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Preface

Over the years a not inconsiderable body of literature has accumulated on dis-
criminant analysis, with its usefulness demonstrated over many diverse fields,
including the physical, biological and social sciences, engineering, and medi-
cine. The purpose of this book is to provide a modern, comprehensive, and
systematic account of discriminant analysis, with the focus on the more re-
cent advances in the field. Discriminant analysis or (statistical) discrimination
is used here to include problems associated with the statistical separation be-
tween distinct classes or groups and with the allocation of entities to groups
(finite in number), where the existence of the groups is known a priori and
where typically there are feature data on entities of known origin available
from the underlying groups. It thus includes a wide range of problems in sta-
tistical pattern recognition, where a pattern is considered as a single entity and
is represented by a finite dimensional vector of features of the pattern.

In recent times, there have been many new advances made in discrimi-
nant analysis. Most of them, for example those based on the powerful but
computer-intensive bootstrap methodology, are now computationally feasible
with the relatively easy access to high-speed computers. The new advances are
reported against the background of the extensive literature already existing in
the field. Both theoretical and practical issues are addressed in some depth,
although the overall presentation is biased toward practical considerations.

Some of the new advances that are highlighted are regularized discriminant
analysis and bootstrap-based assessment of the performance of a sample-based
discriminant rule. In the exposition of regularized discriminant analysis, it is
noted how some of the sample-based discriminant rules that have been pro-
posed over the years may be viewed as regularized versions of the normal-
based quadratic discriminant rule. Recently, there has been proposed a more
sophisticated regularized version, known as regularized discriminant analysis.
This approach, which is a sample-based compromise between normal-based
linear and quadratic discriminant analyses, is considered in some detail, given
the highly encouraging results that have been reported for its performance in
such difficult circumstances, as when the group-sample sizes are small relative
to the number of feature variables. On the role of the bootstrap in estimation

xiii



xiv PREFACE

problems in discriminant analysis, particular attention is given to its usefulness
in providing improved nonparametric estimates of the error rates of sample-
based discriminant rules in their applications to unclassified entities.

With the computer revolution, data are increasingly being collected in the
form of images, as in remote sensing. As part of the heavy emphasis on recent
advances in the literature, an account is provided of extensions of discriminant
analysis motivated by problems in statistical image analysis.

The book is a monograph, not a textbook. It should appeal to both applied
and theoretical statisticians, as well as to investigators working in the many
diverse areas in which relevant use can be made of discriminant techniques. It
is assumed that the reader has a fair mathematical or statistical background.

The book can be used as a source of reference on work of either a practical
or theoretical nature on discriminant analysis and statistical pattern recogni-
tion. To this end, an attempt has been made to provide a broad coverage of
the results in these fields. Over 1200 references are given.

Concerning the coverage of the individual chapters, Chapter 1 provides a
general introduction of discriminant analysis. In Chapter 2, likelihood-based
approaches to discrimination are considered in a general context. This chapter
also provides an account of the use of the EM algorithm in those situations
where maximum likelihood estimation of the group-conditional distributions
is to be carried out using unclassified feature data in conjunction with the
training feature data of known group origin.

As with other multivariate statistical techniques, the assumption of multi-
variate normality provides a convenient way of specifying a parametric group
structure. Chapter 3 concentrates on discrimination via normal theory-based
models. In the latter part of this chapter, consideration is given also to reduc-
ing the dimension of the feature vector by appropriate linear projections. This
process is referred to in the pattern recognition literature as linear feature
selection. Chapter 4 reports available distributional results for normal-based
discriminant rules. Readers interested primarily in practical applications of
discriminant analysis may wish to proceed directly to Chapter 5, which dis-
cusses practical aspects and variants of normal-based discriminant rules. The
aforementioned approach of regularized discriminant analysis is emphasized
there.

Chapter 6 is concerned primarily with data analytic considerations with
normal-based discriminant analysis. With a parametric formulation of prob-
lems in discriminant analysis, there is a number of preliminary items to be
addressed. They include the detection of apparent outliers among the train-
ing sample, the question of model fit for the group-conditional distributions,
the use of data-based transformations to achieve approximate normality, the
assessment of typicality of the feature vector on an unclassified entity to be
allocated to one of the specifed groups, and low-dimensional graphical repre-
sentations of the feature data for highlighting and/or revealing the underlying
group structure. Chapter 7 is devoted to parametric discrimination via non-
normal models for feature variables that are either all discrete, all continuous,



PREFACE XV

or that are mixed in that they consist of both types of variables. A semipara-
metric approach is adopted in Chapter 8 with a study of the widely used lo-
gistic model for discrimination. Nonparametric approaches to discrimination
are presented in Chapter 9. Particular attention in this chapter is given to
kernel discriminant analysis, where the nonparametric kernel method is used
to estimate the group-conditional densities in the formation of the posterior
probabilities of group membership and the consequent discriminant rule.

Chapter 10 is devoted fully to the important but difficult problem of assess-
ing the various error rates of a sample-based discriminant rule on the basis of
the same data used in its construction. The error rates are useful in summa-
rizing the global performance of a discriminant rule. Of course, for a specific
case as, for example, in medical diagnosis, it is more appropriate to concen-
trate on the estimation of the posterior probabilities of group membership.
Accordingly, a separate chapter (Chapter 11) is devoted to this problem.

Chapter 12 is on the selection of suitable feature variables using a variety
of criteria. This is a fundamental problem in discriminant analysis, as there are
many practical and theoretical reasons for not using all of the available feature
variables. Finally, Chapter 13 is devoted to the statistical analysis of image
data. Here the focus is on how to form contextual allocation rules that offer
improved performance over the classical noncontextual rules, which ignore the
spatial dependence between neighboring images.

Thanks are due to the authors and owners of copyrighted material for per-
mission to reproduce published tables and figures. The author also wishes to
thank Tuyet-Trinh Do for her assistance with the preparation of the typescript.

GEOFFREY J. MCLACHLAN

Brisbane, Queensland
January, 1991
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CHAPTER 1

General Introduction

1.1 INTRODUCTION

Discriminant analysis as a whole is concerned with the relationship between a
categorical variable and a set of interrelated variables. More precisely, suppose
there is a finite number, say, g, of distinct populations, categories, classes, or
groups, which we shall denote here by G;,...,G;. We will henceforth refer
to the G; as groups. Note that in discriminant analysis, the existence of the
groups is known a priori. An entity of interest is assumed to belong to one
(and only one) of the groups. We let the categorical variable z denote the
group membership of the entity, where z = i implies that it belongs to group
Gi (i =1,...,8). Also, we let the p-dimensional vector X = (x1,...,Xp) contain
the measurements on p available features of the entity.

In this framework, the topic of discriminant analysis is concerned with the
relationship between the group-membership label z and the feature vector x.
Within this broad topic there is a spectrum of problems, which corresponds
to the inference-decision spectrum in statistical methodology. At the decision
end of the scale, the group membership of the entity is unknown and the
intent is to make an outright assignment of the entity to one of the g possible
groups on the basis of its associated measurements. That is, in terms of our
present notation, the problem is to estimate z solely on the basis of x. In
this situation, the genera! framework of decision theory can be invoked. An
example in which an outright assignment is required concerns the selection
of students for a special course, where the final decision to admit students is
based on their answers to a questionnaire. For this decision problem, there
are two groups with, say, Gy, referring to students who complete the course
successfully, and G, to those who do not. The feature vector x for a student
contains his/her answers to the questionnaire. A rule based on x for allocating

1



2 GENERAL INTRODUCTION

a student to either G| or G, (that is, either accepting or rejecting the student
into the course) can be formed from an analysis of the feature vectors of past
students from each of the two groups. The construction of suitable allocation
rules is to be pursued in the subsequent sections of this chapter.

At the other extreme end of the spectrum, no assignment or allocation of
the entity to one of the possible groups is intended. Rather the problem is to
draw inferences about the relationship between 2 and the feature variables in
x. An experiment might be designed with the specific aim to provide insight
and understanding into the predictive structure of the feature variables. For
example, a political scientist may wish to determine the socio-economic factors
that have the most influence on the voting patterns of a population of voters.

Between these extremes lie most of the everyday situations in which dis-
criminant analysis is applied. Typically, the problem is to make a prediction
or tentative allocation for an unclassified entity. For example, concerning pre-
diction, an economist may wish to forecast on the basis of his or her most
recent accounting information, those members of the corporate sector that
might be expected to suffer financial losses leading to failure. For this pur-
pose, a discriminant rule may be formed from accounting data collected on
failed and surviving companies over many past years. An example where allo-
cation, tentative or otherwise, is required is with the discrimination between
an earthquake and an underground nuclear explosion on the basis of signals
recorded at a seismological station (Elvers, 1977). An allocation rule is formed
from signals recorded on past seismic events of known classification.

Examples where prediction or tentative allocation is to be made for an un-
classified entity occur frequently in medical prognosis and diagnosis. A source
for applications of discriminant analysis to medical diagnosis is the bibliogra-
phy of Wagner, Tautu and Wolbler (1978) on problems in medical diagnosis.
In medical diagnosis, the definitive classification of a patient often can be
made only after exhaustive physical and clinical assessments or perhaps even
surgery. In some instances, the true classification can be made only on evi-
dence that emerges after the passage of time, for instance, an autopsy. Hence,
frequent use is made of diagnostic tests. Where possible, the tests are based on
clinical and laboratory-type observations that can be made without too much
inconvenience to the patient. The financial cost of the test is also sometimes
another consideration, particularly in mass screening programs. Suppose that
the feature vector x contains the observations taken on a patient for his or her
diagnosis with respect to one of g possible disease groups Gi,...,Gg. Then
the relative plausibilities of these groups for a patient with feature vector x
as provided by a discriminant analysis may be of assistance to the clinician
in making a diagnosis. This is particularly so with the diagnosis of Conn’s
syndrome in patients with high blood pressure, as reported in Aitchison and
Dunsmore (1975, Chapter 1). The two possible groups represent the cause,
which is either a benign tumor in one adrenal gland, curable by surgical re-
moval (G;), or a more diffuse condition affecting both adrenal glands, with
the possibility of control of blood pressure by drugs (G). The actual cause
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can be confirmed only by microscopic examination of adrenal tissue removed
at an operation. However, because surgery is inadvisable for patients in G,
a clinician is faced with a difficult treatment decision. Thus, a realistic preop-
erative assessment that a patient with a particular feature vector belongs to
either Gy or G» would be most valuable to the clinician. The available fea-
ture variables on a patient relate to age, plasma concentrations of sodium,
potassium, bicarbonate, renin, and aldosterone, and systolic and diastolic
blood pressures.

The relative plausibilities of group membership for a patient with an as-
sociated feature vector are also useful in medical prognosis. Here the vector
is measured after the onset of some medical condition, say, an injury, and
the groups represent the possible outcomes of the injury. There are several
reasons why an initial prediction of the eventual outcome of the injury may
be needed. For instance, in situations where the management of the patient is
closely linked to the outcome, it provides a guide to the clinician as to whether
his or her particular course of management is appropriate. It also provides a
firmer basis for advice to relatives of an injured patient on the chances of
recovery. These and other reasons are discussed by Titterington et al. (1981)
and Murray et al. (1986) in the context of the prognosis for patients with se-
vere head injuries. For these patients, the three possible outcomes were dead
or vegetative, severe disability, and moderate or good recovery. The feature
vector for a patient included background information such as age and cause
of injury and four clinical variables (eye opening, motor response, motor re-
sponse pattern, and pupil reaction).

Situations in medical diagnosis where outright rather than tentative alloca-
tions to groups are made occur in mass screening programs. Suppose that
in the detection of a disease, G, consists of those individuals without the
disease and G, of those with the disease. Then in a screening program for
this disease, a patient is assigned outright to either G; or G3, according to
whether the diagnostic test is negative or positive. Usually, with a positive re-
sult, further testing is done before a final assignment is made. For example,
with the enzyme-linked immunosorbent assay (ELISA) test used to screen do-
nated blood for antibodies to the AIDS virus, a positive test would result in
a more definitive test such as the Western blot being performed (Gastwirth,
1987). J. A. Anderson (1982) has given an example on patient care where
an irrevocable outright assignment has to be made. It concerns the decision
on whether to administer a preoperative anticoagulant therapy to a patient to
reduce the risk of postoperative deep vein thrombosis.

Discriminant analysis is widely used also in the field of pattern recognition,
which is concerned mainly with images. The aim of pattern recognition is to
automate processes performed by humans. For example, automatic analysis
and recognition of photomicrographs of tissue cells can be used in blood tests,
cancer tests, and brain-tissue studies. Another example of much current inter-
est concerns the automatic recognition of images remotely sensed from earth
satellites. It is considered in Chapter 13.
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The branch of pattern recognition known as statistical pattern recognition
has close ties with statistical decision theory and areas of multivariate analy-
sis, in particular discriminant analysis. In statistical pattern recognition, each
pattern is considered as a single entity and is represented by a finite dimen-
sional vector of features of the pattern. Hence, the recognition of patterns
with respect to a finite number of predefined groups of patterns can be form-
ulated within the framework of discriminant analysis. The number of fea-
tures required for recognition of a pattern may become very large if the pat-
terns under study are very complex or if, as in fingerprint identification, the
number of possible pattern groups is very large. Consequently, the above
approach may have to be modified; see, for example, Fu (1986) and Mantas
(1987).

By now, there is an enormous literature on discriminant analysis, and so it is
not possible to provide an exhaustive bibliography here. However, we have at-
tempted to cover the main results, in particular the more recent developments.
Additional references on the earlier work may be found in the books devoted
to the topic as a whole or in part by Lachenbruch (1975a), Goldstein and Dil-
lon (1978), Klecka (1980), and Hand (1981a, 1982). They have been supple-
mented recently by the volume edited by S. C. Choi (1986), the notes of Hjort
(1986a), and the report by a panel of the Committee on Applied and Theoret-
ical Statistics of the Board on Mathematical Sciences of the National Research
Council, chaired by Professor R. Gnanadesikan (Panel on Discriminant Anal-
ysis, Classification and Clustering, 1989). Further references may be found in
the symposium proceedings edited by Cacoullos (1973) and Van Ryzin (1977),
the review article by Lachenbruch and Goldstein (1979), and in the encyclope-
dia entry by Lachenbruch (1982). There are also the relevant chapters in the
rapidly growing list of textbooks on multivariate analysis. Another source of
references is the pattern recognition literature. Fukunaga (1972, 1990), Patrick
(1972), Duda and Hart (1973), Young and Calvert (1974), and Devijver and
Kittler (1982) are examples of texts on statistical pattern recognition. A sin-
gle source of references in discriminant and cluster analyses and in pattern
recognition is the book edited by Krishnaiah and Kanal (1982).

1.2 BASIC NOTATION

We let X denote the p-dimensional random feature vector corresponding to
the realization x as measured on the entity under consideration. The associ-
ated variable z denoting the group of origin of the entity is henceforth re-
placed by a g-dimensional vector z of zero-one indicator variables. The ith
component of z is defined to be one or zero according as x (really the entity)
belongs or does not belong to the ith group G; (i = 1,...,8); that is,

zi =1, x € Gij,
=0, x ¢ G,
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for i = 1,...,g. Where possible, random variables are distinguished from their
realizations by the use of the corresponding uppercase letters.

The probability density function (p.d.f.) of X in group G; is denoted by fi(x)
for i = 1,...,g. These group-conditional densities are with respect to arbitrary
measure on R?, so that f;(x) can be a mass function by the adoption of count-
ing measure. Under the mixture model approach to discriminant analysis, it
is assumed that the entity has been drawn from a mixture G of the g groups
Gy, ..., Gy in proportions 7i,...,%g, respectively, where

g
Ym=1 ad w20 (i=1...8)
i=1
The p.df. of X in G can therefore be represented in the finite mixture form

g
fx(®) =Y mfi(x). (12.1)
i=1
An equivalent assumption is that the random vector Z of zero-one group
indicator variables with z as its realization is distributed according to a multi-
nomial distribution consisting of one draw on g categories with probabilities
Ti,..., Mg, respectively; that is,

pr{Z =z} = a'niz...wgt. (1.2.2)

We write
Z ~ Multg(1,7), (1.2.3)

where 7 = (m,...,mg). Note that with a deterministic approach to the prob-
lem, z is taken to be a parameter rather than a random variable as here.
The distribution function of Y = (X', Z'Y is denoted by F(y), where the prime
denotes vector transpose. We let F;(x) and Fx (x) denote the distribution func-
tions corresponding to the densities f;(x) and fx(x), respectively.

The ith mixing proportion #; can be viewed as the prior probability that
the entity belongs to G; (i = 1,...,g). With X having been observed as x, the
posterior probability that the entity belongs to G; is given by

7i(x) = pr{entity € G; | x}
= pr{Z; =1|x}
=mfix)/fx(x)  (E=1,...,8) (1.2.4)

In the next section, we consider the formation of an optimal rule of allocation
in terms of these posterior probabilities of group membership 7;(x).

The term “classification” is used broadly in the literature on discriminant
and cluster analyses. To avoid any possible confusion, throughout this mono-
graph, we reserve the use of classification to describe the original definition of
the underlying groups. Hence, by a classified entity, we mean an entity whose
group of origin is known. A rule for the assignment of an unclassified entity
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to one of the groups will be referred to as a discriminant or allocation rule. In
the situation where the intention is limited to making an outright assignment
of the entity to one of the possible groups, it is perhaps more appropriate to
use the term allocation rather than discriminant to describe the rule. However,
we will use either nomenclature regardless of the underlying situation. In the
pattern recognition jargon, such a rule is referred to as a classifier.

1.3 ALLOCATION RULES

At this preliminary stage of formulating discriminant analysis, we consider the
pure decision case, where the intent is to make an outright assignment of an
entity with feature vector x to one of the g possible groups. Let r(x) denote
an allocation rule formed for this purpose, where r(x) = i implies that an en-
tity with feature vector x is to be assigned to the ith group G; (i = 1,...,g). In
effect, the rule divides the feature space into g mutually exclusive and exhaus-
tive regions Ry,...,R,, where, if x falls in R;, then the entity is allocated to
group G (i = 1,...,8).

The allocation rates associated with this rule r(x) are denoted by e;;(r),
where

eij(r) = pr{r(X) = j | X € Gi}

is the probability that a randomly chosen entity from G; is allocated to G; (i,
=1,...,8). It can be expressed as

e;,-(r) = ./R-fi(X)dV’

where v denotes the underlying measure on R? appropriate for fx(x). The
probability that a randomly chosen member of G; is misallocated can be ex-
pressed as

8
ei(r) = eij(r)

i
=LﬁMW.
R;

where R; denotes the complement of R; (i = 1,...,8).

For a diagnostic test using the rule r(x) in the context where G; denotes
the absence of a disease and G; its presence, the error rate e;;(r) corresponds
to the probability of a false positive, and e (r) is the probability of a false
negative. The correct allocation rates

en(ry=1-exn(r) and  en(r)=1-en(r)

are known as the sensitivity and specificity, respectively, of the diagnostic test.
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1.4 DECISION-THEORETIC APPROACH

Decision theory provides a convenient framework for the construction of dis-
criminant rules in the situation where an outright allocation of an unclassified
entity is required. The present situation where the prior probabilities of the
groups and the group-conditional densities are taken to be known is relatively
straightforward.

Let ¢;; denote the cost of allocation when an entity from G; is allocated
to group Gj, where ¢;j =0 fori = j = 1,...,g; that is, there is zero cost for a
correct allocation. We assume for the present that the costs of misallocation
are all the same. We can then take the common value of the c;; (i # j) to be
unity, because it is only their ratios that are important.

For given x, the loss for allocation performed on the basis of the rule r(x)
is

8
Hz,r()} =Y %0l r(v) (14.1)
i=1

where, for any 4 and v, Q[u,v] =0 for u =v and 1 for u # v. The expected
loss or risk, conditional on x, is given by

g
E[{Z,r(0)} |x] = Y n(x)QL,r(x)], (142)
i=1

since from (1.2.4),
E(Z; | x) = 7i(x).

An optimal rule of allocation can be defined by taking it to be the one that
minimizes the conditional risk (1.4.2) at each value x of the feature vector. In
decision-theory language, any rule that so minimizes (1.4.2) for some 7,...,7g
is said to be a Bayes rule. It can be seen from (1.4.2) that the conditional risk
is a linear combination of the posterior probabilities, where all coefficients are
zero except for one, which is unity. Hence, it is minimized by taking r(x) to
be the label of the group to which the entity has the highest posterior prob-
ability of belonging. Note that this is the “intuitive solution” to the allocation
problem.

If we let r,(x) denote this optimal rule of allocation, then

r@=i I @270 G =l..g i) (143)

The rule r,(x) is not uniquely defined at x if the maximum of the posterior
probabilities of group membership is achieved with respect to more than one
group. In this case the entity can be assigned arbitrarily to one of the groups
for which the corresponding posterior probabilities are equal to the maximum
value. If

pr{riX)=7;(X)} =0 ([ #j=1...,.8)
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then the optimal rule is unique for almost all x relative to the underlying mea-
sure v on R? appropriate for fx(x).

As the posterior probabilities of group membership 7;(x) have the same
common denominator fx(x), r,(x) can be defined in terms of the relative
sizes of the group-conditional densities weighted according to the group-prior
probabilities; that is,

re)=i  if mAEE)STE) (= Leog; JAD. (144)

Note that as the optimal or Bayes rule of allocation minimizes the condi-
tional risk (1.4.2) over all rules r, it also minimizes the unconditional risk

8
e(r) =Y _ E{n(X)Q[i,r(X)]}
i=1

8

1 1] /Ef,-(x)du

il

n

n;e;(r),

—

.

which is the overall error rate associated with r.

Discriminant analysis in its modern guise was founded by Fisher (1936).
His pioneering paper, which did not take the group-conditional distributions
to be known, is to be discussed later in this chapter in the context of sample-
based allocation rules. Concerning initial work in the case of known group-
conditional distributions, Welch (1939) showed for g = 2 groups that a rule of
the form (1.4.4) is deducible either from Bayes theorem if prior probabilities
are specified for the groups or by the use of the Neyman-Pearson lemma if
the two group-specific errors of allocation are to be minimized in any given
ratio. Wald (1939, 1949) developed a general theory of decision functions, and
von Mises (1945) obtained the solution to the problem of minimizing the max-
imum of the errors of allocation for a finite number of groups, which was in
the general theme of Wald’s work. Rao (1948) discussed explicit solutions of
the form (1.4.4) and also the use of a doubtful region of allocation. In a subse-
quent series of papers, he pursued related problems and extensions; see Rao
(1952, 1954) for an account. There is an extensive literature on the develop-
ment of allocation rules. The reader is referred to Das Gupta (1973) for a
comprehensive review.

Up to now, we have taken the costs of misallocation to be the same. For
unequal costs of misallocation c;;, the conditional risk of the rule r(x) is

8
Y H(X)Cirge- (1.4.5)
i#r(x)
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Let r,(x) be the optimal or Bayes rule that minimizes (1.4.5). Then it follows
that r,(x) =i if

8 -4
S nmew <Y m@es  G=Le.g i#D). (146)

h#i h#j

For g = 2 groups, (1.4.6) reduces to the definition (1.4.3) or (1.4.4) for 7,(x)
in the case of equal costs of misallocation, except that m is replaced now by
m1c12 and 7y by 3¢z . As it is only the ratio of ¢;; and ¢y that is relevant to
the definition of the Bayes rule, these costs can be scaled so that

M2 + ey = 1.

Hence, we can assume without loss of generality that ¢;; = ¢ = 1, provided
7, and 7, are now interpreted as the group-prior probabilities adjusted by the
relative importance of the costs of misallocation. Due to the rather arbitrary
nature of assigning costs of misallocation in practice, they are often taken
to be the same in real problems. Further, the group-prior probabilities are
often specified as equal. This is not as arbitrary as it may appear at first
sight. For example, consider the two-group situation, where G denotes a
group of individuals with a rare disease and G; those without it. Then, al-
though 7; and =, are disparate, the cost of misallocating an individual with
this rare disease may well be much greater than the cost of misallocating
a healthy individual. If this is so, then mc); and m;cz may be comparable
in magnitude and, as a consequence, the assumption of equal group-prior
probabilities with unit costs of misallocation in the formation of the Bayes
rule r,(x) is apt. Also, it would avoid in this example the occurrence of high-
ly unbalanced group-specific error rates. The latter are obtained if ro(x) is
formed with extremely disparate prior probabilities #; and equal costs of mis-
allocation. This imbalance between the group-specific error rates is a con-
sequence of r,(x) being the rule that minimizes the overall error rate. In
the next section, we consider the construction of rules that are optimal with
respect to other criteria. In particular, it will be seen that by specifying the
prior probabilities m; in r,(x) so that its consequent error rates are equal,
we obtain the rule that minimizes the maximum of the group-specific error
rates.

1.5 UNAVAILABILITY OF GROUP-PRIOR PROBABILITIES

In some instances in practice, the prior probabilities m; of the groups G; are
able to be assigned or reasonable estimates are available. For example, in the
context of medical diagnosis where the groups represent the possible disease
categories to which an individual is to be allocated, the prior probabilities can
be taken to be the prevalence rates of these diseases in the population from
which the individual has come. However, as to be discussed further in Section
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2.3, in some instances, the very purpose of forming an allocation rule for the
basis of a screening test is to estimate the prevalence rates of diseases. Also,
with a deterministic approach to the construction of an allocation rule, prior
probabilities are not relevant to the formulation of the problem.

We now consider the selection of suitable allocation rules where the prior
probabilities of the groups are not available. We will only give a brief cov-
erage of available results. For further details, the reader is referred to T. W.
Anderson (1984, Chapter 6), who has given a comprehensive account of the
decision-theoretic approach to discriminant analysis.

In the absence of prior probabilities of the groups, we cannot define the
risk either unconditional or conditional on the feature vector x. Hence, some
other criterion must be used. Various other criteria have been discussed by
Raiffa (1961). One approach is to focus on the group-specific unconditional
losses and to look for the class of admissible rules; that is, the set of rules that
cannot be improved upon. For an entity from Gj, the unconditional loss for a
rule r(x) is

g
L(r)=) cijpr{r(X)=j|X€ G}
j#i

g
=) cijeii(r)  (i=1...,8)

j#i
A rule r*(x) is at least as good as r(x) if

LY <) (=1,..8) (1.5.1)

If at least one inequality in (1.5.1) is strict, then r*(x) is better than r(x).
The rule r(x) is said to be admissible if there is no other rule r*(x) that is
better.

It can be shown that if m; > 0(i = 1,...,g8), then a Bayes rule is admissible.
Also, if ¢;j = 1(i # j), and

pr{fiX)=01XeGj} =0 (i,j=1....8)

then a Bayes rule is admissible. The converse is true without conditions (ex-
cept that the parameter space is finite). The proofs of these and other related
results can be found in T. W. Anderson (1984, Chapter 6) and in the refer-
ences therein.

A principle that usually leads to the selection of a unique rule is the mini-
max principle. A rule is minimax if the maximum unconditional loss is a mini-
mum. In the present context, the rule r(x) is minimax if the maximum of /;(r)
over { = 1,...,g is a minimum over all allocation rules. The minimax rule is
the Bayes procedure for which the unconditional losses are equal (von Mises,

1945).
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1.6 TRAINING DATA

We have seen in the previous section that the absence of prior probabilities for
the groups introduces a complication into the process of obtaining a suitable
allocation rule. A much more serious issue arises when the group-conditional
densities are either partially or completely unknown.

A basic assumption in discriminant analysis is that in order to estimate the
unknown group-conditional densities, there are entities of known origin on
which the feature vector X has been recorded for each. We let x,...,x, denote
these recorded feature vectors and z,, .. .,2, the corresponding vectors of zero-
one indicator variables defining the known group of origin of each. We let

yi= (x;-,z'- / (=1,..,n).
The collection of data in the matrix t defined by
t' = (Y1,.3¥n) (1.6.1)

is referred to in the literature as either the initial, reference, design, training,
or learning data. The last two have arisen from their extensive use in the
context of pattern recognition. Also in the latter field, the formation of an
allocation rule from training data of known origin is referred to as supervised
learning.

There are two major sampling designs under which the training data T may
be realized, joint or mixture sampling and z-conditional or separate sampling.
They correspond, respectively, to sampling from the joint distribution of Y =
(X',Z'Y and to sampling from the distribution of X conditional on z. The first
design applies to the situation where the feature vector and group of origin are
recorded on each of n entities drawn from a mixture of the possible groups.
Mixture sampling is common in prospective studies and diagnostic situations.
In a prospective study design, a sample of individuals is followed and their
responses recorded.

With most applications in discriminant analysis, it is assumed that the train-
ing data are independently distributed. For a mixture sampling scheme with
this assumption, x;,...,X, are the realized values of n independent and identi-
cally distributed (i.i.d.) random variables Xj,...,X, with common distribution
function Fy(x). We write

| X100 Xn % Fy.
The associated group indicator vectors zy,...,2, are the realized values of the
random variables Z,,...,Z, distributed unconditionally as
Z,..., Zn 2 Multy (1, 7). (162)
The assumption of independence of the training data is to be relaxed in Chap-
ter 13. Examples in remote sensing are given there where the assumption of
independence is not valid.
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With separate sampling in practice, the feature vectors are observed for a
sample of n; entities taken separately from each group G; (i = 1,...,g). Hence,
it is appropriate to retrospective studies, which are common in epidemiolog-
ical investigations. For example, with the simplest retrospective case-control
study of a disease, one sample is taken from the cases that occurred during
the study period and the other sample is taken from the group of individu-
als who remained free of the disease. As many diseases are rare and even
a large prospective study may produce few diseased individuals, retrospective
sampling can result in important economies in cost and study duration. Note
that as separate sampling corresponds to sampling from the distribution of X
conditional on z, it does not provide estimates of the prior probabilities n; for
the groups.

1.7 SAMPLE-BASED ALLOCATION RULES

We now consider the construction of an allocation rule from available train-
ing data t in the situation where the group-conditional densities and perhaps
also the group-prior probabilities are unknown. The initial approach to this
problem, and indeed to discriminant analysis in its modern guise as remarked
earlier, was by Fisher (1936). In the context of g = 2 groups, he proposed that
an entity with feature vector x be assigned on the basis of the linear discrim-
inant function a'x, where a maximizes an index of separation between the
two groups. The index was defined to be the magnitude of the difference be-
tween the group-sample means of a’x normalized by the pooled sample
estimate of its assumed common variance within a group. The derivation
of Fisher’s (1936) linear discriminant function is to be discussed further
in Section 3.3, where it is contrasted with normal theory-based discriminant
rules.

The early development of discriminant analysis before Fisher (1936) dealt
primarily with measures of differences between groups based on sample mo-
ments or frequency tables, and ignored correlations among different variates
in the feature vector (Pearson, 1916; Mahalanobis, 1927, 1928). One of Fisher’s
first contacts with discriminant problems was in connection with M. M. Barn-
ard’s (1935) work on the secular variation of Egyptian skull characteristics.
By 1940, Fisher had published four papers on discriminant analysis, including
Fisher (1938) in which he reviewed his 1936 work and related it to the contri-
butions by Hotelling (1931) on his now famous 72 statistic and by Mahalanobis
(1936) on his D? statistic and earlier measures of distance. Das Gupta (1980)
has given an account of Fisher’s research in discriminant analysis.

With the development of discriminant analysis through to the decision-
theoretic stage (Wald, 1944; Rao, 1948, 1952, 1954; Hoel and Peterson, 1949),
an obvious way of forming a sample-based allocation rule r(x;t) is to take it
to be an estimated version of the Bayes rule r,(x) where, in (1.4.3), the pos-
terior probabilities of group membership 7;(x) are replaced by some estimates
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f;(x; t) formed from the training data t. One approach to the estimation of the
posterior probabilities of group membership is to model the 7;(x) directly, as
with the logistic model to be presented in Chapter 8. Dawid (1976) calls this
approach the diagnostic paradigm.

A more common approach, called the sampling approach by Dawid (1976),
is to use the Bayes formula (1.2.4) to formulate the 7;(x) through the group-
conditional densities f;(x). With this approach, the Bayes rule is estimated by
the so-called plug-in rule,

r(x;t) = ro(x; F), (1.7.1)

where we now write the optimal or Bayes rule as r,(x; F) to explicitly denote
its dependence on the distribution function F(y) of Y = (X',Z')'. As before,
X is the feature observation and Z defines its group of origin. In (1.7.1), £
denotes an estimate of F that can be obtained by estimating separately each
group-conditional distribution from the training data t.

The group-prior probabilities can be estimated by the proportion of enti-
ties from each group at least under mixture sampling. Their estimation un-
der separate sampling is considered in the next chapter, commencing in Sec-
tion 2.3. Concerning the estimates of the group-conditional distribution func-
tions, a nonparametric approach may be adopted using, say, kernel or nearest-
neighbor methods. These along with other nonparametric methods are to be
discussed in Chapter 9. A commonly used approach is the parametric, which is
introduced in the next section in a general context. It is to be considered fur-
ther in Chapter 3 for the specific choice of normal models and in Chapter 7 for
nonnormal models. There is also the work, in the spirit of the empirical Bayes
approach of Robbins (1951, 1964), on the allocation of a sequence of unclas-
sified entities whose group-indicator vectors and features are independently
distributed. Results under various assumptions on the available information
on the underlying distributions have been obtained by Johns (1961), Samuel
(1963a, 1963b), Hudimoto (1968), K. Choi (1969), Wojciechowski (1985), and
Stirling and Swindlehurst (1987), among others.

1.8 PARAMETRIC ALLOCATION RULES

Under the parametric approach to the estimation of the group-conditional dis-
tributions, and hence of the Bayes rule, the group-conditional distributions are
taken to be known up to a manageable number of parameters. More specif-
ically, the ith group-conditional density is assumed to belong to a family of
densities '

{fi(x;6:) : 6 € B}, (1.8.1)

where 0; is an unknown parameter vector belonging to some parameter space
©; (i = 1,...,g). Often the group-conditional densities are taken to belong to
the same parametric family, for example, the normal.
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The density functions of X and Y = (X',Z')’ are written now as fx(x;¥)
and f(y;¥), respectively, where

¥ = (x',0') (182)

and @ is the vector consisting of the elements of ,,...,0, known a priori to
be distinct. For example, if the group-conditional distributions are assumed to
be multivariate normal with means x;,..., g and common covariance matrix
%, then 6; consists of the elements of g; and of the distinct elements of I,
and @ consists of the elements of u;,..., s, and of the distinct elements of X.
Note that since the elements of the vector =« of the mixing proportions 7; sum
to one, one of them is redundant in ¥, but we will not modify ¥ accordingly,
at least explicitly. However, in our statements about the distribution of any
estimator of ¥, it will be implicitly assumed that one of the mixing proportions
has been deleted from ¥.

With the so-called estimative approach to the choice of a sample-based dis-
criminant rule, unknown parameters in the adopted parametric forms for the
group-conditional distributions are replaced by appropriate estimates obtained
from the training data t. Hence, if r,(x; ¥) now denotes the optimal rule, then
with this approach,

r(x;t) = ro(x;\fl),

where ¥ is an estimate of ¥ formed from t. Provided &; is a consistent estima-
tor of 8; and fi(x;8;) is continuous in 8; (i = 1,...,8), then ry(x; ¥) is a Bayes
risk consistent rule in the sense that its risk, conditional on ¥, converges in
probability to that of the Bayes rule, as n approaches infinity. This is assum-
ing that the postulated model (1.8.1) is indeed valid and that the group-prior
probabilities are estimated consistently as possible, for instance, with mixture
sampling of the training data. If the conditional risk for 7, (x;\i’) converges al-
most surely to that of the Bayes rule as n approaches infinity, then it is said
to be Bayes risk strongly consistent. Consistency results for sample-based al-
location rules have been obtained by Van Ryzin (1966) and Glick (1972,
1976). Initial references on the notion of consistency for sample-based al-
location rules include Hoel and Peterson (1949) and Fix and Hodges (1951).
The latter technical report, which also introduced several important non-
parametric concepts in a discriminant analysis context, has been reprinted
in full recently at the end of a commentary on it by Silverman and Jones
(1989).

Given the widespread use of maximum likelihood as a statistical estima-
tion technique, the plug-in rule r,(x;¥) is usually formed with ¥, or at least
&, taken to be the maximum likelihood estimate. This method of estimation
in the context of discriminant analysis is to be considered further in the next
section. Since their initial use by Wald (1944), Rao (1948, 1954), and T. W. An-
derson (1951), among others, plug-in rules formed by maximum likelihood es-
timation under the assumption of normality have been extensively applied in
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practice. The estimation of r,(x;¥) by r,(x;'¥), where ¥ is the maximum
likelihood estimate of ¥, preserves the invariance of an allocation rule under
monotone transformations.

Concerning some other parametric approaches to constructing a sample-
based rule, there is the likelihood ratio criterion. The unknown vector z of
zero-one indicator variables defining the group of origin of the unclassified
entity is treated as a parameter to be estimated, along with ¥, on the basis
of t and also x. It differs from the estimative approach in that it includes
the unclassified observation x in the estimation process. Hence, in principle,
there is little difference between the two approaches although, in practice, the
difference may be of some consequence, in particular for disparate group-
sample sizes.

Another way of proceeding with the estimation of the group-conditional
densities, and, hence, of 7,(x;¥), is to adopt a Bayesian approach, which is
considered in Section 2.2. Among other criteria proposed for constructing al-
location rules is minimum distance. With this criterion, an entity with fea-
ture vector x is allocated to the group whose classified data in the training
set t is closest to x in some sense. Although minimum-distance rules are of-
ten advocated in the spirit of distribution-free approaches to allocation, they
are predicated on some underlying assumption for the group-conditional
distributions. For example, the use of Euclidean distance as a metric cor-
responds to multivariate normal group-conditional distributions with a com-
mon spherical covariance matrix, and Mahalanobis distance corresponds to
multivariate normal distributions with a common covariance matrix. The
aforementioned parametric allocation rules are discussed in more detail
with others in Chapter 3 in the context of normal theory-based discrimin-
ation.

Often, in practice, the total sample size is too small relative to the number
p of feature variables in x for a reliable estimate of @ to be obtained from the
full set t of training data. This is referred to as “the curse of dimensionality,”
a phrase due to Beliman (1961). Consideration then has to be given to which
variables in x should be deleted in the estimation of @ and the consequent
allocation rule. Even if a satisfactory discriminant rule can be formed using all
the available feature variables, consideration may still be given to the deletion
of some of the variables in x. This is because the performance of a rule fails
to keep improving and starts to fall away once the number of feature variables
has reached a certain threshold. This so-called peaking phenomenon of a rule
is discussed further in Chapter 12, where the variable-selection problem is
to be addressed. It is an important problem in its own right in discriminant
analysis, as with many applications, the primary or sole aim is not one of
allocation, but rather to infer which feature variables of an entity are most
useful in explaining the differences between the groups. If some or all of the
group-sample sizes n; of the classified data are very small, then consideration
may have to be given to using unclassified data in the estimation of 8, as
discussed in Section 2.7. '
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1.9 ASSESSMENT OF MODEL FIT

If the postulated group-conditional densities provide a good fit and the group-
prior probabilities are known or able to be estimated with some precision,
then the plug-in rule ro(x;F) should be a good approximation to the Bayes
rule r,(x; F). However, even if Fisa poor estimate of F, r,,(x;ﬁ) may still
be a reasonable allocation rule. It can be seen from the definition (1.4.4) of
ro(x;F) that for r,(x; F) to be a good approximation to r,(x;F), it is only
necessary that the boundaries defining the allocation regions,

XCmA =Tfi0, i<j=18) (19.1)

be estimated precisely. This implies at least for well-separated groups that in
consideration of the estimated group-conditional densities, it is the fit in the
tails rather than in the main body of the distributions that is crucial. This is
what one would expect. Any reasonable allocation rule should be able to al-
locate correctly an entity whose group of origin is obvious from its feature
vector. Its accuracy is really determined by how well it can handle entities of
doubtful origin. Their feature vectors tend to occur in the tails of the distribu-
tions.

If reliable estimates of the posterior probabilities of group membership
7;(x) are sought in their own right and not just for the purposes of making
an outright assignment, then the fit of the estimated density ratios f;(x)/ fj(x)
is important for all values of x and not just on the boundaries (1.9.1). It can be
seen in discriminant analysis that the estimates of the group-conditional den-
sities are not of interest as an end in themselves, but rather how useful their
ratios are in providing estimates of the posterior probabilities of group mem-
bership or at least an estimate of the Bayes rule. However, for convenience,
the question of model fit in practice is usually approached by consideration of
the individual fit of each estimated density fi(x).

Many different families of distributions may be postulated for the group-
conditional densities, although some may be difficult to deal with analytically
or computationally. The normal assumption is commonly adopted in practice.
In some cases for this to be reasonable, a suitable transformation of the fea-
ture variables is required. In many practical situations, some variables in the
feature vector x may be discrete. Often treating the discrete variables, in par-
ticular binary variables, as if they were normal in the formation of the dis-
criminant rule is satisfactory. However, care needs to be exercised if several
of the feature variables are discrete. The use of nonnormal models, includ-
ing for mixed feature vectors where some of the variables are continuous and
some are discrete, is discussed in Chapter 7, and Chapter 3 is devoted entirely
to discrimination via normal models. Practical aspects such as robust methods
of estimating group-conditional parameters, use of transformations to achieve
approximate normality, testing for normality, and detection of atypical entities
are discussed in Chapters 5 and 6.
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1.10 ERROR RATES OF ALLOCATION RULES

1.10.1 Types of Error Rates
The allocation rates associated with the optimal or Bayes rule are given by

eoji(F)=pr{ro(X;F)=j|Xe G} (,j=1,...,8), (1.10.1)

where eo;j(F) is the probability that a randomly chosen entity from G; is al-
located to G; on the basis of r,(x; F). The error rate specific to the ith group
G; is
g
eoi(F) =Y eoij(F) (i=1,....8),
i#i
and the overall error rate is

eo(F) = zg:m-eo;(F).
i=1

As seen in Section 1.4, r,(x; F) is the rule that minimizes the overall error
rate in the case of unit costs of misallocation. Consequently, eo(F) is referred
to as the optimal (overall) error rate. The optimal overall error rate can be
used as a measure of the degree of separation between the groups, as to be
considered in Section 1.12.

We proceed now to define the error rates of a sample-based rule. Let r(x;t)
denote an allocation rule formed from the training data t. Then the allocation
rates of r(x;t), conditional on t, are defined by

ecij(F;t) = pr{r(X;t) = j | X € Gy t}, (1.102)

which is the probability, conditional on t, that a randomly chosen entity from
G; is allocated to Gj (i,j = 1,...,8). The group-specific conditional error rates
are given by

g
eci(Fist) =) ecij(Fi;t)  (i=1,...,8),
i#i
and the overall conditional error rate by

8
ec(F;t) = Zmec,-(F;;t).
i=1

For equal costs of misallocation, the rule r(x;t) is Bayes risk consistent (strong-
ly consistent) if ec(F;t) converges in probability (almost surely) to eo(F), as
n approaches infinity.

On averaging the conditional allocation rates over the distribution of the
training data, we obtain the expected or unconditional rates defined as

eu;j(F) = E{ec;j(F;;T)}
=pr{rX;T)=j|Xe G} (i,j=1....,8). (1.103)
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In the case of separate sampling where t is based on a fixed number of enti-
ties from each group, we should, strictly speaking, denote these unconditional
rates as eu;j(Fi,...,Fg), rather than eu;;(F). The group-specific unconditional
error rates are given by

g
eui(F) =Y eu;(F),
i#i
and the overall unconditional error rate by

8
eu(F) = Z'lr.-eu,-(F).
i=1
We are following Hills (1966) here in referring to the ec;(F;;t) and ec(F;t)
as the conditional or actual error rates, and to the eu;(F) and eu(F) as the
unconditional or expected error rates. Before the introduction of his careful
terminology for the various types of error rates, there had been a good deal
of confusion in the literature; see the comment of Cochran (1966).

1.10.2 Relevance of Error Rates

Concerning the relevance of error rates in discriminant analysis, for allocation
problems, they play a major role in providing a measure of the global perfor-
mance of a discriminant rule. It has been suggested (Lindley, 1966) that more
attention should be paid to the unconditional losses. However, as remarked
carlier, the specification of costs in practice is often arbitrary.

On the use of error rates to measure the performance of a sample-based
allocation rule, it is the conditional error rates that are of primary concern
once the rule has been formed from the training data t. If t denotes all the
available data of known origin, then one is stuck with this training set in form-
ing a rule. An example where these error rates enter naturally into an analysis
is when the rule r(x;t) forms the basis of a diagnostic test for estimating the
prevalence rates of a disease, as covered in Section 2.3.

