Let ¢ be a concave function from R™ to [0,00). For fixed a > 0, define
A = {x| ¢(x) < a}. If E[¢(x)] exists, then

pr(x € A) 21— ¢(u)/a.
‘We now give several applications of the above result.

(b) If y is a non-negative random variable with E(y) < oo, then setting A = {y :
y < &} we have

pr(y > 6) < ——=, §>0.

(c) Suppose that the z; are all non-negative, and let x(;) < --- < 1(,) denote the
order statistics. Then, for ¢; > -+- > ¢, > 0, the function ¢(x) = Z?zl CiT ()
is concave in x. If E(x;)) exists, then

n n
PT(Z Ty <a)>1-— Zcill(i)/a, a >0,
4 =t

where 1y < -+ < i(n) are the ordered means.

For the special case ¢; =1 and ¢; = --- = ¢, = 0, this reduces to

1
min z; <a)>1— — min
p(1<z<n1_) a1<l<nﬂu

or equivalently

pr[Niy (z: > a)] < — min p;.



500 INEQUALITIES FOR PROBABILITIES AND RANDOM VARIABLES

Proofs. Section 22.3.1.
22.6a. Quoted by Tong [1980: 152].
22.6b. Tong [1980: 150, theorem 7.2.1].
22.8. Tong [1980: 156, theorem 7.2.3].
22.9a. Tong [1980: 157, theorem 7.2.4].
22.9b. Mathai and Provost [1992: 188].
22.9c. Quoted by Tong [1980: 158].

22.3.2 Kolmogorov-Type Inequalities

22.10. Let y1,y2...,yn be n independent random variables with means 7; and
variances 77 (¢ = 1,2,...,n), and let v, = (3.1, 72)/2. Then, for every fixed
a > 0, we have the following:

(a) pr [ﬁ (

r=1

T

Z(yi =)

i=1

< avn>:| >1—1/a’

(b) pr [ﬂ (Z(yz —m) < avn>] > a?/(1 + a?).

r=1 \i=1
Proofs. Section 22.3.2.
22.10a. Tong [1980: 158, theorem 7.3.1].

22.10b. Tong [1980: 159, theorem 7.3.2].

22.3.3 Quadratics and Inequalities

22.11. Let x be a n x 1 random vector with E(x) = p and var(x) = %, and
consider the quadratics Q; = (x — a)’A;(x — a), where A; is non-negative definite
(i=1,2,...,k) and a is an arbitrary constant vector.

(a) pr[ﬂi?:l(QiS(si)]Zl— ’—Y—I-+E+...+E ,
61 (52 6k

where, fori =1,2,...,k, we have §; > 0 and ; = trace(A;X)+(u—a)’ A;(pu—
a).

ty o+ %
b) prjnf_,(Q; > 6;)] < 1 :
( )pr[ l—l(Q = )]— (51+62+"'+6k

Proofs. Section 22.3.3.

22.11. Mathai and Provost {1992: 188-189] and the references therein.
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22.4 DATA INEQUALITIES

22.12. The following inequalities hold for any numbers, but the main application
is to random observations.

(a) Let x,22,...,2, be n observations and define T = Y. | z;/n and 2 =
> (#: —7)%/n. Then

(z; -T)* < (n—-1)3%, i=12,...,n

Equality holds if all the other z;’s are equal except x;. For an extension of
the above see Kabe [1980].

(b) Let x; > 22 > -+ > x,. Then

T-0V(k—-1)/(n—k+1) <z <T+6V(n—k)/k.

Equality occurs on the left-hand side if and only if

1 =Tg ="' =Tk_1 and T =Tkt1 = -+ = Tn,
and on the right-hand side if and only if

zy=22=---=g and Tpy1 =Tpy2 ="' = Tn.

(c) Suppose X1,X3,...,X, are d-dimensional observations. Let X, = Y ., X;/n
and S, = Y1, (x; — Xn)(X; — X,,)"/n. Then
(n—1)S, — (x; —X,)(x; —X,)" is non-negative definite,
or equivalently,
(x; —in)'S;I(xj X, )<n~1, j=1,2,...,n
Thus each x; lies in the interior or on the surface of the ellipsoid (x —
%,)'S;{x —X,) = n—1. If S, is singular, we can replace S;! by S;, a
weak inverse of S,,.
|
(d) If X)) = 7= le#] X, then
n? , , .
E—_—lsn — (xj —X(j){x; —X(;))’ is non-negative definite,
or equivalently,

n2

i=12,...,n

(xj —%(5))'S7 1 (%) — X(jy) < el

Proofs. Section 22.4.
22.12a. Isotalo et al. [2005b: 176} and Samuelson [1968].
22.12b. Farnum [1989] and Wolkowicz and Styan [1979].
22.12¢. Trenkler and Puntanen [2005]
22.12d. Trenkler and Puntanen {2005].
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22.5 INEQUALITIES FOR EXPECTATIONS

22.13. (Multivariate Jensen’s Inequality) Let x be an n x 1 random vector with
finite expectation E(x) = p.

(a) Let ¢ be a real-valued convex function defined on S, where S is a convex subset
of R™. If pr(x € S) =1, then
E[¢(x)] 2 ¢(n).

(b) If ¢ is a symmetric (cf. Definition 23.6 above (23.14)) and continuous function
on R”, then
D11y, B(2)s - - - » (n)) < Bld(z (1), 22y, -+ Tm))]s
where pu1) 2 pz) 2 2 By and T(1) 2 T(z) 2100 2 Ty
22.14. (Finite Population) Suppose that z,,s,...,Z, are obtained by sampling

without replacement from a finite population, and y1,¥2,...,y are obtained by
sampling with replacement from the same population. Then if ¢ is continuous and

convex,
i=1 i=1
Proofs. Section 22.5.

22.13. Schott {2005: 378].
22.14. Hoeffding [1963] and quoted by Marshall and Olkin [1979: 331-343].

22.6 MULTIVARIATE INEQUALITIES

22.6.1 Convex Subsets

22.15. Let x € R? be a random vector with symmetric probability density function
f(x),that is, f(—x) = f(x), such that the set {x : f(x) > a} is convex for all o > 0.
Suppose that S is a convex subset of R% and is symmetric about 0 (i.e., if x € S
then —x € S also). Then:

(a) pr(x+cb e S) >pr(x+bcS) for any constant b€ Sand 0 < c < 1.

(b) The result (a) still hold if b is replaced by y, a random vector distributed
independently of x.

(c) If x ~ Ny(0,%), then its probability density function satisfies the above
conditions.

(d) If x ~ N4(0,%;) and y ~ Ny(0, E3), where ¥; — X is non-negative definite,
then pr(x € S) < pr(y € S). This type of result has been extended to
elliptically contoured distributions by Perlman [1993)].

Many of the unimodal symmetric multivariate distributions centered at the origin,
like the multivariate normal and multivariate t-distribution, satisfy the conditions
of this theorem. For further background see Anderson [1996].
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22.6.2 Multivariate Normal

22.16. (Slepian Inequality) Suppose x ~ Ny4(0, X), where X = (0;;) is non-negative
definite. Let y; = 2;/\/0u, 1 = 1,2,...,d so that y ~ Ng(0,R), where R = (p;;) is
the population correlation matrix. Then, for any constants ¢y, ¢a,. .., ¢4,

pr [N, (3 < )]

is an increasing function for each p;;, ¢ # j. If R is positive definite, then the above
is a strictly increasing function of p;;, ¢ # j.

Replacing c; by /o;c;, we see that the result still holds if use the z; instead of
the Yi-

If all the p;; > 0 (¢ # j), then

d

pr [Ny (v < )] > [ pr(ys < ca)-
i=1

If pi; < 0 for all 4, 7,1 # j, the above inequality is reversed.

Because we can transform from z; to y;, researchers have focused, without any
loss of generality, on deriving results for y, where y ~ Ny(0,R) and R is the
correlation matrix.

22.17. (Khatri)
a) Suppose x = (x},\,X/,) ~ Ny(0,X), where x(x) is dx x 1 (k = 1,2) and
(1) ™(2) (k)

d=d, +dsy. Let
Y X
= ,
( Ty T )

where Zgi is di x dg. Let A; € R% and Ay C R?% be two convex regions
that are symmetric about the origin (cf. 22.15). If ¥;, has rank zero (i.e.,
¥,2 = 0) or has rank one, then

2
pr [Mioi (%) € Ax)] H r(X(k) € Ak).

Setting x(1) = x1, we have
pr(lz1] < a1,x(2) € A2) > pr(|z1| < a1) pr(xe) € A2),
and repeatedly applying this result to each element of x(3y, we obtain

d

pr [Ny (o] < )] > [ eIl < a3).

=1
This inequality is strict if ¥ is positive definite, ¥ is not a diagonal matrix,
and all the a;s are positive.

The above results have been generalized to the case when the mean of x is
not necessarily zero. For details see Tong [1980: theorem 2.2.3].

If the correlation matrix R of x has structure ! (see (b) below) and is positive
definite, then 212 has rank 0 or 1 (quoted by Tong [1980: 33, example 11]).
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(b} Suppose x = (xél),xb), .-+, X(,y)’, where x ~ N4(0,R) and R = (p;;) is the
correlation matrix. Here x(;) is dp x 1 (k = 1,2,...,r), where }_; di = d.
For each k, let Ay C R% be a convex region symmetric about the origin.
Suppose we have the product structure p;; = AAj, Ay € (—1,1), for all 4,5
(j # i), called structure | by Tong, then the following inequalities hold.

(i) Firstly,
pr [ﬂZ:I(X(k) S Ak)] > pr [ﬂkec(X(k) € Ak)]
X pr [ Nige (X € Ar))]

H pr(X(x) € Ag)
k=1

v

and

pr [QZ:I(X(k) ¢ Ax)] > pr [mkec(x(k) ¢ Ax)]
x pr [Nkge (Xk) & Ax)]

> H pr(x(x) ¢ Ax)

k=1

holds for every subset C of the integers {1,2,...,r}. The inequalities
are strict if the A;’s are bounded sets with positive probabilities and the
A;’s are nonzero.

(ii) We then have the following special case of the above.
d
pr [N (Jz:] > ai)] > [] pr(lzl > as).
i=1

22.18. (Sid4k’s Theorem) Let x ~ Ny(0, R()), where R(\) = (p;;(\)) is a correla-
tion matrix depending on A € [0,1] in the following way: For a fixed non-negative
definite correlation matrix T = (7;;), we define py;(A) =7;; forall 4,7 =2,3,...,d
and p1;{A) = pj1(A) = Ay for 5 = 2,...,d. Then R() is non-negative definite for
A €[0,1], and
pr [Ny (lzi] < ai)]

is monotonically nondecreasing in A € [0,1] for every a; (i = 1,2,...,d). If T is
positive definite (which implies R(X) is positive definite), 7,; # 0 for some j > 1,
and all the a;s are positive, then the above probability is strictly increasing in A.

A consequence of the above result is that if we now have correlation matrix R(A),
where A = (A1, A2, ..., Ag)’s pij(A) = A my; for all ¢ # j, and each A; € [0, 1], then
the above probability is monotonically nondecreasing in each A; € [0, 1]. It is strictly
increasing in A; if T = (7;;) is positive definite, A;7;; # 0 for some j # i, and all
the a;s are positive.

22.19. Suppose x ~ N4(0,X), where o;; = 02 for i = j, g;; = pa? for i # j, and
p € [0,1]. Define for k=1,2,...,d and a > 0,

pri(k) = pr[Ni(z; <a)
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and
prs(k) = pr[ni (=l 2 a)] .
Then, for m = 1,2,3, we have
pr(d) > [pr, (R)]Y* 2 [pr, (D), d>k>2.
The inequalities are strict if p > 0.

