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PREFACE 

This book has had a long gestation period; I began writing notes for it in 1984 as 
a partial distraction when my first wife was fighting a terminal illness. Although 
I continued to collect material on and off over the years, I turned my attention 
to writing in other fields instead. However, in my recent “retirement”, I finally 
decided to bring the book to birth as I believe even more strongly now of the need 
for such a book. Vectors and matrices are used extensively throughout statistics, as 
evidenced by appendices in many books (including some of my own), in published 
research papers, and in the extensive bibliography of Puntanen et al. [1998]. In 
fact, C. R. Rao [1973a] devoted his first chapter to the topic in his pioneering book, 
which many of my generation have found to be a very useful source. In recent 
years, a number of helpful books relating matrices to  statistics have appeared on 
the scene that generally assume no knowledge of matrices and build up the subject 
gradually. My aim was not to write such a how-to-do-it book, but simply to  provide 
an extensive list of results that people could look up - very much like a dictionary 
or encyclopedia. I therefore assume that the reader already has a basic working 
knowledge of vectors and matrices. Alhough the book title suggests a statistical 
orientation, I hope that the book’s wide scope will make it useful t o  people in other 
disciplines as well. 

In writing this book, I faced a number of challenges. The first was what t o  
include. It was a bit like writing a dictionary. When do you stop adding material; 
I guess when other things in life become more important! The temptation was to  
begin including almost every conceiveble matrix result I could find on the grounds 
that one day they might all be useful in statistical research! After all, the history of 
science tells us that mathematical theory usually precedes applications. However, 

xvi 
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this is not practical and my selection is therefore somewhat personal and reflects my 
own general knowledge, or lack of it! Also, my selection is tempered by my ability 
to access certain books and journals, so overall there is a fair dose of randomness in 
the selection process. To help me keep my feet on the ground and keep my focus on 
statistics, I have listed, where possible, some references to statistical applications 
of the theory. Clearly, readers will spot some gaps and I apologize in advance for 
leaving out any of your favorite results or topics. Please let me know about them 
(e-mail: seber@stat.auckland.ac.nz). A helpful source of matrix definitions is the 
free encyclopedia, wikipedia at http://en.wikipedia.org. 

My second challenge was what to do about proofs. When I first started this 
project, I began deriving and collecting proofs but soon realized that the proofs 
would make the book too big, given that I wanted the book to be reasonably com- 
prehensive. I therefore decided to give only references to proofs at the end of each 
section or subsection. Most of the time I have been able to  refer t o  book sources, 
with the occasional journal article referenced, and I have tried to  give more than 
one reference for a result when I could. Although there are many excellent matrix 
books that I could have used for proofs, I often found in consulting a book that a 
particular result that I wanted was missing or perhaps assigned to  the exercises, 
which often didn’t have outline solutions. To avoid casting my net too widely, I 
have therefore tended to quote from books that are more encyclopedic in nature. 
Occasionally, there are lesser known results that are simply quoted without proof in 
the source that I have used, and I then use the words “Quoted by ...”; the reader will 
need to consult that source for further references to proofs. Some of my references 
are to exercises, and I have endeavored to choose sources that have at  least outline 
solutions (e.g., Rao and Bhimasankaram [2000] and Seber [1984]) or perhaps some 
hints (e.g., Horn and Johnson [1985, 19911); several books have solutions manuals 
(e.g., Harville [200l] and Meyer [2OOOb]). Sometimes I haven’t been able to locate 
the proof of a fairly of straightforward result, and I have found it quicker to give 
an outline proof that I hope is sufficient for the reader. 

In relation to proofs, there is one other matter I needed to deal with. Initially, 
I wanted to give the original references to important results, but found this too 
difficult for several reasons. Firstly, there is the sheer volume of results, combined 
with my limited access to older documents. Secondly, there is often controversy 
about the original authors. However, I have included some names of original au- 
thors where they seem to be well established. We also need to bear in mind Stigler’s 
maxim, simply stated, that “no scientific discovery is named after its original dis- 
coverer.” (Stigler [1999: 2771). It should be noted that there are also statistical 
proofs of some matrix results (cf. Rao [2000]). 

The third challenge I faced was choosing the order of the topics. Because this 
book is not meant t o  be a teach-yourself matrix book, I did not have to  follow a 
“logical” order determined by the proofs. Instead, I was able to  collect like results 
together for an easier look-up. In fact, many topics overlap, so that a logical order 
is not completely possible. A disadvantage of such an approach is that concepts are 
sometimes mentioned before they are defined. I don’t believe this will cause any 
difficulties because the cross-referencing and the index will, hopefully, be sufficiently 
detailed for definitions to  be readily located. 

My fourth challenge was deciding what level of generality I should use. Some 
authors use a general field for elements of matrices, while others work in a framework 
of complex matrices, because most results for real matrices follow as a special case. 
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Most books with the word “statistics” in the title deal with real matrices only. 
Although the complex approach would seem the most logical, I am aware that I 
am writing mainly for the research statistician, many of whom are not involved 
with complex matrices. I have therefore used a mixed approach with the choice 
depending on the topic and the proofs available in the literature. Sometimes I 
append the words “real case” or “complex case” to a reference to inform the reader 
about the nature of the proof referenced. Frequently, proofs relating to real matrices 
can be readily extended with little change to those for the complex case. 

In a book of this size, it has not been possible to check the correctness of all the 
results quoted. However, where a result appears in more than one reference, one 
would have confidence in its accuracy. My aim has been been to try and faithfully 
reproduce the results. As we know with data, there is always a percentage that is 
either wrong or incorrectly transcribed. This book won’t be any different. If you 
do find a typo, I would be grateful if you could e-mail me so that I can compile a 
list of errata for distribution. 

With regard to contents, after some notation in Chapter 1, Chapter 2 focuses 
on vector spaces and their properties, especially on orthogonal complements and 
column spaces of matrices. Inner products, orthogonal projections, metrics, and 
convexity then take up most of the balance of the chapter. Results relating to the 
rank of a matrix take up all of Chapter 3, while Chapter 4 deals with important 
matrix functions such as inverse, transpose, trace, determinant, and norm. As 
complex matrices are sometimes left out of books, I have devoted Chapter 5 to 
some properties of complex matrices and then considered Hermitian matrices and 
some of their close relatives. 

Chapter 6 is devoted to  eigenvalues and eigenvectors, singular values, and (briefly) 
antieigenvalues. Because of the increasing usefulness of generalized inverses, C h a p  
ter 7 deals with various types of generalized inverses and their properties. Chapter 
8 is a bit of a potpourri; it is a collection of various kinds of special matrices, 
except for those specifically highlighted in later chapters such as non-negative ma- 
trices in Chapter 9 and positive and non-negative definite matrices in Chapter 10. 
Some special products and operators are considered in Chapter 11, including (a) the 
Kronecker, Hadamard, and RmKhat r i  products and (b) operators such as the vec, 
vech, and vec-permutation (commutation) operators. One could fill several books 
with inequalities so that in Chapter 12 I have included just a selection of results 
that might have some connection with statistics. The solution of linear equations 
is the topic of Chapter 13, while Chapters 14 and 15 deal with partitioned matrices 
and matrices with a pattern. 

A wide variety of factorizations and decompositions of matrices are given in 
Chapter 16, and in Chapter 17 and 18 we have the related topics of differentiation 
and Jacobians. Following limits and sequences of matrices in Chapter 19, the next 
three chapters involve random variables - random vectors (Chapter 20), random 
matrices (Chapter 21), and probability inequalities (Chapter 22). A less familiar 
topic, namely majorization, is considered in Chapter 23, followed by aspects of 
optimization in the last chapter, Chapter 24. 

I want to express my thanks to a number of people who have provided me with 
preprints, reprints, reference material and answered my queries. These include 
Harold Henderson, Nye John, Simo Puntanen, Jim Schott, George Styan, Gary 
Tee, Goetz Trenkler, and Yongge Tian. I am sorry if I have forgotten anyone 
because of the length of time since I began this project. My thanks also go to 
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several anonymous referees who provided helpful input on an earlier draft of the 
book, and to the Wiley team for their encouragement and support. Finally, special 
thanks go to my wife Jean for her patient support throughout this project. 

GEORGE A. F. SEBER 

Auckland, New Zealand 

Setember 2007 
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CHAPTER 1 

N OTAT I 0 N 

1.1 GENERAL DEFINITIONS 

Vectors and matrices are denoted by boldface letters a and A, respectively, and 
scalars are denoted by italics. Thus a = ( a i )  is a vector with i th element ai and 
A = ( a i j )  is a matrix with i , j t h  elements a i j .  I maintain this notation even with 
random variables, because using uppercase for random variables and lowercase for 
their values can cause confusion with vectors and matrices. In Chapters 20 and 21, 
which focus on random variables, we endeavor to help the reader by using the latter 
half of the alphabet u, w, . . . , z for random variables and the rest of the alphabet 
for constants. 

Let A be an n1 x 722 matrix. Then any ml x m2 matrix B formed by deleting 
any n1 - ml rows and 122 - m2 columns of A is called a submatrix of A. It can 
also be regarded as the intersection of ml rows and m2 columns of A. I shall define 
A to be a submatrix of itself, and when this is not the case I refer to a submatrix 
that is not A as a proper submatrix of A. When ml = m2 = m, the square matrix 
B is called a principal submatrix and it is said to be of order m. Its determinant, 
det(B), is called an mth-order minor  of A. When B consists of the intersection 
of the same numbered rows and columns (e.g., the first, second, and fourth), the 
minor is called a principal m inor .  If B consists of the intersection of the first m 
rows and the first m columns of A, then it is called a leading principal submatrix 
and its determinant is called a leading principal m - t h  order minor. 

A Matrix Handbook for Statisticians. By George A. F. Seber 
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2 NOTATION 

Many matrix results hold when the elements of the matrices belong to a general 
field F of scalars. For most practitioners, this means that the elements can be real 
or complex, so we shall use F to denote either the real numbers IR or the complex 
numbers @. The expression F" will denote the n-dimensional counterpart. 

If A is complex, it can be expressed in the form A = B + iC, where B and C 
are real matrices, and its complex conjugate is A = B - iC. We call A' = (a j i )  

the transpose of A and define the conjugate transpose of A to be A* = K'. In 
practice, we can often transfer results from real to complex matrices, and vice versa, 
by simply interchanging ' and *. 

When adding or multiplying matrices together, we will assume that the sizes 
of the matrices are such that these operations can be carried out. We make this 
assumption by saying that the matrices are conformable. If there is any ambiguity 
we shall denote an m x n matrix A by A,,,. A matrix partitioned into blocks is 
called a block matrix. 

If z and y are random variables, then the symbols E(y), var(y), cov(x,y), and 
E(z I y) represent expectation, variance, covariance, and conditional expectation, 
respectively. 

Before we give a list of all the symbols used we mention some univariate statistical 
distributions. 

1.2 SOME CONTINUOUS UNIVARIATE DISTRIBUTIONS 

We assume that the reader is familiar with the normal, chi-square, t ,  F ,  gamma, 
and beta univariate distributions. Multivariate vector versions of the normal and 
t distributions are given in Sections 20.5.1 and 20.8.1, respectively, and matrix 
versions of the gamma and beta are found in Section 21.9. As some noncentral 
distributions are referred to in the statistical chapters, we define two univariate 
distributions below. 

1.1. (Noncentral Chi-square Distribution) The random variable z with probability 
density function 

is called the noncentral chi-square distribution with u degrees of freedom and non- 
centrality parameter 6, and we write z N xE(6). 

(a) When 6 = 0, the above density reduces to the (central) chi-square distribution, 
which is denoted by xz. 

(b) The noncentral chi-square can be defined as the distribution of the sum of the 
squares of independent univariate normal variables yi (i = 1 , 2 , ,  . . , n) with 
variances 1 and respective means hi. Thus if y N N&, I d ) ,  the multivariate 
normal distribution, then 5 = y'y N x;(S), where 6 = p'p (Anderson [2003: 
81-82]). 

(c) E ( z )  = v + 6. 
Since 6 > 0, some authors set 6 = T',  say. Others use 6/2, which, because of (c), is 
not so memorable. 
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1.2. (Noncentral F-Distribution) If z N x $ ( b ) ,  y N x:, and z and y are statistically 
independent, then F = (x/m)/(y/n) is said to have a noncentral F-distribution 
with m and n degrees of freedom, and noncentrality parameter 6. We write F N 

Fm,+(6). For a derivation of this distribution see Anderson [2003: 1851. When 
6 = 0, we use the usual notation Fm," for the F-distribution. 

1.3 GLOSSARY OF NOTATION 

Scalars 

F 
R 
c 
F 
z = x + i y  
z = x - i y  

IZI = (z2 + Y 1 
- 

2 1/2 

Vector Spaces 

dim V 
VL 
X € V  

v c w  
v c w  
v n w  
v u w  
v + w  
V @ W  
( , )  
X l Y  

field of scalars 
real numbers 
complex numbers 
R or C 
a complex number 
complex conjugate of z 
modulus of z 

n-dimensional coordinate space 
F" with IF = R 
F" with F = C 
column space of A, the space spanned by 
the columns of A 
row space of A 
{x : Ax = 0 } ,  null space (kernel) of A 
span of the set A ,  the vector space of all linear 
combinations of vectors in A 
dimension of the vector space V 
the orthogonal complement of V 
x is an element of V 
V is a subset of W 
V is a proper subset of W ( i.e., V # W )  
intersection, {x : x E V and x E W} 
union, {x : x E V and/or x E W} 
s u m , { x + y : x E V , y € W }  
direct sum, { x + y  : x E V,y E W ; V n  W = 0 )  
an inner product defined on a vector space 
x is perpendicular to y (i.e., (x ,y)  = 0) 
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Complex Matrix 

A = B + Z C  
A = (aij) = B - ZC 
A* = A’ = ( Z j t )  
A = A’ 

- 

A = -A’ 
AA* = A*A 

Special Symbols 

SUP 
inf 
max 
min 
+ 
=+ 
c( 

1 n  
In 

0 
diag(d) 

diag(d1, d2, . . . , dn) 
diag A 
A > O  
A > Q  
A 5 0, n.n.d 
A 5 B 1 B 5 A  
A > 0, p.d. 
A + B, B + A  
x << y 
XKUJY 
x <<w y 
A‘ = ( ~ , i )  

A-1 
A- 
A+ 
trace A 
det A 
rank A 
per A 
mod(A) 

Pf(A) 
P(A) 
K?J (A) 

complex matrix, with B and C real 
complex conjugate of A 
conjugate transpose of A 
A is a Hermitian matrix 
A is a skew-Hermitian matrix 
A is a normal matrix 

supremum 
infemum 
maximum 
minimum 
tends to 
implies 
proportional to 
the n x 1 vector with unit elements 
the n x n identity matrix 
a vector or matrix of zeros 
n x n matrix with diagonal elements d’ = (dl, . . . , dn), 
and zeros elsewhere 
same as above 
diagonal matrix ; same diagonal elements as A 
the elements of A are all non-negative 
the elements of A are all positive 
A is non-negative definite (x’Ax 2 0) 

A is positive definite (x’Ax > 0 for x # 0) 

x is (strongly) majorized by y 
x is weakly submajorized by y 
x is weakly supermajorized by y 
the transpose of A 
inverse of A when A is nonsingular 
weak inverse of A satisfying AA-A = A 
Moore-Penrose inverse of A 
sum of the diagonal elements of a square matrix A 
determinant of a square matrix A 
rank of A 
permanent of a square matrix A 
modulus of A = (u~,), given by (1uij)l) 
pfaffian of A 
spectral radius of a square matrix A 
condition number of an m x n matrix, w = 1 , 2 ,  IX 

A - B k O  

A - B > O  
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vech Am 

inner product of x and y 
a norm of vector x (= (x, x)’/~) 
length of x (= (x*x)l/’) 
L, vector norm of x (= Cy=l I z , l p ) ’ l p )  

L ,  vector norm of x (= max, 1 ~ ~ 1 )  
a generalized matrix norm of m x n A 

F’robenius norm of matrix A (= (C, C, laz, l2)l/’) 
generalized matrix norm for m x n matrix A induced 
by a vector norm 1 1  . 1 I v  
unitarily invariant norm of m x n matrix A 
orthogonally invariant norm of m x n matrix A 
matrix norm of square matrix A 
matrix norm for a square matrix A induced 
by a vector norm 11 . ( I v  
m x n matrix 
matrix partitioned by two matrices A and B 
matrix partitioned by column vectors al, . . . , a, 
Kronecker product of A and B 
Hadamard (Schur) product of A and B 
Rao-Khatri product of A and B 
mn x 1 vector formed by writing the columns of A 
one below the other 
$m(m + 1) x 1 vector formed by writing the columns of the lower 
triangle of A (including the diagonal elements) one below the other 
vec-permutation (commutation) matrix 
duplication matrix 
symmetrizer matrix 
eigenvalue of a square matrix A 
singular value of any matrix B 

(= CZl C,”=, 1 %  IP ) l lP>  P 2 1) 
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CHAPTER 2 

VECTORS, VECTOR SPACES, AND 
CO NVEX ITY 

Vector spaces and subspaces play an important role in statistics, the key ones being 
orthogonal complements as well as the column and row spaces of matrices. Projec- 
tions onto vector subspaces occur in topics like least squares, where orthogonality 
is defined in terms of an inner product. Convex sets and functions arise in the 
development of inequalities and optimization. Other topics such as metric spaces 
and coordinate geometry are also included in this chapter. A helpful reference for 
vector spaces and their properties is Kollo and von Rosen [2005: section 1.21. 

2.1 VECTOR SPACES 

2.1.1 Definitions 

Definition 2.1. If S and T are subsets of some space V ,  then S n T is called the 
intersection of S and T and is the set of all vectors in V common to both S and T .  
The sum of S and T ,  written S + T ,  is the set of all vectors in V that are a sum of 
a vector in S and a vector in T .  Thus 

W = S + T = {w : w = s + t, s E S and t E T } .  

(In most applications S and T are vector subspaces, defined below.) 

Definition 2.2.  A vector space U over a field F is a set of elements {u} called 
vectors and a set F of elements called scalars with four binary operations (+, ., *, 
and 0 )  that satisfy the following axioms. 

A Matrix Handbook for  Statisticians. By George A. F. Seber 
Copyright @ 2008 John Wiley & Sons, Inc. 
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8 VECTORS, VECTOR SPACES, AND CONVEXITY 

(1) F is a field with regard to the operations + and .. 

(2) For all u and v in U we have the following: 

(i) u * v E U. 
(ii) u * v = v * u. 

(iii) (u * v) * w = u * (v * w) for all w E U. 
(iv) There is a vector 0 E U, called the zero vector, such that u * 0 = u for 

(v) For each u E U there exists a vector -u E U such that u * -u = 0. 

all u E U. 

(3) For all a and p in 3 and all u and v in U we have: 

(i) a o u E V .  
(ii) There exists an element in F called the unit element such that 1 o u  = u. 

(iii) ( a + p )  o u  = ( a o u )  * ( p  o u ) .  

(iv) a o  (u * v) = (a0  u) * (aov). 
(v) (a  . p)  0 u = a 0 ( p  0 u). 

We note from (2) that U is an abelian group under l L * ” .  Also, we can replace LL*’’ 
by “+” and remove ‘‘.” and ‘‘0” wihout any ambiguity. Thus (iv) and (v) of (3) 
above can be written as a(u + v) = au + av and (aP)u = @u), which we shall 
do in what follows. 

Normally F = F, where F denotes either R or @. However, one field that has 
been useful in the construction of experimental designs such as orthogonal Latin 
squares, for example, is a finite field consisting of a finite number of elements. A 
finite field is known as a Galois field. The number of elements in any Galois field is 
pm,  where p is a prime number and m is a positive integer. For a brief discussion 
see Rao and Rao [1998: 6-10]. 

If F is a finite field, then a vector space U over F can be used to  obtain a finite 
projective geometry with a finite set of elements or “points” S and a collection of 
subsets of S or “lines.” By identifying a block with a “line” and a treatment with 
a “point,” one can use the projective geometry to construct balanced incomplete 
block designs-as, for example, described by Rao and Rao [1998: 48-49]. 

For general, less abstract, references on this topic see Friedberg et al. [2003], 
Lay [2003], and Rao and Bhimasankaram [2000]. 

Definition 2.3. A subset V of a vector space U that is also a vector space is called 
a subspace of U. 

2.1. V is a vector subspace if and only if au + Pv E V for all u and v in V and all 
cr and p in F. Setting a = p = 0, we see that 0, the zero vector in U, must belong 
to every vector subspace. 

2.2. The set V of all m x n matrices over F, along with the usual operations of 
addition and scalar multiplication, is a vector space. If m = n, the subset A of all 
symmetric matrices is a vector subspace of V .  

Proofs. Section 2.1.1. 

2.1. Rao and Bhimasankaram [ZOOO: 231. 

2.2. Harville [1997: chapters 3 and 41. 
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2.1.2 Quadratic Subspaces 

Quadratic subspaces arise in certain inferential problems such as the estimation of 
variance components (Rao and Rao [1998: chapter 131). They also arise in testing 
multivariate linear hypotheses when the variance-covariance matrix has a certain 
structure or pattern (Rogers and Young [1978: 2041 and Seeley [1971]). Klein [2004] 
considers their use in the design of mixture experiments. 

Definition 2.4. Suppose B is a subspace of A, where A is the set of all n x n real 
symmetric matrices. If B E B implies that B2 E B,  then B is called a quadratic 
subspace of A. 

2.3. If A1 and A2 are real symmetric idempotent matrices (i.e., A! = A,) with 
AlAz = 0, and A is the set of all real symmetric n x n matrices, then 

B = (alA1 + azA2 : a1 and a2 real}, 

is a quadratic subspace of A. 

2.4. If B is a quadratic subspace of A, then the following hold. 

(a) If A E B, then the Moore-Penrose inverse A+ 6 B. 

(b) If A E B,  then AA+ E B 

(c) There exists a basis of B consisting of idempotent matrices. 

2.5. The following statements are equivalent. 

(1) B is a quadratic subspace of A. 

(2)  If A, B E B, then (A + B)2 E B. 

(3) If A, B E B, then AB + BA E B. 

(4) If A E B ,  then Ak E B for k = 1 ,2 , .  . .. 

2.6. Let B be a quadratic subspace of A. Then: 

(a) If A , B  E B,  then ABA E B. 

(b) Let A E B be fixed and let C = {ABA : B E B} .  Then C is a quadratic 
subspace of B. 

(c) If A, B, C E B,  then ABC + CBA E B. 

Proofs. Section 2.1.2 

2.3. This follows from the definition and noting that A2Al = 0. 

2.3 to 2.6. Rao and Rao [1998: 434-436, 4401. 
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2.1.3 

Definition 2.5. Let V and W be vector subspaces of a vector space U. As with 
sets, we define V + W to  be the s u m  of the two vector subspaces. If V n W = 0 
(some authors use { 0 } ) ,  we say that V and W are disjoint vector subspaces (Harville 
[1997] uses the term “essentially disjoint”). Note that this differs from the notion 
of disjoint sets, namely V n W = 4, which we will not need. When V and W are 
disjoint, we refer to the sum as a direct sum and write I) @ W. Also V n W is called 
the intersection of V and W. 

The ordered pair (n, (I) forms a lattice of subspaces so that lattice theory can 
be used to determine properties relating to the sum and intersection of subspaces. 
Kollo and von Rosen [2006: section 1.21 give detailed lists of such properties, and 
some of these are given below. 

2.7. Let A, B,  and C be vector subspaces of U. 

Sums and Intersections of Subspaces 

(a) A n B and A + B are vector subspaces. However, d U B need not be a vector 
space. Here A n B is the smallest subspace containing A and B, and A + B 
is the largest. Also A + B is the smallest subspace containing A U B. By 
smallest subspace we mean one with the smallest dimension. 

(b) If U = A @ B,  then every u E U can be expressed uniquely in the form 
u = a + b, where a E A and b E B. 

(c) A n ( A + B ) = A + ( d n B ) = A .  

(d) (Distributive) 

(i) d n ( B + C )  2 (AnB)+ (AnC) .  
(ii) A + ( B  n C) (I (A  + B )  n ( A  + C). 

(e) In the following results we can interchange + and n. 

( i )  [A n (23 + C)] + B = [ (A  + B )  n C] + B. 

(ii) A n [ B + ( A n C ) ]  = ( A n B ) + ( A n C ) .  
(iii) A n  ( B  + C) = A n  [B n (d + C)] + C. 

(iv) ( A n B ) + ( A n C ) + ( B n C )  = [ A + ( B n C ) ] n [ B + ( A n C ) ] .  

(v) A n B =  [(dnB)+(AnC)]n[(AnB)+(BnC)]. 

Proofs. Section 2.1.3. 

2.7a. Schott [2005: 681 

2.7b. Assume u = a1 + bl so that a - a1 = -(b - bl), with the two vectors 
being in disjoint subspaces; hence a = a1 and b = bl. 

2.7~-e. Kollo and von Rosen [2006: section 1.21. 

2.7d. Harville [2001: 163, exercise 41. 
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2.1.4 Span and Basis 

Definition 2.6. We can always construct a vector space U from F, called an 
n- tuple  space, by defining u = (u1,u2,. . . , u,)’, where each ui E F. 

In practice, .F is usually F and U is F”. This will generally be the case in this 
book, unless indicated otherwise. However, one useful exception is the vector space 
consisting of all m x n matrices with elements in F. 

Definition 2.7. Given a subset A of a vector space V ,  we define the span  of 
A, denoted by S(A),  to be the set of all vectors obtained by taking all linear 
combinations of vectors in A. We say that A is a generating se t  of S(A). 

2.8. Let A and B be subsets of a vector space. Then: 

(a) S (A)  is a vector space (even though A may not be). 

(b) A C S(A). Also S (A)  is the smallest subspace of V containing A in the sense 
that every subspace of V containing A also contains S(A).  

(c) A is a vector space if and only if A = S ( A ) .  

(4 S[S(A)I = S(A).  

(e) If A C B, then S(A) C S ( B ) .  

( f )  S ( A )  u S ( B )  c S ( A  u B) .  

(g )  S(A n B )  c S ( A )  n w). 

Definition 2.8. A set of vectors vi (i = 1,2, . . . , r )  in a vector space are l inearly 
independent  if EL==, aivi = 0 implies that a1 = a2 = . . . = a,  = 0. A set of vectors 
that are not linearly independent are said to be l inearly dependent.  For further 
properties of linearly independent sets see Rao and Bhimasankaram [2000: chapter 

The term “vector” here and in the following definitions is quite general and 
simply refers to an element of a vector space. For example, it could be an m x n 
matrix in the vector space of all such matrices; Harville [1997: chapters 3 and 41 
takes this approach. 

Definition 2.9. A set of vectors vi ( i  = 1,2, .  . . , r )  span a vector space V if the 
elements of V consist of all linear combinations of the vectors (i.e., if v E V ,  then 
v = alvl + .. .  + a,v,). The set of vectors is called a generating se t  of V .  If the 
vectors are also linearly independent, then the vi form a basis for V .  

2.9. Every vector space has a basis. (This follows from Zorn’s lemma, which can 
be used to prove the existence of a maximal linearly independent set of vectors, i.e., 
a basis.) 

Definition 2.10. All bases contain the same number of vectors so that this number 
is defined to be the dimension of V .  

2.10. Let V be a subspace of U .  Then: 

11. 

(a) Every linearly independent set of vectors in V can be extended to a basis of 
U .  
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(b) Every generating set of V contains a basis of V .  

2.11. If V and W are vector subspaces of U ,  then: 

(a) If V C W and dimV = dimW, then V = W .  

(b) If V C W and W C V ,  then V = W. This is the usual method for proving 
the equality of two vector subspaces. 

(c) dim(V + W) = dim(V) + dim(W) - dim(V n W). 

2.12. If the columns of A = (a l l . .  . ,a,) and the columns of B = (bl , .  . . , b,) both 
form a basis for a vector subspace of Fn, then A = BR, where R = (rij) is r x r 
and nonsingular. 

Proofs. Section 2.1.4. 

2.8. Rao and Bhimasankaram [2000: 25-28]. 

2.9. Halmos [1958]. 

2.10. Rao and Bhimasankaram [2000: 391. 

2.11a-b. Proofs are straightforward. 

2 . 1 1 ~ .  Meyer [2000a: 2051 and Rao and Bhimasankaram [2000: 481. 

2.12. Firstly, aj = Ci birij so that A = BR. Now assume rankR < r ;  then 
rankA 5 min{rankB,rankR} < r by (3.12), which is a contradiction. 

2.1.5 Isomorphism 

Definition 2.11. Let V1 and Vz be two vector spaces over the same field 3. Then 
a map (function) + from V1 to Vz is said to be an isomorphism if the following 
hold. 

(1) + is a bijection (i.e., + is one-to-one and onto). 

(2) + ( u + v ) = + ( u ) + + ( v )  f o r a l l u , v E V l .  

(3) +(au) = Q+(u) for all cy E F and u E V1. 

V1 is said to be isomorphic to V2 if there is an isomorphism from V1 to Vz. 

2.13. Two vector spaces over a field 3 are isomorphic if and only if they have the 
same dimension. 

Proofs. Section 2.1.5. 

2.13. Rao and Bhimasankaram [2000: 591. 
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2.2 INNER PRODUCTS 

2.2.1 Definition and Properties 

The concept of an inner product is an important one in statistics as it leads to  ideas 
of length, angle, and distance between two points. 

Definition 2.12. Let V be a vector space over IF (i.e., B or C), and let x, y, and 
z be any vectors in V .  An inner product (.;) defined on V is a function (x,y) of 
two vectors x, y E V satisfying the following conditions: 

(1) (x, y) = (y, x), the complex conjugate of (y, x) 

(2) (x,x) 

(3) (ax,y) = a(x,y), where a is a scalar in F. 

- 

0; (x,x) = 0 implies that x = 0. 

(4) (x + Y 1 4  = (Xl 4 + (Y,.). 
When V is over B, (1) becomes (x,y) = (y,x), a symmetry condition. Inner 
products can also be defined on infinite-dimensional spaces such as a Hilbert space. 
A vector space together with an inner product is called an i nner  product space. A 
complex inner product space is also called a unitary space, and a real inner product 
space is called a Euclidean space. 

The n o r m  or length of x, denoted by llxll, is defined to be the positive square 
root of (x, x). We say that x has unit length if llxll = 1. More general norms, which 
are not associated with an inner product, are discussed in Section 4.6. 

We can define the angle f3 between x and y by 

cosf3 = ~~~Y~/~ll~llllYll~~ 

The distance between x and y is defined to be d(x,y) = IIx - yII and has the 
properties of a metric (Section 2.4). Usually, V = B" and (x,y) = x'y in defining 
angle and distance. 

Suppose (2) above is replaced by the weaker condition 

(2') (x,x) 2 0. (It is now possible that (x,x) = 0, but x # 0.) 

We then have what is called a semi- inner product (quasi-inner product) and a 
corresponding seminomn. We write (x, Y ) ~  for a semi-inner product. 

2.14. For any inner product the following hold: 

(4 (x, QY + Pz)  = 4Xl Y) + P(x, 4. 

(c) (ax, PY) = 4x ,  PY) = d(X, Y). 

(b) (x, 0) = (0, X) = 0. 

2.15. The following hold for any norm associated with an inner product. 

(a) IIx + yII 511 X I ]  + llyll (triangle inequality). 

(b) IIX - YII + llYll L IIXII. 
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(c) JIx + y1I2 + I(x - y1I2 = 2(Ix1I2 + 21)y1I2 (parallelogram law). 

(d) IIx + yJI2 = 1 1 ~ 1 1 ~  + lly112 if (x, y) = 0 (Pythagoras theorem). 

(el ( X , Y )  + ( Y , X )  I 211xll. IlYll. 

2.16. (Semi-Inner Product) The following hold for any semi-inner product (. , .)s 

on a vector space V .  

(4 ( 0 , O ) S  = 0 

(b) IIX + Ylls I llxlls + IlYlls. 

(c) N = {x E V : llxlls = 0) is a subspace of V .  

2.17. (Schwarz Inequality) Given an inner product space, we have for all x and y 

(x,Y)2 I ( X , X ) ( Y l Y ) ,  

or 

I(X,Y)I I llxll . IlYlll 

with equality if either x or y is zero or x = ky for some scalar k .  We can obtain 
various inequalities from the above by changing the inner product space (cf. Section 
12.1). 

2.18. Given an inner product space and unit vectors u, v, and w, then 

Jm I J l  - ( ( U , W ) l 2  + J1 - I(W,V)l2.  

Equality holds if and only if w is a multiple of u or of v. 

2.19. Some inner products are as follows. 

(a) If V = R", then common inner products are: 

(1) (x,y) = y'x = C:=L=lxiyi (= x'y). If x = y, we denote the norm by 
IIx112, the so-called Euclidean norm. 
The minimal angle between two vector subspaces 1, and W in R" is given 
bv 

For some properties see Meyer [2000a: section 5.151. 

(2) (x,y) = y'Ax (= x'Ay), where A is a positive definite matrix. 

(b) If V = Cn, then we can use (x, y) = y*x = C?=l zipi. 
(c) Every inner product defined on Cn can be expressed in the form (x ,y)  = 

y*Ax = xi C j  aijxiijj, where A = ( a i j )  is a Hermitian positive definite 
matrix. This follows by setting (e i ,e j )  = aij for all i , j ,  where ei is the 
ith column of I,. If we have a semi-inner product, then A is Hermitian 
non-negative definite. (This result is proved in Drygas [1970: 291, where 
symmetric means Hermitian.) 



INNER PRODUCTS 15 

2.20. Let V be the set of all m x n real matrices, and in scalar multiplication all 
scalars belong to R. Then: 

(a) V is vector space. 

(b) If we define (A, B) = trace(A’B), then ( , ) is an inner product. 

(c) The corresponding norm is ( (A,  A))’/2 = (ELl C,”=, u $ ) ~ / ~ .  This is the 
so-called Frobenius norm llAllp (cf. Definition 4.16 below (4.7)). 

Proofs. Section 2.2.1. 

2.14. Rao and Bhiniasankaram [2000: 251-2521, 

2.15. We begin with the Schwarz inequality I ( x , y ) I  = I ( y , x ) l  I I1xJI . llyll of 
(2.17). Then, since ( x ,  y )  + ( y ,  x )  is real, 

b , Y )  + (Y ,X)  I I (X>Y)  + (Y,X)I I I(X,Y)I + I(Y,X)I I211xll .YIO 

which proves (e). We obtain (a) by writing IIx + y1I2 = ( x  + y , x  + y )  and 
using (e); the rest are straightforward. See also Rao and Rao [1998: 541. 

2.16. Rao and Rao [1998: 771. 

2.17. There are a variety of proofs (e.g., Schott [2005: 361 and Ben-Israel 
and Greville [2003: 71). The inequality also holds for quasi-inner (semi-inner) 
products (Harville [1997: 2551). 

2.18. Zhang [1999: 1551. 

2.20. Harville [1997: chapter 41 uses this approach 

2.2.2 Functionals 

Definition 2.13. A function f defined on a vector space V over a field F and 
taking values in F is said to be a linear functional if 

f ( Q l X 1  + m x 2 )  = Olf  ( x 1 )  + a z f ( x 2 )  

for every XI, x2 E V and every cq, a2 E IF. For a discussion of linear functionals 
and the related concept of a dual space see Rao and Rao [1998: section 1.71. 

2.21. (Riesz) Let V be an an inner product space with inner product (,), and let 
f be a linear functional on V .  

(a) There exists a unique vector z E V such that 

f ( x )  = ( x ,  z) for every x E V .  

~ 

(b) Here z is given by z = f (u)  u, where u is any vector of unit length in V1. 

Proofs. Section 2.2.2. 

2.21. Rao and Rao [1998: 711. 
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2.2.3 Orthogonality 

Definition 2.14. Let U be a vector space over F with an inner product (,) ,  so 
that we have an inner product space. We say that x is perpendicular to y, and we 
write x I y, if (x,y) = 0. 

2.22. A set of vectors that are mutually orthogonal-that is, are pairwise orthog- 
onal for every pair-are linearly independent. 

Definition 2.15. A basis whose vectors are mutually orthogonal with unit length 
is called an orthonormal basis. An orthonormal basis of an inner product space 
always exists and it can be constructed from any basis by the Gram-Schmidt or- 
thogonalization process of (2.30). 

2.23. Let V and W be vector subspaces of a vector space U such that V g W .  Any 
orthonormal basis for V can be enlarged to  form an orthonormal basis for W .  

Definition 2.16. Let U be a vector space over F with an inner product ( , ) ,  and 
let V be a subset or subspace of U .  Then the orthogonal complement of V with 
respect to U is defined to be 

V' = {x : (x,y) = o for all y E v}. 
If V and W are two vector subspaces, we say that V I W if (x,y) = 0 for all 

x E V and y E W .  

2.24. Suppose dim U = n and al, a2,. . . ,a, is an orthonormal basis of U .  If 
a1,. . . ,a, ( r  < n) is an orthonormal basis for a vector subspace V of U ,  then 
a,+l, . . . , a, is an orthornormal basis for V'. 

2.25. If S and T are subsets or subspaces of U ,  then we have the following results: 

(a) S' is a vector space. 

(b) S C (S')' with equality if and only if S is a vector space. 

(c) If S and T both contain 0, then ( S  + T)' = S' n T'. 

2.26. If V is a vector subspace of U ,  a vector space over IF, then: 

(a) V' is a vector subspace of U ,  by (2.25a) above. 

(b) (V')' = V .  

(c) V @ V' = U .  In fact every u E U can be expressed uniquely in the form 
u = x + y, where x E V and y E V I .  

(d) dim(V) + dim(V') = dim(U). 

2.27. If V and W are vector subspaces of U ,  then: 

(a) V & W if and only if V I W1 

(b) V C W if and only if W' & V'. 

(c) (V n W)' = V' + W' and (V + W)' = V' n WL. 
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For more general results see Kollo and von Rosen [2005: section 1.21. 

Definition 2.17. Let V and W be vector subspaces of U ,  a vector space over F, 
and suppose that V C W. Then the set of all vectors in W that are perpendicular 
to V form a vector space called the orthogonal complement of V with respect to W, 
and is denoted by V' n W .  Thus 

V~ n w = {w : w E W, (w,v) = o for every v E v}. 
2.28. Let V W. Then 

(a) (i) dim(V' n W) = dim(W) - dim(V). 

(ii) W = V CB (V' n W). 

(b) From (a)@) we have U = W @ W' = V @ ( V l  n W) €B W'. 
The above can be regarded as an orthogonal decomposition of U into three 
orthogonal subspaces. Using this, vectors can be added to any orthonormal 
basis of V to form an orthonormal basis of W, which can then be extended 
to form an orthonormal basis of U .  

2.29. Let A, B,  and C be vector subspaces of U .  If B I C and A I C, then 
An(B@C)  = A n &  

2.30. (Classical Gram-Schmidt Algorithm) Given a basis X I ,  x2, . . . , x, of an in- 
ner product space, there exists an orthonormal basis ql, 9 2 ,  . . . , q, given by ql = 

Xl/IlXll l ,  q, = w,/llw,ll (3 = 2 , .  . . ,n),  where 

w1 = xj - (x,,ql)ql - (x,,q2)q2 - " '  - (xJ,qJ-l)q,-l. 

This expression gives the algorithm for computing the basis. If we require an 
orthogonal basis only without the square roots involved with the normalizing, we 
can use w1 = x1 and, for 3 = 2 , 3 , .  . . ,n, 

Also the vectors can be replaced by matrices using a suitable inner product such 
as (A,B)  = trace(A'B). 

2.31. Since, from (2.9), every vector space has a basis, it follows from the above 
algorithm that every inner product space has an orthonormal basis. 

2.32. Let {al, a 2 , .  . . , a,L} be an orthonormal basis of V ,  and let x , y  E V be any 
vectors. Then, for an inner product space: 

(a) x = (x, a1)al + (x, a2)az + . . . + (x, ~ n ) % .  

(b) (Parseval's identity) (x, y) = cy=l (x, a,)(a,, y).  

Conversely, if this equation holds for any x and y, then a1,. . . , a, is an 
orthonorrnal basis for V .  

(c) Setting x = y in (b) we have 
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(d) (Bessel's inequality) C,"=, (x, ai) 5 llx112 for each k 5 n. 

Equality occurs if and only if x belongs to the space spanned by the ai. 

Proofs. Section 2.2.3. 

2.24. Schott [2005: 541. 

2.25a. If xi,x2 E S', then (xi,y) = 0 for all y E S and (~1x1 + azx2,y) = 
al(x1,y) + az(x2,y) = 0, i.e., cylxl+ ~ 2 x 2  E S'-. 

2.25b. If x E S ,  then (x,y) = 0 for all y E S' and x E (5'')'. By (a), (S'-)'- 
is a vector space even if S is not; then use (2.26b). 

2 .25~.  If x belongs to the left-hand side (LHS), then (x,s + t) = (x,s)  + 
(x, t)  = 0 for all s E S and all t E T .  Setting s = 0, then (x, t) = 0; similarly, 
(x,s) = 0 and L H S  RHS. The argument reverses. 

2.26. Rao and Rao [1998: 62-63]. 

2.27a-b. Harville [1997: 1721. 

2 .27~.  Harville [2001: 162, exercise 31 and Rao and Bhimasankaram [2000: 
2671. 

2.28a(i). Follows from (2.26d) with 24 = W. 

2.28a(ii). If x E RHS, then x = y + z where y E V & W and z E W so that 
x E W and R H S  2 LHS. Then use (i) to show dim(RHS) = dim(LHS). 

2.29. Kollo and von Rosen [2005: 291. 

2.30. Rao and Bhimasankaram [2000: 2621 and Seber and Lee [2003: 338- 
3391. For matrices see Harville [ 1997: 63-64]. 

2.32a-c. Rao and Rao [1998: 59-61]. 

2.32d. Rao [1973a: lo]. 

2.2.4 Column and Null Spaces 

Definition 2.18. If A is a matrix (real or complex), then the space spanned by 
the columns of A is called the column space of A, and is denoted by C(A). (Some 
authors, including myself in the past, call this the range space of A and write 
R(A).)  The corresponding row space of A is C(A'), which some authors write 
as R(A); hence my choice of notation to avoid this confusion. The null space or 
kernel, N(A) of A, is defined as follows: 

N(A) = {X : AX = O } .  

The following results are all expressed in terms of complex matrices, but they clearly 
hold for real matrices as well. 

2.33. From the definition of a vector subspace we find that C(A) and N(A) are 
both vector subspaces. 
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2.34. Let A and B both have n columns. If any one of the following conditions 
holds, then all three hold: 

(1) C(A’) C C(B’). 

(2) N(B) C N(A). 

(3) A(In - B-B) = 0. 

If (3) holds for a particular weak inverse B-, then (3) holds for any weak inverse 
B-. 

2.35. Let A be any complex matrix. 

(a) N ( A * A )  = N(A). 

(b) C(AA*) = C(A). 

(c) Two more results follow from (a) and (b) by interchanging A and A* 

In most applications A is real so that A* = A’. 

2.36. N(A) C C(1-  A )  and N(I - A )  C C(A). 

2.37. If x I y when (x,y) = x*y = 0, and A is an m x n complex matrix, then 
N ( A )  = {C(A*)}I. We therefore have an orthogonal decomposition 

N ( A )  @ C(A*) = IF” and d imN(A)  + dimC(A*) = n. 

We get a further result by interchanging the roles of A and A*.  
dim[C(A*)] = rank A’ = rank A ,  by (3 .3~) .  

2.38. If A is m x ri and B is m x p , then C(B) C C(A) if and only if there exists 
an n x p matrix R such that AR = B. Furthermore, if p = n, C(A) = C(B) if 
and only if there exists such a nonsingular R. Similar results are available for row 
spaces by simply taking transposes. Thus if C is q x n, then C(C’) C C(A’) if and 
only if there exists a q x m matrix S such that S A  = C. 

2.39. The following hold for conformable matrices: 

Note that 

(a) If C(A) 

(b) C(B1) C C(B2)  implies that C(A’B1) C C(A’B2). 

(c) C(B1) = C(B2) implies that C(A’B1) = C(A’B2). 

(d) If C(A + BE) C C(B) for some conformable E, then C(A) 

(e) If C(A) 

C(B), then C(A’B) = C(A’). 

C(B) 

C(B), then C(A +BE) C C(B) for any conformable E. 

Proofs. Section 2.2.4. 

2.34. Scott and Styan [1985: 2101. 

2.35. Meyer [2000a: 212-2131, 

2.36. Note that Bx = 0 if and only if x = (I - B)x. Set B = A and 
B = I - A .  
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2.37. Ben-Israel and Greville [2003: 121, Rao and Bhimasankaram [2000: 2691, 
and Seber and Lee [2003: 477, real case]. 

2.38. Graybill [1983: 901 and Harville [1997: 301. 

2.39. Quoted by Kollo and von Rosen [2005: 491. For (a) we first have 
C(A’B) & C(A’). Then, from (2.35), A’x = A’Ay = A’BRy E C(A’B), by 
(2.38), i.e., C(A’) & C(A’B). The rest are straightforward. 

2.3 PROJECTIONS 

Definition 2.19. A square matrix P such that P2 = P is said to be idempotent. 
In this section we focus on the geometrical properties of such matrices, which are 
used extensively in statistics. Algebraic properties are considered in Section 8.6. 

2.3.1 General Projections 

Definition 2.20. Let the vector space U be the direct sum of two vector spaces 
V1 and V2 so that U = V1 a V2 (i.e., V1 n V2 = 0). Then every vector v E V has a 
unique decomposition v = v1 + v2, where v, E Vi (i = 1,2).  The transformation 
v + v1 is called the projection o f v  on V1 along V2. Here uniqueness follows by 
assuming another decomposition v = w1 + w2 so that v1 - w1 = -(v2 - W Z ) ,  

which implies v, = w, for i = 1,2,  otherwise V1 n V2 # 0. Usually U = F”, and the 
following hold if F is IR or @. 

2.40. The above projection on V1 along V2 can be represented by an n x n matrix 
P called a projector or projection matrix so that Pv = v1. Also P is unique and 
idempotent. 

2.41. Using the above notation, v = Pv + (I, - P)v = v1 + v2, so that v2 = 
(I, - P)v is the projection of v on V2 along V1. Here P and I, - P are unique and 
idempotent, and 

P(1, - P) = 0. 

2.42. Using the above notation, we can identify V1 and Vz as follows: 

(a) C(P) = V1. 

(b) C(1, - P) = V2. 

(c) If P is idempotent, then from (8.61) we obtain 

2.43. Using the notation of (2.42), suppose that V1 = C(A), where A is n x n of 
rank r .  Let A = RnXTCTX, be a full-rank factorization of A (cf. 3.5). Then 

P = R(CR)-~C 

is the projection onto V1 along V2. 
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Proofs. Section 2.3.1. 

2.40. Assume two projectors Pi ( i  = 1 , 2 ) ,  then (PI - P2)v = v1 - v1 = 0 
for all v so that P1 = P2. Now v1 = v1 + 0 is the unique decomposition of 
v1 so that P2v  = P(Pv) = Pvl = v1 = P v  for all v so that P2 = P. 

2.41. Rao and Rao [1998: 240-2411. Multiply the first equation by P to prove 
P(1, - P) = 0. 

2.42a. C ( P )  V1 as P projects onto V1. Conversely, if v1 E V1, then 
Pvl = v1, and V1 C C(P) ;  (b) is similar. 

2.43. Meyer [2000a: 6341. 

2.3.2 Orthogonal Projections 

Definition 2.21. Suppose U has an inner product (,), and let V be a vector 
subspace with orthogonal complement V I ,  namely 

V' = {x : (x,y) = 0 ,  for every y E v}.  
Then U = V @ V' so that every v E U can be expressed uniquely in the form 
v = v1 + v2. where v1 E V and v2 E V'. The vectors v1 and v2 are called the 
orthogoad projections of v onto V and V', respectively (we shall omit the words 
"along V'" and "along V" , respectively). Orthogonal projections will, of course, 
share the same properties as general projections. If V = C(A), we shall denote the 
orthogonal projection P v  onto V by PA. In what follows we assume that U = F". 

2.44. Using the above notation, v1 = Pvv and v2 = (I, - Pv)v, where P v  and 
I, - P v  are unique idempotent matrices. The matrix P v  is said to be the orthogonal 
projector or orthogonal projection ma t r i x  of F" onto V, while P v i  = I, - Pv  is 
the orthogonal projector of F" onto VL. As we shall see below, the definition of 
orthogonality depends on the definition of (x, y). 

2.45. If = R" and (x,y) = x'y, then from the orthogonality we have 

P;(I - P v )  = 0, 

and P v  is symmetric as well as being idempotent. 

2.46. Let F" = @" and define (x,y) = y*Ax, where A is a Hermitian positive 
definite matrix. Note that x I y if y*Ax = 0 (cf. 2 .19~) .  

(a) Let P v  be the orthogonal projection matrix that projects onto V .  Then 
P$ = P v  and APv is Hermitian, that is, 

APv = PGA. 

(Note that P v  is generally not Hermitian. However, if A = I,, then P v  is 
Herrnitian.) 

(b) C ( P v )  = V and C(ITL - P v )  = V L  (from 2.42). Also 

PGA(In - P v )  = APV(1, - P v )  = 0. 
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(c) Let V = C(X). Then 
Pv = X(X*AX)-X*A, 

which is unique for any weak inverse (X*AX)- and therefore invariant. Also 
P V l  = I, - P v .  

(d) If V = C(X), then PvX = X. 

2.47. Of particular interest is a special case of (2.46) above, namely (x ,y)  = 
x’V-’y, where V is positive definite and x , y  E R”. Because of its statistical 
importance in a variety of nonlinear models including nonlinear regression (e.g., 
generalized or weighted least squares) and multinomial models, (x, y) has been 
called the weighted inner product space (Wei [1997]). We now list some special 
cases of the previous general theory. Let X be n x p of rank p and V = C(X). 
Then: 

(a) PV = X(X’V-lX)-X’V-l, which implies P$ = PV and PLV-l = V-lP V .  
Here (X’V-lX)- is any weak inverse of X’V-lX. Further properties of PV 
(with V-’ replaced by V) are given by Harville [2001: 106-1121. 

(b) If the columns of Q and N are respectively orthonormal bases of V and V’, 
then Pv = QQ’V-l and PVl = NN’V-l, where PV + P,L = I,. 

(c) From (b), Q’V-lN = 0. 

We can set V = I is the above to get the unweighted case. 

2.48. Let V be an n x n positive definite matrix, G an n x g matrix of rank g 
( g  5 n) ,  and F an n x f matrix (f = n - g) of rank f such that G’F = 0. Then 

VF(F’VF)-~F’ + G ( G ’ v - ~ G ) - ~ G ’ v - ~  = I,. 

2.49. Let F“ = @”, v E C”, and define (x, y) = x*y, i.e., A = I, in (2.46). Then: 

(a) PV is an orthogonal projection matrix on some vector space if and only if PV 
is idempotent and Hermitian. 

(b) From (2.42) we have V = C(Pv).  

(c) Let T = (tl,  t z , .  . . , tp), where the columns ti of T form an orthonormal basis 
for V .  Then PV = TT*, and the projection of v onto V is v1 = TT*v = 

C;=l(tfv)tz. 

(d) If V = C(X), then PV = X(X*X)-X* = XX+, where (X*X)- is a weak 
inverse of X*X and Xf is the Moore-Penrose inverse of X. When the columns 
of X are linearly independent, PV = X(X*X)-lX*. 

(e) Let V = N(A) ,  the null space of A. Then, since V’ = C(A*) (by 2.37), 
P v  = I, - A*(AA*)-A. 

(f) If F” = R”, then the previous results hold by replacing * by ’ and re- 
placing Hermitian by real symmetric. For example, if V = C(A), then 
P v  = A(A’A)-A’. Furthermore, X’PVX = XPLPVX = y’y 2 0, so that 
PV is non-negative definite. This result is used frequently in this book. 
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2.50. Let A be an n x m real matrix and B an n x p real matrix. Assuming that 
(x, y) = x'y, let PD denote the orthogonal projection onto C(D) for any matrix D. 

(a) C(A) nC(B) = C[A(I, - Pv)], where V = C[A'(I - PB)]. 

(b) C(A, B) = C(A) @ C[(I - PA)B]. 

(c) From (b) we have P(A,B) = PA + P(I-P*)B. 

(d) C(A) 5 C(B) if and only if PB-PA is non-negative definite, and C(A) C C(B) 
if and only if PB - PA is positive definite. 

The above results are particularly useful in partitioned linear models. 

2.51. (Some Subspace Properties) Let w, 0, and V be vector subspaces in R" with 
w c R, and let P, and Pa be the respective orthogonal projectors onto w and R 
with respect to the inner product (x,y) = x'y defined on R". Thus P, and Po 
are symmetric and idempotent. The following results hold (see also (2.53~)).  

(a) POP, = P,Pa = P,. 

(b) Pwina = Pa - P,. 

(c) APoA' is nonsingular if and only if the rows of A are linearly independent 
and C(A') n 0' = 0. 

(d) If w = R n N ( A ) ,  where N(A)  is the null space of A, then: 

(i) w' n R = C(P0A'). 

(ii) PwlnR = PaA'(APaA')-APa, where (AP0A')- is any weak inverse 
of APaA'. 

(e) Let R = C(X) = C(X1,X2), where the columns of n x p X are linearly 
independent, and let w = C(X1), where dim(#) = T .  

(i) We have from (c), with V = w' and P, = X1(XiX,)-'X; (= P I ,  say), 

(ii) w = R nN[x;(I, - P I ) ] .  

(iii) It follows from (b) and (d)(ii)) that 

that Xh(1, - P1)X2 is nonsingular. 

Pa - P, = (I, - Pl)xZ[x;(I, - P1)X2]-'x:(In - P1) 

By interchanging the subscripts 1 and 2, a further result can be obtained. 

Note that (a)-(d) are used in testing a linear hypothesis for a linear regression model 
(e.g., Seber [1977: sections 3.9.3 and 4.51 and Seber and Lee [2003: theorems 4.1 
and 4.31); (e) is related to subset regression (see Seber and Wild [1989: Appendix 
D] for a summary). 

2.52. If R and wi (i = 1 , 2 , .  . . , k )  are vector subspaces of Rn satisfying wi C 0, 
with inner product (x, y) = x'y, then the following results are equivalent: 
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(2) w i  n R I wj'nn for all i,j = 1 , 2 , . .  ., k ;  

(3) w ~ n R c w j f o r a l l i , j = l , 2  , . . . ,  k ;  i f j .  

i # j .  

The above results are useful in testing a sequence of nested hypotheses in an 
analysis of variance, when there are equal numbers of observations per cell (bal- 
anced designs) leading to an underlying orthogonal structure (cf. Darroch and Silvey 
[1963], Seber [1980: section 6.21, and Seber and Lee [2003: 2031). 

2.53. Let w1 and w2 be vector subspaces of R" with inner product (x, y) = x'y. 

(a) P = P,, + P,, is an orthogonal projector if and only if w1 I w2, in which 
case P,, + P,, = P,, where w = w1@ w2. 

(b) If w1 = C(A) and w2 = C(B) in (a), then w 1 @  w2 = C(A, B). 

(c) The following statements are equivalent: 

(1) P,, - P,, is an orthogonal projection matrix. 

(2) llPwlx112 2 IIPw2x112 for all x E R". 

(3) p,,p,, = p,,. 

(4) p,,p,, = p,,. 

( 5 )  w2 c w1. 

(d) P,,.,, = 2P,, (P,, +P,,)+P,, = 2P,,(P,, +P,,)+P,, . Here B+ denotes 
the Moore-Penrose inverse of B. 

The above results hold for Q1" if (x, y) = y*x and ' is replaced by *. 

Definition 2.22. (Centering) Let a = (a i )  be an n x 1 real vector, and let ?i = 
Cy=l ail.. We say that the a is centered when we transform ai to bi = ai - Ti. 

If we have the n x p matrix A = (al,az,. . .a,)' = (a(1),a(2), . . . ,a(,)) and 
a = n-1 C;="=,i, then we say that A is row centered if we transform it t o  the 
matrix B = (a1 - a, a2 - a, .  . . ,a,  - a)'. 

If ,(co') = C,"=, a ( j ) / p ,  then we say that A is column centered if we form the 

We say that A is double-centered if we apply both row and column centering. 

- 

1. matrix c = (a(1) - ~ ( C O ' ) ,  a ( 2 )  - ~ ( C O ' ) ,  . , . , ,(P) - ~ ( C O ' )  

2.54. Using the above notation, we have the following results: 

(a) We can write Ti = l k a / n  so that (T i )  = n-' lnlka = Plna, where PI,, = 
n '1, lk  represents the orthogonal projection of R" onto 1,. Furthermore, 
b = a-(Ti) = (In-Pl,)a, where 1,-Pln represents an orthogonal projection 
perpendicular to 1,; this projection matrix is called a centering ma t r i x .  

~ 

(b) a = A'l,/n and B = A - 1,s' = (I, - P1,)A. 

(c) dco') = A l , / p  and C = A(1, - PI,). 

(d) When A is double centered we obtain D = (In-P1,)A(Ip-Plp), where dij = 
aij -Tii. -7i . j  -Ti . . ,  Tii. = Cj a i j l p ,  Ti.j = xi a i j l n ,  and Ti.. = X i  C j  a i j / ( n p ) .  
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Centering is used extensively in statistics, for example linear regression (Seber 
and Lee [2003: section 3.11.1 and section 11.7 for computing algorithms]) and prin- 
cipal component analysis, and double centering is used in classical metric scaling, 
in principal component analysis (Jolliffe [1992: section 14.2.3]), and in the singular- 
spectrum analysis (SAS) of times series, where it is applied to trajectory matrices 
(Golyandina et al. [2001: section 4.4, 2721). 

Proofs. Section 2.3.2. 

2.46. Rao [1973a: 471. 

2.47. Wei [1997: 185-1871. 

2.48. Seber [1984: 5361. 

2.49. Seber and Lee [2003: Appendices B1 and B2, real case]. 

2.50a. Quoted by Rao and Mitra [1971: 118, exercise 7aJ. 

2.50b-d. Sengupta and Jammalamadaka [2003: 39, 471; (c) uses (2.44). 

2.51a-d(i). Seber and Lee [2003: Appendix B3, 477-478, real case] and Seber 
[1984: Appendix B3, 535, real case]. 

2.51d(ii). If x E C(X1) = w ,  then Plx = x, Xh(In - P1)x = 0, and x E 
N(Xk(1, - PI)) .  Conversely, if x = Xlal + X2a2 E R and 0 = Xk(1, - 
P1)x = XL(1, - P1)X*a2 (since PIX1 = XI), then a 2  = 0 (by (i)) and 
x E C(X,). 

2.52. Seber [1980: section 6.21. 

2.53a. P is clearly symmetric and idempotent if and only P,,P,, = -P,,Pw, . 
Multiplying on the left by P,, shows that P,,P,, is symmetric and therefore 
P,,Pw, = 0. Furthermore, since Put is idempotent, we have from (2.35) 

C(P,, + PW,) = c 

2.53b. A’B = 0 implies that PAPB = 0. 

2.53~.  Quoted, less generally, by Isotalo et al. [2005a: 611. The proofs 
are straightforward. For (2), note that for a symmetric idempotent matrix, 
X’AX = x’A’Ax = llAxll;. 

2.53d. Anderson and Duffin [1969] and Meyer [2000a: 4411. 

2.4 METRIC SPACES 

Definition 2.23. Let S be a subset of R”. By a metric for S we mean a real-valued 
function d(.,  .) on S x S such that: 

(a) d(x, y)  2 0 for all x, y E S with equality if and only if x = y (d  is positive 
definite). 
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(b) d(x,y) = d(y,x) for all x ,y  E S (d  is symmetric). 

(c) d(x, y) 5 d(x, z) + d(y, z) for all x, y, z E S (triangle inequality). 

If we replace (c) by the stronger condition 

(4 4x3 Y )  I max[d(x, z), d(Y, z)1, 

d is called an ultrametric. Note that (c’) implies (c). 

Definition 2.24. A metric space is a pair ( S ,  d )  consisting of a set S and a metric 
d for S.  

2.55. If d is a metric, then so are d l ,  d2, and d3, where 

dl (X ,Y)  = d ( X , Y ) / ( l  + d ( X , Y ) ) ,  

dz(X,Y) = Jdo, 
d3(X,Y) = W X , Y )  ( k  > 0). 

2.56. If d is a metric, then D(x, y) = [d(x, y)I2 is not necessarily a metric. 

2.57. (Canberra metric) If x and y have positive elements, then the function 

is a metric. 

2.58. (Minkowski Metrics) The function Ap is a metric, where 

The most common ones are p = 1 (the city block metric) and p = 2 (the Euclidean 
metric). Various scaled versions of A1 have also been used. 

2.59. A,(x,y) = 

Definition 2.25. The Mahalanobis distance is defined to be 

Ixi - yiI, for all x and y, is a metric. 

+ , Y )  = {(x - Y)”X - Y I P 2 >  

where A is positive definite. Here d is a metric. The Mahalanobis angle 6 between 
x and y subtended at the origin is defined by 

x’ Ay 
(x’ Ax) /2  ( y’ Ay ) /2  

case = 

Definition 2.26. A sequence of points {xi} in S for a metric space (S ,  d )  is called 
a Cauchy sequence if, for every E > 0, there exists a positive integer N such the 
d(xi,xj) < E for all i , j  > N .  

A sequence {xi}conwerges to a point x if, for every t > 0, there exists a positive 
integer N such that d(x,xi) < E for all i > N .  
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A metric space is said to be complete if every Cauchy sequence converges to  a 
point in S .  

Definition 2.27. Let f be a mapping of a metric space ( S ,  d )  into itself. We call 
f a contraction if there exists a constant c with 0 < c I 1 such that 

d(f(x), f (Y))  I M x ,  Y ) ,  for all x, Y E s. 
If 0 < c < 1, we say that f is a strict contraction. If f(x) = x, then x is referred to 
as a fixed point of f .  

2.60. (Contraction Mapping Theorem) Let f be a strict contraction of a complete 
metric space into itself. Then f has one and only one fixed point and, for any point 
y E S ,  the sequence 

where f'(y) = f( fT-'(y)), converges to the fixed point. 

2.61. Let (S ,  d )  be a metric space with S = @" and d(x, y) = IIx - ~ 1 1 2 .  A matrix 
A is a contraction, that is 

Y,  f ( Y L  f 2 ( Y ) >  f 3 ( Y ) > .  ' ' 1 

(IAx - AYII~ I cllx - Y I I Z  for 0 < c 5 1, 

if and only if nmax(A) I 1, where nmax(A) is the maximum singular value of A. 
Further necessary and sufficient conditions for a matrix to be a contraction are 
given by Zhang [1999: section 5.41. 

Proofs. Section 2.4. 

2.55-2.57. Seber [1984: : 392, exercises 7.4-7.6, see the solutions]. 

2.58. Seber [1984: 3521. Use Minkowski's inequalities (12.17b) and xi - zi = 
zi - yi + yi - zi t o  prove the triangle inequality. 

2.59. Use the properties of sup. 

2.60-2.61. Zhang [1999: 143-1441 

2.5 CONVEX SETS AND FUNCTIONS 

Definition 2.28. A subset C of R" is called convex if, for any two points XI, x2 E 
C ,  the line segment joining XI and x2 is contained in C ,  that is, 

ax1 + (1 - a)x~ E C for 0 I (Y I 1. 

We will list some properties of convex sets below. For a more comprehensive dis- 
cussion see Berkovitz [2002], Kelly and Weiss [1979], Lay [1982], and Rockafellar 
[ 19701. 

2.62. If C1 and C2 are convex sets in R", then: 

(a) C1 n Cz is convex. 
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(b) C1 + C2 is convex. 

(c) C1 U C2 need not be convex. 

These results clearly hold for any finite number of convex sets. The result (a) also 
holds for a countably infinite number of convex sets. 

2.63. Given any set A E R", the set CA of points generated by taking the convex 
combination of every finite set of points xi in A, namely 

alxl+ a2x2 + . . . + akxk (each cyi 2 o and C ai = 1) 
2 

is a convex set containing A. The set CA is the smallest convex set containing 
A and is called the convex hull of A. It is also the intersection of all convex sets 
containing A. 

Definition 2.29. Given A a set in R", we define x to be an inner  (interior) point 
of A if there is an open sphere with center x that is a subset of A; that is, there 
exists 6 > 0 such that 

Sg = {y : y E R", (y - x)'(Y - X) < 6 )  C A. 

A boundary point x of A (not necessarily belonging to  A)  is such that every open 
sphere with center x contains points both in A and in A", the complement of A 
with respect to RrL. 
A point x is a limit (accumulation) point if, for every 6 > 0, Sg contains a t  least 

one point of S distinct from x. 
The closure of set A is obtained by adding to it all its boundary points not 

already in it, and is denoted by A. It can also be obtained by adding to  S all its 
limit points. 

The set A is closed if A = 2, while the set is open if A", the complement of A, 
is closed. For any set A, A is the smallest closed set containing A. 

An exterior point of A is a point in A". A point x E A is an extreme point of 
A if there are no distinct points x1 and x2 in A such that x = ax1 + (1 - a)xz for 
some cr (0 < a < 1). 

A set A is bounded if it is contained in an open sphere S g  for some 6 > 0. 
A set which is closed and bounded is said to be compact. For some properties 

The above results generalize to more general spaces using a more general distance 
of open and closed sets see Magnus and Neudecker [1999: 66-69]. 

metric other than IIx - yll2. 

2.64. Let C be a convex set. 

(a) The closure c is convex. 

(b) C and ?? have the same inner, boundary, and exterior points. 

(c) Let x be an inner point and y a boundary point of C. Then the points 
ax + (1 - a)y are inner points of C for 0 < (Y 5 1 and exterior points of C 
for a > 1 

(d) If T is an open subset of R" and T C c, then T C C. 
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2.65. (Separation theorems) 

(a) Let C be a closed convex subset and suppose 0 $! C. Then there exists a 
vector a such that a’x > 0 for all x E C. 

(b) Let C be a convex set and y an exterior point. Then there exists a unit vector 
u (i.e., llull2 = 1) such that 

inf u‘x > u’y. 
X E C  

(c) Let C be a convex set and y a point not in C, or a boundary point if in 
C. Then there exists a supporting plane through y; that is, there exists a 
nonzero vector a # 0 such that a’x 2 a‘y for all x E C ,  or equivalently 
infxEC a’x = a’y, if y is a boundary point. 

(d) Let C1 and Cz be convex sets with no inner point in common. Then there 
exists a hyperplane a’x = b separating the two sets; that is, there exists a 
vector a and a scalar b such that a’x 2 b for all x E C1 and a’y 5 b for all 
y E Cz. This also implies that a’xl 2 a’x2 for all x1 E C1 and all x2 E C2. 

If C1 and Cz are also closed, we have strict separation so that there exist a 
and b such that a’x > b for x E C1 and a’y < b for y E C2. 

(e) Let C be a convex subset, symmetric about 0, so that if x E C ,  then -x E C 
also. Let f (x)  2 0 be a function for which (i) f(x) = f(-x),  (ii) C, = {x : 
f(x) 2 a }  is convex for any positive a,  and (iii) sc f(x) dx < 00. Then 

for all 0 5 c 5 1 and y E R”. 

2.66. (Convex Hull) If CA is the convex hull of a subset A E Rn,  then every point 
of A can be expressed as a convex combination of a t  most n + 1 points in A .  

2.67. (Extreme Points) If C is a closed bounded convex set, it is spanned by its 
extreme points; that is, every point in C can be expressed as a linear combination 
of its extreme points. Also C has extreme points in every supporting hyperplane. 

Definition 2.30. A real valued function f is convex in an interval I of R if 

all a such that 0 < a < 1, f [ a x  + (1 - a ) y ]  I a f ( x )  + (1  - a)f(y),  

for all x, y E I (x # y) .  The function f is said to be strictly convex if 5 is replaced 
by < above. 
We say that f is (strictly) concave if -f is (strictly) convex. A linear function is 
both convex and concave. A similar definition applies if II: is replaced by a vector 
or matrix. 

A vector convex function is defined along the same lines. We say that f is convex 
if 

f(ax + (1 - a)y) I af(x) + (1 - a)f(y) 

for every a such that 0 5 a I 1 and x , y  E Rn; f is concave if -f is convex. Here 
a 5 b means a, 5 b, for all i. 
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2.68. The following functions are convex. 

(a) -1ogz (z > 0). 

(b) z p ,  p > 1 (z > 0). 

They can be used to establish a number of well-known inequalities (e.g., Horn and 
Johnson [1985: 535-5361). 

2.69. The function 
f (A) = log det A 

is a strictly concave function on the convex set of Hermitian positive definite ma- 
trices. 

2.70. Every convex and every concave function is continuous on its interior. How- 
ever, a convex function may have a discontinuity at  a boundary point and may not 
be differentiable at  an interior point. 

2.71. Every increasing convex (respectively concave) function of a convex (respec- 
tively concave) function is convex (respectively concave). Every strictly increasing 
convex (respectively concave) function of a strictly convex (respectively concave) 
function is strictly convex (respectively concave). 

2.72. (Weirstrass's Theorem) Let S be a compact subset of a real or complex 
vector space. If f : S + R is a continuous function, then there exist points 
x,in, x,,, E S such that 

f (Xrnin) I f (x) I f(xmax) for all x E S. 

Definition 2.31. The numerical range (field of values) of an n x n complex matrix 
A is 

{x*Ax : llxll = 1,x E C"}.  

2.73. (Toeplitz-Hausdorff) The numerical range of an n x n complex matrix is 
a convex compact subset of C". For further properties of a field of values see 
Gustafson and Rao [1997] and Horn and Johnson [1991]. 

Proofs. Section 2.5. 

2.62. Schott [2005: 711. 

2.64a-c. Quoted by Rao [1973a: 511. 

2.64d. Schott [2005: 721. 

2.65a. Schott [2005: 711. 

2.6513. Rao [1973a: 511. 

2.65~-d. Rao [1973a: 521 and Schott [2005: 731. 

2.65e. Anderson [1955], and quoted by Schott [2005: 741. 

2.66-2.67. Quoted by Rao [1973a: 531. 

2.69. Horn and Johnson [1985: 466-4671 

2.70-2.71. Magnus and Neudecker [1999: 761. 

2.73. Horn and Johnson [1991: 81 and Zhang [1999: 88-89]. 
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2.6 COORDINATE GEOMETRY 

Occasionally one may need some results from coordinate geometry. Some of these 
are listed below for easy reference. 

2.6.1 Hyperplanes and Lines 

2.74. The equation of a hyperplane passing through the points x1,x2,. . . ,x, in 
R" can be expressed in the form 

2.75. Given the points x1 = (al ,bl ,cl) '  and x2 = (az,bz,cz)' in R3, then the 
equation of the line through the points is 

Z - U ~  y - b l  - Z--1  

a1 - a2 b l  - b2 ~1 - ~2 

- 
~ - 

If the two points are A and B, then a1 - a2 = ABcos01, and so on, so that we 
can replace the denominators of the above line by the direction cosines cos 0i of the 
line with respect to each axis. Then cos 0: + cos 0: + cos 0; = 1. This result clearly 
generalizes to two points in R". 

2.76. Given the plane ax + by + cz + d = 0 in R3, a normal vector to the plane 
is given by (a, b, c)', and the perpendicular distance of the point x1 = ( ~ 1 ,  y1, zl)' 
from the plane is 

laxi + by1 + czi + dl 
da2 + b2 + c2 

This result clearly generalises to R". Given the plane a'x + d = 0, the distance of 
x1 from the plane is (la'xl + dl)/lla112. 

2.77. Given 0 < a < 1, then z = (1 - a)x + ay divides the line segment joining x 
and y in the proportion a : (1 - a) .  

Proofs. Section 2.6.1. 

2.77. Abadir and Magnus [2005: 61. 

2.6.2 Quadratics 

2.78. If A is an n x n symmetric indefinite matrix (i.e., has both positive and 
negative eigenvalues), then (x - a)'A(x - a) 5 c with c > 0 is a hyperboloid with 
center a. 

2.79. If A is an n x n positive definite matrix, then (x - a) 'A(x - a) 5 c with 
c > 0 is an  ellipsoid with center a. By shifting the origin to a and rotating the 
ellipsoid, the latter can be expressed in a standard form Cy=l Xiz: 5 c with X i  > 0 
(i = 1 , 2 , .  . . , n) ,  where the X i  are the eigenvalues of A. Setting all the zis equal to 
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zero except z j ,  we see that the lengths of the semi-major axes are bj = & for 
j = 1 , 2 ,  . . . , n, and the volume of the ellipsoid is 

Tn/2Cn/2 
- - r(; + l ) (de tA) l I2 '  

by (6.17~).  Such a volume arises in finding the constant associated with various 
elliptical multivariate distributions such as the multivariate normal and the multi- 
variate &distributions (cf. Chapter 20). 

2.80. (Quadrics) If x E Rn, then a general quadric is Q = 0, where Q = x'Ax + 
2b'x + c and A is an n x n symmetric matrix. Let xi and x2 be two points in 
R" that we denote by Pi and P2, respectively. From (2.77), the coordinates of the 
point P dividing the line Pip2 in the ratio p : 1 is given by (1 + p)-l(x1 + px2). 
Let Qij = x ~ A x ~  + b'xi + b'xj + C. 

Substituting for P we find that P lies on the quadric if 

p2Q22 + 2pQ12 + Qii  = 0. 

This is a quadratic in p so that an arbitrary line meets a quadric in two 
points. 

(Tangent Plane) If Pi lies on Q = 0, then Q11 = 0 and one root p is zero. If 
Pip2 is a tangent, then the other root must also be zero; that is, the sum of 
the roots is zero and Q 1 2  = 0. As P2 varies subject to Q12 = 0, P 2  lies on 
Q1 = 0, so that 

is the tangent plane at xi. 

(Tangent Cone) Suppose Pi and P2 are not on Q = 0, but Pip2 touches 
the quadric so that the equation in p has equal roots, i.e., Q l l Q 2 2  = Of2. 
Therefore as P2 varies subject to this condition, we trace out the tangent cone 
from PI, namely, 

Q i i Q  = 0:. 

(Envelope) Suppose Q = x'Ax - 1 = 0, where A is nonsingular, is a central 
quadric (i.e., b = 0). Then using (c), a'x = 1 touches the quadric if a'A-'a = 
1. As a varies, a'A-'a = 1 is the envelope equation. 

X ~ A X  + b'(x1 + X) + c = 0, 

2.6.3 Areas and Volumes 

2.81. In two dimensions the area of a triangle with vertices (xi,yi)', i = 1 , 2 , 3  is 
flAl, where 

A = det ( 1 5 2  it ) . 1 5 1  

1 2 3  Y3 

The three points are collinear if and only if A = 0. 
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2.82. If V = ( ~ 1 ~ ~ 2 , .  . . ,vp), where the vi are vectors in R", then the square of 
the two-dimensional volume of the parallelotope with v1, . . . , vp as principal edges 
is det(V'V). A 2-dimensional parallelotope is a parallelogram; in this case we get 
the square of the area. When p = 3 we have the conventional parallelopiped. For 
statistical applications see Anderson [2003: section 7.51. 

2.83. From (2.74), the four points (xi, yi, zi)' ,  i = 1,2,3,4,  in three dimensions are 
coplanar if and only if 

1 1  

det ( Y1 1: Y2 1: Y3 I.) Y4 = 0. 

Proofs. Section 2.6.3. 

2.81. Cullen [1997: 1211. 

2.82. Anderson [2003: 2661. For the area of a parallelogram see Basilevsky 
[1983: 641. 
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CHAPTER 3 

RANK 

The concept of rank undergirds much of matrix theory. In statistics it is frequently 
linked to the concept of degrees of freedom. Both equalities and inequalities are 
considered in this chapter, and partitioned matrices play an important role. 

3.1 SOME GENERAL PROPERTIES 

All the matrices in this section are defined over a general field F, unless otherwise 
stated. 

Definition 3.1. The rank, denoted by rankA (= r ,  say), of a matrix A is 
dimC(A), the dimension of the column space of A.  Here T is also called the column 
rank of A. The row rank is dimC(A'). If A is m x n of rank m (respectively n) ,  
then A is said to have full row (respectively column) rank. An n x n matrix A is 
said to be nonsingular if rankA = n. 

As noted in Section 2.2.4, an associated vector space of C(A) is the null space 
N ( A ) ,  and its dimension is called the nullity. 

3.1. rank A' = rank A = r so that the row rank equals the column rank. 

3.2. Let A be an m x n matrix of rank r ( r  5 min{m,n}). 

(a) A has r linearly independent columns and T linearly independent rows. 

(b) There exists an r x r nonzero principal minor. When T < min{m,n}, all 
principal minors of larger order than T are zero. 

A M a t n x  Handbook for  Statisticians. By George A.  F. Seber 
Copyright @ 2008 John Wiley & Sons, Inc. 
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(c) If B is m x p and C(B) C(A), then r ankB 5 rankA. 

3.3. Let A be an m x n matrix over F. 

(a) rank A + nullityA = number of columns of A. 

(b) Suppose A is real, then 

rank(A’A) = rank(AA’) = rank A.  

(c) Suppose A is complex, then: 

(i) rankA = r a n k x .  

(ii) Since rankA = rankA’ by (3.1), we have rankA = rankA* 

(iii) rankA = rank(AA*) = rank(A*A). 

Thus, combining the above, 

rankA = rankA = rank A ”  = rank(AA*) = rank(A*A). 

(d) If A is complex, it is not necessarily true that rank A’A = rank A .  

3.4. We consider two special cases of rank. 

(a) If rankA = 0, then A = 0.  This is a simple but key result that can be used 
to prove the equality of two matrices. 

(b) If rankA = 1, then there exist nonzero a and b such that A = ab‘. 

3.5. (Full-Rank Factorization) Any m x n real or complex matrix A of rank r 
(T > 0) can be expressed in the form A,,, = CmXTRTXn, where C and R have 
(full) rank r .  We call this a full-rank factorization. The columns of C may be an 
arbitrary basis of C(A), and then R is uniquely determined, or else the rows of R 
may be an arbitrary basis of C(A’), and then C is uniquely determined. Note that 
C has a left inverse, namely (C’C)-’C’, and R has a right inverse, R’(RR’)-’. 
Two full-rank factorizations can be obtained from the singular value decomposition 
of A (cf. 16.34e). 

3.6. If A and B are m x n matrices, then rankA = rankB if and only if there 
exist a nonsingular m x m matrix C and an n x n nonsingular matrix D such that 
A = CBD. 

3.7. If C(B) = C(C), then rank(AB) = rank(AC) for all A.  

3.8. If V is Hermitian non-negative definite, then V = RR* (by 10.10) and 
rank(AV) = rank(AR) for all A.  

Proofs. Section 3.1. 

3.1. Abadir and Magnus [2005: 77-78]. 

3.2. (a) and (c) follow from the definition; for (b) see Meyer [2000a: 2151. 

3.3a. Follows from (2.37) and (c)(ii) below. See also Seber and Lee [2003: 
4581. 
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3.3b. Abadir and Magnus [2005: 811 and Meyer [2000a: 2121. 

3.3c(i). Rao and Bhimasankaram [2000: 1451. 

3.3c(iii). Ben-Israel and Greville [2003: 461 and Meyer [2000a: 2121. 

3.3d. For a counter example consider A = (1, i ) ' ( l ,  1). 

3.4b. Abadir and Magnus [2005: 801. 

3.5. Ben-Israel and Greville [2003: 261, Marsaglia and Styan [1974a: theorem 
I] ,  and Searle [1982: 1751. 

3.6. If rankA = rankB = T ,  then by (16.33a) A and B are equivalent to the 
same diagonal matrix. The converse follows from (3.14a). 

3.7. Follows from C(AB) = C(AC). 

3.8. By ( l O . l O ) ,  V = RR" and from (2.35) we have C(V) = C(R). The result 
follows from (3.7). 

3.2 MATRIX PRODUCTS 

All the matrices in this section are real or complex. 

3.9. Given conformable matrices A and B, we have the following. 

(a) rank(BA) = rankA if B has full row rank. 

(b) rank(AC) = rankA if C has full column rank. 

(c) rank(A'AB) = rank(AB) = rank(ABB'). 

3.10. Let A and B be m x n and n x p matrices, respectively. Then: 

(a) rank(AB) = rankB - dim{ "(A)]' n C(B)} 

(b) rank(AB) = rankA - dim{C(A') n [N(B)]I}. 

The above results immediately give us conditions for rank(AB) = r ankA and 
rank(AB) = rankB. Other conditions are given in (3.13~) and (3.13d) below. 

3.11. Let A be a square matrix. If rank(A") = rank(A"+l), then rank(Am) = 
rank(An) for all n 2 m. 

3.12. rank(AB) 5 min{rankA,rankB}. 

3.13. Let A have n columns and B have n rows. Let A- and B- be any weak 
inverses of A and B, respectively. Then: 

= 

= rank ( A ) + r a n k B  

rank A + rank(B, I, - A - A )  
O A  

rank ( B I, ) 
I, - BB- 

= 

= n + rank(AB). 
rankA + rankB + rank[(I, - BB-)(I, - A-A)] 
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We can deduce the following. 

(a) rank@, 1, - A-A) = rankB + rank[(I, - BB-)(I, - A-A)].  

= rankA + rank[(I, - I, - BB- 
(b) rank BB-)(I, - A-A)].  

(c) rank(AB) = rank A if and only if (B, I, - A-A) has full row rank n, 

(d) rank(AB) = rankB if and only if (&&-) has full column rank n. 

(e) (Sylvester) 
rank(AB) 2 rank A + rank B - n, 

with equality if and only if (I, - BB-)(I, - A - A )  = 0. This result also 
follows from the F'robenius inequality (3.18b) by setting B = I,. 
If AB = 0, rankA + rankB 5 n. 

3.14. Let A be any matrix. 

(a) If P and Q are any conformable nonsingular matrices, 

rank(PAQ) = rank A.  

(b) If C has full column rank and R has full row rank, then 

rankA = rank(CA) = rank(AR). 

3.15. If A is p x q of rank q and B is q x r of rank r ,  then AB is p x r of rank r .  

3.16. If rank(AB) = rank A ,  then C(AB) = C(A). 

3.17. Suppose that the following products of matrices exist. Then: 

(a) rank(XA) = rankA implies rank(XAF) = rank(AF) for every F. 

(b) rank(AY) = rankA implies rank(KAY) = rank(KA) for every K. 

3.18. Let A ,  B, and C be conformable matrices, and let (AB)- and (BC)-  be 
any weak inverses. Then: 

( 4  

rank(  lc ) = rank(AB) + rank(BC) + rankL 

= r ankB + rank(ABC), 

where L = [I - BC(BC)-]B[I  - (AB)-(AB)]. 

(b) (Frobenius Inequality) From (a) we have 

rank(ABC) 2 rank(AB) + rank(BC) - rankB,  

with equality if and only if L = 0. 
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3.19. Let V be a non-negative definite n x n matrix, and let X be an n x p matrix. 
Then the following statements are equivalent. 

(1) rank(X’VX) = rankX. 

(2) rank(X’V+X) = rankX, where V+ is the Moore-Penrose inverse of V. 

(3) C(X’VX) = C(X’). 

(4) ~ ( x )  n [~(v)]’ = 0. 

Also rank(X’VX) = p if and only if rankX = p and C(X) n [C(V)]’ = 0. 

Proofs. Section 3.2. 

3.9. Abadir and Magnus [2005: 82, 851. 

3.10. Rao and Rao [1998: 1331 

3.11. Meyer [2000a: 3941 and Ben-Israel and Greville [2003: 1551; see also 
Section 3.8. 

3.12. Abadir and Magnus [2005: 811 and Meyer [2000a: 2111. 

3.13. Marsaglia and Styan [1974a: theorem 61. 

3.14a. By (3.12), rankA = rank(P-lPA) 5 rank(PA) 5 rankA. 

3.14b. Marsaglia and Styan [1974a: theorem 21. 

3.15. Let ABx = 0. Then using (3.5), we can take a left inverse of A and 
then a left inverse of B to get x = 0 so that the columns of AB are linearly 
independent. 

3.16. Graybill [1983: 891. 

3.17. Harville [200l: 27, exercise I], Marsaglia and Styan [1974a: theorem 21, 
and Rao and Rao [1998: 1331. 

3.18. Harville [1997: 3961 and Marsaglia and Styan [1974a: theorem 71. 

3.19. Isotalo et al. [2005b: 171. 

3.3 MATRIX CANCELLATION RULES 

3.20. Let A be any m x n matrix over .F. 

(a) If C has full column rank and R has full row rank, then using left and right 
inverses, respectively, we have that C A  = CB implies A = B and PR = QR 
implies P = Q. 

(b) If rank(XA) = rank A ,  then X A G  = X A H  implies A G  = A H .  

(c) If rank(AY) = rank A ,  then LAY = MAY implies L A  = M A .  
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3.21. The following are useful for deriving some cancellation rules when the real 
or complex matrix A can be a function of other matrices. 

(a) A*A = 0 implies that A = 0. 

(b) trace(A*A) = 0 implies that A = 0. 

We can interchange A and A*. 

3.22. For real or complex matrices we have the following results. 

(a) If PXX* = QXX*, then from (3.21a) above and 

(PXX* - QXX*)(P* - Q*) (PX - Q X ) ( P X  - QX)*, 

we have PX = QX. We can also replace X by X*. 

(b) X*XAYY* = 0 implies XAY = 0. Special cases follow by setting X or Y 
equal to the identity matrix. 

(c) A'AB = A'C if and only if A B  = AA+C,  where A+ is the Moore-Penrose 
inverse of A. 

Proofs. Section 3.3 

3.20. Harville [2001: 27, exercise 11 and Marsaglia and Styan [1974a: theorem 

21. 

3.21. Searle [1982: 62-63, real case]; (a) implies (b). 

3.22a. Searle [1982: 63, real case]. 

3.2213. Use (3.21b) and trace[(XAY)(XAY)*] = trace(X*XAYY*A*) = 0. 

3 .22~.  Magnus and Neudecker [1999: 341. 

3.4 MATRIX SUMS 

3.23. Let A and B be any 712 x n matrices over F, and let (A,B)- and (;)- be 
any weak inverses. Define 

(a) From (2.11c), taking transposes and noting that rankC = rankC' for any C, 
we have the following results. 

dim[C(A) n C(B)] = rankA + rankB - rank(A, B) (= c say), 

dim[C(A') n C(B')] = rank A + rank B - rank (= d say). 

(b) 0 5 rank M 5 min{c, d } .  Hence c = 0 or d = 0 implies M = 0. 
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O A B  

B O B  
rank ( A A 0 ) = rank(A,B) +rank  (t) + rank M 

= rank A + rank B + rank(A + B) 

From the above we have the following: 

(i) rank(A, B) + rank (t) + rank M = rank A + rank B + rank(A + B). 

(ii) rank A + rank B - c - d 5 rank(A + B) 5 rank A + rank B - max{c, d } .  
Equality on the left occurs if and only if M = 0, and equality on the 
right occurs if and only if rank M = min{c, d } .  

with equality if and only if M = 0. 
(iii) rank(A + B) 2 rank(A, B) + rank (t) - rank A - rank B, 

(d) The following hold for any A and B of the same size. 

(i) rank(A + B) 5 rank(A, B) 5 rank A + rank B 

(ii) rank(A + B) 5 rank (k) 5 rankA + rankB. 

(e) From the above : 

(i) rank(A + B) = rank(A, B) if and only d = rankM.  

(ii) rank(A + B) = rank (t) if and only if c = r ankM.  

(iii) rank(A, B) = rankA + rank B if and only if c = 0. 
When c = 0, M = 0 and r a n k M  = 0 = c so that 

(3 rank(A + B) = rank 

(iv) rank (t) = rankA + r ankB if and only if d = 0. 
When d = 0. M = 0 and r a n k M  = 0 = d so that 

rank(A + B) = rank(A, B). 

(v) rank(A + B) = rankA + r ankB if and only if c = d = 0. 

3.24. If A and B are n x n matrices over 3, then, since AB - I, = (A - 1,)B + 
B - I,,, we have from (3.23e(iii)) and (3.12) that 

rank(AB - In) 5 rank(A - In) + rank(B - In). 

Definition 3.2. Suppose that A = C,=l A,, where each matrix is m x n. We say 
that we have rank additivity if rank A = C,"=, rank A,. 

3.25. Let A and B be nonnull m x n matrices over F with respective ranks T and 
s. If any one of the following conditions hold, then they all hold. 

k 

(1) rank(A + B) = rankA + r ankB (i.e., rank additivity). 
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(2) There exist nonsingular matrices F and G such that 

A = F (  I, 0 0 0 0 0 ) G  and B = F ( O  0 0 0  I, 0 ) G .  

0 0 0  0 0 0  

The above matrices are partitioned in the same way, and the bordering zero 
matrices are of appropriate size; some of the latter matrices are absent if 
A + B has full rank. 

(3) dim[C(A) n C(B)] = dim[C(A') n C(B')] = 0; that is, c = d = 0 in (3.23a). 

(4) rank(A, B )  = rank (i) = rank A + rank B. 

(6) rankA = rank[A(I, - B-B)]  = rank[(I, - BB-)A]. 

(7) r ankB = rank[(B(I, - A-A)] = rank[(I, - AA-)B]  

(8) rankA = rank[A(I, - B-B)] and r ankB = rank[& - AA-)B].  

(9) rankA = rank[(I, - BB-)A]  and r ankB = rank[B(I, - A-A)] 

Here A-, B-, and (A + B)- are any choices of weak inverses. If any one of (5) to 
(9) hold for a particular pair of weak inverses, then they hold for any pair. 

3.26. Suppose that A = z F = l  A,, where matrices are all m x n over F. We now 
give a number of results about rank additivity. As idempotent matrices play a role 
in this theory, the reader should also refer to Section 8.6.1. 

(a) The following three conditions are equivalent. 

(1) We have rank additivity. 

(2) rank(Al,A2, . . . ,  Ak) =rank  ( "; 1 = z:=l rank A,. 

(3) A,A-A, = A, and A,A-A, = 0 for all i , j  (i # j )  where A- is any 

Ak 

choice of a weak inverse of A .  

If (3) holds for a particular weak inverse, then all three conditions hold for 
any weak inverse. 

(b) Suppose A is idempotent (i.e., A' = A) .  Then the following three conditions 
are equivalent. 

(1) We have rank additivity. 

(2) rank(A1, Az,. . . , Ak) = rank [ :' ) = z:=l rank A,. 

Ak 
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(3) A: = A, and A,A, = 0 for all i , j  ( i  # j ) .  

(c) If T,  = rank A, (i = 1 , 2 , .  . . , k ) ,  we have rank additivity if and only if there 
are nonsingular matrices F and G such that 

A1 F G ,  
0 0 . . .  0 0 
0 0 . . .  0 0 

0 0 . . .  0 0 

A2 = F G ,  
0 0 . . .  0 0 
0 0 . . .  0 0 

0 0 . . .  0 0 

A k  = F [ 0 0 " '  0 0 . . .  I,, 0 :)I. 
0 0 . . .  0 0 

Furthermore, if the Ai are real (respectively complex), there exist orthogonal 
(respectively unitary) P and Q and diagonal D such that F = PD and 
G = Q, that is there exists a simultaneous singular value decomposition. 

3.27. Let A = C,"=, Ai, where the matrices are real (or complex with ' replaced 

by *I. 
(a) We assume that the matrices are not necessarily square. 

( i )  If AkAj = 0 and AiAi = 0 for all i , j  ( i  # j ) ,  then the rank is additive. 

(ii) If the rank is additive, then AiAi = 0 for all i , j  ( i  # j )  if and only if 
AjA'  = AA'- ( j  = 1,. . . , k ) .  

3 

(b) We assume that the matrices are square. 

(i) If rank(A:) = rank Ai and AiAj  = 0 for all i , j  (i # j ) ,  then the rank 

(ii) If the rank is additive, then A,Aj = 0 for all i , j  (i # j )  if and only if 

is additive. 

A,A = A A j  ( j  = 1,. . . , k ) .  

(c) If the A, are all real symmetric or Hermitian non-negative definite matrices 
and 

k k 

i=l j = 1  

holds for some distinct positive scalars ci and for some choice of weak inverse 
A-,  then the rank is additive. 
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Conversely, if the rank is additive, then the above equation holds for every 
choice of distinct positive c1, . . . , ck and for every choice of a weak inverse. 

Proofs. Section 3.4. 

3.23. Marsaglia and Styan [1974a: theorem 8 and corollary 8.11; see also 
Harville [1997: 442-4451, 

3.25. Marsaglia and Styan [1974a: theorem 111; see also Harville [1997: 4451 
for (3) and Harville [2001: 29, exercise 291 for (4) and (6)-(9). 

3.26a. Marsaglia and Styan [1974a: theorem 131. 

3.2613. Marsaglia and Styan [1974a: corollary 13.11. Note that A A A  = A so 
that we can set A- = A in (a). 

3 .26~.  Marsaglia and Styan [1974a: theorem 121. 

3.27a. Marsaglia and Styan [1974a: theorem 141. 

3.27b. Marsaglia and Styan [1974a: theorem 151. 

3 .26~.  Marsaglia and Styan [1974a: theorem 161. 

3.5 MATRIX DIFFERENCES 

3.28. rank(A - B) 2 I rankA - rankBI. 

3.29. Let A and B be m x n matrices over F. Then results on the rank of A + B 
immediately lead to the results on the rank of A - B by simply substituting -B 
for B. We can also use the fact that rank(A - B) = rank A - r ankB if and only if 
rank(A - B) + rank B = rank A.  

(a) Let 

Then 

rank(A - B) = rank(A, B) + rank (t) + rank N - rank A - rank B. 

(b) rank(A - B) = rank A - rank B if and only if N = 0 and rank(A, B) = 

rank A = rank (t). Furthermore, if just the latter equation is true, then 

rankN = rank(BA-B - B). 

3.30. Let A and B be m x n matrices over F. If one of the following five conditions 
is true, then all five are true. 

(1) rank(A - B )  = rank A - rank B. 
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( 2 )  C(B) c C(A), C(B’) c C(A’) and B A - B  = B. 

( 3 )  rank(A, B) = rankA = rank (i) and BA-B = B. 

(4) A A - B  = B A - A  = B A - B  = B. 

( 5 )  rank(A - B) = rank[A(I, - B-B)] = rank[(I, - BB-)A],  where A- and 
B- are any choices of weak inverses. If any one of (2) to ( 5 )  holds for any 
particular set of weak inverses, then all the conditions hold for every weak 
inverse. 

3.31. Let A and B be m x n matrices over F with ranks T and s, respectively. 
Then: 

(a) rank(A - B) = rank A -rank B if and only if there exist nonsingular matrices 
F and G such that 

0 I, 0 0 
A = F ( i  I;, % )  G and B = F (  0 0 0  0 0 O ) G ,  

where the matrices are similarly partitioned and the bordering zero matrices 
are of appropriate size; some are absent if A or B has full rank. 

(b) If A and B are real (complex) matrices, there exist orthogonal (unitary) 
matrices P and Q such that 

0 0  0 0 0  

0 0  

where D1 and Dz are nonsingular diagonal matrices. 

A = P ( T  DZ 0 )  Q and B = P (  0 0 0 0  Dz O ) Q ,  

3.32. If A and B are nonsingular n x n matrices, then from the identity A - B = 
-B(A-l - B-’)A and (3.14a), 

rank(A-’ - B-’) = rank(A - B) = rank(B - A). 

Furthermore, A-’ - B-’ is nonsingular if and only if B - A is nonsingular. 

3.33. (Wedderburn-Guttman) Let A be an m x n matrix of rank T ,  and let M 
and N be m x s and n x s matrices, respectively, such that M‘AN is nonsingular. 
Then 

rank[A - N(M’AN)-lM’A] = T - s, 

rank[AN(M’AN)-lM’A] = rank[M’AN] = s. 
with 

This theorem has been used in psychometrics. 

3.34. (Idempotent Matrices) Let P and Q be n x n idempotent matrices. Then 

rank(P - Q )  = rank (i) + rank(P, Q )  - rank P - rank Q 

= 

= 

rank(P - P Q )  + rank(PQ - Q) 

rank(P - Q P )  + rank(QP - Q). 
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Proofs.  Section 3.5. 

3.28. Abadir and Magnus [2005: 811 

3.29. Marsaglia and Styan [1974a: 387-3881, 

3.30. Harville [2001: 200-203, exercise 301 and Marsaglia and Styan [1974a: 
theorem 171. 

3.31. Marsaglia and Styan [1974a: theorem 181. 

3.32. Harville [1997: 4201. 

3.33. Takane and Yanai [2005]. They also discuss the case when M’AN is 
rectangular. 

3.34. Tian and Styan [2001]. They also give an extensive list of similar results 
including those for P + Q. 

3.6 PARTITIONED AND PATTERNED MATRICES 

Some partitioned matrices have already been mentioned above in passing so there 
will be a slight overlap with the following, which focuses exclusively on partitioned 
matrices. 

3.35. (Column Partitions) Let A be an m x n matrix and B be an m x q matrix, 
both over F. 

(a) C(A) n C[(I, - AA-)B] = 0, where A-  is any weak inverse of A. 

(b) rank(A, B) = rank(A, (I, - AA-)B).  

(c) 

rank(A, B) = rankA + rank[(I - AA-)B]  

rankB + rank[(I - BB-)A].  = 

The second result is obtained by interchanging A and B .  

Note that AA-  = PA is idempotent, thus representing an (oblique) projection 
onto C(A) (by 7 . 2 ~ ) ;  also P A A  = A. 

3.36. (Row Partitions) Let A be an m x n matrix and C be an q x n matrix, both 
over F. 

(a) A and C(1, - A-A)  have disjoint row spaces (i.e., only have the zero vector 
in common). 

(b) rank (t) = rank ( 
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rank (t) = rankA + rank[C(I - A-A)] 

rankC + rank[A(I - C-C)]. = 

Note that (A-A)’ = PA’, where PA, is the (oblique) projection onto C(A’) (by 
7 . 2 ~ ) .  

3.37. For conformable matrices A, B, and C over .F and for any choice of weak 
inverse A-, we have the following: 

(a) rank(AB, [I - AA-IC) = rank(AB) + rank([I - AA-IC). 

(b) rank Bt-Al) = rank(BA) + rank(C[I - A-A]).  

3.38. If all four matrices are conformable, we have 

B A  C D  D C  
rank ( ) =rank  ( ) =rank  ( A ) =rank  ( A ) . 

3.39. The following hold for any conformable A, B, and C over F. 

(a) For all weak inverses A- and B-, 

= rankA + rank[B, C(I - A-A)] 
O A  

rank ( B C ) 
= r ankB +rank 

= 

5 

rankA + r ankB + rank[(I - BB-)C(I - A-A)]  

rankA + r ankB + rank C, 

with equality if and only if C(B)nC(C) = 0 and C(A’)nC(C’) = 0. If B or C 
(or both) is nonsingular, then the rank of the left-hand side is rank A+rank B. 

= 

+ rankD,  

rank C + rank[A(I - C-C)] + rank[(I - CC-)B] 
O A  

rank ( B C ) 
for D = (I - UU-)AC-B(I - V-V), with U = A ( I  - C-C) and V = 

(I - C C - ) B .  The weak inverses may be any (possibly different) choices 
except that the C- in the middle of D must be the same as that chosen in 
either U or V. 

3.40. (Generalized Schur Complement) Let El F, G, and H be conformable ma- 
trices over F, and let A be given by 

E F  
. = ( G  H ) .  
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(a) We have the following results. 

6 )  

0 ( G(1-E-E) H - G E - F  
rank A = rank E + rank 

holds for any three generalized inverses E-. Here S = H - GE-F is the 
generalized Schur complement of A with repect t o  E and is written as 
(A/E) (cf. Section 14.1). 

(ii) If G = 0, then rankA 2 rankE + rank H. The same is true if we have 
F = 0 instead. 

(iii) Let E be a particular weak inverse of E. Then 

rank A = rank E + rank(H - GEF) 

if and only if 

U = -(I - EE-)FS-G(I - E-E) = 0, 

V = (I - EE-)F(I - S-S) = 0, 

W = (I - SS-)G(I - E-E) = 0, 

where A- and S- are any choices of weak inverses. Since, by (7.20), 
(I - EE-)E = 0 and (I - E-E)’E’ = 0, the above three conditions 
are satisfied when C(F) C C(E) and C(G’) C C(E‘) (Schott [2005: 2651). 
This is the case, for example, when A is non-negative definite and E and 
H are both square, that is, G = F’ (cf. 14 .8~) .  The above result follows 
from (iv) below. Other conditions for the above to hold that relate to 
ranks are given by Tian [2002: 2041. 

From (3.38) we can interchange E and H, and F and G, in the above 
results, as we have done in (v) and (vi) below. 

(iv) Using the above notation, 

rank A = rank E + rank S + rank V + rank W + rank Z, 

where Z = (I - VV-)U(I - W-W) and any weak inverses can be used. 

(v) If E is square and nonsingular, then the three conditions of (iii) are 
satisfied and 

rank A = rank E + rank(H - GE-’F) 

(vi) If H is square and nonsingular, then 

rankA = rankH + rank(E - FH-lG) 

(vii) With appropriate matrix substitutions we have from (v) and (vi) 

rank ( ) = n + rank(1, - B’ I, BB‘) = m + rank& - B’B). 
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(b) rank A = rank E + rank X + rank Y + rank T, where 

X = ( I -EE-)F,  

Y = G(1-E-E),  

T = (I - YY-)(H - GE-F)(I - X-X). 

Any choices of weak inverses can be used. 

3.41. If A is m x n and B is n x m, then 

rank(1, - AB) = rank(1, - BA) + m - n. 

Proofs. Section 3.6. 

3.35. Harville [1997: 3851 and Marsaglia and Styan [1974a: theorem 51. 

3.36. Marsaglia and Styan [ 1974a: theorem 51. 

3.37. Marsaglia and Styan [ 1974a: theorem 41. 

3.38. Interchange rows then columns. 

3.39. Harville [1997: 388-3891 and Marsaglia and Styan [1974a: theorem 191. 

3.40a. Marsaglia and Styan [1974a: theorem 19 and corollary 19.11 with their 
restrictions in (i) and (iv) removed by Ouellette [1981: 228-2291; (ii) is proved 
by Abadir and Magnus [2005: 121-1221; (v) and (vi) are proved by Schott 
[2005: 265-2661 and Abadir and Magnus [2005: 1231. 

3.40b. Marsaglia and Styan [1974a: theorem 191 with their restrictions re- 
moved by Ouellette [1981: 2301. 

3.41. Abadir and Magnus [2005: 1241. See also GroD [1999] 

3.7 MAXIMAL AND M I N I M A L  RANKS 

This topic presents some very powerful tools for handling matrix problems, as shown 
in a series of papers by Yongge Tian. For example, one can find the maximum and 
minimum ranks of an expression and then find conditions when these two are equal; 
this will give us the rank, subject to the conditions. One way of proving that two 
matrix expressions are equal is to prove that the rank of their difference is zero. 

For some history of this topic see Tian [2000], and for some detailed results see 
Tian [2002]. 

3.42. For conformable matrices: 

min rank(A- 
x1 .X? 

BX1- 
CX2) = rank (; :)- rankB - rank C ,  

where the minimization is with respect to all conformable XI and X2. 
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3.43. For conformable matrices, define p(X1,Xz) = A - BlXlCl - B2X2C2. 

Then: 

(4 

min rank[p(Xl, X,)] = rank 
X1,XZ 

+ m a {  rank ( c2 A B1 ) -rank ( c", 2 7 ) 

3.44. (Generalized Schur Complement) Let 

A B  
M ' ( C  D ) '  

then we recall from (3.40) that the generalized Schur complement of A in M (M/A)  
is SA = D - C A - B ,  where A- is any weak inverse A (We have changed the 
notation for M to fit in with the proofs for the following results.) Then 

maxrank(SA) = min , r a n k M  - rankA 
A- 

and 

minrank(Sn) = rankA + rank(C, D) + rank (:) + rank M 
A- 

A 0  

C D  

- rank(  A O B  , , - r a n k (  0 B ) .  

Proofs. Section 3.7. 

3.42. Tian [2000]. 
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3.43. Tian [2002]. He shows there is some simplification when C(B1) C C(B2) 
and C(Ch) C C(Ci).  By equating (a) and (b),  he obtains necessary and 
sufficient conditions for rankb(X1, X,)] to be invariant with respect to X I  
and Xa. He then finds similar conditions for Cb(X1,X2)] to be invariant. 

3.44. Tian [2002: 2011. He uses the fact that A- is a solution of A X A  = A. 
He also gives necessary and sufficient conditions for the rank and column 
space of SA to be invariant with respect to the choice of A-. Some rank and 
other properties of CA-B,  A-B ,  CA- ,  and A - A B - A  are given by Tian 
[a0021 206-2071. 

3.8 MATRIX INDEX 

Definition 3.3. If A is an n x n, there exists a positive integer k (1 5 k 5 n) such 
that rank(A'") = rank(A"+'). The smallest k for which this is true is called the 
index of A.  If A is nonsingular, k = 0, where A' = I,. The basis for the definition 
comes from the following results and (3.11). 

3.45. If A is an n x n complex matrix, then: 

(a) N ( A o )  C N ( A )  N ( A 2 )  C . . . C N(A'") C N(Ak+ ' )  & . . .. 

(b) C(Ao) 2 C(A) 2 C(A2) 2 . . . 2 C(A'") 2 C(A"') 2 . . .. 

There is equality a t  some point, in fact at the same value of k in both cases. What 
this means is that the index k is the smallest integer at which C(Ak) stops shrinking 
and N ( A k )  stops growing. 

3.46. Let A have index k .  

(a) All matrices {A' : 1 2 k }  have the same rank, the same column space, and 
the same null space. 

(b) Their transposes {(A')' : 1 2 k }  have the same rank, the same column space, 
and the same null space. 

(c) Their conjugate transposes {(A')" : 1 2 k }  have the same rank, the same 
column space, and the same null space. 

(d) For no 1 less than k do A' and a higher power of A (or their transposes or 
conjugate transposes) have the same range or the same null space. 

(e) For 12 k 

C(A') n N ( A ' )  = 0 and C(A') @ N ( A ' )  = @" 

Proofs. Section 3.8 

3.45-3.46. Ben-Israel and Greville [2003: 1551 and Meyer [2000a: 395, real 
case]. 
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CHAPTER 4 

MATRIX FUNCTIONS: INVERSE, 
TRANSPOSE, TRACE, DETERMINANT, 
AND NORM 

The topics considered in this chapter might be regarded as the “bread and butter” 
or, changing the metaphor, the working tools for someone using linear algebra in 
their research. I have not included rank, generalized inverse, and eigenvalues, as I 
have a separate chapter for each of these topics. 

4.1 INVERSE 

Definition 4.1. An m x n matrix A is said to have a right inverse if there exists 
an n x m matrix B such that AB = I,. It is said to have a left inverse if there 
exists an n x m matric C such that CA = I,. These inverses are generally not 
unique. 

4.1. An m x n matrix A has a left inverse if and only if it has full column rank (i.e., 
rankA = ri, m 2 n) ,  and it has a right inverse if and only if it has full row rank 
(i.e., rankA = m, m 5 n).  Examples of such inverses are, respectively, (A’A)-lA’ 
and A’(AA’)-’. 

Definition 4.2. If A is n x n and rank A = n, then A is said to be nonsingular and 
has an inverse denoted by A-l that satisfies AA-’ = A-’A = I,. An equivalent 
definition is that A is nonsingular if and only if det A # 0. A square matrix that is 
not nonsingular (ix. ,  det A = 0) is said to be singular. Inverses, both algebraic and 
numerical, can be computed using Matlab (Leon [2007: chapter 711, Maple (Jeffrey 
and Corless [2007: chapter 72]), and Mathematica (Ruskeepaa [2007: chapter 73)). 

A Matrix Handbook f o r  Statisticians. By George A. F. Seber 
Copyright @ 2008 John Wiley & Sons, Inc. 
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4.2. If A is n x n and AB = I,, then B = A-'. 

4.3. If A and B are nonsingular matrices of the same size, then (AB)-l  = 
~ - l ~ - l  

4.4. If A is nonsingular and c # 0, then (cA)-l = c-lA-l. 

4.5. If A is nonsingular, then A-' is a continuous function of the elements of A. 

Proofs. Section 4.1. 

4.1. Harville [1997: 801. 

4.2-4.4. Abadir and Magnus [2005: 83-84]. 

4.5. Schott [2005: 1991. 

4.2 TRANSPOSE 

Definition 4.3. If A = ( a i j )  is real or complex, we define A* = (ZJi) t o  be the 
conjugate transpose of A .  When A is real, A* = A'. 

4.6. (Basic Results) 

(a) (AB)*  = B*A*. 

(b) (cuA)* = 6A'. 

(c) If A is a nonsingular matrix, then (Ap1)* = (A*)-'. 

4.7. Suppose A and B are real matrices, where A is p x m and B is p x n, with 
m 5 n. Then AA' = BB' if and only if there exists an rn x n matrix H with 
HH' = I, such that A H  = B. 

Proofs. Section 4.2. 

4.6. Rao and Bhimasankaram [2000: 85, real case]. 

4.7. Muirhead [1982: 5891. 

4.3 TRACE 

Definition 4.4. If A = (a i j )  is an n x n matrix, then the sum of the diagonal 
elements is called the trace of A and is denoted by trace A .  Thus 

n 

trace A = C aii = trace A' 
i=l 

4.8. Let A be m x n, and let A -  be any weak inverse of A .  Then, from (7.2d), 

trace(A-A) = trace(AA-) = rank A .  
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4.9. If A is real and symmetric, then 

(traceA)2 
trace(A2) ’ 

rankA 2 

For related results see (6.21). 

4.10. If A is an n x n real matrix with real eigenvalues and exactly t of them are 
nonzero, then 

(traceA)2 5 t trace(A2). 

4.11. Let A be an n x n real matrix. 

(a) If A has real eigenvalues, then (traceA)2 5 rank(A) trace(A2). 

(b) If A is symmetric, (trace A)2 = rank(A) trace(A2) if and only if there is a 
non-negative integer k such that A2 = kA. 

(c) If A is symmetric, then A2 = A if and only if rank A = trace A = trace(A2). 

(d) trace(A’A) 2 trace(A2), with equality if and only if A is symmetric. 

4.12. If A is an n x n real or complex matrix, then A can be written as A = 
XY - YX for some n x n matrices X and Y if and only if traceA = 0. 

4.13. Let A be m x n and B be n x m, both real or complex matrices. 

(a) We have 

trace(AB) = trace(BA) = trace(A’B’) = trace(B’A’) 
m. n m n  

(b) If rn = n and either A or B is symmetric, then 

n n  

trace(AB) = azJ b,j. 
i= l  j = 1  

This result is particularly useful in statistics. 

4.14. Suppose A is m x n, B is n x p ,  and C is p x n. Then 

trace(ABC) = trace(BCA) = trace(CAB). 

4.15. Let C be an m x n real or complex matrix. Then 

m n  

2=1  ,= I  

Hence trace(C*C) = 0 implies that C = 0. 

4.16. Suppose the m x n matrix E,, has 1 in the i, j t h  position and zeros elsewhere. 
If A is n x m, we have trace(EZJA) = a,, = a:,. 
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4.17. If R is n x n and nonsingular, trace(R-’AR) = trace(ARR-l) = traceA. 

4.18. If A and B are real symmetric matrices, then t r a ~ e [ ( A B ) ~ ]  5 trace(A2B2). 

4.19. If A is n x n, B is m x m, and A @ B is the Kronecker product, then (cf. 
11.11 (ii)) 

trace(A @ B) = trace(A) trace(B). 

4.20. If A is n x n and x is n x 1, then x’Ax = trace(x’Ax) = trace(Axx’). 

4.21. If A is m x n, then trace(AX) = 0 for every n x m X if and only if A = 0. 

4.22. If A is n x n, then trace(AX) = 0 for all Hermitian X if and only if A = 0. 

4.23. If A is an n x n Hermitian matrix and trace A 2 Re trace(AU) for all unitary 
matrices U, then A is non-negative definite. Here Re is the “real part.” 

4.24. Let A be an n x n matrix with singular value decomposition A = PZQ*, 
where P and Q are n x n unitary matrices, E = diag(ol(A), . . . , oa(A)),  and the 
a,(A) are the ordered singular values of A. Let U, be the collection of all n x n 
unitary matrices. Then 

n 

max Retrace(AU) = C o , ( A ) ,  
UEU, 

i=l 

and the maximum is attained at Uo = QP* (which need not be unique). 

4.25. Let A be m x n and B be n x m matrices, and define U, as in (4.24) above. 
Then 

P 

max Re trace(AUBV) = oi(A)oi(B), 
i=l U € U , , V € U ,  

where p = min{m, n} and a(.) is a singular value. 

4.26. Let A and B be n x n non-negative definite matrices. Then: 

(a) traceA 2 0 with equality if and only if A = 0. 

(b) trace(AB) 2 0 with equality if and only if A B  = 0. 

4.27. Let A and B be n x n positive definite matrices. Then: 

(a) traceA > 0. 

(b) trace(AB) > 0. 

Proofs. Section 4.3. 

4.8. AA-  is a projection onto C(A) and is therefore idempotent so that its 
rank equals its trace. 

4.9-4.10. Graybill [1983: 303-3041, 

4.11a-c. Graybill [1983: 305-3061. 

4.11d. Follows from trace[(A-A’)’(A-A’) = 2[trace(A’A)-trace(A2)] 2 0. 
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4.12. Horn and Johnson [1991: 2881. 

4.13. Abadir and Magnus [2005: 311 and Rao and Bhimasankaram [2000: 921. 
We can interchange the subscripts i and j .  

4.14. 

4.15. 

4.16. 

4.18. 

4.19. 

4.21. 

Use (4.13a) with AB and C, and so on. 

trace(C*C) = c, c, Cz*3C3. = c, c, qzc,z. 

Use (4.13a). 

Graybill [1983: 3021. 

Abadir and Magnus [2005: 2771. 

Use (4.16) for all Ez,. 

4.22-4.23. Rao and Rao [1998: 342-3431. 

4.24. Rao and Rao [1998: 3471. 

4.25. Rao and Rao [1998: 3571. 

4.26. Graybill [1983: 306-3071. 

4.27a. Each aii > 0 from (10.33b). 

4.27b. We have trace(AB) = trace(A1/2BA1/2), where (cf. 10.32) is 
the positdive definite square root of A ,  and A1/2BA1/2 is positive definite. 
Now apply (a) to trace(A'/2BA'/2). 

4.4 DETERMINANTS 

Determinants arise in many places in this book. In this section I concentrate on 
some basic properties, but the reader should also refer to Chapter 14 on partitioned 
matrices and Chapter 15 on patterned matrices. Determinants of special matrices 
are given in Chapter 8, and the differentiation of determinants is given in Chapters 
17 and 18. 

4.4.1 Introduction 

Definition 4.5. The determinant of a square matrix A = (az,), denoted by 
det(A), is defined as 

(1) d e t ( ~ )  = C €3132 3,,a131a232 ' ' ' an,,, 2 

where E~~~~ ,,, is +1 or -1 according as (31 , 3 2 . .  .jn} is an even or odd number 
of permutations of the integers { 1,2, .  . . , n}, with the summation extending 
over all n such possible permutations. Thus ,,, = (-1)31+32+ +Jn 

(2) Another way of expressing det(A) is 

n 
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Here 7r is a permutation of the ordered set {1,2,. . . , n} and ~ ( i )  is the i th 
member of the permutation 7r. The summation extends over all permutations, 
and the function sgn(7r) is +1 or -1 depending on whether the permutation 
is even or odd. 

4.28. (Basic Properties) Let A be an n x n matrix. 

(a) det(A) = det(A'). 

(b) If two rows (columns) of A are equal, then det(A) = 0. 

(c) If every element of a row (column) of A is zero, then det(A) = 0. 

(d) If B is obtained from A by multiplying one row (column) of A by the scalar 
k ,  then det(B) = kdet(A). In particular, det(cA) = c"detA. 

(e) If B is obtained from A by interchanging any two rows (columns), then 
det(B) = - det(A). 

( f )  Adding to one row (column) of a square matrix any multiple of another row 
(column) does not affect the value of the determinant. 

(g) det(A) is a continuous function of the elements of A. 

Note that the transformations (d)-(f) can be represented by matrices (cf. Section 
16.2.1). 

4.29. (Row-Block Operations) Some of the properties of the previous result carry 
over to block multiplication. Let A be m x m and B be n x n matrices. 

(a) If E is m x rn, then 

det ( ) = det(E) .  det (; :). 
(b) If E is n x m, then 

C + E A  A D + E B  ) = d e t (  ; :). 
4.30. An n x n matrix may be written as A = XYX-'Y-' for some nonsingular 
n x n matrices X and Y if and only if det(A) = 1. 

4.31. If A and B are n x n matrices, then: 

(a) det(AB) = det(A) det(B). 

(b) det(AA') = det(AA') = (det A)'. 

(c) If A is nonsingular, then setting B = A-' gives us det(A-') = (detA)-'. 

(d) det ( ) = det(A + B) det(A - B). 
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4.32. (Craig-Sakamoto) If A and B are n x n real symmetric matrices, and c and 
d are positive scalars, then 

det(1, - s A  - tB)  = det(1, - sA) . det(1, - tB)  

for all Is1 < c and It1 < d if and only if A B  = 0. 

4.33. Let A be an m x n matrix and B be an n x m matrix. Taking determinants 
of both sides of the following equivalence 

O ) ( I ;  :), L - A B  "(1, ">=( I ,  
( 0  I, B I, B I , - B A  

using (14.18) and the fact that the determinant of a triangular matrix is the product 
of its diagonal elements, we get 

det(1, - AB) = det(1, - BA) .  

I f n =  1, 
det(1, - aa') = 1 - a'a. 

Proofs. Section 4.4.1. 

4.28a-f. Rao and Bhimasankaram [2000: 224-2251 and Searle [1982: sections 
4.3 and 4.41. 

4.28g. Schott [2005: 1981. 

4.29. Abadir and Magnus [2005: 1151. 

4.30. Horn and Johnson [1991: 2911. 

4.31a-c. Searle [1982: 98-99]. 

4.31d. Abadir and Magnus [2005: 117-1181. 

4.32. Abadir and Magnus [2005: 1811 and Harville [1997: 568-569; see also 
the theory there on polynomials]. 

4.4.2 Adjoint Matrix 

Definition 4.6. Let A be an n x n matrix. If a submatrix A,, is formed by 
deleting the zth row and the j t h  column of A ,  then det(A,,) is called the manor  of 
at, and the signed minor a,, = (-1)"J det(A,,) is called the cofactor of aZ3.  The 
matrix adj(A) = (aJz )  is called the adjoant (adjugate) of A.  

4.34. If A is n x n, then 

if i = k ,  
otherwise. 

4.35. If A is n x n, then A(adjA) = (adjA)A = det(A)I,. 

j = 1  



60 MATRIX FUNCTIONS: INVERSE, TRANSPOSE, TRACE, DETERMINANT, AND NORM 

4.36. adj(adjA) = (det A)"-2A. 

4.37. If A is nonsingular, it follows from (4.35) above that adj(A) = (det A)A-'  
and det(adjA) = {det(A)}"-'. 

4.38. The following hold. 

(a) adj(aA) = an-'adjA. 

(b) adj(A') = (adjA)'. 

(c) If A is nonsingular, then adj(A-') = (adjA)-'. 

4.39. Let A be n x n. 

(a) Let rankA = n - 1, then 

where k denotes the algebraic multiplicity of the zero eigenvalue of A (1 5 
k 5 n) ,  d(A) is the product of the n - k non-zero eigenvalues of A ,  (.)+ 
denotes the Moore-Penrose inverse, and x and y are n x 1 vectors satisfying 
A x  = 0 and y'A = 0'. If k = n, we put d(A) = 1. 

(b) If 0 is a simple eigenvalue of A (i.e., k = 1 in (a)), then rankA = n - 1 and 

XY' adjA = d(A)-. 
Y'X 

Here d(A) is the product of the n - 1 nonzero eigenvalues and x and y are 
defined in (a). 

(c) If rankA 5 R - 2, then adjA = 0. 

If rankA = n - 1, then rank(adjA) = 1. 

4.40. If A and B are both R x n, then adj(AB) = ad jA .  adjB. 

Proofs. Section 4.4.2. 

4.34. Abadir and Magnus [2005: 901 and Rao and Bhimasankaram [2000: 
2401. 

4.35-4.37. Abadir and Magnus [2005: 951 and Rao and Bhimasankaram [2000: 
241, 2441. 

4.38. Rao and Bhimasankaram [2000: 245, see solution to  exercise 81. 

4.39. Magnus and Neudecker [1999: 40-431. 

4.40. Abadir and Magnus [2005: 951, Harville [2001: 77, exercise 141, and Rao 
and Bhimasankaram [2000: 2441. 
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4.4.3 Compound Matrix 

Definition 4.7. Given the m x n matrix A = (a i j ) ,  a compound matrix of A is 
the array of all minors of a given size k ,  say, ( k  I min{m,n}). The M = (T) 
by N = (L) matrix is denoted by A[k] = (hap), where we write symbolically a = 
( i l l  i2,. . . , ik) and p = ( j l l j 2 , .  . . , j k ) .  Here baD is the determinant of the submatrix 
obtained by selecting the intersection of the k rows i l l  22 , .  . . , i,+ and the k columns 
j l , j 2 , . .  . , j k .  The M N  elements of A[k] are arranged in lexicographic order (for 
a numerical example see Horn and Johnson [1985: 19-20]). Compound matrices 
are useful for expressing a number of expansions of determinants like Sylvester's 
identity, the Cauchy-Binet formula and the Laplace expansion given in the next 
section (cf. Rao and Rao [1998: 146-1541), 

4.41. (Basic Properties) 

(a) Let A m x p  and Bpxn be real or complex matrices, then: 

( i )  (AB)[k] = A [ k ] B [ k ] ,  k I min{m,n,p}. 

(ii) (cA)[k] = ckA~kl. 

(b) If A is an m x n real or complex matrix, then (A~kl)'  = (A')[k]. 

(c) If A is a complex matrix, then (A[k1)* = (A*)[kl. 

(d) If A is a nonsingular real or complex matrix, then (A[k])-' = (A-l)[k]. 

Proofs. Section 4.4.3 

4.41. Rao and Rao [1998: 146-1541 and quoted by Horn and Johnson [1985: 
19-20]. 

4.4.4 Expansion of a Determinant 

4.42. (Expanding by Row i or Column j )  Referring to (4.34), we have 

n 

det(A) = x a i j c v i j  (row i) 
j = 1  

n 

= 1 at3aZJ (column j ) .  
1= 1 

4.43. (Expanding by the Diagonal) Consider the n x n matrix 

B = A + d i a g ( z l , x 2 ,  . . . ,  z,). 

Then det(B) consists of the sum of all possible products of the z, taken r at  a time 
for r = n, n - 1, .  . . , 2,1,0, each product being multiplied by its complementary 
principal minor of order n - r in A.  By complementary minor in A we mean the 
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principal minor having diagonal elements other than those associated in B with the 
x's of the particular products concerned. For example, 

a21 a22 + 52 a23 

a3 1 a32 a33 + 2 3  

all $51 a12 

det ( 

When x1 = 52 = . . . = 5, = 5, we have det(B) = C:=, d-Zsi(A),  where si(A) 
is the sum of all the principal minors of order i of A. We define so(A) = 1 and 
note that s, = det(A). 

We can obtain an expansion of det(A) by its diagonal elements by setting aii = 0 
and xi = aii for i = 1 , 2 , .  . . , n. Such an expansion is particularly useful when many 
of the principal minors are zero. We note that 

n 

det(A - XI,) = C(-X)n-isi(A),  
i = O  

which leads to the characteristic equation det(X1, - A )  = (-l),det(A - XI,). 

4.44. (Expanding by m Rows-Laplace Expansion) The Laplace expansion of 
det(A), where A is n x n, can be obtained as follows. Firstly, consider any m 
(m 2 1) rows of A. They contain R = (;) minors of order m. Secondly, multi- 
ply each of these minors, det(A,) say (T = 1 , 2 , .  . . , R) ,  by the determinant of the 
complement of A,, det(B,-,) say, and by a sign factor. Here the complementary 
minor of A,. is the (n  - m)th-order minor derived from A by deleting the m rows 
and columns containing A,. The sign factor is (-1)"., where a, is the sum of 
the subscripts of the diagonal elements of A,. Then det(A) is the sum of such 
products, namely 

R 

det(A) = c ( - l ) " r  det(A,) det(B,-,). 
T = l  

For example, expanding by rows 2 and 3 we have 

a12 a13 a14 

det [ ii: z:: zt: ) 
a41 a42 a43 a44 
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Further extensions of the Laplace expansion method are available, many of which 
are named after their originators-for example, Cauchy, Binet-Cauchy (Harville 
[1997: 200-2021 and Rao and Rao [1997: 149]), and Jacobi. 

A number of other expansions are available. For example, if we are interested in 
relating minors of submatrices, we can use Sylvester’s Determinantal Identity (Rao 
and Rao [1998: 151-1531). If C = AnxpBpxn,  we can expand det C in terms of 
the sum of products of a minor of A times a minor of B using the Cauchy-Binet 
formula (Rao and Bhimasankaram [2000: 2381 and Rao and Rao [1997: 1401). 

4.45. Given the skew-symmetric matrix 

then det(A) = ( a f  - be + cd)’. 

4.46. 

The above matrix occurs in genetics. 

Proofs. Section 4.4.4. 

4.43. Searle [1982: 1061. 

4.44. Harville [1997: section 13.81 and Searle [1982: 1091. 

4.46. Quoted by Searle [1982: 1141. 

4.5 PERMANENTS 

Definition 4.8. Let A be an n x n real matrix. The permanent of A, denoted by 
per(A), is defined by 

n 

?r i = l  

where 7r is a permutation of the ordered set { 1 , 2 , .  . . , n} and ~ ( i )  is the i th mem- 
ber of the permutation T ;  the summation extends over all permutations T .  This 
definition may be compared with the definition of a determinant. There ny=l 
is multiplied by either +l or -1 depending on whether T is an even or odd per- 
mutation. Note that per(A) can also be defined for an m x n matrix. For general 
references to permanents see Wanless [2007] and Minc [1978, 19871, and for an em- 
phasis on applications in probability and statistics see Bapat [1990]. Permanents 
can be used to prove a number of properties shared by doubly stochastic matrices. 
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Let Z and J be ordered subsets of {1,2, .  . . ,n},  each with #Z and #J ele- 
ments, respectively (the cardinality of each set), and define the #Zx #J submatrix 
A(I,Jl  = ( u ~ , ) ~ ~ z , ~ ~ J .  We must have #I = # J  for per(A(I,J,) t o  make sense. 

4.47. Let A be an n x n matrix. 

(a) per(A) = per(A'). 

(b) per(A) admits a Laplace expansion along any row or column. Thus, if A,, 
denotes the submatrix of A obtained by deleting the i t h  row and the j t h  
column of A, then 

n 

per(A) = 1 %3PerAz,. 
z = 1  

4.48. per(A(I,Jl) does not depend on the order of elements in Z or J .  

4.49. If A is an n x n non-negative matrix (i.e., uz, 2 0 for all i, j )  and #Z+ #J = 
n, then 

where Zc is the complement of I,, and so on. 

4.50. If A is an n x n non-negative matrix, then per(A) = 0 if and only if there 
are subsets Z and J such that 

per(A) L per(A(Z, J " )  x per(A(Z", J ) ,  

# T + # J > n + l  and A(Z , J )=O.  

4.51. Let A and B be n x n complex matrices. Then 

(a) 

I per(AB) l 2  5 per(AA*)per( B*B), 

with equality if and only if one of the following occurs: 

(1) A row of A or a column of B is 0, 

(2) No row of A and no column of B consists of 0, and A* = BDrI, where 
D is a diagonal matrix and 11 is a permutation matrix. 

(b) Iper(A)I2 5 per(AA*) and Iper(A)I2 1. per(A*A). 

(c) If A is Hermitian non-negative definite, then 

(i) per(A) 5 n-' trace(An). 

(ii) det A 5 per(A). 

Proofs. Section 4.5. 

4.47b. Use (4.44) with T = 1 and ignore the signs. 

4.48. Follows from the definition. 

4.49. Quoted by Rao and Rao [1998: 3121. 

4.50. Quoted by Rao and Rao [1998: 3121. 

4.51. Marcus and Minc [1964: 118, 1201. For (b), set B = I then A = I in 

(4. 
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4.6 NORMS 

Norms, both for vectors and matrices, are used for measuring distance in vector 
spaces and for providing a measure of how close one matrix is to another. They 
can therefore be used for finding the best approximation of a matrix in a given 
class of matrices by a matrix in another class (e.g., of lower rank). They can also 
be used for investigating limits of matrix sequences and series. Norms, therefore, 
have a role to play in statistics in the areas of inequalities, optimization, matrix 
approximation, matrix analysis, and numerical analysis. 

4.6.1 Vector Norms 

Definition 4.9. A vector norm on a real or complex vector space U is a real-valued 
function 11 . I(  satisfying the following three conditions. 

( I )  jlxll 2 0 for all x E U, and llxll = 0 implies that x = 0 (positive definite 
property). 

(2) llaxll = la1 . llxll for all a E F and all x E U (scalar multiplication). 

(3) IIx + yII 5 llxll + llyll (triangle inequality). 

A vector norm is said to be unitarily invariant if llUxll = llxll for all x E Cn and 
all n x n unitary matrices U. 

If (1) above is replaced by 

( l a )  llxll 2 0 for all x E U, 

then 11 . 1 1  is called a vector seminorm. 

4.52. The following hold for both a norm and a seminorm for any x, y E U. 

(a) / I  - XI1 = IIXII. 

(b) I llxll - IlYll I 5 IIX - YII. 

(c) IIX - YII 5 llxll + IlYll. 

4.53. Every vector norm on R" or @" is uniformly continuous. 

4.54. For finite-dimensional real or complex vector spaces, all vector norms are 
equivalent in the sense that if 1 1  . and ( 1  . (10 are two vector norms, then there 
exist positive constants c1 and c2 such that 

c1lIxlIa I IlXllB I c211xIIa 

for all x (cf. (4.56) below for some examples). 

Definition 4.10. If p is a real number with p 2 1 and x is an n x lvector, then 
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is a norm on R" or Cn called the L, norm. Letting p + m, we find that 

Ilxll, = max I G  
lsi<n 

is also a norm called the L ,  norm. The norms most commonly used are the L1, 
Lz, and L,  norms. In particular, the so-called Euclidean norm Lz is used to define 
the length of a vector in Rn or C". The function llxll, is not a norm for 0 < p < 1. 

4.55. The L, norm ( p  2 1) is a vector norm. 

4.56. For all x E @" we have: 

(a) n-1/211x111 L llxllz I IlXlI1. 

(b) IIxIlm I llxllz I ~1/211x11~. 

(c) llxll2 I lblll I n1/211Xllz. 

(4 IlXllm 5 IlXlll 5 ~IIXII,. 

4.57. Every inner product induces a norm; we simply put llxll = (x,x)'l2. How- 
ever, there are norms not induced by an inner product as in (4.58~) below. 

4.58. (Parallelogram Law) 

(a) The norm induced by an inner product on a vector space (cf. 4.57) has the 
property 

IIX + Y112 + IIX - Y1I2 = 211x112 + 211Y112. 

(b) Conversely, any norm on a real or complex vector space satisfying the above 
equation is induced by an inner product, namely 

(X,Y) = ;(IIx+Y1lZ - llx112 - llY112)~ 

k Y )  = i ( l l X  + Y1I2 - IIX - Y1I2). 

An alternative inner product that can be used is 

(c) If the parallelogram rule does not hold, then there is no inner product that 
induces the norm. 

(d) Let 1 5 p 5 m. Then the L, norm satisfies (a) if and only if p = 2. Thus L1, 
for example, does not satisfy (a) so it cannot be induced by an inner product. 

4.59. The sum of two vector (semi)norms is a vector (semi)norm, and any positive 
multiple of a vector (semi)norm is a also a vector (semi)norm. 

4.60. Let 1 1  . I l a  and I (  . 118 be vector norms on a real or complex vector space V .  
The function 1 1  . 11 defined by 

llxll = max{llxlla? Ilxlla) 

is a vector norm. 



NORMS 67 

4.61. (Continuity) If {x,} and {y,} are sequences of vectors in an inner product 
space such that IIx, - x I I  + 0 and lly, - yII + 0 as n + cm, then 

(4 llxnll + llxll and IlYnll + IlYll. 

(b) (XmYn)  + ( X > Y ) ,  if llxll < and llYll < 03. 
4.62. If 1 1  . 11 is a vector norm on @" and R is a nonsingular n x n matrix, then 
1 1  . I I R  defined by 

IIxlIR = IIRXII, E @" 

is also a vector norm on C". 

Proofs. Section 4.6.1. 

4.52a. By (2) of Definition 4.9. 

4.52b. Horn and Johnson [1985: 2601. 

4 .52~.  By (3) of Definition 4.9 with y replaced by -y. 

4.53-4.54. Horn and Johnson [1985: 271, 2721. 

4.55. Conditions (1) and (2) of Definition 4.9 are readily verified (cf. Gentle 
[1998: 71]), and (3) follows from Minkowski's inequality (12.17a). 

4.56. (b)-(d) are quoted by Golub and Van Loan [1996: 531, while (a) and 
(b) are proved by Rao and Bhimasankaram [2000: 258; see the solution to  
exercise 141. 

4.57. Rao and Bhimasankaram [2000: 2561. 

4.58a. This follows by simply expanding (x + y, x + y),  and so on. 

4.58b. Horn and Johnson [1985: 263, exercise 101 and Meyer [2000a: 290-2921, 

4 .58~.  Abadir and Magnus [2005: 641. 

4.58d. Rao and Bhimasankaram [2000: 258; see the solution to  exercise 91. 

4.59-4.60. Horn and Johnson [1985: 2681. 

4.61. Abadir and Magnus [2005: 651. 

4.62. Horn and Johnson [1985: 2681. 

4.6.2 Matrix Norms 

Definition 4.11. We can interpret the word "vector" as simply an element of 
a vector space. In this case, an rn x n complex matrix A = (a i j )  is simply an 
element of the space of rn x n complex matrices. Alternatively, this space can also 
be identified with the vector space Cmn by arranging the entries of each A as an 
rnn-tuple in some order (e.g., vec A). When a norm applied to vec A satisfies the 
conditions of a vector norm, we call the norm a generalized matrix norm. Some 
examples follow. 
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4.63. (Generalized Matrix Norms) Let A be an m x n matrix. Then the following 
are generalized matrix norms: 

(a) IIA1Im = maxl i i jm, l i j sn  laijl. 

(b) IIA(IF = [ t r a ~ e ( A * A ) ] l / ~  = (EL, E,”=, ~ u ~ ~ ~ 2 ) 1 ~ z l  the Frobenius norm. (We 
use a subscript F instead of F = 2 to avoid confusion later in dealing with 
matrix norms instead of generalized ones.) 