The average performance of the rule over all possible realizations of t is
of limited interest in applications of r(x;t). However, the unconditional error
rates are obviously relevant in the design of a rule. They relate the average
performance of the rule to the size of the training set and to the group-
conditional distributions as specified. For example, consider the case of two
groups G, and G in which the feature vector X is taken to have a multivariate
normal distribution with means g; and u;, respectively, and common covari-
ance matrix X. For separate sampling with equal sample sizes n/2 from each
of the two groups, the sample-based analogue of the Bayes rule with equal
group-prior probabilities has equal unconditional error rates. Their common
value, equal to the overall error rate for equal priors, is given by

eu(Fy~eo(F)+n ' {¢(34)/4} {pA+4(p - 1A'}, (1.104)
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where
eo(F) = #(-14)

and
A = {(p1— p2) 7 (1 — ) }? (1.105)

is the Mahalanobis (1936) distance between G; and G5. In this and subsequent
work, & and ¢ denote the standard normal distribution and density, respec-
tively. The error of the approximation (1.10.4) is of order O(n~2) (Okamoto,
1963). The derivation of (1.10.4) is discussed in Section 4.2,

From (1.10.4), we can determine approximately how large n must be for
a specified A and p in order for the unconditional error rate not to exceed
too far the best obtainable, as given by the optimal rate eo(F). For instance,
for A =1 representing two groups that are close together, » on the basis of
(1.10.4) has be to at least 40 with p = 3 for the rate to be less than 1/3 on aver-
age; that is, not more than 0.0248 in excess of the optimal rate of 0.3085. The
latter value shows that it is not possible to design an accurate allocation rule
in this case. Indeed, if n is small, then for p > 1, the error rate is not far short
of 1/2, which is the error rate for a randomized rule that ignores the feature
vector and makes a choice of groups according to the toss of a fair coin.

It can be seen from (1.10.2) and (1.10.3) that the conditional and uncondi-
tional allocation rates of a sample-based rule depend on the unknown group-
conditional distributions and so must be estimated. In the absence of any fur-
ther data of known origin, these rates must be estimated from the same data t
from which the rule has been formed. Hence, there are difficulties in obtaining
unbiased estimates of the error rates of a sample-based rule in its application
to data of unknown origin, distributed independently of the training sample.
Estimation of the error rates of allocation rules is thus a difficult but impor-
tant problem in discriminant analysis. It is taken up in Chapter 10, which is
devoted fully to it.

We have seen that the situation where some of the errors of allocation are
more serious than others can be handled through the specification of unequal
costs of misallocation in the definition (1.4.6) of the Bayes rule. Another ap-
proach would be to introduce regions of doubt in the feature space where no
allocation is made. This approach was adopted by J. A. Anderson (1969) in his
design of a rule with upper bounds specified on the errors of allocation. It was
used also by Habbema, Hermans, and van der Burgt (1974b) in their devel-
opment of a decision-theoretic model for allocation. Previously, Marshall and
Olkin (1968) had considered situations where direct assessment of the group
of origin is possible, but expensive. In these situations, after the feature vector
has been observed, there is a choice between allocation and extensive group
assessment. Another approach where there is an alternative to an outright
allocation of the entity after its feature vector has been observed was given
by Quesenberry and Gessaman (1968). Their nonparametric procedure con-
structs tolerance regions for each group, and an entity is allocated to the set
of those groups whose tolerance regions contain the feature vector x. If x falls
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within all or outside all the tolerance regions, then the entity is not allocated;
see also Gessaman and Gessaman (1972). Broffitt, Randles, and Hogg (1976)
introduced a rank method for partial allocation with constraints imposed on
the unconditional error rataes. This nonparametric approach to partial dis-
crimination in the presence of constraints is discussed in Section 9.9.

A parametric approach to constrained discrimination with unknown group-
conditional densities has been investigated by T. W. Anderson (1973a, 1973b)
and McLachlan (1977b) for the sample normal-based linear discriminant rule.
Their work is described in Section 4.5. Also, Gupta and Govindarajulu (1973)
considered constrained discrimination in the special case of univariate nor-
mal group-conditional distributions with multiple independent measurements
available on the entity to be allocated.

The error rates are not the only measure of the global accuracy of an allo-
cation rule. Breiman et al. (1984, Section 4.6) have proposed a global measure
in terms of estimates of the posterior probabilities of group membership for
a rule r(x;t) defined analogously to the Bayes rule r,(x; F). That is, r(x;t) is
equal to i if the estimated posterior probabilities satisfy

i) 2f(x0) (G =1....8 j# ). (1.10.6)

Their proposed measure of the accuracy (conditional here on the training data
t) of the rule r(x;t) is

E [i{ﬁ(x; t) - 1(X)}?| t] . (1.10.7)
i=1

They noted that if the mean-squared error (conditional on t) of the rule r(x;t)

is defined as c

(B0 - ZiY ||, (1.10.8)
>

i=1

MSE(r) = E

then it can be decomposed into the two terms,

MSE(r) = MSE(r,) + E [i{ﬁ(x;t) ~ (X)) t} ,

i=1
where g
MSE(r,) = E [Z{Ti(x) - Zi}z]
i=1

is the mean-squared error of the Bayes rule r,(x). Hence, a comparison in
terms of the accuracy (1.10.7) of different rules of the form (1.10.6) can be
made in terms of their conditional mean-squared errors. This provides a sig-
nificant advantage as, unlike (1.10.7), MSE(r) can be estimated directly from

t as 1 n g
~ D h(xi) ~ i}

j=li=1
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where z;; = (z;);, and z; is the vector of zero-one indicator variables defining
the known group of origin of the jth feature vector x; in the training data
t(j=1,..,n)

Note that by virtue of their definition, error rates are concerned only with
the allocatory performance of a rule. Hence, for rules of the form (1.10.6),
they are concerned only with the relative sizes of the estimated posterior prob-
abilities of group membership. By contrast, the criterion (1.10.7) attempts to
measure the accuracy of a rule of the form (1.10.6) by assessing the absolute
fit of the posterior probabilities of group membership.

Other ways of assessing the discriminatory performance of a fitted model
have been considered by Habbema, Hilden, and Bjerregaard (1978b, 1981);
Hilden, Habbema, and Bjerregaard (1978a, 1978b); and Habbema and Hilden
(1981).

1.11 POSTERIOR PROBABILITIES OF GROUP MEMBERSHIP

It was shown in Section 1.8 that the posterior probabilities of group member-
ship 7;(x) or their estimates may play no role in the formation of some alloca-
tion rules in the pure decision context. On the other hand with the Bayes rule
or a sample version, the relative sizes of the posterior probabilities of group
membership 7;(x) form the basis of the subsequent outright allocation to be
made. In many real problems, only a tentative allocation is contemplated be-
fore consideration is to be given to taking an irrevocable decision as to the
group of origin of an unclassified entity. For these problems, the probabilistic
allocation rule implied by the 7;(x) or their estimates provides a concise way
of expressing the uncertainty about the group membership of an unclassified
entity with an observed feature vector x.

It has been argued (Spiegelhalter, 1986) that the provision of accurate and
useful probabilistic assessments of future events should be a fundamental task
for biostatisticians collaborating in clinical or experimental medicine. To this
end, the posterior probabilities of group membership play a major role in pa-
tient management and clinical trials. For example, in the former context with
the groups corresponding to the possible treatment decisions, the uncertainty
over which decision to make is conveniently formulated in terms of the poste-
rior probabilities of group membership. Moreover, the management of the pa-
tient may be only at a preliminary stage where an outright assignment may be
premature particularly, say, if the suggested treatment decision is not clearcut
and involves major surgery on the patient. The reliability of these estimates
is obviously an important question to be considered, especially in applications
where doubtful cases of group membership arise.

If the posterior probabilities of group membership have been estimated for
the express purpose of forming an allocation rule, then their overall reliability
can be assessed through the global performance of this rule as measured by its
associated error rates. However, as emphasized by Critchley and Ford (1985),
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even if all its error rates are low, there may still be entities about which there
is great uncertainty as to their group of origin. Conversely, these global mea-
sures may be high, yet it may still be possible to allocate some entities with
great certainty. Thus, in some situations, it may not be appropriate to consider
an assessment in terms of the error rates. Indeed, as pointed out by Aitchison
and Kay (1975), in clinical medicine, the Hippocratic oath precludes any cri-
terion of average results over individual patients (such as error rates), so that
conditioning on the feature vector x is an apt way to proceed. In Chapter 11,
we consider methods for assessing the reliability of the estimates of the pos-
terior probabilities of group membership from the same training data used to
form these estimates in the first instance.

1.12 DISTANCES BETWEEN GROUPS

Over the years, there have been proposed many different measures of dis-
tance, divergence, or discriminatory information between two groups. Krzan-
owski (1983a) has put them broadly into two categories: (a) measures based
on ideas from information theory and (b) measures related to Bhattacharyya’s
(1943) measure of affinity.

Some members of category (a) are considered first. There is the Kullback—
Leibler (1951) measure of discriminatory information between two groups
with distribution functions F; and F,, admitting densities f;(x) and f5(x), re-
spectively, with respect to some measure v. This measure is given by

bk L(Fi Fy) = / FiYloglfi(x)/ f2(x)} dv.

It is a directed divergence in that it also has a directional component, since
generally, §x1.(Fi, F2) # 0x1(Fa, F1); that is, it is not a metric. Jeffreys’ (1948)
measure is a symmetric combination of the Kullback-Leibler information,

0;(F1, F2) = 6k (F1, F2) + 6k 1.(F2, Fy).
A third measure in category (a) is
bs(F1, F2) = 6k {F1, }(F1 + F2)} + 6k { P2, 3 (L + F2))),

which is Sibson’s (1969) information radius given in its simple form.

Rényi (1961) generalized both Shannon (1948) entropy and the Jeffreys—
Kullback~Leibler information by introducing a scalar parameter. Recently,
Burbea and Rao (1982), Burbea (1984), and Taneja (1983) have proposed
various alternative ways to generalize d;(F,F;). The proposed measures of
Burbea and Rao (1982) and Burbea (1984) involve one parameter, and the
measures proposed by Taneja (1983) involve two parameters. The definitions
of these generalized measures may be found in Taneja (1987). Another mea-
sure that has been proposed is the power divergence corresponding to the
power-divergence family of goodness-of-fit statistics introduced by Cressie and
Read (1984); see also Read and Cressie (1988, Section 7.4).
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Concerning members of category (b), Bhattacharyya’s original measure of
affinity is
p= / (L)) 2dv. (112.1)
Bhattacharyya (1946) subsequently proposed
88(F1,F2) = cos™!(p),

and, in unpublished notes, A. N. Kolmogorov used

Oko(F1,F3)=1-p.

Chernoff (1952) introduced the more general distance measure

de(Fu Fi) = ~iog [ {100} (a0}~ d,

where a € [0, 1]. It reduces to —logp in the special case of a = 0.5. If fi(x) and
f2(x) are multivariate normal densities with means z; and u; and covariance
matrices ¥; and ¥,, respectively, then

—logp = §(p1 - l:zz'ﬂ‘u"'l(m )
+ Hogl|SI/MZ | 122112,

where
Y= %(21 + Ba);

see, for example, Kailath (1967).
Matusita (1956) subsequently defined the distance measure

1/2
ore (Fi, F2) = [ [wnm- w/fz(X)}de]
=(2-2p)'
= {26x0(F1, F2)}'/2. (1122)

The distance (1.12.2) is sometimes referred to as Hellinger’s distance; see, for
example, Le Cam (1970) and Beran (1977). There is little practical difference
between these functionally related measures in category (b).

Additional distance measures to these defined above may be found in Ben-
Bassat (1982), who summarized findings on the current measures, including
their relationships with lower and upper bounds on the overall optimal error
rate. A recent paper on the latter topic is Ray (1989a), who considered the
maximum of the span s between the upper and lower bounds on the overall
error rate eo(F) of the Bayes rule, as provided by p. Hudimoto (1956-1957,
1957-1958) had shown that

L - $ - 4mmyp?) /% < eo(F) < (mima)/?p,
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with span
s = (mm)/2p -1 + }(1- 4mmyp?)' 2.

Ray (1989a) showed that the maximum value of s is %(\/f — 1), which can be
attained for values of 7y, and hence values of m,, lying inside the interval

{(2-V2)/4, 2+ V2)/4}.

In another related paper, Ray (1989b) considered the maximum of the span
between the upper and lower bounds on eo(F) as provided by the generalized
distance measure of Lissack and Fu (1976). This measure is

6LF(F1,F2) = / I'rl(x) - Tz(x)|°fx(x)dl/ 0<a<oo,

where 7;(x) is the posterior probability of membership of group G; (i = 1,2),
as defined by (1.2.4).
It is a generalization of the Kolmogorov variational distance defined by

/ jm fi(x) — w2 fa(x)| dv.

For a = 1, 8. r(F1,F2) reduces to this distance with
r(FF) = [ imfi) - mafawldy

=2 / max{mfi(x), T2 fo(x)} dv ~ 1
=1-2eo(F); (1.123)

see Rao (1948, 1977) and Glick (1973b).
For 0 < a <1, Lissack and Fu (1976) showed that

11 - 00 (F1 F2)} < eo(F) < §[1 - {6r(FL F2)}Y°),
and for 1< a < oo,
11— {0pr(F1, F2)}Y°) < eo(F) < 1{1- 6.5 (F, F2)}.

The lower and upper bounds coincide for a = 1 in accordance with the result
(1.12.3). For a > 1, Ray (1989b) showed that the maximum of their difference
is

%{a-—l/(a-—l) _ a—a/(a-—l)}’

and that it increases from 0 to 0.5 as « increases from 1 to infinity. He also
established that the maximum difference between the upper and lower bounds
increases from 0 to 0.5 as a decreases from 1 to 0.

An early study of distance measures was by Adhikari and Joshi (1956). A
general class of coefficients of divergence of one distribution from another
was considered by Ali and Silvey (1966), who demonstrated that the measures
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above are members of this class. Furthermore, if fi(x) and f>(x) are multivari-
ate normal densities with means g; and p3, respectively, and common covari-
ance matrix X, then every coefficient in their class is an increasing function
of the Mahalanobis distance A defined by (1.10.5). For example, the affinity p
then is given by

p = exp(—A?/8), (1.12.4)

as calculated previously by Matusita (1973). The Mahalanobis distance A has
become the standard measure of distance between two groups when the fea-
ture variables are continuous.

Atkinson and Mitchell (1981) have shown how A arises naturally from
Rao’s (1945) procedure for determining distances between members of a well-
behaved parametric family of distributions. The relevant family in this case is
the multivariate normal with common shape but varying location. Concerning
alternative models for multivariate data, a rich source of models is provided by
the class of elliptic distributions whose densities have elliptical contours and
which include the multivariate normal, multivariate Student’s ¢, and Cauchy.
The p-dimensional random variable X is said to have an elliptic distribution
with parameters p (p x 1 vector) and £ (p x p positive-definite matrix) if its
density is of the form

|| Y2 f5[{8(x, p; 2)}/?), (1.12.5)
where fs(-) is any function such that fs(j|x||) is a density on R? and
(%, ) = (x— p) B~ (x— ).

The class of elliptic densities defined by (1.12.5) can be generated by a non-
singular transformation of x from the class of spherically symmetric densities
Fs(lIx]), where ||x]| = (x'x)'/? denotes the Euclidean norm of x. It follows in
(1.12.5) that u is the mean of X and ¥ is a scalar multiple of the covariance
matrix of X. Mitchell and Krzanowski (1985) have shown that the Mahalanobis
distance A remains appropriate when the family of distributions under consid-
eration is one of the elliptic class having fixed shape but varying location. One
implication of this result noted by Mitchell and Krzanowski (1985) is that the
sample analogue.of A is the appropriate measure of the distance between the
estimates of fi(x) and f,(x) fitted using either the estimative or the predictive
approaches under the assumption of multivariate normal densities with a com-
mon covariance matrix. As discussed in the next chapter, the fitted densities
are multivariate normal in the estimative case and multivariate Student’s ¢ in
the predictive case.

Bhattacharyya’s (1946) measure §g(F;, F;), which has become known as the
angular separation between the groups, was the first measure proposed for dis-
crete feature data. An alternative approach was adopted by Balakrishnan and
Sanghvi (1968) and Kurezynski (1970), who attempted to create Mahalanobis-
like distance measures for discrete feature data. These subsumed some ear-
lier measures based on chi-squared statistics (Sanghvi, 1953). Bhattacharyya’s
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(1946) measure in the context of multinomial data has received strong support
from Edwards (1971), who provided a further measure through the stereo-
graphic projection as an approximation to the angular separation.

The affinity-based measure (1.12.1) has been developed by Matusita (1964,
1967a, 1967b, 1971, 1973). For g > 2 groups, the affinity of the group-condi-
tional distributions Fi,..., Fy is defined as

pg(Fr,..., Fg) = /{fl(")"'fg(X)}l/g dv.

The affinity p, is connected with the distance

g
|1y - yeay

between any pair of distributions F; and F;, i # j = 1,...,g. In the case of
two groups, there is a complete duality between the distance measure and the
affinity measure of Matusita (1956). However, this is not clear where there are
more than two groups (Ahmad, 1982).

Toussaint (1974b) has extended the definition of pg(F,...,F;) to

/ HAG} - {fe(x)}]dv,

where

g
ZC.‘ =],

i=1

and ¢; >0(i = 1,...,g). It reduces to pg(Fy,...,Fg) when ¢; = 1/g for i =1,
...,&- As noted by Glick (1973b), a measure of separation between Fy,...,Fy
is provided by

1—p8%(Fy,..., Fy). (1.12.6)

Since it can be shown that

P§(F1’---ng) < l}}i?p%(ﬂ’Fi)s

it implies that the separation among the g groups according to (1.12.6) is not
less than the separation between any two of them. This measure also has
the other desirable properties of a separation measure in that it is symmet-
ric in its arguments and has a minimum value of zero at F; = F, = ... = F,.
Glick (1973b) also generalized the two-group result (1.12.3) by showing that
1-2eo(F) can be viewed as a separation measure for an arbitrary number
g of groups when in equal proportions; see also Cleveland and Lachenbruch
(1974).

In a series of papers, Krzanowski (1983a, 1984a, 1987a) has studied the use
of Matusita’s (1956) measure of distance in situations where the feature vector
consists of continuous and discrete variables. His work is discussed in Section
7.4, where discriminant analysis in the case of mixed features is presented.
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CHAPTER 2

Likelihood-Based Approaches to
Discrimination

21 MAXIMUM LIKELIHOOD ESTIMATION OF GROUP
PARAMETERS

We consider maximum likelihood estimation of the vector @ containing all the
unknown parameters in the parametric families (1.8.1) postulated for the g
group-conditional densities of the feature vector X. As in the previous work,
we let t' = (y1,...,yn) denote the observed training data, where y; = (x},2;)’
for j = 1,...,n. For training data t obtained by a separate sampling scheme,
the likelihood function L(0) for & is formed by evaluating at their observed
values xy,...,X, the joint density of the feature vectors conditional on their
known group-indicator vectors 2zy,...,2,. We proceed here under the assump-
tion that y4,...,y, denote the realized values of n independent training obser-
vations. Then the log likelihood function for @ is given under (1.8.1) by

g§ n
log L(0) = Z Zz,- jlog fi(xj;8:), (2.1.1)
i=1 j=1

where log denotes the natural logarithm. An estimate & of 8 can be obtained
as a solution of the likelihood equation

8L(8)/00 = o,

or, equivalently,
BlogL(8)/08 = 0. (21.2)

27
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Briefly, the aim of maximum likelihood estimation (Lehmann, 1980, 1983) is to
determine an estimate for each n (@ in the present context) so that it defines
a sequence of roots of the likelihood equation that is consistent and asymp-
totically efficient. Such a sequence is known to exist under suitable regularity
conditions (Cramér, 1946). With probability tending to one, these roots corre-
spond to local maxima in the interior of the parameter space. For estimation
models in general, the likelihood usually has a global maximum in the interior
of the parameter space. Then typically a sequence of roots of the likelihood
equation with the desired asymptotic properties is provided by takin 9 for
each n to be the root that globally maximizes the likelihood; that is, s is the
maximum likelihood estimate. We will henceforth refer to 8 as the maximum
likelihood estimate, even though it may not globally maximize the likelihood.
Indeed, in some of the examples on mixture models to be presented, the like-
lihood is unbounded. However, for these models, there may still exist under
the usual regularity conditions a sequence of roots of the likelihood equation
with the properties of consistency, efficiency, and asymptotic normality; see
McLachlan and Basford (1988, Chapter 1).

For t obtained under mixture sampling, the log likelihood function for ¥ =
(»n',8') is given by

log L(0) + 23: iz,-j logm;.

i=1 j=1

It follows from consideration of the likelihood equation for ¥ that it is esti-
mated by
¥ = (#',0),

where @ is defined as before and # = (ty,...,Mg), and where

n
’; = Zz,-;/n
j=1

=m/n ({(=1..8)

Given that a statistical model is at best an approximation to reality, it is
worth considering here the behavior of the maximum likelihood estimate o if
the postulated parametric structure for the group-conditional densities is not
valid. Suppose now that the group-conditional densities f;(x) do not belong to
the parametric families postulated by (1.8.1). Working with a mixture sampling
scheme, the true mixture density of X can be expressed as

11
fx@) =3 0 fi(x),
i=1

where ;, denotes the true value of w; (i = 1,...,g)
As seen previously, regardless of whether a mixture or separate sampling
scheme applies, 8 is obtained by consideration of the same function log L(8)
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given by (2.1.1). Following Hjort (1986a, 1986b), we have that as n — oo, 1/n
times log L(@) tends almost surely to

iz:;m',a { / fi(x)logfi (x;oi)} dv. 2.1.3)

Suppose there is a unique value of 8,0,, that maximizes (2.1.3) with respect to
6. Then this value also minimizes the quantity

» |/ reonostrysiexonas].

i=1

which is a mixture in the true proportions 7y,,...,%,,, of the Kullback-Leibler
distances between the true and the postulated group-conditional densities
of X. ‘

Under mild regularity conditions, it follows that if  is chosen by maxi-
mization of log L(#), it tends almost surely to 8,. Hence, the maximum likeli-
hood estimator @ under the invalid model (1.8.1) is still a meaningful estima-
tor in that it is a consistent estimator of 8,, the value of @ that minimizes the
Kullback-Leibler distances between the actual group-conditional densities of
X and the postulated parametric families, mixed in the proportions in which
the groups truly occur.

2.2 A BAYESIAN APPROACH

A review of the Bayesian approach to discriminant analysis has been given by
Geisser (1966, 1982). This approach is based on the concept of the predictive
density of the feature vector X. The predictive density of X within group G, is
defined by

1Oty = / fix;0)p@|6)dd  (i=1,..8), @21)

where p(@|t) can be regarded either as some weighting function based on t
or as a full Bayesian posterior density function for @ based on t and a prior
density p(9) for 6. In the latter case,

P@|t) x p(9)L(6;1),

where L(@;t) denotes the likelihood function for @ formed from the train-
ing data t. Note that for economy of notation, we are using p(-) here as a
generic symbol for a density function. In the subsequent discussion, the vector
#x = (%y,...,7g) defining the group-prior probabilities is taken to be specified,
so that the vector ¥ of parameters to be estimated is reduced to 6. We there-
fore write the posterior probability of membership of the ith group 7;(x; ¥) as
Ti(x; 77,8).
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The predictive estimate of 7;(x;,0) is obtained by substituting the pre-
dictive estimates of the group-conditional densities in its defining expression
(1.2.4) for 7i(x; w,@) to give

1P t) = mf P/ IO G=1,...8), (222)
where

FPxt) = Zw T )
j=l

According to Aitchison and Dunsmore (1975, Chapter 11), the predictive
approach was first presented explicitly by Geisser (1964) for multivariate nor-
mal group-conditional distributions, and in Dunsmore (1966). For moderately
large or large-size training samples, the predictive and estimative approaches
give similar results for the assessment of the posterior probabilities of group
membership. However, for small sample sizes, there can be dramatic differ-
ences. This appears to have been first noted by Aitchison and Kay (1975).
These two approaches are to be compared under normal models in Section
3.8. It will be seen there that if the estimates produced by the estimative
approach are corrected for bias, then the differences between the two ap-
proaches are considerably reduced (Moran and Murphy, 1979). For further
discussion of the estimation of 7;(x;,8) in a Bayesian framework, the reader
is referred to Critchley, Ford, and Rijal (1987).

We now consider the semi-Bayesian approach as adopted by Geisser (1967)
and Enis and Geisser (1970) in the estimation of the log odds under normal
models for g = 2 groups. With the semi-Bayesian approach to the estimation
of 7;(x; »,8), its posterior distribution is calculated on the basis of the infor-
mation in ¢t but not x. The mean of this posterior distribution so calculated is
given by

/'r,'(x; n,)p@|)de (i=1,..,8). (2.23)
Corresponding to a squared-error loss function, (2.2.3) can be used as an
estimate of 7;(x;n,8). By using different loss functions, other estimates of
7;(x; 7,@) can be obtained, for example, the median or the mode of the poste-
rior distribution of the probability of membership of G;.

It is of interest to contrast the estimate (2.2.3) of 7;(x; x,0) with the predic-
tive estimate (2.2.2). Following Rigby (1982), we have from (2.2.1) and (2.2.2)
that

oo B0 _ [ mfi(s0)p@]9)
W= Ty ) T pwln

_ [ mfi(x;0)p(x,0(t) . [ .
_/ p10,0p(x () 20 = / 7i(x; 7,0)p(0 | x;t)d8.

(2.2.4)
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It can be seen from (2.2.4) that the predictive estimate of 7;(x,=;8) corre-
sponds to a fully Bayesian approach, as it averages 7;(x;#,8) over the pos-
terior distribution of @ given both t and x. On comparing it with the semi-
Bayesian estimate of 7;(x;#,8) given by (2.2.3), it follows that these two esti-
mates will be practically the same if the information provided by x about 0 is
negligible compared to that provided by t.

2.3 ESTIMATION OF GROUP PROPORTIONS

We consider now the problem where the aim is to estimate the proportions
1,...,Mg in which a mixture G of g distinct groups Gy, ..., G, occur. McLach-
lan and Basford (1988, Chapter 4) have given several examples where this
problem arises. One example concerns crop-acreage estimation on the basis of
remotely sensed observations on a mixture of several crops; see, for instance,
Chhikara (1986) and the references therein. The problem is to estimate the
acreage of a particular crop as a proportion of the total acreage. Training data
are available on each of the crops to provide estimates of the unknown param-
eters in the distribution for an individual crop. Another example concerns the
case study of Do and McLachlan (1984), where the aim was to assess the rat
diet of owls through the estimation of the proportion of each of seven species
of rats consumed.

If the training data t have been obtained by sampling from the mixture of
interest G, then the proportion 7; can be estimated simply by its maximum
likelihood estimate n;/n, where n; denotes the number of entities known to
belong to G; (i = 1,...,8). Therefore, we consider the problem in the context
where the n; provide no information on the proportions m;. This would be
the case if the training data were obtained by sampling separately from each
of the groups or from some other mixture of these groups. In order to ob-
tain information on the desired proportions 7;, it is supposed that there is
available a random sample of size m, albeit unclassified, from the relevant
mixture G. We let x; (j =n+1,...,n+ m) denote the observed feature vec-
tors on these m unclassified entities having unknown group-indicator vectors
zi(j=n+1,.,n+m).

An obvious and computationally straightforward way of proceeding is to
form a discriminant rule r(x;t) from the classified training data ¢, and then to
apply it to the m unclassified entities with feature vectors x; (j =n+1,...,n +
m) to find the proportion assigned to the ith group G; (i = 1,...,g). That is,
if m; denotes the number of the m unclassified entities assigned to Gj, then
a rough estimate of #; is provided by m;/m (i = 1,...,8). Unless r(x;t) is an
infallible rule, m;/m will be a biased estimator of ;. For g =2, it can be
easily seen that, conditional on t,

E(my/m) = mecy + mecy (23.1)

and
E(my/m) = mec1z + mecy, (23.2)
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with either equation giving the so-called discriminant analysis estimator of m,

#1p = (my/m — ecy)/(ec1y — ecay),

as an unbiased estimator of 7. In the equations above, the conditional al-
location rates of r(x;t), ec;;(Fj;t), are written simply as ec;; for convenience
(i,j = 1,2). If #p is outside [0,1], then it is assigned the appropriate value zero
or one.

On considering (2.3.1) and (2.3.2) simultaneously, #1p and f2p = 1-#p
can be expressed equivalently as

#p = J Y (my/m, my/m), (23.3)

€C11 €C
J B ( ) )
€C1y ecn

The result (2.3.3) can be generalized to g > 2 groups to give

where #p = (%1p,f2p)' and

#p =J"Ymy/m,...,mg/m), (2.3.9)

where the (i, j)th element of the confusion matrix J is equal to

(J)x] = e€Cj; (iyj = 17'-'sg)'

According to Macdonald (1975), #p seems to have been first suggested by
Worlund and Fredin (1962). For known conditional allocation rates ec;;(F;;t),
#p is the maximum likelihood estimate of = = (my,...,m,)' based on the pro-
portions m;/m (i = 1,...,g), and is unbiased. However, in practice, these con-
ditional allocation rates are unknown and must be estimated before #p can
be calculated from (2.3.4).

It can be seen that if a nonparametric rule r(x;t) is used and the condi-
tional allocation rates are estimated nonparametrically, then the discriminant
analysis estimator #p can be made distribution-free. In this sense, it should be
more robust than a parametric estimator of =, for example, the maximum like-
lihood estimator # whose computation is to be described in Section 2.7. The
latter, which is based on the classified training data t in conjunction with the
unclassified data x; (j = n+ 1,...,n + m), is of course fully efficient if the as-
sumed parametric structure holds. Ganesalingam and McLachlan (1981) have
investigated the efficiency of #p relative to # in the case of two groups in
which the feature vector has a multivariate normal distribution with a com-
mon covariance matrix. They concluded that the relative efficiency of #p can
be quite high provided the mixing proportions are not too disparate and n is
not too small relative to m. More recently, for the same normal model, La-

woko and McLachlan (1989) have studied the bias of #;p as a consequence of
using estimates of the conditional allocation rates in its formation. They also

considered the case where the classified training observations are correlated.
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There are other methods of estimation of the mixing proportions. For a
mixture of g = 2 groups, 7; can be estimated also by

tim = {(K1 — %2)'S; 1 (X — X2)}/ {(%1 — X2)' S (%1 — %2)},

where
n
Xi=Y zxi/m (i=12),
j=t
n+m
iu = Z X,/m,
j=n+l
and
n+m
Su= Y (% —Ku)xj —Ku)/(m - 1),
j=n+1

The estimator #1p can be viewed as the moment estimator of m, after trans-
formation of the original feature data x; from R? to R by

XSl ®-%) (=1...,n+m)

The asymptotic relative efficiency of #1p has been derived by McLachlan
(1982) for a mixture of two multivariate normali distributions with a common
covariance matrix.

There are also minimum-distance estimators. The discriminant analysis,
maximum likelihood, and moment estimators of the mixing proportions can all
be obtained by using the method of minimum distance through an appropriate
choice of the distance measure. A review of these various estimators of the
mixing proportions can be found in McLachlan and Basford (1988, Chapter 4).

2.4 ESTIMATING DISEASE PREVALENCE

A situation where the model in the previous section is appropriate occurs in
epidemiological studies, where an important aim is to estimate disease preva-
lence within a population. The groups represent the possible disease cate-
gories. Without some idea of prevalence, it is very difficult to plan prospective
studies, to interpret retrospective studies, or to make rational health planning
decisions; see Rogan and Gladen (1978). It is often impracticable to examine
the entire population and so a random sample is taken. Further, it is usually
too expensive and perhaps too arduous an experience for the individual being
tested for a definitive classification of the disease to be made. Also, even if ex-
haustive physical and clinical tests were carried out, a true diagnosis may still
not be possible. Hence, typically, the sample drawn from the population is al-
located to the various groups on the basis of some straightforward but fallible
diagnostic test, whose error rates are assessed by applying it to patients with
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known disease classification. Screening programs often use tests in this way.
Even if the prime purpose of the program is finding cases of disease rather
than estimating prevalence, the performance of the test is still of interest.

The performance of a screening test designed to detect the presence of a
single disease can be evaluated in terms of the sensitivity and specificity of
the diagnostic rule r(x;t), which are given conditional on t by ecy;(F>;t) and
ec11(F1;t), respectively. Here the two groups G; and G refer to the absence
or presence of the disease. An individual is assigned to G, or G, according as
to whether the test is negative or positive; that is, according as r(x;t) equals 1
or 2. We can write the sensitivity of the test (conditional on t) as

pr{r(X;t)=2|Z; =1}, (24.1)

and the specificity as
pr{r(X;t)=1]2; =1},

where Z; is one or zero according as the individual with feature vector x be-
longs to G; or not (i = 1,2).

It is sometimes mistakenly assumed in the confusion over conditional prob-
abilities that, because a test has a high sensitivity as given by the conditional
probability (2.4.1), the reverse conditional probability

pr{Z; =1} r(x;t) = 2} (24.2)

must also be high. This is what Diaconis and Freedman (1981) have referred to
in a general context as the “fallacy of the transposed conditional.” Although
a test may have high sensitivity, the conditional probability (2.4.2), called the
predictive value of a positive test (PVP), may be small. Hence, the usefulness
of a test is often evaluated in terms of the PVP and the PVN, where the latter
denotes the predictive value of a negative test, defined by

pr{Z, = 1| r(x;t) =1}.
By Bayes theorem, the PVP can be expressed as
pr{Z; = 1| r(x;t) = 2} = mecy/{mecn + (1-m)(1—ecy1)}, (24.3)

with a similar expression for the PVN. In (2.4.3), the sensitivity and speci-
ficity of the test are abbreviated to ecy; and ecy, respectively. It can be seen
from (2.4.3) that in order to evaluate the PVP and PVN of a test, the disease
prevalence rate , as well as the sensitivity and specificity, must be assessed.

Recently, Gastwirth (1987) established the asymptotic normality of the esti-
mator of the PVP as given by (2.4.3), where ; is estimated according to (2.3.3)
and where the sensitivity and specificity are replaced by independent binomial
estimators formed by applying the test to subsequent data of known origin.
A nonmedical example where the abovementioned methodology is applicable
is with the use of lie detectors and the associated issues of veracity and ad-
missibility of polygraph evidence in judicial and preemployment screening of
applicants.
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Where not explicitly stated, it is implicitly assumed in the above that the
results are conditional on the training data t. In some screening applications,
the diagnostic test may be based on a rather sophisticated discriminant rule
r(x;t) formed from t. For example, for the screening of keratoconjunctivitis
sicca in rheumatoid arthritic patients, J. A. Anderson (1972) proposed a di-
agnostic test based on ten symptoms. However, with many screening tests, in
particular presymptomatic ones, the diagnostic test is based on some ad hoc
rule, generally using only one feature variable. In the latter situation, the vari-
able is usually measured on a continuous scale and a threshold is imposed to
define a positive test. The training data t are used then solely to assess the
performance of the test for a given threshold. In an example considered by
Boys and Dunsmore (1987), patients were designated as either malnourished
or nonmalnourished according as their plasma cholesterol levels were less or
greater than some threshold.

The choice of threshold in such tests depends on the role in which they
are applied. With the ELISA test applied in the context of routine screening
of blood donations for AIDS, the threshold for declaring the ELISA assay to
be positive is set so that the test is highly sensitive at the expense of having
rather low specificity. A high specificity is achieved subsequently by following
a positive ELISA with a confirmatory Western blot test (Weiss et al., 1985).

Hand (1986¢, 1987a) cautioned that, as the aims of screening and estima-
tion of disease prevalence are somewhat different, the threshold should be
chosen with the particular aim in mind. For prevalence estimation, the aim is
to minimize the variance of #,, whereas with screening, the aim is to maximize
the accuracy of the rule, that is, some function of the sensitivity and specificity,
such as their sum. He investigated the choice of threshold separately for each
aim, but using a different sampling scheme to that taken above. In his scheme,
the entities of known origin were part of the unclassified data. They were ob-
tained by sampling from each lot of m; entities assigned to G; by the fallible
diagnostic test and then using an infallible rule to classify them correctly.

2.5 MISCLASSIFIED TRAINING DATA

It is usually assumed in applications of discriminant analysis that the train-
ing entities are correctly classified. The classification of a training set is of-
ten expensive and difficult, as noted in the previously presented examples on
discriminant analysis in the context of medical diagnosis. Another applicable
example concerns the classification of remotely sensed imagery data. An im-
portant consideration besides the expense and difficulty in procuring classified
training observations is that the actual classification may well be subject to er-
ror. Indeed, the concept of a true diagnosis is probably inappropriate in some
medical fields, and certainly in some such as psychiatry. In the remote-sensing
example, say, of crop patterns, the classification of the training pixels may be
undertaken visually and hence be prone to error.
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In considering now the possibility of misclassification in the training set, we
let a;(x) denote the probability that an entity from group G; and with feature
vector X is misclassified in the formation of the training set (i = 1,...,g). The
misclassification is said to be nonrandom or random depending on whether
the a;(x) do or do not depend on the feature vector x. The simple error struc-
ture of random misclassification,

aX)=a; (i=1,...8) (2.5.1)

may rise, for example, where the classification of the training data is made
on the basis of machine output (for example, X-ray interpretation or blood
test results) and either the output or interpretation for each entity is inaccu-
rate in a way that is independent of its feature vector x. In this same context
of medical diagnosis, nonrandom misclassification should be more applicable
than random if the classification of the patients in the training set was carried
out by clinicians using symptoms closely related to the feature variables.

In his initial work on this problem, Lachenbruch (1966) considered the ef-
fect of random misclassification of training entities on the error rates of the
sample linear discriminant rule obtained by plugging in the usual maximum
likelihood estimates of the parameters in the case of two multivariate normal
group-conditional distributions with a common covariance matrix. McLach-
lan (1972a) derived the asymptotic theory for this model under the additional
assumption that one group is not misclassified. For instance, it is often reason-
able to assume in the formation of a diagnostic rule that the training sample of
healthy patients are all correctly classified. Lachenbruch (1979) subsequently
showed that whereas random misclassification is not a serious issue for the
sample normal-based linear discriminant rule if a; and az are similar, it is
for its quadratic counterpart. Lachenbruch (1974) and Chhikara and McKeon
(1984) considered the problem under more general misclassification models
to allow for nonrandom misclassification. The general conclusion is that ig-
noring errors in the classification of the training set can be quite harmful for
random misclassification. For nonrandom misclassification, the error rates of
the sample discriminant rule appear to be only slightly affected, although the
optimism of its apparent error rates is considerably increased.

Random misclassification of training entities has been investigated further
by Chittineni (1980, 1981) and by Michalek and Tripathi (1980), who also con-
sidered the effect of measurement error in the feature variables. More re-
cently, Grayson (1987) has considered nonrandom misclassification of training
entities in the context of two groups G; and G, representing healthy and un-
healthy patients, respectively. He supposed that the health status of a patient
as specified by the group-indicator vector z can only be ascertained unreliably.
Recall that z; = (z); is one or zero, according as the entity belongs or does
not belong to G; (i = 1,2). We let Z denote the valde of z under the uncertain
(noisy) classification. Corresponding to the postérior probability that a patient
with feature vector x belongs to Gj, we let 7;(x) be the probability that the ith
element Z; of Z is one for a patient with feature vector x (i = 1,2). Under very
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general conditions on the misclassification errors,
a1(x) = pr{Z; = 0| Z; = 1,x}

and i
ax(x) =pr{Z, =0| Z; = 1,x},

Grayson (1987) showed that the likelihood ratio for arbitrary group-condition-
al densities is not ordinally affected. That is, logit{7;(x)} is a monotonic func-
tion of logit{7i(x)}. Thus, the class of admissible decision rules is unaffected
by this error structure in the classification of the training data. As an illustra-
tion of a consequence of the monotonicity of the scales, Grayson (1987) gave
an example where there is a need to select the 40 most ill patients (only 40
hospital beds being available). The same patients would be chosen regardless
of whether the 7;(x) or the ¥;(x) were used.

2.6 PARTIALLY CLASSIFIED TRAINING DATA

In this section, we consider the problem of forming a discriminant rule, using
classified data in conjunction with data on entities unclassified with respect to
the g underlying groups Gi,...,G,;. We will see there is a number of separate
problems in discriminant analysis that fall within this context.

Consistent with our previous notation, we let t’ = (¥1,...,¥n) contain the
information on the classified entities, where y; = (x;,z;), and z; denotes the
known group-indicator vector for the jth entity wnt‘n observed feature vector
x; (j = 1,...,n). It is supposed that in addition to the classified training data t,
there are available the feature vectors x; (j = n+ 1,...,n + m) observed on m
entities of unknown origin. The latter are assumed to have been drawn from
a mixture G of Gy,..., G in some unknown proportions 7y,...,7s. We let

= (xIH-ly' --vxn+m)'

The unknown group-indicator vector associated with the unclassified feature
vector X; is denoted by z; (j =n+1,...,n+ m). If the aim is solely to make
a tentative or outright allocation of the m unclassified entities to Gi,..., Gy,
then we can proceed as discussed in the previous sections. A discriminant
rule r(x;t) can be formed from the classified training data t and then applied
in turn to each of the m unclassified entities with feature vector x; (j =n +
1,...,n+ m) to produce an assessment of its posterior probabilities of group
membership and, if required, an outright allocation.

However, in some situations, it is desired to construct a discriminant rule
using the unclassified data t, in conjunction with the classified training set
t. The updating problem falls within this framework. The observing of fea-
ture vectors and the subsequent allocation of the corresponding unclassified
entities is an ongoing process and, after a certain number of unclassified ob-
servations has been obtained, the discriminant rule is updated on the basis of
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all the observed data. In most updating problems, it is the allocation of unclas-
sified entities subsequent to those whose features have been observed that is of
prime concern. Those unclassified entities whose features have been observed
may be reallocated as part of the updating process, but their new allocations
are generally of no practical consequence in their own right. The latter would
be the case if irrevocable decisions had to be made on the basis of the original
allocations. For instance, in medical diagnosis, one does not always have the
luxury of being able to wait until further information becomes available before
making a decision.

If there are sufficiently many classified observations available from each of
the groups, then updating may not be a worthwhile exercise: However, often
in practice, there are impediments to the procurement of entities of known
origin, which limit the number of classified entities available. We have seen in
the examples on medical diagnosis given in the previous sections that it may
be physically inconvenient to the patient, as well as very expensive, to attempt
to make a true diagnosis of the diseased status. In such situations where there
is an adequate number of unclassified entities whose features can be measured
easily, updating provides a way of improving the performance of the discrim-
inant rule formed solely from the limited classified training data. Of course,
as an unclassified observation contains less information than a classified one,
many unclassified entities may be needed to achieve an improvement of prac-
tical consequence; see Ganesalingam and McLachlan (1978, 1979), O’Neill
(1978), and McLachlan and Ganesalingam (1982). Their work was obtained
under the assumption of multivariate normality with a common covariance
matrix for the two group-conditional distributions. Amoh (1985) later consid-
ered the case of inverse normal group-conditional distributions.

Updating procedures appropriate for nonnormal group-conditional densi-
ties have been suggested by Murray and Titterington (1978), who expounded
various approaches using nonparametric kernel methods, and J. A. Anderson
(1979), who gave a method for the logistic discriminant rule. A Bayesian ap-
proach to the problem was considered by Titterington (1976), who also consid-
ered sequential updating. The more recent work of Smith and Makov (1978)
and their other papers on the Bayesian approach to the finite mixture problem,
where the observations are obtained sequentially, are covered in Titterington,
Smith, and Makov (1985, Chapter 6).

Another problem where estimation on the basis of both classified and un-
classified data arises is in the assessment of the proportions in which g groups
occur in a mixture G. This problem was discussed in Section 2.3. It is supposed
that the classified data have been obtained by a scheme, such as separate sam-
pling, under which they provide no information on the mixing proportions. For
the purposes of estimation of the latter, a random but unclassified sample
is available from the mixture G. The mixing proportions can be estimated
then by the discriminant analysis estimator (2.3.4). However, this estimator
is not fully efficient in cases where a parametric family is postulated for the
group-conditional distributions. Hence, in such cases, maximum likelihood es-
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timation of the mixing proportions on the basis of both t and t,, might be con-
sidered.

A third type of problem where estimation on the basis of both classified
and unclassified data arises is in situations where the classified data from each
group do not represent an observed random sample. This is pursued further in
Section 2.8, where it is shown that maximum likelihood estimation is effected
by consideration of the same likelihood as in the case of a randomly classified
sample.

2.7 MAXIMUM LIKELIHOOD ESTIMATION FOR PARTIAL
CLASSIFICATION

Whatever the reason for wishing to carry out estimation on the basis of both
classified and unclassified data, it can be undertaken in a straightforward man-
ner, at least in principle, by using maximum likelihood to fit a finite mixture
model via the EM algorithm of Dempster, Laird, and Rubin (1977).