Definition 22.1. Let x = (z1,22,...,%4) be a random vector. We say that the
elements of x are associated random variables if for any two univariate functions
gi(x) of x such that E[g;(x)] exists (¢ = 1,2) that are nondecreasing in each ar-
gument, we have covig;(x), g2(x)] > 0. Esary et al. [1967], who introduced the
concept, have given a number of results that can be used to readily verify that a
given set of random variables is associated.

22.20. The following statements are true.

(a) Any subset of associated random varjables is a set of associated random vari-
ables.

(b) The set consisting of a single random variable is associated.

(c) If two sets of associated random variables are independent, then their union
is a set of associated random variables.

(d) Independent random variables are associated.

(e) Nondecreasing functions of associated random variables are associated ran-
dom variables.

22.21. If the elements of the d x 1 vector x are associated random variables, then

prni (z: <ai)] > prifiec(zi < a)lpr[Nige(@: < a;)]
d
> [pr@: <a)
=1

holds for all a; and all subsets C of {1,2,...,d}.
Proofs. Section 22.6.2.

22.15. Results quoted by Schott [2005: 83, exercise 2.61] and follow from
(2.65¢).

22.16. Tong [1980: section 2.1].
22.17a. Tong [1980: 16-19].

22.17b(i). Quoted by Hochberg and Tamhane [1987: 367] and proved by Tong
[1980: theorems 2.2.4 and 2.3.2].

22.17b(ii). Tong [1980: 28, theorem 2.3.3].

22.18. Tong [1980: 21, theorem 2.2.5, corollary 1].
22.19. Tong [1980: 30, theorem 2.3.4].

22.20. Tong [1980: 87, theorem 5.2.2].

22.21. Tong [1980: 89, theorem 5.2.4].
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22.6.3 Inequalities For Other Distributions

22.22. (Multivariate t-Distribution) Let x = (z1,22,...,24)" ~ Ng(0,R), where
we can assume without loss of generality that R = (p;;) is the correlation ma-
trix with p; = 1 (cf. 22.16). Let z; = z;/u, where u is distributed as a \/x2/v
random variable independent of x. Then z = (z1,29,...,24)" has a multivariate
t-distribution with v degrees of freedom and associated correlation matrix R. In
terms of the notation of Section 20.8.1, y ~ t4(v,0,R).

By conditioning on u, the following inequalities from above still hold with z; or
y; replaced by z;.

(a) If all the p;; > 0, then

d
pr [N, (2 < )] 2 HPT(Zi <)

=1

(b) pr [N (2] < @)] 2 [T, pr(lz) < @)

This inequality is strict if R is positive definite, R is not a diagonal matrix,
and all the a;s are positive.

(c) If pi; = AiAj (all 4,4, j # i), where each A; € (—1,+1), then

d
pr [N, (|21 > a)] > [[ pr(lai] > as).

i=1

22.23. (Correlated F-ratios) Let x23,x?,...,x? be independent chi-square vari-
ables with degrees of freedoom vq,v1,...vk, and let Fy = (x2/v:)/(x2/wo), @ =
1,2,...,k. Then

k
(a) pr [ﬂf=1(Fi < ai)] > Hpr(F,- < a;).

k
(b) pr [NEL1(Fi > a)] > [[ pr(Fi > a2).

i=1
Proofs. Section 22.6.3.
22.22. Hochberg and Tamhane [1987: 369].
22.23. Tong [1980: 43, theorem 3.2.2].



CHAPTER 23

MAJORIZATION

Majorization does not seem to be a topic very well known in statistical circles.
However, majorization can be used to prove a number of inequalities. A key result
is (23.7), from which we may assume without any loss of generality (Tong [1980:
105]) that only two coordinates need be different when proving inequalities. Two
applications are, for example, species-diversity indices (Tong [1983]) and optimal
design theory (Bhaumik [1995]). The topic is also relevant to the finding of optimal
statistical tests {(Anderson [2003: section 8.10]).

23.1 GENERAL PROPERTIES

Definition 23.1. Let x = (21,%2,...,2,) and ¥y = (y;,¥2,...,¥yn) be vectors in

R™. Suppose the x; are ordered in decreasing order of magnitude as x(;y > x(2) >
- > &(n), with the y; ordered in a similar fashion. We say that x is (strongly)

majorized by y (or y majorizes x), and use the symbol x € y (or y > x), if

Ty +rot+o+re < oy tyeytoootye. 1=12,...,n-1,
rytzo+--+x, = yl+y2++yn
This definition is given by Marshall and Olkin [1979] and Horn and Johnson [1991],

except they use zp;) instead of z(;). They and most other authors, except Rao and
Rao [1998: chapter 9], use x < y instead of x < y; however, I have reserved the
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former symbol in the form of A > 0 for positive definite matrices and used A > 0
for matrices with all positive elements.

The above definition has also been exended to infinite sequences (Marshall and
Olkin [1979: 16]) and to random vectors (Marshall and Olkin [1979: chapter 11]).

23.1. If the z; (and the y;) are ordered in increasing magnitude, say x{1} < zy9) <
-+ < ZTyny, then since Ty} = T(n_iy1), X KLy if and only if

zyteeyt+o-tEy 2 oy tyey oo tyE, 1=4L2,00,n -1,

T+ Tt A+ T = yAttUa

Some authors use this result as their definition, which I find confusing because of
the direction of the inequalities. Using the notation z[; instead of z;), Rao and
Rao [1998: 304] proved the equivalence of the two definitions.

23.2. Let 7 be a permutation of {1,2,...,n}. If x, y, and z are in R", and x,
is the vector whose components are a permutation of the elements of x, then the
following hold.

(a) x < x.

(b) Ifz =37, ;/n, then T1, K x.

(¢) x < x, for every permutation 7.

(d) fx < yandy « z, then x < z.

(¢) fx <y andy < x, then y = x, for some permutation 7.

)
(e) fx<z,y<z, and 0< a <1, thenax+ (1 —a)y < z.
(f) fx<y, x<z and 0 < <1, then x € ay + (1 — o)z
)

(g) If z is any vector, then

()z() < (Z) if and only if x < y.

11

/
~.20,... 1.0,...,0).
292707 70> <<( 707 70)

< <<(

23.3. The following conditions are equivalent.
1) xKy.
(2) x = Ay for some doubly stochastic matrix A.
(3) x = By for some orthostochastic matrix B.

Note that A and B are not unique.
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234. If x>0,y >0, and x <y, then [[[, z; > [T\, v

23.5. (Schur) If H be an n x n Hermitian matrix with (real) eigenvalues given
by the vector A(H) = (A1, Az,..., A}, where Ay > ... > \,, and (real) diagonal
elements h = (hyy, hoa, ... hny)', then

h < A(H)

on R™. This result is an example of a number of inequalities involving the eigen-
values and singular values of a matrix (cf. Marshall and Olkin [1979: chapter 9]),
some of which are quoted elsewhere.

23.6. (Fan) If A and B are n x n Hermitian matrices, then
A(A + B) < A(A) + A(B).

Definition 23.2. If Q is a permutation matrix that interchanges just two coor-
dinates of a vector x (say x; and xy), then a T-transform, denoted by Tx, has T
of the form T = M + (1 — A\)Q, where 0 < A < 1. What Tx does is transform z;
into Az; + (1 — A)zg and zx into Azg + (1 — M)z, leaving the other elements of x
unchanged. For example, if Q interchanges the first two elements of x € R™, then
Q = (ez,ey,...,e,) is I, with its first two columns interchanged.

23.7. We have x <« y if and only if there exists a finite number of real vectors
€1,C2,...Cp such that x =¢; € ¢p € -+ K ¢y K ¢y, =y, where, for all 7, ¢;
and c;4; differ in two coordinates only. Thus if x < y, then y can be derived from
X by successive applications of a finite number of T-transforms.

Definition 23.3. (Weak Majorization) We now generalize the Definition 23.1
above. A vector x is said to be weakly (sub)majorized by y, and we denote the
relationship by x <, y, if

ryt+troyt e <y tynytoootye, t=L2,...,n

Marshall and Olkin [1979] use the notation x <, y for weak (sub)majorization.
Some authors omit the prefix “sub”.
We say that x is weakly (super)majorized by y and denote the relationship by
x €y if
Ty +rey o+ Ty 2y tyey ooty i=12,000,n
23.8. The results below follow directly from the previous definitions.

(a) x € y if and only if —x <* —y.

(b) x € y and x ¥ y if and only if x < y.
(¢) x <y (ie., z; <y for all i) implies that x <, y and x >" y.
(d) x <4 y if and only if for some u, x <uand u K y.

)

(e) x «™ y if and only if for some v, x < vand v > y.
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23.9. Let Ry = [0,00). Then x <, y on R% if and only if there exists a doubly
stochastic matrix A such that x = Ay.

23.10. x <, y if and only if " ; ¢(x;) < ¢(y;) for all continuous monotonically
increasing convex functions ¢ (cf. Definition 23.5 below).

23.11. Let A and B be n x n symmetric matrices, and suppose that A;(C) >
A2(C) = -+ > A (C) with A(C) the corresponding vector, where C = A or B.
Then

A(A + B)) <, A(A) + A(B.

23.12. If A and B are n x n matrices and A < B (i.e., a;; < b;; for all 7.5), then
using the notation of (23.11) above we have

A(A) < A(B).

23.13. Let A and B be n x n real or complex matrices, and let 1(C) > 05(C) >
-+ > 04(C) (k = min{m, n}), with (C) the corresponding vector. Then:

(a) o(A +B) <, 0(A) + o(B).
(b) If m = n,

() o(AB) < o(A) 0 7(B).
(ii) o(AoB) < og(A)oo(B).

Here “o” is the Hadamard product.
Proofs. Section 23.1.

23.2. Rao and Rao [1998: 303-307, for (a)—(g)] and Marshall and Olkin [1979:
7, for (h)].

23.3. Marshall and Olkin [1979: 21-24].

23.4. Quoted by Rao and Rao [1998: 320].

23.5. Marshall and Olkin and Olkin [1979: 218] and Zhang [1998: 230].
23.6. Marshall and Olkin [1979: 241] and Zhang [1999: 231].

23.7. Marshall and Olkin [1979: 21] and Rao and Rao [1998: 316].
23.8. Marshall and Olkin [1979: 11].

23.9. Horn and Johnson [1991: 166-167].

23.11. Anderson {2003: 357].

23.12. Anderson [2003: 359].

93.13. Zhang [1998: 232].
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23.2 SCHUR CONVEXITY

Definition 23.4. Let f be a function from R™ to R™ (m > 1) defined on 4 C R™.
Then f is said to be Schur-conver on A if

Xy € R" and x « y on A = f(x) <, f(y)-
Also f is said to be strongly Schur-convex on A if
X,y € R™ and x <, y on A = f(x) <, £(y),
and f is said to be strictly Schur-convezx on A if
x,y eR"and x < y on 4 = f(x) < f(y).

If A =R", we drop the words “on .A”. Note that the label “schur-convex” is a bit
misleading as such a function is not necessarily convex.

A function f is Schur-concave if (—f) is Schur-convex. (The above definitions come
from Rao and Rao [1998: 307], except m and n are interchanged.)

The above definitions need to be clarified as follows when m = 1 and f is no
longer a vector (say ¢). The function ¢ is Schur-convex (respectively concave) on A
ifx,y € R" and x < y on A = ¢(x) < &(y) (respectively ¢(x) > ¢(y)). If y is not
a permutation of x, then ¢ is said to be strictly Schur-convex (respectively concave)
on Aif x,y € R" and x < y on A = ¢(x) < ¢(y) (respectively ¢(x) > ¢(y)).

Schur convexity or concavity can be used to prove many inequalities. For ex-
ample, Marshall and Olkin [1979: chapter 8] list a number of inequalities including
those relating to the angles or sides of various geometrical figures such as triangles
and polygons. Schur convexity also arises in combinatorial analysis, particularly
with respect to graph theory, the theory of network flows, and the study of incidence
matrices (Marshall and Olkin [1979: chapter 7]).

