
Discriminant Analysis 
and 
Statistical Pattern Recognition 



Discriminant Analysis 
and 
Statistical Pattern Recognition 

GEOFFRY J. McLACHLAN 
The University of Queensland 

@ E E C * E N C E  
A JOHN WILEY & SONS, INC., PUBLICATION 



A NOTE TO THE READER 
This book has been electronically reproduced Erom 
digital infomation stored at John Wiley & Sons, Inc. 
We are pleased that the use of this new technology 
will enable us to keep works of enduring scholarly 
value in print as long as there is a reasonable demand 
for them. The content of this book is identical to 
previous printings. 

Copyright 0 1992,2004 by John Wiley & Sons, Inc. All rights reserved 

Published by John Wiley & Sons, Inc., Hoboken, New Jersey. 
Published simultaneously in Canada. 

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any 
form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, 
except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without 
either the prior written permission of the Publisher, or authorization thtough payment of the 
appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, 
MA 01923, (978) 750-8400, fax (978) 646-8600, or on the web at www.copyright.com. Requests to 
the Publisher for permission should be addressed to the Permissions Deparbnent, John Wiley & 
Sons, Inc., 1 1  I River Street, Hoboken, NJ 07030, (201) 748-601 I ,  fax (201) 748-6008. 

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best 
efforts in preparing this book, they make no representations or warranties with respect to the 
accuracy or completeness of the contents of this book and specifically disclaim any implied 
warranties of merchantability or fitness for a particular purpose. No warranty may be created or 
extended by sales representatives or written sales materials. The advice and strategies contained 
herein may not be suitable for your situation. You should consult with a professional where 
appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other 
commercial damages, including but not limited to special, incidental, consequential, or other 
damages. 

For general information on our other products and services please contact our Customer Care 
Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993 or fax 317-572-4002 

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print, 
however, may not be available in electronic format. 

Library of Congress Cataloging-in-Publication Data is available. 

ISBN 0-471-691 15-1 

Printed in the United States of America. 

1 0 9 8 7 6 5 4 3 2 1  



To 
Beryl, Jonathan, and Robbie 



Contents 

Preface 

1. General Introduction 

1.1. 
1.2. 
1.3. 
1.4. 
1.5. 
1.6. 
1.7. 
1.8. 
1.9. 

1.10. 
1.11. 
1.12. 

Introduction, 1 
Basic Notation, 4 
Allocation Rules, 6 
Decision-Theoretic Approach, 7 
Unavailability of Group-Prior Probabilities, 9 
Paining Data, 11 
Sample-Based Allocation Rules, 12 
Parametric Allocation Rules, 13 
Assessment of Model Fit, 16 
Error Rates of Allocation Rules, 17 
Posterior Probabilities of Group Membership, 21 
Distances Between Groups, 22 

2. Likelihood-Based Approaches to Discrimination 

2.1. 

2.2. 
2.3. 
2.4. 
2.5. 
2.6. 
2.7. 

Maximum Likelihood Estimation of Group 
Parameters, 27 
A Bayesian Approach, 29 
Estimation of Group Proportions, 31 
Estimating Disease Prevalence, 33 
Misclassified 'Itaining Data, 35 
Partially Classified Xaining Data, 37 
Maximum Likelihood Estimation for Partial 
Classification, 39 

xiii 

1 

27 

vii 



viii CONTENTS 

2.8. Maximum Likelihood Estimation for Partial 
Nonrandom Classification, 43 

2.9. Classification Likelihood Approach, 45 
2.10. Absence of Classified Data, 46 
2.11. Group-Conditional Mixture Densities, 50 

3. Discrimination via Normal Models 

3.1. 
3.2. 
3.3. 
3.4. 
3.5. 
3.6. 
3.7. 
3.8. 
3.9. 

3.10. 

Introduction, 52 
Heteroscedastic Normal Model, 52 
Homoscedastic Normal Model, 59 
Some Other Normal-Theory Based Rules, 65 
Predictive Discrimination, 67 
Covariance-Adjusted Discrimination, 74 
Discrimination with Repeated Measurements, 78 
Partially Classified Data, 86 
Linear Projections of Homoscedastic Feature Data, 87 
Linear Projections of Heteroscedastic Feature Data, 96 

52 

4. Distributional Results for Discrimination via Normal Models 101 

4.1. Introduction, 101 
4.2. Distribution of Sample NLDF (W-Statistic), 101 
4.3. Moments of Conditional Error Rates of Sample 

NLDR, 107 
4.4. Distributions of Conditional Error Rates of Sample 

NLDR, 112 
4.5. Constrained Allocation with the Sample NLDR, 118 
4.6. Distributional Results for Quadratic Discrimination, 122 

5. Some Practical Aspects and Variants of Normal 
Theory-Based Discriminant Rules 

5.1. Introduction, 129 
5.2. Regularization in Quadratic Discrimination, 130 
5.3. Linear Versus Quadratic Normal-Based Discriminant 

Analysis, 132 
5.4. Some Models for Variants of the Sample NQDR, 137 
5.5. Regularized Discriminant Analysis (RDA), 144 
5.6. Robustness of NLDR and NQDR, 152 
5.7. Robust Estimation of Group Parameters, 161 

129 



CONTENTS ix 

6. Data Analytic Considerations with Normal Theory-Based 
Discriminant Analysis 168 

6.1. 
6.2 
6.3. 
6.4. 
6.5. 
6.6. 

6.7. 
6.8. 
6.9. 

Introduction, 168 
Assessment of Normality and Homoscedasticity, 169 
Data-Based "tansformations of Feature Data, 178 
Wicality of a Feature Vector, 181 
Sample Canonical Variates, 185 
Some Other Methods of Dimension Reduction to 
Reveal Group Structure, 196 
Example: Detection of Hemophilia A Carriers, 201 
Example: Statistical Diagnosis of Diabetes, 206 
Example: %sting for Existence of Subspecies in Fisher's 
Iris Data, 211 

7. Parametric Discrimination via Nonnormal Models 

7.1. 
7.2. 
7.3. 
7.4. 
7.5. 
7.6. 

7.7. 

7.8. 

7.9. 

Introduction, 216 
Discrete Feature Data, 216 
Parametric Formulation for Discrete Feature Data, 218 
Location Model for Mixed Features, 220 
Error Rates of Location Model-Based Rules, 229 
Adjustments to Sample NLDR for Mixed Feature 
Data, 232 
Some Nonnormal Models for Continuous Feature 
Data, 238 
Case Study of Renal Venous Renin in 
Hypertension, 243 
Example: Discrimination Between Depositional 
Environments, 249 

8. Logistic Discrimination 

216 

255 

8.1. Introduction, 255 
8.2. Maximum Likelihood Estimation of Logistic Regression 

Coefficients, 259 
8.3. Bias Correction of MLE for g = 2 Groups, 266 
8.4. Assessing the Fit and Performance of Logistic 

Model, 270 
8.5. Logistic Versus Normal-Based Linear Discriminant Analysis, 276 
8.6. Example: Differential Diagnosis of Some Liver 

Diseases, 279 



x 

9. Nonparametric Discrimination 

CONTENTS 

283 

9.1. 
9.2. 
9.3. 

9.4. 

9.5. 
9.6. 

9.7. 
9.8. 
9.9. 

Introduction, 283 
Multinomial-Based Discrimination, 284 
Nonparametric Estimation of GroupConditional 
Densities, 291 
Selection of Smoothing Parameters in Kernel Estimates of 
Group-Conditional Densities, 300 
Alternatives to Fixed Kernel Density Estimates, 308 
Comparative Performance of Kernel-Based 
Discriminant Rules, 312 
Nearest Neighbor Rules, 319 
Bee-Structured Allocation Rules, 323 
Some Other Nonparametric Discriminant 
Procedures, 332 

10. Estimation of Error Rates 

10.1. Introduction, 337 
10.2. Some Nonparametric Error-Rate Estimators, 339 
10.3. The Bootstrap, 346 
10.4. Variants of the Bootstrap, 353 
10.5. Smoothing of the Apparent Error Rate, 360 
10.6. Parametric Error-Rate Estimators, 366 
10.7. Confidence Intervals, 370 
10.8. Some Other Topics in Error-Rate Estimation, 373 

11. Assessing the Reliability of the Estimated Posterior 
Probabilities of Group Membership 

11.1. Introduction, 378 
11.2. Distribution of Sample Posterior Probabilities, 379 
11.3. Further Approaches to Interval Estimation of Posterior 

Probabilities of Group Membership, 384 

337 

378 

12. Selection of Feature Variables in Discriminant Analysis 389 

12.1. Introduction, 389 
12.2. Test for No Additional Information, 392 
12.3. Some Selection Procedures, 3% 
12.4. Error-Rate-Based Procedures, 400 
12.5. The F-Test and Error-Rate-Based Variable 

Selections, 406 



CONTENTS xi 

12.6. hsessment of the Allocatory Capacity of the Selected 
Feature Variables, 410 

13. Statistical Image Analysis 

13.1. 
13.2. 
13.3. 
13.4. 
13.5. 
13.6. 
13.7. 

13.8. 

13.9. 

Introduction, 413 
Markov Random Fields, 417 
Noncontextual Methods of Segmentation, 421 
Smoothing Methods, 422 
Individual Contextual Allocation of Pixels, 425 
ICM Algorithm, 428 
Global Maximization of the Posterior Distribution of 
the Image, 435 
Incomplete-Data Formulation of Image 
Segmentation, 438 
Correlated Training Data, 443 

References 

Author Index 

Subject Index 

413 

447 

507 

519 



Preface 

Over the years a not inconsiderable body of literature has accumulated on dis- 
criminant analysis, with its usefulness demonstrated over many diverse fields, 
including the physical, biological and social sciences, engineering, and medi- 
cine. The purpose of this book is to provide a modem, comprehensive, and 
systematic account of discriminant analysis, with the focus on the more re- 
cent advances in the field. Discriminant analysis or (statistical) discrimination 
is used here to include problems associated with the statistical separation be- 
tween distinct classes or groups and with the allocation of entities to groups 
(finite in number), where the existence of the groups is known a pion' and 
where typically there are feature data on entities of known origin available 
from the underlying groups. It thus includes a wide range of problems in sta- 
tistical pattern recognition, where a pattern is considered as a single entity and 
is represented by a fmite dimensional vector of features of the pattern. 

In recent times, there have been many new advances made in discrimi- 
nant analysis. Most of them, for example those based on the powerful but 
computer-intensive bootstrap methodology, are now computationally feasible 
with the relatively easy access to high-speed computers. The new advances are 
reported against the background of the extensive literature already existing in 
the field. Both theoretical and practical issues are addressed in some depth, 
although the overall presentation is biased toward practical considerations. 

Some of the new advances that are highlighted are regularized discriminant 
analysis and bootstrapbased assessment of the performance of a sample-based 
discriminant rule. In the exposition of regularized discriminant analysis, it is 
noted how some of the sample-based discriminant rules that have been pro- 
posed over the years may be viewed as regularized versions of the normal- 
based quadratic discriminant rule. Recently, there has been proposed a more 
sophisticated regularized version, known as regularized discriminant analysis. 
This approach, which is a sample-based compromise between normal-based 
linear and quadratic discriminant analyses, is considered in some detail, given 
the highly encouraging results that have been reported for its performance in 
such difficult circumstances, as when the groupsample sizes are small relative 
to the number of feature variables. On the role of the bootstrap in estimation 

xiii 
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problems in discriminant analysis, particular attention is given to its usefulness 
in providing improved nonparametric estimates of the error rates of sample- 
based discriminant rules in their applications to unclassified entities. 

With the computer revolution, data are increasingly being collected in the 
form of images, as in remote sensing. As part of the heavy emphasis on recent 
advances in the literature, an account is provided of extensions of discriminant 
analysis motivated by problems in statistical image analysis. 

The book is a monograph, not a textbook. It should appeal to both applied 
and theoretical statisticians, as well as to investigators working in the many 
diverse areas in which relevant use can be made of discriminant techniques. It 
is assumed that the reader has a fair mathematical or statistical background. 

The book can be used as a source of reference on work of either a practical 
or theoretical nature on discriminant analysis and statistical pattern recogni- 
tion. 'Ib this end, an attempt has been made to provide a broad coverage of 
the results in these fields. Over 1200 references are given. 

Concerning the coverage of the individual chapters, Chapter 1 provides a 
general introduction of discriminant analysis. In Chapter 2, likelihood-based 
approaches to discrimination are considered in a general context. This chapter 
also provides an account of the use of the EM algorithm in those situations 
where maximum likelihood estimation of the groupconditional distributions 
is to be carried out using unclassified feature data in conjunction with the 
training feature data of known group origin. 

As with other multivariate statistical techniques, the assumption of multi- 
variate normality provides a convenient way of specifying a parametric group 
structure. Chapter 3 concentrates on discrimination via normal theory-based 
models. In the latter part of this chapter, consideration is given also to reduc- 
ing the dimension of the feature vector by appropriate linear projections. This 
process is referred to in the pattern recognition literature as linear feature 
selection. Chapter 4 reports available distributional results for normal-based 
discriminant rules. Readers interested primarily in practical applications of 
discriminant analysis may wish to proceed directly to Chapter 5, which dis- 
cusses practical aspects and variants of normal-based discriminant rules. The 
aforementioned approach of regularized discriminant analysis is emphasized 
there. 

Chapter 6 is concerned primarily with data analytic considerations with 
normal-based discriminant analysis. With a parametric formulation of prob- 
lems in discriminant analysis, there is a number of preliminary items to be 
addressed. They include the detection of apparent outliers among the train- 
ing sample, the question of model fit for the group-conditional distributions, 
the use of data-based transformations to achieve approximate normality, the 
assessment of typicality of the feature vector on an unclassified entity to be 
allocated to one of the specifed groups, and low-dimensional graphical repre- 
sentations of the feature data for highlighting and/or revealing the underlying 
group structure. Chapter 7 is devoted to parametric discrimination via non- 
normal models for feature variables that are either ail discrete, all continuous, 
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or that are mixed in that they consist of both types of variables. A semipara- 
metric approach is adopted in Chapter 8 with a study of the widely used lo- 
gistic model for discrimination. Nonparametric approaches to discrimination 
are presented in Chapter 9. Particular attention in this chapter is given to 
kernel discriminant analysis, where the nonparametric kernel method is used 
to estimate the group-conditional densities in the formation of the posterior 
probabilities of group membership and the consequent discriminant rule. 

Chapter 10 is devoted fully to the important but difficult problem of assess- 
ing the various error rates of a sample-based discriminant rule on the basis of 
the same data used in its construction. The error rates are useful in summa- 
rizing the global performance of a discriminant rule. Of course, for a specific 
case as, for example, in medical diagnosis, it is more appropriate to concen- 
trate on the estimation of the posterior probabilities of group membership. 
Accordingly, a separate chapter (Chapter 11) is devoted to this problem. 

Chapter 12 is on the selection of suitable feature variables using a variety 
of criteria. This is a fundamental problem in discriminant analysis, as there are 
many practical and theoretical reasons for not using all of the available feature 
variables. Finally, Chapter 13 is devoted to the statistical analysis of image 
data. Here the focus is on how to form contextual allocation rules that offer 
improved performance over the classical noncontextual rules, which ignore the 
spatial dependence between neighboring images. 

Thanks are due to the authors and owners of copyrighted material for per- 
mission to reproduce published tables and figures. The author also wishes to 
thank lbyet-Trinh Do for her assistance with the preparation of the typescript. 

GEOFFREY J. MCLACHLAN 

lirisbtme, Queensland 
January, 1991 
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General Introduction 

1.1 INTRODUCTION 

Discriminant analysis as a whole is concerned with the relationship between a 
categorical variable and a set of interrelated variables. More precisely, suppose 
there is a finite number, say, g,  of distinct populations, categories, classes, or 
groups, which we shall denote here by GI, ..., Gg. We will henceforth refer 
to the Gi as groups. Note that in discriminant analysis, the existence of the 
groups is known a priori. An entity of interest is assumed to belong to one 
(and only one) of the groups. We let the categorical variable t denote the 
group membership of the entity, where t = i implies that it belongs to group 
Gi (i = 1,. ..,g). Also, we let the p-dimensional vector x = (XI,. . . ,xp)’ contain 
the measurements on p available features of the entity. 

In this framework, the topic of discriminant analysis is concerned with the 
relationship between the group-membership label z and the feature vector x. 
Within this broad topic there is a spectrum of problems, which corresponds 
to the inference-decision spectrum in statistical methodology. At the decision 
end of the scde, the group membership of the entity is unknown and the 
intent is to make an outright assignment of the entity to one of the g possible 
groups on the basis of its associated measurements. That is, in terms of our 
present notation, the problem is to estimate z solely on the basis of x. In 
this situation, the general framework of decision theory can be invoked. An 
example in which an outright assignment is required concerns the selection 
of students for a special course, where the final decision to admit students is 
based on their answers to a questionnaire. For this decision problem, there 
are two group with, say, GI, referring to students who complete the course 
successfully, and G2 to those who do not. The feature vector x for a student 
contains hisher answers to the questionnaire. A rule based on x for allocating 
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2 GENERAL INTRODUCTION 

a student to either GI or G2 (that is, either accepting or rejecting the student 
into the course) can be formed from an analysis of the feature vectors of past 
students from each of the two groups. The construction of suitable allocation 
rules is to be pursued in the subsequent sections of this chapter. 

At the other extreme end of the spectrum, no assignment or allocation of 
the entity to one of the possible groups is intended. Rather the problem is to 
draw inferences about the relationship between z and the feature variables in 
x. An experiment might be designed with the specific aim to provide insight 
and understanding into the predictive structure of the feature variables. For 
example, a political scientist may wish to determine the socio-economic factors 
that have the most influence on the voting patterns of a population of voters. 

Between these extremes lie most of the everyday situations in which dis- 
criminant analysis is applied. %ically, the problem is to make a prediction 
or tentative allocation for an unclassified entity. For example, concerning pre- 
diction, an economist may wish to forecast on the basis of his or her most 
recent accounting information, those members of the corporate sector that 
might be expected to suffer financial losses leading to failure. For this pur- 
pose, a discriminant rule may be formed from accounting data collected on 
failed and surviving companies over many past years. An example where allo- 
cation, tentative or otherwise, is required is with the discrimination between 
an earthquake and an underground nuclear explosion on the basis of signals 
recorded at a seismological station (Elvers, 1977). An allocation rule is formed 
from signals recorded on past seismic events of known classification. 

Examples where prediction or tentative allocation is to be made for an un- 
classified entity occur frequently in medical prognosis and diagnosis. A source 
for applications of discriminant analysis to medical diagnosis is the bibliogra- 
phy of Wagner, Tautu and Wolbler (1978) on problems in medical diagnosis. 
In medical diagnosis, the definitive classification of a patient often can be 
made only after exhaustive physical and clinical assessments or perhaps even 
surgery. In some instances, the true classification can be made only on evi- 
dence that emerges after the passage of time, for instance, an autopsy. Hence, 
frequent use is made of diagnostic tests. Where possible, the tests are based on 
clinical and laboratory-type observations that can be made without too much 
inconvenience to the patient. The financial cost of the test is also sometimes 
another consideration, particularly in mass screening programs. Suppose that 
the feature vector x contains the observations taken on a patient for his or her 
diagnosis with respect to one of g possible disease groups GI,. . . , Gg. Then 
the relative plausibilities of these groups for a patient with feature vector x 
as provided by a discriminant analysis may be of assistance to the clinician 
in making a diagnosis. This is particularly so with the diagnosis of Conn’s 
syndrome in patients with high blood pressure, as reported in Aitchison and 
Dunsmore (1975, Chapter 1). The two possible groups represent the cause, 
which is either a benign tumor in one adrenal gland, curable by surgical re- 
moval (GI), or a more diffuse condition affecting both adrenal glands, with 
the possibility of control of blood pressure by drugs (G2). The actual cause 
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can be confirmed only by microscopic examination of adrenal tissue removed 
at an operation. However, because surgery is inadvisable for patients in 6, 
a clinician is faced with a difficult treatment decision. Thus, a realistic preop 
erative assessment that a patient with a particular feature vector belongs to 
either GI or G2 would be most valuable to the clinician. The available fea- 
ture variables on a patient relate to age, plasma concentrations of sodium, 
potassium, bicarbonate, renin, and aldosterone, and systolic and diastolic 
blood pressures. 

The relative plausibilities of group membership for a patient with an as- 
sociated feature vector are also useful in medical prognosis. Here the vector 
is measured after the onset of some medical condition, say, an injury, and 
the group represent the possible outcomes of the injury. There are several 
reasons why an initial prediction of the eventual outcome of the injury may 
be needed. For instance, in situations where the management of the patient is 
closely linked to the outcome, it provides a guide to the clinician as to whether 
his or her particular course of management is appropriate. It also provides a 
firmer basis for advice to relatives of an injured patient on the chances of 
recovery. These and other reasons are discussed by Titterington et al. (1981) 
and Murray et al. (1986) in the context of the prognosis for patients with se- 
vere head injuries. For these patients, the three possible outcomes were dead 
or vegetative, severe disability, and moderate or good recovery. The feature 
vector for a patient included background information such as age and cause 
of injury and four clinical variables (eye opening, motor response, motor re- 
sponse pattern, and pupil reaction). 

Situations in medical diagnosis where outright rather than tentative alloca- 
tions to groups are made occur in mass screening programs. Suppose that 
in the detection of a disease, G1 consists of those individuals without the 
disease and G2 of those with the disease. Then in a screening program for 
this disease, a patient is assigned outright to either GI or G2, according to 
whether the diagnostic test is negative or positive. Usually, with a positive re 
sult, further testing is done before a final assignment is made. For example, 
with the enzyme-linked immunosorbent assay (ELISA) test used to screen do- 
nated blood for antibodies to the AIDS virus, a positive test would result in 
a more definitive test such as the Western blot being performed (Gastwirth, 
1987). J. A. Anderson (1982) has given an example on patient care where 
an irrevocable outright assignment has to be made. It concerns the decision 
on whether to administer a preoperative anticoagulant therapy to a patient to 
reduce the risk of postoperative deep vein thrombosis. 

Discriminant analysis is widely used also in the field of pattern recognition, 
which is concerned mainly with images. The aim of pattern recognition is to 
automate processes performed by humans. For example, automatic analysis 
and recognition of photomicrographs of tissue cells can be used in blood tests, 
cancer tests, and brain-tissue studies. Another example of much current inter- 
est concerns the automatic recognition of images remotely sensed from earth 
satellites. It is considered in Chapter 13. 
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The branch of pattern recognition known as statistical pattern recognition 
has close ties with statistical decision theory and areas of multivariate analy- 
sis, in particular discriminant analysis. In statistical pattern recognition, each 
pattern is considered as a single entity and is represented by a finite dimen- 
sional vector of features of the pattern. Hence, the recognition of patterns 
with respect to a finite number of predefined groups of patterns can be form- 
ulated within the framework of discriminant analysis. The number of fea- 
tures required for recognition of a pattern may become very large if the pat- 
terns under study are very complex or if, as in fingerprint identification, the 
number of possible pattern groups is very large. Consequently, the above 
approach may have to be modified; see, for example, Fu (1986) and Mantas 
(1987). 

By now, there is an enormous literature on discriminant analysis, and so it is 
not possible to provide an exhaustive bibliography here. However, we have at- 
tempted to cover the main results, in particular the more recent developments. 
Additional references on the earlier work may be found in the books devoted 
to the topic as a whole or in part by Lachenbruch (1975a), Goldstein and Dil- 
lon (1978), Klecka (1980), and Hand (1981a, 1982). They have been supple- 
mented recently by the volume edited by s. C. Choi (1986), the notes of Hjort 
(1986a), and the report by a panel of the Committee on Applied and Theoret- 
ical Statistics of the Board on Mathematical Sciences of the National Research 
Council, chaired by Professor R. Gnanadesikan (Panel on Discriminant Anal- 
ysis, Classification and Clustering, 1989). Further references may be found in 
the symposium proceedings edited by Cacoullos (1973) and Van Ryzin (1977), 
the review article by Lachenbruch and Goldstein (1979), and in the encyclope- 
dia entry by Lachenbruch (1982). There are also the relevant chapters in the 
rapidly growing list of textbooks on multivariate analysis. Another source of 
references is the pattern recognition literature. Fukunaga (1972, 1990), Patrick 
(1972), Duda and Hart (1973), Young and Calvert (1974), and Devijver and 
Kittler (1982) are examples of texts on statistical pattern recognition. A sin- 
gle source of references in discriminant and cluster analyses and in pattern 
recognition is the book edited by Krishnaiah and Kana1 (1982). 

1.2 BASIC NOTATION 

We let X denote the p-dimensional random feature vector corresponding to 
the realization x as measured on the entity under consideration. The associ- 
ated variable z denoting the group of origin of the entity is henceforth re- 
placed by a g-dimensional vector z of zero-one indicator variables. The ith 
component of z is defined to be one or zero according as x (really the entity) 
belongs or does not belong to the ith group Gi (i = 1,. . .,g); that is, 

Zi = 1, x E Gi, 

= 0, x 4 Gi, 
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for i = 1,. . .,g. Where possible, random variables are distinguished from their 
realizations by the use of the corresponding uppercase letters. 

The probability density function (p.d.f.) of X in group Gi is denoted by fi(x) 
for i = 1, ...,g. These groupconditional densities are with respect to arbitrary 
measure on RP, so that fi(x) can be a mass function by the adoption of count- 
ing measure. Under the mixture model approach to discriminant analysis, it 
is assumed that the entity has been drawn from a mixture G of the g groups 
GI,. . ., G, in proportions XI,. . .,?rg, respectively, where 

P 

The p.d.f. of X in G can therefore be represented in the finite mixture form 

8 

fx(x) Crifi(x). (1.2.1) 
i = l  

An equivalent assumption is that the random vector Z of zero-one group 
indicator variables with z as its realization is distributed according to a multi- 
nomial distribution consisting of one draw on g categories with probabilities 
XI,. . . , r,, respectively; that is, 

We write 
Z N Mult,( 1, A), 

(1.2.2) 

(1.2.3) 

where A = (rl,...,~,)’. Note that with a deterministic approach to the prob- 
lem, z is taken to be a parameter rather than a random variable as here. 
The distribution function of Y = (X’,Z’)’ is denoted by F&), where the prime 
denotes vector transpose. We let Fi(x) and Fx(x) denote the distribution func- 
tions corresponding to the densities fi(x) and f x  (x), respectively. 

The ith mixing proportion Ti can be viewed as the prior probability that 
the entity belongs to Gi (i = 1, ...,g). With X having been observed as x, the 
posterior probability that the entity belongs to Gi is given by 

T i ( X )  = pr{entity E Gi I x} 

= pr{Zi = 1 I X} 

= rifi(x)/fx(x) (i = L..-,g)- (1.2.4) 

In the next section, we consider the formation of an optimal rule of allocation 
in terms of these posterior probabilities of group membership Ti(X). 

The term “classification” is used broadly in the literature on discriminant 
and cluster analyses. Ib avoid any possible confusion, throughout this mono- 
graph, we reserve the use of classification to describe the original definition of 
the underlying groups. Hence, by a classified entity, we mean an entity whose 
group of origin is known. A rule for the assignment of an unclassified entity 
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to one of the groups will be referred to as a discriminant or allocation rule. In 
the situation where the intention is limited to making an outright assignment 
of the entity to one of the possible groups, it is perhaps more appropriate to 
use the term allocation rather than discriminant to describe the rule. However, 
we will use either nomenclature regardless of the underlying situation. In the 
pattern recognition jargon, such a rule is referred to as a classifier. 

1.3 ALLOCATION RULES 

At this preliminary stage of formulating discriminant analysis, we consider the 
pure decision case, where the intent is to make an outright assignment of an 
entity with feature vector x to one of the g possible groups. Let r ( x )  denote 
an allocation rule formed for this purpqse, where r ( x )  = i implies that an en- 
tity with feature vector x is to be assigned to the ith group Gi (i = 1,. . .,g). In 
effect, the rule divides the feature space into g mutually exclusive and exhaus- 
tive regions R1,. . . , R,, where, if x falls in Ri, then the entity is allocated to 
group Gi (i = 1, . . . ,g).  