With this parametric approach to discrimination, the problem is to fit the
mixture model

8
fx(x®) = 7 fi(x;6;) (27.1)
i=1
on the basis of the classified training data t and the unclassified feature vectors
Xj(j=n+1,...,n+m)int,. Asbefore, ¥ = (n',0')' denotes the vector of all
unknown parameters, where 0 consists of those elements of 6,...,8; that are
known a priori to be distinct.

For classified training data t obtained by mixture sampling, the log likeli-
hood for ¥ formed from t and t, is given by

4 n
log L(¥) = Z Z z;jlog{m; fi(x;;6:)}

i=1 j=1
n+m

+ Y logfx(x;;%). (2.7.2)

j=n+1

As discussed in McLachlan and Basford (1988, Chapter 2), an estimate ¥ of
¥ is provided by an appropriate root of the likelihood equation

dlog L(¥)/0%¥ =0,

Since they have described in some detail the application of the EM algorithm
to this problem, only a brief outline is given here. The complete data are taken
to be t,t,, and the unobserved z; (j = n + 1,...,n + m). For this specification,
the complete-data log likelihood is

n+m g n+m

g
logLc (%) = Z Z z;;log fi(x;;0:) + Z Z zjjlogm;.

i=1 j=1 i=1 j=1
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The EM algorithm is applied to this model by treating z; (j =n+1,...,n +
m) as missing data. It is easy to program and proceeds iteratively in two steps,
E (for expectation) and M (for maximization). Using some initial value for ¥,
say, ¥, the E-step requires the calculation of

H(¥,¥®) = E{logLc(¥) | t,t,; ¥},

the expectation of the complete-data log likelihood log L (¥), conditional on
the observed data and the initial fit ¥ for ¥. This step is effected here
simply by replacing each unobserved indicator variable z; by its expectation
conditional on x;, given by

E(Zij | x;; ¥ =1,x;; @) (i=1,...,8).

That is, z;; is replaced by the initial estimate of the posterior probability
that the jth entity with feature vector x; belongs to G; (i = 1,...,8; j=n+
L..,n+m).

On the M-step first time through, the intent is to choose the value of ¥,
say, (), that maximizes H(¥,¥®), which, from the E-step, is equal here
to log Lc (W) with each z;; replaced by 7(x;; % @) for j=n+1,...,n+m. It
leads, therefore, to solving the equations

P = {n,- + ”}f r,-(x,-;\l'<°))}/(n+m) (i=1,..8) (27.3)

j=n+l

and
14 n
3 zij0l0g fi(x;:6")/08
i=1 j=1
8 n+m

)03 nx ¥ O)logfix;;6)/00 =0, (27.4)

i=l j=n+l

where dlog f,'(x,-;oi(l))/ 86 denotes dlog fi(xj;0;)/ 08 evaluated at the point 8; =

0,51). In the case where the classified entities have been sampled separately
from each group, the equation

n+m

10 = 32 nse®ym

j=n+1

and not (2.7.3), is appropriate for the estimate of 7; (i = 1,...,8).

One nice feature of the EM algorithm is that the solution to the M-step
often exists in closed form, as is to be seen for mixtures of normals in Section
3.8, where the actual form of (2.7.4) is to be given.

The E- and M-steps are alternated repeatedly, where in their subsequent
executions, the initial fit ¥ is replaced by the current fit for ¥, say, ¥&*-1),
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on the kth cycle. Another nice feature of the EM algorithm is that the like-
lihood for the incomplete-data specification can never be- decreased after an

EM sequence. Hence,
L(E*D) > L(w®),

which implies that L(¥®)) converges to some L* for a sequence bounded
above. Dempster et al. (1977) showed that if the very weak condition that
H(¢,¥) is continuous in both ¢ and ¥ holds, then L* will be a local max-
imum of L(W¥), provided the sequence is not trapped at some saddle point.
A detailed account of the convergence properties of the EM algorithm in a
general setting has been given by Wu (1983), who addressed, in particular, the
problem that the convergence of L(¥®)) to L* does not automatically imply
the convergence of ¥*) to a point ¥*. Louis (1982) has devised a procedure
for extracting the observed information matrix when using the EM algorithm,
as well as developing a method for speeding up its convergence. Meilijson
(1989) has since provided a unification of EM methodology and Newton-type
methods; see also McLachlan and Basford (1988, Section 1.9), and Jones and
McLachlan (1990b).

Let ¥ be the chosen solution of the likelihood equation. It is common in
practice to estimate the inverse of the covariance matrix of a maximum like-
lihood solution by the observed information matrix, rather than the expected
information matrix evaluated at the solution; see Efron and Hinkley (1978).
The observed information I(¥) for the classified and unclassified data com-
bined is equal to

I(¥) = L(¥) + L(¥),
where

8 n
L(®)=-) Y z;0log{m fi(x;;0,)} /0¥ O¥'

i=1 j=t

evaluated at the point ¥ = ¥ is the observed information matrix for the clas-
sified data and
n+m
L(¥) =~ ) 8*logfx(x;;¥)/0% 0¥’

j=n+l

at ¥ = ¥ is the observed information matrix for the unclassified data.

It is computationally attractive to compute I(¥) using an approximation
that requires only the gradient vector of the complete-data log likelihood. This
approximation is

I($) ~ Z{aloch(\fl;xj,z,-)/a\I'}{Oloch(\f';x,-,zj)/a\I'}'
j=1

+ Y {dlogLc(¥;x),2))/ 0% }{dlog Lc(¥;x),2;)/ OFY',

j=n+1
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where the unknown group-indicator vector z; for the unclassified feature vec-
tor x; (j = n+1,...,n + m) is replaced by the vector of its estimated posterior
probabilities of group membership. That is, aloch(\fl;x,-,i,-)/a\Il is equal to
dlogLc(¥;x;,27)/0% evaluated at

Zj = (Tl(x,';\i’),- ")Tl(xj;‘i'))'

for j=n+1,...,n+m. Here Lc(¥;xj,z;) denotes the complete-data like-
lihood for ¥ when formed from just the jth observation y; = (x},z})', j =
1,...,n + m. Expressions for the elements of the gradient vector of log Lo (¥;
X;,z;) are given in McLachlan and Basford (1988, Section 2.4) in the case of
multivariate normal group-conditional distributions.

Maximum likelihood estimation is facilitated by the presence of data of
known origin with respect to each group in the mixture. For example, there
may be singularities in the likelihood on the edge of the parameter space in
the case of group-conditional densities that are multivariate normal with un-
equal covariance matrices. However, no singularities will occur if there are
more than p classified observations available from each group. Also, there
can be difficulties with the choice of suitable starting values for the EM algo-
rithm. But in the presence of classified data, an obvious choice of a starting
point is the maximum likelihood estimate of ¥ based solely on the classified
training data ¢, assuming there are enough classified entities from each group
for this purpose. In the case where t provides no information on my,...,7,, an
initial estimate of w; is provided by the estimator (2.3.3).

In fitting the mixture model (2.7.1) to the partially classified data, it would
be usual to compare the three fits, ¥©®, ¥,, and ¥, where ¥® and ¥, de-
note the maximum likelihood estimates of ¥ computed from t and t,, respec-
tively. Also, if the group memberships of the m unclassified entities are still
of interest in their own right at the updating stage, then particular consider-
ation would be given to a comparison of the fits 7;(x;; ¥©®), 7;(xj;¥,), and
-r,-(x,-;\fl) for the posterior probabiities of group membership ({ = 1,...,g; j =
n+1,...,n+ m). In the case where t provides no information on the mixing
proportions, we can form an estimate of only  on the basis of t. In any event,
it is the updating of the estimate of @ containing the parameters of the group-
conditional densities that is of primary concern. In Section 6.7, we give an
example on updating in which each unclassified entity has its own, but known,
prior probabilities of group membership.

A comparison of the three abovementioned estimates of ¥, or at least of
0, is of much interest in those situations where it is felt that the groups from
which the classified entities have been drawn have undergone some change
before or during the sampling of the unclassified entities. This change might be
able to be explained by the fact there was quite a lengthy period between the
sampling of the classified and unclassified entities. For example, the problem
may be to identify the sex of fulmar petrel birds on the basis of their bill length
and bill depth. These measurements on birds of known sex may be available
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only from old museum records for a population of birds captured many years
ago.

The question of whether a given unclassified entity is atypical of each of
the g specified groups is discussed in Section 6.4. However, the unclassified
entities may well be typical with respect to at least one of the groups, yet they
may well be from a mixture of groups that are different from those that are
the source of the classified entities. This last possibility is much more difficult
to address.

We note here in passing that the EM algorithm also provides a way of
carrying out maximum likelihood estimation where some of the entities in the
training set have observations missing on their feature variables; see the mono-
graph of Little and Rubin (1987) for an account of this approach in a general
statistical context. Also, Little (1988) has considered robust estimation of the
mean and covariance matrix from data with missing values. Studies on the
missing data problem in the context of discriminant analysis include those by
Chan and Dunn (1972, 1974); Srivastava and Zaatar (1972); Chan, Gilman,
and Dunn (1976); Little (1978); and, more recently, Hufnagel (1988). Black-
hurst and Schluchter (1989) and Fung and Wrobel (1989) have considered this
problem for the logistic model, which is introduced in Chapter 8.

23 MAXIMUM LIKELIHOOD ESTIMATION FOR PARTIAL
NONRANDOM CLASSIFICATION

As mentioned previously in Section 2.6, in some situations in practice with a
partially classified training set, the classified data may not represent an ob-
served random sample from the sample space of the feature vector. For exam-
ple, in medical screening, patients are often initially diagnosed on the basis of
some simple rule, for instance, whether one feature variable is above or be-
low a certain threshold, corresponding to a positive or negative test. Patients
with a positive test are investigated further from which their true condition
may be ascertained. However, patients with a negative test may be regarded
as apparently healthy and so may not be investigated further. This would be
the case if a true diagnosis can be made, say, by only an invasive technique
whose application would not be ethical in apparently healthy patients. In these
circumstances, if only the data of known origin were used in the estimation of
the unknown parameters, then it would generally bias the results, unless ap-
propriate steps were taken, such as fitting truncated densities or using logistic
regression. The latter approach is considered in Chapter 8. Another approach
that avoids this bias problem is to perform the estimation on the basis of all
the data collected, including the data of unknown origin. This approach was
adopted by McLachlan and Gordon (1989) in their development of a proba-
bilistic allocation rule as an aid in the diagnosis of renal artery stenosis (RAS),
which is potentially curable by surgery. Their case study is described in Sec-
tion 7.8.
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'We now proceed to show for this last approach that the maximum likelihood
estimate of ¥ in the mixture model (2.7.1) is obtained by consideration of the
same likelihood (2.7.2) as in the case where the classified data are randomly
classified. It is supposed that the classification of an entity is only undertaken
if its feature vector falls in some region, say, R, of the feature space. A ran-
dom sample of size M is taken, where m denotes the number of entities with
feature vectors falling in the complement of R, and n = M — m denotes the
number with feature vectors in R. The latter »n entities are subsequently clas-
sified with n; found to come from group G; (i = 1,2), and n = n; + n,. The
feature vectors are relabeled so that x; (j = 1,...,n) denote the n classified
feature vectors and x; (j = n + 1,...,n + m) the m unclassified feature vectors.

Under this sampling scheme, the probability that n entities have feature
vectors falling in R is given by

ran) = (1) eha—ca,

where

CR = /fo(x;\lt)du.

Given n, the probability that n; of these entities are from G, and n; from G;
is

pontmy= (1) ataadi
where
mir =pr{Z; =1|X€ R}
= miCir/CR,

and

CiR= ./I;fi(x;a,')dl/ (i=12).

Let L(%;t,t,,n,n;) denote the likelihood function for ¥ formed on the
basis of the classified data t, the unclassified feature vectors in t,, and also n
and ny. Then

logL(‘I’;t!tuynanl) = log{PR(n)P(nl | n)}

2 n
+3° Y zjlog{fi(x;;0:)/cir}
i=1 j=1

ntm

+ ) log{fx(x;; ¥)/(1 - cr)}s

j=n+1

which, apart from a combinatorial additive term, reduces to log L(¥) as given
by (2.7.2).
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In some instances, the classification of an entity with feature vector falling
in the region R is not always available at the time of the analysis. The classi-
fication may have been mislaid or the patient for some reason may not have
been initially classified. In any event, provided the classified entities may be
viewed as a random sample from those entities with feature vectors falling in
R, we can form the likelihood in the same manner as (2.7.2).

2.9 CLASSIFICATION LIKELIHOOD APPROACH

Another likelihood-based approach to the allocation of the m unclassified en-
tities in the partial classification scheme introduced in Section 2.6 is what is
sometimes called the classification likelihood approach. With this approach,
¥ and the unknown z; are chosen to maximize Lc (W), the likelihood for the
complete-data specification adopted in the application of the EM algorithm to
the fitting of the mixture model (2.7.1) in Section 2.7. That is, the unknown
z; are treated as parameters to be estimated along with ¥. Accordingly, the
maximization of L¢c(W) is over the set of zero-one values of the elements of
the unknown z;, corresponding to all possible assignments of the m entities to
the g groups, as well as over all admissible values of ¥. A recent reference on
this approach is found in McLeish and Small (1986), and additional references
can be found in McLachlan and Basford (1988, Chapter 1). It can be seen
that the classification likelihood approach is equivalent to using the likelihood
ratio criterion for discrimination, whose implementation for m = 1 was given
in Section 1.8.

In principle, the maximization process for the classification likelihood ap-
proach can be carried out for arbitrary m, since it is just a matter of comput-
ing the maximum value of Lc (W) over all possible partitions of the m entities
to the g groups Gi,...,Gy. In some situations, for example, with multivariate
normal group-conditional distributions having unequal covariance matrices,
the restriction that at least p + 1 observations belong to each G; is needed to
avoid the degenerate case of infinite likelihood. Unless m is small, however,
searching over all possible partitions is prohibitive. If 2; (j = n+1,...,n + m)
denotes the optimal partition of the m unclassified entities, then 2;; =1 or 0
according as to whether

£ifi(x300) 2 #ufu(xjs0n)  (h=1,...8;5 h#1)

holds or not, where &; and #; are the maximum likelihood estimates of 0;
and ;, respectively, for the m entities partitioned according to 2,+1,...,21+m-
Hence a solution corresponding to a local maximum can be computed iter-
atively by alternating a modified version of the E-step but the same M -step,
as described in Section 2.7 for the application of the EM algorithm in fit-
ting the mixture model (2.7.1). In the E-step on the (k + 1)th cycle of the iter-
ative process, z;; is replaced not by the current estimate of the posterior pro-
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bability that the jth entity belongs to G;, but by one or zero according as to
whether

O fixj;00) 2 1O fux;3607)  (h=1,..85 B )

holdsornot(i=1,...,8; j=n+1,...,n+ m).

The iterative updating of a discriminant rule proposed by McLachlan
(1975a, 1977a) can be viewed as applying the classification likelihood approach
from a starting point equal to the estimate of ¥ based solely on the classified
data t. For g = 2 groups with equal prior probabilities and with multivariate
normal distributions having a common covariance matrix, McLachlan (1975a)
showed that it leads asymptotically to an optimal partition of the unclassified
entities. O’Neill (1976) subsequently showed how this process can be easily
modified to give an asymptotically optimal solution in the case of unknown
prior probabilities.

2.10 ABSENCE OF CLASSIFIED DATA

We now discuss the fitting of the mixture model (2.7.1) in the absence of fea-
ture data on entities that have been classified with respect to the components
of the mixture model to be fitted. This is usually referred to as unsupervised
learning in the pattern recognition literature. Corresponding to this situation
of no data on classified training entities, we set n = 0 in the partial classifica-
tion scheme defined in Section 2.6. The feature vectors on the m unclassified
entities are now labeled x;,...,X., sO that

t, = (X1y.-yXm)-

By fitting a mixture model with g components to the data t,, we obtain a
probabilistic clustering of the m unclassified entities in terms of their esti-
mated posterior probabilities of component membership 7,(x;; &), where ¥
now denotes the maximum likelihood estimate computed on the basis of t,
(i=1,...,8 j=1,...,m). A partition of the m entities into g nonoverlapping
clusters is given by 2;,...,2,,, where 2;; = (2;); is one or zero, according as

nix; ) > mx;; W) (h=1,...,8 h#i)

holds or not (i = 1,...,g; j = 1,...,m). If the maximum of ‘r,-(xj;\il) over i =
1,...,8 is near to one for most of the observations x;, then it suggests that the
mixture likelihood approach can put the m entities into g distinct clusters with
a high degree of certainty. Conversely, if the maximum is generally well below
one, it indicates that the components of the fitted mixture model are too close
together for the m entities to be clustered with any certainty. Hence, these
estimated posterior probabilities can be used to provide a measure of the
strength of the clustering. To this end, Ganesalingam and McLachlan (1980)
and, more recently, Basford and McLachlan (1985) have investigated the use
of the estimated posterior probabilities of component membership in forming
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estimates of the overall and individual allocation rates of the clustering with
respect to the components of the fitted mixture model. In those cases where
the clusters do not correspond to a priori defined groups, the estimated allo-
cation rates can be interpreted as estimates of the allocation rates that would
exist if the clustering were assumed to reflect an externally existing partition
of the data. This is considered further in Chapter 10.

The recent monograph of McLachlan and Basford (1988) provides an in-
depth account of the fitting of finite mixture models. Briefly, with mixture
models in the absence of classified data, the likelihood typically will have mul-
tiple maxima; that is, the likelihood equation will have multiple roots. If so,
the selection of suitable starting values for the EM algorithm is crucial. There
are obvious difficulties with this selection in the typical cluster analysis setting,
where there is no a priori knowledge of any formal group structure on the un-
derlying population. McLachlan (1988) has considered a systematic approach
to the choice of initial values for ¥, or, equivalently, for the posterior prob-
abilities of component membership of the mixture to be fitted. He proposed
that two-dimensional scatter plots of the data after appropriate transforma-
tion, using mainly principal component analysis, be used to explore the data
initially for the presence of clusters. Any visual clustering so obtained can be
reflected in the initial values specified for the posterior probabilities of com-
ponent membership of the mixture. This approach, along with methods that
use three-dimensional plots, is considered further in Section 6.6.

Fortunately, with some applications of finite mixture models, in particular
in medicine, there is available some a priori information concerning a pos-
sible group structure for the population. In some instances, this information
may extend to a provisional grouping of the m unclassified entities. Then ¥
can be estimated as if this provisional grouping were valid to yield an ini-
tial value for use in the EM algorithm. In medical applications, a provisional
grouping may correspond to a clinical diagnosis of the patients using one or
perhaps some of the feature variables. Often a clinical diagnosis may focus on
only one of the feature variables. If all features are used, then it is generally
in a limited and rather ad hoc way. For example, a patient might be diagnosed
as unhealthy if any of the measured feature variables falls in a range conven-
tionally regarded as abnormal in healthy patients. It is of interest, therefore, to
compute the statistical diagnosis as given by #,,...,2,, and to compare it with
the clinical diagnosis. The statistical diagnosis is attractive in that it provides
an objective grouping of the patients that takes into account all of their fea-
ture variables simultaneously. Also, it is not dependent upon arbitrary clinical
decisions. An example using the diabetes data originally analyzed by Reaven
and Miller (1979) is given in Section 6.8.

With some applications, the a priori information on the group structure
extends to knowing the number g of underlying groups in the population. For
example, in the screening for a disease, there is an obvious dichotomy of the
population into disease-free and diseased groups. In some situations where the
possible groups represent the various causes of a disease, the assumed number
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of groups g may not be the actual number, as there may be further, as of yet
undetected, causes.

Assessing the true value of g is an important but very difficult problem.
In the present framework of finite mixture models, an obvious approach is to
use the likelihood ratio statistic A to test for the smallest value of the num-
ber g of components in the mixture compatible with the data. Unfortunately,
with mixture models, regularity conditions do not hold for —2logA to have
its usual asymptotic null distribution of chi-squared with degrees of freedom
equal to the difference between the number of parameters under the null and
alternative hypotheses; see McLachlan and Basford (1988, Chapter 1) and the
references therein, including McLachlan (1987a) and Quinn; McLachlan, and
Hjort (1987).

One way of assessing the null distribution is to use a resampling method,
which can be viewed as a particular application of the general bootstrap ap-
proach of Efron (1979, 1982). More specifically, for the test of the null hypoth-
esis of g = go versus the alternative of g = gy, the log likelihood ratio statistic
can be bootstrapped as follows. Proceeding under the null hypothesis, a so-
called bootstrap sample is generated from the mixture density fx (x;¥), where
¥ is taken to be the maximum likelihood estimate of ¥ formed under the
null hypothesis from the original observed sample t,. The value of —2logA
is calculated for the bootstrap sample after fitting mixture models for g = go
and g = g; in turn to it. This process is repeated independently a number of
times K, and the replicated values of —2logA evaluated from the successive
bootstrap samples can be used to assess the bootstrap, and hence the true,
null distribution of —2logA. In particular, it enables an approximation to be
made to the achieved level of significance P corresponding to the value of
—2log A evaluated from the original sample. The value of the jth-order statis-
tic of the K replications can be taken as an estimate of the quantile of order
j/(K + 1), and the P-value can be assessed by reference with respect to the
ordered bootstrap replications of —2logA. Actually, the value of the jth-order
statistic of the K replications is a better approximation to the quantile of or-
der (3j — 1)/(3K + 1) (Hoaglin, 1985). This bootstrap approach to the testing
of g is applied in Section 6.9.

For some hypotheses, the null distribution of A will not depend on any un-
known parameters. In this case, there will be no difference between the boot-
strap and true null distributions of —2logA. An example is the case of multi-
variate normal components with all parameters unknown, where go = 1 under
the null hypothesis. In this situation, where it is the actual statistic —2logA
and not its bootstrap analogue that is being resampled, the resampling may be
viewed as an application of the Monte Carlo approach to the construction of
a hypothesis test having an exact level of desired significance. This approach
was proposed originally by Barnard (1963); see Hope (1968) and Hall and Tit-
terington (1989). Aitkin, Anderson, and Hinde (1981) appear to have been the
first to apply the resampling approach in the context of finite mixture models.
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We return now to the question of misclassified training data as first raised
in Section 2.5. One way of proceeding if there is some doubt as to the veracity
of the given classification of some or all of the training entities is to leave
their group-indicator vectors unspecified and to fit the mixture model (2.7.1)
to the consequent partially or completely unclassified sample. As reported in
Section 2.5 on the effects of misclassified training data, it appears that ignoring
any misclassification does not lead to much harm provided it is those entities
whose feature vectors fall in the doubtful region of the feature space that are
more prone to error in classification. However, if the training entities are mis-
classified at random, then ignoring the misclassification can distort appreciably
the learning process.

As a consequence of this, Krishnan and Nandy (1987) proposed a model
to take random misclassification of the training entities into account in the
design of the sample discriminant rule. Working with respect to g = 2 groups,
they proposed that in place of the vector z; defining the group of origin of
the jth entity in the training set, there is a number v; between zero and
one (j = 1,...,m). This number represents the supervisor’s assessment of the
chance that the jth entity belongs to group G; rather than to G,. They as-
sumed that in group G;, this number is distributed, independently of x;, with
density q;(v;), where gi(-) and g;(-) denote the beta(m,72) and beta(nz,m)
densities, respectively, where 7; and 1, are unknown. The group-conditional
distributions were taken to be multivariate normal with a common covari-
ance matrix. As this is an incomplete-data problem in the absence of values of
2y,...,Zm, maximum likelihood estimation of 7 and #, and the other parame-
ters can be approached using the EM algorithm. For this model, Krishnan and
Nandy (1990a) have derived the efficiency of the sample linear discriminant
rule so formed relative to its version based on a perfectly classified training
set.

Unfortunately, with the abovementioned model, it is impossible to carry
out the M -step exactly, so far as the parameters 7; and 7, are concerned. Tit-
terington (1989) consequently suggested an alternative model incorporating a
stochastic supervisor for which the EM algorithm can be easily implemented
to compute the maximum likelihood estimates. Following the way of Aitchison
and Begg (1976) for indicating uncertain diagnosis, Titterington (1989) pro-
posed the use of

uj = log{v;/(1-v;)}

instead of v; as a basic indicator of the supervisor’s assessment that the jth
entity arises from G,. As the sample space for U; is the real line, Titterington
(1989) adopted the natural assumption of a normal distribution for U; within
each group. In order to maintain symmetry, as in the beta-based formulation
of Krishnan and Nandy (1987), the normal group-conditional distributions for
U; were taken to have a common variance and means w; and w; with w; =
—w;. For a knowledgeable supervisor, one should expect w; > 0, just as one
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should expect 7; > 7z in the beta-based model. Titterington (1989) noted that
his model is just as flexible as the beta-based model, as Aitchison and Begg
(1976) have described how the same variety of shapes can be produced for the
density of U; starting from a normal distribution, as can be produced by the
family of beta distributions.

The relative efficiency of the sample linear discriminant rule formed under
this model has been considered by Krishnan and Nandy (1990b). In related
work, Katre and Krishnan (1989) have considered maximum likelihood estima-
tion via the EM algorithm in the case where an unequivocal classification of
the training data is supplied, but incorrectly with unknown random errors un-
der the model (2.5.1). Krishnan (1988) has investigated the relative efficiency
of the sample linear discriminant function formed under this model.

2.11 GROUP-CONDITIONAL MIXTURE DENSITIES

The fitting of finite mixture models in discriminant analysis also arises if some
or all of the group-conditional densities are modeled as finite mixtures. In
medical diagnosis in the context of healthy or unhealthy patients, the distri-
bution of the features for the latter group is often appropriately modeled as
a mixture, as discussed by Lachenbruch and Kupper (1973) and Lachenbruch
and Broffitt (1980). An example can be found in Emery and Carpenter (1974).
In the course of their study of sudden infant death syndrome, they concluded
tentatively from estimates of the density of the degranulated mast cell count
in sudden infant death cases that it was a mixture of the control density with
a smaller proportion of a contaminating density of higher mean. The control
group consisted of infants who died from known causes that would not affect
the degranulated mast cell count. _

Rawlings et al. (1984) have given an example that arose in a study of alcohol-
related diseases where both the groups under consideration, corresponding to
two diseased states, are each a mixture of two subgroups. Another example
where both the groups are modeled as mixtures of subgroups has been given
by McLachlan and Gordon (1989) on the diagnosis of renal artery stenosis. It
is discussed in Section 7.8.

A further situation where the group-conditional densities are taken to be
mixtures is with a latent class approach, to discrimination with discrete fea-
ture data. With this approach, considered further in Section 7.3.3, the group-
conditional densities are modeled as mixtures of the same component densi-
ties.

A finite mixture model for, say, the ith group-conditional density can be
fitted to the training data from G; by using equations (2.7.3) and (2.7.4) with
n =0, This assumes that there are no parameters in this mixture density in
common with the other group-conditional parameters, although the equations
can be easily modified if this is not so.

Group-conditional mixture densities are used also in the modeling of digi-
tized images of cervical cells from the PAP smear slide. On the basis that a
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cervical cytology specimen consists of 13 cell types, the problem is to discrim-
inate between a mixture of 5 normal squamous and nonsquamous cell types
and a mixture of 8 abnormal and malignant tumor cell types (Oliver et al.,
1979). In this example, the fitting of the group-conditional mixture densities is
facilitated by the presence of training data for each of the 13 cell types.
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CHAPTER 3

Discrimination via Normal Models

3.1 INTRODUCTION

We have seen in Section 1.4 that discriminant analysis is relatively straightfor-
ward for known group-conditional densities. Generally, in practice, the latter
are either partially or completely unknown, and so there is the problem of
their estimation from data t on training entities, as defined by (1.6.1). As with
other multivariate statistical techniques, the assumption of multivariate nor-
mality provides a convenient way of specifying a parametric structure. Hence,
normal models for the group-conditional densities provide the basis for a good
deal of the theoretical results and practical applications in discriminant anal-
ysis. In this chapter, we therefore focus on discrimination via normal-based
models. In the latter part, we consider the reduction of the dimension of the
feature vector through linear projections that optimize certain separatory and
allocatory measures for normal models.

3.2 HETEROSCEDASTIC NORMAL MODEL

3.2.1 Optimal Rule

Under a heteroscedastic normal model for the group-conditional distributions
of the feature vector X on an entity, it is assumed that

X~N@,%) in G (i=1,...,8), (32.1)

where g1,..., g denote the group means, and X4,..., X, the group-covariance
matrices. Corresponding to (3.2.1), the ith group-conditional density fi(x;8;)

52
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is given by
fi(x;8:) = ¢(x; i, Bi)
= 2m) P2 B P exp{ - h(x - i) B (x - i)},

where 6; consists of the elements of g;, and the }p(p + 1) distinct elements
of B; (i =1,...,8). It is assumed that each ¥; is nonsingular. There is no loss
of generality in so doing, since singular group-covariance matrices can always
be made nonsingular by an appropriate reduction of dimension.

If my,...,mg denote the prior probabilities for the groups G;,..., Gg, then we
let

Wy = (7y,...,g,0;)
= (=0,

where Oy consists of the elements of u,,..., 4, and the distinct elements of
24,..., 8. The subscript “U” emphasizes that the group-covariance matrices
are allowed to be unequal in the specification of the normal model (3.2.1).

The posterior probability that an entity with feature vector x belongs to
group G; is denoted by 7,(x; ¥y) for i = 1,...,g. In estimating these poste-

rior probabilities, it is more convenient to work in terms of their log ratios.
Accordingly, we let

Tig (x; Yv) = log{7i(x; ¥u)/T(x; W)}
= log(mi/7g) + &ig(x; 0u), 3.22)
where
Es(%;00) = log{fi(x:0))/f(x;65)}  (i=1,....6—1).
The definition (3.2.2) corresponds to the arbitrary choice of G; as the base
groll}flaer the heteroscedastic normal model (3.2.1),
Eig(x;00) = — 3 {8(x, pi; Bi) — 6(x, p1g; g )}

- ${log|Bil/|Bl}  (=1,...,8-1),  (323)

where
60x, p1i; Bi) = (x — i) BT (x — pi)
is the squared Mahalanobis distance between x and g; with respect to X; (i =
1,...,g). The notation (a,b; C) for the squared Mahalanobis distance
(@a-byYCl(a-b)

between two vectors a and b with respect to some positive definite symmetric
matrix C applies throughout this book. For brevity, we henceforth abbreviate
o(x,p; ;) to §i(x) for i = 1,...,8.
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In this setting, the optimal or Bayes rule r,(x; ¥y ) assigns an entity with
feature vector x to Gy if

Nig(x; ¥y) <0 i=1..,8-1
is satisfied. Otherwise, the entity is assigned to Gy, if
Nig(%; ¥u) < Mug(x; ¥r) i=1..,8-1i#h)

holds. In defining the Bayes rule above and in the sequel, we will take the
costs of misallocation to be the same. However, unequal costs of misallocation
can be incorporated into the formulation of the Bayes rule, as considered
in a general context in Section 1.4. In the subsequent work; we will refer to
ro(x; ¥y) as the normal-based quadratic discriminant rule (NQDR).

3.2.2 Plug-In Sample NQDR

In practice, 8y is generally taken to be unknown and so must be estimated
from the available training data t, as given by (1.6.1). With the estimative ap-
proach to discriminant analysis, the posterior probabilities of group member-
ship 7;(x; ¥y) and the consequent Bayes rule r,(x; ¥y) are estimated simply
by plugging in some estimate 8y, such as the maximum likelihood estimate,
for 8y in the group-conditional densities.

The maximum likelihood estimates of u; and X; computed under (3.2.1)
from the training data t are given by the sample mean X; and the sample
covariance matrix 33;, respectively, where

n
Xi = Zz.-,-xj/ng
i=1

and n
2,' = Z z,-,-(x,- - )T,')(Xj - i,-)'/n,-
j=1

for i = 1,...,g. Consistent with our previous notation,
n
n; = ZZ,' j
j=1

denotes the number of entities from group G; in the training data t (i =
1,...,g). It is assumed here that n; > p, so that i is nonsingular (i = 1,...,8).
In the subsequent work, we follow the usual practice of estimating X; by the
unbiased estimator

Si=nBi/(mi-1) (i=1,...8)
With @y estimated as above,

Eig(00) = —3{8:(x) — 8, ()} — log{ISil/ISg]} (G =1,....g—1),
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FIGURE 3.1, Boundaries for the sample normal-based quadratic and linear discriminant func-
tions with a zero cutoff point, as computed from psychological data with circles and triangles
representing normals and psychotics, respectively. From Smith (1947).

where
bi(x) = 6(x,X;;S;)

=@-%)STx-%)  (=1...8).

One of the earliest applications of the sample normal-based quadratic discrim-
inant function {;z(x;8y) was given by Smith (1947) in the case of g = 2 groups.
It concerned discriminating between normal persons and psychotics on the ba-
sis of bivariate data on n; = 25 normals and n; = 25 psychotics. For this data
set, the boundary for the sample normal-based discriminant function with a
zero cutoff point is plotted in Figure 3.1, along with the straight-line boundary
under the constraint of equal group-covariance matrices.

In some situations in practice, individual training observations on a feature
variable are not available. For example, the classified feature data may have
been collected in the form of frequencies of observations falling in fixed class
intervals. A further problem that is often encountered is truncation of the
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data; observations below and above certain readings are often not available.
In such situations, the maximum likelihood estimates of the group means and
variances can be computed using the algorithm given in Jones and McLachlan
(1990a). It uses maximum likelihood to fit either univariate normal distribu-
tions or mixtures of a specified number of them to categorized data that may
also be in truncated form.

3.2.3 Bias Correction of Plug-In Sample NQDR

In forming an estimate of {;z(x;8y), there are no compelling reasons for us-
ing the unbiased S; in place of the biased (i =1,...,g). If unbiased-
ness is of prime concern, then the focus should be on the provision of un-
biased estimates of the group-conditional densities or, more appropriately,
of the ratios of the group-conditional densities because the latter directly
determine the Bayes rule. An unbiased estimate of f;(x;8;) is available from
the results of Ghurye and Olkin (1969) on unbiased estimation of multi-
variate densities. The unbiased minimum variance estimator of fi(x;8;) is
given by

(2m)y"MDPk;|(1 - n; S|
x |1, — ny(n; — 1)7287 (x — %;)(x — X;)! |/ DHmi=p=3),
where

ki = (n; = 1)"/DP{c(p,n; — 2)/c(p,ni ~ 1)},

14
c(p,ni) = [20/2Prig /9@ -DTTT (4 (i - j + 1)]77,
j=1

and I, is the p x p identity matrix.

It is more appropriate, however, in the present context of estimation of
the Bayes rule to consider unbiased estimates of the ratios of the group-
conditional densities f;(x;8;). By using certain standard results on the expecta-
tions of quadratic forms and Wishart distributions, the minimum variance un-
biased estimator of {;z(x;0y) can be obtained as follows (Moran and Murphy,
1979). It is straightforward to calculate the expectation of §;(x), conditional on
x, using the result in Das Gupta (1968) that

ESYHY=c(n-DEt (i=1,...8) (3.24)
where c1(-) is defined by

cl(n,') = n,'/(n; -P— 1). (3.2.5)
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With this result, we have that
E{5(x)} = E[tr{(x—-%)'S;] ' (x = %:)}]
= Eftr{x —%;)(x - %;)'S;!}]
= tr[E{(x - X:)(x ~ %) }E(S; )]
= cy(n; — DU[{Si/n; + (x— pi)(x — i)' } B71]
=c(m-D{(p/m)+6x)} (E=1...8). (326)

This implies that ;
§i(x) = {6ix)/er(m; - )} - p/n; (3:2.7)

is an unbiased estimator of §;(x) fori = 1,...,8.
We also need the result that

E{log|S;|} = log|E;| — plog(n; — 1) + c3(n;), (3.28)
where »
o)=Y vim-k)}  (=1...8), (329)
k=1

and where ¥(y) = dlogI'(y)/dy is the digamma function as discussed in Ab-
ramowitz and Stegun (1965, page 258). As noted by Critchley and Ford (1985),
it may be efficiently evaluated using the algorithm of Bernardo (1976).

It follows directly from (3.2.7) and (3.2.8) that an unbiased estimator of

E,-g(x;ou) is given by
€igw(x) = —38i(x)/ca(mi — 1) + $65(x)/ca(ng — 1)
+4p(n;" — ngt) — Slog{ISil/ISg|}
— §plog{(m — 1)/(ng — D} + Hea(m) - ca(ng)}  (32.10)

fori=1,...,g 1. As f,-g,u(x) is a function of the complete sufficient statistics
X; and §; (i = 1,...,8), it is the uniform minimum variance unbiased estimator
of §ig(x;0v).

In this chapter, only point estimates of the log likelihood ratios §;g(x;0y)
and the posterior probabilities of group membership 7;(x; ¥y/) are considered.
The sampling distributions of these quantities and, in particular, their standard
errors for the provision of confidence intervals are considered separately in
Chapter 11 in the context of assessing their reliability on the basis of the same
training data from which they were formed.

3.24 Equal-Mean Discrimination

There are some applications of discriminant analysis in practice in which the
groups may be assumed to have the same mean vectors. In this case for mul-
tivariate normal group-conditional distributions, the optimal discriminant rule
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ro(x;0y) has to be based on the differences between the group-covariance
matrices. Okamoto (1961) studied this problem for g = 2 groups. Besides de-
veloping the theory, he presented an application in which the aim is to label
twin pairs of like sex as monozygotic or dizygotic on the basis of a set of mea-
surements of physical characteristics. Bartlett and Please (1963) considered
the same type of application, using the now well-known twins data of Stocks
(1933) to study the usefulness of the quadratic discriminant rule in discrimi-
nating between monozygotic and dizygotic twins. They adopted the uniform
covariance structure

i = o {(1-p)l, +pilpl,}  (i=12),. (32.11)

where 1, = (1,1,...,1) is the p x 1 vector of ones. It is not uncommon in
biological work for the correlations to be more or less the same in magnitude
within a group.

From Bartlett (1951a), the inverse of X; as given by (3.2.11) is

71 = cplp, — culpl), (32.12)

where
ci=1/{o} +(1-p)},

and
i = pi/[oF(1- p){(1 + (p - Dpi}]

for i = 1,2. By using (3.2.12) in (3.2.3), it follows that the optimal discriminant
function £(x,8y) is given, apart from an additive constant, as

£(x,00) = —3(c11 — c12)Q1 + 3(can — €22)Q,

where Q; =x'x, and Q, = (x'1,)%. Because g =2 only, we have written
&12(x;0y) as £(x;0y). In Penrose’s (1946-1947) conception of “size” and
“shape” components, Q5 is the square of the “size” component. The “shape”
component does not arise here as the group means are all the same.
Kshirsagar and Musket (1972) have considered a method for choosing the
cutoff point with the use of {(x;0y) under the model (3.2.11) so that the two
error rates are the same. More recently, Marco, Young, and Turner (1987b)
have derived the asymptotic expectation of what can be regarded as a piug-
in-type estimate of the overall error rate of the rule based on a sample ver-
sion of {(x;0y) formed under (3.2.11) with p; = p,. Earlier, Schwemer and
Mickey (1980) derived the expected error rates of the linear discriminant rule
applied to data from two groups with the same means but proportional covari-
ance matrices. Lachenbruch (1975b) noted that a quadratic discriminant rule
can be avoided by working with the absolute value of each variate in the fea-
ture vector. In its application to the twins data of Stocks (1933), Lachenbruch
(1975b) found that his so-called absolute linear discriminant rule performed
slightly worse than the quadratic discriminant rule as used earlier by Bartlett
and Please (1963) and Desu and Geisser (1973). However, when he induced
contamination into this data set, his absolute linear rule performed reasonably
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well, but the performance of the quadratic discriminant rule deteriorated con-
siderably. Geisser (1964), Geisser and Desu (1968), Enis and Geisser (1970),
Desu and Geisser (1973), and Lee (1975) have investigated the equal-mean
discrimination problem via Bayesian approaches. Note that the case of un-
equal group-means under the uniform covariance structure (3.2.11) has been
considered by Han (1968).

3.3 HOMOSCEDASTIC NORMAL MODEL

3.3.1 Optimal Rule

It can be seen from (3.2.3) that a substantial simplification occurs in the form
for the posterior probabilities of group membership and the consequent Bayes
rule if the group-covariance matrices Xy,...,X; are all the same. This is be-
cause the quadratic term in x,x'S; !x, in the exponent of the ith group-condi-
tional density is now the same for all groups, and so vanishes in the pairwise
ratios of these densities as specified by (3.2.3).
We let

‘I’E = (”'JG'E)”

where 0z denotes 8y under the constraint that
;=2 (i=1,..,8)

The subscript “E” emphasizes the specification of equality for the group-
covariance matrices. This definition of 8z does mean that it contains % p(p +
1)(g — 1) redundant parameters. However, it conveniently allows the poste-
rior probabilities of group membership to be written as 7;(x; ¥g) under the
homoscedastic normal model

X~N@,B) in G (i=1,...g) (33.1)

As the notation 7;(x; ¥ ) implies, the posterior probabilities of group member-
ship under the homoscedastic normal model (3.3.1) are obtained by replacing
Wy with ¥g in the expressions for the posterior probabilities 7;(x; ¥y/) under
the heteroscedastic version (3.2.1). Effectively, we replace 8y by 8 in the log
likelihood ratios £z (x; 0y).

Corresponding to (3.2.2), we have under the homoscedastic normal model
(3.3.1) that

Tig(x; Wg) = log{7i(x; Wg)/7y(x; ¥g)}
= log(m;/7g) + {ig(x; Ok), (33.2)
where
§ig(x;05) = — {0 £(x) — 6 £(x)}
= {x— J (i + pg)}' B (i — pg)
(=1..,8-1), (333)
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and where
Gig(X)=0(pi8)  (i=1,...,8).
The. optimal or Bayes rule 7,(x; ¥g) assigns an entity with feature vector x to
ot Nig(x;¥g) <0 (i=1,.,8-1)
is satisfied. Otherwise, the entity is assigned to Gj, if
g W) <mug(x; W)  (I=1,....,8 =1 i#h)

holds. We will refer to r,(x;Wg) as the normal-based linear discriminant rule
(NLDR).

In the case of g = 2 groups, we write 712(x; ¥g) and &12(x;0z) as 7(x; ¥g)
and £(x;0g), respectively. For future reference, we express the normal-based
linear discriminant function (NLDF) £(x;0%) in the form

£(x;0g) = fig + BEx, (334
where
Bee = —1(p1 + 1) Ty — p2),
and
Be = 7 (11 — w2).

Thus, we can write 7(x; ¥g) as

7(x;¥g) = log(m /m3) + Bl + BEx

= for + Bgx
= al (LX), (33.5)
where
Poe = log(m1/2) + Big,
and

ag = (ﬁoE,ﬁ'E)"

3.3.2 Optimal Error Rates

It can be seen from (3.3.3) that the NLDR r,(x; ¥g) is linear in x. One con-
sequence of this is that it is straightforward to obtain closed expressions for
the optimal error rates at least in the case of g = 2 groups. For it can be seen
from (3.3.2) that in this case, r,(x; ¥g) is based on the single linear discrimi-
nant function £(x;8g) with cutoff point

k =log(ma/m).

That is, an entity with feature vector x is assigned to G, or G; according as to
whether £(x;0;) is greater or less than k.
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The optimal error rate specific to G, is therefore given by
e012(¥g) = pr{é(X;0c) < k | X € G1}
= &{(k - }a%)/4},
where
A = (g - p2) B (1 - p2)
is the squared Mahalanobis distance between G; and G, and $(-) denotes
the standard normal distribution function. Similarly,
eon(¥g) = &{—(k + A%)/A).

In the above, we have followed the notation for the allocation rates as intro-
duced in Section 1.10, so that eo;;j(Wg) denotes the probability that a randomly
chosen entity from group G; is allocated to G; on the basis of the Bayes rule
@j=1..8).

For a zero cutoff point (k = 0), the group-specific error rates eo12(¥g) and
e021(¥g) are equal with the common value of @(—%A). Often, in practice, k
is taken to be zero. Besides corresponding to the case of equal prior probabil-
ities, it also yields the minimax rule, as defined in Section 1.5.