Definition 23.5. Let f be a function from R” to R™ (m > 1) defined on A C R,
and let x <y (i.e., z; <y, for each 7). Then f is said to be montonically increasing
on Aif x,y € R” and x <y on A = f(x) < f(y), monotonically decreasing if —f
is monotonically increasing, and monotone if it is either monotonically increasing
or decreasing.

We recall from Section 2.5 that f is convez if

flax+ (1 — a)y) < of(x) + (1 — &)f(y),
for every 0 < a < 1 and x,y € R"; f is concave if —f is convex.

Definition 23.6. Let f be a function from R™ to R™, and let y = f(x). Then f
is said to be symmetric if, for every permutation 7 of {1,2,...,n}, there exists a
permutation 7’ of {1,2,...,m} such that f(x,) = y, for all x € R™.

If m = 1, so that f = @, say, then ¢ is symmetric if ¢(x,) = ¢(x) for all 7.
Examples of symmetric functions for n = 3 are ¢(x) = z1 + z2 + z3, ¢(x) =
T1Zo + Tox3 + x3x7, and qb(x) = Z1X2X3.

23.14. If a function f from R™ to R™ is convex and symmetric, then it is Schur-
convex. In addition, if f is monotonically increasing, then f is strongly Schur-
convex.
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23.15. Let g be a function from R to R, and define

f(x) = (9(z1), 9(z2), - .., g(zn))".
Then, from the previous result, we have the following.
(a) If g is convex, then f is Schur-convex.

(b) If ¢ is a convex monotonically increasing function, then f is strongly Schur-
convex.

(c) Taking g(x) = |z|, g(z) = z?, and g(z) = max{xz,0} = xF, respectively, we
have
(1) x < y implies that |x| <, |y
(ii) x <y, u; = 22 and v; = y? implies that u <, v.
(i) x <« y implies that x+ <, y™.
23.16. The following symmetric convex functions are Schur-convex.
(a) ¢(x) = max; |z;|.
(b) é(x) = (i, lza)V7, r 2 1.
23.17. (Sum)

(a) Let Z be an interval of R, and let g be a function from Z to R. If g is (strictly)
convex on Z, then ¢(x) = 3", g(x;) is (strictly) Schur-convex on I%, as ¢ is
symmetric. In this case, x <« y on 7 implies that ¢(x) < ¢(y) (or ¢(x) < ¢(y)
for strict convexity).

There is also a converse result. Suppose g is continuous on Z. If ¢ is (strictly)
Schur-convex on Z™, then g is (strictly) convex on Z.

(b) Combining the above, the inequality

n

> g(z:) < Zg(yi)

=1

holds for all continuous convex functions g from R to R if and only if x € y.
Also, the same inequality holds for all continuous increasing convex functions
g if and only if x <, y. It holds for continuous decreasing convex functions
g if and only if x <™ y.

23.18. The following are examples of strictly convex functions.

(a) For a > 0, g(x) = [z + (1/x)]* is strictly convex on (0,1}. For a > 1, g is
strictly convex on (0, 00).

(b) —logz is strictly convex on (0, c0).

(¢) g(x) = 1/z is strictly convex on (0, 00).
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In each case ¢(x) = Y ;. g(z;) is strictly Schur-convex. If z; > 0and Y., z; = 1,
then n 11, <« x (by 23.2b) and ¢(n"'1,) < #(x). We can use this result to set
up inequalities. For example, using (a),

n 1 a 2 1)e
) (I + _> > (DT
= T; ne—-

23.19. (Product) Let g be a continuous non-negative function defined on an inter-
val Z. Then ¢(x) =[]}, g(=;) is (strictly) Schur-convex on Z" if and only if log g is
(strictly) convex on Z. Since, by (23.2b), T1, < x, we can use this result to obtain
various inequalities. For example, log'(z) is strictly convex on R4 = (0,00) so

that ¢(x) = [, I'(z;) is strictly Schur-convex on R7 . Hence

@)" < Hr(x,.).

For further details about Schur-convex or Schur-concave functions see Marshall
and Olkin [1979: chapter 3].
Proofs. Section 23.2.

23.14. Rao and Rao [1998: 318].

23.15a. Marshall and Olkin [1979: 115] and Rao and Rao [1998: 319].
23.15b. Marshall Olkin [1979: 116] and Rao and Rao [1998: 319].
23.15¢. Rao and Rao [1998: 319].

23.16. Marshall and Olkin [1979: 96].

23.17a. Marshall and Olkin [1979: 64, 67].

23.17b. Marshall and Olkin [1979: 108-109].

23.18-23.19. Marshall and Olkin [1979: 70-73, 75].

23.3 PROBABILITIES AND RANDOM VARIABLES

23.20. {Probabilities) For ¢ = 1,2,...,n, let p; = pr(E;), and let ¢; be the proba-
bility that at least k of the events F,, Eg, ..., E, occurs.

(a) fp=(p1,...,pn) and q = (g1,...,¢n)’, then p < q.
(b) From (a) we have >, pi=>.., ¢ and [[—_,pi >l , -

23.21. (Expectations) Let x = (z,22,...,2,)" be a random vector with finite
expectation, and define a; = E(z;), ; = agy, and b; = E(z(;)), where a1y > a(g) >
R a(n) and T(1) > Z(2) > > Z(n)- Then:

(a) a< b.
(b) a< b.
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23.22. (Eigenvalues) Let Z be a random Hermitian n x n matrix with eigenvalues
AM(Z) > A3(Z) > ... > A\ (Z) (which are all real). Then

(M(E[Z]), - ., A (B[Z]) < (E[M(Z)], ... EP ()],
where the X;(E[Z]) are the eigenvalues of E[Z], the expectation of Z.

23.23. (Singular Values) Let W be an m xn random complex matrix with singular
values 01(W) > ... > 0,(W), where ¢ = min(m,n). Then

(01(E[Z]), ..., on(E[Z])) <uw (E[o1(Z)],. .., E[on(Z)])"
Proofs. Section 23.2.
23.20. Marshall and Olkin [1979: 345-347].
23.21a. Rao and Rao [1998: 305].
23.21b. Marshall and Olkin [1979: 348].
23.22. Marshall and Olkin [1979: 355].
23.23. Marshall and Olkin [1979: 357].



CHAPTER 24

OPTIMIZATION AND MATRIX
APPROXIMATION

The subject of finding unconstrained or constrained maxima and minima of func-
tions is an extensive one. Schott [2005: section 9.7] gives a helpful summary. We
consider only a few basic results in this chapter.

24.1 STATIONARY VALUES

Definition 24.1. Let f : x — f(x) be a real-valued function defined on S, a
subset of R™. Then f has a local mazimum at c if, for some § > 0, f(c) > f(x)
for all x such that ||x — ||z < 4. It has a strict local mazimum if f(c) > f(x) for
all x # ¢ such that ||x — ¢z < 8. Also, f has a global (absolute) mazimum at ¢
if f(c) > f(x) for all x € S. The function f has a local minimum at c if —f has
a local maximum at ¢, and a global (absolute) minimum at c if —f has a global
maximum at c.

Let ¢ be an interior point of S (cf. Definition 2.29 below (2.63)). Then there
exists a § > 0 such that x € S for all x satisfying ||x — ¢|l2 < 6. Suppose f is
differentiable at c. If

o1e) _ 05| _,
oc’ X -

X=C

then any point c satisfying the above equation is called a stationary point. (Note
that f(c) is also called a critical value of f at ¢.) Such a point can be a local
maximum, a local minimum, or a saddle point.

A Matrix Handbook for Statisticians. By George A. F. Seber 515
Copyright © 2008 John Wiley & Sons, Inc.
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24.1. (Unconstrained Local Optimization) Let f be defined as in Definition 24.1
above, and suppose that f is twice differentiable at ¢, where c is an interior point
of S. If ¢ is a stationary value of f and V2 f(c) is the Hessian of f at ¢ (cf. Section
17.11), then:

(a) f has a strict local minimum at c if V2 f(c) is positive definite.

(b) f has a strict local maximum at ¢ if —V?2 f(c) is positive definite (i.e., V2f(c)
is negative definite).

(¢) f has a saddle point at c if V2f(c) is neither positive definite nor negative
definite, but is nonsingular.

(c) f may have a local minimum, a local maximum, or a saddlepoint at c if
V2f(c) is singular.

24.2. Minimizing a function is equivalent to minimizing a monotonically increasing
transformation of that function. This result is particularly useful in maximum
likelihood estimation, which is discussed in Section 24.3.1 below.

24.3. (Method of Lagrange Multipliers for Constrained Optimization) We now give
sufficient conditions for finding a strict local maximum or minimum of a real-valued
function f defined on S C R" subject to the vector of constraints g(x) = 0, where
g=1(91,92,---,9m) 18 m x 1 (m < n).

Let ¢ be an interior point of S, let F(x, X) = f(x)+A'g(x), where A € R™ (called
the Lagrange multiplier; some use —A), and suppose that the following conditions

hold:
(1) f and g are twice differentiable at c.
(2) B = dg(x)/8x’" = (0g:(x)/0z;) has full row rank m at x = c.
(3) x = c is a solution of g(x) = 0 and 9F(x, X)/0x = 0 (for some ).

If Ais V2f(x) — Y10, AiV2g;(x) evaluated at x = ¢, then f has a strict local
maximum at x = ¢, subject to g(x) = 0, if

x'Ax <0, for all x # 0 for which Bx = 0.

A similar result holds for a strict local minimum with the inequality x’Ax > 0
replacing x’ Ax < 0. In practice, one can often just simply solve the equations
AF(x,\)/0x = 0 and g(x) = 0 for x and A, and then use ad hoc methods to check
the nature of the constrained stationary value without having to investigate A.

24.4. Assuming that the conditions of the previous result (24.3) hold, we now give
some equivalent sufficient conditions for a strict local maximum or a strict local
minimum to exist. Let A be a symmetric n X n matrix and B an m x n matrix of
rank m. Let A, be the leading principal r X r submatrix of A, and let B, be the
m x r matrix obtained by deleting the last n — r columns of B. For r =1,2,...,n,
define the (m + r) x (m + r) matrix A, as

0 B,
a=(g &)
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If B,, is nonsingular (which can be achieved by rearranging the z; variables in
(24.3)), then x’Ax > 0 holds for all x # 0 satisfying Bx = 0 if and only if

()" detA, >0 forallr=m+1,...,n.
Also, x’ Ax < 0 holds for all x # 0 satisfying Bx = 0 if and only if
(-1)"detA, >0 forallr=m+1,...,n.

Examples using the above theory are given by Schott [2005: 380-381] and Magnus
and Neudecker [1999: 138].

24.5. (Global Optimization) Finding the global maximum or minimum is some-
times best achieved by using the ideas of convex sets and functions, as seen in the
following results.

(a) On a convex set, the set of points at which the minimum of a convex function
is attained is convex, and any local minimum is a global minimum. The same
is true for a concave function, except replacing minimum by maximum.

A strictly convex function attains a minimum at no more than one point of a
convex set, and a stationary (critical) point is necessarily a minimum.

(b) On a compact convex set, the maximum of a convex function occurs at an
extreme point. The same is true for the minimum of a concave function.

We now focus on convex and concave functions.
Proofs. Section 24.1.

24.1. Schott [2005: 371-372; he omits the word “strict”] and Magnus and
Neudecker [1999: 122-123].

24.2. Magnus and Neudecker [1999: 129].

24.3. Magnus and Neudecker [1999: 135-138] and quoted by Schott [2005:
379-380].

24.4. Magnus and Neudecker [1999: 53-54, 136].
24.5. Quoted by Horn and Johnson [1985: 535).

24.2 USING CONVEX AND CONCAVE FUNCTIONS

24.6. Let f: x — f(x) be a real-valued convex function defined on S, a convex
subset of R™.

(a) Corresponding to each interior point a € S, an n x 1 vector t exists, such that
f(x) = f(a) +t'(x — a)

forallx e S.
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(b) If S is an open convex set, f is differentiable, and a € S, then

160 > fa) + L2 g

forallxe S.