Definition 4.12. (Induced Norms) Given the vector norm 1 1  . [ I v ,  the generalized 
matrix norm induced by 1 1  . I I v  for the m x n matrix A is defined by 

where x E @”. As noted by Horn and Johnson [1985: 2921, we can replace ‘Lsup’l by 
“max” in the above definition. The most common vector norms are the L, norms 
with p 2 1. Note that 1 1 .  I I F  is not an induced norm, and is not to be confused with 
II ‘ 112,in (cf. 4.66b). 

4.64. The induced norm IIAllv,in is a generalized matrix norm as condition (3) of 
Definition 4.9 in Section 4.6.1 holds. 

4.65. If A is m x n and B is n x q,  then for an L, vector norm ( p  2 1) 

IIABll,,in I IIAllP,inllBll~,in 

This result does not hold for every 1 1  . Ilv,in. Golub and Van Loan [1996: 551, 
in quoting the above result, note that it represents a relationship between three 
different norms defined on Rmxql RmXn and Rnxq, respectively. They also call 
the above norm a matrix norm, which it is for square matrices (see Definition 4.13 
below). 

4.66. Let A be m x n. Then following are induced norms based on Lp vector 
norms. 

(a) IlAll1,in = max1ijin cz1 lazjl. 

(b) IIAllz,in = [A,,,(A*A)]’/2 = amax(A), where A,,, is the maximum eigen- 
value of A*A and amax is the maximum singular value. 

(c) IIAllm,ia = max1si<m c;=, bijl. 
4.67. If A is m x n then: 

(a) IIAl12,in 5 llAll~ 5 n1/211Al12,in. (See also (4.82) below for square matrices.) 

(b) maxl l ism,ls jsn laijl I IAl12,in I (mn)’/2 maxl i i im, l s j sn  laijl. 

(c) m-1’211AIIi,in I I I ~ l I z , i n  I n1’211AIIi,in. 

(d) n-”211Allm,in I IIAll2,in I m1’211Allca,in. 
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The above bounds on the norm IIAl12,in are useful, because this norm is more 
difficult to compute than either IIAlll,in or IIAllm,in. 

Definition 4.13. Let V be the vector space of n x n complex matrices. If A E V ,  
then the matrix n o m  of A ,  denoted by lllAlll, is any real-valued non-negative 
function of A satisfying the following conditions. 

(1) lllAlll 2 0 and lllAll1 = 0 if and only if A = 0. 

(2)  lllcAlll = IcI . lllAlll, where c i s  any scalar and IcI is its modulus. 

(3) If B E V then IIIA + Blll 5 IllAlll + IIIBIII. 

(4) If c E V then IllAClll 5 IllAlll ' IllCllll. 

Note that the first three conditions are those of a generalized matrix norm (and of 
a vector norm), which can be applied to any m x n matrix. However, condition 
(4) applies to square matrices only. For a brief introduction to matrix norms see 
Meyer [2000a: section 5.21. 

4.68. Let 1 1 1  . 1 1 1  be any matrix norm and A any n x n matrix. 

(i) p(A) 5 lllAlll, where p is the spectral radius. 

(ii) p(A) = l im~+m(~llAkll~) ' 'k.  

(i) From AI, = A and Definition 4.13(4) we have lllI,lll 2 1. 

(ii) Repeated use of Definition 4.13(4) give us IIIAkllI 5 (lllAlll)k ( k  a posi- 

(iii) Using AA-' = I ,  and Definition 4.13(4) gives us IIIA-llll 2 ( ~ ~ ~ A ~ ~ ~ ) - l .  

(c) From A = (A - B) + B, Definition 4.13(3), and interchanging the roles of A 

(a) 

(b) 

tive integer). 

and B, we have I IllAlll - IllBlll I L 111-4 -Bill. 
(d) Ja,jl 5 BlllAlll for all i and j ,  where 6 = maxl<i<, , l~j<,  IIIEijIII, and Eij is 

(e) If II(Allls = JIIS-lASIII for all nonsingular n x n matrices S, then lllAllls is 

an n x n matrix with 1 in the i , j t h  position and zeros elsewhere. 

a matrix norm. 

4.69. Let A be an n x n matrix. 

(a) llAllp = (Crzl Cy=l(laZjlp)llp is a matrix norm for 1 5 p 5 2. When p = 2 

la i j ( )  is a matrix norm, but llAllco of (4.63a) 

we use the notation IIIAIIIp. 

max 
(b) If n 2 2 ,  IlAll = n(l<i<n.l<j<n 

is not, though it is a generalized matrix norm. 

4.70. Result (4.69b) above can be generalized. For every generalized matrix norm 
IIAlla, where A is n x n, there is a finite positive constant c, which depends on the 
norm such that c,llAll, is a matrix norm. 
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4.71. An n x n matrix A is nonsingular if there is a matrix norm 1 1 1  . 1 ) )  such that 
1111, - All1 < 1. In this case 

k=O 

4.72. Given E > 0, there exists a matrix norm ( 1 1  . 1 1 1  such that 

p(A) I IllAlll < P(A) + 6 ,  

where p is the spectral radius (see also 4.68a). 

Definition 4.14. The generalized matrix norm induced by the vector norm 1 1  . 
for the square matrix A is a matrix norm because it satisfies the four conditions of 
Definition 4.13. We call it the induced matrix norm and we denote it by IIIAlllv,in 

For further discussion of this norm see Horn and Johnson [1985: 292-2951 and Rao 
and Rao [1998: 367-81. 

4.73. For n x R matrices, the induced matrix norm has the following properties. 

(4 IIIInlllv,in = 1. 

(b) IlAxllv I IIIAlllv,in ' llxllv 

(c) lll~Alllv,in = I4  . lllAlllv,in. 

(4 I l l  - AIIIv,in = IIIAlllv,in 

(el IIII, +AlIl.,i, I IIIInlllv,in + IIIAlllv,in = 1 + IIIAlllv,in 

(f) I I I L  - Alllv,in I 1 + lllAlllv,in. 

(g) Suppose IIIAlllv,in < 1. 

(i)  B = I, - A and I, + A are nonsingular. 

(ii) From B(In - A) = I, we can take the norm of B = I, + BA using (e) 
and Definition 4.13(4) to get 

By replacing A by -A and using (c) above we see that the same bounds 
apply for lll(In + A)-llllv,zn. 

4.74. Let A be an n x n matrix. The matrix norm induced by an L, vector norm 
is given by 

IIIAlII,,zn = ,,I$:l IIAXllP, P 2 1. 

Setting p = 1,2 ,  m, we have: 

( 4  IIIAlll1,zn = max113sn C L  14. 
(b) IIIAlllz,zn = [X,,,(A*A)]1/2 = cmax(A), where A,,, is the maximum eigen- 

value of A*A and omax is the maximum singular value. We note that A,,, is 
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real and non-negative as A'A is Hermitian and non-negative definite. We 
note that A,,,, = p(A"A), where p is the spectral radius. When A is 
Hermitian, lllA1112,in = [p(A2)]'I2, which reduces to p(A) when A is also 
non-negative definite. For further properties of this induced norm see Meyer 
[2000a: 281-2831. 
This matrix norm is also called the spectral matrix norm. 

(c) IIIAlllco,in = m a x l l i ~ n  c;=, bijl. 
The inequalities given in (4.67) apply to the above matrix norms by setting m = n. 

4.75. If A and B are non-negative definite n x n matrices, then: 

(a) IIIASBS1112,in I IIIABlll;,in for 0 I s I 1. 

(b) If ~~lABll12,in I 1, then IIIASBS1112,in I 1  for 0 I s I 1. 

(c) IIIABllli,in I IIIAtBtll12,in for t L 1. 

4.76. Let 11 . and 11 . 110 be two given vector norms on @", and let 1 1 1  . I(Ia,in 

and 1 1 1  . IIlp,in denote the respective induced matrix norms on the space V of n x n 
matrices. 

(a) Define 
IIXIIB 

x+o I I x I I a 
Rap = max ~ l l X l l a  and Rpa, = max -. 

X # O  IIXIIP 

Then 

(b) IIIAllla,zn = I I I A ~ ~ ~ O , ~ ~  for all A E V if and only if there is a positive constant 
c such that /lxlla = cl lx l lp for all x E @. 

(c) lllAllla,zn I IIIAIIIp,zn for all A E V if and only if llAlla,2n = IIAIIP,~~ for all 
A E V  

4.77. If Q is unitary (or orthogonal), then: 

(a) 11Q~112 = IIxIIz 
(b) l l lQI l l2 ,zn = 1. 

Definition 4.15. A matrix norm I I I . I I I on the class of n x n matrices is a mznimal 
matrzx norm if the only matrix norm N ( . )  such that N ( A )  I lllAlll for all A is 

= I l l  ' I l l .  
4.78. Every induced norm is minimal and every minimal norm is induced. 

Definition 4.16. If A is m x n, the Frobentus norm is defined to be 

IlAll~ = (XF; la,,12)'/2 = [ t r a ~ e ( A * A ) ] ' / ~  = IIA*II.v. 
2 3  

When m # n, this norm is a generalized matrix norm, while if m = n, it is a matrix 
norm. However. it is not an induced norm. It is often refered to as the Euclidean 
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matrix norm as l l lAll l~,  like IIIA1112,in, uses an Lz vector norm. For this reason, 
Graybill [1983], for example, uses E ,  but we shall follow the general trend and use 
the subscript F t o  avoid confusion. Harville [1997] refers t o  the Frobenius norm 
as the “usual norm.” Even when m # n, the following result shows that the norm 
satisfies a result like (4) of Definition 4.13. 

4.79. If A is rn x n and B is n x p ,  then l l A B l l ~  5 I~AI(F. llBllp. 

4.80. If A is m x n of rank r with singular values L T ~  = cri(A), then 

r 

llAll$ = trace(A*A) = trace(AA*) = c;. 
i= l  

4.81. Given real symmetric A and real skew-symmetric B, both n x n, then 

IIIA + B1112F = lllAlll2F + 111B1112F 

4.82- lllA1112,in 5 lllAlllF 5 filIIAl112,in. 

4.83. If A and U are n x n and U is unitary, then 

IIIAlll2,in = lllUAlll2,in = IIIAU1112,in = IIIU*AU1112,in. 

The above also holds for 1 1 1  . ( 1 1 ~ .  
Proofs. Section 4.6.2. 

4.63. Rao and Rao [1998: 3631. The results follow by applying (4.55) to 
vec A .  

4.64. We see that llAx + Ayllv 5 llAxllv + llAyllv implies that  max llAx + 
AyllT, I max{ llAxllv + IIAyllV> 5 max llAxllv + max IIAyllv. 

4.65. Quoted by Golub and van Loan [1996: 551. 

4.66. Horn and Johnson [1985: 294-295, the proofs hold for m # n] and 
Meyer [2000a: 281-2841. 

4.67. Golub and Van Loan [1996: 56-57]. 

4.68a(i). Horn and Johnson [1985: 2971, Meyer [2000a: 4971, and Rao and 
Rao [1998: 3651. 

4.68a(ii). Horn and Johnson [1985: 2991, Meyer [2000a: 6191, and Rao and 
Rao [1998: 3731. 

4.6%. Horn and Johnson [1985: 2901. 

4.68d. Rao and Rao [1998: 3651. 

4.68e. Horn and Johnson [1985: 2961. 

4.69a. Graybill [1983: 93, p = 11, Horn and Johnson [1985: 291, p = l , 2 ] ,  
and Rao and Rao [1998: 3741. 

4.69b. Horn and Johnson [1985: 2921. 
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4.70. Horn and Johnson [1985: 3231. 

4.71. Horn and Johnson [1985: 3011. See also (19.16a) using an infinite series. 

4.72. Horn and Johnson [1985: 2971 and Rao and Rao [1998: 3721. 

4.73a-c. Horn and Johnson [1985: 2931 and Rao and Bhimasankaram [2000: 
259; see the solution to exercise 151. 

4.73d. Since IIAxllzl = 11 - Axilv. 

4.73e. From sup(a + b) 5 sup a + sup b. 

4.73f. Follows from (d). 

4.73g. Rao and Bhimasankaram [2000: 259; see the solution to exercise 151. 

4.74a. Horn and Johnson [1985: 2941 and Rao and Rao [1998: 3701. 

4.74b. Rao and Rao [1998: 3711. 

4 .74~.  Horn and Johnson [1985: 2951 and Rao and Rao [1998: 368-3691, 

4.75. Bhatia [1997: 255-2561, 

4.76. Horn and Johnson [1985: 303-305, further results are given there in 
section 5.61. 

4.77. Gentle [2000: 731. 

4.78. Horn and Johnson [1985: 3061. 

4.79. Harville [1997: 4321. 

4.80. From the singular value decomposition of A, crf is the i th ordered 
eigenvalue of A A ”  and the trace is the sum of the eigenvalues. 

4.81. Rao and Rao [1998: 3901 

4.82. Since A’A is non-negative definite it has non-negative eigenvalues A, 
and trace(A*A) = C,X,. The result then follows from A,,, 5 C,A, 5 
nA,,,, and taking square roots. 

4.83. Gentle [1998]. 

4.6.3 Unitarily Invariant Norms 

Definition 4.17. A real-valued function 11 . I /  on the vector space V of m x n 
complex matrices is said to be a uni tar i ly  i nvar ian t  (generalized m a t r i x )  norm, 
and denoted by / I  . 1 1 u 2 ,  if it has the following properties. We shall drop the words 
“generalized matrix” below. 

(1) /\All 2 0 for all A E V and IlAll = 0 if and only if A = 0. 

(2) llaAl1 = lalllAl1 for every a E C and A E V .  
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(3) I(A + BII 5 llAl( + l(Bll for all A and B in V .  

(4) ((UAVII = IlAll for all A E V and unitary matrices U and V of orders m x m 
and n x n, respectively. 

Thus a generalized matrix norm, which satisfies the first three conditions, is uni- 
tarily invariant if it satisfies (4) as well. If m = n and I(ABI1 5 llAllllBll for all 
n x n matrices, then 11 . 1 1  is a matrix norm that we denote by 1 1 1 .  l l l u z .  

If V is the space of real matrices, then we use the term orthogonally znwamant 
norm. 

4.84. Let 11 . 
matrices. Then: 

be a unitarily invariant norm defined on V ,  the space of m x n 

(a) llAB*1IuZ I al(A)IIBIIuz for all A,B E V .  

IlAlluz 2 ~l(A)IIE1111uz for all A E V .  
(b) If Ell is the matrix with 1 in the (1,l) position and zeros elsewhere, then 

Here a1(A) is the maximum singular value of of A. 

4.85. A unitarily invariant norm 1 1 .  l l u z  on the space V of n x n matrices is a matrix 
norm if and only if IIAlluZ 2 a1(A) (= IIIAlI12,zn) for all A E V .  An equivalent 
condition from (4.84b) above is llElllluz 2 1. Note that Bhatia [1997: 911 uses the 
sufficient condition llElllluz = 1 in his definition of matrix norm, which leads to a 
slightly different norm. 

Definition 4.18. We define the term general square root of the m x n complex 
matrix A to be the unique non-negative definite matrix (A*A)’/2 (cf. 10.8), and 
denote it by IAl. 

4.86. Let A be an m x n matrix. Since (A*A)’I2 has the same singular values as 
A, which are the same as those of A* (cf. 16.34d), then from (4.87) below we have 

I I  IAl l l u z  = llA11uz 

for all unitarily invariant norms 

4.87. Let A = PEQ* be the singular value decomposition of an m x n matrix 
A, where X is diagonal and P and Q are unitary m x m and n x n matrices, 
respectively. Then 

IlAlluz = IIP*P~Q*QIIuz = lIXlluz> 

which is a function of the singular values of A. The nature of this function is 
discussed below. 

4.88. Let A be an m x n matrix. 

(a) The Frobenius norm IlAll~ = (ELl Cj”=, laij12)1/2 and IIA112,in = omaz 
(the maximum singular value of A) are both unitarily invariant generalized 
matrix norms. When m = n they are both unitarily invariant matrix norms. 

(b) I(AJ12,in is the only unitarily invariant norm that is also an induced norm. 
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Two other classes of unitarily invariant norms that seem to be of particular 
interest are the Ky Fan k-norms and the Schatten pnorms (Bhatia [1997: 921 and 
Horn and Johnson [1985: 441, 4451). 

4.89. Suppose A and B belong to the vector space V of m x n matrices and let 
p = min{m,n}. In order that llAllzLz 5 11B112n for every unitarily invariant norm 

1 1  . l lzLz on V ,  it is sufficient that 

a,(A) 5 a,(B) for all i = 1 , 2 , .  . . , p ,  

and it is necessary and sufficient that 

a1(A) + . . . + a,(A) 5 o ~ ( B )  + . . . + o,(B), i 1 1 , 2 , .  . . , p .  

We now introduce a function, called a symmetric gauge function, which is inti- 
mately related to the unitarily invariant matrix norm. In fact, IlAll is a unitarily 
invariant norm if and only it is a symmetric gauge function of the singular values 
of A (cf. (4.87) and (4.92)). 

Definition 4.19. A real-valued function 4 from R" to R is said to be a symmetric 
gauge function if it has the following properties. 

(1) 4(x) > 0 for all x E R" with x # 0. 

(2) q5(cyx) = Icyld(x) for all x E R" and cy E R. 

(3) 4(x + y) 5 d(x) + $(y) for all x and y in R" 

(4) 4(xT) = $(x) for all x E R" and all permutations x, of the elements of x. 

( 5 )  ~ ( J x )  = 4(x) for all x E R" and all diagonal matrices J with diagonal 
elements $1 or -1. This is equivalent t o  4(x) = 4(mod x), where mod x = 

(1x21). 

4.90. The following hold. 

(a) From (1) to (3) above, 4 is a vector norm on R". 

(b) A symmetric gauge function is continuous. 

(c) The sum of two symmetric gauge functions is a symmetric gauge function 

(d) A positive multiple of a symmetric guage function is a symmetric gauge func- 
tion. 

(e) The L, vector norm ( p  2 1) on R" is a symmetric gauge function. 

For some examples of symmetric gauge functions, their properties, and some in- 
equalities see Bhatia [1997: chapter 41. 

4.91. Let 4 be a symmetric gauge function, and let x = (xi) E R". 

(a) If y = (yi)  = (pixi), where 0 5 pi 5 1 for all i, then 

d ( Y l , . . . , Y n )  I4(x1 , . . . ,x71)  
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(b) If 0 5 xi 5 yi for all i, then 

n 

,xn) 5 k ( c  Izil), where k = 4(1,0,0, .  . . 
i= 1 

4.92. Let 1 1 .  ll,i be any unitarily invariant norm on the vector space V of m x n real 
matrices, and let p = min{m, n}. For each x = (xi) E R" let X,,, = diag(x) and 
~ ( z I , .  . . ,x,) = IIXll,i. Then 4 is a symmetric gauge function. Thus from (4.87), 
with X replacing X, we have that IIAll,i = d(al(A), .2(A), . . . , op(A)), where 4 is 
a symmetric gauge function and .i(A) is the i th  singular value of A. 

Conversely, if 4 is a symmetric gauge function on RP, then the function defined 

by 
IlAll = 4(.1(A),.Z(A), . . . ,.p(A)) 

is a unitarily invariant norm on V .  
Unitarily invariant norms and gauge functions have been found useful in multi- 

variate analysis in relation to monotone properties of power functions and simulta- 
neous confidence intervals (Mudholkar [1965, 19661 and Wijsmann [1979]). 

4.93. The n x n matrix A has the same singular values as A* so that by (4.86) 
above, IIAll,i = JIA*llui for all A and all unitarily invariant norms. Such a norm is 
called a self-adjoint norm. 

4.94. (Ky Fan) 
np 2 0 and CT; 2 oh 2 . . .  2 .; 2 0 are two sets of values, then 

If 4 is a symmetric gauge function on RP and CT~ 2 02 2 . . .  2 

$( .I , .  . . ,  .p) 2 4(.;,. . . ,.;I 
if and only if 

0 1  + .. .  +.z 2 0; +. . .  +.:, 2 = 1 ,2 , .  . . , p .  

Proofs. Section 4.6.3. 

4.84. Horn and Johnson [1991: 2061. 

4.85. Horn and Johnson [1985: 450; 1991: 211, exercise 31. 

4.87. Rao and Rao [1998: 3751. 

4.88a. Rao and Rao [1998: 3761. 

4.88b. Horn and Johnson [1985: 3081. 

4.89. Horn and Johnson [1985: 4471 and Rao [1980: 61. 

4.90. Rao and Rao [1998: 377-3781. 

4.91. Rao and Rao [1998: 377-3781. 

4.92. Horn and Johnson [1985: 438-441; 1991: 2101 and Rao and Rao [1998: 
378-3801, 

4.94. Fan [1951]. 
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4.6.4 M ,  N-Invariant Norms 

Definition 4.20. Let M be a given positive definite m x m matrix and N a given 
n x n positive definite matrix. A generalized matrix norm on the space V of m x n 
matrices is said to be an M,N-invariant norm if, in addition to conditions ( l) ,  (2),  
and ( 3 )  of Definition 4.17 in the previous section, it satisfies the following condition 

IJVAUI/ = IlAll for every A E V ,  

and any m. x m matrix V and any n x n matrix U such that V"MV = M and 
U*NU = N. This norm was introduced by Rao [1979,1980] to  deal with dimension- 
reducing techniques in multivariate analysis. When M and N are the identity 
matrices, the M ,  N-invariant norm becomes the unitarily invariant norm. 

4.95. Using the above notation, let M1/2, M-1/2 N'/2 and N-'/2 be the respec- 
tive positive definite square roots of M, M-l, "and N-l (cf. 10.32). Then the 
following hold. 

(a) If llAlla is a unitarily invariant norm of A, then llM1/2AN1/211a is an M ,  N-  
invariant norm of A. 

(b) If IlAllp is an M ,  N-invariant norm of A, then I(M-1/2AN-1/211p is a unitarily 
invariant norm of A. 

Proofs. Section 4.6.4. 

4.95. Rao and Rao [1998: 394-3951, They also give a number of matrix 
approximations based on the M ,  N-invariant norm. 

4.6.5 Computational Accuracy 

An important question in computing is: How do errors both in the da ta  and in 
the round-off affect the computation of expression-for example, the inverse of 
a nonsingular matrix? Suppose A is n x n and, instead of computing A-l,  we 
actually compute (A + dA)-'. Then, assuming that a particular matrix norm of 
the error IlbAll is small enough, Horn and Johnson [1985: 335-3381 show that if 
11bAlllJA-'(l < 1, then 

where &(A) = IJAIJIIA-l11. The above expression bounds the relative error in the 
inverse in terms of the relative error in the data. For lldAll small, the right-hand 
side of the above expression is of the order of K ( A ) ~ ~ ~ A ~ ~ / ~ ~ A / ~ .  Therefore if &(A) is 
not large, the relative error in the inverse is of the same order as the relative error 
of the data. 

One can obtain a similar result in computing an eigenvalue. For example, if 
i is an eigenvalue of A + bA, where A is diagonalizable (e.g., symmetric) with 
A = RAR-l and A = diag(A1,. . . , A n ) ,  then there is some eigenvalue X i  of A such 
that, for an appropriate matrix norm, 

I i  - Ail 5 llRllllR-lllll~All = K(R)IIbAtI. 
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Horn and Johnson [1985: section 6.31 derive a number of perturbation results like 
the one above for different properties of A and 6A. 

Finally, we look at a corresponding result in relation to solving linear equations. 
For example, consider 

Duff et al. [1986: 89-90] show that if 116AllIIA-111 < 1, then 

(A + 6A)(x + 6x) = b + 6b. 

In introducing K(A) in the above discussion, we have not specified the norm 
I (  . 1 1 .  Furthermore, in deriving the above expression it transpires that we only 
require the norm to be an induced one. Also, the definition of K(A) used above is 
only appropriate for nonsingular matrices. By choosing an appropriate norm, we 
now generalize the definition to include nonsingular and rectangular matrices. 

Definition 4.21. The condition number of an m x n real matrix A, denoted by 
4 A ) ,  is the ratio of the largest singular value to the smallest nonzero singular 
value. Thus, 

1/2 

tc2(A)= (h) 
Amin 

where A,,, is the largest and Amin is the smallest nonzero eigenvalue of A'A. 
Unfortunately, this condition number is not easy to compute, and for further details 
see Gentle [1998: 115-1161. 

4.96. When A is positive definite, its eigenvalues are positive, A'A = A', and 

The same is true for a Hermitian positive definite A, as we replace A'A by A*A. 
Some bounds on 6 2  are given in (6.21b). 

4.97. If A is nonsingular, then 

K.2(-4) = IIIAlll2,in . IIIA-11112,in> 

where 1 1 1  . 1112,in is the induced matrix norm corresponding to  the L2 vector norm 
(cf. 4.74b). 

We can also define K ~ ( A )  and nm(A) corrresponding to the L1 and L ,  norms. 

4.98. If v = 1,2,  or cm, then: 

(a) K,(A) = K ~ ( A - ' ) .  

(b) K,(cA) = fiv(A) for c # 0. 

(c) nv(A) L 1. 

(d) &i(A) = K ~ ( A )  

(el K2(A) = K.Z(A'). 

(f)  K~(A'A)  = KZ(A) 2 Q(A). 

Proofs. Section 4.6.5. 

4.98. Gentle [2000: 781. 



CHAPTER 5 

COMPLEX, HERMITIAN, AND RELATED 
M AT R I C E S 

Although complex matrices have been refered to in previous chapters, it seems ap- 
propriate to have a chapter that looks more closely at  complex matrices. Complex 
matrices arise, for example, in time series and the related topic of signal process- 
ing, and in experimenal designs. We shall initially list some general properties 
of complex matrices before looking at Hermitian matrices. The related matrices 
that are considered are the skew-Hermitian, complex symmetric, real symmetric, 
skew-symmetric, complex orthogonal, and normal matrices. Factorizations and 
decompositions for these matrices are given in Chapter 16, while results about 
eigenvalues and eigenvectors for these matrices are located in Chapter 6. Unitary 
and real orthogonal matrices are considered in greater detail in Section 8.1, and 
Fourier matrices are covered in Section 8.12.2. At the end of this chapter we briefly 
consider quaternions, which are used, for example, in nuclear physics. 

5.1 COMPLEX MATRICES 

Definition 5.1. Given a complex number x = x1 +ixz, where x1 and x2 are both 
real, then its complex conjugate is defined to be ?E = x1 - 2x2, and its modulus or 
absolute value is defined to be 1x1, where 1x1 = (x: + x ; ) ~ / ~ .  If A is complex, it can 
be expressed in the form A = A1 + iA2, where A1 and A2 are real matrices, and 
its complex conjugate is = A1 - iA2. We also define the conjugate transpose of 
A to be A* = A’. 

A M a t n x  Handbook for Statisticzans. By George A.  F. Seber 
Copyright @ 2008 John Wiley & Sons, Inc. 
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Definition 5.2. An n x n matrix A is said to  be a Hermitian matrix if A* = A 
and skew-Hermitian (anti-Hermitian) if A = -A”. 

A real or complex matrix A is symmetric if A = A’. 
A complex orthogonal n x n matrix T is a complex matrix such that T’T = I,. 

An n x n matrix U is called a unitary matrix if U*U = I,. 
We omit the word “complex” if T is real. 

5.1.1 Some General Results 

5.1. For complex scalars 3: and y we have: 

(4 l ZY l  = b l l Y I .  
(b) I2 + YI 5 I4 + IYI. 

(c) /x i2 + IyI2 2 2Re(xjj), where Re is the “real part.” 

5.2. A complex orthogonal matrix T need not be unitary. 

5.3. (Isomorphism Between Complex and Real Matrices) Let Z = Z1+ iZ2 be an 
n x n complex matrix with Z, (i = 1,2)  real matrices. Let 

Z R = (  ;; -;$ 
and define XR and YR in a similar fashion. 

(a) If Z = X + Y, then ZR = XR + YR. 

(b) If Z = XY, then ZR = X R Y R .  

(c) If W = Z - l ,  then W R  = (ZR)-’ .  

(d) det ZR = I det Z12. 

(e) If Z is Hermitian, then ZR is symmetric. 

( f )  If Z is unitary, then ZR is orthogonal. 

(g) Suppose the eigenvalues and eigenvectors of Z are A, and aj = a13 + i a 2 j ,  

j = 1 , 2 , .  . . , n, where the a,, are real for r = 1,2 ,  and all j. Then those of 
zR are, respectively, 

This result could be useful for carrying out numerical computations involving 
complex matrices. 

5.4. Let x = ( ~ 1 ~ x 2 , .  . . ,zn)’ be a complex vector with I Cy=l zil = C,”=, 1x21. 
Then zi = 6’lx21, i = 1 , 2 , .  . . ,n,  for some complex number 6’ satisfying 16’1 = 1. 

5.5. If A is a square complex matrix and x*Ax = 0 for all complex x, then A = 0. 
Thus if x*Ax = x*Bx for all complex x, then A = B. However, these results do 
not necessarily hold if the matrices are real and the equalities hold for all real x. 
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5.6. If A is an n x n real or complex matrix, then there exists a nonsingular matrix 
S such that SAS-’ is symmetric. There also exists a nonsingular matrix R such 
that A’ = RAR-’  

5.7. Let A be an n x n real or complex matrix. Then every product of n entries of 
A taken from distinct rows and columns equals 0 (i.e., a l z , ,  a222 . . . anz, = 0), with 
distinct i,, if and only if A contains an T x s zero submatrix, where T + s = n + 1. 

5.8. Let A = (az,) be an n x n real or complex matrix with eigenvalues A, (i = 
1 ,2 , .  . . , n ) ,  then 

n n  

~ I X Z l 2  5 Fy)Z312. 
2 = 1  z=1 ,=1 

Equality occurs if and only if A is normal (cf. Section 5.6). 

Proofs. Section 5.1.1. 

5.1. Abadir and Magnus [2005: 121. 

5.2. For a 2 x 2 counterexample see Horn and Johnson [1985: 71, exercise 81. 

5.3. Quoted by Brillinger [1975: 711 with a corrected sign change. All the 
results except (c) and (d) can be verified directly, while (c) amounts to showing 
that if WZ = I then WRZR = I; (d) follows from (5.10). 

5.4. Bapat arid Raghavan [1997: 191. 

5.5. Davis [1979: 61-62]. For a counter example see (5.25). 

5.6. Horn and Johnson [1985: 209-2101 

5.7. Zliang [1999: 126-1271 

5.8. Zhang [1999: 2601 

5.1.2 Determinants 

5.9. Let A = A1 +iA2, where A1 and A2 are real n x n matrices. If det A = a+ib 
and I . I represents the modulus, then: 

(a) det A = a - ib. 

(b) det A’ = det A. 

det AI2 = I det XI2 = a2 + b2 = I det A det XI = det A det A. 

de tAde tAl  = IdetAdetA’l = Idet(AA’)l = Idet(AA*)I. 

Let 

A = A l  + i A 2 ,  B = ( ) and C =  
-A2 A1 
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where A1 and A2 are real matrices. Then, for det A l  # 0, 

det B = det C and I det A1 = I det BI1/’ = 1 det C1’/’. 

Proofs. Section 5.1.2. 

5.9. The results (a)-(c) follow from the definition and the product rule for 
determinants, and (d) follows from the expansion of a determinant. 

5.10. Mathai [1997: 171-1721. 

5.2 HERMIT IAN MATRICES 

5.11. An n x n matrix A is Hermitian if and only if one (and therefore all) of the 
following five conditions hold. 

(1) x*Ax  is real for all x E C”. 

(2) A2  = A’A. 

(3) trace(A2) = trace(A*A). 

(4) A is normal and all the eigenvalues of A are real 

( 5 )  S*AS is Hermitian for all n x n S. 

5.12. Suppose A is an n x n Hermitian matrix. Then the following hold. 

(a) A k  is Hermitian for k = I, 2 , .  . .. 

(b) i A  is skew-Hermitian. 

(c) If A is nonsingular, then A-l  is Hermitian 

(d) The diagonal elements of A are real. 

(e) The eigenvalues of A are real (see Section 6.1.6 for further details). 

5.13. Let A be an n x n matrix. 

(a) A can be expressed uniquely in the form A = S + iT, where S and T are 
Hermitian. 

(b) A can be expressed uniquely in the form A = B + C ,  where B is Hermitian 
and C is skew-Hermitian. 

5.14. (Complex Householder Matrix) If A = I, - 2bb*,  where b is a complex 
n x 1 vector such that b*b = 1, then A is Hermitian, unitary (i.e., A * A  = In), 
and involutionary (i.e., A’ = I,). 

5.15. (Trace) If A is n x n, then: 

(a) trace(AX) = 0 for all Hermitian matrices X if and only if A = 0. 

(b) trace(AX) is real for all Hermitian X if and only if A is Hermitian. 
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5.16. A square matrix A is a product of two Hermitian matrices if and only if it 
is similar to A*. 

Proofs. Section 5.2. 

5.11. Zhang [1999: 2091 proves (1)-(3), while Horn and Johnson [1985: 170- 
1711 prove (l),  (4), and (5). 

5.12. Horn and Johnson [1985: 169-1701. 

5.13a. Horn and Johnson [1985: 1701. We set A = $(A+A*)+i[-$(A-A')], 
and assume two such representations. 

5.13b. Set A = ;(A + A*) + ;(A - A*). 

5.15. Rao and Rao [1998: 3421. 

5.16. Zhang [1999: 2151. 

5.3 SKEW-HERMITIAN MATRICES 

5.17. A - A* is skew-Hermitian for all square matrices A. 

5.18. Let A be skew-Hermitian. 

(a) iA is Hermitian. 

(b) The diagonal elements of A are all purely imaginary. 

(c) Since the eigenvalues of an Hermitian matrix are real, the eigenvalues of A 
(and therefore of a real skew-symmetric matrix) are purely imaginary or zero. 

(d) (I, + A) is nonsingular 

5.19. Suppose A is a skew-Hermitian n x n matrix. Then, using (5.18d) above, we 
have: 

(a) U = (I, - A)(I, +A)- '  = (I, +A)- '& - A) is unitary as U*U = I,. 

This follows from (I, - A)(I, + A) = (I, + A)(I, - A). 

(b) U = [2I, - (I, + A ) ] &  +A)- ' .  

(c) From (a) we see that I, - A and (I, + A)-' commute. 

(d) I, + U is nonsingular because, by (b), it equals 2(I, + A)-1. 

(e) The matrices U and A are in (1, 1)-correspondence on account of the pair of 
equations 

U = 2(I,+A)-' -I,, 

A = 2(I, +U)-l  -I,. 

Thus A is skew-Hermitian if and only if U is unitary. 
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( f )  These results hold if A is (real) skew-symmetric and U is real orthogonal. 

Apparently the above results were first applied to  statistics by Hsu [1953]. 

Proofs. Section 5.3. 

5.18a. (iA)* =;A* = ( - i ) ( -A)  = ZA. 

5.18b. Use (a) and (5.12d). 

5 .18~.  Use (5.12e) 

5.18d. The determinant of a matrix is the product of its eigenvalues. Also, 
X(1, + A) = 1 + X(A) = 1 + i a  # 0, as from (c) a is real or zero. 

5.4 COMPLEX SYMMETRIC MATRICES 

Although real symmetric matrices play a fundamental role in statistics, we shall first 
consider some results that hold for both real and complex symmetric matrices. Note 
that real symmetric matrices are also Hermitian (Section 5.2), normal (Section 5.6), 
and diagonalizable (Section 16.1), so that the results in those sections also apply 
to symmetric matrices. 

5.20. We assume that A is an n x n real or complex matrix. 

(a) A is symmetric if and only if there exists an n x  n matrix S such that A = SS'. 

We may choose S = UD, where U is unitary, 

D = d iag ( f i ,  6,. . . , Jan), 
and the LT~ are the singular values of A, in which case 

rank S = rank A. 

(b) If A is symmetric, then A is diagonalizable (cf. Definition 16.3) if and only 
if it is complex orthogonally diagonalizable. Thus A = SAS-' for a diagonal 
matrix A of eigenvalues of A (cf. 16.17a) if and only if A = QAQ', where Q 
is an n x n complex orthogonal matrix (i.e., Q'Q = In). 

5.21. If A and B are real or complex symmetric n x n matrices, then there exists 
a nonsingular n x n matrix R such that A = RBR' if and only if rank A = rank B. 

5.22. By considering a 2 x 2 matrix, we see that the eigenvalues values of a complex 
symmetric matrix are not necessarily real. 

Proofs. Section 5.4. 

5.20a. Horn and Johnson [1985: 2071. 

5.20b. Horn and Johnson [1985: 211-2121. 

5.21. Horn and Johnson [1985: 2251 

5.22. For a counterexample, Abadir and Magnus [2005: 1751 consider 

which has eigenvalues 1 f i .  
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5.5 REAL SKEW-SYMMETRIC MATRICES 

Definition 5.3. A matrix A is said to be skew-symmetric if A’ = -A. Note that 
a complex matrix like 

where a is complex, is skew-symmetric. However, my focus is on real matrices as 
they are a special case of skew-Hermitian matrices; some of the properties in Section 
5.3 will then apply for real matrices. For a factorization of a real skew-symmetric 
matrix see (16.46b(ii)). 

5.23. The diagonal elements of a real skew-symmetric matrix are all zero. 

5.24. Let A be an n x n real skew-symmetric matrix. 

(a) From (5.18c), the eigenvalues X,(A) of A are zero or purely imaginary and 
occur in conjugate pairs, as the characteristic polynomial has real coefficients. 
Hence the eigenvalues take the form *ia, with a, real (i = 1 ,2 , .  . . , p ) ,  along 
with (n  - 2p) zeros. Thus: 

( i )  If n is odd, det(A) = 0. 

(ii) If n is even, det(A) 2 0. 

(iii) det(1, + A )  = n:==,(l + &(A))  2 1 with equality if and only if A = 0. 

(b) Let 71 = 2m, then det(A) is the square of a polynomial of degree m in the 
matrix entries ( e g ,  (4.45)). The polynomial is called the p f a f i a n  of A and 
is denoted by Pf(A).  There are two ways of defining a pfaffian and a helpful 
resource is http://en.wikipedia.org/wiki/Pfaffian. We have: 

(i) det(A) = [Pf(A)]’. 

(ii) Pf(BAB’) = det(B)Pf(A).  

(iii) Pf(cA) = cmPf(A). 

(iv) Pf(A’) = (-l)’”Pf(A). 

(v) For an arbitrary m x m matrix C ,  

Pf ( ) = (-l)m(m-1)/2det(C).  
-C’ 0 

For further references see Halton [1966b], Mehta [2004: 543-545, examples of 
computation] and Northcott [1984]. 

5.25. Let A be a real square matrix and x a real vector, then x’Ax = 0 for all x 
if and only if A is skew-symmetric. 

Proofs. Section 5.5. 

5.23. Follows from (5.18b) 

5.24a(i). The determinant of a matrix is the product of its eigenvalues. 

5.24a(ii). ( ia) ( - ia)  = a’, where a may be zero. 
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5.6 

5.24a(iii). Use (5.18d) and (1 + ia)(l  - ia) = 1 + a2. 

5.24b. Quoted in http://en.wikipedia.org/wiki/Pfaffian. Depending on the 
definition used, several proofs are available for (i) (originally due to  Cay- 
ley); for example, Parameswaran [1954], Dress and Wenzel [1995], and Halton 
[1966a]. Serre [2002: 22-23] proves (ii). 

5.25. Davis [1979: 60-611. 

NORMAL MATRICES 

Definition 5.4. A square matrix A is said to  be normal if AA* = A'A. Note 
that Hermitian, skew-Hermitian, and unitary matrices are all normal, as are their 
real counterparts. 

5.26. An n x n matrix A with eigenvalues XI, A 2 , .  . . . , A, is normal if and only if 
there exists a unitary matrix Q such that 

Q*AQ = diag(Xl,A2, . ..,A,). 

We say that A is unitarily diagonalizable. Note that this applies to Hermitian and 
unitary matrices (see also (16.46)). 

5.27. If A is a commuting family of n x n normal matrices (i.e., AlA:! = A2Al for 
all A l ,  A2 E A), then every member of A is unitarily diagonalizable by the same 
unitary matrix. 

5.28. In addition to being unitarily diagonalizable, normal matrices have many 
unique properties, some of which are listed below. The following statements are 
equivalent. 

(1) A is normal. 

(2) There exists a polynomial p ( z )  of degree at  most n - 1 such that A* = p(A). 

(3) The singular values of A are lAl(A)I, IA2(A)I,.. . , lA,(A)l. 

(4) A = R + i s ,  where R and S are real, symmetric, and commute (i.e., RS = 

SR). 

(5) Every eigenvector of A is an eigenvector of A* 

(6) There exists a set of eigenvectors of A that form an orthonormal basis for C". 

(7) ci cj la2A2 = ci lAi(A)I2. 

5.29. If A is normal and p ( z )  is a polynomial, then p(A) is normal. 

5.30. An upper-triangular matrix is normal if and only if it is diagonal. 

5.31. A normal matrix is unitary if and only if its eigenvalues have absolute value 
1. 
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5.32. If A and B are normal, then so is their Kronecker product A @ B. 

5.33. If A and B are n x n normal matrices and AB = BA, then AB is normal. 

5.34. A normal matrix is Hermitian if and only if its eigenvalues are real, and it is 
skew-Hermitian if and only if its eigenvalues have zero real part. 

Proofs. Section 5.6. 

5.26. Horn and Johnson [1985: section 2.51 and Zhang [1999: 65-66]. 

5.27. Horn and Johnson [1985: 1031. 

5.28. For these and further properties see Horn and Johnson [1985: 100-1111 
and Zhang [1999: 241-2421, 

5.29. Horn and Johnson [1985: 110, exercise 171 and Marcus and Minc [1964: 
711. 

5.30. Rao and Bhimasankaram [ZOOO: 3131. 

5.31. From (5.26), I = AA* = UAU*UnU* = UAnU* and AX = I. 

5.32. From (ll.lf), 

(A @ B)*(A @ B) = (A* @ B*)(A @ B) = A*A @ B*B = AA' @ BB*, 

which, by reversing the argument, is (A @ B)(A @ B)*. 

5.33. Using (5.27), we have A = UA*U*, B = UABU*, and AB = 
UA~A,U* = UAU*. Then AB(AB)* = UAKU* = UKAU* = (AB)*AB. 
Also A = -A* if and only if A = -x. 
5.34. If A = UAU*, then A = A* if and only if A = n. 

5.7 QUATERNIONS 

Definition 5.5. Just as a complex number has two components, a quaternion 
number has four components 

say, q = q ( O )  + q (1) el + q(2)e2 + q(3)e3 = qo + q . e ,  

where the ei are quantities (not ordinary numbers) satisfying the symbolic rules 
, 2 -  2 -  2 -  - e2 - e3 - -1, e1e2 = -e2e1 = e3, e2e3 = -e3e2 = e l ,  and e3e1 = -e1e3 = e2, 
where "1" is a particular unit identity. This 1 and the ei can be expressed as the 
matrices C(l)  = 12,  and the so-called Pauli matrices 

where i = &f. Then 
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is a matrix representation of the quaternion q. For any 2 x 2 complex matrix we 
have 

Thus q ( O )  = $ ( a  + d ) ,  q(’ )  = ; (a  - d ) ,  and so on. 
The q( i )  can be real or complex. If they are all real, then we call the quaternion 

real, though C ( q )  isn’t necessarily real. The notation for quaternions is a little dif- 
ferent from the usual for complex numbers. For example, the conjugate quaternion 
of a complex quaternion q = q ( O )  + q . e is 

q.e, q = q(o)  - 

which is different from its complex conjugate quaternion 

q* = q ( O ) *  + q* . e .  

A quaternion with q* = q is real. Applying both types of conjugation together, we 
obtain the Hermitian conjugate 

qt  = q* = q(0 )*  - g* . e.  

When qt = q,  q is called a Hermitian quaternion, and it can be shown directly after 
some algebra that C ( q )  is a 2 x 2 Hermitian matrix. If qt = -q, then it is called an 
anti-Hermitian quaternion and the corresponding matrix C ( q )  is skew-Hermitian. 
For further information about quaternions see Carmeli [1983: chapters 8 and 91, 
Kantor and Solodovnikov [1989], Mehta [2004: 391, and, particularly, Zhang [1997]; 
for a geometrical perspective see Hanson [2006]. 

Since any 2 n  x 2 n  complex matrix Q can be expressed in terms of n2 blocks 
of 2 x 2 matrices, we can write Q = ( q i j )  for i , j  = 1 , 2 , .  . . , n, where qi3 is a 
quaternion with matrix representation C(qz j ) .  We call Q an n x n quaternion 
matrix. Using quaternion arithmetic, we can define certain matrix properties for 
quaternion matrices, namely transposition 

( Q ’ ) . .  - - - 
23 - e24jie2, 

Hermitian conjugation 
t 

(Qt)ij = q j z ,  

and dual 
(QR) .  . - e2(Q’). . -l  = 4.. 

If Q = QR, the matrix is said to be self-dual. For further matrix details see Mehta 
[ 19891. 

5.35. Let Q be a quaternion matrix. Then: 

21 - 23 e2 3 2 .  

(a) QR = Qt is necessary and sufficient for the elements of Q to be real quater- 
nions. When this holds we call such a matrix quaternion real. 

(b) If Q is both Hermitian and self-dual, then it is also quaternion real. Further- 
more, since qt .  = ijij = q j i  for all i , j ,  the 2 x 2 corresponding matrix q/30) 

23 
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must form a real symmetric matrix, whereas &), qj;), and q(3) must lead 
to real skew-symmetric matrices. Self-dual Hermitian quaternion matrices 
have an important role in nuclear physics and are related to random matrices 
(cf. Section 21.10). The corresponding 2n x 2n Hermitian matrix is called a 
self-dual Hermitian matrix. 

Definition 5.6. Let Z 1  = C(e2) @I, = ( _”,, ), a 2n x 2n matrix, where 

“8” is the Kronecker product. A real 2n x 2n matrix A is said to be Hamiltonian 
if (ZlA)’ = Z1A. Note that Z1 is skew-symmetric. Hamiltonian matrices are used 
in classical mechanics for the study of Hamiltonian dynamical systems. 

5.36. [C(e2)]-’ = [C(ez)]’ = -C(e2). Also C(e2)’ = -12. 

5.37. Z; = C(e2)’ @ I, = -12 8 I, = -12, and Z;’ = -Z1 = Zi  

5.38. Let A be an a 2n x 2n Hamiltonian matrix. Then: 

”. 

(a) Since Z1A is symmetric, Z1A+ A’Z1 = 0 and, by (5.37), A = -Z,’A’Z1 = 
Z1A‘ZI. 

(b) A’ is Hamiltonian. 

(c) traceA = 0. 

5.39. Let 
C D  

. = ( E  F ) ’  

where all matrices are n x n, D and E are symmetric, and C + F’ = 0. Then A is 
Hamiltonian. 

Definition 5.7. A real or complex 2n x 2n matrix B is said to be symplectic if 
B’ZB = Z, where Z is a nonsingular, skew-symmetric matrix. Typically, Z = Z1, 

as defined above, or Z = Z2, where 

0 1  0 0 0 ’ ”  0 0  
-1 0 0 0 0 “ ’  0 0 

2 2  = I, @ C(e2) = 

0 0 0 0 0 . ’ .  -1 0 

a matrix used in nuclear physics. In this case, Z2 can expressed as an n x n 
quaternion matrix e21, (Mehta [2004: 38-41]). 

5.40. 2 2  has the same properties as Z1 in (5.37). 

5.41. If B is symplectic, then (i)  B-’ = Z-lB’Z and (ii) det(B) = 1 

5.42. The matrix Zi ( i  = 1,2) is symplectic. 

5.43. Let H be any quaternion real 2n x 2n matrix. Then there exist a symplectic 
matrix B such that H = B-lDB, where D is a real, scalar, and diagonal matrix. 
Here scalar means that D = diag(d1, dl ,  dz, dz, . . . , d,, d,) so that the eigenvalues 
of H consist of equal pairs. For further extensions see Carmeli [1983: 70-711. 
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Proofs. Section 5.7. 

5.36-5.37. These are straightforward; we use ( l l . l e ) ,  ( l l . l i ) ,  and (11.11). 

5.3813. Taking transposes in (a) and using (5.37), we have A' = Z1AZ1. 

5 .38~ .  Using (a), traceA = - trace(ZT'A'Z1) = -trace A' = -trace A. 

5.39. Show that Z1A is symmetric. 

5.40. Zg = I, 8 C ( ~ Z ) ~  = -I, 8 12 = -12,. 

5.41. The result (i) follows from the definition by multiplying on the left by 
Z-' and on the right by B-', and (ii) follows from (5.24b(ii)). 

5.42. (ZiZi)Zi = (Zi'Zi)Zi = Zi. 

5.43. Carmeli [1983: 701. 



CHAPTER 6 

EIGENVALUES, EIGENVECTORS, AND 
SINGULAR VALUES 

Eigenvalues, eigenvectors, and singular values play an important role in statistics, 
and they arise in most of the chapters in this book. In this chapter we deal with 
these topics in a general sense. They also occur in a number of important inequal- 
ities in this chapter, in Chapter 14, and in Chapter 23 on majorization, and they 
underlie many of the factorizations and decompositions in Chapter 16. For those 
relating to specific matrices and some patterned matrices, the reader will need to 
refer to the index for those matrices. This chapter closes with a a brief introduction 
to antieigenvalues and antieigenvectors, which are becoming of increasing interest 
to statisticians in recent years. 

6.1 INTRODUCTION AND DEFINITIONS 

Definition 6.1. Let A be an n x n matrix, which we assume to have elements in 
F (i.e., either R or @, unless otherwise stated). The polynomial c(X) = det(A - 
XI,) is called the characteristic polynomial. The equation c(X) = 0 is called the 
characteristic equation, and its roots are called the eigenvalues (characteristic roots, 
latent roots) of A. Many authors use f ( X )  = det(X1, - A) = (-l),det(A - XI,) 
for the characteristic polynomial, as the coefficient of A" is now 1. This alternative 
version is sometimes more convenient, so both c(.)  and f( .)  are used below. 

Eigenvalues may be real, complex, or a mixture of both. We shall order the 
eigenvalues by their modulus values, i.e., 1x11 2 lXzl  2 . . .  2 IX,I 2 0. If XI is 
unique, we shall call it the dominant eigenvalue. In this case there exists a unique 

A M a t n x  Handbook for Statistacians. By George A. F. Seber 
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right eigenvector XI  of unit length such that Ax1 = Alxl, called the dominant  
eigenvector. 

The s distinct eigenvalues are denoted by p1, p2,.  . . , ps (or p j (A) ,  j = 1,2 ,  . . . , s), 
where > Ipzl > . . .  > /psi 2 0. The set of pj is called the spectrum of 
A ,  and p(A) = l p l /  = / A l l  is called the spectral radius. We can therefore write 
f (A )  = nj=l(A - p ~ j ) ~ ~ ,  where C& mj = n. Here mj [or m ( p j ) ]  is called the al- 
gebraic multiplicity of the eigenvalue pu,. If mj = l ,  pj is called a simple eigenvalue, 
while if rnj > 1, pj is called a multiple eigenvalue. 

For every pj there exists a nonzero solution x such that Ax = pjx, and x is 
called an eigenvector associated with p j .  The set of all such x together with 0, 
namely N ( A  - pjI,) the null space of A - pjITL, is called the eigenspace of p j .  The 
dimension gj [or g(pu,)] of this space is called the geometric multiplicity of p j .  To 
avoid ambiguity, we shall refer t o  such an x as a right eigenvector. There similarly 
exists a nonzero y such that y'A = pjy' called the left eigenvector of A associated 
with pu,. 

If rn(pj) = g ( p j ) ,  then p3 is said to be a semisimple eigenvalue. 

6.1. (Multiplicities). Let A be an n x n matrix. 

(a) g ( p j )  5 m ( p j ) ;  that is, the geometric multiplicity is no greater than the 
algebraic multiplicity. 

(b) rank(A - pjI,) = n - g ( p j )  2 n - m ( p j )  for all j .  

(c) If m ( p j )  = 1 so that p j  is a simple eigenvalue, then g ( p j )  = 1 and rank(A - 
pjIn) = n-1. Conversely, if rank(A-p,I,) = n- 1, then pL3 is an eigenvalue, 
but not necessarily a simple eigenvalue. 

Proofs. Section 6.1 

6.la. Schott [2005: 891 and Rao and Bhimasankaram [2000: 2861 

6.lb. From (3.3a), dimC(B)+dimN(B) = n for B = A-pjI,, as dimC(A*) = 
rankA' = rankA = dimC(A). 

6 . 1 ~ .  Magnus and Neudecker [1999: 201. 

6.1.1 Characteristic Polynomial 

Definition 6.2. (Symmetric Functions) Given a set of constants XI,. . . , A n ,  we 
define the elementary symmetric  funct ions as 

n 
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Also, let .(A) = (- l )"(An + a1Xn-' + . . .  + a,-lX +a,)  = ( - l ) " f ( X )  be the 
characteristic polynomial. 

6.2. If the characteristic polynomial has real coefficients, then any complex eigen- 
values must come in conjugate pairs. 

6.3. (Cayley-Hamilton theorem) f (A) = 0 

6.4. The coefficient a, ( r  = 1 , 2 , .  . . , n)  is (-1)' times the sum of all the r x r 
principal minors of A. These are obtained by striking out n - r rows and the same 
numbered columns of A and taking the determinant of the remaining submatrix. 

(a) a,  = (-l)'S, ( r  = 1 ,2 , .  . . ,n )  with a, = (-1)" det A. 

(b) From (a), S, is the sum of all the r x r principal minors of A. 

(c) If t ,  = X;+X;+. . .+A; for r = 1 ,2 , .  . . ,n  and we define 0 = a,+l = an+2 = 
. . ., then t ,+t,-lal+. . .+tla,-l +m, = 0 ( r  = 1 ,2 , .  . .). These expressions 
for the a ,  are known as Newton's identities (Hunter [1983a: 156-1571). 

6.5. If A is n x n, and p is not an eigenvalue of A, then A - p1, is nonsingular as 
its determinant is nonzero. 

6.6. If A, B, and R are n x n matrices, and B = RAR-' (i.e, A and B are 
similar), then A and B have the same characteristic polynomial. Note that having 
the same eigenvalues is a necesssary but not sufficient condition for similarity. 

6.7. If A and B are real n x n matrices, then the eigenvalues of 

A B  
' = ( B  A )  

are those of A + B and A - B. 

Definition 6.3. I f f  is a polynomial such that f (A) = 0, we say that f annihilates 
A. A polynomial is said to be monic if the coefficient of the highest power is unity. 

6.8. If A is n x n, there exists a unique monic polynomial of minimum degree no 
greater than n that annihilates A. 

Definition 6.4. The monic polynomial q ( X )  of the least degree that annihilates 
A is called the minimal polynomial. 

6.9. Every monic polynomial is both the minimal polynomial and the characteristic 
polynomial ( f  (A) version) of its companion matrix (cf. 6.14). 

6.10. The minimal polynomial divides every polynomial that annihilates A. It 
therefore divides the characteristic polynomial f (A) (by 6.3). 

6.11. If q ( X )  is the minimal polynomial of A, then X is a root q(X)  = 0 if and only 
if it is an eigenvalue of A. Thus every root of the characteristic equation is a root 
of q ( A )  = 0. 

6.12. If A, B, and R are n x n matrices, then A and the similar matrix B = 
RAR-' have the same minimal polynomial. 
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6.13. Let A be an n x n matrix, and let Ak be the first matrix for which the set 
{In, A, A 2 , .  . . , A t }  is linearly independent, that is, Ak = C::; a , A Z .  Then the 

minimum polynomial of A is xk - 

6.14. (Companion Matrix) 
. . . + alx + ao. The matrix 

a,x~. 

Consider the polynomial pn(x) = xn + an-lxn-l + 

0 0 . . .  0 0 -a0 

A =  [ !  0 : : :  0 0 -ul 1 
0 0 ” .  0 1 -an-2 
0 0 . ’ .  0 1 -an-l 

is called the companion matrix of the polynomial p ,  (Golub and Van Loan [1996: 
3481 and Horn and Johnson [1985: 1461). However, variations on the above matrix 
are also called the companion matrix, such as the transpose of A (e.g., Abadir 
and Magnus [2005: 173-1741 and Rao and Bhimasankaram [2000: 283, solution to 
exercise 31). Some authors take the transpose, then move the bottom row to the 
top and shift the other rows down one. 

If A is defined above, then: 

(a) det(z1, - A) = det(x1, - A’) = p,(x). 

(b) pn(x) is also the minimal polynomial of A. 

A version of the companion matrix can be used to find various upper and lower 
bounds on the roots of fn(X) = 0, as in Horn and Johnson [1985: 316-3201. Bosh- 
nakov [2002] extends the above concept to multi-companion matrices. 

Proofs. Section 6.1.1 

6.2. Abadir and Magnus [2005: 1641. 

6.3. Meyer [2000a: 509, 532-5331 and Rao and Bhimasankaram [2000: 2921. 

6.4a. Basilevsky [1983:192], Horn and Johnson [1985: 41-42], and Searle 
[1982: 2781. 

6.4b. Horn and Johnson [1985: 421. 

6 . 4 ~ .  Hunter [1983a: 156-1571. 

6.6. Horn and Johnson [1985: 451. 

6.7. Let (A + B)u = X u  and (A - B)v = pv. Then C has eigenvectors 
(u’, u’)’ and (v’, -v’)’. 

6.8. Horn and Johnson [1985: 1421 and Rao and Bhimasankaram [2000: 2931. 

6.9. Horn and Johnson [1985: 1471. 

6.10. Horn and Johnson [1985: 142-1431 and Rao and Bhimasankaram [2000: 
2931. 

6.11. Horn and Johnson [1985: 1431. 
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6.12. Horn and Johnson [1985: 1431 and Rao and Bhimasankaram [2000: 
2951. 

6.13. Meyer [2000a: 6431. 

6.14. Meyer [2000a: 6481. 

6.1.2 Eigenvalues 

We asume  that A is n x n, 

6.15. For every j, and A real or complex: 

(a) &(A') = Aj(A). 

(b) Xj(A) = Xj(A). 

( c )  Xj(A*) = X,.(A). 

(d) Xj(K-'AK) = Xj(A) for all j. 

6.16. If A has r nonzero eigenvalues, then: 

(a) rankA 2 r 

(b) It is possible to have r = 0, but have rankA = n - 1. 

6.17. We have the following: 

(a) If k is a positive integer, then 

n 

trace = C 
i=l 

(b) Taking k = 1, traceA = Cy=l Xi.  

(c) det(A) = ny=l X i .  

6.18. A is nonsingular if and only if Aj(A) # 0 for all j (cf. 6 .17~) .  

6.19. If A is triangular, then, since the determinant of the upper-triangular matrix 
A - XI, is the product of its diagonal elements, the eigenvalues are the diagonal 
elements of A.  

6.20. If A, = 0 is the only zero eigenvalue, then 

n-1 

trace(adjA) = rl[ Xi, 
i = l  

where adjA is the adjoint matrix of A. 
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6.21. (Bounds Using Traces) Let A be an n x n real or complex matrix with real 
eigenvalues X i ;  for example, A is Hermitian or symmetric. Define 

1 "  1 
m = - x & = - t r a c e A  n n 

i = l  

and 
1 "  1 

s2 = -(x A:) - m2 = - trace(A2) - m2.  
n 

i=l 

(a) Then 

m - s(n - 1)1/2 

m + s(n - 1)-'/2 
5 
5 

X,in(A) 5 m - s(n - 1)-'I2, 

Xma,(A) 5 m + s(n - 1)'I2. 

Equality on the left (respectively right) of the first equation holds if and only 
if equality holds on the left (respectively right) of the second equation, if and 
only if the n - 1 largest (respectively smallest) eigenvalues are equal. When 
n = 2 we have Xmin(A) = m - s and X,,,(A) = m + s. 

(b) (Bounds on the Condition Number) Let A be Hermitian positive definite 
with condition number K ~ ( A )  = XmaxA/Xmin(A)  (cf. 4.96). 

(i) When n is even, 

When n > 2 ,  equality holds if and only if A = cI,, where c is a real 
constant. 

(ii) When n is odd, (i) holds along with 

When n = 3, equality holds if and only if the two smallest eigenvalues 
are equal. When n > 3, equality holds if and only if A = cI,. 

(iii) In general, 

( 2 ~ ~ ) ' / ~ s [ m  + s(n - I ) - ' / ~ ] ~ - '  
det A K2(A) 5 1 + 

When n > 2 ,  equality holds if and only if A = cI,. 

A is positive definite, (i) holds, and 
(iv) If A is Hermitian, trace A > 0, and (traceA)2 > (n  - 1)  trace(A2), then 

When n > 2 ,  equality holds if and only if A = cI,. 



INTRODUCTION AND DEFINITIONS 97 

(c) Suppose A has real eigenvalues with f eigenvalues of A positive and g nega- 
tive. Let trace(A2) > 0. 

(i) When traceA 2 0, then 

(traceA)'/trace(A2) 2 f ,  

with equality if and only if all the positive eigenvalues are equal and all 
the nonpositive eigenvalues are equal. 

(ii) When traceA 5 0, then 

(traceA)2/ trace(A2) 5 g, 

with equality if and only if all the negative eigenvalues are equal and all 
the non-negative eigenvalues are equal. 

(d) Let A1 2 A2 2 . . .  2 A,. 

(i) Then 

Equality occurs if and only if 

(ii) From (i) we have 
~1 - A, 5 ( 2 n ) ' / 2 s .  

When n > 2 ,  equality holds if and only if 

1 A2 = A3 = . . .  = A,-1 = z ( A 1 +  An). 

(iii) If R = 2q is even, then 
2 s  5 A1 - A,, 

with equality if and only if 

(iv) If R = 2q It 1 is odd, the previous inequality (iii) holds and 

2 s n ( n 2  - 1)-'12 5 ~1 - A,, 

with equality if and only if the conditions for the equality of (iii) hold. 

(v) 

(trace A)2  (A1 + A d 2  
trace(A2) - A; + A; ' 

< n - 2 +  
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When n > 2, equality holds if and only if A1 + A, # 0 and 

(e) The above results can be extended to complex matrices with complex eigenval- 
2 . . .  2 IA,J ues. For example, if A now has complex eigenvalues l A l l  2 

and we define 

1 1 
n n 

m = - traceA and s% = - trace(A*A) - lmI2, 

then: 

(i) Iml - s,(n - 1)l/' 5 ]A,[ 5 [ t ra~e(A*A)/n] ' /~ .  

Equality holds on the left if and only if A is normal, A1 = A2 = . . . = 
and A, = cm for some real non-negative scalar c 5 1. Equality 

holds on the right if and only if A is normal and 1x1 I = 1 A21 = . . . = ]A,[. 

(ii) Iml 5 1x11 5 Iml+ s,(n - I)'/'. 

Equality holds on the left if and only if A1 = A2 = . . . = A,. Equality 
holds on the right if and only if A is normal, A2 = A3 = . . .  = A,, and 
A1 = cm for scalar c 2 1. 

(iii) If A has lc nonzero eigenvalues, then 

I traceAl'/trace(A*A) 5 k 5 rankA. 

Equality holds on the left if and only if A is normal and / A l l  = 1x21 = 
. . . = JAkl .  Equality holds on the right if and only if rankA = rank(A2). 

Further extensions are given by Wolkowicz and Styan [1980]. 

Additional results relating to sums of eigenvalues are given by Wolkowicz and Styan 
[1980]. Extensions are given by Merikoski and Virtanen [2004] and are used to give 
a lower bound for the Perron root of a non-negative matrix. 

6.22. Let A = (a i j )  and B = (b i j )  be n x n matrices with eigenvalues X i  and -yi, 
respectively. Define 

. n n  

then 

6.23. Let A and B be real n x n symmetric matrices with C(A) 
that B is non-negative definite, and let X be an n x lc matrix. Then: 

C(B). Suppose 

(a) C(X'AX) C C(X'BX). 

(b) Consider the eigenvalues of (X'BX)-X'AX for any weak inverse (X'BX)-. 
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(i) The eigenvalues are all real and do not depend on the choice of general- 

(ii) The eigenvalues are the generalized eigenvalues of X’AX with respect 

ized inverse. 

to X’BX (cf. Section 6.1.8). 

(c) Zn[(X’BX)-X’AX)] = In(X’AX), where In ( . )  is the inertia. 

6.24. For each 2,  A, is a continuous function of the elements of A. 

6.25. (Quadratic Inequalities) 
( z  = 1 , 2 , .  . . , n)  are a set of mutually orthonormal vectors, i.e., x:xJ = bzJr then: 

Suppose A is an n x n Hermitian matrix and x, 

k 
(a) Cz=l x:Axz I E:=l &(A), k = L 2 , .  . . ,n  - 1 

(b) c;=1 x:Axz = c;=1 Az(A) 

6.26. (Hirsch and Bendixson) Let A = ( a z J )  be an  n x n complex matrix with 
eigenvalues A,, and define the Hermitian matrices B = (A + A*)/2 and C = 
(A - A*)/(22). Then: 

(a) IA,I I nmaxlazJl. 

(b) I%e(A,)l I nmaxlb,,I. 

(c) I W A , ) I  5 nmaxIc23I. 

2 J 

2 ,.I 

?.I 

Here %e and Csm denote the “real” and “imaginary” parts, respectively. When A 
is Hermitian, the three results all reduce to (a). 

6.27. (Schur) If A = ( a z J )  is an n x n complex matrix with eigenvalues A,, then 

n 

z = 1  i j  

with equality if and only if A is a normal matrix. 

6.28. If A is any n x n matrix, then, given E > 0, there exists an n x n matrix B 
with distinct eigenvalues such that 

z = l 3 = 1  

6.29. (GerSgorin) Let A = ( a z J )  be an n x n matrix, and let 

n 

(a) All the eigenvalues of A are located in the union of n discs (called GerSgorin 
discs) 

u;=l{z E c : Iz - a221 5 Ri}. 
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Furthermore, if the union of k of these discs forms a connected region that is 
disjoint from the remaining n - k discs, then there are precisely k eigenvalues 
in this region. 

(b) Since A and A’ have the same eigenvalues, a similar result holds with Ri 
replaced by 

n 

and the union of discs by 

(c) The eigenvalues of A lie in the intersection of the above two regions. 

Some generalizations of the above results are given by Horn and Johnson [1985: 
section 6.41. 

6.30. (Commuting Matrices) Let A be an n x n matrix with distinct eigenvalues, 
and let B be an n x n matrix that commutes with A ,  that is, AB = B A .  Then B 
can be expressed uniquely as a polynomial in A with degree no more than n - 1. 

6.31. (Perturbations) Suppose that a Hermitian n x n matrix with (real) eigen- 
values A1 2 . . . 2 A, is perturbed by a Hermitian matrix E with ranked eigenvalues 
6 ,  to give B = A + E with ranked eigenvalues Dz. Then 

Proofs. Section 6.1.2 

6.15. Abadir and Magnus [2005: 166-1671 and Horn and Johnson [1985: 57, 

(a)-(c)l. 

6.16a. Graybill [1983: 305]), Magnus and Neudecker [1999: 19-20], and Schott 
[2005: 1601. 

6.16b. For a counter example see Abadir and Magnus [2005: 165, exercise 
7.191. 

6.17. Schott [2005: 911. 

6.20. If A has nonzero eigenvalues, then trace(adjA) = trace[(det A)A-’] = 
II,A, C,  A;’. Let A, + 0. 

6.21. Wolkowicz and Styan [1980: (a), 474-476; (b) 484-485; (c) 480-481; (d) 
482-483; and (e) 491, 4951. 

6.22. Ostrowski [1973]; see also Elsner [1982] for some other bounds. 

6.23. Scott and Styan [1985: 2121. 

6.24. Schott [2005: 1031. 
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6.25. Rao and Rao [1998: 3831. 

6.26. Marcus and Minc [1964: 1411. 

6.27. Marcus and Minc [1964: 1421 and Zhang [1997: 2411; Tsatsomeros 
[2007: 14.21 also lists this and other inequalities. 

6.28. Bellman [1970: 1991. 

6.29. Horn and Johnson [1985: 344-3461 and Meyer [2000a: 4981. 

6.30. Zhang [1999: 591. 

6.31. Meyer [2000a: 5511. 

6.1.3 Singular Values 

Definition 6.5. Suppose B is an m x n real or complex matrix of rank r ,  where 
r 5 p = min(m,n). The p largest eigenvalues of B*B, which are the same as 
those for BB" (by 6 . 5 4 ~ )  are non-negative (by 10.10 and 10.2), as B'B is non- 
negative definite. Their positive square roots are called the singular values of B. 
Denote these by u1 2 u2 2 . . . 2 uT > ur+l = . . . = up = 0; we shall use the 
notation ut = ui(B). (See Section 16.3 for further details and the singular value 
decomposition of a matrix.) Some interesting historical comments are given by 
Horn and Johnson [1991: section 3.01. 

6.32. Suppose that B is an m x n matrix with singular values u1 2 u2 2 . . . 2 
up 2 0, and p = min{m,n}. Let 

0 B* 
. = ( B  0 )  

Then A is an ( m  + n) x (m  + n) Hermitian matrix with eigenvalues 

u1 2 u2 2 ' . .  2 up 2 0 = ' . '  = 0 2 -up 2 -up-1 2 ' . '  2 -u1, 

with Im - n1 zeros in the middle. 

6.33. Suppose B E B,  the set of all m x n matrices. Then, for every E > 0, there 
exists B, E B with distinct singular values such that IIB - Bell < E ,  where 1 1  . 1 1  is 
any generalized matrix norm on B. 

6.34. Let A be an n x n matrix with &(A) and ui(A) the ordered eigenvalues and 
singular values, respectively, in decreasing order of magnitude. 

(a) n,"=, IXi(A)I 5 & ui(A) for k = 1 , 2 , .  . . , n, with equality for k = n. 

(c) ItraceAl 5 ul(A)+az(A)+...+u,(A) . EqualityholdsifandonlyifA =uC 
for some non-negative definite matrix C and some complex scalar u with unit 
modulus. When equality holds, A is a normal matrix. 
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(d) a,(A) = a,(UAV) (i = 1,2 , .  . . , n)  for all n x n unitary matrices U and V. 

(e) l i m , , , [ ~ , ( A ~ ) ] ~ / ~  = IX,(A)I for i = 1 , 2 , .  . . ,n. 

6.35. If A is an n x n matrix and H(A) is the Hermitian matrix ;(A + A*),  then, 
for i = 1 , 2 , .  . . , n, the following results hold. 

(4 g,(A) 2 Xz(H(A)). 

(b) a,(A) 2 X,[H(UAV)] for all n x n unitary U and V. 

6.36. If A is an m x n matrix, p = min{m, n} ,  and a, = a,(A), then: 

k k 
(b) Cz=la22<Cs=~~,, k = 1 , 2 , . . . , p  

Equality in (a) holds if and only if the leading k x k principal submatrix of A is 
diagonal and laz,l = O, (z = 1,2, .  . . , k ) .  Equality in (b) occurs when equality in 
(a) holds and a,, 2 0 (i = 1 , 2 , .  . . , k ) .  

6.37. (Bilinear Inequalities) Let A be an m x n matrix, and let p = min{m,n}. 
For z = 1 , 2 , .  . . ,p ,  let 2: = (xi, yi) be any mutually orthonormal vectors, where x, 
is m x 1 and yz is n x 1. Then 

k k 

i=l i = l  

Equality is attained when xi and yi are, respectively, the left and right singular 
vectors of A associated with ai (cf. Section 16.3). 

6.38. Let A be a real or complex square matrix with numerical radius 

w(A) = SUP Ix*AxI. 
IIxII=l 

Then p(A) 5 w(A) I amax I 2w(A), where p(A) is the spectral radius of A. 

Proofs. Section 6.1.3 

6.32. Horn and Johnson [1985: 4181 and Rao and Rao [1998: 3251. 

6.33. Horn and Johnson [1985: 4171. 

6.34a. Horn and Johnson [1991: 1711 and Rao and Rao [1998: 339-3401. 

6.3413. Horn and Johnson [1991: 1761. 

6 .34~.  Horn and Johnson [1991: 1761 and Zhang [1999: 260-2611. 

6.34d. Horn and Johnson [1991: 1461. 

6.34e. Horn and Johnson [1991: 1801. 

6.35. Horn and Johnson [1991: 1511. 

6.36. Rao and Rao [1998: 3851. 

6.37. Rao and Rao [1998: 383-3841, 

6.38. Zhang [1999: 901. 
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6.1.4 Functions of a Matrix 

6.39. If Ax = X,x and k is a positive integer, then Akx = Xtx, so that Ak has 
eigenvalues A! and the same eigenvectors as A. 
If At = 0 for some positive integer t ,  then &(A) = 0 for all 2. 

6.40. If A has eigenvalues X,(A), a polynomial g(A) has eigenvalues g(X,) (i = 
1 ,2 , .  . . , n) and the same eigenvectors as A. 

6.41. If A is nonsingular with eigenvalues A,, then A-l has eigenvalues A;’. 

6.42. Let A be an n x n matrix. If ao, u l ,  . . . ,a, are real or complex numbers, 
and 

B = aoIn + alA + . . . + amAm, 

then the eigenvalues of B are 

a~+a~p,(A)+a~p~(A)+.~.+a,p,”(A) for j = 1,2,  . . . ,  s, 

where the p,(A) are the distinct eigenvalues. If B = 0, then any eigenvalue X of A 
must satisfy the equation 

a0 + U l X  + a# + .  . . + amXm = 0. 

Proofs. Section 6.1.4 

6.39. Schott [2005: 901. 

6.40. Rao and Bhimasankaram [2000: 2891. 

6.41. Schott [2005: 901. 

6.42. Quoted by Marcus and Minc [1964: 231. 

6.1.5 Eigenvectors 

6.43. Right (left) eigenvectors associated with distinct eigenvalues pj are linearly 
independent. 

6.44. The eigenspace corresponding to  a distinct eigenvalue p j ,  say, is a vector 
subspace. 

6.45. Let A be a real or complex square matrix, and let x be any n x 1 nonzero vec- 
tor. Then there exists an eigenvector y of A belonging to  the span of {x, Ax, A’x, . . .} 
6.46. (Left and Right Eigenvectors) Suppose A is a complex square matrix. 

(a) If Ax = Ax, y*A = py*, and X # p, then x is orthogonal to y (i.e., x*y = 0). 

(b) A*y = ,Gy. 

Proofs. Section 6.1.5 

6.43. Rao and Bhimasankaram [2000: 2871. 

6.44. Schott [2005: 881. 

6.45. Rao and Bhimasnakaram [ZOOO: 2881 and Rao and Rao [1998: 1841. 

6.46. Abadir and Magnus [2005: 1731. 
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6.1.6 Hermitian Matrices 

Hermitian matrices are also discussed in Sections 5.2. 

6.47. Suppose A is an n x n Hermitian matrix. Then the following hold. 

(a) The eigenvalues of A are real. 

(b) Eigenvectors corresponding to different eigenvalues are orthogonal (with re- 
spect to the inner product (x, y )  = x*y). A right eigenvalue is also a left 
eigenvalue, and vice versa. 

(c) There is a complete set of n orthonormal eigenvectors. 

(4 EL1 c;=, I 4  = EL1 IW 
(e) There exists a unitary matrix U (i.e., U*U = In) such that U * A U  = A, 

where A is a diagonal matrix of the eigenvalues of A (cf. 16.44). 

( f )  Since A is also normal, the results relating to  normal matrices apply. 

6.48. (Real Symmetric Matrices) If A is an n x n real symmetric matrix, then it 
is also Hermitian and all the results for Hermitian matrices in (6.47) above apply 
here. However, we collect some of the results below for easy reference. 

(a) The eigenvalues A, are all real and the corresponding eigenvectors can be 
chosen to be real. 

(b) If rankA = r ,  there are T nonzero eigenvalues and X = 0 has algebraic 
multiplicity (n  - r ) .  

(c) Since x’A = Ax’ if and only if A x  = Ax, right eigenvectors are also left 
eigenvectors. 

(d) Eigenvectors corresponding to different eigenvalues are orthogonal so that the 
corresponding eigenspaces are orthogonal. 

(e) There exist n mutually orthogonal eigenvectors. 

( f )  rank(A - &In) = n - m,, where m, is the algebraic multiplicity of A,. 

(g) There exists an orthogonal matrix T such that (cf. Section 16.6) 

T’AT = diag(Xl,Xz,. . . , A n ) .  

(h) C:=, C,”=, u : ~  = trace(A2) = E7=l A:. 

(i) If x is any nonzero vector, then, for some r 2 1, the vector space spanned by 
the vectors x, A x , .  . . , AT-lx contains an eigenvector of A.  

Proofs. Section 6.1.6 

6.47. Horn and Johnson [1985: 169-1721. For the second part of (b), if 
y*A = Xy*, then Ay = A*y = x y  = Xy. 

6.48a-h. Abadir and Magnus [2005: section 7.21 and Searle [1982: 290-2911. 

6.48i. Schott [2005: 961. 
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6.1.7 Computational Methods 

6.49. (Power Method) Let A be an n x n real diagonalizable matrix with real 
eigenvalues and a dominant eigenvalue A1 (i.e., lAl l  > lA2l 2 . . . 2 IA,l). Since A 
is diagonalizable, there exist R real right eigenvectors u1, u2, . . . , u,, with ui corre- 
sponding to Xi ,  which are scaled to have unit length and are linearly independent. 

(a) Let y = CrTl uiui, where a1 > 0. Set yo = y and define zk and Y k  inductively 

llzk112 --+ 1x11 as k + co, and yarn + u1 as m + 03. Also y2m+l converges 
to u1 or -u1 according as A1 is positive or negative. One can determine the 
sign of A1 by considering successive iterations. See also Golub and Van Loan 
[1996: 4061. 

by the following: Zk = AYk-1 and yk 1 (l/llzkll2)zk for k = 1 , 2 , .  . .. Then 

(b) If R is any nonsingular matrix with u1 as the first column, then 

A1 a’ 
R - ~ A R =  ( ) 

for some a and B, and the eigenvalues of A are those of B together with 
A1.  If p # A1 is an eigenvalue of B with v as a corresponding eigenvector, 
then, setting b = (a’v)/(b - A l ) ,  we find that R(t) is an eigenvector of A 
corresponding to p. This approach can be used to obtain the eigenvalues and 
corresponding eigenvectors if 1x1 I > I A2 I > . . . > I A, 1. 

(c) Suppose IA,I > IX,I and let v, and vg be the real, left unit eigenvectors 
coresponding to A, and A,, respectively. Then, since A’vg = A,v, and Au, = 
A,u,, we have: 

(i) (Au,)’vg = u:A’v, = A,u:v, and (Au,)’v3 = A,u:vJ, so that u, I v, 

(ii) If B = A - A,v,u:, then Bv, = A,v,. As in (b), this method can be 

as A, # A,. 

also be used for finding other eigenvalues. 

6.50. (Jacobi’s Method) Let A be a real symmetric matrix. Jacobi’s method is 
based on the spectral decomposition of A (cf. 16.44), and the method may be 
decribed broadly as follows. Let Qk be an orthogonal matrix, and consider the 
iteration process A(”’) = &’ k = Pk+lAPk+l, where Pk+l = Q1Q2 . . . Qk 
is orthogonal. The starting values are A(’) = A and P1 = I,. Each Q, is a Givens 
rotation matrix that reduces a current off-diagonal element to zero, thus reducing 
the sum of squares of the off-diagonal elements. We then find that A(k) tends 
towards a diagonal matrix so that 

where A is a diagonal matrix consisting of the eigenvalues of A, and the columns 
of P are corresponding eigenvectors. Some theory is provided by Rao and Bhi- 
masankaram [2000: 323-3241 and a good description of the method along with 
further computational details are given by Gentle [1998: section 4.21. 

6.51. (QR Method) This seems to be the most common method, and it can be used 
for both symmetric and nonsymmetric matrices A = (u,,), though the symmetric 
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case is easier, since the eigenvalues are now real. The first step is t o  transform A 
into upper Hessenberg form using Householder or Givens transformations. When 
A is symmetric, the upper Hessenberg form is tridiagonal. For some details see 
Gentle [1998: section 4.31 and Golub and Van Loan [1996: section 7.41) 

Proofs. Section 6.1.7 

6.49a. Rao and Bhimasankaram [2000: 3261. 

6.4913. Rao and Bhimasankaram [ZOOO: 327 and exercise 3 for a correction]. 

6 .49~.  Gentle [1998: section 4.11. 

6.1.8 Generalized Eigenvalues 

Definition 6.6. If A and B are n x n matrices, we say that X is an eigenvalue of 
A with respect to B if there exists a nonzero x that does not belong to  both N ( A )  
and N ( B )  such that A x  = XBx. Here X is one of the n roots of det(A - XB), 
and these roots are also called the generalized eigenvalues. As j~ varies over R, the 
matrix A - pB is called a matrix pencil. 

Generalized eigenvalues are used extensively in mulitivariate analysis-for ex- 
ample, in dimension-reducing techniques and for hypothesis testing in multivariate 
analysis of variance (Chapter 21). In this regard, some computational aspects using 
Cholesky decompositions are discussed by Maindonald [ 1984: section 6.51. 

6.52. Let A and B be real n x n matrices with B nonsingular. 

(a) The generalized eigenvalues are the eigenvalues of B-lA, which are the same 
as those of AB-l. 

(b) Suppose A is symmetric and B is positive definite. 

(i) The eigenvalues of AB-' are real. 

(ii) From (6.54a), X(B-'/2AB-1/2) = X(B-lA), where B'/2 is the unique 
positive definite square root of B (cf. 10.32). 

(c) The X(B-lA) can be computed using a Schur decomposition (cf. 16.37). 

For further details see Harville [1997: section 21.141, and some computational as- 
pects of the problem are discussed by Golub and Van Loan [1996: section 7.71. 

Proofs. Section 6.1.8 

6.52a. This follows from det(A - XB) = 0 if and only if det B d e t ( B - l A  - 
X I )  = 0 if and only if det(AB-l - XI) det B = 0. 

6.5213. Graybill [1983: 404-4051 for (i). 
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6.1.9 Matrix Products 

6.53. If A and B are real symmetric n x n matrices, then the eigenvalues of AB 
are real if either A or B is non-negative definite. 

6.54. Suppose A is m x n and B is n x m ( m  5 n ) ,  both complex matrices. 

(a) A"-" det(X1, - A B )  = det(X1, - BA), 
and A B  and B A  have the same nonzero eigenvalues, counting algebraic mul- 
tiplicities. 

(b) If X is a nonzero eigenvalue of AB, then X is an eigenvalue of BA with 
the same geometric multiplicity. Also, if X I ,  . . . , x, are linearly independent 
eigenvectors of A B  corresponding to A, then Bxl , . . . , Bx, are linearly inde- 
pendent eigenvectors of BA corresponding to A. 

(c) If A is m x n, then AA* and A'A have the same nonzero eigenvalues. 

6.55. If A and B are n x n matrices and A is nonsingular, then A B  and BA have 
the same eigenvalues. 

6.56. (Frobenius) Let A and B be n x n matrices that commute with AB - B A .  
Let f(zl ,zz) be any polynomial in z1 and z2 with possibly complex coefficients. 
Then there exists an ordering of the eigenvalues of A and B, namely (a,,@,) for 
i = 1 ,2 , .  . . ,n ,  such that the eigenvalues of f ( A , B )  are f(a,,P,) for i = 1 ,2 , .  . . ,n.  

6.57. (Von Neumann) Let A be m x n and B be n x m matrices such that AB and 
B A  are Hermitian non-negative definite. Let p = min{m, n} and q = max{m, n}. 
If we define o j (A)  = oJ(B) = 0 for p + 1 5 j 5 q,  where o(.) is a singular value, 
then there exists a permutation 7 of {1,2, .  . . , q }  such that 

4 

trace(AB) = trace(BA) = ~T~(A)~T, ( , ) (B) .  
2 = 1  

where ~ ( i )  is the i th element of permutation 7 

Proofs. Section 6.1.9 

6.53. Graybill [1983: 404-4051. 

6.54a. Rao and Bhimasankaram [2000: 2821 and Zhang [1999: 51-53, four 
proofs]. 

6.5413. Rao and Bhimasankaram [2000: 2871 

6.54~.  This follows from (a) with B = A* 

6.55. This follows from (6.54a) with m = n. 

6.56. Quoted by Marcus and Minc [1964: 251. 

6.57. Rao and Rao [1997: 3481. 
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6.2 VA R I AT1 0 N A L C H A  R ACT E R I STI CS FOR H ER M I TI A N  M ATR I C ES 

A common statistical problem is that of finding the maximum or minimum of a 
ratio of two quadratic forms subject to some linear constraints-for example, in 
multivariate analysis. As we shall see below, eigenvalues and eigenvectors feature 
prominently in the theory. We shall work mainly with the more general complex 
quadratics as real quadratics follow as a special case. In following up proofs of 
the following results, the reader should note that we rank the eigenvalues X i  in 
decreasing order of magnitude, whereas some authors such a s  Horn and Johnson 
[1985] and Magnus and Neudecker [1999] do the reverse. In the latter case, we 
change the sign of the suffix and add n + 1 to get corresponding results; thus Xi  
becomes X,+l-i. However, Horn and Johnson [1985: 4191 do not reverse the order 
of the singular values, but rank them in decreasing order. 

6.58. Let A be an n x n Hermitian matrix with (real) eigenvalues A1 2 A2 2 . . . 2 
A, and a corresponding set of orthonormal eigenvectors u1, u2, . . . , u, (i.e., uTuj = 
&j) in @” such that Aui = &ui. For k = 1 ,2 , .  . . ,n,  let u k  = (u1, u2,. . . , u k )  and 
v k  = ( u k ,  U k + l , .  . . , u,). Define U = U ,  = V1. In what follows, we assume that 
x E C” and x # 0. We shall give properties of the ratio r(x) = x*Ax/x*x, which 
is sometimes called the Raleigh (- Ritz) ratio (quotient). (In what follows some 
authors use %up1’ and “inf” instead of “max” and “min,” respectively. However, 
these expressions are equivalent as the extrema are attained.) 

The results below immediately follow for real symmetric matrices by replacing 
* by ’. We note that ~ ( x )  does not depend on IIx112 so that if x # 0 we can 
scale x to satisfy IIx112 = 1; the denominator of r(x) becomes 1. This alternative 
representation will be mentioned only once below, but it holds in all the following 
results. For general references see Horn and Johnson [1985: 176-1801, Magnus and 
Neudecker [1999: 203-2071, Rao and Rao [1998: 332-3351, Schott [2005: 104-1101, 
and Seber [1984: 525-5261, 

(a) (Raleigh-Ritz Theorem) 

(i) 
(ii) 

(iii) 

(b) The 

(4 

(ii) 

A, I r(x) I A1. 
maxllxl12,1 x*Ax = rnaxxfo ~ ( x )  = A1, and the maximum occurs when 
x = u1. 

min,+o r(x) = A,, and the minimum occurs when x = un. 

following hold for k = 2, . . . , n - 1. 

max ~ ( x )  = A k ,  
xf0:U;- ,x=o 

and the maximum is attained when x = u k .  Note that U;-,x = 0 im- 
plies that x I (u1, u2,. . . ,uk-l}, i.e., x E S ( U k ,  uk+l,. . . , un), where S 
is the span. 

x+o:v;+ x=o 
min r(x) = A k ,  

and the minimum is attained when x = u k .  

implies that x I { U k + l r  u k + 2 , .  . . , u,}, i.e., x E S(u1, u2,. . . , u k ) .  

Note that VE+,x = 0 
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(c) min r (x )  5 A k  5 max r(x)  
c * x = o  B'x=O 

for every n x ( k  - 1) matrix B and n x (n  - k )  matrix C. 

(d) (Courant-Fischer Min-Max Theorem) Let B be any n x ( k  - 1) complex 
matrix. Then for k = 2, .  . . , n we have the following: 

(i) min max r(x) = Ak, 
B x#O:B*x=O 

and the result is attained when B = U k - 1  and x = u k .  

(ii) max min r(x) = X n - k + l ,  
B x#O:B*x=O 

and the result is attained when B = Vn-k+:!  and x = U n - k f l .  

Since Uz-lUk-l = V~-k+2V,-,+2 = I k - 1 ,  we can impose the restriction 
B*B = I k - 1  without changing the above two results. Some authors use this 
formulation of the Courant-Fischer theorem (e.g., Schott [2005: 108-1101). 
Rao [1973a: 621, Seber [1984: 525-5261, and Magnus and Neudecker [1999: 
205-208, with the labeling A1 5 . . . 5 A,] prove the above for real matrices 
and Horn and Johnson [1985: 1761 for the complex case. The complex case 
follows directly from proofs for the real case by simply replacing 2; by 1 ~ ~ 1 ~ .  
The reader should note that there is a confusing variation in the proofs de- 
pending on how the constraints are defined (in our case by B*x = 0). For 
example, if B is replaced by an n x (n  - k )  matrix C in (ii), then An-k+l 

is replaced by Ak (Abadir and Magnus [2005: 3461 and Schott [2005: 1081). 
Furthermore, if C is used in (i) and B in (ii), then Ak now refers to  the kth 
largest eigenvalue rather than the kth smallest (Horn and Johnson [1985: 1791 
and Magnus and Neudecker [1999: 2071). One can also replace B by a general 
vector space, as in Meyer [2000a: 5501 and Rao and Rao [1998: 3321. 

(e) The min-max theorem extends to  singular values by replacing A by A*A, as 
U ~ ( A ) ~  = A,(A*A), and by noting that 

x*A*Ax IIAxllz ( x*x ) = (Id2; 
where 11.112 is the Euclidean vector norm. For example, let B be any n x ( k -  1) 
complex matrix. Then, for k = 2,.  . . , n, we have the following. 

ll AX112 

llAxll2 - 

(i) min max 

(ii) max min 

B x#O:B*x=O (w) = uk 

B x#O:B*x=O (w) - un-kfl 

(f) The min-max theorem also extends to the eigenvalues of the product of two 
non-negative definite matrices. For details see Makelainen [1970: 331. 

6.59. Let A be a real n x n symmetric matrix, and let B be any n x n positive 
definite matrix. Let y1 2 y:! 2 . . .  2 yn be the eigenvalues of B-lA-that is, 
yi = Xi(BP1A)-with corresponding right eigenvectors v1, v2,. . . ,v,, all of which 
are real by (6.52b(i)). Then 
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- 
x‘ Ax x‘ Ax 

=y1 and min- max ~ 

X#O x’Bx - yn’ X#O X’BX 

with the bounds being attained when x = v1 and x = v,, respectively. 
In particular, for any a we have 

(a‘x) 
max ~ = a’B-‘a, 
X#O X’BX 

and the maximum occurs when x 0: B-’a. The result for y1 applies to 
hypothesis testing for multivariate linear hypotheses and to the dimension 
reduction technique of discriminant coordinate analysis (cf. 21.4913)). 

Let Ui = (v1, . . . ,  vi) and Wi = (vi , .  . .  ,v,). Then, for x # 0 and i = 
2,3 , . . . ,  n - 1 ,  

- 
x’ Ax x‘ Ax 

max ~ = yi and min ~ - 72. 
U:- B x = O  X’Bx WI+,BX=O X’BX 

6.60. Let A be a real n x n symmetric matrix, and let B be any n x n positive 
definite matrix. For i = 1 , 2 , .  . . , n, let B, be any n x ( i  - 1) matrix and C ,  be any 
n x (n - i )  matrix satisfying BiB, = I,-1 and CiC, = I,-,, respectively. Then 

x‘ Ax 
min max ~ = x ~ ( B - ~ A )  
B, x#O:B:x=O X’BX 

and 
x’ Ax 

max min - - - x~(B-’A),  
C, ~#O:C:X=O X’BX 

where the inner min and max are over all x # 0 when i = 1 and i = n, respectively. 
The results will hold for Hermitian matrices with ’ replaced by *. 

6.61. Let A and B be positive definite n x n matrices. Then 

max { ( x ’ L ~ ) 2  } =emax, 
x # o , ~ # o  X’AX . X’BX 

where Omax is the largest eigenvalue of A-lLB-’L’, and also of B-’L’A-lL. The 
maximum occurs when x is a right eigenvector of A-’LB-’L’ corresponding to 
Omax, and y is a right eigenvector of B-lL’A-lL corresponding to  Omax. This 
result is used, for example, in applying the union-intersection method to  testing 
hypotheses relating to variance matrices in multivariate analysis (Seber [1984: 891). 

6.62. Let A be a real m x n matrix of rank T (T 5 min{rn,n}), and let of 2 
C T ~  2 . . .  2 o,” > 0 be the nonzero eigenvalues of the symmetric matrix AA’ (and 
of A’A), where oi is the ith singular value of A. Referring to  the singular value 
decomposition of A (Section 16.3), let t l ,  ta, . . . , t, be the corresponding orthogonal 
right eigenvectors of AA’, and let wl, wg, . . . , w, be the corresponding orthogonal 
right eigenvectors of A’A. Define T k  = (tl,  tg, . . . , tk) and wk = (wl, wg,. . . , wk) 
( k  < T ) ,  and assume x # 0 and y # 0. Then 

max {‘-->=o: x ’ A ~ ) ~  
x#O,y#O x’x.y’y 

The maximum occurs when x = tl and y = w1. 
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(b) max { M} = (k = 1 ,2 , .  . . , T  - l), 
T;x=O,WLy=O X’X . y‘y 

and the maximum occurs when x = t k + l  and y = wk+l. 

The above results are sometimes expressed in a square root version-for example, 
x‘ A y  

= a1, and so on. Another way of expressing this result is 
sup { d-} 

max x’Ay = 01, 
IIxII=l~llY 11=1 

and the ti and wi are now scaled to have unit norms. The above results are used 
in the multivariate technique of canonical correlation analysis (Seber [1984: 2591). 

6.63. (Some Matrix Extensions) Let A be an n x n positive definite matrix, and 
let X be an n x T matrix of rank T .  Then 

r r 

max det (X’ A X )  = n Xi  (A) 
X’X=I, 

i= l  

and min det(X’AX) = An-r+i(A). 
X’X=I, 

i= 1 

Proofs. Section 6.2 

6.58a. Meyer [2000a: 5491 and Seber [1984: 5251. 

6.58b. Meyer [2000a: 5491 and Seber [1984: 525, with Xn-k  changed to  &I. 

6 .58~.  Abadir and Magnus [2005: 3451. 

6.58e. Horn and Johnson [1985: 4201, Meyer [2000a: 5551, and Rao and Rao 
[1998: 3351. 

6.59a. Rao and Bhimasankaram [2000: 348-3491, Schott [2005: 1211, and 
Seber [1984: 526-5271. 

6.5913. Schott [2005: 1211. 

6.60. Schott [2005: 1231. 

6.61. Seber [1984: 5271. 

6.62. Rao and Bhimasankaram [2000: 3491 and Seber [1984: 5281. 

6.63. Abadir and Magnus [2005: 3491. 

6.3 SEPARATION THEOREMS 

In this section we follow our usual practice and rank the eigenvalues of an n x n 
matrix C as X,(C) 2 X2(C) 2 . . .  2 X,(C). 

6.64. Let A be an n x n Hermitian or real symmetric matrix, and let Ak be the 
leading principal k x k submatrix of A, that is, A k  = (ar s ) ,  T ,  s = 1,2, .  . . , k for 
k = 1 , 2 ,  . . . ,  n - 1 ;  w e d e f i n e A , = A .  Let XI(&)  LX2(Ak) 2 . . . > & ( & ) f o r  
each k (including k = n),  and let al(Ak) 2 . . .  2 a k ( A k )  be the singular values. 
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(a) (Sturmian Separation Theorem) From the Courant-Fisher theorem we ob- 
tain the inequality 

Xi+i(Alc+i) I Xi(&)  I Xi(Ak+i), i =  1 , 2 , . . . , k .  

(b) (Interlacing Theorem for Eigenvalues) F'rom the left- and right-hand sides of 
(a) we get 

(9 

Xn-k+i(An) I Xn-k+z-l(An-l) I . . .  I xi(&) 

A(&) I X2(Alc+i) I . . .  I &(A,). 

(ii) From (i) we get 

(iii) If we reverse the order of listing the above inequalities in (i), we get the 
alternative expression 

(c) (Interlacing Theorems for Singular Values) Let A be m x n with singular 
values al(A) 2 Q(A) 2 . . .  2 uT(A), where T = min{m,n}. 

(i) Let B be a p x q submatrix of A with singular values al(B) 2 02(B) 2 
. . .  2 as(B), where s = min{p,q}. Then 

ai(A) 2 a,(B), i = 1 , 2 , .  . . , s .  

( i i )  Assume m 2 n. If B is a submatrix obtained from A by deleting one of 
the columns, then 

(iii) Assume m < n. If B is a submatrix obtained from A by deleting one of 
the columns, then 

ai(A) 2 ai(B) 2 a2(A) 2 02(B) L . . .  L om(A) L am(B), 

which we now combine with (ii). 

(iv) Suppose we extend the definition of singular values so that aj(A) = 0 
for j > T .  Let A, be any matrix obtained from A by deleting a total of 
s rows and columns (i.e., s - k rows and k columns for some 0 I k I s), 
then 

ai(A) a2(A,) 2 O ~ + ~ ( A ) ,  i = 1,2,. . . ,min{m, n}. 

Note that since ai(A') = a(A), we can obtain the result for deleting a single 
row by interchanging the two cases (ii) and (iii). Also (i)-(iii) follow from 
(iv). 
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6.65. (Eigenvalue Inequalities) 

(a) (Poincark’s Separation Theorems) Let A be be an n x n Hermitian matrix, 
and let BI, be any n x k matrix such that BiB, = I k .  Then: 

6) 

&-k+i(A) I X2(B;ABk) I &(A), i = 1 ,2 , .  . . , k .  

The first equalities on the left are attained if and only if B k  = vku, 

where U is unitary and the k columns of V k  are any set of right eigen- 
vectors corresponding to the k smallest eigenvalues, while the second 
equalities on the right are attained if and only if BI, = wku, where WI, 
has k columns consisting of any set of right eigenvectors corresponding 
to the largest k eigenvalues. Scott and Styan [1985: 213-2141 g’ ive some 
historical remarks on the history of the above result and use it to ob- 
tain bounds on the distribution of chi-square statistics used in sample 
surveys. Such inequalities are also used for the Durbin-Watson bounds 
test for serial correlation in regression. 
The left-hand side can also be written in the form 

X,-j(A) Xk-j(B;ABk), j = 0 ,1 , .  . . , k - 1. 

By setting B k  = (Ik, 0)’,  we can obtain the left-hand side of (6.64b(ii)). 

(ii) Summing i = 1,. . . , k in ( i ) ,  we get, for k = 1 , 2 , .  . . ,n,  

k 

min trace(BiABk) = c X,-k+i(A), 
B;B,=Ib 

i=l 

k 

The bounds are achieved by a suitable choice of B k .  

By setting B k  = ( I k , O ) ’ ,  we have A, I aZ2 5 
X,-1 + A, I aZ2 + aJJ I XI + XZ, ( z , ~  = 1 ,2 , .  . . , n; z # J ) ,  and so on. In 
particular, 

(z = 1 , 2 ,  ... n) ,  

k k k 

C &-k+t(A) I I C A(A). 
2 = 1  2= 1 2= 1 

(iii) If P is an n x n idempotent Hermitian matrix (i.e., P2 = P) of rank k ,  
then 

X,-k+t(A) I & ( P A P )  I &(A), z = 1 , 2 , .  . . , k .  

(b) Let A and B be real n x n matrices with A symmetric and B non-negative 
definite with Moore-Penrose inverse B+ .  Also, let T be an n x k matrix of 
rank k such that C ( T )  C C(B) and T’BT = I k ,  and let A, = X,(B+A). Then 
the following maxima and minima with respect to T hold. 

(i) max{trace(T’AT)} = X I  + . . . + &. 
(ii) min{trace(T’AT)} = Xn-k+l + . . . + A,. 
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(iii) max{tra~e[(T’AT)~]} = A: + . . . + A:. 

(iv) min(tra~e[(T’AT)~]} = X:-k+l + . . . + A:. 
(v) max{trace[(T’AT)-l]} = A;:,+, +. . .+A,1,  for A positive definite and 

(vi) min{trace[(T’AT)-’]} = A,’ + . . . + X i ’  for A positive definite. 

The optimum values are reached when T = (tl,  . . . , t k ) ,  where B1/2ti are or- 
thonormal right eigenvectors of (B+) ‘I2A(B+) ‘ j 2  associated with the eigen- 
values X i  (i = 1 , 2 , .  . . , k ) .  

rankB = T .  

(c) If A and B are n x n positive definite matrices, then: 

(i) X1(ASBS) 5 AT(AB) for 0 5 s 5 1. 

(ii) [X1(AB)lt 5 X1(AtBt) for t 2 1 

6.66. (Singular Values) Let A be an m x n matrix with singular values ai(A). Let 
B = U”AV, where U and V are m x p and n x q,  respectively, such that U’U = I, 
and V*V = I,. 

(a) If T = (m - p )  + (n  - q ) ,  

U % + ~ ( A )  5 ai(B) 5 ai(A),  i = 1 , 2 , .  . . , min{m,n}. 

(b) I f p = q = k ,  

I det BI2 = det(BB*) = Xi(BB*) = Ha:(B), 
i i 

so that 
IdetBI 5 ~ 1 ( A ) . ’ . a k ( A ) .  

(c) If p = q = k ,  we can sum in (a) and obtain, for k = 1 , 2 , .  . . ,min{m,n}, 

k 

max I traceB1 = ai(A).  
u * u = I k  ,V’V=I,, 

i=l 

6.67. Let A be an n x n real symmetric matrix, and let B be an n x n positive 
definite matrix. If F is any n x k matrix of rank k, then for i = 1 , 2 , .  . . , k ,  

&[(F’BF)-l(F’AF)] 5 X,(B-lA), 

and 
mFax A, [ (F’BF)-l (F’AF)] = X i  (B-’A) 

6.68. Let A and B be n x n non-negative definite matrices satisfying C(A) & C(B), 
and let X be an n x k real matrix with 

b = rankB and T = rank(BX) 

Then 

XbPr+i(B-A) 5 Xi([(X’BX)-X’AX]) 5 Ai(B-A), i = 1 , 2 , .  . . ,T. 
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In the above equation, any choices of the weak inverses B- and (X’BX)- may be 
made. Equality occurs on the left simultaneously for all i = 1 ,2 , .  . . , T if and only 
if there exists a real n x T matrix QO such that 

QbBQo = I,, AQo = BQ&, and C(BQ0) = C(BX). 

Here A0 is an T x T diagonal matrix containing the T smallest, not necessarily zero, 
generalized eigenvalues of A with respect to B. 

Equality holds on the right simultaneously for all i = 1 ,2 , .  . . , T if and only if 
there exists a real T x T matrix Q1 such that 

QiBQ1 = I,, AQ1 = BQ1A1, and C(BQ1) = C(BX) 

Here A1 is an T x T diagonal matrix containing the T largest generalized eigenvalues 
of A with respect to B .  Scott and Styan [1985] give an application to finding 
distributional bounds on two standard asymptotic hypothesis tests in multiway 
contingency tables. 

6.69. A product version of (6.65a(ii)) is as follows. If A is a Hermitian positive 
definite matrix and B is an n x k matrix, then 

By setting B k  = ( I k , O ) ’  and defining Ak as in (6.64), we have 

k k 

i=l i=l 

Proofs. Section 6.3 

6.64a. Rao and Bhimasankaram [2000: 347-348, real symmetric case with i 
and k interchanged; the proof is identical for Hermitian matrices]. 

6.64b(ii). Rao and Rao [1998: 328, with A,, replaced by B] and Zhang [1999: 
222-2251, 

6.64b(iii). Schott [2005: 1121. 

6.64c(i). Rao and Rao [1998: 3301. 

6.64c(ii)-(iii). Horn and Johnson [1985: 4191 and Rao and Rao [1998: 3301. 

6.64c(iv). Horn and Johnson [1991: 1491, Rao and Rao [1998: 329-3321, and 
Zhang [1999: 2291. 

6.65a(i). For the real case see Abadir and Magnus [2005: 3471, Schott [2005: 
1111, and Rao and Bhimasankaram [2000: 3481. 

6.65a(ii). Abadir and Magnus [2005: 348-3491. 
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6.65a(iii). Abadir and Magnus [2005: 3481. 

6.6513. Quoted by Rao and Rao [1998: 4951. 

6 .65~ .  Quoted by Rao and Rao [1998: 4951. 

6.66a. Rao and Rao [1998: 3381. 

6.66b. Horn and Johnson [1991: 1701. 

6 .66~ .  Horn and Johnson [1991: 1951. 

6.67. Schott [2005: 1231. 

6.68. Scott and Styan [1985]. 

6.69. Magnus and Neudecker [1999: 212, real case, with order of eigenvalues 
reversed] and quoted by Schott [2005: 136, exercise 3.541. 

6.4 INEQUALITIES FOR MATRIX SUMS 

6.70. (Eigenvalues) Let A and B be n x n Hermitian or real symmetric matrices, 
and let C = A + B, with corresponding eigenvalues 

a1 2 a 2  2 . . .  2 an; Pi 2 P 2  2 . . .  2 Pn and 71 2 7 2 . . .  2 T n ,  

respectively. Then: 

(a) 

a 2  + Pn 
a3 + Pn-1 

an+ P2 

. . .  L 7 2  2 
a 2  + P1 
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(b) It follows from (a) that 

yi I ag +P2--3+i ,  for j = 1 ,2 , .  . . ,i; i = l , ~ , .  . . ,n ,  

and yi 2 aj + Pn-j+i, for j = i , i  + 1,. . . ,n; i = 1,2, .  . . , n. 

(c) (Weyl's Theorem) From (b) we have: 

(i) For i , j  I n 

Xi(A+B) 5 Xj(A) +Xi-j+l(B) for j 5 i, 
&(A + B) 2 Xj(A) + An+i-j(B) for j 2 i. 

(ii) If in (i) we make the subscript substitution j = a and i - j + 1 = b so 
that i = a + b - 1, and then relabel, we get from the first equation 

Xa+b-l(A + B) I ,&(A) + X b ( B ) ,  a + b - I 5 71, b 2 1. 

(iii) Setting j = i in (i) we have, for i = 1 ,2 , .  . . , n, 

&(A) + L ( B )  I &(A + B) I &(A) + Xi(B). 

(iv) (Monotonicity of Eigenvalues) If B is real non-negative definite and A 
is real symmetric, then X2(B) 2 0 for all i and, from (iii), 

X2(A) 5 &(A + B) ,  i = 1 , 2 , .  . . ,n.  

If B is positive definite, then the inequality is strict. 

(i) (Lidski;) Let Z l , z 2 , .  . . , i k  be integers satisfying 1 5 (d) < . . .  < i k  I n. 
Then for k = 1 ,2 , .  . . , n, 

j=1 j=1 j=1 

(ii) (Sum of the k largest eigenvalues) For k = 1 ,2 , .  . . , n, 

k k k k 

(e) Suppose B is a real symmetric matrix with rankB 5 T and A is real sym- 
metric. For i = 1,2, .  . . , n - T we have: 

6.71. (Convexity) For any two real symmetric n x n matrices A and B, and 
O I c r 5 1 ,  

Xi[aA + (1 - a)B] 
Xn[aA + (1 - a)B] 

I 
2 

aXi(A) + (1 - a)Xi(B), 
aXn(A) + (1 - a)An(B). 
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Hence, A1 is convex and A, is concave on the space of real symmetric matrices. 
Putting a = 1/2 gives us 

Al(A + B) I Al(A) + Al(B), 
&(A + B) 2 &(A) + A,(B). 

6.72. (Singular Values) Let A and B be m x n matrices, and let p = min{m,n}. 
Then: 

(4 
ai(A + B) 5 o.j(A) + oi-j+l(B), j = 1,2, .  . . ,i; i = 1,2, .  . . ,p .  

~ i + j - l ( A  + B) I oi(A) + oj(B), 1 I i , j  I p ;  i + j I p + 1. 

(b) In particular, 

(i) 01 (A + B )  I o1 (A) + o1 (B). 
(ii) op(A + B) I min{op(A) + ol(B),ol(A) + op(B)}. 

(iii) oi(A) + on(B) I oi(A + B) I oi(A) + ol(B). 

(c) Ioi(A + B) - oi(A)I 5 ol(B) for i = 1 , 2 , .  . . , p .  

i=l i= 1 

Proofs. Section 6.4 

6.70a. Rao and Rao [1998: 3221. 

6.70c(i). Bhatia [1997: 62, with i and j interchanged]. 

6.7Oc(ii). Schott [2005: 114, real case]. 

6.7Oc(iii). Schott [2005: 112, real case] and Zhang [1999: 2271. 

6.7Oc(iv). Magnus and Neudecker [1999: 208-2091 and Schott [2005: 119- 
1201. 

6.70d(i). Wielandt [1955] and Diimbgen [1995]. 

6.70d(ii). Schott [2005: 115-1161. 

6.70e. Schott [2005: 112-1141. 

6.71. Abadir and Magnus [2005: 344-3451 and Magnus and Neudecker [1999: 
205, A1 and A, are interchanged]. 

6.72a. Rao and Rao [1998: 326-327, 3601 and Horn and Johnson [1991: 178, 
subscripts reordered]. 

6.72b(iii). Zhang [1999: 2281. 

6 .72~.  Horn and Johnson [1991: 1781. 

6.72d. Horn and Johnson [1991: 1961. 



INEQUALITIES FOR MATRIX DIFFERENCES 119 

6.5 INEQUALITIES FOR MATRIX DIFFERENCES 

6.73. Let A, B, and A - B be Hermitian non-negative definite n x n matrices with 
rankB 5 k .  Then 

&(A - B) 2 Xk+z(A) 

for all i ( k  + i 5 n)  with equality for all i if and only if 

i= 1 

where ul,  u2,. . . , uk are the first k orthonormal eigenvectors of A (i.e., those cor- 
responding to the Xi(A), i = 1 , 2 , .  . . , k ) .  

6.74. Let A and B be m x n matrices with ranks r and s,  respectively. Then: 

ai (A-B)  L O ~ + ~ ( A ) ,  i + s  I r ,  
2 0, i + s > r .  

(b) The equalities in (a) are attained if and only if s 5 r and 

where the singular value decomposition of A is A = EL==, ai(A)uiuf. 

Proofs. Section 6.5 

6.73. Quoted by Rao and Rao [1998: 3821, though the proof is similar to that 
of (6.74). 

6.74. Rao [1980: 8-91, 

6.6 INEQUALITIES FOR MATRIX PRODUCTS 

6.75. Let A be an n x n non-negative definite matrix, and let B be an n x n positive 
definite matrix. If i, j ,  k = 1,2, .  . . , n such that j + k 5 i + 1, then: 

(a) Xz(AB) 5 Xj(A)Xk(B). 

(b) X,-z+i(AB) 2 Xn-j+l(A)Xn-k+l(B) 

The case when A is symmetric and B is non-negative definite is discussed in detail 
by Makelainen [ 19701. 

6.76. If A and B are n x n Hermitian non-negative definite matrices, then 

X,(A)X,(B) 5 X,(AB) 5 X,(A)Xl(B), i = 1,2 , .  . . ,n. 
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6.77. (von Neumann) (Trace) If A and B are n x n Hermitian matrices, then 

n n 

Xi(A)Xn-i+l(B) 5 trace(AB) 5 cXi(A)Xi(B).  
i= 1 i=l 

Equality holds on the right when B = Cr=l Xi(B)uiuf, and equality holds on the 
left when B = Cyzl X,-i+l(B)uiuf. Here ui is a right eigenvector of A for the 
eigenvalue Xi(A), i = 1 , 2 , .  . . , n. 

6.78. Let A and B be n x n non-negative definite matrices. If 1 5 il < . . . < ik 
then 

n, 

k k 

with equality for k = n. 

6.79. (Partial Sum) Let A and B be n x n (real) non-negative definite matrices. 
Then 

I;. Ic c Xi(A)Xn-i+l(B) 5 c Xi(AB), k = 1 , 2 , .  . . , n. 
i = l  i= 1 

6.80. Let A be an m x n and B an n x m real or complex matrices. Then 

ai(A)a,(B) 5 ai(AB) 5 ai(A)ol(B), i = 1 , 2 , .  . . , m 

6.81. Let A be an m x n and B an n x m real or complex matrices, and let 
p = min{m, n}. Then, for singular values a(.), 

P P 

- x o a ( A ) ~ i ( B )  5 trace(AB) 5 x ~ i ( A ) a i ( B ) .  

Equality holds on the right when B = CE1ai(B)qipf, and equality on the left 
holds when B = Cr=’=, oi(B)(-qi)pf, where pi and qi are the singular vectors of 
A for ai(A), i = 1 , 2 , .  . . , p  (cf. Section 16.3). 

6.82. (Horn) Let A be an m x p and B an p x n real or complex matrices, and 
let q = min{ m, n, p } .  

i= 1 i=l 

i a 

(a) n C ~ ( A B )  5 IT a j ( ~ ) a j ( ~ ) ,  i = I, 2 , .  . . , q .  
j = 1  j=1 

If A and B are square matrices of the same order (i.e., m = n = p ) ,  then 
equality holds in the above equation for i = n. 

(b) C:=l[aj(AB)]P 5 C:=l[oj(A)aj(B)]P for i = 1 , 2 , .  . . , q  and any p > 0. 

Horn and Johnson [1991: 1771 give some extensions to functions of the singu- 
lar values. 
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6.83. Let A and B be real n x n symmetric matrices, and let T be an n x n 
orthogonal matrix. Then 

n 

maxtrace(TAT'B) = c Xi(A)Xi(B) and 
T i=l 

n 

min trace(TAT'B) = c Ai(A)An+l-i(B). 
T 

2= 1 

Setting 

we have 
E 

max trace(R'AR) = &(A). 
R'R=Ik 

i=l 

6.84. Let Xi be an n x pi matrix of rank pi (i = 1,2) .  Then the eigenvalues of 
(X~Xz)-'X~Xl(X:X,)-'X:X, are less than or equal to one. This result arises in 
the correspondence analysis of a contingency table. 

6.85. If A and B are n x n real or complex matrices of which at  least one is 
nonsingular, then 

Xmin (AA*)Xrnin (BB*) I Xi (AB)Xi (AB) I Xmax(AA* )Amax (BB*) 

for all i. If A and B are both Hermitian, one is positive definite (say A), and the 
other is non-negative definite, then 

Xrnin(A)Xrnin(B) I Xi(AB) I Anax(A)Anax(B). 

Proofs. Section 6.6 

6.75. Schott [2005: 126-1271, 

6.76. Zhang [1999: 2271. 

6.77. Rao and Rao [1998: 3861. 

6.78. Lidski; [1950] and quoted by Schott [2005: 1271. 

6.79. Quoted by Schott [2005: 128; see also 137, exercise 3.571. 

6.80. Zhang [1999: 2281. 

6.81. Rao and Rao [1998: 3871. 

6.82a. Horn and Johnson [1991: 1721 and Rao and Rao [1998: 340-3421. 

6.82b. Horn and Johnson [1991: 1771. 

6.83. Anderson [2003: 6451. 

6.84. B6nassBni [2002]. 

6.85. Roy [1954]. 
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6.7 ANTIEIGENVALUES AND ANTIEIGENVECTORS 

If A is an n x n positive definite matrix, then the cosine of the angle 0 between 
n x 1 real vectors x and Ax is (cf. Definition 2.12 in Section 2.2.1) 

x‘ Ax 

~ ( X ’ X )  (x’A2x) ’ 
coso = 

which has the value of unity when x is an eigenvalue of A, that is Ax = Ax for 
some A. This raises the question of what value of x minimizes cos 8, or equivalently 
maximises the angle beween x and Ax. This question motivates the following 
definitions. 

Definition 6.7. Let A1 2 A:! 2 . . . 2 A, > 0 be the eigenvalues of positive definite 
A and X I ,  x2, . . . , x, be the corresponding right eigenvectors. Referring to the 
above introduction, cos 0 takes its minimum value of 

by the Kantorovich inequality (12.2a) (with x = A1/2y), and the minimum is 
attained at  

= (u1, uz), say. 
6 x 1  * JGxn 

&FK 
X= 

The vectors (u1, ug) are called the first antieigenvectors and 1-11 
value. The angle 0 is called the angle of the operator of A. We 

P2 = min 
x’ Ax 

x l x i , ~ ,  J(x’x)(x’A2x) 

the first antieigen- 
then define 

which is attained at 

We call 1-12 the second antieigenvalue of A and (us, ud) the second antieigenvectors. 
We then find the third set by minimizing cos0 subject to x I {x l ,x~ ,xn- l ,xn} ,  
and carry on this process until we have 1-11 5 1-12 5 . . .  5 pLT ( r  = [p/2]), where 

are the ordered antieigenvalues and (u1, uz), (us, uq), . . . (uzr-1, uzr) are the cor- 
responding pairs of antieigenvectors. When p is odd, the antieigenvalue of order 
(n + 1)/2 is unity, with the corresponding antieigenvector X ( ~ + ~ ) / Z .  

The above terminology and concepts were introduced by Gustafson [1968] under 
the umbrella of operator trigonometry. The theory was extended to arbitrary non- 
singular matrices by Gustafson [2000]. He also applied the theory to the question 
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of one measure of efficiency of the ordinary least squares estimator (OLSE) with 
respect to the best linear unbiased estimator (BLUE) in Gustafson [2002, 20051. 
Rao [2005] also discussed this question in detail. 

6.86. If A is an n x n positive definite matrix, then 

A2x 2Ax 
x’A2x ~ ‘ A X  

+ x = o  

is called the Euler Equation. This equation is satisfied by all the eigenvectors xi of 
A, and the only other solutions are the antieigenvectors 

This topic has links with canonical correlations (Gustafson [2005: 1161). 

6.87. Let A be a positive definite n x n matrix. Then 

max [x’Ax - (x’A-lx)-’]  = (A - 
x‘x=l 

with the maximum occurring at  

x =  ( 6 )1’2xl* ( 6 )’”.,, 
6+6 dx+K 

where x1 and x, are the eigenvectors corresponding to A1 and A,, the maximum 
and minimum eigenvalues of A. Rao [2005: 64-65] uses the above result t o  define 
the first of another series of antieigenvalues that he calls the SM-antieigenvalues, 
with corresponding antieigenvectors. 

Proofs. Section 6.7 

6.86. Gustafson [2002, 20051. 

6.87. Shisha and Mond [1967] and Styan [1983]. 
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CHAPTER 7 

GENERALIZED INVERSES 

When a matrix is not square, or square and singular, then an inverse does not 
exist. However, a type of inverse does exist for these matrices called a generalized 
inverse that functions very much like an inverse. Such inverses are very useful 
in statistics for finding explicit solutions for a variety of problems such as the 
solution of linear equations so that this chapter has close links with Chapter 13. 
The reader should also consult Chapter 14 on partitioned matrices. A summary of 
some computational aspects of generalized inverses, along with references, is given 
by Ben-Israel and Greville [2003: chapter 71. 

7.1 DEFINITIONS 

Definition 7.1. A weak inverse of an m x n matrix A is defined to  be any n x m 
matrix G that satisfies the condition 

(1) AGA = A. 

Such a matrix always exists (by 7.1 below), but it is not unique. We shall write 
G = A- .  Many of the results below are proved by verifying] or finding conditions, 
that (1) is true. 

Note that the name “generalized inverse” is fairly common but not universal. 
Other terms used include conditional inverse (cf. Graybill [1983: chapter 6]), pseu- 
doinverse, g-inverse, and weak inverse. I shall use the term weak inverse to avoid 
confusion. 

A Matmx Handbook for Statzstzcaans. By George A. F. Seber 
Copyright @ 2008 John Wiley & Sons, Inc. 
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If A is real and G also satisfies 

(2) GAG = A, 

(3) AG is symmetric, 

(4) GA is symmetric, 

then we call G the Moore-Penrose inverse and write G = A+. The above definition 
applies to complex matrices A if we replace “symmetric” by “Hermitian.” 

There are other matrices G that satisfy just one or more of the above four 
conditions, and we shall use subcripts to identify the conditions. For example, if 
G satisfies at least (1) and (2) we shall call G a glz-inverse and write G = A- 

(12). 
Similarly we can write A- = A;) and refer to A- as a gl-inverse. We shall only 
use the subscript notation if there is any danger of ambiguity. For one list of the 
various inverses see Rao and Rao [1998: 2941. 

We shall also define A{z, j ,  . . . , p }  to be the set of all matrices G which satisfy 
at least the conditions (i), (j), . . . , (p) .  Thus A&) E A{1,2}, A- E A{1}, and so 
on. We shall discuss these inverses later. 

If A is square, then a generalized inverse G that satisfies (l), (2), and AG = GA 
is called the group inverse, which we denote by A#. 

7.2 WEAK INVERSES 

7.2.1 General Properties 

Let A be an m x n real or complex matrix of rank r. Many of the following results 
can be proved by simply checking that condition (1)  above holds. 

7.1. (Existence) From (16.33) there exist conformable nonsingular matrices B and 
C such that 

Then A- = C ( ) B for arbitrary X , Y ,  and Z of appropriate sizes. Al- 

though a weak inverse always exists, we see that it is not unique. Another version 
based on the singular value decomposition is given in (7.82). 

7.2. (Basic Properties) 

(a) Taking the transpose of both sides of AA-A = A, we see that A-‘ is a 
weak inverse of A’. Although we shall write (A-)’ = (A’)-, what we mean, 
technically, is that A-’ E A’{l}. This idea underlies all the results below. 

(b) For k # 0, kklA- is a weak inverse kA. 

(c) A-A and AA- are each idempotent. Also, since Pc(A) = AA- is not 
generally symmetric, it represents a nonorthogonal (oblique) projection onto 
C(A). Similarly, Pc(A,) = (A-A)’ = A’A’- represents an oblique projection 
onto C(A’). 
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(d) rank(AA-) = trace(AA-) = trace(A-A) = rank(A-A) = rankA _< 
rank(A-). 

(e) C(AA-) = C(A), N ( A A - )  = N ( A ) ,  and C[(A-A)*] = C(A*). 

( f )  Taking conjugate transposes of AA-A = A we get (A*)- = (Ap)*.  

(8) rankA = m if and only if AA-  = I, (i.e., A-  is a right inverse of A) .  

(h) rankA = n if and only if A - A  = I, (i.e., A- is a left inverse of A). 

(i) A(A*A)-A*A = A and A*A(A*A)-A* = A*. This means that (A*A)-A* 
is a weak inverse of A,  and A(A*A)-  is a weak inverse of A*. 

(j) A(A*A)-A* is Hermitian, idempotent, and invariant for any choice of the 
weak inverse (A*A)-.  

(k) A * A G A  = A*A if and only if G is a weak inverse of A .  

7.3. The following conditions are equivalent. 

(1) G is a weak inverse of A. 

(2) A G  is idempotent and rank(AG) = rank A. 

(3) G A  is idempotent and rank(GA) = rank A.  

(4) rank(1, - G A )  = n - rankA. 

7.4. (Symmetric and Hermitian Matrices) 

(a) A Hermitian matrix has a Hermitian weak inverse, namely ;(A- + (A-)*). 

(b) A Hermitian matrix A has a non-negative definite weak inverse if and only if 
A is non-negative definite. 

7.5. (Rank of Inverse) 

(a) Taking X = 0 and Y = 0 in (7.1) and noting that the rank is unchanged by 
multiplying by a nonsingular matrix, we see that 

rank(A-) = rank A + rank Z. 

Since Z is arbitrary, there exists an A-  having any specified rank between 
rankA and min{m,n} (Rao and Mitra [1971: 311). In particular, we can 
choose Z such that A-  has full row or column rank (i.e., the rows or columns 
are linearly independent). 

(b) rank(A-) = rankA if and only if A-  is also a gl,z-inverse 

7.6. (Representation of A{ 1)) Let A- be any weak inverse of A. Then we have 
the following representations. 

(a) (i) A{ 1) = {X : X = A- + H - A-AHAA- ;  H arbitrary}. 

(ii) A{ 1) = {X : X = A- + ( I  - A - A ) F  + G(I - AA-) ;  F, G arbitrary}. 
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(b) Let A,, A,, and A3 be any (not necessarily the same) fixed weak inverses 
of A.  Then B1 and B2 are also weak inverses of A ,  where 

B1 = A,+F-A,AFAA,,  

Bz = A, + (I - A,A)F + G(I - AA,). 

Here F and G are abitrary matrices of appropriate sizes. Also, any weak 
inverse of A can be written as B1 and as B2 for some matrices F and G. 

If we consider the special case of A,, A,, and A3 being all the same, we see 
that B1 and B2 reduce to (a)(i) and (a)(ii), respectively. 

(c) If A and B are m x n matrices with A{ 1) = B{ l}, that is every weak inverse 
of of A is a weak inverse of B, and vice-versa, then A = B.  

7.7. (Rank and Products) 

(a) rank(ABC) = rankB implies that C(ABC)-A is a weak inverse of B. We 
can set A = I or C = I. 

(b) Let V be a matrix such that rank(A*VA) = rankA (which is automatically 
satisfied if A is Hermitian positive definite), then: 

(i) A(A*VA)-(A'VA) = A and (A*VA)(A*VA)-A* = A*. 

(ii) A(A*VA)-A* is invariant for any choice of (A*VA)- and is of the 
same rank as A. If A'VA is Hermitian, then so is A(A*VA)-A*. 

7.8. If A is m x n and D is m x m, and both are of rank m, then 

D-' = A(A'DA)-A'. 

7.9. (Hermite Form) 

(a) If A is n x n and B is nonsingular such that BA = HA, where HA is in 
Hermite form (Section 16.2.4), then B is weak inverse of A. 

(b) Let A be an m x n (m  > n)  matrix, and let A0 = (A,Omx(,,-n)). Let €30 
be a nonsingular matrix such that BoAo = H, where H is in Hermite form. 
Suppose Bo is partitioned as 

Bo = ( BBl) 
where B is n x m. Then B is a weak inverse of A. 
A similar result holds for m < n. 

7.10. Let A and B be m x n complex matrices. Then the following statements are 
equivalent: 

(1)  The nonzero eigenvalues of B - A  are invariant with respect to B-. 

(2) trace(B-A) is invariant with respect to B-. 

(3) C(A) C(B) and C(A*) C C(B*). 



WEAK INVERSES 129 

Proofs. Section 7.2.1. 

7.1. Ben-Israel and Greville [2003: 411 and Graybill [1983: 1361. 

7.2b. The result follows from the definition of a weak inverse. 

7 . 2 ~ .  A-AA-A = A - A  and AA-AA-  = AA- .  Also P ~ ( A ~ A  = A and 
then take the transpose of AP&,,) = A .  

7.2d. Graybill [1983: 1341, Rao and Bhimasnakaram [2000: 1951, and Schott 
[2005: 203-2041. 

7.2e. Ben-Israel and Greville [2003: 431 

7.2g-7.2h. Ben-Israel and Greville [2003: 431 and Schott [2005: 2041 

7.2i. Rao [1973a: 261 and Rao and Mitra [1971: 221. 

7.2j. Rao [1973a: 261 and Rao and Rao [1998: 268-2691 

7.2k. Rao and Mitra [1971: 221. 

7.3. Rao and Bhimasankaram [2000: 195, (1)-(3)] and Rao and Mitra [1971: 
21, 231. 

7.4b. Arguing as in (7.21) for Hermitian matrices, we have A = UAU*, where 
U is unitary and A is a diagonal matrix of non-negative eigenvalues. We then 
set A- = UA-U*, which is Hermitian non-negative definite. 

7.5b. Rao and Mitra [1971: 281. 

7.6a(i). Rao and Mitra [1971: 261 and Schott [2005: 2041. 

7.6a(ii). Rao and Mitra [1971: 261. 

7.6b. Graybill [1983: 1371 

7 .6~ .  Rao and Mitra [1971: 271 and Rao and Rao [1998: 2771. 

7.7a. Rao and Mitra [1971: 221 and Schott [2005: 2051. 

7.7b. Rao and Mitra [1971: 221. 

7.8. This follows from (7.7a) by noting that rank(A’DA) = rankD, since D 
is nonsingular. 

7.9. Graybill [1983: 1321. 

7.10. Baksalary and Puntanen [1990]. 
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7.2.2 Products of Matrices 

7.11. (Invariance Properties) 

(a) The matrix BA-C is invariant for any choice of A- if and only if C(B‘) c 
C(A’) and C(C)  g C(A). 

(b) From (a), If A is a real symmetric matrix, then B’A-B is invariant for any 
choice of A- if and only if C(B) C(A). 

(c) F’rom (a), if A is any n x n matrix with c & C(A) and c C C(A’), then c’A-c 
is invariant with respect to A-. 

(d) (Regression) Let X be any real matrix and let G = (X’X)- be any weak 
inverse of X’X. 

(i) If c c C(X’), then c’(X’X)-X’ is invariant for any weak inverse of X’X. 

(ii) X(X’X)-X’ = XX+ is invariant and symmetric, being the orthogonal 
projector onto C(X). Here X+ is the Moore-Penrose inverse of X. 

(iii) G’ is also a weak inverse of X’X. 

(iv) (X’X)-X’ is a weak inverse of X. 

(e) If rank(CAB) = rankC = rankB, then B(CAB)-C is invariant for any 
choice of (CAB)-.  

7.12. If P is idempotent, then P ( P A P ) - P  is a weak inverse of PAP. 

7.13. Noting that FF- and (F-F)’ = F’F’-, being idempotent, represent (oblique) 
projections onto F and F’, respectively (cf. 7.2c), we have the following for con- 
formable matrices. 

(a) BA-A = B if and only if C(B’) C(A‘), that is, if and only if there exists 
a matrix D such that B = DA. 

(b) AA-B = B if and only if C(B) C(A), that is, if and only if there exists a 
matrix D such that B = AD. 

(c) (CAB)(CAB)-C = C if and only if rank(CAB) = rankC. 

(d) B(CAB)-(CAB) = B if and only if rank(CAB) = rankB. 

7.14. Let A be an m x n matrix, B be an rn x m matrix, and C be an n x n matrix. 

(a) If B and C are nonsingular, (BAC)- = C-lA-B-’ for some weak inverse 
A- of A.  

(b) If A has rank m and B is nonsingular, then (A’BA)- = A-B-lA’-. 

(c) (AB)-  = B-A- if and only if P = A-ABB- is idempotent 

7.15. Let A, B, and C be m x n, p x m, and n x q matrices, respectively. If B has 
full column rank m, and C has full row rank n, then 

(BAC)- = C-A-B-.  
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We can also get special cases by setting one of the matrices equal to the identity 
matrix. 

7.16. If (A’A)- is a weak inverse of A’A, then so is (A’A)-’. 

7.17. The following hold for weak inverses A- and B-. 

(a) (I - AA-)B-BA = -(I - AA-)(I - B-B)A. 

(b) BAA-(I - B-B) = -B(I - AA-)(I - B-B). 

(c) (BA)- = A-B- - A-(I - B-B)[(I - AA-)(I - B-B)]-(I - AA-)B-. 

(d) Let A be an m x n matrix and B be an n x p matrix. If rankB = n, then 
(AB)- = B-A-. 

(e) C(A) n C(B) = 0 if and only if (AA’ + BB‘)- is a weak inverse of AA’. 

Proofs. Section 7.2.2. 

7.11a. Graybill [1983: 134-135, with the notation change A“ + A- and 
A- + A+] and Rao and Mitra [1971: 211. An alternative proof using the 
idea of extremal ranks is given by Tian [2006a: 951. He also gives necessary 
and sufficient conditions for rank(BA-C) to be invariant with respect to A-. 

7.11d(i). Graybill [1983: 1351. 

7.1 Id( ii)-( iv) . Searle [ 1982: 22 1-2221. 

7.11e. Rao and Mitra [1971: 221. 

7.12. Follows from the definition of a weak inverse. 

7.13a-b. Schott [2005: 2051 and Rao and Mitra [1971: 21-22] 

7.13~-d. Harville [2001: 106, exercise 441. 

7.14a. Harville [1997: 113, lemma 9.2.41. 

7.14b. From (7.2g) we have AA- = I,, and then use the definition of weak 
inverse. 

7 .14~.  Harville [2001: 51, exercise 81. If P2 = P,  then AP2B = APB, which 
implies that (AB)- = B-A-. The converse is straightforward. 

7.15. We use the fact that B-B = I, and CC- = I, from (7.2g) and (7.2h). 

7.16. Schott [2005: 206-2071. 

7.17. Isotalo et al. [2005b: chapter 121 and (a)-(c) quoted by Searle [1982: 
2261. For (d) we have AB(B-A-)AB = AB since BB- = I,. 
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7.2.3 

7.18. The following conditions are equivalent for any weak inverse (A + B)-. 

Sums and Differences of Matrices 

(2) (A + B)- is a weak inverse of both A and B. 

(3) C(A) n C(B) = 0 and C(A’) n C(B’) = 0. 

7.19. Let A, B, C, and V be real conformable matrices with V positive definite, 
and C(C) = C(A’) nC(B). Let QB = I - PB, where PB = B(B’B)-B’. 

A( A‘VA) - A‘ - AQB ( QB A‘VAQB ) - QB A’ 
= A( A’VA)-C [C’( A’VA)- C] - C’( A’VA)-A’. 

(b) V-’ - QB(QBVQB)-QB = V-lB(B’V-lB)-B’V-l 

QB can be replaced by a matrix with the same range. The above results are used 
in the theory of singular linear regression models. 

Definition 7.2. Given A and B both m x n matrices, then A(A + B)-B is called 
the parallel sum of A and B. Some authors call (A+ + B+)+ the parallel sum and, 
under certain conditions, the two definitions are equivalent. For properties relating 
to both definitions and their equivalence, see Rao and Mitra [1971: 186-1921. They 
also define a parallel difference. 

7.20. For conformable matrices 

(a) AA’(AA’ + BB’)-BB’ = BB’(AA’ + BB’)-AA’. 

(b) [AA’(AA’ + BB’)-BB’]- = (AA’)- + (BB’)- 

Proofs. Section 7.2.3. 

7.18. Harville [1997: 4211. We obtain (2) by multipying out (1) to get A(A+ 
B)-A = A, B(A + B)-B = B, A(A + B)-B, and B(A + B)-A. 

7.19-7.20. Kollo and van Rosen [2005: 501. 

7.2.4 Real Symmetric Matrices 

Let A be a real symmetric matrix. 

7.21. By (16.44) there exists orthogonal T such that 

where A, is a nonsingular r x r diagonal matrix consisting of the nonzero eigenvalues 
of A. Then 
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where X, Y ,  and Z are arbitrary. Note that A- need not be symmetric. 
(When A is Hermitian, then T is unitary and T' is replaced by T*.) 

7.22. Suppose A is n x n, P is symmetric and idempotent, A + CP is nonsingular, 
and PA = 0. 

(a) (A + cP)-' is a weak inverse of both A and P.  

(b) In particular, if Al, = 0, J, = 1,l; (=nP), and A + dJ, is nonsingular, 
then (A + dJ,)-' is a weak inverse of A. Furthermore, 

A+ = (A + dJ,)-' - (dn2)-lJ,. 