333 Plug-In Sample NLDR

For unknown 6 in the case of an arbitrary number g of groups, the maximum
likelihood estimate of y; is given as under heteroscedasticity by the sample
mean X; of the feature observations from G; in the training data t (i = 1,...,g).
The maximum likelihood estimate £ of the common group-covariance matrix
¥ is the pooled (within-group) sample covariance matrix. That is,

L= Eg:(n,-/n)fz,-
i=1

g n
=) zj(x —%)x; — %) /n.

i=1j=1

In using these estimates to form the plug-in sample versions {,-g(x;ég) and

7i(x; ¥£) of the log likelihood ratios and the group-posterior probabilities, we
follow here the usual practice of first correcting £ for bias, so that

§=nd/(n-g)
is used instead of £. With @ estimated as above,
Lig(x0p) = {x— 1(% + X,)}'S7I(Xi %)  (i=1,...8-1)
(3.3.6)
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It can be seen from (3.3.6) that for g = 2 groups, the plug-in sample version
ro(x;¥E) of the normal-based linear discriminant rule (NLDR) r,(x; ¥g) is
based on the sample version

€x;05) = {x— 1(% + %)}S7I(%; - %) (33.7)

of the NLDF ¢(x;8g), as defined by (3.3.4). The sample NLDF £(x;8y) is
often referred to in the literature as the W classification statistic (Wald, 1944).
It is essentially the same as Fisher’s (1936) linear discriminant function de-
rived without the explicit adoption of a normal model. As noted in Section
1.7, Fisher’s linear discriminant function is given by a’x, where a maximizes

the quantity
{a'(X; — X2)}%/a'Sa, (3.3.8)

which is the square of the difference between the group-sample means of a’x
scaled by the (bias-corrected) pooled sample variance of a'x. The maximiza-
tion of (3.3.8) is achieved by taking a proportional to 3z, where

Be = $7(x; - ).
This leads to the sample linear discriminant function
X'Bg =x'S71(%; — Xp). (3.3.9)

Because
(% —%2)'S™}(X, — %3) > 0,

the sample mean of x'3g in group G is not less than what it is in G,. Hence,
an entity with feature vector x can be assigned to Gy for large values of
x'B¢ and to G, for small values. If the cutoff point for (3.3.9) is taken to
be equidistant between its group-sample means, then it is equivalent to the
sample NLDF ¢(x;0¢) applied with a zero cutoff point.

Normal theory-based discriminant analysis is now widely available through
computing packages such as BMDP (1988), GENSTAT (1988), IMSL (1984),
P-STAT (1984), S (Becker, Chambers, and Wilks, 1988), SAS (1990), SPSS-X
(1986), and SYSTAT (1988). There are also those packages with regression
programs that can be applied indirectly to discriminant analysis; for exam-
ple, Minitab (Ryan et al.,, 1982) and GLIM (1986). The reader is referred to
Lachenbruch (1982) and to Section 4.2 in the report by Panel on Discriminant
Analysis, Classification, and Clustering (1989) for an account of some of these
packages with respect to their facilities for discriminant analysis. In addition to
the programs for discriminant analysis that exist as part of a general-purpose
package of statistical programs, there are those algorithms that have been de-
signed specifically for discriminant analysis. For example, James (1985) has
provided some algorithms written in BASIC for discriminant analysis. Other
algorithms for performing some procedure or procedures in discriminant anal-
ysis are to be referenced in the subsequent text where the related topic is
considered.
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3.3.4 Fisher’s Linear Regression Approach

Fisher (1936) also derived the sample linear discriminant function (3.3.9) using
a linear regression approach. The discrimination problem can be viewed as
a special case of regression, where the regressor variables are given by the
feature vector x and the dependent variables by the vector z of group-indicator
variables. In the case of g = 2 groups, the dependent variable associated with
the entity having feature vector x; can be taken to be z;; = (z;); where, as
defined previously, z;; is one or zero according as x; belongs to G; or G;.
Then for a linear relationship between the dependent and regressor variables,
we have

Z1;=ag + a'x,' + €; (j = 1’-'-9")) (3‘3'10)

where ¢,...,€, are the errors. The two values taken by the dependent variable
in (3.3.10) are irrelevant, provided they are distinct for each group. Fisher
(1936) actually took

2= (_.1)"n,-/n if Xj € Gi (l = 1,2)

The least-squares estimate of a satisfies

Va =) (21— Z1)(x; — X), (3.3.11)
j=1

where

V=3 (xj—X)x; - %)

j=1

denotes the total sums of squares and products matrix. It can be decomposed
into the within-group matrix, given here by (n — 2)8, and the between-group
matrix of sums of squares and products. The latter is given by

2
3 ni(® - X)X - %Y,
i=1
which can be expressed as
(nlnz/ n)(il - i'z)('fl - iz)'.
Concerning the right-hand side of (3.3.11), it equals
n n
Y (@i-n)xi -%) =) z(xj-%)
j=t i=1
= m(%X; - X)
= (n1ny/n)(X) — X2). (33.12)
On using (3.3.12) and substituting
' V = (n—2)8 + (nyny/n)(%) — X3 )(%y — Xz)'
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into the left-hand side of (3.3.11), it follows that
(n—2)8a = (X, — X)[(mm2/n){1 - (X1 — X2)'a}},
which shows that the least-squares estimate of a satisfies
ac S7I(x; - %)

Further discussion of this may be found in T. W. Anderson (1984, Section 6.5)
and Siotani, Hayakawa, and Fujikoshi (1985, Section 9.4).

3.3.5 Bias Correction of Sample NLDR

In practice, estimation of the posterior probabilities of group membership and
outright allocation are usually based on the fgg(x;ég) uncorrected for bias.

However, it is a simple exercise to correct each {.-g(x;ég) for bias. From
(3.3.3), we can express {,-g(x;ég) as

Cigx:08) = {6 g(X) -6 e(x)} (=1,...8-1), (33.13)
where
5i,E(x) = 6(X,i,'; S) (i =1,.. 'vg)'

On noting that (n — g)S has a Wishart distribution with expectation (n - g)2
and degrees of freedom n — g, the result (3.2.4) implies that

ESYH=c(n-g)n"L

Hence, corresponding to the derivation of (3.2.6) in the heteroscedastic case,
we have that the expectation of §; g(x), conditional on x, is

E{8; g(x)} = c1(n — g){6ie(x) + p/ni} (33.14)

fori =1,...,g. From (3.3.13) and (3.3.14), the expectation of (ig(x;ég), condi-
tional on x, is given by

E{&ig(x;05)} = ~Ler(n - g){0i £(x) - Gg £(x) + p(n; ! — n 1)}

= c1(n - g){&ig(x;05) - 3 p(n;* — n; M)} (3.3.15)
for i =1,...,g — 1. The uniform minimum variance unbiased estimator of
£ig(x;0¢) is therefore simply

bige(x) = Eig(x;0)/cr(n—g) + 3p(nit —ngt)  (i=1,..,8-1).
(3.3.16)

It can be seen from (3.3.16) that if the group-sample sizes are equal, then
the estimated posterior probabilities of group membership formed with equal
prior probabilities imply the same outright allocation no matter whether each
§ig(x;0E) is estimated by (,-3(x;05) or its bias-corrected version g £(x).
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3.4 SOME OTHER NORMAL THEORY-BASED RULES

3.4.1 Likelihood Ratio Rule: Heteroscedastic Normal Model

We give here the derivation of the allocation rule based on the likelihood ratio
criterion under normality, firstly for the heteroscedastic model (3.2.1). Let z
be the unknown indicator vector defining the group of origin of an unclassified
entity with feature vector x. That is, z; = (z); = 1 if the entity comes from G;
and zero otherwise (i = 1,...,g). The likelihood ratio rule for the allocation
of this entity with feature vector x is constructed by treating z as an unknown
parameter, along with ¥y, to be estimated by maximum likelihood on the basis
of the training data t and also x. The log likelihood to be maximized is

log L(¥y,z;t,x) = 28: {}”:zi,'logfi(xj;&) + Zifi(";oi)}

i=1 { j=1

g
+Y " (m + z)logm;, (3.4.1)

i=1

where f;(x;0;) = ¢(x; u;, B;), the p-variate normal density with mean g; and
covariance matrix X; (i = 1,...,g). The maximization of (3.4.1) is over the set
of zero-one elements of z corresponding to the separate assignment of x to
each of the g groups, as well as over all admissible values of ¥y .

The log likelihood (3.4.1) has been formed in the case where the training
data t have been obtained by mixture sampling and where the entity has been
drawn from the same mixture of the g underlying groups. The case of sepa-
rate sampling can be handled simply by taking the estimates of the group-prior
probabilities 7; to be the same in the subsequent computations (T. W. Ander-
son, 1984, Chapter 6).

The values of =;, p;, Z;, and z that maximize the log likelihood (3.4.1)
satisfy

#i=(ni+2)/(n+1), (3.4.2)
i = (niX; + 2;x)/(n; + 2;), (3.43)

and
8= {Z 2ij(xj — Bi)(xj — fi)' + Zi(x — i) (x — fui)’ } / (i +2;)
j=1

(3.4.4)
for i = 1,...,g. It can be shown that £; may be expressed as

3n;

8= {(n,- ~-1S; + —y T (- %)(x - z,-)'} / (ni + 2).
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For given i (i = 1,...,g), let z) denote the vector whose ith element is one
and whose other elements are zero. Also, let 9(') denote the value of 8y com-
puted from (3.4.2) to (3.4.4) for £ = 2). Then Ou and £ are computed by first
calculating 8% and then evaluating

L©OY,29;,x) (3.4.5)

for each i in turn from i = 1,...,g. Then 2 is equal to 2 if (3.4.5) is maxi-
mized over i =1,...,g ati =k.

3.4.2 Likelihood Ratio Rule: Homoscedastic Normal Model

For the homoscedastic normal model (3.3.1), the solution is given by (3.4.2)
and (3.4.3), and with the common group-covariance matrix X estimated as

8 n

i=1 | j=1

which can be expressed as

g . >
$= {(n—g)S +Z;:'%l—(x—i;)(x—ii)'}/(n +1).
i=1 '

Often, the estimated group-prior probabilities #; are taken to be the same,
and so then they play no role in the construction of the likelihood ratio. If this
is done in the homoscedastic case, then the log likelihood ratio

log{L(89,2";4,x)/L(8F,2®;,x)}
simplifies to
1+ ni(ni + )7 Y(n —g)'lsi,g(x)
1+ ng(ng +1)~1(n ~g)~10g.£(x)

This result was first given by T. W. Anderson (1958, Chapter 6) in the case
of g =2 groups. In this case, the consequent allocation rule is based on the
negative of the statistic

~1(n +1)log

(3.4.6)

b1 (x) - b2 £(x), (3.4.7)
which has become known in the discriminant analysis literature as the Z-
statistic. It reduces to minus twice the classical sample linear discriminant
function or W-statistic for equal group-sample sizes. The univariate version
of (3.4.6) for arbitrary g was proposed initially by Rao (1954), who considered
the standard ¢-test for the compatibility of the feature variable x with each of
g groups in which X was taken to have a univariate normal distribution with a
common variance. This test and its multivariate version based on Hotelling’s

n+1 n+1
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T? are to be discussed in Section 6.4 in the context of assessing the typicality
of x. Further work on the Z-statistic was undertaken by Kudo (1959, 1960) and
John (1960a, 1963). Das Gupta (1965, 1982) has shown that the sample rule
based on the Z-statistic is minimax and unbiased in the sense that its expected
error rate for each group does not exceed 0.5. It thus avoids the severe imbal-
ance that can occur between the group-specific error rates of the normal-based
linear discriminant rule with unequal group-sample sizes (Moran, 1975).

3.43 Miscellaneous Results

Besides the results presented in the preceding sections, various other work
has been done over the years on the provision of suitable allocation rules un-
der the assumption of normality for the group-conditional distributions. For
example, there is the combinatoric approach developed by Dunn and Smith
(1980, 1982) and Dunn (1982). In another example, Adegboye (1987) adopted
the two-stage sampling approach of Stein (1945) to construct a sample dis-
criminant rule whose error rates do not depend on the unknown but common
variance for univariate normal group-conditional distributions in the case of
g = 2 groups.

Another approach to allocation where the feature vector has unequal group-
covariance matrices is that proposed recently by Dudewicz and Taneja (1989),
using the so-called heteroscedastic method of Dudewicz and Bishop (1979). It
applies in situations where there is control over the number of training enti-
ties to be sampled from the specified groups. This approach is being incorpo-
rated into ESST™, the Expert Statistical System, and has been illustrated on
data collected by magnetic resonance imaging of the human brain; see Martin
et al. (1989) and Dudewicz et al. (1989) and the references therein.

On examples of rules constructed under variations of the basic assump-
tions, Ellison (1965) extended the discrimination problem to the situation where
the groups represent g linear manifolds, in one of which the mean of a p-
dimensional normally distributed random variable lies. Burnaby (1966), Rao
(1966a), and Srivastava (1967a) considered discrimination between multivari-
ate normal group-conditional distributions in the presence of some structure
on the means.

3.5 PREDICTIVE DISCRIMINATION

3.5.1 Predictive Sample Rule

We consider in this section discrimination based on the predictive estimates
of the group-conditional densities, as obtained under the assumption of nor-
mality. The predictive approach to discriminant analysis has been defined in
Section 2.2. Under the heteroscedastic normal model (3.2.1), the ith-group
conditional density f;(x;8;) is taken to be ¢(x; u;, Z;), the p-variate normal
density with mean g; and covariance matrix &; (i = 1,...,8).
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In the absence of any prior objective knowledge of y4; and X, it is conve-
nient to adopt the conventional improper or vague prior

8
P(p1yeeo g, BT, B ) o [ 12020 *D (3.5.1)

i=1

for u; and 3 1(i =1,...,g). The predictive estimate of f;(x;8;) is given then

by
1) = / $(x; pi, i )p (i Bi | %i, Si)d pid T, (33.2)

where p(p;,X; | X;,S;) is the posterior density of (4;,%;) given the sample
statistics (X;,S;) and assuming either a normal-Wishart prior distribution or
the limiting case of vague prior knowledge (Aitchison and Dunsmore, 1975,
Chapter 2). After integration, (3.5.2) yields a p-dimensional Student-type den-
sity
ilfll;)(x) = fSl(x; n; — P!py.x_is(l + nl—l)Ms;) (i = 1, ...,g), (353)
where M; = (n; —~ 1)/(n; — p). Here fs,(x;m, p,a,B) denotes the classical p-
dimensional ¢-density with m degrees of freedom,
fs:(x;m, p,a,B) = c(m, p)|mB|~V/2{1 + §(x,a;mB)} ~1/Dm+p)
3.5.4)
where
o(m,p) = T{}(m + p)}/[x"/DPT(3m)};
see, for example, Johnson and Kotz (1972, page 134). Similarly, under the
homoscedastic normal mode! {3.3.1),
TP = fauxin—g - p+1,px,(1+nIMS)  (i=1,..,8), (355)

where M = (n—g)/(n—-g—p+1).

The predictive estimates of the posterior probabilities of group member-
ship are formed with the group-conditional densities replaced by their predic-
tive estimates as given above. As part of this process, the log likelihood ratio
§ig(x;0y) is estimated by

Py(x) = —3nilog{1+ ni(n} — 1)7'8i(x)} + $nglog{1 + ng(nl — 1) 85(x)}
— 4 10g{ISil/IS¢l} + 3 plogl{mi(nf — 1)}/ {ng(ni — 1)7'}]
+log{c(n; — 1)/c(ng — 1)} (i=1,..,-1) (3.5.6)
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where §;(x) = 8(x,X;;S;) for i = 1,...,g. The corresponding predictive estimate
under homoscedasticity is

1+ m(m + 1) Y (n—g) 28 e(x)

1+ ng(ng +1)"1(n—g) 184 £(x)

+ iplog[{ni(ng + D}/ {ng(m +1)}]  (i=1,...,8-1),
(3.5.7)

x(x) = —4(n—g + 1)log

where §; g(x) = 8(x,X;;8) for i = 1,...,g.

3.5.2 Semi-Bayesian Approach

We consider now the semi-Bayesian approach where the posterior distribu-
tions of the quantities to be estimated are formed on the basis of the infor-
mation in t but not also in x.

For g = 2 homoscedastic normal groups, Geisser (1967) showed that the
mean of the posterior distribution of the log odds, or equivalently £(x;0r),
formed in this way is

&) = ~3(0.e(x) ~ He(X)} - 1p(1/n1 - 1/m).

For the heteroscedastic model, Enis and Geisser (1970) showed that the pos-
terior mean of £(x;0y) equals

2
D) = 137~ {8i(x) + log|Si| + p/n; + plog(n; — 1) - ea(m)},
i=1

where c¢3(-) is defined by (3.2.9). A comparison of these posterior means with
the bias-corrected versions (3.2.10) and (3.3.16) of the corresponding estimates
given by the estimative approach shows that they are quite similar.

It can be seen from (3.5.7) that the form of the predictive estimate of the
posterior log odds {(x;8z) can be markedly different from that of the estimate
produced by either the semi-Bayesian or estimative approach. For example, for
unequal group-sample sizes, it is a quadratic function in x. This difference in
form arises because the predictive approach, in contrast to the semi-Bayesian
or estimative approach, uses the information in x as well as in t.

In related work, Enis and Geisser (1974) noted that, as {(x;0¢) is linear
x, it may be for many intuitively compelling to use a linear estimate. They
consequently derived the sample linear estimate of {(x;0z) that minimizes the
implied overall predictive error rate in the case of the prior distribution

(B, 2, 271 o | S|P D

for p1, ps2, and B~1; see also Geisser (1977).
. We now proceed to explore the differences between the assessments pro-
duced by the estimative and predictive methods. .
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3.53 Comparison of Predictive and Estimative Methods
On contrasting the predictive estimate (3.5.3) with the estimative assessment
fi(x;8) = $(x:;%;, i)

for the ith group-conditional density f;(x;0;) under the heteroscedastic normal
model (3.2.1), it can be seen that they are both centered on the same vector

X; and with the same class of ellipsoids of concentration, but with f,-f,’;)(x) less

concentrated than fi(x;0;) about X;. Aitchison (1975) used a measure based
on the Kullback-Leibler divergence measure to compare the density estimates
produced by these two methods. In terms of the present notation, the measure
for the estimation of the ith group-conditional density f;(x;0;) was defined as

E [ / £i(x;0)108{ 7 (%)/ fi(x:6:)} dx|, (3.5.8)

where E refers to expectation over the distribution of the training data. It may
be viewed as the average of the log difference between the estimative and
predictive estimates, averaged firstly over values of x in the ith group G; and
then over the training data. With fi(x;8;) taken to be ¢(x; u;, E;), Aitchison
(1975) showed that (3.5.8) does not depend on the parameters u; and X;
and is positive. The latter indicates greater overall closeness of the predictive
estimate to the true density. Recently, El-Sayyad, Samiuddin, and Al-Harbey
(1989) have provided a critical assessment of the use of (3.5.8) as a criterion
for density estimation.

Murray (1977a) subsequently showed that in terms of the Kullback-Leibler
measure, fifg)(x) is preferable to all other estimates of f;(x;0;) that are invari-
ant under translation and nonsingular linear transformations. As emphasized
by Han (1979), the predictive density estimate ]\ifl’;)(x) therefore has an inter-
pretation in a frequentist framework.

As evident from their definitions above, the practical differences between
the estimates of the group-conditional densities produced by the estimative
and predictive methods will be small for large sample sizes. This was demon-
strated in the medical examples analyzed in Hermans and Habbema (1975).
However, for small sample sizes, Aitchison et al. (1977) illustrated in the con-
text of the differential diagnosis of Conn’s syndrome the large differences that
can be obtained between the estimative and predictive estimates of the poste-
rior probabilities of group membership. Their example demonstrated how the
estimative approach gives an exaggerated view of the group-posterior probabil-
ities, whereas the predictive moderates this view. Aitchison et al. (1977) also
conducted a simulation study in the case of two groups with equal (known)
prior probabilities, but not always equal covariance matrices in their multivari-
ate normal distributions. They concluded overall that the predictive method
was superior to the estimative in terms of the mean absolute deviation from
the true posterior log odds. To highlight the differences that can occur us-
ing the two methods, they took n; and n; to be very small relative to p,
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and so the reliability of either method in such situations is questionable. It
should be noted too that the differences between the estimative and predic-
tive approaches are not nearly as pronounced in terms of the allocation rules
they produce as they are in terms of the estimates they give for the group-
posterior probabilities. For example, for equal group-sample sizes under the
homoscedastic normal model, it can be seen from (3.3.13) and (3.5.7) that the
estimative and predictive methods both give the same outright allocation for
any feature vector x if the group-prior probabilities are specified to be the
same.

3.5.4 Predictive Versus Estimative Assessment of Posterior Log Odds

In the remainder of this section, we focus on the case of g = 2 homoscedastic
groups for which the posterior log odds are given by

7(x; ¥g) = log{71(x; ¥g)/72(x; ¥E)}
= log(m /72) + §(x;0F), 359

where 7(x; ¥g) and {(x;0g) correspond to the previously defined quantities
Nig(x; Wg) and ;g(x;0k), respectively, with their subscripts suppressed since
g = 2 only. Also, as we are taking the prior probabilities to be specified, 0¢
and not ¥g = (n’,0;)' is the vector of all unknown parameters.

McLachlan (1979) provided an asymptotic account of the relative perfor-
mance of the estimates 7 (x;,8z) and fl(?(x;n,t) of the posterior probability
T1(x; ¥g), as produced by the estimative and predictive methods, respectively,
under the homoscedastic normal model (3.3.1). It supported the previous em-
pirical findings that the estimative approach gives a more extreme assessment
than the predictive of the posterior probabilities of group membership.

Geisser (1979) subsequently pointed out that for equal group-sample sizes,
n=n = -12-n, it could be proved exactly that the predictive posterior odds are
always closer to the prior odds than the estimative odds. The derivation of this
result relies on the inequalities

1<{(1+a1/m)/(1+az/m)} ™™ < {1+ (a2 —a1)/m} <exp(az —a1)
(3.5.10)

for a; > a; > 0. These inequalities are reversed for a; > a; > 0. A somewhat
similar result was used in Desu and Geisser (1973) in the case of equal group-
means and differing group-covariance matrices.

To show how these inequalities (3.5.10) can be used to establish the re-
sult stated above on the sizes of the estimative and predictive posterior odds
relative to the prior odds, we first note from (3.3.13) that the estimative as-
sessment of the log likelihood ratio {(x;0z) can be written as

(x:0g) = —3{81.6(x) — b2.£(x)}-
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From (3.5.7), we have that the corresponding predictive estimate for n; = ny =
1n can be expressed as

D) = - 3(n - Dlog [{1+ (1= D7 eabie(®}/ {1+ (1 - D cabar (0}

(35.11)
where

cn = n(n—1)/(n? - 4).

In order for S to be nonsingular, we need n> p + 1, and so in the case of
equal group-sample sizes, n cannot be less than 4 for all p." Hence, we can
proceed on the basis that ¢, < 1.

By applying (3.5.10) to (3.5.11), it follows that if £(x;0£) > 0, then

0< EP(x) < cab(x;0) < £(x;0p), (3.5.12)
and that if £(x;0g) < 0, then
€008) < cab(x;0g) < €5(x) < 0. (3.5.13)
Using (3.5.12) and (3.5.13) in conjunction with (3.5.9), we have that
m /w2 < 1R x,0) /20 (% 7,8) < Ta(x; 7,08 ) /Ta(x; 7,05)

for wy/m3 > 1, and that

Tl(x;ﬂ’,ég)/’rz(x;ﬂ',ég) < ff?(x;w,t)/'fz(’?(x;w,t) </

for m /7, < 1. Hence, the predictive posterior odds are always closer to the
prior odds than the estimative posterior odds, thus confirming the less extreme
assessment provided by the former approach. This result can be extended to
the case of g > 2 groups.

3.5.5 Biases of Predictive and Estimative Assessments of Posterior Log
Odds

Concerning the biases of the estimative and predictive estimates of the log
likelihood ratio £(x;0%), we have from (3.3.15) that the bias of £(x;8f), condi-
tional on x, is

bias{¢(x;05)} = c1(n — 2){€(x;02) — p(1/m - 1/n2)} — §(x;05),

where cy(n —2) = (n —2)/(n— p — 3). On taking the expectation of this bias
with respect to the distribution of X in the first group, we obtain

E[bias{¢(x;05)} | X € G1] = c1(n— 2){ A% ~ } p(1/n1 — 1/n3)} — 142,
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TABLE 3.1 Mean Biases of the Estimative and Predictive Estimates of the
Posterior Log Odds for Equal Group-Covariance Matrices and Known Equal
Group-Prior Probabilities when p =4 and n, = n>

Approach
Estimative Predictive
A Q(—%A) n =8 n =16 n=8 n; =16
1.049 3 )| 1 -07 -.04
1.683 2 719 28 -24 -13
2.563 1 1.83 66 -.78 —45

Source: Adapted from Moran and Murphy (1979).

where A is the Mahalanobis distance between G; and G,. For n; = ny, it can
be seen that

E[bias{{(x;0g)} | X € G1] = }A%{cy(n—2) -1} > 0.

Hence, the unconditional bias of £(x;8) is always positive for entities from
G,. This bias will be in the opposite direction for entities from Gj.
Moran and Murphy (1979) have shown that for the predictive method

Efbias{¢{(x)} | X € G1] = § plog[{ny(mz + 1)} /{na(ny + 1)}]
=~ n-1 ny 1
* g n-1 +2kpr{x§+2,, S+ 1Az} - EAZ'

It can be seen that the mean bias of the predictive estimate of £(x;0) does
not depend on p for n; = n;. A comparison of these mean biases of the esti-
mative and predictive approaches can be found in Moran and Murphy (1979).
It shows that £(x;0g) gives a considerably more biased estimate of £(x;0k)
than E(EP )(x), as illustrated in Table 3.1.

Moran and Murphy (1979) also noted from their simulation study that it
is the bias of the estimative method that accounts for a large part of the
poor performance of £(x;0g) and £(x;0y) in their estimation of &(x;0g) and
{(x;8y), the log likelihood ratio under homoscedasticity and heteroscedastic-
ity, respectively. Consistent with this, they found in their study that the bias-
corrected versions £¢(x) and {y(x) of the estimative assessments of &(x;0z)
and §(x;0y) were more comparable in performance with the corresponding
predictive estimates. More specifically, their simulations suggest that, in terms
of the criterion of mean absolute deviation, the predictive approach is still
preferable to the estimative after bias correction for the estimation of the log
likelihood ratio, or, equivalently, the posterior log odds since the prior prob-
abilities were specified. On the relative performances of the allocation rules
based on these estimates of the posterior odds, the estimative method with
correction for bias appears to be comparable to the predictive.
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3.5.6 Some Additional Comments on Predictive Versus Estimative
Methods

It has been noted for the homoscedastic normal model (3.3.1) that the esti-
mative and predictive estimates of the log likelihood ratio {;z(x;0£) lead to
the same outright allocation in the case of equal group-sample sizes. How-
ever, even with disparate group-sample sizes, there is a frequentist approach
that gives an allocation rule very similar to that obtained with the predictive
method. It can be seen from (3.4.6) that the rule obtained by the likelihood
ratio criterion is very similar to the predictive rule based on (3.5.7). This sim-
ilarity, which was noted by Aitchison and Dunsmore (1975, page 235), is not
surprising. We have seen that the predictive method forms estimates by effec-
tively using the posterior distributions of the parameters formed on the basis
of the information in both t and x. Likewise both t and x, albeit in a fre-
quentist framework, are used in forming estimates of the parameters with the
likelihood ratio criterion.

As to be considered further in Section 6.4, huge discrepancies can occur
between the predictive and estimative assessments of the typicality index of
a feature vector with respect to a group, as proposed by Aitchison and Dun-
smore (1975, Chapter 11). However, as pointed out by Moran and Murphy
(1979), the predictive assessment of this typicality index is the same as the
P-value of the standard frequentist test for compatibility of x with respect to
a given group.

It is not surprising that, where discrimination is feasible, the estimative as-
sessment of the posterior probabilities of group membership, the Bayes rule,
and the typicality index can in each instance be modified or replaced by an-
other frequentist assessment that yields the same or practically the same as-
sessment as the predictive approach. For if a data set is informative, then an
effective frequentist analysis should lead to essentially the same conclusions
from a practical point of view as those drawn from a Bayesian analysis; see
Durbin (1987).

3.6 COVARIANCE-ADJUSTED DISCRIMINATION

3.6.1 Formulation of Problem

Suppose that the p-dimensional feature vector X can be partitioned into two
subvectors, X() and X@, where the latter subvector has the same distribution
in each group. That is, the distribution of X® is not group-dependent. Hence,
it is of no discriminatory value in its own right but, in conjunction with X1,
may still be of use in the role of a vector of covariates to X("). The variables
in X@ are referred to also as concomitant or ancillary variables (Rao, 1966b).

In this situation, there are two obvious ways of proceeding in forming a dis-
criminant rule. One can use the full observed feature vector x, thereby ignoring
the available knowledge that x® is really only a subvector of covariates.
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Alternatively, in the light of this knowledge, one might use x(!) adjusted for
x?, where the former is not independent of the latter.

A third option would be to form a discriminant rule using just x(*). For
known group-conditional distributions (or an infinitely sized training set), the
use of x(!) instead of the full feature vector x cannot decrease the overall
error rate. However, for training sets of finite size, a reduction in the error
rate may be achieved in some situations. This is to be considered further in
Chapter 12, where the variable-selection problem in discriminant analysis is to
be addressed.

The development of discriminant rules employing covariates started with
Cochran and Bliss (1948) and continued with papers by Rao (1949, 1966b),
Cochran (1964b), Subrahmaniam and Subrahmaniam (1973), and Subrahma-
niam and Subrahmaniam (1976). In these papers, the emphasis has been on
the testing of whether there is a significant difference between the group
means of X with and without the use of the observed value x@® of X®, That
is, they are more concerned with the variable-selection problem in the pres-
ence of covariates rather than with the adjustment of the discriminant rule to
allow for covariates in the feature vector.

To examine more closely the formation of a discriminant rule adjusted for
the covariate vector x(¥, we note that

fix) = fix®)fi(x® | x@), (3.6.1)

where, for economy of notation in (3.6.1), we have used the one symbol f; to
denote the joint, marginal, and conditional density of X and X®, of X®,
and of X® conditional on x®, respectively, in G; (i = 1,2). If the subvector
X® has the same distribution in both groups, so that

HED) = L),

then it can be seen from (3.6.1) that the Bayes rule is the same no matter
whether it is formed using the group-conditional densities of the full feature
vector X or of the subvector X() conditional on X® = x@, Hence, in the sit-
uation where X has known group-conditional densities, there is nothing to be
gained by working in terms of the group-conditional densities of X given
x@, which is equivalent, at least under a normal model, to taking x as the
feature vector after adjusting it for the subvector of covariates x®. However,
in the situation where the group-conditional densities of X have to be esti-
mated, there will be a loss of efficiency in using x as the feature vector with-
out incorporating the information that X has a common distribution within
each group. Further, if the group-conditional distributions of X® given x® are
taken to be multivariate normal, then only the mean and covariance matrix of
the subvector X® of covariates need to be estimated instead of its complete
density as with the use of x.
Without loss of generality, we can relabel the variables in x so that

X = (x(l)"x(z)' )' .
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Corresponding to this partition of x, we let

1
pi = (D u@y

i By
5 = ( 1i 12:)
i In
be the corresponding partitions of u; and X;, respectively, for i = 1,...,g.
Consistent with the assumption that X® has the same distribution in each
group, u#® and ¥, are not group-dependent. A common assumption is to

take the distribution of X conditional on x® within G; to be multivariate
normal with mean

and

u + BB (x® — @) (363)
and covariance matrix
i — £12: 25 Lo (3.6.9)

for i = 1,...,g. This assumption will be valid if X(!) and X® have a joint mul-
tivariate normal distribution, but of course it is not a necessary condition. A
discussion of other possible models for the distribution of X() given x® can
be found in Lachenbruch (1977).

Corresponding to the partition (3.6.2) of x, let

%=®EY),  x=Ex0),

S, = (Sm s12i>’ S = (Sn 512)
S Sxni Sun S»n

be the corresponding partitions of X;, X, S;, and S, respectively, where

and

X = (mXy + nyXy)/n.

Then the ith group mean (3.6.3) and covariance matrix (3.6.4) of X given
x@ can be estimated by

%)+ 81870 - x)

and
S11i — S12:S5," Sauis

respectively. There are more efficient estimators of Xy and Xy, available
than S;2; and Sy, because the latter are computed using the sample mean of
X@ specific to each group rather than the overall sample mean x%.

The model above was adopted by Rawlings et al. (1986), who considered
discrimination between a group of outpatients in an alcoholism treatment pro-
gram and a group of nonalcoholic outpatients. In their example, the subvector
x® consisted of measurements on clinical laboratory tests for chloride, carbon
dioxide, potassium, sodium, and glucose. The subvector x(® consisted of age
as the single covariate.
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3.6.2 Covariance-Adjusted Sample NLDF

Under the additional assumption of homoscedasticity, the ith group mean and
covariance matrix of X given x® can be estimated by

x4+ S1SHIx®P —x®)  (i=1,...,8) (3.6.5)

and
S112 = S11 — $128%'S21. (3.6.6)

For g = 2 groups under the homoscedastic normal model, we let £1.2(x; 0r)
be the sample covariance-adjusted NLDF formed by plugging these estimates
into the group-conditional densities of X given x@. It is equal to £(x;0%)
with x, X;, and § replaced by x¥, x + S1285,! (x® — @), and Sy 3, respec-
tively. An alternative way of forming a covariance-adjusted LDF is to work in
terms of x() adjusted for x(@, that is,

x12 =x - £, 57!,

and to form the rule in terms of the group-conditional densities of X ;. This
rule is the same as obtained by considering the group densities of X con-
ditional on x. However, their sample analogues differ slightly. The sample
linear discriminant function that is obtained by using the group-conditional
densities of X;3, and then replacing the parameters with their sample ana-
logues in terms of X; and S, is given by

1
o s ]
x Sph{xY -2 — 81285 &2 - 2P}, (.67

If @ is set equal to X® for i = 1,2 in (3.6.7), then it reduces to & (x;0z).
Hence, the latter uses the more efficient pooled sample mean X? to estimate
the common mean of X® in each group.

3.63 Asymptotic Unconditional Error Rates

Let
A = {(ps1 — p2) B (s - p2)}?

and
D12 = {1 = BY (B - BB Ba) 1w - u{))2.

As the expectation of X@ is the same in both groups, it follows that A = A ;.
Analogous to the expansion of the ith group-conditional distribution of

{€(x;0e) + (-1Y}8%)/A

by Okamoto (1963), Memon and Okamoto (1970) have expanded the ith group-
conditional distribution of

{612(x;05) + (-1)'}0%)/A
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up to terms of order O(N ~2) under the homoscedastic normal model (3.3.1),
where N = n; + n; — 2. McGee (1976) has since obtained the third-order ex-
pansions. The asymptotic unconditional error rates of the sample normal-
based linear discriminant rule based on §1_2(x;9£) are available from these
expansions.

The comparative performance of the sample rules based on £12(x;0%) and
€(x;0r) have been considered by Cochran (1964b) and Memon and Okamoto
(1970). More recently, Leung and Srivastava (1983b) have compared their
asymptotic overall unconditional error rates in the case of separate sampling
with equal group-sample sizes and with a zero cutoff point. In the latter case,
we let eus (A, p1,p2) and eu(A, p) denote the overall unconditional error
rates of the sample rules based on £;2(x;8x) and £(x;0%), respectively, where
pi is the dimension of x® (i = 1,2). Leung and Srivastava (1983b) have estab-
lished that

eur2(A, pr,p2) < eu(f, p)

up to terms of the first order if and only if

%(prfil)erAl(anil)<EZA—+£—A—1, (3.68)
where N, = N — ps. It is obvious that (3.6.8) holds if N, > p3, which is usually
the case in most practical situations.

In another study on the use of the sample covariance-adjusted NLDF
§12(x;0g), Leung (1988b) has investigated the increase of order O(N 1) in
the error rate as a consequence of having to estimate the unknown group-
prior probabilities in the formation of the plug-in sample version of the Bayes
rule based on & 5(x;8) with cutoff point log(ma/m).

For this covariance problem, Fujikoshi and Kanazawa (1976) have consid-
ered the rule obtained by the likelihood ratio criterion. They have given expan-
sions of the group-conditional distributions of the associated statistic and mod-
ified versions, including those obtained by Studentization; see Siotani (1982).

3.7 DISCRIMINATION WITH REPEATED MEASUREMENTS

3.7.1 Optimal Rule

In some practical situations, repeated measurements are made on the eatity
to be allocated. In a medical context, a patient may be recalled for further
repeated measurement of the same clinical variable(s) with the intent of pro-
viding a firmer basis for diagnosis or prognosis of his or her condition. For
example, in diagnosing hypertension, a patient’s systolic and diastolic blood
pressures (inter alia) may be measured repeatedly over weeks, months, or even
years before any decision on specific therapy is taken. In the example consid-
ered by S. C. Choi (1972), an individual is diagnosed on the basis of multiple
measurements of cell-membrane thickness. A muscle capillary is examined at
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20 sites around its perimeter. In addition to using the averages of the measure-
ments across these sites, the variability between sites can be exploited in the
formation of a sample discriminant rule for discriminating between diseased
and nondiseased individuals.

We first focus on the case where the repeated measurements have the
same mean and are equicorrelated. These assumptions are relaxed in the last
two subsections, where consideration is given to the fitting of time series and
growth curves to the repeated measurements.

Suppose that on the entity to be classified, K repeated measurements are
made on each of its p features so that its feature vector x is now of dimension
pK and is given by

X= (XpyseeerXm, )

where x,,, denotes the kth measurement on X (k = 1,...,K). In the initial
study on this problem by S. C. Choi (1972) and the subsequent studies by
Gupta (1980, 1986), x»,, was taken to be the realization of a random vector
modeled in group G; (i = 1,...,8) as

Xm, =pi +Vi+ex  (k=1,..,K). (3.7.1)

In this model, V; is distributed N(0,2,;) independently of the €;, which are
distributed as

6,‘1,...,6,'1(‘:"\"1}\'(0,2".,') i=1,..,52).

Within G;, the covariance matrix X,; can be viewed as arising from the vari-
ation in the features over entities, whereas T.,,,; reflects the variation between
the repeated measurements on the features of a given entity.

Under (3.7.1), the ith group-conditional density fi(x;8y) of the full feature
vector X is multivariate normal with mean

(Bl eeer il

and covariance matrix
i ®lxly + B, Ik, (3.1.2)

where 1x denotes the K-dimensional vector whose elements are all unity and
® denotes the Kronecker product. The expression (3.7.2) displays the equicor-
related structure of the covariance matrix of the feature vector under this
model. Here now the vector 6; of parameters contains the elements of u;
and the distinct elements of X,; and X,,; (i = 1,...,g), and Oy contains the
elements of 8y,...,8;.

S. C. Choi (1972) and Gupta (1980) noted that f;,,(x;8y) can be expressed
as

fim(x;6;) =(2,;)~(1/2)pK K-/2P|3,. -(1/2(K-1)
X |Bei + K Smi| 2 exp(—1 Qi) (3.13)
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where

Qi = (K - D(S;B,) + X — 1) (Bei + K 8ni) 7 (Xom — i),

K
Sx =) (Xm, —X)(%m, ~ X)',
k=1

and
K
Xm = me,‘/K.
k=1

It follows from (3.7.3) that in the case of g = 2 groups, the-optimal or Bayes
rule is based on the discriminant function

Em(x;00) = log{ fim(x;0u)/ fam(x;00)}

2
-y %(_1)"{@- 1) (Bei + K" Bmi) 7 - 1)

i=1
+ (K = D(S; B + (K ~ 1)Iog | S
+1og|Bei + K18} (3.7.4)

Gupta (1986) has obtained expressions for the error rates of the Bayes rule in
the case of a single feature variable (p = 1). The case p > 1 has been studied
recently by Gupta and Logan (1990).
If
Ta=X,=3, 3.7.5)

and
Y =y = zmy (376)

then (3.7.4) reduces to

Em(X:08) = (Xm — 3(p11 + 1)} (Be + K7'Sm) My — 2),  (3.7.7)

the linear discriminant function based on the sample mean X,, of the K mea-
surements made on the entity to be allocated. Here 8z denotes @y under the
constraints (3.7.5) and (3.7.6) of equal group-covariance matrices. It is clear
that for K = 1, it coincides with the familiar linear discriminant function based
on a single measurement of each feature variable.

3.7.2 Posterior Log Odds: Univariate Case

In the univariate case of p =1 under the homoscedastic constraints (3.7.5)
and (3.7.6), Andrews, Brant, and Percy (1986) have considered the effect of
repeated measurements on the posterior log odds

N (X;0E) = log(my/m3) + Em(X; 08 ).
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In the case of p = 1, we write £, and X,, as 62 and 02, respectively, and we
put
p=0’/d?
where 2 = g2 + ¢2,. Then for p =1,
(Be +K18,) t=0"2K/{1+ (K - 1)p}.
By using this result in (3.7.7), it follows for p = 1 that

10g7m(x;0c) = log(m1/m2) + ¢{%m — 3(p1 + p2)} (11 — p2)0 ™%, (3.7.8)
where
c=K/{1+(K - 1)p}.
It can be seen from (3.7.8) that for p = 0, for which repeated measurements
bring new information, the prior odds are modified by the factor
exp [K {%m — §(11 + p2)} (11 — p2)o 2.

As p increases, that is, repeated measurements became less informative, the
factor ¢ decreases from K at p=0to 1 at p=1 in the case of no new in-
formation. The case p =0 had been considered previously by Lachenbruch
(1980).

3.7.3 Plug-In Sample Rule

Returning now to the muitivariate heteroscedastic model in which the group-
conditional densities are given by (3.7.3), we can form a sample rule by plug-
ging in estimates of the yu;, %,;, and the £,,; in the case of unknown 8y. The
training data t on the classified entities are denoted as previously by

v =(1..¥n)
!

where y; = (xj,;)', and where now

X;j = (x},,,l, .- .,x;-mk)'

contains the K repeated measurements of the feature vector on the jth classi-
fied entity (j = 1,...,n).
Let

n K
%= ) ZijXjm/(mK),

j=lk=1

- K
Xij = Zzijxjm,,/K (G=1,..,m),
k=1

n K
Smi =)D zij(Xjm, — %ij)Xjm, — %)) /{mi(K ~ 1)},

j=1k=1
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and

S = KZ(i,’j —%)%j %) /(ni - 1)

j=1

for i = 1,...,g. Then following S. C. Choi (1972), p;, i, and I,; in (3.7.3)
can be estimated as

bi =X;,
Lmi = Smiy
and
.. =(Si—Sm)/K
fori=1,...,8.

This problem has been considered also by Ellison (1962), Bertolino (1988),
and by Logan (1990), who presented the predictive approach.

3.74 Discrimination Between Time Series

Often the multiple measurements on an entity are recorded over time, and
so it is appropriate to adopt a time-series approach to the modeling of the
group-conditional distributions of the feature vector. Note that this situation
is distinct from that in which the training replicates of the feature vector in
a given group are viewed collectively as the realization of a time series. The
latter is to be considered in Section 13.9, which is on discriminant analysis
with dependent training data.

Schumway (1982) has provided an extensive list of references and applica-
tions of discriminant analysis for time series. Applications listed there include
discriminating between presumed earthquakes and underground nuclear ex-
plosions, the detection of a signal imbedded in a noise series, discriminating
between different classes of brain wave recordings, and discriminating between
various speakers or speech patterns on the basis of recorded speech data. Ad-
ditional references may be found in the work by Browdy and Chang (1982)
and Krzy$ko (1983) on discrimination between time series.

Suppose that for a single (p = 1) feature variable x of the entity, the multi-
ple measurements Xpm,,..., Xm, have been recorded at K points in time sy,...,
skx. One may also observe multivariate series, but we focus on the univariate
case in the interest of simplifying the notation. On writing

Xon, = Pir + € *k=1,...,K)
in group G; (i = 1,...,g), we put
X =(Xmyseoos Xm)'s
pi = (i1, .., pix)’,

and
€ = (eils'-"eil(),)
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where ¢; is taken to have a multivariate normal distribution with mean zero
and covariance matrix X; (i = 1,...,g). Thus,

X~N(pi,E;) in Gi (i=1,..,8) 379

The simple case of detecting a fixed signal embedded in Gaussian noise is
represented by taking g =2, uy = s, and p; = 0 in (3.7.9). This also covers
the case of the detection of a stochastic signal, provided an additive model is
assumed for the signal and noise, so that £; represents the covariance matrix
of the signal plus noise within group G; (i = 1,2).

A common assumption in practice is that ¢; arises from a zero-mean sta-
tionary discrete time parameter process so that (Z;),,, is a function of |u — v|
for u,v = 1,...,K. A special case is a first-order autoregressive process. Then

i)y = ”izl’.!u—vly

where o7 is the ith group-conditional variance of Xm,, and |p;| <1(i =1,
cens8)

The rather cumbersome matrix calculations with the time-domain approach
can be avoided through consideration of the more easily computed spectral
approximations. Schumway (1982) has presented some of the spectral approx-
imations that make discriminant analysis in the frequency domain such an at-
tractive procedure.

Broemeling and Son (1987) and Marco, Young, and Turner (1988) have
considered the Bayesian approach to discriminant analysis of time series in
the case of univariate autoregressive processes.