The allocation rates associated with this rule r(x) are denoted by eij(r), 
where 

eij(r) = pr{r(X) = j I X E Ci} 

is the probability that a randomly chosen entity from Gi is allocated to Gj (i,j 
= 1,. . .,g). It can be expressed as 

r 

where v denotes the underlying measure on RP appropriate for fx(x) .  The 
probability that a randomly chosen member of Gi is misallocated can be ex- 
pressed as 

where Ri denotes the complement of Ri (i = 1, ...,g). 
For a diagnostic test using the rule r(x) in the context where GI denotes 

the absence of a disease and Gz its presence, the error rate elz(r) corresponds 
to the probability of a false positive, and ezl(r) is the probability of a false 
negative. The correct allocation rates 

and 

are known as the sensitivity and specificity, respectively, of the diagnostic test. 

eu(r )  = 1 - e21(r) e l l (r)  = 1 - elz(r) 
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1.4 DECISION-THEOREI’IC APPROACH 

Decision theory provides a convenient framework for the construction of dis- 
criminant rules in the situation where an outright allocation of an unclassified 
entity is required. The present situation where the prior probabilities of the 
groups and the group-conditional densities are taken to be known is relatively 
straightforward. 

Let cij denote the cost of allocation when an entity from Gi is allocated 
to group Gj, where Ci j  = 0 for i = j = 1, ...,g; that is, there is zero cost for a 
correct allocation. We assume for the present that the costs of misallocation 
are all the same. We can then take the common value of the Cij  (i # j )  to be 
unity, because it is only their ratios that are important. 

For given x, the loss for allocation performed on the basis of the rule r (x )  
is 

(1.4.1) 

where, for any u and v ,  Q[u,v] = 0 for u = v and 1 for u # v .  The expected 
loss or risk, conditional on x, is given by 

(1.4.2) 
i =l 

since from (1.2.4), 
E(Zi I X) = T j ( X ) .  

An optimal rule of allocation can be defined by taking it to be the one that 
minimizes the conditional risk (1.4.2) at each value x of the feature vector. In 
decision-theory language, any rule that so minimizes (1.4.2) for some TI,.  ..,xg 
is said to be a Bayes rule. It can be seen from (1.4.2) that the conditional risk 
is a linear combination of the posterior probabilities, where all coefficients are 
zero except for one, which is unity. Hence, it is minimized by taking r(x)  to 
be the label of the group to which the entity has the highest posterior prob- 
ability of belonging. Note that this is the “intuitive solution” to the allocation 
problem. 

If we let ro(x) denote this optimal rule of allocation, then 

To(X) = i if Q(X) 2 T j ( X )  (i = 1 ,..., g; j # i). (1.4.3) 

The rule ro(x) is not uniquely defined at x if the maxim& of the posterior 
probabilities of group membership is achieved with respect to more than one 
group. In this case the entity can be assigned arbitrarily to one of the groups 
for which the corresponding posterior probabilities are equal to the maximum 
value. If 

pT{Ti(X) = Tj(x)} = 0 (i # = 1,. . .,g), 
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then the optimal rule is unique for almost all x relative to the underlying mea- 
sure Y on RP appropriate for fx (x ) .  
As the posterior probabilities of group membership q(x) have the same 

common denominator f x ( x ) ,  ro(x) can be defined in terms of the relative 
sizes of the groupconditional densities weighted according to the groupprior 
probabilities; that is, 

ro(x)  = i if n;.fi(x) 2 ~ j f j ( x )  ( j  = 1, ...,g; j # i ) .  (1.4.4) 

Note that as the optimal or Bayes rule of allocation minimizes the condi- 
tional risk (1.4.2) over all rules r ,  it also minimizes the unconditional risk 

g 

e ( r )  = CE{7i(X)Q[i,r(X)]} 
i = l  

i=l 

which is the overall error rate associated with r .  
Discriminant analysis in its modem guise was founded by Fisher (1936). 

His pioneering paper, which did not take the group-conditional distributions 
to be known, is to be discussed later in this chapter in the context of sample- 
based allocation rules. Concerning initial work in the case of known group 
conditional distributions, Welch (1939) showed for g = 2 groups that a rule of 
the form (1.4.4) is deducible either from Bayes theorem if prior probabilities 
are specified for the groups or by the use of the Neyman-Pearson lemma if 
the two groupspecific errors of allocation are to be minimized in any given 
ratio. Wald (1939, 1949) developed a general theory of decision functions, and 
von Mises (1945) obtained the solution to the problem of minimizing the max- 
imum of the errors of allocation for a finite number of groups, which was in 
the general theme of Wald’s work. Rao (1948) discussed explicit solutions of 
the form (1.4.4) and also the use of a doubtful region of allocation. In a subse- 
quent series of papers, he pursued related problems and extensions; see Rao 
(1952, 1954) for an account. There is an extensive literature on the develop 
ment of allocation rules. The reader is referred to Das Gupta (1973) for a 
comprehensive review. 

Up to now, we have taken the costs of misallocation to be the same. For 
unequal costs of misallocation Cij, the conditional risk of the rule r ( x )  is 

(1.4.5) 
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Let ro(x) be the optimal or Bayes rule that minimizes (1.4.5). Then it follows 
that ro(x) = i if 

8 8 

c r h ( X ) c h i  5 C 7 h ( x ) ~ h j  (i = lY.-.,g; i + i). (1.4.6) 
h#i hlzj 

For g = 2 groups, (1.4.6) reduces to the definition (1.4.3) or (1.4.4) for ro(x) 
in the case of equal costs of misallocation, except that 7r1 is replaced now by 
XICIZ and 7r2 by 7rzczl. As it is only the ratio of c12 and c21 that is relevant to 
the definition of the Bayes rule, these costs can be scaled so that 

R1C12 + 7rZCZl = 1. 

Hence, we can assume without loss of generality that c1z = cz1 = 1, provided 
7r1 and 7rz are now interpreted as the groupprior probabilities adjusted by the 
relative importance of the costs of misallocation. Due to the rather arbitrary 
nature of assigning costs of misallocation in practice, they are often taken 
to be the same in real problems. Further, the groupprior probabilities are 
often specified as equal. This is not as arbitrary as it may appear at first 
sight. For example, consider the two-group situation, where GI denotes a 
group of individuals with a rare disease and GZ those without it. Then, al- 
though 111 and 7r2 are disparate, the cost of misallocating an individual with 
this rare disease may well be much greater than the cost of misallocating 
a healthy individual. If this is so, then 7rlclz and 7r2c21 may be comparable 
in magnitude and, as a consequence, the assumption of equal groupprior 
probabilities with unit costs of misallocation in the formation of the Bayes 
rule ro(x) is apt. Also, it would avoid in this example the occurrence of high- 
ly unbalanced groupspecific error rates. The latter are obtained if ro(x) is 
formed with extremely disparate prior probabilities Ti and equal costs of mis- 
allocation. This imbalance between the groupspecific error rates is a con- 
sequence of ro(x) being the rule that minimizes the overall error rate. In 
the next section, we consider the construction of rules that are optimal with 
respect to other criteria. In particular, it will be seen that by specifying the 
prior probabilities Xi in ro(x) so that its consequent error rates are equal, 
we obtain the rule that minimizes the maximum of the groupspecific error 
rates. 

1.5 UNAVAILABILITY OF GROUP-PRIOR PROBABILITIES 

In some instances in practice, the prior probabilities Tj of the groups Gj are 
able to be assigned or reasonable estimates are available. For example, in the 
context of medical diagnosis where the groups represent the possible disease 
categories to which an individual is to be allocated, the prior probabilities can 
be taken to be the prevalence rates of these diseases in the population from 
which the individual has come. However, as to be discussed further in Section 
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2.3, in some instances, the very purpose of forming an allocation rule for the 
basis of a screening test is to estimate the prevalence rates of diseases. Also, 
with a deterministic approach to the construction of an allocation rule, prior 
probabilities are not relevant to the formulation of the problem. 

We now consider the selection of suitable allocation rules where the prior 
probabilities of the groups are not available. We will only give a brief cov- 
erage of available results. For further details, the reader is referred to T. W. 
Anderson (1984, Chapter 6), who has given a comprehensive account of the 
decision-theoretic approach to discriminant analysis. 

In the absence of prior probabilities of the groups, we cannot define the 
risk either unconditional or conditional on the feature vector x. Hence, some 
other criterion must be used. Various other criteria have been discussed by 
Raiffa (1961). One approach is to focus on the groupspecific unconditional 
losses and to look for the class of admissible rules; that is, the set of rules that 
cannot be improved upon. For an entity from Gj, the unconditional loss for a 
rule r(x) is 

g 

i # i  

Zj(r) = Ccijpr{r(X) sz j I x E Gj} 

A rule r*(x) is at least as good as r (x)  if 

li(r*) 5 l j (r)  (i = 1, ...,g), (1.5.1) 

If at least one inequality in (1.5.1) is strict, then r*(x) is better than r(x).  
The rule r (x)  is said to be admissible if there is no other rule r*(x) that is 
better. 

It can be shown that if Ti > 0 (i = 1,. ..,g), then a Bayes rule is admissible. 
Also, if C i i  = 1 (i # j ) ,  and 

pr{fi(X) = O l X c  Gj} = 0 ( i , j  = 1 ,..., g) ,  

then a Bayes rule is admissible. The converse is true without conditions (ex- 
cept that the parameter space is finite). The proofs of these and other related 
results can be found in T. W. Anderson (1984, Chapter 6) and in the refer- 
ences therein. 

A principle that usually leads to the selection of a unique rule is the mini- 
max principle. A rule is minimax if the maximum unconditional loss is a mini- 
mum. In the present context, the rule r (x )  is minimax if the maximum of Zi(r) 
over i = 1,. . . ,g is a minimum over all allocation rules. The minimax rule is 
the Bayes procedure for which the unconditional losses are equal (von Mises, 
1945). 
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1.6 TRAINING DATA 

We have seen in the previous section that the absence of prior pbabilities for 
the groups introduces a complication into the process of obtaining a suitable 
allocation rule. A much more serious issue arises when the groupconditional 
densities are either partially or completely unknown. 

A basic assumption in discriminant analysis is that in order to estimate the 
unknown groupconditional densities, there are entities of known origin on 
which the feature vector X has been recorded for each. We let XI, .. .,x,, denote 
these recorded feature vectors and 21, .. .,Zn the corresponding vectors of zero- 
one indicator variables defining the known group of origin of each. We let 

The collection of data in the matrix t defined by 

t' = O.1,.*.,Yn) (1.6.1) 

is referred to in the literature as either the initial, reference, design, training, 
or learning data. The last two have arisen from their extensive use in the 
context of pattern recognition. Also in the latter field, the formation of an 
allocation rule from training data of known origin is referred to as supervised 
learning. 

There are two major sampling designs under which the training data T may 
be realized, joint or mixture sampling and z-conditional or separate sampling. 
They correspond, respectively, to sampling from the joint distribution of Y = 
(X',Z')' and to sampling from the distribution of X conditional on z. The first 
design applies to the situation where the feature vector and group of origin are 
recorded on each of n entities drawn from a mixture of the possible group. 
Mixture sampling is common in prospective studies and diagnostic situations. 
In a prospective study design, a sample of individuals is followed and their 
responses recorded. 

With most applications in discriminant analysis, it is assumed that the train- 
ing data are independently distributed. For a mixture sampling scheme with 
this assumption, XI,. ..,& are the realized values of n independent and identi- 
cally distributed (i.i.d.) random variables XI,. . .,Xn with common distribution 
function Fx(x). We write 

iid Xl,...,Xn Fx. 

The associated group indicator vectors 21,. . .,z, are the realized values of the 
random variables 21,. . . ,Zn distributed unconditionally as 

Z1,. . .,Z,zMulte( 1 ,~ ) .  (1.6.2) 

The assumption of independence of the training data is to be relaxed in Chap 
ter 13. Examples in remote sensing are given there where the assumption of 
independence is not valid. 
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With separate sampling in practice, the feature vectors are observed for a 
sample of ni entities taken separately from each group Gi (i = 1,. . .,g). Hence, 
it is appropriate to retrospective studies, which are common in epidemiolog- 
ical investigations. For example, with the simplest retrospective case-control 
study of a disease, one sample is taken from the cases that occurred during 
the study period and the other sample is taken from the group of individu- 
als who remained free of the disease. As many diseases are rare and even 
a large prospective study may produce few diseased individuals, retrospective 
sampling can result in important economies in cost and study duration. Note 
that as separate sampling corresponds to sampling from the distribution of X 
conditional on z, it does not provide estimates of the prior probabilities q for 
the groups. 

1.7 SAMPLE-BASED ALLOCATION RULES 

We now consider the construction of an allocation rule from available train- 
ing data t in the situation where the groupconditional densities and perhaps 
also the group-prior probabilities are unknown. The initial approach to this 
problem, and indeed to discriminant analysis in its modern guise as remarked 
earlier, was by Fisher (1936). In the context of g = 2 groups, he proposed that 
an entity with feature vector x be assigned on the basis of the linear discrim- 
inant function a'x, where a maximizes an index of separation between the 
two groups. The index was defined to be the magnitude of the difference be- 
tween the groupsample means of a'x normalized by the pooled sample 
estimate of its assumed common variance within a group. The derivation 
of Fisher's (1936) linear discriminant function is to be discussed further 
in Section 3.3, where it is contrasted with normal theory-based discriminant 
rules. 

The early development of discriminant analysis before Fisher (1936) dealt 
primarily with measures of differences between groups based on sample mo- 
ments or frequency tables, and ignored correlations among different variates 
in the feature vector (Pearson, 1916; Mahalanobis, 1927, 1928). One of Fisher's 
first contacts with discriminant problems was in connection with M. M. Barn- 
ard's (1935) work on the secular variation of Egyptian skull characteristics. 
By 1940, Fisher had published four papers on discriminant analysis, including 
Fisher (1938) in which he reviewed his 1936 work and related it to the contri- 
butions by Hotelling (1931) on his now famous T2 statistic and by Mahalanobis 
(1936) on his 0' statistic and earlier measures of distance. Das Gupta (1980) 
has given an account of Fisher's research in discriminant analysis. 

With the development of discriminant analysis through to the decision- 
theoretic stage (Wald, 1944; Rao, 1948, 1952, 1954; Hoe1 and Peterson, 1949), 
an obvious way of forming a sample-based allocation rule r(x;t) is to take it 
to be an estimated version of the Bayes rule r,,(x) where, in (1.4.3), the pos- 
terior probabilities of group membership q(x) are replaced by some estimates 
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.Pi(X; t) formed from the training data t. One approach to the estimation of the 
posterior probabilities of group membership is to model the q(x) directly, as 
with the logistic model to be presented in Chapter 8. Dawid (1976) calls this 
approach the diagnostic paradigm. 

A more common approach, called the sampling approach by Dawid (1976), 
is to use the Bayes formula (1.24) to formulate the T i ( X )  through the group 
conditional densities fi(x). With this approach, the Bayes rule is estimated by 
the so-called plug-in rule, 

r(x; t) = ro(x;P), (1.7.1) 

where we now write the optimal or Bayes rule as r,(x;F) to explicitly denote 
its dependence on the distribution function F ( y )  of Y = (X',Z')'. As before, 
X is the feature observation and Z defines its group of origin. In (1.7.1), &' 
denotes an estimate of I; that can be obtained by estimating separately each 
group-conditional distribution from the training data t. 

The groupprior probabilities can be estimated by the proportion of enti- 
ties from each group at least under mixture sampling. Their estimation un- 
der separate sampling is considered in the next chapter, commencing in Sec- 
tion 2.3. Concerning the estimates of the groupconditional distribution func- 
tions, a nonparametric approach may be adopted using, say, kernel or nearest- 
neighbor methods. These along with other nonparametric methods are to be 
discussed in Chapter 9. A commonly used approach is the parametric, which is 
introduced in the next section in a general context. It is to be considered fur- 
ther in Chapter 3 for the specific choice of normal models and in Chapter 7 for 
nonnormal models. There is also the work, in the spirit of the empirical Bayes 
approach of Robbins (1951, 1964), on the allocation of a sequence of unclas- 
sified entities whose groupindicator vectors and features are independently 
distributed. Results under various assumptions on the available information 
on the underlying distributions have been obtained by Johns (l%l), Samuel 
(1%3a, 1%3b), Hudimoto (1968), K. Choi (1%9), Wojciechowski (1985), and 
Stirling and Swindlehurst (1989, among others. 

1.8 PARAM-C ALLOCATION RULES 

Under the parametric approach to the estimation of the groupconditional dis- 
tributions, and hence of the &yes rule, the groupconditional distributions are 
taken to be known up to a manageable number of parameters. More specif- 
ically, the ith groupconditional density is assumed to belong to a family of 
densities 

{fl:(x;@i) : 8i E Si}, (1.8.1) 

where @i is an unknown parameter vector belonging to some parameter space 
ei (i = 1, ...,g). Often the groupconditional densities are taken to belong to 
the same parametric family, for example, the normal. 
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The density functions of X and Y = (X',Z')' are written now as f . ( x ; S )  
and f(y;q), respectively, where 

(1.8.2) 

and 8 is the vector consisting of the elements of 81,. . .,8, known a priori to 
be distinct. For example, if the groupconditional distributions are assumed to 
be multivariate normal with means p1,. . . , pg and common covariance matrix 
I=, then 8i consists of the elements of pi and of the distinct elements of I=, 
and 8 consists of the elements of p1, ...,pg and of the distinct elements of C. 
Note that since the elements of the vector 7r of the mixing proportions Zj sum 
to one, one of them is redundant in 9, but we will not modify q accordingly, 
at least explicitly. However, in our statements about the distribution of any 
estimator of 9, it will be implicitly assumed that one of the mixing proportions 
has been deleted from ?!. 

With the so-called estimative approach to the choice of a sample-based dis- 
criminant rule, unknown parameters in the adopted parametric forms for the 
groupconditional distributions are replaced by appropriate estimates obtained 
from the training data t. Hence, if ro (x ;q )  now denotes the optimal rule, then 
with this approach, 

r(x;t) = ro(x;&), 

where & is an estimate of ?Ir formed from t. Provided 8i is a consistent estima- 
tor of 8i and fi(X;8j) is continuous in 8i (i = 1, ...,g), then ro(x;&) is a Bayes 
risk consistent rule in the sense that its risk, conditional on 4, converges in 
probability to that of the Bayes rule, as n approaches infinity. This is assum- 
ing that the postulated model (1.8.1) is indeed valid and that the group-prior 
probabilities are estimated consistently as possible, for instance, with mixture 
sampling of the training data. If the conditional risk for ro(x;&) converges al- 
most surely to that of the Bayes rule as n approaches infinity, then it is said 
to be Bayes risk strongly consistent. Consistency results for sample-based al- 
location rules have been obtained by Van Ryzin (1966) and Glick (1972, 
1976). Initial references on the notion of consistency for sample-based al- 
location rules include Hoe1 and Peterson (1949) and Fix and Hodges (1951). 
The latter technical report, which also introduced several important non- 
parametric concepts in a discriminant analysis context, has been reprinted 
in full recently at the end of a commentary on it by Silverman and Jones 

Given the widespread use of maximum likelihood as a statistical estima- 
tion technique, the plug-in rule ro(x;$) is usually formed with &, or at least 
8, taken to be the maximum likelihood estimate. This method of estimation 
in the context of discriminant analysis is to be considered further in the next 
section. Since their initial use by Wald (1944), Rao (1948, 1954), and T. W. An- 
derson (1951), among others, plug-in rules formed by maximum likelihood es- 
timation under the assumption of normality have been extensively applied in 

(1989). 
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practice. The estimation of ro(x;q) by ro(x;&), where @ is the maximum 
likelihood estimate of Y, preserves the invariance of an allocation rule under 
monotone transformations. 

Concerning some other parametric approaches to constructing a sample- 
based rule, there is the likelihood ratio criterion. The unknown vector z of 
zero-one indicator variables defining the group of origin of the unclassified 
entity is treated as a parameter to be estimated, along With 9, on the basis 
of t and also x. It differs from the estimative approach in that it includes 
the unclassified observation x in the estimation process. Hence, in principle, 
there is little difference between the two approaches although, in practice, the 
difference may be of some consequence, in particular for disparate group 
sample sizes. 

Another way of proceeding with the estimation of the group-conditional 
densities, and, hence, of ro(x;Y), is to adopt a Bayesian approach, which is 
considered in Section 2.2. Among other criteria proposed for constructing al- 
location rules is minimum distance. With this criterion, an entity with fea- 
ture vector x is allocated to the group whose classified data in the training 
set t is closest to x in some sense. Although minimum-distance rules are of- 
ten advocated in the spirit of distribution-free approaches to allocation, they 
are predicated on some underlying assumption for the group-conditional 
distributions, For example, the use of Euclidean distance as a metric cor- 
responds to multivariate normal group-conditional distributions with a com- 
mon spherical covariance matrix, and Mahalanobis distance corresponds to 
multivariate normal distributions with a common covariance matrix. The 
aforementioned parametric allocation rules are discussed in more detail 
with others in Chapter 3 in the context of normal theory-based discrimin- 
ation. 

Often, in practice, the total sample size is too small relative to the number 
p of feature variables in x for a reliable estimate of 8 to be obtained from the 
full set t of training data. This is referred to as “the curse of dimensionality,” 
a phrase due to Bellman (l%l). Consideration then has to be given to which 
variables in x should be deleted in the estimation of 8 and the consequent 
allocation rule. Even if a satisfactory discriminant rule can be formed using all 
the available feature variables, consideration may still be given to the deletion 
of some of the variables in x. This is because the performance of a rule fails 
to keep improving and starts to fall away once the number of feature variables 
has reached a certain threshold. This so-called peaking phenomenon of a rule 
is discussed further in Chapter 12, where the variable-selection problem is 
to be addressed. It is an important problem in its own right in discriminant 
analysis, as with many applications, the primary or sole aim is not one of 
allocation, but rather to infer which feature variables of an entity are most 
useful in explaining the differences between the groups. If some or all of the 
groupsample sizes ni of the classified data are very small, then consideration 
may have to be given to using unclassified data in the estimation of 8, as 
discussed in Section 2.7. 
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1.9 ASSESSMENT OF MODEL FIT 

If the postulated group-conditional densities provide a good fit and the group 
prior probabilities are known or able to be estimated with some precision, 
then the plug-in rule ro(x;P) should be a good approximation to the Bayes 
rule ro(x; F). However, even if fi is a poor estimate of F, ro(x;$) may still 
be a reasonable allocation rule. It can be seen from the definition (1.4.4) of 
ro(x;F) that for ro(x;#) to be a good approximation to ro(x;F), it is only 
necessary that the boundaries defining the allocation regions, 

(1.9.1) 

be estimated precisely. This implies at least for well-separated groups that in 
consideration of the estimated group-conditional densities, it is the fit in the 
tails rather than in the main body of the distributions that is crucial. This is 
what one would expect. Any reasonable allocation rule should be able to al- 
locate correctly an entity whose group of origin is obvious from its feature 
vector. Its accuracy is really determined by how well it can handle entities of 
doubtful origin. Their feature vectors tend to occur in the tails of the distribu- 
tions. 

If reliable estimates of the posterior probabilities of group membership 
q(x) are sought in their own right and not just for the purposes of making 
an outright assignment, then the fit of the estimated density ratios $(x)/jj(x) 
is important for all values of x and not just on the boundaries (1.9.1). It can be 
seen in discriminant analysis that the estimates of the groupconditional den- 
sities are not of interest as an end in themselves, but rather how useful their 
ratios are in providing estimates of the posterior probabilities of group mem- 
bership or at least an estimate of the Bayes rule. However, for convenience, 
the question of model fit in practice is usuaIly approached by consideration of 
the individual fit of each estimated density h(x). 

Many different families of distributions may be postulated for the group 
conditional densities, although some may be difficult to deal with analytically 
or computationally. The normal assumption is commonly adopted in practice. 
In some cases for this to be reasonable, a suitable transformation of the fea- 
ture variables is required, In many practical situations, some variables in the 
feature vector x may be discrete. Often treating the discrete variables, in par- 
ticular binary variables, as if they were normal in the formation of the dis- 
criminant rule is satisfactory. However, care needs to be exercised if several 
of the feature variables are discrete. The use of nonnormal models, includ- 
ing for mixed feature vectors where some of the variables are continuous and 
some are discrete, is discussed in Chapter 7, and Chapter 3 is devoted entirely 
to discrimination via normal models. Practical aspects such as robust methods 
of estimating groupconditional parameters, use of transformations to achieve 
approximate normality, testing for normality, and detection of atypical entities 
are discussed in Chapters 5 and 6. 
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1.10 ERROR RATES OF ALLOCATION RULES 

1.10.1 Qpes of Error Rates 
The allocation rates associated with the optimal or Bayes rule are given by 

eoij(F) = pr{ro(XF) = j I XE Gi} (i, j = 1 ,..., g), (1.10.1) 

where eoij(F) is the probability that a randomly chosen entity from Gj is al- 
located to Gj on the basis of ro(x;F). The error rate specific to the ith group 
Gj is 

8 

j # i  

eoi(F) = C e o i j ( F )  (i = 1, ...,g>, 

and the overall error rate is 
8 

eo(F) = Cfljeoj(F).  
i=l 

As seen in Section 1.4, r,(x;F) is the rule that minimizes the overall error 
rate in the case of unit costs of misallocation. Consequently, eo(F) is referred 
to as the optimal (overall) error rate. The optimal overall error rate can be 
used as a measure of the degree of separation between the groups, as to be 
considered in Section 1.12. 

We proceed now to define the error rates of a sample-based rule. Let r(x; t )  
denote an allocation rule formed from the training data t. Then the allocation 
rates of r(x;t), conditional on t, are defined by 

eCij(fi;t) = pr{r(Xt) j I X E  Gipt}, (1.10.2) 

which is the probability, conditional on t, that a randomly chosen entity from 
Ci is allocated to Gj (i, j = 1, .. .,g). The group-specific conditional error rates 
are given by 

8 

i#i 
eci(fi;t) = Cecij(Fi;t)  (i = 1, ...,g), 

and the overall conditional error rate by 
8 

ec(F;t) = CTiec j ( f i ; t ) .  
i l l  

For equal costs of misallocation, the rule r(x; t) is Bayes risk consistent (strong- 
ly consistent) if ec(F;t) converges in probability (almost surely) to eo(F), as 
PI approaches infinity. 

On averaging the conditional allocation rates over the distribution of the 
training data, we obtain the expected or unconditional rates defined as 

euij(F) E{ecij(F;:;T)} 

= pr{r(XT) = j I X E Gi} ( i , j  = 1 ,..., g). (1.10.3) 
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In the case of separate sampling where t is based on a fwd  number of enti- 
ties from each group, we should, strictly speaking, denote these unconditional 
rates as eUij(F1,. . . ,Fg), rather than euij(F). The groupspecific unconditional 
error rates are given by 

8 
eui(F) = C e u i j ( F ) ,  

j #i 

and the overall unconditional error rate by 
P 

eu(F) = zmjeuj(F).  
i= l  

We are following Hills (1966) here in referring to the eci(Fi;t) and ec(F; t )  
as the conditional or actual error rates, and to the euj(F) and eu(F) as the 
unconditional or expected error rates. Before the introduction of his careful 
terminology for the various types of error rates, there had been a good deal 
of confusion in the literature; see the comment of Cochran (1966). 

1.10.2 Relevance of Error Rates 

Concerning the relevance of error rates in discriminant analysis, for allocation 
problems, they play a major role in providing a measure of the global perfor- 
mance of a discriminant rule. It has been suggested (Lindley, 1966) that more 
attention should be paid to the unconditional lases. However, as remarked 
earlier, the specification of costs in practice is often arbitrary. 

On the use of error rates to measure the performance of a sample-based 
allocation rule, it is the conditional error rates that are of primary concern 
once the rule has been formed from the training data t. If t denotes all the 
available data of known origin, then one is stuck with this training set in form- 
ing a rule. An example where these error rates enter naturally into an analysis 
is when the rule r(x;t) forms the basis of a diagnostic test for estimating the 
prevalence rates of a disease, as covered in Section 2.3. 