These results are useful in experimental designs (e.g., John and Williams 
[1995: 231). 

7.23. Suppose that 1 + 1 # 0 in the underlying field F. Since (A-)' is a weak 
inverse of A', a symmetric weak inverse of a symmetric matrix A always exists, 
namely B = ;[A- + (A-)'I. 

7.24. From the definition of a weak inverse, if A and A-A are symmetric, then 
(A-)2 is a weak inverse of A2. 

Proofs. Section 7.2.4. 

7.21. Searle [1982: 2201. 

7.22. John and Williams [1995: 231 

7.23. Since A-' = A'- = A-. we have AA-'A = A and B = A-. 

7.2.5 Decomposition Methods 

7.25. (Diagonalizable Matrices) If A is diagonalizable of rank T ,  we have from 
(16.17) the spectral decomposition A = cr=l X,F, = c:='=, X,F,, where A"=,+' = 
. f .  = A, = 0. Then: 

(a) c;==, XL'F, is a weak inverse of A. 

(b) (A + C:="=,+, azF,)-l is a weak inverse of A for all nonzero real a,+l,. . . ,a,. 

7.26. There exist permutation matrices II1 and II, such that 

where B11 is a nonsingular T x T matrix and T = rank A. Then A = IIiBIIL and 

BT: 0 
B - = (  0 0 )  

is a weak inverse of B. Also IIzB-IIl is a weak inverse of A. 

Proofs. Section 7.2.5. 

7.25. Hunter [1983a: 1501. 

7.26. Searle [1982: 217-2181. 
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7.3 OTHER INVERSES 

In this section we assume real matrices. However, many of the results hold for 
complex matrices by simply replacing ’ by *. 

7.3.1 Reflexive (912)  Inverse 

Let A be an m x n matrix and G an n x m matrix. As noted at the beginning of 
this chapter, G = AT2 is a 912-inverse of A if AGA = A and GAG = G, i.e., if 
G is a weak inverse of A and A is a weak inverse of G. Such an inverse is usually 
refered to as a reflexive generalized inverse or reflexive g-inverse. 

7.27. If A is m x n, we have from (3.5) the full-rank factorization A = CmX,RTXn, 
where C and R have rank r. Let D and S be the left and right inverses of C and 
R, respectively, so that DC = I, and RS = I,. Then SD is a reflexive g-inverse 
of A. 

7.28. If A; and A, are any (possibly different) weak inverses of A, then ATAA, 
is a gl2-inverse of A. 

7.29. Every reflexive g-inverse of a matrix A can be expressed in the form of 
A-AA- for some weak inverse A- of A. 

7.30. A weak inverse G of A is a gl2-inverse if and only if r ankG = rank A. 

7.31. If G is a gl2-inverse of A, then G’ is a gl2-inverse of A’. 

7.32. (Invariance) If A, B, and C are nonzero conformable matrices, then AB,C 
is invariant with respect to BL2 if and only if C(A’) C C(B’) and C(C) 2 C(B). 

Proofs. Section 7.3.1. 

7.27. Rao and Rao [1998: 2791. 

7.28. Harville [1997: 496, lemma 20.3.21 

7.29. Rao and Mitra [1971: 281. 

7.30. Harville [1997: 4971 and Rao and Rao [1998: 2791. 

7.31. Harville [1997: 4971. 

7.32. Tian [2006a: 1001 proved this using his extremal rank technique. He 
also gave necessary and sufficient conditions for the rank to be invariant. 

7.3.2 Minimum Norm (914)  Inverse 

The matrix G is a 914-inverse of A if AGA = A and GA is symmetric (or Hermi- 
tian if A is complex). It is usually refered to as a minimum norm g-inverse. 

7.33. The following conditions are equivalent. 

(1) G is a 914-inverse of A. 
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(2) GAA’ = A’. 

(3) AA’G = A. 

(4) GA = Pc(A,), where Pc(A,), being symmetric and idempotent, represents 
the orthogonal projection onto C(A’). (In this case GA is invariant to the 
choice of G.) 

In the complex case we replace ’ by *. 

7.34. If G is a gl4-inverse, then x = Gy minimizes llxll2 subject to Ax = y .  

7.35. A{14} = {G : G = AC4 + Z(1, - AA,)), where Z is an arbitrary n x m 
matrix. 

7.36. (Product Invariance) If A, B, and C are nonzero conformable matrices, then 
AB,C is invariant with respect to BC4 if and only if C(C) C C(B). 

Proofs. Section 7.3.2. 

7.33. Harville [1997: 498-4991. 

7.34. Harville [1997: 497, theorem 20.3.61 and Rao and Rao [1998: 2881. 

7.35. Ben-Israel and Greville [2003: 551. 

7.36. Tian [2000a: 1051. 

7.3.3 

Let A be an m x n matrix and G an n x m matrix. As noted at the beginning 
of this chapter, G is a gl24-inverse of A if AGA = A, GAG = G and GA is 
symmetric. Since it combines a g12 and a ~ 1 4  inverse, it is refered to as a minimum 
n o r m  reflexive g-inverse. 

7.37. A matrix G is a glzd-inverse of A if and only if G = A’(AA’)- for some 
weak inverse (AA’)- of AA’. 

7.38. If G is a glzd-inverse of A, then C(G) = C(A’). 

7.39. A(124) = {G : G = AT24 + AT24Z(11L - AA,,)}, where Z is an arbitrary 
n x m matrix. 

Minimum Norm Reflexive (9124) Inverse 

Proofs. Section 7.3.3. 

7.37-7.38. Harville [ 1997: 4991. 

7.39. Quoted by Ben-Israel and Greville [2003: 561. 
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7.3.4 Least Squares (913) Inverse 

Let A be an m x n matrix and G an n x m matrix. As noted at the beginning 
of this chapter, G is a gl3-inverse of A if AGA = A and AG is symmetric. It 
is usually refered to as a least squares g-inverse and is denoted by AT3. In what 
follows, we can replace ’ by * in the complex case. 

7.40. A p x n matrix G is a gl3-inverse of the n x p matrix X if and only if 
(y - Xb)’(y - Xb) is minimized at b = Gy. 

7.41. The following statements are equivalent. 

(1) A matrix G is a gl3-inverse of A. 

(2) A‘AG = A’ or, equivalently, G’A’A = A. 

(3) AG = Pc(A), where Pc(A) = A(A’A)-A’ represents the orthogonal projec- 
tion onto C(A). 

7.42. Let G be a gl3-inverse of A. Then: 

(a) AG is invariant to the choice of G. 

(b) C(G‘A‘) = C(A). 

7.43. (A’A)-A’ is a g13-inverse of A for any weak inverse, (A’A)-, of A’A. 

7.44. A(13) = {G : G = AT3 + (I, - AF3A)Z}, 

where Z is an arbitrary n x m matrix. 

7.45. (Product Invariance) 
then AB,C is invariant with respect to BF3 if and only if C(A’) C C(B’). 

If A, B,  and C are nonzero conformable matrices, 

Proofs. Section 7.3.4. 

7.40. Harville [1997: 500-501, corollary 20.3.141 and Schott [2005: 2331. 

7.41. Harville [1997: 5001 and Rao and Rao [1998: 289-2901, 

7.42. Harville [1997: 501, corollary 20.3.151. 

7.43. Ben-Israel and Greville [2003: 471 and Schott [2005: 2071. 

7.44. Quoted by Ben-Israel and Greville [2003: 551. 

7.45. This result is proved by Tian [2006a] using his extremal rank method. 
The same condition also applies for rank invariance. 
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7.3.5 

Let A be an m x n matrix and G an n x m matrix. As noted at  the beginning 
of this chapter, G is a glza-inverse of A if AGA = A, GAG = G, and AG is 
symmetric. Such an inverse is also called a least squares reflexzwe g-inverse 

7.46. If G is a glz3-inve1-s~ of A, then C(G’) = C(A) and N(G)  = [C(A)]’ = 
N(A’). 

7.47. G is a 9123 inverse of A if and only if G = (A’A)-A’ for some weak inverse 
(A’A)- of A’A. 

7.48. A(123) = {G : G = ATz3 + (IvL - AYz3A)ZAYz3}, where Z is an arbitrary 
n x m matrix. 

Proofs.  Section 7.3.4. 

Least Squares Reflexive (9123) Inverse 

7.46. Harville [1997: 501, lemma 20.3.161. 

7.47. Harville [1997: 502, theorem 20.3.17]. 

7.48. Quoted by Ben-Israel and Greville [2003: 561. 

7.4 MOORE-PENROSE (G1234) INVERSE 

7.4.1 General Properties 

Let A be an m x n matrix and G an n x m matrix. If G satisfies all four conditions 
mentioned at the beginning of this chapter, then it is called the Moore-Penrose 
inverse of A and is denoted by A+. This definition was given by Penrose [1955]. 
For convenience, we list the four conditions for the complex case, namely: (1) 
AGA = A, (2) GAG = G, (3) AG = (AG)’, and (4) GA = (GA)*. 

The Moore-Penrose inverse of a general matrix A can be obtained using a QR 
decomposition (16.42) or the singular value decomposition given below (cf. 7.50). 
For diagonalizable matrices, which includes symmetric matrices, see (16.17~). 

Moore-Penrose inverses are particularly useful in experimental design. John 
and Williams [ 19951 discuss the Moore-Penrose inverse of the so-called information 
matrix of a design for a wide range of designs including the incomplete block, the 
connected, and the cyclic designs. 

There are a number of references referring to  the real case, namely Abadir and 
Magnus [2005: section 10.31, Graybill [1983: chapter 6, with A- + A+], Harville 
[1997: chapter 201, Magnus and Neudecker [1999: 33, 34, 381, and Schott [2005: 
section 5.21. For the complex case see Ben-Israel and Greville [2003], Campbell 
and Meyer [1979: chapter I] ,  and Rao and Mitra [1971: section 3.3 and, for some 
miscellaneous expansions of A+,  section 3.51. 

7.49. (Representation) If A is a complex matrix of rank r ,  then we have the 
singular value decomposition of A, namely A = P,A,Q: (cf. Section 16.3), where 
P, is m x r with orthonormal columns, Q, is n x r with orthonormal columns, and 
A, is an r x r diagonal matrix with positive diagonal elements. Then 

A+ = QTALIP:. 
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7.50. A+ is unique. 

7.51. Let A be an m x n real matrix of rank r. Then A+ can be computed by the 
following steps. 

(1) Compute B = A'A. 

(2) Let C1 =In. 

(3) ComputeCj+l =I , ( l / j ) t race(CjB)-CjB,  f o r j = l , 2 ,  . . . ,  r-1. 

(4) Compute A+ = rC,A'/ trace(C,B). 

Also C,+lB = 0 and trace(C,B) # 0. Since C,+1B = 0, r does not need to 
be known in advance. This result is mainly of historical interest, but it does give 
a method for small matrices. Numerically stable methods for computing A+ are 
given by Golub and Van Loan [1996]. 

7.52. Below we give some basic properties of the Moorepenrose inverse of a single 
matrix or vector. We assume matrices and vectors are complex, unless otherwise 
stated. Most of the following are readily proved by showing that the four conditions 
are satisfied and also invoking the uniqueness of the Moore-Penrose inverse. 

(a) From (7.49) and (7.50), A+ always exists and is unique. 

(b) A+ is the minimum norm least-squares g-inverse of A, i.e., for every b that 

(c) a+ = (a*a)-la* and (ab*)+ = (a*a)-'(b*b)-'(ba*). 

(d) If c # 0, then (cA)+ = (l/c)A+ 

( e )  If D = diag(dl,dz,. . . ,d,), then D+ = diag(dlf,di,.  . . , df) ,  where (for i = 

minimizes (y - Ab)*(y - Ab),  b*b is minimized when b = A+y. 

1 , 2 , .  . . ,n )  
d: = { 'c' if di # 0, 

if di = 0. 

( f )  A+ = A-' for nonsingular A. 

(g) A+ = A* if the columns of A are orthogonal with respect to the inner product 
( X > Y )  = Y*X. 

(h) ( A + ) + = A .  

(i) (A')+ = (A+)', (a)+ =(A+), and (A*)+ = (A+)*. 

(j) AA+ = A + A  if and only if C(A) = C(A*), i.e., it holds when A is Hermitian. 

(k) rankA = rankA+ = rank(AA+) = rank(A+A). 

(1) For any m x n complex matrix A: 

(i) C(A) = C(AA+) = C(AA*). 

(ii) C(A+) = C(A*) = C(A+A) = C(A*A). 

(iii) C(1, - AA+) = N ( A A + )  = N ( A * )  = N(A+). 
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(iv) C(1, - A+A) = N(A+A) = N(A) .  

(m) A+ need not be a continuous function of the elements of A. Not only can 
A+(t)  be discontinuous in the sense that limt+o A+(t)  # A+(O), but as A(t) 
moves closer to A(O), A+(t) can move further away from A+(O). However, 
A+@) is continuous on [a, b] if and only if rank[A(t)] is constant on [a, b ] .  

7.53. Let A be an n x n real symmetric matrix with T nonzero eigenvalues A’, 
A2,. . . ,AT ,  and let AT = diag(A1, A2,. . . , A T ) .  Then: 

(a) From (16.44) there exists an orthogonal matrix Q such that 

A = Qdiag(A1,. . . ,A , ,O, .  . . ,O)Q’. 

(b) From (a) we have 
T 

trace A+ = C A;’ 
i= 1 

7.54. For any real matrix A: 

(a) A+A and AA+ are symmetric and idempotent, and they are equal if A is 
symmetric. 

(b) Since A+A and AA+ are symmetric: 

(i) A’AAf = A’ = A+AA’. 

(ii) A‘A+’A+ = A+ = A+A+‘A‘ 

(c) (A’A)+ = A+A+’ and (AA’)+ = Af’At 

(d) A+ = (A’A)+A’ = A’(AA’)+. Also: 

(i) If A has full column rank, then A+ = (A’A)-’A’ and A+A = I,. 

(ii) If A has full row rank, then A+ = A’(AA’)-’ and AA+ = I,. 

(e) (AA+)+ = AA+ and (A+A)+ = A+A. 

(f)  A(A’A)+A’A = A = AA’(AA’)+A. 

(g) If V is positive definite, then (X’V-‘X)(X’V-’X)+X’ = X’ 

(h) For any weak inverse A-, A+ = A’(AA‘)-A(A’A)-A‘. 

(i) If A-A is real symmetric, then it is unique and equals A+A.  

(j)  If rankA = 1, then A+ = [tra~e(AA’)]-~A’. 

The above results also hold for A complex if we replace ‘ by * and symmetric by 
Hermitian. 
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7.55. Any weak inverse of A can be expressed as 

A- = A+ + H - A+AHAA+, 

for any H of appropriate size. This follows from (7.6a). 

7.56. Let A be a real matrix. The following conditions are equivalent. 

(1) A matrix G is the Moore-Penrose inverse of A. 

(2) A*AG = A* and G*GA = G*. 

(3) AG = PA and GA = PG, 

where PA and PG represent orthogonal projections onto C(A) and C(G), 
respectively. (This was the original definition of the Moore-Penrose inverse 
given by Moore [1935]. The equivalence of the two definitions is proved by 
Campbell and Meyer [1979: 91 and Schott [2005: 181-182, real case].) 

7.57. If A is a real normal matrix (i.e., A’A = AA’) with Moore-Penrose inverse 
A+, then: 

(a) A + A = A A +  

(b) (Ak)+ = (A+)k for any positive integer k .  

(c) If A is symmetric, it is normal and AA+ = A+A. 

7.58. Let A be a real m x n matrix, and suppose that certain rows are identical 
(respectively zero). Then the same rows in A’+ and also in AA- are identical 
(respectively zero). 

7.59. (Expressed as a Limit) If A is an m x n matrix then 

A+ = lim(A’A + b21,)-’A’ = lim A’(AA’ + 15~1,)-~ 
6-0 6-0 

7.60. (Continuity) Let A be an m x n matrix and All  A2,. . , , ... be a sequence 
m x n matrices such that Ak + A as k + 00 (cf. Definition 19.3), then 

A,+ + A +  as k + co 

if and only if an integer N exists such that 

rank Ak = rank A for all k > N .  

7.61. Given a real matrix A, let F13 be any gl3-inverse of AA‘, and let H14 be 
any gl4-inverse of A‘A. Then 

A+ = A’F13 = H14A‘. 

7.62. (Idempotent matrices) Let A be a real matrix. 

(a) If A is symmetric and idempotent, then A+ = A. 

(b) A’A is idempotent if and only if A+ = A’. 
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7.63. (Non-negative Definite Matrices) 

(a) Suppose A is an n x n (real) non-negative definite matrix of rank r .  We 
can write A = R’R, where R is r x n of rank r (cf. 10.10)). Then, since 
(RAR’)-l = (RR’)-’ and, using (7.65a) and (7.54d), we have 

A+ = R’(RAR’)-lR 

= R’(RR’)-*R 

= R+(R+)’. 

The last result also follows directly from (7.54~).  

(b) It follows from (a) that if A is non-negative definite (respectively positive 
definite), then A+ is also non-negative definite (respectively positive definite). 

7.64. (Non-negative Definite Difference) Suppose that A, B, and A - B are non- 
negative definite matrices, then B+ - A+ is non-negative definite if and only if 
rank A = rank B. 

7.65. (Full-Rank Factorization) If A = CR is a full rank decomposition of an 
n x R complex matrix of rank r ,  where C is m x r of rank r and R is r x n of rank 
r ,  (cf. 3.5), then: 

(a) A+ = R*(C*AR*)-’C* = R*(RR*)-l(C*C)-lC*. 

(b) A+ = R+CS 

We note that (7.63) is a special case of the above results. 

7.66. Let A be an m x n matrix, and let B be an n x m matrix. Then B is the 
Moore-Penrose inverse of A if and only if B is a least squares (913) inverse of A 
and A is a least squares inverse of B. 

Proofs. Section 7.4.1. 

7.49. Abadir and Magnus [2005: 284-2851 and Schott [2005: 180-1811, real 
case only. 

7.50. Schott [2005: 1811. 

7.51. This is quoted by Graybill [1983: 1281 and proved by Penrose [1956]. 

7.52b. Campbell and Meyer [1979: 28-29]. 

7.52~-h. Simply check that the four conditions are satisfied. 

7.521. Take the conjugate transpose of the four conditions. 

7.523. Abadir and Magnus [2005: 290, real case]. 

7.52k. Abadir and Magnus [2005: 286, real case] and Schott [2005: 1841. 

7.521. Campbell and Meyer [1979: 121 

7.52m. Meyer [2000a: 4241 and Campbell and Meyer [1979: 2251. 
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7.53a. Schott [2005: 185-1861. 

7.54a. Follows from the definition of A+. 

7.54b. Abadir and Magnus [2005: 2871 and Graybill [1983: 1121. 

7 .54~.  Abadir and Magnus [2005: 2871, Graybill [1983: 1091, and Schott [2005: 
1831. 

7.54d. Abadir and Magnus [2005: 287, 2881 and Schott [2005: 1831. 

7.54e. Graybill [1983: 1101 and Schott [2005: 1831. 

7.54f. Abadir and Magnus [2005: 2871. Follows from the fact that  A(A’A)+A 
is the orthogonal projection onto C(A). 

7.54g. Abadir and Magnus [2005: 2871. 

7.54h. Searle [1982: 2161. 

7.541. Both are equal to the orthogonal projection matrix, which is unique. 

7.54j. Abadir and Magnus [2005: 2881. 

7.56. Harville [1997: 5031. 

7.57a. From (2.35b), C(A) = C(AA’) = C(A’A) = C(A’); we then apply 
(7.52p(i)). 

7.5713. Proof can be demonstrated for k = 2. Using (a), A’(A+)’A’ = 
AAA+AiAA = AAiAAAiA = A’; then use induction. 

7.58. Graybill [1983: 117-1181. 

7.59. Harville [1997: 508-5101. This result holds for complex matrices if we 
replace ’ by *, as quoted by Rao and Mitra [1971: 641. 

7.60. Campbell and Meyer [1979: 2171 and Penrose [1955]. 

7.61. Harville [1997: 5061 

7.62a. Abadir and Magnus [2005: 2861 and Schott [2005: 1851. 

7.62b. Graybill [1983: 116-1171, 

7.63b. Harville [1997: 5051 and Searle [1982: 2201. 

7.64. Quoted by Schott [2005: 215, exercise 5.191. 

7.65a. Ben-Israel [2003: 481, Harville [1997: 494, real case], and Searle [1982: 
212, real case]. 

7.65b. Follows from (a) and (7.54d(i)-(ii)); see also Schott [2005: 189, real 
case]. For some general conditions for (CR)+ = R+C+ to hold when ranks 
are not specified see Ben-Israel and Greville [2003: 160-1611. 

7.66. Quoted by Schott [2005: 219, exercise 5.471. 
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7.4.2 Sums of Matrices 

7.67. Let U and V be real m x n matrices. Define 

(a) If UV’ = 0, then 

(U + V)+ = u+ + (I, - U+V)(C+ + W). 

(b) If UV’ = 0 and U’V = 0, then 

7.68. (Orthogonal Sum) Let A = Cf=lAi ,  where the Ai are all real m x n 
matrices. If AiAg = 0 and AIAj = 0 for all i , j  = 1 ,2 , .  . . , k ,  i # j ,  then from 
(7.67b) we have 

k 

A+ = CA+ 
i = l  

Proofs. Section 7.4.2. 

7.67a. Boullion and Ode11 [1971]. 

7.67a-b. Schott [2005: 1971. 

7.4.3 Products of Matrices 

7.69. Suppose A is any n x n complex matrix. 

(a) Let P be any T x n (T 2 n)  matrix with orthonormal columns (i.e., P * P  = In) 
and Q be any s x n  (s 2 n)  matrix with orthonormal columns (i.e., Q*Q = In), 
then 

(PA&*)+ = QA+P*. 

(b) If B = U*AU for some unitary matrix U, then B+ = U*A+U. 

7.70. Let A be a real m x n matrix and B be a real n x p matrix. The following 
conditions are equivalent. 

(1) (AB)’ = B+A+. 

(2) A+ABB’A’ = BB’A’ and BBfA’AB = A’AB. 

(3) A+ABB’ and A’ABB+ are symmetric matrices. 

(4) A+ABB’A’ABB+ = BB’A’A. 

(5) A+AB = B(AB)+AB and BB’A’ = A’AB(AB)+. 
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7.71. Let A be an m x p real matrix, and let B be a p x n real matrix. 
B1 = A+AB and A1 = ABlB:, then AB = AlBl and (AB)+ = BFA?. 

7.72. Let A be any m x n matrix, and let K be an n x n nonsingular matrix. If 
B = AK, then BB+ = AA+. It may not be true that BfB = A+A. 

7.73. If A and B are conformable complex matrices, then 

If 

(AB)+ = (A+AB)+(ABB+)+ = ( P ~ ( ~ . ) B ) + ( A P ~ ( ~ ) ) + ,  

where Pc(B) is the orthogonal projection onto C(B), and so on (cf. 7.54a). 

7.74. The following hold: 

(a) A = 0 if and only if A+ = 0. 

(b) AB = 0 if and only if B+Af = 0. 

(c) A+B = 0 if and only if A’B = 0. 

(d) If Ax = 0 for some vector x, then A+x = 0 also. 

7.75. (Cancellation) Suppose we have real conformable matrices. 

(a) A‘AB = A’C if and only if AB = AA+C. 

(b) If B has full row rank so that det(BB’) # 0, then (AB)(AB)+ = AA+. 

7.76. Let A be a real m x n matrix with n 5 m, and let B be any real n x n matrix 
satisfying (A’A)2B = A’A. Then A+ = B’A’. 

7.77. Suppose A is a real symmetric matrix. 

(a) A+ = B’AB, where B is any solution of A2B = A 

(b) A+ = (AK)2A, where K is any solution of A2KA2 = A2. 

Proofs. Section 7.4.3. 

7.69a. Harville [1997: 506, real case]). 

7.69b. Quoted by Ben-Israel and Greville [2003: 491. 

7.70. Schott [2005: 1901. For many other equivalent but more complex condi- 
tions involving the Moore-Penrose inverse of products, see Tian [2006c] and 
references therein. For a related paper see also Tian [2005a]. 

7.71. Schott [2005: 1911. 

7.72. Graybill [1983: 1151. 

7.73. Campbell and Meyer [1979: 201. 

7.74. Abadir and Magnus [2005: 2881. 

7.75. Abadir and Magnus [2005: 2911 and Magnus and Neudecker [1999: 341. 

7.76-7.77. Graybill [1983: 1231. 
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7.5 GROUP INVERSE 

We recall from Definition 7.1 that A# is the group inverse of a square real or 
complex matrix A if it satisfies the three conditions 

AA#A = A, A#AA# = A#,  and AA# = A#A 

Such an inverse is a special case of the so-called Druzin inverse, discussed by Ben- 
Israel and Greville [2003: chapter 4, section 41 and Campbell and Meyer [1979: 
chapters 7-91, Group inverses are particularly useful in the theory of finite Markov 
chains (cf. Meyer [1975] and Noumann and Xu [2005]). 

7.78. An n x n matrix A has a group inverse if and only if C(A) @ N ( A )  = Cn. 
When the group inverse exists, it is unique. 

7.79. A square matrix A has a group inverse if and only if r ankA = rank(A2). 

7.80. Let a square matrix A have a full-rank factorization A = FG (cf. 3.5). Then 
A has a group inverse if and only if GF is nonsingular, in which case 

A# = F(GF)-’G. 

7.81. (General Properties) From the definition we have the following: 

(a) If A is nonsingular, then A# = A-l. 

(b) ( A # ) # = A .  

(c) (A*)# = (A#)*. 

(d) (A’)# = (A#)’ 

(e) (Ak)# = (A#)’” for every positive integer k .  

(f) A# = A(A3)-A. 

Proofs. Section 7.5. 

7.78-7.81. Ben-Israel and Greville [2003: 156-1581. 

7.6 SOME GENERAL PROPERTIES OF INVERSES 

7.82. (Representations) The following is a useful summary from Rao and Rao 
[1998: 295-2961) giving representations for all the inverses of an  m x n real (respec- 
tively complex) matrix A of rank r .  We begin with the singular value decomposition 
of A, namely 

Am,, = p m x m  ( Ar 0 0 0 ) Q h x n ,  

where P is an m x m orthogonal (respectively unitary) matrix, Q is an n x n 
orthogonal (respectively unitary) matrix and A, = diag(61,62,. . . ,6,) is an m x n 
matrix with 61 2 6 2  2 . . . 2 6, > 0. For complex matrices we replace ’ by *. We 
shall use the notation Gt. . .  to denote the n x m gi,.,-inverse of A. 
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7.83. (Matrix Bounds) 
10.1): 

P’, where X, Y and Z are arbitrary. Z 

P’, where X and Y are arbitrary. 
YAX 

P’, where X and Z are arbitrary. 
Z 

P’, where X is arbitary. 

”> 
” >  0 

O )  
P’, where Y and Z are arbitrary. Z 

P’, where Y is arbitrary. 
0 

O ) P ’  0 

If A is mxn, then using the Lowner ordering (cf. Definition 

(a) 

(b) 

(c) 

(1, - AGl)’(L - AG1) ? (1, - AG13)’(1, - AG13). 

(1, - AGl)’(L - AG1) ? (1, - AG14)’(Im - AG14). 

(1, - AG1)’(L - AG1) 

(1, - AG1)(L - AG1)’ 
>- 
>- 

(1, - AG123)’(1, - AG123) 
(1, - AG123)(1, - AG123)’. 

(4 
(1, - GlA)’(L - G1A) 
(1, - GiA)(L - GiA)’ 

>- 
>- 

(1, - GI~~A)’( ITZ - G124A) 
(1, - Gi24A)(I, - G124A)’ 

(el 

(I, - AGl)’(I, - AG1) 

(I, - AG1)(I, - AG1)’ 

(I, - GlA)’(I, - G1A) 
(I, - GIA)(I, - GIA)’ 

(I, - AA+)‘(I, - AA+) 
(I, - AA+)(I, - AA+)’ 

(I, - A+A)’(I, - A+A) 
(I, - A+A)(I, - A+A)’. 

(f) From (a) and (b), the first results of ( c )  and (d), and the first and third 
results of (e) we can obtain lower bounds, as in the following example. For 
any unitarily invariant norm 1 1  . l l u z  on the space of all m x m matrices, 

min IIL - AGllui = 111, - AGi3(lui, 
G 

where the minimum is taken over all weak inverses GI.  

Proofs. Section 7.6. 

7.83. Rao and Rao [1998: 296-2991, 



CHAPTER 8 

SOME SPECIAL MATRICES 

In this chapter we put collect together a number of matrices that have a special 
structure or properties. Other more general types of matrix occur elsewhere in this 
book such as Hermitian, symmetric, and normal matrices in Chapter 5, various 
non-negative matrices in Chapter 9, and non-negative definite matrices in Chapter 
10. 

8.1 ORTHOGONAL A N D  UNITARY MATRICES 

Definition 8.1. An n x n matrix T is orthogonal if T'T = I,. It immediately 
follows by taking determinants that T is nonsingular, T' = T-' and TT' = I,. 
An n x n complex matrix is unitaq if U*U = I, and then U-' = U*. Although 
an orthogonal matrix can be real or complex, we shall focus on real orthogonal 
matrices rather than complex orthogonal matrices in this chapter, unless otherwise 
stated. 

8.1. A unitary matrix is also a normal matrix so that all the properties of a normal 
matrix apply. For example, if U is unitary, there exists a unitary matrix V such 
that U = Vdiag(X1, Xa,. . . , X,)V*, where the X i  are the eigenvalues of U and 
satisfy (X,I = 1 for all i (cf. 5.31). Note that if U is unitary, then so are u, U', and 
U+, the Moore-Penrose inverse. 

8.2. An R x n complex matrix A is unitary if and only if IIAx112 = (1x112 for all 
x E C". 

A Matrix Handbook for Statistacians. By George A. F. Seber 
Copyright @ 2008 John Wiley & Sons, Inc. 
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8.3. Let U be a unitary matrix partitioned as 

where A is m x m and D is n x n. 

(a) If m = n, then A and D have the same singular values. 

(b) If m < n and the singular values of A are u1, u2,. . . ,urn, then the singular 
values of D are also u1,u2,. . . ,urn together with n - m values equal to 1. 

(c) det A = det D. 

8.4. (Symmetric Unitary Matrix) Let U be a symmetric unitary matrix, that is, 
U' = U. Then there exists a complex matrix S with the following properties. 

(a) S2 = U. 

(b) S is unitary. 

(c) S is symmetric. 

(d) S commutes with every matrix that commutes with U 

8.5. A unitary matrix is an isometry,  that is, a linear transformation that preserves 
Euclidean length. 

8.6. Let T be a real n x n orthogonal matrix and U a unitary matrix. 

(a) Given (x,y) = x'y, the columns (rows) of T form an orthonormal set. The 
same holds for U if we define (x, y) = x*y. 

(b) det T = fl. If det = 1 then T represents a rotation 

(c) I det UJ = 1, where I . I is the complex modulus. 

(d) (i) If X is an eigenvalue of T then so is X-'. 

(ii) The eigenvalues of T are fl or occur in conjugate pairs eie and e-Ze (0 
real) on the unit circle, so that all the eigenvalues have unit modulus (cf. 
16.46b). 

(iii) It follows from (ii) that if n is odd, then at least one eigenvalue is +1 or 
-1. 

(e) The eigenvalues of U are X i  = eis (0 real) for all i, so that 1x1 = 1. 

8.7. If the n x n matrix A has all its eigenvalues equal to 1 in absolute value, then 
A is unitary if ~ ~ A x ~ ~ 2  5 IIx112 for all x E C". 

8.8. Suppose C is an n x n real skew-symmetric matrix, that is, C' = -C (cf. 
(5.19) for real matrices). Then: 

(a) I, + C is nonsingular. 

(b) A = (I, - C)(I, + C)-' is orthogonal with det A = 1. 
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(c) A = ec is orthogonal with det A = 1. 

8.9. (Rotation Matrix in the Plane) The matrix 

= ( cosO -sin6 
sine cos0 

represents a rotation in two dimensions in a counter clockwise direction through 
an angle 0. We note that T Q T ~  = T Q + ~  and T-Q = Tgl. Every 2 x 2 orthogonal 
matrix with determinant equal to +1 can be expressed in the form of TQ for some 
e. 

The following matrix 

-sine ) = ( cos6 -sin0 
-sin0 -cosO 

represents a rotation combined with a reflection in the x-axis. 
A reflection matrix is symmetric; for example, 

vQ = ( cose sine 
sin0 -cosO 

represents a reflection across a line at  an angle of 0/2 and has a determinant of -1. 

8.10. (Helmert Matrix) We have the following orthogonal matrix T; 

. .  
1 1 

~ ~ ~ ___ . . .  ~ -~ 

This matrix has been used for proving the the statistical independence of a number 
of statistics. 

8.11. (Householder Transformation) This n x n orthogonal matrix is defined to be 
H, = I, - 2hh’, where h’h = 1. Since, from (4.33), detH, = (1 - 2h’h) = -1, 
H, represents a reflection. 

Given x = (x1,x2,. . . ,x,)’ with x1 # 0, let y1 = -(sign XI)&&,  and define 
hl = [$(l - ~ l / y 1 ) ] ~ / ~  and hi = -zi/(2hlyl) for i = 2,3 ,  . . . ,  71. Then H,x = 
(yl, 0 , .  . . ,O)’. Similarly we can define 

so that H x  = (yl ,  yz, 0 , .  . . ,O)’ ,  where y1 = 2 1  and H is orthogonal. By using 
a succession of such transformations, a matrix can be transformed to  an upper- 
triangular matrix. For further details see Golub and Van Loan [1996: chapter 51 
and Seber and Lee [2003: 343-3471, 
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8.12. (Givens Transformation) This orthogonal matrix G = ( g i j )  takes the form 
of an identity matrix except for four elements: grr = gss = cose and, for r > s, 
-grs = gsr = sin 8. Premultiplying by G rotates the r th  and s th  rows in a clockwise 
direction through angle 8.  An example of a 4 x 4 Givens matrix is 

0 0 0  
G =  ( co;e ; si;e 1 , 

0 -sine 0 cose 

Products of such matrices can be used to transform a matrix to upper-triangular 
form. For further details see Golub and Van Loan [1996: 215-2211 and Seber and 
Lee [2003: 348-3521. 

8.13. If B is a real nonsingular matrix, then B(B’B)-l12 is orthogonal (cf. 10.32). 

Proofs. Section 8.1. 

8.1. u*u = U ’ u  = (U*U)’ = I,. 

8.2. x*A*Ax = x*x for all x implies A*A = I,. 

8.3. Zhang [1999: 1341. 

8.4. Zhang [1999: 152-1531. 

8.5. IlUxll; = x*U*Ux = 11x11;. 

8.6b. Follows from (det T ) 2  = det(T’T) = 1 

8 . 6 ~ .  Rao and Bhimasankaram [2000: 3141 and Zhang [1999: 1321. Follows 
from 1 = det(UU*) = det U . det u = ( a  + ib)(a - ib) = a2 + b2 = IUI2. 

8.6d. For (i), Tx = Ax implies X-lx = T’x and det(T - XI,) = det(T - 
XI,) = 0 (i.e., T and T’ have the same eigenvalues). 

8.6e. Zhang [1999: 1321. 

8.7. Zhang [1999: 1331. 

8.8. Abadir and Magnus [2005: 2631 

8.9. TLTo = 1 2 .  

8.10. T’T = I,. 

8.11. HLH, = I,. 

8.13. Abadir and Magnus [2005: 2631. 



PERMUTATION MATRICES 151 

8.2 PERMUTATION MATRICES 

Definition 8.2. Let IIij be the identity matrix I, = (el, ez,, . . e,) with its i th  and 
j t h  rows interchanged. Then IIZ = I,, so that IIij is a symmetric and orthogonal 
matrix. Premultiplying any matrix by IIij will interchange its i th  and j t h  rows so 
that IIi, is an (elementary) permutation matrix. Postmultiplying a matrix by an 
elementary permutation matrix will interchange two columns. 

Any reordering of the rows of a matrix can be done using a sequence of elementary 
permutations 11 = IIiKjK . . . IIi,j,, where 

IIn’ = n. . . . . n. . HZlj1 . . . n.  . = I,. 
2 K 3 K  2131 aK3K 

The orthogonal matrix II is called a permutation matrix. 
The permutation matrix IIo = (en, el, e2,. . . , en-l), which has been called the 

forward shaft permutation matrix (and also primary permutation matrix) ,  is useful 
in the theory of circulants. 

For a helpful discussion of permutations and cyclic permutations see Davis [1979] 
and Rao and Bhimasankaram [2000: section 6.21. 

8.14. IIo has the following properties. 

(a) IIoAIIb = (ai+l,j+l) with n + 1 F 1 (i.e., subscripts are taken mod n). 

(b) Hg = (e,-i,en,ei,...,en-z) 

(c) II; = I,. 

(d) II, = F*I’F, where r = diag(l,w,w2,. . . ,wn-’), the wi are the nth roots of 

8.15. An n x n permutation matrix II, has exactly one entry in each row and 
colunmn equal to 1, and zeros elsewhere. For example 

1, and F is an n x n Fourier matrix (cf. Section 8.12.2). 

0 1 0  

0 0 1  
n3 = ( 1 0 0 )  (= (eZ,el,e3), say). 

Thus 11, consists of I, with its rows resequenced. It is also I, with its columns 
resequenced, but not necessarily in the same sequence; that is, II, is not neces- 
sarily symmetric. Left multiplying an rn x n matrix A by 11, produces the same 
resequences of the rows of A as IIm, while right multiplying by II, does the same 
for the columns. 

8.16. If II, is a permutation matrix, then so is II;, where k is any positive integer. 

8.17. If A is n x n, then the diagonal elements of IILAII, are the same elements 
(rearranged) as the diagonal elements of A. 

Definition 8.3. If A is n x n and 11 is a permutation matrix, then the matrix 
II’AII = II-lAII is said to be permutation similar to A. This concept is linked to  
irreducibility in (8.101). 

Proofs. Section 8.2. 

8.14. Davis [1979: 721. 

8.16-8.17. Graybill [1983: 2771 
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8.3 CIRCULANT, TOEPLITZ, AND RELATED MATRICES 

8.3.1 Regular Circulant 

Definition 8.4. An n x n real or complex matrix A is a (regular) circulant if it 
has the form 

a0 a1 a2 ’ . ’  
a0 a1 “ ’  

a1 a2 a3 . . .  

that is, all the elements are equal on the main diagonal and on each of the diagonals 
parallel to the main diagonal. Note that A is countersymmetric as it symmetric 
about its main counter (opposite) diagonal. Most authors omit the word “regular” 
from the definition, but we follow Graybill [1983] and include it so as to  be able 
to distinguish between two types of symmetric circulant below. Thus, if we define 
( j  - i )  modulo n as 

n + j - i ,  when i > j ,  
when i 5 j ,  - a ,  

then A is a regular circulant if and only if (j-i)ln = (s-r) ln  implies that aij = ars. 
Alternatively, A is a regular circulant if and only if aij = a(j-z) ln .  Another way of 
defining a regular circulant is ai3 = al,, where 

m = {  j + i - 1 ,  j y i ,  
n - ( j - i + l ) ,  j < i .  

We can also use the notation A = circ(a0, a l ,  . . . , ~ ~ - 1 ) .  In applications the circu- 
lants are generally real. 

Regular circulants can arise as incident matrices of experimental designs such 
as the balanced incomplete block design (BIBD) and cyclic designs (e.g., Rao and 
Rao [1998: 5131). There are other types of circulant such as skew circulants (Davis 
[1979: 831 and alternating circulants (Tee [2005: 1361). 

Definition 8.5. The polynomial p ( z )  = a0 + a l z  + . . . + a,-lz”-’ is sometimes 
called the representer of the circulant and it occurs, for example, in signal process- 
ing. 

8.18. The forward shift permutation matrix IIo of (8.14) can be expressed as r I 0  = 
circ(0,1,. . . , O ) .  

8.19. circ(a0, a l ,  . . . , an- l )  = p ( I I 0 )  = a0 + alIIo + 
8.20. The following conditions are equivalent. 

+ . . . + an-1II;-’. 

(1) A is an n x n regular circulant. 

(2) IIoAIIL = A .  

(3) IIbAIIo=A. 

8.21. If A is a real regular circulant, then so is the Moore-Penrose inverse A+ 
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8.22. Let A be a regular circulant. Then: 

(a) A* is a regular circulant. 

(b) Ak is a regular circulant, where lc is a positive integer. 

(c) A-' is also a regular circulant, if A is nonsingular. In this case, to compute 
A-' we only need to find its first row. 

8.23. If A is a regular circulant with first row (ao, a l ,  a2,.  . . , u,-1), and if 

z=O:z#q  

for some q, then A is nonsingular. 

8.24. If A and B are any n x n regular circulants, then AB is a regular circulant 
and AB = BA. 

8.25. If A is a regular circulant, then so is A* (by 8.22a) and A*A (by 8.24), with 
A*A = AA*. Thus a regular circulant is a normal matrix. 

8.26. Let A and C be n x n regular circulants, and suppose there exists a matrix 
X such that AX = C .  Then there exists a regular circulant B such that AB = C. 

Definition 8.6. The n x n matrix C h  ( h  = 1 ,2 , .  . . , n - 1) that has ah = 1 and 
the other a, = 0 is sometimes refered to as a basic circulant matrix. For example, 
if n = 3, 

a0 a1 a2 0 1 0  

A =  (z; ;; and c1= (; ; ;) 
Here C1 = circ(0, 1,O). Note that, in general, C1 is the same as IIo of Definition 
8.2. 

8.27. If CO = I,, then: 

n-1 

(a) A = CUhch. 
h=O 

(b) C h  = C: ( h  = 1,2, .  . . , n  - 1) and C, = I, (by 8.14~).  

8.28. (Eigenvalues and Eigenvectors) Referring to (8.14d), we have the following 
results. 

(a) The eigenvectors of C1 are given by 

/̂3 = n-1/2(l1w3,w2J,. . . ,w(n- l ) J  ) 1  ' 

with corresponding eigenvalues XI, = wJ, for j = 0 ,1 , .  . . , n - 1, where w = 
exp(27rz/n) = cos(27r/n) + i s i n ( 2 ~ / n )  and i = G. (Note that the XI, are 
the n roots of unity.) 

(b) Since chx  = c:x = X:x, the eigenvectors of c h  are still the yJ with eigen- 
values AhJ = ~3~ ( h , j  = 0,  I , .  . . , n - 1). 
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(c) We now turn our attention to A of (8.27). 

(i) A has eigenvectors 7j with (not necessarily distinct) eigenvalues 

n- 1 n- 1 

x j  = C a h w J h = p ( w j ) = C a h w ? ,  j = 0 , 1 ,  . . . ,  n-1 ,  
h=O h=O 

where wj = w j ,  and p ( z )  is given in Definition 8.5 (above 8.18). Note 
that the -yj are the same for all regular circulants. 

(ii) Setting j = 0 in (i), A0 = a0 + a1 + . . . + an-l is always an eigenvalue. 

(iii) The eigenvectors are mutually orthogonal, that is, 7;7k = b j k .  

(iv) If F is an n x n Fourier matrix (cf. Section 8.12.2), then it is unitary and 
FAF' = A, that is, AF* = F*A, where A = diag(X1, X2,. . . ,An). Thus 
the columns of F* are a universal set of right eigenvectors for all regular 
circulants. Also A = F'AF. 

(v) A spectral decomposition of A is given by 

n-1 

Here 7; is the complex conjugate of 7; obtained by replacing wj in 7j 
by its complex conjugate 

w = exp( -27~2/n) = cos( 27r/n) - i sin( 27rln). 

(vi) The matrix -yj$ is a regular circulant that can be written in the form 

h=O 

(g) The Moore-Penrose inverse of A, which is also a regular circulant, is given 
by 

A' = xAy17j~:, 
where the summation is over all r nonzero eigenvalues of A, with r = rank A. 
If r = n then A' = A-' = F*A-'F. 

(h) A+ = $ h C h ,  where +h = cj Xj'W-hj. 

8.29. Let A = circ(c1, c2,. . . , cn) be a real n x n regular circulant. 

(a) If n is odd and A0 = Ed, ci 2 0 (cf. 8.28f(ii)), then det A 2 0. 

(b) If n is even, n = 2r + 2, A0 > 0, and 

T + l  T+l 

1 - 5 - 1 1  2 I C C Z j l ,  

j=1 j=1 

then det A 2 0. 
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Proofs. Section 8.3.1. 

8.19. Schott [2005: 3301 and Zhang [1999: 1071. 

8.20. Schott [2005: 3291. The second result follows by multiplying on the left 
by IIb and on the right by no. 
8.21. Graybill [1983: 249; his A- is our A+]. 

8.22. Schott [2005: 3301 

8.23. Graybill [1983: 2531 and Schott [2005: 330-3311. 

8.24. Graybill [1983: 236, 2381 and Schott [2005: 330-3311, 

8.26. Quoted by Graybill [1983: 2391. 

8.27. We simply multiply out the expressions. 

8.28. John and Williams [1995: Appendix A7]. For (c)(iv) see Davis [1979: 
721, Schott [2005: 3321, and Zhang [1999: 1071. 

8.29. Davis [1979: 76-77]. 

8.3.2 Symmetric Regular Circulant 

To obtain a symmetric regular circulant one writes down a regular circulant and 
then determines which elements are equal to achieve symmetry; for example, we 
have the following matrix 

a0 a1 a2 a1 

A = ( zi z: z:) . 

Note that this matrix is symmetric about its main diagonal and about its counter 
(opposite) diagonal, so it is doubly symmetric. Trivial examples are I, and J, = 

1,l;. Although our focus is on real symmetric matrices, the eigenvalue theory 
below applies generally to  real and complex matrices. 

Symmetric regular circulants arise in cyclic designs as the product of the in- 
cidence matrix and its transpose (the concurrence matrix of John and Williams 
i1995: 511). The eigenvalues are related to the so-called canonical efficiency factors. 
Symmetric regular circulants also arise with variance matrices, and Khattree [1996] 
gives seven applications. 

8.30. (Some General Properties) Let A be an n x n symmetric regular circulant. 
Then: 

a1 a2 a1 a0 

(a) A has at most [n/2] + 1 distinct elements, where [a] is the integral part of a. 

(b) A’ is a symmetric regular circulant. 

(c) If A is nonsingular, then A-l is a symmetric regular circulant. 
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8.31. Let A and B be n x n symmetric regular circulants, then 

(a) AB = BA. 

(b) AB is a symmetric regular circulant. 

(c) aA+bB, where a and b are any real numbers, is a symmetric regular circulant. 
Hence aI, + bJ,, where J ,  = l n l k ,  is a symmetric regular circulant. 

8.32. (Eigenvalues and Eigenvectors) If A is a symmetric regular circulant, then 
we have the following results. 

(a) ah = an-h ( h  = 1 , 2 , .  . . ,m) ,  where 

m = {  n/2, n even, 
(n  - 1)/2, n odd. 

(b) The eigenvectors are ~j ( j  = 0,1, .  . . , n - 1) of (8.28a). 

(c) The eigenvalues of A are 

n- 1 

~j = C ah cos (2~ jh /n ) ,  j = 0,1,. . . , n ~ 1. 
h=O 

(d) A, = X n - j .  

(e) If n = 2m, then XO = a0 + 2(al + a2 + . . . + u,-I) + a,. 
If n = 2m + 1, then XO = a0 + 2(al + a2 + . . . + a,). 

( f )  A+ = C:I~ $ h C h ,  where $h = n-1 xj AT' cos(2Tjhln). Here we have 
used (d) so that the sum is over all nonzero eigenvalues, but only choosing 
one of X j  and An-,. 

Proofs. Section 8.3.2. 

8.30-8.31. Graybill [1983: 2421. 

8.32. John and Williams [1995: appendix A7]. 

8.3.3 Symmetric Circulant 

Definition 8.7. A matrix is a symmetric circulant if az3 = a(,+j-2)ln. An example 
of an n x n symmetric circulant is 

a0 a1 a2 . . .  an-1 

a2 a3 . . .  

. . .  

an-l a0 a1 ' . '  an-2 

Note that the elements on each of the counterdiagonals are equal. 
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8.33. The Moore-Penrose inverse A+ of a symmetric circulant is a symmetric 
circulant. 

8.34. If A is a symmetric circulant and is nonsingular, then Apl is a symmetric 
circulant . 

8.35. Let A be an n x n  symmetric circulant with first row elements ao, a l ,  . . . , anpl 
and eigenvalues XO, X I , .  . . , & - I .  If wJ = w, ( j  = 0,1, .  . . , n - 1; wo = 1) are the n 
roots of unity, then 

j = O  j = O  j = O  

n - 1  

+. . .  
j = O  

Also A0 = U, + + . . . + ~ ~ - 1 .  

8.36. If A and B are n x n symmetric circulants, then AB is a regular circulant, 
but, in general, AB # BA. 

8.37. If B is a regular circulant and C is a symmetric circulant, then BC and CB 
are symmetric circulants and, in general, BC # CB. 

8.38. Combining the above two results, we have that the product of an  even number 
of symmetric circulants is a regular circulant, and the product of an odd number 
of symmetric circulants is a symmetric circulant. 

8.39. Let A be an n x n regular circulant, C be an n x n symmetric circulant, and 
suppose there is a solution X to the matrix equation AX = C. Then there exists 
an n x n symmetric circulant B such that AB = C. 

8.40. Let A be a regular circulant, and let B be a symmetric circulant with the 
same first row uo, a l ,  . . ., un-l. If the matrices are both n x n, then 

det A = (- l)[(n-1)/2] det B, 

where [(n - 1)/2] is the integral part of (n  - 1)/2. 

8.41. Let A be an n x n matrix that is both a symmetric circulant and a symmetric 
regular circulant. If n is odd, then A takes the form a,, = a for all i , j .  If n is even, 
then A takes the form a,, = a0 if i + j is even and a,j = a1 if i + j is odd. 

Proofs. Section 8.3.3. 

8.33. Graybill [1983: 249, his A- is our A+]. 

8.34. Graybill [1983: 2431. 

8.35. Graybill [1983: 246-2471 

8.36-8.39. Graybill [1983: 244-2451. 

8.40-8.41. Graybill [1983: 248-2491, 
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8.3.4 Toeplitz Matrix 

Definition 8.8. An n x n matrix A is a Toeplztz matrix if all the elements on the 
main diagonal are equal, all the elements on each superdiagonal are equal, and all 
elements on each subdiagonal are equal, that is, azJ = az+s,J+s for all i, j ,  s. For 
example, 

an-1 . . .  
. . .  a-1 
. . .  a- 1 
. . .  . 

a-(n- l )  a-(n-z) a-(n-3) a-(n-4) ’ ‘ ’ 

is a Toeplitz matrix. The general term is aa3 = a j p 2  for some sequence 

a-(n-l),a-(n-~)r’”,a-lia~,al,a~r.. . ian-2,an-1 E @. 

For general references see Grenander and Szego [1958], Bottcher and Silbermann 
[1999], and Widom [1965]. 

A symmetric Toeplitz matrix has az j  = aJa,  and there are at  the most n “free” 
elements in the matrix. In the above example these would be the first row of 
elements. An example of a symmetric Toeplitz matrix arises in the study of a 
stationary process consisting of a set of random variables {ut I t = 1,2 , .  . . , n} with 
cov(ut + 7 ,  u t )  = ~(1.1).  Then the variance matrix of u = (u1, u2,. . . ,un)’ is the 
positive definite Toeplitz matrix 

41)  K ( 2 )  . . .  K ( n  - 1) 
K ( 1 )  . . .  K ( n  - 2) 

. . .  
var(u) = 4 0 )  ( K:!1) K ( n -  2) K ( n - 3 )  . . .  K i o )  

When ~ ( 0 )  = 1, n = p ,  and ~ ( i )  = pz  for each 2 ,  the above matrix comes from the so- 
called Yule- Walker  equations that arise in the study of a pth-order autoregressive 
(AR(p)) time series. Algorithms for solving these and similar equations, and for 
inverting a symmetric positive definite Toeplitz matrix, are given by Golub and 
Van Loan [1996: section 4.71. 

8.42. Let 

0 0 ” ’  0 0 0 
( 1  0 . . .  0 0 0 )  

- - - ~  ~ 0 1 ‘ . ‘  0 0 0 
\ I 0 0 1 0 ‘ . ’  0 

0 1 0 0 ’ . .  0 

Then B and F are Toeplitz matrices, and are sometimes referred to as backward shaft 
and forward shift matrices because of their effect on the elements of the columns 
of I n  = (el, e2,. . . , en) .  Then A, defined in the above definition 8.8, satisfies 

n-1 n-1 

A = aiFi + aiBa. 

i=O i=O 
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8.43. A regular circulant is a Toeplitz matrix, but a Toeplitz matrix is not nec- 
cessarily a regular circulant, though it is sometimes approximated by a regular 
circulant (cf. Brillinger [1975: 73-74] and the references therein). Any symmetric 
regular circulant is a symmetric Toeplitz matrix. 

8.44. Let A be a Toeplitz matrix. 

(a) A’ is also a Toeplitz matrix. 

(b) Any symmetric Toeplitz is also doubly symmetric. 

(c) If aij is defined by aij = uli-j l , then A is a symmetric Toeplitz matrix. 

The case when A is tridiagonal is considered in (8.110). 

Proofs. Section 8.3.4. 

8.44. Graybill [1983: 284-2871. 

8.3.5 Persymmetric Matrix 

Definition 8.9. An n x n matrix B = (b i j )  is called persymmetric (countersym- 
metric) if bij = bn-j+l,n--i+l for all i , j .  Such a matrix is symmetric around the 
counter diagonal. An example is 

8.45. Let 

0 0 . . .  0 1 

- - (0 0 : : :  10) 
1 0 . . .  0 0 

/ o  0 . . .  0 1 \  
0 0 . ’ .  1 0 

1 0 . . .  0 0 
= 1 .  . . . .  . . J >  

the so-called exchange permutation matrix. Then, if B is n x n ,  it is easy to  show 
the following. 

(a) If x’ = (xi, 2 2 , .  . . , xn) ,  then (Enx)’ = (zn,  xn-lr .  . . ,xi). 

(b) E,’ =En.  

(b) B is persymmetric if and only if B = E,B’En. 

(c) If B is persymmetric and nonsingular, then Bpi is persymmetric. 

(d) If T is an n x n Toeplitz matrix, then T is persymmetric. The converse is 
not necessarily true. 
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8.3.6 Cross-Symmetric (Centrosymmetric) Matrix 

Definition 8.10. An m x n matrix A = (uzJ)  is said to be cross-symmetric (cen- 
trosymmetric) if atJ = um+l-z,n+l-3 for all i , j  and, we call it a C-matrix. For a 
list of examples of such matrices in statistics and time series see Dagum and Lu- 
ati [2004]. They also consider a useful transformation and its properties, called a 
t-transformation, which takes azJ + U ~ + ~ - ~ , ~ + I - ~ .  

Note that when m = n: 

(1) The elements of the first column read downwards are the same as the ele- 
ments read upwards in the nth column; the elements in the second column 
read downwards are the same as the elements read upwards in the (n  - 1)th 
columns; and so forth. 

(2) The elements read from left to right in the first row are the same as the 
elements read from right to to left in the nth row; the elements in the second 
row read from left to right are the same as the elements read from right to 
left in the (n  - 1)th row; and so forth. 

(3) If n is odd, then the middle row (and column) are symmetric about the 
diagonal element. 

An example is ( i  ; i ) .  
8.3.7 Block Circulant 

Definition 8.11. Given an n x n regular circulant matrix with first row elements 
uo, u2,. . . , un-l, we can construct an n k  x nk block circulant matrix A by replacing 
u j  by a k x k matrix Aj ( j  = 0,1, .  . . , n - 1). Thus 

Note that A is not necessarily a regular circulant. Typically each Aj is also a regular 
circulant or Toeplitz matrix, or it may even be a block circulant with components 
which are also regular circulants or Toeplitz matrices. For example, in experimental 
designs we might encounter the symmetric block matrix (n  = 2, k = 3) 

A =  

‘ 4 0 0  I 0 2 2  
0 4 0 1 2 0 2  
0 0 4 1 2 2 0  

0 2 2 1 4 0 0  
2 0 2 1 0 4 0  

, 2  2 0 1 0  0 4 
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Block circulants are used, for example, in n-cyclic designs (cf. John and Williams 
[1995: 57-58]), while block Toeplitz matrices occur in vector-valued time series. 

8.46. A regular circulant of (composite) order n = pq ,  where p and q are integers, 
is automatically a block circulant in which each block is Toeplitz. The blocks are 
of order q,  and the arrangement of blocks is p x p (cf. Davis [1979: 70-711). The 
family of such circulants we denote by B,,q. 

8.47. If A E Bp,q,  then we have the sum of Kronecker products 

A = I, 8 A0 + I I o  8 A1 + IIg @ A2 + . . .  + Up-' 0 @ & l >  

where I I o  is the forward shift permutation matrix of order p (cf. Definition 8.2 in 
Section 8.2), and the Aj are Toeplitz of order q. 

8.48. If A, B E Bp,q and the cri are scalars, then A, A*, crlA + O ~ B ,  AB, p(A) = 
C:='=, aiAi, A+ and A-' (if it exists) all belong to Bp,q,. We can use the relationship 
(8.47) so that AB = BA if AjBk = BkAj for all j ,  k .  

8.49. Let Chk be a basic circulant of order nk (cf. Definition 8.6 below (8.26)), and 
define the n x n Kronecker product matrix 

where n = 121122' . . n,. Then a block circulant matrix A of order n can be defined 

nl-1 n z - 1  
by 

A = C  C . .  

The eigenvalues and eigenvectors of A 
Williams [1995: 2321 and Tee [2005]). 

Proofs. Section 8.3.7. 

h1=0 hz=O 

8.47. Davis [1979: 1781. 

8.48. Davis [1979: 1811. 

n,-1 

h,=O 

can then be readily found (cf. John and 

8.3.8 Hankel Matrix 

Definition 8.12. A Hankel matrix A = (a i j )  has the following structure: 

aK+1 , 

a0 a1 a2 . ' .  
a1 a2 a3 . . .  

A = [  a2 . a3 . a4 . . . .  

a L - 1  a L  a L + l  . . .  

where aij = ai+j-2, so that the elements are equal on each of the counterdiag- 
onals i + j = const. This matrix arises, for example, from a real time series 
X = (ao,al , .  . . , u N - ~ )  of length N with L the window length (1 < L < N )  and 
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K = N - L + 1; it is called the trajectory matrix of X .  If N and L are fixed, then 
there is a one-to-one relationship between A and X (cf. Golyandina et al. [2001: 

If L = K = n, so that A is n x n, then the general term is given by aij = ai+j-2 

For further details about Hankel matrices and structured matrices in general see 

161). 

for some given sequence ao, a l ,  . . . , azn-3, a2n-2. In this case A is symmetric. 

Bini et al. [2001]. 

8.50. Let II = (en, en-l , .  . . ,e l )  be the backward identity permutation matrix. 
Then: 

(a) IIT is a Hankel marix for any Toeplitz matrix T. 

(b) IIH is Toeplitz matrix for any square Hankel matrix H. 

(c) Since II = II’ = II-’ and square Hankel matrices are symmetric, any Toeplitz 
matrix is product of two symmetric matrices (II and a Hankel matrix). 

Proofs. Section 8.3.8. 

8.50. Quoted by Horn and Johnson [1985: 281. 

8.4 DIAGONALLY DOMINANT MATRICES 

Definition 8.13. Let A = (ai,) be a real or complex n x n matrix (n  2 2), and 
define 

n n 

j= 1 : j  # p  i = l : i # q  

to be, respectively, the sum of the absolute values of the off-diagonal elements of 
the pth row of A, and the sum of the absolute values of the off-diagonal elements of 
the qth column of A. (In the above, 1x1 denotes the modulus of z if 5 is not real.) 

Considering first the rows, if lappl > R,, then the pth row is said to have a 
strictly dominant diagonal. If lappl 2 R, for p = 1 , 2 , .  . . , n, then A is said to be 
(row) diagonally dominant, while if lapp[ > R, for p = 1,2, .  . . , n, then A is said to 
be strictly (row) diagonally dominant; we denote this by r.d.d. Some authors omit 
the word “row” and then do not refer to columns. However, there is a corresponding 
set of definitions for columns. For example, if la,,[ > C,, then the qth column of A 
is said to have a dominant diagonal, while if la,,[ > C, for q = 1 , 2 , .  . . , n, then A 
is said to be strictly column diagonally dominant and we write c.d.d. If A is either 
r.r.d. or c.d.d., we say that A is d.d. 

8.51. Let A be any n x n matrix (real or complex). 

(a) If II is any n x n permutation matrix and A is r.d.d. (respectively c.d.d.), 
then II’AII is r.d.d. (respectively c.d.d.). 

(b) If D is any n x n nonsingular diagonal matrix and A is r.d.d. (respectively 
c.d.d.), then DA (respectively AD) is r.d.d. (respectively c.d.d.). 

(c) If any diagonal element of A is zero, then A is neither r.d.d. nor c.d.d. 
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(d) If X is any eigenvalue of A, then A - XI, is neither r.d.d. nor c.d.d 

(e) If A is r.d.d. (respectively c.d.d.), then at  least one column (respectively row) 
must have a dominant diagonal. 

( f )  If A is a regular circulant with first row elements ao, a l ,  . . . , a,-l such that 

n-1 

for some j ,  then A is nonsingular. 

Definition 8.14. Let A a matrix such that 

h=l:h#i 

Then the j t h  column is said to have a dominant element, and it is in the i th  row. 

8.52. (Conditions for Nonsingularity) Let A be n x n. 

(a) (Levy-Desplanques) If A is d.d., then A is nonsingular. Conversely, if A is 
singular, then A is neither r.d.d. nor c.d.d. This result is linked to (6.29) as 
0 cannot then lie in any closed GerSgorin disc, so that 0 is not an eigenvalue. 

(b) If R and S are any nonsingular n x n matrices and RAS is a d.d. matrix, 
then A is nonsingular. Conversely, if A is nonsingular, there exist nonsingular 
matrices R and S such that RAS is d.d. 

(c) Suppose each row, except one (say the kth row), has a strictly dominant 
diagonal, and suppose the kth row is such that 0 < lakkl  = Rk. Then A is 
nonsingular. A similar theorem exists for columns. 

(c) If each column of A has a strictly dominant element, and each row contains 
one of the dominant elements, then A is nonsingular. This result also holds 
if each row has a strictly dominant element and these are in distinct columns. 

(d) Suppose that for one value of j = 1 , 2 , .  . . , n, say j = t ,  either of the following 
equations hold, namely 

0 < lattl < Rt and laiil. latt[ 

0 < lattl < Ct and laiil . lattl 

> 
> 

RiRt 
CiCt 

for i = 1 , 2 , .  . . ,n; i # t 
for i = 1 , 2 , .  . . ,n; i # t ,  

then A is nonsingular. 

(e) Suppose that all the elements of A are nonzero. If A is diagonally dominant 
(i.e., not strictly so), and laiil > Ri for at  least one value of i = 1,.  . . ,n, then 
A is nonsingular. 

8.53. (Positive Determinant) Let A be an n x n real matrix that is d.d. and has 
positive diagonal elements. 

(a) de tA > 0. 
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(b) If A, is any r x r principal submatrix, then det A, > 0. 

(c) If the signs of any set of off-diagonal elements are changed, then 
det A > 0. 

(d) The real part of each eigenvalue of A is positive. Thus all real eigenvalues 
are positive. If, instead, the diagonal elements of A arc all negative, then the 
real parts of all eigenvalues are negative. 

( e )  From (d) it follows that if A is also Hermitian and all its main diagonal 
elements arc positive, then all the eigenvalues of A are real and positive. 

8.54. If A is n x n and T’AT is d.d. with positive diagonal elements, where T is 
any orthogonal matrix, then det A = det ITI’det A = det(T’AT) > 0 (by 8.6b). 
Note that T could be a permutation matrix. 

8.55. Let A be an n x n matrix that is d.d., and let D be a diagonal matrix with 
the same diagonal elements as A. Then p(B) < 1, where B = I, - D-lA and p is 
the spectral radius of B. 

8.56. (Linear Equations) Let A be an n x n real matrix with positive diagonal 
elements and nonpositive off-diagonal elements. For each n x 1 vector b with non- 
negative elements, there exists a unique vector x with nonnegative elements that 
is a solution to A x  = b if A is d.d. 

Proofs. Section 8.4. 

8.51. Graybill [1983: section 8.11, here dominant means strictly dominant, 
and the complex case is mentioned in the note on p. 2611. 

8.52. Graybill [1983: 251-256, here dominant means strictly dominant]; also 
Horn and Johnson [1985: 302 and 355, for (a) and (b) respectively]. 

8.53. Graybill [1983: 258-261; here dominant means strictly dominant]. 

8.54. Graybill [1983: 2601. 

8.55. Graybill [1983: 2621. 

8.56. Graybill [1983: 2651. 

8.5 H A D A M A R D  MATRICES 

Definition 8.15. An n x n Hadamard matrix H is a matrix with elements all f l  
such that H’H = HH’ = nI,, that is, n-’/2H is orthogonal. If all the elements 
of the first column arc equal to +1, then H is called a seminormalized Hadamard 
matrix. If all the elements in the first row and column are equal to +1, then H 
is said to be normalized. These matrices are closely linked to balanced incomplete 
block designs, group divisible designs, Youden designs, 2, factorial experiments, 
optimal weighing designs, and response surface methodology. For further details 
and applications see Agaian [ 19851. 
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8.57. We have the following properties of an n x n Hadamard matrix H. 

(a) H' and nH-' are Hadamard matrices. 

(b) If D1 and D2 are diagonal matrices with diagonal elements f l ,  then DlHD2 
is a Hadamard matrix. We can set Di = I, for i = 1 or 2. 

(c) n must equal 1 or 2 or be a multiple of 4. 

(d) From det(H'H) = nn, det H = fnnI2.  

(e) (Hadamard) If A is a real n x n matrix with laijl 5 1, then 1 det A1 5 nnI2. 
We find that the Hadamard family is the only family of matrices which attains 
the upper bound. 

( f )  If H1 and HZ are n1 x n1 and 722 x 712 Hadamard matrices, respectively, then 
H1 @ Hz (the Knonecker product) is an n1n2 x n1n2 Hadamard matrix. 

(9) Setting n = 2 and applying (f) repeatedly, we see that there is a 2k x 2k 
Hadamard matrix for every positive integer k .  

(h) If an n x n Hadamard matrix exists, then an n x n normalized Hadamard 
matrix exists. 

8.58. In digital signal processing, Hadamard matrices, H, say, are restricted to be 
of order 2" given by the recursion 

H, = H1@Hn-l. 

Also Hpn is symmetric so that H& = 2n12,. 

8.59. Let H, be defined in (8.58) above, and consider the iteration 

Then H, has eigenvalues +2n/2 and -ZnI2, each of multiplicity 2"-', and an 
eigenvector x, corresponding to the positive eigenvalue 2"12. 

8.60. If H is an m x rn Hadamard matrix that contains J, = l n l b ,  then m 2 n2. 

Proofs. Section 8.5. 

8.57. Graybill [1983: section 8.14 for (a)-(c)] and Schott [2005: 334-335, for 

(C)-(f)l. 

8.59-8.60. Zhang [1999: 120-1211. 
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8.6 IDEMPOTENT MATRICES 

8.6.1 General Properties 

Definition 8.16. An n x n real or complex matrix is said to be idempotent if 
A2 = A. In Section 2.3 we called such a matrix a projection matrix. If A is 
also real and symmetric (with (x,y) = x’y), or Hermitian (with (x,y) = y*x), 
it represents an orthogonal projection matrix. Some other geometrical properties 
of such matrices are given in Section 2.3. We assume below that A is real, unless 
otherwise stated, though many of the following results hold for complex matrices. 

8.61. The following statements are equivalent. 

(1) An n x n matrix P is idempotent. 

(2) I, - P is idempotent. 

(3) C ( P )  n C(1, - P) = 0. 

(4) C ( P )  = N(1, - P). 

( 5 )  C(1, - P) = N(P). 

8.62. The following statements are equivalent. 

(1) A is an n x n idempotent matrix of rank T with Moore-Penrose inverse A+. 

(2) There exist orthogonal projection matrices R and S such that A+ = RS. 

(3) A + A ’ = A + .  

(3) A’A+ = A+. 

(4) A = BC’, where C’B = I, with B and C being n x r matrices. 

( 5 )  The Jordan canonical form of A (cf. 16.7) can be written as 

(6) There exists an orthogonal matrix T such that 

where K is T x (n  - T ) .  

For further results and discussion see Trenkler [1994]. 

8.63. If A is an n x n idempotent matrix of rank r ,  then there exist nonsingular 
R and unitary U such that 

R - ~ A R =  ( I‘ ) and U * A U =  ( ‘a :) 
for some Q. If A is symmetric, we can replace R by an orthogonal matrix. 
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8.64. An n x n matrix A is idempotent if and only if rankA + rank(1, - A) = n. 

8.65. Let A be an n x n idempotent (real or complex) matrix of rank r ,  then: 

(a) A has r eigenvalues equal to 1 and n - T eigenvalues equal to 0. Also, if A is 
real and symmetric, then it is idempotent if and only if each eigenvalue of A 
is 1 or 0. 

(b) det A’ = det A and det A is 0 or 1. If det A = 1 then, by (a), A = I,. 

(c) From (8.63) we have rank A = trace A = r. 

(d) I, - A is idempotent and, from (c), rank(1, - A) = n - rankA 

(e) A can be expressed in the form A = QR*, where Q and R are n x r and 
WQ = I,. 

( f )  There exists a Hermitian positive definite matrix C such that A = C-lA’C. 

8.66. Let A be an n x n matrix with Moore-Penrose inverse A+. Then A is a 
real symmetic idempotent matrix if and only if one of the following conditions is 
satisfied. 

(1) A’A = A 

(2) I - A is symmetric and idempotent. 

(3) A is idempotent and AA’ = A’A. 

(4) A and A’A are idempotent 

(5) AA‘A = A and A is idempotent. 

(6) A‘AA’ = A’ and A is idempotent. 

(7) A and (A + A’) are idempotent. 

(8) AA’ + A‘A = A + A’ and A is idempotent. 

(9) I, - 2A is a symmetric, orthogonal matrix. 

(10) A’ = A’ and A is tripotent (i.e., A3 = A). 

(1 1) AA’ = A’AA’. 

(12) A is idempotent and rank(1, - A’A) = n - rank A. 

(13) A is idempotent and llAxll2 5 llxllz for all x E R”. 

(14) x‘A‘Ax = x’Ax for all x E R”. 

(15) A is idempotent and x’Ax 2 0 for all x E R”. 

(16) IIy - Ayll’ 5 IIy - xi12 for all y E R” and all x E C(A) 

(17) A is idempotent and A = A+. 

(18) A is idempotent and AA’ = AA+. 



168 SOME SPECIAL MATRICES 

(19) A+  = A and A2 = A’. 

(20) A and A t  are idempotent. 

(21) There exists an n x m matrix B such that A = BB+. 

(22) A = A A ’  

(23) A = B(B’B)-’B for some n x m matrix B of rank m. 

See Trenkler [1994] for these and further results of a similar nature. He also gives 
necessary and sufficient conditions that a symmetric matrix is idempotent. 

8.67. (Generalized Inverse and Idempotency) Let A be m x n with Moore-Penrose 
inverse A+.  Then the following conditions are equivalent. 

(1) A’A is idempotent (i.e., is an orthogonal projection matrix, because it is 
symmetric). 

(2) AA’ is idempotent. 

(3) AA’A = A,that is, A‘ is a weak inverse of A. 

(4) A ’ = A + .  

8.68. If A is m x n with any weak inverse A-,  then N ( A )  = C(I  - A-A). 

8.69. If (CB)-l exists, then B(CB)-lC is idempotent. 

8.70. Let A be an n x n symmetric idempotent matrix, and let B be an n x m 
matrix of rank m. 

(a) If A B  = B and rankA = rankB, then A = B(B’B)-lB’. 

(b) If A B  = 0 and rankA + rankB = n, then A = I, - B(B’B)-lB’ 

8.71. (Symmetric Matrix) Let A be an 

following. 
n x n symmetric idempotent matrix of rank T ,  where T < n. Then we have the 

(a) 0 5 uz2 5 1 for i = 1 , 2 , .  . . ,n. 

(b) If ut2 = 0 or uzz = 1, then urg = 0 for all j ,  j # i. 

(c) A is non-negative definite. 

(d) If T is orthogonal, then P = T’AT is a symmetric idempotent matrix. 

(e) If R is nonsingular, then P = R - l A R  is idempotent. 

( f )  Q = I, - 2A is a symmetric orthogonal matrix. 

(g) We can write A = T,TL, where TLT, = I,, and the columns of T, form 
an orthonormal basis for C(A). This result holds if A is Hermitian and we 
replace T’ by T*. 

(h) If V is positive definite, then 

rank(AVA) = trace(AV) 
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8.72. Let A be a symmetric matrix that satisfies A"' = Ak for some positive 
integer k .  Then A is idempotent. 

8.73. Let A1 and A2 be nxn symmetric idempotent matrices, and suppose A1 -A2 
is non-negative definite. 

(a) AlA2 = A2A1= A2. 

(b) A1 - A2 is a symmetric idempotent matrix. 

8.74. Suppose A and B are n x n matrices. If AB = A and BA = B, then A and 
B are both idempotent. 

8.75. (Kronecker Products) Let A be mxn and B be m x p  real matrices. Let A@B 
be their Kronecker product, and denote by PA, PB, and P A ~ B  the symmetric 
idempotent matrices that project orthogonally onto C(A), C(B), and C(A @ B). 
Then: 

(a) PABB = PA @ PB. 

(b) P A ~ I  = PA @ I. 

(c) If Q = I - P in each case, then 

QABB = QA @ QB + QA @PB +PA @ QB. 

8.76. Let A and B be n x n symmetric matrices, with B positive definite. Then 
AB is idempotent if and only if each eigenvalue of AB is 0 or 1. 

Proofs. Section 8.6.1. 

8.61(2). Follows directly from (1). 

8.61(3). Harville [1997: 384, lemma 17.2.61. 

8.61(4). Let P2 = P. If y = Px then (I, - P)y = (I, - P)Px = 0 and 
y E N(1, - P). Conversely, if (I, - P)y = 0 then y = Py E C(P). 

8.61(5). Similar to (4); see Harville [1997: 1461. 

8.62. Trenkler [1994] 

8.63. Abadir and Magnus [2005: 2341 and Schott [2005: 3961. 

8.64. Abadir and Magnus [2005: 2351, Harville [1997: 4351, Rao and Rao 
[1998: 2531, and Trenkler [1994]. 

8.65a. Abadir and Magnus (2005: 2331 and Schott [2005: 3971. 

8.65e-f. Rao and Rao [1998: 2511. 

8.66. Trenkler [1994] 

8.67. Trenkler [1994: 2661 

8.68. Harville [1997: 1401. 
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8.69. Simply square the matrix. 

8.70. Abadir and Magnus [2005: 2361. 

8.71a-b. Schott [2005: 3991. 

8.71~. Follows from x'Ax = x'A'Ax = y'y 

8.71d-e. We have P2 = P. 

8.71f. We show that Q'Q = I,. 

8.71g. Rao and Rao [1998: 2521 and Seber and Lee [2003: 475, real case] 

8.71h. Harville [2001: 82, exercise 101. We have trace(AVA) = trace(AV1/2V1/2A) = 
trace(V1/2A2V1/2) = trace(V1/2AV1/2) = trace(AV). 

8.72. Schott [2005: 3991. 

8.73. Seber and Lee [2003: 4651 

8.74. Abadir and Magnus [2005: 2361. 

8.75. Quoted by Rao and Rao [1998: 2621 

8.76. Schott [2005: 3971. 

8.6.2 

There are many results given for sums of idempotent matrices, and these are of- 
ten expressed with different conditions. We give several versions of these below, 
and there is some overlap. For a very general investigation of a linear combination 
of two projectors see Baksalary and Baksalary [2004a] and the references therein. 
Questions relating to the nonsingularity of such combinations of idempotent matri- 
ces, including just sums and differences, are considered by Baksalary and Baksalary 
[2004b] and Koliha et al. [2004]. We assume below that all matrices are real, unless 
otherwise stated, though some of the results hold for complex matrices as well. 

8.77. If A and B are n x n idempotent matrices, then A + B is idempotent if and 
only if A B  = B A  = 0. We generalize this result below. 

8.78. (Cochran's Theorem) Suppose A l ,  A2,.  . . , Ak is a sequence of symmetric 
n x n  matrices such that A, = I,. Then the following conditions are equivalent 
(i.e., each one implies the other two). 

Sums of ldempotent Matrices and Extensions 

k 

(1) A: = Ai for i = 1 , 2 , .  . . , k .  

(2) A,A, = 0 for all i, j ,  i # j .  

(3) C,"=, rankAi = n. 

This can be derived from (8.79) below. 
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8.79. Let A = C,"=, Ai , where each Ai is a symmetric n x n matrix. Any two of 
the following three conditions implies the third. 

(1) A = A' 

(2) A: = Ai for i = 1 , 2 , .  . . ,n. 

(3) AiAj = 0 for all i , j ,  i # j .  

From (8.80) we can include further results involving 

k (4) rank A = rank Ail 

For example, any two of (l), (2), and (3) implies all four. Furthermore, (1) and (4) 
imply (2) and (3) (Rao [1973a: 281). We can relate this theorem to the previous 
one by defining A0 = I, - A so that C,"=oAi = I,. Alternatively, we can set 
A = I,. 

8.80. Let Ai be an n x n matrix (i = 1 , 2 , .  . . , k ) ,  and let A = x:=, Ai 

(a) If A2 = A, then the following conditions are equivalent. 

(1) AiAj = 0, for all i ,  j ,  i # j ,  and rank A! = rank Ai for i = 1 , 2 , .  . . , k .  

(2) A: = Ai for i = 1 , 2 , .  . . , k .  

(3) rankA = Ci=, rankAi. k 

If A = I,, then the condition on A is automatically satisfied and rankA = n. 
Furthermore, if each A, is also symmetric, then A: = AIAi, which implies 
rank A: = rank Ail  and condition (1) reduces to the condition 

A,A, = 0 for all i , j ,  i # j .  

(b) If the Ai are all idempotent and AiAj = 0 for all i , j ,  i # j ,  then 

(i) A' = A. 

(ii) rankA = xi=, rankA,. k 

(c) Suppose V is an n x n non-negative definite matrix, and let R be any matrix 
such that V = R'R (cf. 10.10). Then (a) and (b) still hold if we replace each 
Ai by RAiR'  throughout and A by RAR'.  

8.81. Let Ai (i = 1 , 2 , .  . . , k )  be square (not necessarily symmetric) matrices, and 
let A = C,"=, A,. Consider the following conditions: 

(1) A: = A,, i = 1 , 2 , .  . . , k .  

(2) AiA, = 0 for all i # j. 

(3) A' = A. 

(4) xi rank Ai = rank A. 

(5) rank(A:) = rank A, , i = 1 , 2 , .  . . , k .  
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Then 

(2) + (31, (4)i (5)i 

(111 (3) + (a),  (4)> (51, 

(31, (4) + ( I ) ,  (21, (5). 

(2L (3), (5) + ( I ) ,  (4), 

For references to extensions of these results see Tian and Styan [2006]. They also 
add a new rank subtractivity condition of the form rank(&-A) = n--Cz,l rank A,. 

8.82. Let A, ( i  = 1 , 2 , .  . . , k )  be p x q matrices, and let A = C,=l A,. Consider 
the following conditions: 

k 

k 

(1) A , A - A , = A 2 , i = 1 , 2  , . . .  , k .  

(2) A,A-A, = 0 for all i ,  j ,  i # 

(3) rank(A,A-A,) = rankA,, i = 1,2, .  . . , k .  

(4) C,  rank A, = rank A ,  

for some weak inverse A- of A.  Then 

(1) + (21, (31, (411 

(21, (3) -+ (1),(4), 

(4) + (1),(2)1(3). 

If (1) or if (2) and (3) hold for some weak inverse A- ,  then (l), (2), and (3) hold 
for every weak inverse A- . 

8.83. Let A; ( i  = 1,2, .  . . , k )  be an n x n matrix, let A = C,"=, Ai, and let V be 
a non-negative definite matrix. 

(a) If VAVAV = VAV, then each of the following three conditions implies the 
other two. 

(1) VAiVAjV = 0 for all i , j , i  # j ,  and rank(VAiVAiV) = rank(VAiV) 

(2) VA,VAiV = VAiV for i = 1,2, .  . . , k .  

(3) rank(VAV) = x,"=, rank(VAiV). 

f o r i = l 1 2 , . . . , k .  

When the Ai are symmetric, condition (I) reduces to VAiVAjV = 0 for all 
i , j , i  # j .  

(b) If VAiVAiV = VAiV for all i and VAiVAjV = 0 for all i , j ,  i # j ,  then: 

(i) VAVAV = VAV. 

(ii) rank(VAV) = C,"=, rank(VAiV). 

A generalization of the above results involving rectangular matrices and an arbitrary 
rectangular V is given by Tian and Styan [2006]. For related results see Tian and 
Styan [2005]. 
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8.84. Let A be an n x n symmetric idempotent matrix, and let B be a non-negative 
definite n x n matrix. If I, - A - B is non-negative definite, then AB = BA = 0. 

8.85. Let A, be a symmetric idempotent n x n matrix of rank T,  ( i  = 1,2 , .  . . , k ) ,  
and let Ak+l be an n x n non-negative definite matrix such that I, = C,"=': A, = 

A + & + I ,  say. Then: 

(a) A,A, = 0 for all i ,  j = 1,2 , .  . . , k + 1, i # j .  

(b) 
k is symmetric and idempotent of rank n - cz=l T,. 

8.86. Let A = C,"=, A,, where each A, is an n x n non-negative definite matrix 
(i = 1 , 2 , .  . . , k ) ,  and let A' = A. If 

k 

trace A I t r a c e ( x  A;), 
2=1 

then: 

(a) Af = Ai for i = 1 '2 , .  . . , k .  

(b) A,A, = 0 for all i ,  j ,  i # j 

8.87. Let Ai ( i  = 1 , 2 , .  . . , k )  be symmetric idempotent matrices such that 

k 

AiAj = 0, all i , j ,  ( i  # j ) ,  and x Ai = I,. 
i= 1 

k Then, for positive ai ( i  = 1 , 2 , .  . . , k ) ,  

8.88. Let Ai ( i  = 1 , 2 , .  . . , k )  be symmetric idempotent matrices such that AiAj = 
0 for all i ,  j ,  i # j ,  and let ai, i = 0,1, .  . . , k ,  be positive scalars. Then: 

aiAi is positive definite. 

aiAi is positive definite. 

k (a) V = Q O I ,  + 
(b) V-' = POI, + C,"=, BiAi, where 

-a( p 0 -ao  - -1  and pi = i = 1 , 2  ) . . . ,  k .  
Q o ( a 0  + ail ' 

8.89. Let A be any n x n symmetric matrix of rank T with nonzero eigenvalues Xi 

(i = 1,2,  . . . , T ) .  Then, since A is diagonalizable, A can be expressed in the form 
(cf. 16.17) 

T 

i=l 

where, for each i = 1 , 2 , .  . . , T ,  Ei is symmetric and idempotent and EiEj = 0 for 
all i , j ,  i # j .  If A is also idempotent, then 

A = EE~.  
i=l 
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8.90. Let Ai be an n x n symmetric idempotent matrix of rank ri (i = 1 ,2 , .  . . , k )  
such that CiXl Ai = I,, and let Ci (i = 1 ,2 , .  . . , k )  be a p x p square matrix 
(possibly complex). If 

k 

k k 

are n p  x n p ,  then: 

(a) From (8.78) we have AiA, = 0 for all i # j ,  and C,"=, ri = n. 

(b) The eigenvalues of 0 1  and 0 2  are the eigenvalues of C1,. . . , ck with respective 

(c) det 0 1  = det 0 2  = n,"=, (det Ci).. . 

(d) The matrices 0 1  and 0 2  are nonsingular if and only if all the Ci (i = 

algebraic multiplicities T I , .  . . , rk. 

1 , 2 , .  . . , k )  are nonsingular, in which case 

k k 

This result is used in multivariate error component analysis. 

Proofs. Section 8.6.2. 

8.77. Harville [1997: 4351 and Schott [2005: 3981. 

8.79. Graybill [1983: 4211 and Schott [2005: 4011. 

8.80. Harville [1997: 435-4381. 

8.81. Anderson and Styan [1982: 31. 

8.82. Anderson and Styan [1982: 41. 

8.83. Harville [ 1997: 4391. 

8.84. C = A(In - A - B)A = -ABA = 0 as C is non-negative definite. 
Then AB'/2 = 0 and AB = 0. 

8.85. Quoted by Graybill [1983: : 4231. For (a) we consider I, - Ai - Aj = 
(A-Ai-Aj)+Ak, whichisnon-negativedefiniteforall2,j = 1,2,  . . . ,  k + l ,  
(i # j ) ,  as each Ai is non-negative definite, and then use (8.84). For (b), 
Ak+l = I, - A, where A is idempotent with rankA = trace A. 

8.86-8.88. Graybill [1983: 423, 425-4261. 

8.90. Magnus [1982: 242, 2701. 
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8.6.3 Products of ldempotent Matrices 

8.91. Every singular n x n matrix can be written as the product of idempotent 
matrices. 

8.92. If A and B are n x n idempotent matrices, then AB is idempotent if A B  = 
BA.  

Proofs. Section 8.6.3. 

8.91. Ballantyne [1978]. 

8.92. Schott [2005: 3981. 

8.7 TRIPOTENT MATRICES 

Definition 8.17. An n x n matrix is said to be tripotent if A3 = A. A nonsingular 
tripotent matrix A is called a involutionary matrix and satisfies A2 = I,. An 
idempotent matrix is also tripotent. 

8.93. (General Properties) Let A be an n x n tripotent matrix. 

(a) rankA = trace(A2). 

(b) The eigenvalues of A are f l  or 0. If n1 are equal to +1, n2 equal to -1 and 
n3 equal to 0, then: 

(i) 

(ii) 
(iii) trace(1, - A2) = 12.3. 

(iv) traceA = n1 - 122. 

trace(A2 + A) = n1. 

trace(A2 - A) = 712. 

(c) A is equal to a weak inverse of itself if and only if A is tripotent. 

(d) If A is nonsingular, then: 

(i) A-' = A .  

(ii) A2 = I,. 

(iii) ( A  + I,)(A - I,) = 0. 

(e) If T is orthogonal, then T'AT is tripotent. 

( f )  If R is nonsingular, then R-lAR is tripotent. 

(g) A2 is idempotent. 

(h) -A is tripotent. 

8.94. Let A and B be n x n matrices. 

(a) If A is symmetric, then A is tripotent if and only if its eigenvalues can only 
take the values +1, -1, or 0. 



176 SOME SPECIAL MATRICES 

(b) If A is symmetric, then A is tripotent if and only if there exists two symmetric 
n x n idempotent matrices C and D such that A = C - D and CD = 0. 
These two matrices are unique with C = ;(A2 + A) and D = ;(A’ - A). 
This result has been generalized by Baksalary et al. [2002], and they give 
conditions for when a linear combination of an idempotent and tripotent 
matrices is idempotent. 

(c) A is tripotent if and only if A’ is idempotent. 

(d) If A is symmetric, then A is tripotent if and only if rank A = rank(A+A’) + 
rank(A - A2). 

(e) If A and B are symmetric idempotent matrices and AB = BA, then A - B 
is a symmetric tripotent matrix. 

8.95. Let A, (i = I ,  2 , .  . . , k )  be square matrices (not necessarily symmetric), and 
let A = z:=l A,. Consider the following conditions: 

( I )  A: = A,, i = 1,2, .  . . , k.  

(2) A,A, = 0, for all i # j. 

(3) A3 = A .  

(4) C,  rank A, = rank A. 

(5) A,A = A:, 2 = I ,  2, .  . . , k.  

(6) APA = A,, i = 1,2 , .  . . , k .  

(7) A,A = AA,, i = 1 ,2 , .  . . , k .  

Then (1) and (2) hold if and only if (3), (4), and (5) hold. Condition (5) may 
be replaced by (6) or (7). Anderson and Styan [1982] prove the above result and 
a similar result for symmetric matrices. An extension is also given to  r-potent 
matrices, which have the property that A‘ = A, where r is a positive integer. 

Proofs. Section 8.7. 

8.93. Graybill [1983: section 12.41. 

8.94a-b. Graybill [1983: 4321. 

8 .94~ .  If A3 = A,  then = A2. Conversely, if A’ is symmetric and 
idempotent, its eigenvalues are 0 and there exists orthogonal T such that 

and the eigenvalues of A are 0, f l ;  then use (a). 

8.94d. Anderson and Styan [1982: 131. 

8.94e. We multiply out ( A  - B)3. 
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8.8 IRREDUCIBLE MATRICES 

Definition 8.18. An n x n matrix A is said to be reducible if and only if, by 
permuting a set of rows and the corresponding set of columns, A can be transformed 

or equivalently of the form 

where B11 and B 2 2  are square matrices, i.e., there exists a permutation matrix II 
such that nAII '  = B. When n = 1 we have A = 0. A matrix that is not reducible 
is said to be irreducible. 

8.96. Given mod(A) = ( la i j l ) ,  where A is a real n x n matrix (cf. Section 9.1.2), 
then A is irreducible if and only if (I, + mod(A))n-l > 0 (i.e., every element is 
positive) or, equivalently, if [I, +Z(A)]"-' > 0, where Z(A) is the indicator matrix 
of A (each nonzero element is replaced by 1). 

8.97. Let A be any n x n real matrix. 

(a) If A has no zero elements, then it is irreducible. 

(b) If A has zero diagonal elements and nonzero off-diagonal elements, then A is 
irreducible. 

(c) If A is reducible, it must have at  least n - 1 elements equal t o  zero. 

(d) if A has at  least one row (column) of zeros, then A is reducible. 

8.98. Let A be an n x n irreducible real matrix and let Ri be the sum of the 
absolute values of the off-diagonal elements of the i th  row and Cj the same for the 
j t h  column. Suppose that either laizl >. Ri for i = 1,.  . . , n  with laii( > Ri for at 
least one value of i ,  or lajjl 2 Cj for j = 1, .  . . , n with lajjl > Cj for at least one 
value of j .  Then A is nonsingular. 

8.99. An n x n (n  2 2) matrix A = ( a i j )  is reducible if aij = 0 for i E S and j @ S 
for some nonempty proper subset S of { 1 ,2 , .  . . , n}. 

8.100. The forward shift permutation matrix II, = (en, el , .  . . , en-l) is irreducible. 

8.101. A permutation matrix is irreducible if and only if it is permutation similar 
(cf. Definition 8.3 below (8.17)) to a forward shift permutation matrix. 

8.102. An n x n permutation matrix is irreducible if and only if its eigenvalues are 
1, w, . . . , wn-1 , where w is the nth primitive root of unity. 

Proofs. Section 8.8. 

8.96. Horn and Johnson [1985: 3611. 

8.97-8.98. Graybill [1983: 2641. 

8.99. Bapat and Raghavan [1997: 21. 

8.100-8.102. Zhang [1999: 124-1251. 
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8.9 TRIANGULAR MATRICES 

Definition 8.19. A matrix is lower-triangular if the elements above the main 
diagonal are all zero. The transpose of this is said to be upper-triangular. A 
triangular matrix need not be square. A unit triangular matrix is a triangular 
matrix with unit diagonal elements, and a strictly triangular matrix is a triangular 
matrix with zero diagonal elements. 

8.103. (Basic Properties) 

(a) The determinant of a square triangular matrix is the product of the diagonal 
elements. 

(b) The eigenvalues of a square triangular matrix are the diagonal elements. 

(c) The inverse of a nonsingular lower (respectively upper) triangular matrix is 
a lower (respectively upper) triangular matrix. 

(d) The product of a finite number of square lower (respectively upper) triangular 
matrices of the same order is a lower (respectively upper) triangular matrix. 

(e) The product of two square unit upper (respectively lower) triangular matrices 
is unit upper (respectively lower) triangular. 

i = 1 , 2  ) . . . )  n. 

triangular . 

(e) If B is an n x n triangular matrix with inverse C = B-’, then biicii = 1 for 

( f )  From (e), the inverse of a nonsingular unit triangular matrix is also unit 

8.104. If K is a real lower (upper) triangular matrix and if K’K = KK’, then K 
is a diagonal matrix. 

8.105. (Factorization) Let A be a real square matrix such that every leading prin- 
cipal minor (excluding A itself) is nonzero. 

(a) Then A can be written as the product of a real lower-triangular matrix L and 
a real upper-triangular matrix U, that is, 

A = LU. 

Furthermore, if each of the diagonal elements of L (or U) is set equal to unity, 
then the two triangular matrices are unique. It should be noted that A does 
not need to be square to have such a factorization, and the reader is referred 
to Section 16.4 for further details. 

(b) If A is also symmetric, then there exists a real upper-triangular matrix U 
and a diagonal matrix D with diagonal elements equal to fl such that 

A = U’DU. 

8.106. Every real square matrix A is similar to a triangular matrix (either upper 
or lower) whose diagonal elements are the eigenvalues of A, that is, there exists a 
nonsingular matrix R (not necessarily real) such that R-lAR = K,  where K is 
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triangular (and not necessarily real). If the eigenvalues of A are real, then R and 
K are both real (cf. 16.le). 

8.107. If A is a real n x n matrix with real eigenvalues, then there exists an 
orthogonal matrix T such that T'AT is upper-triangular with diagonal elements 
the eigenvalues of A (cf. 16.37b). 

8.108. (Block Triangular Matrices) An upper block triangular matrix takes the 
form 

where the diagonal blocks are all square matrices of possibly different sizes. We 
have that 

P 

det A = n det Aii. 

Thus A is nonsingular if and only if all the Aii are nonsingular. In this case A- 
is also upper block triangular. An algorithm for computing the inverse is given by 
Harville [1997: 941. Similar results apply for lower block triangular matrices, as the 
inverse is also lower block triangular. 

Proofs. Section 8.9. 

i = l  

8.103a. Simply expand the determinant by the first row or column depending 
on whether the matrix is lower- or upper-triangular, respectively. 

8.103b. Follows from (a). 

8.103~. We use the identity AA-l = I,. 

8.103d. Prove for just two matrices first. 

8.103e. Use BC = I,. 

8.104. Graybill [1983: 2121. 

8.105. Graybill [1983: 207, 2101. 

8.106. Quoted by Graybill [1983: 211-2121 and proved by Rao and Bhi- 
masankaram [2000: 288-2891. 

8.107. Muirhead [1982: 5871. 

8.10 HESSENBERG MATRICES 

Definition 8.20. An n x n matrix A is said to be an upper Hessenberg matrix 
if all its elements below the subdiagonal are zero (i.e., aij = 0 for i > j + 1). 
Its transpose is called a lower Hessenberg matrix. Upper Hessenberg matrices 
play an important role in the QR decomposition (Meyer [2000a: 536-5381). Many 
eigenvalue algorithms reduce their input to a Hessenberg form as a first step, and 
the latter play a similar role in the Schur decomposition (Golub and Van Loan 
[1996: section 7.4). Hessenberg matrices appear elsewhere in this book. 
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8.11 TRIDIAGONAL MATRICES 

Definition 8.21. An n x n matrix A is tridiagonal if all its elements are zero 
except those in the middle three diagonals, (i.e., az3 # 0 if Ii - j l  5 1 and uz3 = 0 
if Ii - j l  > 1). Tridiagonal matrices play a role in matrix decompositions and 
factorizations-for example, (16.43), (16.45), and (16.46b). 

8.109. If A = ( a t j )  is tridiagonal, then expanding cn(A) = det(A1, - A) by the 
last column we find that 

co(X) = 1, cl(A) = (A-al l )  and 

.%(A) = (A - azz)cz-l(A) - a ~ , z - ~ a t - ~ , t ~ z - 2 ( A ) r  i = 2,3, .  . . ,n. 

8.110. Suppose that the n x n tridiagonal matrix A is given by 

a b 0 . 0 0 0  

A =  

0 0 0 . c a  
0 0 0 ~ 0 c a  

where a,  b, and c are real or complex. This matrix is both a Toeplitz matrix and a 
regular circulant . 

(a) Then 
if bc = 0, 
if u2 = 4bc, 

(an+' - p"+')/(a - p)  if u2 # 4bc, 

a-d- 
where 

2 2 
a =  

(b) If a is real and bc > 0, the eigenvalues of A are 

A, = u + a&cos(jr / (n  + I)) ,  j = 1,2, .  . . ,n .  

(c) Let b = c so that A is symmetric. Then A is positive definite if and only if 
the eigenvalues are positive (i.e., a+2bcos(jr/(n+l))  > 0 for j = 1 , 2 , .  . . ,T I ) .  

A sufficient condition is a > 0 and lb/uI 5 f. 

(d) If A is positive definite and b # 0, then B = A-' is given by bi, = bji for 
i > j and 

where y = ( & ) ( d m -  1). 

8.111. Given A in (8.110), with a real and bc > 0, then A has real eigenvectors. 
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8.112. The tridiagonal matrix 

. I 1  A = [  . , . .  . 

0 1 0 . 0  0 0  
-cn 0 1 .  0 0 0 

0 -cn-l 0 . 0 0 0 

0 0 o . - c 3  0 1 
0 0 0 . 0 -c2 c1 

is called the Schwartz matrix. It often arises in stability analysis. A is positive 
stable if and only if clcz . . . c, > 0 (cf. Section 8.14.4). 

8.113. The inverse of a symmetric n x n matrix B is tridiagonal if and only if for 
B = 2,3 , . . .  , n ,  

b,,/bl, = 4 ,  bl,  # 0 for i 5 j 5 n. 

This condition means that all the elements on and to the right of the diagonal 
element in the ith row of B have a constant relation to the corresponding elements 
of the first row. 
If B satisfies the above condition, then the inverse B-' = (b',) is given by 

b" = -&(b12 - 6'2bll)-l, 

br-1,?+1 - @r+ibl,r-l 
b" = - for T = 2,3,. . . , n  - 1, 

(br  - 1 ,T - or bl ,r - 1 ) (br,,+ 1 - or+ 1 bl ,r ) 
bnn = - b1,n-l 

bl,n(bn-l,n - onb1,n-1)' 

br,T-l - - bT-1,r = ( b  r - l , r  - Orbl,r-l)-l  for T = 2,3,. . . , n ,  

b'-' = 0 for li - j l  > 1. 

8.114. (Applications of the Above Result) 
simply confirm that BB-' = I. 

In all of the following cases we can 

( 4  If 

B =  

n n - 1  ' n -2  n - 3  . . .  1 
n - 1  2(n-1) 2(n-2) 2(n-3) . . .  2 
n - 2  2(n-2) 3(n-2) 3(n-3) . . .  3 
n - 3  2(n-3) 3(n-3) 4(n-3) . . .  4 

. . .  . 
n . . .  1 2 3 4 

, 

then B-' is tridiagonal with b'' = 2/(n + 1) for i = 1 , 2 , .  . . , n, and b'-l" = 
b ' ~ ' + ~  = - l / (n+ l )  for i = 2,3,. . . , n- 1. (B is the variance matrix of ordered 
observations from a random sample of size n from a uniform distribution.) 

(b) The autocorrelation matrix of an AR(1) time series is the symmetric Toeplitz 
matrix a2B, where 

1 

1 P P2 
B = [  p2 p 1 p p2 ' . '  

. . .  
,,n-l pn-2 ,,n-3 ,,n-4 . . .  
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and IpI < 1, that is, b i j  = pli-jl. Then 

0 . . .  1 -P 
- p  1 + p 2  -P . ' .  

0 -p 1+p2 . . .  

0 0  0 . . .  -p  1 
. . .  

Bpi = (1 - p2)-l 

Also B-' = (1 - p2)-'L'L, where 

. . . . .  . 
0 0 . . .  -p 1 0 
0 0 ."  0 -p  1 

JW 0 0 . . .  
- p  1 0 . . '  

L =  [ 
B = u 2 [ 1  1 2 2 3 2 3 2 1 : :  " '  1) 2 

0 
0 

Then det L = Jv and det B = (1 - p2),-l. 

( c )  If 
1 1 1 1 . ' .  

1 2 3 4 ".  4 ' 

1 2 3 4 . . .  n 

then 

where none of the ai or b j  is zero, then 

0 
0 

. . .  

. . .  

... - 

. . .  

0 

0 
0 
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Also, de tB = TIr=.=,(a;bi). A special case of the above result holds for the 
variance matrix of order statistics for a random sample of size n from an 
exponential distribution by setting 

a l  = a2 = . . .  = a, = 1 and bi = 1/(n - i + 1)2 (i = 1 , 2 , .  . . ,n).  

Proofs. Section 8.11. 

8.109. Cullen [1997: 3111 

8.110a. Zhang [1999: 1011. 

8.110b-d. Graybill [1983: 284-2861, 

8.111. Basilevsky [1983: 221-2241, 

8.112. Quoted by Horn and Johnson [1991: 111, exercise 91. 

8.113. Ukita [1955] and Guttman [1955]. 

8.114a. Quoted by Graybill [1983: 200-2011 and proved by Greenberg and 
Sarhan [ 19591. 

8.114b. Graybill [1983: 2011. 

8.114~. We check that BB-' = I. 

8.114d. Graybill [1983: 187-188, 2021 and Roy and Sarhan[1956]. 

8.12 VANDERMONDE AND FOURIER MATRICES 

8.12.1 Vandermonde Matrix 

Definition 8.22. Let al, a2,. . . ,a ,  be a set of real numbers, and let 

1 . . .  
a2 a3 . . .  

1 1 

V =  

Then V and V' are called n x n Vandermonde matrices. The matrix V' arises in 
relation to the Lagrange interpolation polynomial (Meyer [2000a: 1861). Note that 
every k x k leading principal submatrix is also a Vandermonde matrix. A helpful 
notation on occasion is V(a1, a2, .  . . , a,), which we shall use below. 

8.115. detV = (a ,  - a t ) .  
l<t<jsn 

8.116. If there are r distinct a, values, then rankA = r .  
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8.117. If V, is an n x n Vandermonde matrix, then 

det V, = (a, - al)(u, - a2) . . . (a, - a,-1) det V,-1. 

8.118. Let V be an n x n Vandermonde matrix with distinct a, (i.e., the inverse 
exists), and define 

n 

= n ( x - u j ) ,  for i = 1 , 2 , .  . .  , n  
j =  1 :3#i 

n 

j = 1  

If C = V-l, then cij = bij/Pi(ui). 

8.119. (Extended Vandermonde Matrix) Let 

1 . . .  1 
a2 a3 . . .  

be an p x n matrix (n 2 p ) .  Then rankV = min(p, d ) ,  where d is the number of 
distinct values of ai. Note that V’ is the regression matrix for a ( p  - 1)th-degree 
polynomial regression model. 

Proofs. Section 8.12.1. 

8.115. Graybill [1983: 2661, Schott [2005: 335-3361, and Zhang [1999: 1111. 

8.116. Suppose al, . . . ,a, are distinct, then the leading principal r x r sub- 
matrix is nonsingular (by 8.115). 

8.117. Harville [1997: section 13.61. 

8.118. Graybill [1983: 2701. For another formulation of this result see Zhang 
[1999: 1141. 

8.119. Graybill [1983: 2691. 

8.12.2 Fourier Matrix 

Definition 8.23. Let w = e2Ti/n = cos(27r/n) + isin(27r/n), where i = G, so 
that W = e-2ai/n; also wr = cos(27rr/n) + i sin(27rrln). Then 

F = n-1/2V(1 , i s ,~2 , .  . . ,zn-l) 
is defined to be a Fourier matrix. Since F is symmetric, we have 

1 1  1 . . .  1 
1 w  w2 . . .  

. . .  1 Wn-l W2n-2 
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The ( i , j ) t h  element is n - ' / ' ~ ( Z - ~ ) ( j - ~ ) .  Note that wn = 1, W = w-', w ~ ~ - ~  - - 

, w ( , - ' ) ( ~ - ' )  = w, wPi  = ~ ~ - 2 ,  wT = cos(2m/n) + i s i n ( 2 ~ r / n ) ,  and we have 
Cj=o waj = 0 if n > 1 and i is an integer such that 0 < i < n (wo = 1). Note that 
Graybill [1983: 2711 interchanges w and W in his notation so that F looks like F* 
above, although it is not. Schott [2005: 3311 interchanges F and F*, while Meyer 
[2000a: 3571 uses 3 = w-' and omits n-1/2 as a multiplier. 

8.120. Suppose F is defined above. 

(a) F and F* are both symmetric. 

(b) F is unitary, i.e., FF* = I,. 

(c) F-' =F.  

(d) F2 = F*' = II, where 11 is the n x n permutation matrix 

W n - 2  

n-1 

II = (el 1 en, en-1 I . . . , e 2 ) ,  

and e, is the i th column of I,. 

(e) F4 = F*4 = I,. 

( f )  F* can be written as n'/2F* = C +is,  where C and S are real matrices with 

cij = cos[27r(i - l)(j - l ) /n]  and sij = sin[27r(i - l ) ( j  - l)/n]. 

Also CS = SC so that from nFF* we get C2 + S2 = nI,. 

(g) The eigenvalues of F are =tl and +i with appropriate algebraic multiplicities. 

8.121. Let c,(A) = det(X1, - F*). Then 

n = O(mod 4) : 

n = l(mod 4) : cn(A) = (A - l)(A4 - l)(1/4)(n-1), 

n = 2(mod 4) : c,(A) = (A2 - l)(A4 - 1)('14)+'), 

n = 3(mod 4) : &(A) = (A - i ) ( A 2  - 1)(X4 - 1)(1/4)(n-3). 

cn(A) = (A - 1)'(A - i ) ( X  + l ) ( X 4  - 1)(,14)-', 

Definition 8.24. Let y and z be n-dimensional vectors, and let F be an n x n 
Fourier matrix. Then y = Fz is known as the discrete Fourier transform of the 
elements of z. Typically, z = ( z (O) ,  ~ ( l ) ,  . . . z ( n  - l)) ' ,  a times series sequence, or 
else z = z(t)  (t = 0,1, .  . . ,T - l),  where z(t) is vector time series. The Fourier 
transform can be computed using a so-called Fast Fourier Transform Algorithm 
in which one reduces the calculation of the discrete Fourier transform for a long 
stretch of data to the calculation of successive transforms of shorter sets of data (cf. 
Brillinger [1975: section 3.51 and Meyer [2000a: section 5.81). One can also make 
use of the fact that a Fourier matrix of order 2, can be expressed as Kronecker 
products (Davis [1979: 36-37]). 

Other applications of the transform include the convolution of two time series, 
computing filtered values from a transfer function, the estimation of the mixing 
distribution of a compound distribution, and the determination of the cumulative 
distribution of a random variable from its characteristic function (Brillinger [1975: 
67-69]). 
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8.122. If y = Fz then z = F-'y = F*z. 

8.123. Let p ( z )  = a,  + alz + u2z2 + . . .  + an-1zn-' be a polynomial of degree 
n - 1. It will be determined uniquely by specifying its values p ( z )  at n distinct 
points z,+ ( k  = 1,2, . . . , n)  in the complex plane. Suppose we select these points as 
the n roots of unity, namely, 1, w ,  w 2 , .  . . ,un-l . Then 

so that 

This gives a relationship between the coefficients of p ( z )  and its values. 

Proofs. Section 8.12.2. 

8.120. Davis [1979: 31-37] and Graybill [1983: 272-273, with corrections in 

MI. 
8.121. Carlitz [1959]. 

8.13 ZERO-ONE (0 , l )  MATRICES 

A matrix whose elements are all 0 or 1 is called a (0,l)  matrix. I have highlighted 
this topic as such matrices occur widely throughout statistics. Examples of such 
matrices are the permutation matrices in this chapter as well as the various vec- 
permutation and commutation matrices in Chapter 11. There is also the so-called 
incidence matrix discussed in (8.124) below, and there are Boolean matrices, both 
of which occur in combinatorial and graph theory. Zero-one matrices play an im- 
portant role in the solution of equations with large sparse matrices (e.g., Duff et al. 
[ 19861 ) . 

8.124. (Incidence Matrix) 

(a) (Experimental Design) The incidence matrix for a block design has a row for 
each treatment and a column for each block. Thus a 1 for the (i, j ) t h  element 
of the matrix tells us that the ith treatment is applied to the j t h  block (cf. 
John and Williams [1995: chapter 11). 

(b) (Non-negative Matrix) As noted by Seneta [1981: 551, many properties of 
a non-negative matrix A depend only on the positions of the positive and 
zero elements within the matrix, and not on the actual size of the positive 
elements. Also, those positions will determine the corresponding positions in 
all powers Ak, with k a positive integer. This means that in the investigation 
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of the properties of irreducibility and primitivity, the classification of indices 
into essential and inessential (cf. Section 9.3), and the periodicity of indices 
that communicate with each other, depend only on the location of the positive 
elements of A. Therefore given a non-negative matrix A (i.e., all its elements 
are non-negative), then the matrix obtained by replacing each positive ele- 
ment by 1 is called the incidence matrix of A. Particular matrices for which 
incidence matrices have useful applications are stochastic and Leslie matrices. 
A related (0 , l )  matrix is the indicator matrix, whereby the nonzero elements 
of any matrix are replaced by 1. For a non-negative matrix, the indicator 
matrix is the same as the incidence matrix. 

8.125. Let A be an n x n (0,l) matrix. If J, = 1,l; and 

AA' = ICI, + J, 

for some positive integer k ,  then A is a normal matrix, that is, AA' = A'A. 

8.126. If A and B are n x n (0,l)  matrices such that AB = J, - I,, then 
AB = BA. 

Definition 8.25. (Boolean Matrix) The binary Boolean algebra B consists of the 
set (0, l},  together with the usual operations of addition and multiplication (i.e., 
1 + O  = 1, 0 + 0  = 0, 1 x 0 = 0, 0 x 0 = 0, 1 x 1 = l), except that 1 +  1 = 1. A 
Boolean matrix is a (0,l) matrix over 8. Boolean matrices have some properties 
that differ from matrices over R; for example, the row rank need not equal the 
column rank. Some properties of Boolean matrices and Boolean vector spaces are 
given by Bapat and Raghavan [1997: section 5.61. 

8.127. If T is the incidence matrix of the non-negative matrix A, then Tk is the 
incidence matrix of A' when T is a Boolean matrix. 

Proofs. Section 8.13. 

8.125. Zhang [1999: 2511. 

8.126. Zhang [1999: 252-2531. 

8.127. Seneta [1981: 561. 

8.14 SOME MISCELLANEOUS MATRICES A N D  ARRAYS 

8.14.1 Krylov Matrix 

Definition 8.26. If x E R" and A is an n x n matrix, then the matrix 

(x, Ax,A2x,.  . . , A"-'x) 

is called a Krylow matrix. This matrix arises in the so-called Lanczos method of 
obtaining approximations for some eigenvalues and eigenvectors, especially for large 
sparse matrices (SlapniEar [2007: chapter 42, 81). The column space of the Krylov 
matrix is called Krylov subspace, and it is associated with the solution of linear 
equations (Greenbaum [2007: section 41.11). 
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8.14.2 Nilpotent and Unipotent Matrices 

Definition 8.27. An n x n real or complex matrix is nilpotent if A k  = 0 for some 
positive integer k ,  and is unipotent if A' = I,. For example, 

I B  
A = ( o  - I )  

is unipotent. For a nilpotent matrix, the smallest k such that Ak = 0 is called the 
index of nilpotency. 

8.128. The eigenvalues of a nilpotent matrix are all zero. 

8.129. Let A be a real or complex n x n singular matrix with matrix index k (cf. 
Section 3.8) such that rank(Ak) = r .  Then there exists a nonsingular matrix R 
such that 

R - ~ A R =  ( c o  ) ,  
where C is a nonsingular r x r matrix and N is nilpotent with k its index of 
nilpotency. 

8.130. If A and B are nilpotent matrices, then so is A + B. 

8.131. Any Jordan block J m ( X )  (cf. Definition 16.2) can written as J m ( X )  = XI,+ 
A,, where A, is nilpotent as (A,), = 0. 

More generally, a Jordan matrix can be written as J = D + N, where D is 
diagonal matrix whose main diagonal is the same as that of J, and N = J - D. 
Here N is nilpotent as Nk = 0, where k is the order of the largest Jordan block in 
J.  

8.132. Any strictly upper-triangular n x n matrix A is nilpotent with index of 
nilpotency at  most n (as A" = 0). If r j  = rank(Aj), then rj+l < rj if rI > 0. 

Proofs. Section 8.14.2. 

8.128. A x  = Ax implies that x # 0 and 0 = A k x  = Xkx. 

8.129. Meyer [2000a: 3971. 

8.130. A' = 0 and B" = 0 for some r and s, which imply ( A  + B)T+s = 0. 

8.132. Abadir and Magnus [2005: 1831 

8.14.3 Payoff Matrix 

Definition 8.28. Suppose we have a game consisting of two players I and 11. At 
each stage of the game, Player I chooses a strategy J with probability yI ( J  = 
1 , 2 , .  . . , n) ,  where C,"=, yI = 1, and Player I1 independently chooses a strategy 
z with probability x ,  ( i  = 1 , 2 , .  . . ,m) ,  where CEl z, = 1. Player I1 then pays 
Player I the amount a z I ,  or if atI is negative Player I pays Player I1 ( - a z J ) .  The 
m x n matrix A = aZI is called a p a y 0 8  matrzx. (Some authors reverse the roles of 
the two players so that Player I chooses a strategy i ,  etc.) The expected zncome to 



SOME MISCELLANEOUS MATRICES AND ARRAYS 189 

Player I is C,”=, u i j y j ,  and the game is called a matrix  game. Optimal strategies 
exist for each player, as is proved in (8.133) below. 

Let x = ( X I ,  5 2 , .  . . ,zm)‘ and y = (yl, y z , .  . . , yn)’. If x has more than one 
nonzero element, then the stratgy is called a mixed strategy. If all the elements are 
positive (i.e., x > 0 ) ,  the strategy is said to be completely mixed. A matrix game is 
called a completely mixed game if every optimal strategy x for Player I1 and y for 
Player I are completely mixed. For further details see Bapat and Raghaven [1997: 
chapter 11. 

8.133. (Minimax Theorem-von Neumann) Let A be an m x n payoff matrix. 
There exists a unique constant u ,  called the value of the matrix  game A ,  and mixed 
strategies x for Player I1 and y for Player I such that 

71 n 

c a i j y j > u ,  i = 1 , 2  , . . . ,  m, and c u i j l c i < u ,  j = 1 , 2  , . . . ,  n. 
j=1  i = l  

The strategy x is called an optzmal strategy for Player I1 and y is called an optimal 
strategy for Player I. 

8.134. Let u be the value of a matrix game A ,  and suppose some optimal strategy 
of Player I1 is completely mixed. Then, for any optimal strategy y of Player I, 
A y  = v l .  

8.135. Let the value of the m x n matrix game A be zero (i.e., u = 0), and suppose 
that every optimal strategy for Player I1 is completely mixed. Then m - 1 < 
rankA 5 n - 1. If rankA = m - 1, then the optimal strategy for Player I1 is 
unique. 

8.136. Let A be an n x n matrix with cofactors A,,. If the matrix game A is 
completely mixed, then C:=l C,”=, A,, is nonzero and the value v of the game is 
given by 

u = det A / ( x  A,,) .  
n n  

a = 1  j = 1  

Proofs. Section 8.14.3. 

8.133. Parthasarathy and Raghaven [1971] 

8.134-8.136. Bapat and Raghaven [1997: 10-11, 141. 

8.14.4 

Definition 8.29. An n x n real or complex matrix A is said to be stable if every 
eigenvalue of A has a negative real part. The matrix is said to  be positive stable if 
every eigenvalue has a positive real part. These concepts are related to the long- 
term equilibrium of a dynamical system, and are discussed in detail by Horn and 
Johnson [1991: chapter 21. For a further discussion see Meyer [2000a: section 7.41. 

8.137. exp(At) -+ 0 as t -+ 00 if and only if A is stable (cf. Section 19.6). 

Stable and Positive Stable Matrices 
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8.138. If A is an n x n real or complex matrix and 

n 

se(a i i )  < - C laijl, i = 1,2, .  . . ,n; 
j=l:j#i 

where !Re is the real part, then A is stable. 

8.139. Suppose A is a positive stable matrix. 

(a) A-', A' and A' are all positive stable. 

(b) de tA > 0. 

(c) Xe(traceA) > 0. 

(d) det(Ak) > 0 for any positive integer Ic. 

8.140. If A is Hermitian positive definite, then A is positive stable. 

8.141. (Lyapunov's Equation) Suppose X, A, and C are all n x n matrices such 
that X A  + A'X = C (see also (13.17~) for further details). 

(a) A is positive stable if and only if there exists an Hermitian positive definite 
solution X such that C is Hermitian positive definite. 

(b) Suppose X and C are Hermitian and C is positive definite. Then A is positive 
stable if and only if X is positive definite. 

(c) If A is positive stable, then given C ,  there is a unique solution X to  Lya- 
punov's equation. If C is Hermitian, then X is Hermitian, while if C is 
Hermitian positive definite, then X is Hermitian positive definite. 

(d) A special case of the above is when C = In, which is Hermitian and positive 
definite. 

Horn and Johnson [1991: 96-98] give a number of generalizations of the above 
theory. 

Proofs. Section 8.14.4. 

8.137. Horn and Johnson [1991: 921. 

8.138. Marcus and Minc [1964: 1591. 

8.139. Horn and Johnson [1991: 931. 

8.140. Horn and Johnson [1991: 951. 

8.141. Horn and Johnson [1991: 96-98]. 
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8.14.5 P-Matrix 

Definition 8.30. An n x n real matrix A is called a P-matrix if all its k x k 
principal minors are positive for k = 1 , 2 , .  . . , n. 

8.142. Let A be an n x n P-matrix. Then: 

(a) A’ is also a P-matrix. 

(a) DA and AD are also P-matrices, where D is a diagonal matrix with positive 
diagonal elements. 

(b) Every principal submatrix of A is also a P-matrix. 

(c) aii > 0 for i = 1 , 2 , .  . . , n .  

(d) If II is any n x n permutation matrix, then II’AII is a P-matrix. 

(e) A+D is a P-matrix, where D is a diagonal matrix with non-negative diagonal 
elements. 

8.143. Let A be a real n x n matrix. Each of the following conditions is necessary 
and sufficient for A to be a P-matrix. 

(1) For every n x 1 vector x, there is an element in x (say the qth) and the 
corresponding element in y = Ax such that xqyq > 0. 

(2) For every x # 0, there exists a diagonal matrix D, a function of x, with 
positive diagonal elements such that x’DAx > 0. 

(3) For every x # 0, there exists a diagonal matrix D, a function of x, with 
non-negative diagonal elements such that x’DAx > 0. 

(4) Every real eigenvalue of A and of each principal submatrix of A is positive. 

Proofs. Section 8.14.5. 

8.142. These results quoted by Graybill [1983: 3761 follow directly from the 
definition. 

8.143. Graybill [1983: 3771 and Horn and Johnson [1991: 1201. 

8.14.6 Z- and M-Matrices 

Definition 8.31. An n x n real matrix A = ( a i j )  for which aij 5 0 for all i , j ,  
i # j is called a 2-matrix. Note that if B is an ML-matrix (cf. Definition 9.11 
above (9.43)) then A = -B is a Z-matrix, and vice versa. 

A Z-matrix A is called a (nonsingular) M-matrix if it is a nonsingular Z-matrix 
and A-’ 2 0 (i.e., has non-negative elements). This was the definition introduced 
by Ostrowski in 1937. An equivalent definition used by Horn and Johnson [1991: 
1131 is that A is an M-matrix if it is a Z-matrix and positive stable (cf. Section 
8.14.4). I have included the word “nonsingular” to avoid ambiguity as definitions 
vary in the literature. For example, Bapat and Raghavan [1997: section 1.51 allow 
an M-matrix to be singular and use a different definition. For general references 
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relating to  M-matrices see Varga [1962] and Berman and Plemmons [1994]. Non- 
singular M-matrices arise in game theory (Bapat and Raghavan [1997: section 1.51). 

8.144. A is a Z-matrix if and only if A = sI, - B for some B 2 0 and some real 
S. 

8.145. Let A be an n x n Z-matrix such that A = LU, where L is lower-triangular 
and U is upper riangular, both with positive diagonal elements. Then: 

(a) A has positive leading principal minors including det A itself. 

(b) L and U are nonsingular. 

(c) The off-diagonal elements of both L and U are nonpositive. 

(d) No element of L-' or U-' is negative, and the diagonal elements of L-' and 
Up' are all positive. 

8.146. Let A be an n x n Z-matrix such that each real eigenvalue of A is positive. 
Let B be a Z-matrix such that A 5 B (i.e., at3 5 b,, for all z , j ) .  Then: 

(a) A and B are nonsingular. 

(b) 0 5 B-' 5 A-' (i.e., A-' - B-' - > 0). 

(c) Each real eigenvalue of B is positive. 

(d) det B 2 det A > 0. 

8.147. (Equivalence of Definitions) Let A be a Z-matrix. Then A is an M-matrix 
if and only if %(A) > 0 (where ?J2e is the real part) for all eigenvalues A, that is, if 
and only if A is stable. 

8.148. Let A be a Z-matrix. Then each of the following conditions is necessary 
and sufficient for A to be an M-matrix. 

(1) All principal minors of A are positive, including det A; that is, A is a P- 
matrix. 

(2) The leading principal minors of A are all positive, including det A. 

(3) Every real eigenvalue of A is positive. 

(4) A + tI, is nonsingular for all t 2 0. 

(5) A + D is nonsingular for every non-negative diagonal matrix D. 

(6) There exists an x > 0 such that Ax > 0. 

(7) Ax 2 0 implies x 2 0. 

8.149. If A is a Z-matrix, then it is a (nonsingular) M-matrix if and only if it can 
be expressed in the form A = sI, - B, where B 2 0 and s > p(B), with p(B) 
being the spectral radius of B. 

8.150. If A is an M-matrix, then so is every principal submatrix. 
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8.151. If A is an M-matrix, it is also a P-matrix. 

8.152. Let A and B be n x n Z-matrices. If A is an M-matrix and B 2 A (i.e., 
b,, 2 at3 for all z , j ) ,  then: 

(a) B is an M-matrix. 

(b) A-' 2 B-' 2 0. 

(c) det B 2 det A > 0. 

(d) The matrix A satisfies the Hadamard inequality 

de tA 5 al la22. . .a  ,,. 

(e) A-'B 2 I, and BA-l 2 I,. 

( f )  B-'A I I, and AB-l I I,. 

(g) AB-' and B-'A are M-matrices 

8.153. Let A be an M-matrix. Then there exists a positive eigenvalue of A, XO 
say, such that the real part of any eigenvalue of A is greater than or equal to Xo. 

Proofs. Section 8.14.6. 

8.144. Horn and Johnson [1991: 1131. Take cij = max{-ai,,O} and s 2 
max,{a,,} so that A = sI, - (C + sI, - diag(al1,. . . ,ann). 

8.145. Graybill [1983: 3801. 

8.146. Graybill [1983: 380-3811, 

8.147. Meyer [2000a: 6261. 

8.148. For further equivalent conditions and details see Horn and Johnson 
[1991: 114-1151. Some proofs are also given by Graybill [1983: section 11.31 
and Meyer [2000a: 6261. A game theoretic proof for some of the results like 
these are given by Bapat and Raghavan [1991: 25-28]. 

8.149-8.150. Horn and Johnson [1991: 1131 and Meyer [2000a: 6261. 

8.152. Graybill [1983: 386, (a)-(g) except (d)] and Horn and Johnson [1991: 
117, (a)-(d)I. 

8.153. Quoted by Graybill [1983: 3851. 
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8.14.7 Three-Dimensional Arrays 

In nonlinear regression models, the expected value of a random response variable 
yi is usually of the form fi(xi;O), and this leads to looking at  afi/aB,i3&, which 
is a 3-dimensional array. Such arrays have been used for a wide variety of models 
including nonlinear models (cf. Seber and Wild [1989] and Wei [1997]) and multi- 
nomial models (e.g., Seber and Nyangoma [2000] and Wei [1997: section 7.21). 

Definition 8.32. Consider the n x p x p array W = { (wrS)} made up of a p x p 
array of n-dimensional vectors w,, (T ,  s = 1 , 2 , .  . . p ) .  If wirs is the i th element of 
w,,, then the matrix of i th elements Wi = (wirs) is called the i th face of W .  We 
now define two types of multiplication. Firstly, if B and C are p x p matrices, then 

V = { ( v , ~ ) }  = B W C  

denotes the array with i th face Vi = BWiC, i.e., 

a 0  

Secondly, if D is a q x n matrix, then we define square bracket multiplication by 
the equation 

[Dl [WI = { (DWTs 1 }, 
where the right-hand side is a q x p x p array. 

which is a p 2  x n matrix with i th column vec Wi. 

8.154. Using the above notation, we have the following. 

We can also define trace W ,  a vector with i th element traceWi, and vec W ,  

( 4  [Inl[Wl = W .  

(b) [QB + PCI [WI = +I [WI + PIC1 [WI. 

(c) trace[BW] = trace[WB]. 

(d) BtraceW = trace([B][W]). 

(e) vec ([B] [W]) = (vec W)B’. 

( f )  [D][BWC] = B[D][W]C. 

(g) vec ([BWC]) = (C’ @ B)vec W ,  where “8” is the Kronecker product. 

(h) [DBl[Wl = [Dl[{(Bwrs))l = [Dl“Bl[WlI. 

(i) a’Wb = C ,  C,  a,b,w,,,. 

(j) [d’][W] is a matrix with (T ,  s)th element xi diwirs. 

Proofs. Section 8.14.7. 

8.154. Seber and Wild [1989: 692, (h)-(j)] and Wei [1997: 188-191, (a)-(j)]. 



CHAPTER 9 

NON-NEGATIVE VECTORS AND MATRICES 

Any matrix of probabilities has non-negative entries and is therefore a non-negative 
matrix. Consequently, such matrices play a varied role in probability and statis- 
tics. For example, they are used in genetic and population growth models, general 
stochastic processes, and various scaling problems. Such matrices are also encoun- 
tered in the previous chapter where a number of matrices were mentioned such as 
permutation matrices, where the elements are zero or one. Non-negative matrices 
also play an important role in combinatorics (e.g., Sachkov and Tarakonov [2002]). 
In this chapter we look at a wide range of such matrices. For a concise reference to 
the subject see Rothblum [2007: chapter 91. 

9.1 INTRODUCTION 

Definition 9.1. A nonzero matrix A = ( a z J )  is said to be non-negative (positive) 
if atJ 2 0 (> 0) for all i, j .  We write A 2 0 (> 0). Also we say that A 5 0 (< 0) 
if aZ3 5 0 (< 0). The same definition applies to vectors, namely a 2 0 if a, 2 0 for 
all i ,  and a # 0. Finally we say that A 5 B if and only if B - A 2 0. 

In most applications, A is square. Unless stated otherwise, we shall assume that 
A is n x n. Although certain aspects of the general theory of non-negative matrices 
extend to countably infinite matrices, we shall consider only infinite stochastic 
matrices (Section 9.6.3). 

A M a t n x  Handbook for Statastacaans. By George A. F. Seber 
Copyright @ 2008 John Wiley & Sons, Inc. 
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9.1. (F’robenius-Konig) If A 2 0, then per(A) = 0, where per(A) is the permanent 
of A (cf. Section 4.5), if and only if A has an r x s zero submatrix with r+s = n + l .  

Proofs. Section 9.1. 

9.1. Bapat and Raghavan [1997: 621. 

9.1.1 Scaling 

Definition 9.2. Let A 2 0 be an m x n matrix. The problem of scaling A to 
obtain a non-negative m x n matrix B with prescribed row and column sums will 
be called the scaling problem. 

A and B are said to have the same pattern if aij = 0 if and only if b,j = 0 for 
all i , j .  

The procedure whereby we alternatively scale the rows of A to give the required 
rows sums, then scale the columns sums of the new A to give the required column 
sums (this will upset the row sums), and then continuing to repeat these two oper- 
ations, we shall call the iterative scaling algorithm. Under certain conditions, this 
procedure converges to give a solution to the scaling problem. Of related interest 
is the doubly stochastic matrix discussed in Section 9.7. 

Scaling problems arise in many contexts. For example, Bapat and Raghavan 
[1997: chapter 61 mention budget allocations, probability estimation in Markov 
chains, Leontief input-output systems, estimating cell entries in contingency tables, 
and transportation planning. 

9.2. (Bacharach) Let A 2 0 be m x n with no zero row or column, and let Z and 
J be subsets of { 1 ,2 , .  . . , m} and { 1 , 2 , .  . . , n}, respectively, with complements 2‘ 
and P. Let x and y be fixed m x 1 and n x 1 positive vectors, respectively. Then 
there exists an m x n matrix B 2 0 such that aij = 0 + bij = 0, with B1, = x > 0 
and 1AB = y‘ > 0’ if and only if 

aij = 0 for all i E Z“,j E J implies c xi 5 c yj and cq 2 c IJ~. 
iEZC j € J c  i E l  j C 7  

Here aij is to be understood as zero if i or j E 4, as is summation over an empty 
set. Using a concept relating to the elements of A called “connectedness,” Seneta 
[1981: 70-771 gives a number of general theorems to establish the convergence of 
the iterative scaling algorithm to the matrix B described above with prescribed 
row and column sums. If A > 0, then A is connected, and the theory simplifies. A 
different approach to this problem is embodied in the next two results. 

9.3. Let K be a nonempty, bounded polyhedron given by 

K = {T E R” : 7r 2 0, C7r = b}, 

where C = ( c i j )  is an m x n matrix and b E R“ is a nonzero vector. Let y E K .  
Then, for any x 2 0 with the same pattern as y, there exist zi > 0 (i = 1 , 2 , .  . . , m) 
and 7r E K such that 

m 

n r - x ’ ~ z , c 2 ’ ,  3 -  3 j = l , 2  , . . .  ,n. 
i= 1 
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Furthermore, any 7r E K of the above type is unique. Bapat and Raghavan [1997: 
2471 show how to use this theorem to prove the existence of a solution to the scaling 
problem. 

9.4. Let A and B be any pair of positive m x n matrices. Then there exists a 
unique matrix C = D1AD2, where D1 and Dz are diagonal matrices with positive 
diagonal entries, and C and B have the same row and column sums. Also the 
iterative scaling algorithm applied to A converges to C .  

Proofs. Section 9.1.1. 

9.2. Bacharach [I9651 and Seneta [1981: 79, exercise 2.341. 

9.3. Bapat and Raghavan [1997: 2471. 

9.4. Bapat and Raghavan [1997: 251, 2601. 

9.1.2 Modulus of a Matrix 

Definition 9.3. The modulus of any a real or complex matrix A = (a i j )  is the 
matrix of absolute values, namely mod(A) = (laijl).  Thus mod(A) 2 0. Schott 
[2005: 3181 uses the term abs(A). 

9.5. Clearly A 5 mod(A). 

9.6. The following are readily proved using (5.1). 

(a) If A and B are any two conformable matrices, then 

mod(AB) 5 mod(A)mod(B). 

Here B could also be a vector. 

(b) If A is square, mod(A'") 5 [mod(A)lk. 

(c) If A and B are n x n matrices such that mod(A) 5 mod(B), then 

lImod(A)IIF 5 Ilmod(B)IIFj 

where 1 1  . [ I F  represents the F'robenius norm. 

Proofs. Section 9.1.2. 

9.6. Quoted by Rao and Rao [1998: 4701. 

9.2 SPECTRAL RADIUS 

9.2.1 General Properties 

We recall that the spectral radius p(A) of a square matrix A is the maximum 
of the absolute values of the eigenvalues of A.  Note that p(A) need not be an 
eigenvalue of A,  though we note below that it can be an eigenvalue in the case of 
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non-negative matrices. Although the emphasis is on non-negative matrices in this 
chapter, further results concerning the spectral radius are given in Section 4.6.2 
(e.g., 4.68a) on matrix norms. 

9.7. Let A = ( a i j )  be a complex matrix and B = ( b i j )  2 0 be a real matrix, both 
n x n, such that mod(A) I B. Then: 

(b) (Ky Fan) Every eigenvalue of A lies in the region 

9.8. Let A and B be n x n non-negative matrices. If 0 I A I B, then 

that is, p(.) is monotonically increasing on the set of all n x n non-negative matrices. 

9.9. Let A 2 0 be an n x n matrix. 

(a) If C is a principal submatrix of A ,  then p ( C )  p(A). In particular, 

max aii I p(A). 
l<i<n 

(b) Let ri be the row sum of row i and c j  be the column sum of column j. Then: 

(i) min ri 5 p(A) I max ~ i .  

(ii) min cj 5 p(A) 5 l ~ j 2 n c j .  

(iii) If ri = a for all i, then p(A) = a. If cj = p for all j ,  then p(A) = p. 

l<i<n l<isn 

l<j<n 

(c) Let x = (x1,x2,. . . ,xn)' > 0. Then: 

(iii) If A has a positive right eigenvector, then 

l n  l n  
p ( ~ )  = max min - C aijxj  = min max - C aijxj 

x > O  l<zsn Xi j=l  x > O  l<z<n Xi j=l 

(d) p(In + A )  = 1 + p(A). 

9.10. Let A > 0 with maximum and minimum row sums of R and T ,  respectively, 
and let m = mini,j aij. Then 

T + m(h - 1) 5 p(A) 5 R - m(1 - fl) ,  



SPECTRAL RADIUS 199 

where 

R - 2m + JR2 - 4m(R - r) -r + 2m + Jr2 + 4m(R - r )  
, h =  

2(r - m) 2m 9 =  

There exist matrices for which the bounds are attained. 

Proofs. Section 9.2.1. 

9.7a. Horn and Johnson [1985: 4911, Meyer [2000a: 6191, and Rao and Rao 
[1998: 4711. 

9.7b. Horn and Johnson [1985: 5011 and Marcus and Minc [1964: 1521. 

9.8. Horn and Johnson [1985: 4911. 

9.9a. Horn and Johnson [1985: 4911 and Rao and Rao [1998: 4711. 

9.9b. Horn and Johnson [1985: 492-4931, Rao and Rao [1998: 4711, and 
Schott [2005: 318-3191. 

9 . 9 ~ .  Horn and Johnson [1985: 4931, Rao and Rao [1998: 472, for (i) and (ii)], 
and Schott [2005: 318-3191. 

9.9d. Horn and Johnson (1985: 5071 and Rao and Rao [1998: 4751. 

9.10. Marcus and Minc [1964: 1551. 

9.2.2 Dominant Eigenvalue 

Definition 9.4. If ( A l l  > lX2l 2 . . .  2 ( A n [ ,  then XI is called the dominant eigen- 
value of A. We note that 1x1 I is also the spectral radius p(A) of A. 

9.11. (Perron-Frobenius Theorem for Non-negative Matrices) If A 2 0, then the 
following hold. 