3.7.5 Discrimination Between Measurements Made at Different Points in
Time

We consider here the case of discrimination within a time series, correspond-
ing to multiple multivariate measurements recorded over time on an entity.
For an observation x recorded on the entity at an unknown point in time,
the aim is to determine its time of measurement from a choice of two speci-
fied time points, say, s; and s;. Under the model introduced initially by Das
Gupta and Bandyopadhyay (1977), x is taken to be the realization of a random
vector distributed normally with means g#; and u;, and common covariance
matrix X, at the time points s; and s3, respectively. Further, in order to form
a sample discriminant rule in situations where the group parameters are not
all known, it is supposed that there are available n; = %n feature observa-
tions x;; (j = 1,...,n;) known to be measured at time s; (i = 1,2). A stationary
Gaussian process is assumed for the errors in the time series, so that each
(x1:%;;)’ denotes a realization of a 2p-dimensional random vector, having a
multivariate normal distribution with mean (y47,45)' and covariance matrix

(2 212)
Ty T/
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In the special case of a first-order autoregressive process,
B2 = ph, (3.7.10)

where |p| < 1. Thus, unless 33 = 0, the classified training observations are
not independent across the two groups, representing the two specified points
in time. But as usual, they are independent within a group; that is, x;; for
Jj=1,...,5n denote 3n independent realizations (i = 1,2).

Das Gupta and Bandyopadhyay (1977) have derived the asymptotic expan-
sions of the sample plug-in version of the optimal discriminant rule and its
unconditional error rates for various forms of ¥y, including (3.7.10). In the
latter special case, the problem has been investigated further in a series of pa-
pers by Bandyopadhyay (1977, 1978, 1979). Bandyopadhyay (1982, 1983) and
Leung and Srivastava (1983a) have studied the covariance-adjusted sample
discriminant rule for this problem.

3.7.6 Allocation of Growth Curves

We consider here the allocation of an entity on the basis of a growth curve fit-
ted to the repeated measurements made on it. Allocation of growth curves was
first considered by Lee (1977) from a Bayesian viewpoint and later extended
by Nagel and de Waal (1979); see Lee (1982) for a review. The growth-curve
discrimination problem can be formulated in the just considered context of
repeated measurements on the features of the entity to be allocated to one of
the g underlying groups. Suppose that for a single (p = 1) feature variable x
of the entity, the multiple measurements Xm,,...,Xm, have been recorded at
K points in time s3,...,5k. If the growth curve is taken to be a polynomial of
degree g — 1, we can write in group G;j

Xm = i, + €, (k=1,...,K),

where
-1 .
i, = wio + WirSk + -+ + wig 1857 i=1,...8).

The usual assumption about the vector of residuals

€ = (€ity.. . €ix)'

is that it is multivariate normal with mean zero and with an unknown covari-
ance matrix X;. This covariance matrix is not specified to be diagonal as the
observations in time on the same entity are not independently distributed in
general.

The unknown coefficients w;j (j =0,...,¢—1) and E; (i = 1,...,g) can be
estimated from the training data t containing growth curves observed on n
classified entities. Here x; = (Xjm,,...,Xjm,)’ contains the K measurements in
time on the single feature of the jth classified entity (j = 1,...,n). To represent
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t in the form of the growth model proposed by Potthoff and Roy (1964) under
the assumption of homoscedasticity ; = X (i = 1,...,8), we first let

t;, = (X],...,x,,) _

and
t', = (11,.. .,z,.),

where it is assumed now that the data have been relabeled so that the first n;
feature vectors contain the growth curves on the entities from G, the next n;
contain the growth curves on the entities from G, and so on, until the last n,
feature vectors contain the growth curves on the entities from Gg. Consistent
with our previous notation,
n
n; = Z Z; i
j=1

denotes the number of entities from G;, where z;; = (z;); is one or zero ac-
cording as to whether the jth entity belongs to G; or not (i = 1,...,8).

With this notation, the training data t can be expressed in the form of the
growth model of Potthoff and Roy (1964) as

t, = Cwt} +¢, 3.7.11)
where C is the K x ¢ matrix with
©Ow=s"" @=1.,K;v=1..,9
and where w is the ¢ x g matrix with
(@hy =wyu—y  (u=1,..,q;v=1..,8).
The p x n matrix € of residuals is given by
€ = (€1,...,€),

where €; denotes the vector of residuals for x; (j = 1,...,n). In accordance
with our previous assumptions, the ¢; are distributed N (0, X), independently
of each other.

For further details on the fitting of the growth-curve model (3.7.11) to
the training data t, the reader is referred to Lee (1982) and the references
therein.

377 Sequentihl Discrimination

When the repeated measurements on an entity are able to be observed se-
quentially, consideration may be given to the use of sequential allocation rules,
particularly if it is possible to treat the repeated observations as being inde-
pendent. References related to the sequential approach to discrimination
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include Wald (1947, 1950), Armitage (1950), Kendall (1966), Freedman (1967),
Simons (1967), Fu (1968), Meilijson (1969), Roberts and Mullis (1970), Yarbor-
ough (1971), Srivastava (1973a), Smith and Makov (1978), Geisser (1982), and
Titterington, Smith, and Makov (1985, Chapter 6).

Mallows (1953) studied the sequential approach in the situation where there
is only a single measurement on the feature variables of an entity, but the
latter are observed sequentially.

3.8 PARTIALLY CLASSIFIED DATA

Up to now, in this chapter, we have concentrated on the typical situation in
discriminant analysis, where the training data are completely classified. We
now consider the computation of the maximum likelihood estimate of ¥y in
the case of partially classified feature data, as considered in Section 2.7 for
arbitrary parametric forms for the group-conditional distributions. The same
notation as introduced there is adopted here, where the available data consist
of the classified training data t containing y; = (x},2;)’ for j = 1,...,n and the
unclassified data t, containing the m unclassified feature observations x; (j =
n+1,...,n + m). The maximum likelihod estimate of ¥y from t and ¢t,, can be
computed iteratively via the EM algorithm, using equations (2.7.3) and (2.7.4)
as described in Section 2.7.

In the present situation of multivariate normal group-conditional distribu-
tions with unequal covariance matrices, the solution of (2.7.4) exists in closed
form. It follows that on the M-step of the (k + 1)th cycle, the current fit for
the group means and covariance matrices is given explicitly by

pltd = {Zzu"f + ’f 7i(x; O )"/}/Mi(‘l’l(lk)) (G8.1)

j=n+l
and
n
nE+D _ {Z 20 — V) (x; — VY
j=1
nim ) - k . )
+ +
+ 3 n ) - m ) - p DY } / MeP),
j=n+1
(3.82)
where

n+m
M;(eP) = {n,- + 3 r,-(x,-;w,(,“))} G=1...8)

j=n+l



LINEAR PROJECTIONS OF HOMOSCEDASTIC FEATURE DATA 87

The posterior probability 7;(x;; Wy) that the jth entity with feature vector x;
belongs to G; can be computed from
(mi/7g) exp{{ig(x;0v)}

1+ 4 21(ma/mg)exp{ag(x;00)}
where §ig(x;0y) is defined by (3.2.3).

Under the homoscedastic version of the normal model where X is the
common group-covariance matrix, \Il,(,") is replaced by \1’,(,:") in (3.8.1) and the
group-specific estimate (3.8.2) is replaced by

Ti(x; ¥y) = i=1..,-1),

8 n
2D = (e my {3 Yty — - Y
i=1 j=1
~ k+1 k+1 k+1
+ +
+ 3 mlx O — ) - ’)’}-
j=n+l

McLachlan and Basford (1988) have provided a FORTRAN listing of com-
puter programs for fitting heteroscedastic and homoscedastic normal mixture
models to partially classified data with either separate or mixture sampling of
the classified observations and also to completely unclassified data.

3.9 LINEAR PROJECTIONS OF HOMOSCEDASTIC FEATURE DATA

3.9.1 Introduction

In dealing with multivariate feature observations, it often facilitates visualiza-
tion and understanding to represent them in a lower-dimensional space. In
particular, two- and three-dimensional scatter plots are often helpful in explor-
ing relationships between the groups, assessing the group-conditional distribu-
tions, and identifying atypical feature observations. However, if the dimension
p of the data is greater than about 7 or 10, then considerable patience and
concentration are needed for a careful scrutiny of all (5) and (§) scatter plots
of pairs and triples of the feature variables. One approach to reducing the ef-
fort involved in such an exercise is first to transform linearly the p original
feature variables into a smaller number g of variables. This process is referred
to in the pattern recognition literature as linear feature selection.

For the linear projection C,, where C, is a ¢ x p matrix of rank q (q < p),
there is the problem of how to choose C, so as to best preserve the distinction
between the groups, where ¢ may or may not be specified. Often g will be
specified to be at most 2 or 3 for convenience of the subsequent analysis, in
particular the graphical representations of the transformed feature data. In
some situations, there is interest in finding the single linear combination that
best distinguishes the g groups, and so q is specified to be one.

- We proceed here under the homoscedastic normal model (3.3.1) for the
group-conditional distributions. For this model, Geisser (1977) has provided
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a comprehensive account of the topic. There is also the paper of Hudlet and
Johnson (1977), which appeared in the same proceedings as the former ref-
erence. More recent papers include Schervish (1984) and McCulloch (1986).
Previously, Guseman, Peters, and Walker (1975) had considered the problem
in the more general situation of unequal group-covariance matrices. Results
for this heteroscedastic case, which has been considered recently by Young,
Marco, and Odell (1987), are discussed in Section 3.10.

3.9.2 Canonical Variate Analysis

A starting point in the consideration of linear projections of x is a canonical
variate analysis, which expresses the differences between the means y;,..., 4,
in d = min(p,b,) dimensions, where b, is the rank of the matrix B, defined
in what follows. A canonical variate analysis does not depend on the assump-
tion of normality, as only knowledge of the first two moments of the group-
conditional distributions is required. Let

— @) (pi -5,

#t MN

where
g
E=) mi/e.
i=1

We will reserve the notation B for the between-group sums of squares and
products matrix on its degrees of freedom,

1 -1
=71 Z ni(x; — X)(X; — x)'.
i=1

For mixture sampling in equal proportions from the groups, B/n converges
in probability to B, /g, as n — oo. The matrix B, is of rank b, < g — 1, where
b, = g — 11if p,,..., e are linearly independent.

The canonical variates of x are defined by

v = Iyx, (3.9.1)
where
Ti = (,--7d)s (392)
and where 4; maximizes the ratio
¥'Bov/7' 8. (3.93)

For k = 2,...,d, v maximizes the ratio (3.9.1) subject to

BB =0 (h=1...,k—1) (3.9.4)
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Hence, the correlation between ;X and 4; X is zero for h # k = 1,...,d. The
usual normalization of -y is

"o =1 (k=1,...,d), (3.9.5)

which implies that ;X has unit variance. This normalization along with the
constraint (3.9.4) implies that

rdzrd, = ld’

where 1; is the d x d identity matrix.

1t will be seen from both allocatory and separatory aspects, the new set of
coordinates vy,...,v4 is the complete set of multiple linear discriminant func-
tions. Hence, sometimes in the literature they are referred to as discriminant
coordinates rather than by the more usual name of canonical variates.

The computation of Iy is well-covered in standard textbooks on multivari-
ate analysis; see, for example, Seber (1984, Chapter 5). The transpose of its
kth row, 7, is the eigenvector corresponding to the kth largest (nonzero)
eigenvalue of $-1B,. Hence, ; satisfies

Bo—XosBe =0 (k=1,..,d), (3.9.6)

where A, 1,...,Aox denote the nonzero eigenvalues of 1B, ordered in de-
creasing size. From (3.9.5) and (3.9.6),

YBow =Aox  (k=1,..,d).

The eigenvalues and eigenvectors of £~!B, can be found using a singular-
value decomposition algorithm; see Seber (1984, Section 10.1). Their compu-
tation is usually considered in the literature for the typical situation in practice
where B, and ¥ are unknown and must be replaced by estimates formed from
the available training data. The sample version of a canonical variate analysis,
which is taken up later in Section 6.7, is just the multiple-group generaliza-
tion of Fisher’s (1936) approach to discriminant analysis in the case of g =2
groups for which, as seen in Section 3.3.3,

" x S_l('iﬁ -X3).

By building on the initial work by Fisher (1936) and Hotelling (1935, 1936),
the technique of canonical variate analysis was developed during the 1940s by
Rao (1948) and others.

For p >d, we let v441,...,7p denote the eigenvectors of =-1B, corre-
sponding to its p — d zero eigenvalues, normalized as

ABwu=1 (k=d+1,...p).

We put
r= (l‘},l‘l',_d)’, (3.9.7

where
rp—d = (‘7d+11"',‘7p)'°
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It follows then that
X~ N(Tp;,1) in G; (i=1,..8) (3.9.8)

where, corresponding to the partition (3.9.7) of T,

I‘ ,
r""i = ( abt )9
rp-dl‘i

Toapi =Tp_afi (i=1,...,8). (3.99)

and

3.9.3 Discrimination in Terms of Canonical Variates

It is clear from (3.9.8) and (3.9.9) that for the purposes of allocation, the last
p — d canonical variates can be discarded without an increase in any of the
group-specific error rates. This is because I',_4X is distributed independently
of Iy X, with the same distribution in each group. A concise reference on this
is Kshirsagar and Arvensen (1975).

We now verify this result that the optimal rule r,(x;¥g) formed from
the vector x of p original feature variables is the same as the optimal rule
ro(v; We(Ia)) formed from the vector v containing the d canonical variates of
x. Here ¥g(I,) is the analogue of ¥ for the canonical variates. First, note
that for multivariate normal group-conditional distributions with a common
covariance matrix, the optimal rule r,(x; ¥z) makes an allocation on the basis
of the minimum of the discriminant scores,

min{(x - 1Y 27 (x — i) - 2logm; ). (3.9.10)

Further, it is invariant under a nonsingular transformation, so that it is the
same as the optimal rule r,(I'x, ¥g(T')) using the full transformed feature vec-
tor I'x. Hence, on noting that I'ETY = I, it follows that r,(x; ¥r) is the same
as the rule based on

miin{(I‘x —~ ) (Tx — i) - 2logm; }. (3.9.11)

This result can be established directly by noting that (3.9.10) can be written as
(3.9.11) since I'TY = =1,
Considering now (3.9.11),
{T(x— i)} {T(x — i)} = {Tu(x — i)} {Ta(x — )}
+ (Cp—ax — Tp_afi) (Tp_ax — Tp_afi),

and so it is equivalent to

min{v — Typ;)' (v — Tapi) — 2logm; }. (39.12)

1

This last result (3.9.12) defines r,(v; ¥£(Iz)), because the covariance matrix
of the vector of canonical variates is the identity matrix. Hence, r,(x; ¥r) is
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the same rule as 7,(v; ¥g(Iy)). It can be seen from (3.9.11) that the latter
assigns an entity to the group whose mean in the canonical variate space is
closest in Euclidean distance to v, after adjustment for any disparity in the
prior probabilities w; of the groups.

Of course, the overall error rate of the Bayes rule will be increased if it is
based on a linear projection of x, C,x, where the rank q of C, is less than
d. We now proceed to consider the allocatory and separatory aspects of dis-
crimination on the basis of C,x. It will be seen for a given g < d in the case
of g > 2 groups that, although an intuitively desirable projection C,; would be
one that minimizes the error rate while maximizing the separation between
the groups, the optimal choice of C,; depends on whether the error rate or a
separatory measure is to be optimized. The latter aspect of the choice of C,
is considered first.

3.94 Separatory Measures

One approach to assessing the effectiveness of a linear map of the feature
vector x from R? down to RY(q < p) is to use a measure of spread of the g
groups. For this purpose, Geisser (1977) and McCulloch (1986) have consid-
ered a class of separatory criteria, which are intuitively motivated functions
of the group means and their common covariance matrix. This class does not
require any distributional assumptions, only the first and second moments.

For the linear projection C,, they defined their class of measures of spread
of the g groups to consist of measures of the form

h{(CqEC) ™ (CqBoC)} = hg, (K1,.., Kg,),

where h(-) is any scalar function so that &, (k1,...,Kq,) is increasing in the
nonzero eigenvalues K1,...,Kq, Of

(c,,zc;,)'l(cqn.,c;),

where ¢, = min(q, b,). This class contains well-known measures such as those
of Hotelling and Wilks. The former measure is based on the sum of the eigen-
values, and the latter is based on their product.

For given g, let s, be the measure of spread defined by

Sq = néaxh{(CqECjI)“(Cqu'qn.
1
The maximum value of 54 over q is attained at ¢ = d = min(p,b,). A choice
of Cy4 that achieves this is Iy defined by (3.9.2). Hence, there is no interest in

the following work in considering q > d.
Geisser (1977) showed that for a given q (g < d),

SQ = hq(Ag’l, veey Ao,q),
which can be achieved by taking C, = I;, where

I‘q = (‘yl, . ""7‘1)"
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An alternative proof was given recently by McCulloch (1986), using the sing-
ular-value decomposition of (1,..., ) after the feature vector has been trans-
formed so that X = I,. Hence, for this class of measures of spread, the first g
canonical variates, v = yiX,...,Vg = -y;x, provide the optimal projection of x
from R? to RY.

3.9.5 Allocatory Aspects

Another way of defining the effectiveness of a linear projection C; of the
feature vector is to use the overall error rate eo(¥g(Cy)) of the optimal rule
ro(Cqx; Wg(Cq)) formed from the g feature variables in C;x. Here Wg(Cy)
denotes the elements of Cypuy,...,Cope and the distinct elements of C,,EC;.
As seen in Section 3.9.3, there is no increase in the error rate eo(Wg(Cy))
over eo(Wg) for the full feature vector x, if we take C; = I'; and so use the
vector v = I';x containing the d canonical variates, where d = min(p,bp) and
by is the rank of B,. However, if we use a projection Cgx with ¢ < d, then
there will be an increase in the error rate eo(¥g(C,)). So far as the spread of
the groups is concerned, it was seen in the last section that the choice C; = T,
corresponding to the first g canonical variates, is the optimal linear projection
from R? to R? for the class of measures of spread

h{C,EC})"}(C;B,C))}, (3.9.13)

where h(-) is any scalar function that is increasing in the nonzero eigenvalues
of
-1
(C=C,) 7 (CqB,Cy).

However, it does not follow that eo(Wg(C,)) attains its minimum over C; for
C, = I;. But, obviously, this choice can be regarded as an approximation to
the optimal solution for the error rate.

We now examine this in more detail for linear combinations Cix of the
original p feature variables. For convenience of notation, we henceforth write
C, asa.

3.9.6 Best Linear Combination in Terms of Error Rate

Geisser (1977) has given an excellent account of linear discrimination for the
homoscedastic normal model (3.3.1) as assumed now. He showed that for g
groups with equal prior probabilities, the overall error rate for the Bayes rule
based on the linear combination a’x is

g-1
eo(¥x(a)) = (2/8) ) {3 (wusny — i)} (39.14)

i=1

where vy > v(3) > -+ 2 1, are the ordered values of v, ...,1,, and

v, = a'pu;/(a'Sa)'/2,
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For a linear combination a'x, the measure of spread (3.9.13) reduces to a
monotonic increasing function of

a'B,a/a'Za,

which can be expressed as

2
a'B,a/a'Sa = g—i—l- z(u,- ~v)?
i=1

1 g
=—Y wp-9)" (3.9.15)

Hence, maximizing the spread is equivalent to maximizing (3.9.15). This con-
trasts with the function (3.9.14) to be minimized in order to minimize the
overall error rate. There are thus two different functions of the ordered val-
ues of 1,...,1, to be optimized. In the special case of g = 2, the two goals of
optimization coincide because

a'B,a/a'Sa = }{A(a)}?
and
eo(¥x(a)) = ¥{-3Aa)},
where
Aa) = [a'(s1 - p2)l/ (2 a)'/2.
It follows from Section 3.3.3, that A(a) is maximized by taking

a8 o B (1 — p2).

3.9.7 Allocatory Versus Separatory Solution

For g > 2 groups, the problems of optimizing the overall error rate of the
Bayes rule based on a’x and a measure of spread have different solutions in
general. We have seen that a = v; maximizes the measure of spread for the
class of measures (3.9.13). It can be seen from (3.9.15) that this choice of a
maximizes the sum of squared distances between the projections v; = a’u; of
the group means. Hence, it tends to make the large distances as large as pos-
sible at the risk of making the small distances zero. However, with respect to
the choice of a for the minimization of the error rate, it can be seen from
(3.9.14) that the optimal value of a attempts to make the small distances be-
tween the means as large as possible. To illustrate this point, we use the exam-
ple of Habbema and Hermans (1977), which they presented in the context of
the F-statistic versus the error rate as a criterion for variable selection in dis-
criminant analysis. Let V) = Wy, V(o) = w2, and v(3) = —w), where 0 < w; < w.
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Then from (3.9.15),
a'B,a/a’'Ta = {(w? + wi/3),

and from (3.9.14),

eo(Tg(a)) = (2/3) [#{-}(w1 + w2)} + {3 (w2 —w1)}] -

For fixed w,, the minimum value of eo(¥g(a)) with respect to w; occurs at
wy = 0, at which the measure of spread (3.9.13) is minimized rather than max-
imized.

More recently, Schervish (1984) has presented an example in which the
overall error rate eo(W E(a)) is not minimized by taking a = ;. In his exam-
ple, he considered g = 3 groups with equal prior probabilities, having bivariate
normal distributions with common covariance matrix £ = I; and means

p=(-1-1, p=(Q3), and pu3=0,1).

For these values of the parameters, the Bayes rule r,(x; ¥ ) using both feature
variables in x has an overall error rate of eo(¥g) = 0.065. However, insight
may be required into which single linear combination a’x of the features best
separates the three groups so far as the associated error rate eo(¥g(a)) is
concerned. Schervish (1984) showed that the latter has a minimum value of
0.20 at

a, = (0.989,0.149)'.

His procedure for minimizing eo(¥g(a)) in the case of g = 3 is to be described
shortly. The error rate of the Bayes rule based on a)x is much larger than
the corresponding rule based on the bivariate feature vector. However, it is
appreciably less than the error rate of 0.344 for the univariate Bayes rule using
the first canonical variate v;x. Here v = (1/ v2,1/V/2)' is the eigenvector of
B, corresponding to its largest eigenvalue. In this example,

B_(42)
°“\2 4/

With the first canonical variate «x, the projected means yju2 and vy pu3
are equal, demonstrating the tendency of the first canonical variate to use the
projection to increase the distances between the well-separated means at the
risk of decreasing the distances between the badly separated means to zero.
On the other hand, the projection a, that minimizes the error rate attempts to
increase the small distances between the badly separated means in the original
feature space.

As remarked by Schervish (1984), the difference between the error rates
of the Bayes rule based on the first canonical variate {x and the optimal
linear combination a)x is more extreme in his example than typically found
in practice. Previously, Geisser (1977) had provided a less dramatic example
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of how the linear rule based on -;x is suboptimal in terms of the error rate
criterion.

3.9.8 Computation of Best Linear Combination

We now describe the procedure developed by Schervish (1984) for the mini-
mization of eo(¥g(a)) with respect to a for g = 3 groups. In this case, it can
be assumed without loss of generality that for the linear combination a'x,

a'u <a'p; <a'ps, (3.9.16)
and hence that the Bayes rule has the form
ro(a'x;¥e(@))=i if xeR; @=1,..,3),
where R;, R,, and R, are the intervals

Ry = (—o00, 38" (41 + p2)},
Ry = (§a' (11 + p2), 30’ (2 + p3)},
R = (3'(p2 + p3), ).
Let uy = ||pp1 — pa2]l, 42 = [|ps3 - p2, and
uz = cos™ {3 — p2) (1 — p2)/ (1 42)},
ug = cos~ {a'(u3 — p2)/uz}.

Then Schervish (1984) showed that the minimization of eo(¥g(a)) reduces to
minimizing the function

k(us) = 3[1+ ®{Luy cos(us + ug)} — ®(3uz cosuy))

with respect to u4. This is a straightforward numerical problem because k (u4)
is convex over the interval

max{0, }(7 — u3)} < us < min{3x, 7 — s},

implied by the condition (3.9.16).

In a similar manner, Schervish (1984) also showed for g = 3 groups how
to choose a so as to minimize the maximum of the group-specific error rates
of the linear rule based on a’x. However, difficulties remain in attempting to
extend his results to g > 3 groups.

More recently, McCulloch (1986) has proposed some methods for approx-
imating the a,-that minimizes the overall error rate eo(¥g(a)) for an arbi-
trary number g of groups. Roughly speaking, the idea is to work with nor-
malized linear combinations of the first few canonical variates, retaining only
those that correspond to the dominant eigenvalues of ©~1B,. For instance,
if Ao and A, are large relative to the remaining d — 2 nonzero eigenvalues
of ©-1B,, then the problem is to minimize the error rate of the Bayes rule
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using ayv; + azvz, where a? + a3 = 1. McCulloch (1986) notes that this is a
simple numerical problem. On putting a; = cosw and a3 = sinw, it requires
the minimization of the error rate (3.9.14) with respect to the one variable
w (0 £ w < 2). For linear combinations of more than the first two canonical
variates, McCulloch (1986) describes a method for obtaining an approximate
solution. He showed that for the aforementioned example of Schervish (1984),
it yields a linear combination for which the Bayes rule has an error rate of 0.21,
which is quite close to the rate of 0.20 for the optimal univariate rule.

3.10 LINEAR PROJECTIONS OF HETEROSCEDASTIC FEATURE
DATA

3.10.1 Best Linear Rule for g = 2 Groups

In the previous section, we have considered the choice of the linear projec-
tion C4 of given rank q so as to minimize the overall error rate of the linear
rule ro(Cyx; ¥£(Cy)). The latter is the Bayes rule based on Cgx under the ho-
moscedastic normal model (3.3.1). In this section, we consider the choice of
C, to produce the best linear rule, in the sense of having the smallest overall
error rate, under the heteroscedastic normal model (3.2.1). Because the group-
covariance matrices are now no longer assumed to be equal, 7,(Cyx; ¥£(C,))
is not the best linear rule based on C,x for the given projection C,.

Historically, this type of problem was first considered by Aoyama (1950) in
the univariate case, for which a is a scalar and so can be taken to be one. This
reduces the scope of the problem to the choice of the cutoff point, which was
considered also by Stoller (1954), but from a nonparametric perspective.

In the multivariate case, the development of the best linear rule based on
the linear combination a’x for g = 2 heteroscedastic normal groups was con-
sidered independently by Riffenburgh and Clunies-Ross (1960), Clunies-Ross
and Riffenburgh (1960), Anderson and Bahadur (1962), and Jennrich (1962).
It follows from their work that optimal linear rules can be formed by consid-
eration of the following class of admissible linear procedures. For given w;
and w;, where w1 X; + w,;X; is positive definite, consider the linear rule that
assigns an entity with feature vector x to G or Gj, according as to whether
a'x is greater or less than the cutoff point ¢, where a and c satisfy

a = (31 +wB;) (1 — p2)

and
c=a'y —wa'Ba=a'y; +wSra.

By appropriate choices of w; and w,, the linear rule that (a) minimizes the
overall error rate or (b) minimizes one error with the level of the other error
specified or (c) minimizes the maximum of the two errors can be obtained; see
T. W. Anderson (1984, Section 6.10) for details. Concerning (c), the minimax
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solution is given by w; = w; = w,, where w, is the value of w that maximizes
AW) = a'(p1 — p2)/[3{(a'B10)"/? + (a'B20)'/?}]

with respect to w (0 < w < 1). Banjeree and Marcus (1965) have considered
the computation of bounds for w,. The common value of the two error rates
is ®{—3A(wo)}-

For the homoscedastic case of £y = T, = X, A(w) is identically equal to

A = {(p1 — p2) B (w1 — )},

the Mahalanobis distance between two groups with a common covariance ma-
trix. As noted by Anderson and Bahadur (1962), it suggests the use of A(w,)
as a measure of the distance between two groups with unequal covariance
matrices. It has subsequently been considered in this way by Chaddha and
Marcus (1968) and by Marks and Dunn (1974) and McLachlan (1975¢c) for
group-covariance matrices that are proportional. Also, Chernoff (1952, 1972,
1973) has considered measures, including A(w, ), of the distance between two
multivariate normal distributions with unequal covariance matrices.

A sample version of the optimal linear projections, and hence sample lin-
ear rules, as defined in the previous work can be obtained by replacing the
unknown group means and covariance matrices with their unbiased estimates.
Other sample linear rules have been proposed in the literature. For example,
in the spirit of the approach of Glick (1969), Greer (1979, 1984) has given an
algorithm for constructing the linear rule a’x, where a and its cutoff point ¢
are chosen to maximize its apparent error rate when applied to the training
data. A linear programming approach was adopted also by Freed and Glover
{(1981), where a and ¢ are chosen from the training data by minimization of

2 n
) (—Vzj@'x;-c)

i=1 j=1

with respect to a and c¢. Additional algorithms for linear discrimination can be
found in Castagliola and Dubuisson (1989).

Linear procedures besides the sample NLDR r,(x; ¥z) are not widely used
in practice. As discussed by Marks and Dunn (1974), the so-called best linear
rule offers little improvement over 7,(x; ¥) in those situations where the lat-
ter is preferable to the quadratic rule r,,(x;\ilgg, and it is still not as good as
ro(x; \ff)u), where the latter is superior to r,(x; ¥g).

3.10.2 Best Quadratic Rule

It was seen in the previous section that without the assumption of equal group-
covariance matrices, it is not a trivial task to find the best linear rule in the
case of g = 2 groups, even though a univariate rule suffices. For g > 2 groups,
there are immense difficulties in attempting to choose the linear projection C,
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of rank g of the feature vector so as to give the best linear rule based on C,x.
The problem becomes more tractable if the choice of C, is made not for linear
rules based on C;x, but for the quadratic Bayes rule r,(Cyx; ¥y (Cy)). This re-
quires the minimization of the overall error rate of the latter rule, eo(¥y(C,)),
with respect to C,. As the Bayes rule, and hence its error rate, is invariant un-
der a nonsingular transformation of the feature vector, it follows from this and
the fact that C,C; is positive definite that we can assume C,C; =1,. Hence,
the problem is reduced to minimizing eo(¥y(C,)) over all g x p matrices C;
of rank q satisfying C,C;, = Iy, which is compact. Since eo(¥y(C,)) is a con-
tinuous function of C,, a solution exists.

Guseman et al. (1975) have considered this problem. In the case of ¢ =
1, they gave a method of obtaining a local minimum of eo(¥y(C,;)). Moti-
vated by the work of Odell (1979), Decell, Odell, and Coberly (1981), Tubbs,
Coberly, and Young (1982), and Young and Odell (1984), Young, Marco, and
Odell (1987) have considered this problem. They provided an approximate so-
lution in the following way.

Let M be the p x s matrix defined by

M=[p—mlp—p| g - | T2 -8 B3 -z | Eg— 3],

where 5§ = (g — 1)(p + 1), and where it is assumed that X; # X; for at least
one value of i (i = 2,...,g). Further, let

M = H,K,

be a full-rank decomposition of M, where H,, is a p x m matrix, Kmisam x s
matrix, and m is the rank of M. The pseudoinverse of H,, is denoted by H,,,
satisfying

H,H_H, =H,.

Then Young, Marco, and Odell (1987) showed that the Bayes rule based on
H,x has the same error rate as the Bayes rule based on x. Moreover, m is the
smallest value of ¢ for which a linear projection from R? down to R? (¢ < p)
does not increase the error rate of the Bayes rule. They provided an approxi-
mation to the solution to the problem of minimizing eu(¥y(C,)) over all pro-
jections C, of rank q < m by first finding the p x s matrix of rank ¢, denoted
by Mg, that best approximates M, using the singular-value decomposition of
M. Then factoring My into a full-rank decomposition

M, = H K, (3.10.1)
their approximate solution to the optimal linear projection of rank ¢ is given
by H.

Concerning the actual computation of the approximation M, to M, let

At,...,As be the eigenvalues of M'M in order of decreasing size, where A\, =
0(k = m+1,...,5). Then the singular-value decomposition of M is given by

M = UAV/, (3.10.2)
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where U is an orthogonal p x p matrix consisting of the orthonormal eigenvec-
tors corresponding to the eigenvalues Ay,...,A, of MM/, V is an 5 x p matrix
with columns consisting of the orthonormal eigenvectors corresponding to the
eigenvalues Ay,...,A, of M'M, and

A = diag(Ag,...,Ap).

On letting
A =diag(,\1,...,)\k) (k =1,...,M),

the right-hand side of (3.10.2) can be partitioned accordingly as

ey 9)(JE)

The p x s matrix M, that minimizes ||M — Ng|| over all p x s matrices Ny of
rank ¢ is given by
M, = U AV, (3.103)

Here |[M —N,|| is the usuval Euclidean or Frobenius norm of the matrix M —
N, given by

. s 12
IM —Ng|| = {ZZ(M“Nq)izj} '

i=1 j=1

m 1/2
PR
k=g+1

at Ng = M,. By equating (3.10.1) with (3.10.3), it follows that the approximate
solution H; proposed by Young, Marco, and Odell (1987) is equal to Uj. As
noted above, the Bayes rule is invariant under any nonsingular transformation
of the feature vector. Hence, J,Uy is also an approximate solution, where J,
is an arbitrary g x ¢ nonsingular matrix.

In the case of equal group-covariance matrices, Young, Marco, and Odell
(1987) noted that their method can still be used but with M defined now as
the p x (g — 1) matrix

which is equal to

M=[p2—p1|p3—pr|- | g — g1}

This definition of M presupposes that the data have been transformed in the
first instance so that the common group-covariance matrix is equal to the iden-
tity matrix.

With this method in practical situations where the u; and X; are unknown,
the latter can be replaced by their sample analogues ; and S; (i = 1,...,8); see
Tubbs, Coberly, and Young (1982). Morgera and Datta (1984) have considered
the particular case where the group-conditional means are specified to be the
same. The predictive version of the problem has been considered by Young,
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Marco, and Odell (1986). In an earlier paper, Young, Odell, and Marco (1985)
extended the normal model to a general class of density functions known as
f-generalized normal densities.

This problem of reducing the dimension of the feature vector through the
choice of a suitable linear projection C; has been considered on the ba-
sis of other criteria besides the Bayes error rate. Decell and Marani (1976)
used Bhattacharyya’s distance measure, Decell and Mayekar (1977) used the
Kullback-Leibler information, and in a more recent paper, Bidasaria (1987)
used Jeffreys’ measure of information. Peters (1979) invoked the mean-squared
error criterion to select a linear projection of the feature variables. This prob-
lem has also been considered nonparametrically (Bryant and Guseman, 1979).
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CHAPTER 4

Distributional Results for
Discrimination via Normal Models

4.1 INTRODUCTION

In this chapter, we are to consider available results for the distribution of
discriminant functions and associated rules of allocation in the case of multi-
variate normal group-conditional distributions for which the parameters may
or may not be known. We will consider also for these models distributional re-
sults for the conditional error rates of sample-based rules, in particular of the
plug-in sample version of the Bayes rule. It will be seen that analytical results
are available only in special cases such as for g =2 homoscedastic groups.
Even then, the distributional problems are so complex that most have been
tackled using asymptotic rather than exact methods. As is discussed in Chap-
ter 10, asymptotic expansions of the means and variances of the conditional
error rates can be of use in their parametric estimation.

4.2 DISTRIBUTION OF SAMPLE NLDF (W -STATISTIC)

4.2.1 Historical Review

It was shown in Section 3.3 that under the homoscedastic normal model (3.3.1)
for g =2 groups, the plug-in sample version r,(x; ¥g) of the Bayes rule is
based on the single sample NLDF (normal-based linear discriminant function),

£:08) = {x — }(X1 + %2)}' S~} (%1 — X2). (4.2.1)

101
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It is obvious from (4.2.1) that £(x;0g) is invariant under a nonsingular linear
transformation. To show that the group-conditional distributions of £(x;0k)
depend only on the Mahalanobis distance A in addition to the sample sizes,
we transform the feature vector x to

CCi{x— (s + w2)}, (422)

where C, is such that C;2C] =1, (the p x p identity matrix), and C; is an
orthogonal matrix whose first row is

{C1(1 = p2)} /IIC1 (a1 - ps2)|-

Here again ||a]| is used to denote the norm (a’a)}/2 of a vector a. After trans-
formation according to (4.2.2), it can be easily seen that the feature vector is
distributed N(p;0,1,) in group G;, where

Bio = ((=1Y*144,0,...,0) (i =1,2).
Hence, it can be assumed without loss of generality that
pm=-p=(14,0,..,0) and T =I,. (4.2.3)

The distribution of the sample NLDF ¢(x; ) is extremely complicated and
has been the focus of many investigations over the years. Surveys of this work
can be found in Raudys and Pikelis (1980) and Siotani (1982). The former
paper is also a valuable source of references in the considerable Russian lit-
erature on this problem. The latter paper by Siotani (1982) provides a review
of allocation statistics including £(x;@g). In particular, it lists all the available
higher-order terms in the asymptotic expansions of the distributions of these
statistics. The few exact results that have obtained apply mainly to certain uni-
variate cases; see Schaafsma and van Vark (1977) and the references therein.

The limiting ith group-conditional distribution of {(x;@E), as ny, Ny — 0o, is
the same as that of £(x;85), which is

£(x;05) ~ N((-3)'*'a%A%) in G (i=1,2)

This limiting result, which was first given by Wald (1944), follows in a straight-
forward manner on noting that @z converges in probability to 8¢ as nj,n; —
oo, see, for example, T. W. Anderson (1984, Section 6.5).

Following Wald (1944), T. W. Anderson (1951), Harter (1951), and Sitg-
reaves (1952) studied the distribution of ¢{(X;0) and associated problems.
For the case of known X, John (1959, 1960b) derived the exact distribution of
¢(X;0g) and, in a later paper (John, 1961), expressed its expectation in terms
of the cumulative distribution of the ratio of two independent but noncentral
chi-squared variates. An explicit justification of this last result was given later
by Moran (1975).

Bowker (1961) showed that £(x;8z) can be represented as a function of two
independent Wishart matrices, one of which is noncentral. This representation
was used by Sitgreaves (1961) to obtain an exact formula for the distribu-
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tion of £(X;0z). It was used also by Bowker and Sitgreaves (1961) to obtain
an asymptotic expansion of the distribution of {(X;0g) for n; = ny. Elfving
{1961) obtained a large-sample-size approximation to the distribution function
of £(X;0z) for univariate feature data, and Teichroew and Sitgreaves (1961)
considered an empirical approximation. These last five papers appeared simul-
taneously, each being a separate chapter in a volume edited by H. Solomon.

4.2.2 Asymptotic Expansions

As indicated by Sitgreaves (1961) at the time, her exact expression for the
distribution of the sample NLDF ¢(X;0z) was too complicated to be used
numerically. Although Estes (1965) was able to reduce this formula to a form
more suitable for numerical computation, asymptotic expansions have been
the main theoretical tool for providing insight into the distribution of £(X;0k).

Conditional on n; and nz, Okamoto (1963, 1968) derived the asymptotic ex-
pansions of the group-conditional distributions of £(X;8r), appropriately nor-
malized for each group, up to terms of order O(N ~2), where N = n; + n; — 2.
More precisely, the error of these expansions is of order O(n;3), where n, =
min(ny,n2, N). These expansions have since been used extensively in studies
on the unconditional error rates of the rule based on ¢(x;0k).

Let Fy1(w; A, ny, n2) denote the probability

pr{(W - 1A%)/A < w|X € Gy,m,n3),

where W = £(X;0¢). Then as N — oo with n;/n; — a finite positive limit, we
have from Okamoto (1963) that

Fw1(w; A, ny,n2) = ®(wW) + ¢(w)(hy/ny + ha/ny + ha/N) + O(N2),
(4.24)

where
h = ——%A-z{w3 +(p -3)w - pA},
hy = 1072w + 28w + (p -3+ AV)w + (p - 2)A},

and
hy = —1{4w? + 4Aw? + (6p — 6 + AV)w + 2(p — 1)A}.

As this expansion contains powers of A~2, it may not provide a reliable ap-
proximation for values of A less than one if ny and n; are not large relative
to p. Okamoto (1963, 1968) also gave the second-order terms in this expan-
sion, and Siotani and Wang (1975, 1977) added the third-order terms. A single
reference for these higher-order terms is Siotani (1982).

The asymptotic expansion of Fya(w; A, ny,n;) can be obtained from (4.2.4)
on using the result that

Fwa(w; &, ny,n3) = 1~ Fy1(—w; A, np,my). 4.25)
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To see this last result, we let 9}5 denote & with the group labels interchanged.
The distribution of {(X; 9}}) in G is clearly the same as the distribution of
£(X;0z) in G, but with the group labels interchanged; that is, with only n,
and n; interchanged, as A is invariant under an interchange of group labels.
Hence, we can write

Fwa(w; A, n1,n3) = pr{(£(X;0g) + JA?)/A < w | X € Gy, ny,n3}
= pr{—(£(X;0}) — $4%)/A < w | X € Gy, my, 3}
= pr{(£(X;0e) — 5A%)/A > —w | X € Gy, n2,m1}
= 1— Fw1(—w;Q,np,m).

These results, which are conditional on n; and n3, apply directly to the case
of separate sampling of the training data t. They can be easily modified to ap-
ply to mixture sampling where n; has a binomial distribution with parameters
n and 7; (i = 1,2); see, for example, Leung (1988a).

Kocherlakota, Kocherlakota, and Balakrishnan (1987) have provided a uni-
fied development of the asymptotic expansions available for the distributions
of the error rates of the sample rule based on £(x;0g) in univariate nonnor-
mal situations. The work in the papers referenced therein are to be reported
in Section 5.6 in the context of the robustness of the sample NLDF ¢(x; ).

4.23 Derivation of Asymptotic Expansions

In this section, we present an outline of Okamoto’s (1963) derivation of the
second-order expansion of the distribution function Fu (w;A,ny,n2) of the
normalized sample NLDF

{6(X:06) - §4%)/4, (4.2.6)

where X comes from Gj. It is an important theoretical result in discrimi-
nant analysis. Moreover, the differential operator used in its derivation has
since been applied extensively in large-sample studies of the error rates of the
normal-based linear discriminant rule (NLDR) based on £(x;0g).
Corresponding to the form (3.3.4) for £(x;0g), we express £(x;0%) as

£(x;0c) = B3 + Bix, (42.7)
where
Bie = — 3% +%)'S7I(%; - K2), (4.2.8)
and
Be = $71 (%1 - Xp). (4.2.9)

We also need the following notation for the differential operator concerning
the elements of Xy, X3, and S. Let

0,j=0/0(x:); (=12%j=1,.,p)
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and
8ij = 0ji
=3(1+8)9/0(8)j  (<j=1...,p),
where §;; is the Kronecker delta. We let §; be the vector
8 =(Bi1).-20ip)

and 0 the matrix with typical element J;;.
As demonstrated in Section 4.2.2, it can be assumed without loss of gener-
ality that

= e, P2 = B2, D=1, (4.2.10)

where
Blo = — P20 = (%A,O,...,O)'.

Actually, Okamoto (1963) adopted a slightly different canonical form with
Mo = 0 and

B2 = (A,0,...,0).

Okamoto (1963) expanded Fu1(w; A, ny,ny) by first expanding the characteris-
tic function of
{€(X;8) - §4%)/4, (4.2.11)

where X belongs to G, and then inverting the resulting expansion. This deriva-
tion was effected by a Taylor series expansion about the point

(X1 = ph1oy X2 = pr2o, S =1p). (4.2.12)

On writing the sample NLDF £(x;0£) as W, the characteristic function
Yw1(¢) of its normalized form (4.2.11) is defined by

Ywi(t) = E{itA~Y(W ~ JAY) | X € Gy}, (4.2.13)

where i is the complex operator. The expectation in (4.2.13) over the joint
distribution of X, X;, X3, and S can be effected by first conditioning on the
latter three sample statistics to give

Ywi(t) = E{yw1(6:X1, Xz, S)}, (4.2.14)
where
Yw1(t;X1,X2,S) = E{itA™Y(W - 1A?) | X € G1,%1,%2,8}.  (4.2.15)

It can be seen from (4.2.7) that, conditional on X;, X3, and §, the statistic
w - %Az) /A within group G has a univariate normal distribution with mean

AV (B + B 1o - 1%

A~ BBe

and variance
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under the canonical form (4.2.10). Hence, (4.2.15) is equal to
Ywr(%1,%,S) = explit A7 (B3 + Bpmio — §A%) - 1207 B B}

On using the fact that the function ¥w;(#;X),X2,S) is analytic about the
point (4.2.12), Okamoto (1963) expressed it in the form

Yw1(1:%1,%2, 8) = {O(X1, %2, S)Pw1(:%1,%2,8) }o, (4.2.16)
where O(Xy,X3, S) is the differential operator defined formally by
O(R1,X2, 8) = exp[(X1 ~ p110)' Oy + (X2 — p2o)' 8 + tr{(8 — 1,)8}].