The average performance of the rule over all possible realizations of t is 
of limited interest in applications of r(x; t).  However, the unconditional error 
rates are obviously relevant in the design of a rule. They relate the average 
performance of the rule to the size of the training set and to the group 
conditional distributions as specified. For example, consider the case of two 
groups G1 and G2 in which the feature vector X is taken to have a multivariate 
normal distribution with means p1 and p2, respectively, and common covari- 
ance matrix 8. For separate sampling with equal sample sizes n / 2  from each 
of the two groups, the sample-based analogue of the Bayes rule with equal 
groupprior probabilities has equal unconditional error rates. Their common 
value, equal to the overall error rate for equal priors, is given by 

eu(F) M eo(F) + n-l {$(+A) /4} {PA + 4@ - l)A-'}, (1.10.4) 
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where 
eo(F) = @(-fa) 

and 
A = {(PI - P ~ ) ' ~ - ' ( P I  - ~ 2 ) ) ' ' ~  (1.10.5) 

is the Mahalanobis (1936) distance between GI and G2. In this and subsequent 
work, @ and denote the standard normal distribution and density, respec- 
tively. The error of the approximation (1.10.4) is of order 0(K2) (Okamoto, 
1963). The derivation of (1.10.4) is discussed in Section 4.2 

From (1.10.4), we can determine approximately how large n must be for 
a specified A and p in order for the unconditional error rate not to exceed 
too far the best obtainable, as given by the optimal rate eo(F). For instance, 
for A = 1 representing two groups that are close together, n on the basis of 
(1.10.4) has be to at least 40 with p = 3 for the rate to be less than 1/3 on aver- 
age; that is, not more than 0.0248 in excess of the optimal rate of 0.3085. The 
latter value shows that it is not possible to design an accurate allocation rule 
in this case. Indeed, if n is small, then for p > 1, the error rate is not far short 
of 112, which is the error rate for a randomized rule that ignores the feature 
vector and makes a choice of groups according to the toss of a fair coin. 

It can be seen from (1.10.2) and (1.10.3) that the conditional and uncondi- 
tional allocation rates of a sample-based rule depend on the unknown group 
conditional distributions and so must be estimated. In the absence of any fur- 
ther data of known origin, these rates must be estimated from the same data t 
from which the rule has been formed. Hence, there are difficulties in obtaining 
unbiased estimates of the error rates of a sample-based rule in its application 
to data of unknown origin, distributed independently of the training sample. 
Estimation of the error rates of allocation rules is thus a difficult but impor- 
tant problem in discriminant analysis. It is taken up in Chapter 10, which is 
devoted fully to it. 

We have seen that the situation where some of the errors of allocation are 
more serious than others can be handled through the specification of unequal 
costs of misallocation in the definition (1.4.6) of the Bayes rule. Another a p  
proach would be to introduce regions of doubt in the feature space where no 
allocation is made. This approach was adopted by J. A. Anderson (1%9) in his 
design of a rule with upper bounds specified on the errors of allocation. It was 
used also by Habbema, Hermans, and van der Burgt (1974b) in their devel- 
opment of a decision-theoretic model for allocation. Previously, Marshall and 
Olldn (1968) had considered situations where direct assessment of the group 
of origin is possible, but expensive. In these situations, after the feature vector 
has been observed, there is a choice between allocation and extensive group 
assessment. Another approach where there is an alternative to an outright 
allocation of the entity after its feature vector has been observed was given 
by Quesenberry and Gessaman (1%8). Their nonparametric procedure con- 
structs tolerance regions for each group, and an entity is allocated to the set 
of those group whose tolerance regions contain the feature vector x. If x falls 
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within all or outside all the tolerance regions, then the entity is not allocated; 
see also Gessaman and Gessaman (1972). Broffitt, Randles, and Hogg (1976) 
introduced a rank method for partial allocation with constraints imposed on 
the unconditional error rataes. This nonparametric approach to partial dis- 
crimination in the presence of constraints is discussed in Section 9.9. 

A parametric approach to constrained discrimination with unknown group 
conditional densities has been investigated by T. W. Anderson (1973a, 1973b) 
and McLachlan (1977b) for the sample normal-based linear discriminant rule. 
Their work is described in Section 4.5. Also, Gupta and Govindarajulu (1973) 
considered constrained discrimination in the special case of univariate nor- 
mal groupconditional distributions with multiple independent measurements 
available on the entity to be allocated. 

The error rates are not the only measure of the global accuracy of an allo- 
cation rule. Breiman et al. (1984, Section 4.6) have proposed a global measure 
in terms of estimates of the posterior probabilities of group membership for 
a rule r(x; t )  defined analogously to the Bayes rule ro(x;F).  That is, r(x; t) is 
equal to i if the estimated posterior probabilities satisfy 

.ii(x;t) 2 f j ( X ; Z )  (j 1, ...,g; j # i ) .  (1.10.6) 

Their proposed measure of the accuracy (conditional here on the training data 
t) of the rule r (x ; t )  is 

( 1.10.7) 

They noted that if the mean-squared error (conditional on t) of the rule r(x; t) 
is defined as 

MSE(r)  = E C{fi(X;t) - Zi}' I t , (1.10.8) r i = l  1 
then it can be decomposed into the two terms, 

MSE(r)  = MSE(r,,) + E I I], 

where 

1 MSE(r,) = E [ k { T i ( X ) - Z i ] '  
i= l  

is the mean-squared error of the Bayes rule ro(x). Hence, a comparison in 
terms of the accuracy (1.10.7) of different rules of the form (1.10.6) can be 
made in terms of their conditional mean-squared errors. This provides a sig- 
nificant advantage as, unlike (1.10.7), MSE(r)  can be estimated directly from 
t as 
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where Zij = (zj)j, and zj is the vector of zero-one indicator variables defining 
the known group of origin of the jth feature vector X j  in the training data 
t ( j  = 1, ..., n). 

Note that by virtue of their definition, error rates are concerned only with 
the allocatory performance of a rule. Hence, for rules of the form (1.10.6), 
they are concerned only with the relative sizes of the estimated posterior prob- 
abilities of group membership. By contrast, the criterion (1.10.7) attempts to 
measure the accuracy of a rule of the form (1.10.6) by assessing the absolute 
fit of the posterior probabilities of group membership. 

Other ways of assessing the discriminatory performance of a fitted model 
have been considered by Habbema, Hilden, and Bjerregaard (1978b, 1981); 
Hilden, Habbema, and Bjerregaard (1978a, 1978b); and Habbema and Hilden 
(1981). 

1.11 POSTERIOR PROBABILITIES OF GROUP MEMBERSHIP 

It was shown in Section 1.8 that the posterior probabilities of group member- 
ship T ~ ( x )  or their estimates may play no role in the formation of some alloca- 
tion rules in the pure decision context. On the other hand with the Bayes rule 
or a sample version, the relative sizes of the posterior probabilities of group 
membership T i ( X )  form the basis of the subsequent outright allocation to be 
made. In many real problems, only a tentative allocation is contemplated be- 
fore consideration is to be given to taking an irrevocable decision as to the 
group of origin of an unclassified entity. For these problems, the probabilistic 
allocation rule implied by the q(x) or their estimates provides a concise way 
of expressing the uncertainty about the group membership of an unclassified 
entity with an observed feature vector x. 

It has been argued (Spiegelhalter, 1986) that the provision of accurate and 
useful probabilistic assessments of future events should be a fundamental task 
for biostatisticians collaborating in clinical or experimental medicine. lb this 
end, the posterior probabilities of group membership play a major role in pa- 
tient management and clinical trials. For example, in the former context with 
the groups corregponding to the possible treatment decisions, the uncertainty 
over which decision to make is conveniently formulated in terms of the poste- 
rior probabilities of group membership. Moreover, the management of the pa- 
tient may be only at a preliminary stage where an outright assignment may be 
premature particularly, say, if the suggested treatment decision is not clearcut 
and involves major surgery on the patient. The reliability of these estimates 
is obviously an important question to be considered, especially in applications 
where doubtful cases of p u p  membership arise. 

If the posterior probabilities of group membership have been estimated for 
the express purpose of forming an allocation rule, then their overall reliability 
can be assessed through the global performance of this rule as measured by its 
associated error rates. However, as emphasized by Critchley and Ford (1985), 
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even if all its error rates are low, there may still be entities about which there 
is great uncertainty as to their group of origin. Conversely, these global mea- 
sures may be high, yet it may still be possible to allocate some entities with 
great certainty. Thus, in some situations, it may not be appropriate to consider 
an assessment in terms of the error rates. Indeed, as pointed out by Aitchison 
and Kay (1979, in clinical medicine, the Hippocratic oath precludes any ni- 
terion of average results over individual patients (such as error rates), so that 
conditioning on the feature vector x is an apt way to proceed. In Chapter 11, 
we consider methods for assessing the reliability of the estimates of the pos- 
terior probabilities of group membership from the same training data used to 
form these estimates in the first instance. 

1.12 DISTANCES BETWEEN GROUPS 

Over the years, there have been proposed many different measures of dis- 
tance, divergence, or discriminatory information between two groups. Krzan- 
owski (1983a) has put them broadly into two categories: (a) measures based 
on ideas from information theory and (b) measures related to Bhattacharyya's 
(1943) measure of affinity. 

Some members of category (a) are considered first. There is the Kullback- 
Leibler (1951) measure of discriminatory information between two groups 
with distribution functions F1 and 8'2, admitting densities f ~ ( x )  and f2 (x ) ,  re- 
spectively, with respect to some measure v. This measure is given by 

dKL(F1,  F2) = J fl(X)loB~fi(x>l~2(x)~ dv. 

It is a directed divergence in that it also has a directional component, since 
generally, ~ K L ( F ~ , F ~ )  # ~ K L ( F ~ , F ~ ) ;  that is, it is not a metric. Jeffreys' (1948) 
measure is a symmetric combination of the Kullback-Leibler information, 

dI(Fl,F2) = (5KL(Fl,F2) + dKL(F2,Fl). 

A third measure in category (a) is 

dS(F1,FZ) = ; [ s K L { F l ,  h(Fl+ F2)) + dKKLU72, f(Fl+ FZ))l, 
which is Sibson's (1%9) information radius given in its simple form. 

Rhyi (1%l) generalized both Shannon (1948) entropy and the Jeffreys- 
Kullback-Leibler information by introducing a scalar parameter. Recently, 
Burbea and Rao (1982), Burbea (1984), and 'hneja (1983) have proposed 
various alternative ways to generalize d,(F&). The proposed measures of 
Burbea and Rao (1982) and Burbea (1984) involve one parameter, and the 
measures proposed by Bneja (1983) involve two parameters. The definitions 
of these generalized measures may be found in 'hneja (1987). Another mea- 
sure that has been proposed is the power divergence corresponding to the 
power-divergence family of goodness-of-fit statistics introduced by Cressie and 
Read (1984); see also Read and Cressie (1988, Section 7.4). 
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Concerning members of category (b), Bhattacharyya’s original measure of 
affinity is 

P = J {fl(X>fz(X)11/2~~. (1.12 1) 

Bhattacharyya (1946) subsequently proposed 

6E(Fl,F2) cOs-’(p), 

and, in unpublished notes, A. N. Kolmogorov used 

4CO(Fl,FZ) = 1 - P. 

Chemoff (1952) introduced the more general distance measure 

WkFZ) = -log~Ifl(x)}a{~2(x)}’-Ddv, 

where a E [0,1]. It reduces to -1ogp in the special case of a = 0.5. If fl(x) and 
f2(x) are multivariate normal densities with means and PZ and covariance 
matrices 221 and Cz, respectively, then 

-1ogp = l(P1- P 2 ) ’ W P l  - P2) 

+ $log[lG~I:11 lI:zl}l~zl, 

where 
I: = ;(El + C2); 

see, for example, Kailath (1967). 
Matusita (1956) subsequently defined the distance measure 

I f 2  

6M(Fl,F2) = [ / tJf1W - Jfz(x))’dv] 

= (2 - 2p)l/2 

= { &KO (F1,J-2)}1/2. (1.12.2) 

The distance (1.12.2) is sometimes referred to as Hellinger’s distance; see, for 
example, Le Cam (1970) and Beran (1977). There is little practical difference 
between these functionally related measures in category (b). 

Additional distance measures to these defined above may be found in Ben- 
Bassat (1982), who summarized findings on the current measures, including 
their relationship with lower and upper bounds on the overall optimal error 
rate. A recent paper on the latter topic is Ray (1989a), who considered the 
maximum of the span s between the upper and lower bounds on the overall 
error rate eo(F) of the byes  rule, as provided by p. Hudimoto (1956-1957, 
1957-1958) had shown that 

4 - ;(I - 4~1xZp~)”~ 5 eo(F) 5 (~1?72)l/~p, 
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with span 

Ray (1989a) showed that the maximum value of s is ;(d? - l), which can be 
attained for values of 171, and hence values of ~ 2 ,  lying inside the interval 

S = (X1X2)1/2p - $ f ;(I - 4?r1172p 2 ) 1/2 . 

{ (2 - @/4, (2 + &)/4}. 

In another related paper, Ray (1989b) considered the maximum of the span 
between the upper and lower bounds on eo(F) as provided by the generalized 
distance measure of Lissack and Fu (1976). This measure is 

~ L F ( F I , F z )  = 1 h ( X )  - Q(X)l"fx(X)dv 0 < a < 00, 

where T~(x) is the posterior probability of membership of group Gi (i = 1,2), 
as defined by (1.2.4). 

It is a generalization of the Kolmogorov variational distance defined by 

J I W - l ( X )  - ?rzfi(X)l dv. 

For a = 1, ~ L F ( F ~ , F ~ )  reduces to this distance with 

(1.12.3) 

The lower and upper bounds coincide for a = 1 in accordance with the result 
(1.12.3). For a > 1, Ray (1989b) showed that the maximum of their difference 
is 

;{a-l/("-l) - (p/("-l)}, 

and that it increases from 0 to 0.5 as a increases from 1 to infinity. He also 
established that the maximum difference between the upper and lower bounds 
increases from 0 to 0.5 as a decreases from 1 to 0. 

An early study of distance measures was by Adhikari and Joshi (1956). A 
general class of coefficients of divergence of one distribution from another 
was considered by Ali and Silvey (1%6), who demonstrated that the measures 
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above are members of this class. Furthermore, if fl(x) and h(x) are multivari- 
ate normal densities with means pl and pz, respectively, and common covari- 
ance matrix C, then every coefficient in their class is an increasing function 
of the Mahalanobis distance A defined by (1.10.5). For example, the affinity p 
then is given by 

p = exp(-A2/8), (1.12.4) 

as calculated previously by Matusita (1973). The Mahalanobis distance A has 
become the standard measure of distance between two groups when the fea- 
ture variables are continuous. 

Atkinson and Mitchell (1981) have shown how A arises naturally from 
Rao’s (1945) procedure for determining distances between members of a well- 
behaved parametric family of distributions. The relevant family in this case is 
the multivariate normal with common shape but varying location. Concerning 
alternative models for multivariate data, a rich source of models is provided by 
the class of elliptic distributions whose densities have elliptical contours and 
which include the multivariate normal, multivariate Student’s t, and Cauchy. 
The p-dimensional random variable X is said to have an elliptic distribution 
with parameters p (p x 1 vector)‘&d C (p x p positive-definite matrix) if its 
density is of the form 

(1.12.5) 

where fs(.) is any function such that fs(llxll) is a density on RP and 

d(x,p;C) = (x - p)’Zc-’(x- p). 

The class of elliptic densities defined by (1.12.5) can be generated by a non- 
singular transformation of x from the class of spherically symmetric densities 
fs(llxll), where llxll = (x’x)l12 denotes the Euclidean norm of x. It follows in 
(1.12.5) that p is the mean of X and I= is a scalar multiple of the covariance 
matrix of X. Mitchell and Krzanowski (1985) have shown that the Mahalanobis 
distance A remains appropriate when the family of distributions under consid- 
eration is one of the elliptic class having fiied shape but varying location. One 
implication of this result noted by Mitchell and Krzanowski (1985) is that the 
sample analogue.of A is the appropriate measure of the distance between the 
estimates of fi(x) and fz(x) fitted using either the estimative or the predictive 
approaches under the assumption of multivariate normal densities with a com- 
mon covariance matrix. As discussed in the next chapter, the fitted densities 
are multivariate normal in the estimative case and multivariate Student’s t in 
the predictive case. 

Bhattacharyya’s (1946) measure d~(Fl,F2), which has become known as the 
angular separation between the groups, was the first measure proposed for dis- 
crete feature data. An alternative approach was adopted by Balakrishnan and 
Sanghvi (1968) and Kurezynski (1970), who attempted to create Mahalanobis- 
like distance measures for discrete feature data. These subsumed some ear- 
lier measures based on chi-squared statistics (Sanghvi, 1953). Bhattacharyya’s 
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(1946) measure in the context of multinomial data has received strong suppart 
from Edwards (1971), who provided a further measure through the stereo- 
graphic projection as an approximation to the angular separation. 

The affinity-based measure (1.12.1) has been developed by Matusita (1%4, 
1%7a, 1967b, 1971, 1973). For g > 2 groups, the affinity of the group-condi- 
tional distributions 4,.  . ., Fg is defined as 

p g ( 4 , .  . ., Fg) = {fl(X) * * - fg(X)l'/g dv. J 
The affinity pg is connected with the distance 

between any pair of distributions fi  and Fj, i # j = 1, ...,g. In the case of 
two groups, there is a complete duality between the distance measure and the 
affinity measure of Matusita (1956). However, this is not clear where there are 
more than two groups (Ahmad, 1982). 

"bussaint (1974b) has extended the definition of pg(Fl,. . . ,Fg) to 

where 

and Ci 2 O(i = 1 ,..., g). It reduces to pg(F1 ,..., Fg)  when ci = l/g for i = 1, 
. ..,g. As noted by Glick (1973b), a measure of separation between F1,. . ., Fg 
is provided by 

1 - &FI,. . .,Fg). ( 1.12.6) 

Since it can be shown that 

&f,l,...,f,g) 5 y$P:(Fi,Fj), 

it implies that the separation among the g groups according to (1.126) is not 
less than the separation between any two of them. This measure also has 
the other desirable properties of a separation measure in that it is symmet- 

Glick (1973b) also generalized the two-group result (1.12.3) by showing that 
1 - 2eo(F) can be viewed as a separation measure for an arbitrary number 
g of groups when in equal proportions; see also Cleveland and Lachenbruch 
(1974). 

In a series of papers, Krzanowski (1983a, 1984a, 1987a) has studied the use 
of Matusita's (1956) measure of distance in situations where the feature vector 
consists of continuous and discrete variables. His work is discussed in Section 
7.4, where discriminant analysis in the case of mixed features is presented. 

ric in its arguments and has a minimum value of zero at F1 = F2 = = Fg- 
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Likelihood-Based Approaches to 
Discrimination 

2.1 MAXIMUM LIKELIHOOD ESTIMATION OF GROUP 
PARAMETERS 

We consider maximum likelihood estimation of the vector 8 containing all the 
unknown parameters in the parametric families (1.8.1) postulated for the g 
group-conditional densities of the feature vector X. As in the previous work, 
we let t’ = (y1, . . . ,yn) denote the observed training data, where yj = (xj,z;>’ 
for j = 1,. . . , n. For training data t obtained by a separate sampling scheme, 
the likelihood function L(8) for B is formed by evaluating at their observed 
values XI,. . .,xn the joint density of the feature vectors conditional on their 
known group-indicator vectors 21,. . . J,,. We proceed here under the assump 
tion that y1,. . .,yn denote the realized values of n independent training obser- 
vations. Then the log likelihood function for 8 is given under (1.8.1) by 

(2.1.1) 
i = l  j=1  

where log denotes the natural logarithm. An estimate b of 8 can be obtained 
as a solution of the likelihood equation 

aL(e)/se = 0, 

aiogL(e)/ae = 0. 

or, equivalently, 
(2.1.2) 
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Briefly, the aim of maximum likelihood estimation (Lehmann, 1980, 1983) is to 
determine an estimate for each n (8 in the present context) so that it defines 
a sequence of roots of the likelihood equation that is consistent and asymp 
totically efficient. Such a sequence is known to exist under suitable regularity 
conditions (Cram&, 1946). With probability tending to one, these roots corre- 
spond to local maxima in the interior of the parameter space. For estimation 
models in general, the likelihood usually has a global maximum in the interior 
of the parameter space. Then typically a sequence of roots of the likelihood 
equation with the desired asymptotic properties is provided by takin 6, for 
each n to be the root that globally maximizes the likelihood; that is, is the 
maximum likelihood estimate. We will henceforth refer to b .as the maximum 
likelihood estimate, even though it may not globally maximize the likelihood. 
Indeed, in some of the examples on mixture models to be presented, the like- 
lihood is unbounded. However, for these models, there may still exist under 
the usual regularity conditions a sequence of roots of the likelihood equation 
with the properties of consistency, efficiency, and asymptotic normality; see 
McLachlan and Basford (1988, Chapter 1). 

For t obtained under mixture sampling, the log likelihood function for 3P = 
(w',6')' is given by 

i = l  j=1 

It follows from consideration of the likelihood equation for \k that it is esti- 
mated by 

where 8 is defined as before and ?i = (#I,. ..,fig)', and where 

4 = (#,&y, 

n 

j=l 

= n i / n  (i = 1, ...,g). 

Given that a statistical model is at best an approximation to reality, it is 
worth considering here the behavior of the maximum likelihood estimate 8 if 
the postulated parametric structure for the groupconditional densities is not 
valid. Suppose now that the group-conditional densities J(x) do not belong to 
the parametric families postulated by (1.8.1). Working with a mixture sampling 
scheme, the true mixture density of X can be expressed as 

I 

i=l 

where Tip denotes the true value of zi (i = 1, ...,g). 
As seen previously, regardless of whether a mixture or separate sampling 

scheme applies, b is obtained by consideration of the same function logL(B) 
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given by (21.1). Following Hjort (1986a, 1986b), we have that as n + 00, l /n 
times logL(8) tends almost surely to 

(2.1.3) 

Suppose there is a unique value of 6,8,, that maximizes (2.1.3) with respect to 
6. Then this value also minimizes the quantity 

which is a mixture in the true proportions TI,,,. . . ,Tg,, of the Kullback-Leibler 
distances between the true and the postulated groupconditional densities 
of x. 

Under mild regularity conditions, it follows that if 8 is chosen by maxi- 
mization of 1ogL(6), it tends almost surely to 6,. Hence, the maximum likeli- 
hood estimator (5) under the invalid model (1.8.1) is still a meaningful estima- 
tor in that it is a consistent estimator of 6,, the value of 6 that minimizes the 
Kullback-Leibler distances between the actual groupconditional densities of 
X and the postulated parametric families, mixed in the proportions in which 
the groups truly occur. 

2.2 A BAYESIAN APPROACH 

A review of the Bayesian approach to discriminant analysis has been given by 
Geisser (1966, 1982). This approach is based on the concept of the predictive 
density of the feature vector X. The predictive density of X within group Gi is 
defined by 

where p(6 I t) can be regarded either as some weighting function based on t 
or as a full Bayesian posterior density function for 8 based on t and a prior 
density p ( 6 )  for 8. In the latter case, 

I t )  o( p(@)L(@;t), 

where L(6;t) denotes the likelihood function for 6 formed from the train- 
ing data t. Note that for economy of notation, we are using p( . )  here as a 
generic symbol for a density function. In the subsequent discussion, the vector 
R = (1~1,. . . ,rg)’ defining the groupprior probabilities is taken to be specified, 
so that the vector !B of parameters to be estimated is reduced to 6. We there- 
fore write the posterior probability of membership of the ith group Ti(X;!B) as 
q(x; .n,6). 
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The predictive estimate of ~i(x;w,O) is obtained by substituting the pre- 
dictive estimates of the group-conditional densities in its defining expression 
(1.2.4) for Ti(x;w,O) to give 

(2.2.2) 

where 
8 

p ( X ;  t) = c xjfy)(x; t). 
j =1 

According to Aitchison and Dunsmore (1975, Chapter l l) ,  the predictive 
approach was first presented explicitly by Geisser (1964) for .multivariate nor- 
mal group-conditional distributions, and in Dunsmore (1966). For moderately 
large or large-size training samples, the predictive and estimative approaches 
give similar results for the assessment of the posterior probabilities of group 
membership. However, for small sample sizes, there can be dramatic differ- 
ences. This appears to have been first noted by Aitchison and Kay (1975). 
These two approaches are to be compared under normal models in Section 
3.8. It will be seen there that if the estimates produced by the estimative 
approach are corrected for bias, then the differences between the two a p  
proaches are considerably reduced (Moran and Murphy, 1979). For further 
discussion of the estimation of T;(X;A,@) in a Bayesian framework, the reader 
is referred to Critchley, Ford, and Rijal (1987). 

We now consider the semiBayesian approach as adopted by Geisser (1967) 
and Enis and Geisser (1970) in the estimation of the log odds under normal 
models for g = 2 groups. With the semi-Bayesian approach to the estimation 
of q(x;w,O), its posterior distribution is calculated on the basis of the infor- 
mation in t but not x. The mean of this posterior distribution so calculated is 
given by 

J?i(x;=,e)p(e I t p e  (i = 1 ,..., g). (2.2.3) 

Corresponding to a squared-error loss function, (2.2.3) can be used as an 
estimate of Ti(x;w,@). By using different loss functions, other estimates of 
q(x;w,@) can be obtained, for example, the median or the mode of the poste- 
rior distribution of the probability of membership of Gj. 

It is of interest to contrast the estimate (2.2.3) of Ti(%; w,O) with the predic- 
tive estimate (2.2.2). Following Rigby (1982), we have from (2.2.1) and (2.2.2) 
that 

(2.2.4) 
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It can be seen from (22.4) that the predictive estimate of q(x,i;t)) corre- 
sponds to a fully Bayesian approach, as it averages q(x;= ,9)  over the pos- 
terior distribution of 8 given both t and x. On comparing it with the semi- 
Bayesian estimate of 7i(x;x,t)) given by (2.23), it follows that these two esti- 
mates will be practically the same if the information provided by x about 8 is 
negligible compared to that provided by t. 

2.3 ESTIMATION OF GROUP PROPORTIONS 

We consider now the problem where the aim is to estimate the proportions 
r l , .  . .,r, in which a mixture G of g distinct groups GI,. . ., G, occur. McLach- 
lan and Basford (1988, Chapter 4) have given several examples where this 
problem arises. One example concerns cropacreage estimation on the basis of 
remotely sensed observations on a mixture of several crop; see, for instance, 
Chhikara (1986) and the references therein. The problem is to estimate the 
acreage of a particular crop as a proportion of the total acreage. Paining data 
are available on each of the crops to provide estimates of the unknown param- 
eters in the distribution for an individual crop. Another example concerns the 
case study of Do and McLachlan (1984), where the aim was to assess the rat 
diet of owls through the estimation of the proportion of each of seven species 
of rats consumed. 

If the training data t have been obtained by sampling from the mixture of 
interest G, then the proportion Xi can be estimated simply by its maximum 
likelihood estimate nj/n, where nj denotes the number of entities known to 
belong to Gj (i = 1, ...,g). Therefore, we consider the problem in the context 
where the ni provide no information on the proportions Xj. This would be 
the case if the training data were obtained by sampling separately from each 
of the groups or from some other mixture of these groups. In order to ob- 
tain information on the desired proportions Xi, it is supposed that there is 
available a random sample of size m, albeit unclassified, from the relevant 
mixture G. We let X j  ( j  = n + 1,. ..,n + m )  denote the observed feature vec- 
tors on these m unclassified entities having unknown groupindicator vectors 

An obvious and computationally straightforward way of proceeding is to 
form a discriminant rule r(x; t )  from the classified training data t, and then to 
apply it to the m unclassified entities with feature vectors X j  ( j  = n + 1,. . . , n + 
m) to find the proportion assigned to the ith group Gi (i = 1, ...,g). That is, 
if mi denotes the number of the m unclassified entities assigned to Gi, then 
a rough estimate of ui is provided by mi/m (i = 1, ...,g). Unless r(x;t) is an 
infallible rule, mi/m will be a biased estimator of Ti. For g = 2, it can be 
easily seen that, conditional on t, 

E(nrl/m) = ?rlecll+ njeczl (2.3.1) 

E(mz/m) = r l e c ~  + r zecz ,  (2.3.2) 

zj ( j  = n + 1, ..., n + m). 

and 
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with either equation giving the so-called discriminant analysis estimator of TI,  

* l D  = (ml/m - ec2l)/(ecll- ec21)9 

as an unbiased estimator of TI .  In the equations above, the conditional al- 
location rates of r(x;t), eCij(Fi;t), are written simply as ecij for convenience 
(i,j = 1,2). If #D is outside [0,1], then it is assigned the appropriate value zero 
or one. 