(a) A has a real eigenvalue p 2 0. 

(b) With p can be associated non-negative left and right eigenvectors (which need 
not be unique even when scaled to have unit length). 

(c) If A has a positive eigenvector, then the corresponding eigenvalue is p; that 
is, if Ax = Ax and x > 0, then X = p. 

(d) (X I  5 p for any eigenvalue X of A, i.e., p is the spectral radius of A. 

(d) If 0 5 B 5 A and f3 is an eigenvalue of B, then If31 5 p. 

Seneta [1981: 25-26] gives a helpful history of this and related results. 
There is a corresponding theorem, originally proved by Perron in 1907 for positive 

matrices; for recent proofs see Bapat and Raghavan [1997: 5-61, Rao and Rao [1998: 
4731 and Schott [2005: section 8.81. However, when A > 0, A is also irreducible and 
primitive (see below for definitions), so that a more general theorem is therefore 
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given in (9.30). For completeness, we give some related results for A > 0 below in 
(9.16) from Horn and Johnson [1985] and Schott [2005]. 

9.12. If A 2 0 and s > p, where p is defined in (9.11) above, then (sI, - A) has 
an inverse and 

(sI, - A)-' 2 0. 

9.13. Let A 2 0 with spectral radius p, and let adj(A) denote the adjoint matrix. 
Then: 

(a) B(s) = adj(s1, - A) 2 0 for s > p. 

(b) 9 2 0 for s > p. 

(c) B(p) 2 0. 

(d) $(sI, - A)-'ISEp 2 0. 

9.14. Let A 2 0 have spectral radius p. 

(a) Suppose x > 0 and a,P 2 0. Then: 

(i) If ax 5 Ax 5 px, then a 5 p 5 p. 
(ii) If ax < Ax, then a < p 

(iii) If Ax < px, then p < p. 

(b) If x 2 0 (x # 0) and Ax 2 ax for some a,  then p 2 a. 

9.15. Let A 2 0. 

(a) (I, - A)-' exists and is non-negative if and only if there exists x 2 0 such 
that x > Ax. 

(b) If each of the row sums of A is less than 1, then (I, - A)-' exists and is 
non-negative. The same is true if each of the columns sums is less than 1. 

(c) Consider the equation (I,-A)y = b, where b 2 0. If (&-A)-'  exists and is 
non-negative, then there is a unique non-negative solution y = (I, - A)-'b. 
This result applies, for example, to Leontief's input-output economic model. 

An irreducible version of the above theorem is given in (9.36) below. 

9.16. (Perron's Theorem for Positive Matrices, with Additions) Suppose A > 0 
with spectral radius p = p(A). Then: 

(a) p is positive and is an eigenvalue. 

(b) There are positive right and left eigenvectors A corresponding to p. 

(c) Suppose 1x1 = p, with any corresponding eigenvector x. Then: 

(i) Amod(x) = pmod(x), where "mod" is defined in Definition 9.3 above. 

(ii) There exists an angle 0 such that e-z'x > 0. 

(d) The eigenvalue p has algebraic and geometric mutliplicities both equal to 1. 
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(e) If X is an eigenvalue of A and X # p, then 1x1 < p. 

( f )  Suppose x and y are positive vectors such that Ax = px, y’A = py‘, and 
x’y = 1. Then: 

(i) (A - p ~ y ’ ) ~  = Ak - pkxy‘, for k = 1,2, .  . .. 
(ii) Each nonzero eigenvalue of A - pxy‘ is an eigenvalue of A. 

(iii) p is not an eigenvalue of A - pxy‘. 

(iv) P(A - PXY? < P. 
(v) limk,,(p-‘A)k = xy’. 

Proofs. Section 9.2.2. 

9.11. Debreu and Herstein [1953], Meyer [2000a: 670, (a) and (b)], and quoted 
by Seneta [1981: 28, exercise 1.121. Horn and Johnson [1985: 4931 prove (c). 

9.12. Bapat and Raghavan [1997: 351. 

9.13. Bapat and Raghavan [1997: 371. 

9.14. Horn and Johnson [1985: 493, 5041 

9.15. Rao and Rao [1998: 479-4801. 

9.16. Horn and Johnson [1985: 495-5001 and Schott [2005: 319-3231, 

9.3 CANONICAL FORM OF A NON-NEGATIVE MATRIX 

Definition 9.5. Let A = ( a i j )  2 0 be n x n, and define A”’ = (ukf”’). If a:;) > 0 
for some positive integer m (a function of i and j ) ,  we say that i leads t o  j or i can 
reach j (or state i can reach state j in the case of a Markov chain and its transition 
matrix; see Definition 9.16 in Section 9.6), or j is accessible from i, and we write 
i + j .  If i --f j and j + i, we say that the i and j communicate and write i tf j .  If 
i H i, the period of index i is defined to be d ( i )  = gcd{k : ad:) > 0)-that is, the 

greatest common divisor of those positive integers k such that aii > 0. If d ( i )  > 1, 
then i is said to be periodic (cyclic), while if d ( i )  = 1, then i is said to be aperiodic 
(acyclic). Clearly, if there exists at least one j such that i tf j ,  we must have i tf i .  

The indices can be classified as essential or inessential. If i -+ j ,  but j f t  i 
for some j ,  then i is called inessential, and an index which leads to  no index 
at all is also called inessential; otherwise, an index is called essential. Essential 
indices can be divided into self-communicating classes where all the indices within 
the class communicate with each other, but do not communicate with any indices 
outside the class. Similarly, inessential indices (if any) can also be divided into self- 
communicating classes in which an index in a class can reach another index outside 
the class, but can’t get back, together with a class of individuals that communicate 
with no index (Seneta [1981: 121). 

9.17. If A 2 0 has at least one positive entry in each row, then it possesses at 
least one essential class of indices. 

( k )  
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9.18. If A = (a i j )  2. 0 and i t i  j ,  then d ( i )  = d ( j ) .  

9.19. (Canonical Form) Given A 2 0, there exists a permutation matrix 11 such 
that 

where the Ai (i = 1,2 ,  . . . .  T )  correspond to the T self-communicating classes of 
essential indices, and Q corresponds to the inessential indices, with R # 0 in 
general. The matrix B is simply A with the indices reordered, and Q has a structure 
similar to A, except that there may be nonzero elements to the left of any of its 
diagonal blocks, that is, 

. . .  

. . .  
Q1 0 
0 Q2 

Q =  . . . . . .  
C 

In practice the matrix (R I Q) in B may be missing from B and we could have 
T = 1. Also 

0 . . .  
2," . . .  x j. 
. . . . .  

s - ( .  Ck Q: 

Proofs. Section 9.3. 

9.17-9.19. Seneta [1981: 14-17]. 

9.4 IRREDUCIBLE MATRICES 

9.4.1 Irreducible Non-negative Matrix 

In Section 8.8 we introduced the concept of irreducibiblity for general matrices. 
In this section we concentrate on non-negative matrices, the major application of 
irreducibility, and recall the following definition. 

Definition 9.6. An n x n non-negative matrix A is said to be reducible if there 
exist a permutation matrix lI such that 

B = IIAII' = ( :tt g2 ) , 
where BI1 and Bzz are square matrices. A matrix which is not reducible is said to 
be irreducible. We note that if B has the general canonical form (9.19), then it is 
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reducible. Some authors use the equivalent definition 

An equivalent but more useful definition of irreducibility in the present context 
is as follows. The n x n matrix A 2 0 is irreducible if and only if every pair of 
indices in its index set communicate, that is, for every pair i,j there exists a positive 
integer m (5 n),  a function of i and j ,  such that a!:) > 0. The equivalence of the 
two definitions is proved by Bapat and Raghavan [1997: 2-41. 

An irreducible non-negative matrix is said to be periodic (cyclic) with period d 
if the period of any one (and so of each one, by (9 .18))  of its indices satisfies d > 1, 
and it is said to be aperiodic (acyclic) if d = 1. 

9.20. An irreducible non-negative matrix cannot have a zero row or column. 

9.21. If the matrix A = ( a t j )  2 0 is reducible, then so is Ak for any positive 
integer k .  

9.22. An n x n non-negative matrix A is irreducible if and only if (I, +A)"-' > 0. 

9.23. If A is irreducible, then so is A'. 

Definition 9.7. The matrix A 2 0 is said to be primitive if there exists a positive 
integer p such that AP > 0. (Thus if A is primitive, it is irreducible as a$' > 0 for 
all i , j . )  Clearly, if A > 0, then A is primitive. 

An alternative but equivalent definition is that A 2 0 is primitive if it is ir- 
reducible and it has only one eigenvalue of maximum modulus. The equivalence 
follows from (9.26) below. 

The smallest positive integer q such that AQ > 0 is called the index ofprimitivity. 

9.24. If A 2 0 is primitive, then Ak is non-negative, irreducible, and primitive for 
all k = 1 , 2 , .  . .. 

9.25. If A 2 0 is primitive, then Ak > 0 for some integer k 5 (n - l ) n n .  

9.26. A non-negative matrix A is primitive if and only if it is irreducible and 
aperiodic. 

9.27. If A 2 0 has att > 0 for all i, then A"-' > 0 and A is primitive. 

9.28. (Limit Theorem for Primitive Matrices) Let A be an n x n primitive non- 
negative matrix with distinct eigenvalues p, X2,. . . , Xt ( t  5 n),  where p > 1x21 2 
\A3) >_ . . .  2 ] A t ( .  In the case lXz l  = IX31 (A, # A,) we stipulate that the algebraic 
multiplicity m2 of A2 is at least as great as that of A3 and of any other eigenvalues 
having the same modulus as X2. By (9.30) there exist positive vectors x and y such 
that Ax = px, y'A = py' and x'y = 1. We then have the following: 

(a) Suppose A2 # 0. 

(i) As k + 03, 

Ak = pkxy' + O(k"IX21k) 

elementwise, where s = m2 - 1. 
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(ii) 

Ak 
lim - = xy'. 

k + m  pk 

(b) Suppose Xz = 0, then for k 2 n - 1, 

Ak = pkxy'. 

For matrix limits see Section 19.2. 

Definition 9.8. An irreducible non-negative matrix that is periodic is said to 
be imprimitive. Thus irreducible matrices can be subdivided into primitive or 
imprimitive matrices depending on whether they are aperiodic or periodic. 

9.29. The powers of an imprimitive matrix may be studied in terms of powers of 
primitive matrices. 

9.30. (Perron-Fkobenius Theorem for Irreducible Matrices) Let A 2 0 be an irre- 
ducible matrix. Then we have the following. 

(a) A has a real positive eigenvalue p, 

(b) With p can be associated strictly positive left and right eigenvalues. 

(c) 1x1 5 p for any eigenvalue X of A. Thus p is the spectral radius of A. 

(d) p has geometric multiplicity 1, that is, the left and right eigenvectors associ- 
ated with p are unique to constant multiples. 

(e) p has algebraic multiplicity 1, that is, p is a simple root of the characteristic 
equation. 

( f )  If 0 5 B 5 A and /3 is an eigenvalue of B, then 1/31 5 p. Moreover, 1/31 = p 
implies B = A so that p increases when any element of A increases. 

(g) (Primitive matrices) If A is primitive then (a)-(f) still hold except that (c) 
is replaced by 1x1 < p for any eigenvalue X # p. 

Definition 9.9. We call p the Perron-Frobenius eigenvalue of an irreducible non- 
negative matrix, and its corresponding positive eigenvectors are called the Perron- 
Frobenius eigenvectors. As noted above, p is the spectral radius. 

9.31. Let A 2 0 be an irreducible n x n  matrix with Perron-Frobenius eigenvalue p, 
and let x and y be the right and left Perron-Frobenius eigenvectors of A satisfying 
x'y = 1. Then: 

(a) y'Ax = p 5 x'Ay. 

(b) (Limit Theorem) If L = xy', then 

k = l  
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9.32. (Subinvariance Theorem and Variations) Let A 2 0 be an irreducible matrix 
with Perron-Frobenius eigenvalue p. Let c > 0. 

(a) If Ax 5 cx for any nonzero x 2 0, then p 5 c and x > 0. Furthermore, p = c 
if and only if Ax = cx. 

(b) If Ax 2 cx for any nonzero x 2 0, then p 2 c. Also p = c if and only if 
AX = CX. 

(c) If Ax 5 cx (# ex) for some x 2 0, then p < c. 

(d) If Ax 2 cx (# cx) for some x 2 0, then p > c. 

9.33. (Bounds on p) Let A 2 0  be irreducible with Perron-Frobenius eigenvalue 
p. Then (9.9b) holds with p(A) = p. In the case of (i) and (ii), equality on one 
side implies equality on both sides, that is, p can only be equal to a maximal or 
minimal row (respectively column) sum if all the row (respectively column) sums 
are equal. The same is true for (c)(i). 

9.34. Let P = {x : x > O } .  Then: 

(4 

There also exists an x E P for which both the supremum and the infimum 
are attained. 

(b) 

sup { inf *} = p = inf {sup *} . 
XEP Y E P  Y'X X E P  YEP Y'X 

9.35. Let A 2 0 be irreducible with Perron-Frobenius eigenvalue p, and let E 2 0 
(E # 0). If 6 > 0, then B = A + 6E is irreducible with a Perron-Frobenius 
eigenvalue that, by a suitable choice of 6, may be made equal to any positive 
number exceeding p. 

9.36. Let A 2 0 be irreducible with Perron-Frobenius eigenvalue p. 

A necessary and sufficient condition for a solution x (x 2 0 , x  # 0) to the 
equation (sI, - A)x = c to exist for any c 2 0 (c # 0) is that s > p. In this 
case, there is only one solution x that is strictly positive, and it is given by 
x = (sI, - A)-'c. 

Of those real numbers s for which the inverse exists, (sI - A)-' > 0 if and 
only if s > p. 

If s = 1, then p < 1 if none of the row (or column) sums of A exceed 1, and at 
least one is less than 1. For applications see Leontief's input-output economic 
model and an extension described by Bapat and Raghavan [1997: chapter 71, 
Rao and Rao [1998: 477-4811, and Seneta [1981: chapter 21. 
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9.37. Let A 2 0 be irreducible with Perron-Frobenius eigenvalue p = 1. Then the 
sequence {Ak} converges if and only if A is primitive. 

9.38. If A 2 0 is irreducible with Perron-Frobenius eigenvalue p, and Ak = (ulf’), 
then for each pair ( i , j )  the power series 

M 

k=O 

all have the same radius of convergence R = p- l .  

9.39. Suppose A 2 B 2 0 and A # B. If A + B is irreducible, then p(A) > p(B), 
where p(.) is the dominant eigenvalue of the appropriate matrix. 

Proofs. Section 9.4.1. 

9.20. Seneta [1981: 181. 

9.21. We take powers of B in the definition (e.g., B2 = IIAII’IIAII’ = 
IIA2II‘). 

9.22. Bapat and Raghavan [1997: 31, Rao and Rao [1998: 4691, and Schott 
[2005: 3241. 

9.23. This follows from either definition of irreducibility. 

9.24-9.25. Horn and Johnson [1985: 5181. 

9.26. Seneta [1981: 211. 

9.27. Horn and Johnson [1985: 5171 

9.28. Seneta [1981: 91. 

9.29. Seneta [1981: 211. 

9.30. Bapat and Raghavan [1997: 17, proved the result using the theory of 
completely mixed matrix games], Horn and Johnson [1985: 508, for (a)-(e)], 
Schott [2005: 325-326, for (a)-(e)], and Seneta [1981: 22, 3-71, 

9.31a. Bapat and Raghavan [1997: 121, with x and y interchanged]. 

9.31b. Horn and Johnson [1985: 5241. 

9.32a. Seneta [1981: 231. 

9.32b. Quoted by Seneta [1981: 29, exercise 1.171. 

9.32~-d. Debreu and Hurstein [1953]. 

9.33. Quoted by Seneta [1981: 27, exercise 1.71. 

9.34-9.35. Birkhoff and Varga [1958] and quoted by Seneta [1981: 27, exer- 
cises 1.7 and 1.81. 

9.36. Seneta [1981: 30-311. 
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9.37. Hunter [1983a: 1701. 

9.38. Quoted by Seneta [1981: 29, exercise 1.141. 

9.39. Quoted by Seneta [1981: 29, exercise 1.161. 

9.4.2 Periodicity 

Definition 9.10. If A 2 0 is irreducible, then by (9.18) each index a has the same 
period, d, say, which we call the period of A. 

9.40. Let A 2 0 be an irreducible matrix with h eigenvalues whose moduli are 
equal to the spectral radius p. We know from (9.30~) that h 2 1. Then h = d, the 
period of A (cf. (9.41b) below). 

9.41. Let A 2 0 be an n x n irreducible matrix with period d. 

(a) A is primitive if and only if d = 1. 

(b) If d > 1, there exist d distinct eigenvalues with (XI = p, where p is the spectral 
radius. These eigenvalues are pexpi(27rk/d), k = 0,1, .  . . , d - 1, the d roots 
of Xd - pd = 0. 

(c) If X # 0 is any eigenvalue of A, then the numbers Xexp[i(27rk/d)], k = 
0 ,1 , .  . . , d - 1, are also eigenvalues. 

(d) The set of n eigenvalues when plotted as points in the complex A-plane is 
invariant under a rotation of the plane through the angle 27r/d. 

(e) Combining (b) and (c), 

r 

det(X1, - A) = X " ( X d  - pd)  n(Xd - A t ) ,  
i = l  

where IX,I < p for i = 1 , 2 , .  . . ,T  and m = n - ( T +  1)d. 

9.42. Let A 2 0 be irreducible with period d (d > 1). 

(a) There exists a permutation matrix 11 such that 

0 0 B 2 3  . . .  0 
0 Biz 0 . . .  

IIAII'= . . . . .  
0 0 0 . . .  B d - l , d  i B d l  0 0 . . .  

(= B), 

0 0 )  

where the zero submatrices on the main diagonal are square. Note that II 
permutes the rows, while II' permutes the columns in the same order. 

(b) Conversely, suppose A 2 0 and there exists a permutation matrix such 
that IIAII' = B, as defined in (a). If A has no zero rows or columns and 
B12B23 . . . B d - l , d B d l  is irreducible, then A is irreducible. 
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Proofs. Section 9.4.2. 

9.41a. Seneta [1981: 211. 

9.41b. Horn and Johnson [1985: 510, 5121 and Seneta [1981: 231 

9 .41~.  Seneta [1981: 241. 

9.41d. Bapat and Raghavan [1997: 41-42]. 

9.41e. Bapat and Raghavan [1997: 431. 

9.42a. Bapat and Raghavan [1997: 41-42]. 

9.42b. Seneta [1981: 29, exercise 1.181. 

9.4.3 

Definition 9.11. An n x n  real matrix B = ( b i g )  for which b,j 2 0, for all i , j  ( i  # j) 
is called an  ML-matrix. This matrix arises in the theory of Markov processes. 

9.43. If B is an ML-matrix, there exists a non-negative cy sufficiently large so that 

Non-negative and Nonpositive Off-Diagonal Elements 

T = &I, + B 2 0. 

Definition 9.12. An ML-matrix B is said to be an irreducible ML-matrix if T = 
cyI, + B 2 0 is irreducible. By taking cy > max, lbzzl, we can make the irreducible 
T aperiodic and primitive. 

9.44. Suppose B is an n x n irreducible ML-matrix. Then there exists an eigenvalue 
T with the following properties. 

(a) T is real. 

(b) With T are associated stricly positive left and right eigenvectors, which are 
unique to constant multiples. 

(c) T is greater than the real part of any other eigenvalue X of B, X # T 

(d) T is a simple root of the characteristic equation of B. 

(e) T 5 0 if and only if there exists y 2 0 (y # 0) such that By 5 0, in which 
case y > 0; and T < 0 if and only if there is a strict inequality in at least one 
position in By 5 0. 

( f )  T < 0 if and only if A, > 0, i = 1 , 2 , .  . . , n, where A, is the principal minor 
of -B formed from the first i rows and columns of -B. 

(g) T < 0 if and only if -B-’ > 0. 

9.45. An ML-matrix B is irreducible if and only if eBt > 0 for all t > 0 (see Section 
19.6 for matrix exponentials). In this case 

eBt = ePtwv’ + O(et l t )  
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elementwise as t -+ co, where w and v' are the positive right and left eigenvectors 
of B corresponding to the dominant eigenvalue p of B, normed so that v'w = 1, 
and having tl < p. 

Proofs. Section 9.4.3. 

9.43. Choose a = maxi lbii 1 .  
9.44-9.45. Seneta [1981: 46-48]. 

9.4.4 Perron Matrix 

Definition 9.13. An n x n matrix A is said to be a Perron matrix (polynomially 
positive matrix) if f(A) > 0 for some polynomial f with real coefficients. A matrix 
A is called a power-positave matrzx if Ak > 0 for some positive integer k .  

9.46. If A is an irreducible ML-matrix, then it is is a Perron matrix. Also B = -A 
is a Perron matrix. 

9.47. If A 2 0 is irreducible, then f(A) = C,"=, Az > 0 and A is a Perron matrix. 

9.48. A power-positive matrix is a Perron matrix. Setting Ic = 1, we see that this 
includes positive matrices. 

9.49. If A is a Perron matrix, then there exists an eigenvalue T such that: 

(a) T is real. 

(b) With T can be associated strictly positive left and right eigenvectors, which 
are unique to  constant multiples. 

(c) T is a simple root of the characteristic equation of A. 

9.50. Let A be a Perron matrix with T defined above, and let adj denote an adjoint 
matrix. 

(a) (i) min, C, a,, 5 T 5 max, C, a,,. 
(ii) min, C,  a,, 5 7 5 max, C,  a,,. 

(b) Either adj(T1, - A) > 0 or -adj(TI, - A) > 0. 

(c) If Ax 5 cx for some nonzero x 2 0 and scalar c, then c 2 T ;  c = T if and 
only if Ax = cx. 

Proofs. Section 9.4.4. 

9.46. From Definition 9.12 we see that A can be written in the form T - aI,, 
Q > 0, where T is non-negative and primitive, so that for some positive integer 
k ,  (A + 
9.47. Seneta 11981: 491. 

9.48. Set f(x) = x k .  

9.49. Bapat and Raghavan 11997: 44, proof using matrix game theory] and 
Seneta 11981: 491. 

9.50. Seneta [1981: 521. 

> 0, which is a real polynomial. 
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9.4.5 Decomposable Matrix 

Definition 9.14. An square matrix A is called partly decomposable if there exist 
permutation matrices II1 and II2 such that 

where B11 and B 2 2  are square matrices. A matrix is said to be ful ly  indecompos- 
able if it is not partly decomposable. Clearly an irreducible matrix is also fully 
indecomposable, but not necessarily vice versa. A major role of indecomposability 
is in investigating the combinatorial properties of non-negative matrices. 

9.51. If A 2 0 is n x n and fully indecomposable, then A"-' > 0. 

9.52. If A and B are non-negative n x n fully indecomposable matrices, then so is 
A B .  (This result is not necessarily true for irreducible matrices.) 

Proofs. Section 9.4.5. 

9.51. Bapat and Raghavan [1997: 661. 

9.52. Bapat and Raghavan [1997: 671. 

9.5 LESLIE MATRIX 

Definition 9.15. A k x k Leslie matrix  for population growth in animal or human 
populations is a matrix A of the form 

f l  fz  f3 . . '  6 - 1  fk 

A = [ !  ;2 8 1 1 :  8 ! ] ,  
where, for i = 1 , 2 , .  . . , k ,  fi is the average number of daughters born to a single 
female during the time she is in age class i ,  and pi is the proportion of females 
in the ith age class expected to survive and pass into the next age class. (Some 
authors start the sequences with fo and PO.) These fertility and survival rates are 
said to be age-specific. Here each fi 2 0 and 0 < p ,  5 1, so that A 2 0. In some 
cases i may refer to a state (stage) rather than age class, and the model is then 
stage-specific. 

The matrix A, and those like it that describe population growth, are sometimes 
called population projection matrices. Typically, they will contain further non- 
negative elements such as down the diagonal. 

9.53. Let n(t) = (nl(t) ,nz(t) ,  . . . , n k ( t ) ) ' ,  where ni(t) is the number of females in 
the i th age class at time t ( t  a positive integer). Then 

0 0 0 . . .  pk-1 

n(t) = An(t - 1) = A t n ( 0 ) ,  
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where A is a population projection matrix. The case when A is singular and we 
require n(t - 1) from n(t)  is considered by Campbell and Meyer [1979: 184-1871, 

9.54. A sufficient condition for the Leslie matrix A to be primitive is that two 
consecutive f i ls ,  say fj and fj+l, are positive. 

9.55. Suppose A is primitive (i.e., A P  > 0 for some positive integer p ) .  In fact, most 
population projection matrices are primitive, and the only significant exceptions are 
age-classified matrices with a single reproductive age class (Caswell [2001: 811). 

(a) By (9.30g), there is a positive dominant eigenvalue p that is simple with 
1x1 < p for every eigenvalue X different from p. 

(b) Setting z1 = 1 and successfully solving Ax = px using the second through to 
the kth rows, a positive right eigenvector corresponding to  p is 

(c) Let y be the positive left eigenvector corresponding to p and scaled so that 
x’y  = 1. Then, from (9.28), 

At 
lim -n(O) = x y ’ n ( 0 )  = k x ,  say. 

t-oo pt 

Thus for large t ,  n(t) = A t n ( 0 )  zz p t k x ,  and n(t) M pn(t - 1). 

(d) If n(t) = kx, then 

n ( t  + 1) = An(t) = k A x  = kpx, 

and a population with age distribution determined by x is said to have a stable 
age distribution as the age structure remains unchanged. According to (c), 
we see that as t + 03 the age distribution tends to the stable age distribution 
irespective of the starting age distribution. Once the population reaches the 
stable age distribution, it increases, decreases, or remains constant in size 
depending on whether p > 1, p < 1, or p = 1. When p = 1, the population is 
said to be stationary. Also, r = l np  is called the intrinsic rate of increase. 

9.56. (Diffusion Model) Suppose we have two identical patches of organisms cou- 
pled by diffusion. Suppose there are s stages and that the within-patch demography 
is described by the population projection matrix A. Let D = diag(d1, da, . . . , d,) 
be an s x s diffusion matrix, where di is the probability that an individual in stage 
i leaves its patch to go to the other patch. If ni(t) is the stage abundance vector 
in patch i ,  then 
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where B 2 0 and “@” is the Kronecker product. For a general modeling method 
for patches and stages, see Hunter and Caswell [2005]. 

An important application of the above theory is the life cycle graph described, for 
example, by Caswell [2001: chapter 41, where a matrix like A or B is constructed 
from the graph. A life cycle can also be described as an absorbing finite-state 
Markov chain, which involves a transition matrix (described below). Caswell [2006] 
discussed this demographic role of Markov chains in ecology. 

Proofs. Section 9.5. 

9.54. Demetrius [1971] 

9.55. Caswell [200l: 84, section 4.5.21. 

9.56. Caswell [200l: 65-66]. 

9.6 STOCHASTIC MATRICES 

9.6.1 Basic Properties 

Definition 9.16. A non-negative matrix with each of its row sums equal to 1 is 
called a (row) stochastic matrix .  A common application is the transition matrix 
of a finite (discrete time) Markov chain in which the i , j t h  element of the matrix 
is the probability of going from state i to state j .  In what follows, P is an n x n 
stochastic matrix with P1, = 1,. When the Markov chain is homogeneous, we are 
interested in powers Pk of P. For example, if pi0 is the probability that the Markov 
chain is initially in state i ,  then p(0) = (p lo ,p20 , .  . . ,p,o)’ is the initial probability 
distribution; after k transitions, the corresponding probability distribution is p ( k ) ,  

where pikl = pio Pk. If, as k + 00, p ( k )  tends to a limit that does not depend on 
the initial probaiility distribution, we say that the process has the ergodic prop- 
erty. Ergodicity and the so-called coeficient of ergodicity play an important role 
in more general processes such as inhomogeneous Markov processes and products 
of inhomogeneous non-negative matrices (cf. Seneta [1981].) The matrix I - P is 
called the Markovian kernel of the chain, and it has a useful group inverse as well 
as the usual weak inverse. 

If p(o) is such that p ( k )  = p(o) for all k ,  we say that p(O) is stationary, and a 
Markov chain with such an initial distribution is said to be stationary. We shall 
denote this stationary distribution by T, where (setting k = 1) d P  = x’ and 
X’l ,  = 1. 

9.57. If P = ( p Z J )  is 
A, of P satisfies IX, - 

elements, then all the 
oval 

a stochastic matrix and p = mini(pii), then any eigenvalue 
- pl 5 1 - p .  If pii and p j j  are the smallest main diagonal 
eigenvalues of P lie in the interior or on the boundary of the 

12 - P i i l l X  - P j j l  I (1 - Pii)(l - Pjj). 

9.58. A stochastic matrix P is irreducible and aperiodic if and only if Pk > 0 for 
some positive integer k-that is, if and only if P is primitive. 

9.59. If P is a stochastic matrix, then so is Pm for any positive integer m. 
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9.60. For any stochastic matrix P, 

1 
lim -(I, + P + p2 + . . . + pk--l ) = R, 

k + m  k 

where R is stochastic and RP = PR = R = R2. 

Proofs. Section 9.6.1. 

9.57. Quoted by Marcus and Minc [1964: 1611. 

9.58. Bapat and Raghavan [1997: 491. 

9.59. P"1, = P"-lln = . ' .  = 1 n. 

9.60. Bapat and Raghavan [1997: 501. 

9.6.2 Finite Homogeneous Markov Chain 

There is a substantial literature on Markov chains, for example, Hunter [1983b], 
and more recently, Ching [2006], Hernandez and Lasserre [2003], and Norris [1997], 
so that I shall consider just some basic results in this section. 

9.61. Suppose P, the n x n transition matrix of a finite Markov chain, is irreducible. 

(a) Since P1, = l,, P has an eigenvalue equal to 1. However, since the row 
sums are all equal, it follows from (9.9b(iii)) that p = 1 with a positive right 
eigenvector of 1,. If q is a positive left eigenvector (i.e., q'P = q'), we can 
scale q such that q'l, = 1; thus q represents a probability distribution. 

(b) q'pk = q'Pk-1 = . . . - - q'. 

(c) The irreducible Markov chain has a unique stationary distribution r, the 
solution of d P  = T' and dl, = 1. We can identify 7r with q of (a). 

9.62. Suppose that the n x n transition matrix P is irreducible with stationary 
distribution 7r. Then: 

(a) If t and u are any n x 1 vectors, then (I, - P + tu') is nonsingular if and only 
if d t  # 0 and u'l, # 0. If the latter conditions hold, then (I, - P + tu')-* 
is a weak inverse of I, - P. Furthermore, any weak inverse can be expressed 
in the form 

(I, - P + tu')-' + 1,f' + gn', 
where f and g are arbitrary vectors. 

In addition to the above weak and Moore-Penrose inverses, Hunter [1988] gives 
expressions for other types of generalized inverses. For further results see Hunter 
[1990, 19921. 

9.63. Suppose P is a primitive stochastic matrix (i.e., irreducible and aperiodic). 
Using the above notation, we have the following special case of (9.28). 
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(a) lim Pk = 1 , ~ ’  (= Qo, say), where 7r is the unique stationary distribution. 

(b) If p is a probability distribution (i.e., p’l, = l ) ,  then 

k + m  

lim p’pk = ~ ’ 1 ~ 7 ~ ’  = d. 
k - c c  

(c) QO is idempotent. 

(d) PQ;T- = QoPm = QO for all integers m 2. 1. 

(e) Qo(P - Qo) = 0. 

(f) Every nonzero eigenvalue of P - QO is also an eigenvalue of P .  

9.64. Suppose that a general stochastic matrix P is expressed in the canonical 
form of (9.19), where Q # 0. Here Q refers to the submatrix of P associated with 
transitions between the inessential states, and P is reducible. 

(a) Qk + 0 elementwise and geometrically fast as k -+ co. 

(b) (I, - Q)-’ exists. In finite absorbing chains, this matrix is sometimes called 
the fundamental matrix of absorbing chains. 

Definition 9.17. An n x n stochastic matrix P is said to be regular if its essential 
indices form a single class that is aperiodic. In this case P can be expressed in the 
canonical form (cf. 9.19) 

where P1 is a stochastic irreducible aperiodic (primitive) matrix. 

9.65. Suppose P is regular with canonical form described above. Let ql be the 
unique stationary distribution of PI, and define q’ = (ql, 0’) to be an 1 x n vector. 
Then, as k --f co, 

elementwise, where q‘ is the unique stationary distribution corresponding to the 
matrix P ,  the approach to the limit being geometrically fast. Thus the regularity 
of P is a sufficient condition for ergodicity; it is also a necessary condition. 

9.66. If an n-state homogeneous Markov chain contains at  least two essential 
classes, then any weighted linear combination of the stationary distribution vec- 
tors corresponding to each class, each appropriately augmented by zeros to give an 
n x 1 vector, is a stationary distribution of the chain. 

Proofs. Section 9.6.2. 

Pk --f 1,q’ 

9.61. Seneta [1981: 118-1191. 

9.63. Rao and Rao [1998: 483, with Q instead of Qo]. 

9.64. Seneta [1981: 120-1231. 

9.65. Seneta [1981: 127; 134, exercise 4.91. 

9.66. Quoted by Seneta [1981: 134, exercise 4.121. 
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9.6.3 Countably Infinite Stochastic Matrix 

In this section we consider a stochastic matrix with a countable (i.e., finite or 
denumerably infinite) index set { 1 ,2 , .  . .}, with our focus on the infinite case. The 
matrix P = ( p i j )  will still represent a stochastic matrix, but with infinite row sums 
adding to unity. As matrix multiplication readily extends to  infinite matrices, 
Pk = (pi;))  is well-defined for k = 1 , 2 , .  . ., and it is also stochastic (Seneta [1981: 
chapter 51). However, a more sensitive classification of indices is now required. 

Definition 9.18. Let 

and k =  1,2, . . . ,  
r:r#i 

with 1:;) = 0, by definition, for all i, j E { 1,2,  . . .}. Define, for each i and j, 

M M 

k=O k = l  

An index i (or state i) is said to  be recurrent if Lii = 1 and transient if Lii < 1. 
A recurrent index i is said to be positive- or null-recurrent depending on whether 
pi < 00 or pi = 00, respectively. Here pi is called the mean recurrence measure of 
i .  Note that in the Markov chain context, 1:;' is the probability of going from state 
i to  state j in k steps (or in time k ) ,  without revisiting i in the meantime. Thus Lii 
can bc regarded as the probability of staying in or returning to state i for the first 
time. Also pi is the mean recurrence time of state i .  Thus a state i is recurrent if, 
starting from state i ,  we will eventually return to state i with certainty. If state i 
is transient, then there is a positive probability that the system will never return 
to state i. 

9.67. An inessential index is transient and a recurrent index is essential. 

9.68. If i is a recurrent aperiodic index and j is any index such that j -+ i (cf. 
second part of Definition 9.5 in Section 9.4.1), then 

In Darticular 

Proofs. Section 9.6.3. 

9.67. Seneta [1981: 165-1661. 

9.68. Seneta [1981: 1711 

9.6.4 Infinite Irreducible Stochastic Matrix 

The definition of irreducibility given by Definition 9.6 (second definition) applies 
to infinite matrices; that is, A 2 0 is irreducible if and only if every pair of indices 
i and j communicate. 
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9.69. The following hold for an infinite irreducible stochastic matrix. 

(a) Every index has the same period. 

(b) The indices are all transient, or all null-recurent, or all positive-recurrent. 

Definition 9.19. In the light of (9.6913) we say that an irreducible P is a transient, 
or  null-recurrent, o r  positiue-recurrent matrix  depending on whether any one of its 
indices is transient, or null-recurrent , or positive-recurrent . 

If v’P = v’ and v is a nonzero non-negative (countably infinite) vector, we call 
v an invariant measure. Note that a multiple of such a measure is still a measure. 

9.70. (General Ergodic Theorem) We have the following series of limits. 

(a) Let P be a primitive (i.e., irreducible and aperiodic) stochastic matrix. If P is 
transient or null-recurrent, then for any pair of indices i , j ,  we have pi:) + 0 
as k --t 00. If P is positive-recurrent, 

and the vector x = (p; ’ )  is the unique stationary distribution (invariant 
vector) satisfying x’P = x’ and Czl xi = 1. The question of computing a 
finite dimensional approximation for x is discussed by Seneta [1981: section 
7.21. 

(b) If P is irreducible and periodic with period d, then 

9.71. If P is an irreducible transient or null-recurrent matrix, then there exists no 
invariant measure v’ satisfying v’l  < co. 

Proofs. Section 9.6.4. 

9.69. Seneta [1981: 1721. 

9.70. Seneta [1981: 177 for (a); 196, exercise 5.1, for (b)]. 

9.71. Seneta [1981: 1781. 

9.7 DOUBLY STOCHASTIC MATRICES 

Definition 9.20. A square n x n matrix A = ( a z J )  is doubly stochastic if A 2 0 
and all its column sums and row sums are 1. Some examples of doubly stochastic 
matrices are given by Marshall and Olkin [1979: 45-48]. For a reference to doubly 
stochastic matrices see Bapat and Raghavan [1997: chapter 21. 

Definition 9.21. The diagonal of a matrix A associated with the permutation 
7-r is the set { a l n ( l ) ,  a2,+), . . . , a n a ( l ) } ,  and the corresponding diagonal product is n:=l azn(a).  A diagonal is said to be positive if each element aaa(a) in the diagonal 
is positive. 
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Definition 9.22. The matrix A is said to have a doubly stochastic pattern if there 
exists a doubly stochastic matrix with the same pattern of zeros as A. 

9.72. A doubly stochastic matrix has a positive diagonal. An algorithm for finding 
such a diagonal is also available. 

9.73. Let A = (azJ)  be an n x n doubly stochastic matrix, and let y1 2 yz 2 . . . 2 
yn. Then 

k k n  c Yz 2 U 2 J Y J  , k = 112, . . . , n. 
2=1 Z = l J = l  

9.74. The product of a finite number of doubly stochastic matrices is doubly 
stochastic. 

9.75. If n x n A is doubly stochastic and nonsingular, then A-' has row and 
column sums equal to 1, but it need not have non-negative elements. 

9.76. If A 2 0 is n x n matrix with row totals and column totals not exceeding 
unity, then there exists a doubly stochastic n x n matrix B such that B 2 A. 

9.77. (Scaling) If A is a non-negative n x n matrix with doubly stochastic pattern, 
then there exist diagonal matrices D1 and Dz with positive diagonal elements such 
that C = DlADz is doubly stochastic. 

9.78. If A is non-negative definite and doubly stochastic and has azz 5 l / ( n  - 1) 
for each i ,  then the non-negative definite square root A'/' (cf. 10.8) is doubly 
stochastic. 

9.79. Every permutation matrix is a doubly stochastic matrix, because there is a 
single 1 in every row and column and the remaining elements are zero. 

9.80. (Birkhoff-von Neumann) A matrix is doubly stochastic if and only if it is a 
convex combination of the permutation matrices. 

9.81. The set of doubly stochastic matrices is the convex hull of all n x n permu- 
tation matrices (of which there are n), and the latter constitute the extreme points 
of this set. 

9.82. Let A = (uzJ)  be a doubly stochastic n x n matrix. 

(a) The permanent (cf. Section 4.5) of A is positive. 

with equality if and only if azJ = n-l for all i , j .  

9.83. The matrix (azJ)  = (n-') is the unique irreducible idempotent n x n doubly 
stochastic matrix. 

9.84. If T = ( t t J )  is a real orthogonal matrix, then A = (t,2,) is doubly stochastic. 

9.85. If A 2 0 is n x n (A # 0 ) ,  then A has a doubly stochastic pattern if and 
only if every positive entry of A is contained in a positive diagonal. 
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Definition 9.23. A matrix A = (az,) is said to be orthostochastzc if there exists an 
orthogonal matrix T such that a,, = t:,. If there exists a unitary matrix U = (u,,) 
such that a,, = Iuy 1 2 ,  then A is said to be unztary-stochastzc (Marshall and Olkin 
[1979: 231). 

Definition 9.24. A square matrix A is said to be doubly substochastzc if A 2 0 
and all row and column sums are at most 1. 

9.86. The set of all n x n doubly substochastic matrices is a convex set. 

9.87. From the definition we have that any square submatrix of a doubly sub- 
stochastic matrix is doubly substochastic. 

9.88. If A = (az,) is doubly substochastic, then there exists a doubly stochastic 
matrix B = (bz3)  such that a,, 5 b,, for all z , ~ .  

9.89. If A = (a,,) and B = (b2,) are doubly substochastic, then their Hadamard 
(Schur) product A o B = (u2,b2,) is doubly substochastic. 

Proofs. Section 9.7. 

9.72. Bapat and Raghavan [1998: 63-66]. 

9.73. Anderson [2003: 6461. 

9.74. Marshall and Olkin [1979: 201. 

9.75. Al, = 1, implies 1, = A-ll,, and A’l, = 1, implies 1, = A-l’l,. 

9.76. Bapat and Raghavan [1997: 751. 

9.77. Bapat and Raghavan [1997: 871. 

9.78. Marshall and Olkin [1979: 511. 

9.80. Bapat and Raghavan (1997: 631, Rao and Rao [1998: 314-3151, and 
Zhang [1999: 1271. 

9.81. Marshall and Olkin [1979: 191 and Rao and Rao [1998: 308-3091. 

9.82. Bapat and Raghavan [1997: 931 and Rao and Rao [1998: 3141. 

9.83. Marshall and Olkin [1979: 191. 

9.84. Follows from the fact that the rows and columns of an orthogonal matrix 
each have unit length. 

9.85. Bapat and Raghavan [1997: 681. 

9.86. Follows immeditately from the idea of a convex combination. 

9.88. Horn and Johnson [1991: 1651 and Marshall and Olkin [1979: 251. 

9.89. Since bij 5 1, aijbij 5 aij. 



CHAPTER 10 

POSITIVE DEFINITE AND NON-NEGATIVE 
DEFINITE MATRICES 

Quadratic forms that are non-negative definite play an important role in statistical 
theory, particularly those related to chi-square distributions. They can also be used 
for establishing a wide variety of inequalities, such as those in Chapter 12. 

10.1 INTRODUCTION 

Definition 10.1. Let A be an n x n Hermitian matrix, and let x E C". Then 
x*Ax is said to be a Hermitian non-negative definite (n.n.d.) quadratic form if 
x*Ax 2 0 for all x. If x*Ax is Hermitian n.n.d. we say that A is Hermitian n.n.d. 
and we write A 0. (Some authors use the term positive semi-definite instead of 
n.n.d. We reserve the former for the following definition.) 

If A is Hermitian and n.n.d., and there exists x, x # 0 such that x*Ax = 0, we 
say that A is Hermitian positive semidefinite or positive indefinite. An alternative 
definition is that A is n.n.d. and det A = 0. 

If x*Ax > 0 for all x # 0, then we say that A is Hermitian positive definite 
(p.d.) definite and write A + 0. 

Given n x n Hermitian matrices A and B, we say that A 0. 
Similarly we say that A + B if A - B + 0. This is referred to as the (partial) 
Lowner ordering of matrices. There are many applications of Lowner ordering in 
statistics such as estimability and efficiency of estimation. 

In most applications, A is a real symmetric matrix, in which case we simply 
replace * by ', assume x E W", and drop the term Hermitian in the above definitions 

B if A - B 

A Matrix Handbook for Statisticians. By George A. F. Seber 
Copyright @ 2008 John Wiley & Sons, Inc. 
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and in what follows. Thus a positive definite matrix without the adjective Hermitian 
will always represent a real symmetric matrix. The same is true for a non-negative 
definite matrix. 

10.1. The following matrices are all assumed to be Hermitian. 

(a) A1 k B1 and A2 k B2 imply that A1 + A2 k B1+ B2. 

(b) If A 2 B and B k C, then A k C. 

(c) A1 2 B1 and A2 2 B2 do not necessarily imply that AlA2 2 B1B2, even 
if A1A2 and B1B2 are Hermitian. Thus A k B does not neccessarily imply 
that A2 2 B2. 

Proofs. Section 10.1. 

10.la. Consider the corresponding quadratics. 

10.lb. x*(A - C)X = x*(A - B + B  - C)X = x*(A- B)x+x*(B - C)X 2 0. 

10.2 NON-NEGATIVE DEFINITE MATRICES 

10.2.1 Some General Properties 

In this section we assume that A is a Hermitian n x n matrix, unless otherwise 
stated. The results hold for a real symmetric matrix if we replace * by '. 
10.2. A 5 0 if and only if all its eigenvalues are real and non-negative . 

10.3. If A k 0, then from (10.2), det A = ni Xi  2 0. 

10.4. If A k 0, then traceA = xi X i  2 0. 

10.5. Given A k 0, then any principal submatrix of A, including A itself, is 
non-negative definite. In particular, the diagonal elements of A are non-negative. 

10.6. A 5 0 if and only if all principal minors (including A itself) of A, and not just 

the leading ones, are non-negative. Note that A = ( -! ) has non-negative 

leading principal minors including A itself, but it is not non-negative definite. 

10.7. (Fejer) A k 0 if and only if 

n n  

z = 1 3 = 1  

for all 71 x n non-negative definite matrices B = (bz3) .  

10.8. If A k 0 and k is a positive integer, there exists a unique non-negative 
definite matrix A1/' k 0 such that (A1/')' = A. In particular, if A = UAU*, 
where A = diag(A1,. . . , A,) and the A, are the non-negative eigenvalues of A, then 
Allk = UA'/'U*, where A'/' = diag(A;lk,. . . ,A:")). The case k = 2 arises 
frequently in statistics. We note the following. 
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(a) A and A’/‘“ commute. 

(b) The eigenvalues of A l l k  are the kth roots of those of A. 

(c) rankA = rank(A1lk). 

(d) If A is real, then so is A l lk .  

(e) For k = 2 and A real, another way of deriving A’/’ is to  obtain the Cholesky 
decomposition A = RR’. Then, if R = PEQ’ is the singular value decom- 
position of R, we have A’/2 = PEP’ as (A1/’)’ = PX’P’ = RR’. 

(f) If A + 0, then (Ap1)’/’ = (A’/’)-’. 

10.9. If A 
definite. 

10.10. If A is of rank r ,  then A k 0 if and only if A = RR*, where R is n x n of 
rank T .  The result is also true if we replace R by an n x r matrix of rank r ,  as we 
have a full-rank factorization of A.  

10.11. A 5 0 is of rank T if and only if there exists an n x r matrix S of rank r 
such that S’AS = I,. 

10.12. Let A k 0. 

(a) C A C ”  k 0. 

(b) If CAC’ = 0, then C A  = 0; in particular, CC* = 0 implies that C = 0. 

(c) rank(C*AC) = rank(AC). 

0, then the matrix (a:]) for k a positive integer is non-negative 

10.13. If A k 0 and a,, = 0, then aZ3 = 0 for all j = 1 , 2 , .  . . , n. Since A is 
Hermitian, a,, = 0 if and only if the row and column containing a,, consist entirely 
of zeros. 

10.14. If A 

10.15. If traceA 2 !Retrace(AU) for all unitary matrices U (i.e., U*U = In), 
then A is non-negative definite. (Here !Re denotes “real part of.”) 

10.16. Let A be any m x n real matrix, and let V be an m x m non-negative 
definite matrix. If Z is any matrix such that C(Z) = N(A’) (i.e., the columns of Z 
span the null space of A’), then C(A) n C(VZ) = 0 and 

0, then A k  5 0 for k a positive integer. 

C(A, V) = C(A, V Z )  = C(A) @ C(VZ). 

We can express Z in the form Z = I - (A’)-A’. 

10.17. Let A = (a , ] )  5 0. If f ( z )  = a0 + a l z  + a2z’ + . . . is an analytic function 
with non-negative coefficients and radius of convergence R > 0, then the matrix 
with ( i , j ) th  elements f(a,,) is n.n.d. if all laZ31 < R. 

10.18. We have the following results. 

(a) Given the real matrix A k 0, then 

C(BAB’) = C(BA) and rank(BAB’) = rank(BA) = rank(AB’). 
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(b) If ( ) is n.n.d., then CB) C C(A) and C(B') C C(C). 

10.19. Let A be an n x n real symmetric idempotent matrix, and suppose that 
{B1, Bz, . . . , Bk} is a set of real n x n non-negative definite matrices such that 

k 

I , = A + ~ B ~ .  
i= 1 

Then AB, = BiA = 0 for i = 1 , 2 , .  . . , k .  

Proofs. Section 10.2.1. 

10.2. Horn and Johnson [1985: 4021 and Rao and Rao [1998: 1811. 

10.5. Set appropriate elements of x in x*Ax equal to zero. 

10.6. Abadir and Magnus [2005: 2231 and Zhang [1999: 1601. 

10.7. Horn and Johnson [1985: 4591 

10.8. Horn and Johnson [1985: 405 for (a-(d)], Golub and Van Loan [1996: 
149 for ( e ) ] ,  and Abadir and Magnus [2005: 221 for (f)] ,  

10.9. Horn and Johnson [1985: 4611 

10.10. Seber and Lee [2003: 460, real case]. We can also choose R such that 
R*R = A, where A is a diagonal matrix with diagonal elements the positive 
eigenvalues of A. (cf. Abadir and Magnus [2005: 2191). 

10.11. Seber and Lee [2003: 460, real case]. 

10.12. Abadir and Magnus [2005: 221, real case]. 

10.13. Zhang [1999: 1611. 

10.14. From (10.8) with B = All2, we have Ak = (B2)k = (Bk)' = C2, say, 
where C is symmetric. 

10.15. Rao and Rao [1998: 3431. 

10.16. Harville [1997: 3871. 

10.17. Rao and Rao [1998: 2141. 

10.18. Sengupta and Jammalamadaka [2003: 45, A and B interchanged in 

(41. 
10.19. Graybill [1983: 3981. 
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10.2.2 Gram Matrix 

Definition 10.2. Let { v I , v ~ ,  . . . , v k }  be a set of n vectors in an inner product 
space I/ with inner product (., .). Then the G r a m  matrix of the vectors vi is the 
k x k matrix G = ( g i j ) ,  where gi j  = (vi,vj). 

10.20. Let G be the Gram matrix of the vectors (w1, w2,. . . , wk} in Cn with 
respect to the inner product (., .), and let W = (w1, w2,. . . ,wk) be an n x k 
matrix. 

(a) G is Hermitian non-negative definite. 

(b) G is nonsingular if and only if the vectors w1, . . . , wk are linearly independent. 

(c) There exists a Hermitian positive definite n x n matrix A such that 

G = W*AW. 

(d) If r is the maximum number of linearly independent vectors in the set of 
vectors {wl , .  . . , wk}, then rankG = rankW = r .  

(e) If (x,y) = x*y, then A = I, in (c). 

Proofs. Section 10.2.2. 

10.20. Horn and Johnson [1985: 407-4081. 

10.2.3 Doubly Non-negative Matrix 

Definition 10.3. A (real) non-negative definite matrix that is also non-negative 
(i.e., A 2 0 with non-negative elements) is referred to as doubly non-negative 
matrix. A square matrix A is said to be completely positive if there exists an n x k 
matrix B such that B 2 0 and A = BB’. (The smallest value of k is called the 
cp-rank of A and its properties are considered by Berman and Shaked-Monderer 
[2003: chapter 31.) 

Completely positive matrices arise in relation to graph theory, block designs, 
some maximum efficiency-robust tests, and in a Markovian model for DNA evolu- 
tion (cf. Berman and Shaked-Monderer [2003: 68-70], who also give further refer- 
ences). The following results make full use of (10.10). 

10.21. It follows immediately from the definition that A is completely positive if 
and only if it can be expressed in the form 

A = C b i b l ,  b, 20, i = 1 , . . . ,  k ,  
i=l 

where b, is the i th column of B. 

10.22. A completely positive matrix is doubly non-negative. However, the converse 
is not necessarily true, except in some cases. For example, a rank 1 or rank 2 doubly 
non-negative matrix is completely positive. 
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10.23. We have the following results for completely positive matrices. 

(a) The sum of completely positive matrices is completely positive. 

(b) The Kronecker product of two completely positive matrices is completely 
positive. 

(c) If A is a completely positive n x n matrix, and C is an m x n non-negative 
matrix, then CAC’ is completely positive. Two special cases that are of 
interest when m = n are when C is a permutation matrix, or a diagonal 
matrix with non-negative elements. 

(d) If A is completely positive, then so is Ak, where k is a positive integer. 

(e) Let A and B be n x n completely positive matrices with columns ai and bi, 
respectively. Then the Hadamard product 

n n  

A o B = x(ai o bj)(ai o bj)’ 
i=l i=l 

is also completely positive. 

( f )  The principal submatrices of a completely positive matrix are completely 
positive. 

10.24. If A is a symmetric n x n totally non-negative matrix (i.e. every minor is 
positive), then A is completely positive. Furthermore, since A = BB’, we can 
choose B to be either a non-negative upper-triangular matrix or a non-negative 
lower-triangular matrix. 

Proofs. Section 10.2.3. 

10.22. Berman and Shaked-Monderer [2003: 641. 

10.23a. This follows from (10.21). 

10.23b. This follows from (BB’) @ (CC’) = (B @ C)(B @ C)’. 

10.23~. Since A = BB’, the result follows from CBB’C’ = (CB)(BC)’ 

10.23d. The result is obvious when k = 21 and follows from (c) when k = 21+1. 

10.23e. This follows from (10.21) and the fact that cc’, where c = ai o bj, 
is non-negative definite and the sum of non-negative definite matrices is non- 
negative. 

10.23f. Berman and Shaked-Monderer [2003: 64-66] 

10.24. Berman and Shaked-Monderer [2003: 1261. 
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10.3 POSITIVE DEFINITE MATRICES 

In this section we assume that A is a Hermitian n x n matrix, unless otherwise 
stated. Note that the eigenvalues of a Hermitian matrix are real. 

10.25. There exists a real number a such that I, + aA + 0. 

10.26. (Kato) If A has no eigenvalue in the interval [a,  b] ,  then ( A  - &)(A - 
bI,) + 0. 

10.27. If A = ( a z J )  + 0, then so are A', 

10.28. Given the inner product (x,y) = x+y, then A + 0 if and only if A is the 
Gram matrix (cf. Section 10.2.2) of n linearly independent vectors. 

10.29. A + 0 if and only if all its eigenvalues are positive. 

10.30. A + 0 if and only if there exists a nonsingular matrix R such that A = 
RR* . 

10.31. Let A + 0, and let C be p x n of rank q (q  5 p ) .  Then: 

= ( T i z 3 ) ,  and A-'. 

(a) CAC* 0. 

(b) rank(CAC*) = rank((=). 

(c) CAC' + 0 if q = p .  

(d) B*AB = 0 if and only if B = 0. 

10.32. If A + 0 and k is a positive integer, then, arguing as in (10.8), there exists 
a unique Al lk  + 0 such that (A1/k)k = A. A particularly useful case is k = 2. 

10.33. Consider the quadratic x*Ax, where A is Hermitian. 

(a) By relabeling the elements of x, we see that if A + 0, then so is any matrix 
obtained by interchanging any rows and the corresponding columns. 

(b) By setting some of the 5,  equal to zero, we see that the principal submatrices 
of A are all Hermitian p.d. In particular, the diagonal elements of A are all 
positive. 

10.34. If A + 0 then, since the diagonal elements are positive, we have: 

(a) (Hadamard) 0 < detA 5 alla22.. 'ann with equality if and only if A is 
diagonal (see also (12.27)). 

(b) trace A > 0 

10.35. A + 0 if and only if all the leading principal minors are positive (including 
det A).  

10.36. A + 0 if and only if the principal minors in any nested sequence of n 
principal minors are positive. 
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10.37. If A + 0, then from (10.27) we have A-' = ( a i j )  + 0. Furthermore: 

(a) aiiaii 2 1. 

(b) If A is real and aij < 0 for all i # j, then aij > 0 for all i, j. 

where All and B11 are m x m matrices. Then the zth diagonal element of 
All is greater than or equal to the zth diagonal element of BF:. 

21,. 10.38. If A + 0, then A + A-' 

10.39. If A t 0 is a real n x n matrix, then 

log(det A) 5 trace A - n, 

with equality if and only if A = I,. 

10.40. If A + 0 is a real n x n matrix, a a real scalar, and a a real n x 1 vector, 
then 

aA - aa' 0 if and only if a'A-la 5 a. 

10.41. If A is a real symmetric matrix, then there exists a scalar t such that 
A + tI, F 0. 

10.42. If A is any m x n matrix of rank r ,  then, from the corresponding quadratic 
form, A*A is Hermitian n.n.d. of rank r if r < n and Hermitian p.d. if r = n. 

10.43. (Otrowski-Taussky) If A is any n x n  matrix such that B = ?j(A+A*) + 0, 
then 

det B 5 I det Al, 

with equality if and only if A is Hermitian. 

10.44. If A is an n x n real symmetric matrix that is d.d. namely, strictly row or 
column diagonally dominant (cf. Section 8.4) and if azz > 0 for all z = 1,2, .  . . , n, 
then it follows from (8.5313) and (10.35) that A + 0. 

Definition 10.4. (Hilbert Matrix) The n x n matrix H(n) = (hzJ) ,  where h,, = 
l / ( z  + - l), is called a Hzlbert matrzx of order n. It is well known that H(n) is 
highly ill-conditioned (e.g., Seber and Lee [2003: 166, 3721) and has a condition 
number of a p p r ~ x i m a t e l y e ~ ~ ~  for large n. It arises in the fitting of polynomial 
regression models. 

10.45. The Hilbert matrix H(n) is positive definite. 

Proofs. Section 10.3. 

10.25. Abadir and Magnus [2005: 2181. 

10.26. Abadir and Magnus [2005: 218, real case] 

10.27. We have a,% = ?it, so that 
replace aZ3 by aJ2 or ?iZJ. Also, if x = Ay, then x*AP1x = y*Ay. 

C(a,, + iZ,,)?E,xJ is unchanged if we 
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10.28. Quoted by Berman and Shaked-Monderer [2003: 161 and proved by 
Horn and Johnson [1983: 407-4081. 

10.29. Horn and Johnson [1983: 4021. 

10.30. Horn and Johnson [1983: 4061 

10.31. Abadir and Magnus [2005: 221, real case], Horn and Johnson [1983: 
399, complex case], and Seber and Lee [2003: 461, real case]. 

10.34a. Abadir and Magnus [2005: 3371 and Horn and Johnson [1983: 4771. 

10.34b. The eigenvalues are positive so that their sum (the trace) is positive. 

10.34~. Harville [2001: 101, exercise 391. 

10.35. Abadir and Magnus [2005: 2231 and Horn and Johnson [1983: 4041. 

10.36. Permute rows and corresponding columns and note that II'AII + 0 
if and only if A + 0 for the permutation matrix II; see Horn and Johnson 
[1985: 4041. 

10.37. Graybill [1983: 402-403, real case]. 

10.38. This follows from U*(A + A-')U - 21, = A + A-1 - 21, 2 0, since 
x i + x ; 1 - 2 =  (A2 1/2 - x;1/2 ) 2 2 0 .  

10.39. Abadir and Maganus [2005: 3331. 

10.40. Farebrother [1976]. 

10.41. Graybill [1983: 408-4091. 

10.43. Horn and Johnson [1985: 4811 

10.45. This follows from the fact that if V is the space of continuous functions 
on [0,1], with inner product 

1 

( f , g )  = / f(x)g(x) dz, 
0 

then H(n) is the Gram matrix of fi(x) = xi-1, i = 1,. . . ,n  (Berman and 
Shaked-Monderer [2003: 161). 

10.4 PAIRS OF MATRICES 

10.4.1 

In this and subsequent sections I give a number of results for pairs of matrices. I 
have tried to be systematic with the consequence that some of the results overlap. 

10.46. Suppose A and B are Hermitian n x n matrices. 

Non-negative or Positive Definite Difference 

(a) A B if and only if R*AR R*BR for nonsingular R. 



228 POSITIVE DEFINITE AND NON-NEGATIVE DEFINITE MATRICES 

(b) Let S be any n x m matrix, then: 

(i) A k B implies that S*AS k S*BS. 

(ii) If m 5 n and ranks = m, then A + B implies S*AS + S*BS. 

10.47. Let A and B be n x n Hermitian matrices. 

(a) If A k B, then the following hold. 

(i) &(A) 2 X,(B), where in each case the X i  are ordered X1 2 X2 2 . . .  2 

(ii) From (i) and (6.17b) we have traceA 2 traceB. 

(iii) From (i) and (6.17a) we have llAll,~ 2 IIBII,P, where 1 1 . 1 1 ~  is the Frobenius 

(iv) If A + B, then the above inequalities are strict. 

An. 

norm. 

(b) If &(A) 2 Xi(B) for each i, then there exists a unitary matrix U such that 

U*AU k B. 

10.48. Let A and B be Hermitian non-negative n x n matrices. If A k B, then 
the following hold. 

(a) rankA 2 rankB. 

(b) det A 2 det B 

(c) A1/2 k B1/2 (cf. 10.8) 

(d) traceA 2 traceB. 

( e )  It is not true in general that A2 5 B2. 

(f) Suppose A and B commute, then Ak 5 Bk for k = 2 , 3 , .  . .. 

10.49. Suppose A and B are Hermitian n x n matrices. If B + 0 and A k B, 
then: 

(a) A = A - B + B + O .  

(b) If A, is a principal submatrix of A of order T and B, is the corresponding 
submatrix of B, then A, k B,. 

10.50. Let B + 0 be Hermitian and A be Hermitian n.n.d. (respectively p.d.). 

(a) The eigenvalues of AB-l ,  namely the roots of det(A - XB) = 0, are real 
and non-negative (respectively positive) because they are the same as those 
of B-1/2AB-1/2, which is n.n.d. (respectively p.d.) 

(b) B - A is n.n.d. (respectively p.d.) if and only if the eigenvalues X i  of AB-l 
all satisfy X i  5 1 (respectively X i  < 1). 

10.51. Let A and B be n x n Hermitian p.d. matrices. Then: 

(a) A k B if and only if B-' A-l.  
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(b) A + B if and only if B-’ t A-l. 

(c) If A k B,  then &(A) 2 A,(B) > 0 (cf. 10.47a(i)). 

(d) If A 2 B, then, from (c), traceA 2 traceB and (from 6 . 1 7 ~ )  d e t A  2 de tB .  
Equality occurs in each case if and only if A = B. 

10.52. Let A and B be n x n real n.n.d. matrices. 

(a) The following two statements are equivalent: 

(1) A k B. 
(2) C(B) C C(A) and A,,,(BA-) 5 1, where A,,,(BA-) is independent 

of the choice of weak inverse A-.  For example, we can choose A+, the 
Moore-Penrose inverse. 

(b) If A k B k 0, then B+ k A+ if and only if C(A) = C(B). 

10.53. If A and B are real symmetric n x n nonsingular matrices and A + B, then 
B-I + A-’. 

10.54. Given real n x n matrices A + 0 and symmetric B = ( b z j ) ,  then A - B + 0 
provided that the lbZJ1 are all sufficiently small. In particular, A - t B  t 0 for It1 
sufficiently small. Similarly, for sufficiently small positive t ,  A + tB + 0. 

10.55. (Regression) Let V + 0 be n x n, and let X be an n x p matrix of rank p .  
Then: 

(a) V 5 X(X’V-lX)-lX’. 

(b) X’VX k (X’V-lX)-l for any X such that X’X = I,. 

Proofs. Section 10.4.1. 

10.46. Horn and Johnson [1985: 4701. We have x*R*ARx = y*Ay and 
x = 0 if and only if y = 0.  

10.47a(i). Horn and Johnson [1985: 182, with A and B relabeled, B becoming 
A - B 5 0, and eigenvalues in the reverse order] and Zhang [1999: 2271. 

10.47b. Zhang [1999: 2351. 

10.48. Abadir and Magnus [2005: 332, for (c), (e), and (f)]  and Zhang [1999: 
169-170, for (a)-(d)]. 

10.49a. We have x*(A - B)x + x*Bx 2 x*Bx > 0. 

10.49b. This follows by appropriately choosing x in x*(A - B)x. 

10.50. Dhrymes [ZOOO: 86-89, real case] and Horn and Johnson [1985: 471, 
with A and B interchanged]. 

10.51. Dhrymes [2000: 89, for (a)] and Horn and Johnson [1983: 4711. 

10.52. Liski and Puntanen [1989]. 

10.53. Graybill [1983: 4091. 

10.54. Graybill [1983: 4091 and Seber [1977: 3881. 

10.55. Abadir and Magnus [2005: 3421. 
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10.4.2 

In this section we consider a number of inequalities for non-negative definite ma- 
trices. For further such inequalities, the reader should refer to Chapter 12, and to  
Chapter 6 for those relating to eigenvalues. 

10.56. Suppose A and B are n x n Hermitian matrices with B 

One or More Non-negative Definite Matrices 

0.  

(a) X,(A + B) 2 Xi(A), i = 1 , 2 , .  . . ,n,  where XI 2 2 . . . 2 A, are the (real) 
ordered eigenvalues of the particular matrix. If B + 0, then the inequality is 
strict. 

(b) F'rom (a) we have trace(A + B) 2. trace A. 

(c) IJA + Blip 2 IlAll~, where 11 . I I F  is the Frobenius norm. 

10.57. Let A and B be n x n Hermitian matrices. 

(a) The eigenvalues of A B  are real if either A or B is Hermitian non-negative 
definite. 

(b) If B + 0, then the roots of det(A - XB) = 0 are real. 

10.58. Let A + 0 and B k 0 be n x n Hermitian matrices. Then: 

(a) A +  B + 0. 

(b) det(A + B) 2 det A with equality if and only if B = 0. 

(c) If A - B + 0, then det(A - B) < det A. 

10.59. Suppose A 2 0 and B 2 0 are Hermitian n x n matrices. 

(a) The eigenvalues of A B  are non-negative. 

(b) trace(AB) 5 trace A trace B. 

(c) det(A + B) 2 det A + det B with equality if and only if A + B is singular 
or A = 0 or B = 0. 

(d) i (A- '  +B-') 
only if A = B.  

(A+B)-' if A and B are nonsingular, with equality if and 

10.60. Given a real symmetric matrix A + 0 and real skew-symmetric B (i.e., 
B' = -B), th  en det(A + B )  2 det A with equality if and only if B = 0. 

10.61. Given real symmetric A + 0 and B + 0, then 

aA-'  + (1 - a)B-l 5 [aA + (1 - a)B]-' 

for all 0 5 a 5 1. A special case of historical interest is a = & (cf. (10.59d)). 

10.62. If A + 0 and A + B + 0 are real symmetric matrices, then 

det(A + B)/(det A )  5 exp[trace(A-'B)], 

with equality if and only if B = 0 
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10.63. (Haynsworth) If A ,  B, and A - B are all real n x n p.d. matrices, then 

det(A + B) > det A + ndet  B. 

10.64. (Hartfiel) If A and B are real n x n p.d. matrices, then 

det(A + B) 2 det A + det B + (2" - 2)(det A .  det B)'12 

10.65. (Olkin) If A + 0 and B is symmetric with det(A + B )  # 0, then 

A-' - ( A  + B)-' 

The inequality is strict if and only if B is nonsingular. 

10.66. Let A and B be n x n real non-negative definite matrices. Then any two 
of the following conditions implies the third. 

( A  + B)-'B(A + B)-l .  

(1) rankA = rankB. 

(2) A 5 B 5 0. 

(3) B+ 5 A +  5 0. 

10.67. Let C be any real symmetric matrix. There exist two unique matrices 
A 5 0 and B 5 0 such that A B  = 0 and 

C = A - B .  

Proofs. Section 10.4.2. 

10.56a. Horn and Johnson [1985: 1821 and Magnus and Neudecker [1999: 
208, real case]. 

10.56~. Follows from (10.47a(iii)) by relabelling B + A ,  A - B + B and 
A + A + B .  

10.57. Graybill [1983: 404, real case]. 

10.58a. Use x* (A + B)x 2 x*Ax. 

10.58b. Follows from (10.56a) as &(A) > 0. Magnus and Neudecker [1999: 
2 1, real case]. 

10.58~. We replace A by A - B in (b) and (a). 

10.59. Zhang [1999: 166, 168-1691. 

10.60. d e t ( A + B )  = detAdet(1, +A-'/2BA-1/2) 2 det A by (5.24c), since 
A-1/2BA-1/2 is skew-symmetric. 

10.61. Marshall and Olkin [1979: 469-471 and Styan 1985: 411. 

10.62. Abadir and Magnus [2005: 3391. 

10.63. Ouellette [1981: 2161. 

10.64. Ouellette [1981: 2181. 

10.65. Abadir and Magnus [2005: 3401. 

10.66. Oeullette [1981: 2511 and Styan [1985: 471. 

10.67. Graybill [1983: 339-4011 
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CHAPTER 11 

SPECIAL PRODUCTS AND OPERATORS 

In order to handle a number of complicated manipulations, which typically arise 
for example in multivariate statistical analysis, a number of special products and 
operators have been developed, along with rules for using them. Being able to  treat 
a matrix like a stacked vector is one such example that arises when one is finding 
derivatives and Jacobians in later chapters. 

11.1 KRONECKER PRODUCT 

11.1.1 Two Matrices 

We shall consider a number of operators on pairs of matrices that have the following 
product properties shared by the real numbers, R. 

(i) The product is associative, i.e., a(bc) = (ab)c for all a,  b, c E R. 

(ii) The product is distributive with respect to addition, that is, a(b+c) = ab+ac 
and ( a  + b)c = a c f b c  for all a,b ,c  E R. 

(iii) There exist 0 and 1 such that for all a E R, a(0 )  = 0 and a(1) = a. 

The following product has these properties. 

A Matrzx Handbook for Statistacians. By George A. F. Seber 
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Definition 11.1. If A is an m x n and B is p x q,  then the Kronecker product of 
A and B is defined by the mp x nq matrix 

The matrices A and B may be complex and we note that, in general, A R B  # B@A. 
Also A and B can be replaced by vectors in the above definition. 

The terms direct product and tensor product are also used in the literature. It 
should be noted that Graybill [1982: 2161 defines the direct product to be A x B ,  
which is actually B 8 A in our notation. Although Kronecker's name is associated 
with the above product, Henderson et al. [1983] suggest that Zehfuss should perhaps 
have the honor (see also Horn and Johnson [1991: 2541). In addition to the following 
results, further properties are listed in this chapter under star product, vec and vech 
operators, vec-permutation matrix, Jacobians and matrix linear equations. Many of 
the proofs of the properties given below are straightforward, and details are given in 
Abadir and Magnus [2005: chapter lo], Brewer [1978], Harville [1997: chapter 161, 
Horn and Johnson [1991: section 4.2, complex case], Kollo and von Rosen [2005: 
chapter 11, Magnus and Neudecker [1999: chapter 21, and Schott [2005: chapter 8). 
The product rule of (1l . l la)  is particularly useful. 

Knonecker products have been used extensively in statistics-for example, in 
experimental design, analysis of variance modeling (e.g., Rogers [1984], Ryan [1996], 
and Schott [2005: 288-2901), and multivariate moment problems. 

Definition 11.2. If Ai is ni x ni (i = 1 , 2 , .  . . , r ) ,  then 

is said to be the direct sum of A l ,  . . . ,A,,  and is sometimes written in the form 
diag(A1,. . . , A T )  = A l  @?. . . @? A,. 

11.1. (General Properties) 

(a) c @ A = c A = A @ c .  

(b) x' @ y = yx' = y @ x'. 

(c) a A  8 bB = abA @ B. 

(d) I, @ I, = Imn. 

(e) (A @ B)' = A' @ B'. 

( f )  (A 8 B) = A @ B  and (A@B)* = A*@B*. Here 
- _ _  

is the complex conjugate 
of A and A* is the conjugate tranpose. 

(g) ( A  8 B)- = A- @ B-, where A- and B- are any weak inverses of A and 
B, respectively. 
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(h) ( A  @ B)+ = A +  @ B+, where A +  and B+ are Moore-Penrose inverses. 

(i) If A and B are nonsingular, then so is A @ B and 
( A  @ B)-l = A - l @  B-l. 

( j )  B @ A = H1A €3 BH2, where H1 and Hz are permutation matrices that are 
independent of A and B except for their sizes. 

(k) rank(A @ B )  = rank(A) rank(B). 

(1) If A is m x m and B is p x p ,  then 

(i) det(A 8 B) = (det A)p(det B)". 

(ii) trace(A €3 B) = trace(A) trace(B). 

(m) IIA @ B l l ~  = IIAIIFBIIF, where 11 . [ I F  is the Frobenius norm. 

(n) I, @ A = diag(A, A , .  . . , A ) ,  where there are n diagonal blocks. 

(0) ( A  8 B)k = A k  @ Bk, for positive integer k .  

11.2. (Direct Sum) 
A @ ( B @ C )  # ( A @ B ) @ ( A @ C ) .  

11.3. (Partitioned Matrices) 

( A  @ B )  €3 C = ( A  @ C) @ ( B  €3 C) .  However, in general, 

(a) ( A l ,  A2) @ B = (A1 @ B, A2 @ B). 

(b) ( A  @ x)B = ( A  @ x)(B @ 1) = A B  €3 X. 

(c) Suppose A is partitioned into submatrices, say 

( q l i  : : :  A;s ) 
A =  1 

AT1 . ' .  

(d) If B = ( B l , B z , .  . . , BT), then a 8 B = (a @ B1,.  . . ,a @ BT).  

11.4. (Singular Value Decomposition) Let A be an m x n matrix of rank r1 with 
a singular value decomposition A = V1 El WI, and let B be a p x q matrix of rank 
r 2  with singular value decomposition B = V2&WZ, where Vi and Wi (i = 1,2)  
are unitary matrices. Let oi(C) be the ith singular value of C for C = A or B. 
Then 

A €3 B = (Vi @ V2)(E1 @ &)(Wi 8 Wz)*, 

where the nonzero singular values of A @ B  are the r1 r2 positive numbers { oi (A)o j  (B)} 
(i = 1, . . . , r1; j = 1, . . . , Q )  (including multiplicities). Zero is a singular value of 
A @ B with multiplicity min{mp, nq} - q r 2 .  In particular, the singular values of 
A €3 B are the same as those of B €3 A ,  and rank(A @ B) = rank(B @ A)  = rlr2. 
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11.5. (Eigenvalues 
corresponding right 
the eigenvalues and 

and Vectors) Let { X i }  and {xi} be the eigenvalues and the 
eigenvectors of the m x m matrix A ,  and { p j }  and let {yj} be 
corresponding right eigenvectors for the n x n matrix B. 

(a) A @ B  has eigenvalues { Xipj} (including algebraic multiplicities), and {xi@yj} 
(i = 1 , 2 , .  . . ,m; j  = 1,2 , .  . . , n)  are right eigenvectors of A @ B (but not 
necessarily all of them). Note that B @ A also has eigenvalues {&}. It 
should be noted that not every eigenvector of A @ B is of the form x @ y, 
where x is an eigenvector of A and y is an eigenvector of B. Abadir and 
Magnus [2005: 2791 give a counterexample. 

(b) The so-called Kronecker sum (A @ I, + I, @ B) has eigenvalues { X i  + p j }  
with corresponding right eigenvectors {xi @ yj}. 

11.6. Let A be m x m and B be n x n matrices. We have the following results, 
some of which are also listed elsewhere under the appropriate matrix topic. 

(a) If A and B are both diagonal matrices, then so is A 8 B. 

(b) If A and B are both upper (respectively lower) triangular matrices, then 
A @ B is also upper (respectively lower) triangular. 

(c) If A and B are non-negative definite (respectively positive definite), then so 
is A @ B .  

(d) If A and B are both symmetric (respectively Hermitian), then so is A 8 B. 

(e) If A and B are both orthogonal (respectively unitary), then so is A 8 B 

(f) If A and B are idempotent, then so is C = A 8 B. In fact 

P c = P A @ P B ,  

where PC is the projection onto C(C). 

11.7. If A and B are non-negative definite, then A @ A 
A B means that A - B is non-negative definite. 

11.8. If A and B are n x n non-negative definite matrices, then: 

B @ B if and only if 
B, where A 

(a) trace(A @ B) 5 i ( t r aceA + traceB)2. 

(b) trace(A @ B) 5 f trace(A @ A  + B 8 B). 

Definition 11.3. The function f is analytic in an open set if it can be expressed 
as a power series, namely f ( z )  = a0 + a l z  + a2z2 + . . .. 
11.9. I f f  is analytic and f(A) exists, where A is m x m, then: 

(4 f ( I p  8 A) = I, @ f ( A ) .  

(b) f ( A  8 1,) = f (A) 8 I,. 

For example, 

(i) exp(1, @ A )  = I, 8 exp(A). 
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(ii) ( A  @ I)k = A k  @ I, k = 1 , 2 , .  . .. 

Proofs. Section 11.1.1. 

11.1. For proofs see Abadir and Magnus [2005: section 101, Harville [1997: 
section 16.11, Rao and Rao [1998: chapter 61, and Schott [2005: section 8.21. 
Some of the results follow using the product rule (A@B)(C@D) = AC@BD) 
from (1l. l la) .  For example, to prove (g), ( A  @ B)(A- @ B - ) ( A  @ B) = 
AA-A @ BB-B = A @ B; (h) is similar. For (i), (Ap' @ B-')(A @ B) = 

A-'A @ B-'B = I; (k) and (1) are proved by Schott [2005: 286-2880]; and 
(m) is proved by Harville [2001: 143, exercise 91. 

11 .3~ .  Abadir and Magnus [2005: 2781 and Harville [1997: 338-3391. 

11.3d. Harville [1997: 3391 and Turkington [2002: 91. 

11.4. Horn and Johnson [1991: 2461. 

11.5a. Horn and Johnson [1991: 245, m and n interchanged] and Rao and 
Rao [1998: 1951. For eigenvalues see Schott [2005: 2861. 

11.5b. Horn and Johnson [1991: 268-269, A and B interchanged]. 

11.6. The proofs follow by checking the appropriate property using (1 1.1) and 
applying the product rule (1l . l la) .  For example, if A and B are orthogonal, 
then from (1l.le) we have ( A  @ B)'(A @ B )  = A'A @ B'B = I z n .  For (c) 
use A = RR*, and so on, and apply (1l.lf) and (1l. lk).  Also, for (d), 
( A  @ B)* = A* @ B* = A @ B. Harville [2001: 141, exercise 61 proves the 
second part of (f) .  

11.7. Abadir and Magnus [2005: 2801. 

11.8a. 
expand (trace A - trace B)' 2 0. 

11.8b. Use the trace of a sum is the sum of the traces, and apply trace(A @ 
B) = trace A trace B. 

11.9. Expand f ( B )  as a matrix power series, apply the product rule to each 
term, as for example in (ii), and then use (11.10b). For (i) we use the power 
series given in Section 19.6. 

We use (l l . l l( i i)) ,  namely , trace(A @ B) = traceAtraceB, and 

11.1.2 More than Two Matrices 

The following apply to any conformable matrices, provided the appropriate prod- 
ucts and additions exist. 

11.10. (Distributive Rules) 

(a) Let A be m x n, B be p x q, and C be r x s. Then 

A @ ( B @ C ) = ( A @ B ) @ C .  

We can therefore write each expression as A @ B @ C. 
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(b) Let A and B be m x n, and let C and D be p x q ,  then 

( A +  B) €3 (C + D) = A @  C + A @ D  + B @ C  + B @ D .  

Special cases follow by setting A = 0 or C = 0. 

(c) A @ (C;==, Bi) = C;='=,(A €3 Bi) and (EL='=, Ai) €3 B = CL=l(Ai €3 B) 

(d) (C:='=, Ai) €3 (Ci=1 Bj) = EL==, C,'=l(Ai BBj) .  

11.11. (Mixed Product) 

(a) (Product Rule) Let A, B, C, and D be m x n, p x q, n x r ,  and q x s, 
respectively. Then 

(A 8 B)(C €3 D) = AC 8 BD. 

This leads to the following special cases. 

(i) From (11.15c), (A €3 b')(c €3 D) = Acb'D. 

(ii) If A is m x n and B is p x q,  then 

A €3 B = (A €3 I p ) ( I a  €3 B). 

(b) (A1 @B~)(AZ€~BB~)...(A~€~B~) =AiAz. . .Ak €3BiBz...Bk . 

11.12. Let L be a nonsingular n x n matrix (n 2 a),  A and B be m x m matrices, 
and a and b be n x 1 vectors. Then the nm x nm matrix 

G = L €3 B + a b ' g  A 

has determinant 
det G = (det L)m(det B)n-l det C, 

C = B + aA and a = b'L-la. 
where 

If G is nonsingular, then 

€3 E, G-l = L-1 €3 B-1 - L-lab/L-l 

where 

Definition 11.4. The Kronecker power of an m x n matrix A is defined as follows: 

for k = 2 , 3 , .  . .. 



VEC OPERATOR 239 

11.13. (AB)ik] = A[k]B[k] for k = 1 ,2 , .  . .. 

11.14. If A and B are non-negative definite, then A - B is non-negative definite 
if and only if and A[2] - B[21 is non-negative definite. 

Proofs. Section 11.1.2. 

11.10. Prove directly from the definition of the Kronecker product (cf. Abadir 
and Magnus [2005: 275-2761. 

11.11, Harville [ 1997: 3371. 

11.12. Magnus [1982: 243, 2711. 

11.13. Follows from the product rule (1l . l la) .  

11.14. Abadir and Magnus [2005: 2801. 

11.2 VEC OPERATOR 

Definition 11.5. Let A = (al, az , . .  . ,a,) be an m x n matrix. Then vecA is a 
vector obtained by stacking the columns of A ,  namely 

an mn x 1 vector. Various other notations have been used for the above concept, 
and some history and references are given by Henderson and Searle [198la]. Here 
vec A stands for “vector of columns of A”. 

Turkington [2002: 101 introduced the operator devecA that stacks the rows of 
A alongside each other so that (vec A‘)’ = devecA. 

The following properties are proved by Henderson and Searle [1979: 67]), except 
where labeled otherwise. We assume that A,,, is m x n, Bnxq  is n x q ,  and C q x r  
is q x r. 

11.15. (Some General Properties) 

(a) vecA = (I, 8 A)vecI, = (A’ 8 I,)vecI,. 

(b) vecx = vecx’ = x. 

( c )  vec (xy’) = y @ x. 

( 4  From (c), 

vec [(Ax)(y’B)] = (B’y) 8 (Ax) = (B’ 63 A)(y  8 x) = (B’ @ A)vec (xy’). 

(e) If A is nonsingular, we apply (11.16b) to  vec (A-lAA-l)  to get 

vec A-’ = (Ap1’ 63 A-’)vec A 
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vec (AmxnBnxs)  = (I, 8 A)vec B 
= (B’ 8 A)vec I, 

= (B’ 8 1,)vec A. 

(b) We highlight the following result as it is used extensively. 

vec ( A m x n B n x q C q x r )  = (C’ 8 A)vecB 

(c) Using (a), we have 

VeC (AmxnBnxqCqxr) = (I, 8 AB)vecC 
= (C’B’ 8 1,)vec A. 

(d) Using the above results, we obtain 

vec (A,x,B,,,C,,,D,,,) = (I  8 ABC)vecD 

= (D’ 8 AB)vec C 

= (D’C’ 8 A)vec B 

= (D’C’B’ 8 1)vec A. 

(e) Using (a), we have 

vec [(A + B ) ( C  + D)] = [(I 8 A) + (I 8 B)] [vec C + vec D] 
= [ ( C ’ B I )  + (D’@~I) ] [vecA+vecB] .  

Clearly, (a), (b), and (c) can be deduced from (d) by replacing appropriate matrices 
by identity matrices. However, (a)-(c) are listed for convenient reference. 

11.17. (Trace) 

(a) trace(AmxnBnxq) = (vecA’)’vecB = (vecB’)’vecA 

As noted by Henderson and Searle [1979: 671, the above can be expressed in 
an alternative form that is easier to remember, namely 

trace(A’B) = (vec A)’vec B. 

This result can be used along with (11.16) to  deduce the following. 
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trace(A,x,B,xqCqx,) = (vec A’)’(Is @ B)vec C 
= 

= 

= 

= 

= 

We can use such results as trace(ABC) = (vec A’)’vec (BC)  and trace(ABC) = 
trace(BCA) = trace(CAB). 

(vec B’)’(I 8 C)vec A 
(vec C’)’(I 8 A)vec B 

(vec A’)’(,’ @ 1)vec B 
(vec .’)’(A’ 8 1)vec C 
(vec C’)’(B’ @ 1)vec A. 

trace(ABCD) = (vec A’)’(,’ @ B)vec C 
= 

= 

trace(D(ABC)) = (vec D‘)’(C’ 8 A)vec B 

trace(D’(C’B’A’)) = (vec D)’(A @ C’)vecB’. 

(d) From (c) and (11.16b) we have: 

(i) trace(AXBX’C) = trace(X’CAXB) = (vec X)’(B’ @ CA)vec X. 

(ii) trace(AX’BXC) = trace(X’BXCA) = (vec X)’(A’C’ 8 B)vec X. 

The above can also be transposed to obtain further results. 

Proofs. Section 11.2. 

11.15a. Follows from (11.16a) with A = I or B = I .  

11.15d-e. Use (11.16b) with a suitable substitution. 

11.16a. Abadir and Magnus [2005: 2821 and Magnus and Neudecker [1999: 
311. 

11.16b. Harville [1997: 3411. 

11.16~-d. Dhrymes [2000: 118-1201. 

11.16e. Expand and use (a). 

11.17b. Dhrymes [2000: 1211 

11.17~. Abadir and Magnus [2006: 2831, Harville [1997: 3421, Magnus and 
Neudecker [1999: 311, and Schott [2003: 2941. 

11.17d. We use a result like trace(X’CAXB) = (vecX)’vec (CAXB) (Hen- 
derson and Searle [1979: 671). 
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11.3 VEC- P E R M U TAT I 0  N (CO M M UTAT I0 N ) MATRIX  

We now introduce a permutation matrix that is particularly useful for dealing with 
matrices of random variables and their moments. 

Definition 11.6. Let A be an m x n matrix. We define I(,,+) as the the m n  x m n  
permutation matrix such that vec A = I(,,,)vec A'. Henderson and Searle [1979, 
198la], who give a useful historical background and a summary of its properties, call 
I(,,+) the uec-permutation matrix. It is also called a commutation matrix by Abadir 
and Magnus [2005], Magnus and Neudecker [1999], and Schott [2005], who denote it 
by K,, and, when m = n, Kn; we shall mention both notations in our discussion. 
(Many of the results given in this section are also proved in Graybill [1983: section 
9.31, though, as previously mentioned, he uses an alternative definition, namely 
A x B  instead of B @ A.) The use of of the commutation matrix in statistics was 
discussed in Magnus and Neudecker [ 19791. 

1 0 0 0 0 0  

= Ip3)vec A'. 
0 0 0 0 1 0  

a13 0 0 1 0 0 0  

vecAzx3 = 

a23 0 0 0 0 0 1  a23 

Thus I(m,rL) is a rearrangment of I,, obtained by taking every nth row starting at  
the first, then every nth row starting at the second, and so on. Thus 1(2,3) consists of 
rows 1,4,2,5,3,6 of 16.  As a permutation matrix, it has all the standard properties 
of a permutation matrix (cf. Section 8.2). 

11.18. (Sonie Basic Properties) 

(a) I(,,n) (= Knm) is orthogonal, being a permutation matrix. 

z = 1  j=1 
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In particular (Harville [1997: 345, transposed]), 

As already noted, 
m n  

This result can be used to define K,,, and Schott [2005: 3081 proves the 
equivalence of the two definitions. 

(e) If ei,, is the i th column of I, and ej, ,  is the j t h  column of I,, then 

m 

I(m,n) C(ei,, @ 1, @ ei,,) 
i=l 
n 

= C(ej., @ I, @ ei,n). 
j=1 

where g(a, b)  is the greatest common divisor of a and b. 

(ii) trace I(,,,) = n. 

(h) I(,,n) has eigenvalues fl with respective multiplicities in (n  f 1). 

11.19. Let A,,, and Bpxq be m x n and p x q matrices, and let a and b be m x 1 
and p x 1 vectors. 
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11.21. For handling more than two matrices, we introduce I (ab ,n )  = I(m,n)(= 
K,,), where m = ab. Since = we can interchange m and p in 
some of the following results. 

(d) I (m,n)(Amxp 8 bnxlcixq) = b @ A €3 c’ and I(n.m)(bc’ €3 A )  = c’ @ A €3 b .  

11.26. (Trace) For any m x n matrices A and B we have 

trace[(A’ @ B)I(n,m)] = trace[I(,,,))(A’ @ B)] 
= trace(A’B). 
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( 4  I(p,ms)I(m,ps) = I(mp,s) = I(m,ps)I(p,ms). 

(b) I(m,Ps)I(P,sm)I(s,mP) - I(mp,s) ’ 

(c) I(rnP,S) = (I(,,s) €3 Im)(Ip @ I (m,s))  = (I(m,s) @ I p ) ( I m  8 I(,$)). 

- 

(d) Any two I matrices with the same set of three indices commute, for example, 

I ( ~ > P S ) I ( P > 4  = I(P,sm)I(m,Ps). 

11.22. 

C s x t  €3 Am,, @ B p x q  = I(mp,s)[(Amxn 8 B p x q )  €3 c s x t ] I ( t , n q )  

I ( , , m s ) P p x q  8 (Csxt @ Amxnlqn t ,q ) .  
- - 

11.23. Using (l l . l6b),  we obtain 

(Bpxq €3 Amxn)vecXnxq = vec (AXB’) 
= I(,,,)vec (BX’A‘) 

- I(m,,) ( A  €3 B)vec X’ - 

= I(m,p)(A @ B)I(,,,)vecX. 

11.24. vec (Amxn 8 BpXq) = (I, @ I(m,q) 8 Ip)(vecAmX, 8 vecBpxq).  

11.25. (Products) 

( 4  

WrxsZsxt €3 X m x n Y n x p  = 

[Irm @ (vec Y’)‘][Ir €3 vec X’(vec Z’)’ 8 Ip][vec W’ €3 I,~]. 
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Proofs. Section 11.3. 

11.18. For proofs see Magnus [1988: chapter 31 and Magnus and Neudecker 
[ 19791. Also some proofs are given by Abadir and Magnus [2005: section 11.11, 
Harville [1997: section 16.31, Harville [2001: 149-1531, Magnus and Neudecker 
[1999: 471, and Schott [2005: 306-307, 3101. 

11.19. Abadir and Magnus [2005: 3011, Harville [1997: 347-3481, and Schott 
[2005: 3081. 

11.20. Use ( A  @ Ip)(Im @ B) = A @ B and (11.19b). 

11.21. Abadir and Magnus [2005: 3061 and Henderson and Searle [1981a: 
284-2851. 

11.22. Henderson and Searle [1981a: 2841 and Magnus [1988: 441. 

11.23. Henderson and Searle [1981a: 2811 and Magnus [1988: 441. 

11.24. Harville [1997: 3491, Magnus [1988: 431, and Schott [2005: 3091. 

11.25a- b. Rogers [1980: 231 

11.25~-d. Abadir and Magnus [2005: 302, 3041. 

11.26. Abadir and Magnus [2005: 3041. 

11.4 G E N ERA L I Z E D VEC- P E R M U TAT I0  N MATRIX  

Definition 11.7. Let I(n) be the matrix obtained from I, by taking every n th  
row starting with the first, then every nth row starting with the second, and so 
on (cf. Tracey and Dwyer [1969] and Henderson and Searle [198la]). Then I(n) 
is called a generalized uec-permutation matrix. For example, if r = 5 and n = 3, 
I(3) = (el, e 4 ,  e2, e5, es) ,  where the ei are the columns of I,. 

We can apply the same procedure to  any matrix M and obtain M(n). In fact, 
M(n) = I(n)M. We can also define M(m,n) = I(m,n)M. When r = mn, I(m,n) = 
I(n), and when M has m n  rows, M(m,n) = M(nl . 

11.27. In the following, A is m x n ,  B is p x q,  C is s x t ,  a is m x 1, and b is 
p x  1. 

(a) vecA = (vecA’)(,,,). 

(b) ( A  @ B)(rn,P) = (B’ @ A’)(q,n). 

(c) (a @ B)(rn,p) = I(m,n)(a @ B) = B @ a. 

(4 ( A  8 b)(qp) = q m J ? ) ( A  @ b) = b @ A. 

(e) (a @ b)(m,p) = I ( m , p ) b  @ b) = b @ a. 

(f)  (a @ b’ @ C),,, ,) = (ab’ 8 C), , , , )  = b’ €3 C 8 a. 

11-28. I(rn,n) = (1, @ In) (m,n) .  
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Proofs. Section 11.4. 

11.27. Henderson and Searle [1981a: 283-284 and equation (49)]. Use (1l.lb) 
for ( f ) .  

11.5 VECH OPERATOR 

Definition 11.8. If A is an n x n  matrix, then vechA (vector-half) is the k = n(n+ 
1)/2 -dimensional vector obtained by stacking the columns of the lower triangle of 
A, including the diagonal, one below the other; Magnus and Neudecker [1999] and 
Schott [2005] use the notation v(A). For example, if 

all a12 a13 

is symmetric, then 
all 

vechA= [ 1. 
This approach is useful for symmetric and lower-triangular matrices; for upper- 
triangular matrices we use vech (A'). 

11.5.1 Symmetric Matrix 

A major application of the above definition is to symmetric matrices, so we now 
assume A = A'. For this case, vechA lists all the distinct elements of A.  As the 
elements of vec A are those of vech A with some repetitions, it follows that vec A 
and vechA are linear transformations of one another. This leads to the following 
definitions. 

Definition 11.9. We have vech A = H, vec A and vec A = G, vech A. The 
matrix H, is k x n2, and Magnus and Neudecker [1999: 48-51] call the n2 x k 
matrix G, the duplication matrix D, (see also Magnus [1988: chapter 41 and Schott 
[2005: section 8.71). We shall also use the term duplication matrix. Examples of 
G, and H, for n = 3 ( k  = 6) together with I(3,3), with which they have several 
relationships, are 

D3 = G3(9 x 6) = 

1 . .  . .  
. I .  . .  
. . I  . .  

' 1 '  . .  
1 '  
. 1  . 

. . .  

. . .  

1 . '  
. . .  . 1 .  

1 

. .  

. . .  . .  
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H3(6 x 9) = 

and 

’ 1 ’  . .  . 
. .  . ’ a 3  ’ 1-Ly3  . 

. .  ‘ 1  . . .  

I(3,3) = 

247 

I 

where the dots represent zeros and the ails are arbitrary, except for 0 < a!i < 1 
(i = 1,2,3). 

The matrix G, can be described as follows (e.g., Harville [1997: 352, with a 
correction]). For i 2 j ,  the [ ( j  - l )n+i ] th  and [(i - l ) n + j ] t h  rows of G, equal the 
[ ( j  - l ) (n  - j /2)  + i]th row of Ik, that is, they equal the k-dimensional row vector 
whose [ ( j  - l ) (n  - j / 2 )  + i]th element is 1 and whose remaining elements are zero. 
For j 2 i the [ ( j  - 1)(n - j / 2 )  + i]th column is an n2-dimensional column vector 
whose [ ( j  - 1). + 21th and [(i - 1)n + j l th elements are 1 and whose remaining 
elements are 0. 

Another related matrix is N,, where N, = vec (;(A + A’) transforms A into 
a symmetric matrix. This matrix is called the symmetrizer. As shown below, N, 
turns out to be symmetric and idempotent, so I shall also denote it by P, to remind 
us that it represents an orthogonal projection (see also Schott [2005: 3121). 

11.29. (General Properties) For handy reference, we frequently have in the liter- 
ature G, = D,, H, = Dk, and P, = N,; also k = n(n + 1)/2. 

(a) H, is a left inverse of G,, i.e., H,G, = Ik. Thus H, is a weak inverse of 
G, as G,H,G, = G,. 

(b) Every row of G, contains only one nonzero element, so that the columns of 

(c) The n2 x k matrix G, is unique, of rank k .  

(d) I(,,,)G, = G, (i..., K,,D, = Dn). 

G, are orthogonal. 

0 0 
(el GL+,Gn+1= ( E 2: G;G, ) .  

0 
( f )  (G;+~G,+I) -~  = G:+lG:+l’ = 0 ;I, 0 ( b 1 (GLG,)-’ 
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(g) The k x n2 matrix H, is not unique and has rank k .  

(h) A useful form of H, is H, = GR = (GLG,)-’GL, the Moore-Penrose inverse 
of G, (Schott [2005: 3131). (This is the form taken by H3(6 x 9) above when 
all the cq’s are set equal t o  i.) Then: 

(i) GRG, = I k .  

(ii) G,G: = i(I,z + I(,,,))(= P,). 

(iii) G,fI(,,,) = G,f. 

( i )  P, = G,G: = G,(GkG,)-’G,. Then: 

(i) P,G, = G, and GRP, = GR. 

(ii) P,vecA = vec [$(A + A’)] for any n x n matrix A. 

(iii) The symmetrizer P, is symmetric and idempotent, that is, a projection 

(iv) rankP, = traceP, = in (n  + 1). 

matrix projecting orthogonally onto C(G,). 

(v) P,I(,,%) = P, = I(,,,$’, (i.e., N,K,, = N, = K,,N,). 

(vi) If A and B are n x n, then P,(A @ B)P, = P,(B @ A)P, and 
P,(A @ A)P,  = P,(A 8 A) = ( A  @ A)P,. 

For further properties of G,, GL, GR, GLG,, and G,GL, where G, = D,, 
see Abadir and Magnus [2005: section 11.31 and Magnus [1988: chapter 41. 

11.30. Suppose A and X are both n x n, and X is symmetric, then 

vech(AXA’) = H,vec(AXA) 

= H ( A @ A ) v e c X  

= H,(A 8 A)G,vechX 

= CvechX, say. 

Properties of C are given in (11.31~) below. 

11.31. Suppose A is n x n. Then: 

(a) G,G,f(A @ A)G, = ( A  @ A)G,. 

(b) G,GR(A @ A)GR’ = (A  @ A)GR’. 

(c) Let C = H,(A @ A)G,, a k x k matrix, where k = n(n + 1)/2. Then: 

(i) C is invariant with respect to the choice of H,, so we can choose H = G+ 

(ii) C is nonsingular if and only if A is nonsingular. Then 

(cf. 11.29h). 

c-l= G;(A-’ @ A-’)G, 

(iii) If A is upper-triangular, lower-triangular, or diagonal, then C is re- 
spectively upper-triangular, lower-triangular, or diagonal with diagonal 
elements azzalj ,  i = 1 ,2 , .  . . , n; j = 1 ,2 , .  . . , n. 
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(iv) The eigenvalues of C are X i X j  (1 5 j 5 i 5 n), where X i  ( i  = 1 , 2 , .  . . , n) 

(v) det C = det[G,f(A 8 A)G,] = (det A)"+1. 

(vi) traceC = $[(traceA)2 + trace(A2)]. 

(vii) rankC = i[(rankA)2 +rankA]. 

(viii) C- = H,(A- 8 A-)G, is a weak inverse of C. 

are the eigenvalues of A. 

(d) If A is nonsingular, then: 

(i) [GL(A 8 A)G,]-' = Gf(A- '  8 A-')G:'. 

(ii) det[G,f(A 8 A)G,f'] = 2Tn(,- ')/'(det A)"+'. 

11.32. If A is any n x n matrix, then the following hold. 

(a) (A 8 A)Gn = G,H,(A 8 A)G,. 

(b) G,H,(A 8 A) = (A 8 A)G,H,. 

(c) H,(A 8 A) = H,(A 8 A)G,H,. 

We can set H, = G,f in the above. 

For some properties of Gf(1, 8 A + A 8 I,)G,, G,f(A 8 B)G,, and some 
related matrices (with D, = G,), including further relationships between Dn+l 
and D,, see Magnus [1988: 65-72]. 

Proofs. Section 11.5.1. 

11.29a. vechA = H, vecA = H,G,vechA for all symmetric A.  Henderson 
and Searle [1979: 691. 

11.29b. Follows from the definition of G,. 

11.29~. Schott [2005: 3131 

11.29d. Henderson and Searle [1979: 691 

11.29e. Harville [1997: 3551, Magnus [1988: 721, and Magnus and Neudecker 
[1999: 511. 

11.29f. Magnus [1988: 721 and Magnus and Neudecker [1999: 511 

11.29g. Henderson and Searle [1979: 691. 

11.29h. Abadir and Magnus [2006: 312-3131, Harville [1997: 354-3571, and 
Magnus [1988: 561. 

11.29i. Abadir and Magnus [2005: 3071, Magnus [1988: 48-49], and Schott 
[2005: 3121. For (v) see also Abadir and Magnus [2006: 3081 and Magnus and 
Neudecker [ 1999: 501. 

11.31a-b. Abadir and Magnus [2006: 3151, Magnus [1988: chapter 31, and 
Magnus and Neudecker [ 1999: 49-50]. 
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11.31c(i). Henderson and Searle [1979: 701 

11.31c(ii). Abadir and Magnus [2006: 3151, Harville [1997: 3581, Magnus 
[1988: chapter 31, and Magnus and Neudecker [1999: 49-50]. 

11.3lc(iii). Magnus [1988: 631. 

11.31c(iv). Magnus [1988: 641. 

11.31c(v). Abadir and Magnus [2006: 3161, Harville [1997: 3621, Henderson 
and Searle [ 1979: 701, and Magnus [1988: 64-65]. 

11.31c(vi). Abadir and Magnus [2005: 3161, Harville [1997: 3581, and Magnus 
[1988: 641. 

11.31c(vii)-(viii). Harville [1997: 3581. 

11.31d. Abadir and Magnus [2005: 3171, Magnus [1988: 651, and Schott [2005: 
3151. 

11.32. Harville [1997: 3581 and Henderson and Searle [1979: 701. 

11.5.2 Lower-Triangular Matrix 

Definition 11.10. Let A be an n x n lower-triangular matrix. If k = n(n + 1)/2, 
the k x n2 matrix L, is called the elimination matrix if vec A = LLvech A. The 
difference between G, and LL is that vecA now contains some zeros. Thus LL 
can be obtained from G, (= D,) by replacing n(n - 1)/2 rows of G, by zeros; (d) 
below gives a clearer picture. 

11.33. We have the following properties for L,. 

(a) L, has full row rank k.  

(b) LLL = I k .  

(c) L,f = Lk. 

(d) From (b) we have vechA = L,vecA, so that L, eliminates the zeros from 
vec A.  

(e) L,G, = I k ,  k = n(n + 1)/2. 

( f )  G,L,P, = P,, where P, = ;(I,Z + I(,,,)) (i.e., D,L,N, = N,). 

(g) G t  = LP,. 

Similar properties apply to the situation where A is strictly lower-triangular, that 
is lower-triangular but with zero diagonal elements (Schott 2005: 317-3181), Tri- 
angular matrices, and in fact any patterned matrix can be handled using a general 
kind of vec operator (cf. Section 18.3.5). 

Proofs. Section 11.5.2. 

11.33. Magnus [1988: 77, 801 and Schott [2005: 316-3171 
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11.6 STAR OPERATOR 

Definition 11.11. Let A = (aij) be m x n and B be mp x nq .  Then we define 
the p x q matrix (MacRae [1974]) 

m ri 

A * B = 7; aijBij, 
i=l j=1 

where Bij is the ( i , j ) th  submatrix of B when B is partitioned into submatrices of 
size p x q. 
When A and B are the same size, A * B = trace(A’B). 

11.34. If C is r x s, then (A * B )  @ C = A * (B €3 C). 

11.35. A * B = B * ( A  @ vecI,(vecI,)’). 

11.36. If x is p x 1 and y is q x 1, then 

x’(A * B)y = 

= 

A * (I, @ x’)B(I, €3 y) 

(I, @ x)A(I, €3 y’) * B. 

11.37. 

XmxnYnxpZpxq = Y * vecX(vecZ’)’ 
= Y’ * (Z €3 I,)I(,,q)(x €3 Iq). 

Proofs. Section 11.6. 

11.34-11.37. MacRae [1974]. 

11.7 H A D A M A R D  PRODUCT 

We now consider a particular product that arises in a wide variety of mathematical 
applications such as covariance matrices for independent zero mean random vectors 
and characteristic functions in probability theory (Horn and Johnson [1985: 301, 
393-3941). Further mathematical applications are described by Horn and Johnson 
[1985: 455-4571 and Horn and Johnson [1991: chapter 51. The Hadamard product 
appears in several places in this book. In this section A t B means that A - B is 
non-negative definite. 

Definition 11.12. If A = (azJ) and B = ( b t J )  are m x n real or complex matrices, 
then their Hadamard product (also referred to as the Schur product) is the m x n 
matrix A o B = (at3bt3). The results below, where proofs are not referenced, follow 
from the definition by simply multiplying out the appropriate matrices. 

11.38. Let A and B be m x n matrices, and let e, be the i th column of I,. 

(a) Let am = Eyll ei(ei @ e,)’ = CzI e,(vecEii)’, where Eii = eiel,. Then: 

(i) A o B = @,(A €3 B)@L. 
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(ii) @,@k = I,. 

(iii) If C = ( c z j )  is m x m, then 

@,vecC = (c~I,cz~,~~~,c,,)’ = (diagC)l,. 

(iv) @,I(,,,) = 9,. 

(b) A o B is a submatrix of A @ B. In fact 

A 0 B = (A @ B),,p, 

where (a ,  p)  denotes the submatrix formed by the intersection of the rows of 
A @ B in Q with the columns in /3, where Q = { 1, m + 2,2m + 3, . . . , m2} and 
p =  { l , n + 2 , 2 n + 3  , . . . ,  n’}. 

(c) If m = n, then A o B is a principal submatrix of A @ B. 

The above results can be used to  prove results about A o B using A @ B 

11.39. Let A and B be m x n matrices. Then the following hold. 

(a) A o B = B o A  

(b) ( A  o B)’ = A’ o B’. 

(c) trace(AB’) = 1A(A o B)ln.  

(d) rank(A o B) 5 rankA . rankB. 

11.40. If all matrices are the same size, then 

(A  + B) o (C + D)  = A o C + A o D + B o C + B O D .  

11.41. If A ,  B, and C are all m x n matrices, then 

trace[(A o B)C’] = trace[(A o C)B’]. 

11.42. (Multiplication by Diagonal Matrices) Suppose A and B are m x n, D is 
m x m, and E is n x n, where D and E are diagonal matrices, then 

D ( A  o B)E = (DAE) o B = (DA) o (BE) = (AE) o (DB) = A o (DBE). 

11.43. If A is square, then A o 11’ = A = 11’ o A .  

11.44. (Quadratics) 
Then 

Let A and B be n x n matrices, and suppose y , z  E C”. 

y”(A o B)z  = trace(D;AD,B’), 

where D, = diag(y) and D, = diag(z). 

11.45. If A and B are Hermitian matrices. then so is A o B. 

11.46. Let A and B be Hermitian non-negative definite n x n matrices, that  is, 
A k 0 and B 0. Then: 

(a) A o B 5 0. The same results apply to A o A 0 .  . . o A to any number of terms. 
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(b) det(A o B) + det A . det B 2 b l l b z z . .  . b,, det A + u11u22 . . . a,, det B. 

(c) ~ a z 2 b z 2  2 d e t ( A o B )  2 bllbzz...b,,detA 2 d e t A d e t B .  
n 

2=1 
(Note that A and B can be interchanged.) The left-hand side follows from 
(12.27). 

(d) A2 o B2 h (A o B)'. 

(e) If A and B are positive definite, then: 

(i) A o B is positive definite. 

(ii) A-' o B-' k ( A  o B)-'. 

( f )  If A + 0, and B k 0 with T nonzero diagonal entries, then rank(A o B) = T .  

(g) If B + 0, and A 5 0 with positive diagonal elements, then A o B + 0.  

(h If A + 0, then A o A-' I, 2 (Ap'  o A)-'. Horn and Johnson [1991: 
section 5.41 discuss the properties of A o A-l and A o (A-l)'. 

11.47. (Fejer's Theorem) Let A be any n x n matrix. Then A is Hermitian non- 
negative definite if and only if trace(A o B) 2 0 for all Hermitian non-negative 
definite n x n matrices B. 

11.48. (Eigenvalues) 
matrices. 

Let A and B be n x n Hermitian non-negative definite 

(a) Let bmaX and bmin be maximum and minimum entries of the diagonal elements 
of B. Then, for all j, 

brninXrnin(A) I XJ(AoB)  I bmaxXmax(A). 

(b) Amin(A)Xmin(B) I Xj(AoB)  I Arnax(A)Amax(B) for all j .  

(c) Let R = ( p z j )  be any n x n correlation matrix. 

( i )  Since p2i = 1 for all i, it follows from (a) that 

(ii) Setting R = I, we have Xmin(A) I ~ j j  I xrnax(A) 

Xmin(A) I Aj(AoR)  I &nax(A). 

(d) Xmin(A 0 B) 2 Xrnin(AB). 

11.49. (Singular Values) Let A and B be m x n matrices, and let nJ(C)  be the 
j t h  singular value of C ,  where the singular values are listed in decreasing order of 
magnitude. Then 

2 2 

C n J ( ~ o ~ )  I ~ ~ ~ ( A ) ~ ~ ( B ) ,  i = i , 2  , . . . ,  n. 
J=1 J = 1  

11.50. If A and B are real or complex m x n matrices, then 

(AA') o (BB*) 5 ( A  o B)(A* o B*) 
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11.51. Let A and B be n x n Hermitian positive definite matrices, and let C and 
D be any m x n real or complex matrices. Then 

(CA-lC*) o (DB-lD*) (C o D)(A o B)-’(C o D)*. 

Proofs. Section 11.7. 

11.38a. Magnus [1988: 1101 and Schott [2005: 297, (i)] . 

11.38b-c. Horn and Johnson [1991: 3041. 

11.39. Here (a) and (b) are obvious, (c) and (d) are given by Schott [2005: 
2971, and (d) is given by Horn and Johnson [1991: 3071. 

11.40. Follows directly from the definition of “0 ” .  

11.41. Horn and Johnson [1991: 305-3061. 

11.42. Let C = A o B. Then (DCE),, = c, ~,di,c,,e,j,  which can be 
expressed in the form C, C,  di,arsesj . b,, = [(DAE) o B]ij, and so on. 

11.43. Follows from aij . 1 = aij. 

11.44. Horn and Johnson [1991: 3061 and Schott [2005: 2981 

11.46a. Horn and Johnson [1985: 4581, Rao and Rao [1998: 204, 2151, Schott 
[2005: 299, real case], and Zhang [1999: 1921. 

11.46b. Rao and Rao [1998: 2121. 

11.46~. Rao and Rao [1998: 2101, Schott [2005: 3021, and Zhang [1999: 2001. 

11.46d. Zhang [1999: 193) 

11.46e(i). Abadir and Magnus [2005: 3401 and Rao and Rao [1998: 2041. 

11.46e(ii). Horn and Johnson [1985: 4751 and Zhang [1999: 1931. 

11.46f. Rao and Rao [1998: 2131. 

11.46g. Horn and Johnson [1991: 3091 and Schott [2005: 300, real case]. 

11.46h. Horn and Johnson [1985: 4751, Schott [2005: 3041, and Zhang [1999: 
1931. 

11.47. Rao and Rao [1998: 2141. 

11.48a. Rao and Rao [1998: 2061 and Schott [2005: 303, real case]. 

11.48b. Horn and Johnson [1991: 3121 and Rao and Rao [1998: 2071. 

11.48~. Rao and Rao [1998: 2071. 

11.48d. Bapat and Raghavan [1997: 142, real case] and Schott [2005: 305, 
real case]. 

11.49. Horn and Johnson [1991: 3341. 

11.50. Zhang [1999: 1941. 

11.51. Zhang [1999: 1981. 
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11.8 RAO-KHATRI PRODUCT 

Definition 11.13. Let A = (al, a 2 , .  . . ,a,) be a p x n and B = (bl, b2,. . . , b,) 
be m x n matrices. Then the Rao-Khatri product, denoted by A 0 B, of A and B 
is the m p  x n partitioned matrix 

A O B  = (a1 C3 bl,a2 8 b2,. . . ,a, 8 bn). 

11.52. Let Apxn,  B,,,, Cmxpr and D,,, be four matrices. Then 

( C  8 D)mnxmp(A O B ) m p x n  = (CA)mxn O (DB)nxn. 

11.53. Let A and B be non-negative definite n x n matrices of ranks r and s,  
respectively. Let A = R’R, where R is r x n, and let B = S’S, where S is s x n 
[cf. (10.10)]. Then 

A o B = (R 0 S)’(R 0 S ) .  

Proofs. Section 11.8. 

11.52-11.53. Rao and Rao [1998: 2161. 
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CHAPTER 12 

IN EQUALlTl ES 

Inequalities are used extensively in statistics and, because they relate t o  almost 
every chapter in this book, they are difficult to categorize. Those concerned with 
general inner products and norms are considered in Sections 2.2.1 and 4.6. Those 
involved with ranks are discussed in Chapter 3, while those for eigenvalues appear in 
Chapter 6. Some inequalities for non-negative definite matrices appear in Chapter 
9, and those relating to majorization appear in Chapter 23. There are a large 
number of inequalities involving probability and random variables and a selection of 
these appear in Chapters 22 and 23. Optimization in Chapter 24 generates further 
inequalities. So what is in this chapter? I have collected here some of the more 
traditional inequalities such as Cauchy-Schwarz, Kantorovich, Holder, Minkowski, 
and so on, and their extensions. At the end I have listed a few identities that  can 
be useful in setting up inequalities. 

1 2.1 C A U C H Y-S C H WA R Z I N EQUAL IT I ES 

The inequalities given below are fairly basic ones. However, for further extensions 
and refinements, including those for complex numbers, the reader is referred to 
Dragomir [2004: chapters 1-31, 

A Matrix Handbook for Statisticians. By George A. F. Seber 
Copyright @ 2008 John Wiley & Sons, Inc. 
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12.1.1 

12.1. Let x = (xi) and y = (yi) be real n-dimensional vectors. In addition to the 
basic inequality in (a) below, we can obtain various extensions from (2.17) by using 
a different vector space and a different inner product. 

Real Vector Inequalities and Extensions 

(a) (Cauchy-Schwarz) (x’Y)~ 5 (x’x)(y’y), 
with equality if and only if x 0: y. Many different proofs of this result are 
available. For example, we can use Lagrange’s identity of (12.44a). Alterna- 
tively, we also have 

x’x - (x’y)(y’y)-’(y’x) = x’(1, - P,)x 2 0, 

since the projection matrix I, - P, = P c ( y ) ~  that projects orthogonally onto 
C(y)’ is non-negative definite (cf. 2.49f). 

(b) Let A be non-negative definite and, using (10.10), let A = B’B. 

(i) ( x ’ A ~ ) ~  5 (x’Ax)(y’Ay), with equality if and only if Bx K By. A 
sufficient condition for equality is x 0: y. Furthermore, if A is positive 
definite, then 

(ii) From (i) we can deduce (aijl 5 maxi laii(. 

(c) If A is non-negative definite and y E C(A), then for any weak inverse A-, 

(X’YI2 I (x’Ax)(y’A-y), 

with equality if and only if y 0: Ax. 

(d) If A is positive definite, then 

( x ’ Y ) ~  5 (x’Ax)(Y’A-~Y), 

with equality if and only if x 0: A-’y or, equivalently, y K Ax. 

(e) If A is positive definite, then from (d) we have 

(x’x)2 I ( x ’ ~ x ) ( x ’ ~ - l ~ ) ,  

with equality when x 0: Ax, that is, when x is an eigenvector of A. 

(f) Let ai 2 0 (i = 1 , 2 , .  . . , n) such that xi cyi = 1. Let zl,  z2,. . . , z,  be real 
numbers. 

(i) Setting xi = f i i  and yi = f i i z i  in (a) leads to 

i i 

with equality if and only if z1 = z2 = . . . = zn. 



CAUCHY-SCHWARZ INEQUALITIES 259 

(ii) We can set ai = 1/n to get 

with equality if and only if the zis are all equal. 

with ai = n-l and zi = Xi,  we have 
(iii) If all the eigenvalues X i  of the n x n matrix A are real, then, from (i) 

1 (i trace A) 5 trace(A2), 

with equality if and only if the eigenvalues are all equal. 

have (C;=‘=, 
of A.  Hence 

(iv) If A is symmetric and nonzero with rank T ,  then, from (ii) with n = T ,  we 
5 TC;=~ A:, where the A, are the nonzero eigenvalues 

(trace A)2 
trace(A2) . 

rankA 2 

Equality occurs if and only if A is proportional to a symmetric idempo- 
tent matrix. 

(g) If p ,  2 0 for all i, then, replacing 5, by f i x z  and yz by fiy, in (a), we have 

i = l  i=l  i=l 

(h) Suppose z, > 0 for all i and p = ( p Z )  is arbitrary. Then, replacing 5, by 
&/pt  and y, by 1/& in (a)(i) and rearranging, we get 

n n n 

a= 1 i = l  i=l 

If E(xi) = pi,  then taking expected values shows that expected value of a 
harmonic mean does not exceed the harmonic mean of their expected values. 

(i) (Constrained Version) Let A be an n x n matrix, and let y E C(A). If 
PA represents the orthogonal projection onto C(A), so that we have PA = 
A(A’A)-A (cf. 2.49f), then 

(x’Y)2 5 (x’PAx)(y’y) 

Equality occurs when y 0: PAX. 

(j) When A is positive definite and x’y = 0, then 

where X1 and An are the maximum and minimum (positive) eigenvalues of A. 
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12.2. (Some Lower Bounds) The results above give us upper bounds for (x’x)~ 
and (x’y)’. We now consider some lower bounds. Further details and extensions 
are given by Dragomir [2004: chapters 4 and 51. 

(a) (Kantorovich) Let A be an n x n real positive definite (p.d.) matrix with 
maximum and minimum eigenvalues of A1 and A,, respectively. Let x and y 
be any nonzero vectors in B n .  

There is a unit vector x for which there is an equality. The result also 
holds for a Hermitian p.d. matrix with ’ replaced by *. For a generaliza- 
tion see Pronzato et al. [2005]. 

(ii) If A = diag(a) (a > 0) ,  then the ordered eigenvalues are the same as 
the ordered ai for a diagonal matrix. Let amax = maxi{ai}, and so on. 
Then, from (i), we obtain 

(iii) If xi = 1 for all i in (ii), we have 

(b) (Polya-Szego) Let x and y have positive elements. Then 

(x‘x) (Y‘Y 1. 4 x m i n ~ m a x ~ m z n ~ m a x  

(xmaxymax + xminYmin)2 
(X’YI2 L 

(c) (Greub and Rheinboldt) Let A and B be n x n positive definite commuting 
matrices (AB = BA) with eigenvalues A1 2 . . .  2 An > 0 and p1 2 . . .  2 
pn > 0, respectively. Then AB is symmetric and 

(d) If A is an n x n nonsingular matrix with maximum and minimum singular 
values of 01 and on, respectively, then 

(x’AY)(~’A-~x)  (Q + 
I 

(x’4 (Y’Y 1 4010, 

Rao [2005: 671 uses the above result to define antisingular values and vectors. 

(e) Suppose x = ( x i )  > 0, y = (yi)  > 0, and w = (wi) 2 0. Let 

m = min { z} and M = m a x {  $} 
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Proofs. Section 12.1.1. 

12.la. Abadir and Magnus [2005: 71. 

12.lb. Abadir and Magnus [2005: 3231. 

1 2 . 1 ~ .  Neudecker and Liu [1994: 3511. Use y'Ay = y'AA-Ay in (b)(i) and 
set z = Ay. 

12.ld. Replace x by A1I2x and y by A-'12y in (a). 

12.lf(iv). Abadir and Magnus [2005: 3241. 

12.lh. Rao and Rao [1998: 4611. 

12.li.  Use (b) with A replaced by PA. If y 6 C(A), then y = PAY. 

12.1j. Drury et al. [2002: 971. 

12.2a. Abadir and Magnus [2005: 3311, Horn and Johnson [1985: 4441, Rao 
and Rao [1998: 4621, and Zhang [1999: 2041. 

12.2b. Dragomir [2004: 931 and quoted by Rao and R m  [1998: 4561. 

1 2 . 2 ~ .  Greub and Rheinbolt [1959] and quoted by Rao and Rao [1998: 4561. 

12.2d. Strang [1960] and quoted by Rao and Rao [1998: 4651. 

12.2e. Dragomir [2004: 911. 

12.1.2 Complex Vector Inequalities 

Many of the above inequalities can be generalized to the complex case. By the same 
token, the following results for complex vectors will hold for their real counterparts. 

12.3. Let x and y be two complex vectors in C", and let A be a Hermitian non- 
negative definite n x n matrix. 

(a) There are two versions of the Cauchy-Schwarz inequality. 

(i) Using the inner product (x,y) = x*y, we have from (2.17) that 

x*x - (x*y)(y*y)-l(y*x) L 0. 

Equality occurs when x 0: y. 

(ii) Since lab] = lallbl, we have from (5.lb), 

i=l i=l i=l i= 1 

Equality occurs when x = cy for any complex scalar c. 

(b) 1x*yI2 5 (x*x)(y*y). Equality occurs when x 0: y. 
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(c) (x*Ay12 5 (x*Ax)(y*Ay),  with equality when x c( y.  

(d) Let A be Hermitian positive definite. 

(i) Ix*yI2 5 (x*Ax)(y*A-ly). Equality occurs when y c( Ax. 

(ii) ( x * x ) ~  5 (x*Ax)(x*A-lx), which implies (x*Ax)-' I x*A-lx when 
x*x = 1. Equality occurs when x 0: Ax, that is, when x is an eigenvec- 
tor. 

( e )  (Wielandt) If A is Hermitian positive definite and x*y = 0, then 

Equality occurs when x = (XI + x,)/& and y = (XI - x,)/&, where x1 
and x, are the eigenvectors corresponding to A1 and A,, respectively, the 
maximum and minimum eigenvalues of A. Rao [2005: 631 applies the above 
result to sphericity tests in multivariate analysis. Along with references, he 
also gives a matrix generalization of the above result (Rao [2005: 621). 

Note that I . I represents the modulus. 

12.4. Let A and C be Hermitian positive definite n x n and m x m matrices, 
respectively, and let B be n x m. The following statements are equivalent: 

(1) (x*Ax)(y*Cy) 2 Ix*By12 for all x E Cn and all y E C". 

(2) x*Ax + y*Cy 2 2lx*Byl for all x E C" and all y E C". 

(3) p(B*A-lBC-l) I 1, where p ( . )  is the spectral radius. 

(4) ( ) 0 (i.e., non-negative definite). 

Proofs. Section 12.1.2. 

12.3. For (a) see Dragomir [2004: 2-31; for (a)-(d) see Zhang [1999: 2031 (and 
quoted by Rao and Rao [1998: 4551); and for (e), Horn and Johnson [1985] 
and Rao [2005: 61, real case]. 

12.4. Horn and Johnson [1985: 4731. 

12.1.3 Real Matrix Inequalities 

In this section we give a number of matrix inequalities that might be regarded as 
extensions of the Cauchy-Schwarz inequality for vectors. 

12.5. Let A and B be any real m x n matrices. 

(a) (traceA'B)2 5 (traceA'A)(traceB'B), with equality if and only if one of 
the matrices is a multiple of the other. 
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This inequality can also be expressed in the form I(A,B)I 5 llAll~llBll~ (cf. 
(2.20) and Harville [1997: 62]), where 11 . I I F  is the Frobenius norm. For some 
generalizations see Rao and Rao [ 1998: 494-4951. 

trace[(A’B)’] 5 trace[(A’A)(B’B)], with equality if and only if AB’ is sym- 
metric. Furthermore, since trace(A’B) = trace(B’A) = trace(AB’), we have 

trace[ (A’B)2] 5 trace[ ( AA’) (BB’)] , 

with equality if and only if A’B is symmetric. 

Setting m = n and A = I,, we have 

trace(B’) 5 trace(B’B), 

with equality if and only if B is symmetric. 

(det A’B)’ 5 (det A’A)(det B’B), with equality if and only if A’A or B‘B 
are singular, or if B = A R  for some nonsingular R. 

From (2.15a) we have IIA+BIIF 5 IIAIIF+~~BIIF, where 1 1 . 1 1 ~  is the Frobenius 
norm. 

A’[I, - B(B’B)-B’]A = A’(1, - PB)A is non-negative definite since (I, - 
PB) is non-negative definite (cf. 2.49f). Hence, from (10.48b), 

det (A’A) 2 det [A’B( B’B)-B’A]. 

12.6. (Measures of Relative Efficiency in Regression) Consider the linear regres- 
sion model of Section 20.7, namely y = X P + E ,  where X is n x p of rank p ,  var(e) = 
02V, and V is positive definite. We define the eigenvalues of V to  be Xi  = Xi(V) 
and we impose the usual order X1 2 Xz 2 . . . 2 An > 0. Then the variance matrix 
of the generalized (weighted) least squares estimate of P is (X’V-’X)-’ and that 
of the ordinary least squares estimator is (X’X)-l(X’VX)(X’X)-’. Measures of 
the relative efficiency of the ordinary least squares estimate with respect to the 
generalized least squares estimate have been based on the roots of 

det[(X’X)-l(X’VX)(X’X)-l - B(X’V-lX)-l] = 0. 

Four such measures Ei (i = 1,2,3,4)  taken from Rao and Rao [1998: 4641 are given 
below. 

det(X’VX) det(X’V-lX) 
[det (X’X))] 

= n 6%. If s = min{p, n - p } ,  then 
i=l 

(a) El = 

P 

(b) Ez = XBi. If s = min{p,n - p } ,  t = 0 if s = p ,  and t = 2 p - n  if s = n-p ,  
i=l 

then 
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When X’X = I,, 

s 

0 L E3 5 E ( 6 -  JG)’, 
i=l 

where s = min{p, n - p } .  

(d) Ed = trace[PV’P - ( P V P ) ( P V P ) ] ,  where P = X(X’X)-lX’ represents the 
orthogonal projection onto C(X). Then 

12.7. (Matrix Kantorovich Inequality) Let A be a positive definite n x n matrix, 
and let U be an n x p matrix such that U’U = I,. If A1 = A,,,(A) and A, = 

Arnin(A)> then 
U‘AU 3 (’1 + A,)2 (U/A-lU)-l .  

4 k L  

Interchanging A and A-’ so that A;’ = Amin(A-’) and A;’ = Amax(A-’), we 
have 

U/A- lU 5 (’1 + A,)2 (U/AU)-l ,  
4hA, 

Also 
(U’AU)-’ 3 U’A-’U. 

(Note that B 5 C means that C-B is non-negative definite.) For further extensions 
see Baksalary and Puntanen [1991] and Drury et al. [2002]. 

12.8. (Further Matrix Kantorovich-Type Inequalities) 

(a) Let A,  B, and C be n x n positive definite matrices, and let X be an n x k 
matrix of rank k.  Then: 

(i) 

det (X’B-‘ AB-’ X) det (X’ A-’ X )  
[det (X’B-’ X)]’ 

(pi + pn-i+l)’ 
= 5 4PiP,-i+l ’ SUP 

X 

where m = min{k,n - k }  and 11 2 . . .  2 p, > 0 are the roots of 
det(B - p A )  = 0, that is, the eigenvalues of BA-’ (and of A-’B). 

(ii) 

det(X’B2X) det(X’C2X) (pa + Pn-Z+d2 

s:p [det (X’BCX)]’ =z 4,&Pn-i+1 ’ 

where m = min{k, n - k } ,  BC = CB, and the pi are the eigenvalues of 
BC-’. 
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(b) Let B be an n x n non-negative definite matrix of rank b, and let A be 
n x T of rank u (u 5 min{b,r}) such that C(A) C C(B). Furthermore, let 
X1 2 . . .  2 Xb > 0 be the eigenvalues of B. Then, if A+ and B+ are Moore- 
Penrose inverses, we have: 

with equality if and only if A = 0, or A‘BA = $ ( A 1  + Xb)A’A and 
A‘B+A = X l f X b ~ l ~  

2X1Xb . 
(ii) A+B(A+)’ - (A’B+A)+ 5 (6 - &)’(A’A)+, 

with equality if and only if A = 0, or X 1  = Xb, or A’BA = (XI + X b  - 

&&)A’A and A’B+A = (X1Xb)-1/2A’A. 

The above, along with two further results, are quoted by Rao and Rao [1998: 
4961. They also give a Kantorovich-type inequality for complex matrices. See 
also Liu [2002a] and Liu and Neudecker [1996]. 

Proofs. Section 12.1.3. 

12.5a--b. Abadir and Magnus [2005: 3251 and Magnus and Neudecker [1999: 
201-2021. 

2011. 
12 .5~ .  Abadir and Magnus [2005: 3301 and Magnus and Neudecker [1999: 

12.6a. Bloomfield and Watson [I9751 and Knott [1975]. 

12.6b. Khatri and Rao [1981, 19821. 

12 .6~ .  Rao [1985]; see also Drury et al. [2002: section 31 for further details 
and related work. 

12.6d. Bloomfield and Watson [1975]. 

12.7. Marshall and Olkin [1990] and Zhang [1999: 2041. 

12.8a(i). Lin [1984]. 

12.8a(ii). Khatri and Rao [1981]. This result follows from (i) by replacing 
A-’ by C2 and B-l by BC. Here BC is symmetric and positive definite 
when BC = CB as the eigenvalues of B1/2CB1/2 are positive. 

12.1.4 Complex Matrix Inequalities 

12.9. Let X and Y be n x p and n x q complex matrices, respectively. 
generalizing (12.5e), we have 

Then 

x*x - x*Y(Y*Y)-Y*x = X*(I, - Py)X 0, 

i.e., non-negative definite as the orthogonal projector I, - Py is Hermitian non- 
negative definite (cf. 2.49f). Equality occurs if and only if C(X) C C(Y). A gener- 
alization of this result follows. 
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12.10. Let A be an n x n Hermitian non-negative definite matrix with PA = 
A(A*A)-A*,  and let U be an n x p matrix. Then 

U * A + U  h U*PAU(U*AU)+U*PAU, 

with equality if and only if C(AU) = C(PAU) 

12.11. Let A be an n x n Hermitian positive definite matrix, and let X be n x p 
and Y be n x q satisfying X*Y = 0. Then 

where (Y*AY)- is any weak inverse, with equality when 

(u1+ u,) K (A,1PUl + A,1Pu,). 

Here P = X(X*X)-X* is the orthogonal projector onto C(X) and A1 and A, are the 
largest and smallest eigenvalues, respectively, of A with corresponding eigenvectors 
u1 and u,. 

12.12. Let A and B be n x n real or complex matrices. 

(a) I trace(AB)I2 I trace(A*A) trace(B*B). 

(b) If A and B are Hermitian, then 

t r a ~ e [ ( A B ) ~ ]  5 trace(A2B2), 

with equality if and only if A B  = B A .  For a generalization see (12.33d). 

12.13. (Unitarily Invariant Norm) Let 1 1  . ] I u ,  be any unitarily invariant norm 
defined on the vector space of m x n complex matrices (Section 4.6.3), and let A 
and B be m x n matrices. 

(a) If IAl represents the general square root of A (i.e., [A/ = (A*A)l/'), then: 

(i) II IA*BIP 112, I ll(A*A)pllUz Il(B*B)PIIUZ for all P > 0. 
(ii) Setting p = f in (i) and using 11 IAl l l u z  = llAllUz (cf. 4.86), we have 

II IA*Bl+ 112, I IlAlluz IlBllUZ. 

IIA*BII:~ I I I A * A I I ~ ~  I IB*BII~ , .  

(iii) If p = 1 in (i), we have a Cauchy-Schwarz type of inequality 

(b) (Hadamard Product) IIA o B112, 5 IIAA*(),, ~ ~ B * B ~ ~ u , .  

Proofs. Section 12.1.4. 

12.10. Baksalary and Puntanen [1991: 1041, who also give some special cases 
and variations on the result. 

12.11. Wang and Ip [2000] (see also Drury [2002]). 

12.12. Zhang [1999: 25, 2131. 

12.13a. Horn and Johnson [1985: 212, exercises 6 and 7, hint for proof only]. 

12.13b. Horn and Johnson [1991: 212, exercise 8, hint for proof only]. 
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12.2 HOLDER'S INEQUALITY AND EXTENSIONS 

Let a, b, . . . , g be m real n x 1 vectors of non-negative elements, and let a i  > 0 
( i  = 1 , 2 , .  . . ,n )  such that C z l  01i = 1. 

12.14. 
n n n n 

n a y .  + n b ; t  + . . . + ngz" .  5 H ( a ,  + bi + . . . + g p .  
i= 1 i= 1 i=l i=l 

Equality occurs if and only if either every pair of vectors a, b, and so on, are 
proportional, or there is a k such that a k  = bk = . . . = gk = 0. If A = (a, b, . . . , g ) ,  
then the conditions for equality are either rank A = 1 or A contains a row of zeros. 

12.15. Interchanging the rows and columns of A in the previous result leads to 
the following. 

n n n 

2=1 a=1 z= 1 a = 1  

with equality if and only if rankA = 1 or A contains a column of zeros. 

Putting m = 2 in (a) leads to 

n n n 

2= 1 i=l 

with equality if and only if a = k b .  

(Holder's Inequality) Replacing ai by a,"" and b, by b:'(l-a) in (b) leads to 

n n n 

i=l i=l i=l 

i=l i=l 

where T ( =  1/01) > 1 and r P 1  + s-l = 1. Equality occurs if and only if 
a: = kbp for i = 1 , 2 , .  . . , n, or either a or b is 0. The inequality in (c) is 
reversed if T # 0, T < 1 (and s < 0). We can deduce the previous results from 

(c). 

If a and b are vectors of complex numbers, then replacing ai by lail, and so 
on, in (c), we have for T > 1 and T - ~  + s-l  = 1, 

n n n 

i=l i= 1 i= 1 

Equality occurs if and only if 

for i = 1 , 2 , .  . . , n, and arg(aibi) is independent of i .  
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12.16. (Matrix Analogues) Let A and B any two n x n non-negative definite 
matrices, and let 0 < Q < 1. 

(a) (Magnus) trace(AaBlPa) I (traceA)a(traceB)'-a 

with equality if and only if B = kA for some k > 0. 

(b) trace(AaB1-") 5 trace[aA + (1 - a)B] 

with equality if and only if A = B. 

(c) (det A)"(det B)lPa I det(aA + (1 - a)B) 

with equality if and only if A = B or det(aA + (1 - a)B)  = 0. The re- 
sult is obviously true if either A or B is singular, so it is more applicable 
to positive definite matrices. In this case it follows that +(A) = log det A is 
concave on the space of positive definite matrices. 

(d) Let Ai be positive definite and ai > 0 for (i = 1 , 2 , .  . . , k ) ,  where Ci ai = 1. 
Then 

(det A I ) ~ ~  (det A2)az . . . (det At)ak I det(alA1 + a2Az + . . . + akAt), 

with equality if and only if the Ai are all equal. 

Proofs. Section 12.2. 