In (4.2.16), the symbol |, implies evaluation of the differential operations at
the point (4.2.12). After noting that the operations of expectation and differ-
entiation can be interchanged, Okamoto (1963) proceeded to show that the
expectation of (4.2.14) can be expressed as

¢W1(t) = E[{Q(Xb-ib s)'/)WI(t;Yl’-’ZZy S)} lo]
= {9¢W1(1;i1)i2: S)} 'a ’ (4217)

where
0= E{@(il,iz,S)}.

As X, X, and S are independently distributed, we can write © as

© = m;(8)m2(82)m3(9), (4.2.18)

where
m;(8) = E[exp{(Xi — pio)' 0i}]

is the moment-generating function of X; — pio with 8; as the vector of dummy
variables (i = 1,2), and

m3(8) = Elexp{tr(S ~ 1,)0}]

is the moment-generating function of $ —I, with 0 as the matrix of dummy
variables. These moment-generating functions are well-known, because

X - pio ~NO,n711,)  (i=1,2)

and
NS~ W(N,I,),

where W(N,I,) denotes a Wishart distribution with N degrees of freedom
and expectation matrix N1,. They are given by

mi(8) = exp(3n;10l8)  (i=1,2)

and

m3(9) = exp{—tr(9) ~ N log|I, — 2N '4}.
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Substitution of these expressions into (4.2.18) yields

© = exp(}n;18\8) + §n; 180, — r(8) — § N log|l, — 2N 7191},
(4.2.19)

On using the expansion
—log|I- C| = tr(C) + 4tr(C?) + }tr(C*) + ---

with C = (2/N) in (4.2.19), Okamoto (1963) showed that © can be expanded
as

0= exp{ %n;la;al + %n;la;az + N 1tr(8?) + (4/3)N 2r(8) + -- }
=1 Lt 1 N-182 + Ln-2g2 00 4 1p2
=1+) M %,it3m %+ ki + ght OLidL; + g 83,03
1 o-1,-1g2 Lan-12.0 4 L -1y-192 o2
+zn1 n, 1',-0,2,J+-2-n1 N i ,-k+§n2 N 8%“' ik

+N? {%3.2,315: + gaiiaikaki }] +O(N7). (4.2.20)

The second-order expansion of ¥w(?), and hence of Fy1(w; A, ny, ny) after
inversion, is obtained on evaluating (4.2.17) up to terms of the second order
with © given by (4.2.20).

43 MOMENTS OF CONDITIONAL ERROR RATES OF SAMPLE
NLDR

4.3.1 Unconditional Error Rates

Under separate sampling of the training data, we let ew; (A, ni,n;) denote the
unconditional error rate specific to group G; (i = 1,2) for the normal-based
linear discriminant rule (NLDR) using the sample NLDF ¢(x;0z) with cut-
off point k. For k = log(m,/m), this rule corresponds to the plug-in sample
version 7,(x; ¥z) of the Bayes rule. Now

euy (A, ny,m) = pr{€(X;0c) < k | X € G1,n1,n3}
= FWl(wo;A,nl, nz), (4.3.1)

where
w, = (k - %Az)/A.
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For a zero cutoff point k corresponding to equal group-prior probabilities,
it follows from (4.2.4) on substituting w, = —%A in (4.3.1) that

eur(A,ny,m) = d(-18) + {3 A)/16}[{A + 12(p - DA} /my
+{A—-4p—1DAY}/m +4(p - DA/N]+ O(N™2).
(432)

The corresponding error rate with respect to the second group euz(A, ny,n3) is
given by interchanging n; and n; in (4.3.2). The leading term of order O(1) in
both these expansions is ®(—3A), which is the common value of the optimal
error rate for each group in the case where the prior probabilities are specified
to be equal. Concerning exact expressions for the unconditional error rates of
the sample NLDR in special situations, in addition to the previously refer-
enced work of John (1961) and Moran (1975) in the case of known X, there is
the more recent paper of Streit (1979), who considered the case of unknown
¥ but known group means g1 and u;. Srivastava (1973b) has evaluated the
unconditional error rates under various states of knowledge of pu3, g3, and
. Sayre (1980) has derived exactly the density of the overall conditional er-
ror rate in the case of univariate feature data. Fatti (1983) has considered the
distribution theory for the random effects mode] where the group-conditional
means are taken to be the realizations of a multivariate normal random vector.

In a recent study, Wyman, Young, and Turner (1990) drew attention to the
existence in the Russian literature of three simply expressed asymptotic expan-
sions for eu;(A,ny,ny), by Deev (1972), Raudys (1972), and Kharin (1984).
Wyman et al. (1990) compared the accuracy of these three approximations
with that of widely available expansions, including Okamoto’s (1963). It was
found for the combinations of the parameters considered in the study that the
approximation of Raudys (1972) has overall the best accuracy. The overall ac-
curacy of the approximation of Deev (1972) was found to be very similar to
that of Raudys (1972).

For a zero cutoff point, the asymptotic expansion of ew;(A,ny,n;) by
Raudys (1972), as reported in Wyman et al. (1990), is @(—%Az /c), where

¢ = {(nd +4p)/(n - p)}'>.

4.3.2 Variances of Conditional Error Rates

As can be seen from their definition (1.10.2) in a general context, the condi-
tional error rates of an allocation rule are themselves random variables, being
functions of the realized training data t. They also depend on the unknown
group-conditional distributions and so must be estimated in practice. Their
estimation is considered in Chapter 10.

In this section, we are concerned with the sampling distribution of the con-
ditional error rates taken over the training data from which the rule has been
formed. It has been seen in the previous work, that even for g = 2 groups
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under the homoscedastic normal model (3.3.1), the distribution of the sample
NLDF £(x;0¢) is quite complicated. The distributions of the conditional error
rates of the rule using the sample NLDF §(x;05) are even more difficult to
consider analytically.

Under the homoscedastic normal model (3.3.1) for g = 2 groups, we let
ec;(k,A;0r) denote the probability conditional on t, and hence on 8, that a
randomly chosen entity from group G; (i = 1,2) is misallocated by the NLDR
using the sample NLDF £(x;8¢) with a cutoff point k. That is,

ecip(k,B;0g) = pr{¢(X;0c) < k | X € G1,0¢} (4.3.3)

and
ecu(k,A;8g) = pr{¢(X;0:) > k | X € G,,0%). (4.3.4)

Closed expressions are available for the conditional errors (4.3.3) and (4.3.4).
It can be seen from (4.2.7) that the distribution of §(x; 95), conditional on 8,
is univariate normal within group G;, with mean

,335 +ﬁ'5”i (l = 1,2),

and common variance 3}52[?5. Thus,

eci(k,;0g) = {(=1)"*(k - Bz — Bppi)/ (B EBE)'*}
(i=12). (435

It can be seen from (4.3.5) that these conditional errors are functions of the
group-sample means X, and X; and the (unbiased) pooled sample covariance
matrix S. In order to study the distributions of the conditional error rates,
McLachlan (1973a, 1974a) considered for the canonical form (4.2.12) Taylor
series expansions of relevant functions of them about the point

Xy = p10s X3 = pi2o, S=1p), (4.3.6)

before averaging the retained terms over the joint sampling distribution of
X, X2, and S. The large-sample approximations so obtained are based on the
following result, which was established by proceeding along the lines as in
Cramér (1946, Chapter 27) on the expansion of the expectation of a function
of sample moments.

Let H(X;,X3, S) be a bounded function of X;, X;, and S that satisfies certain
regularity conditions in a neighborhood of the point (4.3.6). For the present
distributional problems, McLachlan (1974a) provided an adequate set of con-
ditions, but it can be considerably generalized if so desired. Then if ny/n;
tends to a positive limit as N = n; 4+ n; — 2 tends to infinity, the expectation
of H(X;,X,,S) can be expanded as

E{H(%Xy,X2,8)} = {OH(%,,%2,8)}|, + O(N~3), (43.7)

where © is the differential operator (4.2.20) obtained originally by Okamoto
(1963) in his expansion of the distribution of the sample NLDF £(x;0z).
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As the results that follow are for a zero cutoff point (k = 0), we abbreviate
ec,-(A,O;OE) to ec; (A;ég) for brevity of notation. We let eu;(A; ny,n;) denote
the unconditional or expected error rates,

eu;(A;ny,n) = E{eci(A;08) | m,n} (i =1,2).
Concerning expansions of eu;(A; ny, nz), we let
eu;(Asng,m) = e® + ON-O*Y (i =1,2),
where e,(") denotes the expansion of eu;(A; ny,n2) up to terms of order O(N ")

(h = 0,1,2), as introduced in the previous section. For the overall error rate,

2
1
eu(A;ny,np) = 3 Ze“i(A; ny,nz),

i=1

we let
eu(A;ny,ny) = e® + QN —+M),
where . .
e® = %(ei ) + eg )
for h =0,1,2.
As

eu;(A;my,nz) = E{eci(8;0g) | my,ny),

we can obtain e{? by taking H(X;,X2,S) to be ec;(A;0g) in (4.3.7). As the
expansions of e?’ and egz) had been derived already by Okamoto (1963),
McLachlan (1974a) was concerned with the application of (4.3.7) to obtain
approximations to the distributions of the conditional error rates. Previously,
McLachlan (1972b) had shown that the variance of ecl(A;ég) can be ex-
panded as

var{ec)(8;05)} = v® + O(N ),
where
v® = (J6G AN [1/m + 1/m + {347 +8(3p — 4) — (p - 1)(16/A%)}/(32n})

+ {342 - 8p — (p - 1)(16/A%)}/(3213)

+ {302 + 8(p - 2) + (p — 1)(48/ A?)}/(16n1n7)

+(p - 1)(A? + 12)/(4mN)

+(p - 1)(A2 - 4)/(4nN) + (p — 1)02/(2N?)).

This result can be obtained by evaluating

(OH?)|, — {(0H)l,}? (4.38)
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up to terms of order O(N ~2) for H(%,%3,8) = ec1(A;8g). Similarly,
var{ecz(A;0g)} = vgz) +O(N73),

where vgz) is obtained by interchanging »n; and n; in viz). In the evaluation
of (4.3.8) for H(X),X5,S) = ec(A;0) to obtain the second-order expansion of
the variance of the overall conditional error rate, all the first-order partial
derivatives are zero. Hence, the first-order expansion vV is zero. The second-
order expansion is given by

var{ec(A;0g)} = v® + O(N ),
where
v® = [{#(32)12/128)[{A2 + (p — 1)(16/A%)}(1/ny + 1/mp)?
+(p - D(16/N){1/ny + 1/ny + A?/N}).

The corresponding expansions of the variances of the overall and group-
specific conditional error rates for {(x;0z) applied with an arbitrary cutoff
point have been derived by Sayre (1980); see also Siotani et al. (1985, page
411).

433 Means and Variances of Conditional Error Rates: g > 2 Groups

Up to this point, the results presented in this chapter have been limited to
the case of g = 2 groups, primarily because of the formidable nature of the
distributional problems involved with discrimination. The case of g > 2 groups
has been addressed by Schervish (1981a), who considered the conditional er-
ror rates of the plug-in sample version r,(x;,8z) of the Bayes rule for known
but arbitrary prior probabilities under the homoscedastic normal model (3.3.1)
for the group-conditional distributions. In this situation, it can be assumed
without loss of generality that the common group-covariance matrix ¥ is the
identity matrix I,. Further, as the groups can be relabeled, there is no loss
of generality in taking j = g in the consideration of the conditional error rate
ec; ,-(\IlE;éE) that a randomly chosen entity from G; is assigned to G;. Let by,
be the (g — 1)-dimensional vector with jth element

(big); = {mi - §(X; + %)} S7I(X; — %) + kijg
for j =1,...,g — 1, where
kijg = §(ij — pg) (1sj — g) — (i — g) (i — pag)-
Also, let C; be the (g — 1) x (g — 1) matrix whose (j,k)th element is
(Co)jk = (% —Xg)' ™IS~ (% — %)

for j,k =1,...,8 — 1. It is assumed that the group means u;, ..., lie in no
space of dimension g — 2 or less so that C; is nonsingular with probability one.
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Under the assumptions above, Schervish (1981a) noted that ecig(¥g;0g) can
be expressed as

1
e"ix(‘I’E;oE) = (27f)-(g*1)/2|cx|—1/2/ e"P{"Z‘(V - big)'cg—l(" - big)} dv,
(4.3.9)
where

Rig = {veR8~1: (v); < kijg —log(mj/mg), j = 1,....g — 1}

fori =1,...,g — 1. As demonstrated by Schervish (1981a), this representation
(4.3.9) of eng(‘I’E;éE) is a convenient starting point for the expansions of
its mean and variance. Using (4.3.9), he proceeded to give the first-order ex-
pansions of the mean and variance of ec,-g(\IlE;ég) for separate sampling of
the training data from an arbitrary number g of groups. In the special case
of g=2 sroups, Schervish (1981a) noted that his expansion of the mean of
ec12(Wg;05) reduces to the expansion available from the results of Okamoto
(1963). Likewise, his first-order expansion of the variance of ec1(¥g;0x) for

g = 2 groups with equal prior probabilities reduces to that provided originally
by McLachlan (1972b).

4.4 DISTRIBUTIONS OF CONDITIONAL ERROR RATES OF SAMPLE
NLDR
4.4.1 Large-Sample Approximations

We consider here some large-sample approximations to the distributions of
the conditional error rates eci(A;0g) of the NLDR using the sample NLDF
€(x; @) with a zero cutoff point. Initial work on this problem has included the
investigations of John (1961, 1964, 1973).

Let ¢;(r) denote the characteristic function of the conditional error rate
ec,-(A;éE) specific to the jth group G;(j = 1,2), and y(¢) the characteristic
function of the overall conditional error ec(A;8g). Then on taking

H(%1,%2,8) = exp{itec(8;0)}
in (4.3.7), where { is the complex operator, McLachlan (1974a) showed that
for separate sampling of the training data,
P(1) = exp{ite® — Li*v®d} + O(N ). (4.4.1)
Similarly, he showed for the group-specific conditional error rates that
¥;(t) = expfitel? — LV} + O(N?)

= exp{ite? — 1P + (irf’m} + O(N ), (4.4.2)
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for j = 1,2, where
m= {¢(%A)}%/64)(n;‘ +ny)

The second-order expansions e(® and v for the mean and variance, respec-
tively, of ec(A,0r) and those for the group-specific conditional error rates
ecj(A;0¢) have been defined in the previous two sections. The expansion cor-
responding to (4.4.2) for a nonzero cutoff point k has been given by Sayre
(1980); see also Siotani et al. (1985, page 411).

The expansion (4.4.1) implies that up to terms of order O(N —2), the over-
all conditional error rate ec(A;0g) has a normal distribution with mean e®@
and variance v, However, it can be seen from (4.4.2) that the group-specific
conditional error rates have a normal distribution only up to terms of order
O(N~1), and not O(N~?), since the third moment of each about its mean is
6m + O(N-3).

4.4.2 Asymptotic Distributions of Group-Specific Conditional Error Rates

Concerning the asymptotic distributions of the group-specific conditional er-
ror rates ec;(A;0g) of the sample NLDR, it can be shown that if ny/n; — a
positive limit as n = n; + ny — oo, then

{eci(8;05) - "}/ V(P (4.4.3)
converges in distribution to that of a standard normal. We write
{eci(t;e) - "YW SN0 (i=12) (4.4.4)

The leading term e,(o) of order O(1) in the expansion of eu;(A;ny,n3) is the
optimal error rate €o;(A), which has a common value of <I>(—%A) in the case
here of a zero cutoff point. The expansion of the characteristic function ;(¢)
of eci(A;0g) was described in the last section. In a similar manner, the limit-
ing result (4.4.4) can be obtained by expanding the characteristic function of
the normalized version (4.4.3) of ec;(A;8k). The corresponding results for an
arbitrary cutoff point have been given by Sayre (1980).
The normalized version

{ec(;0g) ~ e®} ) /P (4.4.5)

of the overall conditional error rate does have a nondegenerate limiting dis-
tribution as n — oo, although it is not a standard normal. This is because all
first-order partial derivatives in the Taylor series expansion of ec(A;0g) are
zero, and so the quadratic terms are dominant.

The asymptotic distribution of the overall conditional error rate of the sam-
ple NLDR under a mixture sampling scheme has been derived by Efron (1975)
and O’Neill (1976, 1978) in the course of their work in comparing the rela-
tive efficiencies of sample-based rules in their estimation of the Bayes rule
ro(x; ¥g). As shown by Sayre (1980), their results can be used to obtain the
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asymptotic distribution of the overall error rate for separate sampling of the
training data. O’Neill (1976, 1980) has also derived the asymptotic distribu-
tion of the overall conditional error rate of a general allocation rule for g = 2
groups. We will first present this general result and then show how it can be
specialized to give the asymptotic distributional result for the sample NLDR.

4.43 Asymptotic Distribution of Overall Conditional Error Rate of a
Plug-In Sample Rule

For g = 2 groups, we consider here the asymptotic distribution of the plug-in
sample version r,(x;¥) of a general Bayes rule r,(x; ¥) of the form (1.4.3).
For g = 2, the Bayes rule r,(x; ¥) is based on the posterior log odds

1(x; W) = log{m(x; ¥)/72(x; ¥)}
= log(m/72) + log{ fi(x;01)/ f2(x;02)}. (4.4.6)

In some situations, 7(x; ¥) may be expressed as a function of x and a, where
a is a g-dimensjonal vector containing fewer parameters than ¥. That is, o
contains the so-called discriminant function coefficients. For economy of no-
tation, we will still use 7 to denote this function of x and «. For example, if
f1(x;601)/ f2(x; @) is linear in x, then a will contain ¢ = p + 1 parameters.

We suppose that & is a consistent estimator of a formed from the training
data ¢, such that as n — oo,

V(6 — a)-5 N(O, A), (4.4.7)

where A is a g x g positive definite symmetric matrix. In order to derive
the asymptotic distribution of the overall error rate of the plug-in sample
rule r,(x; %), it is convenient to work with its overall conditional error rate
ec(¥;&), expressed as a function of the training data t through & rather than

O’Neill (1976, 1980) derived the asymptotic distribution of
n{ec(¥;&) - eo(¥)}

using the well-known asymptotic result, which can be stated as follows. Sup-
pose H(a) is a twice continuously differentiable function of o that satisfies

VoH(a) =0, (4.4.8)
where V,, is the gradient vector
Vo = (8/0ay,...,0/8ag)

and a; = (a); for j = 1,...,q. Then for a sequence of estimators & satisfying
(4.4.7), the asymptotic distribution of n{H (&) — H(a)} is given by

n{H(&) - H(a)} =+ U'JU, (4.4.9)
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as n — oo, where U ~ N(0,A), and

J =41V, V, H(a).
The result (4.4.9) is obtained in a standard manner by a Taylor series expan-
sion of H(&) about the point o; see, for example, Lehmann (1983, Section

5.1).
O’Neill (1980) used (4.4.9) to give the asymptotic distribution of

n{ec(¥;é&) — eo(¥)}

under mixture sampling of the training data. In forming 7(x;&), the term
log(m1/m2) in (4.4.6) was estimated as log(ni/n;); that is, the cutoff point
was taken to be —log(n;/n;). As noted previously, under mixture sampling,
n;/n provides an estimate of =; (i = 1,2). Provided regularity conditions hold,
O’Neill (1980) has shown that for a sequence of estimators & satisfying (4.4.7),
the asymptotic distribution of n{ec(¥;&) — eo(¥)} is given as

n{ec(¥;6) - eo(¥)} - U'JU, (4.4.10)
where U ~ N(O, A4), and where
=1
2
1 -
= §1Van@al™ [ (Vantme)HVuntme0) fx(x ¥)ds.

(4.4.11)

V.V, ec(¥;a)

In (4.4.11),
n ) R = {x : 5(x;a) = 0}

and

2
fx(x¥®) =Y mfix;6;)
i=1

is the mixture density of X. An adequate set of regularity conditions has been
given by O’Neill (1980), who notes that (4.4.10) will hold under a variety of
such conditions.

From (4.4.10), the mean of the asymptotic distribution of n{ec(¥;a)—
eo(¥)} is equal to E(U'JU), which can be written as

E(U'JU) = tr{ E(U'JU)}
= tr{JE(UU")}
= tr(JA). (44.12)

Efron (1975) and O’Neill (1976, 1978, 1980) have used (4.4.12) to define the
asymptotic relative efficiency of two rules based on different estimates &; and
Gy of ar. With respect to the estimation of the Bayes rule r,(x; ¥), they defined



116 DISTRIBUTIONAL RESULTS FOR DISCRIMINATION VIA NORMAL MODELS

the asymptotic efficiency of a rule based on 7(x;&;) relative to a rule based
on 7(x;&;) by the ratio
tr(JA;)/tr(JA2), (4.4.13)

where A; is the asymptotic covariance matrix of /n(&; — «) for i = 1,2. Efron
(1975) evaluated the measure (4.4.13) in comparing the logistic regression
rule with the sample NLDR under the homoscedastic normal model (3.3.1).
O’Neill (1976, 1980) evaluated it for a comparison in nonnormal situations of
the logistic regression rule with the sample-based rule using a fully efficient
estimator of a. Their results are discussed in Chapter 8 where the logistic
regression approach to discriminant analysis is presented.

A first-order expansion of the overall unconditional error rate E {ec(¥;&)}
can be obtained from (4.4.10) provided its asymptotic mean is equal to

Ltn—coE[n{ec(¥;&) — eo(¥)}].

For finite n, we have that

n[E{ec(¥;6&) — eo(¥)}] = n[E{ec(¥;4)} —eo(¥)].  (4.4.14)

Assuming that the limit of (4.4.14) is equal to the asymptotic mean (4.4.12),
we can write

Lty .oon[E{ec(¥;a} — eo(¥)] = tr(JA),

and so
E{ec(¥;&)} = eo(¥) + ntr(JA) + o(n™!). (4.4.15)

It can be confirmed on evaluation of A and J for the homoscedastic normal
model that (4.4.15) agrees with the first-order expansion given originally by
Okamoto (1963) for the overall unconditional error rate of the sample NLDR.
This is after allowance is made for the fact that (4.4.15) has been derived
under mixture sampling of the training data t, including the estimation of the
cutoff point from t as — log(n;/ny).

More recently, O’Neill (1984a, 1984b) has considered expansions of the
type (4.4.15), where the plug-in sample rule does not provide a consistent
estimate of the Bayes rule. These expansions were used, for example, to in-
vestigate the large-sample performance of the sample NLDR under a normal
but heteroscedastic model. O’Neill (1986) has also considered expansions of
the variance of the overall conditional error rate in such situations.

444 Asymptotic Distribution of Overall Conditional Error Rate of
Sample NLDR

We now specialize the asymptotic distributional result (4.4.10) of the previ-
ous section for a general sample rule to provide the asymptotic distribution of
the overall conditional error rate of the sample NLDR for g = 2 homoscedas-
tic normal groups. In the latter case, the sample NLDR given by the plug-in
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sample version of the Bayes rule is based on
n(x;&g) = &g(1,x")’

= &px*,
where &g = (ﬁoa,ﬁi;)'y and

Por = log(n1/n2) + Bo,

and where ﬁgE and B¢ are defined by (4.2.8) and (4.2.9), respectively.
Let ec(¥g;Gag) denote the overall conditional error rate of the sample
NLDR r,(x; &g). From (4.3.5), it follows that

2
ec(Vg;¥g) = Ew,'tb{(~l)"(ﬁog + By i)/ (B ZBe)/*}.
i=1

Although ec(¥g;&) depends on ¥g only through A and the vector w = (m,
7;)' of the group-prior probabilities, for notational convenience, we will con-
tinue to write it as a function of Wg rather than of A and =.
In order to specify the asymptotic distribution of
n{ec(¥g;ag) — eo(¥e)}

under a mixture sampling scheme, it remains now to give the expressions Jg
and Az for J and A, respectively, in (4.4.7) and (4.4.10) under the normal
model (3.3.1) with equal group-covariance matrices. O’Neill (1976) has shown
that the necessary regularity conditions are satisfied for (4.4.10) to be valid for
the latter model.

From (4.4.11), Jg can be expressed as

e = %||a5||'1/Rx*‘x“fx(x;\llg)du, (4.4.16)
where

2
fx(x¥g) = mg(x; i, )
i=1

is the mixture density of X under the homoscedastic normal model (3.3.1).
O’Neill (1976) showed that (4.4.16) can be easily evaluated under the canoni-
cal form (4.2.10) to give

1 k,A™1
0
koAt k2A—2 ’
o Ip-1

where k, = log(m;/71), and O is a 2 x (p — 1) matrix of zeros. Concerning the
asymptotic covariance matrix Ag of \/n(é&g — ag), Efron (1975) has shown

JE = 7!'1¢(%A + koA-l)
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that it is given under the canonical form (4.2.10) by
1+ 542 JA(m —m)
10
LA(my —m) 1+ 2mmA? ’
o' cl p-1

Ag = (mmp)~!

where ¢ = 1+ mmA?%, and O is a 2 x (p — 1) matrix of zeros.

With separate sampling of the training data, interest usually lies in the
distribution of the overall conditional error rate of the sample NLDR using
€(x;0z) with a fixed cutoff point k. We can replace k by k, = log(m,/7}),
since it is equal to log(n2/m) for some value of m; in the unit interval. Under
separate sampling (Sayre, 1980), the asymptotic distribution of

n{ec(¥g;0g) — eo(¥g)}

is as for mixture sampling, but with Ag slightly modified to allow for the fact
that the cutoff point is no longer estimated from the data. The modified ver-
sion of Ag is obtained by replacing its first diagonal element, namely,

(1+34%)/mmy,
by
182 /{(n1/n)(na/m)},

and by replacing 7; with n;/n (i = 1,2) in its other elements. In the special case
of k, = 0 and equal group-sample sizes (n; = nz = %n), it can be so confirmed
as n — oo that for p = 1,

n{ec(¥g; &)~ eo(¥e)} -(A/8)p(3 )3,
and for multivariate feature data,

n{ec(¥r;&x) — o(¥e)}—-(A/8)$(F A0 + (P~ 1)(A +4A7)xE ).

4.5 CONSTRAINED ALLOCATION WITH THE SAMPLE NLDR

4.5.1 Constraint on One Unconditional Error

We consider here the problem of choosing the cutoff point k so as to control
the error rates of the NLDR using the sample NLDF £(x;8g) under the ho-
moscedastic normal model (3.3.1) for g = 2 groups. This problem in a general
context was discussed in Section 1.10.

We first report the work of T. W. Anderson (1973a, 1973b), who showed
how the cutoff point k can be chosen so that the unconditional error rate for



CONSTRAINED ALLOCATION WITH THE SAMPLE NLDR 119

a designated group is asymptotically equal to a prescribed level, say, e. With
A unknown, it is convenient to work with the Studentized version of {(x;ég),

Ws1 = {€(x;0z) - 1D} /D,
where
D = {(®% ~%)'S7'(% ~ %)}

is the sample Mahalanobis distance.
T. W. Anderson (1973a) has shown that if n,/n; — a positive limit as N —
oo, then

pr{Ws1 <w | X € Gy,m,nz} = &(w) - p(w)b1(A, w,my,n3) + O(N2),
where

bi(A,w,ny,m2) = {3w ~ (p ~ DA™ }/my + (3w + (p— PW}/N.

(4.5.1)
Using this result, T. W. Anderson (1973a, 1973b) showed that
pr{Ws1 < we | X € Gy,my,n3} =€+ O(N~2), (45.2)
if
we(D,ny,n3) = qe + by(D,qe,n1,m2),
where

e = ‘I’_l(e)-

It follows from (4.5.2) that if an entity is assigned to G; or G, according
as the Studentized version Wy, of the sample NLDF is greater or less than
we(D, n1, nz), then under separate sampling, its unconditional error rate with
respect to G, satisfies

eusi(A,ny,n2) = €+ O(N72).

Concerning the specification of the cutoff point so that the corresponding
rate for G, rather than G asymptotically achieves a prescribed level ¢, we
work with the sample NLDF studentized as

Ws2 = {€(x;0g) + $D?}/D. (4.5.3)

On noting that the negative of W5, has the same distribution in G; as that of
Wsy1 in G, but with n; and n; interchanged, we have that

pr{Ws: >w | X € Gz,ny,n3} = pr{Ws; < —w | X € Gy, nz,m }
= ¢+ O(N7?), ‘

if
~ w = —w(D,nz,n).
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Hence, if an entity is assigned to Gy or G, according as to whether Wy, ‘is
greater or less than —w (D, nz,n;), then under separate sampling, the uncon-
ditional error rate with respect to G, satisfies

eusa(A,ny,ny) =€+ O(N ‘2).

4.5.2 Confidence Bound on One Conditional Error

McLachlan (1977b) extended these results above to give a method that ensures
that the conditional error rate of the sample NLDF for a designated group is
less than a prescribed bound, say, M, with a prescribed confidence, say, a. Let

ecsi(w, 8;0g) = pr{Ws; <w | X € Gy,t}

denote the conditional error rate of the allocation rule based on the Studen-
tized version Wy, of the sample NLDF applied with the cutoff point w. Under
separate sampling of the training data t, McLachlan (1977b) showed that if
ny/n; — a positive limit as N — oo, then

pr{ecsi(w,A;05) < M} = &{(M — 1)/v;} + O(N7?), (4.5.4)
where
n = @(w) - ¢(w)bi(A, w,ny, n3),
and
V% = {¢(w)}2b2(w, ny, nZ)a
and where | ’ )
e — 2.._-
bay(w,ny, n3) Py + VN

and bi(A,w,ny,n,) is defined by (4.5.1). From (4.5.4), McLachlan (1977b) es-
tablished that
priecsi(w,A;0) <M} =a+ O(N~?%) (4.5.5)

for
w = wa(A,nl,nz)
= qu —k1i/ N2 —kz/N — k3/N*/?, (4.5.6)

where gy = ®~!(M), and where, on writing by(A,qm,m1,n2) as by and
ba(qm,n1, n2) as bou,

ki = Nl/z(‘labél/wz s

ky = N{~bim + Lq2qu(bass — N1},

ks = {N'/2qab3{}}[~ N qmbin + (qu /8N'/634] gl qm + 4N i)
+(Ngiba /3)(qh — 1) + ade /(1 - g3) + }q5 + P — § + 3(N /m)],
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and g, = & !(a). The cutoff point w,(A,n;,n;) as it stands cannot be used
in practice because it depends on the unknown A through the term b;(A, gu,
ny, n3). However, as the latter appears only in the terms of order O(N~1) and
O(N~3/2) in the expression for wg, it can be shown that the result still
holds to order O(N~2) with w now taken to be the random variable w, (D,
nl,nz).

If we wish to bound the conditional error rate with respect to G; by M
with an approximate prescribed confidence a, then we use the allocation rule
based on the Studentized version (4.5.3) of the sample NLDF. An entity with
feature vector x is assigned to G or G; according as to whether Wy is greater
or less than —wqy(D, nz,m).

4.53 Confidence Bounds on Both Conditional Errors

McLachlan (1977b) also considered the situation where it is desired to bound
both conditional error rates simultaneously with an application of the sample
NLDE Let o; be the desired level of confidence that the conditional error
with respect to G; does not exceed some prescribed bound M; (i = 1,2). By
combining the rules above for bounding separately each of the conditional
error rates, McLachlan (1977b) proposed the allocation rule r(x;w;, wz,é,;)
that assigns an entity with feature vector x to G if

Wsi>w; and  Ws> W, (5.7

and to G, if
Ws1 < Wy and Wsa < Wy, (4.5.8)

where
W) = wm(D,nl,nz) and Wy = —wa,(D,nz, nl).

The region (4.5.7) can be expressed as
£(x;05) > max(Ky, K>)
and the region (4.5.8) as
£(x;0z) < min(Ky, K>),
where
Ki =D{w; +(-1)/*'iD}  (i=1,2).

Hence, in order to bound both errors simultaneously, the rule r(x; WI,WZ,OE)
makes no allocation for an entity with feature vector x in the region

{x : min(K1,K>) < €(x;0r) < max(K1,K>)}. (4.5.9)

. Let ecsi(A; Wy, Wa, 05) denote the conditional error rate of this rule specific
to group G;(i = 1,2). By the introduction of the doubtful region (4.5.9) of



122 DISTRIBUTIONAL RESULTS FOR DISCRIMINATION VIA NORMAL MODELS

group membership for which a decision is deferred, it follows that
pl’{eCs,'(A;Wl, Wz,oE) < M,} 2a; + O(N—z)

for i = 1,2 under separate sampling of the training data t.

4.6 DISTRIBUTIONAL RESULTS FOR QUADRATIC
DISCRIMINATION

4.6.1 Distribution of Sample NQDF

It has been seen for g = 2 groups under the heteroscedastic normal model
(3.2.1) that the Bayes rule ro(x; ¥y ) is based on the NQDF (normal-based
quadratic discriminant function)

£x;00) = — (x — ) By (x — ) + S(x — p2) B5(x — p2)

— }log{| B4/ 2]} (46.1)

As {(x;0y) is a quadratic function of the feature vector x, it is not a straight-
forward exercise to give its group-conditional distribution as it is for the NLDF
£(x;0g) with equal group-covariance matrices. For bivariate feature data,
Bayne and Tan (1981) have derived approximations to the error rates for
£(x;0y) in order to study the effects of correlation and unequal variances on
them. More recently, Young, Turner, and Marco (1987) have provided con-
ditions under which there exists simple forms for the error rates for {(x;0y).
Also, a simple bound on the overall error rate was derived. For the bivari-
ate case, Bayne, Beauchamp, and Kane (1984) have provided an algorithm for
the computation of the conditional error rates of a rule based on the sample
NQDF ¢(x;0y) or any other specified quadratic discriminant function.

The distribution of £(x;8y) is very complicated and manageable analyti-
cal expressions were obtained initially only in special cases; see Hildebrandt,
Michaelis, and Koller (1973). Okamoto (1961) considered the distribution of
the plug-in sample version £(x;0y) in the case of u; = u,. He gave an expan-
sion of the group-conditional distribution of

(X - p) (57! - $71)(X - ),

where g is the known common value of g1 and pua; see Siotani (1982) for
further details.

Gilbert (1969), Han (1969, 1974), Hawkins and Raath (1982), and McLach-
lan (1975¢) have studied the distribution of £(x;0y) and its sample versions
under the simplifying assumption that the group-covariance matrices are pro-
portional, where

22 = K.El.

We can take x > 1 without loss of generality.
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In this special case, the complexity of the problem is reduced substantially,
as {(x;0y) can be expressed as

Ex;0y) = —3(1 +w) H{Q —w(l + w)A} + L plogk, (4.6.2)
where w = 1/(x — 1), and
Q = {x— p1 —w(ps1 — p2)} By H{x — 1 — w(p1 — p2)}

and ) L
Af = {(p1— p2) By (81 - p2)}-

As noted by Han (1969), if X belongs to Gj, then Q is distributed as
XZ(w?A?), a noncentral chi-squared with p degrees of freedom and non-
centrality parameter w?A2. If X comes from G, then Q is distributed as
KX'2(kw? A2). Han (1969) proceeded to give the expansion of the group-condi-
tional distribution of the sample NQDF £(x;8y) up to terms of the second or-
der in the case of unknown g and g, but known X and «. In a later paper,
Han (1974) gave the first-order expansion in the case where X is also un-
known, but  is still known. In the following year, McLachlan (1975c) derived
the unconditional error rates of the rule based on a plug-in sample version of
(4.6.2) in the general case where all the parameters are unknown. For analyti-
cal convenience, the plug-in estimates of X; and x used in this study differed
from the maximum likelihood ones in that £ was taken to be

{IS21/1811}/2.

The computation of the maximum likelihood estimates of X; and & is de-
scribed in Section 5.4.2, where the use of proportional covariance matrices is
discussed as a method of regularization with applications of £(x;0y) in situa-
tions where p is large relative to the group-sample sizes.

Recently, Fukunaga and Hayes (1989a) have derived manageable analytical
expressions for the mean and variance for a certain class of functions of the
training data that includes the conditional error rates for the sample NQDF
¢(x;8y) as well as for the sample NLDF £(x;8x). There is also the theoretical
work of O’Neill (1984b) and, more recently, Wakaki (1990), who have derived
asymptotic expansions of the unconditional error rates for £(x;0y) as part
of their large-sample comparisons of the sample NQDR and NLDR under
the heteroscedastic normal model (3.2.1). Their comparisons are discussed in
Section 5.3. Marco, Young, and Turner (1987b) have derived asymptotic ex-
pansions of the unconditional error rates for {(x;0y) in the case of equal
group-means and the uniform covariance structure (3.2.11).

4.6.2 Distribution of Z-Statistic

As shown in Section 3.4.2, the likelihood ratio criterion under the homoscedas-
tic normal model (3.3.1) yields a rule based on the so-called Z-statistic,

- ”1 A _ _IE—_ a
z n + 161,5(!() n; + 162,5(7‘),
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where
bip)=(x-%)S{x-%) (i=12).

We let rz(x;0g) be the rule based on Z, which equals one or two according
as to whether Z is less than or greater than zero. This scalar random variable
should not be confused with the random vector Z consisting of the g zero-
one indicator variables used to define the group membership of an entity with
feature vector x.

The limiting group-conditional of Z as ny,n; — oo is

ZEN(-1)PA%4AY)  if XeGi  (i=12).

Let
Fz1(z;A,n3,m3) = pr{(2A) " Y(Z + AY) < z | X € Gy, my, n3}.

For equal group-sample sizes,

n,—W

Z = -
2n,~+1 ’

where W denotes the sample NLDF defined by (4.2.1). Hence, in this case, an
expansion of Fz;(z;A,ny,n;) is easily obtained from the expansion (4.2.4) of
Fw1(w;A,ny, ny) as derived by Okamoto (1963). The expansion of Fzi(z; A,
ny,ny) for unequal group-sample sizes (n; # n2) can be obtained in a similar
manner to that of Fy(w;A,ny,n;). But it is more complicated, because the
Z-statistic is quadratic in x and it also involves n; and ny explicitly. Memon
and Okamoto (1971) showed for separate sampling under the assumed normal
model that if n;/n; — a positive limit as n;,n3 — oo, then

FZI(Z; A,nl,nz) = @(Z) + ¢(z){h21/n1 + hzz/nz + hz;/N} + O(N—z),

(4.6.3)
where

hz1 = -—%A'z{z3 ~AZE + (p—-3)z+ A},

hza = -3A"HZ - A2+ (p-3-AYz + A(A? + 1)},

and
hzs = —3{423 ~4A2% + A%z + 6(p ~ 1)z - 2(p — 1)A}.

Memon and Okamoto (1971) also gave the second-order terms in this expan-
sion, and Siotani and Wang (1975, 1977) have since added the third-order
terms; see Siotani (1982).

The expansion of

Fz3(z;0,n1,n2) = pr{(2A) " Y(Z — AY) < z | X € Ga,my,m2}
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can be obtained from that of Fz5(z; A, ny, n3) on using the result that
Fz2(z;A,n1,n2) = 1 —- Fz1(—2; A, na, ny).

This latter result can be established in a similar manner to the corresponding
result (4.2.5) for the W -statistic.

If euzi(A;ny,n;) denotes the unconditional error rate specific to group
Gi (i = 1,2) for the rule rz(x;0z) based on the Z-statistic with a zero cutoff
point, then

euzi(A;ny,ny) =pr{Z >0|X e Gy}
=1-Fz1(30;4,n1,m) (4.6.4)
and
euzy(A;ny,ny) =pr{Z < 0| X € G,}
= Fza(—10;A,n1,m))
=1- Fz1(34;4,n3,my). (4.6.5)

Hence, expansions of the unconditional error rates of rz(x; 95) are available
from the expansion (4.6.3) of Fz1(z; A, ny, n3).

Siotani (1980) has derived large-sample approximations to the distributions
of the conditional error rates ecz;(k, A;OE) of the rule based on the Z-statistic
with an arbitrary cutoff point k. As with the conditional error rates of the
sample NLDR rule, which uses the W -statistic, they have a univariate normal
distribution if terms of order O(N ~?) are ignored. The first-order expansion
of the mean of the conditional rate ecz;(k,A;0g) specific to group G, is al-
ready available by using the expansion (4.6.3) of Fz1(z; A, ny,n3) in (4.6.4) and
(4.6.5), but where now Fz1(z;A,ny,n3) is evaluated at z = %(A + A~1k) be-
cause the cutoff point k is not specified to be zero.

Concerning the variance of ecm(k,A;@E), Siotani (1980) showed that

var{eczi(k,A;0e)} =[¢{3(A + A7k)}2(hza/ny + hzs/ny + hz6/N)

+O(N™Y), (4.6.6)
where
hzs = 1A4(A% + k),
hzs = JA~4AZ - k),
and

hze = %A—'zkz.

The first-order expansion of the variance of ecza(k,A;0f) is obtained by re-
placing k& with —k and interchanging »n; and n;, in (4.6.6).
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4.6.3 Comparison of Rules Based on Z- and W -Statistics
We let
euz1(D;ny,n2) = B(—4A) + az1/ny + aza/ny + az3/N
+az:1/n} +aza/n] +azn/(mny)
+azi3/(mN) + azn/(mN) + azs/N? + O(N?)

denote the second-order expansion, which can be computed from the second-
order version of (4.6.3). Then it follows that the second-order expansion of the
overall unconditional error rate,

euz(A;ny,ng) = Heuzi(Asny,na) + euza(D;n,na)},
can be expressed as
euz(B;ny,ny) = 8(—3A) + Yaz + az)(n' + n3t)
+axN~ 1+ %(azu}azzz + azn)(nl‘2 + n;z)
+ Hazn + azn)(nTt + ny )N
+azuN~2—Lazp(n ' -n;Y)?2 + O(N7?).  (46.7)

We let the corresponding expansion of the overall unconditional error rate
eu(A;ny,ny) of the sample NLDR using the W-statistic with a zero cutoff
point be given by (4.6.7), but with az; and az;; replaced by a; and a;;, respec-
tively (i < j = 1,2,3). As noted by Memon and Okamoto (1971),

ay =dazs and ayy = azy. (4.6.8)

Further, since Z is just a constant multiple of W for equal group-sample sizes,
it follows on noting (4.6.8) that

(a1 + a2) = (az1 + azy),
(ay + axn + ap) = (azn + azzn + azn),

and
(a13 + ax) = (az13 + azxn).

An obvious consequence of these relationships between the coefficients in the
expansion (4.6.7) of euz(A;ny,nz) and those in the expansion of eu(A;ny, n;)
is that

euz(A;ny,ny) = eu(A; ny,ny) + O(N~2)
= eu(A; ny,m) — S(aziz - an)(ny ! — 'y + O(N73).

Memon and Okamoto (1971) used this result to show that there is no re-
duction in the overall error rate up to the first order as a consequence of
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using the sample rule based on Z and not W, but that there is a second-order
reduction, as aziz > aj2.

Das Gupta (1965) proved that rz(x;0¢) is admissible and minimax in the
case of known T and also that it is admissible and minimax in the class of
invariant rules in the case of unknown X. Memon and Okamoto (1971) noted
that this minimax property of rz(x;9¢) manifests itself in that the values of the
coefficients az; and az; are in general closer to each other than 4; and a,.
They gave p > %Az + 1 as the necessary and sufficient condition for this to be
the case. Similarly, the coefficients azy; and az» and the pair az;3 and azx
tend to be closer to each other than the coefficients for the corresponding
pairs in the expansion of the overall error rate eu(A;n;, nz) of the sample
NLDR, which uses the W -statistic.

As explained by Siotani and Wang (1977), the group-sample sizes n; and
ny have to be very large for the second-order expansions of eu(4;ny,n;)
and euz(A;ny,nz) to provide reliable approximations to the true error rates.
For such large-sample sizes, the'Z-and W -statistics are practically equivalent.
Therefore, in order to provide a comparison of these two statistics for mod-
erately sized samples, Siotani and Wang (1977) compared the third-order ex-
pansions of eu(A;ny,ny) and euz(A;ny,ny). With the inclusion of the third-
order terms, the Z-based rule rz(x; 05) is not uniformly superior to the sample
NLDR, although it is generally superior. Siotani and Wang (1977) have pro-
vided tables that summarize those situations in which euz(A;ny, ny) is smaller
than eu(A;ny,ny).

4.6.4 Distribution of the Studentized Z-Statistic

Fujikoshi and Kanazawa (1976) considered the group-conditional distribution
of the Studentized version of Z given by

Zs = (Z + (-1Y*'D*)/(2D)

for X belonging to group G; (i = 1,2). They showed that if ny/n; — a positive
limit as ny, n; — oo, then

pr{Zs; < z.| X € Gy} = &(2) — ¢(2)bz1(A, z,mmz) + O(N72),  (4.69)

where
bzi(A,z,m,n2) = hs1/ny + hsa[ny + hs3/ N,
and where
hs1 =AW Az-22+p-1),
hs2 = 387H(z~- A +p-1},

and
' hs3 = }z(z* + 4p - 3).
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The corresponding expansion for Zs,, conditional on X belonging to G,, can
be obtained from (4.6.9) by using a relation similar to (4.6.5). Using the result
(4.6.9), Kanazawa (1979) has shown that

pr{Zs; < z.| X € Gy,n,m} = e+ O(N'z),
if
ZE = q! + bZl(D,qﬁ nlynz),

where g = 71(¢).
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CHAPTER 5

Some Practical Aspects and
Variants of Normal Theory-Based
Discriminant Rules

5.1 INTRODUCTION

In this chapter, we focus on some problems that arise with the estimation
of normal (theory)-based discriminant rules in practical situations. One prob-
lem to be addressed is that of discriminant rules formed from estimates with
too much variability, which arises in fitting models with too many parameters
relative to the size n of the available training sample. Other problems to be
considered in this chapter concern the performance of the sample normal-
based linear and quadratic rules under departures from normality, and robust
estimation of discriminant rules.