On considering (2.3.1) and (2.3.2) simultaneously, %ID and #2D = 1 - &D 

can be expressed equivalently as 

*D = J-'(w/rn, rn2/m)', (2.3.3) 

where 3~ = (*lD,fiZD)' and 

The result (2.3.3) can be generalized to g > 2 groups to give 

l i ; ~  = J-l(ml/m, ..., mg/m)', (2.3.4) 

where the (i,j)th element of the confusion matrix J is equal to 

(J)ij = ecji (i,j = 1 ,..., g). 

According to Macdonald (1975), &D seems to have been first suggested by 
Worlund and Fredin (1962). For known conditional allocation rates e C i j ( 4 ;  t), 
&D is the maximum likelihood estimate of 7r = (TI, .. . , T ~ ) '  based on the pro- 
portions mi/m (i = 1,. . .,g), and is unbiased. However, in practice, these con- 
ditional allocation rates are unknown and must be estimated before f ? ~  can 
be calculated from (2.3.4). 

It can be seen that if a nonparametric rule r(x;t) is used and the condi- 
tional allocation rates are estimated nonparametrically, then the discriminant 
analysis estimator f ? ~  can be made distribution-free. In this sense, it should be 
more robust than a parametric estimator of 'IC, for example, the maximum like- 
lihood estimator & whose computation is to be described in Section 2.7. The 
latter, which is based on the classified training data t in conjunction with the 
unclassified data xi ( j  = n + 1,. . . , n + m), is of course fully efficient if the as- 
sumed parametric structure holds. Ganesalingam and McLachlan (1981) have 
investigated the efficiency of &D relative to 8 in the case of two groups in 
which the feature vector has a multivariate normal distribution with a com- 
mon covariance matrix. They concluded that the relative efficiency of +D can 
be quite high provided the mixing proportions are not too disparate and n is 
not too small relative to rn. More recently, for the same normal model, La- 
wok0 and McLachlan (1989) have studied the bias of QID as a consequence of 
using estimates of the conditional allocation rates in its formation. They also 
considered the case where the classified training observations are correlated. 
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There are other methods of estimation of the mixing proportions. For a 
mixture of g = 2 groups, ~1 can be estimated also by 

*1M = {(El - 4)' s;lFu - K2)} / { (Kl - E2)'s;1(K1 - 4)}, 

jzi C z i j x j / n i  (i 1921, 

where 
n 

j 4 

n +m 

j = n + l  

and 
n +m 

j=n+l 

The estimator # 1 f ~  can be viewed as the moment estimator of AI after trans- 
formation of the original feature data Xj from RP to R by 

XjS,'(KI - x2) ( j  = 1, ..., n + m). 

The asymptotic relative efficiency of f i 1 ~  has been derived by McLachlan 
(1982) for a mixture of two multivariate normal distributions with a common 
covariance matrix. 

There are also minimum-distance estimators. The discriminant analysis, 
maximum likelihood, and moment estimators of the mixing proportions can all 
be obtained by using the method of minimum distance through an appropriate 
choice of the distance measure. A review of these various estimators of the 
mixing proportions can be found in McLachlan and Basford (1988, Chapter 4). 

2.4 ESTIMATING DISEASE PREVALENCE 

A situation where the model in the previous section is appropriate occurs in 
epidemiological studies, where an important aim is to estimate disease preva- 
lence within a population. The groups represent the possible disease cate- 
gories. Without some idea of prevalence, it is very difficult to plan prospective 
studies, to interpret retrospective studies, or to make rational health planning 
decisions; see Rogan and Gladen (1978). It is often impracticable to examine 
the entire population and so a random sample is taken. Further, it is usually 
too expensive and perhaps too arduous an experience for the individual being 
tested for a definitive classification of the disease to be made. Also, even if ex- 
haustive physical and clinical tests were carried out, a true diagnosis may still 
not be possible. Hence, typically, the sample drawn from the population is al- 
located to the various groups on the basis of some straightforward but fallible 
diagnostic test, whose error rates are assessed by applying it to patients with 
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known disease classification. Screening programs often use tests in this way. 
Even if the prime purpose of the program is finding cases of disease rather 
than estimating prevalence, the performance of the test is still of interest. 

The performance of a screening test designed to detect the presence of a 
single disease can be evaluated in terms of the sensitivity and specificity of 
the diagnostic rule r(x; t), which are given conditional on t by ecB(F2; t) and 
ecll(Fl;t), respectively. Here the two groups GI and G2 refer to the absence 
or presence of the disease. An individual is assigned to GI or G2 according as 
to whether the test is negative or positive; that is, according as r(x; t) equals 1 
or 2. We can write the sensitivity of the test (conditional on t) as 

pr{r(Xt) = 2 I Z2 = l}, (2.4.1) 

and the specificity as 
pr{r(Xt) = 1 I Z1 = l}, 

where Zi is one or zero according as the individual with feature vector x be- 
longs to Gj or not (i = 1,2). 

It is sometimes mistakenly assumed in the confusion over conditional prob- 
abilities that, because a test has a high sensitivity as given by the conditional 
probability (2.4. l), the reverse conditional probability 

pr{& = 1 I r(x;t) = 2) (2.4.2) 

must also be high. This is what Diaconis and Freedman (1981) have referred to 
in a general context as the “fallacy of the transposed conditional.” Although 
a test may have high sensitivity, the conditional probability (2.4.2), called the 
predictive value of a positive test (PVP), may be small. Hence, the usefulness 
of a test is often evaluated in terms of the PVP and the PVN, where the latter 
denotes the predictive value of a negative test, defined by 

pr(Z1 = 1 I r(x;t) = 1). 

By Bayes theorem, the PVP can be expressed as 

pr(Z2 = 1 I r(x;t) = 2) = ?r~ec~/{x2ecu + (1 - aa)(l- ecll)}, (2.4.3) 

with a similar expression for the PVN. In (24.3), the sensitivity and speci- 
ficity of the test are abbreviated to ec22 and ecll, respectively. It can be seen 
from (2.4.3) that in order to evaluate the PVP and PVN of a test, the disease 
prevalence rate r 2 ,  as well as the sensitivity and specificity, must be assessed. 

Recently, Gastwirth (1987) established the asymptotic normality of the esti- 
mator of the PVP as given by (2.4.3), where 7r2 is estimated according to (2.3.3) 
and where the sensitivity and specificity are replaced by independent binomial 
estimators formed by applying the test to subsequent data of known origin. 
A nonmedical example where the abovementioned methodology is applicable 
is with the use of lie detectors and the associated issues of veracity and ad- 
missibility of polygraph evidence in judicial and preemployment screening of 
applicants. 
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Where not explicitly stated, it is implicitly assumed in the above that the 
results are conditional on the training data t. In some screening applications, 
the diagnostic test may be based on a rather sophisticated discriminant rule 
r(x;t) formed from t. For example, for the screening of keratwonjunctivitis 
sicca in rheumatoid arthritic patients, J. A. Anderson (1972) proposed a di- 
agnostic test based on ten symptoms. However, with many screening tests, in 
particular presymptomatic ones, the diagnostic test is based on some ad hoc 
rule, generally using only one feature variable. In the latter situation, the vari- 
able is usually measured on a continuous scale and a threshold is imposed to 
define a positive test. The training data t are used then solely to assess the 
performance of the test for a given threshold. In an example considered by 
Boys and Dunsmore (1!487), patients were designated as either malnourished 
or nonmalnourished according as their plasma cholesterol levels were less or 
greater than some threshold. 

The choice of threshold in such tests depends on the role in which they 
are applied. With the ELISA test applied in the context of routine screening 
of blood donations for AIDS, the threshold for declaring the ELISA assay to 
be positive is set so that the test is highly sensitive at the expense of having 
rather low specificity. A high specificity is achieved subsequently by following 
a positive ELISA with a confirmatory Western blot test (Weiss et al., 1985). 

Hand (198% l987a) cautioned that, as the aims of screening and estima- 
tion of disease prevalence are somewhat different, the threshold should be 
chosen with the particular aim in mind. For prevalence estimation, the aim is 
to minimize the variance of %2, whereas with screening, the aim is to maximize 
the accuracy of the rule, that is, some function of the sensitivity and specificity, 
such as their sum. He investigated the choice of threshold separately for each 
aim, but using a different sampling scheme to that taken above. In his scheme, 
the entities of known origin were part of the unclassified data. They were ob- 
tained by sampling from each lot of mi entities assigned to Gi by the fallible 
diagnostic test and then using an infallible rule to classify them correctly. 

2.5 MISCLASSIFIED TRAINING DATA 

It is usually assumed in applications of discriminant analysis that the train- 
ing entities are correctly classified. The classification of a training set is of- 
ten expensive and difficult, as noted in the previously presented examples on 
discriminant analysis in the context of medical diagnosis. Another applicable 
example concerns the classification of remotely sensed imagery data. An im- 
portant consideration besides the expense and difficulty in procuring classified 
training observations is that the actual classification may well be subject to er- 
ror. Indeed, the concept of a true diagnosis is probably inappropriate in some 
medical fields, and certainly in some such as psychiatry. In the remote-sensing 
example, say, of crop patterns, the classification of the training pixels may be 
undertaken visually and hence be prone to error. 
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In considering now the possibility of misclassification in the training set, we 
let a j ( x )  denote the probability that an entity from group Gi and with feature 
vector x is misclassified in the formation of the training set (i = 1, ...,g). The 
misclassification is said to be nonrandom or random depending on whether 
the a j ( X )  do or do not depend on the feature vector x. The simple error struc- 
ture of random misclassification, 

(2.5.1) 

may rise, for example, where the classification of the training data is made 
on the basis of machine output (for example, X-ray interpretation or blood 
test results) and either the output or interpretation for each' entity is inaccu- 
rate in a way that is independent of its feature vector x. In this same context 
of medical diagnosis, nonrandom misclassification should be more applicable 
than random if the classification of the patients in the training set was carried 
out by clinicians using symptoms closely related to the feature variables. 

In his initial work on this problem, Lachenbruch (1966) considered the ef- 
fect of random misclassification of training entities on the error rates of the 
sample linear discriminant rule obtained by plugging in the usual maximum 
likelihood estimates of the parameters in the case of two multivariate normal 
group-conditional distributions with a common covariance matrix. McLach- 
lan (1972a) derived the asymptotic theory for this model under the additional 
assumption that one group is not misclassified. For instance, it is often reason- 
able to assume in the formation of a diagnostic rule that the training sample of 
healthy patients are all correctly classified. Lachenbruch (1979) subsequently 
showed that whereas random misclassification is not a serious issue for the 
sample normal-based linear discriminant rule if a1 and a2 are similar, it is 
for its quadratic counterpart. Lachenbruch (1974) and Chhikara and McKeon 
(1984) considered the problem under more general misclassification models 
to allow for nonrandom misclassification. The general conclusion is that ig- 
noring errors in the classification of the training set can be quite harmful for 
random misclassification. For nonrandom misclassification, the error rates of 
the sample discriminant rule appear to be only slightly affected, although the 
optimism of its apparent error rates is considerably increased. 

Random misclassification of training entities has been investigated further 
by Chittineni (1980, 1981) and by Michalek and Tripathi (1980), who also con- 
sidered the effect of measurement error in the feature variables. More re- 
cently, Grayson (1987) has considered nonrandom misclassification of training 
entities in the context of two groups GI and G2, representing healthy and un- 
healthy patients, respectively. He supposed that the health status of a patient 
as specified by the groupindicator vector z can only be ascertained unreliably. 
Recall that zi = (z), is one or zero, according as t e entity belongs or does 
not belong to Gi (i = 1,2). We let Z denote the Val 2 e of z under the uncertain 
(noisy) classification. Corresponding to the poerior  probability that a patient 
with feature vector x belongs to Gj, we let f j ( x )  be the probability that the ith 
element Z j  of Z is one for a patient with feature vector x (i = 1,2). Under very 
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general conditions on the misclassification errors, 

al(x) = pr{ZI= o \ 21 = I,X} 

a2(x) = pr{& = o 1 2 2  = Lx}, 
and 

Grayson (1987) showed that the likelihood ratio for arbitrary group-condition- 
al densities is not ordinally affected. That is, lOBjt{Ti(X)} is a monotonic func- 
tion of logit{?i(x)}. Thus, the class of admissible decision rules is unaffected 
by this error structure in the classification of the training data. As an illustra- 
tion of a consequence of the monotonicity of the scales, Grayson (1987) gave 
an example where there is a need to select the 40 most ill patients (only 40 
hospital beds being available). The same patients would be chosen regardless 
of whether the Ti(X) or the .fi(X) were used. 

2.6 PARTIALLY CLASSIFIED TRAINING DATA 

In this section, we consider the problem of forming a discriminant rule, using 
classified data in conjunction with data on entities unclassified with respect to 
the g underlying groups GI,. . ., G,. We will see there is a number of separate 
problems in discriminant analysis that fall within this context. 

Consistent with our previous notation, we let t' = (y~,...,y~) contain the 
information on the classified entities, where yj = (x'. z?)' and Z j  denotes the 
known groupindicator vector for the jth entity witK db$erved feature vector 
X j  ( j  = 1,. . ., n). It is supposed that in addition to the classified training data t, 
there are available the feature vectors xi (j = n + l,.. .,n $. rn) observed on m 
entities of unknown origin. The latter are assumed to have been drawn from 
a mixture G of GI,. . . , G, in some unknown proportions rl,.. .,lr,. We let 

t:, = (%+l,...,xn+m). 

The unknown groupindicator vector associated with the unclassified feature 
vector x j  is denoted by Z j  (1 = n + 1,. . . , n + m). If the aim is solely to make 
a tentative or outright allocation of the m unclassified entities to GI,.. . , C,, 
then we can proceed as discussed in the previous sections. A discriminant 
rule r(x; t) can be formed from the classified training data t and then applied 
in turn to each of the m unclassified entities with feature vector X j  ( j  = n + 
1,. . ., n + m) to produce an assessment of its posterior probabilities of group 
membership and, if required, an outright allocation. 

However, in some situations, it is desired to construct a discriminant rule 
using the unclassified data t,, in conjunction with the classified training set 
t. The updating problem falls within this framework. The observing of fea- 
ture vectors and the subsequent allocation of the corresponding unclassified 
entities is an ongoing process and, after a certain number of unclassified ob- 
servations has been obtained, the discriminant rule is updated on the basis of 
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all the observed data. In most updating problems, it is the allocation of unclas- 
sified entities subsequent to those whose features have been observed that is of 
prime concern. Those unclassified entities whose features have been observed 
may be reallocated as part of the updating process, but their new allocations 
are generally of no practical consequence in their own right. The latter would 
be the case if irrevocable decisions had to be made on the basis of the original 
allocations. For instance, in medical diagnosis, one does not always have the 
luxury of being able to wait until further information becomes available before 
making a decision. 

If there are sufficiently many classified observations available from each of 
the groups, then updating may not be a worthwhile exercise: However, often 
in practice, there are impediments to the procurement of entities of known 
origin, which limit the number of classified entities available. We have seen in 
the examples on medical diagnosis given in the previous sections that it may 
be physically inconvenient to the patient, as well as very expensive, to attempt 
to make a true diagnosis of the diseased status. In such situations where there 
is an adequate number of unclassified entities whose features can be measured 
easily, updating provides a way of improving the performance of the discrim- 
inant rule formed solely from the limited classified training data. Of course, 
as an unclassified observation contains less information than a classified one, 
many unclassified entities may be needed to achieve an improvement of prac- 
tical consequence; see Ganesalingam and McLachlan (1978, 1979), ONeill 
(1978), and McLachlan and Ganesalingam (1982). Their work was obtained 
under the assumption of multivariate normality with a common covariance 
matrix for the two groupconditional distributions. Amoh (1985) later consid- 
ered the case of inverse normal groupconditional distributions. 

Updating procedures appropriate for nonnormal group-conditional densi- 
ties have been suggested by Murray and Titterington (1978), who expounded 
various approaches using nonparametric kernel methods, and J. A. Anderson 
(1979), who gave a method for the logistic discriminant rule. A Bayesian a p  
proach to the problem was considered by Titterington (1976), who also consid- 
ered sequential updating. The more recent work of Smith and Makov (1978) 
and their other papers on the Bayesian approach to the finite mixture problem, 
where the observations are obtained sequentially, are covered in Titterington, 
Smith, and Makov (1985, Chapter 6). 

Another problem where estimation on the basis of both classified and un- 
classified data arises is in the assessment of the proportions in which g groups 
occur in a mixture G. This problem was discussed in Section 2.3. It is supposed 
that the classified data have been obtained by a scheme, such as separate sam- 
pling, under which they provide no information on the mixing proportions. For 
the purposes of estimation of the latter, a random but unclassified sample 
is available from the mixture G. The mixing proportions can be estimated 
then by the discriminant analysis estimator (2.3.4). However, this estimator 
is not fully efficient in cases where a parametric family is postulated for the 
group-conditional distributions. Hence, in such cases, maximum likelihood es- 
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timation of the mixing proportions on the basis of both t and tu might be con- 
sidered. 

A third type of problem where estimation on the basis of both classified 
and unclassified data arises is in situations where the classified data from each 
group do not represent an observed random sample. This is pursued further in 
Section 28, where it is shown that maximum likelihood estimation is effected 
by consideration of the same likelihood as in the case of a randomly classified 
sample. 

2.7 MAXIMUM LIKELIHOOD ESTIMATION FOR PARTIAL 
CLASSIFICATION 

Whatever the reason for wishing to carry out estimation on the basis of both 
classified and unclassified data, it can be undertaken in a straightforward man- 
ner, at least in principle, by using maximum likelihood to fit a finite mixture 
model via the EM algorithm of Dempster, Laird, and Rubin (1977). 

With this parametric approach to discrimination, the problem is to fit the 
mixture model P 

(2.7.1) 
i=l 

on the basis of the classified training data t and the unclassified feature vectors 
xj ( j  = n + 1,. . ., n + m) in tU. As before, ?Ilr = (w',8')' denotes the vector of all 
unknown parameters, where 8 consists of those elements of 81,. ..,Og that are 
known a prbri to be distinct. 

For classified training data t obtained by mixture sampling, the log likeli- 
hood for SP formed from t and tu is given by 

8 n  

in1 j=l 
logU*) = C Czij logt~if i (xj ;~i)I  

n+m 
(2.7.2) 

j = n + l  

As discussed in hlcLachlan and Basford (1988, Chapter 2), an estimate @ of 
?Ti is provided by an appropriate root of the likelihood equation 

BlogL(*)/B* = 0. 

Since they have described in some detail the application of the EM algorithm 
to this problem, only a brief outline is given here. The complete data are taken 
to be t, tu, and the unobserved zj ( j  = n + 1,. . ., n + M). For this specification, 
the complete-data log likelihood is 

g n+m g n+m 

logLC(*) = C C zijlogfi(xj;ei) + C C zijlogri. 
i=1 j=1 i=l j=l 
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The EM algorithm is applied to this model by treating zj (j = n + 1,. . . , n + 
m) as missing data. It is easy to program and proceeds iteratively in two steps, 
E (for expectation) and M (for maximization). Using some initial value for rk, 
say, rk(O),  the E-step requires the calculation of 

H(*,rk(O)) = E{logLc(rk) I $tu;rk(O)},  

the expectation of the complete-data log likelihood log L@), conditional on 
the observed data and the initial fit rk(O) for rk. This step is effected here 
simply by replacing each unobserved indicator variable Zij by its expectation 
conditional on xi, given by 

E(Z;j I Xj;\k(O)) = Ti(xj;*(’)) (i = I, ...,g). 

That is, Zi j  is replaced by the initial estimate of the posterior probability 
that the jth entity with feature vector X j  belongs to Gi (i = 1, ...,g; j = n + 

On the M-step first time through, the intent is to choose the value of 9, 
say, a(’), that maximizes H(*,*(O)), which, from the E-step, is equal here 
to log&(*) with each zij replaced by Ti(Xj;*(O)) for j = n + 1, ..., n + m. It 
leads, therefore, to solving the equations 

1, ..., n + m). 

T~(X~;*(O)) ( n +  rn) (i = 1, ...,g) (2.7.3) 
j = n + l  

and 

g n+m 

+ C C T ; ( x j ; ~ ~ ~ ~ ) ~ l O g f i ( x j ; 6 ~ ” ) / a e  = 0, (2.7.4) 
i= l  j = n + l  

where Slogfi(xj;Bf))/M denotes BlOgfi(Xj;Bi)/BB evaluated at the point ei = 

6:’). In the case where the classified entities have been sampled separately 
from each group, the equation 

n +m 

7f) = Ti(Xj;rklco))/m 
j = n + l  

and not (2.7.3), is appropriate for the estimate of 
One nice feature of the EM algorithm is that the solution to the M-step 

often exists in closed form, as is to be seen for mixtures of normals in Section 
3.8, where the actual form of (2.7.4) is to be given. 

The E- and M-steps are alternated repeatedly, where in their subsequent 
executions, the initial fit rk(O)  is replaced by the current fit for @, say, rk@-l), 

(i = 1,. . .,g). 
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on the kth cycle. Another nice feature of the EM algorithm is that the like- 
lihood for the incomplete-data specification can never be decreased after an 
EM sequence. Hence, 

which implies that L(@) converges to some L' for a sequence bounded 
above. Dempter et al. (1977) showed that if the very weak condition that 
H(4,*)  is continuous in both 4 and \k holds, then L' will be a local max- 
imum of L(*), provided the sequence is not trapped at some saddle point. 
A detailed account of the convergence properties of the EM algorithm in a 
general setting has been given by Wu (1983), who addressed, in particular, the 
problem that the convergence of to L' does not automatically imply 
the convergence of to a point W. Louis (1982) has devised a procedure 
for extracting the observed information matrix when using the EM algorithm, 
as well as developing a method for speeding up its convergence. Meilijson 
(1989) has since provided a unification of EM methodology and Newton-type 
methods; see also McLachlan and Basford (1988, Section 1.9), and Jones and 
McLachlan (199ob). 

Let & be the chosen solution of the likelihood equation. It is common in 
practice to estimate the inverse of the covariance matrix of a mmcimum like- 
lihood solution by the observed information matrix, rather than the expected 
information matrix evaluated at the solution; see Efron and Hinkley (1978). 
The observed information I(@) for the classified and unclassified data com- 
bined is equal to 

where 

L(Y(k+')) 2 L(@), 

I(@) = &(@I +Id%, 

IC(*) = - C C ~ i j S - 3 I o g { ? r i f i ( ~ j ; t ) i ) ) / 8 ~ ~ ? ~ '  
6 n  

i=l  j=1 

evaluated at the point 3P = @ is the observed information matrix for the clas- 
sified data and 

n +m 

I@(*) = - C S2Iogfx(xj;*)/tj*W 
j=n+l  

at ?Ir = & is the observed information matrix for the unclassified data. 
It is computationally attractive to compute I(&) using an approximation 

that requires only the gradient vector of the complete-data log likelihood. This 
approximation is 

n +m 
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where the unknown groupindicator vector Z j  for the unclassified feature vec- 
tor X j  (j = n + 1,. . ., n + m) is replaced by the vector of its estimated posterior 
probabilities of group membership. That is, 8 l O g L c ( $ ; X j , i ! j ) / 8 ? !  is equal to 
8logLc( & ; X i ,  Z j ) / m  evaluated at 

Zj = ( T ~ ( X j ; $ ) ,  ..., T ~ ( X j ; ! b ) ) '  

for j = n + 1,. . ., n + m. Here Lc(?! ;X j ,Z j )  denotes the complete-data like- 
lihood for S' when formed from just the jth observation y j  = (xj,z>>,, j = 
1, ..., n + m. Expressions for the elements of the gradient vector of logLC(?!; 
X j , Z j )  are given in McLachlan and Basford (1988, Section 2:4) in the case of 
multivariate normal groupconditional distributions. 

Maximum likelihood estimation is facilitated by the presence of data of 
known origin with respect to each group in the mixture. For example, there 
may be singularities in the likelihood on the edge of the parameter space in 
the caSe of groupconditional densities that are multivariate normal with un- 
equal covariance matrices. However, no singularities will occur if there are 
more than p classified observations available from each group. Also, there 
can be difficulties with the choice of suitable starting values for the EM algo- 
rithm. But in the presence of classified data, an obvious choice of a starting 
point is the maximum likelihood estimate of ?! based solely on the classified 
training data t, assuming there are enough classified entities from each group 
for this purpose. In the case where t provides no information on T I , .  . . ,xg, an 
initial estimate of Tj is provided by the estimator (2.3.3). 

In fitting the mixture model (2.7.1 to the partially classified data, it would 

note the maximum likelihood estimates of ?! computed from t and tu, respec- 
tively. Also, if the group memberships of the m unclassified entities are still 
of interest in their own right at the updating stage, then particular consider- 
ation would be given to a comparison of the fits Ti(Xj;?!( ' ) ) ,  T i ( X j ; @ u ) ,  and 
~i(xj;&) for the posterior probabiities of group membership (i = 1, ...,g; j = 
n + 1,. . . , n + m). In the case where t provides no information on the mixing 
proportions, we can form an estimate of only 8 on the basis oft. In any event, 
it is the updating of the estimate of 8 containing the parameters of the group 
conditional densities that is of primary concern. In Section 6.7, we give an 
example on updating in which each unclassified entity has its own, but known, 
prior probabilities of group membership. 

A comparison of the three abovementioned estimates of 9, or at least of 
8, is of much interest in those situations where it is felt that the groups from 
which the classified entities have been drawn have undergone some change 
before or during the sampling of the unclassified entities. This change might be 
able to be explained by the fact there was quite a lengthy period between the 
sampling of the classified and unclassified entities. For example, the problem 
may be to identify the sex of fulmar petrel birds on the basis of their bill length 
and bill depth. These measurements on birds of known sex may be available 

be usual to compare the three fits, i ('1, &", and @, where and !bu de- 
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only from old museum records for a population of birds captured many years 
ago. 

The question of whether a given unclassified entity is atypical of each of 
the g specified groups is discussed in Section 6.4. However, the unclassified 
entities may well be typical with respect to at least one of the groups, yet they 
may well be from a mixture of groups that are different from those that are 
the source of the classified entities. This last possibility is much more difficult 
to address. 

We note here in passing that the EM algorithm Jso provides a way of 
carrying out maximum likelihood estimation where some of the entities in the 
training set have observations missing on their feature variables; see the mono- 
graph of Little and Rubin (1987) for an account of this approach in a general 
statistical context. Also, Little (1988) has considered robust estimation of the 
mean and covariance matrix from data with missing values. Studies on the 
missing data problem in the context of discriminant analysis include those by 
Chan and Dunn (1972, 1974); Srivastava and Zaatar (1972); Chan, Gilman, 
and Dunn (1976); Little (1978); and, more recently, Hufnagel (1988). Black- 
hurst and Schluchter (1989) and Fung and Wrobel(l989) have considered this 
problem for the logistic model, which is introduced in Chapter 8. 

2.8 MAXIMUM LIKELIHOOD ESTIMATION FOR PARTIAL 
NONRANDOM CLASSIFICATION 

As mentioned previously in Section 2.6, in some situations in practice with a 
partially classified training set, the classified data may not represent an ob- 
served random sample from the sample space of the feature vector. For exam- 
ple, in medical screening, patients are often initially diagnosed on the basis of 
some simple rule, for instance, whether one feature variable is above or be- 
low a certain threshold, corresponding to a positive or negative test. Patients 
with a positive test are investigated further from which their true condition 
may be ascertained. However, patients with a negative test may be regarded 
as apparently healthy and so may not be investigated further. This would be 
the case if a true diagnosis can be made, say, by only an invasive technique 
whose application would not be ethical in apparently healthy patients. In these 
circumstances, if only the data of known origin were used in the estimation of 
the unknown parameters, then it would generally bias the results, unless a p  
propriate steps were taken, such as fitting truncated densities or using logistic 
regression. The latter approach is considered in Chapter 8. Another approach 
that avoids this bias problem is to perform the estimation on the basis of all 
the data collected, including the data of unknown origin. This approach was 
adopted by McLachlan and Gordon (1989) in their development of a proba- 
bilistic allocation rule as an aid in the diagnosis of renal artery stenosis (RAS), 
which is potentially curable by surgery. Their case study is described in Sec- 
tion 7.8. 
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We now proceed to show for this last approach that the maximum likelihood 
estimate of !P in the mixture model (2.7.1) is obtained by consideration of the 
same likelihood (2.7.2) as in the case where the classified data are randomly 
classified. It is supposed that the classification of an entity is only undertaken 
if its feature vector falls in some region, say, R, of the feature space. A ran- 
dom sample of size M is taken, where rn denotes the number of entities with 
feature vectors falling in the complement of R, and n = M - m denotes the 
number with feature vectors in R. The latter n entities are subsequently clas- 
sified wlth nj found to come from group Gj (i = 1,2), and n = nl + n2. The 
feature vectors are relabeled so that X j  ( j  = 1, ..., n)  denote the n classified 
feature vectors and X j  ( j  = n + 1,. . ., n + m) the m unclassified feature vectors. 