24.7. (Global Minimum or Maximum) Let f(x) be a real-valued convex (respec-
tively concave) function defined for all x € S, an open convex subset of R™. If f is
differentiable and ¢ € S is a stationary point of f, then f has a global minimum
(respectively maximum) at c¢. If f is strictly convex or strictly concave, then c is
unique.

24.8. Let y = f(X). If d*f > 0, then f is convex and f has a global minimum at
df = 0. However, if d2f > 0 for all dX # 0, then f is strictly convex and f has a
strict global minimum at df = 0. For second-order differentials see Section 17.11.

24.9. (Constrained Global Minimum) Let f be a real-valued function defined
and differentiable on an open convex set S in R™, and let g be an m x 1 vector
function (m < n) defined and differentiable on S. Let ¢ be a point of S, and let
F{x) = f(x)}+Xg(x), where A € R™. Assume that x = c is a solution of g(x) = 0
and OF(x)/0x = 0. If F is convex (respectively strictly convex) on S, then f
has an absolute minimum (respectively unique absolute minimum) at ¢ under the
constraint g(c) = 0. Under the same conditions, if F' is (strictly) concave, then f
has a (unique) absolute maximum at ¢ under the constraint g(x) = 0.

24.10. Suppose we wish to minimize y = f(X) subject to the constraints G(X) =
0, where G is a matrix function of X. Define the Lagrangian function %(X) =
F(X)—trace[L’G(X)], where L is a matrix of Langrange multipliers. (If G happens
to be symmetric, then we can take L to be symmetric also.) If v is (strictly) convex,
then ¢ has a (strict) global minimum at the point where d¢» = 0 under the constraint
G(X)=0.

Proofs. Section 24.2.
24.6. Schott [2005: section 9.8].
24.7. Magnus and Neudecker [1999: 128-129].
24.8. Abadir and Magnus [2005: 354].
24.9. Magnus and Neudecker [1999: 139)].
24.10. Abadir and Magnus [2005: 354].

24.3 TWO GENERAL METHODS

24.3.1 Maximum Likelihood

Definition 24.2. Suppose we have a set of random variables denoted by x with
continuous probability density function or discrete probability function f(x | 6)
depending on d unknown parameters 8 = (61,0s,...,6;), where 8 € Q (often
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Q = R?%). We now express this function as a function of 8, namely 1(8), called
the likelihood function. (Any constants or unknown functions of x are sometimes
supressed.)

A value of 8, 8 say, that maximizes [(8) or equivalently L(6) = logi(8) for
0 € Q, is called a mazimum likelihood estimate of 8. There is no guarantee that
such an estimate exists for (almost) every y, nor that is unique if it exists. If L
is based on a set of n independent observations, we denote the estimate by 5,1 to
emphasize its dependence on n.

The vector u{@) = 9L(0)/98, or more briefly JL/98, is usually referred to as
the score vector. The equations u(@) = 0 are called the likelihood equations.

24.11. Under fairly general conditions (e.g., Cox and Hinkley [1974] and Mékeldinen
et al. [1981]), we have the following results.

(a) E(u) =0.

(b) E(uu’) = var(u) = ~E(0u/00’) = E(T) = Iy, where T = ~§%L/0600' is
usually called the (observed) information matriz and Ig the expected (Fisher)
information matriz.

(¢c) As n — oo, u(8) is approximately distributed as the multivariate normal
distribution Ng(0,Is).

(d) 8 is the unique solution of u(f@) =0.

(e} If L is based on a set of n independent observations and 6y is the true value
of 8, then as n — oo,

(i) (@L — 8y) is approximately distributed as N, (0, I(;Ol), and

(ii) —2[L(§n) — L(6)] is approximately distributed as x2, the chi-square
distribution.

With additional assumptions, the above theory extends to mutually independent
non-identically distributed random variables, and even to dependent variables.

24.12. (Constrained Maximization) Recalling that 8 € © C R¢, sometimes (2 is
restricted in some way. For example, in multivariate analysis (cf. Chapter 21) a
matrix of parameters may be symmetric or even positive definite, as in the case
of a variance matrix, so that technically these constraints should be built into the
optimization process. For example, if we wish to maximize an expression subject to
a matrix restricted to being positive definite, what frequently happens is that the
unrestricted maximum turns out to be positive definite with probability 1. This
unrestricted maximum is then also the restricted maximum (e.g., Calvert and Seber
[1978: 274-276]). Alternatively, we can express the positive definite matrix in the
form A’A (cf. 10.32), where A is unknown. For a selection of examples and proofs
see Abadir and Magnus [2005: section 13.12] and Magnus and Neudecker {1999:
chapters 15 and 18].

A major problem with maximum likelihood is showing that the estimate obtained
is actually a maximum. As a result, various ad hoc methods are used such as
convexity arguments.
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24.13. Let ¥ and A be n x n matrices. Consider the matrix function f, where
f(2) = log(det A) + trace(S™*A).

If A is positive definite, then, subject to X being positive definite, f(¥) is minimized
uniquely at X = A.

24.14. Let A be n X n, then:
(a) trace(AA') is a strictly convex function of A.
(b) If A is positive definite then — log(det A) is a convex function.
Proofs. Section 24.3.1.
24.13. Seber [1984: 523].
24.14. Calvert and Seber [1978: 280].

24.3.2 Least Squares

Definition 24.3. Let y be an n x 1 random vector with mean E(y) = £f(8), where
6 is a d x 1 vector of parameters and @ € €. Then @ is a least squares estimate of
6 if 6 minimizes [y — f(8))'[y — £(8)] with respect to 8 € Q. In practice, f(8) will
also depend on some data observations.

If a weight matrix function W(8) (generally a positive definite matrix) is in-
cluded, then a minimum of [y — £(8)]' W (8)[y — £(8)], 8,, say, is called a generalized
or weighted least squares estimate. Various iterative methods such as lteratively
Reweighted Least Squares (IRLS) (e.g., Seber and Wild [1989: 37]) are available.
In some applications W does not depend on 6.

Under certain general conditions, least squares and generalized least squares es-
timates are unique and have certain optimal properties. They generally have some
useful asymptotic properties as well, which do not depend on normality assump-
tions. However, under normality assumptions, such estimates may be the same
as the maximum likelihood estimates, for example in univariate (Seber and Lee
[2003]) and multivariate (Seber [1984]) linear models, and nonlinear models (Seber
and Wild [1989]). For a further discussion of least squares with respect to regression
models see Section 20.7.

24.4 OPTIMIZING A FUNCTION OF A MATRIX

24.4.1 Trace

24.15. Let A be a real n x n matrix with singular values o1 (A) > --- > 0,(A)
and singular value decomposition A = PXQ’, where ¥ = diag(o1(A),...,0n(A))
and P and Q are n X n orthogonal matrices. Let 7, be the collection of all n x n
orthogonal matrices. Then

max trace(AT) = Z;O’i(A),
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and the maximum is attained at To = QP’, where Ty is not necessarily unique.
Also ATy is non-negative definite. Furthermore, if T'; is an orthogonal matrix such
that AT, is non-negative definite, then T is the maximizer.

24.16. Let A be an m x n real matrix with singular value decomposition PX;Q’,
let B be a real n X m matrix with singular value decomposition B = RX,;S’,
p = min{m,n}, and let T, be the set of all p x p orthogonal matrices. Here P, Q,
R, and S are conformable orthogonal matrices. Then

P

refB trace(ATBU) = Zai(A)ai(B) (= trace(X1X2)).

i=1

By substitution we see that equality occurs when T = QR’ and U = SP’. The
above holds for complex matrices if we replace orthogonal matrices by unitary
matrices and the trace by its real part.

24.17. Let V be the set of all real m X n matrices C. Suppose X is a given n x r
matrix, V1, Va, ...,V are given m x n matrices, and a1, as,...,ax are given real
scalars. Let

V) ={C:C e V,CX =0, trace(CV}) = a; for each i},
and let Q = I, — X(X’'X)~X represent the orthogonal projection perpendicular to
C(X). Then:
. no_ 1
(a) Qin trace(CC’) = trace(CyCy),

where Cy = Zle ;' V;Q, and (a1, @9,...,0k) is a solution to the following
system of linear equations:

k
trace(V.QVi)los = a;, §=1,2,...,k
J J

i=1

(b) Suppose now that m = n, V; is the set of all symmetric m x m matrices, and
the V; are now all symmetric m x m matrices. Then

min trace(C?) = trace(C?

i trace(C?) = trace(C3),

where C; = Zle a;QV;Q, and (a1, 02, ..., ax) is a solution to the following
system of linear equations:

k
Z[traee(QViQVj)]ai =a;, j=1,2,...,k

i=1

The above solutions are not necessarily unique if the matrices in the linear equations
are singular. This theory can be applied to variance estimation (Rao and Rao [1998:
sections 12.5-12.10]).

24.18. Let X be an n X p matrix of rank p, V be an n X n positive definite matrix,
and W be an m x p matrix. Then trace(GVG') is minimized with respect to G,
subject to GX = W, when G = Gg and

Go = WX'V1X) 1X'V~L,
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If we drop the assumption that rank X = p, then trace(GVG’) is minimized
with respect to G, subject to GX = X, when G = G; and

G, = X(X'VIX)*X'V~i,
where (X’V™1X)* is the Moore-Penrose inverse.

24.19. Let X be an n x p matrix of rank » and V be a non-negative definite n x n
matrix. Then the minimum of {trace(V?)/n] subject to VX = 0 and trace V = 1

is given by Vg, where
1

n —

Vo =

(I, - XX+),
-
and X7 is the Moore-Penrose inverse of X.

Proofs. Section 24.4.1.

24.15. Horn and Johnson [1985: 432] and Rao and Rao [1998: 347-348] for
the complex case.

24.16. Horn and Johnson [1985: 436, with some matrices replaced by their
complex conjugates] and Rao and Rao [1998: 357-359, complex case].

24.17. Rao and Rao [1998: 410-413].
24.18. Abadir and Magnus {2005: 384-386].
24.19. Abadir and Magnus [2005: 386].

24.42 Norm

In this section we are also involved with matrix approximation as well as optimiza-
tion.

Definition 24.4. Let U be the vector space of all m x n real matrices, and let V
be a subspace. Given A € U and B € V, we say that B is the closest to A with
respect to a given norm || - || if B minimizes ||A — BJ|. Note that B may not be
unique.

24.20. (Eckart-Young) Some of the dimension reduction techniques of Section
21.5 may be described as approximating an n x d data matrix X by another n x r
matrix, with r < d. We now consider the broader problem of approximating one
matrix by another of lower rank.

Let A be an m x n real matrix of rank r with singular value decomposition

A=P3Q =) o,

i=1

where P = (p1,...,Pm), Q = (Q1,--.,4n), and o; = 0;(A), the ordered singular
values of A. Let V be the set of m x n matrices of rank s (s < r).

(a) Then
min ||A — Bllo; = ||A — Boloi,
BeVy
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for all orthogonally invariant norms | - ||»:, where

BQ = Z(J’zpﬂq; (I P21Ql, say).

i=1
(b) We have from (a) the special case

|A—Bygll% = trace[(A — Bo)(A — By)']

T
2 ’ /
= Y o trace(p:iqjqip})
1=s+1
— 2 2 2
= Og41 +Us+2 e tog,

where || - || 7 is the Frobenius norm.