Regarding the first problem, by allowing the covariance matrices to be ar-
bitrary in the specification of the multivariate normal densities for the group-
conditional distributions, the consequent quadratic discriminant analysis re-
quires a large number of parameters to be estimated if the dimension p of
the feature vector or the number of groups g is not small. In such situations, a
linear discriminant analysis is often carried out with the principle of parsimony
as the main underlying thought. The reader is referred to Dempster (1972) for
an excellent account of this principle, which suggests that parameters should
be introduced sparingly and only when the data indicate they are required.
This account was given in the introduction of his paper on covariance se-
lection, in which the principle of parsimony is applied to the estimation of
the covariance matrix of a multivariate normal distribution by setting selected
elements of its inverse equal to zero. In this chapter, we consider estima-
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tion of the group-covariance matrices X; for intermediate models between
the overly diffuse heteroscedastic model and the overly rigid homoscedastic
model.

A related approach to the estimation of the X; in situations where p is
large relative to n is the use of regularization methods, which are introduced
in the next section.

5.2 REGULARIZATION IN QUADRATIC DISCRIMINATION

When the group-sample sizes n; are small relative to p, the sample group-
covariance matrices X; and their bias-corrected versions S; become highly
variable. Moreover, when #; < p, not all of the parameters are identifiable.
The effect this has on the plug-in sample version r,(x; ¥y) of the normal-
based quadratic discriminant rule (NQDR) can be seen by representing the S;
by their spectral decompositions

P
Si=) Mavavh, (=1...8) (5.2.1)
k=1

where A is the kth eigenvalue of S; (ordered in decreasing size), and ¥, is
the corresponding eigenvector of unit length (k = 1,..., p). The inverse of §;
in this representation is

P
ST = vavh/ e (=1...8)

k=1

Hence, the log of the plug-in estimate of the ith group-conditional density
under the heteroscedastic normal model (3.2.1) can be expressed as

log fi(x;8;) = log p(x; X;, S:)

P p
1 1
Y {x =% ¥} /M — 5 Y loghix — 5 plog(2m)
k=1 2k=1 2

N =

fori=1,...,8.

It is well known that the estimates A of the eigenvalues of X; are biased.
The largest ones are biased toward values that are too high, and the smallest
ones are biased too low. This bias is most pronounced when the eigenvalues of
¥; tend toward equality, being less severe when they are highly disparate. In
all situations, this phenomenon becomes more pronounced as n; decreases. If
n; < p, then §; is singular with rank < n;. Its smallest p — n; + 1 eigenvalues
are estimated then to be zero, with their corresponding eigenvectors arbitrary
subject to orthogonality constraints.
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As explained by Friedman (1989), the net effect of this biasing phenomenon
on the sample NQDR r,(x; ¥y) is to (sometimes dramatically) exaggerate the
importance of the feature subspace spanned by the eigenvectors corresponding
to the smallest eigenvalues. It is this exaggeration that accounts for much of
the variance in the sampling distribution of r,(x; ¥/).

One way of attempting to provide more reliable estimates of the X; is to
correct for the eigenvalue distortion in the S;. James and Stein (1961), Stein,
Efron, and Morris (1972), Stein (1973), Efron and Morris (1976), Olkin and
Sellian (1977), Haff (1980, 1986), Lin and Perlman (1984), and Dey and Srini-
vasan (1985), among others, have adopted this approach to the estimation of
a covariance matrix by seeking estimates that minimize given loss criteria (of-
ten some form of squared-error loss) on the eigenvalue estimates. However,
as pointed out by Friedman (1989), none of these loss criteria that have been
considered is related to the error rate of the discriminant rule subsequently
formed from the estimated covariance matrices. Also, they nearly all require
that the §; be nonsingular.

Another approach is to use a regularization method. Regularization tech-
niques have been applied with much success in the solution of ill- and poorly
posed inverse problems; see Titterington (1985) and O’Sullivan (1986) for re-
views. In the present context, quadratic discriminant analysis is ill-posed if
the number n; of classified entities from G; is not greater than p for any
i ({=1,...,8), and poorly posed if n; is not appreciably larger than p. Reg-
ularization attempts to reduce the variances of highly unstable estimates by
biasing them toward values that are deemed to be more physically plausible.
The extent of the potential increase in bias depends on the aptness of the
“plausible” values of the parameters. The trade-off between variance and bias
is generally regulated by one or more parameters that control the strength of
the biasing toward the plausible set of parameter values. This line of approach
is pursued further in Section 5.5 with the description of regularized discrimi-
nant analysis as proposed by Friedman (1989).

It will be seen in subsequent sections that some of the discriminant rules
used in practice can be viewed as regularized versions of the sample NQDR
ro(x;¥y). As an obvious example, the use of the parsimonious linear rule
ro(x;¥g) in the presence of heteroscedascticity can be viewed also as apply-
ing a high degree of regularization by attempting to improve the estimates S;
of the X; by replacing each with the pooled estimate S. If the 3; are disparate,
then this method of regularization would introduce severe bias. A comparison
of the sample linear rule r,(x; ¥£) with its quadratic counterpart r,(x; ¥7) is
therefore of much practical relevance and is undertaken in the next section. As
discussed there, it is desirable if the choice between r, (x;\flg) and r, (x;\flu)
is made on the basis of the available training data. This is the case with reg-
ularized discriminant analysis as proposed by Friedman (1989). It avoids an
outright choice between the alternatives of linear and quadratic sample rules,
which is fairly restrictive, by providing a sophisticated compromise between
them.
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5.3 LINEAR VERSUS QUADRATIC NORMAL-BASED
DISCRIMINANT ANALYSIS

§.3.1 Introduction

In this section, we consider the choice between the plug-in sample versions
of the normal-based linear and quadratic discriminant rules, r,(x;¥g) and
ro(x;¥y), respectively, under the assumption of multivariate normality for
the group-conditional distributions. The sample NLDR r,(x;¥g) is asymp-
totically optimal if the covariance matrix ¥; within group G; is the same for
alli (i = 1,...,g). However, in practice, it is perhaps unlikely that homoscedas-
ticity will hold exactly. Further, even if a preliminary test does not reject the
null hypothesis of homoscedasticity, the null hypothesis is really a proxy for a
small neighborhood of the null parameter values. Therefore, it is of interest to
assess the sample NLDR r,(x; %) under departures from homoscedasticity,
in particular, its performance relative to the sample NQDR r,(x; ¥¢), which
is asymiptotically optimal in the case of heteroscedasticity.

This latter comparison is particularly relevant to the use of ro(x; ¥g) in
place of r,(x; ¥y ) as a method of regularization. If the group-covariance ma-
trices are markedly different, then their estimation by the pooled estimate S
will be a source of bias. However, the consequent decrease in variance may
lead to r,(x;¥£) being overall superior to ro(x;¥y), in particular in small-
sized samples. This, coupled with its good performance for discrete or mixed
data in many situations, explains the versatility and consequent popularity of
linear discriminant analysis based on 7, (x; ¥).

Another reason for the wide use of normal-based linear discriminant analy-
sis is ease of interpretation with the estimated posterior probabilities of group
membership and the implied regions of allocation, arising from the simplic-
ity of linearity. In the case of g =2 groups, the boundary of the allocation
regions is simply a straight line or hyperplane. With a quadratic rule, more
complicated allocation regions can be obtained. For example, with bivariate
feature data, the region of allocation into one group may be the interior of an
ellipse or the region between two hyperbolas. In general with ro(x;¥y), the
regions are defined by means of a quadratic function of the feature vector x,
which is not necessarily a positive definite quadratic form.

5.3.2 Comparison of Plug-In Sample Versions of NLDR and NQDR

There have been many investigations carried out on the relative performance
of r,(x;¥z) and ro(x;¥y) under the heteroscedastic normal model (3.2.1).
Many of these have been performed as part of wider studies on the behavior
of these rules relative to their nonparametric or semiparametric competitors,
where also multivariate normality may not apply. The results of those compar-
isons not relevant here are reported later where appropriate, for example, in
Section 5.6 on the robustness of r,(x; ¥£) and r,(x; ¥y), and in Chapter 9 on
nonparametric discrimination.
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The comparisons of ro(x;\ffg) and r,(x; \fly) in the literature have concen-
trated on the relative behavior of the plug-in sample versions of the normal-
based linear discriminant function (NLDF), £(x;@¢), and the normal-based
quadratic discriminant function (NQDF), {(x; 8y ), applied with respect to g =
2 groups. Initial studies included those by Gilbert (1969), Marks and Dunn
(1974), Van Ness and Simpson (1976), Aitchison et al. (1977), Wahl and Kron-
mal (1977), and Van Ness (1979). It can be seen from their work and more re-
cent studies, such as Bayne et al. (1983), that the decision concerning whether
to use the sample NLDR r,(x; %) or its quadratic counterpart r,(x;¥y)
should be based on consideration of the sample sizes n; relative to p, the
degree of heteroscedasticity, and the separation between the groups. The size
of the training data is an important initial consideration. Firstly, if there are
adequate training data, then a preliminary assessment can be made of the
question of homoscedasticity and also normality. The sample sizes are of in-
terest in themselves as they often indicate a clear choice between the linear
and quadratic rules. For instance, if the n; are large relative to p and the as-
sumption of homoscedasticity is not tenable, then the quadratic rule should
be chosen. On the other hand, if the »; are small relative to p, perhaps too
small to allow a proper assessment of the presence of homoscedasticity in the
training data, then the linear rule is preferable to the quadratic. For moder-
ately sized n; relative to p, the relative superiority of the linear and quadratic
rules depends on the degree of heteroscedasticity and the amount of sepa-
ration between the groups. For given sample sizes, the performance of the
normal-based quadratic rule relative to the linear improves as the covariance
matrices become more disparate and the separation between the groups be-
comes smaller. But how severe the heteroscedasticity must be in conjunction
with how close the groups should be before the quadratic rule is preferable to
the linear is difficult to resolve. It is a question of balance between the het-
eroscedastic normal model with its unbiased estimates and the homoscedastic
model with fewer parameters having biased but less variable estimates.

It is therefore desirable if it can be left to the training data to decide be-
tween the linear or quadratic rules on the basis of some appropriate crite-
rion such as the estimated overall error rate. For instance, Devroye (1988) has
considered model selection in terms of the overall apparent error rate of a
discriminant rule. His approach is discussed in Section 10.8.1.

Even if the appropriate choice between linear and quadratic rules is made
in a given situation, the chosen rule may still have an error rate too large for
it to be of practical use if the sample sizes are very small relative to p and the
groups are not widely separated. However, as discussed in the subsequent sec-
tions, there are ways of obtaining a rule with an improved error rate in such
situations. In particular, it will be seen that regularized discriminant analysis as
proposed by Friedman (1989) provides a fairly rich class of regularized alter-
natives to the choice between homoscedastic and heteroscedastic models. For
a Bayesian approach where an outright choice between linear and quadratic
rules is avoided, the reader is referred to Smith and Spiegelhalter (1982).
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5.3.3 Theoretical Results

The aforementioned results on the relative superiority of the plug-in sample
versions of the NLDR and NQDR are of an empirical nature, because of the
complexities involved with an analytical comparison. However, O’Neill (1984b,
1986) has presented some theoretical findings based on his asymptotic expan-
sions of the expectation and variance of eC(‘I’u;‘i’E) and of ec(\Ilu;\flU), the
overall conditional error rates associated with the linear and quadratic sample
rules ro(x;\flg) and ro(x;\tlu), respectively, under the heteroscedastic normal
model (3.2.1). The derivation of these expansions was discussed in Section 3.2,
O’Neill (1984b) has evaluated them in the case of g = 2 groups with

pi = (-1,

and ,
=1+,

for i = 1,2, where 1, is the p x 1 vector of ones. He found that the uncondi-
tional error rate of r,(x; ¥¢) is asymptotically less than that of r,(x; ¥y) even
for quite large v in moderately sized training samples. O’Neill (1986) subse-
quently compared the asymptotic variances of the overall conditional error
rates. The leading term in the expansion of the variance of ec(¥y;¥r) is of
order O(N '1), and the corresponding term in the variance of ec(\I'y;\flU) is
of order O(N ~%). However, O’Neill (1986) found that this latter second-order
term sufficiently dominates the first-order term in the expansion of the vari-
ance of ec(¥y;¥r) for ro(x;¥£) to be less variable than that of r,(x; ¥y) for
most values of the parameters in small- and moderate-size training samples.
It was found in some situations that ec(¥y;¥z) has a smaller mean than that
of ec(¥y;¥y), but a larger variance. But O’Neill (1984b) demonstrated that
the extra variability of ec(¥y;¥E) in these situations is not large enough to
warrant the use of r,(x; \iru) instead of r, (x;\f',;) with its lower error rate.

Critchley et al. (1987) have considered the relative performance of normal-
based linear and quadratic discriminant analyses in terms of the estimates they
give in the case of g = 2 groups for the NQDF {(x;0y), or, equivalently, the
posterior log odds for known prior probabilities. They derived the approxi-
mate bias, conditional on the feature vector x, of the sample NLDF £(x;0¢)
under the heteroscedastic normal model (3.2.1). As n — oo with n3/n — k, the
asymptotic conditional bias of £(x;8f) is given by

bias{¢(x;0r)} = E{£(x;0E) | x} — £(x;00)

2
~ %E(-l)‘{é(x,m;z"") — log|Zi]} - &(x; 6u),

i=1

where
2O = kB + (1 -k,

As the bias of £(x;0y) is of order O(1) in its estimation of ¢(x;0y), the
bias component in its mean-squared error remains essentially unchanged as
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n — oo. Hence, its performance relative to the asymptotically unbiased es-
timator £(x;0y) rapidly deteriorates as 7 — co. Critchley et al. (1987) also
investigated the effect of misspecification of the homoscedastic model on con-
fidence intervals for the posterior log odds provided by £(x;8f). The problem
of assessing the reliability of the estimated log odds is addressed in Chap-
ter 11.

Recently, Wakaki (1990) has compared the large-sample relative perfor-
mance of the sample NLDF and NQDF applied with a zero cutoff point with
respect to g = 2 groups in equal groportions under the heteroscedastic nor-
mal model (3.2.1). We let ec(8y;0¢) and ec(Ou;éy) denote the overall con-
ditional error rates associated with this application of the sample NLDR and
NQDR, respectively. Wakaki (1990) derived the first-order expansions of the
overall unconditional error rates as given by the expectations of ec(0y;0)
and ec(8y;0y). As the sample NLDR is not Bayes risk consistent under het-
eroscedasticity, it follows that its overall unconditional error rate is greater
than that of the sample NQDR for sufficiently large n.

Accordingly, in the special case of proportional group-covariance matrices
3, = kX; and equal group-sample sizes, Wakaki (1990) calculated the com-
mon value n, of n; and ny at which the first-order expansions of the expec-
tations of ec(0y;0y) and ec(@y;0r) are equal. That is, if the common value
of the group-sample sizes is not less than n,, then ec(8y;0y) is less than or
equal to ec(8y;0%) on average, ignoring terms of the second order. Wakaki
(1990) tabulated n, for various combinations of p, k, and p, where, without
loss of generality, it was assumed that ¥; =1, g; =0, and g3 = (,0,...,0).
He also tabulated, as percentages, the corresponding values of the leading
terms of order O(1), eg’) and eg’), and of the first-order coefficients e;z and
ey, in the first-order asymptotic expansions of the expectations of ec(0y;0r)
and ec(8y;0y), respectively. These results are reported in Table 5.1, where it
can be seen that n, increases, as the number p of feature variables increases
or as kK — 1 decreases (that is, as the group-covariance matrices become more
similar).

5.3.4 Loss of Efficiency in Using the Sample NQDF Under
Homoscedasticity

Up to now, we have focused exclusively on sample normal-based linear dis-
criminant analysis under heteroscedasticity, as there is a potential gain to be
had over a quadratic analysis in certain situations. In the reverse case with
a quadratic discriminant analysis in the case of homoscedasticity, there is of
course nothing to be gained by having a model more general than is needed.
Indeed, there is a loss in efficiency in having to estimate the superfluous pa-
rameters of the heteroscedastic model. To demonstrate this loss, Critchley et
al. (1987) have considered the efficiency of £(x;0y ) relative to £(x;0) in terms
of the ratio of their variances, conditional on x. More precisely, they worked
with the unbiased versions £ (x) and {z(x) as given by (3.2.10) and (3.3.16),
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TABLE 5.1 Variation in Threshold n, for Common Group-Sample Sizes with
Respect to p, i, and &

[ L N 4

2 1.0 0.2 31.63 27.17 3143 5137 1217
0.6 3274 28.60 3135 57.52 208

20 0.2 16.97 18.78 16.91 2541 120.6
0.6 18.66 20.10 18.25 2783 18.6

30 0.2 7.61 12.78 7.58 16.63 1194
0.6 9.23 14.40 9.01 18.22 173

4 1.0 0.2 31.63 7292 31.13 187.51 229.1
0.6 3274 77.10 29.46 184.29 326

o
s e ew no

20 0.2 16.97 44.18 16.80 83.52 240.1

0.6 18.66 47.74 17.47 90.33 356

3.0 02 7.61 2811 7.54 44.24 2198

06 9.23 32.14 8.69 50.01 327

6 1.0 02 3163 118.67 30.83 390.21 3414
06 32.74 125.61 27.719 343.40 44.0

20 0.2 16.97 69.57 16.69 167.00 3584
0.6 18.66 75.38 16.73 174.52 513

30 02 7.61 43.43 7.50 81.50 3329
0.6 9.23 49.88 8.37 91.49 484

Source: From Wakaki (1990).

respectively. We have from their results that as n — oo with ny/n — 1/2,

e = var{{g(x)} /var{u(x)}

~V1/ V2,
where
vi = {§(x:06)} + 2+ ;AN {616(x) + 626 (x)} — A%,
vy = 2{£(x;08)}> + §{61,£(x) + &6(x))* + 2p,
and

Ge®) =(x-— )T x—w) (E=12).

For example, in the case where pu; = (2,0,...,0), u2 =90, and X =1I,, the
asymptotic value of € at x = 0 is equal to 0.8 and 0.67 for p =2 and 4, re-
spectively. The quantity e~1— 1 represents the extra proportion of training
observations needed in order to achieve the same precision with §(x;éu) as
with ¢(x;0z) under homoscedasticity. Note that the results reported above
on the relative performance of r,(x; \IIE) and r,(x; \flu) are qualified by the
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assumption of multivariate normality for the group-conditional distributions.
The effect of departures from normality on these rules is surveyed in Section
5.6.

5.4 SOME MODELS FOR VARIANTS OF THE SAMPLE NQDR

5.4.1 Equal Spherical Group-Covariance Matrices (Minimum-Euclidean
Distance Rule)

As can be seen from (3.3.13), the use of the sample NLDR r,(x; ¥z) with
equal group-prior probabilities ; is equivalent to the minimum-distance rule,

rrliin{(x—i';)'S'l(x-ii)}l/z, (5.4.1)

where the Mahalanobis distance is used as the metric. More generally, the use
of (5.4.1) is equivalent to the sample plug-in version of the Bayes rule with
equal 7; in the case of group-conditional distributions belonging to the same
family of elliptic distributions having different locations but a common shape.
This follows directly from the form (1.12.5) of the elliptic density.

In situations where the group-conditional distributions appear to have un-
equal covariance matrices, the minimum-distance rule is often modified to

min{(x —%)S7 i (x—%)}2 (5.4.2)

It can be seen from (5.4.2) that this modified distance rule is not quite the
same as the sample NQDR r,(x; ¥y,). It ignores the normalizing term |S;|~1/2
in the plug-in estimate ¢(x;X;,S;) of the multivariate normal density adopted
for the distribution of X in group G; (i = 1,...,g). This term can make an
important contribution in the case of disparate group-covariance matrices.

Another modification of the minimum-distance rule (5.4.2) is to completely
ignore the covariance structure of X within a group and to base the allocation
of an entity with feature x on

min{(x - %;)'(x ~ %)} (5.4.3)

That is, Euclidean distance is used as the metric. This rule is commonly ap-
plied in pattern recognition; see, for example, Raudys and Pikelis (1980). It
is very easy to implement given that the estimates S; of the group-covariance
matrices do not have to be computed from the training data.

The minimum-Euclidean distance rule (5.4.3) is equivalent to the sample
NLDR 7,(x; ¥) formed under the assumption that the group-covariance ma-
trices have a common spherical form,

L=, (@(=1..,8).

Thus, it can be viewed as a substantially regularized version of ro(x;¥g). It
was in this spirit that Marco, Young, and Turner (1987a) have compared its



138 NORMAL THEORY-BASED DISCRIMINANT RULES

performance relative to the Mahalanobis distance version, or, equivalently,
the sample NLDR formed with a zero cutoff point (equal group-priors) in
the case of g = 2 groups in which the feature vector has a multivariate nor-
mal distribution with a common covariance matrix. They concluded from their
simulation experiments that the sample Euclidean distance rule is superior to
the sample NLDR, not only for group-conditional distributions that are spher-
ical normal, but also for some nonspherical parameter configurations where
p is very large relative to n. In the latter case, they found that the relative
superiority of these two rules is highly dependent on the ratio of the Ma-
halanobis distance to the Euclidean distance between the groups. Whenever
this ratio was small in their experiments, the sample Euclidean distance rule
tended to outperform the sample NLDR, whereas the reverse appeared to be
true whenever the ratio was large. Note, however, that there is no need to
make an outright choice between the sample Euclidean distance rule over the
sample NLDR with applications in those aforementioned situations where the
former has the potential to offer some improvement in error rate. We can use
regularized discriminant analysis as proposed by Friedman (1989), whereby as
part of the estimation of each group-covariance matrix, shrinkage toward a
common multiple of the identity matrix is allowed. The amount of shrinkage
is inferred from the training data. Before we describe this new method of
regularization in Section 5.5, we proceed to consider some less sophisticated
methods of regularization that have been employed in the past in discriminant
analysis.

5.4.2 Proportional Group-Covariance Matrices

The choice between homoscedasticity and the general heteroscedastic model
is a fairly restrictive one. Also, as argued by Hawkins and Raath (1982) and
others, the general specification of the group-covariance matrices X; under
the heteroscedastic model is contrary to experience in real-life applications,
where it is usual to find a degree of similarity of pattern between the ;. They
therefore proposed specifying the £; to be proportional as an intermediate
model between the overly diffuse heteroscedastic model and the overly rigid
homoscedastic model. It results in %(g —1)p(p— 1) fewer parameters having
to be estimated than with arbitrary group-covariance matrices.

Practical applications of this proportional model in discriminant analysis
have been considered also by Switzer (1980), Dargahi-Noubary (1981), and
Owen (1984), among others. From a theoretical point of view, we have already
seen in Section 4.6.1 that the distribution of the sample NQDF is simplified
considerably for proportional group-covariance matrices. On the use of pro-
portional covariance matrices in general and not necessarily in a discriminant
analysis context, Flury (1988, Chapter 5) has given an account, including some
historical remarks.

The assumption of proportional group-covariance matrices can be repre-

sented as
=% (i=1,...,8) (54.4)
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where k2 = 1. We set K2 = 1 and let £; be the sample covariance matrix of the
training feature data from group G; (i = 1,...,£). Then under the assumption
of multivariate normality for the group-conditional distributions, the maximum
likelihood estimates £p and &; of Sp and «;, respectively, satisfy

$p = f: n 8/ (nk}) (54.5)
i=1
and
Ri = (u(EF18)/pP? (i=2,...,8) (5.4.6)

These equations can be solved iteratively. Starting with &; = 1 for all i, £p
can be obtained from (5.4.5) and then used in (5.4.6) to produce new val-
ues for Ry,...,Rg. This iterative method of solution is the same, or essentially
the same, as proposed independently by Owen (1984), Eriksen (1987), and
Manly and Rayner (1987). Eriksen (1987) also established the convergence of
the process and the uniqueness of the maximum likelihood estimates. Jensen
and Johansen (1987) proved existence and uniqueness of the maximum likeli-
hood estimates using results on the convexity of the likelihood function. Flury
(1986) used a different parameterization of the model (5.4.4) in terms of the
eigenvectors and eigenvalues of the X; instead of the X; themselves.

The likelihood ratio test for proportional group-covariance matrices is de-
scribed in Section 6.2.6, along with a test of the more general model that
the group-conditional correlations between the variates of the feature vector
are the same within each group. We now consider estimation of the group-
covariance matrices under this last model.

5.43 Egqual Group-Correlation Matrices
The model of equal correlation matrices within the groups can be represented
in terms of the group-covariance matrices X; as
B =K¥cK;, (54.7)
where K] is the identity matrix, and
K; = diag(kiy,...,Kip) i=2..8).

Note that (5.4.4) is a special case of (5.4.7) with k;y =«; (v =1,...,p). For
multivariate normal group-conditional distributions, the maximum likelihood
estimates £¢ and K; of B¢ and K;, respectively, satisfy

8

Be =) (m/mK1ER! (5.4.8)

i=1
and

14
Riv =Y BEjw/Rij  (=2...8; v=1,...,p).

i=1
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These equations can be solved by iteration, starting with R;; =1 for j =
1,...,p. Manly and Rayner (1987) note that this procedure has always con-
verged in test data, although the number of iterations required has been quite
large in some cases.

The models of proportional group-covariance matrices and equal group-
correlation matrices as given above provide ways of exploiting similarities in
the group-covariance matrices X; and thereby reducing the number of param-
eters to be estimated. These two models complete a hierarchy of models for
the X; with their being nested between the lower level of homoscedasticity
and the upper level of heteroscedasticity. Another hierarchy of models for the
X; is considered next.

5.44 Common Principal-Component Model

Flury (1984) proposed the common principal-component (CPC) model for in-
corporating similarities in the group-covariance matrices. This model has been
studied in some depth in the monograph of Flury (1988, Chapter 7), who has
outlined a hierarchical set of models for a collection of covariance matrices.
Under the CPC model, the X; are taken to have the same principal axes, but
these axes can be of different sizes and rankings in the different groups. It
is thus equivalent to the assumption that the X; are all diagonalizable by the
same orthogonal matrix; that is,

ATA' = A; E=1,..8), (5.4.9)
where A is an orthogonal p x p matrix, and the A; are all diagonal matrices,
A; = diag(Aiy, .-, Aip)  (E=1,...,8).

The model of proportional group-covariance matrices introduced in the pre-
vious section can be viewed as an offspring of the CPC model obtained by
imposing the constraints

Mk =6y (=2...8 k=1..,p)

Flury (1988, Chapter 4) has given the maximum likelihood estimates of A
and the A; for the CPC model under the assumption of multivariate normal
group-conditional distributions. By writing A = (¥1,...,%p), these maximum
likelihood estimates of A and A; satisfy

iSim¥m =0  (k,m=1,...,p; k # m), (5.4.10)

where
Aik — Aim
= -1)= S;.
.Z(nt ) AikeAim b
The equation system (5.4.10) has to be solved under the orthogonality con-

straints
'Mc'/’m = Okm,
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where 0, is the Kronecker delta. An algorithm for solving (5.4.10) has been
proposed by Flury and Gautschi (1986).

If no distributional assumptions are made about the group-conditional dis-
tributions, then the least-squares estimates of A and the A; can be computed
using the routine provided by Clarkson (1988).

Schmid (1987) has investigated the performances of the usual plug-in sam-
ple versions r,(x; ¥¢) and r,(x; %) of the normal-based linear and quadratic
rules relative to the quadratic versions formed with the group-covariance ma-
trices X; estimated under the models of proportional ¥; and of common prin-
cipal components. Some of his results and conclusions have been summarized
by Flury (1988, Section 8.4). They indicate that the use of the CPC model
in discriminant analysis may be worthwhile in the case of several groups and
relatively high dimension.

Flury (1987a) has proposed a generalization of the CPC model, namely,
the partial CPC model, in which only g out of the p eigenvectors specific to
a group-covariance matrix are common to all g groups. He also proposed an-
other generalization in the form of the common space model, in which the
first q (or the last p — q) eigenvectors of S; span the same subspace for each
i(i=1,...,8); see also Schott (1988). The common space model is an alterna-
tive to the suggestions of Krzanowski (1979, 1982b, 1984b) in comparing the
principal components of several groups.

As cautioned by Flury (1988, Section 7.3), principal-component analysis is
scale-dependent, and so the hierarchy of principal-component models outlined
above may not be meaningful if the feature variables are measured on dis-
parate scales. As the models of proportional group-covariance matrices and
equal group-correlation matrices considered in the previous section are both
scale-dependent, they would appear to provide a preferable way of completing
a hierarchy of models ranging from homoscedasticity to heteroscedasticity.

5.4.5 SIMCA and DASCO Methods

A method that has been especially developed for situations in which the num-
ber of features p is large relative to the training sample size n is SIMCA
(soft independent modeling of class analogy). An initial description of this
method was given by Wold (1976). Recent accounts can be found in Drége
and van’t Klooster (1987), Frank and Friedman (1989), and Frank and Lanteri
(1989). Many successful applications of SIMCA to chemical problems have
been reported; see the references in Kowalski and Wold (1982), who have re-
viewed the use of pattern-recognition techniques, including SIMCA, in chem-
istry. Hence, SIMCA is widely used as a discriminant technique in chemomet-
rics, where typically p is large relative to n; see, for example, Drége et al.
(1987).

With the SIMCA method, the feature vector x is represented in each group
by a principal-component model. Generally, the number of principal compo-
nents retained will be different for each group. An unclassified entity is allo-
cated on the basis of the relative distance of its feature vector from these group
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models. More specifically, let ¥;,...,4;, be the eigenvectors of unit length
corresponding to the eigenvalues A\;; > --- 2> A;p of §; (i =1,...,8). Suppose
that p; denotes the number of principal components retained in the model
for the ith group G; (i = 1,...,g). Then the SIMCA allocation rule assigns an
entity with feature x on the basis of the minimum ratio of entity to average
group-residual sum of squares,

i d}(x)/(p - pi)
S k%) {(p — i) — pi— DY (411)
where

P
dx)= Y {x-x)¢u} (i=1...3)

k=p;+1

The term d?(x) is the sum of squares of the values of the omitted principal
components of x —X; in group G;.

Frank and Friedman (1989) have shown that the SIMCA rule can be viewed
as a minimum-distance rule of the form (5.4.1), based on the estimated Maha-
lanobis distance from each group-sample mean. To see this note that

n n p
Y ozidix) =Y Y zij$h(xi— X)X — %) ik
i1 =1 k=pi+1
P
=(ni—1) ) hSivie
k=p;+1
P
=(n;—1) z Aik-
k=p,‘+l

Thus (5.4.11) can be expressed as

miin (x-%)E(x-X;),

where ’
B = Y dudi/e (5.4.12)
k=p;+1
and ,
ci={mi-D/(m-pi=D} Y Il (5.4.13)
k=p,'+l
From (5.2.1),

p
ST =) i/ da-
k=1

On contrasting this with (5.4.12), it can be seen that SIMCA is a method
of regularization whereby all the eigenvalues associated with the ith group
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primary subspace are estimated to be infinitely large, that is, 1/A; = 0 for k =
1,...,pi. The remaining eigenvalues Ay (k = p; + 1,..., p) are all estimated
by c;.

As pointed out by Frank and Friedman (1989), the SIMCA method has
two shortcomings. Firstly, by taking 1/A;, = 0 for k = 1,..., pi in the estimate
of B, it ignores all information on group differences in the primary sub-
spaces. Secondly, by considering only the Mahalanobis distance of x from
each group-sample mean, it effectively ignores the normalizing term |E;|~1/2
in the multivariate normal density for the distribution of X in Gj. As re-
marked earlier, this term can make an important contribution in the case of
disparate group-covariance matrices. Frank and Friedman (1989) introduced
a modified method called DASCO (discriminant analysis with shrunken co-
variances), which overcomes these two weaknesses of the SIMCA method. As
with SIMCA, DASCO estimates the inverse of each X; by partitioning the
p-dimensional feature space in G; into two subspaces: a primary subspace of
dimension p; and its complement (secondary subspace) of dimension p — p;.
In forming the estimate of X;, the p — p; eigenvalues associated with the latter
subspace are all estimated by

»
Y= > A/(p-pi)

k=p;+1

the average of the last p — p; eigenvalues of S;. It can be seen from (5.4.12)
and (5.4.13) that this is almost the same as with SIMCA, because X; equals
¢; apart from a multiplicative constant. However, in contrast to SIMCA, with
DASCO, the eigenvalues associated with the primary subspace are not taken
to be infinitely large. Rather they are taken to be the same as the p; largest
ones of ;. The estimate of ¥;! so obtained is given by

L1 P _
8 = Do didi/ A+ ) udh/N

k=1 k=p;+1

The DASCO allocation rule is then taken to be the NQDR r,(x; W) with y;
and ¥; replaced by X; and }3,- respectively (i = 1,...,g), and with the group-
prior probabilities 7; assumed to be equal. It reduces under the latter assump-
tion to the sample NQDR r,(x; ¥y) in the special case p; = p (i = 1,...,g).
The SIMCA and DASCO discriminant rules depend on the parameters
P1,-.., Pg, the primary subspace dimensionality for each of the groups. It is
not computationally feasible to choose them jointly so as to minimize an esti-
mate of the overall error rate. With the SIMCA method, each p; is assessed
separately by the value of p; that minimizes a cross-validated estimate of

Pi
" Si— Y vt

k=1

; (5.4.14)
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see Wold (1976, 1978) and Frank and Friedman (1989). Also, Eastment and
Krzanowski (1972) have considered a similar cross-validation approach to the
choice of the number of retained principal components. As explained by Frank
and Friedman (1989), although (5.4.14) is not an unreasonable criterion, it is
not directly related to the overall error rate of the consequent allocation rule.
There is a wide variety of situations in which minimizing (5.4.14) gives very
different results from minimizing the cross-validated error rate. An example
occurs when the eigenvectors of the primary subspace are the same or similar
for each group and the group differences occur along these directions. This
latter information is ignored with the SIMCA rule, because it is based on only
the secondary subspaces.

The cross-validation of (5.4.14) may be too expensive to undertake, at least
with one observation omitted at a time, if n is large. In order to achieve com-
putational feasibility, the DASCO method takes a different approach to the
assessment of each p; in order to achieve computational feasibility. Its assess-
ment is the value of p; that maximizes a cross-validated estimate of

Pi
D X/ te(Si), (5.4.15)
k=1

where ’
r(Si) = ) A
k=1

The quantity (5.4.15) is the fraction of the total variance associated with the
primary subspace in G; (i = 1,...,8).

5.5 REGULARIZED DISCRIMINANT ANALYSIS (RDA)

5.5.1 Formulation

Friedman (1989) has proposed regularized discriminant analysis (RDA) as a
compromise between normal-based linear and quadratic discriminant analyses.
With this approach, a two-parameter family of estimates of the X; is consid-
ered, where one parameter controls shrinkage of the heteroscedastic estimates
toward a common estimate. The other parameter controls shrinkage toward a
multiple of a specified covariance matrix such as the identity matrix. Through
these two parameters, a fairly rich class of regularized alternatives is provided.
Further, with these two parameters assessed from the training set by minimiza-
tion of the cross-validated estimate of the overall error rate, a compromise
between sample normal-based linear and quadratic analyses is determined au-
tomatically from the available data.
More specifically, let

Bi(A) = {1 - M)(ni — 1S; + A(n —g)S}/{(1 - N)(m — 1) + A(n - g)},
(5.5.1)
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where AM(0< A <1) is a regularization parameter controlling the degree of
shrinkage toward the pooled estimate S. Previously, Randles et al. (1978a)
had proposed a weighted average of the sample NLDF and NQDF by using a
weighted estimate of the form (5.5.1), except that it was expressed in terms of
the inverses of the covariance matrices. The weight A was chosen adaptively
by basing it on Wilks’ likelihood ratio statistic.

The regularization provided by (5.5.1) is still fairly limited. Firstly, it might
not provide for enough regularization. If n is less than or comparable to p,
then even linear discriminant analysis is ill- or poorly posed. Secondly, bias-
ing the §; toward their pooled value may not be the most effective way to
shrink them. Friedman (1989) therefore proposed that the estimate of X; be
regularized further as

£:(07) = 1 -1E:) +9¢il,, (5.52)

where I, is the p x p identity matrix, and

ci = {tr8i(N)} /p.

For a given value of A, the additional regularization parameter v (0<y <
1) controls shrinkage toward a multiple of the identity matrix. The multiplier
ci is just the average value of the eigenvalues of £;(A). This shrinkage has
the effect of decreasing the larger eigenvalues and increasing the smaller ones
of £;(A), thereby counteracting the bias inherent in the estimates provided
by these eigenvalues. It is the same type of shrinkage as with ridge regression
estimates of a covariance matrix that have been used in the context of discrim-
inant analysis by Di Pillo (1976, 1977, 1979), Campbell (1980b), Peck and Van
Ness (1982), Kimura et al. (1987), and Rodriguez (1988). A comparison of
some of these biased methods for improving the error rate of the consequent
sample quadratic discriminant rule has been given recently by Peck, Jennings,
and Young (1988). Biased estimators of the group-covariance matrices such as
these before are formally derivable by Bayes and empirical Bayes arguments.
An example of this is the empirical Bayes formulation adopted by Greene and
Rayens (1989) in providing a compromise rule between the sample NLDR
and the NQDR.

Let (), 7) be the estimate of ¥y obtained by replacing S; with £(),7)
for i = 1,...,g. Then ro(x; ¥y(),7)) is the normal-based regularized discrimi-
nant rule (NRDR) as proposed by Friedman (1989). This rule provides a fairly
rich class of regularization alternatives. The four corners defining the extremes
of the A,7 plane represent fairly well-known discriminant rules. The lower left-
hand corner (A =0, 4 = 0) gives the usual quadratic rule 7,(x; ¥y), and the
lower right-hand comner (A =1, 7 = 0) gives the usual linear rule r,(x; ¥g).
The upper right-hand corner (A =1, 7= 1) corresponds to the minimum-
Euclidean distance rule

min{(x - %)’ (x — %)}'/2,
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because
£i(1,1) = {t«(S)/ P},

Finally, the upper left-hand corner (A =0, 7y = 1) corresponds to the mini-
mum-distance rule

miin{c.-(x -%)(x -X;)}V2

Holding v fixed at zero and varying A provides rules between r,(x; ¥z) and
ro(x;¥y). A ridge regression analogue of r,(x;¥g) is obtained by holding A
fixed at one and increasing 4.

The linear and quadratic rules r,(x; ¥¢) and r,(x;¥y) are scale-invariant.
However, the regularized rule r,(x;¥y(},4)) is generally not. This lack of
scale invariance results from the use of the shrinkage parameter 7. In the
formulation (5.5.2) of £;(),7), shrinkage is toward a multiple of the identity
matrix I,. As there is nothing special about the choice of I, Friedman (1989)
noted that one could consider more general regularizations of the form

20,7 = 1 -7 +7c:M, (5.53)
where M is a prespecified positive definite matrix, and
c; = tr{Bi(A)}/tr(M).

Let M = M;M] be the Cholesky factorization of M, where M, is a lower
triangular matrix. Then this generalized version of RDA can be implemented
by first transforming the feature data x; to My 1x,- (j=1,...,n), so that M
reduces to I, in (5.5.3).

A common procedure is to standardize the feature data so that all p feature
variables have the same (sample) variances. This can be achieved by specifying
M as

M = diag(my,...,mp),
where

me =) (x;i—%)/(n—1)

j=1

or (S)kk, depending on whether the variance is computed from the training
data t as a whole or is pooled within each group. The reader is referred to
Friedman (1989) for further discussion on the choice of M, including the case
where the feature vector x corresponds to a signal or image.

5.5.2 Assessment of Regularization Parameters for RDA

Without complete knowledge of the group-conditional distributions, the opti-
mal values of A (the covariance matrix mixing parameter) and 7y (the eigen-
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value-shrinkage parameter) are unknown. Friedman (1989) recommends that
in a given situation without this knowledge, the optimal values of A and 4 be
assessed by A and 4, defined to be the values of A and + that minimize the
cross-validated estimate AY)(),v) of the overall error rate associated with
ro(x;¥7(A,7))- On the basis of the available training data t as defined by
(1.6.1),

8 ”n
A0 = 1375 20025 ro (s 85, 1)

i=1 j=1
where, for any u and v, Qfu,v] =0 for u=v and 1 for « # v, and where

\f'uw()‘,'y) denotes the estimate ¥y (A7) formed from the training data t with
¥j = (xj,z;)’ omitted (j = 1,...,n). Cross-validation of the error rates of a sam-
ple discriminant rule is to be considered in some depth in Chapter 10.

The computation of the assessed regularization parameters A and 4 thus
gives rise to a two-parameter numerical minimization problem. The strategy
recommended by Friedman (1989) is to choose A and 4 on the basis of the
smallest value of A(€¥)(A,y) evaluated at each prescribed point on a grid of
points on the A, plane (0 < A <1, 0 <y <1). Typically, the optimization grid
is taken to be from 25 to 50 points. With this strategy, each grid point requires
the calculation of the n estimates ¥y,,,..., ¥y, . In order to reduce this com-
putational burden to an acceptable level, Friedman (1989) developed updating
formulas for the computation of £;(;)(A,7), the estimate $};(},7) based on t
with y; omitted (j = 1,...,n; i = 1,...,g). In the presentation of his RDA ap-
proach, Friedman (1989) allowed for robust versions of S; and S to be used in
the form (5.5.1) for £;()). Instead of the latter estimate, he used

B:0) = {@-2wiE; + awBY/wi(A)  (i=1,...,58),
where

Bi= Y wjzij(x— )xj — ) i,
j=1

8
ﬁ = Zw,-ﬁ,-/w,

i=1

n
mi= Y uizixi/wi,
j=1

n
w; = Zu,-z,-,-,

i=1

8
w= Zw,-,

i=]

W,'(A) = (1 —Aw; + Aw,
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and where u; is the weight (0 < u; <1) assigned to x;(j = 1,...,n). If ;=1
for j =1,...,n, then £;(A) reduces to £;(A) fori = 1,...,g.

The formulas given by Friedman (1989) apply to the use of the robust esti-
mate £;(),7) defined by using L‘,(/\) in place of £;(A) in (5.5.2). Let wi)(A)
and 2,(,)()\ 7) denote w;(A) and £;(A,7) with y; omitted from the training
data t. Friedman (1989) showed that

Wit M EiH(A7) = Aij ~ayjal, (5.5.4)

where

Aij = wi(MEi(\,7) - kijlp,

8
ij =/ (1=7)cij Zzhj("j ~ ian),
h=1
kij = {7(a;jai))}/{p(1 -1}
wigh(A) = wi(A) — u A=,

and

g 14
= 1-z;
Cij = u,-z\ Zij Zz,,,'w;./ (ZZ},}W}, - u,-) .
h=1

h=1

It can be seen from (5.5.4) that removing an observation from t is equivalent
to downdating £;(),7) by a rank-one matrix plus a multiple of the identity ma-
trix. From (5.5.4), it follows using a result of Bartlett (1951a) that the inverse
of ‘Ei( 7(A,7) can be computed as

wigh VAT + {(A7 aijalA5)/ (1 - alA 7 8}

The matrix A;; is then inverted through its spectral decomposition to give
L&
AG =) il /i - kij),
v=}l

where );, is the vth eigenvalue of w;(A\)£;(),7), and #;, is its corresponding
eigenvector (v = 1,...,p; i =1,...,£). By using those results, the determinant
of ;¢j(A,7) can be computed as

a?

log|Bigj(A, 1)l = Zlog(&v —kij) +log (1 - Z X Tk',-) — plogwigj)(A),
v=1 {14 1

where a;;, = (a;;)v.
Finally, the estimate fi;(;, is given by j; for z;; = 0 and by

gy = (Wi — ujx;)/(wi — u;)

for zjj=1.
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As noted recently by Rayens and Greene (1991) in a critical comparison of
RDA and the empirical Bayes approach of Greene and Rayens (1989), their
simulated values of the cross-validated error rate A€Y)(A,7) of r,(x; ¥r(2,7))
were often constant for a wide range of values of A and 4. This implies that
the optimal choice may not be uniquely determined. Thus, how ties are bro-
ken with RDA is obviously an important issue, as illustrated by Rayens and
Greene (1991). As reported in their study, with RDA, ties are resolved by se-
lecting among the set of points (A,7) with the smallest cross-validated error
rate, the grid point with the largest value of 4 from among the grid points
with the largest value of A. Breaking ties in this way amounts to maximizing
the shrinkage of the resulting rule with A given priority over «.