Under this sampling scheme, the probability that n entities have feature 
vectors falling in R is given by 

where 

Given n, the probability that nl of these entities are from G1 and n2 from CZ 
is 

Let L(.\Ei;t,t,,n,nl) denote the likelihood function for !P formed on the 
basis of the classified data t, the unclassified feature vectors in tu, and also n 
and nl. Then 

logL(*k;t,tu,%nl) = log{PR(n)P(nl I n) }  

n+m 

+ C log{fx(xji;q)/(l- cR)), 
j = n + l  

which, apart from a combinatorial additive term, reduces to logL(\k) as given 
by (2.7.2). 
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In some instances, the classification of an entity with feature vector falling 
in the region R is not always available at the time of the analysis. The classi- 
fication may have been mislaid or the patient for some reason may not have 
been initially classified. In any event, provided the classified entities may be 
viewed as a random sample from those entities with feature vectors falling in 
R, we can form the likelihood in the same manner as (2.7.2). 

2.9 CLASSIFICATION LIKELIHOOD APPROACH 

Another likelihood-based approach to the allocation of the m unclassified en- 
tities in the partial classification scheme introduced in Section 2.6 is what is 
sometimes called the classification likelihood approach. With this approach, 

and the unknown Z j  are chosen to maximize Lc(@), the likelihood for the 
complete-data specification adopted in the application of the EM algorithm to 
the fitting of the mixture model (2.7.1) in Section 2.7. That is, the unknown 
Z j  are treated as parameters to be estimated along with @. Accordingly, the 
maximization of &(@) is over the set of zero-one values of the elements of 
the unknown Z j ,  corresponding to all possible assignments of the m entities to 
the g groups, as well as over all admissible values of @. A recent reference on 
this approach is found in McLeish and Small (1986), and additional references 
can be found in McLachlan and Basford (1988, Chapter 1). It can be seen 
that the classification likelihood approach is equivalent to using the likelihood 
ratio criterion for discrimination, whose implementation for m = 1 was given 
in Section 1.8. 

In principle, the maximization process for the classification likelihood a p  
proach can be carried out for arbitrary m, since it is just a matter of comput- 
ing the maximum value of &(@) over all possible partitions of the m entities 
to the g groups GI, .. ., Gg. In some situations, for example, with multivariate 
normal group-conditional distributions having unequal covariance matrices, 
the restriction that at least p + 1 observations belong to each Gi is needed to 
avoid the degenerate case of infinite likelihood. Unless rn is small, however, 
searching over all possible partitions is prohibitive. If A j  ( j  = n + 1,. . . , n + m) 
denotes the optimal partition of the m unclassified entities, then & j  = 1 or 0 
according as to whether 

holds or not, where Pi and Q are the maximum likelihood estimates of Oi 
and Ti, respectively, for the m entities partitioned according to An+l,-..,An+m. 
Hence a solution corresponding to a local maximum can be computed iter- 
atively by alternating a modified version of the E-step but the same M-step, 
as described in Section 2.7 for the application of the EM algorithm in fit- 
ting the mixture model (2.7.1). In the E-step on the (k + 1)th cycle of the iter- 
ative process, Z i j  is replaced not by the current estimate of the posterior pro- 
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bability that the jth entity belongs to Gi, but by one or zero according as to 
whether 

holds or not (i = 1, .. .,g; j = n + 1, .. .,n + m). 
The iterative updating of a discriminant rule proposed by McLachlan 

(1975a, 1977a) can be viewed as applying the classification likelihood approach 
from a starting point equal to the estimate of !l? based solely on the classified 
data t. For g = 2 groups with equal prior probabilities and with multivariate 
normal distributions having a common covariance matrix, McLachlan (1975a) 
showed that it leads asymptotically to an optimal partition of the unclassified 
entities. 0”eill (1976) subsequently showed how this process can be easily 
modified to give an asymptotically optimal solution in the case of unknown 
prior probabilities. 

2.10 ABSENCE OF CLASSIFIED DATA 

We now discuss the fitting of the mixture model (2.7.1) in the absence of fea- 
ture data on entities that have been classified with respect to the components 
of the mixture model to be fitted. This is usually referred to as unsupervised 
learning in the pattern recognition literature. Corresponding to this situation 
of no data on classified training entities, we set n = 0 in the partial classifica- 
tion scheme defined in Section 2.6. The feature vectors on the m unclassified 
entities are now labeled X I , .  ..,x,,,, so that 

t: = ( X l , .  . .,xm). 

By fitting a mixture model with g components to the data t,, we obtain a 
probabilistic clustering of the m unclassified entities in terms of their esti- 
mated posterior probabilities of component membership T i ( X j ;  &), where @ 
now denotes the maximum likelihood estimate computed on the basis of tu 
(i = 1, .. .,g; j = 1, .. ., m). A partition of the m entities into g nonoverlapping 
clusters is given by $1,. ..,f,,,, where 2 i j  = (4) is one or zero, according as 

T i ( X j ; @ )  2 T h ( X j ; & )  (h = I,.-.,g; h # i )  

holds or not (i = 1 ,..., g; j = 1 ,..., m). If the maximum of q ( X j ; & )  over i = 
1,. . .,g is near to one for most of the observations X j ,  then it suggests that the 
mixture likelihood approach can put the rn entities into g distinct clusters with 
a high degree of certainty. Conversely, if the maximum is generally well below 
one, it indicates that the components of the fitted mixture model are too close 
together for the m entities to be clustered with any certainty. Hence, these 
estimated posterior probabilities can be used to provide a measure of the 
strength of the clustering. ?b this end, Ganesalingam and McLachlan (1980) 
and, more recently, Basford and McLachlan (1985) have investigated the use 
of the estimated posterior probabilities of component membership in forming 
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estimates of the overall and individual allocation rates of the clustering with 
respect to the components of the fitted mixture model. In those cases where 
the clusters do not correspond to a prion' defined groups, the estimated allo- 
cation rates can be interpreted as estimates of the allocation rates that would 
exist if the clustering were assumed to reflect an externally existing partition 
of the data. This is considered further in Chapter 10. 

The recent monograph of McLachlan and Basford (1988) provides an in- 
depth account of the fitting of finite mixture models. Briefly, with mixture 
models in the absence of classified data, the likelihood typically will have mul- 
tiple maxima; that is, the likelihood equation will have multiple roots. If so, 
the selection of suitable starting values for the EM algorithm is crucial. There 
are obvious difficulties with this selection in the typical cluster analysis setting, 
where there is no a pion' knowledge of any formal group structure on the un- 
derlying population. McLachlan (1988) has considered a systematic approach 
to the choice of initial values for 9, or, equivalently, for the posterior prob- 
abilities of component membership of the mixture to be fitted He proposed 
that two-dimensional scatter plots of the data after appropriate transforma- 
tion, using mainly principal component analysis, be used to explore the data 
initially for the presence of clusters. Any visual clustering so obtained can be 
reflected in the initial values specified for the posterior probabilities of com- 
ponent membership of the mixture. This approach, along with methods that 
use three-dimensional plots, is considered further in Section 6.6. 

Fortunately, with some applications of finite mixture models, in particular 
in medicine, there is available some a prwri information concerning a pos- 
sible group structure for the population. In some instances, this information 
may extend to a provisional grouping of the m unclassified entities. Then 9 
can be estimated as if this provisional grouping were valid to yield an ini- 
tial value for use in the EM algorithm. In medical applications, a provisional 
grouping may correspond to a clinical diagnosis of the patients using one or 
perhaps some of the feature variables. Often a clinical diagnosis may focus on 
only one of the feature variables. If all features are used, then it is generally 
in a limited and rather ad hoc way. For example, a patient might be diagnosed 
as unhealthy if any of the measured feature variables falls in a range conven- 
tionally regarded as abnormal in healthy patients. It is of interest, therefore, to 
compute the statistical diagnosis as given by 21,. . .,&,,, and to compare it with 
the clinical diagnosis. The statistical diagnosis is attractive in that it provides 
an objective grouping of the patients that takes into account all of their fea- 
ture variables simultaneously. Also, it is not dependent upon arbitrary clinical 
decisions. An example using the diabetes data originally analyzed by Reaven 
and Miller (1979) is given in Section 6.8. 

With some applications, the a prwri information on the group structure 
extends to knowing the number g of underlying groups in the population. For 
example, in the screening for a disease, there is an obvious dichotomy of the 
population into disease-free and diseased groups. In some situations where the 
possible groups represent the various causes of a disease, the assumed number 
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of groups g may not be the actual number, as there may be further, as of yet 
undetected, causes. 

Assessing the true value of g is an important but very difficult problem. 
In the present framework of finite mixture models, an obvious approach is to 
use the likelihood ratio statistic A to test for the smallest value of the num- 
ber g of components in the mixture compatible with the data. Unfortunately, 
with mixture models, regularity conditions do not hold for -2logA to have 
its usual asymptotic null distribution of chi-squared with degrees of freedom 
equal to the difference between the number of parameters under the null and 
alternative hypotheses; see McLachlan and Basford (1988, Chapter 1) and the 
references therein, including McLachlan (1987a) and Quinn; McLachlan, and 
Hjort (1987). 

One way of assessing the null distribution is to use a resampling method, 
which can be viewed as a particular application of the general bootstrap a p  
proach of Efron (1979, 1982). More specifically, for the test of the null hypoth- 
esis of g = go versus the alternative of g = gl, the log likelihood ratio statistic 
can be bootstrapped as follows. Proceeding under the null hypothesis, a so- 
called bootstrap sample is generated from the mixture density fx(x;&), where 
& is taken to be the maximum likelihood estimate of 9 formed under the 
null hypothesis from the original observed sample t,. The value of -210gA 
is calculated for the bootstrap sample after fitting mixture models for g = go 
and g = gl in turn to it. This process is repeated independently a number of 
times K, and the replicated values of -210gA evaluated from the successive 
bootstrap samples can be used to assess the bootstrap, and hence the true, 
null distribution of -210gA. In particular, it enables an approximation to be 
made to the achieved level of significance P corresponding to the value of 
-2logA evaluated from the original sample. The value of the jth-order statis- 
tic of the K replications can be taken as an estimate of the quantile of order 
j / ( K  + l), and the P-value can be assessed by reference with respect to the 
ordered bootstrap replications of -210g A. Actually, the value of the jth-order 
statistic of the K replications is a better approxjmation to the quantile of or- 
der (3j - 1)/(3K + 1) (Hoaglin, 1985). This bootstrap approach to the testing 
of g is applied in Section 6.9. 

For some hypotheses, the null distribution of A will not depend on any un- 
known parameters. In this case, there will be no difference between the boot- 
strap and true null distributions of -210gA. An example is the case of multi- 
variate normal components with all parameters unknown, where go = 1 under 
the null hypothesis. In this situation, where it is the actual statistic -210gA 
and not its bootstrap analogue that is being resampled, the resampling may be 
viewed as an application of the Monte Carlo approach to the construction of 
a hypothesis test having an exact level of desired significance. This approach 
was proposed originally by Bamard (1%3); see Hope (1968) and Hall and Tit- 
terington (1989). Aitkin, Anderson, and Hinde (1981) appear to have been the 
first to apply the resampling approach in the context of finite mixture models. 
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We return now to the question of misclassified training data as first raised 
in Section 2.5. One way of proceeding if there is some doubt as to the veracity 
of the given classification of some or all of the training entities is to leave 
their groupindicator vectors unspecified and to fit the mixture model (2.7.1) 
to the consequent partially or completely unclassified sample. As reported in 
Section 2.5 on the effects of misclassified training data, it appears that ignoring 
any misclassification does not lead to much harm provided it is those entities 
whose feature vectors fall in the doubtful region of the feature space that are 
more prone to error in classification. However, if the training entities are mis- 
classified at random, then ignoring the misclassification can distort appreciably 
the learning process. 
As a consequence of this, Krishnan and Nandy (1987) proposed a model 

to take random misclassification of the training entities into account in the 
design of the sample discriminant rule. Working with respect to g = 2 groups, 
they proposed that in place of the vector Z j  defining the group of origin of 
the jth entity in the training set, there is a number V j  between zero and 
one ( j  = 1,. . . , m). This number represents the supervisor’s assessment of the 
chance that the jth entity belongs to group G1 rather than to a. They as- 
sumed that in group Gi, this number is distributed, independently of Xj, with 
density q i ( V j ) ,  where qi(*)  and q 2 ( )  denote the beta(q1,qz) and beta(%,ql) 
densities, respectively, where q1 and are unknown. The groupconditional 
distributions were taken to be multivariate normal with a common covari- 
ance matrix. As this is an incomplete-data problem in the absence of values of 
q,.. .,zm, maximum likelihood estimation of 71 and rfi and the other parame- 
ters can be approached using the EM algorithm. For this model, Krishnan and 
Nandy (199Oa) have derived the efficiency of the sample linear discriminant 
rule so formed relative to its version based on a perfectly classified training 
set. 

Unfortunately, with the abovementioned model, it is impossible to carry 
out the M-step exactly, so far as the parameters q1 and q 2  are concerned. Tit- 
terington (1989) consequently suggested an alternative model incorporating a 
stochastic supervisor for which the EM algorithm can be easily implemented 
to compute the maximum likelihood estimates. Following the way of Aitchison 
and Begg (1976) for indicating uncertain diagnosis, Titterington (1989) pro- 
posed the use of 

U j  = lOg{vj/(l- vj)} 

instead of vj as a basic indicator of the supervisor’s assessment that the jth 
entity arises from GI. As the sample space for Uj is the real line, Titterington 
(1989) adopted the natural assumption of a normal distribution for Uj within 
each group. In order to maintain symmetry, as in the beta-based formulation 
of Krishnan and Nandy (1987), the normal group-conditional distributions for 
Uj were taken to have a common variance and means w1 and w2 with w2 = 
-q. For a knowledgeable supervisor, one should expect w1> 0, just as one 
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should expect 91 > 92 in the beta-based model. Titterington (1989) noted that 
his model is just as flexible as the beta-based model, as Aitchison and Begg 
(1976) have described how the same variety of shapes can be produced for the 
density of Uj starting from a normal distribution, as can be produced by the 
family of beta distributions. 

The relative efficiency of the sample linear discriminant rule formed under 
this model has been considered by Krishnan and Nandy (199ob). In related 
work, Katre and Krishnan (1989) have considered maximum likelihood estima- 
tion via the EM algorithm in the case where an unequivocal classification of 
the training data is supplied, but incorrectly with unknown random errors un- 
der the model (2.5.1). Krishnan (1988) has investigated the relative efficiency 
of the sample linear discriminant function formed under this model. 

2.11 GROUP-CONDITIONAL MIXTURE DENSITIES 

The fitting of finite mixture models in discriminant analysis also arises if some 
or all of the groupconditional densities are modeled as finite mixtures. In 
medical diagnosis in the context of healthy or unhealthy patients, the distri- 
bution of the features for the latter group is often appropriately modeled as 
a mixture, as discussed by Lachenbruch and Kupper (1973) and Lachenbruch 
and Broffitt (1980). An example can be found in Emery and Carpenter (1974). 
In the course of their study of sudden infant death syndrome, they concluded 
tentatively from estimates of the density of the degranulated mast cell count 
in sudden infant death cases that it was a mixture of the control density with 
a smaller proportion of a contaminating density of higher mean. The control 
group consisted of infants who died from known causes that would not affect 
the degranulated mast cell count. 

Rawlings et al. (1984) have given an example that arose in a study of alcohol- 
related diseases where both the groups under consideration, corresponding to 
two diseased states, are each a mixture of two subgroups. Another example 
where both the groups are modeled as mixtures of subgroups has been given 
by McLachlan and Gordon (1989) on the diagnosis of renal artery stenosis. It 
is discussed in Section 7.8. 

A further situation where the groupconditional densities are taken to be 
mixtures is with a latent class approach, to discrimination with discrete fea- 
ture data. With this approach, considered further in Section 7.3.3, the group 
conditional densities are modeled as mixtures of the same component densi- 
ties. 

A finite mixture model for, say, the ith groupconditional density can be 
fitted to the training data from Ci by using equations (2.7.3) and (2.7.4) with 
n = 0. This assumes that there are no parameters in this mixture density in 
common with the other group-conditional parameters, although the equations 
can be easily modified if this is not so. 

Groupconditional mixture densities are used also in the modeling of digi- 
tized images of cervical cells from the PAP smear slide. On the basis that a 
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cervical cytology specimen consists of 13 cell types, the problem is to discrim- 
inate between a mixture of 5 normal squamous and nonsquamous cell types 
and a mixture of 8 abnormal and malignant tumor cell types (Oliver et al., 
1979). In this example, the fitting of the groupconditional mixture densities is 
facilitated by the presence of training data for each of the 13 cell types. 



C H A P T E R  3 

Discrimination via Normal Models 

3.1 INTRODUCTION 

We have seen in Section 1.4 that discriminant analysis is relatively straightfor- 
ward for known groupconditional densities. Generally, in practice, the latter 
are either partially or completely unknown, and so there is the problem of 
their estimation from data t on training entities, as defined by (1.6.1). As with 
other multivariate statistical techniques, the assumption of multivariate nor- 
mality provides a convenient way of specifying a parametric structure. Hence, 
normal models for the group-conditional densities provide the basis for a good 
deal of the theoretical results and practical applications in discriminant anal- 
ysis. In this chapter, we therefore focus on discrimination via normal-based 
models. In the latter part, we consider the reduction of the dimension of the 
feature vector through linear projections that optimize certain separatory and 
allocatory measures for normal models. 

3.2 HETEROSCEDASTIC NORMAL MODEL 

3.2.1 Optimal Rule 

Under a heteroscedastic normal model for the group-conditional distributions 
of the feature vector X on an entity, it is assumed that 

X - N ( p j , X j )  in Gj (i = 1 ,..., g),  (3.2.1) 

where pl, . . ., pg denote the group means, and C1,. . . , C, the group-covariance 
matrices. Corresponding to (3.2.1), the ith group-conditional density fi(x; 8i) 
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is given by 

fi(x;ei) = $(x;pi,zi) 

(217)-P/21zjl-'/2exp{-3(~ - pj>'Crl(x - pi)}, 

where ei consists of the elements of pi, and the ) p ( p  + 1) distinct elements 
of I3j (i = 1,. . .,g). It is assumed that each I3j is nondngular. There is no loss 
of generality in so doing, since singular groupcovariance matrices can always 
be made nonsingular by an appropriate reduction of dimension. 

If TI,. . .,ug denote the prior probabilities for the groups Gi, .. ., Gg, then we 
let 

*u = (Ti, . . . ,7rg,qJ)'  
= (n',efi)', 

where Bv consists of the elements of p1, ...,p, and the distinct elements of 
El,. . ., C,. The subscript "U" emphasizes that the groupcovariance matrices 
are allowed to be unequal in the specification of the normal model (3.21). 

The posterior probability that an entity with feature vector x belongs to 
group Gi is denoted by 7i(x;qu) for i = 1, ...,g. In estimating these poste- 
rior probabilities, it is more convenient to work in terms of their log ratios. 
Accordingly, we let 

qig(x;%) = log{ Ti(X;%)/Tg(x; %)} 

= lOg(Ti/Tg) + ( ig(X;&),  (3.2.2) 

where 
tig(x;&) = log{fi(x;8i)/fg(x;~g)} (i = 1, ..., g - 1). 

The definition (3.2.2) corresponds to the arbitrary choice of G, as the base 
PUP. 

Under the heteroscedastic normal model (3.2.1), 

tig(x;eu) = - ~{d(x,~i;zci) - d(x,pg; Cg)} 

- i{logICil/l=g1) (i 1, ...,g - 11, (3.2.3) 

where 
6(x,pj;Cj) (~-rj) 'Ei '(x-pi)  

is the squared Mahalanobis distance between x and pi with respect to Ci (i = 
1, .. .,g). The natation d(a,b;C) for the squared Mahalanobis distance 

(a - b)'C-'(a - b) 

between two vectors a and b with respect to some positive definite symmetric 
matrix C applies throughout this book. For brevity, we henceforth abbreviate 
d(x,pi; Ej) to 6j(x) for i = 1,. . .,g. 
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In this setting, the optimal or Bayes rule ro(x;!Pu) assigns an entity with 
feature vector x to Gg if 

qig(x;!P~)<O ( i =  1, ...,g- 1) 

is satisfied. Otherwise, the entity is assigned to Gh if 

qig(x;%) I qhg(x;%) (i = l,---,g - 1; i # h )  

holds. In defining the Bayes rule above and in the sequel, we will take the 
costs of misallocation to be the same. However, unequal costs of misallocation 
can be incorporated into the formulation of the Bayes rule, as considered 
in a general context in Section 1.4. In the subsequent work; we will refer to 
r,,(x; !Pu) as the normal-based quadratic discriminant rule (NQDR). 

3.2.2 Plug-In Sample NQDR 
In practice, 9" is generally taken to be unknown and so must be estimated 
from the available training data t, as given by (1.6.1). With the estimative a p  
proach to discriminant analysis, the posterior probabilities of group member- 
ship T~(x;*u)  and the consequent Bayes rule ro(x;*U) are estimated simply 
by plugging in some estimate &, such as the maximum likelihood estimate, 
for Ou in the groupconditional densities. 

The maximum likelihood estimates of pi and X i  computed under (3.2.1) 
from the training data t are given by the sample mean Ei and the sample 
covariance matrix !b i ,  respectively, where 

n 

j  =1 

and 

for i = 1,. . .,g. Consistent with our previous notation, 

denotes the number of entities from group Gi in the training data t (i = 
1, .. .,g). It is assumed here that ni > p, so that ei is nonsingular (i = 1,. . .,g). 
In the subsequent work, we follow the usual practice of estimating Ci by the 
unbiased estimator 

S; = ni*i/(ni - 1) (i = 1, ...,g). 

With Ou estimated as above, 
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FIGURE 3.1. Boundaries for the sample normal-based quadratic ard linear discriminant func- 
tions with a zero cutoff point, as computed from psychological data with circles and triangles 
representing normals and psychotie, respectively. From Smith (1947). 

where 

= (x-Zj)'Srl(x-Zi) (i = I,*-.,g)- 

One of the earliest a lications of the sample normal-based quadratic discrim- 
inant function &s(X;g) was given by Smith (1947) in the case of g = 2 groups. 
It concerned discriminating between normal persons and psychotics on the ba- 
sis of bivariate data on n~ = 25 normals and n2 = 25 psychotics. For this data 
set, the boundary for the sample normal-based discriminant function with a 
zero cutoff point is plotted in Figure 3.1, along with the straight-line boundary 
under the constraint of equal groupcovariance matrices. 

In some situations in practice, individual training observations on a feature 
variable are not available. For example, the classified feature data may have 
been collected in the form of frequencies of observations falling in fixed class 
intervals. A further problem that is often encountered is truncation of the 
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data; observations below and above certain readings are often not available. 
In such situations, the maximum likelihood estimates of the group means and 
variances can be computed using the algorithm given in Jones and Mchchlan 
(199Oa). It uses maximum likelihood to fit either univariate normal distribu- 
tions or mixtures of a specified number of them to categorized data that may 
also be in truncated form. 

3.23 Bias Correction of Plug-In Sample NQDR 

In forming an estimate of &(x;O,), there are no compelling reasons for us- 
ing the unbiased S; in place of the biased e; (i  = l , . . . ,g). If unbiased- 
ness is of prime concern, then the focus should be on the provision of un- 
biased estimates of the group-conditional densities or, more appropriately, 
of the ratios of the group-conditional densities because the latter directly 
determine the Bayes rule. An unbiased estimate of fi(x;@;) is available from 
the results of Ghurye and Olkin (1969) on unbiased estimation of multi- 
variate densities. The unbiased minimum variance estimator of f ; ( x ; O i )  is 
given by 

where 

P 
c(p ,n i )  = [2(1/2)~fiiX(l/4)~(~-1),,{,(,; - j + 111-1, 

j =1 

and I, is the p x p identity matrix. 
It is more appropriate, however, in the present context of estimation of 

the Bayes rule to consider unbiased estimates of the ratios of the group 
conditional densities h(x; Oi). By using certain standard results on the expecta- 
tions of quadratic forms and Wishart distributions, the minimum variance un- 
biased estimator of (;g(x;O,) can be obtained as follows (Moran and Murphy, 
1979). It is straightforward to calculate the expectation of 8i(X), conditional on 
x, using the result in Das Gupta (1968) that 

E(S,') = c1(n; - l)X$T' (i = l , . . . ,g), (3.2.4) 

where q(.) is defined by 

cl(ni) = ni/(n;-p- 1). (3.2.5) 
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With this result, we have that 

E{$(x)) = E[tr{(x - %)'ST'(X - jiri))] 
E[tr{x - Zi)(x - jiri)'~;')] 

= tr[E{(x - Kj)(x - Z~) ' )E(S~~) I  

cl(nj - I)tr[{Ej/ni + ( ~ - ~ j ) ( x - ~ i ) ' } ~ ~ ' ]  

= Cl(ni - l){(p/ni) + aj(X)} (i I= 1, ...,g). (3.2.6) 

This implies that 

is an unbiased estimator of di(X) for i = 1, ...,g. 

&(XI = {Ji(x)/cl(ni - 1)) - P/ni (3.2.7) 

We also need the result that 

E{logISi/} = loglXjl -Plog(ni - 1) + Cz(ni), (3.28) 

where 
P 

c2(ni)= C $ { f ( n i - k ) }  (i = 1,*.-,g), (3.2.9) 

and where $(y) = dlogr(y)/dy is the digamma function as discussed in Ab- 
ramowitz and Stegun (1965, page 258). As noted by Critchley and Ford (1985), 
it may be efficiently evaluated using the algorithm of Bernard0 (1976). 

It follows directly from (3.2.7) and (3.2.8) that an unbiased estimator of 

k = l  

tig(x;&) is given by 

(ig,u(x) = -f&(x>/cl(ni - 1) + $$g(x>/cl(ng - 1) 

+ 4~(n i '  - ni l ) -  iWISiI/ISgII 

- iPlog{(ni - 1)/(ng - 1)) + ${cz(ni) -cz(ng)) (3.2.10) 

for i = 1,. . . ,g - 1. As [ig,u(X) is a function of the complete sufficient statistics 
%i and Si (i = 1, ,. .,g), it is the uniform minimum variance unbiased estimator 
of Cg (x; &)a 

In this chapter, only point estimates of the log likelihood ratios tig(x;flu) 
and the posterior probabilities of group membership Ti(X; 9 ~ )  are considered. 
The sampling distributions of these quantities and, in particular, their standard 
errors for the provision of contidence intervals are considered separately in 
Chapter 11 in the context of assessing'their reliability on the basis of the same 
training data from which they were formed. 

3.2.4 Equal-Mean Discrimination 

There are some applications of discriminant analysis in practice in which the 
groups may be assumed to have the same mean vectors. In this case for mul- 
tivariate normal groupconditional distributions, the optimal discriminant rule 
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ro(x;8u) has to be based on the differences between the group-covariance 
matrices. Okamoto (1961) studied this problem for g = 2 groups. Besides de- 
veloping the theory, he presented an application in which the aim is to label 
twin pairs of like sex as monozygotic or dizygotic on the basis of a set of mea- 
surements of physical characteristics. Bartlett and Please (1963) considered 
the same type of application, using the now well-known twins data of Stocks 
(1933) to study the usefulness of the quadratic discriminant rule in discrimi- 
nating between monozygotic and dizygotic twins. They adopted the uniform 
covariance structure 

(3.2.11) 

where 1, = ( l , l ,  ..., 1)’ is the p x 1 vector of ones. It is not uncommon in 
biological work for the correlations to be more or less the same in magnitude 
within a group. 

Cj = U?{(I - p i ) ~ p  + pjlplb> (i  = 1,2), . 