(c) If the rows of A sum to zero (i.e., A’l,, = 0), then, in terms of the Frobenius
norm, B is the rank s matrix whose column differences best approximate
the column differences of A. The same result applies to row differences if
Al, =0.

The above results are used in many places in statistics such as the biplot (Jolliffe
[2002: section 5.3] and Seber {1984: section 5.3]), classical multidimensional scal-
ing (Seber {1984: 240]), sample principal components (Jolliffe [2002: 36-38]), and
procrustes analysis (Gower and Dijksterhuis [2004] and Seber [1984: 252]).

24.21. Let A and B be m X n real matrices, p = min{m,n}, and let 7 be the set
of k x k real orthogonal matrices. Then, if || - ||r is the Frobenius norm,

|A — UBVI[% = |AJ} — 2 trace(AV'B'U’) + |BIJ%
and

P 1/2
ven |A-UBV|r = {;[W(A) - Ui(B)]Q} :

The minimizing values of U and V follow from (24.16) above with appropriate
substitutions.

24.22. Let A and B be m X n real matrices with respective singular value decom-
positions A = PX;Q’ and B = RX,8’. Let T, be the set of all p x p real orthogonal
matrices. Then, if || - || is the Frobenius norm,

vein . [UA - BT|r = [[UoA — BTo||r,

where Ug = RP’ and Ty = SQ'.

24.23. If A is an n x n symmetric matrix, Q, is an n X r matrix with orthonormal
columns, and S is any r X r matrix, then

min |AQ. - QS[r = (I - Q-Q))AQ.IF

and S = Q' AQ, is the minimizer.
T
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24.24. We now find nearest approximations for several matrices.

(a) (Symmetric Matrix) Let A be n x n real matrix, and define B = (A 4+ A’).
Then B is a symmetric matrix closest to A with respect to any orthogonally
invariant norm || - |lo;. Thus if C is any n x n real symmetric matrix, then

A = Blloi < ||A = Clloi-

(b) (Skew-Symmetric Matrix) Referring to (a), if we now have B = J(A — A),
then B is a skew-symmetric matrix closest to A with respect to any orthog-
onally invariant norm.

(¢) (Orthogonal Matrix) Let A be a real n x n matrix with singular value de-
composition PXQ’, and let 7,, be the set of n x n real orthogonal matrices.
Then, if || - || is the Frobenius norm,

Jin A ~T|r=||A - TollF,

with Tg = PQ'.

(d) (Non-negative Definite Matrix) Let A be a real nxn matrix, B = $(A+A’),
and B = QH be a polar decomposition with Q orthogonal and H non-
negative definite. If A/ is the set of all non-negative definite matrices, then

(I_‘}leljr\l/’”A - Cllr =[|A - CollF,

where Cy = 1(B + H) is non-negative definite and unique. Rao and Rao
[1998: Sections 11.6 and 11.7] give a number of approximations like the above
based on the M, N-invariant generalized matrix norm.

24.25. Suppose X = (X1,...,X,) is an m x n matrix, B = (by,...,bg) isanm x k
matrix of rank k (k < m), Z = (21,...,2,) is k x n matrix, and a € R™. If || - ||
is any unitarily invariant norm, then || X — a1/, — BZ||,; is minimized with respect
to a, B, and Z when

b=n"'X1, (=%, say), B=(u,...,ux), and Z'=(o1vi,...,0%Vk),
where o;, u;, and v; are defined by the singular value decomposition
X -X1/, = USV' = oyuyv) + -+ + opu,vi.
In particular,

. f 2 2
;}E)HZ ”X'aln - BZ”F = Uk+1 + e +0r'

This problem is related to that of finding a hyperplane that is “nearest” to a set of
points (Rao and Rao [1998: 399-400]).

Proofs. Section 24.4.2.
24.20a. Rao and Rao [1998: 392].
24.20c. Harville [1997: 556-559] and Seber [1984: 206-207].
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24.21. Horn and Johnson [1985: 435-436, complex case].
24.22. Rao and Rao [1998: 389].

24.23. Golub and Van Loan [1996: 401].

24.24a. Rao and Rao [1998: 388].

24.24c. Quoted by Rao and Rao [1998: 393].

24.24d. Rao and Rao [1998: 389-391].

24.4.3 Quadratics
24.26. Suppose g(x) = x’Ax+b'x+e¢, where A is a real symmetric matrix. Then:
(a) q(x) = (x+ 3A"bYA(x+ $A™b) + (c — 1b’A7b).

(b) ¢(x) has a maximum if and only if b € C(A) and —A is non-negative definite.
If such is the case, a maximizer of ¢(x) is of the form

Xmax = —%A_b + (I - A7 A)xy,
where xq is arbitrary.

(c) ¢(x) has a minimum if and only if b € C(A) and A is non-negative definite.
If such is the case, a minimizer of ¢(x) is of the same form

Xmin = _%A_b + (I - A_A)Xo,
where xq is arbitrary.

24.27. Suppose x,a € R™, ¢ € R*, and B is m x k of rank k. If ¥ is a positive
definite m x m matrix, then

mcin(x —a—Be)Y }(x—a-Bc)=(x—-a)(Z7! - Z7'Pg)(x — a),

occurs at
c=(B'EB)"'B'S7(x - a),
where
Py = B(B’E_lB)_lB’Z_l.
If we now have x;, ¢;, and w; > 0 for i =1,2,...,n, then

T
min Zwi(xi —a—Bc¢)3 }(x; —a—Bc;)
a,B,c1,...,cn 4
i=1
n

=Y wi(x; = X)'S7' (x; — X) — trace(E ' Pg,S),

i=1

where 8 = S0 w;(x; — X)'E7(x; — %), By = £/2Q,, and Q, is the matrix of
the first k eigenvectors of £~1/2§%-1/2,
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24.28. Let A be a real symmetric matrix.

(a) If r(x) = x’Ax/x'x, then by differentiation the stationary values of r(x)
occur when x is an eigenvector of A and are equal to the eigenvalues of A.
Note that we can set x’x = 1 without any change in the result. We then have
that r(x) is maximized with respect to x when x is a unit-norm eigenvector
of A corresponding to its largest eigenvalue. The minimum relates to the
minimum eigenvalue (see 6.58a). If we also have C'x = 0, where Cis n x p
(p € n), then Golub and Van Loan [1996: 621] give a method for finding the
stationary values of r(x) subject to this constraint.

(b) Suppose, in addition to C’'x = 0, we also have x'Bx = 1, where B is positive
definite.

(i) The stationary values of x’Ax subject to these constraints are attained
at the eigenvectors of B™1(I,, — P)A, where P is the projection matrix

P=C(C'B !'C)"C'B7},
that is, x satisfies (I, — P)Ax = ABx. Setting B = I,, gives a solution
to the second part of (a).

(ii) If A = aa’, then x’Ax has a maximum value when x o« B=1(I,, — P)a.
This result occurs in problems of genetic selection. Rao and Rao [1998:
507] give references to two extensions of the above.

24.29. Let A, B, and C be n x n matrices with A and B positive definite and C
symmetric. The stationary values of
x'Cx
(x’Ax)1/2 (X’BX)1/2

are M2v; (i =1,2,...), where ); and v; are solutions of the equations

2Cx = MA +vB)x,
v = xAx/(x'Bx).
This result occurs in the study of canonical variates (Rao and Rao [1987]).

24.30. Let A be a positive definite n X n matrix, let B be an n x k matrix, and
let ¢ be a given k x 1 vector.

(a) If S~ is any weak inverse of B’A~!B, then for n x 1 x,

min x'Ax =c'S7¢c,
B/x=c

where the minimum attained at x = A"'BS~¢.

(b) If rank B = k, then from (a) we have

min x'x = c/(B'B) !¢,
B'x=c

where the minimum is attained at x = B(B'B) ™ 'c.
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(c) Suppose x’ = {x},x5) and (B], ,2)<X1) =c. If

BB, B\ _
B, 0 -

min xjx; = c'Cyc,
B/x=c

then

where the minimum is attained at x; = B;Cjc.

(d) Suppose A is now non-negative definite and ¢ € C(B'). Let
A BY [(C G
B 0 T\NC3 —-Cy )

min x'Ax = c¢/Cyec.
B/x=c

then

24.31. Let 0 < pg < 1 be given, and let p = (p1,p2,...,Pm)’, where 0 < pg < p; <
1fori=1,2,...,m. Let R be the region

R={p:0<py<p;<li=1,...,m,py <1},

and define ) "
f(p) _(1+p(2)+p’p)1/2'
Then Lo
(1+ P0)2> !
1+ p3 ’

and it occurs in the interior of R at the point given by

g ) -

PER

1+ p
1+ po’

pi

The minimum occurs at one or more of the extreme points of R. For a proof and
further details see Thibaudeau and Styan [1985]. They point out that their above
result applies to a measure of imbalance for experimental designs introduced by
Chakabarti [1963].

Proofs. Section 24.4.3.
24.26. Sengupta and Jammalamadaka [2003: 49-50].
24.27. Rao and Rao [1998: 400-401].
24.28b(i). Rao and Rao [1998: 507]. Note that x'(I, — P)Ax = A.

24.28b(ii)). When A = aa’, a is an eigenvector of A. We then set A =
a’B~Y(I,, — P)a in (i) and substitute for x.

24.29. Rao and Rao [1998: 507-508].
24.30. Rao [1973a: 60-61].
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24.5 OPTIMAL DESIGNS

In fitting the linear model y = X3 + €, where X is n x p of rank p (cf. Section
20.7), we may wish to find the best design for minimizing some function of var(,a) =
o2(X'X)™!, where 8 = (X’X)~!X'y, the least squares estimate of 3 . Depending
on which function is chosen, there are three main critera, namely:

(1) A-optimality: minimize trace[(X'X)~1].

(2) E-optimality: minimize the largest eigenvalue (i.e., the spectral radius p[(X'X)~1])
of (X'X)~1.

(3) D-optimality: minimize det[(X'X)™!] or maximize det(X'X).

For general references to optimal designs see Atkinson and Donev {1992}, Druilhet
[2004], and Melas [2006].

24.32. (D-Optimality) This is probably the most commonly used criterion for
two reasons. Firstly, when € in the above linear model is multivariate normal
N,{(0,0%1,,), the D-optimal design gives the smallest volume of the confidence el-
lipsoid for 3. Secondly, the computations are the simplest. To find the optimal X
with a given number n rows from a set of N potential rows, one begins with an
initial choice of n rows, for example at random, and then determines the effect on
the determinant by exchanging a deleted row with a different row from the set of
potential rows using a result like (15.13b). For further references and details see
Gentle {1998: 190].
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INDEX

A

Abel’s identity, 277
Adjoint of a matrix
vector element differentiation of, 354
definition, 59
inverse of, 60
partitioned matrix, 297
Adjugate—See Adjoint, 59
Aitken block-diagonalization formula, 292
Angle
between two vectors, 13, 122
minimal, 14
Anti-Hermitian matrix—See Skew-Hermitian,
80
Antieigenvalues
definition, 122
Watson efficiency and, 453
Antieigenvector, 122
Area of a triangle, 32
Associated random variables, 505
Asymptotically equivalent sequences, 420

B

Back substitution, 337
Backward shift matrix, 158
Banachiewicz factorization, 339
Basis

definition, 11

of quadratic subspace, 9
Bessel’s inequality, 18
Best linear predictor, 429
Bilinear form(s)
inequalities for, 102
random, 443
Block circulant, 160
Block matrix, 2
Block triangular matrix, 179
BLUE, 448
Boole’s formula, 495
Boolean matrix, 187
Bordered Gramian matrix, 299

C

C-matrix, 160
Caley transformation
Jacobian of, 411
Canonical correlations
and least squares, 453, 456
population, 483
sample, 485
Canonical variables
population, 483
sample, 485
Cauchy-Schwarz inequality
for complex matrices, 265
for complex matrices using trace, 266
for complex vectors, 261
for real matrices using determinant, 263