12.14. Hardy et al. [1952: section 2.71 and Magnus and Neudecker [1999: 
220-2211, 

12.15~. For a direct proof see, for example, Marcus and Minc [1964: 1081, 
Rao and Bhimasankaram [2000: 2541, and Rao and Rao [1998: 4571. 

12.16a. Magnus and Neudecker [1999: 2211. 

12.16b. Magnus and Neudecker [1999: 2221. 

12.16~. Abadir and Magnus [2005: 3341 and Magnus and Neudecker [1999: 
2221. 

12.16d. Abadir and Magnus [2005: 334-3351, 

12.3 MINKOWSKI'S INEQUALITY AND EXTENSIONS 

12.17. Let X be an m x n real matrix whose elements are non-negative and not 
all zero. If p > 1, then 

m. n n m  

i = l  j=1 j=1 a=1  

with equality if and only if rank X = 1. The inequality reverses if p < 1 ( p  # 0). If 
p < 0, then the xi3 are assumed to be all positive. A number of special cases follow 
below. 
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(a) Putting n = 2, ai = x i l ,  and bi = xz2, we have 

m 

z=1 2=1 2 = 1  

with equality if and only if a, = kb, for i = 1 ,2 , .  . . , n. 

(b) Putting m = 2, c3 = x13, and d, = xz3, we have 

n n TL 

3=1 ,=1 ,=1 

with equality if and only if c, = kd, for j = 1 ,2 , .  . . , n 

(c) If a, 2 0 (i = 1 , 2 , .  . . , rn) such that cEl LY, = 1, then replacing xZ3 by 

a i / p x 2 3  leads to 

n n m  

with equality if and only if rankX = 1. The inequality reverses for p < 1 

( P  # 0). 

12.18. (Matrix Analogues) Let A and B any two n x n Hermitian non-negative 
definite matrices. 

(a) (Magnus) [trace(A + B)p]l/p 5 (traceAP)lIP + (traceB)p)l/p 

(b) [det(A + B)]'/" 2 (det 
with equality if and only if det(A + B) = 0 or A = kB for some k > 0. 

(c) [det(aA + (1 - cy)B)]'/" 2 cl(det A)1/" + (1 - cl)(det B)l/", 0 5 LY 5 1. 

( p  > l), 
with equality if and only if A = kB for some k > 0. 

+ (det B)'ln, 

Proofs. Section 12.3 

12.17. Hardy et al. [1952: 301 and Marcus and Minc [1964: 109, p > 11. See 
also Rao and Bhimasankaram [2000: 2541 for (c). 

12.18a. Magnus and Neudecker [ 1999: 2241. 

12.18b. Abadir and Magnus [2005: 3291 and Magnus and Neudecker [1999: 
2271. 

12.18~. Marcus and Minc [1964: 1151 
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12.4 WEIGHTED MEANS 

Let zzr z 2 , .  . . , z, be non-negative real numbers, and let ai > 0 (i = 1 ,2 , .  . . , n) be 
such that Cy=l a, = 1. Define 

If p < 0, we assume that the z,s are all positive. An important special case is 
a, = 1/n for all i. For further details see Bullen [2003], Hardy et al. [1952: chapter 
111, and Magnus and Neudecker [1999: 227-2311, 

12.19. For every X > 0, Mp(Xx) = XMp(x). 

12.20. Equality occurs in each of the following two inequalities if and only if the 
zz’s are all equal. 

(a) Mo(x) 5 Ml(x),  so that n,z:* I C, a,z,. 

Setting each a, = n-l, we see that the geometric mean is less than or equal 
to the arithmetic mean. Note the special case 5 az + (1 - a ) y .  

(b) 44x1  I Mq(x) for P < 4 

Setting each a, = n-l, p = -1, and q = 0, we see that the harmonic mean is 
less than or equal t o  the geometric mean. 

(c) (Matrix Version) If A, (i = 1,2, .  . . , n)  are positive definite pairwise com- 
muting matrices (i.e., A,A, = A,A, for all i , j , z  # j ) ,  then 

Equality occurs if and only if the A, are all equal. (Here A 
A - B is non-negative definite.) 

B means that 

12.21. (Limits) 

(a) limp+o Mp(x) = Mo(x) .  

(b) Let z,in be the smallest zi and zmax the largest. Then 

lim Mp(x) = xmaxr 
p - 0 0  

lim Mp(x) = zmin, 
p - - - m  

and 

12.22. Mp(x) is a concave function of x for p 5 1 and a convex function for p 2 1. 
In particular, 

MPW + MP(Y) I MP(X + Y) ( P  < 1) 

MPb) + MP(Y) 2 Mp(x + Y) ( P  > I), 

with equality if and only if x and y are linearly dependent. 
Also plogMp(x) is a convex function of p .  
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Proofs. Section 12.4. 

12.19. Magnus and Neudecker [1999: 2281. 

12.20a. Magnus and Neudecker [1999: 2021. 

12.20b. Magnus and Neudecker [1999: 2301. These inequalities can also be 
deduced from likelihood ratio test inequalities (Stefanski [1996]). 

12.20~. Rao and Rao [1998: 4991. 

12.21. Magnus and Neudecker [1999: 228-2291, 

12.22. Magnus and Neudecker 1999: 230-2311 

12.5 QUASI L I N EAR I Z AT I0  N (REP R ES E NTAT I0 N) TH EO R E M S 

The representation of a nonlinear function as an envelope of linear functions is called 
quasilinearization or representation. The method is useful in proving a number of 
inequalities. 

12.23. Let p > 1, q = p / ( p  - l), and a, 2 0 for i = 1 ,2 , .  . . ,n. Then 

n n 

i= 1 2=1 

for every set of non-negative 21, 2 2 , .  . . , 2 ,  satisfying C, 23 = 1. Equality occurs if 
and only if all the ai are zero or 

Hence 
n n 

where R is the region defined by Ci X: = 1, X, 2 0 (i = 1 ,2 , .  . . , n). 

12.24. (Matrix Versions) Let A be a non-negative definite n x n matrix. 

(a) If p > 1 and q = p / ( p  - l ) ,  then 

trace(AX) 5 (traceAP)l/p 

for every non-negative definite n x n matrix X satisfying trace(XQ) = 1. 
Equality occurs if and only if Xq = Ap/(traceAp). Hence 

max trace(AX) = (traceAP)l/p, 

where R is the region of all non-negative definite matrices X of the same size 
satisfying traceXq = 1. 

R 
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(b) If A is also positive definite, then for every positive definite n x n matrix X 
satisfying det X = 1 we have 

n-' trace(AX) 2 (det A)1/", 

with equality if and only if X = (det A)'/"A-'. 

If X = I,, then n-l trace(A) 2 (det A)'/" with equality if and only if A = 
kI, for some k 2 0. 

Therefore, given A positive definite, we have 

min n-l trace(AX) = (det A)1/", 

where the minimization is over the space of all positive definite matrices X 
such that det X = 1. 

R 

(c) If A is a positive definite n x n matrix and B is any m x n matrix of rank m, 
then 

trace( X' AX) 2 trace[ ( BA-lB')-l] 

for every n x m matrix X satisfying BX = I, with equality if and only if 
x = A - ~ B / ( B A - ~ B / ) - ~ .  

(d) Let A be an R X  n symmetric matrix with (not necessarily distinct) eigenvalues 
XI 2 A2 2 . . .  2 A,. Then, for any n x k matrix X such that X'X = Ik 
( k  5 n) ,  we obtain 

k 

trace(X'AX) 5 Xi, 

with equality when the columns of X are orthonormal right eigenvectors cor- 
responding to A1 , . . . , Ak, respectively. 

i = l  

Proofs. Section 12.5. 

12.23. Magnus and Neudecker [1999: 2181 

12.24a. Magnus and Neudecker [1999: 2191. 

12.24b. Abadir and Magnus [2005: 3281 and Magnus and Neudecker [1999: 
2251. 

12.24~. Quoted by Magnus and Neudecker [1999: 237, exercise 101 

12.24d. Harville [1997: 5561. 

12.6 SOME GEOMETRICAL PROPERTIES 

12.25. (Ellipsoids) Let a, y, and 6 be n-dimensional real vectors, and let L be a 
positive definite n x n matrix. Then, for T > 0, 8 satisfies 

a'y - r(a'La)'l2 5 a'6 5 a'y + r(a'La)1/2 
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for all a if and only if (y- 8)'L-'(y-8) 5 r2. Geometrically, this result states that 
a point y lies in an ellipsoid with center 8 if and only if it lies between every pair of 
parallel tangent planes. This result was originally proved geometrically by Scheff6 
[1953]. When L = In, the ellipsoid becomes a sphere, and Hsu [1996: 231-2331 
gives a simple proof of this case. 

12.26. (Rectangles) Let a, c ( c  2 0 ) ,  and z be n-dimensional real vectors, then 

n 

This result is useful for the construction of simultaneous confidence intervals (Hsu 
[1996: 2331). 

Proofs. Section 12.6. 

12.25. Seber and Lee [2003: 1231. 

12.26. Miller [1981: 741. 

12.7 MISCELLANEOUS INEQUALITIES 

12.7.1 Determinants 

12.27. (Hadamard) 
matrix. Then 

Let A = ( a t J )  be a non-negative definite n x n Hermitian 

d e t A  <alla22...an,,, 

with equality if and only if some aii = 0 or A is diagonal 

12.28. (Hadamard) If A = (aij) is any n x n complex matrix, then 

n n  

I det A1 F and 

3 = 1  2'1 

with equality if and only if A A *  is diagonal or A has a zero row; alternatively, if 
A * A  is diagonal or A has a zero column. 

12.29. Let A and B be Hermitian non-negative definite n x n matrices. Then: 

(a) det(A+B) 2 det A+det B, with equality if and only if n = 1 or det(A+B) = 
0. 

(b) If A - B is non-negative definite, then det A 2 det B with equality if and 
only if A and B are nonsingular (i.e., positive definite) and A = B, or if A 
and B are both singular. 
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12.30. If A and B are n x n real or complex matrices, then 

det(In + AA') det(1, + B*B 2 I det(A + B)I2 + I(det(1, - AB*)I2, 

with equality if and only if n = 1, or A + B = 0, or AB* = In. 

12.31. If X is m x n and Y is n x p ,  both real or complex matrices, then from 
(12.9) we have that X*X-X*Y(Y*Y)-Y*X is non-negative definite. Hence, by 
(12.29b), 

det (X*X) 2 det (X*Y (Y *Y) - Y * X) , 

with equality when C(X) & C(Y). 

Proofs. Section 12.7.1. 

12.27. Horn and Johnson [1985: 4771 and Zhang [1999: 1761. 

12.28. This follows from the previous inequality (12.27) applied to AA*,  and 
so on. See also Basilevsky [1983: 1001, Horn and Johnson [1985: 477-4781, 
and Magnus and Neudecker [1999: 214, real case]. 

12.29. Abadir and Magnus [2005: 326, real case]. 

12.30. Zhang [1999: 184-1851. 

12.7.2 Trace 

12.32. If A = ( a i j )  is a non-negative definite matrix, then 

n 

trace(AP) 2 art 
i= 1 

n 

%'I 

with equality if and only if A is diagonal. 

12.33. Let A and B be n x n non-negative definite matrices. 

(a) 0 5 trace(AB) 5 (traceA)(traceB). 

(b) d w  5 i ( t raceA+traceB),  with equality if A = 0 and traceB = 0, 
or if B = 0 and traceA = 0, but also if A = B = aa' for some a # 0. 

( c )  ( ArakikLieb-Thirring) 

t r a ~ e [ ( B ~ / ~ A B ' / ~ ) ' ~ ]  5 t r a ~ e [ ( B ~ / ~ A ~ B ~ / ~ ) ' ] ,  

where s and t are positive real numbers with t 2 1. 

(d) (Lieb-Thirring) Let m and k be positive integers with m 2 k .  Then 

trace[(AkBk)"] 5 [trace(A"B")lk. 
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In particular, 
trace[(AB)"] 5 trace(AmBm). 

Proofs. Section 12.7.2. 

12.32. Magnus and Neudecker [1999: 2171. 

12.33a-b. Abadir and Magnus [2005: 329-3301, 

12.33~. Quoted by Bhatia [1997: 2581. 

12.33d. Quoted by Bhatia [1997: 2791. 

12.7.3 Quadratics 

12.34. (Bergstrom) If A and B are both positive definite, then 

(x' A- ' x) (x'B-lx) 
x'(A-l + B- l )x  

x'(A + B)-'x 5 

12.35. Let A 2 0 (i.e., has non-negative elements) be an  n x n matrix and let 
x 2 0 be an n x lvector. Then, for any positive integer k ,  

(x' A") (x'x)~-' 2 (x' Ax)" 

with equality if and only if x is an eigenvector of A. 

Proofs. Section 12.7.3. 

12.34. Abadir and Magnus [2005: 3231. 

12.35. Mulholland and Smith [1959]. 

12.7.4 Sums and Products 

12.36. (Triangle Inequality) For all a,, b,, . . . , gi ( i  = 1 , 2 , .  . . , n) ,  

/ n  \ n n n 

12.37. For all non-negative a,, b,, . . . , g, ( i  = 1 ,2 , .  . . , n) ,  

n II II 

i = l  i=l 2 = 1  i=l 
n n n n 

2 = 1  z = 1  2 = 1  z = 1  

with equality if and only if all the numbers but one of each set a3 ,  b,, . . . ,g, ( j  = 
1 , 2 , .  . . , n)  are zero. 
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12.38. (Ordered Numbers) Let a1 2 a2 2 . . . 2 an 2 0 and bl 2 bz 2 . . . 2 b, 2 
0. If 

k k 

then 

i= 1 i=l 

k k 

cai 5 c bi,  k = 1 , 2 , .  . . , n .  
i= 1 i=l 

12.39. (Information Inequalities) Let a = (a1 ,a2 , .  . . ,an)' and b = ( b l ,  b2 , .  . . , 
bn)' be two vectors. 

(a) Supose a > 0 and b > 0 (i.e., have positive elements) such that X i  ai 2 Ci bi. 

Then 
n 

b -  

ai 
e a2 log 2 5 0, 
i=l 

with equality being attained if and only if ai = bi for all i. Also, if ai < 1 and 
bi 5 1 for all i ,  then 

(b) Suppose a 2 0 and b 2 0 (i.e., have non-negative elements) such that Ci ai = 
X i  bi > 0 ,  then 

n n 

i=l i=l 

with equality if and only if a = b. 

12.40. (Jensen) Let x i  2 0 (i = 1,2, .  . . , n ) ,  then 

z=1 z=1 

with equality if and only if all the x, are zero except one. Also 

n 

lim ( E x ; ) ' l r  = maxx,. 
T'oo 2 

z = 1  

12.42. If x i  0 for i = 1,2 , .  . . , n,  then 

with equality if and only if x1 = 2 2  = . . . = x,. 
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12.43. Suppose x1 2 x2 2 . . .  2 xn > 0 and yz/x, is decreasing in a .  Let a, 2 0 
for i = 1 , 2 , .  . . , n such that C:=, a, = 1, and define 

(c;& a2xc:I c:=, ~zu;)”‘, if # 0, i n;=, xpt/n;=, yzaz, if r = 0. 
g ( r )  = 

Then g ( r )  increases as r increases. 

Proofs. Section 12.7.4. 

12.36. Follows from (12.17). 

12.37. Hardy et al. [1952: 321. 

12.38. Horn and Johnson [1991: 1741. 

12.39a. Rao and Rao [1998: 4581. 

12.39b. Bapat and Raghavan [1997: 811. 

12.40. Hardy et al. [1952: 281. 

12.41. Quoted by Rao and Rao [1998: 4661 

12.42. Marshall and Olkin [1979: 721. 

12.43. Marshall and Olkin [1979: 1311. 

12.8 SOME IDENTITIES 

12.44. Let a = (a , )  and b = ( b z ) .  

(a) (Lagrange Identity) 

(i) (Real Vectors) (a’a)(b’b) - (a’b)2 = 

(ii) (Complex Vectors) 
C, C,(a,b,  - a,b,)2. 

C ,  
(b) (Abel’s Identity) 

C,  Ibt12 - I Czazh12 = $ C,  C,  lGb3 - aJbz12. 

i = l  [ j = 1  1 j=1 

12.45. If a, b, and c are n x 1 vectors then 

Y 

2 3  a 3 i j  

12.46. If A is symmetric and nonsingular, we have from (24.26a) 

x’Ax - 2b’x = (X - A-lb)’A(x - A-lb) - b’A-lb. 
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12.47. Suppose that A and B are n x n symmetric matrices, and A + B is non- 
singular. Let a, b, and x be n x 1 vectors. Then 

(x - a)'A(x - a) + (x - b)'B(x - b) 

= (x - c)'(A + B)(x - c) + (a - b)'A(A + B)-'B(a - b), 

where c = (A + B)-'(Aa + Bb). 

12.48. Suppose A and B positive definite matrices, and let a, b, and x be n x 1 
vectors. Define 

C-l = A-' + B-l and D = A + B. 

Then 

(x -a)'A-'(x -a) + (x- b)'B-'(x- b) = (x - c)'C-'(x- c) + (a- b)'D-'(a- b), 

where c = C(A-'a + B-'b). 

Proofs. Section 12.8. 

12.44a. Dragomir [2004: 31. 

12.44b. Rao and Rao [1998: 3851. 

12.46. Use x = x - A-'b + A-lb. 

12.47. Multiply out and use (15.4~).  

12.48. Abadir and Magnus [2005: 2171. Follows from (12.47) by replacing A 
by A-' and B by B-' and using A-l(A-l + B-')-'B-' = (A + B)-' (cf. 
15.4~) .  



CHAPTER 13 

LINEAR EQUATIONS 

In this chapter we investigate the solution of various linear equations with a vector 
or matrix of unknown variables. Nonlinear matrix equations are not considered 
in this book except in (13.24) and (13.25), and the reader is referred to Horn and 
Johnson [1991: Section 6.41 for some background on this topic. 

13.1 UNKNOWN VECTOR 

13.1.1 Consistency 

Definition 13.1. In this section we consider the problem of solving the equation 
A m x n x n x l  = bmxl for x when rankA = r ( r  5 min(m,n)) and b # 0. The 
equation is said to be consistent if there exists a t  least one solution. Otherwise, the 
equation is said to  be inconsistent. Clearly we must have b E C(A) for consistency. 
Note that this section is a special case of Section 13.2, which considers the equation 
A X B  = C .  

13.1. Using the above notation, the following are equivalent. 

(a) The equation Ax = b is consistent. 

(b) rank(A, b) = rank A.  

(c) A A - b  = b, where A-  is any weak inverse of A. 

A Matrix Handbook for  Statisticians. By George A. F. Seber 
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13.2. From (16.33) we can find nonsingular P and Q such that 

Then the equation Ax = b is consistent if and only if the last m - T elements of 
Pb are zero. 

13.3. The equation Ax = b has a unique solution if and only if A has full column 
rank (i.e., n = r ) .  When A has full column rank, it has a left inverse L such 
that LA = I,. Then x = Lb is the solution. In particular, we can choose L = 
(A'A) - l ~ ' .  

Proofs. Section 13.1.1. 

13.1. Graybill [1983: 151-1521, Schott [2005: 2221, and Searle [1982: 2321. 

13.2. Searle [1982: 2321. 

13.3. Schott [2005: 2271. 

13.1.2 Solutions 

13.4. All possible solutions of the consistent equation Ax = b can be generated 
from 

x = A-b + (I, - A-A)z 

for any specific weak inverse A- by using all possible values of the arbitrary n x 1 
vector z (including z = 0). Thus every solution of Ax = b can be expressed in the 
above form for some z. 

13.5. All possible solutions of the consistent equation Ax = b can be generated 
from x = A-b by using all possible weak inverses A- of A. 

13.6. If X I ,  x,, . . . , Xt are any t solutions of the consistent equation Ax = b, then 
C,"=, a& is a solution if and only if ci=, ai = 1 

13.7. If A is m x n of rank r ,  the consistent equation Ax = b has exactly n - T + 1 
linearly independent solutions. 

(a) One possible set of such solutions is A-b along with the set 

Xi = A-b + (I, - A-A)zi, i = 1 ,2 , .  . . ,n  - r, 

where the zi are arbitrary, but chosen so that the (I,-A-A)zi are all linearly 
independent. 

(b) Every solution can be expressed as a linear combination of the linearly inde- 
pendent solutions. 

13.8. The value of a'x is the same for all solutions 2 to Ax = b if and only if a' = 
a'A-A. There are only r linearly independent vectors ai satisfying a: = aiA-A. 
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13.9. (Methods of Solution for Consistent Equations) 
involve some factorization of A. 

These methods generally 

(Singular Value Decomposition) Suppose A is m x n with singular value 
decomposition A = PEQ', where P and Q are orthogonal m x m and n x n 
matrices, respectively, with columns pi and qi, and E is an m x n diagonal 
matrix with positive or zero diagonal elements oi, the singular values of A. 
Then Ax = b implies that EQ'x = P'b, or Ey = c .  This simplified form 
can be used to determine the nature of the solutions of the original equations 
(Schott [2005: 2421). 

If A is nonsingular and n x n, and P = (PI,  p2,. . . , p,), then 

so that if on, the smallest singular value of A, is small, a small change in A 
or b can induce a relatively large change in x (Golub and Van Loan [1996: 

(LU Factorization) We can use the factorization A = LU, where L is a lower- 
triangular matrix with unit diagonal elements - and - U is an upper-triangular 
matrix (cf. Section 16.4). Since Ax = LUX = Ly = b, we simply solve 
Ly = b for y and Ux = y for x. The process used for carrying out the 
calculations is called Gaussian elimination with the related ideas of pivoting 
and sweeping. It can also be applied to m x n matrices (Golub and Van Loan 
[1996: chapter 31 and Rao and Bhimasankaram [2000: section 5.61). The 
method can be used for solving normal equations that arise in least squares 
estimation for linear regression (Seber and Lee [2003: section 11.21). 

801). 

Proofs. Section 13.1.2. 

13.4-13.5. Schott [2005: 2251 and Searle [1982: 2381. 

13.6. Searle [1982: 2381. 

13.7. Schott [2005: 2281 and Searle [1982: 240-2411. 

13.8. Searle [1982: 242-2441. 

13.1.3 Homogeneous Equations 

13.10. We consider solutions of Ax = 0, where A is m x n of rank r .  

(a) The solutions form the null space N(A)  of A of dimension n - r .  

(b) A nonzero solution exists if and only if det A = 0. 

(c) All the solutions to Ax = 0 are of the form xo = (I, - A-A)z for arbitrary 
z and any weak inverse A- of A. For zi # 0, there exist q - r linearly 
independent such solutions (I, - A-A)zi. 

Any 
orthonormal basis for N(A)  will give a set of n - r orthogonal solutions. 

Proofs. Section 13.1.3. 

13.10. Searle [1982: section 9.71. 
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13.1.4 Restricted Equations 

13.11. Given A is m x n, we wish to solve the consistent equation Ax = b with 
the restriction that x E V ,  a vector subspace of Rn. Here V could represent the 
column space or null space of a matrix. 

(a) If PV is the orthogonal projection onto V ,  then I, - PV is the orthogonal 
projection onto V'. We are now interested in the solution of 

(b) The restricted equation is consistent if and only if the equation APvz = b is 
consistent. If this is the case and zo is a solution of the latter equation, then 
xo is a solution of the restricted equation if and only if xo = PVZO. 

(c)  If the restricted equations are consistent, then a general solution is 

{xO : XO = PV(APV)-b + Pv[I - (APv)-APv]y, 

where y is an arbitrary n x 1 vector and (APv)- is any weak inverse of APv. 

Proofs. Section 13.1.4. 

13.11. Ben-Israel and Greville [2003: 88-89]. 

13.2 UNKNOWN MATRIX 

We are interested in solving the equation AmXnXnXpBpXq = C m x g .  When the 
appropriate matrices are square, special cases follow by setting A = I or B = I, 
and using I- = I in the result below. We note that if x = vec X and c = vec C, 
then, by l l . l 6b ) ,  

which reduces the problem to the case considered in the previous section. More 
generally, consider the system 

(B' @ A)x = vec (AXB) = vec C = c,  

r S 

AiXBi + c LjX'Mj = C ,  
i= 1 j = 1  

where the Ai are m x n, the Bi are p x q,  the Lj are m x p ,  and the Mj are n x q. 
This can be reexpressed in the form (cf. 11.18b(ii)) 
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13.2.1 Consistency 

13.12. The equation AXB = C is said to be consistent if it has a t  least one 
solution for X. 

(a) A necessary and sufficient condition for AXB = C t o  be consistent is that 
AA-CB-B = C for any particular pair of weak inverses A- and B-. 

(b) AXB = C is consistent if and only if C(C) c C(A) and C(C’) c C(B’). 

(c) If the equation AXB = C is consistent, then the following are general solu- 
tions for X with XO = A-CB-. 

(i) XO + W - A-AWBB- for conformable arbitrary W. 

(ii) XO + (I - A-A)U + V(I - BB-) for conformable arbitrary U and V. 
This result can also be expressed in the form A-CB- + ZO, where ZO 
is a solution of AZB = 0. 

(iii) XO + A-AR(1- BB-) + (I - A-A)SBB- + (I - A-A)T(I - BB-),  
for conformable arbitrary R, S, and T. 

(d) A number of special cases follow from the above results-for example, the 
general solution of AX = 0 is X = (I - A-A)U, where U is arbitrary. 

Proofs. Section 13.2.1. 

13.12a-b. Harville [1997: 125-1261, 

13.12~. Harville [1997: section 11.121. In each case we simply check that the 
solution satisfies AXB = C using (a) for XO. For the second part of (ii), we 
simply show that AZoB = 0 using AA-A = A, and so on. 

13.2.2 Some Special Cases 

13.13. Setting B = I in (13.12) above, we see that the following conditions are 
equivalent. 

(1) The equations AX = C are consistent (i.e., have a solution). 

(3) AA-C = C for any particular weak inverse A- (cf. 13.12a). 

(4) k’C = 0 for every row vector k’ such that k’A = 0. Harville [1997: 731 calls 
the equations compatible if they have this property. 

The equations are also consistent if the rows of A are linearly independent. 

13.14. Let A be an n x n matrix, which is possibly complex, of rank n - 1. Let u 
and v be any eigenvectors of A associated with the eigenvalue zero (not necessarily 
simple) such that Au = 0 and v*A = 0’. Then the general solution of AX = 0 
is X = uz’, where z is arbitrary. Similarly, the general solution of XA = 0 is 
X = wv*, where w is arbitrary. Finally, the general solution of the equations 
AX = 0 and XA = 0 is X = c u v * ,  where c is an arbitrary constant. 
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13.15. Let X be an unknown n x p matrix. For any m x n matrix A and any 
m x p matrix C, the equations A’AX = A’C are consistent since from (2.35) 
C(A’) = C(A’A). These equations arise in multivariate least squares estimation. 

13.16. If the following matrices are conformable and C(C) C C(L’), then the equa- 
tions 

( A;A : ) (Ir) = (A:“) 

are consistent for the unknowns X and Y. This result is used for restricted least 
squares theory. 

13.17. Suppose X is an unknown m x n matrix. 

(a) If ‘‘8’’ is the Kronecker product, then, using ( l l . l6a) ,  the equation A,,,X+ 
XB,,, = C,,, can be expressed in the form 

(I, 8 A + B’ 8 1,)vec X = vec C, 

or Fx = c ,  say, where F is called the Kronecker sum. Some properties of 
F are given by Horn and Johnson [1991: section 4.41. The equation has a 
unique solution if and only if A and -B have no eigenvalues in common. 

(b) We also have from (a), 

(SAS-’)SXT + SXT(T-lBT) = SCT, 

which may be rewritten as AlXl + XlBl = C1. With suitable similarity 
transformations, the transformed equation may be easier to handle; the orig- 
inal solution is then readily recovered (Horn and Johnson [1991: 2561). 

(c) A related equation is Lyapunow’s equation 

XA + A*X = H, 

where A, X, and H are all n x n, and H is Hermitian. This equation arises in 
the study of matrix stability and is discussed in detail by Horn and Johnson 
[1991: chapter 41. The equation 

X A + A * X =  C 

has a unique solution for any n x n matrix C if and only if X and -x are not 
both eigenvalues of A. 

13.18. If X and A are n x n, and the eigenvalues of A are Xi ,  then the equation 

AX - XA = aX 

has a nontrivial solution if and only if a = X i  - X j .  

13.19. Suppose A is m x m, X is m x n, and B is n x n. If A and B have no 
eigenvalues in common, then AX - XB = 0 has a unique solution X = 0. A 
nonzero solution exists if there are eigenvalues in common. 
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13.20. A X  + YB = C if and only if (I @ A)vec X + (B’ @ 1)vecY = vec C, where 
“8” is the Kronecker product. 

13.21. The equation A X  - YB = C has a solution for X and Y if and only if 

A C  A 0  
rank ( ) =rank ( ) .  

13.22. The matrix equation 

A B  ( B’ 0 ) (::) = (E:)’ 
in X1 and X2, where A ,  B, GI,  and G2 are given matrices of approriate orders 
and A is non-negative definite, has a solution if and only if 

C(Gi) c C(A,B) and C(GL) c C(B’), 

in which case the general solution is 

XI 

X2 

= 

= 

G1 (N+ - N+BC+B’N+) + G2C+B’N+ + Q1 (I - N N + )  and 

G1N’BC’ + G2(I - C+) + Q2(I - B+B), 

where N = A + BB’, C = B’N+B, and Q1 and Qz are arbitrary matrices of 
appropriate orders. (Note that N, N + ,  N N t ,  B+B, C, and C+ are all symmetric.) 
Special cases are: 

(a) If C(B) c C(A), then we can take N = A. 

(b) If G1 = 0, then the original equations have a solution if and only if C(G‘,) C 
C(B’), in which case the general solution for X1 is 

Xi = G2(B’N+B)+B‘N+ + Q ( I  - N N + ) ,  

where N = A + BB’ and Q is arbitrary of appropriate order. If, in addition, 
C(B) C C(A), then the general solution can be written as 

X1 = Gz(B’A+B)+B’A+ + Q(I - A A + )  

13.23. The equations A X  = C and XB = D have a common solution if and only if 
each equation separately has a solution and A D  = CB, in which case, the general 
expression for a common solution is 

X = 

= 

A - C  + DB- - A-ADB-  + (I - A-A)Z(I  - BB-) 

Xo + (I  - A-A)Z(I  - BB-), 

where Xo is a common solution and Z is arbitrary. 

13.24. If B is m x n and X is n x m, then the general solution X of XBX = X is 

X = C(DBC),D, 

where (.)T2 is the reflexive inverse, and n x p C and q x m D are arbitrary matrices. 
The solution has the same rank as DBC. 
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13.25. If B is m x n and X is n x m, then the general solution of XBX = 0 
is X = YC, where p as well as the p x m matrix C are arbitrary, and Y is an 
arbitrary solution of CBY = 0. If X also has to satisfy WBX = 0, then Y is now 
an arbitrary solution of 

(;)BY = 0. 

13.26. The equations A l X B l  = C1 and A2XB2 = C2 have a common solution if 
and only if each equation is consistent and 

min rank(C1 - AlXB1) = 0, 
AzXBz=C2 

which is equivalent to 

0 A1 
rank ( ? -C2 A2 ) =rank(A’) + rank(B1, B2). 

A proof and further details relating to this problem are given by Tian [2002: 1971 

13.27. (Two Unknowns) We wish to consider the solution of the matrix equation 
AXB + CYD = M for X and Y. Since vec (AXB) = (B’ @ A)vec X, we can 
rewrite the matrix equation in the form 

(B’ @ A, D’ @ C) ( vecY x, = vec M, 

which is solvable if and only if (cf. 13.1~) 

(B’ @ A, D’ @ C )  (B’ @ A ,  D’ @ C)-vec M = vec M. 

In this case, from (13.4), the general solution is 

(:::$) = (B’@A,D’@C)-vecM+ [I - (B’@A,D’@C)-(B’@A,D’@C)]v, 

where v is an arbitrary vector. Using his extremal ranks method, Tian [2006b] 
gives necessary and sufficient rank conditions for solutions X and Y to  exist and 
also provides methods for finding solutions. 

Proofs. Section 13.2.2. 

13.13. Harville [1997: 731. 

13.14. Magnus and Neudecker (1988: 441. 

13.16. Harville [1997: 75-76] 

13.17a. Graham [1981: 38-39] and Horn and Johnson [1991: 2701. 

13.17~. Horn and Johnson [1991: 2701. 

13.18. Graham [1981: 401. 

13.19. Zhang [1999: 1391 and (b) quoted by Horn and Johnson [1991: 2701. 
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13.20. Horn and Johnson [1991: 2551. 

13.21. Horn and Johnson [1991: 281-2831, 

13.22. Magnus and Neudecker [1999: 60-621. 

13.23. Ben-Israel and Greville [2003: 541 and Rao and Mitra [1971: 251. 

13.24-13.25. Rao and Mitra [1971: 56-57]. They also give solutions to 
XBXB = XB, BXBX = BX, BXBXB = BXB, and XBXBX = XBX. 
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CHAPTER 14 

PARTITIONED MATRICES 

Partitioned matrices arise frequently in statistics, especially in proofs. For some 
partitions and their relationship with ranks, the reader should consult Section 3.6. 
This chapter is closely linked to the next chapter on patterned matrices. 

14.1 SCHUR COMPLEMENT 

Definition 14.1. Let 
E F  

A=(. H ) '  

where A is possibly rectangular. If E is square and nonsingular, then 

S = H - GE-'F = (A/E) 

is called the Schur complement of E in A. If H is nonsingular (instead of, or in 
addition to, E), then 

T = E - FH-'G = (A/H) 

is the Schur complement of H in A. 
Schur complements occur in various places in this book, sometimes using a dif- 

ferent notation. Because of the wide applicability of Schur complements, we have 
collected some of the results together here in one place using the present notation, 
which is the one used in three key references, namely Ouellette [1981], Puntanen 

A Matr ix  Handbook for Statzsticians. By George A. F. Seber 
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and Styan, [2005b], and Styan [1985]. These writers show how the Schur comple- 
ment can be used to prove a number of matrix results that are typically proved by 
other methods. They also show how Schur complements arise naturally in statistics, 
especially in multivariate analysis and in linear models. 

14.1. (Determinants) If A is nonsingular, we have that (see also 14.17) 

det E .  det(A/E),  if E is nonsingular, { det H .  det(A/H),  if H is nonsingular. 
det A = 

Therefore if A and E are nonsingular, then so is A/E .  The same applies to  A and 
H. 

14.2. (Ranks) From (3.40a(vi) and (3.4O(vii)) we have: 

(a) If E is nonsingular, rankA = rankE + rank(A/E). 

(b) If H is nonsingular, rankA = rankH + rank(A/H). 

14.3. (Inverses) If A,  E, and H are all nonsingular, then: 

(a) (A/H)-l  = E-l+ E-lF(A/E)- lGE-l .  

(b) (A/E)-'  = H-l + H- G(A/H) -'FH-~. 

14.4. (Inertia) We recall that the inertia Zn(A) of a symmetric matrix A is given 
by the triple (T+,  T - ,  T O ) ,  where T+ is the number of positive eigenvalues, T-  is the 
number of negative eigenvalues, and TO is the number of zero eigenvalues. Then, if 
A is symmetric and E is nonsingular, 

Zn(A) = Zn(E) + Zn(A/E).  

Ouellette [1981: 207-2101 extends the above result to the case when (A/E) is also 
part it ioned. 

14.5. (Non-negative Definite Matrices) Suppose A is symmetric and E is positive 
definite. 

(a) A is non-negative definite if and only if (A/E) is non-negative definite. 

(b) A is positive definite if and only if ( 

14.6. (Subpartition) Suppose that 

/E)  is positive definite. 

7 

K L : F 1  

M N : F z  
. . . . . . . . . . . . 

G1 Gz : H 

where E and K are nonsingular. Then (E/K) is a nonsingular leading principal 
submatrix of (A/K), and 

(WE) = ( (A/K)/(E/K)) .  
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14.7. (Sum) Let 

be symmetric (m  + n)  x (m  + n)  matrices, where E and K are m x m. Suppose 
that A and B are non-negative definite (n.n.d.) and E and K are positive definite. 

F’E-’F + L’K-lL - (F + L)’(E + K)-’(F + L) is n.n.d. with the same rank 
as F - EK-lL. 

( (A  + B)/(E + K)) - (A/E)  - (B/K) is n.n.d. 

Definition 14.2. (Generalized Schur Complement) Referring to Definition 14.1, 
if E is rectangular, or square and singular, then we replace E-’ by any weak inverse 
E- and call (A/E) the generalized Schur complement of E in A .  We have a similar 
definition for (A/H).  

We shall use the following notation below: 

S = (A/E) = H - GE-F and T = (A/H)  = E = FH-G. 

14.8. (General Properties of the Generalized Schur Complement) 

(a) If A and E are both square and either C(F) C C(E) or C(G’) C(E’), then 
S is invariant for all weak inverses E- and 

det A = det E . det S. 

(b) If A and H are both square and either C(G) C C(H) or C(F’) C(H’), then 
T is invariant for all weak inverses H- and 

det A = det H . det T. 

(c) If A is non-negative definite and E and H are both square (i.e., G = F‘), 
then C(F) C C(E) and C(F’) C(H); also (a) and (b) hold. 

14.9. Suppose A is non-negative definite and E and H are both square, then: 

(a) S and T are invariant with respect to the weak inverses E- and H- 

(b) (Rank) 

(i) rank A = rank E + rank(A/E) . 
(ii) rank A = rank H + rank(A/H). 

(c) (Inertia) 

(i) Zn(A) = Zn(E) + Zn(A/E). 

(ii) Zn(A) = Zn(H) + Zn(A/H).  
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(d) If v(A) refers to the nullity of A, then: 

(i) v(A) = v(E) + v[(A/E)]. 

(ii) v(A) = v(H) + v[(A/H)]. 

Proofs. Section 14.1. 

14.1. Ouellette [1981: 195, 2091. 

14.2. Ouellette [1981: 1991. 

14.3. Abadir and Magnus [2005: 1071. See also (15.3~).  

14.4. Ouellette [1981: 207-2101 

14.5. Abadir and Magnus [2005: 228-2291 and Ouellette [1981: 2081. 

14.6. Ouellette [1981: 2101. 

14.7. Ouellette [1981: 211-2121. 

14.8a-b. Ouellette [1981: 224-2251, 

14.8~.  Follows from (a) and (b) and (14.26g). 

14.9a-d. Puntanen and Styan [2005b: section 6.0.41; for (a) see Ouellette 
[1981: 2421 and Styan [1985: 451; for (b) see Styan [1985: 451 and (4.40a(iii)); 
for (c) see Ouellette [1981: 238, theorem 4.71; and (d) follows from (b) and 
the fact that the rank plus the nullity of a matrix is equal t o  the number of 
columns. 

14.2 INVERSES 

The notation used so far for Schur complements is sometimes not so helpful for the 
more general results in this section, as it is not easy to  see the patterns. I now 
introduce a subscript notation as well, as both are used in the literature. Some of 
the above results will appear again under a different guise. The results on inverses 
in this section are established by simply checking that AA-' = I. The other results 
are verified by multiplying out the matrices concerned and using (14.11). 

14.10. Let 

A =  ( 2;; ) ,  
where A, All ,  and A22 are all real or complex matrices that are not necessarily 
square. 

(a) If All is nonsingular and A,,., = A,, - A,,AT~A,, (= A/A11), then 

This is sometimes called the Aitken block-diagonalization formula. When 
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A is non-negative definite, the above result still holds with Azl = A{2 
and A,' replaced by ATl throughout. 

(iii) If A-' exists, then 

(iv) If A p l  exists, then 

(v) If A and All  have rank r and Al l  is r x r, then A22.1 = 0. 

(b) If A,, is nonsingular and All.2 = A,, - A12Ag;A21 (= (A/A22), then 

(i) A = ( ; .,2;;; ) ( All.2 o 12) ( A;{A21 ;). 
When A is non-negative definite, the above result still holds with A21 = 

Ai2 and A;. replaced by Ai2 throughout. 

(iii) If A-' exists, then 

(iv) If A-' exists, then 

(v) If A and A22 have rank r and A22 is r x r, then All.2 = 0. 

14.11. Suppose A is partitioned as above and is nonsingular. 

(a) If A l l  is nonsingular and A22.1 = A22 - A21ATIlA12, then 
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(c) If A,, and A,, are both nonsingular, then we have the following. 

(i) A;;l = A;. + A;;A21AT:2A12A2;] 

(ii) Interchanging 1 and 2 above, 

AT:., = AT: + A ~ ~ A 1 2 A ; ~ l A 2 1 A ~ ~  

When All and A22 are both nonsingular, the two representations of 
A-l given by (a) and (b) above are identical, by the uniqueness of the 
inverse, even though the off-diagonal blocks may not look equal. Thus, 
for example, it can be shown that 

(iii) A,- , f ,A , ,A~~  = A;;A21AT:2. 

For this reason the reader will find various versions of A-' in the literature. 
(e.g., compare Graybill [1983: 1841 and Muirhead [1982: 5801 with Anderson [2003: 
6381 and Zhang [1999: 184, where A is positive definite). When A is symmetric or 
Hermitian we have A21 = AT,. 

Some special cases follow. 

14.12. If A,, and A,, are nonsingular, then the following inverses below exist (by 
14.18) below, and 

Similarly, 

A,, ) - I  = ( AT; -AT;A12&. ) ( Ad' A,, 0 A;; 

We get special cases if we set All and/or A22 equal to identity matrices. 

by applying the above method iteratively (cf. Harville [1997: 941). 

14.13. Suppose A and D are nonsingular. 

Nonsingular block-triangular matrices with more than two blocks can be inverted 

(a) If a = d - c'A-'b # 0, we have from (14.10a(iv)) 

A b  A-l 0 (c'A-1,-1) 
( c '  d ) - l = (  0' o)+n(  - 1 )  

(b) If p = a - b'D-'c # 0, we have from (14.10b(iv)) 

14.14. Let (A, B) be an n x ( k  + rn) matrix of full column rank, where A is n x k .  
Define 

Z = (A, B)'(A, B) = ( ;;; ;;; ) 
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Let M c  = I, - C(C’C)-’C for C = A , B ,  and define E = B’MAB and F = 
A‘MBA. Then, from (14.11a,b), 

14.15. Given conformable matrices and the existence of the appropriate inverses, 
we have 

where Q = A - BD-lB’ - CE-IC’ 

14.16. (Powers) Suppose A is m x m and D is n x n. 

(4 

( t  :)*=( tk ::), k = 1 , 2  , . . . ,  

where Q k  = C,“=, A”ZBDz-’. 

(b) If, in (a), D = I, and I, - A is nonsingular, then 

Qk = (I, - A)-’& - A”B. 

(c) If A and B are nonsingular, 

14.10a(v) and b(v). Graybill [1983: 126-1271. 

14.13. Abadir and Magnus 12005: 1051. 

14.14. Abadir and Magnus [2005: 1071. 

14.15. Magnus and Neudecker (1999: 121. 

14.16. Abadir and Magnus [2005: 1091 
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14.3 DETERMINANTS 

14.17. Suppose A is partitioned as in (14.10). 

(a) If A,, is nonsingular, 

det A = det(A,,) det(A22.1). 

If, in addition, A is nonsingular, then so is A22.1, the Schur complement of 

Al l .  

(b) If A,, is nonsingular, 

det A = det(A,,) det(All.2). 

If, in addition, A is nonsingular, then so is All.,, the Schur complement of 

A,,. 

(c) If A, and A;, are any weak inverses of Al l  and A22, then: 

(i) If C(A21) s C(A22) or C(Ai,) C(Ah,), we have 

det A = (det A22) det(A11 - A12Ai2A21). 

(ii) If C(A12) C C(A11) or C(Ah,) C(A;,), we have 

det A = (det Al l )  det(A22 - A21A;lA12). 

14.18. The following two results are often useful. 

(a) If A and B are m x m and n x n, respectively, then, for conformable matrices, 

d e t (  A 0  ) = d e t (  ) = d e t A . d e t B .  

We can set A or B equal to the identity matrix. 

Note that the two matrices on the left are nonsingular if and only if both A 
and B are nonsingular. 

(b) Using a similar notation to (a), 

O F  B E  
d e t (  .) = d e t (  ) = ( - l ) m n d e t E . d e t F .  

14.19. If B and C are n x n matrices, then 

det ( -in ) = detB.  

14.20. If C = (A,B) is square, then from det(CC’) = det(C’C) = det(C), we 
have 

det(AA’ + BB’) = det B’A B’B ( A‘A A’B ) 
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14.21. Let A and D be square matrices. Then: 

(a) det ( ) = ddet A - c’(adjA)b, 

or det A(d - c’A-lb) if A is nonsingular, where adjA is the adjoint matrix 
of A.  

(b) det ( ) = det D(a - b’D-’c) if D is nonsingular. 

det ( A  + uu’). 

be an n x n matrix such that E is m x m. If 

adjA = ( g: i: ) , 
where El is m x m, then: 

(a) det HI = (det 

(b) det El = (det A)” det H, for m = 0,1,2, .  . . , n - 1. 

d e t E  form = 0 ,1 ,2  , . . . ,  n - 1 

14.23. If A C  = CA.  then 

det ( ) = det(AD - CB).  

If we set A = I, then the above is true. 

14.24. If A and B are n x n matrices, then 

det ( ) = d e t ( A + B ) . d e t ( A - B ) .  

14.25. The determinant of the matrix inversed in (14.15) is 

det D . det E . det(A - BD-lB’ - CE-lC’). 

Proofs. Section 14.3. 

14.17a. We take determinants in (14.10a(i)) and use the fact that the deter- 
minant of a triangular matrix is the product of its diagonal elements. 

14.17b. Similar to (a), but using (14.10b(i)). 

14.17~. Schott [2005: 2631; see also (14.8a,b). 

14.18a. Harville [1997: 1851, Rao and Bhimasankaram [2000: 2341, and Searle 
[1982: 971. 
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14.18b. Harville [1987: 1871 

14.19. This follows from (14.18b) and the fact that n2 + n = n(n + 1) is even. 
See also Searle [1982: 981. 

14.21. Abadir and Magnus [2005: 1131 

14.22. Ouellette [1981: 205-2061. 

14.23. Abadir and Magnus [2005: 1161 

14.24. Abadir and Magnus [2005: 1171 

14.25. Abadir and Magnus [2005: 1181 

14.4 POSITIVE AND NON-NEGATIVE DEFINITE MATRICES 

Schur complements arise in this section using a different notation, and the results 
should be compared with those in Section 14.1. Note that A >. B means that A-B 
is non-negative definite. 

14.26. Let 

be a real symmetric matrix (i.e., A12 = A;,, with All and A22 square matrices). 

if and only if All and A22 - (a) A + 0 (i.e., is positive definite or p.d.) 

(b) A + 0 if and only if A22 and All - A12A;iA21 are p.d. 

(c) If A + 0, then 

A21AT:A12 (= (A/A11) are p.d. 

A22 ? A22 - A2iAT:Ai2. 

(d) If A + 0 and A’’ is the leading principal submatrix of A-’ with the same 
size as A1 1 ,  then 

A” - AT: 2 0. 

(e) (Fischer Inequality) If A + 0, then 

det A L det All . det A22, 

with equality if and only if both sides vanish or A12 = 0. 

(f) If A 2 0 and the blocks All, A12, and A22 are square matrices of the same 
size, then 

I det A12I2 5 det All det A22. 

(g) If A k 0, then C(A12) C C(A11) and C(A21) C C(A22). 

The above results will also hold if A is Hermitian. 
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14.27. Let the real symmetric matrix A be partitioned as in (14.10) above, where 
All + 0. Then for any square matrix A22 k 0, 

A 5 0 if and only if A22 k AZIA;;A~Z. 

14.28. Let 

where All is a non-negative definite m x m matrix and A12 is m x n. The symmetric 
(m  + n)  x (m  + n) matrix A is sometimes referred to as a borderd Gramian matrix. 

(a) A is nonsingular if and only if rankAl2 = n and All + A12Ai2 is positive 
definite. 

(b) If A is nonsingular, and setting A21 = Ai2, then 

where B11 = All + A12AZ1 and B22 = A21BT:A12. 

(c) If B11 above is nonsingular, then 

de tA = (-l),detB11 'detB22. 

(d) If A is nonsingular, then 

det A = (-l), det All . det(A21AT;Alz). 

14.29. Let A be positive definite and let B = ( 
real. 

), where A, b, and c are 

(a) det B = det A(c - b'A-lb) 5 cdet A, with equality if and only if b = 0. 

(b) B is positive definite if and only if det B > 0. 

(c) If c = b'A-lb, then B is non-negative definite. 

(d) x'Ax - 2b'x 2 -b'A-'b. 

14.30. Let A and B be real n x n matrices, and let 

where A1 and B1 are positive definite. Then 

a:A;lal + biBF'b1 - (a1 + bl)'(Al + Bl)-'(al + bl) 
= (ATlal - BT1bl)'(All + B[')-'(AF1al - B,'bl). 

Anderson [2003: 4191 gives an application to testing that several multivariate nor- 
mal populations are identical. 
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14.31. Let A and B be n x n positive definite matrices. There exists a unique 
matrix C such that 

Cy = azj, ( i , j )  E { 1 , 2 . . . . , t }  
cZJ = b'J, ( i , j )  $ { 1 , 2 , . . . , t }  

where C-' = c23 and B-' = bzJ .  This result has an application to graphical models 
for determining patterns of independence. 

Proofs. Section 14.4. 

14.26a. Horn and Johnson [1985: 472, complex case] and Zhang [1999: 175, 
complex case]. 

14.26b. Same as (a) with the subscripts 1 and 2 interchanged. 

14.26~. Horn and Johnson [1985: 474, in proof of theorem 7.7.81 and Zhang 
[1999: 175, complex case]. 

14.26d. Follows from (14.11a); see also Zhang [1999: 175, complex case]. 

14.26e. Horn and Johnson [1985: 4781 and Zhang [1999: 175, complex case]. 

14.26f. Abadir and Magnus [2005: 228, 3411. 

14.26g. Sengupta and Jammalamadaka [2003: 451; see also (14.8~).  

14.27. Zhang [1999: 178, complex case]. 

14.28. Abadir and Magnus [2005: 230-2311, 

14.29. Magnus and Neudecker [1988: 23-24]. 

14.30. Anderson [2003: 4191. 

14.31. Anderson [2003: 614, 6161. 

14.5 EIGENVALUES 

In this section we assume that the n x n matrix A is partitioned as in (14.10) with 
Aii being ni x ni, for i = 1,2 (nl + 722 = n).  We also continue with the notation 
XI(A) 2 . . . 2 X,(A) for ordering the eigenvalues when they are real, which is the 
case for a symmetric matrix. 

14.32. Suppose A is non-negative definite. If h and i are integers between 1 and 
n inclusive, then: 

(a) Xh+i-l(A) I h(A11) + Xi(&) ,  if h + I n  + 1, 

(b) h + i ~ ~ ( A )  2 Xh(A11) + Xi(A22), if h + i 2 n + 1, 

where Xh(A11) = 0 if h > n1 and Xi(A22) = 0 if i > 722. 
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14.33. Suppose A is non-negative definite and i l , i 2 , .  . . , ak are distinct integers 
beween 1 and n, inclusive. Then for k = 1 ,2 , .  . . , n, 

k k 

CIXtl (Ail) + & - ~ + ~ ( A z z ) ]  5 C Atl (A) 
j=1  3=1 

k 

I C[Xt3(All)  + X ~ ( A ~ Z ) ] ,  
3=1 

where Xj(Al1) = 0 if j > n1 and Xj(A22) = 0 if j > nz 

14.34. Suppose A is symmetric and Xnl(A1l) > Xl(A22). 

(a) For j = 1,2, .  . . ,711, 

and for j = 1 ,2 , .  . . , nz, 

Tighter bounds are given by Dumbgen [1995]. The above bounds are use- 
ful in obtaining the asymptotic distribution of the eigenvalues of a random 
symmetric matrix (Eaton and Tyler [1991]). 

(b) For k = 1 ,2 , .  . . ,121, 

14.35. Suppose A is positive definite, and let B1 = A11 - A12A,-,'A21, Bz = 
Az2 - AZ1A;;Al2, and C = -B;lAlzA,-,', where A12 = ALl. Then if Xl(B1) < 
Xnz(B2),  

for k = l , 2  , . . . ,  n1. 

Proofs. Section 14.5. 

14.32-14.34. Schott [2005: 271-2731. 

14.35. Schott [2005: 275-2761, 
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14.6 GENERALIZED INVERSES 

14.6.1 Weak Inverses 

14.36. Let A = (All,A12), where All  is nonsingular. Then 

is a weak inverse of A for arbitrary Y. 

14.37. Let A = (ti:), where All  is nonsingular. Then 

A- = (A:; - XA,,A,-,', X) 

is a weak inverse of A for arbitrary X 

14.38. Let A be m x n. 

(a) (;I) is a weak inverse of (A, B) if and only if AA-B = 0 and BB-A = 0. 

(b) (Ap,  C-) is a weak inverse of (t) if and only if CA-A = 0 and AC-C = 0. 

For conditions on the ranks for the above weak inverses to hold, see Tian [2005b]. 

14.39. Let 
A1(pxn) and G = (Gl(nx,), G2(nxq)), 

A = (A2(qxn)) 

with p +  q = m. Then C(A{) nC(Ah) = 0 and G is a weak inverse of A if and only 
if 

AIGIAl  = Al ,  A2G1Al= 0, A2G2A2 = A2, and AlGzA2 = 0. 

If rank A1 = p, the first two equations above become AlGl  = I, and A2G1 = 0. 

14.40. Let 

with p + q = n. Then C(A1) n C(A2) = 0 and G is a weak inverse of A if and only 
if 

AIGIAl  = Al,  AlGlAz = 0, A2G2A2 = A2, and A2G2A1= 0. 

If rank Al = p ,  the first two equations above become GlAl  = I, and G1A2 = 0. 

14.41. Let A be partitioned in the form of (14.10). 

C(A11), C(Ahl) (a) If C(A12) C(A{,), ATl is a particular weak inverse of 
All ,  and A,,., = A,, - A2,AF1Al2, we have 

A22.1 
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(b) If C(A21) C C(A22), C(Ai2) C C(AL2), A, is a particular weak inverse of 
A22, and A,,., = A,, - A,2A~2A2,,  we have 

All.2 -A,.,A12A22 

-A22A21A,.2 A22 i- A22A21Al1.2A12A22 
A- = ( 

Necessary and sufficient conditions are given in (14.44) below using a different 
notation. Some rank conditions for the above to  hold are given by Tian and Takane 
[2005]. 

14.42. Let A be an n x n non-negative definite matrix partitioned as in (14.10), 
where All is p x p .  Suppose that the n x n matrix G is a weak inverse of A and is 
partitioned in exactly the same way as A. If each of the first p rows of A is nonzero 
and is not a linear combination of the remaining rows of A, then 

Gii = (Ail - Ai2A&21)-~ 

for any weak inverse Ai2 of A22. Also G11 is unique. 

where V is an n x n non-negative definite matrix, X is n x p, and G11 is n x n. 

(a) If G is a weak inverse of A, we have the following. 

(i) GI2 is weak inverse of of X’. 

(ii) G2l is weak inverse of of X. 

(iii) VG12X’ = XG2lV = -XG22X’. 

(iv) VGllX = 0, X’G11V = 0, and X’G11X = 0. 

(v) V = VGllV - XG22X’. 

(vi) VGllV, VG12X’, XG2,V1 and XG22X‘ are symmetric and invariant 
to the choice of the weak inverse G. 

(b) If U is any p x p matrix such that C(X) C(V + XUX’), and W is any weak 
inverse of V + XUX’, then 

w - WX(X‘WX)-X‘W wx(x‘wx)- ( (X‘WX) ~ X’W -(X’WX)- + u 
is a weak inverse of A. 

14.44. Let 
E F  

. = ( G  H ) ’  

(a) Let E be a particular weak inverse of E and S = H - GEF, the generalized 
Schur complement. Then 

E + EFS-GE -EFS- 
B = (  -S-GE S -  
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is a weak inverse of A for a particular weak inverse S-  if and only if rank is 
additive on the Schur complement (i.e., rankA = r ankE+rankS) ,  and then 
B is a weak inverse of A for any weak inverse S - .  Sufficient conditions are 
C(F) s C(E) and C(G’) C C(E’), as in (14.41a). 

(b) Let H be a particular weak inverse of H and T = E - FHG, the generalized 
Schur complement. Then 

1 T- -T-FH 
-HGT- H + HGT-FH ’ c =  ( 

is a weak inverse of A for a particular weak inverse T- if and only if rank is 
additive on the Schur complement (i.e., rankA = r ankH+rankT) ,  and then 
C is a weak inverse of A for any weak inverse T- .  Sufficient conditions are 

C(G) 
We can obtain (b) from (a) by simply interchanging E and H, F and G ,  and 
S and T .  

C(H) and C(F’) C C(H’), as in (14.41b). 

Proofs. Section 14.6.1 

14.36-14.37. Harville [1997: 1111 

14.38. Harville [1997: 1191. 

14.39. Rao and Rao [1998: 270, 2721 

14.40. Rao and Rao [1998: 271, 2731 

14.41. Schott [2005: 267-2681, 

14.42. Rao and Rao [1998: 2751. 

14.43. Harville [1997: 473-4761. 

14.44. Harville [2001: 41, exercise 81 and Marsaglia and Styan [1974b: 438- 
4391. 

14.6.2 Moore-Penrose Inverses 

We consider just a few special cases below. For further results relating to partitioned 
matrices see Baksalary and Styan [2002] and Groa [2000]. The Moore-Penrose 
inverse of (A,  B) is considered in detail by Campbell and Meyer [1979: 58-59] and 
Schott [2005: 192-1951, A number of general rank conditions for Moore-Penrose 
inverses to exist are given by Tian [2004]. 

14.45. Let A and B be defined as in (14.44) above. 

(a) B = A+ if and only if E = E+, S-  = S+,  

rank (E) = rank(E,F) = rankE and rank (E) = rank(G,H) = r a n k s .  
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(b) Since A+ is unique, we get the same result if we do the interchanges described 
at  the end of (14.44). This leads to the following result. 

If S = H - GE+F and T = E - FH+G, then 

T+ 

if and only if 

rank (:) = rank(E, F) = rank E = rank T 

and 

rank (E) = rank(G, H) = rank H = rank S. 

14.46. If A = (g) and BC' = 0, then 

(a) A+ = (B+,C+) 

(b) A+A = BfB + C+C. 

(c) 

A A + =  ( Br+ ci+ ) 
14.47. Suppose A is an m x n matrx of rank r ,  where r < min{m,n}, and A is 
partitioned as 

A =  ( 2:; A22 ) ' 
where All is r x r of rank r .  Then 

where 
B = (AHA:, + A12A:2)-1A11(A;,A11 + A;lA21)-' 

Proofs. Section 14.6.2. 

14.45. Oiiellettte [1981: 233-2341, 

14.46a. Quoted by Dhrymes [2000: 1041. 

14.46b-c. Quoted by Graybill [1983: 115; his A- is our A+] 

14.47. Graybill [1983: 1271. 
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14.7 M I SC EL LAN EO U S PA RTlT I0 N S 

We close this chapter with a few partitions that may provide some ideas in algebraic 
manipulations. 

0 A " ) (  I O ) = (  -ABC 0 )  
14.49' ( -; ) ( BC B -c I O B '  

We can set B = I. 

A 0  0 AB 
14*50' ( ) ( -I B ) = ( -I B ) ' 



CHAPTER 15 

PATTERNED MATRICES 

15.1 INVERSES 

Matrices that have a particular pattern occur frequently in statistics. Such matrices 
are typically used as intermediary steps in proofs and in perturbation techniques, 
when one is interested in the effect of making a small structural change to a ma- 
trix. Patterned matrices also occur in experimental designs and in certain variance 
matrices of random vectors. A related chapter is Chapter 14. 

15.1. (Some Identities) There are a number of identities that are useful and which 
can be used to prove the results in this section. It is assumed that all inverses exist. 

(a) (i) VA-'(A - UD-'V) = (D - VA-'U)D-'V, 

(ii) D-'V(A - UD-lV)-' = (D - VA-'U)VA-'. 

or taking the inverse of both sides, 

(b) Setting A = I, D = -I, and interchanging U and V in (a)(ii), we have that 

U(I + vu)-' = (I + uv)-lu. 

(c) If I + U is nonsingular, 

(I + u)-1 = I - (I + U ) - w  = I - U(I + u)-'. 

(d) U'A-'U(I + U'A-'U)-' = I - (I + U'A-lU)-'. 

A Matrix Handbook for Statisticians. By George A. F. Seber 
Copyright @ 2008 John Wiley & Sons, Inc. 
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(e) If A and B are n x n complex matrices, then 

1, + AA' = (A + B)(I, + B*B)-'(A + B)* 

+(In. - AB*)(I, +BB*)-l(1, -AB*)*.  

Note that the right-hand side does not depend on of B. 

15.2. If A is nonsingular and the other matrices are conformable square or rect- 
angular matrices (e.g., A is n x n, U is n x p ,  B is p x q,  and V is q x n) ,  then we 
have the following inverses from Henderson and Searle (1981b: 57-58]. 

(A + UBV)-' = A-' - (I + A-'UBV)-'A-'UBVA-' 

A-' - A-'(I + UBVA-')-'UBVA-' 

A-' - A-'U(1 + BVA-'U)-'BVA-' 

A-' - A-'UB(1 + VA-'UB)-'VA-' 

A-l - A-'UBV(1 + A-'UBV)-'A-' 

A-' - A-'UBVA-'(I + UBVA-')-' 

= 

= 

= 

= 

= 

All results follow from the first by repeatedly applying (15.1b). 

If the left-hand side exists, then the inverses on the right-hand side exist. This 
is because each inverse on the right-hand side is the inverse of the sum of I 
and a cyclic permutation of A-lUBV, and it exists because its determinant 
is nonzero. For example, 

det(I+ A-'UBV) = det(A-') det(A + UBV) # 0. 

We can then obtain the other determinants using 

de t ( I+  CD) = det ( I+  DC) 

from (4.33) and (15.10b) 

(b) A number of special cases are readily available by setting B = I and/or V = I, 
and replacing matrices by vectors. For example, Steerneman and van Perlo- 
ten Kleij [2005] consider a matrix of the form V = A - XY*, where V is a 
nonsingular complex matrix and X and Y are n x p complex matrices. They 
consider various special cases, and give eigenvalues and eigenvectors of the 
real matrix D - xy', where D is diagonal matrix (cf. 15.6). 

We can also set V = U' in (a), in which case we get (A + UBU')-' that 
arises, for example, as a dispersion matrix for many mixed models in the 
analysis of variance. The following are special cases of (a). 

(i) (Sherman-Morrison) 

(A + buv')-' = A-' - bA-'uv'A-'/(l+ bv'A-'u). 
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This is used as an "updating" formula discussed further in (15.11). The 
situation when A or the modified matrix is singular is investigated by 
Baksalary and Baksalary [2004c] (see also Section 15.5.2). 

x'A-'x 
1 + x 'A-~x '  

(ii) x'(A + xx')-'x = 

(iii) (A + UBU')-' = A-' - A-'UB(I + U'A-'UB)-lU'A-l.  

For a good historical discussion and further results see Henderson and Searle 
[1981b]. They also give some statistical applications of these identities such as 
inverting the variance matrix for a multinomial vector, inverting a matrix with 
the pattern of an  intraclass correlation matrix, and obtaining the generalized least 
squares estimates for a variance component model. 

15.3. Another set of results can be derived by assuming that B is also nonsingular. 
From the fourth equation of (15.2a) we have: 

(a) (i) (A + UBV)-' = A-' - A-'UB(B + BVA-'UB)-'BVA-'. 

(ii) (A + UBV)-' = A-' - A -  'U(B-' + VA-lU)-lVA-l.  

(iii) Setting B = I, we have the sc-called Sherman-Morrison- Woodbvry for- 
mula 

(A + UV)-' = A-' - A-'U(I + VA-lU)-'VA-' 

This result also holds with A Hermitian. 

(iv) Setting A and B equal to identity matrices in ( i )  or (ii), we have 

(I + uv)-' = I - U(I + vu)-'v 

(b) Setting V = U' in (a)(ii) gives us 

(i) (A + UBU')-' = A-' - A-lU(B-' + U'A-'U)-'U'A-'. 

(ii) If C = (U'A-'U)-' exists, then using (15.4b) with B and C instead of 
A and B, we have 

(iii) In particular, 

We can also interchange A and B and can replace A by A-' and B by 
B-1. 

We note that in (b) (and (a)) we can replace B by -B. 
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(c) Setting B = -D-' in (a)(ii) leads to a number of results like the following: 

(i) (A - UD-'V)-' = A-l + A -  'U(D - VA-lU)-lVA-l. 

Note that the left-hand side of the above is the inverse of a Schur com- 
plement. As a special case we have 

(ii) (I - UV)-l = I + U(I - VU)-lV, as in (a)(iv) with a sign change. 

15.4. Gentle [1998: 621 notes that in linear regression we often need inverses of 
various sums of matrices and gives the following additional identities for nonsingular 
A and B. 

(a) (A + BB')-lB = A-'B(I + B'A-'B)-l. 

(b) (Ap1 + B-l)-l = A(A + B)-'B. 

(c) A(A + B)-'B = B(A + B)-lA. 

(d) Apl + B-' = A-l(A + B)B-' 

We can also add, for nonsingular A + B, 

( e )  A - A(A + B)-lA = B - B(A + B)-'B. 

15.5. (Non-negative Definite Matrices) 

(a) If A is positive definite, then A - bb' is positive definite if and only if 
b'A-lb < 1. 

(b) If A is non-negative definite (n.n.d.), then A - bb' is n.n.d. if and only if 
b E C(A) and b'A-b 5 1. 

15.6. If A = diag(a1, a2, .  . . ,a,) is a nonsingular diagonal matrix and C = A + 
cyuv', then we have the following. 

(a) C-' = A-l + ap-lfg', where ,b' = -(1 + ~ C ~ = ~ ( u i w i / a i )  (# 0) ,  f i  = ui /a i ,  
and gi = wi/ai. 

(c) The characteristic equation of C is given by 

For further details relating to the eigenvalues and eigenvectors of C see 
Steerneman and van Perlo-ten Kleij [2005] and the references therein. 

(d) If a1 = a2 = . . .  = a,  = a,  then C has n - 1 eigenvalues equal to a and one 
eigenvalue equal to a + cy CrE1 uivi. 



INVERSES 311 

15.7. L e t p i > O f o r i = 1 , 2  , . . . ,  k - l , w h e r e C ~ ~ ~ p p i < l , a n d l e t p k = l - C , = l p ~ .  k-1 

Then the variance matrix for a nonsingular ( k  - 1)-dimensional multinomial random 
variable is 

V = n{diag(pl,pz,. . . , Pk-1) - PP'}, 

where p' = (pl, pz, . . . , pk-1). From (15.6a) with n = k - 1 and Q = - 1, we have 

-1 

-1 

-1 

-1 

pk 
pk 

(pT1 + p i 1 )  . . .  pk 
pk 

. . .  -1 -1 

-1 
pk 

. . .  -' (Pz' +Pi1)  Pk 
-1 

-1 

-1 

-1 

pk 
pk pk 

pk pk pk . . .  -1 

. . .  (PL21 +P i1 )  
-1 -1 -1 

pk pk pk 

v-1 = n-l 

Proofs. Section 15.1. 

15.la. Henderson and Searle [1981b: 561. 

15.lb. Henderson and Searle [1981b: 571. 

15.1~.  Use the identity I = I + U - U, multiply on the left by (I + U)-', and 
then multiply on the right. 

15.ld. We take the inverse term on the right-hand side over to the left. 

15.le. Zhang [1999: 1851. 

15.lf. Multiply (PI, - A) - (@I, -A) = ( p  - a)In on the left by (PIn - A)-' 
and on the right by (@I, - A)-'. 

15.3a. Harville [1997: 424-4251. 

15.4a. We take the inverses of both sides. 

15.4b. Take inverses of both sides. 

15 .4~ .  Interchange A and B in (b). 

15.4d. Simply multiply out. 

15.4e. This follows from (A + B)(A + B)-lC = C for C = A, B and from 

( c ) .  

15.5. Abadir and Magnus [2005: 2271 and Rao and Bhimasankaram [2000: 
345, see solution to exercise 151. 

15.6. Graybill [1983: 189, 203, 2061. 

15.7. Graybill [1983: 1891. 
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15.2 DETERMINANTS 

15.8. If A has rank 1, then from (3.4b) and (4.33), 

det(1, + zA)  = 1 + ztrace(A). 

15.9. For general A, det(1 + zA) = 1 + z traceA + O(z2). 

15.10. Suppose C is n x m, D is m x n, u is n x 1, w is n x 1,and v is m x 1, then 
we have the following results. 

(a) det(1, + CD) = det (2 ;,) 
(b) We have from (4.33), det(1, f CD) = det(1, f DC). 

(c) Setting C = u’ and D = v’A, we have from (b) and (15.8) 

det(1, f uv’A) = det(1 f v’Au) = 1 f trace(v’Au) = 1 f v’Au. 

(d) If A is n x n, B is m x m, and A and B are nonsingular, then 

det(A + UBV) = det(A) det(1, + VA-’UB) 
= det(A) det(B-’ + VA-lU) det(B). 

We have the following special cases. 

(i) det(A * uu‘) = det(A)(l  f u’A-lu). 

(ii) u ‘ A - ~ u  = 1 - (det(A - uu’)/det(A)). 

(iii) det(A+auw’) = det(A)(l+aw’A-’u) = det(A)+aw’(adjA)u, where 
adjA is the adjoint matrix of A.  

Proofs. Section 15.2. 

15.8. Abadir and Magnus [172-1731. 

15.9. Anderson [2003: 6461. 

15.10a-b. Muirhead [1982: 5781. 

15.10d. Harville [1997: 4161. 

15.3 PERTURBATIONS 

Definition 15.1. Suppose we have a matrix A involved in a system of equations 
and we wish to know what happens to the system if we change A to A + &A. If 
the matrix bA is of rank one (cf. (3.4b)), then it is called a rank one perturbation. 
Other kinds of perturbations may consist of adding or subtracting an observation to 
see what effect this has on any inference or diagnostics. Clearly, such perturbations 
have many uses in statistics, and although the theory underlying these is given 
above and elsewhere, it is helpful to collect some of the results used generally and 
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in linear regression together here. For a historical overview and some computational 
aspects see Hager [1989]. 

15.11. (General) Let A be an n x n nonsingular matrix. We consider the effect 
on the inverse of A of three modifications using (15.2b(i)). 

(a) (Add to an Element) If we add h to a,,, then A becomes A + hE,, = A + 
he,ej, where e, is the ith colum of I,, and 

(b) (Add to a Column) I f f  is added to the j t h  column of A, then 

A- ' fej A- 

1 + e$A-'f '  
(A + fei)-' = A-' - 

(c) (Add to a Row) If row g' is added to the i th row of A, then 

'A-1 
(A + eig')-' = A-' + ag . 

1 + g'A-lei 

(d) (Diagonal Increment) If the inverses exist, we have from (15,3a(ii)), 

(A + kin)-' = A-' - A-'(K'I, + A-')-'A. 

It is assumed that all the above denominators are nonzero. 

15.12. (Sample Mean and Variance Matrix) Suppose we have a set of d-dimensional 
observations XI, x2,. . . , x,, and we define 

n n n 

W, = c w,, X, = w,x,/W,, and S, = 1 w,(x, - X,)(x, - X,)' 

We want to know what happens to these quantities when we add an observation 
x,+1 or subtract x,. Setting d,+l = x,+1 - x, and f, = x, - x,, we have the 
following. 

z= 1 ,=1 2= 1 

- - 

(a) (Add an Observation) 

W , + l  ( i )  %+I = X n  + G d n + l .  

(ii) Sn+l = S n  + wn+l(l- *)dn+14+1 

(b) (Subtract an Observation) 

(i) %,-I = X, - 

(ii) Sn-l = S, - wn(1 - A f  W,_l f ' )  n ' 

w L  

(c) (Equal Weights) With equal weights we have w, = l / n ,  W, = 1, and so on. 
Let %k = c,"=, x,/k and s k  = ~,"=l(Xz-~k)(xz-X~)'/k for k = n-1,72,12+1. 
Then: 
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- (i) X,+1 = X, + &d,+l and X,-l = x, - Af,. 

(ii) *S,+1 = S ,  + &d,+ld;+’ and %Sn-l = S, - &f,f;. 

15.13. (Regression) Let X = (XI, x2,. . . , x,)’ = (x(l) ,  x ( ~ ) ,  . . .,(PI) be an n x p 
matrix of rank p .  We are interested what in happens to (X’X)-’ and related 
quantities when the rows and columns of X are modified. 

(a) (Add or Delete a Row) Suppose that i th row xi is deleted giving us X(i)  
instead of X, then X(i)’X(i) = X’X - xixi. Let hii = x:(X’X)-’xi. 

(X’X) -1xix: (X’X) -1  
(i) (X’X - xix:)-’ = ( X ’ X ) ~ ‘  + 

1 - hii 

(ii) det(X’X - xixi)) = det(X’X)(l - hit) (from 15.10d(iii)). 

(iii) If an extra row x‘ is added to X, then one simply replaces xi by x and 
changes all the signs in (i) and (ii) above. 

(iv) Let f i  = (X’X)-’X’y and p^(i) = (X(i)’X(i))-’X(i)’y(i), where y(i) is 
y without its i th element yi. Here p̂  and fi(i) are the respective least 
squares estimates of p under a regression model with full rank design 
matrix X, and under the same model but with the i th case deleted, the 
so-called leaving-one-out model. Then 

A 

(X’X)-’xz(yz - x p )  
f i ( 2 )  = p - 

1 - hii 

This result forms the basis of a number of regression diagnostics (e.g., 
Seber and Lee [2003: section 10.61). 

(b) (Substitute One Row for Another) If we replace row x’ by row x;, we can 
combine (a)(ii) and (iii) to get 

det(X‘X + x+x: - x-x’) = det(X’X) [(1+ x:(X’X)-’x+ 

-x’ (X’X) -1x- (1 + x; (X’X) -‘x+) 

+(x\ (X’X) -‘x-)2] , 

a result given by Gentle [1998: 1711. He indicates how this result is used 
in a stepwise method for maximizing det(X’X), a problem that arises, for 
example, in optimal design theory (D-optimality, cf. Section 24.5). 

(c) (Add or Delete a Column) 

(i) If an extra column x is added to X giving X1 = (X, x), then by (14.11), 

= ( (X’X)-1+vuu’, 
-vu‘, 

with u = (X’X)-’X’x, v = [x’(I, - P)x]-l, and P = X(X’X)-’X’ 
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(ii) Suppose the last column x = x(P)  is deleted from X giving us X(P) so 
that X = (X(P),x). Then 

,’X(P) ) ’ ( 
X(P)’X(P) X(P)IX x’x = 

and we can use (i) with X now playing the role of X1 to pick out from 
(X’X)-’ the values of u and w and obtain (X(P)’X(P))-’ by subtraction. 

(d) (Diagonal Increments) The expression (X’X + kIP)-’ occurs in the context 
of ridge regression and Bayes regression estimators, and can be expressed in 
terms of (X’X)-’ using (15.11d) above. 

The above expressions do not indicate how they are actually computed, as one 
avoids finding the inverse of a matrix directly. Computational details are given by 
Seber and Lee [2003: section 11.6; they involve using the sweep operator (Seber 
[1977: 3511 or Seber and Lee [2003: 3351) and modifiying the QR decomposition. 
One can also use a weighted least squares approach (Escobar and Moser [1993]). The 
above theory applies to the linear model (y, Xp, a21,) (cf. Section 20.7), where X 
has full column rank. For updates relating to the more general model (y, Xp, c2V), 
with X being less than full rank and V being possibly singular, the reader is ref- 
ered to Sengupta and Jammalamadaka [2003: chapter 91, who also include changes 
produced in various other statistics. 

15.14. (Interchanges in Design Models) Let A = X’PX, where X is n x p ,  P is an 
n x n symmetric idempotent matrix, and Al, = 0. Suppose we interchange two 
rows of X so that A becomes A2. We can assume, without any loss of generality, 
that it is the first two rows. Let X and P be partitioned as follows: 

c2 d: 

x3 dl d2 D3 
X =  ( zi ) and P =  ( zi c3 dh ) .  

Then we find that 

A - A2 = ( ~ 1  - C ~ ) ( X ~ X ;  - x~x;)  + B + B’, 

where 
B = (XI - xz)(dl - dz)’X3. 

Suppose that the spectral decomposition of the symmetric matrix A - A2 is TAT’, 
where A is a diagonal matrix whose diagonal elements are the eigenvalues of A-A2, 
with corresponding eigenvectors given by the columns of the orthogonal matrix T. 
Then, from (15.25), 

A t  = (A - TAT)’ = A’ + A+T@+T’A+, 

where @ = A-’ - T’A+T, provided C(TAT’) c C(A). For further computa- 
tional details and applications with regard to experimental designs with blocking 
structure, see John [200l]. This method of interchanging two rows is particularly 
useful in searching for the most efficient designs. It has been also applied to so- 
called a-designs, where one is involved with block circulants and Hermitian matrices 
(Williams and John [ZOOO]). 
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15.15. (Perturbed Identity Matrix) Let T(8) = I, - 0eiei be an n x n matrix, 
where 0 is a real scalar and e, is the rth column of I,. 

(a) If i # j, then T-'(0) = T(-0). 

(b) Let A = (a i3)  be an n x n upper-triangular matrix. When i < j, 

T-'(B)AT(O) = A + 8(eieiA - Aeieg) = A + OP, 

where 

and the the submatrices in P have z and n - z rows, and 3 - 1 and n - 3  + 1 
columns, respectively. 

(c) If a,, # a3, and 0 = az3/(azz - a,,), then [T-1(0)AT(8)],, = 0 and the only 
elements in A to be disturbed are in row i to the right of aZ3 and in column 
3 above az3.  

15.16. The effect of a perturbation on a finite irreducible discrete time Markov 
chain is examined by Hunter [a0051 with reference to mean first passage times and 
the stationary distribution. He also gives references to the literature on the subject. 
In a random environment there could be small random perturbations to a transition 
matrix and an example of this is considered by Hoppensteadt et al. [1996]. 

Proofs. Section 15.3 

15.12. Clarke [1971], Seber [1984: 151, and Trenkler and Puntanen [2005: 
1451. 

15.13a. Seber and Lee [2003: 2681. 

15.15. Abadir and Magnus [2006: 184-1851, 

15.4 MATRICES W I T H  REPEATED ELEMENTS AND BLOCKS 

15.17. If A = ( :ir El ), then det A = (ad - 

15.18. Let J m , ,  be an m x n matrix of ones, i.e., J,,, = l,l~, and define J ,  to 
be Jm,m.  We now consider a number of results that use these matrices. 

(a) If A = a I ,  + bJ,  ( b  # 0 ) ,  that is, we have a + b on the diagonal and b 
everywhere else, then: 

(i) det A = an-'(a + nb) .  
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(iii) det(X1,-A) = (X-~-nb)(X-a)" -~ ,  so that the eigenvalueafnb has 
algebraic multiplicity 1 and a has multiplicity n - 1. The eigenvector 
n- 'I2ln corresponds to the eigenvalue X = a + nb. A set of eigenvectors 
of A are the rows of the Helmert matrix (8.10). 

(iv) Sometimes we have c on the diagonal and b everywhere else. In this 
case we set a = c - b in the above. For example, a common case is the 
correlation matrix that arises, for example, in a one-way random effects 
model, namely 

R = (1 - p)In + pJn. 

This has eigenvalues (1 - p )  and 1 +p(n- l), so that R is positive definite 
if the eigenvalues are positive, that is, when 

1 

n - 1  
< p < l  -~ 

(b) If 

then 

This kind of pattern arises in Latin square designs. 

(c) Consider the (m  + n)  x (m + n) matrix 

where a1 # 0 and a3 # 0. 

(i) If d = ~ 1 ~ 3  - mnuz # 0, 

-1 

where b l  = na;/(aldl), b2 = -a2/d and b3 = ma;/(asd). 

(ii) det A = ay-'a;-'d. 

(iii) The matrix A above occurs in the form X'X, where X is the so-called 
design matrix, in a 2-way ANOVA with equal numbers of observations 
per cell by setting a1 = n, a3 = m, and a2 = 1. This matrix is singular 
as d = 0, and it is in fact non-negative definite. A generalized inverse is 

where C ,  is the centering matrix (I, - ln16/n).  
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(iv) If we set a1 = a3 = 1, and a2 = p, we get the so-called intraclass correla- 
tion matrix. The eigenvalues of A are then 1 with algebraic multiplicity 
m + n - 2 and 1 f p f i ,  each with multiplicity 1. A is then positive 
definite if and only if 

-(mn)-'/2 < p < (mn)-1/2. 

(d) Let 

. . .  
a21, b21, + c2Jm b31, + c3Jm . . . b,I, + c,J, 

a n l m  b,I, + c,J, d,I, + enJm ... y,I, + z,J, 

b l L P l  f 1;-1 

f L - 1  (9 - h ) L i  + hJn-1 

If the inverse of A exists, then it has the same pattern as A. For example, 

b l , - ~  (C - d)I,-i + dJ,-1 

wheree= k[1+Xb2(n-1)], f = - X b , g =  &[1-X(ad-b2)],h= &X(b2-  
ad) ,  and X = (a(c-d)+(n-l)(ad-b')))-'. This example arises in Latin square 
models and response surfaces; Graybill [1983: 195-1961 gives a numerical 
example. 

15.19. Let A and B be m x m matrices, and let 

/ A + B  B . . .  B B l  

I '  B A + B  . . .  B B 
. . .  . 

B . . .  B A + B /  

where C has n diagonal blocks. 

(a) (i) det C = (det A),-' det(A + nB). 

(ii) C has eigenvalues X i  (i = 1 ' 2 , .  . . , m) each of algebraic multiplicity 1 
and eigenvalues pi (i = I ,  2, . . . , m) each of multiplicity n - 1, where the 
X i  are the eigenvalues of A + n B  and the pi are the eigenvalues of A. 

(b) Consider the special case A + B = I, and B = J,. 

(i) Using (15.18a(i)), 

= det C det(A + B - B),-' det[A + B + (n - l )B]  
= (1 - m)"-l[1 + m(n - l ) ] .  

(ii) C is nonsingular if and only if rn > 1. 

(iii) If C-' exists, it has the same block structure as C with I, + aJ, in 
each of the diagonal block positions and bJ, in all the off-diagonal block 
positions, where 

m(m - l ) ( n  - 1) 
(n  - 1)m + 1 

-(m - 1) 
(72 - 1)m + 1 

a =  and b =  (m - 1). 
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15.20. Let 
albl 0 0 . . .  
~ 2 b 1  ~ 2 b 2  0 . . .  

A = (  . . . .  
anbl anb2 anb3 . . .  anbn 

where all the a, and b, are nonzero. Then det A = n~==,(a ,b , )  and 

0 
0 

. . .  0 0 
0 

0 
(an bn ) 

. . .  
0 - ( ~ z b 3 ) - ~  ( ~ 3 6 3 ) ~ ~  . . . 0 

. . .  
0 0 0 . . . (an-lbn-l)-' 
0 0 0 . . . -(an-1bn)-' 

and a = C,  C, aZ3,  then 

A-' = 

For other patterned matrices that are either tridiagonal or have a tridiagonal inverse 
see Section 8.11. 

15.21. Let A = ( a z j )  be any n x n matrix. If B = (az3 - a, a 3 / a  ), where 
a, = Cp23, a3 = Cza231 

B = A - Aln(lkAln)- '1LA. 

Proofs. Section 15.4. 

15.17. Graybill [1983: 1851. 

15.18a. Graybill [1983: 191, 204, and a special case of 206, with a - b  replaced 
by 4.  
15.18b. Roy and Sarhan [1956: 2301. 

15.18c(i)-(ii). Graybill [1983: 193, 2051 and Roy and Sarhan [1956]. 

15.18c(iii). Ouellette [1981: 2841. 

15.18c(iv). Ouellette [1981: 2851. 

15.18d. Roy and Sarhan [1956: 2301. 

15.19a(i). Graybill [1983: 231, with A - B replaced by A]. 

15.19a(ii). Simply replace A by A - XI, in (a). 

15.19b. Graybill [1983: 2311. 

15.20. Graybill [1983:186] and Roy and Sarhan [1956]. 

15.21. Given the vector n x 1 vector x = (x,), we have C,  z, = 1;x. We use 
this for the rows and columns of A. 
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15.5 GENERALIZED INVERSES 

15.5.1 Weak Inverses 

15.22. Suppose that C(UBV) C C(A) (or equivalently AA-UBV = UBV) and 
C[(UBV)’] C C(A’) (or equivalently UBVA-A = UBV), then we have the fol- 
lowing weak inverses of (A + UBV). 

GI  = A- - A-(A- + A-UBVA-)-A-UBVA-, 

Gz = A- - A-U(U + UBVA-U)-UBVA-, 

G3 = A- - A-UB(B + BVA-UB)-BVA-, 
G4 = A- - A-UBV(V + VA-UBV)-VA-, 

G5 = A- - A-UBVA-(A- + A-UBVA-)-A-. 

The above sufficient conditions are satisfied if A is nonsingular. 

15.23. Let X be an n x p matrix of rank r ,  and let H be a q x p matrix of rank 
p - r such that C(X’) n C(H’) = 0.  

(a) (E) has rank p so that A = X’X + H‘H is nonsingular. 

(b) A-’ is a weak inverse of X’X 

(c) ( :‘ ) is nonsingular if q = p - r ,  and its inverse is then a weak 

inverse of 

the matrix X’X 

The above results arise in studying identifiability constraints in analysis of variance 
models. 

15.24. Let A be m x n, and let x and y be m x 1 and n x 1 vectors, respectively. 
If either x E C(A) or y E C(A’), then, for any weak inverse A- of A, 

A-xy’A- 
1 + y‘A-x 

(A + xy’)- = A- - 

provided 1 + y‘A-x # 0. 

Proofs. Section 15.5.1. 

15.22. Quoted by Henderson and Searle [1981b: 581; see also Harville [1997: 
426-4281 for some proofs. 

15.23. Seber [1977: 74, 771. 

15.24. Quoted in Rao and Rao [1998: 2811. Setting C = A+xy‘, we can show, 
after some algebra, that CC-C = C .  We make use of the fact that AA- 
projects onto C(A). In particular, if x = Ay, then AA-x = AA-Ay = 
Ay = X. 
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15.5.2 Moore-Penrose Inverses 

15.25. If B is nonsingular, 

(A + UBU')' = A+ - A+U(B-' + U'A+U)+U'A+, 

if and only if C(UBU') 2 C(A), or equivalently A+AUBU' = UBU'. The result 
also holds if A is Hermitian (Williams and John [2000: 6971). 

15.26. Let A be an n x n nonsingular matrix, and let c and d be n x 1 vectors. 
Then A + cd' is singular if and only if 1 + d'A-'c = 0 and, if this is the case, then 

(A + cd')+ = (I, - yy+)A-'(I, - xx'), 

where x = A-'d, y = A-lc, and xf = (x'x)-'x' etc. 

15.27. Let A be an n x n symmetric matrix, and suppose that c and d are n x 1 
vectors in C(A). If 1 + d'A+c # 0, then 

A+cd'A+ 
1 + d'A+c ' 

(A + cd')' = A+ - 

15.28. Let A be an m x n complex matrix, c 6 P, d 6 @", and p = 1 + d*A+c. 
Define k = A+c, h' = d*A+, u = (I, - AA+)c, and v' = d*(In - A+A). Then: 

(a) rank(A + cd*) = rank (d".  -;;)-l.  

(b) (A + cd*)+ = A+ - ku' - (hv')' + pv+'u+. 

Note that x+ = x*/(x*x). 

15.29. If A is block diagonal, then A+ is also block diagonal. For example, 

0 0  A: 0 
A = ( 8' 2 0) if and only if A+ = ( X ;$ i )  . 

15.30. (Multinomial Distribution) Consider the variance matrix X = (oZ j )  of an 
n-dimensional (singular) multinomial distribution. Here oz, = npt( 1 - p z )  and 
oz3 = -np,p, ( i  # j ) ,  where 0 < p ,  < 1 for all i and p l  + p2 + . . . + p ,  = 1. If 
D, = diag(pl,pz,. . . ,p,), then Z = n(D, - pp') is singular and 

Z+ = n-'(I, - n-'l,l~)D;'(I, - n-'1 R 1' n '  ) 

15.31. Let 
v c* 

B = ( c  o ) ,  
where V is n x n Hermitian non-negative definite and C is T x n. Then 

where E = I, - C+C and Q = (EVE)+. 
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Proofs. Section 15.5.2. 

15.25. John [2001: 11751. 

15.26. Schott [2005: 197-1981 

15.27. Quoted by Schott [2005: 217, exercise 5.321. Can be proved in a 
manner similar to that of (15.24). 

15.28. Campbell and Meyer [1979: 47-48]. They also list several special cases 
in which one or more of u, v, and /3 are zero. They also give Moore-Penrose 

inverses of 

15.30. Follows from (15.26) above, along with D;'p = 1,. 

15.31. Campbell and Meyer [1979: 641. 



CHAPTER 16 

FACTORIZATION OF MATRICES 

The factorization of a matrix A can be expressed two ways; either as a reduction 
XAY = C or as a factorization A = URV. In many cases these are equivalent 
because of the presence of nonsingular matrices-for example, A = X-lCY-l  if 
X and Y are nonsingular. Authors tend to have different preferences for which 
form they use. Useful summaries of some of the factorizations are given by Abadir 
and Magnus [2005: 1581, Horn and Johnson [1985: 1571, and Rao and Rao [1998: 
190-1931. 

16.1 SIMILARITY REDUCTIONS 

As eigenvalues are used in this section, we remind the reader of Definition 6.1. In 
what follows, we assume that an n x n matrix has eigenvalues XI, A 2 ,  . . . , A, with 
lAl l  2 1x21 2 . . . 2 IA,I 2 0 and has distinct eigenvalues p1, p2, .  . . , pS,  similarly 
ordered, with algebraic and geometric multiplicities m ( p j )  and g ( p j ) ,  respectively. 

Definition 16.1. Let A and B be n x n matrices over F. We say that A is similar 
to B if there exists a nonsingular matrix K over F such that K-lAK = B. 

16.1. Let A be an n x n real or complex matrix. 

(a) A is similar to  its transpose. 

(b) A*A is similar to AA' 

A Matrix Handbook for Statistacians. By George A. F. Seber 
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(c) AA is similar to AX. 

(d) A is similar to a symmetric matrix. 

(e) A is similar to a complex triangular matrix (either upper or lower) whose 
diagonal elements are the eigenvalues of A. 

16.2. Let A and B be real n x n matrices. If R is a complex nonsingular matrix 
such that R-IAR = B, then there exists a real nonsingular matrix S such that 
S-lAS = B. 

16.3. Let A be an upper-triangular matrix with distinct diagonal elements diag(A). 
Then there exists a unit upper-triangular matrix R (i.e., with ones on the diagonal) 
such that R-lAR = diag(A). 

Definition 16.2. Let Jm(X) be an m x m matrix of the form 

x 1 0 ."  0 0 

Jm(x) = [ 0 ? ! : : :  0 0 1 ,  
0 0 0 ."  x 1 
0 0 0 ."  0 X 

where Jl(X) = A. Then Jm(X) is said to be a Jordan block matrix .  We find it 
convenient to include the case m = 1. 

16.4. Every Jordan block J m ( X )  (m > 1) is not diagonalizable because it has only 
one linearly independent eigenvector x = (zl,O,. . . ,O) ' ,  where z1 is arbitrary (cf. 
Definition 16.3 above (16.10)). This follows from the fact the diagonal elements of 
the upper-triangular matrix Jm(X) are its eigenvalues, so that it has one eigenvalue 
X repeated m times, and x satisfies Jm(X)x = Ax. 

16.5. Every Jordan block is permutation similar to its transpose since Jm(X)' = 
IIJ,(X)II, where II = (em,em-l, .  . . , e l )  is the backward identity permutation 
matrix, where (el,eZ,. . . ,em) = I,. 

16.6. Let x = (xi) be an m x 1 vector. The Jordan block J = Jm(0) has the 
following properties. 

(a) J x  = ( x z ,  2 3 , .  . . ,xm,O)', representing a forward shzfi. 

(b) J'x = (01x1,x2,. . . , x,-1)', representing a backward shzft. 

(c) (L- J')x= (x1,~~-51,23-~~,...~2,--,-1)', representing a dzfference 
operator. 

(d) (I, - J')-'x = ( 5 1 , 5 1 +  ~ 2 , 5 1 +  zz + 2 3  , . . . , z1 + 2 2  + . . . + x,)', which can 
be called a partial sum operator. 

16.7. (Jordan Canonical Form) If A is a real or complex n x n matrix, then there 
exists a nonsingular matrix R such that 
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where E:=l ni = n and the X i  are the (not necessarily distinct) eigenvalues of A; 
that is, A is similar t o  Jo. The matrix JO is said to  be in Jordan canonical forrn, 
which is unique apart from the order of the blocks. One application of the Jordan 
canonical form is in the analysis of a system of ordinary differential equations with 
constant coefficients (Horn and Johnson [1985: 132-1331). The topic of Jordan 
chains is considered by Abadir and Magnus [2005: section 7.61 

If p1, p2 , .  . . , ps are the distinct Xi ,  then we have the following. 

(a) The number k of Jordan blocks (including multiple occurrences of the same 
blocks) is the number of linearly independent eigenvectors of Jo. 

(b) The matrix JO is diagonalizable (cf. Definition 16.3 above (16.10)) if and only 
if k = n. 

(c) The number of Jordan blocks correponding to pJ is the geometric multiplicity 
g ( p j ) .  The sum of the orders (sizes) of all the Jordan blocks corresponding 
to pJ is the algebraic multiplicity m ( p j ) .  

(d) JO is not completely determined in general by a knowledge of the eigenvalues 
and their algebraic and geometric multiplicities. We must also know the sizes 
of the Jordan blocks corresponding to each Xi .  

(e) The minimal polynomial of JO (and therefore of A, as similar matrices have 
the same minimal polynomial, cf. (6.12)) is 

S 

f ( P )  = l - I ( P  - 1 

j = 1  

where rj is the order of the largest Jordan block of JO corresponding to  p j .  

(f) The sizes of the Jordan blocks corresponding to a given pj are determined by 
a knowledge of the ranks of certain powers. 

(g) If A is a real matrix with only real eigenvalues, then the similarity matrix R 
can be taken to be real. 

(h) It is convenient to standardize the order of the Jordan blocks as follows. For 
each pj we have g ( p j )  blocks that we order in decreasing size, and we order 
these s groups of blocks according to our convention lpl I > . . . > Ips[;  JO is 
then unique. 

16.8. If A and B are n x n similar matrices, then they have the same Jordan 
canonical form. 

16.9. Let A be an n x n upper-triangular matrix with zeros on the main diagonal 
(sometimes called a strictly upper-triangular matrix) .  

(a) There exists a nonsingular n x n matrix S and integers n1, n2,. . . , n, with 
nl 2 722 2 . . . 2 n, and n1 + n 2  + .  . . + n, = n such that 
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(b) If A is nilpotent with nilpotency index k ,  then m = dimN(A) ,  the size of 
the largest block is k x k ,  and each block is nilpotent. 

Definition 16.3. If A is similar to a diagonal matrix, then A is said to be dzag- 
onalzzable. Other terms used are dzagonable, szmple, sernz-szrnple or nondefectzve. 
Note that A can be real or complex. 

16.10. A is diagonalizable if and only if one, and hence all, of the following equiv- 
alent conditions are satisfied (cf. Definition 6.1): 

(1) m(p.,) = g(p.,) for each j ;  that is, the eigenvalues of A are all regular 

(2) g(p l )+g (pz )+ . . .+g (p , )  = n ,  that is thesumoftheeigenspacesofAisCn. 

(3) rank(A - p.,In) = n - m(p.,) for j = 1 , 2 , .  . . , s. The equivalence with (1) 
follows from (6.lb) 

(4) A possesses n linearly independent right (respectively left) eigenvectors. 

16.11. If A has n distinct eigenvalues, then they are simple and therefore regular, 
so that by (16.10(1)) above A is diagonalizable. 

16.12. A matrix A is diagonalizable if and only if h(A) = 0 ,  where 

h(z)  = (z-pl)(z-p2)...(z-p~), 

and the p., are the distinct eigenvalues of A.  If h(A) = 0, then h(X) = q(X) ,  the 
minimal polynomial. 

16.13. It follows from (16.12) above that an idempotent matrix A is diagonalizable 
since h(A) = 0, where 

and the eigenvalues of A are X = 0 , l .  

16.14. (Product) Suppose A and B are n x n Hermitian matrices with A positive- 
definite. Then AB has real eigenvalues and is diagonalizable. Also, A B  has the 
same number of positive, negative, and zero eigenvalues as B. Furthermore, any 
diagonalizable matrix with real eigenvalues is the product of a positive definite 
Hermitian matrix and a Hermitian matrix. 

16.15. (Approximation) Let A = (u t J )  be an n x n matrix. For every E > 0, 
there exists a matrix A(€)  = (u t J (c ) )  with distinct eigenvalues (and is therefore 
diagonalizable) such that 

h ( z )  = z(z - l),  

n n  

i=l jzl 

16.16. Let A be n x n and B be m x m matrices, and let 

A 0  
c = ( o  € 3 )  

Then C is diagonalizable if and only if A and B are both diagonalizable. 
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16.17. (Spectral Decomposition) Suppose A is diagonalizable of rank r .  

(a) There exist linearly independent right eigenvectors X I ,  x2, . . . , x, and linearly 
independent left eigenvectors yi, yh, . . . , yk such that yixj = bij ,  where bij = 
1 when i = j and 0 otherwise. Also 

n 

i= 1 
n 

i=l 

for nonzero Xi ,  where the rank one Fi are not unique unless all the eigen- 
values are distinct. Here the Fi are idempotent, mutually orthogonal, and 
CYTIFi = I,. If R = (x1,x2,. . . ,x,) and S = (y1,y2,. . . ,yn)', then 
A = RAS, where SR = I, implies that S = R-l. Note that as the rank is 
unchanged when multiplying by a nonsingular matrix, rank A = rank A, and 
rank A is the number of nonzero eigenvalues of A. 

(b) (Unique Decomposition) 

(i) We can also write 
S 

A = CPLjEj, 
j=1 

where Ej represents the sum of the Fi corresponding to the same eigen- 
value and the pj are the distinct eigenvalues (including zero). The Ej, 
called the spectral set, are unique, idempotent, and mutually orthogonal 
(i.e., EjEk = 6jkEj) and satisfy Cg,, Ej = I,. 

(ii) Also, for k = 1 , 2 , .  . . , 

j = 1  

(c) If A is nonsingular, then 

If A is singular, then 

where the summation is over the nonzero eigenvalues, and A+ is the Moore- 
Penrose inverse of A. This is proved directly from the definition of A+. 

For a spectral decomposition of an arbitrary matrix see Rao and Mitra [1971: 381. 
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16.18. Suppose A is an n x n diagonalizable matrix with distinct eigenvalues X i .  
Then the Vandermonde matrix (cf. Section 8.12.1) 

1 . . .  
... 

B =  
. . .  

A;-1 . . .  A2-1 

is nonsingular with inverse B-’ = (&), say. From the previous result (16.17b), 
with s = n and Ej = Fj, we have 

where “18” is the Knonecker product. Now B @ I, can be expressed symbolically 
as (bijI,) so that using (B @ In)-1 = B-’ 8 I, and defining A’ = I, we have 

n 

j=1 

Substituting in Ak from (16.17b(ii)) gives us 

n n  

16.19. If A is real symmetric (respectively Hermitian) n x n matrix with distinct 
eigenvalues pj ( j  = 1 ,2 , .  . . , s), then m ( p j )  = g ( p j )  for j = 1,2, .  . . , s. Hence, by 
(16.10( 1)) above, all real symmetric (respectively Hermitian) matrices are diagc- 
nalizable. 

Proofs. Section 16.1. 

16.la. Horn and Johnson [1985: 134-1351, Meyer [2000a: 5961, and Zhang 
[1999: 831. 

16.lb-c. Zhang [1999: 831. 

16.1d. Quoted by Rao and Rao [1998: 1921 

16.le. Rao and Bhimasankaram [2000: 288-2891 

16.2. Zhang [1999: 1521 

16.3. Abadir and Magnus [2006: 1861. 

16.5. Horn and Johnson [1985: 1341. 

16.6. Abadir and Magnus [2005: 1931. 
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16.7. For proofs, 
section 7.51, Horn 
and 7.81, and Rao 

references, and comments see Abadir and Magnus [2005: 
and Johnson [1985: section 3.11, Meyer [2000a: sections 7.7 

I and Bhimasankaram [2000: section 8.61. 

16.8. The result follows from the uniqueness of the Jordan canonical form. 

16.9a. Abadir and Magnus [2005: 195-1961 and Horn and Johnson [1985: 
1231. 

16.9b. Meyer[2000a: 5791. 

16.10. Rao and Bhimasankaram [2000: 296-2971. 

16.11. Horn and Johnson [1985: 481. 

16.12. Horn and Johnson [1985: 1451 and Rao and Bhimasankaram [2000: 
296-2971. 

16.13. Rao and Bhimasankaram [2000: 2971. 

16.14. Horn and Johnson [1985: 4651. 

16.15. Horn and Johnson [1985: 891. 

16.16. Horn and Johnson [1985: 491. 

16.17a. Harville [1997: section 21.51. 

16.17b. Rao and Bhimasankaram [2000: 299-3001. 

16.2 REDUCTION B Y  ELEMENTARY TRANSFORMATIONS 

16.2.1 Types of Transformation 

Definition 16.4. An elementary row transformation of an m x n matrix A over 
F is one of the following operations: 

Multiply row i by a scalar c in F. This achieved by left-multiplying A by the 
identity matrix I, with its i th diagonal element replaced by c .  The latter 
has determinant c. 

Add row j to row i. This is achieved by left-multiplying by the matrix 
I, + EzJ, where E,, has 1 in the ( i , j ) t h  position and zeros elsewhere. This 
transformation has determinant 1. 

Interchange the i th  and j t h  rows. This is achieved by left-multiplying by 
the permutation matrix nZJ, where IIZJ is I, with its i th and j t h  rows in- 
terchanged. (Technically the third transformation can be carried out using 
a sequence of the previous two transformations, but that route is less conve- 
nient .) 

These operations can also be extended to submatrices of partitioned matrices (cf. 
Zhang 1999: 301). 
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16.20. Note the following: 

(a) IIij is symmetric and orthogonal so that 11,' = IIij. 

(b) E:, = 0 and (I, + cE,,)-' = I, - cE,,. 

Definition 16.5. An elementary (row) transformataon matrix M is defined to be 
one of the above three types of matrices, referred to as types ( l ) ,  (2), and (3). For 
further details see, for example, Abadir and Magnus [2005: section 6.11 

Elementary column transformations can be carried out by right-multiplying A 
by an elementary transformation matrix (but using E,, = Ei3 instead of E,,). 

16.21. The inverse of an elementary transformation matrix is also an elementary 
transformation matrix. Also, as such matrices are all nonsingular, a product of 
such matrices is nonsingular. Therefore multiplying A by such a matrix does not 
change the rank of A (cf. 3.14a). 

16.2.2 Equivalence Relation 

Definition 16.6. Let A and B be m x n real or complex matrices. If B is obtained 
from A by elementary row or column transformations matrices, then A is said to  
be equivalent to B, and we write A - B. 

16.22. Any one of the following statements implies the other two. 

(1) A - B .  

(2) B = RAS for some non-singular matrices R and S. 

(3) rankA = rankB (cf. 3.14a). 

Definition 16.7. From (16.22(2)) above we see that: (i) A - A (reflexive), (ii) 
if A - B, then B - A (symmetric), and (iii) if A - B and B - C, then A - C 
(transitive). Any relation that satisfies these three conditions is called an SRT 
relation. Thus the equivalence relation "-" is an SRT relation. 

Other SRT relations for square matrices are summarised as follows: 

(1) If B = R-'AR for nonsingular R, then B is said to be similar to A. This is 
discussed in Section 16.1 above. 

(2) If B = R'AR for nonsingular R, then B is said to  be congruent t o  A. Its 
main application is for real matrices. If A and B are complex matrices such 
that B = R*AR, then B is said to be Hermitian congruent t o  A. 

(3) If B = U*AU, where U is unitary, then B is said to be unitarily similar to 
A. If, for real matrices, B = T'AT, where T is orthogonal, we say that B is 
orthogonally similar to A. 

16.2.3 Echelon Form 

Definition 16.8. Using elementary row transformations, a real or complex m x n 
matrix A can be reduced to  a matrix B with the following properties: 

(1) If a row contains a t  least one nonzero entry, then the first nonzero entry is 1. 
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(2) The zero rows, if any, come last. 

(3) In any two consecutive nonzero rows, the leading 1 in the lower row occurs 
further to the right than the leading 1 in the upper row. 

A matrix in the above form is said to  be in (row) echelon form. For example, 

0 1 * * *  

B I I (  0 0 0 0 1  * !I, 
0 0 0 0 0 0  

where the elements denoted * are arbitrary. If we now subtract multiples of the 
second and third rows from the first, we obtain 

0 1 * 0 0 *  

. z = ( : : ; ;  ; :) 
0 0 0 0 0 0  

This matrix has the additional property: 

(4) Each column that contains a leading 1 has zeros elsewhere. 

A matrix with the above four properties is said to be in reduced (row) echelon 
form We shall omit the word L‘row’’ in using the above definitions. Rao and Bhi- 
masankaram [2000: 167-1701 give a number of algorithms for carrying out various 
reductions. It should be noted that the terminology relating to echelon forms is 
not consistent in the literature. 

We see that the first three rows of Bz give a row basis for the original matrix 
A, and the three columns each containing 1 form a column basis for A. 

16.23. Any matrix A can be reduced to a unique matrix in reduced echelon form 
by elementary row transformations. 

16.24. The rank of a matrix in reduced echelon form is the number of nonzero 
rows. This is the same as the rank of the original matrix. 

16.25. If A is a nonsingular matrix of order n, then its reduced echelon form is 
I,. Hence there exist elementary transformation matrices Mk, k = 1 , 2 , .  . . , K ,  
such that MKMK-1 . . . M I A  = I,, i.e., MA = I,, where M is nonsingular. 
Also, taking A over to the right-hand side, MKMK-1. . . M11, = A-’. Thus any 
sequence of elementary row transformations that transforms A to I, transforms I, 
to A-I. 

16.26. For any two n x p  matrices A and B, the following statements are equivalent. 

(1) C(A’) = C(B’). 

(2) The reduced echelon forms of A and B are the same. 

(3) B can be obtained from A by a finite sequence of elementary row operations. 

(4) B = KA for some nonsingular matrix K. 

Proofs. Section 16.2.3. 

16.23. Rao and Bhimasankaram [2000: 1721. 

16.26. Rao and Bhimasankaram [2000: 171-1721. 
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16.2.4 Hermite Form 

Definition 16.9. A square matrix H is said to be in (upper) Hermite f o r m  if (a) 
it is upper-triangular, (b) its principal diagonal elements are all zeros or ones, (c) 
when a diagonal element is zero the entire row is zero, and (d) when a diagonal 
element is one, the rest of the elements in the column are all zeros. For example, a 
Hermite form for a 5 x 5 matrix A could take the form 

H A =  0 0 1 * 0 ,  [; ; ; ; ;] 
where the starred elements are arbitrary. If H comes from A we shall write HA. 

There is a close relationship between the reduced echelon form and the Hermite 
form of a matrix. For example, the reduced echelon form corresponding to  HA 
would be [;;;;;] 
We see that HA can be obtained from B by simply interchanging rows, i.e., by 
carrying out elementary row transformations. This is the case in general so that 
many of the results for reduced echelon forms apply to Hermite forms, as we shall 
see later. 

16.27. H i  = HA. 

16.28. If A is a square matrix over F ,  there exists a nonsingular matrix K such 
that KA = HA. The matrix K is a product of elementary row transformation 
matrices. 

16.29. Two real n x n matrices A and B have the same Hermite form if and only 
if C(A’) = C(B’). The following are consequences of this result. 

B =  0 0 0 0 1 .  
0 0 0 0 0  

(a) A’A, A-A and A have the same Hermite form. 

(b) If B is nonsingular, then B A  and A have the same Hermite form. 

16.30. Let A be n x n. Since H i  = HA we have the following. 

(a) AHA = A .  

(b) The identity matrix I, is the only n x n matrix in Hermite form that is 
nonsingular. Thus if A is nonsingular, then HA = I,. 

16.31. (Rank) 

(a) rankHA = rank A. 

(b) The rank of a matrix in Hermite form is the number of non-null rows in it, 
or the number of diagonal elements equal to one. Thus reducing a matrix to 
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echelon form is a method of finding its rank. (For an algorithm see Rao and 
Bhimasankaram [2000: 181-1821 .) 

(c) If the z l ,  2 2 , .  . . , z k  diagonal elements of HA are each equal to one, and the 
remaining diagonal elements of HA are equal to zero, then the 2 1 ,  i 2 , .  . . , ik 
columns of A are linearly independent. 

16.32. (Idempotency ) 

(a) A is idempotent if and only if HA is a weak inverse of A. 

(b) A is idempotent if and only if HAA = HA. 

Definition 16.10. An n x n matrix H is said to be in (upper) Hermite canonical 
form if takes the form 

By looking at  the example given in Definition 16.9, we see that a Hermite form 
can be transformed into a Hermite canonical form by carrying out suitable row and 
column interchanges. This process can be carried further to transform C into the 
zero matrix, as we see in the next result. 

16.33. (Reduction to Diagonal Form) Let A be an m x n matrix of rank r defined 
over F. 

(a) There exist nonsingular matrices F and G of sizes m x m and n x n, respec- 
tively, such that 

so that A is equivalent to a diagonal matrix. Thus 

say. (Some bordering matrices are absent if A has full row or column rank.) 
The matrices F and G and their respective inverses R and S are all products 
of elementary transformation matrices. 

(b) (Full Rank Factorization) From (a) we have 

where R1 is m x r of rank r and S1 is an r x n of rank r .  

(c) (Singular Value Decomposition) If A is real (respectively complex), we can 
choose R with orthogonal columns and S with orthogonal rows. If we then 
incorporate the lengths of the columns of R and the rows of S into I,, we get 
what is effectively the singular value decomposition of A, namely 
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where P and Q are orthogonal (respectively unitary) matrices and Dr is a 
diagonal matrix with positive elements. This decomposition is discussed in 
more detail in Section 16.3. We note that 

Thus A can be expressed in the form P 2 Q 2 ,  where P2 has orthogonal columns 
and Q 2  has orthogonal rows. We can choose P2 (respectively Q 2 )  to have 
orthonormal columns (respectively rows). 

Proofs. Section 16.2.4. 

16.27. Quoted by Graybill [1983: 1311. 

16.28. Graybill [1983: 1301 and Rao [1973: 181. 

16.29-16.31. Graybill [1983: 138-1401. 

16.32. Graybill [1983: 140-1411. 

16.33a. Marsaglia and Styan [1974a: 280, theorem 101 and Rao [1973: 191. 

16.33b. Marsaglia and Styan [1974a: 271, theorem 11 and Rao [1973: 191. 

16.3 SINGULAR VALUE DECOMPOSITION (SVD) 

The singular value decomposition is regarded by many as one of the most useful 
factorizations for real or complex matrices. For example, the SVD has many ap- 
plications in statistics such as SAS (single-spectrum analysis) in times series (cf. 
Golyandina et al. [2001: chapter 4]), matrix approximation in dimension reduction 
techniques, least squares approximation of a square matrix by a scalar multiple of 
an orthogonal or unitary matrix (Horn and Johnson [1985: 4291, and procrustes 
analysis (Gower and Dijksterhuis [2004] and Seber [1984: section 5.61). It is also 
a useful computational tool for calculating various quantities. In what follows, we 
interpret the transpose as conjugate transpose when dealing with complex matrices. 

Definition 16.11. Any m x n real (respectively complex) matrix of rank T (T 5 
p = min{m, n} )  can be expressed in the form 

Amxn = P m x m x m x n Q h x n r  

where P is an m x m orthogonal (respectively unitary) matrix, Q is an n x n 
orthogonal (respectively unitary) matrix, and X = (uzJ)  is an m x n matrix with 
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This factorization of A is called the singular value decomposition. The uii, abbre- 
viated to C T ~  = ui(A) ( i  = 1,2, .  . . , p ) ,  are called the singular values of A, which 
are defined to be the positive square roots of the ranked eigenvalues of AA’. These 
eigenvalues are non-negative as AA’ is non-negative definite (by 10.10). 

The columns of p i  of P are the orthonormalized right eigenvectors associated 
with AA’, and the columns qi of Q are the orthonormalized right eigenvectors 
associated with A’A. The first r columns in each case correspond to the nonzero 
C T ~ .  Note that Aqi = uip i  and A ’ p i  = uiqi (i = 1 ,2 , .  . . , T ) .  The vectors p i  and qi 
are also called the left and right singular vectors, respectively, associated with ui. 

We note that AA’ and A’A have p common eigenvalues (cf. 6.54c), including 
some zeros when r < p.  Any remaining eigenvalues of AA’ (if m > n) or A’A (if 
m < n)  are zero. 

Existence proofs are given by Horn and Johnson [1985: 4111, Rao and Rao [1998: 
172, complex case], Schott [2005: 140-141, real case], Searle [1982: 316, real case], 
and Seber and Lee [2003: 471, real case]. For some computational details see Gentle 
[1998: section 4.41, Golub and Van Loan [1996], and Stewart [1998, 20011. 

In practice, several versions of the SVD are given in the literature, which we give 
below. 

(1) Let A p = d i a g ( u l , u z , . . . , u ~ )  . I f p = n < m ,  then 

A = P (:) Q’ = P,A,Q’, 

where the m x n matrix P, consists of the first n columns of P, and A, and 
Q are both n x n. The zero matrix is omitted if m = n. If p = m < n, then 

A = P(Am, 0)Q’ = PA,QA, 

where Qm consists of the first m columns of Q. We note that PLP, = I, and 
QAQm = I,. These two versions are often referred to  as the thin singular 
value decompositions. 

Is the decomposition unique? If m 2 n (i.e., p = n) ,  then E will be unique 
as the eigenvalues of A’A are unique. However, the eigenvectors making 
up P, and Q will not be unique unless the eigenvalues are distinct and an 
appropriate sign convention is adopted for eigenvectors. 

(2) If P = (p i j )  and Q = ( q i j ) ,  with respective columns p i  and qi, then 

and azj = c‘,=1 UkPzkqjk. 
If A is complex and P and Q are unitary matrices, then A = EL=, a k p k q ;  
and = UkpzkqJk. 

Note that AA‘P, = P,AZ and A’AQ, = Q,A:. The correct procedure is to find 
P, and A? from AA’P, = P,AF and then define Q, = A’P,A;’. Alternatively, 
we can obtain Q, and A: from A’AQT = Q,A: and then define P, = AQ,A,‘ 
(Abadir and Magnus [2005: 2261). 
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16.34. Let A be an m x n matrix. From the above we have the following useful 
informat ion. 

(a) The number of nonzero singular values is the rank of A. This provides a 
useful computational method for finding the rank of a matrix. 

(b) The T columns of P, and Qr are orthonormal bases for C(A) and C(A’), 
respectively, while the remaining columns of P and Q span N(A’) and N ( A ) ,  
respectively. 

(c) PA = P,Pk, the orthogonal projection onto C(A). 

(d) A and (A*A)l/’ have the same singular values. 

(e) Two full-rank factorizations of A (cf. 3.5) are (P,A,)(QC) and (Pr)(A,Q:). 

Proofs. Section 16.3. 

16.34a-b. Schott [2005: 140-1411. 

16.34~. Sengupta and Jammalamadaka [2003: 431. 

16.34d. Follows from the fact that (A*A)’/’((A*A)’/’)* = A*A is Hermi- 
tian with eigenvalues .:(A). 

1 6.4 T R I A N  G U LA R FAC T O  R I Z AT  I 0 N S 

16.35. ( L U  and LDU factorizations) Under certain conditions, a real or complex 
m x n matrix can be expressed in the form A = L1U1, where L1 is lower-triangular 
and U1 is upper-triangular. If m < n, then L1 is m x m, while if m > n, L1 is 
m x n. 

(a) A sufficient condition for such a factorization to exist is that for k = I ,  2, . . . , p  
( p  = min{m,n}), each k x k leading principal submatrix Ak of A is nonsin- 
gular. 

(i) The usual factorisation is to have either the diagonal elements of L1 all 
ones (and written as L),  or the diagonal elements of U1 all ones (and 
written as U) so that 

A = LU = LU. 

(ii) If we put the diagonal elements from both matrices into a single diagonal 
matrix D, then 

A = LDU. 

(b) If m < n, which is often the case, and Ak is nonsingular for k = 1 , 2 , .  . . , m, 
then A = L U ,  where L is m x m and nonsingular, U is an m x n matrix such 
that the first m columns form an upper-triangular matrix with unit diagonal 
elements, and L and U are unique. 

(c) A typical application of the above theory is the solution of linear equations, 
for example Bx = b. If we set A = (B, I,, b) and then factorize A, we can 
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obtain B-' as a bonus (Rao and Bhimasankaram [2000: 2131). If B is square 
and nonsingular and B = LU, then we can solve Ly = b for y using forward 
substitution and solve Ux = y for x by back substitution. The process is 
usually refered to as Gaussian elimination. 

(d) The matrix MI, = I, - Te;, where T E IW" and eI, has 1 for its kth element 
and zeros elsewhere, is a Gauss transformation if the first k elements of T are 
zero. If this is the case, and 7i = X ~ / X I ,  (XI, # 0) for i = k + 1,. . . , n, then 

MI,X 1 (XI, 2 2 , .  . . , xk, 0 , .  . . ,O) '  

16.36. (Square Matrix LU Factorizations) 
matrix and let AI, be its leading k x k principal submatrix. 

Let A be a real or complex n x n 

(a) Suppose A has rank r .  If AI, is nonsingular for k = 1 , 2 ,  . . . , r ,  then A may be 
factored as A = LU, where L and U are n x n. Furthermore, the factorization 
may be chosen so that either L or U is nonsingular. Both L and U can be 
chosen to be nonsingular if A is nonsingular (i.e., r = n). 

(b) There exist n x n permutation matrices lI1 and I I 2  such that A = lI1LUII2. 
If A is nonsingular, it may be written as 

A = II1LU. 

(c) Suppose Ak is nonsingular for k = 1 , 2 , .  . . , n - 1. 

(i) A can be expressed in the form A = LU = LU, where all the triangular 
matrices are unique. 

(ii) Also, A can also be expressed in the form A = LDU, where D is 
diagonal and all the matrices are unique. (Note that it is possible for A 
be singular.) 

(iii) If A is a real symmetric matrix, then we can also write A = U'DIU, 
where U is real and the diagonal matrix D1 has elements fl. 

(d) Suppose A is nonsingular and A = L U .  If L = ( l t J ) ,  then, since det A = 

de tL  . de tU ,  we have d e t A  = ny=,lZZ # 0, detAk = n,"=, l,, # 0 for 
k = 1 , 2 , .  . . , n - 1, and L and U are unique, by (c). 

form A = U*DzU, where D2 is a diagonal matrix. 
(e) If A is Hermitian with an LDU factorization, then we can express it in the 

16.37. (Schur Decomposition Theorems) We now consider a series of powerful 
theorems that can be used to provide shorter proofs for a wide range of other 
results (e.g., Abadir and Magnus [2005: section 7.41). 

Let XI, A 2 , .  . . , A,, be the eigenvalues of the n x n matrix A in a prescribed order. 

(a) If A is a real or complex matrix, there exists a unitary matrix Q such that 
Q'AQ = T is upper-triangular with diagonal elements the eigenvalues of A 
in the same order. Neither Q nor T are unique. 

(b) If A is real with real eigenvalues, then Q can be chosen to be real and or- 
thogonal. The upper-triangular matrix is also real. 
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(c) If A is real with k real eigenvalues XI, Az,  . . . , X I ,  and complex eigenvalues 
z, + i y ,  for j > k ,  there exists a real orthogonal T such that T’AT = R, 
where R resembles an upper-triangular matrix, but with diagonal blocks of 
the form R11,R22,. . . , Rtt. Here RJ3 = A,, for j = 1 , 2 , .  . . , k ;  and for j > k 

where bj 2 cj and bjcj > 0. The elements below these blocks are zero so 
that R is of upper Hessenberg form. Golub and Van Loan [1996: 3411 refer 
to such a matrix as quasi-triangular and show how to compute it using QR 
iterations (cf. Section 16.5). For an application to probability theory see 
Edelman [ 19971. 

16.38. (Cholesky Decomposition for Non-negative Definite Matrices) If A is an 
n x n non-negative definite matrix, there exist n x n upper-triangular matrices U 
and U1 with non-negative diagonal elements such that 

A = U’U = U1Ui. 

If A is positive definite, the matrix U is unique if its diagonal elements are all 
positive (or all negative); the same applies to U1. Some writers prefer to use lower- 
triangular matrices L = U’ or L1 = Ui. The result also holds for A Hermitian 
non-negative definite, that is, there exists an upper-triangular matrix U such that 
A = U*U. If A is positive definite, then U is unique if its diagonal elements are 
positive (Rao and Rao [1998: 1731). For some computational aspects when A is 
non-negative definite see Smith [2001]. 

16.39. A scaled version of the above when A is positive definite is also used. If 
D = diag(ull,u22,. . . , unn), then D has an inverse. Let 

so that 
A = U’U fJ’D2fJ = U’DU = LDL’, 

where D is a diagonal matrix with positive diagonal elements. 

16.40. (Algorithm for the Cholesky Decomposition) If A is a positive definite n x n 
matrix, and the diagonal elements of U are all positive, we have the following steps. 

Step 1: Set 

ull  = a’” 11 , 
u1j = - ( j = 2 , 3  , . . . ,  n).  a1j 

ull 

Step 2: For i = 2 , 3 ,  . . . , p - 1 set 

uzj = 0 ( j = 1 , 2  , . . . ,  2- l ) ,  
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2 - 1  
a ~ j  - c~,=l u k i u k j  

uij = ( j  = i + 1,. . . , n).  
uii 

Step 3: Set 
n-1 112 

unn = (arm - c u:i) . 
k = l  

The decomposition A = U D U  can be used to avoid the computation of square 
roots. This modification is called the Banachiewicz factorization or the root-free 
Cholesky decomposition (Gentle [1998: 93-94]). 

16.41. (Matrix Inverse) If A = U’U is a positive definite n x n matrix, we have 
A-l = U-’(U’)-’ = TT’, where T is upper-triangular. From UT = In we find 
that T is given by 

ti2 = u;* ( i  = 1 , 2 , .  . .  ,n),  

t , j  = 0 (2  > j ) ,  

Then 

k=s  

which is the product of the r th  and sth rows of T. 

Proofs. Section 16.4. 

16.35a. Golub and Van Loan [1996: 1021. 

16.3513. Rao and Bhimasankaram [2000: 211-2121 

16.35~. Golub and Van Loan [1996: 88-1031. 

16.35d. Golub and Van Loan [1996: 94-95]. 

16.36a. Horn and Johnson [1985: 1601 

16.36b. Horn and Johnson [1985: 1631 

16.36c(i). Graybill [1983: 2071 and Rao and Bhimasankaram [ZOOO: 2161 

16.36c(iii). Graybill [1983: 2101. 

16.36d. Golub and Van Loan [1996: 971. 
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16.37a. Abadir and Magnus [2005: 1871, Horn and Johnson [1985: 791, Rao 
and Rao [1998: 174-1751, Schott [2005: 1571, and Zhang [1999: 64-65]. 

16.3713. Muirhead [1982: 5871 and Schott [2005: 1581. 

16.37~. Rao and Rao [1998: 189-1901. 

16.38. For an inductive proof for the positive-definite case see Schott [2005: 
1471 and Seber [1977: 3881. 

16.40. Seber and Lee [2003: 3361. 

16.41. Seber [1977: 305-3061, 

16.5 ORTHOGONAL-TRIANGULAR REDUCTIONS 

The so-called QR decomposition plays an important role in the analysis of regres- 
sion models, particularly in statistical computing packages. In fact, many of the 
regression theorems can actually be derived via the QR decomposition (e.g., Ansley 
[1985], Eubank and Webster [1985], Mandel [1982], and Nelder [1985]). 

Definition 16.12. Any n x p  real matrix A of rank r can be expressed in the form 
A = QR, where Q is an n x n orthogonal matrix and R is an n x p upper-triangular 
matrix. This is called the QR decomposition. If n 2 p ,  then 

= QpRl, 

where Qp consists of the first p columns of Q, and R1 is a p x p upper-triangular 
matrix. Harville [1997: 66-68], Horn and Johnson [1985: 112-1131, and Seber and 
Lee [2003: 3381 give algorithmic proofs, while Seber [1977: 3881 gives an inductive 
proof. Some authors refer to A = QpRl as the QR decomposition. 

If n 5 p ,  we replace R by (R2, S), where R2 is an n x n upper-triangular matrix. 
The above results and those below are also true for complex A if Q is now unitary 
and we replace ’ by * (cf. Rao and Rao [1998: 1681). 

Note that Q‘A = R, and the reduction of A can be carried out using a variety 
of algorithms. For example, the orthogonal matrix Q’ could consist of a product 
of Householder reflections or Givens rotations, or one could use the Gram-Schmidt 
algorithm. For further details of the real case see Seber and Lee [2003: chapter 111. 

16.42. We use the above notation in what follows, and we assume n 2 p .  

(a) Suppose T = p .  

Since R1 has full rank p ,  A’A = RiQbQpR1 = RiR1 is positive def- 
inite, and RiR1 is the Cholesky decomposition of A’A. Therefore, if 
the diagonal elements of R1 are all positive (or all negative), then R1 is 
unique and Qp = ART1 is unique. Hence the decomposition A = QpRl 
is also unique. However, the matrix QnPp is not unique because any per- 
mutation of its columns will still give A = QR. 
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(ii) The Moore-Penrose inverse of A is 

A+ = (R;’, 0)Q’ = RT’Q’ P’ 

(iii) If A is n x n and nonsingular, then 

n 

det A = det Q det R1 = rii, 
i=l 

where R1 = (r i j ) .  This is a useful method of finding a determinant. One 
application in statistics is in optimal experimental designs. For example, 
the D-optimal criterion chooses the design matrix X such that det(X’X) 
is maximized. 

(b) Suppose r < p .  

We first note that A‘A = RiR1 as above, but now A‘A is non-negative 
definite. However, R’,R1 is still the Cholesky decomposition of A’A and 
R1 is unique if the diagonal entries are non-negative. An inductive proof 
for the case n = p is given by Graybill [1983: 2101. 

We can permutate the columns of A by postmultiplying by a permu- 
tation matrix II so that the first r columns of the permutated matrix 
A = AII are linearly independent. Then A = QR, where 

and Rll is an r x r nonsingular upper-triangular matrix. Thus R is 
upper-triangular, but with its bottom n - T rows all zeros. Since II-’ = 
II’ we have 

A = QRII’ 

where QT consists of the first r columns of Q. As II is not unique, QT 
will not be unique. 

A weak inverse of A is given by 

R-l 0 A- =11 ( i1 ) Q’, 

as AA-A = A. 

Additional orthogonal transformations can be applied to A = QRII’ to 

where P is orthogonal and Ro is r x r and nonsingular. This is a conve- 
nient method of finding r. 
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(v) From (iv), 
A + = P (  R,’ 0 o ) Q ’  

For further computational details see Gentle [1998: 95-1021 and Golub and 
Van Loan [1996: section 5.21. 

There is also a symmetric QR iterative process that is a useful computational tool 
(Golub and Van loan [1996: section 8.21). 

16.43. (Tridiagonal Matrix) If T = QR is a QR decomposition of a symmetric 
tridiagonal matrix T, all matrices being n x n, then Q has lower bandwidth 1, R 
has upper bandwidth 2, and 

T1 = R Q  = (Q’Q)RQ = Q’TQ 

is also symmetric and tridiagonal. (The upper bandwidth is the number of nonzero 
diagonals above the main diagonal, and the lower bandwidth is the number of 
nonzero diagonals below the main diagonal; all other elements except possibly those 
in the main diagonal are zero.) The factorization can be computed by applying a 
sequence of n - 1 Givens rotations. 

Proofs. Section 16.5. 

16.42a(ii). Bates [1983]. 

16.42a(iii). Gentle [1998: 1151. 

16.42b(i)-(iii). Gentle [1998: 961 

16.42b(iv). Gentle [1998: 1151. 

16.43. Golub and Van Loan [1996: 4171. 

16.6 FURTHER DIAGONAL OR TRIDIAGONAL REDUCTIONS 

16.44. (Spectral Decomposition Theorem) Let A be any n x n real symmetric 
(respectively Hermitian) matrix. Then there exists an orthogonal (respectively 
unitary) matrix Q = (ql, 9 2 , .  . . , q,) such that 

Q’AQ = diag(Al,Al,. . . , A , )  = A, say, 

where A1 2 A2 2 . . . 2 A, are the ordered eigenvalues of A (which we know are 
real). When A is Hermitian, Q’ is replaced by Q*. With the above ordering, A is 
unique and Q is unique up to a postfactor of 

where k is the number of different eigenvalues of A; ml ,  m2, . . . , mk are the algebraic 
multiplicities, that is A1 = A2 = . . .  = A,, > X m l + l  = .. .  = Amlfma, and so on; 
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and Q(m,) stands for the set of all m, x m, orthogonal (respectively unitary) 
matrices. 

If all the eigenvalues are distinct, each rn, = 1 and S reduces to a diagonal matrix 
with diagonal elements equal to f l .  In this case the columns q, of Q are unique 
except for their signs. If we stipulate, for example, that the element of q, with the 
largest magnitude is positive, then S = I, and Q is unique. We note that: 

(a) A = QAQ’ = C:=l X,q,qi = C:=l X,F,, where the F, are symmetric, idem- 
potent, and satisfy F,F, = 0 for all i , j , j  # i. 

(b) If x = Qy,  then x’Ax = y’Q’AQy = Xly; + . . .  + Any;. An algorithm 
for carrrying out this reduction by completing the square rather than finding 
eigenvalues and eigenvectors (known as Lagrange’s reduction) is described by 
Rao and Bhimasankaram [2000: 3331. 

(c) If A has rank T ,  A, contains the T nonzero eigenvalues, and Q, contains the 
corresponding right eigenvectors of A,  then A = Q,A,Q~, where QLQ, = I,. 

16.45. (Tridiagonal Reduction) Suppose A is a real symmetric n x n matrix. 

(a) There exists an orthogonal matrix Q such that 

Q‘AQ = B, 

where B is tridiagonal. This is a very useful reduction used in numerical anal- 
ysis because it provides an intermediate step for speeding up a diagonalization 
process. If Q = ( q l , q Z , . .  . ,q,), then the qi are called Lanczos vectors (cf. 
Golub and Van Loan [1996: 4731) 

(b) If ql is defined in (a), then 

where R is upper-triangular. The matrix in brackets is a Krylov matrix. If 
R is nonsingular, then B of (a) has no zero subdiagonal elements. 

16.46. (Normal Matrix) 

(a) (Diagonal Reduction) An n x n complex matrix is normal (i.e., A A *  = 
A*A) if and only if there exists a unitary matrix Q such that Q*AQ = 
diag(X1, Xz, . . . , A,), where the X i  are the eigenvalues of A.  

(b) (Tridiagonal Reduction) 

(i) Let A be a real n x n matrix. Then A is normal (i.e., AA’ = A’A) if 
and only if there is a real orthogonal matrix Q such that 

Q’AQ = diag(A1, A l ,  . . . , Ak) = D1, 1 5 k 5 n, 

where tridiagonal D1 is a real block-diagonal matrix, and Aj is either a 
real 1 x 1 matrix or a real 2 x 2 matrix of the form 

“j Pj 

= ( -p, “j ) 
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(ii) 

(iii) 

If A is a real skew-symmetric matrix (i.e., A’ = -A), then A is normal. 
It then follows that A is skew-symmetric if and only if there exists a real 
orthogonal matrix Q such that 

Q’AQ = diag(O,O,. . . , O ,  Al, A2,. . . , A t )  = D2, 

where D2 is a real block diagonal matrix with each Aj having the form 

If A is an orthogonal matrix, then it is normal. It follows that A is 
orthogonal if and only if there exists a real orthogonal matrix Q such 
that 

Q’AQ = diag(A,, Az, . . . , A,, Al,  A2, . . . , A,) = D3, 

where D3 is a real block diagonal matrix with each A, = f l  and each 
matrix A, having the form 

A, = ( 
16.47. (Hermitian matrix) If A is an n x n Hermitian matrix of rank r ,  then there 
exists a nonsingular matrix S such that S*AS = D, where 

D = d iag ( l , l , .  . . ,1, -1, -1,. . . , - 1 , O , O , .  . . , O ) .  

The number of +l’s and -1’s are the same as the number of positive and negative 
eigenvalues of A (say r+ and r- ,  respectively), and the number of zeros is TO = n-r. 
The result obviously holds for a real symmetric matrix and real S (e.g., Anderson 
[2003: 6401). Clearly the signature, defined below, is unique. 

Definition 16.13. Refering to (16.47) above, if A is a Hermitian matrix, the triple 
(r+, r- ,  T O )  is called the inertia of A, while T+ - r- is called the signature of A. 

Proofs. Section 16.6. 

16.44. Harville [1997: 534-5391. 

16.45a. Golub and Van Loan [1996: 4141. 

16.45b. Golub and Van Loan [1996: 4161. 

16.46a. Rao and Bhimasankaram [2000: 3131 and Rao and Rao [1998: 175, 
1901. 

16.46b(i). Horn and Johnson [1985: 1051. 

16.46b(ii). Horn and Johnson [1985: 107-1081 

16.46b(iii). Horn and Johnson [1985: 1081. 

16.47. Horn and Johnson [1985: 221-2221. 
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16.7 CONGRUENCE 

16.48. (Sylvester’s Law of Inertia) Let A and B be n x n Hermitian matrices. 
There exists an n x n nonsingular matrix S such that A = SBS’ if and only if A 
and B have the same inertia (cf. 16.47). 

16.49. (Ostrowski) Let A be Hermitian and S nonsingular, both n x n matrices. 
Then, for each i = 1 , 2 , .  . . ,n,  there exists a positive real number t9i such that 
X,,,(SS*) 2 Ot 2 Xmi,(SS*) and 

Xi(SAS*) = OiXi(A). 

16.50. Let A and B be n x n real or complex symmetric matrices. There exists a 
nonsingular S such that A = SBS’ if and only if A and B have the same rank. 

Proofs. Section 16.7. 

16.48-16.50. Horn and Johnson [1985: 223, 224, 2251. 

16.8 S I M U LTA N EO US RED U CT I0 N S 

16.51. Let A and B be n x n real symmetric matrices. 

(a) (i) There exists a real orthogonal matrix Q such that Q’AQ and Q’BQ are 
both diagonal if and only if AB = BA (that is AB is symmetric). 