5.5.3 Effectiveness of RDA

For the NRDR (normal-based regularized discriminant rule) r,(x; ¥y (4,4))
to be of value in practice, the assessed values A and 4 of the regularization
parameters need to lead to a high degree of regularization that substantially
reduces the variability with the use of ¥y .

In order to investigate the effectiveness of the RDA approach, Friedman
(1989) compared the NRDR 7, (x; ¥, (4,4)) with the sample NLDR r,(x; ¥)
and the sample NQDR r.,(x;\f'u) in terms of their simulated overall error
rates. The simulated examples were designed to provide a fairly wide spec-
trum of situations in terms of the structure of the group means and covari-
ance matrices. Some were chosen because they were highly unfavorable to
regularization, and others were included because they were representative of
situations where appreciable reduction in the error rate is possible through
appropriate regularization. In each example, there were g = 3 groups and the
training data consisted of n = 40 observations generated from a p-dimensional
normal mixture of these groups in equal proportions (p =2, 6, 10, 20, and
40). The optimization grid of (A,7) values was defined by the outer product of
A = (0,0.125,0.354,0.650,1.0) and v = (0,0.25,0.5,0.75,1.0). When an S§; with
the quadratic rule or the pooled estimate S with the linear rule happened to
be singular, the zero eigenvalues were replaced by a small number just large
enough to permit numerically stable inversion. This had the effect of pro-
ducing an Euclidean-distance rule in the zero-variance subspace (the subspace
spanned by the eigenvectors corresponding to the essentially zero eigenvalues).
On each simulation trial, the overall conditional error rates of r, (x;\ilu (X,‘?)),
ro(x; ¥g), and r,(x; ¥ ) were computed. In the notation of Section 1.10, these
error rates are given by ec(Wy; $u/(),4)), ec(Wy; ¥r), and ec(¥y; ¥r), respec-
tively. The sample means of these conditional error rates over 100 simulation
trials provided the simulated values of the corresponding unconditional rates.
Friedman (1989) concluded from his simulations that the assessment of the
regularization parameters A and 7 on the basis of cross-validation seems to
perform surprisingly well. In each of the situations simulated, the optimal joint
values of A and 7y were roughly known. The simulated distributions of the as-
sessed values A and 4 were concentrated near these optimal values in each



150 NORMAL THEORY-BASED DISCRIMINANT RULES

TABLE 5.2 Equal, Highly Ellipsoidal Group-Covariance Matrices with Mean
Differences in Low-Variance Subspace

p==6 p=10 p=2 p=40
Error rate

NRDR 0.07(0.04) 0.07(0.04) 0.27(0.07) 0.39(0.06)
NLDR 0.06(0.03) 0.06(0.03) 0.24(0.06) 0.59(0.07)
NQDR 0.17(0.08) 0.14(0.12) 0.60(0.07) 0.60(0.06)
ANG,4) 0.05(0.04) 0.06(0.04) 0.21(0.07) 0.34(0.08)
CORR 0.19 00 0.0 0.16

) 0.77(0.32) 0.83(0.27) 0.75(0.30) 0.72(0.32)

4 0.02(0.08) 0.07(0.16) 0.19(0.27) 0.45(0.25)

Source: Adapted from Friedman (1989).

case. This explains why r,(x; ¥(},4)) seems to gain so much over r,(x; ¥g)
and r,(x; ¥y) in favorable situations, yet to lose little to them in unfavorable
ones. The reduction in error rate in situations where n is smaller relative to p
is most encouraging. Indeed, as remarked by Friedman (1989), it is surprising
how small the ratio n/p can be and still obtain fairly accurate allocation with
ro(x; ¥y (4,4)).

As the assessed values A and 4 are taken to minimize the cross-validated
estimate AY)()\,7) of the regularized rule for the given training data,
ACY)(4,4) will provide an optimistic assessment of the overall error rate
ec(¥y; Wy(X,9)) of ro(x;¥y(4,4)). In the simulated examples, A€")(4,4) un-
derestimated ec(®y; ¥y (A,4)) by around 20% on average. A surprising result
was the low correlation between 4€")(1,4) and ec(¥y;¥y(4,4)). This im-
plies that A€Y)(4,4) is providing an assessment of the unconditional error
rate of r,(x;¥y(4,4)) rather than its conditional error rate for the realized
training data t.

To illustrate the simulation results of Friedman (1989), we tabulate here the
results for two of his simulation examples. The first here was the most diffi-
cult of the simulation examples from the point of view of RDA. The group-
covariance matrices were the same and highly ellipsoidal, and the differences
between the group means were concentrated in the low-variance subspace.
The simulated overall unconditional error rates of the NRDR ra(x;\itu( 1)
of the sample NLDR r,(x; ¥¢), and of the sample NQDR r,(x; ¥y) are re-
ported in Table 5.2. Also listed in Table 5.2 are the averages of the assessed
regularization parameters A and 4 and the minimum value A€")(4,4) of the
cross-validated estimate of the overall error rate of r,(x; ¥y (,7)). The en-
try for CORR refers to the simulated correlation between A€")(A,%) and the
apparent error rate of r,(x; ¥y (4,4)) in its application to m = 100 test obser-
vations generated subsequent to the training data t. Standard errors are listed
in parentheses in Table 5.2.
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TABLE 5.3 Unequal, Highly Ellipsoidal Group-Covariance Matrices with Zero
Mean Differences

p=6 p=10 p=2 p=40

Error rate
NRDR 0.21(0.06) 0.15(0.06) 0.12(0.05) 0.12(0.06)
NLDR 0.61(0.06) 0.58(0.06) 0.58(0.06) 0.63(0.06)
NQDR 0.19(0.06) 0.35(0.13) 0.44(0.10) 0.43(0.07)

AGR4)  0.17(0.06) 0.13(0.05) 0.11(0.05) 0.12(0.06)
CORR 0.03 -0.03 0.09 025

a

A 0.03(0.05) 0.04(0.06) 0.06(0.07) 0.05(0.07)
4 0.17(0.16) 0.27(0.18) 0.46(0.17) 0.60(0.15)

Source: Adapted from Friedman (1989).

It can be seen from Table 5.2 that the sample NLDR r,(x; ¥z) performs
slightly better in all but the highest dimension, where none of the three rules
does particularly well. This situation, as constructed, is ideal for r,(x; ¥z) be-
cause any shrinkage away from the point (A = 1,7 = 0) is strongly counterpro-
ductive. As the assessed values of A and 4 are concentrated in this corner of
the A,7 plane, the incurred increases in the average error rate from using the
NRDR instead of the sample NLDR is only slight in this most unfavorable
situation. In Table 5.2, the average value of 4 increases with p, so that at the
highest level of p = 40, considerable shrinkage is needed to damp the variance
even though this introduces substantial bias.

For the second simulation example reported here in Table 5.3, the group-
covariance matrices were highly ellipsoidal and very unequal. As the group
means were taken to be all the same, it represents a situation where the
NLDR does very paorly. It can be seen from Table 5.3 that for the lowest
dimension of p = 6, the NRDR is slightly worse than the NQDR, but for the
other values of p, the NRDR is substantially better. As in the first example,
the assessed values A and 4 of the regularization parameters appear to be ap-
propriate. The average value of A is near to zero for each p, indicating that
very little covariance matrix mixing takes place at any dimension.

Further simulation results on the RDA approach can be found in the recent
study by Rayens and Greene (1991). They also describe the development of
another discriminant rule, which combines ideas from RDA and the approach
of Greene and Rayens (1989).

5.5.4 Examples

Friedman (1989) also analysed a real data set to demonstrate the effectiveness
of regularization through the use of 7,(x; ¥(4,4)). This data set consisted
of p = 14 sensory characteristics measured on n = 38 wines originating from
g = 3 different geographical regions: ny = 9 from California, n; = 17 from the
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Pacific Northwest, and n3 = 12 from France. Friedman (1989) performed two
analyses of this data set in which the group-prior probabilities were always
taken to be equal to 1/3. In the first, the regularized, linear, and quadratic
rules, ro(x; ¥ (\,%)), ro(x;¥E), and r,(x; ¥r), respectively, were formed from
the entire set. Their overall error rates as estimated by the 0.632 estimator
of Efron (1983), which is defined in Section 10.4.3, were 0.18, 0.26, and 0.36,
respectively. The cross-validated estimate ACY)(\,7) of ro(x; ¥y (),7)) had a
minimum value of 0.14 at (1,%) = (0.35,0.04).

In the second analysis, the data set was split randomly into half samples
of size n = 19. The regularized, linear, and quadratic rules were formed from
one sample and were applied to the other sample with apparent error rates of
0.21, 0.50, and 0.59, respectively. As noted by Friedman (1989), this data set
does not appear to be favorable to regularization through the use of the linear
rule r,(x; ¥g). Even though the latter is fairly well-posed in the first analysis
with p = 14 and n = 38, the regularized rule r,(x; ¥y (},4)) is substantially
superior. In the second analysis, where the size n of the training data is halved
to 19, r,(x; W) appears to collapse completely, whereas the estimated error
rate of ro(x; ¥y (A,4)) is increased surprisingly little.

Another way of proceeding in situations where the number of feature vari-
ables p is large relative to the training sample size n is to use only a subset of
the p observed feature variables. There is a variety of variable-selection tech-
niques available for this purpose and they are reviewed in Chapter 12, which
is devoted to the topic of feature selection. The variable-subset-selection ap-
proach, which is really another method of regularization, can be effective if
the main differences between the group means and covariance matrices hap-
pen to occur for a very small number of the original feature variables. How-
ever, as argued by Friedman (1989), the influential subset of features has to be
surprisingly small for subset-selection techniques to be competitive with other
regularization methods, or even no regularization at all; see Copas (1983).

5.6 ROBUSTNESS OF SAMPLE NLDR AND NQDR

5.6.1 Continuous Feature Data

Under the assumption of multivariate normality, the sample NLDR r,(x; ¥¢)
and the sample NQDR r,(x; ¥) are asymptotically optimal in the presence
of homoscedasticity and heteroscedasticity, respectively. Given that in real life
there is no such thing as a “true mode),” it is of interest to consider the be-
havior of these two rules under departures of varying degrees from normality.
Moreover, these rules are widely applied in practice in situations even where
the group-conditional distributions of the feature data are obviously nonnor-
mal.

There have been many studies on the robustness of r,(x; %) and r,(x; ¥r/),
mainly in the case of g = 2 groups, where these two rules are based on the
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plug-in sample versions of the NLDF ¢(x;0x) and of the NQDF £(x;dy), re-
spectively.

Concerning the robustness of the sample NLDF ¢(x;0z), it was shown in
Section 3.3.3 that it can be obtained also, at least up to the coefficients of
the feature variables in x, by choosing the linear combination of the features
(appropriately normalized) that maximizes the sample index (3.3.8). This is
regardless of the distribution of X. Hence, when the true log likelihood ratio
£(x) is linear in x,

§(x) = log{fi(x)/f2(x)}
= £ +@'x, (5.6.1)

the sample NLDF £(x;0z) should provide a reasonable allocation rule. In
some situations, the aim of a discriminant analysis is not the outright allo-
cation of an unclassified entity or entities. Rather it is the estimation of the
discrimination function coefficients in order either to assess the relative im-
portance of the feature variables or to form reliable estimates of the pos-
terior probabilities of group membership. In these situations, the use of the
normal-based estimates ﬂgE and ﬁg of the discriminant function coefficients
can lead to quite misleading inferences being made. As discussed in Chap-
ter 8, one way to proceed under the assumption of linearity of the log ratio
of nonnormal group-conditional densities is to use logistic discrimination. This
approach allows consistent estimation of the discriminant function coefficients,
and, hence, of the posterior probabilities of group membership.

For the allocation problem, however, the sample NLDF {(x;0¢) is fairly
robust if (5.6.1) holds approximately. It is not robust against interactions be-
tween the feature variables, unless the interaction structure is essentially the
same for each group.

For the remainder of this section, we are to focus on studies that have
been carried out on the robustness of the allocation rules based on the sample
NLDF and NQDF for continuous feature data. The case where some or all of
the feature variables are discrete is considered in the next two sections.

Lachenbruch, Sneeringer, and Revo (1973) used Johnson’s system of dis-
tributions to study the robustness of the sample NLDR and NQDR against
lognormal, logitnormal, and inverse hyperbolic sine normal group-conditional
distributions. They found that both these rules can be severely affected by such
departures from normality. In the light of subsequent results in the literature
that the sample NLDR is not badly affected by at least mild skewness and kur-
tosis in the group-conditional distributions, Lachenbruch and Goldstein (1979)
commented that its poor performance in the aforementioned study may be a
consequence of the fact that the lognormal distribution used for each feature
vector had extremely large skewness and kurtosis. Later Chinganda and Sub-
rahmaniam (1979) investigated the robustness of the sample NLDR against
the same class of distributions. They concluded that in practice one should
first attempt where possible to transform the feature data to normality before
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constructing the sample NLDF. In a parallel study, Subrahmaniam and Chin-
ganda (1978) considered the robustness of the sample NLDR against several
skewed distributions of the Edgeworth series type, representing a sitvation
where the feature data are not amenable to being transformed to normality.
The sample NLDR was found not to be affected to any great extent by this
skewness.

Using the techniques developed by Subrahmaniam and Chinganda (1978),
Balakrishnan and Kocherlakota (1985) investigated the robustness of the sam-
ple NLDR by modeling the group-conditional distributions as univariate nor-
mal mixtures. The normal mixture model had been used previously by Ashik-
aga and Chang (1981) to study the asymptotic error rate of this rule under
departures from normality. These studies suggested that a moderate amount
of skewness does not unduly affect the performance of the NLDR, especially
if the group-conditional distributions are similar in shape. In more recent work
on the robustness of the sample NLDR, Amoh and Kocherlakota (1986) have
derived its error rates for inverse normal group-conditional distributions, and
Kocherlakota, Balakrishnan, and Kocherlakota (1987) have investigated the
effect of truncation on the error rates.

Ahmed and Lachenbruch (1975, 1977) have studied the performance of the
sample NLDR when scale contamination is present in the training data. The
effect of contaminated training data on the sample NLDR was pursued further
by Broffitt, Clarke, and Lachenbruch (1981) under a random-shift-location
contamination model, where each variate was allowed to be contaminated in-
dependently of the other variates in the feature vector. Only minimal effects
on the error rates resulted.

On the robustness of the sample NQDR, Clarke, Lachenbruch, and Brof-
fitt (1979) concluded from their simulation experiments that it was robust
to nonnormality provided the group-conditional distributions were not highly
skewed. Heavy kurtosis caused no problems. In all cases studied, the overall
error rate was relatively stable, whereas the group-specific error rates exhib-
ited considerable variability. Broffitt, Clarke, and Lachenbruch (1980) subse-
quently assessed the improvement in performance of the sample NQDR by
Huberizing and trimming the estimated group means and covariance matrices
before forming the sample NLDF. The computation of Huber M -estimates of
the means and covariance matrices of the group-conditional distributions is
considered in Section 5.7.1. The use of these robust estimates provides pro-
tection against any harmful effects of contamination of the training data, and
also of misclassification as discussed in Section 2.5.

As part of a wider study on the performances of the sample NLDR and
NQDR relative to other discriminant rules under three types of nonnormality
for bivariate group-conditional distributions, Bayne et al. (1983) reported that
the robustness of the sample NQDR depends upon the type of nonnormality
present. Also, they found its performance to be sensitive to the sample size.
This last factor was seen in Section 5.3.3 to be crucial in determining whether
the sample NQDF was superior to the sample NLDF under normality. More
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recent investigations, where the sample NLDR and NQDR are evaluated
as part of wider studies on various sample discriminant rules in nonnormal
situations, include Rawlings and Faden (1986) and Joachimsthaler and Stam
(1988).

On the basis of the published results and their own work on the robustness
of the sample NLDR and NQDR, Fatti, Hawkins, and Raath (1982) made the
following generalizations. If the group-conditional distributions have lighter
tails than the normal, then the sample NLDR and NQDR should still perform
adequately. However, if the distributions are heavy-tailed and skewed, then
the sample NLDR and NQDR will perform very poorly. But if the distribu-
tions are heavy-tailed but essentially symmetric, then the sample NQDR may
perform reasonably well in terms of its overall error rate. This is provided
the sample size is sufficiently large to avoid excessive sampling errors in the
estimated group means and covariance matrices.

On this last point of the robustness the sample NQDR to heavy-tailed but
symmetric group-conditional distributions, it is the ellipsoidal symmetry as-
sociated with the multivariate normal assumption for the group-conditional
distributions that appears to be the most important aspect rather than its de-
tailed shape. It underscores the importance of normalizing transformations be-
fore constructing the sample NQDF. Even if a transformation may not achieve
normality, it can still play a valuable role through the removal of skewness
from the group-conditional distributions.

5.6.2 Discrete Feature Data

In this section, we consider the performance of the sample NLDR £(x;0)
in situations where some or all of the feature variables are discrete. As noted
in the previous section, for allocation purposes, the sample NLDF £(x;0r)
is quite robust to departures from normality if the true log ratio §(x) of the
group-conditional densities is (approximately) linear in x, that is, if any inter-
actions present between the feature variables are essentially the same within
each group.

The performance of the sample NLDF in its application to discrete and
mixed feature data has been surveyed in some detail by Krzanowski (1977).
One of the initial investigations was undertaken by Moore (1973), who demon-
strated how nonlinearity in the true log likelihood ratio £(x) with discrete fea-
ture data limits the usefulness of the sample NLDF in providing an allocation
rule. He considered the case where all the features are binary variables tak-
ing on the values of zero or one. He adopted a second-order approximation
to the Lazarsfeld-Bahadur reparameterization of the multinomial distribution.
For giveni (i = 1,...,8), let

fij=pr{X; =1|X€ Gi}

and

Xji = (X; - fip)/ (i1 - fi}?



156 NORMAL THEORY-BASED DISCRIMINANT RULES

forj=1,...,p, and
Pijk.m=EXjiXei...Xmi| X € G;)

for j,k,...,m = 1,..., p. Then Lazarsfeld (1956, 1961) and Bahadur (1961) in-
dependently showed that f;(x) can be reparameterized as

14
fiy=TIr7a-rpt-= [1 + Y Pijh )ik
j=1

j<k

ok D Pijem X% ---xm.i] : (5:6.2)
j<k<<m

Moore (1973) generated the feature vector x of binary variables, using the
second-order approximation to (5.6.2),

4
i =r7a-fp [1 + Zpi.ikxi.ixk,i} - (56.3)
j=1 j<k
He considered the case of g = 2 groups, where, for a given i, the f;; were the
same for all j, and the p; jx were the same for all j and k. As a consequence,

the true log likelihood ratio

£(x) = log{f1(x)/f2(x)}

had a simple dependence on the sum of the feature variables

P
2%
j=1

that is, on the number of positive feature variables.

If {(x) does not increase monotonically with the number of positive feature
variables, then it is said to undergo a reversal. In such situations, the sample
NLDF £(x;8z) or indeed any linear function of the feature variables is unable
to follow the reversal, and so will perform poorly relative to the true discrim-
inant function £(x). In situations without reversals in £(x), the sample NLDF
£(x;0¢) was found to give good results.

This explains why the sample NLDF was found to perform well in the ear-
lier study by Gilbert (1968). There were no reversals in £(x) for the binary
feature variables generated according to her first-order interaction model for
which £(x) was a linear function of x. That is, in each group, the feature vari-
ables had common marginal distributions, and their first-order interactions
were the same for both groups.

To illustrate a reversal in {(x), we consider the example presented in Moore
(1973) on the study of Yerushalmy et al. (1965) of infant maturity, using the
indices of birth weight and gestation. The latter comprised the p = 2 binary
feature variables, with x; = 0 or 1 corresponding to a low or high birth weight,
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and x> = 0 or 1 corresponding to a short or long gestation period. The two
groups G; and G represent “normal” or abnormal babies. The combination
of a low birth weight and short gestation period (x1 = 0, x; = 0) or a high
birth weight and a long gestation (x; = 1, x; = 1) is suggestive of G;. Other
combinations of x; and x; are more consistent with G, than G;. It is thus
evident that {(x) would not be an increasing function of x; + x;. Further, it
can be seen that a linear discriminant function cannot allow for this reversal
in §(x). For let

£(x1, x2;) = B3 + B'x
be any linear discriminant function, where
o = (63,0'Y,

and where an entity is assigned to G, or G,, according as to whether {(xy, x3; )
is greater or less than some cutoff point k. Now

£1,1a) = £(0,1;x) + £(1,0;x) - £(0,0; ). (5.6.4)
Hence, if x = (1,1)’ is assigned to Gj, that is,
{LLa)>k,

and both x = (0,1) and x = (1,0)' are assigned to G, that is,
€0,La)<k,  £(1,0,a) <k,
then it follows from (5.6.4) that
£(0,0;) < k.

Thus, an entity with x = (0,0)’ is assigned to G> and not to G, as desired in
this example.

In this example, X3 and X3 are positively correlated in Gy, but negatively
correlated in G, and so the assumption of equal group-covariance matrices
under which the sample NLDF ¢(x;0) is formed does not hold. However,
Dillon and Goldstein (1978) have demonstrated that reversals can occur even
in situations where the group-covariance matrices are equal. They generated
binary feature data using the second-order form (5.6.3) of the Lazarsfeld-
Bahadur representation. The group-correlation matrices were made equal by
specifying pyjx = p2,ji for all j,k. Equality of the group-covariance matrices
was achieved then by taking f,; =1- fi; for each j. Although the group-
covariance matrices are the same with this specification, it can be seen from
(5.6.3) that interactions between these binary feature variables are not equal
within each group, and so §(x) is not linear in x.

There have been a number of empirical studies carried out in recent times
to investigate the sample NLDR and NQDR, along with other discriminant
rules, in situations where some or all of the feature variables are discrete. One
such study was that by Titterington et al. (1981), who considered the applica-
tion of several discriminant rules to a prognosis problem involving a series of
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1000 patients with severe head injury. The results of these broad investigations
are reported in Chapter 9 after the various semiparametric and nonparametric
competitors of the sample NLDR and NQDR have been defined.

Confining remarks now to the latter two normal-based rules, Titterington et
al. (1981) found on the basis of the data sets analyzed that the sample NLDF is
quite robust in its provision of an allocation rule for discrete feature data. As
they also found the independence-based rule to be robust, it suggests that any
interactions between the discrete data analyzed are similar for each of the two
groups. As remarked earlier, the sample NLDF is not robust against dissimilar
interaction structures of the feature variables within each group. This has been
confirmed in the simulations and case studies by Krzanowski (1977), Knoke
(1982), Viachonikolis and Marriott (1982), and Schmitz, Habbema, and Her-
mans (1985), among several others. Although the sample NQDF will generally
be preferable to the sample NLDF in the presence of first-order interactions,
it may not provide a satisfactory allocation rule because of the presence of
higher-order interactions between the discrete feature. Discriminant rules that
have been specifically designed for discrete and mixed features are presented
in Chapter 7.

5.6.3 Mixed Feature Data

As in the case of all continuous or all discrete feature variables, the allocatory
performance of the sample NLDF for mixed feature variables depends on the
similarity of the interaction structure of the features within each group. From
their simulations with mixed binary and continuous feature variables, Schmitz
et al. (1985) concluded that the interaction structure of the continuous fea-
tures has a greater impact on the performance of the sample NLDF than that
of the binary features. A further consideration with mixed feature data is the
similarity of the interaction structure between the discrete and continuous fea-
ture variables within each group. High within-group correlations between the
discrete and continuous feature variables, unless similar for each group, are
suggestive of a situation in which the sample NLDF may perform poorly. Lin-
ear transformations of the continuous feature variables that attempt to achieve
zero correlations between the discrete and continuous features within each
group are described in Section 7.6.1. With unequal interaction structures, the
sample version of the NQDF instead of the NLDF might be considered. How-
ever, in situations in which some of the feature variables are discrete, inter-
actions of order higher than the first may have to be incorporated into the
discriminant function if a satisfactory rule is to be formed. In Section 7.6.2,
we discuss ways in which the performance of the sample NLDF can be im-
proved in the presence of interactions by augmenting the feature vector to
include appropriate products of the feature variables. This approach appears
to be preferable to the use of the sample NQDF (Knoke, 1982; Vlachonikolis
and Marriott, 1982).

As cautioned in the previous section, although the sample NLDF may pro-
vide a satisfactory allocation rule under departures from normality that pre-
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serve approximately the linearity of the log likelihood ratio, its use can lead
to misleading inferences for at least some of the discriminant function co-
efficients and hence for the posterior probabilities of group membership. To
illustrate this in the present situation of mixed feature data, we now consider
the case in which the feature vector X consists of a single binary variable X;
and (p — 1) continuous variables X® = (X;,...,X,_1)'. We let

g1=pr{X;=1|XeG;} (i=12).
The distribution of X given X = x; is assumed to be
XX =x;~N@® +0,2®) in G (i=12). (565)

This is a special version of the location model defined in Chapter 7, where
parametric discriminant rules for the specific case of mixed features are to be
considered.

For the model (5.6.5), the covariance between X; and X® in G; is equal
to

cov(Xy, X®) = gu(1-gn)w’ (i =1,2).

But as the interactions between X; and the elements of X are the same in
both G; and G;, the log likelihood ratio £(x) is linear in x. It is given by

E(x) = B8 + Prxy + BV x®,
where
= log{(1 - qu)/(1 - g2)} - (kP + uPY =7 (1P — 4P,

ﬂl—log[{qn/(l e}/ {gn/(1- @)} - ' E@7 (P - 4,
and

-1
B® =3x® ("gz) - “gz))_

As £(x) is linear in x, the sample NLDF ¢(x;0z) should suffice here for
allocation purposes. To examine this further, we consider the asymptotic form
of £(x;0k) under mixture sampling of the training data in proportions m, and

7, from G; and G,. Corresponding to the partition (x;,x®")’ of x, we express
£(x;0g) as
€(x:0g) = B3z + (B, BYY'x, (5.6.6)
where from (4.2.8) and (4.2.9),
B = —§(® + %) ST\ (%1 —%2)
and ’
(e, BPY = §7' (%1 - %).

The expectation and covariance matrix of X in group G; are equal to

i = (g, (1 + gaw))’
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s = ( gin(1-gir) gir(1 - gin)w' )
' gi(l-gi)w TP +gy(1- giwe'

respectively, for i = 1,2. It follows that as n — oo, X; and S converge in prob-
ability to g; and X, respectively, where

L =mE + mI,.

On substitution of these limiting values in (5.6.6), the asymptotic form of
£(x;0) can be expressed as

£(x;05) = (B + bo) + (B + by)x; + BD'x?, (5.6.7)
where
= — H(qir+ qu)(qu — q2)}/ {mqu (1 — qu) + m2qu(1 - g21)}
~log{(1—-qu)/(1-qa)}
and

b = (g1 — qu)/{mq11(1 — qu1) + m2qa(1 — q21)}
—log[{qu1/(1 - qu)}/{qu/(1 - qu)}].

This result is available from Hosmer, Hosmer, and Fisher (1983a), who
derived it in their study on the sample NLDF for mixed binary and continuous
feature variables. They also gave the generalization of the result in the case of
an arbitrary number of binary variables in the feature vector. In other closely
related work, O’Hara et al. (1982) and Hosmer, Hosmer, and Fisher (1983b)
have used simulation experiments to study the problem for a training sample
of finite size.

It can be seen from (5.6.7) that the use of the normal-based estimates
B2z and Bg provides consistent estimation of 8@ containing the discrimi-
nant function coefficients of the continuous feature variables. However, the
constant term S¢ and the coefficient §; of the binary feature variable are
estimated inconsistently, their asymptotic biases being given by by and by, re-
spectively. This inconsistent estimation of 3; would be of concern if an aim of
the analysis was to assess the discriminatory importance of the binary feature
variable x;. For example, the two groups might correspond to the presence
or absence of some disease in an individual and x; might be used to denote
whether in the past the individual was exposed or not to some carcinogenic
agent.

But for the purposes of constructing an allocation rule, the inconsistent es-
timation of 3§ and g, would not be of practical concern. This is because §§
and (3; serve only to locate the hyperplane in the continuous feature variables,
that is, the cutoff point for the linear discriminant function 3@'x® formed
from the continuous variables in the feature vector. Although this cutoff point
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has a bearing on the balance between the two errors of allocation, the over-
all error rate is not greatly affected. Hence, as 3 is estimated consistently by
the normal-based estimate ﬁ}}), the performance of the sample NLDF £(x;0r)
should not be too far below a consistent sample version of the optimal dis-
criminant function £(x).

5.7 ROBUST ESTIMATION OF GROUP PARAMETERS

5.7.1 M -Estimates

We consider here the computation of robust M -estimates of the location vec-
tor and scatter matrix of the feature vector X in a given group. These estimates
give full weight to observations from the main body of the data, but automat-
ically give reduced weight to any observation assessed as being atypical of its
group of origin. Huber (1964) developed a theory of robust estimation of a lo-
cation parameter using M -estimates. It was later extended to the multivariate
case by taking an elliptically symmetric density and then associating it with a
contaminated normal density; see Maronna (1976), Huber (1977, 1981, Chap-
ter 8), and Collins (1982). Further references on this approach and subsequent
modifications can be found in Collins and Wiens (1985), Hampel] et al. (1986,
Chapter 5), and Wiens and Zheng (1986).

We let x;; (j = 1,...,n;) denote the n; feature vectors in t that belong to
Gi (i = 1,...,8). For the ith group-conditional distribution of X, the M -esti-
mates of u; and E; as proposed by Maronna (1976) are defined by the equa-

tions n

w(dij)(xij = i) = 0 (5.7.1)
i=1
and .
> wa(@)xij — pa)xij — fu) [ = B, (5.7.2)
i=t
where, for convenience, §(x;j, ﬁi;ﬁ;) is written as &,-2,-, and where u)(s) and
uz(s) are nonnegative weight functions. Under fairly general conditions on
ui(s) and uy(s), Maronna (1976) established the existence and uniqueness of
the solution of (5.7.1) and (5.7.2). He also showed that it is consistent and
asymptotically normal under the assumption that f;(x;0;) is a member of the
family of p-dimensional elliptically symmetric densities

|23l Y2 s 1{00x, i B)} /%), (5.7.3)

where fs(||x]|) is any spherically symmetric density function. Under (5.7.3), Z;
is a scalar multiple of the covariance matrix of X. One of the conditions on
the weight functions, that su;(s) and su;(s) be bounded, ensures that these
estimates of u; and E; will be robust. If

uy(s) = —s~29log fs(s)/0s
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and u;(s%) = uy(s) for s > 0, then (5.7.1) and (5.7.2) give the maximum likeli-
hood estimates of u; and X; (i = 1,...,8).
More general to (5.7.2), Huber (1977, 1981, page 213) observed that an

affinely invariant estimate of X; can be defined by

n; n;

> i) - sy — ' | 3 v (57.4)

j=1 j=t
for arbitrary functions u and v, and noted it was “particularly attractive” to
take u = v. The M -estimate of a covariance matrix in high dimensions has a
low breakdown point g (which, roughly speaking, is the limiting proportion
of bad outliers that can be tolerated by the estimate). For example, Maronna
(1976) established that ao < 1/(p + 1) for (5.7.2), where u, is monotone in-
creasing and u;(0) = 0, and Huber (1977) showed that this could be improved
only to ag < 1/p in the more general framework (5.7.4). Recently, Huber
(1985) has reported projection pursuit (PP) estimators of u; and X; that are
both affine equivariant and whose breakdown point approaches 1/2 in large
samples. These PP estimators are defined by replacing d;; in (5.7.1) and (5.7.2)
b

¢ dij = sup(a'x;; — m;)/ M;,

where m; is the median, and M; is the mean absolute deviation of a'x;; (j =
1,...,m)fori=1,...8.
One proposal by Maronna (1976) for the weight function u;(s) in (5.7.1) is

ui(s) = P(s)/s,

where ¥(s) is Huber’s (1964) v-function. It is defined by ¥(s) = —¢¥(-s),

where, for s > 0, s, 0< s <ki(p),

Y(s) = { (5.7.5)
ki(p),  s>ki(p),
for an appropriate choice of the “tuning” constant k,(p), which is written here
as a function of p to emphasize its dependence on the dimension of x.
An associated choice for a weight function in the estimation of X; is to take

u(s) = v(s) = {u(s))’
in (5.7.4) to give

5= Z'j{m(&u)}z(xu - Bi)(%ij - i) / Z{ul(a,-,-)}z. (5.7.6)
j=1

j=1 j=

Note that if ul(&,-,-) and not its square were used as a weight in (5.7.6), then
the influence of grossly atypical observations would not be bounded.

The value of the tuning constant ky(p) in Huber’s ¥-function (5.7.5) de-
pends on the amount of contamination, and so k,(p) is chosen to give estima-
tors with reasonable performances over a range of situations. In the univari-
ate case, kj(1) is generally taken to be between 1 and 2. For p > 1, Devlin,
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Gnanadesikan, and Kettenring (1981) took k;(p) to be the square root of the
90th percentile of the x}, distribution, ,/ X;;o.m because ;{fl is asymptotically
x}, under normality. Campbell (1984c, 1985) recommends k(1) = 2 and that

in the multivariate case, k1(p) be computed corresponding to k1(1) = 2 by
taking 3,-2j to be xf, and then using the approximation of Wilson and Hilferty

(1931),
3 2 2\? }
Xpia =P {1" '9'; + (‘9;) qa} (5.7.7)

for the ath quantile of the x} distribution. In (5.7.7), ga denotes the ath
quantile of the N(0,1) distribution. Because k1(1) = 2 is approximately equal
to the square root of x},gs, this leads to

2 2y 17
ki(p) = [p{1—§;+ (9—1;) 1.645} } , (518)

on setting ky1(p) = xf,;o‘gs and then approximating the latter according to
(5.7.7). Hawkins and Wicksley (1986) have discussed power transformations
of chi-squared to normality other than (5.7.7), suggesting the fourth root when
p is small. Broffitt et al. (1980) observed from their simulations on the perfor-
mance of the sample QDF using M -estimates of u; and I; that the choice of
ki(p) is not critical.

If it is desired that observations extremely atypical of G; should have zero
weight for values of d; j above a certain level (rejection point), then a re-
descending v¥-function can be used, for example, Hampel’s (1973) piecewise
linear function. It is defined by ¥(s) = —¥(—s), where, for s > 0,

s, s < kl(p)!
ki(p), ki(p) <s < ka(p),
= - 579
R P e NPT F O e
0, 5 > ka(p),

where ki(p) is chosen in the same way as k;(p) in Huber’s y-function (5.7.5).
Care must be taken in choosing the remaining tuning constants k(p) and
k3(p) to ensure that ¥ does not descend too steeply, as cautioned by Huber
(1981, Chapter 4), who also warns that redescending estimators are susceptible
to underestimation of scale and that there may be multiple solutions. It can
be seen that using Huber’s nondescending 3-function with manual rejection
of grossly atypical observations beforehand is almost equivalent to the use of
a redescending function, since either procedure removes very extreme obser-
vations. The difference lies in the treatment of the observations over which
there is some doubt as to their retention in the data. With a redescending
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y-function, this step is carried out automatically by having ¢ redescend to
zero from k3(p). For further discussion on the comparative properties of non-
descending and redescending y-functions, the reader is referred to Goodall
(1983), who also considers the various smooth versions subsequently proposed
for Hampel’s original y-function (5.7.9).

For convenience of use, Campbell (1984c, 1985) advocates (5.7.9) with tun-
ing constants k(1) = 2, k(1) = 3, and k3(1) = 5 for p = 1. In the multivariate
case, he recommends defining k1(p) by (5.7.8) and k»(p) and k3(p) by replac-
ing 1.645 with 2.8 and 5, respectively, in the right-hand side of (5.7.8). With
this choice, ky(p) and k3(p) are approximately equal to the square root of

2 2 -
Xp:0.95 80d X75.0,9974» TESPECtivEly.

5.7.2 Use of a Rank-Cutoff Point

Randles et al. (1978b) have considered robust versions of the normal-based
linear and quadratic discriminant rules in the case of g = 2 groups. One pro-
posal was to form the linear discriminant function a'x, where a is chosen to
maximize an appropriate function of the separation index (3.3.6) introduced
by Fisher (1936). This index can, of course, be regarded as a projection in-
dex in the spirit of projection pursuit (Huber, 1985). Another robust proposal
of Randles et al. (1978b) is to use the linear or quadratic discriminant rules
formed with Huber-type M -estimates in conjunction with a rank-cutoff point.
The use of the latter provides an extra degree of robustness as it provides
some control over the relative size of the two unconditional error rates. For
nonnormal feature data, severe imbalances can occur between the error rates
of the sample NLDR or NQDR when applied with a fixed cutoff point.

We now describe the allocation procedure using a rank-cutoff point with
the sample NLDF ¢(x;0z). We let y = (x',2'Y, where z is the unknown vector
of zero-one indicators denoting the group membership of x. Corresponding to
x belonging to Gy or Gz, we let

y® = (', 1,0)

and
y? = (x,0,1)'.

The estimate of @z based on t and y® is denoted by 8g(t,y®) for i = 1,2.
The rank of £(x;0g(t,y®)) when included among the {(xlj;ég(t,y(‘))) for j =
1,...,ny is denoted by Ry(x;t), and R,(x;t) denotes the rank of —¢(x; 8¢ (t,y®))
when included among the —¢(x,j;0£(t,y®)) for j = 1,...,n;. As before, x;;
(j = 1,...,n;) denote the n; feature vectors in t that belong to G; (i = 1,2).
With the rank-cutoff point as proposed initially by Broffit et al. (1976) and
used subsequently by Randles et al. (1978a, 1978b), an entity with feature vec-
tor x is assigned to G if

Ri(x;8)/(m + 1) > k{Ry(x;8)/(n2 + 1)},
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and to G, if
Ri(x;t)/(n1 + 1) < k{Ry(x;t)/(nz + 1)}, (5.7.10)

where k is a constant that reflects the desired balance between the error rates.
For example, k is set equal to one if the intent is to have comparable er-
ror rates. The rationale behind this procedure is that the greater the value
of Ri(x;t), the more likely it is to be from G, rather than G>. Similarly, the
greater the value of R(x;t), the more likely it is to be from G; rather than
G1. Moreover, Broffit et al. (1976) showed that if the unclassified entity with
feature vector x comes from Gj, then R;(X;T) has a uniform distribution over
1,...,n; + 1 with mass 1/(n; + 1) at each of these values (i = 1,2). This im-
plies that allocation according to (5.7.10) is based on the relative size of the
P-values for the affinity of x with G; and G, respectively.

5.7.3 MML Estimates

We consider here the approach of Tiku (1983), Tiku and Balakrishnan (1984),
Balakrishnan, Tiku, and El Shaarawi (1985), and Balakrishnan and Tiku (1988)
to the construction of a robust discriminant rule in the case of g = 2 groups.
Their approach is to use the NLDF

§(x;0E) = {x— 3(p1 + p2)} S (o1 — m2),

where p1, p2, and I are replaced by the modified maximum likelihood (MML)
estimates of Tiku (1967, 1980).

To define the MML estimate, we consider first the univariate case p = 1.
Let xi(1),.--, Xi(n,) denote the n; order statistics for the training data x;; (j =
1,...,n;) from group G; (i = 1,2). Then the MML estimate of j; is defined by

ni——h;

1 ,
pi=—- 37 xigy+ BiBilXiguany * Xin-ny} (1 =12), (5.7.11)
L j=hi+1

where

m; = n; — 2h;(1- B;),

Bi = —{#(q2)/91} {92 — #(q2)/qu},
and where qy; = hi/n;, and q2 = ®(—q;) for i = 1,2. The MML estimate of
o? is given by

2
8% = (Mys + My ~2)™1) " (My; - 1)6F, (5.7.12)
i=t

where
0F = H{Myi + (M + 4MyMz)?) [{ i 4~ DY,
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and where
My = n; - 2h;,
Ma; = hioi{ Xin, —n;) — Xigni +1)}>
n;—h; .
My = Y [+ PiBi{ xZpary + Xnng 1 — mib,
i=h;+1
and
a; = {$(q2i)/ q1i} — Piqai
fori =12,

Note that 0< a; <1 and 0< §; <1 (i = 1,2). For example, for ¢; = 0.1,
a; = 0.690 and §; = 0.831. For h; =0 (i = 1,2), fl;, f2, and 42 reduce to the
sample means X;, X, and the pooled sample variance s? corrected for bias.
The choice of A; is based on robustness considerations. For distributions most
prevalent in practice, h; is usually chosen to be the greatest integer less than
or equal to 0.5 + (n;/10); see Tiku, Tan, and Balakrishnan (1986) for details
regarding various properties and efficiency of MML estimators.

As defined above, the MML estimates of u;, g3, and 02 can be viewed as
approximate maximum likelihood estimates for symmetric Type II censoring,
where the h; smallest and the h; largest observations in the sample on the
entities from G; are censored (i = 1,2). For extremely skewed distributions, a
more appropriate procedure is obtained by censoring on only one side, in the
direction of the long tail (Tiku et al., 1986, page 113).

To extend the definition of the MML estimates to the bivariate case of
p =2, Tiku and Balakrishnan (1984) noted that instead of allocating an entity
on the basis of its feature vector in its original form, x = (x1,x2)’, one can
equivalently use

x* = (x1,%21)

where
X21 = X3 —bxy,

and
b= (S)2/(S)u-

The sample discriminant function is taken then to be
R)/ « * ~ A ¥ -1 A ® Aw
o0y = {(x" — J(a] + B3)'S” (A - 43), (57.13)
where i and S* denote the MML estimates of the mean and covariance
matrix, respectively, of X* within G; (i = 1,2). They are defined as follows.
Let xj; (j = 1,...,n;) denote the n; replications of X* corresponding to the
original observations x;; (j = 1,...,n;) from G; (i = 1,2). Also, let xi"v(l),...,
X}y(ny denote the ni-order statistics of (X1 )vseoes(X,)v for i=1,2 and v =
1,2. Then as S$* is diagonal, i} and $* can be calculated by considering the
ordered observations xj ).« Xiy ) separately for each variate v (v = 1,2).
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Thus, for each v (v = 1,2), (4}), and (S*),, are given by (5.7.11) and (5.7.12)
with the x;(j) replaced by the x7, ., (i =1,2; j = 1,...,m;).

We let ec,‘R)(F,-;t) for i = 1,2 denote the group-specific error rates of the
rule based on the robust version ég)(x‘) of the NLDF given by (5.7.13). Tiku
and Balakrishnan (1984) and Balakrishnan et al. (1985) have investigated the
performance of {}R (x*) in applications where the cutoff point is chosen so that
ecgn)(Fl;t) achieves, at least asymptotically, a specified level. They concluded
that &R)(x*) is quite robust in the sense that the values of ech)(Fl;t) are
more stable from distribution to distribution than those of the sample NLDF
£(x;0z). Also, f}zm(x*) appeared to be more efficient than {(x;0¢) and the
nonparametric discriminant functions studied in that it produced lower values
for the error rate with respect to the second group. Balakrishnan and Tiku
(1988) have pointed out that the MML estimates can be easily generalized
to the p > 2 case by proceeding along the same lines as in Tiku and Singh
(1982). More recently, Tiku and Balakrishnan (1989) have considered the use
of MML estimates in providing a robust allocation rule with respect to two
univariate distributions with unequal variances.
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CHAPTER 6

Data Analytic Considerations
with Normal Theory-Based
Discriminant Analysis

6.1 INTRODUCTION

With a parametric formulation of problems in discriminant analysis, there is
a number of items in need of attention before the final version of the sample
discriminant rule is formed and applied to the problem at hand. These prelim-
inary items are associated with the actual fitting of the postulated models for
the group-conditional distributions of the feature vector X. There is the de-
tection of apparent outliers among the training data and their possible effect
on the estimation process. One option for handling extremely atypical obser-
vations is to use a manual rejection procedure in conjunction with a robust
estimation procedure whereby an observation assessed as atypical of its group
of origin is given reduced weight in the formation of the estimates of the group
parameters.

On the assessment of model fit, there are several tests of univariate and
multivariate normality that can be applied to assess the validity of a normal
mode] for the group-conditional distributions. The question of model fit is
particularly relevant in situations in which reliable estimates of the posterior
probabilities of group membership are required. In some cases where a normal
model does not appear to provide an adequate fit, the training data may be
able to be transformed to achieve approximate normality.

After the question of model fit has been addressed, there is still another
item to be considered before completing the probabilistic or outright alioca-
tion of an unclassified entity. There is the question of whether the assumption
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that the entity belongs to one of the g specified groups is apparently valid. In
some situations, the question does not arise, as the specified groups by their
very definition are exhaust