547
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for real matrices using trace, 262
for real vectors, 258
subject to a constraint, 259
Cayley-Hamilton theorem, 93
Centered data, 24
Centering matrix, 24, 317, 462, 487
Centrosymmetric matrix, 160
Chain rule(s), 358, 362, 365, 386
Characteristic equation
definition, 91
Characteristic polynomial
Cayley—Hamilton theorem for, 93
definition, 91
Characteristic roots—See Eigenvalue(s), 91
Chebyshev inequalities, 498
Cholesky decomposition
algorithm for, 338
for non-negative definite matrix, 338
for positive definite matrix, 338
Jacobian of, 405
root free, 339
scaled version of, 338
Circulant matrix—-See Regular circulant
matrix, 152
Classical scaling, 487
Cluster analysis, 489
Coefficient of multiple determination
population, 431
Cofactor, 59
Column-centered data, 24
Column space, 18
Commutation matrix—See Vec-permutation
matrix, 242
Commuting family
of normal matrices, 86
Commuting matrices, 107
exponential function and, 424
polynomial representation, 100
regular circulants and, 153
simultaneous reductions and, 345
symmetric regular circulants and, 156
Companion matrix, 94
Completely positive matrix, 223
Complex conjugate
of a matrix, 2, 79
of a scalar, 79
Complex Jacobian
definition, 391
Complex normal distribution—See
Multivariate normal distribution, 445
Complex random vector, 445
Complex symmetric matrix, 84
Compound matrix, 61
Computational accuracy, 77
Concave function
scalar, 29
vector, 29
Condition number, 78
bounds, 96
Conformable matrices, 2
Congruence

and inertia, 345
definition, 330
Conjugate transpose, 2, 79
definition, 54
Constrained global optimization, 518
Constrained local optimization, 516
Contingency table
and principal components, 482
Continuity argument, 418
Contraction mapping
definition, 27
fixed point and, 27
strict contraction, 27
Convergence in the norm, 418
Convex combination, 28
Convex function
scalar, 29
vector, 29, 511
Convex hull, 28
Convex set
definition, 27
intersection of several, 27
separating hyperplane, 29
sum of several, 28
Correlation coefficient
population, 430
sample, 432
Correlation matrix
in Hadamard product, 253
population, 430, 479
sample, 432, 463, 481
Countersymmetric matrix—See Persymmetric
matrix, 159
Covariance matrix
definition, 427
Craig-Sakamoto theorem, 442, 59
Cross-symmetric matrix, 160

D

Data inequalities, 501
Data matrix
definition, 461
vec properties, 462
Decomposable matrix, 210
Determinant, 57
and elementary transformations, 58
Cauchy-Binet formula for, 63
definition, 57
differential of, 373
expand by the diagonal, 61
expansion by row or column, 61
from QR decomposition, 341
Laplace expansion for, 62
matrix differentiation of, 368
matrix element differentiation of, 357
of a matrix product, 58
of a partitioned matrix, 296
of an inverse, 58
of a complex matrix, 114, 81, 391
of a matrix difference, 230
of an exponential function, 423



of a rank 1 matrix, 312
of a matrix sum, 230
partitioned matrix, 312
product of eigenvalues, 95
row-block transformations and, 58
scalar differentiation of, 353
second-order derivative of, 379-380
Sylvester’s identity for, 63
vec differentiation of, 359
vector element differentiation of, 354
Diagonal product of a matrix, 216
Diagonalizable matrix
definition, 326
exponential function of, 424
Jacobian for, 413
Moore-Penrose inverse of, 327
simultaneous reduction of several, 347
spectral decomposition of, 327
unitarily, 86
weak inverse of, 133
Diagonally dominant matrix, 162
when positive definite, 226
Differentiation with respect to a scalar, 352
Dimension, 11
Direct product—See Kronecker product, 234
Direct sum of matrices
and Kronecker product, 235
definition, 234
Direct sum of vector subspaces
and matrix index, 51
definition, 10
Discriminant analysis, 489
Discriminant coordinates, 482
Disjoint sets, 10
Disjoint vector subspaces, 10
Dissimilarity matrix, 486
Distance between vectors, 13
Dominant eigenvalue, 91
Dominant eigenvector, 92
Doubly-centered data, 24
Doubly non-negative matrix, 223
Doubly stochastic matrix
definition, 216
majorization and, 508
weak majorization and, 510
Doubly substochastic matrix, 218
Doubly symmetric matrix, 159
Drazin inverse, 145, 381
Dual space, 15
Duplication matrix
definition, 246
Moore-Penrose inverse of, 248

E

Echelon form
definition, 330
reduced, 331
Eigenvalue(s)
monotonicity of, 117
algebraic multiplicity, 92
and canonical correlations, 483
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and Hadamard product, 253

bounds, 99

bounds for complex matrices, 98

bounds on differences, 97

bounds using traces, 96

classical scaling and, 487

computation of, 105

concavity of smallest, 118

convexity of largest, 118

definition, 91

differential of, 375

dominant, 199

eigenspace of, 92, 103

general properties of, 95

geometric multiplicity of, 92

Gersgorin disc and, 99, 163

inequalities for matrix difference, 119

inequalities for matrix sum, 116

inequalities for matrix product, 119

largest, 110

majorization and, 509, 514

matrix element differentiation of, 358

multiple, 92

of a product, 107

of an exponential function, 423

of a Kronecker product, 236

of a matrix function, 103

of a Wishart matrix, 468

partitioned matrix and, 300

principal components and, 479

product of, 115

quadratic bound on sum, 99

semisimple, 92, 419

simple, 92

spectrum, 92

sum of squared moduli for, 81

vector element differentiation of, 354

weak majorization and, 510
Eigenvector(s)

differential of, 375

for distinct eigenvalues, 103

left, 92

left and right, 103

matrix element differentiation of, 358

of Kronecker product, 236

right, 92

vector element differentiation of, 354
Elementary symmetric functions, 92, 390
Elementary transformation, 329
Elimination matrix, 250
Ellipsoid

definition, 31

inequalities from, 272

principal components and, 479

standard form for, 31

volume of, 32
Elliptically contoured distribution—See

Multivariate elliptical distribution, 458

Equivalence relation, 330
Euclidean matrix, 486
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Euclidean matrix norm—See Frobenius norm,
72

Euler Equation, 123

Exterior product of differentials, 386

F

Factor analysis, 486
Field of values—See Numerical range, 30
Finite homogeneous Markov chain, 213
Finite projective geometry, 8
Forward shift matrix, 158
Forward substitution, 337
Fourier matrix, 151, 154
and discrete Fourier transform, 185
definition, 184
Frobenius inequality for ranks, 38
Frobenius norm, 15
and Eckart—Young theorem, 523
and Lowner ordering, 228
and matrix modulus, 197
and principal components, 480
definition, 68, 71
inequality for matrix sum, 230
matrix approximation, 524
procrustes analysis and, 488
sample principal components and, 481
unitarily invariant, 74
Full-rank factorization, 20, 333
definition, 36
from singular value decomposition, 36, 336
Moore—Penrose inverse of, 141
of non-negative definite matrix, 221
reflexive g-inverse and, 134
Full column rank, 37-39, 53
definition, 35
Full row rank, 37-39, 53
definition, 35

expectation of, 464
large sample theory and, 463
positive definite, 489
Generalized Schur complement
and rank additivity, 47
determinant and, 291
maximal and minimal ranks, 50
non-negative matrix, 291
Generalized vec-permutation matrix, 245
Generating set, 11
Geometric mean inequality, 270
Givens transformation, 150
Global optimization, 517
Gram—Schmidt orthogonalization, 16
algorithm for—017 Gram-Schmidt
orthogonalization
without square roots, 17
Gram matrix
definition, 223
when positive definite, 225
Group inverse
and Markovian kernel, 212
definition, 126, 145

G

Galois field, 8
Gauss transformation, 337
Gaussian elimination, 281, 337
Gaussian orthogonal ensemble, 493
Gaussian symplectic ensemble, 493
Gaussian unitary ensemble, 493
General square root, 74, 266
Generalized eigenvalues, 115

definition, 106

distribution of, 469
Generalized inverse—See Weak inverse, 125
Generalized least squares

definition, 453

efficiency and, 453
Generalized matrix norm, 101

M, N-invariant, 77

definition, 68

induced, 68

orthogonally invariant, 74

unitarily invariant, 73
Generalized quadratic, 462

and independence, 464

H

Holder’s inequality
for matrices, 268
for vectors, 267
Hadamard inequalities for determinants, 273
Hadamard matrix
definition, 164
seminormalized, 164
Hadamard product
bounds for determinant of, 253
bounds on eigenvalues, 253
Cauchy-Schwarz inequality for, 266
definition, 251
differential of, 372
of Hermitian matrices, 252
of Hermitian non-negative definite matrices,
252
of positive definite matrices, 253
of two completely positive matrices, 224
random quadratic from, 443
rank of, 252
submatrix of Kronecker product, 252
transpose of, 252
vector differentiation of, 364
weak majorization and, 510
with correlation matrix, 253
Hamiltonian matrix, 89
Hankel matrix, 161
Helmert matrix, 149
Hermite canonical form, 333
Hermite form, 332
Hermitian congruence
definition, 330
Hermitian matrix
definition, 80
eigenvalues and eigenvectors, 104
equivalent conditions, 82



inertia of, 344
signature of, 344
spectral theorem, 342
Hermitian non-negative definite matrix
and semi-inner product, 14
definition, 219
eigenvalues, 220
full-rank factorization, 221
Gram matrix, 223
non-negative definite square root, 221
pair of, 230
permanent of, 64
principal minors, 220
weak inverse of, 127
Hermitian positive definite matrix
and Cauchy-Schwarz inequality, 262
and diagonally dominant, 226
and inner product, 14, 21
condition number for, 96
definition, 219
eigenvalues of, 225
positive definite square root of, 225
positive stable, 190
principal minors of, 225
Hessenberg matrix, 179
Hessian, 378
Hilbert matrix, 226
Hilbert space, 13
Hotelling’s distribution, 468
Householder matrix, 82, 149
Hyperboloid, 31
Hyperplane
distance from, 31
equation of, 31