From Bartlett (1951a), the inverse of Xi as given by (3.2.11) is 

(3.2.12) 

where 

and 

for i = 1,2. By using (3.2.12) in (3.2.3), it follows that the optimal discriminant 
function <(x,&) is given, apart from an additive constant, as 

<(X,@U) = -Z(CII - c12)Ql + )(CZI - CZZ)QZ, 

where Ql = x‘x, and Q2 = (x’lp)2. Because g = 2 only, we have written 
&(x;t l~) as <(x;@U). In Penrose’s (19461947) conception of “size” and 
“shape” components, Q2 is the square of the “size” component. The “shape” 
component does not arise here as the group means are all the same. 

Kshirsagar and Musket (1972) have considered a method for choosing the 
cutoff point with the use of ((x;t?u) under the model (3,2.11) so that the two 
error rates are the same. More recently, Marco, Young, and lbrner (198%) 
have derived the asymptotic expectation of what can be regarded as a plug- 
in-type estimate of the overall error rate of the rule based on a sample ver- 
sion of ((x;&) formed under (3.2.11) with p1 = pz. Earlier, Schwemer and 
Mickey (1980) derived the expected error rates of the linear discriminant rule 
applied to data from two groups with the same means but proportional covari- 
ance matrices. Lachenbruch (1975b) noted that a quadratic discriminant rule 
can be avoided by working with the absolute value of each variate in the fea- 
ture vector. In its application to the twins data of Stocks (3933), Lachenbruch 
(1975b) found that his so-called absolute linear discriminant rule performed 
slightly worse than the quadratic discriminant rule as used earlier by Bartlett 
and Please (1%3) and Desu and Geisser (1973). However, when he induced 
contamination into this data set, his absolute linear rule performed reasonably 

cli = 1/{.: + (1 - pi) ) ,  

C Z ~  = pi/[of(1- p i ) { ( l +  (P - 1)pi)l 

1 
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well, but the performance of the quadratic discriminant rule deteriorated con- 
siderably. Geisser ( lW) ,  Geisaer and Desu (1968), Enis and Geisser (1970), 
Desu and Geisser (1973), and Lee (1975) have investigated the equal-mean 
discrimination problem via Bayesian approaches. Note that the case of un- 
equal group-means under the uniform covariance structure (3.2.11) has been 
considered by Han (1968). 

3.3 HOMOSCEDASTIC NORMAL MODEL 

3.3.1 Optimal Rule 

It can be seen from (3.2.3) that a substantial simplification occurs in the form 
for the posterior probabilities of group membership and the consequent Bayes 
rule if the groupcovariance matrices El,. . ., Zg are all the same. This is be- 
cause the quadratic term in x,x'C;~X, in the exponent of the ith group-condi- 
tional density is now the same for all groups, and so vanishes in the pairwise 
ratios of these densities as specified by (3.2.3). 

We let 
*E = (X',e;) ' ,  

where OE denotes fJu under the constraint that 

Zj = C (i = 1, ...,g). 

The subscript "E" emphasizes the specification of equality for the group- 
covariance matrices. This definition of & does mean that it contains i p ( p  + 
l)(g - 1) redundant parameters. However, it conveniently allows the poste- 
rior probabilities of group membership to be written as T i ( X ; q E )  under the 
homoscedastic normal model 

X - N ( p i , Z )  in Ci (i = 1, ...,g). (3.3.1) 

As the notation Tj(X;*E) implies, the posterior probabilities of group member- 
ship under the homoscedastic normal model (3.3.1) are obtained by replacing 
9~ with ? t ~  in the expressions for the posterior probabilities q(x;qu) under 
the heteroscedastic version (3.2.1). Effectively, we replace 80 by 6~ in the log 
likelihood ratios.&(x;O,). 

Corresponding to (3.2.2), we have under the homoscedastic normal model 
(3.3.1) that 

? k g ( x ; q E )  = log{Ti(x;~E)/Tg(x;~E)} 

= log(%/rg) + ( i g ( x ; @ E ) ,  (3.3.2) 

where 

{ig(X;@E) = -${bi,E(x) - bg,E(x) )  

= {x- $(pi + pg))'Z-'(pi - p g )  

(i = 1 ,..., g - l), (3.3.3) 
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and where 
di,E(x) = d(X,pi;C) (i = 1 ,..., g). 

The optimal or Bayes rule rO(x;*~) assigns an entity with feature vector x to 
Gg if 

is satisfied. Otherwise, the entity is assigned to Gh if 

q i g ( X ; g E )  5 0 (i = 1, ...,g - 1) 

qiig(X;*E) 5 vhg(x;*E) (i = &*--,g - 1; i # h) 

holds. We will refer to r,,(x;!PE) as the normal-based linear discriminant rule 
(NLDR). 

In the case of g = 2 groups, we write 712(x;*E) and tlz(X;@E) as ~(x;*E) 
and t(x; &), respectively. For future reference, we express the normal-based 
linear discriminant function (NLDF) {(x; dE) in the form 

{(x;e/?) = P& +Pkx, (3.3.4) 

where 
P& = -;(I4 + P2)'I=-l(P1- I1219 

and 
P E  = xc-'(pl- p2).  

Thus, we can write q(x;!P~) as 

V ( V * E )  = log(702)  + P& + Pkx 
= POE Pix 

(3.3.5) 

3.3.2 Optimal Error Rates 

It can be seen from (3.3.3) that the NLDR r , , (x ;*~)  is linear in x. One con- 
sequence of this is that it is straightforward to obtain closed expressions for 
the optimal error rates at least in the case of g = 2 groups. For it can be seen 
from (3.3.2) that in this case, r, ,(x;*~) is based on the single linear discrimi- 
nant function t(x;&) with cutoff point 

k = Iog(?r2/171). 

That is, an entity with feature vector x is assigned to G1 or C2 according as to 
whether t(x;BE) is greater or less than k. 
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The optimal error rate specific to C1 is therefore given by 

e012(*~) = prt€(X;@~) < k I X E G }  
= @{(k - $A2)/A}, 

where 
A2 3 (PI - P ~ ) ' Z - ' ( P ~ -  ~ 2 )  

is the squared Mahalanobis distance between G1 and Q, and a(-) denotes 
the standard normal distribution function. Similarly, 

eozl(9~) = @{-(k + iA2)/A}. 

In the above, we have followed the notation for the allocation rates as intro- 
duced in Section 1.10, so that eoij(iIrE) denotes the probability that a randomly 
chosen entity from group Gi is allocated to Cj on the basis of the &yes rule 
(i, j = 1,. . .,g). 

For a zero cutoff point (k = 0), the groupspecific error rates eol2(*~) and 
eozl(*~) are equal with the common value of @(-$A). Often, in practice, k 
is taken to be zero. Besides corresponding to the case of equal prior probabil- 
ities, it also yields the minimax rule, as defined in Section 1.5. 

3.33 Plug-In Sample NLDR 
For unknown OE in the case of an arbitrary number g of groups, the maximum 
likelihood estimate of Pi is given as under heteroscedasticity by the sample 
mean 4 of the feature observations from Gi in the training data t (i = 1,. . .,g). 
The maximum likelihood estimate $2 of the common groupcovariance matrix 
C is the pooled (within-group) sample covariance matrix. That is, 

i =l 

In using these estimates to form the plug-in sample versions &(x;&) and 
Ti(X;  &) of the log likelihood ratios and the groupposterior probabilities, we 
follow here the usual practice of first correcting f: for bias, so that 

s = n$ / (n  -g) 

is used instead of 2. With 0, estimated as above, 

(ig(x;dE) = {X - $(Zi + Zg)}'S-'(Zi - 4) (i = I,. . .,g - 1). 

(3.3.6) 
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It can be seen from (3.3.6) that for g = 2 groups, the plug-in sample version 
ro(x; 4 ~ )  of the normal-based linear discriminant rule (NLDR) ro(x; f & ~ )  is 
based on the sample version 

((x;6E) = {x - i(Z1 + ZZ)}S-1(Zi- 552) (3.3.7) 

of the NLDF <(x;@E), as defined by (3.3.4). The sample NLDF ((x;bE) is 
often referred to in the literature as the W classification statistic (Wald, 1944). 

It is essentially the same as Fisher's (1936) linear discriminant function de- 
rived without the explicit adoption of a normal model. As noted in Section 
1.7, Fisher's linear discriminant function is given by a'x, where a maximizes 
the quantity 

(a'(Z1- jiZ)}2/a'Sa, (3.3.8) 

which is the square of the difference between the groupsample means of a'x 
scaled by the (bias-corrected) pooled sample variance of a'x. The maximiza- 
tion of (3.3.8) is achieved by taking a proportional to DE, where 

@E = s-yx1- Z2). 

This leads to the sample linear discriminant function 

X'bE = X'S--1(Z1- Zz). (3.3.9) 

Because 

the sample mean of X'DE in group GI is not less than what it is in Cz. Hence, 
an entity with feature vector x can be assigned to GI for large values of 
X'BE and to Gz for small values. If the cutoff point for (3.3.9) is taken to 
be equidistant between its group-sample means, then it is equivalent to the 
sample NLDF ((x;&) applied with a zero cutoff point. 

Normal theory-based discriminant analysis is now widely available through 
computing packages such as BMDP (1988), GENSTAT (1988), IMSL (1984), 
P-STAT (1984), S (Ekxker, Chambers, and Wilks, 1988), SAS (1990), SPSS-X 
(1986), and SYSTAT (1988). There are also those packages with regression 
programs that can be applied indirectly to discriminant analysis; for exam- 
ple, Minitab (Ryan et al., 1982) and GLIM (1986). The reader is referred to 
Lachenbruch (1982) and to Section 4.2 in the report by Panel on Discriminant 
Analysis, Classification, and Clustering (1989) for an account of some of these 
packages with respect to their facilities for discriminant analysis. In addition to 
the programs for discriminant analysis that exist as part of a general-purpose 
package of statistical programs, there are those algorithms that have been de- 
signed specifically for discriminant analysis. For example, James (1985) has 
provided some algorithms written in BASIC for discriminant analysis. Other 
algorithms for performing some procedure or procedures in discriminant anal- 
ysis are to be referenced in the subsequent text where the related topic is 
considered. 

(XI - Xz)'S--1(551- q) 2 0, 
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3.3.4 Fisher's Linear Regression Approach 

Fisher (1936) also derived the sample linear discriminant function (3.3.9) using 
a linear regression approach. The discrimination problem can be viewed as 
a special case of regression, where the regressor variables are given by the 
feature vector x and the dependent variables by the vector z of groupindicator 
variables. In the case of g = 2 groups, the dependent variable associated with 
the entity having feature vector Xj can be taken to be Zlj = (z j )~  where, as 
defined previously, Zlj is one or zero according as Xj belongs to GI or G. 
Then for a linear relationship between the dependent and regressor variables, 
we have 

(3.3.10) 

where €1,. ..,En are the errors. The two values taken by the dependent variable 
in (3.3.10) are irrelevant, provided they are distinct for each group. Fisher 
(1936) actually took 

zlj = a0 + a'xj + ej ( j  = 1, ...,lt), 

Zlj = (-l)'nj/n if Xj E Gi (i = 1,2). 

The least-squares estimate of a satisfies 

(3.3.11) 

denotes the total sums of squares and products matrix. It can be decomposed 
into the within-group matrix, given here by (n-2)S, and the between-group 
matrix of sums of squares and products. The latter is given by 

which can be expressed as 

(npa2/n)(4 - Z2)(Xl - Z2)'. 

Concerning the right-hand side of (3.3.11), it equals 
n n 

j =l j=l 

= nl(z1- X) 

= (n1nz/n)(Ti1- Z2). 

v = (n - 2)s + (n1n2/n)(x1- X2)(Z1- Z2)' 

On using (3.3.12) and substituting 

(3.3.12) 
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into the left-hand side of (3.3.11), it follows that 

(n - 2)Sa = 0 1 -  ~ 2 ) [ ( n l n z / n ) {  1 - (%I - EZ)'~}], 

which shows that the least-squares estimate of a satisfies 

a o( S - ' ( K ~  - ~ 2 ) .  

Further discussion of this may be found in T. W. Anderson (1984, Section 6.5) 
and Siotani, Hayakawa, and Fujikoshi (1985, Section 9.4). 

3.3.5 Bias Correction of Sample NLDR 

In practice, estimation of the posterior probabilities of group membership and 
outright allocation are usually based on the t j g ( X ; 8 E )  uncorrected for bias. 
However, it is a simple exercise to correct each [ i g ( X ; b E )  for bias. From 
(3.3.31, we can express t i g ( X ; d E )  as 

(ig(X;B,) = - ; {8i , , (X>-8g,E(X)}  (i = l , . . . , g  - l), (3.3.13) 

where 
&,E(x)  = ~ ( X , Z ~ ; S )  

On noting that (n - g)S has a Wishart distribution with expectation (n - g)T: 
and degrees of freedom n -g, the result (3.2.4) implies that 

(i = 1 ,..., g). 

E(S-') = cl(n -g)C-' 

Hence, corresponding to the derivation of (3.2.6) in the heteroscedastic case, 
we have that the expectation of i j ,E(X) ,  conditional on x, is 

E { i i . E ( X ) )  = cl(n - g ) { d i , E ( x )  + p / % )  (3.3.14) 

for i = 1, .. .,g. From (3.3.13) and (3.3.14), the expectation of t i g ( X ; d E ) ,  condi- 
tional on x ,  is given by 

E { t i g ( X ; b E ) }  = - ~ c l ( n - g ) { d i , E ( x ) - d g , E ( X )  + p(ni' -n i l ) }  

= cl(n - g ) { t i g ( x ; e E ) -  ip(n;' - n i l ) }  (3.3.15) 

for i = 1,. . .,g - 1. The uniform minimum variance unbiased estimator of 
&,(x;&) is therefore simply 

&,E(x)  = t i g ( x ; b E > / c 1 ( n  -g) + ip(n;'- n i l )  (i = 1, ...,g - 1). 

(3.3.16) 

It can be seen from (3.3.16) that if the groupsample sizes are equal, then 
the estimated posterior probabilities of group membership formed with equal 
prior probabilities imply the same outright allocation no matter whether each 
( i g ( x ; 8 E )  is estimated by & g ( X ; J E )  or its bias-corrected version [ig,E(X). 
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3.4 SOME OTHER NORMAL THEORY-BASED RULES 

3.4.1 Likelihood Ratio Rule: Heteroscedastic Normal Model 

We give here the derivation of the allocation rule based on the likelihood ratio 
criterion under normality, firstly for the heteroscedastic model (3.2.1). Let z 
be the unknown indicator vector defining the group of origin of an unclassified 
entity with feature vector x. That is, Zi = (Z)i = 1 if the entity comes from Gi 
and zero otherwise (i = 1, ...,g). The likelihood ratio rule for the allocation 
of this entity with feature vector x is constructed by treating z as an unknown 
parameter, along with *u, to be estimated by maximum likelihood on the basis 
of the training data t and also x. The log likelihood to be maximized is 

P 

(3.4.1) 

where f i (x ;O i )  = $(X;pi,Xi), the p-variate normal density with mean pi and 
covariance matrix Xi (i = 1, ...,g). The maximization of (3.4.1) is over the set 
of zero-one elements of z corresponding to the separate assignment of x to 
each of the g groups, as well as over all admissible values of *u. 

The log likelihood (3.4.1) has been formed in the case where the training 
data t have been obtained by mixture sampling and where the entity has been 
drawn from the same mixture of the g underlying groups. The case of sepa- 
rate sampling can be handled simply by taking the estimates of the groupprior 
probabilities Ti to be the same in the subsequent computations (T. W. Ander- 
son, 1984, Chapter 6). 

The values of xi, pi, X i ,  and z that maximize the log likelihood (3.4.1) 
satisfy 

(3.4.2) 

(3.4.3) 

and 

(3.4.4) 

for i = 1,. . . ,g. It can be shown that may be expressed as 
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For given i (i = 1, .  . .,g), let z(() denote the vector whose ith element is one 
and whose other elements are zero. Also, let 88) denote the value of &J com- 
puted from (3.4.2) to (3.4.4) for f = d). Then & and f are computed by first 
calculating 8;) and then evaluating 

L@;),Z(i); t,x) (3.4.5) 

for each i in turn from i = 1, ...,g. Then f is equal to dk) if (3.4.5) is maxi- 
mized over i = 1, ...,g at i = k. 

3.4.2 Likelihood Ratio Rule: Homoscedastic Normal Model 

For the homoscedastic normal model (3.3.1), the solution is given by (3.4.2) 
and (3.4.3), and with the common group-covariance matrix C estimated as 

which can be expressed as 

Often, the estimated groupprior probabilities #i are taken to be the same, 
and so then they play no role in the construction of the likelihood ratio. If this 
is done in the homoscedastic case, then the log likelihood ratio 

log{ q b p ,  di); t,x)/L(&f), 2@); t, x)} 

simplifies to 

This result was first given by T. W. Anderson (1958, Chapter 6) in the case 
of g = 2 groups. In this case, -the consequent allocation 
negative of the statistic 

which has become known in the discriminant analysis 

rule is based on the 

(3.4.7) 

literature as the Z -  
statistic. It reduces to minus twice the classical sample linear discriminant 
function or W-statistic for equal group-sample sizes. The univariate version 
of (3.4.6) for arbitrary g was proposed initially by Rao (1954), who considered 
the standard t-test for the compatibility of the feature variable x with each of 
g groups in which X was taken to have a univariate normal distribution with a 
common variance. This test and its multivariate version based on Hotelling's 
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T2 are to be discussed in Section 6.4 in the context of assessing the typicality 
of x. Further work on the Z-statistic was undertaken by Kudo (1959,1960) and 
John (196oa, 1963). Das Gupta (1965, 1982) has shown that the sample rule 
based on the 2-statistic is minimax and unbiased in the sense that its expected 
error rate for each group does not exceed 0.5. It thus avoids the severe imbal- 
ance that can occur between the groupspecific error rates of the normal-based 
linear discriminant rule with unequal group-sample sizes (Moran, 1975). 

3.43 Miscellaneous Results 

Besides the results presented in the preceding sections, various other work 
has been done over the years on the provision of suitable allocation rules un- 
der the assumption of normality for the groupconditional distributions. For 
example, there is the combinatoric approach developed by Dunn and Smith 
(1980, 1982) and Dunn (1982). In another example, Adeglxye (1987) adopted 
the two-stage sampling approach of Stein (1945) to construct a sample die 
criminant rule whose error rates do not depend on the unknown but common 
variance for univariate normal group-conditional distributions in the case of 
g = 2 groups. 

Another approach to allocation where the feature vector has unequal group 
covariance matrices is that proposed recently by Dudewicz and k e j a  (1989), 
using the so-called heteroscedastic method of Dudewin and Bishop (1979). It 
applies in situations where there is control over the nuxnber of training enti- 
ties to be sampled from the specified groups. This approach is being incorpo- 
rated into ESSTM, the Expert Statistical System, and has been illustrated on 
data collected by magnetic resonance imaging of the human brain; see Martin 
et al. (1989) and Dudewicz et al. (1989) and the references therein. 

On examples of rules constructed under variations of the basic assump 
tions, Ellison (l%S) extended the discrimination problem to the situation where 
the groups represent g linear manifolds, in one of which the mean of a p- 
dimensional normally distributed random variable lies. Burnaby (1 W), Rao 
(1966a), and Srivastava (1967a) considered discrimination between multivari- 
ate normal groupconditional distributions in the presence of some structure 
on the means. 

3.5 PREDICTIVE DISCRIMINATION 

3.5.1 Predictive Sample Rule 

We consider in this section discrimination based on the predictive estimates 
of the groupconditional densities, as obtained under the assumption of nor- 
mality. The predictive approach to discriminant analysis has been defined in 
Section 2.2. Under the heteroscedastic normal model (3.2.1), the ith-group 
conditional density fi(x;Oi) is taken to be #(X;pj,Ei), the p-variate normal 
density with mean pi and covariance matrix 32; (i = 1,. . .,g). 
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In the absence of any prior objective knowledge of pi and Ci, it is conve- 
nient to adopt the conventional improper or vague prior 

for pi and C;' (i = 1, ...,g). The predictive estimate of fi(x;Oi) is given then 

J(~'(X> = J ~ ( x ; p i , ~ i ) p ( ~ i , ~ i  I zi,si)dpidxi, (3.5.2) 

by 

where p(pi,Ci 1 Xi, Si) is the posterior density of (pi,Ci) given the sample 
statistics (Zi, Si) and assuming either a normal-Wishart prior distribution or 
the limiting case of vague prior knowledge (Aitchison and Dunsmore, 1975, 
Chapter 2). After integration, (3.5.2) yields a p-dimensional Student-type den- 
sity 

A$)(.> = fs,(x;ni -p,p,Zi,(l+ n;')MiSi) (i = l,..*,g), (3.5.3) 

where Mi = (ni - l)/(ni - p). Here fs,(x;m,p,a,B) denotes the classical p -  
dimensional r-density with m degrees of freedom, 

f&m,p,a,B) = c(m,p)lrnBI-'/2{ 1 + d(x,a;mB)}-('/2)(m+p), 

(3.5.4) 

where 
c(m,p)  = r { i ( m  + p)}/[d1'2W(#m)]; 

see, for example, Johnson and Kotz (1972, page 134). Similarly, under the 
homoscedastic normal model (3.3.1), 

fi$)(x)=fs,(x;n-g-p+ I,P,zi,(I +~;')Ms) (i = I,...,g), (3.5.5) 

where M = (n - g ) / ( n  - g  - p + 1). 
The predictive estimates of the posterior probabilities of group member- 

ship are formed with the group-conditional densities replaced by their predic- 
tive estimates as given above. As part of this process, the log likelihood ratio 
&,(x;OU) is estimated by 
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where cTi(X) = d(X,Ei;Si) for i = 1,. . .,g. The corresponding predictive estimate 
under homascedasticity is 

3.5.2 Semi-Bayesian Approach 

We consider now the semi-Bayesian approach where the posterior distribu- 
tions of the quantities to be estimated are formed on the basis of the infor- 
mation in t but not also in x. 

For g = 2 homoscedastic normal groups, Geisser (1967) showed that the 
mean of the posterior distribution of the log odds, or equivalently [(%;BE), 
formed in this way is 

&?(x) = - ) { & , E ( x )  - $JZ(x)} - ip(l/nl- I/&!). 

For the heteroscedastic model, Enis and Geisser (1970) showed that the pos- 
terior mean of t(x;&) equals 

C ~ ) ( X ) =  fC(-l)'{8i(x)+IoglSil + p / n i  +plog(ni-~)-cz(ni)), 
i=l  

where CZ(.) is defined by (3.2.9). A comparison of these posterior means with 
the bias-corrected versions (3.2.10) and (3.3.16) of the corresponding estimates 
given by the estimative approach shows that they are quite similar. 

It can be seen from (3.5.7) that the form of the predictive estimate of the 
posterior log odds [(x;&) can be markedly different from that of the estimate 
produced by either the semi-Bayesian or estimative approach. For example, for 
unequal group-sample sizes, it is a quadratic function in x. This difference in 
form arises because the predictive approach, in contrast to the semi-Bayesian 
or estimative approach, uses the information in x as well as in t. 

In related work, Enis and Geisser (1974) noted that, as [(%;BE) is linear 
x, it may be for many intuitively compelling to use a linear estimate. They 
consequently derived the sample linear estimate of [(x;B,) that minimizes the 
implied overall predictive error rate in the case of the prior distribution 

p(p1,p2,D-') o< I!q('/Z)(P+') 

for p1, pz, and X-'; see also Geisser (1977). 

duced by the estimative and predictive methods. 
We now proceed to explore the differences between the assessments pro- 
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3.53 Comparison of Predictive and Estimative Methods 

On contrasting the predictive estimate (3.5.3) with the estimative assessment 

for the ith group-conditional density f i ( x ; e i )  under the heteroscedastic normal 
model (3.2.1), it can be seen that they are both centered on the same vector 
4 and with the same class of ellipsoids of concentration, but with h$’(x)  less 
concentrated than f i ( x ; d i )  about 4. Aitchison (1975) used a measure based 
on the Kullback-Leibler divergence measure to compare the density estimates 
produced by these two methods. In terms of the present notation, the measure 
for the estimation of the ith group-conditional density f i ( x ; e i )  was defined as 

(3.5.8) 

where E refers to expectation over the distribution of the training data. It may 
be viewed as the average of the log difference between the estimative and 
predictive estimates, averaged firstly over values of x in the ith group Gi and 
then over the training data. With f i ( x ; @ i )  taken to be $ ( X ; p i , C i ) ,  Aitchison 
(1975) showed that (3.5.8) does not depend on the parameters pi and C i  

and is positive. The latter indicates greater overall closeness of the predictive 
estimate to the true density. Recently, El-Sayyad, Samiuddin, and Al-Harbey 
(1989) have provided a critical assessment of the use of (3.5.8) as a criterion 
for density estimation. 

Murray (1977a) subsequently showed that in terms of the Kullback-Leibler 
measure, &$’(x) is preferable to all other estimates of f i ( x ;  O i )  that are invari- 
ant under translation and nonsingular linear transformations. As emphasized 
by Han (1979), the predictive density estimate f$)(x) therefore has an inter- 
pretation in a frequentist framework. 

As evident from their definitions above, the practical differences between 
the estimates of the groupconditional densities produced by the estimative 
and predictive methods will be small for large sample sizes. This was demon- 
strated in the medical examples analyzed in Hermans and Habbema (1975). 
However, for small sample sizes, Aitchison et al. (1977) illustrated in the con- 
text of the differential diagnosis of Conn’s syndrome the large differences that 
can be obtained between the estimative and predictive estimates of the poste- 
rior Probabilities of group membership. Their example demonstrated how the 
estimative approach gives an exaggerated view of the group-posterior probabil- 
ities, whereas the predictive moderates this view. Aitchison et al. (1977) also 
conducted a simulation study in the case of two groups with equal (known) 
prior probabilities, but not always equal covariance matrices in their multivari- 
ate normal distributions. They concluded overall that the predictive method 
was superior to the estimative in terms of the mean absolute deviation from 
the true posterior log odds. ’Ib highlight the differences that can occur us- 
ing the two methods, they took nl and n2 to be very small relative to p, 
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and so the reliability of either method in such situations is questionable. It 
should be noted too that the differences between the estimative and predic- 
tive approaches are not nearly as pronounced in terms of the allocation rules 
they produce as they are in terms of the estimates they give for the group 
posterior probabilities. For example, for equal groupsample sizes under the 
homoscedastic normal model, it can be seen from (3.3.13) and (3.5.7) that the 
estimative and predictive methods both give the same outright allocation for 
any feature vector x if the groupprior probabilities are specified to be the 
same. 

3.5.4 Predictive Versus Estimative Assessment of Posterior Lag Odds 

In the remainder of this section, we focus on the case of g = 2 homoscedastic 
groups for which the posterior log odds are given by 

q(X;*E) = 1og{~l(X;~E)/~2(x;yE)} 

= log(r1b2) + t(x;&), (3.5.9) 

where q(x;  9 ~ )  and t(X$E) correspond to the previously defined quantities 
qjg(X; \kE) and &s(x; &), respectively, with their subscripts suppressed since 
g = 2 only. Also, as we are taking the prior probabilities to be specified, 0, 
and not *E = (x’,Ok)’ is the vector of all unknown parameters. 

McLachlan (1979) provided an asymptotic account of the relative perfor- 
mance of the estimates q(x;w,&) and ?g)(x;x, t) of the posterior probability 
~ ( x ;  q ~ ) ,  as produced by the estimative and predictive methods, respectively, 
under the homoscedastic normal model (3.3.1). It supported the previous em- 
pirical findings that the estimative approach gives a more extreme assessment 
than the predictive of the posterior probabilities of group membership. 

Geisser (1979) subsequently pointed out that for equal groupsample sizes, 
nl = n2 = in, it could be proved exactly that the predictive posterior odds are 
always closer to the prior odds than the estimative odds. The derivation of this 
result relies on the inequalities 

15 ((1 + a / m ) / ( l +  a2/m))-m 5 (1 + (a2 - a1>/m} 5 exp(a2 - a )  

(3.5.10) 

for a2 2 a1 2 0. These inequalities are reversed for a 1 2  a2 2 0. A somewhat 
similar result was used in Desu and Geisser (1973) in the case of equal group 
means and differing group-covariance matrices. 
lb show how these inequalities (3.5.10) can be used to establish the re- 

sult stated above on the sizes of the estimative and predictive posterior odds 
relative to the prior odds, we first note from (3.3.13) that the estimative as- 
sessment of the log likelihood ratio {(x;&) can be written as 

<(x;&E)  = -i{&,E(x)- 82,E(x)]- 
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From (3.5.7), we have that the corresponding predictive estimate for nl = n2 = 
in can be expressed as 

g t x )  = -i(n - 1)log [{1+ (n - l)-1cn81J(x)}/{l + (n- 1)-1cn82J(x)}], 

where 
(3.5.1 1) 

cn = n(n - l)/(n2 - 4). 