(ii) The previous result holds for more than two matrices. A set of real 
symmetric matrices are simultaneously diagonalizable by the same or- 
thogonal matrix Q if and only if they commute pairwise. 

(iii) The above result also holds for Hermitian matrices and unitary Q. 

(b) If a real linear combination of A and B is positive definite, then there exists 
a nonsingular matrix R such that R‘AR and R’BR are diagonal. 

(c) If A is also positive definite, there exists a nonsingular S such that S’AS = I, 
and S’BS = diag(X1, X2,. . . , A n ) ,  where the X i  are the roots of IXA - BI = 0, 
i.e., are the eigenvalues of A-lB (or BA-’ or A-1/2BA-’/2). The X i  are 
real. 

(d) If A and B are both non-negative definite, there exists a nonsingular matrix 
R such that R‘AR and R’BR are both diagonal. 

16.52. Let A and B be n x n complex matrices. 

(a) If A and B are both symmetric, there exists a unitary U such that UAU’ 
and UBU’ are both diagonal if and only if AB is normal; that is, ABBA = 
BAAB. 

(b) If A is Hermitian and B is symmetric, there exists a unitary U such that 
UAU’ and UBU’ are both diagonal if and only if AB is symmetric; that is 
AB = BA. 
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(c) If A is Hermitian positive definite and B is symmetric, then there exists a 
nonsingular matrix S such that S*AS and S'BS are both diagonal. 

(d) Let A be a Hermitian matrix, B be a Hermitian non-negative definite matrix 
with rank r 5 n, and N be an n x n - r matrix of rank n - r such that 
N*B = 0. Then: 

(i) There exists an n x r matrix L such that L*BL = I, and L*AL = A, 

(ii) A necessary and sufficient condition that there exists a nonsingular ma- 

where A is an r x r diagonal matrix. 

trix R such that R*AR and R*BR are both diagonal is that 

rank(N*A) = rank(N*AN). 

(iii) A necessary and sufficient condition that there exists a nonsingular ma- 
trix R such that R*BR and R-'A(R-l)* are both diagonal is 

rank(BA) = rank(BAB). 

(iv) If, in addition, A is Hermitian non-negative definite, there exists a non- 
singular matrix R such that R 'AR and R*BR are both diagonal. 

(v) If, in addition, A is Hermitian non-negative definite, then there exists 
a nonsingular matrix R such that R*BR and R-'A(R-l)* are both 
diagonal. 

For other results like (a)-(c) see the table of Horn and Johnson [1985: 2291. 

16.53. (Simultaneous Upper-Triangular Reductions) Let A and B be n x n com- 
plex matrices. 

(a) There exist unitary matrices P and Q such that P*AQ = T and P*BQ = S 
are upper-triangular. If the diagonal elements sii of S are all nonzero, then 
&(AB-~)  = tii/sii for i = 1 , 2 , .  . . , n. 

(b) If A and B are real, there exist real orthogonal matrices P and Q such that 
P * A Q  is upper quasi-triangular (upper Hessenberg) and P'BQ is upper- 
triangular. 

(c) If A B  = B A ,  then there exists a unitary matrix U such that U*AU and 
U * B U  are both upper-triangular. This result holds for any family of com- 
muting matrices (Horn and Johnson [1985: 811). 

16.54. (Simultaneous Singular Value Decompositions) 

(a) (Two Matrices) Let A and B be mxn matrices. There exist unitary matrices 
P,,, and Qnxn such that A = PElQ '  and B = P&Q*, where Xi ( i  = 1,2)  
are m x n diagonal matrices, if and only if if AB* and B * A  are both normal. 

(b) (More Than Two Matrices) Given m x n matrices Ai ( i  = 1 , 2 , .  . . , k ) ,  there 
exist unitary matrices P and Q such that A = P&Q* for all i, where the 
are all diagonal, if and only if each A f A j  ( i  # j )  is normal and all the pairs 
of AiAj' (i # j )  commute. 
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16.55. (Diagonalizable Matrices) 

(a) (Two Matrices) Two diagonalizable n x R matrices are simultaneously diag- 
onalizable; that is, there is a single nonsingular matrix R such that R-’AR 
and R-’BR are diagonal, if and only if A and B commute (i.e., AB = BA). 
Commuting matrices play a major role in simultaneous factorizations as we 
have seen in (16.53~) and (16.54) above. For details see Horn and Johnson 
[1985: chapter 21. 

(b) Let S be an arbitrary (finite or infinite) set of n x n matrices in which every 
pair commutes. Then: 

(i) There is a vector x E Q.” that is an eigenvector of every A E S .  

(ii) The members of S can be simultaneously diagonalized. 

Proofs. Section 16.8. 

16.51a(i). Abadir and Magnus [2005: 1801 and Searle [1982: 312-3131. 

16.51a(ii). Rao and Bhimasankaram [2000: 355-3561 and Schott [2005: 163- 
1651. 

16.48a(iii). Horn and Johnson [1985: 228; they also give other equivalent 
conditions for the simultaneous diagonalization of two Hermitian matrices] 
and Rao and Rao [1998: 185-1861. 

16.51b. Horn and Johnson [1985: 465, complex case with a real linear com- 
bination and R* instead of R’] and Schott [2005: 161-162, real case]. 

16.51~. Abadir and Magnus [2005: 2251 and Searle [1982: 3131. This result 
also holds for Hermitian matrices (cf. Horn and Johnson [1985: 250-2511 and 
Rao and Rao [1998: 185-1861), 

16.51d. Schott [2005: 1621 and Searle [1982: 313-3141. 

16.52a-b. Horn and Johnson [1985: 2351. 

16.52~. Horn and Johnson [1985: 4661. 

16.52d. For proofs of (d) and further results, see Rao and Mitra [1971: chapter 

61. 

16.53a. Golub and Van Loan [1996: 3771. 

16.5313. Stewart [1972]. 

16.53~. Zhang [1999: 611 and Meyer [2000a: 522, exercise 7.2.151. 

16.54a. Horn and Johnson [1985: 426, exercise 261. 

16.5413. Quoted by Rao and Rao [1998: 1921. 

16.55a. Horn and Johnson [1985: 501 and Meyer [2000a: 522, exercise 7.2.161. 

16.55b. Horn and Johnson [1985: 51-52]. 
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16.9 POLAR DECOMPOSITION 

16.56. Let A be an m x n complex matrix of rank r ( r  5 min{m, n})  

(a) Suppose m 5 n. Then, using the thin complex version of the singular value 
decomposition (cf. Section 16.3) we have the polar decomposition 

A = PAmQL = (PAmP*)(PQL) = BW, 

where B = (AA*)'I2 is an m x m unique Hermitian non-negative definitive 
matrix of rank r ,  and W is m x n with orthonormal rows (that is, WW* = 
Im). If rank A = m, then the matrix W is unique and B is Hermitian positive 
definite. If A is real. then both B and W can be taken as real. 

(b) If m = n, then W is unitary. Furthermore, if A is nonsingular, then W is 
uniquely determined as B-l A. 

(c) Let m 2 n. By applying (a) to A* we can write A = VC, where the m x n 
matrix V has orthonormal columns and C is an n x n unique non-negative 
definite Hermitian matrix of rank r .  If A nonsingular, then V = W. 

(d) B = C if and only if A is normal. 

16.57. Suppose that the n x n matrix A has a polar decomposition A = BW. 
Then it follows from (16.56d) above that A is normal if and only if BW = WB. 

Proofs. Section 16.9. 

16.56. Horn and Johnson [1985: 412-4141. 

16.57. Abadir and Magnus [2005: 226, real case] and Horn and Johnson [1985: 
4141. 

16.10 MISCELLANEOUS FACTORIZATIONS 

16.58. (Takagi Factorization) Let A = ( a z j )  be a real or complex symmetric n x n 
matrix. Then A can be expressed in the form A = QDQ' (note Q' and not 
Q"), where Q is an n x n unitary matrix and D is a real non-negative diagonal 
matrix. The columns of Q are an orthogonal set of right eigenvectors of AA, and 
the corresponding diagonal elements of D are the non-negative square roots of the 
corresponding eigenvalues of AA. 

16.59. Any square matrix A can be factorized as A = SQDQ'S-l, where S 
is nonsingular, Q is unitary, and D is diagonal with non-negative main diagonal 
entries; all matrices are n x n. 

16.60. For any square matrix A, there exists a unitary Q and upper-triangular 
matrix V such that A = QVQ', where all matrices are n x n, if and only if the 
eigenvalues of AA are real and non-negative. When this condition is true, the main 
diagonal elements of V may be chosen to be non-negative. 
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16.61. If H is Hermitian, there exists a unitary marix Q such that Q*AQ is 
tridiagonal (and also Hermitian). 

16.62. (Upper Hessenberg Reduction) 
unitary matrix Q such that QAQ* is upper Hessenberg. 

Proofs. Section 16.10. 

For any square matrix A there exists a 

16.58. Horn and Johnson [1985: 157, 2041 and quoted by Rao and Rao [1998: 
1921. 

16.59. Horn and Johnson [1985: 157, 2101. 

16.60. Quoted by Rao and Rao [1998: 1921. 

16.61. Quoted by Rao and Rao [1998: 1901. The real case (Jacobi’s reduction) 
is discussed by Meyer [2000a: 3531. 

16.62. Quoted by Rao and Rao [1998: 1901. It is also described by Meyer 
[2000a: 351, real case]. 
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CHAPTER 17 

D I F F E R E N T I AT I0 N 

Methods of differentiation and differentials involving scalars, vectors, and matrices 
are used extensively in statistics. Applications include maximum likelihood and 
least squares estimation, large sample theory, statistical computing, and Jacobians, 
the subject of the next chapter. Turkington [2002], for example, applies first and 
second order differentiation to find maximum likelihood estimates and variance 
estimates for linear regression models, autoregressive time series, seemingly unre- 
lated regression equations, and linear simultaneous equations models. Magnus and 
Neudecker [ 19991 do a similar thing with multivariate models, errors-in-variables 
models, nonlinear regression, and simultaneous equation models. 

Differentiation is also used in sensitivity analysis and perturbation methods, 
which endeavor to determine the perturbation in a system when there are small 
changes in the parameters. It is also used in the derivation of elasticities (a term 
from economics), where one determines the proportional perturbation when there 
is a proportional change in a parameter. Some examples are model fittting (e.g., 
Seber and Wild [1989: 121-126, 668]), ecolological population dynamics (Caswell 
[2001, 2007]), and multivariate elliptical linear regression models (Liu [2002b]). The 
chapter closes with a few results on difference equations. 

17.1 INTRODUCTION 

I have endeavored to categorize the methods of differentation for easy reference, 
though some results, especially relating to a function of a function, fit into more than 
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one category. There is also some overlap of topics as one can consider differentiation 
either with respect to a vector or matrix, or with respect to an element of a vector 
or a matrix. A helpful survey of the subject including an historical overview is given 
by Nel [1980]. He also considers differentiation with respect to  patterned matrices 
(cf. Section 18.3.5). 

17.2 SCALAR D I F F E R E NT I AT I0 N 

For some analytical background to the subject in a statistical context, the reader is 
referred to  Abadir and Magnus [2005: chapter 131, Magnus and Neudecker [1999], 
and Schott [2005: chapter 91. 

17.2.1 

Definition 17.1. We first define the derivative of a matrix or vector with respect 
to a scalar. If A(t) = ( q ( t ) ) ,  then aA(t)/at is defined to be (aaij(t)/at); that is, 
the derivative of A(t) is obtained by differentiating each element of A. The same 
is true for a vector a(t) = (ai(t)). 

Unless specified (e.g., A is symmetric), we assume that the elements of all the 
matrices differentiated are functionally independent (i.e., unconstrained). Also, the 
following apply when we have a vector t = ( t t ,  t z ,  . . . , t,.)’ and at is replaced by ati. 

17.1. We have from the definition: 

Differentiation with Respect to t 

17.2. (Products) Noting that 8 is the Kronecker product, the following result is 
used extensively in the next section. 

d(A(t) 8 B(t)) aA dB 
= - @ B + A A - .  

at at at (b) 

17.3. (Inverse) 

(a) Differentiating AA-l = I for nonsingular A(t), we get 

(b) If R does not depend on t, then differentiating [R’A(t)R]-lR’A(t)R = I 
gives us 
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(c) If A is symmetric and B(t) = R[R’A(t)R]-lR’, where R does not depend 
on t, then, using (b), we obtain 

dA 
- = -B-B. 
aB 
a t  a t  

(d) If A-(t) is a weak inverse of A(t), then differentiating 

a A  
a t  a t  

A 1 -AA--A-A. A- 
aA-(t) 

Further details are given in (17.8) below. 

A’ = -A(A’A)- ’(AA’) (A’A1-A’. 
a t  (el A at 

17.4. (Determinants) If A(t) is nonsingular, then 

8 log(det A) 
a t  

AA-A = A g’ 1ves us 

The result is also true if A is symmetric. A further result follows by noting that 

a d e t A  dlog(det A) 
at  ’ 

= det A 
at  

a[trace(A(t)] = trace [ 8“) 
at  

17.5. (Trace) 

deAt 
a t  
- = AeAt. 17.6. (Exponential) 

Proofs. Section 17.2.1. 

17.2. Graham [1981: 381. 

17.3d-e. Searle [ 1982: 3351. 

17.4. Searle [1982: 337-3381. 

17.6. Abadir and Magnus [2005: 3681. 

17.2.2 

We now consider the special case when t is an element of an n x 1 vector x = (xt). 
The results in this section still apply if F is a matrix function of a matrix X = ( x z J ) ,  
and we replace x, by xz3 .  

17.7. Let F be a square matrix function of a vector x = (xl,x2,. . . , xn)’, then 
from (17.4) and (17.3a) we have the following. 

Differentiation with Respect to a Vector Element 

d trace [ F (x) ] 
ax, = trace (g) 
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(b) Suppose F is nonsingular. 

d det [F( x)] 

dlogdet[F(x)] 1 d d e t F  
8x2 d e t F  axi 

dF dF-1 
8x2 d X i  

d X i  

axi 
-- - - 

- - - -F-l-F-l. 

dlogdet(AF-lB) = -trace 

If adjF is the adjoint matrix of F, then adjF = (det F)F-' and 

dadjF d d e t F  dF-1 

dxa dxa 8x1 
F-' + det F-. - 

~~ - 

(c) (Kronecker Product) Let F and G be p x q and T x s matrix functions of x. 

(i) 

(ii) 

17.8. Let 

dG dF 
= F @  - + -@G.  

d ( F  @ G) 
aXi axc, dxa 

We can replace F by vecF and G by vecG in the above equation. 

dvec (F @ G) 
dXi 

where K,, (= 

d(vec F @ vec G) 
= (1, @ K P  @ I T )  7 

is the commutation matrix. 

F be a p x q matrix function of x. If F- is a weak inverse of F, then, un- 
der certain analytical conditions including continuous differentiability and constant 
rank in some neighborhood, we have 

dF- dF 
dXi 8x2 

F-F = -FF--F-F. 

dG dF 
8x2 8x2 

In particular, there exists a weak inverse G of F such that - = -G-G. 

17.9. Let F be a p x q matrix function of x. If F+ is the Moore-Penrose inverse of 
F, then, under certain analytical conditions including continuous differentiability 
and constant rank in some neighborhood, we obtain 

- 
~ - 
dF+ 
dXi 

17.10. (Eigenvalue and Eigenvector) Let F be a symmetric matrix function of 
an n x 1 vector x. Let X be a simple eigenvalue of F (i.e., one with an algebraic 
multiplicity of 1) and corresponding right eigenvector u of unit length. Then, given 
Fu = X u  and H+, the Moore-Penrose inverse of H = F - X I ,  we obtain 



SCALAR DIFFERENTIATION 355 

17.11. Consider the idempotent matrix P = X(X’WX)-X‘W, where X is n x p 
and W is an n x n positive definite matrix such that the elements of W and/or 
X are functions of a vector z. Then, under certain analytical conditions including 
continuous differentiability and constant rank in some neighborhood, we obtain 

ax ax 
- = (I, - P)-(X’WX)-X’W + x(x’wx)- ( - ) ’w(In  - P) 
aP 
az,  azi azi 

dW 

82, 
+x(x’wx)-x’-(I ,  - P). 

17.12. Suppose X = X(4), where X is n x p of rank p and is a function of 
4 = (41, 4 2 ,  ‘ ’ ’ , M’. Then, 

adet(X’X) = det(X‘X) trace 
a4i 

where X+ is the Moore-Penrose inverse of X. This theory arises in nonlinear 
modeling. 

Proofs. Section 17.2.2. 

17.7. Harville [1997: 305, 307-3081 and Harville [2001: 158, exercise 321 

17.8. Harville [1997: 3121. 

17.9. Harville [1997: 5111. 

17.10. Harville [1997: section 21.15 for proofs and analytical background]. 

17.11. Harville [1997: 3151. Derivatives are also given for WP and W - WP. 

17.12. Bates and Watts [1987] and Bates and Watts [1988: chapter 41 give 
further details. For a summary see Seber and Wild [1989: 543-5441. 

17.2.3 

Definition 17.2. We define the matrix E,, to be an m x n matrix with 1 in the 
i , j t h  position and zeros elsewhere. Thus E,, = ez,mek,3, where ez,m is the i th 
column of I, and e3,, is the j t h  column of I,. 

In what follows, we consider the special case of t = x,,, an element of the real 
mxn matrix X, and include differentiation with respect to a vector element. Results 
in this section can be derived using the properties given in the previous section along 
with (17.13) below. We assume that the elements of X are functionally independent 
(i.e., are “unconstrained’), unless stated otherwise. When m = n, then E,, = E;,. 

Differentiation with Respect to a Matrix Element 

17.13. (Basic Result) 

(a) It is straightforward to show that 

ax Eij 1 X unconstrained, 
E,j + Elj - bijEii, X symmetric, 

where bij = 1 when i = j and 6ij = 0 when i # j .  
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ax’ 
(b) dzij = (G) 
(c) To convert a result given below about an unconstrained X into one for sym- 

metric X, we simply replace E,, by E,, + E:, - SZ3EZZ. 

17.14. (Products) We assume that the following matrices are conformable and X 
is unconstrained. The results follow directly from (17.1) and (17.2). Further results 
can be obtained by setting A and/or B equal to the identity matrix. 

~ ( A X B )  ax 
axij 8 X i j  

= A-B = AEijB. 

a(AXB) = E:, AXB + X’AE,, B. 
~(X’AXB) ax’ 

= -AXB + X’ 
(‘) ax,, ax,, ax,, 

(d) a(xAx’B) = E,j AX’B + XAE:, B. 
axzj 

= AEB = AE,,X’B + AXE:,B. 
a(AXX’B) 

ax,, ax,, 

( f )  a(XAXB) = EijAXB + XAEijB. axij 

= EijX’X + XE:,X + XX’Eij. 
axx‘ x 

(h) ~ axij 
17.15. (Inverses) 

(a) If BXC is nonsingular, we differentiate (BXC)(BXC)-’ = I to get (cf. 
17.3a) 

a{A(BXC)-lD) = -A(BXC)-lBEijC(BXC)-lD. axij 
(b) Suppose X is m x m and nonsingular. From (a) we have 

where y, is the i th column and zi is the j t h  row of X-l. 

If X is symmetric, then using (17.13~) we have 

ax-1 if i = j ,  

where y, is the i th column of X-l. 
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17.16. (Determinants) Suppose X is square and Ez3 is the cofactor of x , ~ .  Then 

-= {  d det X E 2 3  , X unconstrained, 
ax23 (2 - & ) E 2 3 ,  x = X', 

where 6,) = 1 when i = j and 0 otherwise. 

17.17. (Powers) Let X be nonsingular, and let Ic be a positive integer. 

(a) We can prove by induction that 

for Ic = 1 , 2 , .  . ., where Xo = I,. 

(b) Differentiating XkXPk = I gives us 

17.18. (Some Matrix Functions) 
where X is unconstrained. 

Let Y be a nonsingular matrix function of X, 

= (detY) trace Y-'- [ d d e t Y  

When X is symmetric we can use (17.13~) in the following applications. 

(i) If Y = AXB,  then (from 17.14a) 

ddet(AXB) = det(AXB) t r a ~ e [ ( A x B ) - ~ A E , j B ]  
axij 

= det (AXB) { [B(AXB) -'A]'}ij. 

(ii) If Y = X'AX, then (from 17.14~) 

= det(X'AX) trace{ (X'AX)-' [EljAX + X'AEij]}. 
d det(X'AX) 

d X i j  

dvec Y dY 
= vec -. 

(b) dzij l3Xij  

d trace Y 
(c) d X , j  = trace (e) . 

We can get a corresponding result for (Y-')' by simply replacing Y by Y', 
as (Y-')' = (Y')-'. 
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17.19. (Eigenvalue and Eigenvector) Let X be a symmetric n x n matrix with 
simple eigenvalue X (i.e., has an algebraic multiplicity of l), and corresponding 
eigenvector u = (ui) of unit length. Then 

2 2  
- = 2uu‘ - diag(u,,u2, . . . ,u:). 
ax 

d X i j  

Also, if gj  is the j t h  column of H+,  the Moore-Penrose inverse of H = X - XI,, 
we have - = {  au -uigi ,  if j = i, 

8 X i j  - (u jg i  + u i g j ) ,  if j < i. 

Proofs. Section 17.2.3. 

17.14. Graham [1981: 60-64, 691. 

17.15b. Harville [2001: 130, exercise 211. 

17.16. Searle [1982: 3361. 

17.17. Graham [1981: 67-68]. 

17.18. Harville [1997: section 15.81. 

17.19. Harville [1997: 5671. 

17.3 VECTOR D I F FE R EN TI AT I 0 N : SCALAR F U N C T  I0 N 

17.3.1 Basic Results 

Definition 17.3. I f f  is a function of x, we denote the vector of partial derivatives 

(a f /ax i )  by the column vector a f /ax, that is, - = 

row vector a f /ax’ = (a f /ax)’. Some authors (e.g., Dhrymes [2000]) reverse the 
notation. 

17.20. (Basic Results) Let x and a be n x 1 vectors, and let A an n x n matrix. 

af (g). We also define the 

8x‘Ax 
(b) dx - - (A + A’)x, or 2Ax if A is symmetric. 

17.21. (Chain Rule) If z is a differentiable scalar function of y, and y is a differ- 
entiable function of x, then 

which can be expressed in the form of the row vector 

a z  a z  ay 
ax, dy’ ax,‘ 

- - - - . -  
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In terms of column vectors, 

The function z might include functions such as the trace, the determinant, and 
quadratic expressions. 

Proofs. Section 17.3.1. 

17.20. Abadir and Magnus [2005: 356, transposed]. 

17.3.2 x = vec X 

In applying the following results using the chain rule above, it can be more con- 
venient to work with d(vecX)’ instead of dvecX. The right-hand side is then 
transposed, as indicated in (17.22) below. Some authors use the reverse notation 
(e.g., Dhrymes [2000]). Note that the following derivatives are all column vectors. 

17.22. If f ( X )  is a scalar function of the matrix X, then 

17.23. (Trace) 

d trace(AXB) 
= vec ( A’B’) . 

vec x 
We can obtain this result directly by noting that 

trace(AXB) = trace(BAX) = vec (A’B’)’vec X, 

and using (17.20a). We can set A or B equal to I. 

= [(B’ @ A )  + (B @ A’)]vecX. 
d trace(X’AXB) 

(b) vec x 
Provided that the appropriate matrices are square, other results follow from trace(CD) = 
trace(DC) and trace C = trace C’. For example, 

trace(X’AXB) = trace(AXBX’) = trace(XBX’A) = trace(BX’AX). 

17.24. (Determinants and Log Determinants) 
are nonsingular, and we use the result vec (AXB) = (B’ @ A)vec X. 

The following matrices X and Y 

ddet 
d vec X 

= vec [(adjX)’] = (det X)vec (X-”). 

If Y = X‘AX, then 

= det Y [(Y-” @ A )  + (Y-’ @ A’)]vec X.  
d d e t Y  
dvec X 
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When A is symmetric, then Y is also symmetric and 

d d e t Y  
d vec X 

= 2detY[(Y-’ @A)vecX. 

(c) If Y = XBX’, then 

d d e t Y  
d vec X 

= det Y[B @ (Y-’)’ + (B’ @ Y-’)]vecX. 

When B is symmetric, then Y is symmetric and 

d d e t Y  
d vec X 

= 2 det Y [B @ (Y-l)]vec X. 

(d) If Y is one of the above functions, then 

d(1ogdet Y) 1 d d e t Y  
~~ 

- - 
a vec X det Y avec X ’  

Proofs. Section 17.3.2. 

17.23. Dhrymes [2000: 156-157, transposed] and Rogers [1980: 541. 

17.24a. Rao and Rao [1998: 2291 and Schott [2005: 3601. 

17.24b. Abadir and Magnus [2005: 372-373, transposed]. 

17.24a-d. Turkington [2002: chapter 41, 

17.3.3 Function of a Function 

17.25. Suppose y = w‘Az, where A is m x n and w, z, and A are all functions of 
x. We wish to find the row vector dyldx‘. We first note from (11.16b) and (11.15~) 
that 

y = vec y = (z’ @ w’)vec A = (z @ w)’vec A = [vec (wz’)]’vec A. 

Then using W‘AZ = z’A‘w, we get 

dW I ,dvecA az 
= z’A’- + [vec (wz ) I  ~ + w‘A- 

ax’ dX’ ax’ dX’ 

dy 

17.26. Let y = trace[F(Z)], where F is a square matrix function of Z and Z is a 
function of x. Then, by the chain rule (17.21), we obtain 

dy dvecZ dy- - .~ 
ax’ a(vecZ)’ ax’ ’ 

where dy/d(vecZ)’ can be obtained from (17.23) and transposing. We give three 
examples from Dhrymes [2000: section 5.41. 

d trace(AZB) d vec Z 
= vec ( A’,’ )’ - . 

(a) Ox’ 8x1 
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a trace( AZ’BZ) a vec Z 
dX/ ax’ . 

= (vecZ)’(A’@B+A@B’)-  (b) 

ddet  Z dvec Z 
= vec [(adjZ)’]’- 

(c) dx’ . 

Proofs. Section 17.3.3. 

17.26. Dhrymes [2000: section 5.41. 

17.26a. The result follows from (17.23a). 

17.26b. We use (17.2313) transposed with A and B interchanged. 

17.26~. We use (17.24a). 

17.4 V ECTO R D I F F E R E NT I AT I0 N : VECTO R F U N C T  I0 N 

Definition 17.4. Let x and y be n x 1 vectors. We define 

-=($>- a Y  
ax’ 

I find this notation easy to remember because y, being a column vector, means 
that i refers to the row number, and x‘, being a row vector, means that j refers to 
the column number. This notation is used, for example, by Magnus and Nuedecker 
[19] and Harville [1997]. However, other notations are used in the literature. For 
example, Dhrymes [200] calls the above expression dy/dx, while Graham [1981], 
Searle [1982], and Turkington [2002] define dy/dx = (dyj/azi), the transpose of 
our definition. However, such a definition does not adapt so well t o  the chain rule 
below in (17.29) and in the derivation of Jacobians, which are discussed in the next 
chapter. 

If Y = F(X) is a matrix function of X ,  we shall also be interested in the 
derivative dvecY/(dvecX)’.  Rao and Rao [1998: Section 6.51 denoted the latter 
expression by *dY/dX and list a number of results. The Kronecker product “@” is 
very useful in this regard, along with (17.60). Many of the results are proved using 
the method of differentials (Section 17.8). 

17.27. Since the Kronecker product x 8 a is a vector, we have the following. 

a(x 8 a) 
(a) ax, = I, @a. 

- a@.,. 
d(a 8 x) 

(b) dx’ - 
17.28. If y = Ax,  then 

ay/ax’ = A. 

Similarly, if vec Y = B vec X ,  then 

d vec Y 
d(vec X)’ 

= B.  
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17.29. (Chain Rule) If z is a differentiable vector function of y and y is a differ- 
entiable function of x, then, arguing as in (17.21), 

az dz d y  
dx’ dy’ dx” 

- - - 

This result also holds if z is a scalar (cf. 17.21), and then dz/dx’ is a row vector. 

17.30. (Matrices with Functionally Independent Elements) In what follows we can 
obtain special cases by putting some of the matrices equal to the identity matrix. 
Also I(,,,) (= K,,) is the vec-permutation (commutation) matrix. 

(b) If Y = A X B ,  then from (11.16b), vecY = (B’ 8 A)vecX and 

d vec Y 
d(vec X)’ 

= B’@A. 

(c) If Y = AX’B and X is m x n, then vec Y = (B’ 8 A)vec X’, vec X’ = 
I(,,,)vecX and, from (a) and (11.16b), 

d vec Y 
d(vec X)’ = (B’ @ A P ( n , m )  

(d) If X is nonsingular and Y = AX-lB ,  then 

vec Y 
= -(X-’B)’ @ (AX-’) 

d(vec X)’ 

We can set A = B = I. 

(e) If X is nonsingular and Y = X k ,  where k is a positive integer, then 

k 

= C((X’)”-i @ xi-1). 
d vec Y 

d(vec X)‘ 
i = l  

( f )  If X is m x n and Y = X’AX, then 

d vec Y 
d(vec X)‘ = (X’A’ 8 L)I(,,,~ + (I, 8 X’A). 

If A is symmetric, we get ( I n 2  + I(,,,))(I, 8 X’A). 

(g) If X is m x n and Y = XBX’, then 

If B is symmetric, we get (1,~ + I(,,,))(XB @ Im). 
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(h) If X is m x n, U is a p x q matrix function of X, and V is a q x T 

function of X, then 

363 

matrix 

17.31. Let F(X) = Z(Y(X)), then by the chain rule (17.29), 

dvec F dvec Y (X) 
v,y(x) d(vec X)' ' 

17.32. (Symmetric Matrices) Let X be an n x n symmetric matrix. 

(a) If Y = AXA', then vechY = H,(A @ A)G,vechX (cf. 11.30), where H, 
can be replaced by G: (= D:), and 

13 vech Y 
d(vech X)l 

= H,(A 8 A)G,. 

Here G, is the duplication matrix. 

(b) If Y = X-', then Y = X-lXX-l, and from (a); 

d vech Y 
d(vech X)' = -H,(X-' @ X-')G,. 

(c) If Y = Xk, where k = 2 , 3 , .  . ., then 

k d vech Y 
d(vech X)' 

= H, x ( X k p i  @ Xi-')G, 
i= l  

(d) If Y = X+, then 

d vech Y 
dvech X)' 

= G,f{ [X+X+ @ (I, - X + X )  

where I(,,,) is the vec-permutation (commutation) matrix. 

17.33. Let F be a p x q matrix whose elements are a function of x = (XI, ~ 2 , .  . . , 
(Here x can be vec X.) The following results mirror (17.30) and (17.32): 

8 vec (AFB) d vec F 
= (B' @ A)-. 

ax' 8x1 

d vec F-l = -(F-l' @ F-l)-. d vec F 
ax' 8x1 

If F is nonsingular, 

d vec F 
dX' 

If F = X and x = vecX, then - - - I P T  

If F is n x n, then 

k 
dvec (Fk) d vec F 

= C[(F"-')'  @ Fk-Zldx, (Fo = I,). 
i= 1 

dX' 
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(e) If F is symmetric and n x n, then: 

d vech ( AFA’) d vech F 
= H,(A @ A)G,-. 

( 4  Ox’ dX’ 
d vech F-’ d vech F 

(ii) = -H,(F-~ @ F-~)G,- 
dX’ dX’ 

17.34. Let F and G be m x n and p x q matrices, respectively, which are functions 
of x. 

(a) (Kronecker Product) From (17.7~) we have: 

a( vec F @ vec G )  = ( r e c F @ w )  + (-8vecG dvec F 
dX’ dX’ dX’ (4 

dvec (F 8 G) - 

(b) (Hadamard Product) If F and G are both m x n matrix functions of x, then 

d(vec F 8 vec G) 
dX’ (ii) - (In 63 b , q )  8 I P )  dX’ 

dvec (F o G) d vec G dvec F 
dX’ 1 D(F)- dX’ + D ( G ) T ’  

where “0” represents the Hadamard product, and for any m x n matrix A, 

D(A) =diag(uii,aiz,...,ai,,azl,azz,...,azn,.. .,aml,ama,. . . ,amn) 

17.35. Suppose y = Az, where A is m x n and A and z are functions of x. We 
want to find dy/dx’. Since y = vecy = vec (Az) = (z’ 8 1,)vec A, we have 

d y -  d vec ( Az) 
dX’ 

- 

dvecA dz 
dX’ dX‘ 

= (z’81m)- + A -  

Proofs. Section 17.4. 

17.30b. Abadir and Magnus [2005: 3621, Harville [1997: 3661, and Henderson 
and Searle [1979: 731. 

17.30d. Abadir and Magnus [2005: 3661 and Turkington [2002: 73, trans- 
posed]. 

17.30e. Abadir and Magnus [2005: 362-3631 and Henderson and Searle [1979: 
731. 

17.3Of-g. Abadir and Magnus [2005: 3661 and Turkington [2002: 74, trans- 
posed]. 

17.30h. Rao and Rao [1998: 234, with typo corrected]. 

17.32a. Harville [1997: 3661 and Henderson and Searle [1979: 741. 

17.32b. Harville [1997: 3681. 

17.32~. Henderson and Searle [1979: 741. 
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17.32d. Schott [2005: 3641. 

17.33. Harville [1997: section 16.61; for (d) see Harville [2001: 157, exercise 
311. 

17.34a(ii). Harville [2001: 158, exercise 321. 

17.34b. Quoted by Rao and Rao [1998: 2351. 

17.5 MATRIX DIFFERENTIATION: SCALAR FUNCTION 

17.5.1 General Results 

Definition 17.5. Let y = f(X) be a scalar function of the elements z , ~  of the 
rn x n matrix X. Then the derivative of y with respect to X, written ay/aX, is 
the matrix with (i, j ) t h  element ay/dx,, , that is, 

If X is a vector x, then we write ay/dx, a column vector with i th element dy/azi. 
Thus 

It is assumed that X and x have functionally dependent elements, unless stated to 
the contrary (e.g., X is symmetric). Note that 

A special case is when yrs = F,,(X), where yrs is the (T ,  s) th  element of Y = F(X). 
We remind the reader that diag(A) is the diagonal matrix whose diagonal el- 

ments are the same as the diagonal elements of A.  Such matrices feature frequently 
below. Many of the results in this section can be derived using the method of dif- 
ferentials, as demonstrated in (17.57). 

17.36. (Chain Rules) 

az az ay 
axij ay axij (a) If y = f (X) and z = g(y), then ~ = - . -, which leads to 

az az ay 
ax ay ax’ 

- 

(b) If Y = F(X) and z = g(Y), then 
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We can also write the above equation in the form 

Nel [1980: 150-1511 used this equation to derive some of the results below. 

17.37. (Symmetric X) If y = f(X),  where X is symmetric, then 

In working out the derivative df(Y)/aY, we pretend that the function f ( . )  is 
defined on the class of matrices Y with all independent components, and then the 
derivative is formed. Rao and Rao [1998: 2311 give some helpful examples of the 
method. 

Proofs. Section 17.5.1. 

17.37. Rao and Rao [1998: 230-2311. 

17.5.2 f = trace 

We now give various matrix derivatives for the trace of matrix products. Vari- 
ations of the following can be obtained by using the results trace C = trace C’,  
trace(DE) = trace(ED), trace(AXB) = trace(BAX), and a’Xb = trace(a’Xb) 
for square C ,  DE, and A X B .  In what follows, we assume X to be m x n and un- 
constrained, unless otherwise stated. If X is symmetric, we assume it to be n x n. 
We can also set A = I, and/or B = I, to get special cases. The following can be 
readily derived from the basic simple result 

d trace Y 
= trace (g) 

ax,, 

and then using the results of (17.13~) and (17.14). We also use the fact that if W = 
(wzJ) ,  then trace(E:,W) = trace(WE’ ) = wzJ and trace(E,,W) = trace(WE,,) = 
wJz,  where E,, has 1 in the i , j t h  position and zeros eslewhere. 

17.38. If y = trace[(U(X)V(X)], where U and V are matrix functions of X, then 

dy - d trace[U(X)V(Y)] 
d X  dX 

d trace[U(Y)V (X)] 
dX 

~ IY=X. IY=X + 

17.39. Using (17.14a) and (17.13), we obtain 

d trace(AXB) C‘ , X unconstrained , 
d X  

where C = BA. 

or B equal to I. 

= { C + C’ - diag C ,  X symmetric; A, B square, 

To obtain further results we use trace(AX’B) = trace(B’XA’), and also set A 
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17.40. If A is m x m, B is n x n, and X is unconstrained, we have from (17.14~) 
that a trace(X'AXB) a trace(XBX'A) 

= A X B  + A'XB'. 

An important special case is when B = I, and A is symmetric. Then 

- - ax ax 

d trace( X' AX)  
= 2AX. ax 

17.41. Using (17.14f) and (17.13), we obtain 

d trace(XAXB) H'l X unconstrained , 
d X  = { H + H' - diag H, X symmetric, 

where H = B X A  + AXB.  We can get the special case of t r a ~ e [ ( A X ) ~ ]  by noting 
that t r a ~ e [ ( A X ) ~ ]  = trace(AXAX) = trace(XAXA). Also, we can set B = I. 

17.42. If X is nonsingular and unconstrained, we have from (17.15a): 

- - 
a trace(AX-'B) 

ax (b) From (a) we have - (x- 'BAX- l )'. 

- -  - 
d trace X-l 

ax ( c )  A useful special case is -(X-2)' 

(d) When X is symmetric, we have from (17.13) that 

d trace X-l 
= -2(X-2) + diag(X-2). ax 

17.43. Using (17.17a) and (17.13), we have for k = 2,3, .  . . 

d trace Xk k(X"-l)', X unconstrained, 
ax = { 2kX"-' - k diag(Xk-'), X symmetric. 

17.44. Suppose X is unconstrained. 

8 trace ex 
= (ex)' 

(a) ax 

Proofs. Section 17.5.2. 

17.38. Rao and Rao [1998: 2321. 

17.39. Harville [2001: 116, exercise 81. 

17.40. Graham [1981: 77-78]. 

17.44a. Abadir and Magnus [2005: 368, exercise 13.291. 

17.44b. The derivative is etrace(x2)d trace(X2)/aX, and then use (17.14f) 
with A = B = I. 
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17.5.3 f = determinant 

In this section we assume that all the determinants are nonzero and that X is uncon- 
strained, unless otherwise stated. Most of the following results for X unconstrained 
are derived in Dwyer [1967]. The constrained case follows from the unconstrained 
case using (17.13) above. 

17.45. From (17.18a(i)), 

d d e t X  (adjx)’ = (det X)(X-’)’, X unconstrained, 
ax det(X)[2XP1 - diag(X-I)], X symmetric. 

17.46. From (17.45), 

dlog(det X) d d e t X  (X-l)’, X unconstrained, 
= { 2X-’ - diag(X-’), X symmetric. 

= (det X)-’- 
d X  dX 

17.47. 

d det (AXB) det(AXB) C’, X unconstrained, 
d X  { det(AXB)[C + C’ - diag C ] ,  X symmetric, 

where C = B(AXB)-’A. 

17.48. If k is a positive integer and X is unconstrained, 

d d e t X  
= k(det X ) ” - ’ ~  

dX dX . 
d(det X)k 

In particular, 

= 2(det X)’(X-l)’. 
d(det X)’ 

dX 

17.49. Assuming X’AX is nonsingular, 

ddet(X’AX) = det(X’AX){AX(X’AX)-’ + A’X[(X’AX)-’]’}. 
(a) ax 

This result is linked to (17.2413). 

(b) Setting A = I we get 

= 2 [det (X’X)] X(X’X) - ’ ddet(X’X) 
d X  

= 2 det(X’X) X’, 

where X+ is the Moore-Penrose inverse of X (cf. 17.57e). Bates [1983] gave 
computational details. 

(c) Replacing X by X’, we get 

a det(XX’) = 2[det (XX’)] (XX’)-’ X. 
dX 
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17.50. Let F(X) be a square nonsingular matrix function of X, and let G ( X )  = 
C[F(X)]-’A. Then 

det[F(X)](GXB + G’XB’), if F(X) = AXBX’C, 
adet[(F(X)I = { det[F(X)](BXG + B’XG’), if F(X) = AX’BXC, 

det[F(X)](GXB + BXG)’, if F(X) = AXBXC. ax 

17.51. If X is nonsingular, 

8 det (AX-‘ B) - det(AX-’B)C’, X unconstrained, 
dX = { -det(AX-’B)[C + C’ - diag C], X symmetric, 

where C = [X-lB(AX-lB)- lAX-l] .  

17.52. If F is a nonsingular matrix function of X with det F > 0, then 

a log det F a d e t F  
= (det F ) - ’ ~  ax ax ’ 

This can be applied to all the previous results. 

Proofs. Section 17.5.3. 

17.45. Mathai [1997: 91 and Searle [1982: 3371; see also (17.5713). 

17.46. Henderson and Searle [1979: 761 and Searle [1982: 331; see also 
(17.57d). 

17.47. Rogers [1980: 521; see also (17.57d). 

17.48. Graham [1981: 75-76] and Magnus and Neudecker [1999: 179, k = 21. 

17.49a. This result also follows from (17.50). 

17.4913. Magnus and Neudecker [1999: 1791 and Rogers [1980: 521. 

17.49~. Magnus and Neudecker [1999: 1791. 

17.50. Quoted by Magnus and Neudecker [1999: 1801. 

17.51. Rogers [1980: 521. 

17.5.4 f = yrs  

17.53. In what follows we assume that X and Eij (with 1 in the ( i , j ) t h  position 
and zeros elsewhere) are both m x n matrices. 



370 DIFFERENTIATION 

= AXE:, + A‘XE,,. W’AX) , ,  
(d) ax 

(e) ax 

( f )  ax 

= E,,X’A’ + A’X’E,, . 

= AX’E;, + E;,x’A’. 
a( X’AX’),, 

k- 1 

(g) If k is a positive integer, ~ = E(X’)jE,s(X’)n-j-l,  where 
j = O  

ax 
xo = I. 

Proofs. Section 17.5.4. 

17.53. Graham [1981: 60-681. 

17.5.5 f = eigenvalue 

17.54. If X is a nonrepeated (simple) eigenvalue of the square matrix X with left 
eigenvector v and right eigenvector u. then 

(a) 

- = v(v’u)-lu’ 
dX 
dX 

(b) If A, is a simple eigenvalue, 
eigenvector (i.e., Ub.0 = I) ,  

X is symmetric, and Ug is the normalized right 
which is also the left eigenvalue, then 

Proofs. Section 17.5.5. 

17.54a. Lancaster [1964] and Nel [1980: 1411. 

17.5413. Lancaster [1964] and Magnus and Neudecker [1999: 1801. 

17.6 TRANSFORMATION RULES 

We now give some transformation rules that enable us to use the results from one 
type of differentiation to obtain results for other types. 

17.55. Let X be an m x n matrix, and let Y be a function of X. The following 
equivalent expressions (adapted from Graham’s [ 1981: 65, 741 two “transformation 
principles”) apply for all conformable At, Bt, C,, and D,, including functions of 
X, and are simply different ways of writing ayrs/dx,,. If we obtain an expression 
like (1) or (2) below, for example, in the process of differentiation, then we can 
immediately obtain (3), which may be more difficult t o  get directly. 
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It should be noted that E,, and E,, may be of different sizes. We also recall (cf. 
11.19a) that if C and D are both m x R ,  then 

I (m,n)  (D €3 C’) = (C’ €3 D)I(n,m).  

17.7 MATRIX DIFFERENT I AT1 0 N : MATRIX F U N C T  I0  N 

Definition 17.6. Let Y = F(X), where Y is p x q and X is m x n. Then the 
derivative of Y with respect to X can be defined in different ways. One method is 
to use the mp x nq matrix (MacRae [1974] and Rogers [1980]) 

k 3 2 2  . . .  d 
ax ax 

d Y  
dX . . . .  . 

where the multiplication of a matrix element by a derivative operator corresponds 
to the operation of differentiation. Some authors-for example, Vetter [1970] - 
have used the reverse order (d/dX) BY in the above definition. Rogers defines the 
latter to be a y  a y  

a y  a y  
aXz1 aXz2 

- ~ . . .  ~ 

ax11 az12 

- - ... - 
. . .  

This is the definition for dY/dX used by Graham [1981: chapter 61. 
The above definitions can also be used when X or Y are vectors. Magnus and 

Neudecker [1999: chapter 91 and Rao and Rao [1998: 2331 discuss the relative merits 
of the above definitions and recommend a third alternative definition of a matrix 
derivative, namely I3 vec Y/d(vec X)’ as the only appropriate definition. This ties in 
nicely with the use of Jacobians; such derivatives and Jacobians are discussed in the 
next chapter. Kollo and von Rosen [2005: 1271 define dY/dX = i3(vecY)’/i3vecX, 
the transpose of the former definition. Their notation has the advantage in that it 
is consistent with the case dd(X)/dvecX, where is a scalar function. For those 
interested in results relating to the two previous displayed definitions, the reader 
is referred to Graham [1981], MacRae [1974], Neudecker [2003], Rogers [1980], and 
the references therein 
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17.8 M ATR I X D I FFER E N TI A LS 

We mentioned some transformation rules for finding matrix derivatives in (17.55) 
above. There is, however, another powerful method for finding derivatives based 
on matrix differentials using another transformation rule given in (17.60) below. 
They can be used to derive some of the expressions given above, as indicated in the 
next chapter, Section 18.2. A good reference for this method is Abadir and Magnus 
[2005: chapter 131). 

Definition 17.7. If y = f (x) is a scalar function of x = (x1,x2,. . . , x,)’, then the 
differential dy is defined to be 

2 = 1  . 
If X = ( x , ~ )  is an m x n matrix, then we define the differential d X  to be the matrix 
of differentials dxtJr that is, d X  = (dx,,). In the case of a vector x = (x,), we 
have dx = (dx,), so that we can therefore express d X  as a vector using vec d X  (= 
dvecX). For some analytical details see Abadir and Magnus [2005: chapter 131, 
Magnus and Neudecker [1999], and Schott [2005: sections 9.2, 9.31. In what follows, 
X can be replaced by F(X),  a matrix function of X,  when obtaining differentials 
so that d X  is replaced by dF. 

17.56. (Basic Properties) Let X be an m x n matrix. 

(a) If A is a matrix of constants, then d(AX) = AdX. 

(b) d(X f Y )  = d X  f dY. 

(c) d(XY) = (dX)Y + XdY 

(d) d(X’) = (dX)’. 

(e) dvecX = vecdX. 

(f) dvecX’ = vec(dX’) = I~,,,)vec (dX) (cf. Definition 11.6 above (11.18)). 

(g) If X is an n x n matrix, we obtain 

d(traceX) = trace(dX) = trace(1,dX) = vec (I,)’d(vecX), 

from (11.17a). 

(h) (Kronecker product) d(X 8 Y) = (dX) 8 Y + X 8 dY. 

(i) (Hadamard product) d(X o Y) = (dX) o Y + X o dY. 

(j) d(det X)  = (det X) trace(X-’dX) 

(k) dX-’ = -X-’(dX)X-’. 

17.57. (A Scalar Transformation Rule) If y = f (X) is a scalar function of X, then 

dy = trace(A’dX) if and only if - = A. Furthermore, from (11.17a), we have af 
ax 

dy = trace(A’dX) = (vec A)’dvec X if and only if = vec A .  af 
d(vec X)  
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Here A may be a function of X. Examples follow with X unconstrained (Abadir 
and Magnus [2005: 3571). 

(a) If y = trace(X’X), then dy = 2trace(X’dX) (by (17.56~) and (17.56g)), from 
8 Y  
d X  

which we get - = 2X. 

(b) If y = det X, where X is nonsingular, then dy = (det X) trace(X-’dX) (by 
d Y  
d X  

17.56j) and - = (det X)X-”. We also have 

dlog(det X)  = (det X)-’d(det X). 

(c) If y = trace(XAX’B), then 

dy = trace[d(XAX’B)] = trace[(dX)AX’B] + trace[XA(dX)’B] 

= trace[(AX’B + A’X’B’)dX] 

and 

3 = (AX’B + A’X’B’)’. 
dX 

(d) If y = det(AXB), where Y = A X B  is nonsingular, then from (b) 

d(det Y) = det Y trace(Y-’dY) 

= det Y trace[Y-’A(dX)B] 

= det Y trace[B(AXB)-’AdX] 

= det Y trace( CdX),  say, 

dY 
dX 

and - = (det Y)C’, where C = B(AXB)-’A. 

( e )  If y = det(X’X), where Y = X’X is nonsingular, then from (a) we obtain 

d(det Y) = det Y trace(Y-’dY) 

= det Y trace[Y-’d(X’X)] 

= 2 det Y trace[Y-’X’dX] 

8Y 
d X  

and - = 2(det Y)(XY-’). 

17.58. (A Vector Transformation Rule) If the vector y is a differentiable function 
of the vector x, then we have dy = Adx if and only if 

””=(!@)=A. dX’ 

Here A can be a function of x, and we can substitute x = vecX, and so on, as in 
the next result. For example, if y = Ax, where A is a function of x, then since 
(dA)x = vec [(dA)x], we have from (11.16a, third equation) 

dy = (dA)x + Adx = (x’ ~3 1)dvec A + Adx 
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and 
a vec A 

= (x’ 8 I)----- + A. dy 
dX’ dX’ 

17.59. (A Matrix Transformation Rule) Let Y be a differentiable function of 
X,,,,. Then we have the following: 

(a) d vec Y = vec (dY) = B vec (dX) = B vec d X  if and only if 

a vec Y 
= B. 

d(vec X)’ 

(b) vec (dY) = B vec (dX’) = BI(,,,)vec (dX) (by 17.56f) if and only if 

d vec Y 
d(vec X)’ = BI(n,m).  

In the above, B may be a function of X, but not of dX. 

17.60. (Equivalent Representations) Let X be m x n. If “8” is the Kronecker 
product, then the following three statements are equivalent. 

(1) d Y  = A(dX)B + C(dX’)D. 

(2) vec (dY) = (B’ @ A)vec (dX) + (D’ @ C)vec (dX’). 

Here I(,,,) is the vec-permutation (commutation) matrix, and the matrices A, B, 
C, and D may all be functions of X. Examples follow for X unconstrained. 

(a) Let R, S, and T be matrices of constants. If Y = RX’SXT, where X is 
m x n, then from (17.56a) and (17.56~) above we obtain 

d Y  = RX’S(dX)T + Rd(X’)SXT, 

and by (17.60(3)) we obtain 

d vec Y 
d(vec X)’ 

= T’ @ (RX’S) + [(SXT)’ @ R]I[,,,). 

(b) If X and C are m x n, B is an m x m symmetric matrix, and Y = (X - 
C)’B(X - C),  then from (a) with D = B(X - C )  we have 

d Y  = (dX)’D + D’dX, 

so that 

- - d vec Y 
d(vec X’) 

- - 
- - 
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Here P,(= N,) is the symmetrizer matrix in Definition 11.9 (see also (11.29h(ii)). 
The case Y = X’X was given by Abadir and Magnus [2005: 3631. 

If Y = X-’, where X is nonsingular, then from (17.56k) we have 

d Y  = -X-’(dX)X-’. 

(ii) trace[)( d(X-’)] = - trace[XX-’(dX)X-’] = - trace(X-’dX). 

If T is orthogonal and de t (T  +I) # 0, then there exists a one-to-one relation 
between T and the skew symmetric matrix S, namely, S = 2(T + I)-’ - I, 
where T = 2(S + I)-’ - I (cf. 5.19). Then from (b), 

1 
d T  = - z ( T  + I ) (dS)(T + I). 

17.61. (Moore-Penrose Inverse) If X is m x n with Moore-Penrose X+, then, 
provided that rankX is constant (over a suitable set), we obtain 

dX+ = (I, - X+X)(dX’)X+’X+ + X+X+’(dX’)(I, - XX’) - X+(dX)X+.  

Hence, using rule (3) in (17.60), we have 

d vec X+ 
d(vec X)’ 

17.62. (Idempotent Matrix) Let X = ( X ’ , X ~ , .  . . , x,) be n x p  of rank p ,  and define 

= {X+’X+@(I,-X+X)+(I,-XX+)@x+X+’}I(,,,) - (X+’@x+).  

rn - X(X’X)-’X’. Then: 

d M  = -M(dX)(X’X)-’X’ - X(X’X)-’(dX)’M. 

- 
d vec M 

(d vec X)‘ - -(In2 + I(,,,))[X(X’X)-’ C3 MI. 

From d X  = (dx,)ei, we obtain 

d M  = -M(dx,)e;(X’X)-’X’ - X(X’X)-’e,(dx,)’M, 

where ej is the j t h  column of I,. 

17.63. (Eigenvalue and Eigenvector) Let X be a symmetric n x n matrix with dis- 
tinct eigenvalue Xi  and corresponding normalized eigenvector yi (with unit length). 
Then: 

(a) dXi = y,’(dX)yi and dXi = dvecXi = (7: @ yI)dvecX. Since vecX = 
G,vech X we have 

dXa 
d vech X 
-- - (rl@ cy,l)Gn. 
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ax, 
8 vech X 

(b) dyi = -(X - XiIn)+(dX)yi and ~ = - { ~ i  @ (X - XiI,)+}G,, 

where (X - X,I,)+ is the Moorepenrose inverse of (X - &In). 

17.64. (Sensitivity Analysis in Regression) From Section 20.7.1, the ordinary least 
squares (OLS) estimate of a full-rank regression model is p̂  = (X’X)-lX‘y, where 
X = (xl,x2,. . . ,xp) i snxpof rankp ,  andtheresidualisr  = (In-X(X’X)-lX’)y = 
My. Then: 

Proofs. Section 17.8. 

17.56. Abadir and Magnus [2005: 355, 362, 3691 and Schott [2005: 3561. 

17.57b. Mathai [1997: 711 

17.57~. Abadir and Magnus [2005: 3591. 

17.60d. Deemer and Olkin [1951: 364-3651, 

17.61. Magnus and Neudecker [1999: 1541 and Schott [2005: 3611. 

17.62. Abadir and Magnus [2005: 365-3661, 

17.63. Magnus and Neudecker [1999: 159-160, differentials only; they also 
give the complex case, and some second differentials] and Schott [2005: 3691. 

17.64. Abadir and Magnus [2006: 375-3761, 

17.9 P ERTU R BAT I 0 N US I N G D I FFER E N TI A LS 

An important problem is that of finding a Taylor expansion for a function of X+dX, 
when the elements of dX are small. We begin by writing dX = EY, where E is small, 
so that X + EY represents a small perturbation of X. If f is a vector function of 
X, then a Taylor expansion would take the form 

W 

f ( X + t Y )  =f (X)+-pgg, (X,Y) ,  
2 = 1  
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where gz(X,Y) represents some vector function of X and Y .  Similarly, if we have 
a matrix function F, then the expansion would take the form 

cc 

F(X + EY) = F(X) + C eZG2(X, Y ) ,  
z = 1  

where G, is now a matrix function. Schott [2005: section 9.61 demonstrated the 
method with several examples, and some of the results of these are given below. 
He also demonstrated how the method can be used for finding differentials and, 
ultimately, Jacobians. 

17.65. Suppose that X is nonsingular and F(X) = X-'. Then 

(X + dX)-' = X-l - X-l(dX)X-l  + X-l(dX)X-'(dX)X-' 

-X-l(dX)X-l(dX)X-l(dX)X-l + . . .  . 
17.66. Let X be a real symmetric n x n matrix with spectral decomposition X = 
QAQ', where A = diag(A1, Xz, . . . , A,) and A, = A,(X) is a distinct eigenvalue of 
X corresponding to the eigenvector q,, the i th column of Q. Let Xz(X + dX) and 
yz be the eigenvalue and corresponding eigenvector of X + dX. If d X  = Q'WQ, 
where W is "small" and symmetric, then we have the following: 

(a) X,(X + dX)  = A, + q:Wq, + . . .. 
(b) rt(X + dX) = qz - (Z - X,I,)+Wq, + . . .. 

Proofs. Section 17.9. 

17.65-17.66. Schott [2005: 3691. 

17.10 MATRIX LINEAR DIFFERENTIAL EQUATIONS 

17.67. If x = x ( t )  is an n x 1 vector with elements that are functions o f t  and A 
is an n x n constant matrix, then 

-- ax(t) - A X ( ~ ) ,  x(0) = xo at 

has a formal solution x = eAt XO. If A is not a diagonal matrix, then the system 
of equations is said to be coupled. This coupling, which links azi(t)/at to the 
other components of x(t), makes the solution harder t o  actually find. If A can be 
transformed to a diagonal or near diagonal form, then the problem may be easier 
to solve. For example, if A = SJoS-', where JO is the Jordan canonical form of 
A, then the differential equation becomes 

= Joy(t), 
at Y(0) = Yo, 

where x(t) = S y ( t )  and yo = S-'XO. However, if A is diagonalizable, then Jo = 
diag(X1,. . . , A,), where the X i  are the eigenvalues of A. The transformed equations 
are now uncoupled and have solutions 

y z ( t )  = yz(O)eA%t, 2 = I ,  2 , .  . . ,n. 
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For further details see Horn and Johnson [1985: 133-1341. 

17.68. If x = x(t) ,  then ~ ax(t) = Ax(t) + b(t)  and x(t0) = xo has solution 
a t  

t 
x(t)  = eA(t-to)xo + eAt ePA"b(s)ds. Lo 

Further details are given by Seber and Wild [1989: section 8.31. For solutions of 
the more general case 

A% at + Bx(t) = b(t), 

where A may be nonsingular, see Campbell and Meyer [1979: section 9.21. 

17.69. If X = X(t)  is an m x n matrix with elements that are functions o f t ,  then 

ax(t) = AX + XB, X(0) = Xo a t  

has solution X = eAt XO eBt. 

Proofs. Section 17.10. 

17.68. Bellman [1970: 1731 and Gantmacher [1959: 116-124, 153-1541. 

17.69. Graham [1981: 411 and Horn and Johnson [1991: 503-5111, 

17.11 SECOND-ORDER DERIVATIVES 

Second-order derivatives are often required for determining the stationary values of 
a function. Below we give some techniques for finding Hessians. 

Definition 17.8. Let f ( X )  be a scalar function of the m x n matrix X that is 
twice differentiable inside the domain of f. Then the Hessian of f is defined to be 

If X is a vector, say x, then 

0 2 f ( X )  = - - 
- (&) 

If Y is a matrix function of X, we also define the second dzfierential d2Y = d(dY); 
and in deriving this in applications, we note that d2X = 0. For some analytical 
details see Abadir and Magnus [2005: chapter 131, Harville [1997: section 15.11, 
Magnus and Neudecker [1999: chapter 61, and Nel [1980]. A number of examples 
are given by Nel [1980: section 7.21. 
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17.70. The Hessian as defined above is symmetric. 

17.71. (Identification Rules) 

(a) d2f(X) = (vecdX)’B(vecdX) if and only if 0 2 f ( X )  = i ( B  + B’), where B 
may depend on X but not on dX. 

For example, if f (X) = trace(AXBX’C), where A, B, and C are square ma- 
trices (not necessarily of the same size) of constants, then taking differentials 
twice and setting d2X = 0 and d(dX)’ = 0 we have, interchanging “d” and 
“trace”, and noting that traceF = traceF‘, 

d f (X)  = trace[A(dX)BX’C + AXB(dX)’C], 

and 

d2f(X) = 2 trace[A(dX)B(dX)‘C] 

= 2 trace[(dX)’CA(dX)B 

= 2(vecdX)’(B’ 8 CA)(vecdX), 

since trace(D’E) = (vecD)’vecE) and vec (DEF)  = (F’ 8 D)vecE. Here 
“@” is the Kronecker product. We thus have from (a) the following rule: 

(b) d2f(X) = trace[A(dX)B(dX)’C] if and only if 

02f (X)  = a(B’ @ C A  + B 8 A’C’). 

Similarly, by using trace(FG) = trace(GF), we see that 

d2f (X)  = trace[B(dX’)C(dX)] if and only if 

02f (X)  = a(B’ @ C + B @ C’). 

For example, if f ( X )  = trace(X’AX), then d2f(X) = 2trace[(dX’)AdX) 
and 

0 2 f ( X )  = I 8  ( A  + A’). 

(c) d2f(X) = trace[B(dX)C(dX)] if and only if 

02f (X)  = iI(m,n)(B’ 8 C + C’ 8 B),  

where X is m x n and I(m,n) is the commutation (vec-permutation) matrix. 
We have the following examples for n x n X. 

(i)  If f ( X )  = trace(X-l), then d2f(X) = 2 t ra~e[X-~(dX)X-’dX] and 

0 2 j ( X )  = I(n,n)(x’-2 8 x-l + x’-l 8 X P ) .  

(ii) If f (X) = det X ,  then 

V2f(X) = - detX[I(,,,)(X’-’ 8 X-’) - (vecX’-’)(vecX’-’)’]. 
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(d) We also have the following special case for vectors. 

d2 f (x )  = (dx)’A(dx) if and only if 

For example, if f ( x )  = x’Bx, where B is a symmetric constant matrix, then 
d f = 2x’Bdx and d2f = 2(dx)’Bdx. Here A can be a function of x. 

V2f(x) = ;(A +A’).  

17.72. Suppose X has L-structure (e.g., is symmetric or triangular) so that vec X = 
A+(X) (cf. Section 18.3.5 for notation), then 

If X is symmetric and n x n, then +(X) = vechX and A = G,, the duplication 
matrix. 

We demonstrate the above theory with the example f (X) = trace(X-’). From 
(17.71c(i)) we obtain 

V2f(X) = qn,,)(X’-1 @ x-2 + x ’ - 2  8 x-1). 
If X is symmetric, then 

since I(n,n)A = I(,,,)G, = G, = A, by (11.29d). 

17.73. Let F(t), with r ,  sth elements frs(t), be a nonsingular matrix function of 
L. 

- - 
a2 det F 
atiatj 

(detF)  [ trace ( F-l- ::Ed) +trace ( F - I ~ )  trace ( F - 1 ~ 1  

a2 log(det F) 
at&, 
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17.74. Let d(8 )  = det[X(O)’X(8)], where X is n x p of rank p for 8 E 0, and let 
k ( 8 )  = logd(8). Then from (17.12), 

where X, = dX/dO,. Also 

d 2 k ( 8 )  
dO,dO, 
- trace(X+X,X+X,) + trace[X+(X+)’Xk(I, - XX+)X,] 

k,, = 

= 

+ trace(X+X,,), 

where X+ is the Moore-Penrose of X .  The Hessian H(8) = (h,,) of d(8)is given 
bY 

Proofs. Section 17.11. 

17.70. Magnus and Neudecker [1999: 105-1061. 

17.71a. Abadir and Magnus [2005: 3531 and Magnus and Neudecker [1999: 
1901. 

17.71b. Magnus and Neudecker [1999: 192-1931. 

17.71~. Abadir and Magnus [2005: 380-3811 and Magnus and Neudecker [1999: 
1921. 

17.71d. Abadir and Magnus [2005: 3531 

17.72. Magnus [1988: 1551. 

17.73. Harville [1997: section 15.91. 

17.74. Bates and Watts [I9851 and Seber and Wild [1989: 5431. 

17.12 VECTOR DIFFERENCE EQUATIONS 

Definition 17.9. The vector difference equation 

A o ~ t  + Aiyt-1 + . . . + A,yt-, = g( t ) ,  

with A0 nonsingular and all vectors n-dimensional functions o f t ,  is called an rth- 
order vector dzfference equation with constant coeficients. Since A0 is nonsingular, 
we can set A0 = I d  without loss of generality. Difference equations arise in discrete 
time stochastic processes and in iterative procedures that converge. The case when 
A0 is singular can be handled using the Drazin inverse of A0 (Campbell and Meyer 
[1979: 181-184]). 
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17.75. The above difference equation can be reduced to a first-order equation as 
follows. Let zt = (yi ,y$-l , .  . . , yiPr+’)’ and 

-A1 -A2 . . .  -A,-’ -Ar 

0 O ) .  B = ( Id 0 . . .  0 
0 0 . . .  Id 

Then zt = Bzt-l +el @ g ( t ) ,  where el is an r-dimensional vector (1,0,. . . , 0)’ and 
“8” is the Kronecker product. The solution of this was studied by Dhrymes [2000: 
175-1781, He applies it t o  the general linear structural econometric model. 

17.76. If xt = Axt-’ + d, where A and xo are known, then provided that At + 0 
as t -+ cc and (I - A)-’ exists, we have xt = Atxo + (I - At)(I - A)-’d and 
xt + (I - A)-’d as t + 00. 

Definition 17.10. (Linear Stationary Iterations) Let Ax = b, with A n x n and 
expressible in the form A = M - N, where M-’ exists. Let H = M-lN, the 
iteration matrix, and let d = M-lb. Given an initial n x 1 vector x ( ~ ) ,  then a 
linear stationary iteration is 

~ ( k )  = H~(k-1)  + d, IC = 1 ,2 ,3 , .  . . . 

17.77. Given the notation above, if p(H) < 1, where p is the spectral radius, then 
A is nonsingular and 

lim x ( k )  = x = A-’b 

for every initial vector x ( ~ ) .  For details and methods see Meyer [2000a: 620-6261. 

Proofs. Section 17.12. 

k - c c  

17.76. Searle [1982: 2891. 

17.77. Meyer [2000a: 6211. 



CHAPTER 18 

JACOBIANS 

Jacobians play a fundamental role in statistical distribution theory. Formulae for 
Jacobians and their proofs are given in many places, especially in the appendices of 
statistics books. In the case of complicated transformations, it is not always clear 
what the sign of the Jacobian is as it will depend on how the variables are ordered. 
Fortunately, the ordering only affects the sign of the Jacobian, which usually does 
not matter as in applications we are mainly interested in the absolute value of the 
Jacobian. 

18.1 INTRODUCTION 

Before listing a number of results, we look at  the meaning of a Jacobian and give 
a number of different techniques for finding Jacobians. 

Definition 18.1. Suppose f : x -+ y = f(x), where x and y belong to Rn, is a one- 
to-one (bijective) differentiable function, i.e., it has an inverse function g = f - l .  

Then axlay’ = (asi/ayj) is called the Jacobian matrix of the transformation 
x + y, and its determinant 

Jx + = det (&) 
is called the Jacobian of the transformation. (Some authors call the absolute value 
IJx + y l  the Jacobian.) For further comments on this definition see Section 17.7. 
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In the above definition we want to differentiate x with respect to y, so it is 
more natural to use x = g(y),  as does Muirhead [1982: chapter 21, for example. 
However, as most of the references use y = f (x) ,  I have decided to stay with the 
latter in this chapter. As it can be a source of possible confusion, Daniel L. Solomon 
gives the following mnemonic rule (Searle [1982: 3391) to help get the order of the 
variables right: If “0” represents the old coordinates (x) and “n” represents the 
new cordinates (y), then Jo -+ 

If we interchange two elements of y, we change the sign of Jy+x. Since, in prac- 
tice, we are generally more interested in the absolute value of the Jacobian, I Jy-xl, 
it does not matter in what order we list the elements of x and y. Several authors- 
for example, Mathai [1997], whom I will refer to frequently in this chapter-get 
around this problem by stating that the sign of a particular Jacobian should be 
ignored. I shall tend to use absolute values throughout. 

As already mentioned, if we want to differentiate x with respect to y, we can 
endeavor to express the transformation in the form x = g(y). However, it may be 
easier to find Jy -+ x first as JX + Y = J& x. To see this, we have x = g(f(x))  
and 

is correct, but Jn ---$ is not (spells no). 

Then 

We note that Jy --+ x will be expressed in terms of x, which in applications usually 
has to be replaced by its function of y. For example, two important statistical 
applications of Jacobians are (i) change of variables in integratioqthat is, 

and (ii) probability density functions for functions of random variables, namely 

M Y )  = f X k ( Y ) ) l J X  + yl. 

If x and y are replaced by matrices with Y = F(X), we define 

and, if X and Y are symmetric or lower-triangular, we define 

JX-Y = Jvech x-vech Y = det 

For upper-triangular matrices we can use vech (XI). 
In order to evaluate the above Jacobians, various properties of the Kronecker 

product and of the vec and vech operators are required from Chapter 11. In this 
chapter we shall concentrate on finding JY,X or IJy-xl, which can then be in- 
verted. Unless otherwise stated, all matrices and scalars are real. We now give 
some techniques for finding Jacobians; some of these techniques are demonstrated 
by Olkin [2002]. 
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18.2 METHOD OF DIFFERENTIALS 

Differentials were introduced in Section 17.8 along with some rules that provide a 
powerful method for finding Jacobians. 

18.1. A key result from (17.28) for vectors is as follows. If d y  = Adx,  where A 
may be a function of x, then 

dy = A and Jy+x = det A .  
ax' 

In the case of matrices, if d v e c Y  = B d v e c X ,  then 

a vec Y 
a(vec X)' 

= B  and JY-X = d e t B ,  

where B may be a function of X. Also dvec X = vec (dX). 

18.2. We recall the following equivalent statements from (17.60), where X is m x n. 

(1) d Y  = A(dX)B + C(dX')D. 

(2) vec (dY) = (B' @ A)vec (dX) + (D' @ C)vec (dX'), or, equivalently, 

d vec Y = { (B' 8 A) + (D' @ C)I(n,ml}d vec X. 

When the above hold, we see from (2) and (3) that 

JY-X = JVeCY-vecX = Jdvecy-dvecx 

We demonstrate how these results can be used by working through two examples. 

Example 1 Let Y,,, = AmxmXmxnBn,, ,  where A and B are nonsingular. 
Then d Y  = A(dX)B and vec (dY) = (B' @ A)vec (dX). Using (17.1l(ii)), we get 

Jy-x = det(B' 8 A)  = (det B)m(det A)". 

Thus, Jx-y = (det B)-m(det A)-". 

Example 2 Let Y = X-', where X is a nonsingular n x n  matrix. Since YX = I,, 
we have 0 = d(YX)  = Y d X  + (dY)X,  or d Y  = -X-l(dX)X-l.  Thus, from 
Example 1 with A = -X-' and B = X-', we have 

JY-X = (-1)nZ(detX)-2", 

and JX-Y = (-l)nZ(detY)-2n. 

18.3 FURTHER TECHNIQUES 

In addition to the method of differentials, there are a number of other useful related 
techniques that we now describe. 
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18.3.1 Chain Rule 

One useful technique makes use of the chain rule (17.21). This rule leads to the 
result that if we have the transformations x - y and y -+ z, then JX --+ z - 
JX --+ y J y  -+ z, i.e., Jacobians multiply. If the Jacobian of x -+ z is hard to derive, 
it may be possible to find an intermediary variable y such that Jx --f y and J y  -+ z 
are easy to find. This method was used frequently by Deemer and Olkin [1951] and 
Olkin [1953], and several examples of it appear later. 

- 

18.3.2 

This elegant technique is described in detail by Muirhead [1982: chapter 21 and 
used extensively by Mathai [1997] . We assume that y and x are n x 1 vectors, 
and we introduce a skew-symmetric product ‘‘A” of differentials called the exterior 
or wedge product, satisfying (i) dyi A dyj = -dyj A dyi and (ii) dyi A dyi = 0 (a 
consequence of (i)). To evaluate det(ay/ax’), we begin with 

Exterior (Wedge) Product of Differentials 

and multipy these together using the above two properties of the exterior product 
to get 

dy1 A dy2 A . . . A dy, = det - dxl A dx2 A . . . A dx,. ( Z )  
This result is readily demonstrated for n = 2. We have 

8 Y l  dy1 A dy2 = ( g d x 1 +  -dx2 8x2 

-.  dYl dY2 

ax, 8x1 ax l  ax2 *dxl A dxl + - . -dxl A dx2 - - 

aYl dY2 dYl dY2 
ax2 ax1 ax2 ax2 

+- . - d ~ 2  A dxl + - . - d ~ 2  A d ~ 2  

= det - dxl Adx:!. (2) 
We shall define the wedge product for a vector x as 

d,x = AY==,dxi. 

This approach extends to matrices by setting y = vecY and defining d,Y = 
Ai,jGDdyij, where 2, denotes the ordered set of distinct elements of Y, ordered ac- 
cording to y .  I have deliberately made this notation different from that of Muirhead 
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[1982] and Mathai [1997] to avoid confusion, because they use brackets like (dX) 
with opposite meanings. 

If Y is symmetric or lower-triangular, we can use y = vechY for the distinct 
elements of Y and define d,Y = d,y = d,vechY. In the case of a skew-symmetric 
matrix, the diagonal elements are ignored, as they are zero. However, as already 
noted, the order in which the distinct elements of these matrices are listed is not 
important in applications. 

18.3. It follows from the above that if vecY = y and vecX = x, then 

d,Y = d e t  - d,X. (2') 
Since, as already mentioned, the order of the variables can be arbitrary, we have 

d,Y = (det C)d,X ==+ IJy-xl = I det CI. 

Example 3 Let (y1,y2 , . . . ,  yn)  = Y = A X  = (Ax1,Axz , . . . ,  Ax,). Then, 
from (18.1), d,yi = (det A)d,xi, so that d,Y = A:==,d,yi = (det A)"d,X, and 
lJyCxI = I det A[". Alternatively, vec Y = diag(A, A , .  . . , A)vec X and, from 
(18.1), I det CI = I det{diag(A, A , .  . . , A)}I = I det Al", as before. 

Example 4 Let Y = BX, where the matrices are all n x n  lower-triangular matrices 
so that (y1,y2,. . . , y n )  = (Bxl,Bxz,. . . ,Bx,). For T = 1 , 2 , .  . . , n, let y(r) = 
(yr,?, ~ ~ + l , ~ ,  . . . , Y,,~) '  be yT without its leading zeros; x ( ~ )  is similarly defined. 
Note that y(n) = yn,, = bn,nxn,n = bn,nx(n). Then 

a, = det (-) 8yn.n = b,,n 
axn,n 

and so on. Hence 

r=l r=l 

18.3.3 Induced Functional Equations 

Olkin and Sampson [1972] described a method whereby one sets up an equation 
satisfied by the Jacobian and then solves the equation. 

Example 5 Suppose Y = AXA', where A is nonsingular and Y is symmetric. To 
find the Jacobian of this transformation, let Z = BYB', where B is nonsingular 
and Z is symmetric, so that Z = ABX(AB)'. Then 

IJZ-XI = IJZ-Yl ' IJY-XI. 
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As the transformation is linear in X, IJy-xI is a positive function of A above, say 
h(A). Then, by the above equation, 

h(AB) = h(A)h(B),  

which, for this example, has solution h(A) = I det Al", for some c. Setting A = 
diag(a, 1 , 1 , .  . . , 1) and finding JY-X for this simple case, leads to c = n+ 1 (Olkin 
and Sampson (1972: 2631). 

Olkin and Sampson [1972] derive solutions of the equation h(CD) = h(C)h(D)  
for diagonal, triangular, orthogonal, and symmetric matrices. Their paper can be 
referred to for details (see also Mathai [1997: 40-441 for a summary of the main 
results). 

18.3.4 Jacobians involving Transposes 

Consider the transformation Y = X', where X is an m x n unconstrained matrix. 
Then, by (11.18b(i)) and (11.18f(i)), 

vecY = vecX' = I(,,,)vecX, 

Jy,x = detI(,,,) = (-l)im(m-l)"("-l) , and IJy-xl = 1. 

Example  6 Consider the transformation Y,, ,  = AmxnX/mxnBnxn, where A 
and B are nonsingular. Setting W = X' and Y = A W B ,  we have, from Example 
1 above and the chain rule (17.21), 

Jy-x  = Jy-w JW-x = (det B),(det A)" (-1) am(m-l)"(n-l), 
In practice, we are more interested in absolute values so that we do not need to 
distinguish between X and X' in linear transformations like the above, as I Jw-xl = 

/ J x / - x ~  = 1 and IJy-xl = I J Y - w ~ .  
Example  7 Suppose we know the Jacobian for the transformation Y = AX, and 
we want to find the Jacobian for Y = XA.  Taking transposes, we obtain Y' = A'X' 
or W = A'Z. Then 

and, by Example 6, IJy-xI = IJw~+zl .  Hence the absolute value of the Jacobian 
for Y = X A  can be obtained from the one for Y = A X  by simply replacing A 
by A'. Example 7 is, of course, a special case of Example 6, but the method is 
instructive. 

18.3.5 Patterned Matrices and L-Structures 

Sometimes the matrices involved are "patterned" or structured in some way such 
as symmetric or triangular. We are therefore interested in this case where vecX 
(where X is m x n)  will be in a linear subspace D, of Rmn. For example, if X 
is n x n and lower-triangular, then vecX will contain zeros in a certain pattern. 
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Magnus [1988] proposed a method based on linear structures, a linear structure 
being the set of all real matrices of a specified order, say rn x n, that satisfy a set 
of linear restrictions. He gives the following definition. 

Definition 18.2. Let D, be an s-dimensional subspace of R”” and let 61, 62, . . ., 
6, be a set of basis vectors for D,. Then the rnn x s matrix 

Arnnxs = (61, 62,. ’ .  Id,) 

is called a basis matrix for Vs, and the collection of real rn x n matrices 

L(Amnxs) = {X : X E Rmxn,vecX E D,} 

is called a linear structure (L-structure), s is called the dimension of the L-structure, 
and m x n is called the order of the L-structure. Here A is not unique, but ,once 
defined, there exists a unique s x 1 vector +(X) such that vecX = A#(X) or 
+(X) = A+vec X, where A+ is the Moore-Penrose inverse. Typically, 4 ( X )  is the 
vector containing the “free” elements of X in an appropriate order so that A is 
then unique. 

For example, if X is a real symmetric n x n matrix, then among its n2 elements 
zij there exist in (n  - 1) linear relationships of the form xij = xji (i < j ) .  Here 
s = n2 - in (n  - 1) = in (n  + 1). In particular, for n = 2, 273 c B4 and a basis 
matrix for D3 is the 4 x 3 matrix 

1 0 0  
A4x3= [ 0 1 0  0 1 0 ) .  

0 0 1  

Thus if (a ,  b, c)’ E R3, then 

We note that 

+(X) = (a ,  b, c)’ = vech X, and A4x3 = Gz, 

the secalled duplication matrix. A general theory for finding such basis matrices 
is given by Kollo and von Rosen [2005: section 1.3.61. We now give a key result. 

18.4. Suppose Y = F(X) is a one-to-one function representing a relationship be- 
tween s variables zij and s variables yij, where Y € L(A2) for every X € L(A1) 
with the dimensions of L(A1) and L(A2) both equal to s. Then, from Magnus 
11988: 341, 

where is calculated ignoring the a priori knowledge about the L-structures. 
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Henderson and Searle [1979: 74-76] discussed the same idea, but from a slightly 
different perspective. They define vecp,(Z) as the vector of the distinct elements 
with pattern pz, where Z = X or Y (they use XI and X2). Then 

vecp,(Z) = P,vec Z and vec Z = Qzvecpz(Z) = QzPzvec Z, 

where P, and Qz correspond to H and G of Section 11.5.1. In particular, P,Q, = I, 
Qz has full column rank, and P, = (QLQZ)-'QL is one possible choice for P,. 
Finally, 

Derivatives for patterned matrices are also discussed by Nel [1980: section 61. 
Kollo and von Rosen [2005: 135-1491 develop derivatives for structured matrices, 
but use a derivative notation Y 8 a/aX. 

We are now going to systematically list Jacobians. If the order of the variables 
is not well defined, IJI will be quoted instead of J .  

18.4 VECTOR TRANSFORMATIONS 

The following transformations between n x 1 vectors are one-to-one. 

18.5. If y = Ax,  where A is nonsingular, then from (17.28) we have 

When A = aInr lJytxl = lain. 

18.6. (Symmetric Functions) Let yi = x ( t x )  , i = 1,2,  . . . ,  n, where x( ix)  is the 
so-called (elementary) symmetric function representing the sum of all the products 
of x3 taken i at a time. Thus y1 = X I  +.. . + xn, y2 = 51x2 + ~ 1 x 3  +.  . . + xn-lxn, 
and yn = ~ 1 x 2 . .  '2,. Then for each xj > 0, 

n-1 n 

i=l j=i+l 

18.7. If 

Y1 = x 1 + x 2 + . . . + x n ,  

Y2 = x: +x;  +".  +xi, 

then, for each xj > 0, 

i = l  j = i + l  
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18.8. (Polar Coordinates) 

(a) Consider the transformation 

5 1  = T sin O1 sin 02 . . . sin sin On-lr  

5 2  = T sin O1 sin O2 . . . sin cos 

z3 = T sin dl sin O2 . . . cos 

znP1 = rsin&cose2, 

z, = Tcosel, 
where T > 0, 0 < Bi 5 7r (i = 1 , 2 , .  . . , n - 2), and 0 < 8,-1 5 27r. Then, if 
e = (el, e 2 , .  . . , en) / ,  we have 

I J ,  ~ T,  0 I = rn-l [(sin 01)"-2(sin 0 2 ) " ~ ~  . . . sin 

(b) If we reverse the order of the zi and replace Bi by - Oi in (a), we get 

z1 = TsinO1, 

xCj = T C ~ S ~ ~ C ~ S ~ ~ . . . C O S ~ ,  -,sine,, j = 2 , 3  , . . . ,  n - 1 ,  

5 ,  = ~cose1cose2 . . . co~e , -1 ,  

where T > 0, -$ < Oi 5 $ (i = 1,. . . ,n  - a) ,  and -7r < 5 T .  Then 

IJ, ~ r , 8 1  = T ~ - ~ ~ ( c o s ~ , ) ~ - ~ ( c o s ~ , ) ~ - ~ .  . .~o~e , - , l .  

Proofs. Section 18.4. 

18.6. Mathai [1997: 431 

18.7. Mathai [1997: 451. 

18.8a. Mathai [1997: 451 and Muirhead [1982: 551 

18.8b. Mathai [1997: 451. 

18.5 JACOBIANS FOR COMPLEX VECTORS AND MATRICES 

We demonstrate the meaning of a Jacobian for complex variables using a simple 
example taken from Mathai [1997: 175-1761, Let y = y 1  + iy2 and x = x1 + ix2, 
where the x, and y z  are all real n x n vectors. Consider the transformation y = Ax 
where A is real. Then yi = Axi for i = 1,2,  and 

We define the Jacobian of the transformation to be Jyl,yz+xl,xz. From (18.5) this 
is det B = (det A)2 (= I det AI2, say). 
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If A is complex and A = A1 + iA2, then 

and we have y1 = Alxl - A2x2 and y2 = Alx2 + A2x1. Then dylldx; = A l ,  
dyl/dx; = -A2, dyn/dx: = A2, and dy2/dxh = Al .  Hence, from Section 5.1.2, 

Thus the above equation is true for both the real and complex cases. 
When vectors are replaced by matrices, the expression Jy, ,y2+x1 ,xZ denotes 

the Jacobian of the transformation, where Y1 and Y2 are written as functions of 
X1 and X2, or where Y = Y1 + iY2 is a function of X = X1 + 2x2, the elements 
of X being functionally independent. As we have seen from the above example, we 
can typically go from the real to the complex case by squaring absolute values of 
determinants or by replacing I det A1 by I det AA*I = I det AI2. We shall also see 
below that a term like 1xiil for a real diagonal element xii remains the same for a 
complex element except that I . I now refers to  the modulus of a complex number. 

18.6 MATRICES WITH FUNCTIONALLY INDEPENDENT ELEMENTS 

18.9. If Y,,, = a x m x n r  then JY-X = amn and IJy-xl = lalmn. For complex 
matrices the latter Jacobian becomes la(2mn. 

18.10. If Y,,, = AmXmXmXnBnX,, where A and B are nonsingular then, from 
Example 1 above in Section 18.2, 

IJy,xI = I det BI“. I det A(”. 

The transformation is clearly one-to-one. In particular, if y = Ax, then 

Other cases follow by setting A or B equal to  the identity matrix. 

by BB* in the above expressions. 

18.11. Let Y = AXA’fBXB’, where all the matrices are n x n and A @ A f B @ B  
are nonsingular. Then vecY = (A @ A 41 B @ B)vec X, so that the transformation 
is one-to-one, and 

If the matrices are complex, we find that we simply replace A by AA* and B 

n n  

where the C Y ~  and Pj are the respective eigenvalues of A and B. 

18.12. Let Y = X-l,  where X is n x n and nonsingular. 

(a) From Example 2 in Section 18.2 above, JJy,xI = ( I  det 
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(b) When X is complex, we replace X by XX*. 

18.13. Let Y = (detX)X-l,  where X is n x n, and d e t X  > 0 to ensure the 
transformation is one-to-one. 

(a) (i) If X is real, IJy,xl = (n  - 1)(1 det Xl)n('L-2). 

( i i )  If X is complex, then 

IJY~,Y~+x~,x~I = (n  - 1)21 det X12"("-2). 

(b) (i) If X is real and Z = Y-' = X / d e t X ,  then 

IJz-xI = (n  - 1)1 det XIpn2. 

This follows from JZ+X = Jz+yJy+x and (18.12). 

(ii) When X is complex, )JZ~,Z~-X~,X~I = (n  - 1)2)detXI-2nZ. 

18.14. If Y = A X - l B  and all matrices are n x n and nonsingular, then the 
transformation is one-to-one and 

IJy,xI = I(det B),(det X)-2n(det A)"I. 

This can be proved from (18.12) using Y = AZB,  Z = X-l, and the chain rule. 

18.15. Let Y = Xk,  where X is n x n and nonsingular, and k is a positive integer. 

(a) If X has nonzero, not necessarily distinct, real eigenvalues XI, X l ,  . . . , A,, then 

We note that the transformation is generally not one-to-one. 

(ii) If the eigenvalues are distinct, an alternative expression is given by 

[&+XI = Ik"(det X)k-l 
i=l j=i+l 

- x'c 
= Ik"(det X)k-l fi fi (2) A2 - x j  1 ,  

i=l j#i 

which, by noting that det X = n, A,, is readily shown to be the same as 
the expression in (i). 

(b) Suppose k = 2, that is, Y = X2. 

6) Fl-om (4, 
n n  

(ii) When X is complex and the eigenvalues are distinct, then 

n n  
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Proofs. Section 18.6. 

18.9. Deemer and Olkin [1951: 3471 and Mathai [1997: 177-178, complex 
case]. 

18.10. Abadir and Magnus [2005: 3731, Henderson and Searle [1979: 721, and 
Muirhead [1982: 58 [1997: 1771. The complex case is given by Mathai [1997: 
1771. 

18.11. Mathai [1997: 75-77]. 

18.12a. Abadir and Magnus [2005: 3731 and Mathai [1997: 541. 

18.12b. Mathai [1997: 1901. 

18.13a(i). Abadir and Magnus [2005: 3731 and Mathai [1997: 721. 

18.13a(ii). Mathai [1997: 2051. 

18.14. Henderson and Searle [1979: 731 and Mathai [1997: 60-611. 

18.15a(i). Henderson and Searle [1979: 731. 

18.15a(ii). Mathai [1997: 981 

18.15b(i). Henderson and Searle [1979: 731. 

18.15b(ii). Mathai [1997: 2091. 

18.7 SYMMETRIC AND HERMITIAN MATRICES 

Let X and Y be n x n real symmetric matrices, unless otherwise stated. We note 
that if X = X1 + iX2 is Hermitian, then X1 is real symmetric and X2 is real 
skew-symmetric. 

18.16. The following transformations are one-to-one. 

(a) If Y = a x ,  then IJy-xl = lan(n+1)/2 I .  
(b) If Y = AXA', where A is nonsingular, then [ [ & + X I  = (I detA)I"+'. 

(c) If Y = AX-lA', where A and X are nonsingular, then 

IJy+x) = I (detA)"+l(detX)-("")(. 

(d) If X = X1 + iX2 is Hermitian, then Y = Y1 + iY2 = AXA* is Hermitian 
and I J Y ~ , Y ~ + x ~ , x ~ ~  = IdetAl2". 

18.17. Let A and B be real nonsingular matrices, and assume that A 8 A 3~ B 8 B 
are nonsingular. 

(a) The transformation Y = AXA' f BXB' is one-to-one since, from (11.30), 

vechY = [H(A 8 A f B 8 B)G]vechX 
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The matrix in square brackets is nonsingular because, from (11.29~) and 
(11.29g), H has full row rank and G full column rank. 

(i) If A, ( i  = 1,2, .  . . , n)  are the eigenvalues of AB-l, then 

2x1 j = i  

(ii) Alternatively, if ai and 
B, respectively, then 

(i = 1,2, . . . , n)  are the eigenvalues of A and 

When B = 0, it can be shown that the above result reduces to (18.16b). 

(iii) If A and B are lower-triangular with respective diagonal elements a,, 
and b,,, then 

n n  

i=l j = i  

This is the same as (ii) as the diagonal elements of a triangular matrix 
are its eigenvalues. 

(b) If Y = AXB' + BXA', then 

n n  

where X i  ( i  = I, 2 , .  . . , n) are the eigenvalues of AB- l .  We need B@A+A@B 
to be nonsingular for the transformation to  be one-to-one. 

18.18. Suppose Y = X-l ,  where X is nonsingular and symmetric. 

(a) From (18.16~) with A = I, IJy-xl = I det 

(b) If X = X1 + 2x2 is Hermitian, then Y = Y1 + iY2 is also Hermitian and 

IJy1,y2-xlrx21 = I det(XX*)I-n = I det XI-2n. 

18.19. Let Y = (det X)XP1, where X is positive definite. (The latter condition is 
sufficient for the transformation to be one-to-one.) 

(a) We have: 

(i) det Y = (det X)n-l and 

IJy-xl = (n  - l)(det X)(n+1)(n-2) /2 .  

(ii) If X = X1 + 2x2 is Hermitian and positive definite, and Y = Y1 + ZYz ,  
then 

I J Y ~ , Y ~ - X ~ , X ~ I  = (n  - I)l det 
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(b) Suppose Z = Y-l = X / d e t X .  Then 

(i) IJz+xI = (n  - 1)1 detXI-n(n+1)/2. 

(ii) If X = XI + iX2 is Hermitian and positive definite, and Z = Z 1  + iZ2, 
then 

IJz1,zz-x1,x21 = (n  - 1)1detXI-n2. 

18.20. Let Y = Xk, k = 2,3, .  . ., and let X i  (i = 1,2, .  . . , n)  be the eigenvalues of 
X.  

i = l  j = i + l  

where 

(ii) If the eigenvalues are di 

IJY-XI = 

- - 

tinct, then k"(det X)k-l = ny kX;-l and z=1 

n n  

n n k  

(b) When k = 2 we have: 

(i) 

n n  

The transformation Y = X2 is generally not one-to-one. 

(ii) When X = XI + 2x2 is Hermitian, and Y = Y 1  + i Y 2 ,  then 

7 1 7 1  

I J Y ~ , Y ~ - X ~ , X ~ I  = 2" I det XI n n [ X i  + X j I 2 .  
i = l  j = i + l  

18.21. If Y = XAX, where A is symmetric, and X i  (i = 1 , 2  , . . . ,  n) are the 
eigenvalues of XA,  then, since det(XA) = ni Xi ,  we have 

n n  n n  

If A and X are positive definite and the X i  are such that Xi  > . . .  An > 0, then the 
transformation is one-to-one. 
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Proofs. Section 18.7. 

18.16a. Mathai [1997: 321 

18.16b. Abadir and Magnus [2005: 3731, Magnus [1988: 1281, and Mathai 
[1997: 321. 

18.16~. Mathai [1997: 601. 

18.17a(i). Magnus [1988: 1281 

18.17a(ii). Mathai [1997: 75-77] 

18.17a(iii). Magnus [1988: 1281. 

18.17b. Magnus [1988: 1281. 

18.18b. Mathai [1997: 1901. 

18.19a(i). Deemer and Olkin [1951: 357, theorem 4.4; they also give the 
Jacobian of Y-' in corollary 4.41, Magnus [1988: 1281, and Mathai [1997: 
741. 

18.19a(ii). Mathai [1997: 2061 

18.19b(i). Mathai [1997: 751. 

18.19b(ii). Mathai [1997: 2061. 

18.20a(i). Magnus [1988: 1281. 

18.20a(ii). Henderson and Searle [1979: 791 and Mathai [1997: 981 

18.20b(i). Mathai [1997: 66, 691. 

18.20b(ii). Mathai [1997: 2091. 

18.21. Magnus [1988: 1281 and Mathai [1997: 701. 

1 8.8 SKEW- SY M M ET R I C A N  D SKEW- H E R M IT I A N  MATRICES 

Let X and Y be n x n matrices with X real skew-symmetric, that is, X' = -X. 
Then, for the following transformations, Y is also skew-symmetric. Note that if 
X = X1 + 2x2 is skew-Hermitian, then X1 is real skew-symmetric and X2 is real 
symmetric. 

18.22. If Y = a x ,  then lJy,xI = l ~ l ~ ( " - ' ) / ~ .  

18.23. Let Y = AXA'. Then the following hold. 

(a) I J Y - x I  = (I det A/)"-'. 

(b) If X = X1 + 2x2 is skew-Hermitian and Y = Y1 + iY2 = AXA*,  then Y is 
skew-Hermitian and 

IJy-xl = I det(AA*)l" = I det 
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which is the same as for the Hermitian case (cf. 18.16d). 

18.24. Let A and B be nonsingular, and let X i  ( i  = 1 , 2 , .  . . n)  be the eigenvalues 
of AB-'. 

f l , "_ , , , ( l+XiXj) l .  (a) If Y = A X A ' f B X B '  , then IJx-YI = I (detB)"-' 
If A and B are lower-triangular, then 

n n  

2 = 1  j=z+l 

The above transformations are one-to-one if ( A  @ A  f B @B) are nonsingular. 

(b) If Y = AXB' + BXA', then 

n n  

i=l j=i+l 

The above transformation is nonsingular if (B @ A + A @ B) is nonsingular. 

18.25. Let Y = AX-'A', where A is nonsingular. 

(a) IJy-xl = I det AIR-ll det 

(b) If Y = X-', we can set A = I  in (a). 

(i) IJy-xl = I detXI-(n-l). 

(ii) If X = X - 1 + iX2 is skew-Hermitian and Y = Y1 + iY2, then 
( J Y ~ , Y ~ ~ X ~ , X ~ ~  = Idet(XX*)l-n = IdetXI-2n, the same as for the 
Hermitian case of (18.18b). 

18.26. If Y = (det X)X-', where det X # 0, then 

IJy-xl = (n  - 1)1 det XI("-')(np2)'2. 

18.27. Let Y = Xk, k = 3 , 5 , .  . ., and let A, ( i  = 1 ,2 , .  . . , n) be the eigenvalues of 
X.  Then we have 

n n  

where 

If Y = X2,  then Y is symmetric and the transformation is not one-to-one. 

18.28. If Y = X A X ,  where A is skew symmetric, then 

n n  

z=1 j = z + 1  

where X, (i = 1 , 2 , .  . . , n) are the eigenvalues of X A .  
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Proofs. Section 18.8. 

18.22. Mathai [1997: 361. 

18.23~~. Deemer and Olkin [1951: 3491, Magnus [1988: 1351, Mathai [1997: 
361, and Olkin and Sampson [1972: 2631. 

18.2313. Mathai [1997: 1851. 

18.24. Magnus [1988: 1351. 

18.25a. Mathai [1997: 601. 

18.25b(ii). Mathai [1997: 1901. 

18.26. Magnus 11988: 1361. 

18.27. Magnus [1988: 1361. 

18.28. Magnus [1988: 135). 

18.9 TRIANGULAR MATRICES 

Any matrix with a “tilde”-for example, X-will denote a n x n nonsingular lower- 
triangular matrix. Results for upper-triangular matrices can be obtained by taking 
transposes. In what follows we assume that the elements in the lower triangle 
of X are unconstrained (functionally independent). Also, the product of lower- 
triangular matrices is lower-triangular, and the inverse of a lower-triangular matrix 
is also lower-triangular. 

18.9.1 Linear Transformations 

18.29. Let Y = PXQ, where P and Q are lower-triangular and nonsingular. 
- - -  

(a) If the matrices are all real, 

n 
n-z+l 

I J Y 3  = I I I P f , c l i i  I. 
i= 1 

We get special cases by setting P = I, or Q = I,. 

(b) If the matrices are all complex (i.e., Y = Y 1  + i Y 2 ,  etc.), then we have the 
following results. 

- 
(i) If Y = PX, then IJq,,qZ+klrk21 = n7=l 

(ii) If Y = XQ, then [Jql,qz+kl,k21 = 

(or n:=l Ipii12i-1 if the pii’s and z i i ’ s  are real). 

Iqii12(n--i+1) 

(or ny=l Iqii12(n--i)+1 if . the qi i ’s  and zii’s are real). 
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(c) Given real matrices, if X, and therefore Y ,  has fixed diagonal elements, then 

n 

i= 1 

(d) Given real matrices, if Y = a x ,  then 

When the matrices and a are complex, we get I u ~ ~ ( ~ + ’ ) .  
18.30. (Upper-Triangular) If Z = P’X’Q’, where P and Q are nonsingular, then 
2; is upper-triangular. 

(a) For real matrices, 
n 

i=l 

By interchanging P and Q, taking the transpose, and noting that lJ%+%l = 
lJk-g,l, we see that the above result is equivalent to (18.29a), but for upper- 
triangular matrices. 

(b) The results for complex matrices are similar t o  those given in (18.29a) by 
transposing, and interchanging (i) and (ii). 

- - I  - - -  
18.31. Let Y = PXQ + RXS, where the matrices are all real. 

n i  

z=1 J=1 

The transformation is one-to-one if Q’ @ P + S’ @ R is nonsingular. Also, if 
R = 0, 

n-z+1 fi f i ( P Z 2 q J J )  = Pll(P22qllP22q22)(P33qllP33q22P33433) ‘ ’ .  = f i P h Z Z  I 

z=13=1 2= 1 

as in (18.29a). 

(b) If X has fixed diagonal elements, then 

n 2-1  

Proofs. Section 18.9.1. 

18.29a. Magnus [1988: 1311, Mathai [1997: 291, and Olkin and Sampson 
[1972: 2641. 

18.29b. Mathai [1997:179- 1801. 

18.29~. Magnus [1988: 1371. 
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18.29d. Mathai (1997: 1791 

18.30a. Mathai [1997: 291. 

18.30b. Mathai [1997: 180-1811. 

18.31a. Magnus [1988: 1321 

18.31b. Magnus [1988: 1371. 

18.9.2 Nonlinear Transformations of X 

All matrices are real, unless otherwise stated. 

18.32. Let Y = XPX. 
- - -  

n n  

(a) lJ-i.+xl = 2n l(det P)(det X) n n ( p i i ~ i i  + pjjsj j)( .  
i=l j=i+l 

(b) If X has fixed diagonal elements, then 

n n  

18.33. Let Y = X-I. 

(a) We have 
n 

i=l 

(b) If X has fixed diagonal elements, then 

18.34. Let Y = (detX)X-', where Y and X are both lower- or both upper- 
triangular matrices. 

(a) Then det Y = (det X)n-l. 

(4  

I J -  Y-x - 1 = (n  - 1)1 detXI("+')("-2)/2, 

Note that (det X)(nf1)(n-2) > 0 as (n  + l ) ( n  - 2) is divisible by 2, so we 
take the positive square root. For the transformation to be one-to-one, 
we assume det X > 0 (for example, zii > 0 for all i) so that det Y > 0, 
and define det X = (det Y)l/(n-l), the (n  - 1)th positive root of det Y .  
We can then write 

i= 1 
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Similar comments apply to (b) and (c) below. 

(ii) When X = XI + i X 2  is complex and Y = Y 1  + i Y 2 ,  then 

I J -  - - . I = (. - 1)1detXl(n+1)(n-2) 
Y1,Y2-X1,Xz 

(b) If X has fixed diagonal elements, then 

(c) If Z = Y - l  = X/detX,  then 

(i) JJi.%) = (n  - 1)1 (detX)-n(n+1)/2J. 

(ii) When X = XI + i X 2  is complex and Z = Zl + iZ,, 

~ J ~ l , ~ z + ~ l , ~ 2 ~  = (n  - 1)1detXI-"("+'). 

18.35. Let Y = A', k = 2,3, .  . .. 

(a) JJ-i.,%I = k"l(det X)'-' n:=l n,"=,+, pijl, where 

- x j j ) ,  if xii # x j j ,  
if 2 . .  - 2 . .  

aa - 3 3 .  

(b) If X has fixed diagonal elements, then 

n n  

i=l j=i+l  

Proofs. Section 18.9.2. 

18.32a. Magnus [1988: 1321. 

18.3210. Magnus [1988: 1371. 

18.33a. Magnus [1988: 1321 and Olkin and Sampson [1972: 2651. 

18.3313. Magnus [1988: 1371. 

18.34a(i). Magnus [1988: 1321 and Mathai [1997: 651. 

18.34a(ii). Mathai [1997: 2011. 

18.34b. Magnus [1988: 1371. 

18.34c(i). Mathai [1997: 651. 

18.34c(ii). Mathai [1997: 1991. 

18.35a. Magnus [1988: 1321. 

18.3513. Magnus [1988: 1371. 
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18.9.3 

If S is an n x n skew-symmetric matrix, then I, + S is nonsingular (cf. 5.19). Also, 
T = 2(S + In)-' - I, is orthogonal and represents a one-to-one transformation as 
S = 2(T+I,)-l -I,. (This is a special case of the Caley transformation mentioned 
in Section 18.12.) Any nonsingular matrix Y can expressed in the form Y = XT, 
where X is a nonsingular lower-triangular matrix. This representation is unique 
under two situations (Mathai [1997: 100]):(1) zii > 0 for i = 1 ,2 , .  . . , n - 1, and 
( 2 )  the elements of X are unrestricted, but the elements of S are restricted in some 
way. For example, the elements of the first row of (S+In)-', except the first, being 
of a specific sign such as all negative (Mathai [1997: 991) or all positive (Deemer 
and Olkin [1951: 3611). 

18.36. Assuming that the appropriate conditions above hold so that the represen- 
tation Y = X [ ~ ( S  + I ~ ) - '  - 1 ~ 1  = X(I, - s)(I, + s)-' is unique (i.e., one-to-one), 

Decompositions with One Skew-Symmetric Matrix 

(Note that YY' = XX.)  

18.37. If Y = TXT' = [2(S + In)-' - In]X[2(S + I,)-' - In]', then 

n n  

If Y = TVT', where V is upper-triangular, then transposing we have Z = TXT', 
where Z = Y' and X = V'. This implies that the absolute value of the Jacobian is 
the same as above. 

18.38. Let Y = TD,T' = [2(S +I,)-' - In]D,[2(S +In)-' -In]' be a symmetric 
matrix, where x = ( q , x 2 , .  . . ,xn)' with 2 1  > 5 2  > . . . > x,, and D, = diag(x). 
If the elements of the first row of (S + In)-' except the first are of a specific sign, 
then 

n n  

The decomposition of Y is unique if we add the condition that Y should not 
belong to a set of symmetric matrices that constitutes a set of measure zero in the 
n(n+ 1)/2-dimensional space. Olkin and Sampson [1972: 2731 also quote the result, 
but their constant term is incorrectly inverted. 

Proofs. Section 18.9.3. 

18.36. Deemer and Olkin [1951: 3581 and Mathai [1997: 1011. 

18.37. Mathai 11997: 109) and Olkin [1953: 461 

18.38. Deemer and Olkin [1951: 360-3611 and Mathai [1997: 1061 
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18.9.4 Symmetric Y 

18.39. Let Y be symmetric, and let P = (p i3 )  and X be n x n nonsingular lower- 
triangular matrices. Conditions for the following transformations to  be one-to-one 
can be found using vec and vech as in (18.11) and (18.17). For example, in (a) below, 
vecY = ( I n z  + I(,,,))vecX, where I(n,n) is the vec-permutation (commutation) 
matrix. We also have vech Y = Hnvec Y and vec X = Gnvech X. The following 
matrices are all real, unless otherwise stated. 

(a) If Y = X + X ,  then JJY,jcl = 2n. 

(b) Suppose X = XI + 2 x 2  is complex. 

(i) The Jacobian is either 2'" or 2n if the z,,'s are real. 

(ii) If Y = X + X*, then Y is now Hermitian and the transformation is no 
longer one-to-one unless the z,, are real. In the latter case the Jacobian 
is 2n. 

(c) If Y = XP + P'X' and P is nonsingular, then 

n 

i= 1 

(d) If Y = PX + X'P', then 

i= I 

(e) If Y = X P  + P'X, then 

( f )  If Y = P X  + XP', then 

18.40. Let Y be symmetric, and let P, Q, R, and X be nonsingular lower- 
triangular matrices. Conditions for the following transformations to  be one-to-one 
can be found using vec and vech. 

(a) If Y = Q'XP + P'XQ, then 

n- 1 

IJy,al = 2" I det P(det Q)" det C(i)I, 
i=l 

where C(i) is the i th (i x i) leading principal minor of C = PQ-l. 
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(b) If Y = RQXP + P’XQ’R, then 
n 

z n-z+1 
IJ,,xl = 2 7  H ( 4 2 2 4  P 2 z  I 

z= 1 

- - - -  
(c) If Y = RXPQ’ + QP’X’R, then 

n 

IJy-xl = 2nl ~(Pz2(12z)n-z+11.zzll. 
2 = 1  

Proofs. Section 18.9.4. 

18.39a. Mathai [1997: 281. 

18.39b(i). Mathai [1997: 1791. 

18.39b(ii). Mathai [1997: 1811. 

18.39~. Mathai [1997: 321. 

18.39d. Mathai [1997: 321. 

18.39e. Mathai [1997: 371 and Olkin [1953: 431. 

18.39f. Deemer and Olkin [1951: 3491 and Mathai [1997: 371. 

18.40. Magnus [1988: 1331. 

18.9.5 Positive Definite Y 

18.41. Let Y be positive definite, and let X be lower-triangular and nonsingular, 
with positive diagonal elements (which implies the existence of a unique Cholesky 
decomposition). 

(a) If Y = X’X, then 
n 

IJy,xl = 2“ &ji. 
i = l  

(b) If Y = XX’, then 
n 

IJy,xI = 2n rI,,-i+’ 
2= 1 

(c) Let Y = XX’, where yiz = 1, and xi=, x : ~  = 1 (i = 1 , 2 , .  . . , n). Then 
n 

Proofs. Section 18.9.5. 

18.41a. Magnus [1988: 1341, Mathai [1997: 561, and Olkin [1953: 431. 

18.41b. Deemer and Olkin [1951: 3491, Magnus [1988: 1331, and Mathai 
[1997: 561. 

18.41~. Olkin [1953: 44, theorem 51. 
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18.9.6 Hermitian Positive Definite Y 

18.42. Suppose Y is an Hermitian positive definite matrix. Let X = XI + i X 2  be a 
complex lower-triangular matrix, with Xi a real lower-triangular matrix (i = 1,2) ,  
and let V be a complex upper-triangular matrix. Both X and V are assumed 
to have real positive diagonal elements, which implies the existence of the unique 
Cholesky decompositions given below. 

i = l  

2 ( i -  1)+1 
(b) If Y = VV*, then IJy1,yz-xl,~21 = 2n ny=l vii 

If, in addition, yii = 1 and Xi=, IvikI2 = 1 for i = 1 , 2 , .  . . ,n ,  then 

n 

i = l  

Proofs. Section 18.9.6. 

18.42. Mathai [1997: 187, 1941. 

18.9.7 Skew-Symmetric Y 

18.43. Let X be lower-triangular with fixed diagonal elements, let P, Q, and R 
be lower-triangular, and let Y be skew-symmetric. 

(a) If Y = B’XA - A’X’B, then 

n-1 

l J y + ~ l  = I det B”-’ n det C(i)I, 
i=l 

where C ( i )  is the i th  (i x i) leading principal minor of C = AB- l .  

(b) If Y = RQXP - P’X’Q’R, then 

- - - -  
(c) If Y = RXPQ’ - QP’X’R, then 

Proofs. Section 18.9.7. 

18.43. Magnus [1988: 1381. 
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18.9.8 LU Decomposition 

18.44. Let Y be any n x n  nonsingular matrix. Then, from Section 16.4, Y can 
be expressed uniquely as a lower-triangular L with unit diagonal elements and an 
upper-triangular U, that is, Y = LU (or Y = UL, with different U and L).  In 
general, if L is lower-triangular with fixed diagonal elements (not necessarily equal 
to unity), then we have the following. 

(b) If Y = UL, then IJy+i,uI = I nZ1 l:tui;ll 

Proofs. Section 18.9.8. 

18.44. Magnus [1988: 1391. The case when L has unit diagonal elements is 
proved by Mathai [1997: 921. 

18.10 D EC 0 M POS I TI 0 N S I NVO LVI N G DIAGONAL M ATRl C ES 

18.10.1 Square Matrices 

In what follows, we define D, = diagw = diag(w1, w2,. . . , wn), where the wi are 
functionally independent, distinct, and nonzero. We can also use IJY+YI( = 1 for 
any matrix Y .  Unless stated otherwise, all matrices are real. When all the matrices 
are complex, we assume that X = X1 + 2x2, w = w1 + iw2, and Y = Y1 + iY2, 
where the Xi, wi, and Yi are all real. 

18.45. Let X and Y be n x n matrices with X having unit diagonal elements. 

(a) Let Y = D,X. 

(i) IJy+,,xl = ny=, / w , ( " - ~ .  Since xij = yi j /y i i  for i # j, and wi = yii for 

(ii) For complex matrices, / J Y ~ , Y ~ + ~ ~ , ~ ~ , X ~ , X ~ (  = ny=l ( w ~ I ~ ( ~ - ' ) .  The re- 

all i, the transformation is one-to-one. 

sult is still true if the yii and w, are all real and positive. 

(b) If Y = XD,, we get the same answers as for (a). 

(c) Let Y = D,XD,, with yii > 0 and wi > 0 for i = 1,2, .  . . , n .  

2n- 1 
(i) IJy+,,xl = 2n nyE1 wi 

(ii) For complex X and D,, 

. The transformation is one-to-one as wi = 

6 for all i and xij = yiJ/(&&) for i # j .  

n 
2(2n-1) 

IJY1,YZ+Wl,WZ,X1,XZI = 22n n. IWil 

i= l  

If yii and wi are real and positive, the corresponding value is 2n ny=l wYp3 
when Y = D,XD,, and 2" nyzl @-' when Y = D,XDt, with Her- 
mitian X. The transformation is no longer one-to-one. 
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Proofs. Section 18.10.1. 

18.45a(i). Mathai [1997: 861. 

18.45a(ii). Mathai [1997: 2151. 

18.45c(i). Mathai [1997: 861. 

18.45c(ii). Mathai [1997: 215, 2171. 

18.10.2 One Triangular Matrix 

18.46. Suppose Y is a lower-triangular matrix and X is lower-triangular with 
fixed diagonal elements (for example, unit elements). All matrices are real, unless 
otherwise stated. Note that det X = n:=l ztt. 

(a) Let Y = D,X. 

(i) We have 
n 

l J y + , , ~ l  = I det XI n 120,1’-~.  

2=1 

(ii) If the matrices are complex and X = XI + 2 x 2  has unit diagonal ele- 
ments, then 

n 

i= 1 

(b) Let Y = XD,. 

(i) We have 
n 

(ii) If the matrices are complex and X has unit diagonal elements, then 

n 

i=l 

The above transformations are one-to-one. The results for upper-triangular ma- 
trices are obtained by taking the transposes of the above. For example, if Z = 

UD, = X’D,, where Z and U are upper-triangular, then Z’ = D,X and the 
Jacobian is given by (a). If Z = D,U, then the Jacobian is given by (b). 

(c) Let Y = XD,X, then 

(i) I J y + , , ~ l  = (detX)2 ny=l 1 ( 2 ~ i z i ~ ) l ~ - ~ .  

(ii) When X has unit diagonal elements, the Jacobian becomes n:=l Iwiln-2. 

This case is also given below. 
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18.47. Let X be lower-triangular with unit diagonal elements, and suppose yii > 0 
and wi > 0 for i = 1 , 2 , .  . . , n. 

(a) If X is real, we have the following Jacobians. 

(i) If Y = XD,X, then IJy+,,,I = n;=l w,"-Z. 

(ii) If Y = XD,X, then IJy+,,,I = nrzl wj-'. 

(n--1) /2  
(iii) If Y = D ~ ~ X X D ~ ~ ,  then IJY+,,,I = nZ1 wi 

(iv) If Y = Dz2X'XDz2, then IJy+,, ,I  = n;=lwi (n- -1) /2  , that is, the 
same as (iii). 

The above transformations are one-to-one as we can express Y (which is 
positive definite) in either the form ZZ' or Z'Z, where Z is lower-triangular 
with positive diagonal elements, that is, a unique Cholesky decomposition 
(Section 16.5). 

To get the results for upper-triangular matrices, we simply write U = X .  
For example, if Y = UD,U', the Jacobian is given by (ii) as /Jk+g,l = 1. 
Similarly, if Y = U'D,U, the Jacobian is given by (i). 

- -  
(b) Suppose X = X1 + iX2 is complex, but wi > 0 for all i. Then: 

71 2 ( n - i )  
(i) If Y = XD,X*, I = ni=, wi . 

(ii) If Y = D, XX*DY, ~ J ~ + ~ , ~ ~ , ~ ~ ~  = n:=l w,pl 1/2 - - 

(c) Suppose U = U1 + iU2 is upper-triangular and complex with unit diagonal 
elements, and the wi are real, positive, and distinct for all i. 

n 2 ( i - 1 )  . (i) If Y = UD,U*, I J Y + ~ , U ~ , U ~ I  = ni=1 wi 

(ii) I f Y  = D ~ ~ u u * D ~ ~ ,  ~ ~ y - , , u ~ , u ~ l  = nyEl w:-' 

18.48. Let Y and X be real nonsingular lower-triangular matrices with distinct, 
positive diagonal elements, and let Y be a positive definite matrix. Also, suppose 
that C;=, zz = 1 (i = 1,2, .  . . ,n), and the wi (i = 1,2, .  . . ,n)  are distinct and 
positive. 

(a) If Y = D,X, then 
n i-1 - 1  

l J + + w , ~ l  = n i = 1  wi xii ' 

(For the transformation to be one-to-one we require the condition wi > 0 
for all i .  To see this we set xii = (1 - Cili x:~)'/', which leads to  wi = 

(Cj,, y&)'l2 and zij = yij/wi for i > j ,  so that the inverse function exists.) 

1 - -  
(b) If Y = XD,, then lJ++,,%l = nrT1 ~ " ' x i  . 

(c) If Y = Dz'X, then IJ++,,%l = 2-n n ~ = , ( ~ : / ~ ) Z - ~ x ~ ~ .  (This follows from 

(a) by replacing wi by w:" and noting that dwt/2 = iw,1/2dwi.) 

(d) If Y = XDz', then IJ++,~~l = 2-" n ~ = = , ( ~ ~ / ~ ) ~ - ' - ~ z ~ ~  
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(e) If Y = Dz2XX'Dzz, then IJY+,,~J = n:=l w!~- ' ) /~  xzz n-z 

(f) If Y = DzzXXDzz  then, Jy+,,a = n:=, wa(n-1)/2 2 2 ,  ' 

(g) If Y = XD,X, then l J y + , , ~ 1  = ~ ~ = = , ( W ~ Z ~ ~ ) ~ - ' .  

(h) If Y = XD,X, then IJy , , ,~ l  = ~ ~ ~ l ( w z ~ z z ) n - 2 .  

(i) If X is complex and xi=, 1 ~ ~ ~ 1 ~  = 1, we replace wz by w," in the Jacobians 
for (a) and (b). 

Proofs. Section 18.10.2. 

18.46a(i). Magnus [1988: 1411. 

18.46a(ii). Mathai [1997: 2111. 

18.46b(i). Magnus [1988: 1411. 

18.46b(ii). Mathai [1997: 2111. 

18.46c(i). Magnus [1988: 1411. 

18.46c(ii). Olkin [1953: 451. 

18.47a. Mathai [1997: 851. 

18.47b. Mathai [1997: 2141. 

18.47~. Mathai [1997: 2151. 

18.48. Mathai [1997: 88-90, 218 for (i)]. 

18.10.3 Symmetric and Skew-Symmetric Matrices 

18.49. Let Y = D,XD,, where X is symmetric with zii = 1 (i = 1,2,. . . , n)  and 
D, = diag(w), with the wi being distinct. Then 

n 

IJY-w,Xl = 2" I-I (Wiln .  

i = l  

If we also add wi > 0 for each i, then wi = Jy,, and xij = yij/(Jy,,&) so that 
the transformation is one-to-one as the inverse function exists. 

18.50. Let Y = Dx + D,X - XD,, where X is skew symmetric and D, = 
diag(pl,p2,. . . ,pn) is fixed. Then 

." ." 
IJY+X,xl = IPi -& I .  

i = l  j=i+l 

Proofs. Section 18.10.3. 

18.49. Mathai [1997: 861 and Olkin [1953: 441. 

18.50. Magnus [1988: 1401 
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18.11 POSITIVE DEFINITE MATRICES 

18.51. If Y = (det X)X-', where X (and therefore Y ) ,  is positive definite, then 

I &,XI = (n  - 1)1 (det X)("+1)("-2)/2 I. 
18.52. Let Y = XAX, where all three matrices are positive definite. Then 

n n  

IJY-XI = n H(A2 + A J ) ,  
2 = 1 3 = 2  

where the A, are the eigenvalues of XA, and are positive. An important special 
case is when A = In and X is the positive definite square root of Y .  

18.53. If Y = Xk, where k = 2,3, .  . ., and X is positive definite with distinct 
eigenvalues A,, then Y is positive definite and IJy-xI is given by (18.20). Let 
( Y ) l / k  denote the kth positive definite root of Y ,  and pJ ( j  = 1 , 2 , .  . . , n) the 
eigenvalues of Y .  Then the transformation Y = Xk is one-to-one, and IJy,xl can 
be expressed in terms of Y by noting that det X = (det Y)'lk and A3 = p J  '/k . 

Proofs. Section 18.11. 

18.51. Deemer and Olkin [1951: 3571 and Mathai [1997: 741. 

18.52. Olkin and Sampson [1972: 2691. 

18.53. Mathai [1997: 98, example 2.51. 

18.12 C ALEY TRANSFORMATION 

18.54. In this section we consider a particular transformation, called the Caley 
transformation, for nonsymmetric, symmetric, and triangular matrices, and their 
complex versions. 

(a) Let Y = (A + X)-'(A - X) [= 2(A + X)-'A - In], where the matrices are 
n x n and inverses exist so that the transformation is one-to-one. 

(i) For real matrices we have 

IJy,xI = 2nZ (IdetA)ln(ldet(A+X)1-2". 

The same result holds for Y = (A - X)(A + X)-'. 

X)(A* + X*), and 2,' by 22n2 to get IJy1,y2+x1,x2(. 
(ii) If the matrices are complex, we replace A by AA*, A + X by (A + 

(b) Let Y = (I, + X)-'(In - X) = 2(In + X)-' - I,, where X and Y are 
symmetric. 

(i) IJX-YI = 2n(n+1)/2 I det(1, + X)I-(n+'). 
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(ii) If X = X1 + iX1 is Hermitian and Y = Y1 + iYz,  then 

IJY1,Yz+xl,xzI = 2nZ( det {(In + X)(In + X*)} 

(c) Let Y = (A + X)-'(A - X), where X, A, and Y are all lower-triangular, A 
and A + X are nonsingular, and all matrices are real. Then 

n 

I J -  x-Y - I = 2n(n+1)/21 det(A + X)I-(n+l) n la221n-z+1,  

z = 1  

where det(A+X) = nrZl (az2 +z,,). When the matrices are upper-triangular, 
we see, by taking transposes, that the Jacobian is given by (d). 

(d) Let Y = (A - X)(A + X)-', where X, A, and Y are all lower-triangular, A 
and A + X are nonsingular, and all matrices are real. Then 

I J -  X+Y - I = 2n(n+1)/21 det(A + y ) l - ( n + l )  fi laz2I2 

2 = 1  

When the matrices are all upper-triangular, the equation then becomes Y' = 
(A'-X')(A'+X)-' so that, taking transposes, we get Y = (A+X)-l(A-X), 
and the Jacobian is given by (c) above. We now look at the complex versions 
of (c) and (d). 

18.55. Let X, A, and Y be complex lower-triangular matrices with A and A + X 
nonsingular, and Y = Y1 + i Y 2  etc. 

(a) Let Y = (A + X)-'(A - XI. 

(i) If all the elements are complex 

IJY,,Y,-X,,X, I 

(ii) If all the diagonal elements of X and A are real and the others complex, 
then 

n n 

When the matrices are upper-triangular, we find, by taking transposes, that 
the Jacobians are given by (b) below. 

(b) Let Y = (A - X)(A + X)-'. Then: 

(i) If all the elements are complex, 

lJYl,Y2+XI,X~l 
n 

= 2n(nf1)I det {(A + X)(A + X)*} . n laiil22. 
i=l 
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(ii) If the diagonal elements of X and A are real and the other elements 
complex, then 

n n 

z = 1  i=l 

When the matrices are upper-triangular, we find, by taking transposes, that  
the Jacobians are given by (a) above. 

Proofs. Section 18.12. 

18.54a(i). Mathai [1997: 611 and Olkin [1953: 451. 

18.54a(ii). Mathai [1997: 1931. 

18.54b(i). Mathai [1997: 611 and Olkin [1953: 451. 

18.54b(ii). Mathai [1997: 1931. 

18 .54~.  Mathai [1997: 62-63] and Olkin [1953: 451. 

18.54d. Mathai [1997: 62-63]. 

18.55. Mathai [1997: 195-1961, 

18.13 D I AG 0 N A L I Z A B L E MATRICES 

18.56. Let X be a nonsingular diagonalizable matrix with real distinct eigenvalues 
X1 > X2 > .. .  > An > 0,that is, there exists a nonsingular R such that X = 
RDxR-', where Dx = diag(A1, A 2 , .  . . ,An). Let Y = F(X), where F is such that 
F(X) = RDf(xlR-', f is differentiable, and Df(x) = diag(f(Al), f(A2), . . . , f ( A n ) ) .  
Then, assuming f ( X , )  - f ( A j )  # 0 and f ' (A , )  # 0 for all z # j ( z , j  = 1 ,2 , .  . . , n),  

(b) For example, if Y = Xk, k a positive integer, then with f ( X )  = Ak, 

xk = ( R D ~ R - ~ ) ( R D ~ R - ~ ) .  . . ( R D ~ R - ~ )  

= RD,,,R-~(= R D ~ ( ~ ) R - ~ ) .  

Hence 

n n  

= rJ(A"-' + xf-2x.j + . . . + A;-') 
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The reader is also refered to (18.15a). 

(c) In some applications, Y is a random matrix whose eigenvalues are distinct 
with probability 1. The Jacobian (Jx-yI is then given by IJy-xI-', but it 
is expressed in terms of the eigenvalues of X rather than Y, which is not so 
convenient in applications. 

(d) If X is symmetric, then 

Proofs. Section 18.13. 

18.56a. Mathai [1997: 961 and Olkin and Sampson [1972: 267, lemma 91. 

18.56b. Henderson and Searle [1979: 731). 

18.56d. Mathai [1997: 961 and Olkin and Sampson [1972: 268, lemma 101. 

18.14 PAIRS OF MATRICES 

18.57. Let Y1 and Y2 be positive definite n x n matrices. If det(Y1 -XY2) = 0 has 
n distinct roots A1 > A2 > . . . > An > 0, there exists a unique matrix W = (wij), 
with wli > 0 (i = 1 , 2  , . . . ,  n) ,  such that Y1 = WDxW', Y2 = WW', and 
Dx = diag(A1,. . . , A n )  (cf. 16.51~). Then 

n n  

IJY~ ,YZ-W,DAI  = 2n I(detW)n+2 n n (xi - x j ) l .  

i=l j=i+l 

18.58. Let X1 and X2 be positive definite. 

(a) If Y1 = X,1/2X1X;1/2 and Y2 = X2, then Y1 and Y2 are positive definite 
and 

I J Y ~ , Y ~ - x ~ , x ~ I  = I detX21-(n+')/2. 

(b) If Y1 = (XI + X2)-'/2X1(X1 + X Z ) - ' / ~  and Y2 = XI + X2, then Y1 and 
Y2 are positive definite and 

I J Y ~ , Y ~ + x ~ , x ~ I  = Idet(X1 + X2)l-(n+1)/2. 

18.59. Let X1 and X2 be n x n positive definite matrices. If Y1 = XI and 
Y2 = X1 +X2, then Y1 and Y2 are positive definite and there exists a nonsingular 
V such that Y1 = VD,V', Y2 = VV', and D, = diag(&, . . . , &), where 1 > 
41 > 49 > . . . > &, > 0 are the roots of det(X1 - +(XI + X2)) = 0. Then (cf. 
18.57) 

I J Y ~ , Y ~ - V , D + I  = 2" I(det V)n+2 n n (4i - 4j)l. 
n n  

i=l .j=i+l 
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Proofs. Section 18.14. 

18.57. Deemer and Olkin [1951: 3501. 

18.58a. Mathai [1997: 1481. 

18.58b. Mathai [1997: 1491 and Seber [1984: 5321. 

18.59. Mathai [1997: 1511 and Olkin and Sampson [1972: 270, lemma 141. 
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CHAPTER 19 

MATRIX LIMITS, SEQUENCES, AND SERIES 

Asymptotic theory and large sample approximations play a key role in statistical 
distribution theory. In this chapter we apply some of theory of limits to vectors 
and matrices. 

19.1 LIMITS 

Definition 19.1. Let A(t)  = ( u z 3 ( t ) ) .  We say that limt-t,, A(t)  = A if uz3( t ) )  -+ 

uz3 for all i , j .  Of particular interest is the case when t = E and t o  = 0, as in the 
following result. 

19.1. Suppose A = ( u t 3 )  is nonsingular, 

(a) The elements of A-l are continuous functions of the uz3. 

(b) If lim,+o A(€)  = A ,  then lim,,o[A(~)]-' = A-l.  

(c) lim,,o(A - €I)-' = A-l .  

(d) If A is m x n and B is n x m, both independent of E ,  then 

A Matrix Handbook for  Statisticians. By George A. F. Seber 
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19.2. (Continuity Argument) A number of matrix results can be proved by taking 
limits when continuity can be assumed, as was the case in (19.1) above. For exam- 
ple, a particular result may be true for a nonsingular matrix A. If A is singular, 
we can choose E > 0 such that A + EI is nonsingular (Abadir and Magnus [2005: 
165]), set up the appropriate equation, and then let E + 0. We may find that the 
result is then true for singular matices. For an example of this technique see Zhang 
[1999: 561. 

Proofs. Section 19.1. 

19.1. Quoted by Zhang [1999: 581. 

19.2 SEQUENCES 

Sequences of vectors and matrices occur in many parts of statistics, especially in 
the development of asymptotic results. In particular, we are often interested in 
the limit of powers of matrices, as in stochastic processes where the focus is on 
transition matrices. We first of all consider convergence of a sequence of vectors 
with respect to a norm. 

Definition 19.2. Let V be a vector space over F, and let 1 1  . 11 be a norm on V .  
We say that the sequence of vectors {x")} in V converges with respect to the norm 
to a vector x E V if and only if I I x ( ~ )  - X I /  -+ 0 as k -+ 00. It should be noted that 
x is just an element of a vector space so that it can be regarded as either a real or 
complex vector or matrix, with an appropriate norm. 

19.3. From (4.54) we see that if the sequence {x(~)}  converges to a vector x for 
one vector norm, it converges to x for any vector norm. Choosing the L ,  norm we 
see that, for all vector norms on R" or @", lirnk,,~(~) = x with respect to any 
vector norm if and only if 

The extension from vectors to matrices is straightforward. 

Definition 19.3. Let { A k }  ( k  = 1,2 , .  . .) be a sequence of m x n matrices, and let 
a:;) denote the ( i , j ) th  element of Ak. The sequence {Ak} converges to A = (a i j ) ,  

that is limk,, Ak = A, if 

A sequence that does not converge is said to diverge. The same definitions obviously 
apply to vectors as well. We shall assume that m = n, unless otherwise stated. If 
A is a square matrix and limk,, Ak = 0,  then we say that A is convergent. 

19.4. Using the above notation, suppose limk,, A k  = A and limk,, B k  = B. 
Let a and ,6 be any constants, and let P and Q be any n x n matrices. From the 
limiting properties of scalars, the following results are straightforward. 

(a) hk+,((YAk + PBk) = d 4- PB. 
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(b) limk,, AkBk = A B .  

(c) limk,, PAkQ = PAQ. 

19.5. The sequence {Ak} converges if and only if the following hold. 

(1) Each eigenvalue X of A satisfies either 1x1 < 1 or X = 1. 

(2) When X = 1 occurs, the algebraic and geometric multiplicities of the eigen- 
value 1 are the same. 

19.6. If there is a matrix norm 1 1 1 .  1 1 1  such that lllAlll < 1, then A is convergent. 

19.7. A is convergent if and only if all the eigenvalues X are less than 1 in modulus 
(i.e., p(A) < 1, where p(A) is the spectral radius of A) .  

19.8. If the eigenvalue 1 occurs with algebraic and geometric multiplicity t (i.e., is 
semisimple), and all other eigenvalues are less than 1 in modulus, then 

lim A k  = X(Y’X)-lY’, 

where X and Y are the n x t matrices o f t  linearly independent right, respectively, 
left eigenvectors associated with the eigenvalue 1. 

19.9. Let A be n x n, let {Ak} ( k  = I ,  2, .  . .) be a sequence of real n x n matrices, 
and let 1 1 1 . 1  I l p , z n  be an matrix norm induced by the L,  vector norm. If p = 1,2,  or 00 

(cf. 4.74), then 

k-cc 

(a) lirnk-, Ak = 0 if and Only if h k , ,  II(AkI(lp,zn = 0. 

(b) limk,, Ak = A if and only if limk,, IllAk - AIIIp,tn = 0. If we use - 

AllF, then this result also applies to m x n matrices; cf. Harville [1997: 4311.) 

(c) If lirnk-, Ak = A ,  then limk,, ~ ~ ~ A k ~ ~ ~ p , ~ n  = IIIAIIIp,tn. (The converse may 
not be true.) 

19.10. The following result is useful in the context of limits. Suppose C is a square 
matrix and (I - C)-’  exists. If 

19.11. If 1 1 1 .  1 1 1  is any matrix norm, then 

where p is the spectral radius. 

Proofs. Section 19.2. 

19.3. Horn and Johnson [1985: 2731. 

19.5. Hunter [1983a: 151-1521 and Meyer [2000a: 629-6301. 

19.6. Harville [1997: 431-4321 and Horn and Johnson [1985: 2981 
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19.7. Graybill [1983: 98-99], Horn and Johnson [1985: 2981, and Meyer 
[2000a: 6171. 

19.8. Hunter [1983a: 1531. 

19.9. Graybill [1983: 96-97]. 

19.10. We use (19.14). 

19.11. Meyer [2000a: 6191. 

19.3 ASYMPTOTICALLY EQUIVALENT SEQUENCES 

There are situations where an n x n matrix A is difficult t o  work with, but a related 
matrix is easier to use that gives approximately the same result when n is large. 
This idea is made rigorous below. 

Definition 19.4. Let {A(k)} and {B(k)} be two sequences of real matrices, where 
A(k) and B(k) are both k x k,  and let lllAlllv denote a matrix norm. The two 
sequences of matrices are defined to be asymptotically equivalent if and only if they 
satisfy the following two conditions (Graybill [1983: 1011). 

(1) IIIA(k)1112 5 c < 00, IIIB(k)(112 5 c < 00 for k = 1 , 2 ,  . . . ,  where c is a real 

(2) limk,, k-1’2111(A(k) - B(k)lIl~ = 0. 

number that does not depend on k .  

19.12. Let {A(k)} and {B(k)} be two asymptotically equivalent sequences of k x k 
matrices. 

(a) Then limk,, k-1/2111AklJJp = limk,oo k - 1 ~ 2 ~ ~ ~ B ~ ~ ~ ~ ~ .  

(b) Suppose A&\ and BG; exist for each k = 1 ,2 , .  . .. If llIA(k)(((2 5 c < 00 and 
lllBklll2 5 c < cc for k = 1,2, . . . ,  where c is a real number that does not 
depend on k ,  then {AG:} and {B&\} are asymptotically equivalent. 

19.13. Let {A(k)), {B(k)}, {F(k)}r and { G ( k ) }  be sequences of k x k matrices. 

(a) If {A(k)) is asymptotically equivalent to {B(k)}, and {F(k)) is asymptoti- 
cally equivalent to {G(k) } ,  then {A(k)F(k)} is asymptotically equivalent to 

{B(k)G(k)}. 

(b) If, in (a,) {B(k)} is asymptotically equivalent to { C ( k ) } ,  then {A(k)} is asymp- 

(c) If {A(k)B(k)} is asymptotically equivalent to { D ( k ) } ,  and IIIA&l)1112 5 c < m, 

where c is a constant that does not depend on k, then {B(k)} is asymptotically 
equivalent t o  {A,~,D(~,} .  

totically equivalent to {C(,+)}.  

Proofs. Section 19.3. 

19.12. Graybill [1983: 101-1021. 

19.13. Graybill [1983: 1021. 



SERIES 421 

19.4 SERIES 

Definition 19.5. Let S k  = Al+Aa+. . .+Ak,  where the Ai a r e n x n .  Theseries 
s k  is said to converge to, or have sum, S if limk+W S k  = S; we write S = CEl Ak. 
A series that does not converge is said to diverge. (In what follows we recall that 
p(A) is the spectral radius of A.) 

19.14. If S k  = I, + A + A' + . . . + Ak, then 

s k  = (I, - A)-'(I, - A"') = (I, - A"' )(In - A)-', 

provided (I, - A)-' exists. 

19.15. The following conditions are equivalent. 

(1) (Newmann Series) I, + A + A' + . . . converges. 

(2) 4-4) < 1. 

(3) limk,, Ak = 0,that is, A is convergent. 

Moreover, when one (and hence all) of these conditions are satisfied, then 

(a) I, - A is nonsingular. 

(b) I, + A + A' + . . . converges to (I, - A)-'. 

19.16. Let A E V be the vector space of n x n matrices, and let 1 1 1  . 1 1 1  be any 
matrix norm defined on V .  

If lllAlll < 1, then (I, - A)-' exists and is given by 

m 

(I, - A)-l = E A k .  
k=O 

We can obtain another result by setting A = I, - B. 

Suppose B E V and B is nonsingular. If F = B-'A, then the infinite series 
Bpl + FBP1+ F'B-' +. . . converges if and only if limk,m Fk = 0, in which 
case B - A is nonsingular and 

03 

(B - A ) - ~  = CF~BB-~.  
k=O 

Replacing A by -A we get 

W 

(A + B)-' = (C(-B-'A)~)B-' 
k=O 

If A is small, we have the approximation (A + B)-' M B-' - B-'AB-'. 