1

Idempotent matrix, 9

algebraic properties, 166

and weak inverse, 126

definition, 166

differential of, 375

geometrical properties, 20

Hermitian, 113

is diagonalizable, 326

Jordan canonical form of, 166

Moore-Penrose inverse of, 166

product, 175

rank of matrix difference, 45

role in quadratic subspaces, 9

symmetric, 167-168

vector element differentiation of, 355
Imprimitive matrix, 204
Incidence matrix, 186
Indicator matrix, 177, 187
Inequalities for expectations, 502
Inertia, 99

definition, 344

Sylvester’s law of, 345
Information inequalities, 276
Inner product space

Euclidean space, 13

INDEX

unitary space, 13
Inner product
definition, 13
limiting sequence of, 67
Interchanges in design models, 315
Interlacing theorem
for eigenvalues, 112
for singular values, 112
Intersection
of vector subspaces, 10
Inverse matrix
definition, 53
matrix element differentiation of, 356
scalar differentiation of, 352
vector element differentiation of, 354
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Inverse of partitioned matrix—See Partitioned

matrix, 292
Involutionary matrix, 175
Housholder, 82
Irreducible matrix, 177
Irreducible non-negative matrix
aperiodic (acyclic), 203
definition, 202
periodic (cyclic), 203
periodicity of, 207
Perron~Frobenius eigenvalue, 204
Isomorphic vector spaces, 12
Isomorphism, 12

between real and complex matrices, 80

J

Jacobian, 383
and Caley transformation, 411
and exterior product, 386
and positive definite matrix, 411
chain rule, 386
definition, 383
for pair of matrices, 414
for patterned matrix, 388
for polar coordinates, 391
for symmetric functions, 390
induced functional equation and, 387
involving diagonal matrices, 407
method of differentials, 385
of Cholesky decomposition, 405
of complex inverse, 393
of complex matrix product, 392
of diagonalizable matrix, 413
of Hermitian inverse, 395
of LU decomposition, 407
of matrix inverse, 385, 392
of matrix power, 393
of matrix product, 385, 392
of nonlinear triangular product, 401

of orthogonal skew-symmetric product, 403

of skew-Hermitian inverse, 398

of skew-Hermitian product, 397
of skew-symmetric difference, 406
of skew-symmetric inverse, 398
of skew-symmetric power, 398

of skew-symmetric product, 397
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of symmetric inverse, 394 Lagrange identity, 277

of symmetric matrix power, 396 Lagrange interpolation polynomial, 183

of symmetric product, 394 Lagrange multipliers, 516

of symmetric sum of triangular matrices, 404 Lanczos vectors, 343

of transpose, 388 Latent roots—See Eigenvalue(s), 91

of triangular inverse, 401 Lattice of vector subspaces, 10

of triangular matrix product, 399 LDU factorization
Jordan block, 188 definition, 336
Jordan block matrix, 324 Least squares (g13) inverse, 136, 146
Jordan canonical form, 325 Least squares estimation, 448, 520

of an idempotent matrix, 166 with constraints, 450

Least squares reflexive (g123) inverse, 137, 146

K Left inverse, 36, 39

definition, 53
Length of a vector, 13
Leslie matrix
and diffusion model, 211
definition, 210
Linear equation
and Kronecker product, 282
and Kronecker sum, 284
and LU factorization, 281
consistent, 279, 283
general solution of, 283, 280
homogeneous, 281
restricted, 282
singular value decomposition and, 281
two equations, 285-286
two matrix unknowns, 285-286
unknown matrix, 282
unknown vector, 279
Linear functional, 15
Linear independence, 11
Linear model
weakly singular, 456
Linear regression
coeflicient of determination, 452
estimable function, 449
Gauss—Markov theorem, 448
general model, 447
hat matrix and, 448
hypothesis testing, 451
maximum likelihood estimation, 449
multiple correlation and, 452
normal equations, 448
residual sum of squares, 448
residual vector, 448
testable hypothesis, 449
with singular variance matrix, 454
Linear stationary iteration, 382
Local optimization, 515
Lower-triangular matrix
elimination matrix for, 250

Kantorovich inequality
for a positive definite matrix, 264
for real vectors, 260
Kernel—See Null space, 18
Kolmogorov inequalities, 500
Kronecker power, 238
Kronecker product
and diffusion model, 212
and distributive rules, 237
and singular value decomposition, 235
complex conjugate of, 234
conjugate transpose of, 234
definition, 234
determinant of, 235
differential of, 372
eigenvalues and eigenvectors of, 236
Frobenius norm of, 235
inverse of, 235
Moore—Penrose inverse of, 235
of diagonal matrices, 236
of Hadamard matrices, 165
of Hermitian matrices, 236
of idempotent matrices, 236
of non-negative definite matrices, 236
of normal matrices, 87
of orthogonal projection matrices, 169
of two completely positive matrices, 224
of unitary matrices, 236
product rule for, 238
rank of, 235
scalar differentiation of, 352
sum of matrices, 174
trace of, 56, 235
transpose of, 234
vector differentiation of, 364
weak inverse of, 234
Kronecker sum, 284
Krylov matrix, 187
and triangular reduction, 343

L LU factorization, 178
and a linear equation, 281
L-structure definition, 336
definition, 388 Jacobian of, 407
second-order derivative and, 380 Lyapunov’s equation, 190, 284
Léwner ordering of matrices
definition, 219 M

properties of difference, 227
Lagrange’s reduction, 343 M-matrix, 191



Mahalanobis angle, 26
Mahalanobis distance
definition, 26
sample, 463
Majorization
and permutations, 508
definition, 507
doubly stochastic matrix and, 508
eigenvalues and, 509, 514
expectations and, 513
orthostochastic matrix and, 508
probabilities and, 513
singular values and, 514
Maple, 53
Mathematica, 53
Matlab, 53
Matrix-variate distribution
beta, 490
Dirichlet, 491
elliptical, 490
gamma, 490
normal, 490
Wishart, 490
Matrix approximation, 524
Matrix bounds
using Lowner ordering, 146
Matrix cancellation rules, 39, 144
Matrix difference
eigenvalue inequalities for, 119
Matrix differential equation, 377
Matrix differential
definition, 372
perturbation method using, 376
transformation rule, 374
Matrix element
matrix differentiation of, 369
Matrix exponential
and stable matrix, 189
definition, 423
scalar differentiation of, 353
Matrix function, 422
matrix differentiation of, 371
Matrix game, 189
Matrix index, 51, 188
Matrix limit
definition, 417
Matrix norm
and spectral radius, 69-70
definition, 69
induced, 70
minimal, 71
of unitary matrix, 71
Matrix product
inverse of, 54
adjoint of, 60
conjugate transpose of, 54
eigenvalue inequalities for, 119
matrix element differentiation of, 356
trace inequality for singular values, 121
von Neumann trace inequalities for, 120
Matrix sequence

INDEX

convergence of, 418
Matrix series
convergence of, 421
Matrix sum
determinant inequality for, 273
eigenvalue inequalities for, 116
Frobenius norm inequality for, 263
singular value inequalities for, 118
Weyl’s theorem, 117
Maximal and minimal ranks, 49
Maximum likelihood estimation, 519
Metric space
Cauchy sequence, 26
complete, 27
definition, 26
Metric
Canberra, 26
definition, 25
Mabhalanobis distance, 26
Minkowski, 26
Minimum norm (g14) inverse, 134, 146
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Minimum norm reflexive (g124) inverse, 135,

146
Minkowski’s inequality
for matrices, 269
for vectors, 268
Minor, 1
leading, 1
principal, 1
ML-matrix, 191, 208
Model matrix, 474
Modulus
of a matrix, 197
of complex scalar, 79
Monotonic functions, 511
Moore—Penrose inverse, 39, 113, 126
and cancellation rule, 40
and orthogonal projection matrices, 24
and quadratic subspaces, 9
and a random quadratic, 440
definition, 126, 137
differential of, 375
from QR decomposition, 341-342
limit of a sequence, 140
of a duplication matrix, 248
of a Kronecker product, 235
of a non-negative definite matrix, 141
of a partitioned matrix, 304
of a patterned matrix, 321
of a matrix product, 143
of a regular circulant, 152, 154
of a matrix sum, 143
of a symmetric circulant, 157
of a symmetric idempotent matrix, 140
of a symmetric matrix, 139
of an idempotent matrix, 166
orthogonal projection and, 22
rank of, 138
representation of, 146
uniqueness of, 138
vector element differentiation of, 354
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Multinomial distribution
inverse of variance matrix, 311

Moore-Penrose inverse of variance matrix,

321
Multiple correlation coefficient
population, 430
sample, 433
Multivariate t-distribution, 457
Multivariate Cauchy distribution, 457

Multivariate Dirichlet distributions, 460
Multivariate elliptical distribution, 458

Multivariate inequalities, 502
t-distribution and, 506
convex subsets and, 502
correlated F-ratios and, 506

for associated random variables, 505

normal distribution and, 503
Multivariate linear model

definition, 474

estimability, 475

Gauss-Markov theorem, 475

generalized hypothesis, 477

hypothesis testing, 477

least squares estimation, 474

maximum likelihood estimation, 476

Multivariate normal distribution, 435
complex, 445
definition, 435
moments of, 437

Multivariate spherical distribution, 459

N

n-tuple space, 11
Newton’s identities, 93
Nilpotent matrix, 188

index of nilpotency, 188
Non-negative definite matrix, 39

and Cauchy-Schwarz inequality, 258

and matrix norm, 71
generalized Schur complement, 291
monotonicity of eigenvalues, 117
Moore—Penrose inverse of, 141
trace of, 56

Non-negative matrix, 195
aperiodic (acyclic) indices, 201
communicating indices, 201
definition, 195
dominant eigenvalue of, 199
essential indices, 201
incidence matrix for, 187
inessential indices, 201
irreducible, 202
iterative scaling algorithm, 196
pair with same pattern, 196
periodic (cyclic) indices, 201
permanent of, 64, 196
Perron-Frobenius theorem for, 199
Perron root, 98
self-communicating classes, 201
transition states, 201

Noncentral F-distribution, 3

and Hotelling’s distribution, 468
Noncentral chi-square distribution
definition, 2
noncentrality parameter, 2
Nonsingular matrix, 35, 53
Norm
Euclidean, 14
Frobenius, 15
induced by inner product, 13, 66
optimization of, 522
parallelogram {aw and, 66
Normal matrix, 86
and Moore—Penrose inverse, 140
and regular circulant, 153
definition, 86
diagonal reduction of, 343
tridiagonal reduction of, 343
Null space, 18
orthogonal complement of, 19
orthogonal projection onto, 22
Nullity, 36
definition, 35
Sylvester’s law of, 38
Numerical radius, 102
Numerical range, 30

o

Oblique projection matrix, 126

One-sample vector theory—See Random

vector sample, 470
Open sphere, 28
Operator trigonometry, 122
Optimal designs, 528
Ordinary least squares estimate
and weak inverse, 130
relative efficiency of, 263
Orthogonal decomposition
and least squares, 448
Orthogonal matrix
definition, 80, 147
determinant, 148
differential of, 375
eigenvalues, 148
reflection in a plane, 149
rotation in the plane, 149
tridiagonal reduction, 344
Orthogonal projection matrix, 21
and Moore—Penrose inverse, 130
and weak inverse, 130
difference of two, 23-24
for a partitioned matrix, 23
for intersection of subspaces, 24
Hermitian, 21-22
product of two, 23
sum of two, 24
Orthogonal projection
definition, 21

Orthogonal projector—See Orthogonal

projection matrix, 21
Orthogonal
complement, 16-17, 21



decomposition, 17, 19
mutually, 16
vectors, 16
Orthonormal basis
and Bessel’s inequality, 18
definition, 16
existence of, 17
orthogonal projection and, 22
Parseval’s identity and, 17
Orthostochastic matrix, 218
majorization and, 508

P

P-matrix, 191

Parallel sum, 132

Parseval’s identity, 17

Partial correlation coefficient
population, 431
sample, 433

Partitioned matrix
adjoint of, 297
and Kronecker product, 235
and Schur complement, 289
determinant of, 312
determinant of a, 296
eigenvalues of, 93, 300
from a perturbation, 312
inverse of, 292
Moore-Penrose inverse of, 304
non-negative definite, 298
orthogonal projection and submatrix, 23
orthogonal projection onto, 23
positive definite, 298
power of block upper-triangular, 295
rank of, 38, 4041, 47-48
rank of column partition, 46
rank of row partition, 46
repeated elements or blocks, 316
singular values, 101
weak inverse of, 302

Patterned matrix
correlation matrix, 430
inverse of, 308
Jacobian of, 388
Moore-Penrose inverse of, 321
Sherman—Morrison-Woodbury formula, 309
Sherman—Morrison formula, 309
some identities, 307
weak inverse of, 320

Pauli matrices, 87

Payoff matrix, 188

Permanent
definition, 63
non-negative matrix, 64
of doubly stochastic matrix, 217
of non-negative matrix, 196