In order for S to be nonsingular, we need n > p + 1, and so in the case of 
equal groupsample sizes, n cannot be less than 4 for all p.'Hence, we can 
proceed on the basis that c,, 5 1. 

By applying (3.5.10) to (3.5.11), it follows that if t(x;&) 20, then 

0 5 ?$'(XI 5 C " W E )  5 t(x;&), (3.5.12) 

and that if <(x;&) 5 0, then 

t(xx;&) 5 cnt(x;&)  5 g ) ( x )  5 0. (3.5.13) 

Using (3.5.12) and (3.5.13) in conjunction with (3.5.9), we have that 

7rl/7r2 5 ~ ~ ~ ( X ; ~ , t ) / ~ ~ ) ( X ; f f , t )  5 71(x;~,&E)/72(x;ff,~E) 

7 1 ( X ; f f , ~ E ) / 7 2 ( X ; A , ~ E )  5 +g?(x;ff,t)/fg)(x;ff,t) L 7rll7r2 

for 7rl/7r2 2 1, and that 

for 21/7r2 5 1. Hence, the predictive posterior odds are always closer to the 
prior odds than the estimative posterior odds, thus confirming the less extreme 
assessment provided by the former approach. This result can be extended to 
the case of g > 2 groups. 

3.5.5 Biases of Predictive and Estimative Assessments of Posterior Log 
Odds 

Concerning the biases of the estimative and predictive estimates of the log 
likelihood ratio t(x;OE), we have from (3.3.15) that the bias of [(x;&E), condi- 
tional on x, is 

bias{t(x;b) = cl(n - 2){t(x;&) - kP(W1- Vn2)) - t(x;&), 

where cl(n - 2) = (n - 2)/(n - p - 3). On taking the expectation of this bias 
with respect to the distribution of X in the first group, we obtain 

E[bias{<(x;&)} I X E GI] = c,(n - 2){ ;A2 - qp(l/nl- l/n2)} - ;A2, 
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TABLE 3.1 Mean Biaees of the Estimative and Predictive Estimates of the 
Posterior Log Odds for Egal  Group-Covariance Matrices and Known Equal 
Group-Prior Probabilities when p = 4 and nl = nz 

Approach 

EPtimative Predictive 

A @(-;A) ni ~8 ni = 16 ni 1 8  ni = 16 

1.049 3 .31 -11 - .07 - .04 
1.683 2 .79 -28 - .24 -.13 
2.563 .l 1.83 .66 - .78 - .45 

Some: Adapted from Mom and Murphy (1979). 

where A is the Mahalanobis distance between GI and G2. For nl = n2, it can 
be seen that 

E[bias{{(x;&)} I X E GI] = #A2{cl(n - 2) - 1) > 0. 
Hence, the unconditional bias of S(X;&) is always positive for entities from 
GI. This bias will be in the opposite direction for entities from a. 

Moran and Murphy (1979) have shown that for the predictive method 

E[bi={g)(x)l I x E G I =  qPlOg[tnl(n;r + l))/{nz(n1+ 1)lI 

It can be seen that the mean bias of the predictive estimate of t(x;gB) does 
not depend on p for nl = n2. A comparison of these mean biases of the esti- 
mative and predictive approaches can be found in Moran and Murphy (1979). 
It shows that <(x;&) gives a considerably more biased estimate of <(x;8E) 
than (f)(x), as illustrated in l’hble 3.1. 

Moran and Murphy (1979) also noted from their simulation study that it 
is the bias of the estimative method that accounts for a large part of the 
poor performance of <(x;&) and ((x;&) in their estimation of {(x;8E) and 
<(x; Ou), the log likelihood ratio under homoscedasticity and heteroscedastic- 
ity, respectively. Consistent with this, they found in their study that the bias- 
corrected versions &(x) and &(x) of the estimative assessments of t(x;&) 
and s(x; h) were more comparable in performance with the corresponding 
predictive estimates. More specifically, their simulations suggest that, in terms 
of the criterion of mean absolute deviation, the predictive approach is still 
preferable to the estimative after bias correction for the estimation of the log 
likelihood ratio, or, equivalently, the posterior log odds since the prior prob- 
abilities were specified. On the relative performances of the allocation rules 
based on these estimates of the posterior odds, the estimative method with 
correction for bias appears to be comparable to the predictive. 
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3.5.6 Some Additional Comments on Predictive Versus Estimative 
Methods 

It has been noted for the homoscedastic normal model (3.3.1) that the esti- 
mative and predictive estimates of the log likelihood ratio &&;BE) lead to 
the same outright allocation in the case of equal groupsample sizes. How- 
ever, even with disparate groupsample sizes, there is a frequentist approach 
that gives an allocation rule very similar to that obtained with the predictive 
method. It can be seen from (3.4.6) that the rule obtained by the likelihood 
ratio criterion is very similar to the predictive rule based on (3.5.7). This sim- 
ilarity, which was noted by Aitchison and Dunsmore (1975, page 235), is not 
surprising. We have seen that the predictive method forms estimates by effec- 
tively using the posterior distributions of the parameters formed on the basis 
of the information in both t and x. Likewise both t and x, albeit in a fre- 
quentist framework, are used in forming estimates of the parameters with the 
likelihood ratio criterion. 
As to be considered further in Section 6.4, huge discrepancies can occur 

between the predictive and estimative assessments of the typicality index of 
a feature vector with respect to a group, as proposed by Aitchison and Dun- 
smore (1975, Chapter 11). However, as pointed out by Moran and Murphy 
(1979), the predictive assessment of this typicality index is the same as the 
P-value of the standard frequentist test for compatibility of x with respect to 
a given group. 

It is not surprising that, where discrimination is feasible, the estimative as- 
sessment of the posterior probabilities of group membership, the Bayes rule, 
and the typicality index can in each instance be modified or replaced by an- 
other frequentist assessment that yields the same or practically the same as- 
sessment as the predictive approach. For if a data set is informative, then an 
effective frequentist analysis should lead to essentially the same conclusions 
from a practical point of view as those drawn from a Bayesian analysis; see 
Durbin (1987). 

3.6 COVARIANCE-ADJUSTED DISCRIMINATION 

3.6.1 Formulation of Problem 

Suppose that the p-dimensional feature vector X can be partitioned into two 
subectors, X@) and X(2), where the latter subvector has the same distribution 
in each group. That is, the distribution of X(2) is not groupdependent. Hence, 
it is of no discriminatory value in its own right but, in conjunction with X(I), 

may still be of use in the role of a vector of covariates to X(I). The variables 
in X(2) are referred to also as concomitant or ancillary variables (Rao, 1966b). 

In this situation, there are two obvious ways of proceeding in forming a dis- 
criminant rule. One can use the, full observed feature vector x, thereby ignoring 
the available knowledge that x(~ )  is really only a subvector of covariates. 
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Alternatively, in the light of this knowledge, one might use x(l) adjusted for 
x(~),  where the former is not independent of the latter. 

A third option would be to form a discriminant rule using just dl). For 
known groupconditional distributions (or an infinitely sized training set), the 
use of x(l) instead of the full feature vector x cannot decrease the overall 
error rate. However, for training sets of finite size, a reduction in the error 
rate may be achieved in some situations. This is to be considered further in 
Chapter 12, where the variable-selection problem in discriminant analysis is to 
be addressed. 

The development of discriminant rules employing covariates started with 
Cochran and Bliss (1W) and continued with papers by Rao (1949, 1966b), 
Cochran (1964b), Subrahmaniam and Subrahmaniam (1973), and Subrahma- 
niam and Subrahmaniam (1976). In these papers, the emphasis has been on 
the testing of whether there is a significant difference between the group 
means of X(l) with and without the use of the observed value x ( ~ )  of X@). That 
is, they are more concerned with the variable-selection problem in the pres- 
ence of covariates rather than with the adjustment of the discriminant rule to 
allow for covariates in the feature vector. 
lb examine more closely the formation of a discriminant rule adjusted for 

the covariate vector x@), we note that 

f i ( ~ )  = fi(d2))fi(d1) I d2)), (3.6.1) 

where, for economy of notation in (3.6.1), we have used the one symbol fi to 
denote the joint, marginal, and conditional density of M1) and xct>, of X@), 
and of X(') conditional on respectively, in Gi (i = 1,Z). If the subvector 
X(2) has the same distribution in both groups, so that 

fl(X(2') = f2(x"), 

then it can be seen from (3.6.1) that the Bayes rule is the same no matter 
whether it is formed using the groupconditional densities of the full feature 
vector X or of the subvector X(') conditional on X@) = x@. Hence, in the sit- 
uation where X has known groupconditional densities, there is nothing to be 
gained by working in term of the pupconditional densities of X 6  given 
x@), which is equivalent, at least under a normal model, to taking x(l) as the 
feature vector Eifter adjusting it for the subvector of covariates x(*). However, 
in the situation where the groupconditional densities of X have to be esti- 
mated, there will be a loss of efficiency in using x as the feature vector with- 
out incorporating the information that X(') has a common distribution within 
each group. Further, if the groupconditional distributions of X@) given d2) are 
taken to be multivariate normal, then only the mean and covariance matrix of 
the subvector X@) of covariates need to be estimated instead of its complete 
density as with the use of x. 

Without loss of generality, we can relabel the variables in x so that 

x = (XU)',X(2)')'. 
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Corresponding to this partition of x,  we let 

and 

be the corresponding partitions of p i  and Xi, respectively, for i = 1, ...,g. 
Consistent with the assumption that X ( 2 )  has the same distribution in each 
group, p(2) and C22 are not group-dependent. A common assumption is to 
take the distribution of X ( ' )  conditional on x(~)  within G i  to be multivariate 
normal with mean 

p j ' )  + C 1 2 i C 3 X ( 2 )  - p(2)) (3.6.3) 

and covariance matrix 
Z11i - ~12i~; '?11321i  (3.6.4) 

for i = 1, ...,g. This assumption will be valid if X(') and X(2) have a joint mul- 
tivariate normal distribution, but of course it is not a necessary condition. A 
discussion of other possible models for the distribution of X(') given x ( ~ )  can 
be found in Lachenbruch (1977). 

Corresponding to the partition (3.6.2) of x,  let 

and 

be the corresponding partitions of Xi, X, S i ,  and S, respectively, where 

X = (n1X1 + nzjIz)/n. 

Then the ith group mean (3.6.3) and covariance matrix (3.6.4) of X ( ' )  given 
~ ( ~ 1  can be estimated by 

and 

respectively. There are more efficient estimators of C l 2 i  and C Z ~  available 
than Slu and S22, because the latter are computed using the Sam le mean of 

The model above was adopted by Rawlings et al. (1986), who considered 
discrimination between a group of outpatients in an alcoholism treatment pro- 
gram and a group of nonalcoholic outpatients. In their example, the subvector 
x ( l )  consisted of measurements on clinical laboratory tests for chloride, carbon 
dioxide, potassium, sodium, and glucose. The subvector x(') consisted of age 
as the single covariate. 

Slli - s1zisi1s21i ,  

X ( 2 )  specific to each group rather than the overall sample mean 4) x . 
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3.6.2 Covariance-Adjusted Sample NLDF 
Under the additional assumption of homoscedasticity, the ith group mean and 
covariance matrix of X(') given d2) can be estimated by 

(i = I,. . .,g) (3.6.5) 

s11.2 = s11- s12s;%1. (3.6.6) 

For g = 2 groups under the homoscedastic normal model, we let t1.2(X;&) 

be the sample covariance-adjusted NLDF formed by plugging these estimates 
into the group-conditional densities of X(') given d2). It is equal to t(x;&) 
with x, Xi, and S replaced by d'), $) + S12SG1(d2) - d2)), and S11.2, respec- 
tively. An alternative way of forming a covariance-adjusted LDF is to work in 
terms of 

$1 + S~~S%'(X(~) - @) 

and 

adjusted for x(~), that is, 

x1.2 = x(1) - C12E;;fx(2), 

and to form the rule in terms of the groupconditional densities of X1.2. This 
rule is the same as obtained by considering the group densities of con- 
ditional on d2). However, their sample analogues differ slightly. The sample 
linear discriminant function that is obtained by using the groupconditional 
densities of X1.2, and then replacing the parameters with their sample ana- 
logues in terms of 4 and S, is given by 

s11.2t -1 $1 1 -x2 41) - s12s;1(gp -$I)}. (3.6.7) 

If I?) is set equal to d2) for i = 1,2 in (3.6.7, then it reduces to 4 4 x ; b ~ ) .  
Hence, the latter uses the more efficient pooled sample mean ?d2) to estimate 
the common mean of X(2) in each group. 

3.6.3 Asymptotic Unconditional Error Rates 

Let 

As the expectation of X(2) is the same in both groups, it follows that A = A1.2. 
Analogous to the expansion of the ith groupconditional distribution of 

{ t ( X ; d E )  + (-1)'iAZ}/A 

by Okamoto (1%3), Memon and Okamoto (1970) have expanded the ith group 
conditional distribution of 

{t1.2(JdE) + (-Qi;A2I/A 



78 DISCRIMINATION VIA NORMAL MODELS 

up to terms of order 0 ( N e 2 )  under the homoscedastic normal model (3.3.1), 
where N = nl + n2 - 2. McGee (1976) has since obtained the third-order ex- 
pansions. The asymptotic unconditional error rates of the sample normal- 
based linear discriminant rule based on t1.2(X;dE) are available from these 
expansions. 

The comparative performance of the sample rules based on &(x;&) and 
[(x;&) have been considered by Cochran (1964b) and Memon and Okamoto 
(1970). More recently, Leung and Srivastava (1983b) have compared their 
asymptotic overall unconditional error rates in the case of separate sampling 
with equal group-sample sizes and with a zero cutoff point. In the latter case, 
we let eul.z(A, p1,pz) and eu(A, p) denote the overall unconditional error 
rates of the sample rules based on [1.2(X;&) and ((x;&), respectively, where 
pi is the dimension of x(j) (i = 1,2). Leung and Srivastava (1983b) have estab- 
lished that 

eul.z(A,pl,pz) < eu(A,p) 

up to terms of the first order if and only if 

a 
(3.6.8) 

NO A '  

where No = N - p2. It is obvious that (3.6.8) holds if No > p2, which is usually 
the case in most practical situations. 

In another study on the use of the sample covariance-adjusted NLDF 
Sl.z(x;&), hung  (1988b) has investigated the increase of order O(N-') in 
the error rate as a consequence of having to estimate the unknown group 
prior probabilities in the formation of the plug-in sample version of the Bayes 
rule based on &.2(X;&) with cutoff point log(?~2/171). 

For this covariance problem, Fujikoshi and Kanazawa (1976) have consid- 
ered the rule obtained by the likelihood ratio criterion. They have given expan- 
sions of the groupconditional distributions of the associated statistic and mod- 
ified versions, including those obtained by Studentization; see Siotani (1982). 

3.7 DISCRIMINATION WITH REPEATED MEASUREMENTS 

3.7.1 Optimal Rule 

In some practical situations, repeated measurements are made on the e,itity 
to be allocated. In a medical context, a patient may be recalled for further 
repeated measurement of the same clinical variable(s) with the intent of pro- 
viding a firmer basis for diagnosis or prognosis of his or her condition. For 
example, in diagnosing hypertension, a patient's systolic and diastolic blood 
pressures (inter alia) may be measured repeatedly over weeks, months, or even 
years before any decision on specific therapy is taken. In the example consid- 
ered by S. C. Choi (1972), an individual is diagnosed on the basis of multiple 
measurements of cell-membrane thickness. A muscle capillary is examined at 
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20 sites around its perimeter. In addition to using the averages of the measure- 
ments across these sites, the variability between sites can be exploited in the 
formation of a sample discriminant rule for discriminating between diseased 
and nondiseased individuals. 

We first focus on the case where the repeated measurements have the 
same mean and are equicorrelated. These assumptions are relaxed in the last 
two subsections, where consideration is given to the fitting of time series and 
growth curves to the repeated measurements. 

Suppose that on the entity to be classified, K repeated measurements are 
made on each of its p features so that its feature vector x is now of dimension 
p K  and is given by 

where xm, denotes the kth measurement on X (k = 1, ..., K). In the initial 
study on this problem by S. C. Choi (1972) and the subsequent studies by 
Gupta (1980, 1986), x,,,, was taken to be the realization of a random vector 
modeled in group Gi (i = 1, ...,g) as 

Xm, = Pi + Vj + (3.7.1) 

In this model, Vi is distributed N(OyCei) independently of the Eiky which are 
distributed as 

x = (Xkl,...,4lJ, 

(k = 1,. ..,K). 

iid 
Eil,..,,EiK -N(O,Cmi) (i ly...,g). 

Within Gi, the covariance matrix Cei can be viewed as arising from the vari- 
ation in the features over entities, whereas Cmi reflects the variation between 
the repeated measurements on the features of a given entity. 

Under (3.7.1), the ith groupconditional density fim(x; 8u) of the full feature 
vector X is multivariate normal with mean 

and covariance matrix 
Cci 8 1 ~ l k  + C m i  8 I K ,  (3.7.2) 

where 1~ denotes the K-dimensional vector whose elements are all unity and 
~9 denotes the Kronecker product. The expression (3.7.2) displays the equicor- 
related structure of the covariance matrix of the feature vector under this 
model. Here now the vector 8i of parameters contains the elements of pi 
and the distinct elements of Cei and C m i  (i = 1, ...,g), and 80 contains the 
elements of 81,. . . ,8,. 

S. C. Choi (1972) and Gupta (1980) noted that fim(x;8u) can be expressed 
as 

f;:m(X;gi) ,(2*)-(1/2)pK~-(l/2)p pmil-(1/2)W-1) 

x ICej + K-‘C,jl-”2ev(-$Qj), (3.7.3) 
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where 

and 

It follows from (3.7.3) that in the case of g = 2 groups, the.optimal or Bayes 
rule is based on the discriminant function 

tm(x;eu) = IOg{firn(X;eu)/fim(x;err)} 

+ (K - I)tr(SxE;;) + (K - l)IogICmjl 

+ I O ~ I E ~ ~  + K - l X m i I } .  (3.7.4) 

Gupta (1986) has obtained expressions for the error rates of the Bayes rule in 
the case of a single feature variable (p = 1). The case p > 1 has been studied 
recently by Gupta and Logan (1990). 

If 
E e l =  Ee2 = Ee (3.7.5) 

and 
E m 1  = E m 2  = E m ,  

then (3.7.4) reduces to 

(3.7.6) 

t m ( x ; B E )  = { z m  - )(PI + Pz))'(Ce + K - ' E m ) - ' ( P l -  PZ), (3.7-7) 

the linear discriminant function based on the sample mean E m  of the K mea- 
surements made on the entity to be allocated. Here 0, denotes Bu under the 
constraints (3.7.5) and (3.7.6) of equal groupcovariance matrices. It is clear 
that for K = 1, it coincides with the familiar linear discriminant function based 
on a single measurement of each feature variable. 

3.7.2 Posterior Log Odds: Univariate Case 

In the univariate case of p = 1 under the homoscedastic constraints (3.7.5) 
and (3.7.6), Andrews, Brant, and Percy (1986) have considered the effect of 
repeated measurements on the posterior log odds 

q m ( x ; @ E )  = Iog(nl/nZ) + t m ( x ; e E ) .  
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In the case of p = 1, we write Ce and 
Put 

where u2 = u: + u:. Then for p = 1, 

as a, 2 and a:, respectively, and we 

p = &.', 

(Ce + K-'Cm)-' = a-2K/{1 + (K - 1 ) ~ ) .  

By using this result in (3.7.7), it follows for p = 1 that 

logqm(x;@E) = log(r1/n2) + C{% - i(p1 + ~ 2 ) } @ 1  -p2))0-~, (3-7.8) 

where 
c = K / { l +  (K - 1)p ) .  

It can be seen from (3.7.8) that for p = 0, for which repeated measurements 
bring new information, the prior odds are modified by the factor 

e ~ p  [K { xm - &I + 112)) (PI - / J ~ ) U - ~ ]  - 
As p increases, that is, repeated measurements became less informative, the 
factor c decreases from K at p = 0 to 1 at p = 1 in the case of no new in- 
formation. The case p = 0 had been considered previously by Lachenbruch 
(1980). 

3.73 Plug-In Sample Rule 

Returning now to the multivariate heteroscedastic model in which the group 
conditional densities are given by (3.7.3), we can form a sample rule by plug- 
ging in estimates of the pi9Cei, and the Xmi in the case of unknown &. The 
training data t on the classified entities are denoted as previously by 

t' = 61,. * .,Yn), 

xj  = (xim,, . . , x ; ~ ~ ) '  

where yj  =   xi,^;)', and where now 

contains the K repeated measurements of the feature vector on the jth classi- 
fied entity ( j  = I,. . ., n). 

Let 
n K  

xi = C C z i jx jmk/ (n iK) ,  
j - 1  k-1 
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ni 
and 

sj = ~ C ( ~ j j - % ) ( ~ j j - ~ j ) ' / ( n i  -1) 
j = 1  

for i = 1 ,..., g. Then following S. C. Choi (1972), p i ,  E m i r  and 
can be estimated as 

in (3.7.3) 

pi =Zi, 
*mi = Smi, 

and 

for i = 1, ...,g. 

and by Logan (199O), who presented the predictive approach. 

* e i  = (Si - Sm, ) /K  

This problem has been considered also by Ellison (1962), Bertolino (1988), 

3.7.4 Discrimination Between Time Series 

Often the multiple measurements on an entity are recorded over time, and 
so it is appropriate to adopt a time-series approach to the modeling of the 
group-conditional distributions of the feature vector. Note that this situation 
is distinct from that in which the training replicates of the feature vector in 
a given group are viewed collectively as the realization of a time series. The 
latter is to be considered in Section 13.9, which is on discriminant analysis 
with dependent training data. 

Schumway (1982) has provided an extensive list of references and applica- 
tions of discriminant analysis for time series. Applications listed there include 
discriminating between presumed earthquakes and underground nuclear ex- 
plosions, the detection of a signal imbedded in a noise series, discriminating 
between different classes of brain wave recordings, and discriminating between 
various speakers or speech patterns on the basis of recorded speech data. Ad- 
ditional references may be found in the work by Browdy and Chang (1982) 
and KrzySko (1983) on discrimination between time series. 

Suppose that for a single (p = 1) feature variable x of the entity, the multi- 
ple measurements Xm,,  . . . , XmK have been recorded at K points in time s1,. . ., 
s ~ .  One may also observe multivariate series, but we focus on the univariate 
case in the interest of simplifying the notation. On writing 

X m ,  = + ~ i k  (k = 1, ..., K) 
in group Ci (i  = 1,. . .,g), we put 

X = ( X m l , - . . , X m t ) ' ,  

pi = (pi1,.--,piK)', 

and 
e i  = ( ~ i l ,  ..., t i K ) ' ,  
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where Cj is taken to have a multivariate normal distribution with mean zero 
and covariance matrix Ci (i = 1 ,..., g). Thus, 

X - N ( p i , C i )  in Gi (i e: 1, ...,g). (3.7.9) 

The simple case of detecting a fixed signal embedded in Gaussian noise is 
represented by taking g = 2, p1 = s, and p2 = 0 in (3.7.9). This also covers 
the case of the detection of a stochastic signal, provided an additive model is 
assumed for the signal and noise, so that l2j represents the covariance matrix 
of the signal plus noise within group Gi (i = 1,2). 

A common assumption in practice is that Bi arises from a zero-mean sta- 
tionary discrete time parameter process so that (Ej)U,v is a function of Iu - vI 
for u, v = 1,. . .,K. A special case is a firstsrder autoregressive process. Then 

where u: is the ith groupconditional variance of X,,, and lpil < 1 ( i  = 1, 

The rather cumbersome matrix calculations with the time-domain approach 
can be avoided through consideration of the more easily computed spectral 
approximations. Schumway (1982) has presented some of the spectral approx- 
imations that make discriminant analysis in the frequency domain such an at- 
tractive procedure. 

Broemeling and Son (1987) and Marco, Young, and Turner (1988) have 
considered the Bayesian approach to discriminant analysis of time series in 
the case of univariate autoregressive processes. 

a .  vg). 

3.7.5 Discrimination Between Measurements Made at Different Points in 
Time 

We consider here the case of discrimination within a time series, correspond- 
ing to multiple multivariate measurements recorded over time on an entity. 
For an observation x recorded on the entity at an unknown point in time, 
the aim is to determine its time of measurement from a choice of two speci- 
fied time points, say, s1 and s2. Under the model introduced initially by Das 
Gupta and Bandyopadhyay (1977), x is taken to be the realization of a random 
vector distributed normally with means pl and p2, and common covariance 
matrix E, at the time points s1 and s2, respectively. Further, in order to form 
a sample discriminant rule in situations where the group parameters are not 
all known, it is supposed that there are available nj = i n  feature observa- 
tions q j  ( j  = 1,. . ., ni) known to be measured at time Si (i = 1,2). A stationary 
Gaussian process is assumed for the errors in the time series, so that each 
(xij,Gj)’ denotes a realization of a 2pdimensional random vector, having a 
multivariate normal distribution with mean (pi,&)’ and covariance matrix 
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In the special case of a first-order autoregressive process, 

a 2  = pc, (3.7.10) 

where lpl < 1. Thus, unless = 0, the classified training observations are 
not independent across the two groups, representing the two specified points 
in time. But as usual, they are independent within a group; that is, ~j for 
j = 1, ..., in denote in independent realizations (i  = 1,2). 

Das Gupta and Bandyopadhyay (1977) have derived the asymptotic expan- 
sions of the sample plug-in version of the optimal discriminant rule and its 
unconditional error rates for various forms of C12, including (3.7.10). In the 
latter special case, the problem has been investigated further in a series of pa- 
pers by Bandyopadhyay (1977, 1978, 1979). Bandyopadhyay (1982, 1983) and 
Leung and Srivastava (1983a) have studied the covariance-adjusted sample 
discriminant rule for this problem. 

3.7.6 Allocation of Growth Curves 

We consider here the allocation of an entity on the basis of a growth curve fit- 
ted to the repeated measurements made on it. Allocation of growth curves was 
first considered by Lee (1977) from a Bayesian viewpoint and later extended 
by Nagel and de Waal (1979); see Lee (1982) for a review. The growth-curve 
discrimination problem can be formulated in the just considered context of 
repeated measurements on the features of the entity to be allocated to one of 
the g underlying groups. Suppose that for a single (p = 1) feature variable x 
of the entity, the multiple measurements Xmlr . .  . , Xmlr have been recorded at 
K points in time SI, . . . , SK. If the growth curve is taken to be a polynomial of 
degree q - 1, we can write in group G i  

where 

pir, = WiO -k WilSk + "' + Wi,q-lsk (i = 1, ...,g). 

The usual assumption about the vector of residuals 

ci = (cjl,...,cjK)f 

is that it is multivariate normal with mean zero and with an unknown covari- 
ance matrix Cis This covariance matrix is not specified to be diagonal as the 
observations in time on the same entity are not independently distributed in 
general. 

The unknown coefficients W i j  ( j  = 0,. . .,q - 1) and Ci (i  = 1,. . .,g) can be 
estimated from the training data t containing growth curves observed on n 
classified entities. Here xj  = ( X j m  l , . . . , x j m K ) f  contains the K measurements in 
time on the single feature of the j th classified entity ( j  = 1,. . ., n). lb represent 
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t in the form of the growth model proposed by Potthoff and Roy (1964) under 
the assumption of homoscedasticity Ci = Z (i = 1,. . . ,g), we first let 

t: = (Xl,...,Xn) 

t', = (Zl,...,Z"), 

and 

where it is assumed now that the data have been relabeled so that the first nl 
feature vectors contain the growth curves on the entities from GI, the next nz 
contain the growth curves on the entities from G2, and so on, until the last n, 
feature vectors contain the growth curves on the entities from Gg. Consistent 
with our previous notation, 

n 

j=l 

denotes the number of entities from Gi, where Z i j  = ( Z j ) i  is one or zero ac- 
cording as to whether the jth entity belongs to Gi or not (i = 1,. . .,g). 