If A is the matrix that is nonsingular, we interchange A and B. 

If { a k } ,  IC = 0,1,. . . is a sequence of scalars, then CEO akAk converges if the 
series Cp=o l a k  I . I I IAl I I of real numbers converges; Ao = I,. 
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(d) ~ ~ o c r k A k  converges absolutely if cr=o la’klpk < m, where p = p(A) is 
the spectral radius of A. 

Proofs. Section 19.4. 

19.14. Consider (I, - A)Sk and S k ( 1 ,  - A )  and use Definition 19.3. 

19.15. Graybill [1983: 1001, Hunter [1983a: 1541, and Meyer [2000a: 6181. 

19.16a. We combine (19.6) with (19.15). 

19.16b. Harville [1997: 4301. 

19.16~. Rao and Rao [1998: 3661. 

19.16d. Abadir and Magnus [2005: 2601. 

19.5 MATRIX FUNCTIONS 

Many functions f ( t ) ,  whether polynomial or nonpolynomial like exp(t), sin t ,  and so 
on, can be generalized to have a matrix argument. Horn and Johnson [1991: chapter 
61 have a good discussion on the meaning of f (A)  and associated properties. They 
also define a primary matrix function f (A) associated with the scalar-valued stem 
function f ( t )  using the Jordan canonical form of A, and their book should be 
consulted for details. We shall only consider some nonpolynomial functions. The 
following theorem is helpful in this respect. 

19.17. Let f ( t )  be a scalar-valued function with power series representation f ( t )  = 

a0 +alt+a2t2 +. . . that has a radius of convergence R > 0. If A is n x n and p(A) < 
R, where p(.)  is the spectral radius, the matrix power series a0 + alA + a2A2 + . . . 
converges with respect t o  every norm on the set of n x n matrices, and its sum is 
denoted by the primary matrix function f ( A ) .  

19.18. Let A be n x n with eigenvalues xi, and suppose f (A) = cr=l C k X k  and 
f ( A )  = cr=1 CkAk. 

(a) Since A = RJoR-~,  where J0 is the Jordan canonical form of A, we have 
f ( A )  = R f ( J 0 ) R - l .  

(b) det f ( A )  = det R .  det f(J0) . (det R)-’ = det(J0)  = n:=, f ( A , ) .  

(c) tracef(A) = t race(R-lRf(J0))  = trace(f(J0)) = cy=l f(&). 
See also (19.21). 

A number of functions with power series expansions fall into the above category, 
the most common being the exponential function. In fact (I, + A)”,  exp(A), 
logA, sinA, and cosA can all be defined as primary matrix functions. However, 
using the Jordan canonical form, we find that all functions f satisfying certain 
derivative conditions have the property that f ( A )  can be expressed as a polynomial 
in A (Meyer [2000a: 603-6071), For further details see Abadir and Magnus [2005: 
chapter 91 and Meyer [2000a: sections 7.3 and 7.91. 
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Proofs. Section 19.5. 

19.17. Horn and Johnson [1991: 412). 

19.18b. The determinant is the product of its eigenvalues, which are the 
diagonal elements of the upper-triangular matrix Jo. 

19.18~. As in (b), except that the trace is the sum of the eigenvalues. 

19.6 MATRIX EXPONENTIALS 

Matrix exponentials typically arise as solutions of differential equations (cf. Section 
17.10). 

Definition 19.6. If A is an n x n matrix, we define 

t2 tr 
2! r! 

exp(At) = I, + t A  + -A2 + .  . . + -AT + .  . . , -co < t < co. 

This series converges absolutely for p(A) < 00 (by 19.16d). 

19.19. Setting t = 1, we have the following. 

(a) The eigenvalues of exp(A) are exp(&) (i = 1 ,2 , .  . . , n), where the X i  are the 
eigenvalues of A.  

(b) If A is symmetric, then exp(A) is positive definite as each eigenvalue A, of A 
is real and exp(Xi) is positive. 

(c) The matrix exp(A) is always nonsingular (as from (a) the eigenvalues are 
nonzero) and 

[exp(A)]-l = exp(-A). 

(d) exp(kA) = [exp(A)lk for k a positive or negative integer. 

(e) [exp(A)]* = exp(A*). 
It then follows that exp(A) is Hermitian if A is Hermitian, and it is unitary 
if A is skew-Hermitian. 

(f)  Every n x n unitary matrix U can expressed as exp(iA), where A is some 
Hermitian n x n matrix. Note that iA is skew-Hermitian. 

(g) If U is an n x n symmetric unitary matrix, there exists a real symmetric 
matrix A such that U = exp(iA). 

(h) As the determinant of a matrix is the product of its eigenvalues, it follows 
from (a) that 

since ni exp(Xi) = exp(Ci  Xi).  

det[exp(A)] = exp(traceA). 

(i) If A is real skew-symmetric, then exp(A) is orthogonal and its determinant 
is 1. 
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(j) If A is skew-Hermitian, then C = exp(A) is unitary with I det CJ = 1. 

19.20. Let A and B be n x n matrices. 

(a) If A B  = BA,  then 

exp(A + B )  = exp(A) exp(B) = exp(B) exp(A). 

Although commutativity is a sufficient condition for the above to hold, it is 
not necessary. 

(b) We can have exp(A)exp(B) = exp(B)exp(A), but AB # BA.  For an 
example see Abadir and Magnus [2005: 2561. 

(c) det[exp(A + B)] = det[exp(A)] det[exp(B)]. 

(d) (Lie Product Formula) limn-m [exp( p) exp( g)] 
This follows from (19.19g) above irrespective of whether (a) holds or not. 

= exp(A + B). 

19.21. Let A be an n x n diagonalizable matrix with eigenvalues Xi ;  that is, there 
exists a nonsingular matrix R such that 

A = RAR-’ = Rdiag(X1, X2,. . . ,Xn)RP1, 
~k = R A ~ R R - ~  

and exp(A) = Rdiag(exl , .  . . , eXn)R-’ = ReARP1, say. 

(This method avoids using a power series expansion, and it can be generalized to any 
function f ( z )  of a diagonalizable matrix by defining f (A)  = diag(f(Xl), f(&), . . . , 
f(X,)) and setting f ( A )  = Rf(A)R-’.) For nondiagonalizable matrices, we can 
replace A by its Jordan form Jo and use (19.18). 

19.22. For general t :  

(a) The matrix exp(At) is nonsingular for all finite t .  Noting that its eigenvalues 
are exp(tXi), we have from (19.19g), 

det (exp(At) = exp(ttraceA), -m < t < 00. 

(b) Using power series expansions, exp(At1) exp(At2) = exp[A(tl + t2)] for all tl 
and t2. 

(c) [exp(At)]-’ = exp(-At). 

(d) If “8” is the Kronecker product, we have from (11.9): 

(i) exp(I,, 8 At) = I, @I exp(At). 

(ii) exp(At 8 Im) = exp(At) 8 I,. 

These results hold for any primary matrix function f(.) and not just for exp(.). 

(e) exp(At) exp(Bt) = exp[(A+B)t] for all finite t E R if and only if AB = BA.  

19.23. (Inequalities) 
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(a) Let A be any n x R matrix. For any matrix norm 1 1 1  . 1 1 1 ,  

I l l  exp(A)III I exP(lllAIl0. 

(b) If A and B are n x n Hermitian matrices, then 

II exp(A + B)IIui I II exp(A) exP(B)Ilui, 

for any unitarily invariant norm 1 1  . llUi . 

19.24. Let f be a continuous function from the space of n x n complex matrices 
to C with the following properties. 

(1) f(XY) = f (YX)  for all X and Y. 

(2) I(f(X2k)l 5 f([XX*Ik) for all X and for all k = 1,2, .  . .. 

Then: 

(a) f ( X Y )  2 0 for all Hermitian non-negative definite X and Y. In particular, 

f(exp(A)) 2 0 

for all Hermitian A.  

(b) If(exp(A))l I f(%eA) for all A.  

(c) If(exp(A + B))I I f(!Re(A + B)) I f (%eA)f(ReB) for all A ,  B. 

(d) 0 I f(exp(A + B) 5 f(exp(A) exp(B)) for all Hermitian A, B. 

Here %e means the “real part of.” Note that (a) and (d) hold when f is the trace or 
the determinant. The above inequalities arise in statistical mechanics, population 
biology, and quantum mechanics. 

Proofs. Section 19.6. 

19.19a. Follows from the fact that A k x  = Akx for all k = 1 ,2 , .  . ., and for 
some x. See also Meyer [2000a: : 5251 

19.19~. Horn and Johnson [1991: 4351. 

19.19d. Abadir and Magnus [2005: 2621 and Horn and Johnson [1991: 4351. 

19.19e. Quoted by Horn and Johnson [1991: 439, exercise 91. 

19.19f. Quoted by Horn and Johnson [1991: 440, exercise 101. 

19.19i. Abadir and Magnus [2005: 2631. 

19.19j. Abadir and Magnus [2005: 2641. 

19.20a. Abadir and Magnus [2005: 252-531 and Horn and Johnson [1991: 
4351. 

19.20b. Quoted by Horn and Johnson [1991: 442, exercise 221. 
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19.20~. Bhatia [1997: 2541 and Horn and Johnson [1997: 4961. 

19.21. Abadir and Magnus [2005: 2601 and Meyer [2000a: 525, 6011. 

19.22~. Use (e) to verify that exp(-At) is the inverse. 

19.22d. Quoted by Horn and Johnson [1991: 440, exercise 131. 

19.22e. Abadir and Magnus [2005: 2521. 

19.23a. Horn and Johnson [1991: 501, equation (6.5.25)]. 

19.23b. Horn and Johnson [1991: 4991. 

19.24. Horn and Johnson [1991: 4971. 



CHAPTER 20 

RANDOM VECTORS 

20.1 NOTATION 

In this chapter we do not use the convention that random variables have capital 
letters because of the problem of distinguishing between a random matrix and its 
observed value in the next chapter. As a rough rule, we generally reserve the latter 
part of the alphabet, u, u, . . . , z for random vectors and the rest of the alphabet for 
constants, including matrices of constants. 

20.2 VARIANCES AND COVARIANCES 

Definition 20.1. I f  x = ( x i )  is a vector of random variables, then we define 
E(x) = (E(lci)), the vector of expected values. 

20.1. For conformable vectors and matrices, E(Ax + b) = AE(x) + b. 

20.2. Let S be a convex subset of R” and x an n x 1 random vector with finite 
E(x).  If pr(x E S )  = 1 then E(x) E S. 

Definition 20.2. If x and y are vectors of random variables, we define the matrix 
with ( i , j ) t h  elements cov(zi,yj) to be cov(x,y), the covariance matrix of x and 
y.  When x = y ,  we define var(x) = cov(x,x) to be the variance matrix of x. 
(The terms variance-covariance matrix, covariance matrix and dispersion matrix 

A Matrix Handbook for Statisticians. By George A. F. Seber 
Copyright @ 2008 John Wiley & Sons, Inc. 
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are also used in the literature for var(x).) In the following, we recall that A 
implies that A - B is non-negative definite. 

20.3. Let var(x) = C. Since, by (20.6b), 0 5 var(a’x) = a’Ca, we have that C is 
non-negative definite. It is nonsingular (i.e., positive definite) if and only if there 
do not exist constants a (# 0) and b such that a’x = b (i.e, var(a’x) = 0). 

20.4. If E(x)  = p and var(x) = C, then x - p E C(C) or equivalently x E C(p, C), 
with probability 1. 

20.5. Let E(x)  = px and E(y)  = py.  

B 

( 4  

cov(x - a, y - b) = cov(x, y) 
= E “ x  - P d Y  - P Y Y I  

= E(xY’) - pxp;. 

(b) The above result also holds if x = y so that: 

(i) var(x - a) = var(x). 

(ii) var(x) = E(xx’) - pxpL. 

20.6. The following results are extremely useful. 

(a) cov(Ax, By) = Acov(x, y)B’. 

(b) From (a), var(Ax) = Avar(x)A’. 

(c) var(y - Ax)  = var(y) - Acov(x, y) - cov(y, x)A’ + Avar(x)A’. 

20.7. If x and y are random vectors with respective means px and py ,  then 
E((y  - Ax - a)(y - Ax - a)’] = var(y - Ax) + (py - Apx - a ) ( p y  - Apx -a)’. 

20.8. If a, b, c, and d are constants, then 

cov(ax + by, c u  + dv)  
= accov(x, u) + ad cov(x, v) + bccov(y, u) + bdcov(y, v). 

In particular, var(u + v)  = var(u) + cov(u, v) + [cov(u, v)]’ + var(v) 

20.9. (Partitioned Vector) Let z = (x’ ,~’)’  be a random vector with mean pz = 
(pL,pb)‘, where x is m x 1 and y is p x 1. Then: 

var(x) cov(x, y) 
(a) var(z) = Cz2 = 

where Cyz = Cky. 

(b) C(xZy) 2 C(Czz) and C(Eyz) C C(Cyy) 

(c) If E(x) = 0, then cov(y -Ax, x) = 0 if and only if Ax = Bx with probability 
1, where B = CYzC;, and C;, is any weak inverse of C,, (i.e., C,,C;,C,, = 

Em). 
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(d) Using (20.8) and (c), 

var(y - Ax) = 

= 

t var(y - Bx). 

var[(y - Bx) + (B - A)x) 

var(y - Bx) + var[(B - A)x] 

for all A.  

(e) By (20.6b) we have var(EyzE&x) = var(Bx) = EyzE;zEzY. This matrix and 
the generalized Schur complement Eyy.z = Eyy - EyzE;zEzy are invariant 
with respect to the choice of weak inverse ELz (by (14.8) and (20.9b)). 

( f )  var(y - Bx) = Eyy.z (= var(y - py - EyzE&(x - p x ) ) ,  by (20.5b(i)). 

(g) (Best Linear Predictor) From (20.7) and (d), 

E[(y - A x  - a) (y  - Ax - a)’] k var(y - Ax) 

? 

for all conformable A and a, where yx = py + EzYELz(x - p x )  is called the 
best linear predictor as it minimizes the left-hand side of the above expression, 
the so-called mean  squared prediction error matrix.  

E[(Y - %)(Y - FX)’]  = Eyy.”  

Proofs. Section 20.2. 

20.2. Schott [2005: 3771. 

20.3. Seber and Lee [2003: 81. 

20.4. Rao [1973a: 5221 and Sengupta and Jammalamadaka [2003: 561. 

20.6a. Seber and Lee [2003: 71. 

20.6~. Expand cov(y - Ax, y - Ax). 

20.7. We use (20.5b(i)) with x replaced by y - Ax, and then use (20.5b(ii)) 
with x replaced by y - A x  - a. 

20.8. Seber and Lee [2003: 71. 

20.9b. Sengupta and Jammalamadaka [2003: 56, with the roles of x and y 
interchanged]. 

20.9~.  Sengupta and Jammalamadaka [2003: 571 

20.9d. Use (20.9~) to prove that the covariance term is zero. 

20.9e. var(Bx) = BE,,B’ = EyzE&Ezz(E;z)’Ezy = Eyz(E.&EzzE- 
where (E&)’ = E&l), say, for some weak inverse E&l) of Ezz, as Ezz is sym- 

metric. Then C = E;zEzzE~z~l) is a weak inverse of Ezz as EzzCEzz = Ezz. 

20.9f. Using (c) and B = EyzE;z, we obtain 

)Ezy, 4 1 )  

cov(y - Bx, y - Bx) = cov(y - Bx, y )  = var(y) - Bcov(x, y)  = E:yy.z. 

20.9g. E[(y - A x  - a ) ( y  - A x  - a)’] k var(y - Ax),  by (20.7), and var(y - 
Ax) k var(y - Bx), from (f) .  
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20.3 CORRELATIONS 

20.3.1 Population Correlations 

Definition 20.3. If x and y are random variables, then their population correla- 
tion coeficient is defined to be p(x ,  y) = cov(x, y ) / [ ~ a r ( z ) v a r ( y ) ] ~ / ~ ( =  ozy/(ozoy), 

say). 

20.10. p = p(x,  y) has the following well-known properties. 

(a) -1 5 p 5 +1. 

(b) p2 = 1 if and only if x and y are linearly related. 
If p = tl, then y - py = z ( x  - pz). 

if p = -1, then y - py = - z ( x  - pz).  

(c) p(az, by) = sign(ab) lab1 P ( X l  Y) .  

Definition 20.4. Suppose x has variance matrix I: = (aij). If corr(x) = ( p z j ) ,  
where pij  = ~ij/(oiiojj)’/~, then corr(x) is called the populat-7n correlation ma t r i x  
of x. 

20.11. Let C = corr(x) = (pij) be an n x n correlation matrix. 

(a) C = D,1/21:D,’/2, where D, is a diagonal matrix with positive diagonal 
elements u = diag(al1, ~ 2 2 , .  . . , onn). 

(b) C is non-negative definite (as I: is). 

(c) pii = 1 and Jpijl < 1 (for all i , j ,  j # i ) .  

(d) The largest eigenvalue of C is less than n. 

(e) 0 < det C 5 1. 

(f)  A well-known correlation matrix is of the form C = (1 - p)I, + pJ,, where 
J, is an n x n matrix with all its elements equal to 1. For C to be positive 
definite we must have -l/(n - 1) < p < 1. For further details about this 
matrix see (15.18a). 

Definition 20.5. Let x be a d-dimensional random vector with E(x) = p and 
var(x) = I:, where I: is positive definite. Consider the partitions 

where x2 = ( 2 2 , .  . . ,xd)’, p2 = (pz , .  . . ,pd)’ and &2 is (d - 1) x (d - 1). Here 
var(x1) = ollr u 1 2  is the vector of covariances betweem x1 and each of the variables 
in x2, and var(x2) = X22. The (population) multiple correlation coeficient between 
x1 and x2, denoted by ~ 1 . 2 3  . . .d l  is the maximum correlation between x1 and any 
linear function a’x2 of 22,. . . , xd. Thus 
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Also, R2 is sometimes called the (population) coef ic ient  of multiple determinat ion,  
and R is the positive square root (Muirhead [1982: section 5.21 and Anderson [2003: 
section 2.51). 

20.12. R has the following properties. 

(a) R = ( ~ : ~ ~ : 2 2 0 1 2 / 0 1 1 ) ~ / ~  

(b) 0 5 R 5 1. 

(c) If d1 is the first diagonal element of X-’, then, from (14.11), 

U 1 l  = (011 - “ ;2X&712)-1  

and 1 - R2 = l/(u1’u11). 

(d) When x has a nonsingular multivariate normal distribution N d ( P ,  X) we have 
from (20.23f) that 

E(xi I x 2 )  = pi + &X:,-,’(xz - P Z )  

and 
var(x1 I x 2 )  = u l l . 2 3 . . . d  = u11 - a ~ , ~ ~ ~ a 1 2  

Then: 

(i) 1 - R2 = 011.23 . . .d/  u l l .  

(ii) 011.23.. .d 5 u11. 

(iii) R is the correlation beween x1 and E(x1 I x 2 ) .  

(e) When d = 2, R = Ip1.21 = Ip(~1,xz)l  

Definition 20.6. The previous Definition 20.5 can be readily generalized. Let x 
be a &dimensional random vector with E(x) = ,u and positive definite variance 
matrix X. Consider the partitions 

where XI  is k x 1, x 2  is (d  - k )  x 1, and so on, and let xi be a variable in x1 (i = 
1,2,  . . . , k ) .  The (population) multiple correlation coefficient between xi and the 
variables x k + l , .  . . , x d  in x 2 ,  denoted by Ri . k + l , k + 2  ,.._, d,  is the maximum correlation 
between x, and any linear function a’xz of x k + 1 , .  . . ,xd. Note that R 1 . 2  ,..., d = R. 

Definition 20.7. Using the notation of the previous definition, let X l l . 2  = - 

(cf. 20.23f). We define the (population) partial correlation coef ic ient  pi j .  k+l , . . . ,d  to 
be the correlation coefficient between xi and xj, components of X I ,  in the condi- 
tional distribution of x1 given x 2 ,  that is, 

X 1 2 X ; i X 2 1 ( =  (aij .k+l , . . . ,d ) ,  say). Given x - N d ( k  E), then X11.2  = var(x1 I x 2 )  

This is the correlation beween xi and xJ holding x2 fixed. 
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Proofs. Section 20.3.1. 

20.11d. The eigenvalues A, of C are non-negative and C,  A, = trace C = n. 

20.11e. Follows from (n, 
exceed the arithmetic mean) and det C = n, Xi .  

20.12. Muirhead [1982: section 5.21 

20.13. Anderson [2003: 38-41]; see also Muirhead [1982: 1941. 

5 = 1 (a the geometric mean does not 

20.3.2 Sample Correlations 

Definition 20.8. If x = (2 , )  and y = (yi) are n x 1 vectors representing univariate 
random samples of size n, then their sample correlation coeficient is defined to be 

20.14. T = r(x, y) has the following properties. 

(a) r2 5 1. When r2 = I, there is a linear relation between the yi and the zi as 
in (20.10b), but with parameters replaced by their estimates. 

(b)  ax, by) = sign(ab) lab1 r(x, y).  

Definition 20.9. Let XI, x 2 ,  . . . , x, be a random sample from a d-dimensional 
distribution with mean p and positive definite variance matrix X, and let S = ( S , ~ )  

be the sample covariance matrix given by S = C7=l(xz - X)(x, - X ) ' / ( n  - 1). Let 
rt3 = S ~ ~ / ( S , , S ~ ~ ) ~ / ~ ,  where r,, = 1 for i = 1 , 2 , .  . . , d. Then R = ( T ~ ~ )  is called the 
sample correlatzon matrzx. It does not matter if we use n instead of (n  - l), that 
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is, use 2, the maximum likelihood estimate of X under normality, instead of S as 
(n  - 1) cancels out of R. Note that S is a random matrix so that it is considered 
again in the next chapter. 

20.15. We now introduce an important device that allows the properties of pop- 
ulation parameters to be carried over directly to their sample estimates. Consider 
the discrete random variable y with probability function 

1 
n 

p r ( y = x i ) = - ,  i = 1 , 2  , . . . ,  n. 

Then 

n 
1 -  1 1  - E(y) = Exz- = x and var(y) = x(xi - x)(xi - 5) - = X. 

n 
z=1 i = l  

We can therefore “translate” sample properties into population properties using an 
appropriate discrete population. 

Definition 20.10. Using the notation of the previous definition, consider the 
partition 

The sample multiple correlation coefficient between x 1  and ~ 2 ~ x 3 ,  . . . , xd is defined 
to be 

R = ( s ~ , S ~ ~ s l ~ / s 1 1 ) 1 / 2 .  

Under normality, R is the maximum likelihood estimate of R, the population mul- 
tiple correlation. For further details see Anderson [2003: section 4.41. 

Sample versions of the other correlations and partial_correlations can be defined 
in a similar manner. One simply replaces X by S or X in the population defini- 
tions. For example, replacing X by S in Definition 20.7, we have the sample partial 

For further details see Anderson [2003: section 4.31. 

20.16. Using the method of (20.15), all the results and optimal properties for 
population parameters hold for the sample equivalents. For example, from (20.13b), 

rz . k + l , k + 2 , . . . , d  = ( s ~ s ~ ~ ~ z / s t z )  1/2 .  

Proofs. Section 20.3.2. 

20.14a. Proved using the Cauchy-Schwarz inequality or using (20.15). 

20.16. Muirhead [1982: 1881. 
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20.4 QUADRATICS 

20.17. Let x be an d-dimensional random vector with E(x) = p and var(x) = E, 
a non-negative definite matrix of rank T 5 d. Let A be a real d x d symmetric 
matrix, and let E = BB’ (cf. 10.10), where B is d x T and B’AB # 0. Then: 

(a) With a suitable transformation of the form x = B P z  we find that 

i=l i=l 
r 

bi b: 

xi 
= C X i ( z i + - ) 2 + ( a - - C ) ,  X i f O ,  i = 1 , 2  , . . . ,  T 

i=l i=l 

i=l 

where b’ = ( b l ,  b2 , .  . . , b,) = p’ABP, z = (z1,z2,. . . , z r ) ’ ,  E(z) = 0, var(z) = 
I,, P’B’ABP = diag(X1, X 2 , .  . . , X r ) ,  the X i  are the eigenvalues of B’AB (i.e., 
of EA),  P is r x T and orthogonal (i.e., PP’ = I?), and a = p’Ap. 

(b) If E is positive definite, we can choose B to be triangular (Cholesky decom- 
position) or Ell2 (cf. 10.32). In the latter case, we find that 

i=l 

where the X i  are the eigenvalues of E1/2AX’/2 (i.e., of XA), E(u) = 0, 
var(u) = Id,  c’ = (clrc2,. . . , cd )  = (P’X-1/2p)’, and PP’ = I d .  

20.18. Let x have mean p and non-negative definite variance matrix X, and let 
Q = E[(x - a)’A(x - a)] (= E[trace{(x - a)’A(x - a)}]). 

(a) Using (20.7), 

E(Q) = trace{AE[(x - a) (x  - a)’]} = trace(AX) + ( p  - a)’A(p - a)’. 

(b) If X = 021, we have the useful rule E(Q) = o2 traceA + Q x + ~ ( x ) .  

20.19. Let x be a d x 1 random vector with mean p, variance matrix X, and finite 
fourth moments, so that E(xx’) and E(xx’ 8 xx’) exist, where “8” refers to the 
Kronecker product. If A and B are real symmetric d x d matrices, then 

COV(X’AX, x’Bx) = trace{ ( A  @ B)E(xx’ 8 xx’)} 

-{trace(AE) + p’Ap}{trace(BX) + p’Bp}. 

20.20. Let x be a random vector with elements 21, x2,. . . , 5, distributed as in- 
dependent random variables with means & ,  &, . . .,&, common variance p2, and 
common third and fourth moments about their means, p3 and p4, respectively (i.e., 
pr = E[(zi - &).I). Let A be any symmetric n x n matrix, and let a = diagA be 
the column vector of the diagonal elements of A.  
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(a) We have 

var(x’Ax) = (p4  - 3p;)a’a + 21-1; trace(A2) + 4p2fl’A2f3 + 4p38‘Aa. 

(b) If the xi are each normally distributed as N(O,a’), then 1-13 = 0, 1-14 = 3,4, 
1-12 = a’, and 

If B is also a symmetric n x n matrix, then 

var(x’Ax) = 2a4 trace(A2). 

COV(X’AX, x’Bx) = 2a2 trace(AB). 

These results are generalized in (20.25). 

(c) Let 7 2  = (1-14 - 3,4)/p: be the common kurtosis, and let Pi (i = 1,2) be sym- 
metric idempotent matrices with pi = diag(Pi), r ankp i  = fi (= trace Pi), 
and P I P 2  = 0. If Pi0 = 0, then from (a) we have: 

(i) var(y’Piy) = h4(fi + +yzpI,pi). 

(ii) C O V ( Y ’ ~ ~ Y , Y ’ ~ ~ Y )  = a472p’,p2. 

This result is useful in examining the robustness of the F-test for a linear 
hypothesis and a linear model. 

Proofs.  Section 20.4. 

20.17a. Mathai and Provost [1992: 361. 

20.17b. Mathai and Provost [1992: 28-29]. 

20.18. Schott [2005: 4141 and Seber and Lee [2003: 91. 

20.19. Schott [2005: 4141. 

20.20~~. Quoted by Atiqullah [1962] and derived in Seber and Lee [2003: 10- 
111. 

20.20b. Seber and Lee [2003: 161. 

20.20~. Atiqullah [1962] and Seber and Lee [2003: 236-2371. Here (ii) is 
obtained from ;{var[(y’(Pl + P,)y] - xi var(y’Piy)}. 

20.5 MU LT I VA R I AT E N 0 R M A L D I STR I B U TI 0 N 

20.5.1 Definition and Properties 

Definition 20.11. Let x be a d x 1 random vector with mean p and variance matrix 
E, which is positive definite. Then x is said to  have a (nonsingular) multivariate 
normal (or multinormal) distribution if its probability density function is given by 

f(x) = f ( X l 1 X 2 ,  ’ ’ 1 4  

= ( 2 ~ ) - ~ / ~ ( d e t  E)-”’exp{~(x - P)’X-’/~(X - p ) }  

( - -oo<z~<-oo,  i = 1 , 2  , . . . ,  d) .  
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We write x N N d ( p ,  E). When d = 1, we replace N1 by N ,  the univariate normal 
distribution. Note that x N N d ( 0 , I d )  if and only if the zi are independently 
distributed as N ( 0 , l ) .  If x - N d ( p ,  E), then y = E-’l2(x - p )  - N d ( 0 , I d ) .  
Sampling from a normal distribution is discussed in Section 21.3. 

If I: is positive semi-definite (i.e., singular), then the probability distribution 
still exists, but not the density function. However, we can extend our definition to 
include the so-called singular multivariate normal distribution using one of the two 
following equivalent definitions, which includes both the nonsingular and singular 
cases. 

1. The random vector x is multivariate normal if and only if y = a’X is univariate 
normal for all a .  If y = b we define y to be N(b,  0). 

2. A random d x 1 vector x with mean p and variance matrix I: has a multivariate 
normal distribution if it has the same distribution as Az + p, where A is any 
d x m matrix satisfying E = AA’, and z N Nm(O,Im) .  

The singular normal distribution occurs in many places in statistics, for example 
the distribution of residuals from linear models (Seber and Lee [2003]) and the 
distribution of the estimated cell proportions from sample survey data (Rao and 
Scott [1984]). For a general reference on the multivariate normal see Tong [1990]. 

20.21. Adopting the notation of Definition 20.11, suppose that X is singular of 
rank r (i.e., positive semi-definite). Then, from (20.4), x - p E C(E) and we can 
express I: = RR’, where R is d x T of rank r (cf. 10.10). Hence if P x  is the 
orthogonal projector onto C(I:) (cf. 2.49d), we have, for ( Id  - Pc)(x - p )  = 0, the 
density function 

f (x)  = (2~)~/~[det(R’R)]-~/~exp[-+(x - p)X-(x - p) ] ,  

and 0 otherwise. Here E- is a weak inverse of E. 

20.22. (A Useful Integral) If A and B are symmetric n x n matrices and B is 
positive definite, then using the multivariate normal density function we have 

+W f W  

(x’Ax + a’x + ao) exp[-(x’Bx + b‘x + bo)] d z l  . . . dx, 

- - 17rn12 2 IB I -1/2 exp( a b’B-lb - bo) 
1, ’ . ’  L 

x[trace(AB-’) - a’B-lb + ib’B-lAB-lb + 2ao]. 

20.23. Let x - Nd(p ,  I:), where the distribution may be singular or nonsingular. 

(a) The moment generating function of x is E[exp(t’x)] = exp(t’p+ it’I:t). This 
uniquely determines the (nonsingular) distribution when C is positive definite. 

(b) If C is m x d, then Cx - Nm(Cp, CEC’). The distribution is nonsingular if 
E is positive definite and C has rank m. 

(c) Any subset of a multivariate normal distribution is multivariate normal. 

(d) If the covariance of any two vectors that contain disjoint subsets of x is zero, 
then the two vectors are statistically independent. 



MULTIVARIATE NORMAL DISTRIBUTION 437 

(e) If cov(Ax, Bx) = 0, then A x  and Bx are statistically independent. 

(f) Suppose E is positive definite, and let 

where x, and p, are d, x 1, Et, is d, x d, (i = 1,2),  and dl +d2 = d. We then 
have the following conditional distribution 

x2 I x1 - Ndz(p2.1 ,E22.1)r  

where p 2 . 1  = p 2  + E21EF:(xl - p1) and E22.1 = E22 - E21Ey/E12. Note 
that E22.1 is the Schur complement of El1 in E, and it is frequently expressed 
in the form (X/E11) (cf. Section 14.1). 

(g) The result ( f )  still holds if E is singular and we replace Er: by ETl, any weak 
inverse of El 1 .  

20.24. (Moments) If x N N d ( 0 ,  E), where E is positive definite, and P d  = ;(Id2 + 
I(d,d)) (= N d ,  the symmetrizer of (11.29h-i)), then: 

(a) E(x  8 x) = vec E. 

(b) E(xx’ 8 xx’) = 2Pd(E 8 E) + (vec E)(vec E)’. 

If just one of any of the x’s is replaced by a constant vector, then the answer 
is 0. 

(c) var(x 8 x) = 2Pd(E 8 E). 

(d) Suppose x N N d ( p ,  E) and E is positive definite. 

(i) E(x @ x) = E(z 8 z) + p @ p = vecX + ( p  8 p ) ,  where z = x - p. 

(ii) var(x 8 x) = 2Pd(X 8 E + E 8 pp‘ + pp’ 8 X). 

(e) Higher moments are given by Graybill [1983: section 10.91 for the case x N 

N d ( 0 ,  I d ) .  

Proofs.  Section 20.5.1. 

20.21. Sengupta and Jammalamadaka [2003: 581. 

20.22. Graybill [1983: 3421 and Harville [1997: 3221. 

20.23. Anderson [2003: chapter 21 and Seber and Lee [2003: chapter 21. For 
( f )  see Schott [2005: 260-2611 and Seber and Lee [2003: 25-26], and for (g) 
see Sengupta and Jammalamadaka [2003: 591. 

20.24a-c. Schott [2005: 4161. 

20.24d(i). Schott [2005: 4161. 

20.24d(ii). Abadir and Magnus (2005: 3101. 
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20.5.2 Quadratics in Normal Variables 

20.25. Let x - Nd(p, X),  where E is positive definite. 

(a) We have (x - p)’X:-l(x - p )  N xz and x’X-’x - x;(S), the noncentral 
chi-squared distribution with noncentrality parameter 6 = p’E-’p. 

(b) Using the notation of (20.23f), we have the following: 

(i) Q1 = (XI - pl)’Xcf(xl - p1) - xzl (by 20.23~ and (a) above). 

(ii) Let Q2 = (x - p)’X-l(x - p )  - (XI - pl)’X;f(xl - pl ) .  Then, from 
(20.23f), x2 I x1 N Ndz(p2.1,E22.1) and, conditional on X I ,  

2 
Q2 1 ( ~ 2  - P Z . I ) ’ E ~ ; ~ ( X ~  - ~ 2 . 1 )  N x d 2 .  

Since this distribution is not a function of xl, it is also the unconditional 
distribution; (iii) below holds for the same reason. 

(iii) Q1 and Qz are statistically independent. 

(c) Let A and B be d x d matrices. 

(9 

E(x’Ax. x’Bx) = trace(AX) trace(BX) + 2 trace(AEBX) 

+ trace(AX)p’Bp + trace(BE)p’Ap 

+4p’AXBp + (p’Ap)(p’Bp).  

(ii) COV(X’AX,X’BX) = 2 trace(AEBX) + 4p’AXBp. 

(iii) Setting A = B in (ii), we have 

var(x’Ax) = 2 t r a ~ e [ ( A X ) ~ ]  + 4p’AEAp. 

(d) Let x - N d ( O , I d ) ,  and let A,  B, and C be all d x d symmetric matrices. 

(i) 

E(X’AX. x / ~ x .  x’cx)  
= trace A trace B trace C + 2 trace A trace(BC) 

+2 trace B trace(AC) + 2 trace C trace(AB) 

+ 8 trace(ABC). 

(ii) If x N Nd(0, X),  we replace A, B, and C in the right-hand side of (i) by 
AX, BE,  and CE,  respectively. 

(e) If x - N d ( 0 ,  X),  then: 

6) 
COV[ (x’Ax)~,  (x’Bx)] 

= 4 trace(AX) trace(AXBX) + 8 t r a ~ e [ ( A E ) ~ B X l .  
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(ii) 

E [ (x’ Ax) ’1 
= [trace(AE)]’ + 6 trace(AE) trace[(AE)’] + 8 trace[(AE)’]. 

( f )  (Moment Generating Function) If Q = x’Ax + a’x + d, where A is real and 
symmetric, then the moment generating function (m.g.f.) of Q is 

i= 1 

d 

where 
T’X1/’AE112T = diag(A1,. . . ,Ad), 

T is orthogonal, and 

c = (c1, . . . , cd)’ = T’(E1/’a + 2E1/’Ap). 

Note that 

d 

n(1 - 2tAi)-1/2 = [det(Id - 2tE1/2AE1/2)]-1/2 = [det(Id - 2tAE)]-’/’. 

The m.g.f. can be used to obtain moments of the quadratic form-for example, 
(c)(iii). Thus if QO = x’Ax we have: 

(i) E(Q0) = trace(AE) + p’Ap.  

(ii) E[(Qo)’] = 2 trace[(AE)’] + 4p’(AE)Ap + {trace(AE) + p’Ap}’. 

(iii) 

i=l  

E [ ( Q o ) ~ ]  = 8{trace[(AE)’] + 3p’(AE)’Ap} 

+ 6{t ra~e[ (AE)~]  + 2p’AEp}{trace(AE) + p‘Ap} 

+{trace(AE) + p‘Ap}’. 

General expressions for E(QZ;) and E(QT) are given by Mathai and Provost 
[1992: 53-54], who also give formulae for E(Qch),  where h > 0 and can be a 
fraction (Mathai and Provost [1992: 56-59]). 
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20.26. Let x have the singular normal distribution N d ( p , C ) ,  where C is non- 
negative definite of rank T (T < d).  

(a) x’C+x - x;(b), the noncentral chi-squared distribution with noncentrality 
parameter 6 = p’Cp. Here C+ is the Moore-Penrose inverse of C. 

(b) (Moment Generating Function) Let C = BB’ (cf. 10.10), where B is d x T 

of rank T and B’AB # 0. If A is a d x d real symmetric matrix, then the 
moment generating functiom (m.g.f.) of Q = x’Ax + a’x + d is 

M Q ( ~ )  = [det(I, - 2tB’AB)]-1/2 exp{t(p’Ap + a’p + d )  

+$(B’a + 2B’Ap)’(Id - 2tB’AB)-’(B’a + 2B’Ap)). 

An alternative expression in terms of eigenvalues is given by Mathai and 
Provost [1992: 46-47]. Positive, negative, and fractional moments of QO = 
x’Ax are given by Mathai and Provost [1992: 54-55, 61-65]. 

The characteristic function of Q is obtained from the m.g.f. by replacing t by 
i t ,  where i = n. 

20.27. Let Qi = x’Aix + a:x + di, where Ai is a real d x d symmetric matrix 
( i  = 1 , 2 ) ,  and suppose x - N&, C).  

(a) If C is positive definite, then the joint moment generating function (m.g.f.) 
of Q1 and Q 2  is 

M ~ ~ , ~ ~ ( t l , t a )  = [det(I, - 2tlA1E - 2t2A~E:)]-’/~ 

x exp{-$(p’E-lp - 2tldl - 2t2d2) 

xC-l(tlCal+ t2~a2 + p ) } .  

+2(tlCal 1 + t2Ea2 + p)’ (Id  - 2tlAlC - 2tZAzC)-’ 

(b) If E is non-negative definite and C = BB’ (cf. 10.10), where B is d x T of 
rank T (T < d) ,  then the joint m.g.f. of Q1 and Q 2  is 

M ~ ~ , ~ ~ ( t l , t 2 )  = [det(I, - 2tlB’AlB - 2t2B’A2B)]-’/’ 

x exp(tl(p’A1p + a;p + dl)  + t2(p’A2p + alp + d2) 

+;@(I, - 2tlB’AB - 2t2B’AB)P}, 

where 

p =  (I, - 2tlB’AiB - 2tzB’A2B)-l 

x(tlB’a1 + 2t2B’Alp + tzB’a2 + 2t2BtA2p). 

Note that (a) follows from (b) by setting B = B’ = (cf. 10.32). We can obtain 
various special cases, for example: (i) if we set ai = 0 and di = 0 for i = 1 , 2 ,  and 
p = 0, we get the joint m.g.f. of x’A1x and x‘A~x,  or (ii) if we set A2 = 0 we get 
the joint m.g.f. for a quadratic and a linear form. 

In (a) and (b), the joint characteristic function is obtained by replacing tl  and 
t~ by it1 and i t 2 ,  respectively where i = &f. 

The above results were proved by Mathai and Provost [1992: 66, section 3.2~1 
and extended to more than two quadratics. They can also be used to  obtain various 
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product moments, for example if E is positive definite or non-negative definite we 
have 

( i )  cov(x’Ax, a’x) = 2p’AEa. 

(ii) cov(x’Alx, x’A~x)  = 2trace(AlEAzE) + p‘AlCA2p. 

The m.g.f.s can also be used to obtain cumulants. The reader is referred to Mathai 
and Provost [1992: sections 3.2d and 3.31 for further details. 

20.28. (Distribution of a Quadratic) If x N Nd(p, C),  where C is positive definite, 
and A is a d x d symmetric matrix, then from (20.17b) we have the representation 

d 

Q = X‘AX = c X,(uz + C d 2 ,  

z = 1  

where the A, are the eigenvalues of C1/2AC1/2 (i.e., of CA), u = (u1,u2,. . . ,ud)’ 
is distributed as N d ( O , I d ) ,  c = (c,) = P?- ’ / ’p ,  and P is orthogonal. Here 
the u: are independently and identically distributed as x:, while the (u. + c,)’ 
are independently distributed as non-central chi-square x: (cp) with noncentrality 
parameter cp. 

(a) When p = 0, then c = 0 and we find that Q is a linear combination of 
statistically independent x: variables. If the distinct eigenvalues are p, with 
algebraic multiplicity m, ( j  = 1 , 2 , .  . . , s ) ,  then Q N cS=, p 3 x m , .  

central chi-square variables, each with one degree of freedom. 

2 

(b) If p # 0, then Q is a linear combination of statistically independent non- 

The above results can be used to find various infinite series expansions, including 
one in terms of chi-square densities, and some approximations for the distribution of 
Q. If, in (a), m, is even (m, = 2v,, say), then a finite expression for the distribution 
of Q is available. Details of all this material including expressions for the case when 
C is singular and results on ratios of quadratics are given by Mathai and Provost 
[1992: chapter 41. They also give extensive reference lists. 

Proofs. Section 20.5.2. 

20.25a. Muirhead [1982: 26-27]. 

20.25b. Schott [2005: 2611. 

20.25~. Graybill [1983: 3671 and Schott [2005: 418-4191, 

20.25d. Graybill [1983: 3681 and Schott [2005: 420, the expected value of the 
product of four quadratics is also given]. Magnus [1978] gives an expression 
for the expectation of the product of any number of quadratics. 

20.25e. Graybill [1983: 3681. 

20.25f. Mathai and Provost [1992: 40, 421. 

20.26a. Schott [2005: 405, he calls 6/2 the noncentrality parameter] 

20.26b. Mathai and Provost [1992: 451. 

20.27a-b. Mathai and Provost [1992: 67-68]. 
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20.5.3 Quadratics and Chi-Squared 

20.29. Suppose x N Nd(p, E) and A is a d x d real symmetric matrix. 

(a) If E is positive definite, then x’Ax - x:(b), where T = rankA (= rank(AE)) 
and 6 = p‘Ap, if and only if A E  is idempotent, namely AEAE = A E  (i.e., 
A E A  = A). We get two special cases by setting (i) p = 0 (i.e., 6 = 0 and 
the distribution is central chi-square, x:) and (ii) E = Id. 

(b) If E is non-negative definite, then x’Ax N xz(6), the noncentral chi-square 
distribution with noncentrality parameter 6 = p’Ap, if and only i f  

(1) EAEAE = EAE, 

(2) p‘AEAE = p‘AE, 

(3) p’AEAp = p’Ap, 

(4) trace(AE) = s. 

Note that when E is positive definite, the four conditions reduce to (i) A E A  = 
A and (ii) trace(AE) = T .  

The above results for x’Ax extend to Q = x’Ax + a’x + d (Mathai and Provost 
[1992: 201-2141), 

20.30. If x N Nd(O,Id), then x’Ax is distributed as the difference of two indepen- 
dently distributed chi-squared variables if and only if A3 = A (i.e., A is tripotent). 
If x - Nd(p,I,), then the chi-squared distributions are noncentral. This follows 
from (8.94b) and (20.29a) above. 

Proofs. Section 20.5.3. 

20.29a. Muirhead [1982: 311 and Schott [2005: 4031. 

20.29b. Christensen [2002: lo], Mathai and Provost [1992: 1991, and Schott 
[2005: 405-406. 

20.5.4 Independence and Quadratics 

20.31. Let x - Nd(p, E), and let A1 and A2 be d x d symmetric matrices. 

(a) (Craig-Sakamoto) If E is non-negative definite, then x’A~x and x’A2x are 
statistically independent if and only if 

or, equivalently, 

(1) EA1EA2E = 0, 

(2) EA1EA2/1= 0, 

(3) EA2EAlp = 0, 

(4) p‘AiEA2p = 0. 
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When p = 0, these reduce to XA1XA2X = 0, and if X is positive definite, 
the first equation reduces to A1XA2 = 0 (or A2EA1 = 0). 

(b) We can extend (a) as follows. If E is non-negative definite and Qi = x’Aix + 
a:x + d, (i = 1, a), then Q1 and Q2 are statistically independent if and only 
i f  

(1) EAlXA2X = 0, 

(2) XAlX(2Azp + a2) = XA2X(2A1p + al) = 0. 

(3) (a1 + 2A1p)’X(a2 + 2A2p) = 0. 

These are the same as (a) when a1 = a2 = 0. The presence of the constants 
d l  and d2 do not affect independence. Note also the following. 

(i) If rank(XA1) = rankA1 or rank(XA1X) = rank(XAl), then XA1XA2X = 

(ii) If rank(XA2) = rankA2 or rank(XA1X) = rank(XA2), then XAlXA2X = 

0 implies that AlXAzX = 0. 

0 implies that XA1XA2 = 0. 

(c) If X is non-negative definite and C is a p x d matrix, then x’Ax and Cx are 
statistically independent if 

C E A ( E , p )  = 0. 

If X is positive definite, then the two conditions reduce to just one condition, 
namely C E A  = 0, or C A  = 0 when X = Id.  

(d) If E is non-negative definite, then setting A2 = 0 in (b), x‘Alx + aix + d l  
and ahx + d2 are statistically independent if and only if 

(i) XAlXaz = 0. 

(ii) (al + 2Alp)’Xa2 = 0. 

Setting A l  = 0 as well, we see that aix + dl and ahx + d2 are statis- 
tically independent if and only if a i X a 2  = 0. 

20.32. (Bilinear Forms) Suppose x, N N d , ( O ,  X,,), where Xii is positive definite 
(i = 1,2) ,  and x1 and x2 are statistically independent. 

(a) The joint moment generating function of Q A  = xiAx2 and Q B  = xiBx2 is 

(b) Q A  and QB are statistically independent if and only if A’X1B = 0 and 
BX2A’ = 0. 

20.33. (Hadamard Product) 
matrices. Now y = (Ax) o (Bx) = +,(Ax @ Bx)!Pi (cf. 11.38a) with 
we have the following. 

Suppose x N N d ( p , X )  and A and B are m x d 
= 1, and 

(a) E(y) = Dl, + ( A p )  o (Bp), where D is the diagonal matrix with diagonal 
elements equal to those of BXA’. 
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Proofs. Section 20.5.4. 

20.31a. Schott [2005: 408, 412-4131, Driscoll and Krasnicka [1995], and 
Mathai and Provost [1992: 209-2111. 

20.31b. Mathai and Provost [1992: 224-2251, 

20.31~. Quoted by Schott [2005: 4131. 

20.32. Mathai and Provost [1992: 230-2311, 

20.33a. Quoted by Schott [2005: 439, exercise 10.441. Using the multiplication 
rule for the Kronecker product, 

E(y) = *,(A @ B)E(x @ X) 

= 

= 

@,(A @ B)(vec C + p @ p)  

9,vec (B’CA) + Ap o Bp, 

by (20.24d(i)) 

then use (11.38a(iii)). 

20.33b. Using (20.6b), we obtain 

var(y) = Q,(A @ B)var(x @ x)(A’ @ B’)9A. 

Now substitute for var(x @ x) using (20.24d(ii)) with 2 P d  = Id2 + I(d,d) and 
I(d,d) the commutation matrix. We then have (A @ B)I(d ,d)  = I (d ,q(B @ A) 
and, from (11,38a(iv)), 9 , I ( d , d )  = 9,. Finally, multiply out and reintroduce 
“ ,, 
0 .  

20.5.5 Independence of Several Quadratics 

20.34. Suppose x N N d ( p , C ) ,  where C is positive definite. Let Ai be a d x d 
symmetric matrix of rank ~ i ,  for i = 1 , 2 , .  . . , k ,  and let A = A1 + . . . + A k  be of 
rank T .  Let xE(6) denote the noncentral chi-square distribution with v degrees of 
freedom and noncentrality parameter 6. Consider the following conditions: 

(1) AiC is idempotent for each i (i.e., AiEAi = Ai), 

(2) AC is idempotent. (i.e., ACA = A) 

(3) AiCAj = 0, for all i , j ,z # j ,  

(4) T = c;=, Ti, 

If any two of (l), (2), and (3) hold, or if (2) and (4) hold, then 
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(a) x’A,x - x;, (p’Aip) for all i .  

(b) X’AX N xF(p’Ap). 

(c) x’Alx,.  . . , x ’ A ~ x  are statistically independent. 

The extension of the above result to the case when E is non-negative definite is 
considered by Mathai and Provost [1992: 2391. When p = 0 and E may be singu- 
lar, further conditions for quadratics to be independently distributed as chi-square 
variables are given by Rao and Mitra [1971: section 9.31. 

Proofs. Section 20.5.5. 

20.34. Schott [2005: 4131. 

20.6 COMPLEX RANDOM VECTORS 

Complex random vectors arise in several places in statistics, the most notable being 
multivariate time series (cf. Brillinger [1975: 891) and random matrices (Mehta 
[2004]). 

Definition 20.12. (Complex Random Vectors) Let x = x1 +ix2 and y = y1 +iy2 
be complex random vectors, where the xi and yi are all real random vectors. We 
then define the following: 

E(x) = E(x1) + ZE(X~), 
var(x) = E[(x - Ex)(x - Ex)*], and 

~ O V ( X , Y )  = E[(x - Ex)(Y - EY)*], 

where x* = xi - ixk. 

20.35. Using the notation in the above definition, we readily obtain: 

(a) var(x) =V11 +V22+i(-V12+V21), whereVij =cov(x,,xj) ,  i , j  = 1,2 .  

(b) COV(X,Y)  = cov(xl,Yl) + cov(x2,y2) + i[-cov(x1,y2) + C O V ( X 2 , Y l ) ] .  

Definition 20.13. (Complex Normal Distribution) Let x1 and x2 be d x 1 (real) 
random vectors such that (xi,xk)’ is N2d(,u,E), where p = (pi ,&)’  and 

where J? is non-negative definite, and 8 = -8’ (i.e., real skew-symmetric). Then 
x = x1 Six2 is said to have a complex normal  distribution with mean px = p1 +ip2 
and variance matrix E[(x-px)(x-pX)*]  = Ex, where Ex = El +i& is Hermitian 
non-negative definite. Here = 2r and E2 = 2@ are real matrices. We say that 
x - &(pX,  Ex). Thus x1 + ix2 is complex normal if and only if 
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From (20.35) we can identify 

XI  = var(x1) + var(xz) and & = -cov(x1, XZ) + cov(x2, XI).  

See Mathai [1997: 406-4091 for further details. 

20.36. Using the above notation, and assuming that X, is Hermitian positive 
definite (i.e., !Z1 is positive definite), we have: 

(a) (det = det(2X). 

(b) EL1 = ( X i  + EzET1Ez)-' - iXy1X2(E1 + EzEL'Ez)-'. 

(c) The probability density function of x can be written as 

1 

rd det !Z 
exp[-(x - p,)*~;'(x - 

(d) If x N Ni(p , ,  Ex) and A is q x d,  then Ax - N i ( A p , ,  A!Z,A*). It follows 
that the marginal distributions of a multivariate complex normal are complex 
normal. 

(e) If Xz = 0, then XI and xz are statistically independent. 

(f) The characteristic function of x is 

Eexp[i %e(t*x)] = exp[i %e(t*p,) - t*!Zxt], 

where %e is the "real part." 

For further background see Krishnaiah [ 19761. Brillinger [1975: 313-3141 gives some 
asymptotic results for comparing two vector times series. 

Proofs. Section 20.6. 

20.36. Quoted by Anderson [2003: 64-65]. 

20.7 REGRESSION MODELS 

The study of random vectors would not complete without some discussion of re- 
gression models. I shall consider mainly linear models, because matrices play a 
prominent role in these models. Also, other models can sometimes be transformed 
into linear ones, or else, with large samples, can be approximated by linear ones. 
There are many good books on linear regression with several different approaches. I 
personally prefer a geometrical approach using orthogonal projections as developed 
by Seber [1977, 1980, 19841 and, to a lesser extent, by Seber and Lee [2003]. This 
approach is being used a lot more in texts because it avoids some of the algebraic 
manipulations. For the various kinds of linear model see, for example, Christensen 
[1997, 200ll. An extensive and detailed theoretical treatment of all aspects of linear 
models is given by Sengupta and Jammalamadaka [2003]. For results on modifying 
a linear model by, for example, adding or deleting an observation see Section 15.3. 
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A typical regression model takes the form y = p + E ,  where p = (p i )  is an 
n x 1 vector of unknown parameters, y = ( y i ) ,  and E = (co) are n x 1 random 
vectors with E(E) = 0 and var(E) = a2V, where a2 is generally unknown and n x n 
V may be known. This is usually known as a generalized (weighted) least squares 
model (cf. Kariya and Kurata [2004], for example). If pi = f(xi;8), where f is a 
nonlinear function, xi is a known observation, and 0 is unknown, we have a typical 
nonlinear regression model. The theory of such models is discussed in detail by, 
for example, Seber and Wild [1989]. In some models, V is known function of p, 
and quasi-likelihood methods can be used (Seber and Wild [1989: section 2.31). 
Sometimes V can be a function of other parameters such as autocorrelations in 
time series models (Seber and Wild [1989: chapter 61) and variances in components 
of variance models (Sengupta and Jammalamadaka [2003: section 8.31 and Faraway 
[2006]). We can also have errors-in-variables models where, for example, the xis are 
measured with error (Seber and Wild [1989: chapter 101 and Carroll et al. [2006]). 
Other models where p may contain random components are, for example, mixed 
models and components of variance models (e.g., P.S.R.S R m  [1997] and Searle et 
al. [1992]). 

We get another type of nonlinear model when E(y,) = pi, but now g ( p i )  = 
a + ,@xi and the distribution of yi belongs to the exponential family. This is 
called a generalized linear model, and such models are discussed by McCullagh and 
Nelder [1989] and Dobson [2001]. Other transformation methods are described 
by Carroll and Ruppert [1988], and another approach is via generalized additive 
models (Tibshirani and Hastie [1990] and Wood [2006]). 

Finally, applying large sample maximum likelihood theory to very general prob- 
ability distributions, we can prove the asymptotic equivalence of large sample tests 
for nonlinear hypotheses such as the Likelihood ratio, Wuld and Score (Lugrange 
multiplier) tests by asymptotically linearizing the model and hypothesis. In the 
linear case, all three test statistics are equivalent (Seber and Wild [1989: section 
12.41 and Seber [1980: chapter 111). Examples using this linearization technique 
are given by Seber [1967, 19801 and Lee et al. [ZOOZ]. We shall now consider the 
linear regression model. 

Definition 20.14. We call the above model y = 0 + E the general linear model if 
0 = X p ,  where X is a known n x p matrix of rank r ( r  5 p < n),  and p is a p x 1 
vector of unknown parameters. We also assume that V is non-negative definite of 
rank v, and we shall be interested in testing a linear hypothesis AP = c ,  where A is 
q x p of rank s (s 5 q < p )  and c E C(A). We shall refer to the general linear model 
as M = (y, XP, a2V) and the linear hypothesis as Ho. For making inferences, we 
shall also assume that y is multivariate normal, namely N , ( X p ,  a2V). 

There have been a large number of theoretical results proved for the above general 
setup and its special cases. However, my approach to linear models when V is 
a known nonsingular matrix is somewhat pragmatic: Formulate the theoretical 
model and hypothesis (e.g., Seber and Lee [2003: section 6.41) and use a statistical 
computer package such as R to get the required results as well as the diagnostics 
for validating the model. 

If V is a known positive definite matrix, there exists a unique positive defi- 
nite square root (cf. 10.32) V1/2 so that making the transformation V-1/2y = 
V-1/2X/3 + V - 1 / 2 ~  we get the model 

z = Wp + 77, where var(q) = V-'/2VV-'/2 = I,. 
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We therefore begin with the model (y, Xp, a21,). 
With regard to  Ho, we frequently have c = 0. If not we can “remove” c as follows. 

Let PO satisfy A& = c and consider the model z = Xy + E ,  where z = y - Xpo 
and y = p - 00. Then HO becomes Ay = 0, so for the moment we assume c = 0, 
which fits in with the method of least squares described below. It should be noted 
that we can incorporate c if we use a different method of estimation, namely we 
find af ine  unbiased estimators that satisfy a minimum trace criterion (Magnus and 
Neudecker [1999: chapter 131). 

20.7.1 

20.37. (Estimation) Consider the model (y, Xp, u21n), where X is n x p of rank 
r and 8 = Xp. 

V Is the Identity Matrix 

(a) Assume r < p .  

(i) IIy - 8lli is minimized uniquely subject to 8 E C(X) = 0, say, at g, the 
least squares estimate of 0, where 

h 

e = pQY, pQ = x(xix)-xi, 
and PQ is the unique symmetric idempotent matrix representing the 
orthogonal projection of Y onto 0; (X’X)- is any weak inverse of X’X. 
Note that y = e^+ (y - g) is an orthogonal decomposition of y ,  and 
PQX = X. The matrix Pa is also referred to as the hat matrix in 
regression diagnostics (Seber and Lee [2003: section 10.21). 
Other norms and measures can be used for the minimization process to 
produce alternative estimators to least squares (cf. Gro8 [2003], Rao and 
Tountenburg [1999], and Seber and Lee [2003: section 3.131. 

(ii) If ê  = Xp ,̂ then p̂  is not unique. Since X’(y - 0) = 0 ,  p satisfies 
t_he so-called normal equations X‘Xp = X‘y, _which have a solution 

h h 

h 

p = ( x i x ) - x i y  = ( x / x ) - x ’ p O y  = (xix)-xre. 
h 

(iii) Q = IIy - 011; = y’(1, - Pa)y = €’(In - Pa)€, since (I, - P0)O = 0. 

(iv) u2 is usually estimated by its unbiased estimate s2 = Q/(n  - r ) ,  which 
has certain optimal properties. For example, it is the MINQUE of u2 
(Rm and Rm [1998: section 12.61). 

(v) r = y - 8 = (I, - P0)y is called the residual vector and is used for 
diagnostic purposes. 
Q = r‘r is usually called the residual sum of squares and is often denoted 
by RSS. 

h 

(vi) E(r)  = 0 and var(r) = a2(I, - PQ). 

(vii) For any a, 4 = a‘8 = a’PQy is a linear estimate of 4 = a’@ (i.e., linear 

Of all linear unbiased estimates of 4,  3 is the unique 
estimate with minimum variance. We refer to 3 as the B L U E  (Best 
Linear Unbiased Estimate) of 4.  

h A 

in y) and is unbiased as PQX = X implies that E($) = 4.  
(viii) (Gauss-Markov) 
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(ix) If B y  is any unbiased estimate of 8 ,  then 

D = var(By) - var(8) 

is non-negative definite (n.n.d.) and D = 0 if and only if B y  = 8. We 
call 6 the BLUE of 8.  

(x) Let y = X P  + uu, where the elements of u are i.i.d. with mean zero and 
variance 1, and density h( . )  satisfying h(-u) = h(u) for all u. Then, 
provided it exists, the expected information matrix for the parameter 
vector (P’, a2)’ is 

( .Xdx nYmz ) .  

h 

When u is normal, c = uP2 and I 0 z  = l/(2u4). 

(b) When X has full rank (i.e., T = p )  then (X’X)- = (X’X)-’ and we have the 
following: 

(i) p = (x’x)-1xr8. 
(ii) p̂  = (X’X)-’X’y, E(5)  = P, and var(P) = u2(X’X)-’. 

(iii) From (a) (viii) we find that b’p̂  is the BLUE of b’P. 
(iv) Suppose the yz are independent random variables with common vari- 

ance u2 and common third and fourth moments, p3 and p4, respectively, 
about their means. Then s2 is the unique non-negative quadratic unbi- 
ased estimate of u2 with minimum variance when p4 = 3a4 or when the 
diagonal elements of PQ = X(X’X)-lX’ are all equal. 

(v) If, as n + co, n-’X’X converges to a finite positive definite matrix V,, 
and the largest diagonal element of PQ goes to zero, then fi(p^ - P )  
converges in distribution to Nd(0, a2V,). 

h 

(c) If X has full rank and y - Nn(XP,u21n),  then the following hold: 

(i) p̂  - N ~ ( P , ~ ~ ( x ’ x ) - ~ ) .  

(ii) p̂  is statistically independent of s2 .  

(iii) Q/u2 = (n - p ) s 2 / u 2  - &,. 
(iv) p̂  and Q/n are the maximum likelihood estimates of and u2, respec- 

tively, and are also sufficient statistics. 

(v) p̂  is the best unbiased estimate of ,d in the sense that, for any b, b‘p is the 
estimate of b’P with minimum variance among all unbiased estimates, 
and not just among linear ones; that is, it is the MINVUE of b‘P. 

(vi) s2 is the MINVUE of u2. 

Definition 20.15. Let X be n x p of rank r. The function b‘P of P is said to 
be estimable if it has a linear unbiased estimate, c’y, say. Then b‘P = E(c’y) = 
c‘XP for all P so that b‘ = c’X. Let A’ = (a1,a2,. . . , a4) be a q x p matrix. 
The hypothesis Ho : AP = 0 is said to be testable if each a# is estimable for 
i = 1 , 2 , .  . . , q,  that is AP is estimable. If X has full column rank, then AP is 
always estimable. 
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20.38. Suppose that r < p .  The following conditions are equivalent. 

(1) A P  is estimable. 

(2) The rows of A are linearly dependent on the rows of X, that is, there exists 
a q x n matrix L such that A = LX. If rankA = q,  then rankL = q (as 
rankA 5 rankL, by (3.12)). Note that Ly is a linear unbiased estimator of 
AP. 

(3) C(A’) C C(X’). 

(4) A$ is invariant for any choice of p̂  = (X’X)-X’y. 

(5) A(X’X)-X’X = A. 

20.39. If r < p and A P  is estimable, then from (20.38(2)) above we have: 

(a) A$ = ~6 = L P ~ ~  = LX(X’X)-X’~ = A(x’x)-x’~. 

(b) E(Ap^) = E(L6) = LO = AP. 

(c) var(Ap^) = var(L8) = 02LPnL’ = 02A(X’X)-A‘. For a single estimable 
h 

function, A reduces to a’. 

20.40. (Estimation with Constraints) Suppose T < p .  We wish to find the least 
squares estimate of P subject to the q estimable constraints A P  = 0, that is, subject 
to o = AP = L X ~  = Lo, or 8 E N(L).  

(a) IIy - 011; is uniquely minimized subject to 8 E N ( L )  n R = w, say, when 
8 = O H ,  where 8 H  = P,y and P, represents the orthogonal projection onto 

A h 

W .  

h 

(b) Q H  = I I Y  - 8~11; = Y’(L - P,)Y. 

(c) From (2.51b) and (2.51d), PQ - P, = PWinn, where w’ n R = C(B) and 
B = PnL’. 

(d) From (c), 

6 H  = P,y 

= P n Y - P w l m Y  
= 6- B(B’B)-B’y 

= 6 -  PnL’(LPnL’)-LPny 

(e) From (d) and A = LX, 

P,i nn = X (  X’X) - A’ [A (X‘X) - A’] -A (X’X) - X’ . 

A 

( f )  If 6~ = XPH, we have from (d) and (e) 

X ~ ^ H  = Xp  ̂- X(X’X)-A’[A(X’X)-A’]-Ap^. 
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If A has full row rank, [A(X’X)-A’]- = [A(X’X)-A’]-l. If, in addition, X 
has full column rank, then multiplying by X’, 

f i ~  = f i  - (X’X)-’A’[A(X’X)-lA’]-lAfi. 
We can also obtain this result using Lagrange multipliers (cf. Seber and Lee 
[2003: 601. 

(g) If we now want to change the constraints to AP = c, where c E C(A), we 
replace f i  by f i  - PO (where A,& = c for some PO),  Afi by Afi - c, and y by 
y = y - XPo. QH then becomes y’(In - Pw)y, and Q remains unchanged as 
(I, - Pn)Y = (I, - Pn)y. 

(i) Given the estimable constraints AP = c, another approach is to note that 
AP = c if and only if ,6 = A-c+(I,-A-A)& where (cf. 13.4) 4 is arbitrary, 
and A- is any weak inverse of A. Substituting for 0, the constrained model 
then becomes 

(y - XA-c, X(1, - A-A)q5, 021n). 

A reasonable choice for A- is A’(AA’)-. 

A second approach is use the model (y*, X,P, 02V), where 

Y*=(:), X * = ( Z ) ,  v = (  ‘d. ;), 
and V is singular (Sengupta and Jammalamadaka [2003: 123, 125, 2441). 

20.41. (Hypothesis Testing) Suppose we wish to test HO : AP = c (c # 0), where 
HO is testable, and A is q x p of rank s (s 5 4 ) .  

(a) From (20.40g) and (20.40e), 

QH - Q = f ’PwlnnY 1 (A6  - c)’[A(X’X)-A’]-(Afi - c). 

(b) E(QH - Q) = 0’5 + (AP - c)’[A(X’X)-A’]-(AP - c). 

(c) The test statistic for HO is 

(d) When Ho is true, we have the following. 

(i) P w l n n y  = Pw~nn[y-XP-(XP-XPo)] = P w l n w E ,  since from (20.40d) 
with B’ = LPn we have 

LPnX(P - P o )  = LX(P - Po) = AP - c = 0. 

(ii) If y - N,(XP, u21n), then from (i) the following ratio has an F-distribution, 
that is. 
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Definition 20.16. (Multiple Correlation) Consider the linear model yi = Po + 
p i ~ i i  + P 2 ~ i 2  + . . .  + P p - i x i , p - ~  + ~i so that X = (l, ,x(’), . . . , d p - ’ ) ) ,  where 
rank X = p .  If we define 7 = 8, the correlation coefficient of y and the fitted model 
7 is called the multiple correlation coefficient, and is denoted by R. Its square R2, 
is called the coefficient of (multiple) determination. 

20.42. If $ = Cy=l yi/n, then: 

h 

(a) (y - 7)’1, = 0. 

(b) cy=1(Yi - $IZ = cy=“=1(Yi - a2 + E;=l(Gi - !#. 

(d) RSS = Ci(yi - Gi)2  = (1 - R2) Ci(yi - j j ) 2 .  

Proofs. Section 20.7.1 

20.37a(i). Seber and Lee [2003: 36-37]. 

20.37a(ii). Seber and Lee [2003: 381. 

20.37a(iv). Seber and Lee [2003: 441. 

20.37a(vi). Use (20.6b). Seber and Lee [2003: section 10.21. 

20.37a(viii). Seber and Lee [2003: 42-43]. 

20.37a(ix). PQ is symmetric and idempotent. Because By is unbiased, (I, - 
B)8 = 0, so that C[(I, - B)’] I R and PQ = PQB’ = BPa. This leads to  
D = B(1, - PQ)B’, which is non-negative definite (n.n.d.) as I, - PQ is 
n.n.d. Finally, D = 0 if and only if (I, - PQ)B’ = 0 or B = PQ. 

20.37a(x). Sengupta and Jammalamadaka [2003: 133; they omit the word 
“expected’] and Seber and Lee [2003: 49, for the normal case]. 

20.37b(ii). Seber and Lee [2003: 421. 

20.37b(iv). Seber and Lee [2003: 451. 

20.37b(v). Sen and Singer [1993: section 7.21. 

20.37~. Seber and Lee [2003: 47-48 for (i)-(iii); section 3.5 for (iv); 50 for 
(v)] and Rao [1973a: 319 for (vi)]. 

20.38. Searle [1971]. 

20.41b. Use (20.18b) with E(A@ = AP and traceP,lnQ = s. 

20.41d(ii). Seber [1977: section 4.51. 

20.42. Seber and Lee [2003: 111-1131. 
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20.7.2 V Is Positive Definite 

20.43. The results for V, a known positive definite matrix, follow directly from 
the results for V = I, by replacing y by V-1/2y, 8 by V-1/28, and X by V-1/2X 
through all the previous theory. For example, we now minimize (y - 6)’V-l (y - 8 )  
subject to 8 E Q to obtain 8, say. We can do this by changing the inner product 
space or, more simply, by using the transformation V-1/2 so that X’X becomes 
X’V-’X and X‘y becomes X’V-ly, giving us 

v-1/28 ~ ~ ~ / ~ ~ ( ~ ’ ~ - ~ ~ ) - ~ ’ ~ - ~ y .  

Assuming rankX = p ,  and setting 8 = Xp, we now have two unbiased estimates 
of P, namely 

p̂  = (X’X)-’X’y and 
p = (x’v-1x)-1x’v-’y 

Then using (20.6b), 

A 

var(P) = a2(X’X)-’X’VX(X’X)-’ and var(p) = a2(X’VX)-l .  

The above estimators are often called the ordinary least squares estimate OLSE(P) = 

p̂  and the generalized least squares estimate GLSE(P) = p. As 6 is the BLUE of 
0, we can expect this estimator t o  be more efficient in some sense than 0. Various 
measures of efficiency are given in (12.6), and a popular one is the Watson efficiency 
4 = l/El, where 

h 

where m = min{p, n - p }  and A1 2 A2 2 . . . 2 A, > 0 are the eigenvalues of V .  
El = 1 if and only if the two estimators are the same. The ratios 4AiA,-i+l/(Ai + 
A , - ~ + I ) ~  are the squared antieigenvalues of V (cf. Section 6.7), and the pi can be h 

taken as the canonical correlations between the OLSE 8 and its residual r = y - 8.  
For references on the topic see Drury et  al. [2002] and the survey by Chu et  al. 
[2005b]. 

The Watson efficiency has also been applied to partitioned regression models 

A 

where X and V have full rank. A subset Watson ef ic iency can be defined for the 
estimate of Pi ,  and the overall efficiency factorized into components. For details 
and examples see Chu et al. [2004; 2005a,b]. 
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20.7.3 V Is  Non-negative Definite 

We now assume that V is a known singular matrix of rank w (w < n) and that 
rankX < rankV. For a thorough review and historical summary of the topic 
see Puntanen and Styan [1989]. Theoretical details are given by Sengupta and 
Jammalamadaka [2003: chapter 71, Baksalary et al. [1990], and, more briefly, 
by Christensen [2002]. Singular models arise, for example, in finite population 
sampling, in some experimental designs, in some state-space models, and in models 
where some of the y-variables are virtually error-free and are effectively constants. 

20.44. Consider the model (y,Xp,a2V), where V is singular and r ankX = T 

T < p ) .  Let H = Po and M = I, - Po = I, - H, so that from (20.37a(i)) 
8 = Hy. 
L -  

(a) The model is consistent (i.e., the inference base is not self-contradictory) if 
y E C(X, V) with probability 1. This follows from the fact that y - Xp E 
C(V) with probability 1. 

(b) One expression for the best linear unbiased estimate (BLUE) 8 t  of 8 takes 
the form 8 t  = Gy if and only if G(X, VM) = (X, 0) (Puntanen et al. [2000]). 
The numerical value of 8 t  is unique with probablity 1, but G is unique if and 
only if C(X, V) = R". 

When V is nonsingular, 8 t  = 8 (cf. 20.43). 

(c) One general solution to G ( X ,  V M )  = (X, 0) is 

G = I, - VM(MVM)-M + F[I, - M V M ( M V M ) - M ,  

where F is arbitrary. 

(d) (i) Some representations of 8 t  are 

e t  = ~ - H V M ( M V M ) - M ~  

= 6- HVM(MVM)+M~ 

= 6- HVM(MVM)+~ 

= y - V M ( M V M ) - M y .  

(ii) Also 
8 t  = X( x' w - X) - X' w - y , 

where W = V + XUX' and U is an arbitrary matrix such that C(W) = 

C(X, V ) .  

(e) If X has full column rank and 8 t  = X p t ,  then 0' = (X'X)-'X'Bt 

( f )  8t is invariant to the choice of (MVM)-. 

(g) Asymptotic theory for 8 t  is given by Sengupta and Jammalamadaka [2003: 
5221. 

(h) (Mean and Variance) 

( i )  Since E(My) = MX8 = 0, it follows from (d) that E(8t)  = 8. 
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(ii) From (d) and HM = 0, 

va r (d )  = a2[HVH - HVM(MVM)-MVH] 

= a2[V - VM(MVM)-MV] 

= a2[X(X’W-X)-X’ - XUX’]. 

(iii) If X has full column rank and 81 = XPt, then 

A 

var(Pt) = var(P) - (x’x)-~x’vM(MvM)-Mvx(x’x)-~, 

where va@) = (X’X)-lX’VX(X’X)-’. 

(i) The residual is 

r = y - e +  

= My + HVM(MVM)-My 

= VM(MVM)-My, 

and 
var(r) = a 2 ~ ~ ( ~ ~ ~ ) - ~ ~ .  

(j)  Let f = rank(V, X) - rank X. The weighted residual sum of squares is 

Qt = (y - Ot)’V-(y - et) = y’M(MVM)-My, 

and 
E(Qt l f )  = c2 

(k) If AP is estimable, then the BLUE of AP is 

(Ap)t = AX-[I, - VM(MVM)-M)]y. 

Furthermore, 

~ a r [ ( A p ) ~ ]  = a2AX-[V - VM(MVM)-MV](AX-)’ 

(1) (Inverse Partitioned Matrix Approach) Let 

v x  
( X ’  (I)-=( 2 2). 

(i) e+ = x c k y  = XC3y. 

(ii) var(8t) = a2XC4X’. 

(iii) r = VCly. 

(iv) Referring to (j) ,  Qt = y’Cly. 

(m) Ot = ê  if and only any one of the following conditions hold. 

(1) HV = VH. 

(2) VV = HVH. 
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(3) HVM = 0. 

(4) C(VX) c C(X). 

For these and further conditions see Puntanen and Styan [1989, 20061 and 
Isotalo et al. [2005b: chapter 61. 

20.45. If X has full column rank p and C(X) C_ C(V), the so-called weakly singular 
model, then the Watson efficiency is 

[det (X'X)I2 ' det(X'VX) . det(X'V+X) 

where m = min{p, u - p }  and h is the number of nonzero canonical correlations be- 
ween the ordinary least squares estimate and its residual (Chu et al. (2004, 2005al). 
These authors have also applied the Watson efficiency to partitioned regression 
models for the case when V is positive definite. The result about the canonical 
correlations still applies. For other bounds on the efficiency for the singular model 
see Sengupta and Jammalamadaka [2003: 316-3181. 

20.46. Let U = {U : 0 3 U 3 V,C(U) C(X)}, where A 5 B means that B - A  
is non-negative definite. The maximal element U in U is called the shorted matrix 
(operator) with respect to X,  and is denoted by S(V I X). Then 

var(Ot) = S(V I x). 
For further references relating to shorted matrices see Mitra and Puntanen [1991], 
Mitra and Puri [1979], and Mitra et al. [1995]. 

20.47. (Linear Restrictions) Suppose that we are interested in the linear (es- 
timable) restrictions A P  = c. Let QL be the residual sum of squares after fitting 
the model subject to the constraints. 

(a) QL - Qt = [(AP)t - c] ' [~-~var (AP) t ] - [ (AP) t  - c]. 

the k-distribution, where f = rank(V,X) - rankX, m = rank[var(AP)t], 
and Qt is given in (20.44j). 

Proofs. Section 20.7.3. 

20.44a. Christensen [2002: 101 and Rao [1973a: 2971. 

20.4413. GroB [2004], Puntanen et al. [2000], and Rao [1973b: 2821. 

20.44~. Rao [1978: 12021. 

20.44d. See Rao [197313]. The last expression for Ot is derived by Sengupta 
and Jammalamadaka [2003: 252, with L = I]. 
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We use the fact that (MA)+M = (MA)+ for any A such that (MA)+ exists, 
since (MA)+M satisfies the four conditions for it to be the Moore-Penrose 
inverse of MA, and M is idempotent. 

20.44f. Sengupta and Jammalamadaka [2003: 2521. 

20.44h(iii). Isotalo et al. [2005b: 111. 

20.441. Sengupta and Jammalamadaka [2003: 253-2551, 

20.44j. Sengupta and Jammalamadaka [2003: 259-2601, 

20.44k. Sengupta and Jammalamadaka [2003: 252, 2551. 

20.441. Rao [1973b] and Sengupta and Jammalamadaka [2003: 2691. 

20.47. Sengupta and Jammalamakada [2003: 277, 2881. 

20.8 OTH E R M U LTl VA R I AT E D I S T  R I B U T I0 N S 

In this section we consider a number of continuous multivariate distributions. These 
distributions can be regarded as special cases of matrix variate distributions (cf. 
Section 21.9). 

20.8.1 Multivariate &Distribution 

Definition 20.17. A d x 1 random vector x = 5 1 ,  5 2 , .  . . ,zd)‘ has a multivariate 
t-distribution if its probability density function is given by 

( - co<z~<co ,  i = 1 , 2  , . . . ,  d), 

where X = (gij) is positive definite and I?(.) is the Gamma function. We write 
x N td(v,p,X).  The distribution td(lrO,Id) is called the multivariate Cauchy 
distribution. 

20.48. Suppose x - td(v, p,  X),  then: 

(a) E(x) = p and var(x) = vX/ (v  - 2) (n  > 2). 

(b) (xz ~ p t ) / &  - t,, where t, is the univariate t-distribution with v degrees 
of freedom. 

(c) (x -p ) ’X- ’ (x -p) /d  - Fd ,” ,  where Fd,”  is the univariate F-distribution with 
d and v degrees of freedom, respectively. 

(d) Any subset of x has a multivariate t-distribution. 

For further details see Kotz and Nadarajah [2004]. They also give a number of 
probability integrals and discuss the noncentral t-distribution. 
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20.8.2 Elliptical and Spherical Distributions 

Definition 20.18. A d x 1 random vector x is said to have an ellaptical distribution 
with parameters p ( d  x 1) and V (d  x d )  positive definite if its density function is 
of the form 

cd(detV)-l12h[(x - p)’V-’(x - p)]  

for some function h. We will write x N Ed(p,V) to denote that the distribution 
belongs to the class of elliptical distributions. The name comes from the fact that 
the above probability density function is constant on concentric ellipsoids 

(x - p)’V-l(x - p )  = c ,  

and an alternative name is elliptically contoured distribution. The multivariate t ,  
multivariate normal, the contaminated normal, and a mixture of normal distribu- 
tions are examples of elliptical distributions. Fang et al. [1990], Gupta and Varga 
[1993], and Kollo and von Rosen [2005: section 2.31 discuss these and other ex- 
amples of elliptical distributions. The kurtosis for elliptical distributions need not 
be zero, so that its typical bell-shaped surface can be more or less peaked than 
the multivariate normal. This flexibility allows one to study the robustness of sta- 
tistical inference based on the normal distribution. For the theory and statistical 
inference based on samples from elliptical distributions see Anderson [1993; 2003, 
section 3.61, Fang and Anderson [1990], and Kariya and Sinha [1989]. For some 
asymptotic theory see Anderson [2003: 102, 1581. Matrix versions of the elliptical 
distribution are also available (Anderson [2003] and Girko and Gupta [1996]). 

20.49. Let X N Ed(p, v). 

(a) For some function $, the characteristic function of x is 

@(t) = E(ezt‘x) = eitfP $(t’Vt). 

(b) From (a) we have that any subset of x has an elliptical distribution of the 
same form. For example, if x1 and p1 are the first lc elements of x and p 
respectively, and V11 is the leading principal k x k submatrix of X ,  then 
x1 &(plrV11). 

(c) Provided they exist, E(x) = p and var(x) = aV for some constant a. In 
terms of the characteristic function a = -2$’(0). 

(d) It follows from (c) that all distributions in the class &(p,  V) have the same 
mean p and the same correlation matrix corr(x) = ( p z 3 ) .  Since a cancels out, 
we have pz3 = uz3/(u2zu33)1/2. 

(e) Let X = -2$’(O)V = ( ~ 7 % ~ )  be the variance matrix of x, and suppose that x 
has finite fourth moments. Then: 

(i) The marginal distributions of the 2, all have zero skewness and the same 

where r;, is the r th  cumulant. 
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(ii) All fourth-order cumulants are determined by K ,  namely 

K v k l  - 
1111 - K ( ~ y ~ k l  + czkcj31 + c d c j k ) .  

This result is useful in asymptotic theory relating to smooth functions of 
elements of the sample variance matrix. 

20.50. Let x - J!&(p,v), where v is diagonal. If ~ 1 ,  z2,. . . ,z, are mutually 
independent, then x is multivariate normal. 

20.51. Suppose x N &(p, V) and x, p, and V are partitioned as follows: 

where x1 and ,ul are k x 1 and V11 is k x k .  Provided the following exist, then: 

(a) E(x1 I x2) = PI + V12V,-,’(x2 - ~ 2 ) .  

(b) var(x1 I x2) = g(x2)(V11 - V12V;;V21) 
for some function g. Moreover, the conditional distribution of x1 given x2 is 
k-variate elliptical. If g(x2) is a constant so that var(xlIx2) does not depend 
on x2, then x must be normal. 

Definition 20.19. A d x 1 random vector x is said to have a spherical distribution 
if x and Tx have the same distribution for all d x d orthogonal matrices T. If x 
has a density function, then this function depends on x only through x’x. The 
multivariate normal Nd(0, a21d)  and the multivariate t,  td(v, 0, c 2 1 d ) ,  are spherical 
distributions. 

20.52. If x - &(o, I d ) ,  then x has a spherical distribution with a density function 
of the form cdh(x’x). Let 

x1 

x2 

23  

= r sin 81 sin 82 . . . sin 8d-2 sin 8d-1 

= T sin 81 sin 8 2  . . . sin 8d-2 cos Od-1 

= r sin 81 sin 82 . . . cos 8d-2  

zd-1 = rsin81 cos& 

xd = rcos81, 

where r > 0, 0 < 8i 5 7r ( i  = 1,2 , . . .  ,d  - 2), and 0 < 6d-1 5 27r. Then r, 
el ,  02, . . . , 8 d p l  are independent, and the distributions of 81,. . . , 8 d - l  are the same 
for all x, with Ok having a probability density function proportional to 6 k  

(so that 8d-1 is uniformly distributed on (0,27r)). Also y = x’x = r2 has probability 
density function 

In particular, if x N Nd(O,Id), we have h(y) = eCYl2 leading to  the familiar result 
that y - x;. 
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20.53. Let x have a d-dimensional spherical distribution with pr(x = 0) = 0. 

(a) If u = llxll2 = (x’x)’/~ and y = IIxIIzlx, then y is uniformly distributed over 
a d-dimensional sphere located at the origin with unit radius, and y and u 
are independent. 

(b) If w = a’x/IIx112, where a E Rd and a’a = 1, then 

the t-distribution. 

(c) If A is a d x d symmetric idempotent matrix of rank k, then z = X’AX/X’X 
has a beta distribution with parameters i k  and $(d - k ) .  

Proofs. Section 20.8.2. 

20.49. Muirhead [1982: 34-42]. 

20.50. Muirhead [1982: 351. 

20.51. Muirhead [1982: 361. 

20.52. Anderson [2003: 47-48] and Muirhead [1982: 36-37]. 

20.53. Muirhead [1982: 38-39]. 

20.8.3 Dirichlet Distributions 

Definition 20.20. Let x = (51, 5 2 , .  . . , zd)’ be a d x 1 random vector. Then x is 
said to have a Type-l Dirichlet distribution if its density function is given by 

(0 < xi < 1, i = 1, .  . . , d,  z1 + . . . + xd < 1, and ai > 0 for i = 1,. . . , d + 1.) 

We shall write x N Dl(d, a) ,  where a = (ai) .  

given by 
Also x is said to have a Type-2 Dirichlet distribution if its density function is 

(0 < 2, < 00, i = 1,. . . ,d ,  and ai > 0 for i = 1 , 2 , .  . . , d +  1. 

We shall write x N D2(d, a). The above are special cases of the matrix versions in 
Section 21.9. 

20.54. Let y1, y2,. . . , ym be independently distributed as  x 2  variables with degrees 
of freedom al, a2,. . .am, respectively. If x, = yi/ Cj”==, y j  for i = 1 , 2 , .  . . , m - 1, 
then x - D l ( m  - 1, a/2) .  

Proofs. Section 20.8.3. 

20.54. Anderson [2003: 290, quoted in exercise 7.361. 



CHAPTER 21 

RANDOM MATRICES 

21.1 INTRODUCTION 

Matrices of random variables occur frequently in statistics, especially in the sub- 
ject of multivariate analysis. Because the latter is a large subject with numerous 
reference books, I have had to be somewhat selective in my choice of topics. In this 
chapter, as in the previous one, the upper- and lowercase letters of the alphabet 
from a to t ,  excluding Q, refer to constants, while the remainder generally refer to 
random variables. Unless otherwise stated, all vectors and matrices are real. 

Definition 21.1. Let 

be an n x d matrix of random variables with rows that all have the same variance 
matrix X and are uncorrelated,that is, 

cov(x,, xs) = b , J ,  

where b,, = 1 for r = s and 6,, = 0 for r # s. We shall call a matrix with the 
above properties a data matrix. 

A Matrix Handbook for Statisticians. By George A. F. Seber 
Copyright @ 2008 John Wiley & Sons, Inc. 
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In practice, the x, are usually a random sample, which implies they are indepen- 
dently and identically distributed, that is, i.i.d. However, this won’t be assumed 
unless indicated. 

21.1. If xi defined above has mean pi for each i, then E(xixg) = 6,jC + pip;. 

21.2. (Some Vec Properties) Let X be a data matrix as defined above; that is, the 
columns of X’ are uncorrelated and have the same variance matrix C. Here “@’’ is 
the Kronecker product. 

(a) var(vecX) = C @I,  and var(vecX’) = I, @ C. 

(b) Using vec(AXB) = (B’ @ A)vecX, we have, from (20.6b), ( l l . l e ) ,  and 
( 11.1 la) ,  

var[vec (AXB)] = (B’ @ A)(C 8 I,)(B’ @ A)’ = (B’XB) 8 (AA’). 

(c) var[vec (AX’B)] = var[(B’ @ A)vecX’] = (B’B) @ (ACA’). 

(d) cov[vec (AXB),vec (CXD)] = (B’XD) @ (AC’). 

(e) From (d) we see that if U = AXB and V = CXD, then U and V are 
pairwise uncorrelated, that is c o v ( u i j , ~ , ~ )  = 0 for all i , j ,  T ,  and s,  if AC’ = 0 
and/or B’CD = 0. 

Proofs. Section 21.1. 

21.1. Set xi = xi - pi +pi  and use (20.5). 

21.2. For (a),  see Henderson and Searle [1979: 78, with our X being their 
X’]; using (20.6), the proofs of (c) and (d) are similar to (b); and (e) follows 
from (d). 

21.2 GENERALIZED QUADRATIC FORMS 

21.2.1 General Results 

Definition 21.2. If X = (XI, x2,. . . , x,)’ is an n x d data matrix and A = ( u Z J )  is 
a symmetric n x n matrix, we shall call the expression X‘AX = CZ,  C,”=, u ~ ~ x , x ( ~  
a generulzzed quadratzc. 

21.3. Using the above notation, let T? = Cr=l x,/n and X = (XI - X, . . . ,x, -%)‘. 
Then: 

- 

n n - -  
(a) x’x = C(x, - x)(x2 - x)’ = EX.~:  - nxx’ = X’AX (= Q, say), 

2=1 2 = 1  

where A = ( u Z 3 )  and az3 = 6,, - n-’. Thus, A = I, - l , lh/n = I, - P1 
is the so-called centering matrix, where P1 is the orthogonal projection onto 
(-71,). 

(b) Suppose the x, are i.i.d. with mean p and variance matrix C, and S = Q/(n-  
1) Then 

E(S) = C, 
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so that S, the so-called sample variance matrix, is an unbiased estimator of 
E. Some writers define k = (n  - l)S/n to be the sample variance matrix; it  
is the maximum likelihood estimator of C under normality assumptions. 

(c) If diag(s) is the diagonal matrix whose elements are the diagonal elements of 
S, then the sample correlation matrix is given by 

R = [ d i a g ( ~ ) ] - ~ / ~ S [ d i a g ( s ) ] - ~ / ~  

(d) The (sample) Mahalanobis distance 

0,” = (x2 - X)’S-l(xi - X) 

- - -  
is the i th diagonal element of (n  - l)X(X’X)-’X, and it is often used for 
diagnostic purposes. 

(e) (i) Taking the trace of (a) and using trace(cd’) = trace(d’c) = d’c, we get 

n n 

C(X2 - %)’(Xi - x) = c x:xz - nx’x. 
i=l i=l 

(ii) 

r=l s=r+l 

n 

= 7 1 C ( X i  - x)(xz - x)’ 
i= 1 

(iii) Taking traces in (ii), 

n n  n 

r=l s=r+l 2 = 1  

This result arises in cluster analysis. 

We obtain the corresponding univariate cases by taking d = 1 in the above results. 

21.4. (Asymptotic Sample Theory) Suppose that the d x 1 vectors X I ,  x 2 , .  . . , x, 
are independently and identically distributed (i.i.d.) with mean p and variance 
matrix X .  

(a) As n + m, f i ( X  - p )  is asymptotically distributed as Nd(0, E). 

(b) Let Q = (n  - 1)s. 

(i) As n + 00, n-1/2(vecQ - nvecE) is asymptotically N d z ( 0 ,  V), where 

V = var{vec [(x2 - p)(x2 - p ) ’ ] }  = var[(x2 - p )  8 (xz - PI] ,  

by (11.15~).  

(ii) In terms of S, we have (n-l)’/’(vec S-vec E) is asymptotically N,j2(0, V). 
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(c) If A is a real symmetric n x n matrix, then, under certain conditions, Q = 
X‘AX is asymptotically normal as n + 00. 

For further details and references see Mathai and Provost [1992: section 4.6bI. 

21.5. (Asymptotic Theory) Suppose $(y - 8 )  is asymptotically N d ( 0 ,  E), and 
let f(u) be a q-dimensional vector-valued function of u such that each component 
f,(u) has a nonzero differential at u = 8.  If F = (f,,), where f,, = af,(u)/du,, 
then 

&[f(u) - f(8)] is asymptotically N,(O, F’EF). 

21.6. Suppose X’ has columns x,, then 

n n  

E(X’AX) = c c a z , ~ o v ( ~ , ,  x,) + E(X’)AE(X). 
2 = 1  ,=1 

21.7. Suppose the x,, the columns of X’, are statistically independent and var(x,) = 

X, for z = 1 , 2 , .  . . , n. Then, from (21.6), 

n 

(a) E(X’AX) = C a , , ~ ,  + E(x’)AE(x). 
2 = 1  

(b) If E, = E for all a ,  then from (a) we have 

E(X’AX) = (traceA)E + E(X’)AE(X). 

(c) Suppose that the x, are i.i.d. with mean 0 and variance matrix E. If V = X’X 
and E(x,x: 8 x,x:) = !P, then 

var(vecV) = n[!P - (vecE)(vecE)’]. 

21.8. (Independence) Let X’ = (x1, xa, . . . , xn), where the x, are independently 
distributed as Nd(p , ,  E) (i = 1 ,2 , .  . . , n) and E is positive definite. Suppose A and 
B are n x n symmetric matrices and C is a k x n matrix. Then: 

(a) X’AX and X’BX are statistically independent if and only if AB = 0. 

(b) CX and X’AX are statistically independent if and only if CA = 0. 
Setting C = b’, we have that X’b and X’AX are statistically independent if 
and only if Ab = 0. 

More generally: 

(c) Let Q, = X’A,X + f (L,X +X’L:) + C , ,  where A, and C, are real symmetric 
matrices (i = 1,2) .  Then Q1 and Q2 are statistically independent if and only 
if 

AlA2 = 0, LlA2 = 0, L2Al = 0, and L1Lh = 0. 

We can get various special cases by setting A, = 0 or L, = 0. Mathai and 
Provost [1992: 286-2871 also give results for the case when E is singular. 

Proofs. Section 21.2.1 

21.3a-b. Seber [1984: 8-91. 
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21.4a. Anderson [2003: 86-87] and Muirhead [1982: 151. 

21.4b. Anderson [2003: 871 and Muirhead [1982: 181. 

21.5. Anderson [2003: 1321. 

21.6. Mathai and Provost [1992: 2441. 

21.7a. Seber [1984: 6-71, 

21.7~.  Schott [2005: 424-4251. 

21.8a-b. Mathai and Provost [1992: 2851 and Schott [2005: 422-4241, 

21.8~.  Mathai and Provost [1992: 286-2871. 

21.2.2 Wishart Distribution 

Definition 21.3. Let X = (XI, x2,. . . , xn)’ be an m x d matrix with rows which 
are independently and identically distributed (i.i.d.) as the multivariate normal 
distribution Nd(o ,E) ,  subject t o  two conditions, namely (i) d 5 m and (ii) E is 
positive definite. If W = X’X, then W is said to  a have a (nonsingular) Wishart 
disribution with m degrees of freedom and we write W - Wd(m,E). The joint 
probability probability density function of the distinct elements of the symmetric 
matrix W (the i d ( d  + 1) variables in the upper triangle, say) is given in (21.67). 
This Wishart distribution can, of course, be defined directly in terms of its den- 
sity function, though the above represention is more convenient for developing the 
theory, especially in the singular case. If a t  least one of the two conditions does 
not hold, then the distribution is said to be singular (cf. Srivastava [2003] for some 
details). We use m instead of n here as X is used as a “representation” rather 
than coming from a particular random sample of size m. If W - Wd(m, E) ,  then 
we can simply choose any matrix X with rows which are i.i.d. Nd(0,E).  Then 
X’X has the same distribution as W and can be used as a “proxy” for the latter. 
For this reason, most authors simply set W = X’X (e.g., Seber [1984: 211). For 
other general references relating to the Wishart distribution see Anderson [2003] 
and Muirhead [1982]; in fact most theoretical books on multivariate analysis cover 
the Wishart distribution in detail. 

If the xi are independently distributed as N d ( p i ,  E) with E positive definite, then 
W = X‘X has a noncentral Wishart distribution, generally written as Wd(m, C; A),  
where 

A = E - ~ / ~ M / M E - ~ / ~ ,  M = (pl,pz,. . . ,pm)/ = E(x), 

and Ell2 is the positive square root of E (cf. 10.32). Here A is called the noncen- 
trality matrix and, since the distribution of W depends only on the eigenvalues of 
A,  other expressions are used for the noncentrality parameter (Seber [1984: sec- 
tion 2.3.31). Muirhead [1984: section 10.31 defines A = E-lM’M and gives the 
probability density function of the noncentral distribution and its properties. 

When W has a nonsingular distribution, W-l is said to have an inverted 
Wishart. For some details see Anderson [2003: section 7.71 and Muirhead [1982: 
113, exercise 3.61. A generalized version also exists (Brown [2002]). 
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21.9. An important special case is when the x, are all N d ( 0 , u 2 1 d ) .  Then the 
elements of X are all i.i.d. N ( 0 ,  u2)  and X’X - Wd(m, I d ) .  

21.10. If the x, ( i  = 1 , 2 , .  . . , m) are independently distributed as Nd(p, ,  E) with 
E positive definite, then using (21.2a) we have 

vec (X’) N Nmd (vec (M’) , I, 8 E) , 

where M = ( p l , p 2 , .  . . ,,urn)’. 

21.11. Suppose W = X’X - Wd(m, E; A),  where X is defined above. Then: 

(a) E ( W )  = mE + M’M, where M is defined above. For this reason, some 
authors define the noncentrality parameter to be 9 = M’M or even i9 (e.g., 
Schott [2005: 422]), which have some advantages, as demonstrated in (21.12) 
below. 

(b) var(vecW) = 2P,[d(E 8 E) + E @ M’M + M’M @ E], where P, is the 
symmetrizer matrix defined in Section 11.5.1. 

21.12. If we redefine the parameters of a noncentral Wishart and write W - 
Wd(m, E; a), where E is positive definite and = M’M, and C is q x d of rank q,  
then CWC’ - Wd(m, CEC’; CaC’). In terms of the previous notation, we have 
A = (CEC’) - 1/2 C9C’ (CEC’) - 1 /2 .  

21.13. Suppose W = (w,,) has a nonsingular Wishart distribution Wd(m, E). 

(a) W is positive definite with probability 1. 

(b) The eigenvalues of W are distinct with probability 1. 

(c) E ( W )  = mE, which still holds if W is singular. 

(d) Let C be a q x d matrix of rank q.  

(i) CWC’ - W,(m,CEC’) and is nonsingular. 

(ii) Setting C = a’ (a # 0 ) ,  we have a’Wa - afx:, where 

(iii) By choosing C = (I,,O) ( r  5 d ) ,  or an appropriate permutation of its 
columns, we see that an r x r principal submatrix of W has the Wishart 
distribution W,(m, X,,), where E,, is the corresponding r x r principal 
submatrix of E. 

(iv) If W is singular and rankC 5 q,  then CWC’ has a singular Wishart 

We have the following 
special cases. 

= a’Xa. 

distribution. 

(e) w,~ /u , ,  - x:, ( j  = 1 , 2 , .  . . , d).  However, they are not statistically indepen- 
dent. Also W , ~ / O ~ ,  is not chi-square for i # j .  

( f )  det W/ det X is distributed as a product of d independent chi-square variables 
with respective degrees of freedom m, m - 1, . . . , m - d + 1. 
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(9) The moment generating function (m.g.f.) of W = (wij) is 

= 

= [det(Id - 2UE)]-m/2, 

E{ exp [ t race( U W) ] } 

where u = u', u,, = t,, and u , k  = u k 3  = at,, ( j  < k ) .  Since this moment 
generating function exists in a neighborhood of T = 0, it uniquely determines 
the (nonsingular) probability density function of W and can therefore be used 
for deriving a number of results given below. The characteristic function is 
derived by Muirhead [1982: 871. 

We have essentially found the m.g.f. of X'X when the columns of X' are i.i.d. 
Nd(0, C), where E is positive definite. The m.g.f. of X'AX+i(LX+X'L')+C 
when the columns of X' are i.i.d. N d ( p ,  E) is given by Mathai and Provost 
[1992: section 6.41. They also give results for the cases when the x, are 
correlated and E is singular. 

21.14. Let W - Wd(m, E) ,  where E is possibly singular, and let A be a d x d (not 
necessarily symmetric) matrix. Then: 

(a) E(WAW) = m[EAE + trace(AE)A] + m2EAE. 

(b) If m > d + 1, and E is nonsingular, then 

1 

m - d - 1  
1 

m - d - 1  

(i) E(WAW-~) = 

(ii) E(W-'AW) = 

[mEAE-' - A' - (traceA)Id]. 

[mE-'AE - A' - (traceA)Id]. 

(c) If m > d + 3, and E is nonsingular, then 

E( w - AW - l )  

- (m  - d - 2)E-lAE-l + E-'A'E-' - trace(AE-')E:-' 
- 

(m  - d)(m - d - l ) (m - d - 3) 

21.15. Suppose that the columns xi (i = 1,. . . , m) of X' are independently dis- 
tributed as Nd(pi, E) with E positive definite, and A is a symmetric d x d matrix 
of rank T .  Then, if A is idempotent, we have 

X'AX N Wd(m, E; A),  

the noncentral Wishart distribution with 

A = E-'/2M'AME-1/2 and M = (p1, p 2 , .  . . ,p,). 

The case when the xi are not independent and C is non-negative definite is consid- 
ered by Vaish and Chaganty [2004: 3821. 

21.16. Suppose that m columns of x' are i.i.d. as Nd(o,E), where E is positive 
definite, and let A and B be m x m symmetric matrices. 
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(a) Let X'AX and X'BX have Wishart distributions. They are statistically 
independent if and only if AB = 0. (This result is generalized in (21.17).) 

(b) Let X'AX have a Wishart distribution. Then X'b is statistically independent 
of X'AX if and only if A b  = 0. 

21.17. Suppose that the columns x, (i = 1, .  . . , m) of X' are independently dis- 
tributed as Nd(p,, E),  and let Al ,  A2,. . . , A t  be a sequence of n x n symmetric ma- 
trices with ranks rl, r ~ . .  . . ,rt such that cf=, A, = I,. If one (and therefore all) of 
the conditions of (8.78) hold, then the X'A,X ( i  = I ,  2 , .  . . , t )  are independently dis- 
tributed as the noncentral Wishart, Wd(r,, E; A t ) ,  where A, = E-1/2M'AzME-1/2 
is the noncentrality parameter and M = (p1, p a , .  . . , pm)'. An extension of this 
result to the case when the x, are not independent and E is non-negative definite 
is given by Vaish and Chaganty [2004: 3831 and Tian and Styan [2005: 3911. 

21.18. If W, - Wd(mt,E) ( i  = 1,2) ,  and W1 and W2 are statistically indepen- 
dent, then W1 + W2 - Wd(m1 + m2, E). 

where E is positive definite, W,i is di x d,, ( i  = 1,2), and dl + d2 = d. Suppose E 
is partioned in the same way as W and E22.1 = E22 - E21ET;E12. 

(a) We have W22.1 = W22 - W21WF:W12 - Wdz(m - dl, E22.1)~ 
and W22.1 isstatistically independent of (W11, W12). Note that W12 = Wil. 

(b) If El2 = 0, then Y = W21WF;W12 - Wdz(d1,&) and Y is statistically 
independent of W22.1.  

Definition 21.4. (Hotelling's Distribution) Suppose y - Nd(0,  E), W - Wd(m, E), 
y is statistically independent of W, and both distributions are nonsingular. Then 

T 2  = my'W-ly 

is said to have a Hotelling's distribution, and we write T2 - T&. 

21.20. Referring to the above definition, F = - . 
F-distribution with d and m - d + 1 degrees of freedom, respectively. 

with noncentrality parameter S = O'EO. 

2 1.2 1. (Eigenvalues) 

T;,, m - d + l  
Fd,m-d+l, the d m 

If, instead, y - Nd(8,  E), then F - F,+-d+l,h, the noncentral F-distribution 

(a) If the probability density function of the m x d matrix Y is f (Y'Y), then the 
probability density of B = Y'Y is 

where r d ( ' )  is given by (21.67) 
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(b) If the real symmetric d x d matrix C has a probability density function of the 
are the eigenvahes of c,  form g(X1, &, . . . , A d ) ,  where 

then the probability density function of the eigenvalues is 
> > . . . > 

(c) Suppose W N Wd(m,Id). Using (a) and (b), the probability density function 
of the eigenvalues of W is 

( m - d - 1 ) / 2  d d 
T d 2 / 2  n,“=, A, 

2dm/2rd(;m)rd( i d )  2=1 2<J 

exP(-$ CXJ I-p, - X J ) .  

(d) Suppose W N Wd(m,X), where m d and C is positive definite. Then the 
probability density function of the eigenvalues of W is 

where A = diag(X1,. . . , A d )  and 
When E = I,, we have 

is a two-matrix hypergeometric function. 

0 0  F d ( - i A , I d )  = oFo(-$A, )  = exp(-; trace A), 

which gives us (c) 

21.22. (Generalized Eigenvalues) Let Wi (i  = 1,2)  be independently distributed 
as nonsingular Wd(mi, X) (i.e., m 1 ,  m2 2 d and C positive definite). The probability 
density function of the generalized eigenvalues, namely the roots of 

det(W1 - XW2) = 0, 

is 

for 2 ’ ’ ’ 2 Ad 2 0. 

Definition 21.5. (Complex Wishart Distribution) Suppose x1,x2,. . . , x ,  are 
independently and identically distributed as the complex multivariate normal dis- 
tribution N ~ ( O , C , )  (cf. Section 20.6), then W = zz ,x ix ,*  is said to have a 
complex Wishart distribution denoted by W$(m, Ex). It is used in approximating 
the distributions of estimates of spectral density matrices in multivariate time series 
and in random normal (Gaussian) processes generally. Some of the properties of 
the (real) Wishart distribution carry over into the complex case. For a number of 
references see Brillinger [1975: 901. 

21.23. Suppose W = (wij) N W2(m,Cx) ,  where m 2 d and Ex is Hermitian 
positive definite. Then: 
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(a) The probability density function of the distinct elements of W is 

(det W)m-d exp [ - trace( X i 1  W)] 

7rd(d-1)/2(det Ex), nf=, r(m - j + 1) ’ 

(b) E(W) = mXx. 

Proofs. Section 21.2.2. 

21.11a. Follows from (21.7b) with A = I,. 

21.11b. Schott [2005: 4251 

21.12. Schott [2005: 4231. 

21.13. Seber [1984: 21, 27, 561. 

21.14. Styan [1989]. 

21.15. Schott [2005: 4221. 

21.16. Schott [2005: 4221 and Seber [1984: 24-25]. 

21.18. This can be readily proved using moment generating functions (cf. 
21.13g). 

21.19a. Seber [1984: 50-511 and Schott [2005: 423-4241, 

21.19b. Seber [1984: 51-52]. 

21.20. Seber [1984: 30-311. 

21.21a. Anderson [2003: 539, with Y -+ Y’ and p + d]. 

21.21b. Anderson [2003: 538-5391 proves this using (a). 

21.21~. Anderson [2003: 5391 and Muirhead [1982: 389, with X = 1,nli  = Xi]. 

21.21d. For details see Muirhead [1982: 388-389, with X i  = nli]. 

21.22. Anderson [2003: section 13.2, and section 13.6 for some asymptotic 
theory]. 

21.23. Srivastava [1965]. 

21.3 RANDOM SAMPLES 

21.3.1 One Sample 

21.24. Let x,, i = 1,2, . . . , n, be a random sample from a d-dimensional distribu- 
tion with mean p and variance matrix X. Let X = (~1~x2,. . . ,x,)’ be the data 
matrix and let z, = x, - p (i = 1 ,2 , .  . . , n).  Suppose that the following third and 
fourth moment matrices exist, namely 

= E(z, @ z,z:) and !P = E(z,z: 8 z,z:), 
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where “€3” is the Kronecker product. Let z = (z i ,  zl,, . . . zi)’  = vec (X’) - 1, @ p  so 
that E(z) = 0 and E(zz’) = var(vecX’) = I,@E (by (21.2a). Define 6, = E(z@zz’) 
and ** = E(zz’ @ zz’). Then: 

(a) If Kd, (I( , ,d) )  is the commutation (vec-permutation) matrix, E,, = e,e: is 
an n x n matrix with 1 in the ( i ,  i) th position and zeros elsewhere, and G = 

(Ell, E 2 2 , .  . . , En,)’, then 

8,  = (I, @ Kd, @ Id)(G @ a) 
- 

(b) If K,, = C;=“=,E,, 8 Ei,), then 

** = ( 1 , ~  + K,d,,d)(L 8 E 8 I, 8 E) + [vec (I, @ E)][vec (I, 

+(I, €3 

E)]’ 

8 I d ) { K n n  @ [* - (Id2 + Kdd)(E @ E) 

-(vet E)(vec E’]}(I, @ Knd @ Id). 

(c) Under normality we have the following results. 

(i) 8 = 8* = 0. 

(ii) If P d  = ;(Id2 + Kdd) (the symmetrizer matrix), then, from (20.24b), 

9 = 2 P d ( X  @ E) + (vec E)(vec E)’. 

(iii) ** = 2P,d(I, @ E 8 I, @ E) + [vec (I, @ E)][vec (I, E)]’. 
Methods for finding E(x @ x €3 x), E(x @ x 8 x 8 x), and higher moments are given 
by Meijer [2005]. 

21.25. Let x,, i = 1 , 2 , .  . . ,n,  be a random sample from a nonsingular normal 
distribution N d ( p ,  E). Then: 

(4 x - Nd@, E h )  

(b) Q = ( T Z  - 1)s N Wd(n - 1, E). 

(c) From (b) we can obtain the probability density function of the eigenvalues of 
Q, and therefore those of S. As this joint distribution is rather intractable, 
asymptotic theory has been developed for large n for both the eigenvalues and 
eigenvectors of S, especially as related to providing approximate inferential 
procedures for principal’ component analysis. The reader is referred to Seber 
[1984: 197-1991 for a summary of the results, and to Anderson [2003: section 
13.51, Muirhead [1982: chapter 91, and Schott [2005: 427-4291 for further 
details and some derivations. 

(d) We consider some properties of S. Here P d  is the symmetrizer matrix (cf. 
20.2413) and Gd is the duplication matrix. 

(i) var(vecS) = (n  - 1)-l2Pd(E B E) = (n - 1)p12Pd(E 8 E)Pd. 

(ii) We note that the above matrix in ( i )  is singular as S is symmetric, which 
implies that vec S has repeated elements. We can get round this by using 
the vector vech S. Then 

G:Pd(E @ X)PdGi’. 
2 

var(vechS) = ~ 

n - 1  



472 RANDOM MATRICES 

(iii) As n + 00, (n  - 1)’/2(vecS - vecx) is asymptotically distributed as 
Nd2(OIV), where V = 2Pd(C 8 C).  

(iv) From vechS = GdfvecS, (20.6b), and (iii), (n - 1)1/2(vechS - vech C) 
is asymptotically distributed as Nk(0,  GdfVGdf’), where k = d(d+ 1)/2. 

(v) If s = diag S and n = diag E, then 

2 
n - 1  

E(s) = u and var(s) = -(C o C),  

where “0” is the Hadamard product. Also, as n + 00, (n - 1)’l2(s - u) 
is asymptotically distributed as Nd(0,2C o C).  

(vi) Schott [2005: 431-4321 gives the asymptotic variance matrices for vec R 
and vech R, where R is the sample correlation matrix. 

(e) X and S are statistically independent, 

( f )  X and S are jointly sufficient and complete for p and C. 

(g) A useful statistic is 

(i) T2 = n(r? - p)S-’(sI - p )  - T&-’ (cf. 21.20). This statistic can be 

(ii) When the underlying data come from an elliptical distribution, T 2  is 

used for testing the null hypothesis Ho : p = po. 

asymptotically x:. 
(h) If Ho : p E V ,  where V is a pdimensional vector subspace of Rd, then we 

have the following. 

(i) T$in = min,,vT2 - Td-p,n-l. 

(ii) If we have Ho : p = KO, where K is a known d x p matrix of rank p and 
p is a vector of p unknown paramters, then V = C(K) and 

T:in = n ( X ’ S I X  - X’S-’KP*), 

where p* = (K’S-lK)-lK’S-lx. 

that V = N(A) ,  the null space of A. Then 
(iii) Suppose we have HO : Ap = 0, where A is d - p x d of rank d - p ,  so 

T , ~ ~  = n ( ~ ~ ) ’ ( ~ ~ ~ ’ ) - l ~ ~ .  

A slight generalization of this is given in (i) below. 

(i) Let A be a q x d matrix of rank q. Then: 

(i) n(AsI-Ap)’(ASA’)-’(AX-Ap) N 

(ii) If A is a matrix of contrasts so that Ald = 0, then 

This can be used for testing 
Ho : A p  = C. 
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Proofs. Section 21.3.1. 

21.24. Neudecker and Trenkler [2002]. 

21.25a-b. Seber [1984: 631. 

21.25d(i)-(v). Schott [2005: 426-4271, 

21.25d(vi). Schott [2005: 431-4321, 

21.25e. Seber [1984: 631. 

21.25f. Anderson [2003: 841. 

21.25g(i). Seber [1984: 631. 

21.25g(ii). Anderson [2003: 199-2001. 

21.25h. Seber [1984: 77-79]. 

21.25i(i). Seber [1984: 721. 

21.25i(ii). Seber [1984: 1241 

21.3.2 Two Samples 

21.26. Let V I ,  VZ, . . . , v,, be a random sample from N&l, E), w1, w2,. . . , w,, 
be an independent random sample from Nd(p2, E), and 8 = p1 - p2. Also define 
Q1 = ~ r ~ i ( v z  - V)(vz - V)’ and Q2 = C ~ ~ l ( w z  - W)(wz - W)’. Then: 

(a) V - W - Nd(8, (n,’ + n2’)X). 
(b) Q = Q i  + Q 2  N Wd(ni + 722 - 2, E). 

(c) n1n2(n1 +~~~) - ‘ (v -w-8) ’S ;~ (v -w-8)  N Td,,l+nz-2, the T2 distribution 
(cf. 21.20), where 

We can use this statistic t o  test HO : 8 = c .  

S, = Q / ( T L ~  + 722 - 2). 

(d) If C is a q x d matrix of rank q ( q  5 d) ,  then 

This can be used to test HO : C8 = 0. When C is an appropriate d - 1 x d 
contrast matrix then the methodology relating to  HO is referred to as profile 
analysis. 

The topic of more than two samples is best handled as a special case of the multi- 
variate linear model described in the next section. 

Proofs. Section 21.3.2. 

21.26. Seber [1984: 108, 1171. 
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21.4 MULTIVARIATE LINEAR MODEL 

21.4.1 Least Squares Estimation 

Definition 21.6. Let Y = 0 + U, where 0 = XB, B is a p x d matrix of unknown 
parameters, X is an n x p known matrix of constants of rank r ( r  5 p ) ,  U = 

(u l , .  . . un)‘ = (u(l), . . . , u ( ~ ) ) ,  and the ui are a random sample from a distribution 
with mean 0 and variance matrix E. Then Y = XB + U is called a multivariate 
linear model. When d = 1, this reduces to the univariate linear model of Section 
20.7. 

We have introduced a change in notation in this section. Up till now, X has 
represented a matrix of random variables, whereas now we assume it t o  be a matrix 
of constants. This will be the case if we can carry out any analysis conditional on 
the observed value of X. However, the use of X is traditional for linear models, 
and in some cases the elements of X take only values 0 or 1, thus representing 
qualitative variables. In this case, X is sometimes referred to  as the design matrix, 
though, as Kempthorne [1980: 2491 argues, a better term is perhaps model matrix. 
The matrix Y now takes over the role of a data matrix. In what follows we let 
R = C(X). 

Definition 21.7. If we partition Y, 0, and B in the same way that we partitioned 
U, then the j t h  column of the multivariate linear model is the univariate model 
y(J) = O ( J )  = Xp(j) + u(j), where u(j) has mean 0 and variance matrix njjIn. If 
P,y(j) is the (ordinary) least squares estimate of O ( j )  (cf. 20.37a), where Pa = 

X(X’X)-X’, we say that 0 = P a y  is the least squares estimate of 0. When 
T = p ,  then setting 0 = Xlh we have B = (X’X)-’X’6 = (X’X)-lX’Y, called the 
least squares estimate of B. If r < p ,  then B is not unique and we can use (as in 
the unvariate case) g = (X’X)-X’Y, where (X’X)- is any weak inverse of (X’X). 

21.27. yi = B’xi + ui, where xi is the i th row of X. 

21.28. If X has full rank, then E(g) = B. 

21.29. We have the following covariance properties. 

A 

h A 

h 

(a) cov(y,,y,) = cov(u,,u,) = C ~ , ~ X ,  where 6,, = 1 when r = s and 0 otherwise. 

(b) cov(y(j), y(’))) = cov(u(j), ~ ( ~ 1 )  = 

(c) If X has full rank p ,  then p ( j )  = (X’X)-lX’y(j) and 

for all j, k = 1,.  . . , d. 

C O V ( ~ ( ~ ) , @ ~ ) )  = 0. Ik (X’X)-’ (all j, Ic = 1,.  . . , d ) .  

21.30. Let G ( 0 )  = (Y - 0)’(Y - 0). 

(a) (i) E = G ( Q )  = Y ’ ( I ~  - P ~ ) Y  = ~ ’ ( 1 ,  - P,)u. 
(ii) E(E) = (n  - r )X .  

(iii) E is positive definite with probability 1. 

Here E is sometimes referred to as the error matrix or residual matrix. 

(b) G ( 0 )  - G ( 6 )  = (6 - 0)’(6 - 0) is positive semidefinite for all 0 = XB, and 
equal to 0 if and only if 0 = Q .  We can say that 6 is the minimum of the 
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matrix G ( 0 ) .  As a consequence we have the following properties of the least 
squares estimate from (10.48b,d) and (10.47a(iii)). 

(i) traceG(O) 2 t raceG(6) .  

(ii) det G(O) 2 det G(@). 

(iii) IlG(0)ll~ 2 IlG(6)ll~, where l lA l l~  = {trace(A’A))ll2 and 1 1 .  I I F  is the 
Frobenius norm. 

Any of these three results could be used as a definition of @. 

21.31. (Generalized Gauss-Markov Theorem) If q5 = Cf, hi8(j), a linear com- 

bination of all the elements of 0, then 4 = El=, hid(j) is the BLUE of q5 (i.e., the 
linear unbiased estimate with minimum variance). 

21.32. (Two-Sample Case) Setting V’ = (v1,v2,. . . , vn1), W’ = ( ~ 1 ,  ~ 2 , .  . . ,wn,), 
and Y = (V’, W’)’ we see that the two-sample problem (cf. 21.26) is a special case 
of the multivariate model with 

The extension to n samples is straightforward. 

Definition 21.8. If X has less than full rank, then each univariate model also has 
less than full rank. From (20.38(2)), aIp(j) is estimable for each i = 1,2, .  . . , q and 
each model j = 1 , 2 , .  . . ,d if ai E C(X’). Let A’ = (al,a2,. . . , ap ) .  Combining 
these linear combinations, we say that AB is estimable if A‘ = X’L’ or A = L X  
for some g x n matrix L. 

21.33. Suppose AB is estimable. 

(a) If A is g x p of rank q, then L has rank q by (20.38(2)). 

(b) A@ = LX(X’X)-X’Y = L P n Y  = (PnL’)’Y is invariant for any choice of 
weak inverse (XX’)- as Pa is invariant. Here POL’ is unique (but not L, 
unless X has rank p )  and has full row rank. 

h 

(c) 4 = a’ABb = a’L6b is the BLUE of q5 = a’ABb = a’LOb. 

(d) A(X’X)-A = LPnL‘ = (PnL’)PnL’ is invariant and nonsingular by (b). 

(el E(A@ = L P ~ X B  = LXB = AB, since P ~ X  = X. 

Proofs. Section 21.4.1. 

21.27-21.29. Seber [1984: 4001. 

21.30a. Seber [1984: 398, 4021. 

21.30b. Seber [1984: 397-3981. 

21.31. Seber [1984: 400-4011. 

21.32. Seber [1984: section 8.6.41. 
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21.33b. E(A6) = (PnL’)’O. If (PnM‘)’Y is another estimate, then [PnM’- 
PnL’1’0 = 0 and C[Pn(M’ - L’]) I C(X) as the columns of 0 are in C(X). 
Thus, P n M ’  - PnL’ = 0 C[Pn(M’ - L’] C C(X). 

21.33~. The result follows from (21.31) by relabeling. 

21.4.2 Statistical Inference 

Let Y = 0 + U. In this section we now assume that the underlying distribution of 
the columns u, of U’ is a (nonsingular) multivariate normal distribution Nd(0,  E). 
The case when X is singular is considered by, for example, Srivastava and von 
Rosen [2002]. The multivariate model can be expressed in terms of the univariate 
model vecY = vec (XB) + vecU, where from (21.2~~) vec (XB) = ( I d  @I X)vecB 
and var(vecU) = I: 8 I, (cf. Searle [1978]). A more general model in which 
var(vecU) = I: 8 V, with V and E possibly singular, is considered by Sengupta 
and Jammalamakada [2003: chapter lo]. 

21.34. The likelihood function for Y, the density function of vecY (or, more 
conveniently, vec (Y’)) is the joint distribution of the independent yz, and it can 
be expressed in the form 

(27rPndl2(det E)-n12 exp{trace[ - 2 (Y - 0)’E-’ ( Y  - @)I}. 
21.35. Suppose 0 = XB, where X has rank r ,  and let E be given by (21.30a). We 
assume n - r 2 d. Then: 

(a) E - Wd(n - r ,  E). 

(b) E is statistically independent of 6 (and of % if X has full rank p ) .  

(c) The maximum likelihood estimates of X, 0, and B (if X has full rank), 
The maximum value of the likelihood function are % = E/n, 6, and 6. 

is (27rPndl2(det %)-n/2e-nd/2.  (This corrects a typo in Seber [1984: 4071.) 

(d) If X has full rank, then (6, %) is sufficient for (B, E). 

(e) Referring to the j t h  column of 6, if X has full rank (cf. 21.29c), 

p) - N , ( P ( J ) ,  oJJ (x ’x ) - l ) .  

21.36. Suppose that 0 = XB, where X has rank T .  Let A be a known q x p matrix 
of rank q,  and let AB be estimable. We are interested in testing Ho : AB = C ,  
where C is a constant matrix. Then: 

(a) Referring to (21.30), the minimum EH, say, of G(XB) subject to AB = C 
occurs when B equals 

% H  = 6 - (X’X)-A’[A(X’X)-A’]-1(A6 - C ) .  

Although B and BH are not unique when r < p ,  0 = XB and OH = XBH 
are unique. Also EH is positive definite with probability one. 

h h h h h h 



MULTIVARIATE LINEAR MODEL 477 

(b) H = EH - E = (A6 - C)I[A(X’X)-AI]-’(A6 - C). 

H is positive definite with probability one. 

(c) E(H) = qE + (AB - C)’[A(X’X)-A’]-’(AB - C) = qE + D, say, and D is 
positive definite. 

(d) H and E are statistically independent. 

(e) When Ho is true, H N Wd(q,E). When HO is false, H has a noncentral 
Wishart distribution Wd(q, X; A),  with noncentrality matrix given by A = 

( f )  Let E i 2  be the positive definite square root of EH (cf. 10.32). Then, when 

Ho is true, V = E i 1 / 2 H E i ’ / 2  has a d-dimensional matrix variate Type-1 
beta distribution with degrees of freedom q and n - r (cf. Section 21.9) 

21.37. Four different criterion are usually computed for testing Ho,  and are ex- 
pressed as functions of eigenvalues of V given in (21.36(f)) above. 

E-1/2DE-1/2, 

1. Roy’s maximum root test &,,, the maximum eigenvalue of HE-’, based on 
the so-called union-intersection principle. 

(det E/ det E H ) ~ / ~ .  2. Likelihood ratio test 

3.  The Lawley-Hotelling trace (n  - r )  trace(HE-l). 

4. P illai’s trace trace (HE,‘ ) 

These tests are summarised by Seber [1984: chapter 81, but for further details and 
distribution theory see Muirhead [1982: chapter lo].  

Proofs. Section 21.4.2. 

21.34. Seber [1984: 4061 

21.35. Seber [1984: section 8.41. 

21.36. Seber [1984: section 8.61. 

21.4.3 Two Extensions 

We give two extensions to the theory, which demonstrate how matrix theory can 
be applied. 

21.38. (Generalized Hypothesis) Suppose we want t o  test HO : ABD = 0, where 
A is q x p of rank q ( q  5 p )  and D is a known d x w matrix of rank w (w 5 d) .  To 
do this, let YD = YD so that the linear model Y = XB + U is transformed to 

YD = XBD + UD = XA + Uo, 

say, where the columns of Ub are i.i.d. N,(O, DIED). Then HO becomes AA = 0 
and we can apply the previous theory of (21.36) to this transformed model. 
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(a) H now becomes HD = D’HD = (A%D)’[A(X’X)-’A‘]-’A%D and E be- 
comes ED = D’ED - Wv(n - r, D’ED). 

(b) When ABD = 0 is true, HD - W,(q,D’XD). The only change to the 
previous theory is to replace Y by YD and d by v. 

(c) The above theory reduces to that of Section 21.4.2 if we set D = Id and v = d. 

This hypothesis is used for carrying out a profile analysis of more than two popu- 
lations (Seber [1984: section 8.71). 

21.39. (Generalized Model and Hypothesis) Consider the model 

Y = XAK’ + U, 

where X is a known n x p of rank p ,  A is p x k matrix of unknown parameters, 
K’ is a known k x d of rank k ( k  < d) ,  and the rows of U are independently and 
identically distributed (i.i.d.) as Nd(0,  E). We wish to test the hypothesis 

Ho : AAD = 0: 

where A is q x d of rank q and D is k x v of rank v. This model is usually called the 
growth curve model and it is considered, along with extensions, by Pan and Fang 
[2002] and Kollo and van Rosen [2005: chapter 41. A brief discussion is given by 
Seber [1984: section 9.71. 

One simple approach to the above model when there are appropriate rank con- 
ditions is to transform the model to remove K’ using a right inverse of K’. One 
method, suggested by (Potthoff and Roy [1964] and described in detail by Seber 
[1984: 4791, is to choose a nonsingular d x d matrix G (usually positive definite) 
such that the k x k matrix K’G-lK is nonsingular, and transform yi to Clyi, 
where C1 = G-‘K(K’G-’K)-’ is d x k of rank k .  Then K’C1 = I k  so that 

Y1= YC1= XAK’C1+ UC1 = XA + U1, 

where the columns of Ui, namely Clui, are i.i.d. N k ( O , X 1 )  with XI = CiXC1. 
We have now reduced the model to the previous case, and the theory used there 
for testing Ho can be applied here with Y replaced by Y1 and d by k .  

21.5 DIMENSION REDUCTION TECHNIQUES 

21.5.1 Principal Component Analysis (PCA) 

Given a data set of interrelated variables represented by an n x d data matrix X = 
(xl, x2,. . . , xn)’, the aim of principal component analysis (PCA) is to reduce the 
dimensionality d of the data set, while still retaining as much of the variation present 
in the data set as possible. This is achieved by transforming to a new set of variables, 
called the principal components, which are uncorrelated and are ordered so that the 
first few retain most of the variation present in all of the original variables. Also, 
we would hope that the components may have some physical interpretation. 

We shall first look at the underlying population model that generates the data, 
and then consider the sample estimates of various quantites. There are numerous 
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books on multivariate analysis that contain chapters or sections on principal compo- 
nents, e.g., Anderson [2003], Krzanowski [1988], Muirhead [1982], and Seber [1984] 
(which happen to be in my office when writing this). However, more specialized 
books are available such as Flury [1988] and Jolliffe [2002]. 

Definition 21.9. Let x be a random d-dimensional vector with mean p and vari- 
ance matrix X. Let T = (tl, t 2 , .  . . , t d )  be an orthogonal matrix such that, by the 
spectral theorem (cf. 16.44), we have 

X t j  = X j t j  and 

where A1 2 X2 2 . . .  2 are the ordered eigenvalues of C. The sum traceC is 
sometimes called the total variance. If y = (yj) = T’(x - p) ,  then y j  = t$(x - p)  
( j  = 1,2, . . . , d) is called the j t h  population principal component of x. In developing 
the population theory there is no loss of generality in assuming p = 0. 

A major drawback to the above approach is that it can be sensitive to  the units of 
measurement used for each zi. For this and other remons some authors work with 
the population correlation matrix corr(x) rather than the variance matrix C. For 
a discussion of the relative merits of the two approaches see Jolliffe [2002: section 
2.31. The optimal properties described below for C also apply to  corr(x) if we use 
the standardized vector z = ( z i ) ,  where zi = (xi - pi)/&, instead of x. 

21.40. (Population Properties) 

T’CT = A = diag(XI,X2,. . .,Ad), 

(a) c = TAT’ = xf=l xitit;. 

(b) The principal components define the principal axes of the family of ellipsoids 
(x - p)’C-l(x - p)  = const. 

(c) Since t j  has unit length, y j  is the length of the orthogonal projection of x - p 

(d) As var(y) = A, the y j  are uncorrelated and var(yj) = X j .  

(e) El=, var(yj) = CjE1 var(zj) = t racez,  the total variance. We can use 
A j /  trace C to measure the relative manitude of Xj .  If the X i  (i = k+ 1,.  . . , d) 
are relatively small so that the corresponding yi are “small” (with zero means 
and small variances), then y(k) = (yl, y2,. . . , yk)’ can be regarded as a k 
dimensional approximation for y. Thus y ( k )  can be used as a L L p r ~ ~ y ”  for x 
in terms of explaining a major part of the total variance. 

It should be noted that the last few components are likely to  be more useful 
than the first few in detecting outliers that are not apparent from the original 
variables (Jolliffe [2002: 2371). 

in direction tj. 

d 

( f )  Let T ( k )  = ( t i , .  . . , t k ) .  Then: 

(i) max var(a’x) = var(tix) = var[ti(x - p)]  = var(y1) = X I ,  
a‘a= 1 
so that y1 is the normalized linear combination of the elements of x - p 
with maximum variance XI. 

var(a’x) = var(tkx) = var(yk) = &, so that tL(x - p) 

is the normalized linear combination of the elements x - p uncorrelated 
with y1, y2, . . . , yk-1 with maximum variance Xk. 

(ii) max 
a‘a=l,T{k-,)a=O 



480 RANDOM MATRICES 

The above results can be expressed in several different ways (e.g., Jolliffe 
[2002: 11-12]). 

(g) (Predictive Approach) Let B be a d x k matrix, and consider the “best” 
linear predictor of x - p on the basis of B(x - p).  The Frobenius norm of 
the variance matrix of the prediction error is 

11x - C B ( B ’ C B ) - ~ B % ~ ~ ~  = llx1’2(~d - P 81/2B)x1/2 II F ,  

where P C 1 / z B  is a symmetric idempotent matrix representing the orthogonal 
projection onto C(C’12B). The norm is a minimum when B is equivalent to 
T(k). Moreover, minimizing the trace of the variance matrix of the prediction 
error-that is, maximizing trace(P81/2BC)-yields the same result (Jolliffe 
[2002: 171). 

The results ( f )  and (9) above are optimal properties shared by principal compo- 
nents, and (e) was used by Hotelling [1933] to define principal components. For 
further properties see Jolliffe [2002: section 2.11 and Seber [1984: section 5.21. A 
key theorem for developing such properties is given next. 

21.41. Let f be a function defined on P ,  the set of all d x d non-negative definite 
matrices. For any C E P ,  let X,(C) 2 X,(C) 2 . . .  2 &(C) 2 0 be the eigenvalues 
of C. Then f is strictly increasing and invariant under orthogonal transformations 
if and only if f (C) = g[Xl(C), . . . , Xd(C)] for some g that is strictly increasing in 
each argument. This means that minimizing f (C) with respect to C is equivalent 
to simultaneously minimizing the eigenvalues of C. The functions traceC, IJCIIp = 
[ t r a ~ e ( C C ’ ) ] l / ~ ,  and det C satisfy the conditions on f .  

21.42. Suppose f satisfies the conditions in (21.41) above and v ( k )  is a k-dimensional 
vector. Then 

f (var[x - c1 - AV(k)l) 

is minimized when Av(k) = T(k)y(k) = T(k)Tik)(x - p )  = P ( x  - p ) ,  where P 
represents the orthogonal projection of x - p onto C ( T ( k ) ) .  

Definition 21.10. (Sample Components) In practice, p and C are unknown and 
have to be estimated from a sample X I ,  x2,. . . , x,, that is the xi are assumed to be 
@dependently and iceentically distributed. We-can estimate p by f i  = X and C by 
C = X‘X/n, where X is the centered matrix X = (XI - X, . . . , x, - x)’. Carrying 
out a similar factorization on E as we did for-C, we obtain the eigenvalues A1 2 
i2 2 . . . 2 i d  > 0 and an orthogonal matrix T = (i1, i 2 , .  . . , i d )  of corresponding 
eigenvectors. For each observation xi we can define a vector of sample (estimated) 
principal components ?i = T’(xi - X), which gives us 

- - -  

h 

h A -  

Y’ = (?1 ,?2 , .  . . , Fn) = T’X’. 

Many authors prefer to use the unbiased estimator S of I: instead of 5 in defining 
the sample components. In this case 

and the eigenvalues of S are n i j / (n  - 1) 
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The question arises as to whether we should use S or the sample correlation 
matrix R. However, it is much easier t o  base any inference about the population 
components on S rather than on R using large sample theory. A key result is that 
if x - Nd(p,x) ,  then from (21.25b), (n  - 1)s - Wd(n - 1,E) .  For aspects of 
large sample theory see Seber [1984: section 5.2.51 for a brief summary. For further 
details see Anderson [2003: section 11.61 and Muirhead [1982: chapter 91, and see 
Kollo and Neudecker [1993, 19971 with regard to  elliptical distributions. We note 
that the theory can be modified to handle dependent data such as a time series 
(Jolliffe [2002: chapter 121). Also, PCA can be used in conjunction with other 
multivariate techniques (Jolliffe [2002: chapter 91. With some adaption, it can be 
used for discrete data like contingency tables, in which case it is related to the 
method of correspondence analyszs and is mentioned briefly in (21.48) below (cf. 
Jolliffe [2002: sections 5.4 and 13.11). 

21.43. The score of the j t h  element of the zth sample observation, given by yt3 = 
ii(xt - x), is related to the orthogonal projection of x, - X onto C(tj ) ,  namely (cf. 
2.4913) 

^ ^  

Pi, (x, - x) = t,ti(x, - x) = yz3t3. 

21.44. Using the result (20.15), we can show that the sample components are the 
population components for a discrete distribution so that all the optimal properties 
of population components hold for the sample components. For example, if v is 
a random vector taking the values x, (i = 1,2, .  . . , n)  with probability n-l, then 
E(v) = % and var(v) = %. Applying (20.6b), we have for a’a = 1, 

. n  
- 1  

var(a’v) = a’var(v)a = a’xa = - C[a’(xi - x)12, 

which takes its maximum value of XI when a = TI. For further details see Jolliffe 
[2002: section 3.71. 

21.45. A sample analogue of (21.40g) can be stated as follows. Let G be an n x d 
matrix with orthonormal columns. We wish to  minimize t h e  sum of_the squared 
distances xi - X from C(G); that is, we wish to  minimize IIX’ - PGX’IIF, where 
1 1  . / I F  is the Frobenius norm and PG represents the orthogonal projection onto G. 
The minimum is given by G = T(k).  

21.46. Let X (which has rank d with probability 1) have a singular value decom- 
position (thin version; cf. Section 16.3) X n x d  = UnxdAdxdV&xd, where u has 

o_rthogo?al columns and V is an orthogonal matrix. Setting T = V, we have 
Y = X T  = U A  and 

n 
i= 1 

h 

h 

h 

- 
the diagonal rnatLix of zingular values of X, which are the square roots of the 
eigenvalues of X’X (= nE). For applications see Jolliffe [2002: 451. 

21.47. If the & ( j  = k + 1 , .  . . , d )  are small relative to trace % (cf. 21.40e), we can 
approximate y i  by its first k elements yqq,  say. 
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21.48. (Contingency Tables) Consider a discrete data set of n frequency observa- 
tions arranged in an r x c two-way contingency table with nij in the ( i , j ) th  cell. 
Let N = (nij) and define P = n-lN, D, = diag(r), where r = Pl, ,  D, = diag(c), 
where c = P’lc, and X = P - rc’. If the variable defining the rows of the contin- 
gency table is independent of the variable defining the columns, then the matrix of 
‘expected counts’ is given by nrc’. Thus, X is a matrix of the residuals that remain 
when the ‘independence’ model is fitted to P. If we apply the singular value de- 
composition to a redefined X = D;1/2XD,1/2 in (21.46), we get the components 
9, which are the same as those obtained by correspondence analysis (Jolliffe [2002: 
sections 5.4 and 13.11). 