Permutation matrix
and diagonal dominance, 162
and Fourier matrix, 185
and irreducible periodic matrix, 207
and Kronecker product, 235
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and LU factorization, 337
and non-negative matrix, 202
and QR decomposition, 341
and reducible non-negative matrix, 202
backward identity, 324
commutation matrix, 242
definition, 151
forward shift, 151-152, 161, 177
is doubly stochastic, 217
P-matrix and, 191
primary, 151
related to permanents, 64
Permutation similar, 151, 177, 324
Perron’s theorem
for positive matrices, 200
Perron-Frobenius eigenvalue and eigenvectors,
204
Perron—Frobenius theorem
for irreducible matrices, 204
for non-negative matrices, 199
Perron matrix, 209
Persymmetric matrix, 159
Perturbation of a matrix, 312
Perturbations for eigenvalues, 100
Pfaffian, 85
Poincaré’s theorems, 113
Polar decomposition, 348
Polynomial
annihilating, 93
minimal, 93
monic, 93
Polynomially positive matrix, 209
Positive definite matrix
and Cauchy—Schwarz inequality, 258
and inner product, 22
and trace, 56
condition number, 78
definition, 220
inner product and, 14
Mabhalanobis distance and, 26
with probability one, 489
Positive matrix, 195
Perron’s theorem, 200
Positive stable matrix, 189
and Schwartz matrix, 181
Power-positive matrix, 209
Primitive matrix
definition, 203
index of primitivity, 203
limit theorem, 203
Principal components
contingency table and, 482
population, 478
sample, 480
Principal coordinate analysis—See Classical
scaling, 487
Principal minor
complementary, 61
Probability inequalities
Bonferroni, 497
for quadratics, 500
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Hunter-Worsley, 496 definition, 35

Kounias, 496 of matrix difference, 44
Procrustes analysis, 488 of matrix product, 37
Profile analysis, 473 of matrix sum, 40
Projection matrix, 20 row, 35
Projector, 20 Rao—Khatri product, 255
Pseudoinverse—See Weak inverse, 125 Rectangular inequalities, 273

Reduced echelon form, 331

Q Reducible matrix, 177

Reduction to diagonal form, 333
Reflexive (g12) inverse, 127, 134, 146
Regression measures of relative efficiency, 263
Regression models, 446
Regression perturbation
change a row or column, 314
Regular circulant
basic matrix, 153, 161
definition, 152
eigenvalues and eigenvectors, 153
Moore—Penrose inverse of, 154
nonsingular, 163
representer of, 152
symmetric, 155
Representation—See Quasilinearization, 271
Right inverse, 36, 39
definition, 53
Row-centered data, 24
Row space, 18
Row or column or element perturbation, 313

QR decomposition
and Moore-Penrose inverse, 341-342
and weak inverse, 341
definition, 340
Quadratic identities, 277
Quadratic in a random vector—See Random
quadratic, 434
Quadratic subspace, 9
Quadratic
and ellipsoid, 31
optimization of, 525
Quadrics, 32
Quasi-inner product—See Semi-inner product,
13
Quasilinearization
inequalities using, 271
Quaternion matrix
definition, 88
self-dual, 88
Quaternion

complex conjugate, 88
conjugate, 88
definition, 87
Hermitian, 88

S

Saddle point, 515
Sample mean vector

R add or subtract an observation, 313
Sample variance matrix
Random quadratic add or subtract an observation, 313
and chi-square distribution, 441-442 Scalar differential
and independence, 442 transformation rule, 372
and singular normal distribution, 440 Scalar function
covariance of two, 434 matrix differentiation of, 365
Hadamard product and, 443 vector differentiation of, 358
in normal variables, 438 Scaling problem, 196
independence of several, 444 Schur complement, 289
mean of, 434 and subpartition, 290
probability inequalities, 500 determinant of, 290
reduction of, 434 inertia and, 290-291
variance of, 434 inverse of, 290
Random vector sample non-negative definite, 290
asymptotic theory and, 472 nuliity of, 292
Hotelling’s distribution and, 472 of sum, 291
hypothesis testing, 472 positive definite, 290
moments, 470 rank of, 290
Range space—See Column space, 18 Schur convexity
Rank 1 perturbation, 312 definitions, 511
Rank additivity, 41 Schur decomposition, 106
Rank of partitioned matrix—See Partitioned Schur decomposition theorems, 337
matrix, 37 Schur product—See Hadamard product, 251
Rank Schwartz matrix, 181
additivity, 41-42 Schwarz inequality
and Cauchy—Schwarz inequality, 259 for inner product, 14

column, 35 Second-order derivatives, 378



Second-order differential
identification rules, 379
Semi-inner product, 13-14

Seminorm, 13
Semisimple eigenvalue, 419
Sensitivity analysis in regression, 376
Separation theorems

for eigenvalues, 111
Set(s)

accumulation point, 28

boundary point, 28

bounded, 28

closed, 28

closure, 28

compact, 28

convex hull, 29

disjoint, 10

exterior point, 28

extreme point, 28-29

inner point, 28

interior point, 28

intersection of, 7

limit point, 28

open, 28

span of, 11

sum of, 7

Sherman—Morrison—-Woodbury formula, 309

Sherman—Morrison formula, 308
Shorted matrix, 456
Signature, 344
Similarity
definition, 323
SRT relation, 330
Simultaneous diagonal reductions, 345

Simultaneous singular value decompositions,

346

Simultaneous upper-triangular reductions, 346

Singular matrix, 53

Singular value decomposition, 334
and Kronecker product, 235
and linear equation, 281
and matrix difference, 119
and sample principal components, 481
and trace, 56
and unitarily invariant norm, 74
and weak inverse, 126
definition, 334
diagonal reduction and, 333
Eckart—Young theorem, 522
full-rank factorization, 336
Moore-Penrose inverse and, 137
optimizing trace, 520
polar decomposition and, 348
procrustes analysis and, 488
simultaneous, 43, 346
thin version of, 335

Singular value(s), 335
and gauge function, 75
and quadratic ratio, 111
definition, 101, 335
inequalities for matrix difference, 119

INDEX

inequalities for matrix product, 120
inequalities for matrix sum, 118
maximum, 68, 70
min-max theorem, 109
of Hadamard product, 253
of Kronecker product, 235
weak majorization and, 510, 514
Singular vectors
definition, 335
Skew-Hermitian matrix
definition, 80
function of unitary matrix, 83
Skew-symmetric matrix
definition, 85
exponential function of, 423
pfaffian of, 85
tridiagonal reduction, 344
Span a vector space, 11
Span of a set, 11, 103
Spectal decomposition, 327
Spectral decomposition
of a regular circulant, 154
of a symmetric matrix, 342
diagonalizable matrix and, 327
of an arbitrary matrix, 327
Spectral norm
induced generalized, 68, 74
matrix, 71
Spectral radius, 71, 164, 197
and numerical radius, 102
bounded by matrix norm, 69-70
definition, 92
linear stationary iteration and, 382
Spectrum—See eigenvalue(s), 92
Square bracket multiplication, 194
SRT relation, 330
Stable matrix, 189
Star operator, 251
Stationary distribution—See Transition
matrix, 212
Stationary Markov chain, 212
Stationary point, 515
Stochastic matrix
and Markovian kernel, 212
canonical form, 214
countably infinite, 215
definition, 212
ergodic property, 212
infinite irreducible, 215
regular, 214
Strictly upper-triangular matrix, 325
Sturmian separation theorem, 112
Submatrix
definition, 1
leading principal, 1
principal, 1
proper, 1
Sum of matrices
and Kronecker products, 174
and non-negative definite matrix, 172
Cochran’s theorem, 170
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each non-negative definite, 173
each nonsymmetric and idempotent, 171
each rectangular, 172
each symmetric and idempotent, 170, 173
each tripotent, 176
Sum
of vector subspaces, 10
Symmetric circulant
definition, 156
Moore—Penrose inverse of, 157
Symmetric function, 511
Symmetric gauge function
definition, 75
unitarily invariant matrix norm and, 75
Symmetric idempotent matrix
and Moore—Penrose inverse, 139
least squares estimation and, 448
noncentral Wishart and, 467
symmetrizer matrix, 247
Symmetric matrix
definition, 80
expressed as sum of idempotents, 173
general properties, 104
Moore—Penrose inverse of, 139
spectral theorem for, 342
trace of Moore-Penrose inverse, 139
Symmetrizer matrix
definition, 247
properties of, 248

T

T-transform, 509
Three-dimensional array, 194
Toeplitz matrix, 158
tridiagonal, 180
Trace
and Cauchy-Schwarz inequality, 259
and matrix inner product, 15
definition, 54
differential of, 373
inequality, 274
matrix differentiation of, 366
maximum, 113
modulus bound for, 101
of matrix product, 55, 107, 230
second-order derivative of, 379
sum of eigenvalues, 95
vec differentiation of, 359
von Neumann inequality for matrix product,
120
Trajectory matrix, 162
Transformation rule, 372-374
Transformation rules, 370
Transition matrix
associated stationary distribution, 212
definition, 212
Triangle inequality, 275
Triangular matrix, 178
block form, 179
lower-triangular, 178
reduction to, 343

unit triangular, 178

upper-triangular, 178
Tridiagonal matrix, 180

QR decomposition for, 342
Tridiagonal reduction

of normal matrix, 343

of orthogonal matrix, 344

of real skew-symmetric matrix, 344
Tripotent matrix

and chi-square distribution, 442

definition, 175
Two-sample vector theory, 473, 475

U

Ultrametric, 26

Unipotent matrix
definition, 188

Unitarily invariant norm
and Cauchy-Schwarz inequality, 266
generalized matrix, 73
matrix, 74
self-adjoint, 76
vector, 65

Unitary matrix
definition, 80, 147
eigenvalues, 148
matrix norm of, 71
symmetric, 148

Upper-triangular block matrix
reduction to, 338

Upper-triangular matrix
reduction to, 337
simultaneous reduction to, 346
strictly, 325

Upper Hessenberg matrix
reduction to, 349

A%

Vandermonde matrix, 183
and diagonalizable matrix, 328
Variance—covariance matrix—See Variance
matrix, 427
Variance matrix
definition, 427
sample, 463
Variational characteristics
Courant—Fischer min—-max theorem, 109
Raleigh—-Ritz ratio, 108
Vec-permutation matrix—See Commutation
matrix, 242
Vec function
vec differentiation of, 362
Vec matrix product
vec differentiation of, 362
Vec of inverse
vec differentiation of, 362
Vec operator
definition, 239
products and, 240
trace and, 240
Vech of matrix product



vech differentiation of, 363
Vech of Moore-Penrose inverse
vech differentiation of, 363

Vech operator
definition, 246
of symmetric product, 248
Vector difference equation, 381
Vector differential
transformation rule, 373
Vector function
vector differentiation of, 361
Vector norm
Lo norm, 66
Ly norm, 66
definition, 65
Euclidean L3 norm, 66
limiting sequence, 67
unitarily invariant, 65
all essentially equivalent, 65
Vector seminorm, 66
definition, 65
Vector space
definition, 7
Vector subspace(s)
basis for, 11
definition, 8
dimension of, 11
direct sum of, 10
disjoint, 10
intersection of, 10
isomorphic, 12
lattice of, 10
orthogonal complement, 16
sum of, 10
Volume of parallelotope, 33

w
Watson efficiency, 453, 456

INDEX

Weak inverse, 125
and Hermite form, 128
and invariance of product, 130
conjugate transpose of, 127
definition, 125
existence, 126
from QR decomposition, 341
of Kronecker product, 234
of partitioned matrix, 302
of sum, 132
of symmetric matrix, 132
patterned matrix, 320
rank of, 127
representation of, 127, 146
transpose of, 126
vector element differentiation of, 354
Weak majorization
and eigenvalues, 510
definitions, 509
doubly stochastic matrix and, 510
singular values and, 510
Weighted inner product space, 22
Weighted mean inequality, 270
Weirstrass'’s theorem, 30
Weyl’s theorem, 117
Wishart distribution
complex, 469
definition, 465
density function of, 490
eigenvalues of matrix, 468
independence and, 468
inverted, 465
noncentral, 465
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zZ

Z-matrix, 191
Zero—one matrix, 186
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