Proofs. Section 21.5.1. 

I 

21.40b. This follows from 

(X - p)’E-’(x - p )  = y’T’E-’Ty = y’A-‘y. 

See also Jolliffe [2002: 181. 

21.40~. We use ti(x - p )  = lltjll . ll(x - p)ll cos8. 

21.40d. Seber [1984: 1761. 

21.40e. Seber [1984: 181-1831. 

21.40f. Seber [1984: 181, the inequality should be reversed in line -11. 

21.41. Okamoto and Kanazawa [1968] and Seber [1984: 177-1781, 

21.42. Seber [1984: 1791. 

21.5.2 Discriminant Coordinates 

Definition 21.11. Suppose we have n d-dimensional observations of which ni 
belong to group i (i = 1 , 2 , .  . . , g ;  n = C:=’=, ni). Let xij be the j t h  observation in 
group i, and define 

- - 
Let W = Cy=’=, CYL,(x,, - x, )(x2, - x, )’, the wzthzn-groups matrix, and let 
B = C;=’=, n,(X, - x )(X, - X )’, the between-groups matrix. Since W and B 
are generally positive definite with probability 1, the eigenvalues of W-’B (which 
are the same as those of W-’/2BW-1/2) are positive and distinct with proba- 
bility 1, say A1 > A2 > . .  . > Ad > 0. Let W-’Bc, = ATc, ( r  = 1,. . . ,d) ,  
where the c, are suitably scaled eigenvectors, and define the k x d ( k  5 d) matrix 
C = (cl,c2, . . ,ck)’. If we define z,, = C X , ~ ,  then the k elements of z,, are called 
the first k dzscmmznant coordanates. (Some authors have used the term canonzcal 
varzates, which I have reserved for Section 21.5.3.) These coordinates are deter- 
mined so as to emphasize group separation, but with decreasing effectiveness, so 
that k has to be found. The coordinates can be computed using an appropriate 

- 
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transformation combined with a principal component analysis. Typically, the c, 
are scaled so that CSC’ = I,, where S = W/(n - 9) .  For further details see Seber 
[1984: section 5.81. 

21.49. The above theory is based on the following results. 
- 

Setting xZI - X.. = xZI - x,. + X,. - X.. , squaring, and summing over i and j ,  
we get 

g n, 9 

Y ( X i j  - %..)(Xij  - %)’ = Cni(x i .  - x.,)(xz. - x,,)’ 

Let X = max,,+o(a’Ba/a’Wa), where the maximum occurs at a = c, say. 
Differentiating (a’Bala‘Wa) with respect to a we obtain Bc - XWc = 0 so 
that W-IBc = Xc. 

21.5.3 Canonical Correlations and Variates 

Definition 21.12. Let z = (x’, y’)’ be a d-dimensional random vector with mean 
p and positive definite variance matrix E. Let x and y have dimensions dl and 
d2 = d - d l ,  respectively, and consider the partition 

where Eii is d, x d, and X12 = ELl. Let pf be the maximum value of the squared 
correlation between arbitrary linear combinations a’x and p’y, and let a = a1 and 
p = bl be the corresponding maximizing values of a and p. Then the positive 
square root is called the f irst  (population) canonical correlation between x and 
y, and u1 = aix and u1 = b’,y are called the f irst  (population) canonical variables. 
Let p$ be the maximum value of the squared correlation between a’x and p‘y, 
where a’x is uncorrelated with aix and p‘y is uncorrelated with biy, and let 
uz = aLx and u2 = bhy be the maximizing values. Then the positive square root 
&$ is called the second canonical correlation, and u2 and 212 are called the second 
canonical variables. Continuing in this manner, we obtain r pairs of canonical 
variables u = (u l r  u 2 , .  . . ,u,)’ and v = ( V I , U ~ ,  . . . ,u,)‘. We can then regard u and 
v as lower-dimensional “representations” of x and y. We shall see below that (i) 
the elements of u are uncorrelated, (ii) the elements of v are uncorrelated, and (iii) 
the squares of the correlations between uj and uj ( j  = 1,2 ,  . . . , r )  are collectively 
maximized in some sense. The mathematics is summarised in the following result. 

21.50. Let 1 > p: 2 p$ 2 . . .  2 pk  > 0, where m = rankX12, be the m 
nonzero eigenvalues of Ey:E12ETiE21 (and of ETiE21ET:X12). Let the vectors 
a1 , a2,. . . ,a, and bl, b2,. . . , b, be the respective corresponding eigenvectors of 
xT:E12E$E21 and ETiE21XT:E12. Suppose that a and p are arbitrary vectors 
such that for r 5 m, a’x is uncorrelated with each a$x ( j  = 1 , 2 , .  . . , r - l ) ,  and 
p’y is uncorrelated with each b$y ( j  = 1 , 2 , .  . . , r - 1). Let uj  = a$x and uj = bjy, 
for j = 1 , 2 , .  . . , r.  Then we have the following results. 
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(a) The maximum squared correlation between a’x and p’y  is given by pz and 

(b) cov(u,, u k )  = 0 for j # k ,  and cov(w,, wk) = 0 for j # k.  

(c) The squared (population) correlation beween u, and v3 is p,”. 

(d) cov(u,, w,) = 0 for i # j .  

(e) Since p: is independent of scale, we can scale a, and b, such that aiClla,  = 1 
and biC22b, = 1. The u3 and w, then have unit variances. Alternatively, we 
can standardize so that the a, and b, all have unit lengths. 

( f )  If the dl x dz matrix Clz has full row rank, and dl < d2, then we have 
m = d l .  All the eigenvalues of C ~ ~ E 1 2 C ~ ~ E 2 1  are therefore positive, while 
CziE21ET:E12 has dl positive eigenvalues and d2-dl zero eigenvalues. How- 
ever, the rank of El2 can vary as there may be constraints on El2 such as 
El2 = 0 (rank 0) or C12 = 021d11&2 (rank 1) .  

21.51. Given the above notation, suppose that X is non-negative definite and 
singular. 

(a) The key matrix is now A = CT1E12Ei2E21. The nonzero eigenvalues and 
rank of this matrix are invariant under any choices of the weak inverses EFl 
and X i 2 .  

(b) The eigenvalues of A are the squares of the canonical correlations between x 
and y. 

(c) The number of canonical correlations equal to 1 is 

it occurs when a = a, and p = b,. 

k = rank El1 + rank C22 - rank C. 

(d) If E is positive definite, then k = 0. 

21.52. Suppose x and y have means px and py,  respectively. Let u = A ( x  - p,) 
and v = B(y - p y ) ,  where A and B are any matrices, each with r rows that are 
linearly independent, satisfying AE11A‘ = I, and BC22B’ = I,. Then E[(u - 
v)’(u - v)] is minimized when u and v are vectors of the canonical variables. 

21.53. Suppose z’ = (x ’ ,~ ’ ) ’  has a positive definite variance matrix E. Then x 
and y have the same canonical correlations as two random vectors xo and yo with 
variance matrix E-’, where (xb, yb) is partitioned in the same way as (x’, y’). This 
result has been extended to the case of a singular C using generalized inverses by 
Latour et al. [1987]. 

Definition 21.13. (Sample Estimates) Let z1,z2,. . . , z, be a random sample 
from the distribution described in Definition 21.12. Let Z = (F’,Y’)’ and % = 
C:=“=,zz - Z)(zz - %)’/n, where C is partitioned in the same way as C, namely 

h 
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say, where Qzt is d, x di and Q 1 2  = Qhl is dl x d2 . We can assume that dl 5 
d2. Then given-that C is positive definite and n - 1 2 d, we know that, with 
probability 1, n C  is positive definite and there are no constraints on Qlz-that is, 
rankQl2 = dl. Let r: > ri  > . . .  > ~ - 2 ~  > 0 be the eigenvalues of Q;;QlzQ,-,'Q21, 

with corresponding eigenvectors a l ,a2, .  . . , a d l .  We define uij = a;(xi - X), the 

ith element of uj = Xaj, where aj is scaled so that 
- 

n 
A - -  

I = i i i ~ l l i i j  = n-liiix'xa. 3 -  - Cufj/n = uiuj/n. 

Then 6 is called the j t h  sample canonical correlation and these correlations are 

distinct with probability 1. We call uij the j t h  sample canonical variable of xi. In 
a similar fashion we define w i j  = bi(yi - y ) ,  the i th element of vj = Ybj, to be 

the j t h  sample canonical variable of yi, where b1,  b 2 , .  . . , bdl are the corresponding 
eigenvectors of Q,-,'Q21Q;:Q12. The uij and uij are called the scores of the i th 
observation on the j t h  canonical variables. In computing the sample eigenvalues 
and eigenvectors we can use Qabr  C a b  = Q a b / n  or S a b  = Q a b / ( n  - 1) (a ,  b, = 1,2),  
as the factors n and n - 1 can@ out. Some computer packages use the sample 
correlation matrix R instead of C. For further details see Seber [1984: section 5.71. 

21.54. Using the method of (20.15), the sample canonical variables have the same 
optimal properties as those described for the population variables, except that 
population variances and covariances are replaced by their sample counterparts. 

21.55. We have the following properties of r j .  

(a) The r; are distinct with probability 1. 

(b) rj  is the square of the sample correlation between the canonical variables 

i=l 

I.. 

whose values are in the vectors uj and vj. 

Proofs. Section 21.5.3. 

21.50. Seber [1984: section 5.7; for (d) see 278, solution to exercise 5.281. 

21.51. Rao [1981] and Styan [1985: 50-521. 

21.52. Brillinger [1975: 3701. 

21.53. Jewel1 and Bloomfield [1983]. 

21.5.4 Latent Variable Methods 

Latent variable methods are similar to PCA in that they endeavor to reduce the 
dimensionality of the data. However, they do this by imposing a model structure on 
the data that relates some observed variables to some underlying latent or hidden 
variables. When the latent variables are continuous or discrete, the method is called 
factor  analysis, while if the latent variables are categorical, the method is usually 
referred to as latent class analysis. For general references see Bartholornew [1987] 
and Everitt [1984]. 



486 RANDOM MATRICES 

Definition 21.14. (Factor Analysis) Let x = (x1,52,. . . , zd)’ be a random vector 
with mean p and variance matrix I:. Let f = ( f l ,  f i ,  . . . , f,)’ be an m-dimensional 
random vector with mean 0 and variance matrix I,. The factor analysis model is 
defined to  be 

x = p + r f  + E ,  

where E is assumed to be uncorrelated with f and has a diagonal variance matrix 
q = diag($:, $,,”, . . . ,$I:). Here r = (Tjk) is a d x m unknown matrix of constants. 
The elements of f are called (common) factors or latent vamables, the elements of 
E are usually called speczfic or unzque factors, and T J k  is called the weight or factor 
loadzng of xj  on the factor f k .  

21.56. I: = + 9, which leads to 

m 

ujj = $k + $: = h;j + d);, 
k = l  

say, where h: is called the communalzty or common varaance and $; is called the 
reszdual uarzance or unzque vamance. The aim of factor analysis is to see if I: can 
be expressed in the above form for a reasonably small value of m and to estimate 
the elements of r and q.  

21.57. The model is not unique as I’f = (rL)L’f = rofo for any orthogonal L with 
var(f0) = L’var(f)L = L’1,L = I,. It is therefore usual to  impose the constraint 
that I”W1r has positive diagonal elements; under certain conditions this constraint 
may provide a unique r. Although factor analysis is very different from PCA, it is 
often confused with PCA (Jolliffe [2002: chapter 71 and Srivastava [2002: chapter 

121). 

21.58. Let f = A(x - p )  = A y  be a linear “estimate” of f .  Then the mean square 
error is 

E(llf - fll;) = trace(A’AI:) - 2 trace(Ar) + m. 

This is minimzed when 

A = = (I, + r W 1 r ) - l r W 1 .  

Proofs. Section 21.5.4. 

21.58. Seber [1984: 2211 

21.5.5 Classical (Metric) Scaling 

Definition 21.15. Given a set of n objects, a proximity measure S,, is a measure 
of the “closeness” of objects r and s; here closeness does not necessarily refer to  
physical distance. A proximity S,, is called a dissimilarity if S,, = 0, S,, 2 0, and 
S,, = S,,, for all r ,  s = 1 ,2 , .  . . , n; the matrix D = (S,,) is called a dissimilarity 
matrix. We say that D is Euclidean if there exists a pdimensional configuration 
of points y1, y2,. . . , yn for some p such that the interpoint Euclidean distance 
drs = l l ~ r  - ~ s 1 1 2  = 6,s. 
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21.59. Let A = ( a t J )  be a symmetric n x n matrix, where ars = 
b,, = aTs - a,. - a., + ti.. so that 

Define 
- -  

B = ( b T s )  = C A C ,  

where C = (I, - n-ll , lL),  the usual centering matrix. 

(a) D is Euclidean if and only if B is non-negative definite. 

(b) When6;,= ~ ~ x , - x s ~ ~ ~ , X = ( x 1 - X , x 2 - X  , . . . ,  xn-X)’,andA=(6:,) ,we 
- 

find that 
A = 1,l; diag(XX) - 2 X X  + diag(XX’)l,lL. -- 

Then B = - i C A C  = XX’, where X l ,  = 0. For further details and 
extensions (e.g., using weights), see Takane [2004]. The next result looks at 
the reverse of the above process. 

21.60. If B of (21.59) is non-negative definite, then we can find the yi as follows. 
There exists an orthogonal matrix V = (v1, v2,. . . , v,) such that 

r o  
V‘BV = ( ) ( = A ,  say), 

where r = diag(yl,yz,..  . , y p )  and y1 2 7 2  2 . . .  2 7, > 0 are the positive 
eigenvalues of B .  Let V1 = (v1, v2,.  . . , v,) and 

y = (fiv1, f i V 2 , .  . . , &v,) 

(y(1), y(2), . . . , y ( P ) )  

= (Yl,Y2,.. . ,Yn)’, say. 

= 

Then: 

(a) B1, = 0, since C1, = 0. 

(b) B = VAV’ = YY’. 

(c) n2y’y = (Y’l,)’(Y’ln) = lLBln = 0, so that 7 = 0. 

(d) IIYr - Y ~ I I ~  = 6;s. 

21.61. If D is not Euclidean, then some of the eigenvalues of B will be neg- 
ative. However, if the first k eigenvalues are comparatively large and positive, 
and the remaining positive or negative eigenvalues are near zero, then the rows of 
YI, = (y(l), y(2) . . . , y(‘)) will give a reasonable k-dimensional configuration. If the 
original objects are d-dimensional points xi (i = 1 ,2 , .  . . , n)  so that I I x , - x , ~ ~ ~  = 6:,, 
then the n rows of YI, will give an approximate k-dimensional reduction of a d- 
dimensional system of points. The above procedure is often referred to  as classical 
scaling or principal coordinate analysis (Jolliffe [2002: section 5.21 and Seber [1984: 
section 5.5.11). Jolliffe [2002: section 5.51 notes that principal coordinate analysis 
is similar to principal component analysis for certain types of similarity matrix. 

Proofs. Section 21.5.5. 

21.59a. Seber [1984: 2361. 

21.59b. Takane [2004]. 

21.60. Seber [1984: 2371. 
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2 1.6 P ROC R USTES A N  A LY S I S (MATCH I N G CO N FIG U RAT I 0 N S ) 

Classical multidimensional scaling of Section 21.5 can be regarded as a technique 
for trying to match one set of n points in d-dimensional space by another set in 
a lower dimensional space. A related technique, commonly known as procrustes 
analyszs, refers to the problem of matching two configurations of n points in d- 
dimensional space where there is a preassigned correspondence between the points 
of one configuration and the points of the other. 

21.62. Let A be a real d x d  matrix with a singular value decomposition A = PCQ‘, 
where P and Q are d x d orthogonal matrices and C = diag(cr l ,o~, .  . . , C T ~ ) ,  where 
the cr, are the singular values. Then, for all orthogonal T, 

trace(AT) = trace(TA) 5 t ra~e[(A’A)’/~] ,  

with equality if T = 5 = QP’. At the maximum, 

AT = PXQ’QP’ = PEP’, 

which is non-negative definite. In fact trace(AT) is maximized if and only if AT is 
non-negative definite. 

If A is nonsingular, then TA = (A’A)1/2 has a unique solution 

+ = (A’A) -~ /~A’ .  

21.63. Given two sets of d-dimensional points x, and y, (i = 1 ,2 , .  . . , n) ,  we wish 
to move the y, relative to the x, through rotation, reflection and translation, i.e., 
by the linear transformation T’y, + c, where T is an orthogonal matrix, such that 
CZl IIx, - T’y, - ell: is minimised. The answer is c = T? - 7 together with the 
minimum of CrTl IIx, - X- T’(y, - 711; = IlX - YT11; with respect t o  orthogonal 
T, where 11 . IIp is the Frobenius norm. Here 

IlX - YTIIg = trace[(X - YT)’(X - YT)] 
= t race(XX) + trace(Y’Y) - 2 trace(X’YT), 

- - - 
where X’ = (XI  - X, . . . , x, - x) and Y is similarly defined. We have to  maximize 
trace(TX’k) = trace(TA), where A = X’k, with respect t o  T .  From (21.62) the 
answer is 5 = QP’. If A is nonsingular, we also have that the minimizing T for 
our original problem is + = (y’XX’y)-lD(y’X), 

For further details concerning various aspects of procrustes analysis such as scaling, 
rotations and/or reflections, projections, and nonorthogonal transformations, see 
Gower and Dijksterhuis [2004]. 

Proofs. Section 21.6. 

21.62. Gower and Dijksterhuis [2004: section 4.11 and Seber [1984: 254-2551, 

21.63. Seber [1984: 2531. 
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21.7 SOME SPECIFIC RANDOM MATRICES 

21.64. Let A(z)  be a matrix whose elements are function of a random variable 2. 

If A is positive definite for all x, then, provided that the expectations exist, 

E(A-’) - [E(A)]-l 0, 

that is, is non-negative definite. 

2 1.65. (Generalized Quadratics) 

(a) (Positive Definite) Suppose that the columns of X’ = (x1,x2,. . . ,xn)  are 
statistically independent and A is an n x n non-negative definite matrix of 
rank T (T  2 d) .  If for each xi and all b (# 0) and c, pr(b’xi = c) = 0, then 

X’AX is positive definite with probability 1 

(b) Let X’ be defined as in (a), and let A be a symmetric matrix of rank T .  If the 
joint distribution of the elements of X is absolutely continuous with respect 
to the nd-dimensional Lebesque measure, then the following statements hold 
with probability 1: 

rank(X’AX) = min{d, T }  

and the nonzero eigenvalues of X‘AX are distinct 

Proofs. Section 21.7. 

21.64. Groves and Rothenberg [1969]. 

21.65a. DasGupta [1971: theorem 51 and Eaton and Perlman [1973: theorem 
2.31. 

21.65b. Okamoto [1973]. 

21.8 ALLOCATION PROBLEMS 

There is a subject area, which is mentioned for completeness, that sometimes uses 
dimension reducing techniques. This might be described generally as allocation, 
and includes two topics, discriminant analysis and cluster analysis, for which there 
are very extensive literatures. The emphasis tends to be on vectors rather than ma- 
trices. In essence, discriminant analysis is the problem of allocating an observation 
to one of two (or more) multivariate distributions, given samples from each distri- 
bution. Cluster analysis is a method of partitioning a cluster of observations into 
“sensible” groupings or classes (e.g., classifying psychiatric illnesses). Both topics 
are discussed in Seber [1984: chapters 6 and 71. For further practical overviews of 
cluster analysis see Everitt [1993], Gordon [1999], and Kaufmann and Rousseeuw 
[1990]. Discriminant analysis is considered in detail by McLachlan [1992]. 
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2 1.9 M ATR IX-VA R I ATE D ISTR I B UTI 0 N S 

In this section we give the density functions of some well known matrix distributions. 

Definition 21.16. (Matrix-Variate Normal) A random matrix p x n matrix Y 
with E(Y) = M is said to have a matrix-variate normal distribution if y = vec Y - 
Np,(vec M, @ @ C). Following Kollo and von Rosen [2005: section 2.21, we say that 
Y N Np,,(M,X,@). These authors show in detail that many of the properties 
of the multivariate normal carry over to the matrix normal distribution. They 
also give moments for generalized quadratics and describe matrix-variate elliptical 
distributions (see also Gupta and Varga [1993]). If pi is the i th column of M and 
@ = I,, then the columns of Y are independently distributed as N p ( p i ,  C) and Y' 
is now the data matrix. In this case we can identify Y = X' and p = d ,  where X 
is the data matrix. 

21.66. Using the above notation, if @ and C are positive definite so that @ 8 E is 
positive definite, and m = vec M, then the probability density function of y = vecY 
is 

f (y)  = 

= 

( 2 ~ ) - ~ , / ~ [ d e t ( @  8 C)]-'/2exp[-$(y - m)'(@ 8 E)-'(y - m)] 

(2~)-~, / ' (det  @)-P/2(det C)-n/2etr[-$C-'(Y - M)W'(Y - M)'], 

where etr= etrace. 

21.67. (Wishart Distribution) In Section 21.2.2 we introduced the random sym- 
metric d x d matrix W, which has a distribution Wd(m,E).  When E is positive 
definite and m 2 d ,  we can obtain the probability density function of vech W (the 
distinct elements of W) as 

f(vech W) = c-'(det W)("-d-1)/2 etr(-iC- 'W), 

where c = 2"d/2(det X)"/21?d($m), "etr " is defined in (21.66) above, and 

d 

Definition 21.17. (Matrix-Variate Gamma Distribution) Let X be a positive 
definite d x d random matrix and B a positive definite d x d matrix of constants. 
Then X is said to have a matrix-variate gamma distribution if the probability 
density function of x = vech X is 

(det X) a-(d+')/2et r ( - BX) , 1 
f(x) = (det B)-"Fd(a) 

where a > (d  - 1)/2. For some applications see Mathai [1991] 

Definition 21.18. (Matrix-Variate Beta Distributions) A d x d positive definite 
random matrix U such that V = I d  - U is positive definite is said to have a matrix- 
variate Type-1 beta distribution with a and b degrees of freedom ( a ,  b > ( d  - l ) /2)  
if the density function of u = vechU is 
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where 

and rd(a) is given in (21.67). Note that V = I - U also has a matrix-variate beta 
Type-1 distribution with b and a degrees of freedom, respectively. Mathai [1997: 
259-2601 proves that f (u)  is a density function. 

The positive definite random d x d matrix Y is said to have a matrix-variate 
Type-2 beta distribution with a and b degrees of freedom (a ,  b 2 ( d  - 1)/2) if the 
density function of y = vechY is 

For further details see Mathai [1997: 262-2641, 

21.68. Suppose, for z = 1 , 2 ,  that W, has a nonsingular Wishart distribution 
Wd(m,,X) (X positive definite, ml,m2 2 d )  and W1 and W2 are statistically 
independent. Since, by (21.61a), W, is positive definite (with probability l), then 
sois W1+W2. Let V = (W1+W2)-1/2W1(W1+W2)-1/2, where (W1+W2)1/2 
is the positive definite square root of W1 + W2 (cf. 10.32). Then: 

(a) V has a matrix-variate Type-1 beta distribution defined above with f m l  and 
im2 degrees of freedom, respectively. 

(b) The eigenvalues A, of V are distinct with probablity 1 and can be ordered 
1 > A 1  > A2 ' ' ' > Ad > 0 (Cf. 21.6513) 

(c) The joint probability density function of the A, is 

(ml-d-1)/2 (mz-d-1)/2 d 

n(et - 
f ( 4 = c - l ( @ )  [ I j l -o , ) ]  2 . 3  

where c = ~ - ~ ' / ~ B d ( ; m l ,  f m 2 ) r d ( ; d )  

(d) Y = W,1/2W1W21/2 has a matrix-variate Type-2 beta distribution with 
fm1 and fm2 degrees of freedom, respectively. 

Definition 21.19. (Matrix-Variate Dirichlet Distributions) A set of positive def- 
inite p x p random matrices XI,  Xz,..  . , XI, (i.e., each X, + 0) is said to have a 
matrzx-varzate Type-1 Dzrzchlet dzstnbutzon with parameter a = (all. .  . , CYI,+~)',  
where a, > 9 for i = 1 , 2 , .  . . , k + 1, if their joint density function is 

x(det(1, - X1 - .. .  - X k ) ] a k + l - q l  
k 

O 4 X , 4 I p ,  ( i = 1 , 2  , . . . ,  k ) ,  o + ~ x i 4 p .  
i=l 
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The Xi are said to have a matrix-variate Type-2 Dirichlet distribution with param- 
eter a if their joint density function is 

x [det(I, + X1 + . . . + X ~ , ) ] - ( ~ l + . " + ~ ~ + l ) ,  each X, + 0, 

where a, > 9 for i = 1,2, .  . . , k + 1 (Mathai [1997: section 5.1.81). 

21.69. Let t h e p x p  random matrices XI , .  . . , Xk have ajoint matrix-variate Type-1 
Dirichlet distribution. 

(a) Any subset of the k matrices also has a joint matrix-variate Type-1 Dirichlet 
distribution. 

(b) U = X1 +. . . +XI, has a matrix-variate Type-1 beta distribution with degrees 
of freedom a1 + . . . + a k  and a1,+1, respectively. 

21.70. Let X1, . . . , XI, have a joint matrix-variate Type-2 Dirichlet distribution 
with parameter a, and let XO = X1+. . .+Xk . Then t h e y ,  = ( I + X O ) - ~ / ~ X , ( I +  
Xo)-1/2 ( i  = 1 ,2 , .  . . , k )  are jointly distributed as a matrix-variate Type-1 Dirichlet 
distribution with parameter a. 

Proofs. Section 21.9. 

21.66. The second equation follows from (@@E)-' = @-'@E-' and applying 
( ll .l7d(ii)). 

21.68. Mathai and Provost [1992: 256-2571 and Seber [1984: 33-36]. 

21.69. Mathai [1997: 276-2771. 

21.70. Mathai [1997: 2781. 

21.10 MATRIX ENSEMBLES 

In some situations an n x d matrix X is simply a matrix of random variables rather 
than a data matrix involving random vectors. In the former case, some distribution 
theory for sucn a random matrix, including X'X, is given by Olkin [2002]. However, 
random matrices have seen an upsurge of interest in nuclear physics and related 
topics. Random matrix ensembles were first introduced in physics by Wigner to 
describe the correlations of nuclear spectra. Underlying the subject is the idea 
that the characteristic energies of chaotic systems behave locally as if they were 
the eigenvalues of a very large matrix with randomly distributed elements. The 
dynamical systems considered are characterized by their Hamiltonians, which in 
turn are represented by Hermitian matrices. There are also some curious links such 
as that between certain zeros of the Riemann zeta function and eigenvalues of a 
random matrix. For an introduction to these ideas see Mehta [2004: chapter I]. 
The reader should also refer to Section 5.7 for the definition of terms. 
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Dejki t ion 21.20. A Gausssian orthogonal ensemble is a set of real symmetric 
n x n matrices of random variables, H = (hz3)  say, where H 

(1) has a probability distribution that is invariant under transformations T-’HT, 
where T is a real orthogonal matrix (i.e., T - I  = T’), 

(2) and all the h,, ( i  5 j )  are statistically independent. 

This model applies when the dynamical system is “symmetric under time reversal”. 
When there is no time reversal symmetry, we can have a Gaussian unitary en- 

semble with H a Hermitian matrix and T replaced by U, a unitary matrix (with 
U-’ = U*). There is also a Gaussian symplectic ensemble with H a self-dual Her- 
mitian matrix and invariance with respect to the transformation WRHW, where 
W is any symplectic matrix and WR is its dual ( ie . ,  WRW = I). This ensemble 
arises when there is time reversal symmetry and the total spin is a half-integer. 

We define p to be the number of variables representing the number of components 
making up the particular entity under consideration. Thus p = 1 for real numbers, 
p = 2 for complex numbers and p = 4 for quaternions. 

21.71. Given any one of the three Gausssian ensembles above, then the probability 
density function of H satisfies 

f(vechZ) = exp(-atrace(H2) + btraceH + c ) ,  

where a is real and positive, b and c are real, and b is usually zero. In each of the 
three cases, the eigenvalues of H are real. The total number of real variables in H 
consists of n diagonal elements and in(n - l)p off-diagonal elements. Also 

n n 

trace(H2) = c A: and trace H = c A,, 

where the A, are the eigenvalues of H. By choosing in (n  - l)p certain angular 
parameters together with the A,, and making the transformation to these new 
parameters, the Jacobian can be found. This leads to the density function of the 
A, as 

a=1 ,= 1 

n 

It is these eigenvalues that are of interest in nuclear physics (Mehta [2004: 53, 56, 

581). 
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CHAPTER 22 

INEQUALITIES FOR PROBABILITIES AND 
RANDOM VARIABLES 

Inequalities arise in many places in probability and statistics. For example, Tong 
[1980: chapter 81 gives a number of applications of probability inequalities to si- 
multaneous confidence regions, hypothesis testing and simultaneous comparisons, 
ranking and selection problems, and reliability and life testing. Some of the re- 
sults in this chapter can be proved using the concept of majorization and Schur 
convexity, discussed in Chapter 23. 

22.1 GENERAL PROBABILITIES 

Let E, (i = 1 , 2 , .  . . , n) be any events. 

22.1. (Boole’s Formula) 

From this we can derive the following inequalities: 
n 

i= 1 

A Matrix Handbook for Statisticians. By George A. F. Seber 
Copyright @ 2008 John Wiley & Sons, Inc. 
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i=l i<j 

n 

and so on 

22.2. Let Ei be the complement of Ei. 
- 

(a) pr(nr=lEi) = 1 - pr( n;=lEi) = 1 - pr(UY=,Ei). 

(b) This leads to the Kounias inequality 

n 

22.3. Since the probability of the union of disjoint events is the sum of the indi- 
vidual probabilities, we have 

(4 
pr(U~==,E,) = pr(E1) + pr(E2 n E ~ )  + . . . + pr(En n 

= pr(E1) + C p r ( E ,  n E ~ - ~  n . . .  n E ~ ) .  

n . . . n ~ 1 )  

n 

i=2 

(b) If ( i )  denotes an arbitray index in the set {1,2,. . . , i  - l} ( i  > l), then 

n 

pr(UyT1Ei) I pr[E11 + C ~4% n ~ ( i ) )  

i=2 
n n 

i=l i=2 

Since the labeling of the Ei is arbitrary we have the following generalization. 

22.4. (Hunter-Worsley Inequality) Let G be a graph representing events El,.  . . , En 
as vertices with Ei and E j  joined by an edge eij if and only if Ei nE, # 4. Then, 
for any spanning tree T of G, 

- 

n n 

In the class of the above bounds, the sharpest bound is obtained by finding the 
spanning tree T' for which the term 

n 
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is maximum (cf. Hochberg and Tamhane [1987: 364 for further details]). The 
Kounias inequality (cf. 22.2b) is never sharper as it uses the maximum only over a 
subset of all spanning trees. 

Proofs. Section 22.1. 

22.1. This result can be readily proved by induction. 

22.2. Hochberg and Tamhane [1987: 3631. 

22.3a. We take the union of the events on the right-hand side and use results 
like El U (Ez n E l )  = El U F2 and El n (Ez n El) = 4, and so on, t o  show 
that the events are disjoint. 

22.3b. Follows from pr(Ei) = pr(Ei n E(i)) + pr(Ei n E(i)) .  

22.2 BONFERRONCTYPE INEQUALITIES 

22.5. We have the following results. 

(a) (Degree-One Inequality) If p ,  = pr(Ei), i = 1 ,2 , .  . . , k ,  then 

k 
k Pr(n,=,EJ 2 1 - C ( 1  - Pz). 

2=1 

- _ _  
(b) (Degree-Two Inequality) Let yi = pr(Ei) = 1-pi and yij  = yji = pr (E inEj )  

for i , j  = 1 , 2 , .  . . , k. Then 

6) 

where 
n n 2-1 

Note that Q1 + 2Q2 is simply Cy=l Cy=, yij,  where yii = qi for all i. 
Also, from (22.2a), we obtain 

(ii) If q = (41, y2 , .  . . , yn)’ and Q = (y i j )  is nonsingular, then 

pr(U:==,Ei) 2 q’Q-lq, 

by (12.1d). The nonsingularity condition for Q was removed as follows. 
- 

(iii) pr(U;==,Ei) 2 q’Q-q, where Q- is a weak inverse of Q. 
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(iv) The lower bound given in (a) is sharpened in the following result. 

Qi + Q2. 

This is equivalent to 

Qi - Q Z  I ~r(Ur=iEi )  I Qi - ly~2n C qij. 
i : i # j  

The above results are called second degree because they require only knowl- 
edge of pairwise intersections of events. For further information on higher 
degree inequalities see Tong[1980: 147-1481, Some statistical applications 
of Bonferroni inequalities to simultaneous confidence inervals are given by 
Galambos and Simonelli [1996: chapter 81. 

Proofs. Section 22.1. 

22.5a. Tong [1980: 143, theorem 7.1.11 

22.5b(i). Tong [1980: 143, theorem 7.1.21. 

22.5b(ii). Tong [1980: 145, lemma 7.1.11. 

22.5b(iii). Kounias [1968] and quoted by Tong [1980: 146, theorem 7.1.31. 

22.5b(iv). Tong [1980: 147, theorem 7.4.11. 

22.3 DISTRIBUTION-FREE PROBABILITY INEQUALITIES 

22.3.1 Chebyshev-Type Inequalities 

If x is a random variable with mean p and variance a’, then for a > 0, 

pr[lz - p~ I U(T] 2 1 - 1 /2 .  

This is known a s  the univariate Chebyshev inequality. A one-sided version is given 

bY 
pr[z - p 5 aa] L 1 - 1/(1+ a’), 

and a multivariate version (with equal variances and common correlation) is con- 
sidered by Tong [1980: 155, lemma 7.2.11. We now consider further generalizations 
of these from Tong [1980: section 7.21. 

22.6. Let x = (51, z2)’ be a random vector with mean p = ( p i ,  pz)’,  variances a! 
and 02, and correlation p .  Then: 

(a) For all a, > 0, 

2 2 2 i f 2  
pr[n,2_1(Ix,-p,I I w,)] 2 1 - { ( a ~ + a ~ ) + [ ( a ~ + a ~ ) 2 - 4 4 p  a l G  ) / ( 2 4 4 ) .  

2 112 (b) When a1 = a2 = a,  pr[n?=’=,(lx, - p21 5 aa,)] 2 1 - [l + (1 - p ) ]/a2. 
The equality is attainable. 
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22.7. Let x = (21, x2,. . . , xn)' be a random vector with mean vector p and variance 
matrix C = (ai j) .  If a: = aii and ai > 0 for all i, then 

Tong [1980: 1531 described a more general result that gives the sharpest lower 
bound. 

22.8. Let x = (xl ,  2 2 , .  . . , zn)' be a random vector with mean p, variances a: 
(i = 1 , 2 , .  . . , n),  and common correlation p, where p E [-l/(n - l ) ,  11 (to ensure 
that the variance matrix is positive definite; cf. 15.18a(iv)). Then, for a satisfying 

a > (n  - 1)[(1- p)/n]1/2, 

we have 

{[(1+ (n - l)p)(a2 - u)]1/2 + a ( n  - 1)(1- p)1/2}2 

n{a2 + [l + (n  - l)p]/n}2 
21-  , 

where u = (n  - 1)(1 - p) - 1. 

22.9. Let x = ( ~ 1 ~ x 2 , .  . . , xn)' be a random vector with mean p. 

(a) Let q5 be a concave function from Rn to [0,00). For fixed a > 0, define 
A = {x I d(x) I a} .  If E[+(x)] exists, then 

pr(x E A )  2 1 - +(p) /a ,  

We now give several applications of the above result. 

(b) If y is a non-negative random variable with E(y )  < 00, then setting A = {y : 
y 5 6) we have 

E(Y) 
pr(y 2 6) 5 -, 6 > 0. 

6 

(c) Suppose that the xi are all non-negative, and let 5 . . . 5 x ( ~ )  denote the 
order statistics. Then, for c1 2 . . . 2 cn 2 0, the function +(x) = cyzl ciz(,) 
is concave in x. If E ( x ( ~ ) )  exists, then 

n n 

i= 1 i = l  

where p(l)  5 . . . 5 p ( n )  are the ordered means. 

For the special case c1 = 1 and c2 = .. .  = c, = 0, this reduces to 

or equivalently 
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Proofs. Section 22.3.1. 

22.6a. Quoted by Tong [1980: 1521. 

22.613. Tong [1980: 150, theorem 7.2.11. 

22.8. Tong [1980: 156, theorem 7.2.31. 

22.9a. Tong [1980: 157, theorem 7.2.41. 

22.9b. Mathai and Provost [1992: 1881. 

22.9~. Quoted by Tong [1980: 1581. 

22.3.2 Kolmogorov-Type Inequalities 

22.10. Let y1, yz . . . , yn be n independent random variables with means rli and 
variances 7: (i = 1 , 2 , .  . . , n) ,  and let wn = ( C z ,  T : ) ~ / ' .  Then, for every fixed 
a > 0, we have the following: 

Proofs. Section 22.3.2. 

22.10a. Tong [1980: 158, theorem 7.3.11. 

22.10b. Tong [1980: 159, theorem 7.3.21. 

22.3.3 Quadratics and Inequalities 

22.11. Let x be a n x 1 random vector with E(x) = p and var(x) = E, and 
consider the quadratics Qi = ( x  - a)'Ai(x - a) ,  where Ai is non-negative definite 
(i = 1,2, .  . . , k) and a is an arbitrary constant vector. 

where, for i = 1 , 2 , .  . . , k ,  we have 6i > 0 and yi = trace(AiE)+(p-a)'Ai(p- 

a). 

Proofs. Section 22.3.3. 

22.11. Mathai and Provost [1992: 188-1891 and the references therein. 
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22.4 DATA INEQUALITIES 

22.12. The following inequalities hold for any numbers, but the main application 
is to random observations. 

(a) Let x1 ,x2 , .  . . ,x, be n observations and define ?t = C:=l xi/. and i?’ = 
Cy=l (xi - :)2/n. Then 

( X i  - c)2 I (n  - 1 ) 2 ,  i = 1 , 2 , .  . . ,n. 

Equality holds if all the other xj’s are equal except xi. For an extension of 
the above see Kabe [1980]. 

(b) Let x1 2 22 2 . . .  2 2,. Then 

. - . A  x - oJ(r~ - l ) ) / (n  - r~ + 1) 5 x k  I T + z J ~ .  
Equality occurs on the left-hand side if and only if 

x k - 1  and X k  = xk+l 1 .. ’  = X n,  x1  = x2 = . .  . = 

and on the right-hand side if and only if 

= x2 = . . . = x k  and xk+l = xk+2 = . . . = 2,. 

(c) Suppose xl, x2,. . . , x, are &dimensional observations. Let X, = cy=l xi/n 
and S, =  xi - X,)(X~ - X,)‘/n. Then 

(n  - 1)S, - (xj - %,)(xj - %,)I is non-negative definite, 

or equivalently, 

(x. 3 -xn)’S;1(xj -q I n  - 1, j = 1 , 2 , .  . . ,n.  

Thus each xj lies in the interior or on the surface of the ellipsoid (x - 
x,)’S;l(x - x,) = n - 1. If S, is singular, we can replace S i l  by S;, a 
weak inverse of S,. 

(d) If X(j) = Ci:izj xi, then 

n2 
-S, - (xj - %i(j)(xj - Xcj ) ) ’  n - 1  

or equivalently, 

is non-negative definite, 

Proofs. Section 22.4. 

22.12a. Isotalo et al. [2005b: 1761 and Samuelson [1968]. 

22.1213. Farnum [1989] and Wolkowicz and Styan [1979]. 

2 2 . 1 2 ~ .  Trenkler and Puntanen [2005] 

22.12d. Trenkler and Puntanen [2005]. 
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2 2.5 I N E Q U A L I T I ES FOR EX P ECTAT I 0 N S 

22.13. (Multivariate Jensen's Inequality) Let x be an n x 1 random vector with 
finite expectation E(x) = p. 

(a) Let 4 be a real-valued convex function defined on S ,  where S is a convex subset 
of R". If pr(x E S) = 1, then 

(b) If 4 is a symmetric (cf. Definition 23.6 above (23.14)) and continuous function 
on R", then 

where ~ ( 1 )  2 ~ ( 2 )  2 . . . 2 P ( ~ )  and ~ ( 1 )  2 q 2 )  2 . . . 2 qn). 
4 ( P ( l ) , P ( 2 ) , . . . , P ( " ) )  5 E [ 4 ( ~ ( 1 ) , ~ ( 2 ) , ' . . , ~ ( " , ) 1 ,  

22.14. (Finite Population) Suppose that zl, zg, . . . ,z, are obtained by sampling 
without replacement from a finite population, and y1, yg, . . . , yn are obtained by 
sampling with replacement from the same population. Then if g is continuous and 
convex. 

Proofs. Section 22.5. 

22.13. Schott [2005: 3781 

22.14. Hoeffding [1963] and quoted by Marshall and Olkin (1979: 331-3431. 

22.6 M U LTI VA R I ATE I N EQ U ALlT I ES 

22.6.1 Convex Subsets 

22.15. Let x E Rd be a random vector with symmetric probability density function 
f(x),that is, f(-x) = f (x) ,  such that the set {x : f(x) 2 a }  is convex for all a > 0. 
Suppose that S is a convex subset of Rd and is symmetric about 0 (i.e., if x E S 
then -x E S also). Then: 

(a) pr(x + cb E S )  2 pr(x f b E S )  for any constant b E S and 0 5 c 5 1. 

(b) The result (a) still hold if b is replaced by y, a random vector distributed 
independently of x. 

(c) If x N N d ( O , X ) ,  then its probability density function satisfies the above 
conditions. 

(d) If x - Nd(0,  X I )  and y - Nd(0,  Eg), where El - Eg is non-negative definite, 
then pr(x E S )  5 pr(y E S ) .  This type of result has been extended to 
elliptically contoured distributions by Perlman [1993]. 

Many of the unimodal symmetric multivariate distributions centered at  the origin, 
like the multivariate normal and multivariate t-distribution, satisfy the conditions 
of this theorem. For further background see Anderson 119961. 
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22.6.2 Multivariate Normal 

22.16. (Slepian Inequality) Suppose x N Nd(0, C), where C = (aij) is non-negative 
definite. Let yi = xi/&, i = 1,2, .  . . , d  so that y N N,j(O, R), where R = ( p i j )  is 
the population correlation matrix. Then, for any constants c1, c2,. . . , c d ,  

is an increasing function for each pi j ,  i # j. If R is positive definite, then the above 
is a strictly increasing function of p i j ,  i # j. 

Replacing ci by &cir we see that the result still holds if use the zi instead of 
the yi. 

If all the pij 2 0 ( i  # j ) ,  then 

d 

If pij 5 0 for all i, j ,  i # j, the above inequality is reversed. 
Because we can transform from zi t o  yi, researchers have focused, without any 

loss of generality, on deriving results for y, where y N Nd(0,R) and R is the 
correlation matrix. 

22.17. (Khatri) 

(a) Suppose x = (xil), xt2))’ N N d ( 0 ,  C), where x ( k )  is dk x 1 ( k  = 1,2) and 
d = dl + d2. Let 

C = ( ;;; ;;; ) , 
where !&k is dk x dk. Let A1 C &tdl and A2 C &tdZ be two convex regions 
that are symmetric about the origin (cf. 22.15). If El2 has rank zero (i.e., 

= 0) or has rank one, then 

2 

pr [n:=l(X(k) E Ak)] 2 n Pr(X(k) E Ak). 
k=l 

Setting x ( ~ )  = 5 1 ,  we have 

pr(lz1l I U l , X ( 2 )  E A2) 2 pr(lz1l I adPr(X(2) E A2), 

and repeatedly applying this result to each element of ~ ( 2 ) ~  we obtain 

d 

pr [ n L ( l z i l  I ai)] 2 ~ [ P ~ ( I Z ~ I  I ai ) .  
i=l 

This inequality is strict if C is positive definite, C is not a diagonal matrix, 
and all the ais are positive. 

The above results have been generalized to the case when the mean of x is 
not necessarily zero. For details see Tong [1980: theorem 2.2.31. 

If the correlation matrix R of x has structure 1 (see (b) below) and is positive 
definite, then C12 has rank 0 or 1 (quoted by Tong [1980: 33, example 111). 
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(b) Suppose x = ( x i l ) ,  x i2) ,  . . . , xiT))’,  where x N Nd(0,  R) and R = ( p z j )  is the 

correlation matrix. Here x ( k )  is d k  x 1 (k = 1 , 2 , .  . . , r ) ,  where d k  = d. 
For each k, let A k  c Rdk be a convex region symmetric about the origin. 
Suppose we have the product structure p i j  = A&, X i  E ( - l , l ) ,  for all i , j  
( j  # i), called structure 1 by Tong, then the following inequalities hold. 

(i) Firstly, 

Pr [ n ; , l ( x ( k )  E Ak)] 2 Pr [ k C ( X ( k )  E A k ) ]  

x Pr [ n k @ C ( x ( k )  E Ak)]  
T 

2 
k=l  

and 

2 n PT(X(L) 4. A k )  
k = l  

holds for every subset C of the integers { 1 , 2 , .  . . , r } .  The inequalities 
are strict if the Ai’s are bounded sets with positive probabilities and the 
Xi’s are nonzero. 

(ii) We then have the following special case of the above. 

d 

pr [ n $ l ( I Z i I  2 ai)]  2 H P ~ ( I ~ ~ I  2 ail. 
i = l  

22.18. (Sid&k’s Theorem) Let x - Nd(0,  R(X), where R(X) = ( p i j ( X ) )  is a correla- 
tion matrix depending on X 6 [0,1] in the following way: For a fixed non-negative 
definite correlation matrix T = (qj), we define p i j ( X )  = ~ i j  for all i, j = 2 , 3 , .  . . , d 
and p l , ( X )  = p j l ( X )  = X ~ 1 j  for j = 2, .  . . , d. Then R(X) is non-negative definite for 
X E [0, I], and 

is monotonically nondecreasing in X E [0,1] for every ai (i = 1 , 2 ,  . . . , d) .  If T is 
positive definite (which implies R(X) is positive definite), r1j # 0 for some j > 1, 
and all the ais are positive, then the above probability is strictly increasing in A. 

A consequence of the above result is that if we now have correlation matrix R(X), 
where X = ( X I ,  Xz,. . . , A d ) ’ ,  p i j ( X )  = X i X j ~ i j  for all z # j ,  and each X i  E [0,1], then 
the above probability is monotonically nondecreasing in each X i  E [0, I]. It is strictly 
increasing in Xi  if T = (r,j) is positive definite, X i ~ i ~ i j  # 0 for some j # i, and all 
the ais are positive. 

22.19. Suppose x N N d ( o , x ) ,  where a i j  = a’ for z = j ,  aij = p a 2  for a # j ,  and 
p E [0,1]. Define for k = 1 , 2 , ,  . . , d and a > 0, 

Pr [nL&zl 5 .i)] 

~ r , ( k )  = pr [ n L l ( Z i  I a ) ]  

ply($\ = p r L ~ & ~ ( ~ ~ i ~ - < ~ ) l  
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and 
k 

pr,(k) = Pr [n,=,(lx,l 2 43 . 

pr,(d) L [pr,(k)Pk L [pr,(1)ld, d > 2 2. 

Then, for m = 1,2,3,  we have 

The inequalities are strict if p > 0. 

Definition 22.1. Let x = (x1,x2, .  . . ,xd)' be a random vector. We say that the 
elements of x are assoczated random vamables if for any two univariate functions 
g,(x) of x such that E[g,(x)] exists (z  = 1,2)  that are nondecreasing in each ar- 
gument, we have cov[gl(x),g2(x)] 2 0. Esary et al. [1967], who introduced the 
concept, have given a number of results that can be used to readily verify that a 
given set of random variables is associated. 

22.20. The following statements are true. 

(a) Any subset of associated random variables is a set of associated random vari- 
ables. 

(b) The set consisting of a single random variable is associated. 

(c) If two sets of associated random variables are independent, then their union 
is a set of associated random variables. 

(d) Independent random variables are associated. 

(e) Nondecreasing functions of associated random variables are associated ran- 

22.21. If the elements of the d x 1 vector x are associated random variables, then 

dom variables. 

d 
pr [nz=1(x2 I a,)] L pr [ n E ~ ( x ,  I a,)] pr [n,&z I 41 

d 

L H p r ( x ,  I a,) 
z= 1 

holds for all a, and all subsets C of { 1 , 2 ,  . . . , d }  

Proofs. Section 22.6.2. 

22.15. Results quoted by Schott [2005: 83, exercise 2.611 and follow from 
(2.65e). 

22.16. Tong [1980: section 2.11. 

22.17a. Tong [1980: 16-19]. 

22.17b(i). Quoted by Hochberg and Tamhane [1987: 3671 and proved by Tong 
[1980: theorems 2.2.4 and 2.3.21. 

22.17b(ii). Tong [1980: 28, theorem 2.3.31. 

22.18. Tong [1980: 21, theorem 2.2.5, corollary 11. 

22.19. Tong [1980: 30, theorem 2.3.41. 

22.20. Tong [1980: 87, theorem 5.2.21. 

22.21. Tong [1980: 89, theorem 5.2.41. 
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22.6.3 Inequalities For Other Distributions 

22.22. (Multivariate &Distribution) Let x = ( X I ,  2 2 , .  . . , x d ) ’  N Nd(0, R), where 
we can assume without loss of generality that R = ( p i j )  is the correlation ma- 
trix with p,i = 1 (cf. 22.16). Let z, = xilu, where u is distributed as a 
random variable independent of x. Then z = (z1,  z2 , .  . . , zd)’ has a multivariate 
t-distribution with Y degrees of freedom and associated correlation matrix R. In 
terms of the notation of Section 20.8.1, y N t d ( Y ,  0,  R). 

By conditioning on u, the following inequalities from above still hold with xi or 
yi replaced by zi. 

(a) If all the p i j  2 0, then 

(b) pr [nf==l((zil I ai)] L &l pr(Izi1 I ai). 

This inequality is strict if R is positive definite, R is not a diagonal matrix, 
and all the ais are positive. 

(c) If p i j  = X i X j  (all i , j ,  j # i), where each X i  E ( - l ,+ l ) ,  then 

d 

pr [nt==l(Izil 2 4 2 n p r ( b i l  2 ail. 
i=l 

22.23. (Correlated F-ratios) Let xg, x:, . . . , xE be independent chi-square vari- 
ables with degrees of freedoom Y O ,  v 1 , .  . . V k ,  and let Fi = ( X ~ / V ~ ) / ( ~ ~ / Y O ) ,  i = 
1 , 2 , .  . . ,k. Then 

k 

i=l 

k 

(b) pr [&,(Fi > ai)] > n ~ r ( F i  > ai). 
a= 1 

Proofs. Section 22.6.3. 

22.22. Hochberg and Tamhane [1987: 3691. 

22.23. Tong [1980: 43, theorem 3.2.21. 



CHAPTER 23 

M A J 0 R I Z AT I 0 N 

Majorization does not seem to be a topic very well known in statistical circles. 
However, majorization can be used to prove a number of inequalities. A key result 
is (23.7), from which we may assume without any loss of generality (Tong [1980: 
1051) that only two coordinates need be different when proving inequalities. Two 
applications are, for example, species-diversity indices (Tong [1983]) and optimal 
design theory (Bhaumik [1995]). The topic is also relevant to the finding of optimal 
statistical tests (Anderson [2003: section 8.101). 

23.1 GENERAL PROPERTIES 

Definition 23.1. Let x = ( q , x 2 , .  . . , zn)' and y = (yi, y ~ , .  . . ,yn)'  be vectors in 
R". Suppose the zi are ordered in decreasing order of magnitude as 2 ~ ( 2 )  2 
. . . 2 "("1, with the yi ordered in a similar fashion. We say that x is (strongly) 
majorized by y (or y majorizes x), and use the symbol x << y (or y >> x), if 

Z(1) + Z(2 )  + ' ' ' + X ( i )  I Y(1) + Y(2) + ' ' .  + Y ( i ) ,  2 = 1,2, .  . . , n - 1, 

Z l + Z 2 + . . . + 2 ,  = y1+yz+. . .+y  n.  

This definition is given by Marshall and Olkin [1979] and Horn and Johnson [1991], 
except they use qi] instead of Z C ( ~ ) .  They and most other authors, except Rao and 
Rao [1998: chapter 91, use x 3 y instead of x << y; however, I have reserved the 

A Matrix Handbook for Statisticians. By George A. F. Seber 
Copyright @ 2008 John Wiley & Sons, Inc. 
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former symbol in the form of A + 0 for positive definite matrices and used A > 0 
for matrices with all positive elements. 

The above definition has also been exended to infinite sequences (Marshall and 
Olkin [1979: 161) and to random vectors (Marshall and Olkin [1979: chapter 111). 

23.1. If the x, (and the yz) are ordered in increasing magnitude, say x{l} 5 x{2} 5 
. . . 5 xtn}, then since = x(n-z+l), x << y if and only if 

5{1} + X { 2 }  + . . .  + X { 2 }  2 Y{1} +Y{2} + . . .  + y{%}, 2 = 1 , 2 , .  . . , n  - 1, 

2 1 + 2 2 + . . . + x ,  = y 1 + y 2 + . . . + y  n. 

Some authors use this result as their definition, which I find confusing because of 
the direction of the inequalities. Using the notation 3+1 instead of x ~ ( ~ } ,  Rao and 
Rao [1998: 3041 proved the equivalence of the two definitions. 

23.2. Let 7r be a permutation of {1,2,. . . , n}. If x, y, and z are in R”, and x, 
is the vector whose components are a permutation of the elements of x, then the 
following hold. 

(a) x << x. 

(b) If z = Cy=, x,/n, then Zln << x. 

(c) x << x, for every permutation T .  

(d) If x << y and y << z, then x << z. 

(c) If x << y and y << x, then y = x, for some permutation T .  

( e )  If x << z, y << z, and 0 5 a 5 I, then ax + (I - a ) y  << z. 
( f )  If x << y, x << z, and 0 5 a 5 I, then x << a y  + (1 - a)z .  

(g) If z is any vector, then 

(:) << (:) if and only if x << y. 

23.3. The following conditions are equivalent. 

(I)  x < y .  

(2) x = Ay for some doubly stochastic matrix A 

(3) x = By for some orthostochastic matrix B. 

Note that A and B are not unique. 
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23.4. If x 2 0, y 2 0, and x << y, then nl", zi 2 ny=l yi. 

23.5. (Schur) If H be an n x n Hermitian matrix with (real) eigenvalues given 
by the vector X(H) = (X1,X2,. . . ,A,)', where X1 2 . . . 2 A,, and (real) diagonal 
elements h = (h l l ,  h 2 2 , .  . . h",)', then 

h << X(H) 

on R". This result is an example of a number of inequalities involving the eigen- 
values and singular values of a matrix (cf. Marshall and Olkin [1979: chapter 9]), 
some of which are quoted elsewhere. 

23.6. (Fan) If A and B are n x n Hermitian matrices, then 

X(A + B) << X(A) + X(B). 

Definition 23.2. If Q is a permutation matrix that interchanges just two coor- 
dinates of a vector x (say xj and xk), then a T-transform,  denoted by Tx, has T 
of the form T = X I  + (1 - X)Q, where 0 5 X I 1. What Tx does is transform xj 
into Xxj + (1 - X ) x k  and zk into Xxk + (1 - X)zj, leaving the other elements of x 
unchanged. For example, if Q interchanges the first two elements of x E R", then 
Q = ( e 2 ,  e l , .  . . , en) is I, with its first two columns interchanged. 

23.7. We have x << y if and only if there exists a finite number of real vectors 
c1, c2,. . . c, such that x = c1 << c:! << . . . << c,-1 << c, = y, where, for all i, ci 
and ci+l differ in two coordinates only. Thus if x << y, then y can be derived from 
x by successive applications of a finite number of T-transforms. 

Definition 23.3. (Weak Majorization) We now generalize the Definition 23.1 
above. A vector x is said to be weakly (sub)majorized by y, and we denote the 
relationship by x <<w y, if 

x(1) + " ( 2 )  + . . .  + z(i) I y(1) + Y ( ~ )  + . . .  + y(%), i = 1 ,2 , .  . . ,n. 

Marshall and Olkin [1979] use the notation x 4" y for weak (sub)majorization. 
Some authors omit the prefix "sub". 

We say that x is weakly (super)majorized by y and denote the relationship by 
x <<lU y if 

z{,} + z{2} + . . .  + z{q 2 y{1) + y12) + . . .  + qi), i = 1 ,2 , .  . . , n. 

23.8. The results below follow directly from the previous definitions. 

(a) x <<" y if and only if -x KW -y. 

(b) x <<w y and x <<" y if and only if x << y. 

(c) x 5 y (i.e., z, 5 yi for all i) implies that x eW y and x >" y. 

(d) x <<w y if and only if for some u, x 5 u and u << y. 

(e) x <<I" y if and only if for some v, x << v and v 2 y. 
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23.9. Let R+ = [ O , c o ) .  Then x KW y on R; if and only if there exists a doubly 
stochastic matrix A such that x = Ay. 

23.10. x <<W y if and only if Cy=l q5(x:i) 5 q5(yi) for all continuous monotonically 
increasing convex functions q5 (cf. Definition 23.5 below). 

23.11. Let A and B be n x n symmetric matrices, and suppose that X,(C) 2 
X2(C) 2 . . .  2 X,(C) with X(C) the corresponding vector, where C = A or B. 
Then 

X(A + B)) eW X(A) + X(B. 

23.12. If A and B are n x n matrices and A 5 B (i.e., aij 5 bij for all i . j ) ,  then 
using the notation of (23.11) above we have 

23.13. Let A and B be n x n real or complex matrices, and let o l ( C )  2 o2(C) 2 
. . . 2 ok(C) ( k  = min{m, n}) ,  with u(C) the corresponding vector. Then: 

(a) a(A + B) <<W a(A) + a(B). 
(b) If m = n, 

( i )  a(AB) <<, cr(A) 0 u(B). 

(ii) a(A o B) << a(A) o a(B) 

Here “0” is the Hadamard product. 

Proofs. Section 23.1 

23.2. Rao and Rao [1998: 303-307, for (a)-(g)] and Marshall and Olkin [1979: 
7, for (h)]. 

23.3. Marshall and Olkin [1979: 21-24]. 

23.4. Quoted by Rao and Rao [1998: 3201. 

23.5. Marshall and Olkin and Olkin [1979: 2181 and Zhang [1998: 2301. 

23.6. Marshall and Olkin [1979: 2411 and Zhang [1999: 2311. 

23.7. Marshall and Olkin [1979: 211 and Rao and Rao [1998: 3161 

23.8. Marshall and Olkin [1979: 111. 

23.9. Horn and Johnson [1991: 166-1671. 

23.11. Anderson [2003: 3571. 

23.12. Anderson [2003: 3591. 

23.13. Zhang [1998: 2321. 
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23.2 SCHUR CONVEXITY 

Definition 23.4. Let f be a function from R" to R" (m > 1) defined on A c R". 
Then f is said to be Schur-convex on A if 

x,y E R" and x << y on A * f(x) KW f(y). 

Also f is said to be strongly Schur-convex on A if 

x, y E R" and x <<, y on A + f(x) KW f(y),  

and f is said to be strictly Schur-convex on A if 

x,y E R" and x << y on A + f(x) << f(y). 

If A = R", we drop the words "on A". Note that the label "schur-convex" is a bit 
misleading as such a function is not necessarily convex. 

A function f is Schur-concave if (-f) is Schur-convex. (The above definitions come 
from Rao and Rao [1998: 3071, except m and n are interchanged.) 

The above definitions need to  be clarified as follows when m = 1 and f is no 
longer a vector (say 4 ) .  The function 4 is Schur-convex (respectively concave) on A 
if x, y E R" and x << y on A + 4(x) I @(y) (respectively 4(x) 2 4(y)). If y is not 
a permutation of x, then 4 is said to be strictly Schur-convex (respectively concave) 
on A if x,y E R" and x << y on A + 4(x) < 4(y) (respectively 4(x) > +(y)). 

Schur convexity or concavity can be used to prove many inequalities. For ex- 
ample, Marshall and Olkin [1979: chapter 81 list a number of inequalities including 
those relating to the angles or sides of various geometrical figures such as triangles 
and polygons. Schur convexity also arises in combinatorial analysis, particularly 
with respect to graph theory, the theory of network flows, and the study of incidence 
matrices (Marshall and Olkin [1979: chapter 71). 

Definition 23.5. Let f be a function from R" to R" (m > 1) defined on A c Rn,  
and let x I y (i.e., xi 5 yi for each 2) .  Then f is said to be montonically increasing 
on A if x,y E R" and x 6 y on A + f(x) I f(y),  monotonically decreasing if -f 
is monotonically increasing, and monotone if it is either monotonically increasing 
or decreasing. 

We recall from Section 2.5 that f is convex if 

f(ax + (1 - a)y) I crf(x) + (1 - a)f(y), 

for every 0 5 a 5 1 and x,y E R"; f is concave if -f is convex. 

Definition 23.6. Let f be a function from R" to R", and let y = f(x).  Then f 
is said to be symmetric if, for every permutation T of { 1 ,2 , .  . . , n} ,  there exists a 
permutation T' of { 1,2, .  . . , m} such that f(x,) = y,/ for all x E R". 

If m = 1, so that f = 4 ,  say, then 4 is symmetric if d(x,) = 4(x) for all T .  

Examples of symmetric functions for n = 3 are d(x) = x1 + 2 2  + 2 3 ,  d(x) = 

5 1 2 2  + 5 2 2 3  + 53x1, and 4(x) = 2122x3. 

23.14. If a function f from R" to R" is convex and symmetric, then it is Schur- 
convex. In addition, if f is monotonically increasing, then f is strongly Schur- 
convex. 
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23.15. Let g be a function from R to R, and define 

f(x) = (g(~l)>g(~2),"',~(~n))'. 

Then, from the previous result, we have the following. 

(a) If g is convex, then f is Schur-convex. 

(b) If g is a convex monotonically increasing function, then f is strongly Schur- 
convex. 

(c) Taking g(z) = 1x1, g(z) = x2, and g(z) = max{z,O} = z+, respectively, we 
have 

(i) x << y implies that 1x1 <<" IyI. 

(ii) x << y, u, = z: and w, = y; implies that u <<" v. 

(iii) x << y implies that x+ <<" y+. 

23.16. The following symmetric convex functions are Schur-convex. 

(a) d(x) = max, Iz,I. 

(b) d(x) = (C:=l lzZl')''', T L 1. 

23.17. (Sum) 

(a) Let Z be an interval of R, and let g be a function from Z to R. If g is (strictly) 
convex on Z, then +(x) = Cy=, g(z,) is (strictly) Schur-convex on Z", as 4 is 
symmetric. In this case, x << y on Z implies that d(x) 5 d(y) (or $(x) < d(y) 
for strict convexity). 

There is also a converse result. Suppose g is continuous on Z. If 4 is (strictly) 
Schur-convex on In, then g is (strictly) convex on Z. 

(b) Combining the above, the inequality 

n n 

i = l  i= 1 

holds for all continuous convex functions g from R to R if and only if x << y. 
Also, the same inequality holds for all continuous increasing convex functions 
g if and only if x <<" y. It holds for continuous decreasing convex functions 
g if and only if x <<" y. 

23.18. The following are examples of strictly convex functions. 

(a) For a > 0, g(z) = [z + ( l / z ) la  is strictly convex on (0,1]. For a 2 1, g is 
strictly convex on (0, co). 

(b) - logz is strictly convex on (0, a). 

(c) g(z) = 1/11: is strictly convex on (0, co). 
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In each case 4(x) = Cr=l g(zi) is strictly Schur-convex. If xi > 0 and crZl xi = 1, 
then n-ll,  << x (by 23.210) and 4(nP1ln) 5 4(x). We can use this result to  set 
up inequalities. For example, using (a), 

23.19. (Product) Let g be a continuous non-negative function defined on an inter- 
val 1. Then 4(x) = ny=l g(zi) is (strictly) Schur-convex on 1" if and only if logg is 
(strictly) convex on 1. Since, by (23.2b), :1, << x, we can use this result to obtain 
various inequalities. For example, logP(z) is strictly convex on R++ = (0,m) so 
that #(x) = ny=l r(zi) is strictly Schur-convex on Rn++. Hence 

n 

i = l  

For further details about Schur-convex or Schur-concave functions see Marshall 
and Olkin [1979: chapter 31. 
Proofs. Section 23.2. 

23.14. Rao and Rao [1998: 3181. 

23.15a. Marshall and Olkin [1979: 1151 and Rao and Rao [1998: 3191. 

23.1510. Marshall Olkin [1979: 1161 and Rao and Rao [1998: 3191. 

23.15~. Rao and Rao [1998: 3191. 

23.16. Marshall and Olkin [1979: 961. 

23.17a. Marshall and Olkin [1979: 64, 671. 

23.1710. Marshall and Olkin [1979: 108-1091 

23.18-23.19. Marshall and Olkin [1979: 70-73, 751 

23.3 PROBABILITIES AND RANDOM VARIABLES 

23.20. (Probabilities) For i = 1 ,2 , .  . . , n, let p ,  = pr(E,), and let q, be the proba- 
bility that at least k of the events El ,  E2,. . . , En occurs. 

(a) If p = (PI. .  . . ,prL) '  and q = (91,. . . , qn)', then p << q. 

(b) From (a) we have Cr=l~pz = Cy=, q, and n;="=,, 2 nr=, q 2 .  

23.21. (Expectations) Let x = ( z 1 , ~ 2 ,  . . .  ,z,)' be a random vector with finite 
expectation, and define a, = E(z,), ti, = a ( t ) ,  and b, = E ( Z ( ~ ) ) ,  where a(1) 2 a(2) 2 
. . . 2 a(,) and z(l) 2 ~ ( ~ 1  2 . . . 2 "(,I. Then: 

(a) a << b. 

(b) a << b. 
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23.22. (Eigenvalues) Let Z be a random Hermitian n x n matrix with eigenvalues 
XI (Z) 2 X2(Z) 2 . . . 2 X,(Z) (which are all real). Then 

(Xl(E[ZI),.’.  ,Xn(E[Z]))’ -K (E[Xl(Z)l,..’,E[X,(Z)l)’, 

where the Xi(E[Z]) are the eigenvalues of E[Z], the expectation of Z. 

23.23. (Singular Values) Let W be an m x n random complex matrix with singular 
values al(W) 2 . . . 2 ot(W), where t = min(m,n). Then 

(01(E[ZI), . ’ f ,an(E[ZI))’ KZu (Ebl(Z)I , .  ’ .  3 E[an(Z)l)’ 

Proofs. Section 23.2. 

23.20. Marshall and Olkin [1979: 345-3471, 

23.21a. Rao and Rao [1998: 3051. 

23.21b. Marshall and Olkin [1979: 3481. 

23.22. Marshall and Olkin [1979: 3551. 

23.23. Marshall and Olkin [1979: 3571. 



CHAPTER 24 

OPTIMIZATION AND MATRIX 
A P P ROX I MAT I0 N 

The subject of finding unconstrained or constrained maxima and minima of func- 
tions is an extensive one. Schott [2005: section 9.71 gives a helpful summary. We 
consider only a few basic results in this chapter. 

24.1 STATIONARY VALUES 

Definition 24.1. Let f : x + f (x)  be a real-valued function defined on S ,  a 
subset of R". Then f has a local m a x i m u m  at  c if, for some 6 > 0, f ( c )  2 f (x) 
for all x such that IIx - cllz < 6. It has a strict local m a x i m u m  if f ( c )  > f (x) for 
all x # c such that IIx - cllz < 6. Also, f has a global (absolute) m a x i m u m  at  c 
if f ( c )  2 f(x) for all x E S.  The function f has a local minimum at c if - f has 
a local maximum at c ,  and a global (absolute) minimum at c if - f  has a global 
maximum at c .  

Let c be an interior point of S (cf. Definition 2.29 below (2.63)). Then there 
exists a b > 0 such that x E S for all x satisfying IIx - cllz < 6. Suppose f is 

then any point c satisfying the above equation is called a stationary point.  (Note 
that f ( c )  is also called a critical value of f at  c . )  Such a point can be a local 
maximum, a local minimum, or a saddle point.  

A Matrax Handbook for Statastacaans. By George A. F. Seber 
Copyright @ 2008 John Wiley & Sons, Inc. 
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24.1. (Unconstrained Local Optimization) Let f be defined as in Definition 24.1 
above, and suppose that f is twice differentiable at c ,  where c is an interior point 
of S.  If c is a stationary value o f f  and V2f(c) is the Hessian o f f  a t  c (cf. Section 
17.11), then: 

(a) f has a strict local minimum at c if 02f (c)  is positive definite. 

(b) f has a strict local maximum at c if -V2f(c) is positive definite (i.e., V2f(c) 
is negative definite). 

(c) f has a saddle point at c if V2f(c) is neither positive definite nor negative 
definite, but is nonsingular. 

(c) f may have a local minimum, a local maximum, or a saddlepoint at c if 
V 2 f ( c )  is singular. 

24.2. Minimizing a function is equivalent to minimizing a monotonically increasing 
transformation of that function. This result is particularly useful in maximum 
likelihood estimation, which is discussed in Section 24.3.1 below. 

24.3. (Method of Lagrange Multipliers for Constrained Optimization) We now give 
sufficient conditions for finding a strict local maximum or minimum of a real-valued 
function f defined on S C Rn subject to the vector of constraints g(x) = 0, where 
g = (g l rg2 , .  . . ,gm)’ is m x 1 (m < n). 

Let c be an interior point of S, let F(x, A) = f(x)+A’g(x), where A E Rm (called 
the Lagrange multiplier; some use -A),  and suppose that the following conditions 
hold: 

(1) f and g are twice differentiable at c .  

(2) B = ag(x)/ax’ = (agz(x)/ax,) has full row rank m at  x = c. 

(3) x = c is a solution of g(x) = 0 and dF(x, A)/ax = 0 (for some A). 

If A is V2f(x) - Czl X,V2g,(x) evaluated at  x = c, then f has a strict local 
maximum at  x = c, subject t o  g(x) = 0, if 

x’Ax < 0, for all x # 0 for which Bx = 0. 

A similar result holds for a strict local minimum with the inequality x’Ax > 0 
replacing x’Ax < 0. In practice, one can often just simply solve the equations 
dF(x, A)/ax = 0 and g(x) = 0 for x and A, and then use ad hoc methods to  check 
the nature of the constrained stationary value without having to investigate A. 

24.4. Assuming that the conditions of the previous result (24.3) hold, we now give 
some equivalent sufficient conditions for a strict local maximum or a strict local 
minimum to exist. Let A be a symmetric n x n matrix and B an m x n matrix of 
rank m. Let A,, be the leading principal T x r submatrix of A, and let B, be the 
m x r matrix obtained by deleting the last n - r columns of B. For r = 1 ,2 , .  . . , n, 
define the (m + r )  x (m + r )  matrix A, as 
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If B,, is nonsingular (which can be achieved by rearranging the 2, variables in 
(24.3)), then x’Ax > 0 holds for all x # 0 satisfying Bx = 0 if and only if 

(-l)m det AT > 0 for all T = m + 1,. . . , n. 

Also, x’Ax < 0 holds for all x # 0 satisfying Bx = 0 if and only if 

( - l ) T  det AT > 0 for all T = m + 1,. . . , n. 

Examples using the above theory are given by Schott [2005: 380-3811 and Magnus 
and Neudecker [1999: 1381. 

24.5. (Global Optimization) Finding the global maximum or minimum is some- 
times best achieved by using the ideas of convex sets and functions, as seen in the 
following results. 

(a) On a convex set, the set of points at which the minimum of a convex function 
is attained is convex, and any local minimum is a global minimum. The same 
is true for a concave function, except replacing minimum by maximum. 

A strictly convex function attains a minimum at  no more than one point of a 
convex set, and a stationary (critical) point is necessarily a minimum. 

(b) On a compact convex set, the maximum of a convex function occurs a t  an 
extreme point. The same is true for the minimum of a concave function. 

We now focus on convex and concave functions 

Proofs. Section 24.1. 

24.1. Schott [2005: 371-372; he omits the word “strict”] and Magnus and 
Neudecker [1999: 122-1231, 

24.2. Magnus and Neudecker [1999: 1291. 

24.3. Magnus and Neudecker [1999: 135-1381 and quoted by Schott [2005: 
379-3801, 

24.4. Magnus and Neudecker [1999: 53-54, 1361. 

24.5. Quoted by Horn and Johnson [1985: 5351 

24.2 USING CONVEX AND CONCAVE FUNCTIONS 

24.6. Let f : x + f(x) be a real-valued convex function defined on S ,  a convex 
subset of R”. 

(a) Corresponding to each interior point a E S ,  an n x 1 vector t exists, such that 

for all x t S.  
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(b) If S is an open convex set, f is differentiable, and a E S, then 

for all x E S.  

24.7. (Global Minimum or Maximum) Let f(x) be a real-valued convex (respec- 
tively concave) function defined for all x E S ,  an open convex subset of R”. If f is 
differentiable and c E S is a stationary point of f ,  then f has a global minimum 
(respectively maximum) at c .  If f is strictly convex or strictly concave, then c is 
unique. 

24.8. Let y = f (X) .  If d2f 2 0, then f is convex and f has a global minimum at 
df = 0. However, if d2f > 0 for all d X  # 0, then f is strictly convex and f has a 
strict global minimum at df = 0. For second-order differentials see Section 17.11. 

24.9. (Constrained Global Minimum) Let f be a real-valued function defined 
and differentiable on an open convex set S in R”, and let g be an m x 1 vector 
function (m  < n)  defined and differentiable on S. Let c be a point of S ,  and let 
F ( x )  = f(x) +X’g(x), where X E R”. Assume that x = c is a solution of g(x) = 0 
and aF(x)/ax = 0. If F is convex (respectively strictly convex) on S ,  then f 
has an absolute minimum (respectively unique absolute minimum) at  c under the 
constraint g ( c )  = 0. Under the same conditions, if F is (strictly) concave, then f 
has a (unique) absolute maximum at c under the constraint g(x) = 0. 

24.10. Suppose we wish to minimize y = f ( X )  subject to the constraints G(X) = 
0, where G is a matrix function of X.  Define the Lagrangian function $(X) = 

f (X) - trace[L’G(X)], where L is a matrix of Langrange multipliers. (If G happens 
to be symmetric, then we can take L to be symmetric also.) If II, is (strictly) convex, 
then II, has a (strict) global minimum at  the point where dlj, = 0 under the constraint 
G ( X )  = 0. 

Proofs. Section 24.2. 

24.6. Schott [2005: section 9.81. 

24.7. Magnus and Neudecker [1999: 128-1291, 

24.8. Abadir and Magnus [2005: 3541. 

24.9. Magnus and Neudecker [1999: 1391 

24.10. Abadir and Magnus [2005: 3541. 

24.3 TWO GENERAL METHODS 

24.3.1 Maximum Likelihood 

Definition 24.2. Suppose we have a set of random variables denoted by x with 
continuous probability density function or discrete probability function f(x 1 0) 
depending on d unknown parameters 0 = (&,&,. . . , Bd)’, where 0 E R (often 
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R = Rd).  We now express this function as a function of 8 ,  namely l (8) ,  called 
the likelihood function. (Any constants or unknown functions of x are sometimes 
supressed.) 

A value of 8, 6 say, that maximizes l(8) or equivalently L(8)  = logl(8) for 
8 E 0, is called a maximum likelihood estimate of 8. There is no guarantee that 
such an estimate exists for (almost) every y, nor that is unique if it exists. If L 
is based on a set of n independent observations, we denote the estimate by Gn to 
emphasize its dependence on n .  

The vector u(8) = aL(8)/a8, or more briefly aL/aO, is usually referred to as 
the score vector. The equations u(8) = 0 are called the likelihood equations. 

24.11. Under fairly general conditions (e.g., Cox and Hinkley [1974] and Makelainen 
et al. [1981]), we have the following results. 

(a) E(u) = 0. 

(b) E(uu’) = var(u) = -E(au/dO’) = E(Z) = 10, where Z = -d2L/d8d8’ is 
usually called the (observed) information matrix and 10 the expected (Fisher) 
information matrix. 

(c) As n + 00, u(8) is approximately distributed as the multivariate normal 
distribution Nd(0,Io). 

(d) 6 is the unique solution of u(8) = 0. 

(e) If L is based on a set of n independent observations and 8 0  is the true value 
of 8, then as n + 00, 

(i) (& - 8 0 )  is approximately distributed as N,(O, Iiol), and 

(ii) -2[L(&) - L(&)] is approximately distributed as x:, the chi-square 
distribution. 

With additional assumptions, the above theory extends to mutually independent 
non-identically distributed random variables, and even to dependent variables. 

24.12. (Constrained Maximization) Recalling that 8 E R Rd, sometimes R is 
restricted in some way. For example, in multivariate analysis (cf. Chapter 21) a 
matrix of parameters may be symmetric or even positive definite, as in the case 
of a variance matrix, so that technically these constraints should be built into the 
optimization process. For example, if we wish to maximize an expression subject to 
a matrix restricted to being positive definite, what frequently happens is that the 
unrestricted maximum turns out to be positive definite with probability 1. This 
unrestricted maximum is then also the restricted maximum (e.g., Calvert and Seber 
[1978: 274-2761). Alternatively, we can express the positive definite matrix in the 
form A’A (cf. 10.32), where A is unknown. For a selection of examples and proofs 
see Abadir and Magnus [2005: section 13.121 and Magnus and Neudecker [1999: 
chapters 15 and 161. 

A major problem with maximum likelihood is showing that the estimate obtained 
is actually a maximum. As a result, various ad hoc methods are used such as 
convexity arguments. 
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24.13. Let E and A be n x n matrices. Consider the matrix function f, where 

f (E)  = log(det A) + trace(E-lA). 

If A is positive definite, then, subject to E being positive definite, f (E)  is minimized 
uniquely at  E = A. 

24.14. Let A be n x n, then: 

(a) trace(AA’) is a strictly convex function of A. 

(b) If A is positive definite then - log(det A )  is a convex function. 

Proofs. Section 24.3.1. 

24.13. Seber [1984: 5231. 

24.14. Calvert and Seber [1978: 2801. 

24.3.2 Least Squares 

Definition 24.3. Let y be an n x 1 random vector with mean E(y) = f(8),  where 
8 is a d x 1 vector of parameters and 8 E s2. Then 8 is a least squares estimate of 
8 if 6 minimizes [y - f(O)]’[y - f(8)] with respect to 8 E 0. In practice, f (8)  will 
also depend on some data observations. 

If a weight matrix function W(8) (generally a positive definite matrix) is in- 
cluded, then a minimum of [y-f(B)]’W(B)[y-f(B)], &, say, is called a generalized 
or weighted least squares estimate. Various iterative methods such a s  Iteratively 
Reweighted Least Squares (IRLS) (e.g., Seber and Wild [1989: 371) are available. 
In some applications W does not depend on 8. 

Under certain general conditions, least squares and generalized least squares es- 
timates are unique and have certain optimal properties. They generally have some 
useful asymptotic properties as well, which do not depend on normality assump- 
tions. However, under normality assumptions, such estimates may be the same 
as the maximum likelihood estimates, for example in univariate (Seber and Lee 
[2003]) and multivariate (Seber [1984]) linear models, and nonlinear models (Seber 
and Wild [1989]). For a further discussion of least squares with respect t o  regression 
models see Section 20.7. 

24.4 OPTIMIZING A FUNCTION OF A MATRIX 

24.4.1 Trace 

24.15. Let A be a real n x n matrix with singular values u1(A) 2 . . .  2 un(A) 
and singular value decomposition A = PEQ’, where E = diag(al(A),  . . . , o n ( A ) )  
and P and Q are n x n orthogonal matrices. Let 7, be the collection of all n x n 
orthogonal matrices. Then 

n 

max trace(AT) = x a i ( A ) ,  
i=l 

T E 7  
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and the maximum is attained at  To = QP’, where To is not necessarily unique. 
Also AT0 is non-negative definite. Furthermore, if TI is an orthogonal matrix such 
that AT1 is non-negative definite, then TI is the maximizer. 

24.16. Let A be an m x n real matrix with singular value decomposition PEIQ’, 
let B be a real n x m matrix with singular value decomposition B = R&S’, 
p = min{m, n},  and let 5 be the set of all p x p orthogonal matrices. Here P, Q, 
R, and S are conformable orthogonal matrices. Then 

P 

max trace(ATBU) = za i (A)o i (B)  (= trace(ElE2)). 
T E I , , U E I ,  

i = l  

By substitution we see that equality occurs when T = QR‘ and U = SP’. The 
above holds for complex matrices if we replace orthogonal matrices by unitary 
matrices and the trace by its real part. 

24.17. Let V be the set of all real m x n matrices C. Suppose X is a given n x T 

matrix, V1, Vp, . . . , vk are given m x n matrices, and a l ,  a2, .  . . , ak are given real 
scalars. Let 

V1 = { C : C E V ,  CX = 0, trace(CVi) = ai for each i}, 

and let Q = I, - X(X’X)-X represent the orthogonal projection perpendicular to 
C(X). Then: 

(a) min trace(CC’) = trace(CoCb), 
C E V l  

where CO = 
system of linear equations: 

k aiViQ, and (a1, a 2 ,  . . . , a k )  is a solution to  the following 

k 

z [ t r a c e ( V i Q V l ) ] a i  = a j ,  j = 1 , 2 , .  . . , k .  
i = l  

(b) Suppose now that m = n, V1 is the set of all symmetric m x m matrices, and 
the V, are now all symmetric m x m matrices. Then 

CEVl 
min trace(C2) = trace(C;). 

where C1 = cZZ1 a,QVzQ, and (al ,  a 2 , .  . . , CYk) is a solution to  the following 
system of linear equations: 

k 

k 

E[ t race(QV,QV,)]a ,  = a3 ,  j = 1 , 2 , .  . . , k .  
,=1 

The above solutions are not necessarily unique if the matrices in the linear equations 
are singular. This theory can be applied to variance estimation (Rao and Rao [1998: 
sections 12.5-12.101). 

24.18. Let X be an n x p matrix of rank p ,  V be an n x n positive definite matrix, 
and W be an m x p matrix. Then trace(GVG’) is minimized with respect to G ,  
subject to GX = W, when G = Go and 

Go = W(X’V-lX)-lX’V-l. 
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If we drop the assumption that rankX = p ,  then trace(GVG’) is minimized 
with respect to G, subject to GX = X ,  when G = G1 and 

G1 = X(X’V-lX)+X’V-l, 

where (X’V-lX)+ is the Moore-Penrose inverse. 

24.19. Let X be an n x p matrix of rank r and V be a non-negative definite n x n 
matrix. Then the minimum of [trace(V2)/n] subject to VX = 0 and t raceV = 1 
is given by Vo, where 

1 
n - r  vo = - (1, - XX+),  

and X+ is the Moore-Penrose inverse of X.  

Proofs. Section 24.4.1. 

24.15. Horn and Johnson [1985: 4321 and Rao and Rao [1998: 347-3481 for 
the complex case. 

24.16. Horn and Johnson [1985: 436, with some matrices replaced by their 
complex conjugates] and Rao and Rao [ 1998: 357-359, complex case]. 

24.17. Rao and Rao [1998: 410-4131. 

24.18. Abadir and Magnus [2005: 384-3861. 

24.19. Abadir and Magnus [2005: 3861. 

24.4.2 Norm 

In this section we are also involved with matrix approximation as well as optimiza- 
tion. 

Definition 24.4. Let U be the vector space of all m x n real matrices, and let V 
be a subspace. Given A E U and B E V ,  we say that B is the closest to A with 
respect to a given norm 1 1  . 11 if B minimizes IIA - BII. Note that B may not be 
unique. 

24.20. (Eckart-Young) Some of the dimension reduction techniques of Section 
21.5 may be described as approximating an n x d data matrix X by another n x r 
matrix, with r < d. We now consider the broader problem of approximating one 
matrix by another of lower rank. 
Let A be an m x n real matrix of rank r with singular value decomposition 

r 

where P = ( P I , .  . . , p m ) ,  Q = (ql, . . . ,q,), and C T ~  = ai(A),  the ordered singular 
values of A. Let V be the set of rn x n matrices of rank s ( s  < r ) .  

(a) Then 
min JIA - Blloi = IIA - Bolloi, 
BEV 
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for all orthogonally invariant norms 1 1  . Iloi, where 

S 

Bo = c n i p i q i  (= PXlQ’,  say). 
i=l 

(b) We have from (a) the special case 

T 

i=s+l 
- - .:+l + n:+z ’ ’ .  + a:, 

where 1 1  . is the F’robenius norm. 

(c) If the rows of A sum to zero (i.e., A’l, = 0 ) ,  then, in terms of the Frobenius 
norm, B is the rank s matrix whose column differences best approximate 
the column differences of A.  The same result applies to row differences if 
A l ,  = 0. 

The above results are used in many places in statistics such m the biplot (Jolliffe 
[2002: section 5.31 and Seber [1984: section 5.3]), classical multidimensional scal- 
ing (Seber [1984: 240]), sample principal components (Jolliffe [2002: 36-38]), and 
procrustes analysis (Gower and Dijksterhuis [2004] and Seber [1984: 2521). 

24.21. Let A and B be m x n real matrices, p = min{m, n},  and let 7 k  be the set 
of k x k real orthogonal matrices. Then, if 1 1  . JIF is the F’robenius norm, 

IIA - UBV11$ = llAll$ - 2 trace(AV’B’U’) + 11B11; 

and 
P 112 

min IIA - UBVllp = { x [ c . i ( A )  - ni(B)]’} . 
U€Tm,V€Tn i=l 

The minimizing values of U and V follow from (24.16) above with appropriate 
substitutions. 

24.22. Let A and B be m x n real matrices with respective singular value decom- 
positions A = PX1Q‘  and B = RXzS’. Let 7p be the set of all p x p  real orthogonal 
matrices. Then, if 1 1  . I I F  is the F’robenius norm, 

where UO = RP’ and To = SQ’. 

24.23. If A is an n x n symmetric matrix, QT is an n x T matrix with orthonormal 
columns, and S is any T x T matrix, then 

and S = Q$AQT is the minimizer. 
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24.24. We now find nearest approximations for several matrices. 

(a) (Symmetric Matrix) Let A be n x n real matrix, and define B = ;(A + A’). 
Then B is a symmetric matrix closest to A with respect to any orthogonally 
invariant norm 1 1  . l l o , .  Thus if C is any n x n real symmetric matrix, then 

11-4 - Blloi I IIA - ClIot. 

(b) (Skew-Symmetric Matrix) Referring to (a), if we now have B = ;(A - A’), 
then B is a skew-symmetric matrix closest to A with respect to  any orthog- 
onally invariant norm. 

(c) (Orthogonal Matrix) Let A be a real n x n matrix with singular value de- 
composition PXQ’, and let 7, be the set of n x n real orthogonal matrices. 
Then, if 1 1  . I I F  is the Frobenius norm, 

with To = PQ’. 

(d) (Non-negative Definite Matrix) Let A be a real n x n matrix, B = i (A+A’) ,  
and B = QH be a polar decomposition with Q orthogonal and H non- 
negative definite. If N is the set of all non-negative definite matrices, then 

min IIA - C l l ~  = IIA - COIIF, 
CEN 

where Co = i ( B  + H) is non-negative definite and unique. Rao and Rao 
[1998: Sections 11.6 and 11.71 give a number of approximations like the above 
based on the M ,  N-invariant generalized matrix norm. 

24.25. Suppose X = ( X I , .  . . , x,) is an m x n matrix, B = (bl, . . . , bk) is an m x k 
matrix of rank k ( k  I m),  Z = ( z l , .  . . ,z,) is k x n matrix, and a E R”. If 1 1  . l l u t  
is any unitarily invariant norm, then IIX - alk - BZII,, is minimized with respect 
to a, B, and Z when 

b = n-lX1, (= %, say), B = ( u l ,  . . . , uk), and Z’ = ( 0 1 ~ 1 , .  . . , ukvk), 

where u,, u,, and v, are defined by the singular value decomposition 

x - x1; = UXV’ = u1u1v: + .  . . + o,u,v;. 

min I I X - a l ~ - B Z l l ~ = u g + , + ~ ~ . + u , .  2 
In particular, 

a 3 7  

This problem is related to that of finding a hyperplane that is ‘hearest” to a set of 
points (Rao and Rao [1998: 399-4001). 

Proofs. Section 24.4.2. 

24.20a. Rao and Rao [1998: 3921. 

24.20~. Harville [1997: 556-5591 and Seber [1984: 206-2071. 



OPTIMIZING A FUNCTION OF A MATRIX 525 

24.21. Horn and Johnson [1985: 435-436, complex case]. 

24.22. Rao and Rao [1998: 3891. 

24.23. Golub and Van Loan [1996: 4011. 

24.24a. Rao and Rao [1998: 3881. 

24.24~. Quoted by Rao and Rao [1998: 3931. 

24.24d. Rao and Rao [1998: 389-3911, 

24.4.3 Quadratics 

24.26. Suppose q(x) = x’Ax + b’x + c, where A is a real symmetric matrix. Then: 

(a) q(x) = (x + $A-b)’A(x + iA-b) + (c - ab’A-b). 

(b) q(x) has a maximum if and only if b E C(A) and -A is non-negative definite. 
If such is the case, a maximizer of q(x) is of the form 

x,,, = - iA-b + (I - A-A)xo, 

where xo is arbitrary. 

(c) q(x) has a minimum if and only if b E C(A) and A is non-negative definite. 
If such is the case, a minimizer of q(x) is of the same form 

x,in = -$A-b + (I - A-A)xo, 

where xo is arbitrary. 

24.27. Suppose x,a E R”, c E Rk,  and B is m x k of rank k .  If E is a positive 
definite m x m matrix, then 

min(x - a - Bc)’E-’(x - a - Bc) = (x - a)’(E-’ - E - ~ P B ) ( x  - a), 
C 

occurs at 
c = ( B / E B ) - ~ B ~ E - ~ ( ~  - a), 

where 
P B  = B(B/E-~B) -~B/E-~ .  

If we now have x,, c,, and w, > 0 for z = 1 ,2 , .  . . , n, then 

n 

min C w , ( x ,  - a - BC,)’E-’(X, - a - BC,) 
a= 1 

a,B,cl ,  .cn 

n 

= C w,(x, - %)’E-’(x, - X) - trace(x-lPB,S), 
2 1  1 

- 
where S = c:=, w,(x, - x)’E-’(x, - X), Bo = E1/2Q,, and Q* is the matrix of 
the first k eigenvectors of E-1/2SE-1/2. 
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24.28. Let A be a real symmetric matrix. 

(a) If T(X)  = x’Ax/x’x, then by differentiation the stationary values of T(X) 

occur when x is an eigenvector of A and are equal to the eigenvalues of A. 
Note that we can set x’x = 1 without any change in the result. We then have 
that T(X)  is maximized with respect t o  x when x is a unit-norm eigenvector 
of A corresponding to its largest eigenvalue. The minimum relates to the 
minimum eigenvalue (see 6.58a). If we also have C’x = 0, where C is n x p 
( p  5 n), then Golub and Van Loan [1996: 6211 give a method for finding the 
stationary values of T(X) subject to this constraint. 

(b) Suppose, in addition to C’x = 0, we also have x’Bx = 1, where B is positive 
definite. 

(i) The stationary values of x’Ax subject t o  these constraints are attained 
at  the eigenvectors of B-’(I, - P)A, where P is the projection matrix 

P = c(c’B-~c)-c’B-~, 

that is, x satisfies (I, - P)Ax = XBx. Setting B = I, gives a solution 
to the second part of (a). 

(ii) If A = aa’, then x’Ax has a maximum value when x cx B-’(I, - P)a. 
This result occurs in problems of genetic selection. Rao and Rao [1998: 
5071 give references to two extensions of the above. 

24.29. Let A, B, and C be n x n matrices with A and B positive definite and C 
symmetric. The stationary values of 

X’CX 
(x’ Ax) 1/2  (x’Bx) 

(i = 1 ,2 , .  . .), where X i  and vi are solutions of the equations are 

2Cx = X(A+vB)x, 

v = x’Ax/(x’Bx) 

This result occurs in the study of canonical variates (Rao and Rao [1987]) 

24.30. Let A be a positive definite n x n matrix, let B be an n x k matrix, and 
let c be a given Ic x 1 vector. 

(a) If S- is any weak inverse of B’A-’B, then for n x 1 x, 

min x’Ax = CIS-c, 

where the minimum attained at x = A-lBS-c. 

B’x=c 

(b) If rankB = k ,  then from (a) we have 

min x’x = c’(B’B)-~c, 
B’x=c 

where the minimum is attained at x = B(B’B)-’c. 
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Suppose x’ = (xi, x;) and (Bi, B;) (:;) = c .  If 

then 
min xix1 = c’Clc, 

where the minimum is attained at x1 = B1C;c. 

Suppose A is now non-negative definite and c E C(B’). Let 

B’x=c 

A B  
( B ’  O ) - = (  Et -::)’ 

then 
min x’Ax = c’C4c 

B’x=c 

24.31. Let 0 < PO < 1 be given, and let p = (pl,pz,. . . , p m ) ’ ,  where 0 < po 5 pi 5 
1 for z = 1,2, .  . . , m. Let R be the region 

R = {p : 0 < Po 5 pi 5 1,i = 1,. . . , m , p o  < l}, 

and define 

Then 

and it occurs in the interior of R at the point given by 

The minimum occurs at one or more of the extreme points of R. For a proof and 
further details see Thibaudeau and Styan [1985]. They point out that their above 
result applies to a measure of imbalance for experimental designs introduced by 
Chakabarti [1963]. 

Proofs. Section 24.4.3. 

24.26. Sengupta and Jammalamadaka [2003: 49-50]. 

24.27. Rao and Rao [1998: 400-4011. 

24.28b(i). Rao and Rao [1998: 5071. Note that x’(In - P)Ax = A. 

24.28b(ii). When A = aa’, a is an eigenvector of A. We then set X = 
a’B-’(In - P)a in (i) and substitute for x. 

24.29. Rao and Rao [1998: 507-5081. 

24.30. Rao [1973a: 60-611. 
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24.5 OPTIMAL DESIGNS 

In fitting the linear model y = Xp + E ,  where X is n x p of rank p (cf. Section 
20.7), we may wish to find the best design for minimizing some function of var(B) = 

a2(X’X)-l, where ,6 = (X’X)-lX’y, the least squares estimate of p . Depending 
on which function is chosen, there are three main critera, namely: 

(1) A-opt imali ty:  minimize trace[(X’X)-l]. 

(2) E-optimality: minimize the largest eigenvalue (i.e., the spectral radius P[(X’X)-~]) 
of (X’X)-l. 

(3) D-optimality: minimize det[(X’X)-’1 or maximize det(X’X). 

For general references to optimal designs see Atkinson and Donev [1992], Druilhet 
[2004], and Melas [2006]. 

24.32. (D-Optimality) This is probably the most commonly used criterion for 
two reasons. Firstly, when E in the above linear model is multivariate normal 
N,(O, 021n), the D-optimal design gives the smallest volume of the confidence el- 
lipsoid for p. Secondly, the computations are the simplest. To find the optimal X 
with a given number n rows from a set of N potential rows, one begins with an 
initial choice of n rows, for example at random, and then determines the effect on 
the determinant by exchanging a deleted row with a different row from the set of 
potential rows using a result like (15.13b). For further references and details see 
Gentle [1998: 1901. 
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A 

Abel’s identity, 277 
Adjoint of a matrix 

vector element differentiation of, 354 
definition, 59 
inverse of, 60 
partitioned matrix, 297 

Adjugate-See Adjoint, 59 
Aitken block-diagonalization formula, 292 
Angle 

between two vectors, 13, 122 
minimal, 14 

Anti-Hermitian matrix-See Skew-Hermitian, 
80 

Antieigenvalues 
definition, 122 
Watson efficiency and, 453 

Antieigenvector, 122 
Area of a triangle, 32 
Associated random variables, 505 
Asymptotically equivalent sequences, 420 

B 

Back substitution, 337 
Backward shift matrix, 158 
Banachiewicz factorization, 339 
Basis 

definition. 11 

of quadratic subspace, 9 
Bessel’s inequality, 18 
Best linear predictor, 429 
Bilinear form(s) 

inequalities for, 102 
random, 443 

Block circulant, 160 
Block matrix, 2 
Block triangular matrix, 179 
BLUE, 448 
Boole’s formula, 495 
Boolean matrix, 187 
Bordered Gramian matrix, 299 

C 

C-matrix, 160 
Caley transformation 

Jacobian of, 411 
Canonical correlations 

and least squares, 453, 456 
population, 483 
sample, 485 

Canonical variables 
population, 483 
sample, 485 

Cauchy-Schwarz inequality 
for complex matrices, 265 
for complex matrices using trace, 266 
for complex vectors, 261 
for real matrices using determinant, 263 

547 
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for real matrices using trace, 262 
for real vectors, 258 
subject to  a constraint, 259 

Cayley-Hamilton theorem, 93 
Centered data ,  24 
Centering matrix, 24, 317, 462, 487 
Ceritrosymmetric matrix, 160 
Chain rule(s), 358, 362, 365, 386 
Characteristic equation 

Characterist,ic polynomial 
definition, 91 

Cayley-Hamilton theorem for, 93 
definition, 91 

Characteristic roots- See Eigenvalue(s), 91 
Chebyshev inequalities, 498 
Cholesky decomposition 

algorithm for, 338 
for non-negative definite matrix, 338 
for positive definite matrix, 338 
.Jacobian of, 405 
root free, 339 
scaled version of, 338 

matrix, 152 
Circulant matrix---See Regular circulant 

Classical scaling, 487 
Cluster analysis, 489 
Coefficient of multiple determination 

population, 431 
Cofactor, 59 
Column-centered data ,  24 
Column space, 18 
Corrrniutation matrix-See Vec-permutation 

matrix, 242 
Cornmuting family 

of normal matrices, 86 
Commuting matrices, 107 

exponential function and, 424 
polynomial representation, 100 
regular circulants and, 153 
siniultaneous reductions and, 345 
symmetric regular circulants and, 156 

Companion matrix, 94 
Coiripletely positive matrix, 223 
Complex conjugate 

of a niatrix, 2, 79 
of a scalar, 79 

Complex Jacohian 
definition. 391 

Complex normal distribiition--See 

Complex random vector, 445 
Complex symmetric matrix, 84 
Compound matrix. 61 
Computational accuracy, 77 
Concave function 

Multivariate normal distribution, 445 

scalar. 29 
vector, 29 

bounds, 96 
Condition nriniher, 78 

Conformable matrices, 2 
Congruence 

and inertia, 345 
definition, 330 

definition, 54 
Conjugate transpose, 2, 79 

Constrained global optimization, 518 
Constrained local optimization, 516 
Contingency table 

and principal components, 482 
Continuity argument, 418 
Contraction mapping 

definition, 27 
fixed point and, 27 
strict contraction, 27 

Convergence in the norm, 418 
Convex combination, 28 
Convex function 

scalar, 29 
vector, 29, 511 

Convex hull, 28 
Convex set 

definition, 27 
intersection of several, 27 
separating hyperplane, 29 
sum of several, 28 

Correlation coefficient 
population, 430 
sample, 432 

Correlation matrix 
in Hadamard product, 253 
population, 430, 479 
sample, 432, 463, 481 

Countersymmetric matrix-See Persymmetric 
matrix, 159 

Covariance matrix 
definition, 427 

Craig-Sakamoto theorem, 442, 59 
Cross-symmetric matrix, 160 

D 

Data inequalities, 501 
Data matrix 

definition, 461 
vec properties, 462 

Decomposable matrix, 210 
Determinant, 57 

and elementary transformations, 58 
Cauchy-Binet formula for, 63 
definition, 57 
differential of, 373 
expand by the diagonal, 61 
expansion by row or column, 61 
from QR decomposition, 341 
Laplace expansion for, 62 
matrix differentiation of, 368 
matrix element differentiation of, 357 
of a matrix product, 58 
of a partitioned matrix, 296 
of an inverse, 58 
of a complex matrix, 114, 81, 391 
of a matrix difference, 230 
of an exponential function, 423 
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of a rank 1 matrix, 312 
of a matrix sum, 230 
partitioned matrix, 312 
product of eigenvalues, 95 
row-block transformations and, 58 
scalar differentiation of, 353 
second-order derivative of, 379-380 
Sylvester’s identity for, 63 
vec differentiation of, 359 
vector element differentiation of, 354 

Diagonal product of a matrix, 216 
Diagonalizable matrix 

definition, 326 
exponential function of, 424 
Jacobian for, 413 
MooreePenrose inverse of, 327 
simultaneous reduction of several, 347 
spectral decomposition of, 327 
unitarily, 86 
weak inverse of, 133 

when positive definite, 226 
Diagonally dominant matrix, 162 

Differentiation with respect to  a scalar, 352 
Dimension, 11 
Direct product-See Kronecker product, 234 
Direct sum of matrices 

and Kronecker product, 235 
definition, 234 

Direct sum of vector subspaces 
and matrix index, 51 
definition, 10 

Discriminant analysis, 489 
Discriminant coordinates, 482 
Disjoint sets, 10 
Disjoint vector subspaces, 10 
Dissimilarity matrix, 486 
Distance between vectors, 13 
Dominant eigenvalue, 91 
Dominant eigenvector, 92 
Doubly-centered data ,  24 
Doubly non-negative matrix, 223 
Doubly stochastic matrix 

definition, 216 
majorization and, 508 
weak majorization and, 510 

Doubly substochastic matrix, 218 
Doubly symmetric matrix, 159 
Drazin inverse, 145, 381 
Dual space, 15 
Duplication matrix 

definition, 246 
Moore-Penrose inverse of, 248 

E 

Echelon form 
definition, 330 
reduced, 331 

monotonicity of, 117 
algebraic multiplicity, 92 
and canonical correlations, 483 

Eigenvalue(s) 

and Hadamard product, 253 
bounds, 99 
bounds for complex matrices, 98 
bounds on differences, 97 
bounds using traces, 96 
classical scaling and,  487 
computation of, 105 
concavity of smallest, 118 
convexity of largest, 118 
definition, 91 
differential of, 375 
dominant, 199 
eigenspace of, 92, 103 
general properties of, 95 
geometric multiplicity of, 92 
GerSgorin disc and, 99, 163 
inequalities for matrix difference, 119 
inequalities for matrix sum, 116 
inequalities for matrix product, 119 
largest, 110 
majorization and, 509, 514 
matrix element differentiation of, 358 
multiple, 92 
of a product, 107 
of an exponential function, 423 
of a Kronecker product, 236 
of a matrix function, 103 
of a Wishart matrix, 468 
partitioned matrix and, 300 
principal components and, 479 
product of, 115 
quadratic bound on sum, 99 
semisimple, 92, 419 
simple, 92 
spectrum, 92 
sum of squared moduli for, 81 
vector element differentiation of, 354 
weak majorization and, 510 

differential of, 375 
for distinct eigenvalues, 103 
left, 92 
left and right, 103 
matrix element differentiation of, 358 
of Kronecker product, 236 
right, 92 
vector element differentiation of, 354 

Elementary symmetric functions, 92, 390 
Elementary transformation, 329 
Elimination matrix, 250 
Ellipsoid 

Eigenvector(s) 

definition, 31 
inequalities from, 272 
principal components and, 479 
standard form for, 31 
volume of, 32 

Elliptically contoured distribution-See 

Equivalence relation, 330 
Euclidean matrix, 486 

Multivariate elliptical distribution, 458 
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Euclidean matrix norm-See Frobenius norm, 

Euler Equation, 123 
Exterior product of differentials, 386 

72 

F 

Factor analysis, 486 
Field of values-See Numerical range, 30 
Finite homogeneous Markov chain, 213 
Finite projective geometry, 8 
Forward shift matrix, 158 
Forward substitution, 337 
Fourier matrix, 151, 154 

and discrete Fourier transform, 185 
definition, 184 

Frobenius inequality for ranks, 38 
Frobenius norm, 15 

and Eckart-Young theorem, 523 
and Lowner ordering, 228 
and matrix modulus, 197 
and principal components, 480 
definition, 68, 71 
inequality for matrix sum, 230 
matrix approximation, 524 
procrustes analysis and, 488 
sample principal components and, 481 
unitarily invariant, 74 

definition, 36 
from singular value decomposition, 36, 336 
Moore-Penrose inverse of, 141 
of non-negative definite matrix, 221 
reflexive g-inverse and, 134 

definition, 35 

definition, 35 

Full-rank factorization, 20, 333 

Full column rank, 37-39, 53 

Full row rank, 37-39, 53 

G 

Galois field, 8 
Gauss transformation, 337 
Gaussian elimination, 281, 337 
Gaussian orthogonal ensemble, 493 
Gaussian symplectic ensemble, 493 
Gaussian unitary ensemble, 493 
General square root, 74, 266 
Generalized eigenvalues, 115 

definition, 106 
distribution of, 469 

Generalized inverse-See Weak inverse, 125 
Generalized least squares 

definition, 453 
efficiency and, 453 

M ,  N-invariant, 77 
definition, 68 
induced, 68 
orthogonally invariant, 74 
unitarily invariant, 73 

Generalized quadratic, 462 
and independence, 464 

Generalized matrix norm, 101 

expectation of, 464 
large sample theory and, 463 
positive definite, 489 

Generalized Schur complement 
and rank additivity, 47 
determinant and, 291 
maximal and minimal ranks, 50 
non-negative matrix, 291 

Generalized vec-permutation matrix, 245 
Generating set, 11 
Geometric mean inequality, 270 
Givens transformation, 150 
Global optimization, 517 
Gram-Schmidt orthogonalization, 16 

algorithm for-017 Gram-Schmidt 
orthogonalization 

without square roots, 17 
Gram matrix 

definition, 223 
when positive definite, 225 

and Markovian kernel, 212 
definition, 126, 145 

Group inverse 

H 

Holder’s inequality 
for matrices, 268 
for vectors, 267 

Hadamard inequalities for determinants, 273 
Hadamard matrix 

definition, 164 
seminormalized, 164 

Hadamard product 
bounds for determinant of, 253 
bounds on eigenvalues, 253 
Cauchy-Schwarz inequality for, 266 
definition, 251 
differential of, 372 
of Hermitian matrices, 252 
of Hermitian non-negative definite matrices, 

of positive definite matrices, 253 
of two completely positive matrices, 224 
random quadratic from, 443 
rank of, 252 
submatrix of Kronecker product, 252 
transpose of, 252 
vector differentiation of, 364 
weak majorization and, 510 
with correlation matrix, 253 

252 

Hamiltonian matrix, 89 
Hankel matrix, 161 
Helmert matrix, 149 
Hermite canonical form, 333 
Hermite form, 332 
Hermitian congruence 

definition, 330 
Hermitian matrix 

definition, 80 
eigenvalues and eigenvectors, 104 
equivalent conditions, 82 
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inertia of, 344 
signature of, 344 
spectral theorem, 342 

and semi-inner product, 14 
definition, 219 
eigenvalues, 220 
full-rank factorization, 221 
Gram matrix, 223 
non-negative definite square root, 221 
pair of, 230 
permanent of, 64 
principal minors, 220 
weak inverse of, 127 

Hermitian positive definite matrix 
and Cauchy-Schwarz inequality, 262 
and diagonally dominant, 226 
and inner product, 14, 21 
condition number for, 96 
definition, 219 
eigenvalues of, 225 
positive definite square root of, 225 
positive stable, 190 
principal minors of, 225 

Hessenberg matrix, 179 
Hessian, 378 
Hilbert matrix, 226 
Hilbert space, 13 
Hotelling’s distribution, 468 
Householder matrix, 82, 149 
Hyperboloid, 31 
Hyperplane 

Hermitian non-negative definite matrix 

distance from, 31 
equation of, 31 

I 

Idempotent matrix, 9 
algebraic properties, 166 
and weak inverse, 126 
definition, 166 
differential of, 375 
geometrical properties, 20 
Hermitian, 113 
is diagonalizable, 326 
Jordan canonical form of, 166 
Moore-Penrose inverse of, 166 
product, 175 
rank of matrix difference, 45 
role in quadratic subspaces, 9 
symmetric, 167-168 
vector element differentiation of, 355 

Imprimitive matrix, 204 
Incidence matrix, 186 
Indicator matrix, 177, 187 
Inequalities for expectations, 502 
Inertia, 99 

definition, 344 
Sylvester’s law of, 345 

Information inequalities, 276 
Inner product space 

unitary space, 13 

definition, 13 
limiting sequence of, 67 

Inner product 

Interchanges in design models, 315 
Interlacing theorem 

for eigenvalues, 112 
for singular values, 112 

of vector subspaces, 10 

definition, 53 
matrix element differentiation of, 356 
scalar differentiation of, 352 
vector element differentiation of, 354 

Intersection 

Inverse matrix 

Inverse of partitioned matrix-See Partitioned 
matrix, 292 

Involutionary matrix, 175 

Irreducible matrix, 177 
Irreducible non-negative matrix 

Housholder, 82 

aperiodic (acyclic), 203 
definition, 202 
periodic (cyclic), 203 
periodicity of, 207 
Perron-Frobenius eigenvalue, 204 

Isomorphic vector spaces, 12 
Isomorphism, 12 

between real and complex matrices, 80 

J 

Jacobian, 383 
and Caley transformation, 411 
and exterior product, 386 
and positive definite matrix, 411 
chain rule, 386 
definition, 383 
for pair of matrices, 414 
for patterned matrix, 388 
for polar coordinates, 391 
for symmetric functions, 390 
induced functional equation and, 387 
involving diagonal matrices, 407 
method of differentials, 385 
of Cholesky decomposition, 405 
of complex inverse, 393 
of complex matrix product, 392 
of diagonalizable matrix, 413 
of Hermitian inverse, 395 
of LU decomposition, 407 
of matrix inverse, 385, 392 
of matrix power, 393 
of matrix product, 385, 392 
of nonlinear triangular product, 401 
of orthogonal skew-symmetric product, 403 
of skew-Hermitian inverse, 398 
of skew-Hermitian product, 397 
of skew-symmetric difference, 406 
of skew-symmetric inverse, 398 
of skew-symmetric power, 398 

Euclidean space, 13 of skew-symmetric product, 397 



552 INDEX 

of symmetric inverse, 394 
of symmetric matrix power, 396 
of symmetric product, 394 
of symmetric sum of triangular matrices, 
of transpose, 388 
of triangular inverse, 401 
of triangular matrix product, 399 

Jordan block, 188 
Jordan block matrix, 324 
Jordan canonical form, 325 

of an idempotent matrix, 166 

, 40 

K 

Kantorovich inequality 
for a positive definite matrix, 264 
for real vectors, 260 

Kernel-See Null space, 18 
Kolmogorov inequalities, 500 
Kronecker power, 238 
Kronecker product 

and diffusion model, 212 
and distributive rules, 237 
and singular value decomposition, 235 
complex conjugate of, 234 
conjugate transpose of, 234 
definition, 234 
determinant of, 235 
differential of, 372 
eigenvalues and eigenvectors of, 236 
Frobenius norm of, 235 
inverse of, 235 
Moore-Penrose inverse of, 235 
of diagonal matrices, 236 
of Hadamard matrices, 165 
of Hermitian matrices, 236 
of idempotent matrices, 236 
of non-negative definite matrices, 236 
of normal matrices, 87 
of orthogonal projection matrices, 169 
of two completely positive matrices, 224 
of unitary matrices, 236 
product rule for, 238 
rank of, 235 
scalar differentiation of, 352 
sum of matrices, 174 
trace of, 56, 235 
transpose of, 234 
vector differentiation of, 364 
weak inverse of, 234 

Kronecker sum, 284 
Krylov matrix, 187 

and triangular reduction, 343 

L 

L-structure 
definition, 388 
second-order derivative and, 380 

definition, 219 
properties of difference, 227 

Lowner ordering of matrices 

Lagrange’s reduction, 343 

Lagrange identity, 277 
Lagrange interpolation polynomial, 183 
Lagrange multipliers, 516 

Latent roots-See Eigenvalue(s), 91 
Lattice of vector subspaces, 10 
LDU factorization 

definition, 336 
Least squares (913) inverse, 136, 146 
Least squares estimation, 448, 520 

Least squares reflexive (9123) inverse, 137, 146 
Left inverse, 36, 39 

Length of a vector, 13 
Leslie matrix 

4 Lanczos vectors, 343 

with constraints, 450 
- 

definition, 53 

and diffusion model, 211 
definition, 210 

Linear equation 
and Kronecker product, 282 
and Kronecker sum, 284 
and LU factorization, 281 
consistent, 279, 283 
general solution of, 283, 280 
homogeneous, 281 
restricted, 282 
singular value decomposition and, 281 
two equations, 285-286 
two matrix unknowns, 285-286 
unknown matrix, 282 
unknown vector, 279 

Linear functional, 15 
Linear independence, 11 
Linear model 

weakly singular, 456 
Linear regression 

coefficient of determination, 452 
estimable function, 449 
Gauss-Markov theorem, 448 
general model, 447 
hat  matrix and, 448 
hypothesis testing, 451 
maximum likelihood estimation, 449 
multiple correlation and, 452 
normal equations, 448 
residual sum of squares, 448 
residual vector, 448 
testable hypothesis, 449 
with singular variance matrix, 454 

Linear stationary iteration, 382 
Local optimization, 515 
Lower-triangular matrix 

LU factorization, 178 
elimination matrix for, 250 

and a linear equation, 281 
definition, 336 
Jacobian of, 407 

Lyapunov’s equation, 190, 284 

M 

M-matrix. 191 
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Mahalanobis angle, 26 
Mahalanobis distance 

definition, 26 
sample, 463 

and permutations, 508 
definition, 507 
doubly stochastic matrix and, 508 
eigenvalues and, 509, 514 
expectations and, 513 
orthostochastic matrix and, 508 
probabilities and, 513 
singular values and, 514 

Majorization 

Maple, 53 
Mathematica, 53 
Matlab, 53 
Matrix-variate distribution 

beta, 490 
Dirichlet, 491 
elliptical, 490 
gamma, 490 
normal, 490 
Wishart, 490 

Matrix approximation, 524 
Matrix bounds 

Matrix cancellation rules, 39, 144 
Matrix difference 

eigenvalue inequalities for, 119 
Matrix differential equation, 377 
Matrix differential 

definition, 372 
perturbation method using, 376 
transformation rule, 374 

Matrix element 
matrix differentiation of, 369 

Matrix exponential 
and stable matrix, 189 
definition, 423 
scalar differentiation of, 353 

matrix differentiation of, 371 

using Lowner ordering, 146 

Matrix function, 422 

Matrix game, 189 
Matrix index, 51, 188 
Matrix limit 

Matrix norm 
definition, 417 

and spectral radius, 69-70 
definition, 69 
induced, 70 
minimal, 71 
of unitary matrix, 71 

Matrix product 
inverse of, 54 
adjoint of, 60 
conjugate transpose of, 54 
eigenvalue inequalities for, 119 
matrix element differentiation of, 356 
trace inequality for singular values, 121 
von Neumann trace inequalities for, 120 

Matrix sequence 

convergence of, 418 

convergence of, 421 

determinant inequality for, 273 
eigenvalue inequalities for, 116 
F’robenius norm inequality for, 263 
singular value inequalities for, 118 
Weyl’s theorem, 117 

Matrix series 

Matrix sum 

Maximal and minimal ranks, 49 
Maximum likelihood estimation, 519 
Metric space 

Cauchy sequence, 26 
complete, 27 
definition, 26 

Canberra, 26 
definition, 25 
Mahalanobis distance, 26 
Minkowski, 26 

Metric 

Minimum norm ( 9 1 4 )  inverse, 134, 146 
Minimum norm reflexive (9124) inverse, 135, 

Minkowski’s inequality 
146 

for matrices, 269 
for vectors, 268 

leading, 1 
principal, 1 

Minor, 1 

ML-matrix, 191, 208 
Model matrix, 474 
Modulus 

of a matrix, 197 
of complex scalar, 79 

Monotonic functions, 511 
Moorepenrose inverse, 39, 113, 126 

and cancellation rule, 40 
and orthogonal projection matrices, 24 
and quadratic subspaces, 9 
and a random quadratic, 440 
definition, 126, 137 
differential of, 375 
from QR decomposition, 341-342 
limit of a sequence, 140 
of a duplication matrix, 248 
of a Kronecker product, 235 
of a non-negative definite matrix, 141 
of a partitioned matrix, 304 
of a patterned matrix, 321 
of a matrix product, 143 
of a regular circulant, 152, 154 
of a matrix sum, 143 
of a symmetric circulant, 157 
of a symmetric idempotent matrix, 140 
of a symmetric matrix, 139 
of an idempotent matrix, 166 
orthogonal projection and, 22 
rank of, 138 
representation of, 146 
uniqueness of, 138 
vector element differentiation of, 354 
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Multinomial distribution 
inverse of variance matrix, 311 
Moore-Penrose inverse of variance matrix, 

321 
Multiple correlation coefficient 

population, 430 
sample, 433 

Multivariate t-distribution, 457 
Multivariate Cauchy distribution, 457 
Multivariate Dirichlet distributions, 460 
Multivariate elliptical distribution, 458 
Multivariate inequalities, 502 

t-distribution and, 506 
convex subsets and, 502 
correlated F-ratios and, 506 
for associated random variables, 505 
normal distribution and, 503 

definition, 474 
estimability, 475 
Gauss-Markov theorem, 475 
generalized hypothesis, 477 
hypothesis testing, 477 
least squares estimation, 474 
maximum likelihood estimation, 476 

complex, 445 
definition, 435 
moments of, 437 

Multivariate linear model 

Multivariate normal distribution, 435 

Multivariate spherical distribution, 459 

N 

n-tuple space, 11 
Newton’s identities, 93 
Nilpotent matrix, 188 

Non-negative definite matrix, 39 
index of nilpotency, 188 

and Cauchy-Schwarz inequality, 258 
and matrix norm, 71 
generalized Schur complement, 291 
monotonicity of eigenvalues, 117 
Moore-Penrose inverse of, 141 
trace of, 56 

aperiodic (acyclic) indices, 201 
communicating indices, 201 
definition, 195 
dominant eigenvalue of, 199 
essential indices, 201 
incidence matrix for, 187 
inessential indices, 201 
irreducible, 202 
iterative scaling algorithm, 196 
pair with same pattern, 196 
periodic (cyclic) indices, 201 
permanent of, 64, 196 
Perron-Frobenius theorem for, 199 
Perron root, 98 
self-communicating classes, 201 
transition states, 201 

Non-negative matrix, 195 

Noncentral F-distribution, 3 

and Hotelling’s distribution, 468 
Noncentral chi-square distribution 

definition, 2 
noncentrality parameter, 2 

Nonsingular matrix, 35, 53 
Norm 

Euclidean, 14 
Robenius, 15 
induced by inner product, 13, 66 
optimization of, 522 
parallelogram law and, 66 

and Moore-Penrose inverse, 140 
and regular circulant, 153 
definition, 86 
diagonal reduction of, 343 
tridiagonal reduction of, 343 

orthogonal complement of, 19 
orthogonal projection onto, 22 

definition, 35 
Sylvester’s law of, 38 

Normal matrix, 86 

Null space, 18 

Nullity, 36 

Numerical radius, 102 
Numerical range, 30 

0 

Oblique projection matrix, 126 
One-sample vector theory-See Random 

vector sample, 470 
Open sphere, 28 
Operator trigonometry, 122 
Optimal designs, 528 
Ordinary least squares estimate 

and weak inverse, 130 
relative efficiency of, 263 

Orthogonal decomposition 
and least squares, 448 

Orthogonal matrix 
definition, 80, 147 
determinant, 148 
differential of, 375 
eigenvalues, 148 
reflection in a plane, 149 
rotation in the plane, 149 
tridiagonal reduction, 344 

and Moore-Penrose inverse, 130 
and weak inverse, 130 
difference of two, 23-24 
for a partitioned matrix, 23 
for intersection of subspaces, 24 
Hermitian, 21-22 
product of two, 23 
sum of two, 24 

Orthogonal projection 
definition, 21 

Orthogonal projector-See Orthogonal 

Orthogonal 

Orthogonal projection matrix, 21 

projection matrix, 21 

complement, 16-17, 21 
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decomposition, 17, 19 
mutually, 16 
vectors, 16 

Orthonormal basis 
and Bessel’s inequality, 18 
definition, 16 
existence of, 17 
orthogonal projection and, 22 
Parseval’s identity and, 17 

Orthostochastic matrix, 218 
majorization and, 508 

P 

P-matrix, 191 
Parallel sum, 132 
Parseval’s identity, 17 
Partial correlation coefficient 

population, 431 
sample, 433 

Partitioned matrix 
adjoint of, 297 
and Kronecker product, 235 
and Schur complement, 289 
determinant of, 312 
determinant of a, 296 
eigenvalues of, 93, 300 
from a perturbation, 312 
inverse of, 292 
Moore-Penrose inverse of, 304 
non-negative definite, 298 
orthogonal projection and submatrix, 23 
orthogonal projection onto, 23 
positive definite, 298 
power of block upper-triangular, 295 
rank of, 38, 4&41, 47-48 
rank of column partition, 46 
rank of row partition, 46 
repeated elements or blocks, 316 
singular values, 101 
weak inverse of, 302 

Patterned matrix 
correlation matrix, 430 
inverse of, 308 
Jacobian of, 388 
Moore-Penrose inverse of, 321 
Sherman-Morrison-Woodbury formula, 309 
Sherman-Morrison formula, 309 
some identities, 307 
weak inverse of, 320 

Pauli matrices, 87 
Payoff matrix, 188 
Permanent 

definition, 63 
non-negative matrix, 64 
of doubly stochastic matrix, 217 
of non-negative matrix, 196 

and diagonal dominance, 162 
and Fourier matrix, 185 
and irreducible periodic matrix, 207 
and Kronecker product, 235 

Permutation matrix 

and LU factorization, 337 
and non-negative matrix, 202 
and QR decomposition, 341 
and reducible non-negative matrix, 202 
backward identity, 324 
commutation matrix, 242 
definition, 151 
forward shift, 151-152, 161, 177 
is doubly stochastic, 217 
P-matrix and, 191 
primary, 151 
related to permanents, 64 

Permutation similar, 151, 177, 324 
Perron’s theorem 

Perron-Frobenius eigenvalue and eigenvectors, 

Perron-Frobenius theorem 

for positive matrices, 200 

204 

for irreducible matrices, 204 
for non-negative matrices, 199 

Perron matrix, 209 
Persymmetric matrix, 159 
Perturbation of a matrix, 312 
Perturbations for eigenvalues, 100 
Pfaffian, 85 
PoincarB’s theorems, 113 
Polar decomposition, 348 
Polynomial 

annihilating, 93 
minimal, 93 
monic, 93 

Polynomially positive matrix, 209 
Positive definite matrix 

and Cauchy-Schwarz inequality, 258 
and inner product, 22 
and trace, 56 
condition number, 78 
definition, 220 
inner product and, 14 
Mahalanobis distance and, 26 
with probability one, 489 

Positive matrix, 195 
Perron’s theorem, 200 

Positive stable matrix, 189 
and Schwartz matrix, 181 

Power-positive matrix, 209 
Primitive matrix 

definition, 203 
index of primitivity, 203 
limit theorem, 203 

Principal components 
contingency table and, 482 
population, 478 
sample, 480 

Principal coordinate analysis-See Classical 

Principal minor 
complementary, 61 

Probability inequalities 
Bonferroni, 497 
for quadratics, 500 

scaling, 487 
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Hunter-Worsley, 496 
Kounias, 496 

Procrustes analysis, 488 
Profile analysis, 473 
Projection matrix, 20 
Projector, 20 
Pseudoinverse-See Weak inverse, 125 

Q 
QR decomposition 

and Moore-Penrose inverse, 341-342 
and weak inverse, 341 
definition, 340 

Quadratic identities, 277 
Quadratic in a random vector-See Random 

Quadratic subspace, 9 
Quadratic 

quadratic, 434 

and ellipsoid, 31 
optimization of, 525 

Quadrics, 32 
Quasi-inner product-See Semi-inner product, 

Quasilinearization 
inequalities using, 271 

Quaternion matrix 
definition, 88 
self-dual, 88 

complex conjugate, 88 
conjugate, 88 
definition, 87 
Hermitian, 88 

13 

Quaternion 

R 

Random quadratic 
and chi-square distribution, 441-442 
and independence, 442 
and singular normal distribution, 440 
covariance of two, 434 
Hadamard product and, 443 
in normal variables, 438 
independence of several, 444 
mean of, 434 
probability inequalities, 500 
reduction of, 434 
variance of, 434 

asymptotic theory and, 472 
Hotelling’s distribution and, 472 
hypothesis testing, 472 
moments, 470 

Random vector sample 

Range space-See Column space, 18 
Rank 1 perturbation, 312 
Rank additivity, 41 
Rank of partitioned matrix-See Partitioned 

Rank 
matrix, 37 

additivity, 41-42 
and Cauchy-Schwarz inequality, 259 
column, 35 

definition, 35 
of matrix difference, 44 
of matrix product, 37 
of matrix sum, 40 
row, 35 

Rao-Khatri product, 255 
Rectangular inequalities, 273 
Reduced echelon form, 331 
Reducible matrix, 177 
Reduction to  diagonal form, 333 
Reflexive (912)  inverse, 127, 134, 146 
Regression measures of relative efficiency, 263 
Regression models, 446 
Regression perturbation 

change a row or column, 314 
Regular circulant 

basic matrix, 153, 161 
definition, 152 
eigenvalues and eigenvectors, 153 
Moore-Penrose inverse of, 154 
nonsingular, 163 
representer of, 152 
symmetric, 155 

Representation-See Quasilinearization, 271 
Right inverse, 36, 39 

Row-centered data ,  24 
Row space, 18 
Row or column or element perturbation, 313 

definition, 53 

S 

Saddle point, 515 
Sample mean vector 

Sample variance matrix 

Scalar differential 

Scalar function 

add or subtract an observation, 313 

add or subtract an observation, 313 

transformation rule, 372 

matrix differentiation of, 365 
vector differentiation of, 358 

Scaling problem, 196 
Schur complement, 289 

and subpartition, 290 
determinant of, 290 
inertia and, 290-291 
inverse of, 290 
non-negative definite, 290 
nuliity of, 292 
of sum, 291 
positive definite, 290 
rank of, 290 

Schur convexity 
definitions, 511 

Schur decomposition, 106 
Schur decomposition theorems, 337 
Schur product-See Hadamard product, 251 
Schwartz matrix, 181 
Schwarz inequality 

Second-order derivatives, 378 
for inner product, 14 
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Second-order differential 
identification rules, 379 

Semi-inner product, 13-14 
Seminorm, 13 
Semisimple eigenvalue, 419 
Sensitivity analysis in regression, 376 
Separation theorems 

Set(s) 
for eigenvalues, 111 

accumulation point, 28 
boundary point, 28 
bounded, 28 
closed, 28 
closure, 28 
compact, 28 
convex hull, 29 
disjoint, 10 
exterior point, 28 
extreme point, 28-29 
inner point, 28 
interior point, 28 
intersection of, 7 
limit point, 28 
open, 28 
span of, 11 
sum of, 7 

Sherman-Morrison-Woodbury formula, 309 
Sherman-Morrison formula, 308 
Shorted matrix, 456 
Signature, 344 
Similarity 

definition, 323 
SRT relation, 330 

Simultaneous diagonal reductions, 345 
Simultaneous singular value decompositions, 

Simultaneous upper-triangular reductions, 346 
Singular matrix, 53 
Singular value decomposition, 334 

346 

and Kronecker product, 235 
and linear equation, 281 
and matrix difference, 119 
and sample principal components, 481 
and trace, 56 
and unitarily invariant norm, 74 
and weak inverse, 126 
definition, 334 
diagonal reduction and, 333 
Eckart-Young theorem, 522 
full-rank factorization, 336 
Moore-Penrose inverse and, 137 
optimizing trace, 520 
polar decomposition and, 348 
procrustes analysis and, 488 
simultaneous, 43, 346 
thin version of, 335 

Singular value(s), 335 
and gauge function, 75 
and quadratic ratio, 11 1 
definition, 101, 335 
inequalities for matrix difference, 119 

inequalities for matrix product, 120 
inequalities for matrix sum, 118 
maximum, 68, 70 
min-max theorem, 109 
of Hadamard product, 253 
of Kronecker product, 235 
weak majorization and, 510, 514 

Singular vectors 
definition, 335 

Skew-Hermitian matrix 
definition, 80 
function of unitary matrix, 83 

definition, 85 
exponential function of, 423 
pfaffian of, 85 
tridiagonal reduction, 344 

Skew-symmetric matrix 

Span a vector space, 11 
Span of a set, 11, 103 
Spectal decomposition, 327 
Spectral decomposition 

of a regular circulant, 154 
of a symmetric matrix, 342 
diagonalizable matrix and, 327 
of an arbitrary matrix, 327 

Spectral norm 
induced generalized, 68, 74 
matrix, 71 

Spectral radius, 71, 164, 197 
and numerical radius, 102 
bounded by matrix norm, 69-70 
definition, 92 
linear stationary iteration and,  382 

Spectrum-See eigenvalue(s), 92 
Square bracket multiplication, 194 
SRT relation, 330 
Stable matrix, 189 
Star operator, 251 
Stationary distribution-See Transition 

matrix, 212 
Stationary Markov chain, 212 
Stationary point, 515 
Stochastic matrix 

and Markovian kernel, 212 
canonical form, 214 
countably infinite, 215 
definition, 212 
ergodic property, 212 
infinite irreducible, 215 
regular, 214 

Strictly upper-triangular matrix, 325 
Sturmian separation theorem, 112 
Submatrix 

definition, 1 
leading principal, 1 
principal, 1 
proper, 1 

Sum of matrices 
and Kronecker products, 174 
and non-negative definite matrix, 172 
Cochran’s theorem. 170 
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each non-negative definite, 173 
each nonsymmetric and idempotent, 171 
each rectangular, 172 
each symmetric and idempotent, 170, 173 
each tripotent, 176 

of vector subspaces, 10 

definition, 156 
Moore-Penrose inverse of, 157 

Sum 

Symmetric circulant 

Symmetric function, 511 
Symmetric gauge function 

definition, 75 
unitarily invariant matrix norm and, 75 

and MoorePenrose inverse, 139 
least squares estimation and, 448 
noncentral Wishart and, 467 
symmetrizer matrix, 247 

Symmetric matrix 
definition, 80 
expressed as sum of idempotents, 173 
general properties, 104 
Moore-Penrose inverse of, 139 
spectral theorem for, 342 
trace of Moore-Penrose inverse, 139 

Symmetrizer matrix 
definition, 247 
properties of, 248 

Symmetric idernpotent matrix 

T 

T-transform, 509 
Three-dimensional array, 194 
Toeplitz matrix, 158 

tridiagonal, 180 
Trace 

and Cauchy-Schwarz inequality, 259 
and matrix inner product, 15 
definition, 54 
differential of, 373 
inequality, 274 
matrix differentiation of, 366 
maximum, 113 
modulus hound for, 101 
of matrix product, 55, 107, 230 
second-order derivative of, 379 
sum of eigenvalues, 95 
vec differentiation of, 359 
von Neumann inequality for matrix product, 

120 
Trajectory matrix, 162 
Transformation rule, 372-374 
Transformation rules, 370 
Transition matrix 

associated stationary distribution, 212 
definition, 212 

Triangle inequality, 275 
Triangular matrix, 178 

block form, 179 
lower-triangular, 178 
reduction to, 343 

unit triangular, 178 
upper-triangular, 178 

Tridiagonal matrix, 180 
QR decomposition for, 342 

Tridiagonal reduction 
of normal matrix, 343 
of orthogonal matrix, 344 
of real skew-symmetric matrix, 344 

Tripotent matrix 
and chi-square distribution, 442 
definition, 175 

Two-sample vector theory, 473, 475 

U 

Ultrametric, 26 
Unipotent matrix 

definition, 188 
Unitarily invariant norm 

and Cauchy-Schwarz inequality, 266 
generalized matrix, 73 
matrix, 74 
self-adjoint, 76 
vector, 65 

Unitary matrix 
definition, 80, 147 
eigenvalues, 148 
matrix norm of, 71 
symmetric, 148 

reduction to, 338 

reduction to, 337 
simultaneous reduction to, 346 
strictly, 325 

reduction to, 349 

Upper-triangular block matrix 

Upper-triangular matrix 

Upper Hessenherg matrix 

V 

Vandermonde matrix, 183 

Variancecovariance matrix-See Variance 

Variance matrix 
definition, 427 
sample, 463 

Variational characteristics 
Courant-Fischer min-max theorem, 109 
Raleigh-Ritz ratio, 108 

Vec-permutation matrix-See Commutation 

Vec function 

Vec matrix product 

Vec of inverse 

Vec operator 

and diagonalizable matrix, 328 

matrix, 427 

matrix, 242 

vec differentiation of, 362 

vec differentiation of, 362 

vec differentiation of, 362 

definition, 239 
products and, 240 
trace and, 240 

Vech of matrix product 
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vech differentiation of, 363 
Vech of Moore-Penrose inverse 

vech differentiation of, 363 
Vech operator 

definition, 246 
of symmetric product, 248 

Vector difference equation, 381 
Vector differential 

Vector function 

Vector norm 

transformation rule, 373 

vector differentiation of, 361 

L ,  norm, 66 
L, norm, 66 
definition, 65 
Euclidean L2 norm, 66 
limiting sequence, 67 
unitarily invariant, 65 
all essentially equivalent, 65 

definition, 65 

definition, 7 

basis for, I1 
definition, 8 
dimension of, 11 
direct sum of, 10 
disjoint, 10 
intersection of, 10 
isomorphic, 12 
lattice of, 10 
orthogonal complement, 16 
sum of, 10 

Vector seminorm, 66 

Vector space 

Vector subspace(s) 

Volume of parallelotope, 33 

W 

Watson efficiency, 453, 456 

Weak inverse, 125 
and Hermite form, 128 
and invariance of product, 130 
conjugate transpose of, 127 
definition, 125 
existence, 126 
from QR decomposition, 341 
of Kronecker product, 234 
of partitioned matrix, 302 
of sum, 132 
of symmetric matrix, 132 
patterned matrix, 320 
rank of, 127 
representation of, 127, 146 
transpose of, 126 
vector element differentiation of, 354 

Weak majorization 
and eigenvalues, 510 
definitions, 509 
doubly stochastic matrix and, 510 
singular values and, 510 

Weighted inner product space, 22 
Weighted mean inequality, 270 
Weirstrass’s theorem, 30 
Weyl’s theorem, 117 
Wishart distribution 

complex, 469 
definition, 465 
density function of, 490 
eigenvalues of matrix, 468 
independence and, 468 
inverted, 465 
noncentral, 465 

z 

Z-matrix, 191 
Zero-one matrix, 186 
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