With this notation, the training data t can be expressed in the form of the 
growth model of Potthoff and Roy (1964) as 

(3.7.11) t: = cwt: + d, 
where C is the K x q matrix with 

(c)u" = s;-1 

(W)," = W",U-1 

(u = 1 ,..., K; v = 1 ,..., q)  

(I4 = 1 ,..., 4; v = 1 ,..., g). 

and where o is the q x g matrix with 

The p x n matrix Q of residuals is given by 

e (~1, . . . ,~n) ,  

where E j  denotes the vector of residuals for X j  ( j  = l,.. .,n). In accordance 
with our previous assumptions, the ' j  are distributed N(0, E), independently 
of each other. ' 

For further details on the fitting of the growth-curve model (3.7.11) to 
the training data t, the reader is referred to Lee (1982) and the references 
therein. 

3.7.7 Sequential Discrimination 

When the repeated measurements on an entity are able to be observed se- 
quentially, consideration may be given to the use of sequential allocation rules, 
particularly if it is possible to treat the repeated observations as being inde- 
pendent. References related to the sequential approach to discrimination 
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include Wald (1947, 1950), Armitage (1950), Kendall(1966), Freedman (1967), 
Simons (1%7), Fu (1968), Meilijson (1%9), Roberts and Mullis (1970), Yarbor- 
ough (1971), Srivastava (1973a), Smith and Makov (1978), Geisser (1982), and 
Titterington, Smith, and Makov (1985, Chapter 6). 

Mallows (1953) studied the sequential approach in the situation where there 
is only a single measurement on the feature variables of an entity, but the 
latter are observed sequentially. 

3.8 PARTIALLY CLASSIFIED DATA 

Up to now, in this chapter, we have concentrated on the typical situation in 
discriminant analysis, where the training data are completely classified. We 
now consider the computation of the maximum likelihood estimate of 9~ in 
the case of partially classified feature data, as considered in Section 2.7 for 
arbitrary parametric forms for the groupconditional distributions. The same 
notation as introduced there is adopted here, where the available data consist 
of the classified training data t containing yj = ( x i ,  2))’ for j = 1,. . . , n and the 
unclassified data tU containing the m unclassified feature observations X j  ( j  = 
n + 1,. . . , n + m). The maximum likelihod estimate of *u from t and t, can be 
computed iteratively via the EM algorithm, using equations (2.7.3) and (2.7.4) 
as described in Section 2.7. 

In the present situation of multivariate normal group-conditional distribu- 
tions with unequal covariance matrices, the solution of (2.7.4) exists in closed 
form. It follows that on the M-step of the (k + 1)th cycle, the current fit for 
the group means and covariance matrices is given explicitly by 

and 

(3.8.2) 

where 
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The posterior probability ~ i (x j ;qu)  that the jth entity with feature vector X j  

belongs to Gi can be computed from 

where (iis(x;@U) is defined by (3.23). 

common groupcovariance matrix, 
group-specific estimate (3.8.2) is replaced by 

Under the homoscedastic version of the normal model where C is the 
is replaced by 3Vf) in (3.8.1) and the 

McLachlan and Basford (1988) have provided a FOKI'RAN listing of com- 
puter programs for fitting heteroscedastic and homoscedastic normal mixture 
models to partially classified data with either separate or mixture sampling of 
the classified observations and also to completely unclassified data. 

3.9 LINEAR PROJECTIONS OF HOMOSCEDASTIC FEATURE DATA 

3.9.1 Introduction 

In dealing with multivariate feature observations, it often facilitates visualiza- 
tion and understanding to represent them in a lower-dimensional space. In 
particular, two- and three-dimensional scatter plots are often helpful in explor- 
ing relationships between the groups, assessing the group-conditional distribu- 
tions, and identifying atypical feature observations. However, if the dimension 
p of the data is greater than about 7 or 10, then considerable patience and 
concentration are needed for a careful scrutiny of all (:) and (5 )  scatter plots 
of pairs and triples of the feature variables. One approach to reducing the ef- 
fort involved in such an exercise is first to transform linearly the p original 
feature variables into a smaller number q of variables. This process is referred 
to in the pattern recognition literature as linear feature selection. 

For the linear projection C,, where Cq is a q x p matrix of rank q (q 5 p), 
there is the problem of how to choose Cq so as to best preserve the distinction 
between the groups, where q may or may not be specified. Often q will be 
specified to be at most 2 or 3 for convenience of the subsequent analysis, in 
particular the graphical representations of the transformed feature data. In 
some situations, there is interest in finding the single linear combination that 
best distinguishes the g groups, and so q is specified to be one. 

We proceed here under the homoscedastic normal model (3.3.1) for the 
group-conditional distributions. For this model, Geisser (1977) has provided 
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a comprehensive account of the topic. There is also the paper of Hudlet and 
Johnson (1977), which appeared in the same proceedings as the former ref- 
erence. More recent papers include Schervish (1984) and McCulloch (1986). 
Previously, Guseman, Peters, and Walker (1975) had considered the problem 
in the more general situation of unequal groupcovariance matrices. Results 
for this heteroscedastic case, which has been considered recently by Young, 
Marco, and Ode11 (1987), are discussed in Section 3.10. 

3.9.2 Canonical Variate Analysis 

A starting point in the consideration of linear projections of x is a canonical 
variate analysis, which expresses the differences between the means PI,. . . , p8 
in d = min(p,b,) dimensions, where b, is the rank of the matrix B, defined 
in what follows. A canonical variate analysis does not depend on the assump 
tion of normality, as only knowledge of the first two moments of the group 
conditional distributions is required. Let 

where 

We will reserve the notation B for the between-group sums of squares and 
products matrix on its degrees of freedom, 

For mixture sampling in equal proportions from the groups, B/n converges 
in probability to B,/g, as n -+ 00. The matrix B, is of rank bo <g - 1, where 
b, = g - 1 if pl, . . .,pg are linearly independent. 

The canonical variates of x are defined by 

v = r d x ,  (3.9.1) 

where 
r d  = (Yl,..,,"Yd)', 

and where 71 maximizes the ratio 

(3.9.2) 

7% 7/7'%. (3.9.3) 

For k = 2, ..., d ,  yk  maximizes the ratio (3.9.1) subject to 

' Y p - y h  = 0 (h = 1, ..., k - 1). (3.9.4) 
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Hence, the correlation between 7iX and yLX is zero for h # k = 1,. . .,d. The 
usual normalization of -yk is 

7 i x 7 k  = 1 (k = 1, ..., d) ,  (3.9.5) 

which implies that 7;X has unit variance. This normalization along with the 
constraint (3.9.4) implies that 

rdcr; = b, 
where Id is the d x d identity matrix. 

It will be seen from both allocatory and separatory aspects, the new set of 
coordinates v l ,  . . . , Vd is the complete set of multiple linear discriminant func- 
tions. Hence, sometimes in the literature they are referred to as discriminant 
coordinates rather than by the more usual name of canonical variates. 

The computation of r d  is well-covered in standard textbooks on multivari- 
ate analysis; see, for example, Seber (1984, Chapter 5). The transpose of its 
kth row, ~ k ,  is the eigenvector corresponding to the kth largest (nonzero) 
eigenvalue of F ' B , .  Hence, 7 k  satisfies 

(Bo-X,pC)rk=O ( k = l ,  ..., d),  (3.9.6) 

where &I,. . .,A,,& denote the nonzero eigenvalues of C-'B, ordered in de- 
creasing size. From (3.9.5) and (3.9.6), 

7&7& = Xo,k (k l,...,d). 

The eigenvalues and eigenvectors of C-'B, can be found using a singular- 
value decomposition algorithm; see Seber (1984, Section 10.1). Their compu- 
tation is usually considered in the literature for the typical situation in practice 
where B, and C are unknown and must be replaced by estimates formed from 
the available training data. The sample version of a canonical variate analysis, 
which is taken up later in Section 6.7, is just the multiple-group generaliza- 
tion of Fisher's (1936) approach to discriminant analysis in the case of g = 2 
groups for which, as seen in Section 3.3.3, 

71 o< s-'(z~ - ~ 2 ) .  

By building on the initial work by Fisher (1936) and Hotelling (1935, 1936), 
the technique of canonical variate analysis was developed during the 19409 by 
Rao (1948) and others. 

For p > d, we let 7d+l, ...,?p denote the eigenvectors of X-IB0 corre- 
sponding to its p - d zero eigenvalues, normalized as 

7LErk = 1 (k = d + 1, . . . ,p) .  

(3.9.7) 



90 DISCRIMINATION VIA NORMAL MODELS 

It follows then that 

I'X-N(I'pi,Ip) in Gj (i = 1 ,..., g), (3.9.8) 

where, corresponding to the partition (3.9.7) of r, 

3.93 Discrimination in Terms of Canonical Variates 

It is clear from (3.9.8) and (3.9.9) that for the purposes of allocation, the last 
p -d  canonical variates can be discarded without an increase in any of the 
groupspecific error rates. This is because Fp-dX is distributed independently 
of r d x ,  with the same distribution in each group. A concise reference on this 
is Kshirsagar and Arvensen (1975). 

We now verify this result that the optimal rule r o ( x ; ! P ~ )  formed from 
the vector x of p original feature variables is the same as the optimal rule 
ro(v;?yE(rd) )  formed from the vector v containing the d canonical variates of 
x. Here *&) is the analogue of g~ for the canonical variates. First, note 
that for multivariate normal groupconditional distributions with a common 
covariance matrix, the optimal rule ro(x; *E)  makes an allocation on the basis 
of the minimum of the discriminant scores, 

min{(x - p i ) ' C - ' ( x  - pi) - 210g~j). (3.9.10) 

Further, it is invariant under a nonsingular transformation, so that it is the 
same as the optimal rule ro(rx,*E(r)) using the full transformed feature vec- 
tor r x .  Hence, on noting that I'XI'' = I,, it follows that r,(x;?yE) is the same 
as the rule based on 

mjn{(rx - r p i ) ' ( r x  - rp i )  - 210g~i.). (3.9.1 1) 

This result can be established directly by noting that (3.9.10) can be written as 
(3.9.11) since IT' = W1. 

I 

1 

Considering now (3.9.11), 

{ r ( x - f i i ) } ' { r ( x -  pi)} = { r d ( x - ~ i ) } ' { r d ( x - ~ i ) }  

-k ( r p - d X - - p - d p ) ' ( r p - d X - - p - d S S ) ,  

and so it is equivalent to 

mjn{v - rdpi)'(v - Qpi )  - 210g~i). (3.9.12) 

This last result (3.9.12) defines r, (v; !PE(rd)) ,  because the covariance matrix 
of the vector of canonical variates is the identity matrix. Hence, ro(x;*E) is 

I 
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the same rule as ro(V;y&)). It can be seen from (3.9.11) that the latter 
assigns an entity to the group whose mean in the canonical variate space is 
closest in Euclidean distance to v, after adjustment for any disparity in the 
prior probabilities Ti of the groups. 

Of course, the overall error rate of the Bayes rule will be increased if it is 
based on a linear projection of x, Cqx, where the rank q of C,  is less than 
d. We now proceed to consider the allocatory and separatory aspects of dis- 
crimination on the basis of C,x. It will be seen for a given q < d in the case 
of g > 2 groups that, although an intuitively desirable projection C,  would be 
one that minimizes the error rate while maximizing the separation between 
the groups, the optimal choice of C, depends on whether the error rate or a 
separatory measure is to be optimized. The latter aspect of the choice of C, 
is considered first. 

3.9.4 Separatory Measures 

One approach to assessing the effectiveness of a linear map of the feature 
vector x from RP down to Rq(q 5 p) is to use a measure of spread of the g 
groups. For this purpose, Geisser (1977) and McCulloch (1986) have consid- 
ered a class of separatory criteria, which are intuitively motivated functions 
of the group means and their common covariance matrix. This class does not 
require any distributional assumptions, only the first and second moments. 

For the linear projection C,, they defined their class of measures of spread 
of the g groups to consist of measures of the form 

where h ( )  is any scalar function so that hq,(tcl, ...,/cqo) is increasing in the 
nonzero eigenvalues ~1,. . . , Icq, of 

where qo = min(q,bo). This class contains well-known measures such as those 
of Hotelling and Wilks. The former measure is based on the sum of the eigen- 
values, and the latter is based on their product. 

For given q, let sq be the measure of spread defined by 

The maximum value of sq over q is attained at q = d = min(p, bo). A choice 
of Cd that achieves this is r d  defined by (3.9.2). Hence, there is no interest in 
the following work in considering q 2 d. 

Geisser (1977) showed that for a given q (q < d), 

sq = hq(&3,1, * * 9 Xo,,), 

which can be achieved by taking C, = r,, where 

rq = (71,**-,7q)'~ 
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An alternative proof was given recently by McCulloch (1986), using the sing- 
ular-value decomposition of ( P I , .  . .,pg) after the feature vector has been trans- 
formed so that !Z = I,. Hence, for this class of measures of spread, the first q 
canonical variates, v1 = $x,. . . ,vq = yix, provide the optimal projection of x 
from RP to Rq. 

3.9.5 Allocatory Aspects 

Another way of defining the effectiveness of a linear projection C, of the 
feature vector is to use the overall error rate eo(9E(Cq)) of the optimal rule 
ro(Cqx;9E(Cq)) formed from the q feature variables in C,x. Here ~ E ( C , )  
denotes the elements of Cqpl, ..., Cqpg and the distinct elements of C,CCb. 
As seen in Section 3.9.3, there is no increase in the error rate eo(9E(Cq)) 
over eo(\kE.) for the full feature vector x, if we take C, = rd  and so use the 
vector v = rdx containing the d canonical variates, where d = min(p,bo) and 
h.-, is the rank of B,. However, if we use a projection C,x with q < d, then 
there will be an increase in the error rate eo(9E(Cq)). So far as the spread of 
the groups is concerned, it was seen in the last section that the choice C, = I?,, 
corresponding to the first q canonical variates, is the optimal linear projection 
from RP to Rq for the class of measures of spread 

(3.9.13) 

where h(.) is any scalar function that is increasing in the nonzero eigenvalues 
of 

(CqCCb)-l(CqB,Cb). 

However, it does not follow that eo(9E(Cq)) attains its minimum over C, for 
C, = I',. But, obviously, this choice can be regarded as an approximation to 
the optimal solution for the error rate. 

We now examine this in more detail for linear combinations Clx of the 
original p feature variables. For convenience of notation, we henceforth write 
C1 as a. 

3.9.6 Best Linear Combination in Terms of Error Rate 

Geisser (1977) has given an excellent account of linear discrimination for the 
homoscedastic normal model (3.3.1) as assumed now. He showed that for g 
groups with equal prior probabilities, the overall error rate for the Bayes rule 
based on the linear combination a'x is 

g-1 

eo(*E(a)) = (Z/g)C*Ii(v(i+l) - v(i))It 
i=l 

(3.9.14) 

where ~ ( 1 )  2 v(2) 2 . . . 1 vk) are the ordered values of v1,. . . , vg, and 

vi = afpj/(a'!Za)1'2. 
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For a linear combination a'x, the measure of spread (3.9.13) reduces to a 
monotonic increasing function of 

a'B,,a/a'Ca, 

which can be expressed as 

(3.9.15) 

Hence, maximizing the spread is equivalent to maximizing (3.9.15). This con- 
trasts with the function (3.9.14) to be minimized in order to minimize the 
overall error rate. There are thus two different functions of the ordered val- 
ues of y ,  . . ., vg to be optimized. In the special case of g = 2, the two goals of 
optimization coincide because 

a'B,a/a'Ca = 4{A(a)}2 

and 
e O ( g E ( a ) )  = 8 { - iA(a) 1, 

where 
A(a) = la'(p1 - p2)l/(a'&)1'2. 

It follows from Section 3.3.3, that A(a) is maximized by taking 

a o( E-'(CCI - ~ 2 ) .  

3.9.7 Allocatory Versus Sepamtory Solution 

For g > 2 groups, the problems of optimizing the overall error rate of the 
Bayes rule based on a'x and a measure of spread have different solutions in 
general. We have seen that a = 71 maximizes the measure of spread for the 
class of measures (3.9.13). It can be seen from (3.9.15) that this choice of a 
maximizes the sum of squared distances between the projections Vi = a'pi of 
the group means. Hence, it tends to make the large distances as large as pos- 
sible at the risk of making the small distances zero. However, with respect to 
the choice of a for the minimization of the error rate, it can be seen from 
(3.9.14) that the optimal value of a attempts to make the small distances be- 
tween the means as large as possible. ?b illustrate this point, we use the exam- 
ple of Habbema and Hermans (1979, which they presented in the context of 
the I;-statistic versus the error rate as a criterion for variable selection in dis- 
criminant analysis. Let v(1) = w1, v(2) = w2, and v(3) = -w1, where 0 < w2 < w1. 
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Then from (3.9.15), 
a'Boa/a%a = f(w: + w;/3), 

and from (3.9.14), 

e o ( W a ) )  = ( ~ 3 )  [*{-& + ~ 2 ) )  + @{4<~2 - wlj}] . 
For fmed wl, the minimum value of eo(*E(a)) with respect to w2 occurs at 
w2 = 0, at which the measure of spread (3.9.13) is minimized rather than max- 
imized. 

More recently, Schervish (1984) has presented an example in which the 
overall error rate eo(*E(a)) is not minimized by taking a = 71. In his exam- 
ple, he considered g = 3 groups with equal prior probabilities, having bivariate 
normal distributions with common covariance matrix C = 12 and means 

pl = (-1,-1)', 1.12 = (1,3)', and p3 = (3,l)'. 

For these values of the parameters, the Bayes rule t,,(x;@E) using both feature 
variables in x has an overall error rate of eo(@E) = 0.065. However, insight 
may be required into which single linear combination a'x of the features best 
separates the three groups so far as the associated error rate eo(\kE(a)) is 
concerned. Schervish (1984) showed that the latter has a minimum value of 
0.20 at 

a, = (0.989,0.149)'. 

His procedure for minimizing eo(\kE(a)) in the case of g = 3 is to be described 
shortly. The error rate of the Bayes rule based on abx is much larger than 
the corresponding rule based on the bivariate feature vector. However, it is 
appreciably less than the error rate of 0.344 for the univariate Bayes rule using 
the first canonical variate rfx. Here -yl = (1/& 1/&)' is the eigenvector of 
B,, corresponding to its largest eigenvalue. In this example, 

With the first canonical variate r lx ,  the projected means rip2 and yip3 
are equal, demonstrating the tendency of the first canonical variate to use the 
projection to increase the distances between the well-separated means at the 
risk of decreasing the distances between the badly separated means to zero. 
On the other hand, the projection a, that minimizes the error rate attempts to 
increase the small distances between the badly separated means in the original 
feature space. 
As remarked by Schervish (1984), the difference between the error rates 

of the Bayes rule based on the first canonical variate yix and the optimal 
linear combination abx is more extreme in his example than typically found 
in practice. Previously, Geisser (1977) had provided a less dramatic example 
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of how the linear rule based on yix is suboptimal in terms of the error rate 
criterion. 

3.9.8 Computation of Best Linear Combination 

We now describe the procedure developed by Schervish (1984) for the mini- 
mization of eo(*E(a)) with respect to a for g = 3 groups. In this case, it can 
be assumed without loss of generality that for the linear combination a'x, 

alp1 I P'PZ 5 a'l.43, (3.9.16) 

and hence that the Bayes rule has the form 

r,(a'x;@E(a))=i if x E R i  ( i = l ,  ..., 3), 

where R1, Rz, and R3 are the intervals 

Rl = (--oo, +'(Pl+ PZ)l, 

R3 = ( iO ' (P2  + P3), ..I. 
Rz = ( i a ' ( ~ i  + PZ), i a ' (~z  + IC~)], 

k t  u1 = IIPl- PzII, UZ IIP3 - PzII, and 

u3 = c--%/43 - Pz)'(CL1- PZ)/(UlUZ)}, 

u4 = C O S - ~ { P ' ( ~ ~  - pz)/u2). 

Then Schervish (1984) showed that the minimization of eo(!€'E(a)) reduces to 
minimizing the function 

k(U4)= $[I + 8 { ~ ~ l c ~ ( u 3 + ~ 4 ) } - ~ ( ~ ~ ~ c ~ ~ q ) ]  

with respect to a. This is a straightforward numerical problem because k(u4) 
is convex over the interval 

max{O, P(T - us)) 5 u4 I min{ir,a - u3), 

implied by the condition (3.9.16). 
In a similar manner, Schervish (1984) also showed for g = 3 groups how 

to choose a so as to minimize the maximum of the groupspecific error rates 
of the linear rule based on a'x. However, difficulties remain in attempting to 
extend his results to g > 3 groups. 

More recently, McCulloch (1986) has proposed some methods for approx- 
imating the a. that minimizes the overall error rate eo(qE(a)) for an arbi- 
trary number g of groups. Roughly speaking, the idea is to work with nor- 
malized linear combinations of the first few canonical variates, retaining only 
those that correspond to the dominant eigenvalues of C-IB,. For instance, 
if Ao,l and A0,2 are large relative to the remaining d - 2 nonzero eigenvalues 
of W1B0, then the problem is to minimize the error rate of the Bayes rule 
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using alvl+ a2v2, where a: + at = 1. McCulloch (1986) notes that this is a 
simple numerical problem. On putting a1 = cosw and a2 = sinw, it requires 
the minimization of the error rate (3.9.14) with respect to the one variable 
w (0 5 w 5 27r). For linear combinations of more than the first two canonical 
variateq McCulloch (1986) describes a method for obtaining an approximate 
solution. He showed that for the aforementioned example of Schervish (1984), 
it yields a linear combination for which the Bayes rule has an error rate of 0.21, 
which is quite close to the rate of 0.20 for the optimal univariate rule. 

3.10 LINEAR PROJECTIONS OF HETEROSCEDASTIC FEATURE 
DATA 

3.10.1 Best Linear Rule for g = 2 Groups 

In the previous section, we have considered the choice of the linear projec- 
tion C, of given rank q so as to minimize the overall error rate of the linear 
rule ro(Cqx;@E(Cq)). The latter is the Bayes rule based on Cqx under the ho- 
moscedastic normal model (3.3.1). In this section, we consider the choice of 
C, to produce the best linear rule, in the sense of having the smallest overall 
error rate, under the heteroscedastic normal model (3.2.1). Because the group 
covariance matrices are now no longer assumed to be equal, ro(C,x; *E(C,)) 
is not the best linear rule based on C,x for the given projection C,. 

Historically, this type of problem was first considered by Aoyama (1950) in 
the univariate case, for which a is a scalar and so can be taken to be one. This 
reduces the scope of the problem to the choice of the cutoff point, which was 
considered also by Stoller (1954), but from a nonparametric perspective. 

In the multivariate case, the development of the best linear rule based on 
the linear combination a'x for g = 2 heteroscedastic normal groups was con- 
sidered independently by Riffenburgh and Clunies-Ross ( 1960), Clunies-Ross 
and Riffenburgh (1960), Anderson and Bahadur (1962), and Jennrich (1962). 
It follows from their work that optimal linear rules can be formed by consid- 
eration of the following class of admissible linear procedures. For given w1 

and w2, where wlC1 + w2C2 is positive definite, consider the linear rule that 
assigns an entity with feature vector x to GI or G2, according as to whether 
a'x is greater or less than the cutoff point c, where a and c satisfy 

a = (WlC1 + wzC2)-'(Pr - P2) 

and 
c = a'p1 - wlalC1a = a'p2 + w&a. 

By appropriate choices of w1 and w2, the linear rule that (a) minimizes the 
overall error rate or (b) minimizes one error with the level of the other error 
specified or (c) minimizes the maximum of the two errors can be obtained; see 
T. W. Anderson (1984, Section 6.10) for details. Concerning (c), the minimax 



LINEAR PROJECTIONS OF HEllEROSCEDASTlC FEATURE DATA 97 

solution is given by w1 = w2 = w,, where w, is the value of w that maximizes 

~ ( w )  = a'(pl - p2) / [9 { (a '~ la ) ' /~  + ( a ' ~ , a ) ' / ~ ) ]  

with respect to w (0 < w < 1). Banjeree and Marcus (1965) have considered 
the computation of bounds for w,. The common value of the two error rates 
is CP{-$A(wo)}, 

For the homoscedastic case of C2 = I3, A(w) is identically equal to 

A = ((P1- P2)'=-l(P1- P2)}1'2, 

the Mahalanobis distance between two groups with a common covariance ma- 
trix. As noted by Anderson and Bahadur (1%2), it suggests the use of A(@,) 
as a measure of the distance between two groups with unequal covariance 
matrices. It has subsequently been considered in this way by Chaddha and 
Marcus (1968) and by Marks and Dunn (1974) and McLachlan (197%) for 
groupcovariance matrices that are proportional. Also, Chernoff (1952, 1972, 
1973) has considered measures, including A(w,), of the distance between two 
multivariate normal distributions with unequal covariance matrices. 

A sample version of the optimal linear projections, and hence sample lin- 
ear rules, as defined in the previous work can be obtained by replacing the 
unknown group means and covariance matrices with their unbiased estimates. 
Other sample linear rules have been proposed in the literature. For example, 
in the spirit of the approach of Glick (1%9), Greer (19'79, 1984) has given an 
algorithm for constructing the linear rule a'x, where a and its cutoff point c 
are chosen to maximize its apparent error rate when applied to the training 
data. A linear programming approach was adopted also by Freed and Glover 
(1981), where a and c are chosen from the training data by minimization of 

2 n  

iel  j=1 

with respect to a and c. Additional algorithms for linear discrimination can be 
found in Castagliola and Dubuisson (1989). 

Linear procedures besides the sample NLDR r, (x; ? f r ~ )  are not widely used 
in practice. As discussed by Marks and Dunn (1974), the so-called best linear 
rule offers little improvement over ro(x;&E) in those situations where the lat- 
ter is referable to the quadratic rule r,(x;?fru , and it is still not as good as 
r,(x;Ju), where the latter is superior to r o ( x ; d E ) .  

3.10.2 Best Quadratic Rule 

It was seen in the previous section that without the assumption of equal group 
covariance matrices, it is not a trivial task to find the best linear rule in the 
case of g = 2 groups, even though a univariate rule suffices. For g > 2 groups, 
there are immense difficulties in attempting to choose the linear projection C, 
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of rank q of the feature vector so as to give the best linear rule based on Cqx. 
The problem becomes more tractable if the choice of C, is made not for linear 
rules based on C,x, but for the quadratic Bayes rule ro(Cqx;*u(Cq)). This re- 
quires the minimization of the overall error rate of the latter rule, eo(*u(Cq)), 
with respect to C,. As the Bayes rule, and hence its error rate, is invariant un- 
der a nonsingular transformation of the feature vector, it follows from this and 
the fact that CqCb is positive definite that we can assume CqCb = I,. Hence, 
the problem is reduced to minimizing eo(*U(C,)) over all q x p matrices C, 
of rank q satisfying CqCb = Iq ,  which is compact. Since eo(qu(C,)) is a con- 
tinuous function of C,, a solution exists. 

Guseman et al. (1975) have considered this problem. In the case of q = 
1, they gave a method of obtaining a local minimum of eo(!Pu(Cq)). Moti- 
vated by the work of Odell (1979), Decell, Odell, and Coberly (1981), Tubbs, 
Coberly, and Young (1982), and Young and Odell (1984), Young, Marco, and 
Odell (1987) have considered this problem. They provided an approximate so- 
lution in the following way. 

Let M be the p x s matrix defined by 

M = [PZ -P1 I P3-Pl  I * - .  I P g  -P1 I -El I C 3 - z ~  I * * *  I z g  --ClI, 

where s = (g - l ) ( p  + l), and where it is assumed that Ci # El for at least 
one value of i (i = 2,. . .,g). Further, let 

M = H m K m  

be a full-rank decomposition of M, where H m  is a p x m matrix, K,,, is a m x s 
matrix, and m is the rank of M. The pseudoinverse of H m  is denoted by H i ,  
satisfying 

Then Young, Marco, and Odell (1987) showed that the Bayes rule based on 
H;x has the same error rate as the Bayes rule based on x. Moreover, m is the 
smallest value of q for which a linear projection from RP down to Rq (q 5 p) 
does not increase the error rate of the Bayes rule. They provided an approxi- 
mation to the solution to the problem of minimizing eu(*u(C,)) over all pro- 
jections C, of rank q < m by first finding the p x s matrix of rank q, denoted 
by Mq, that best approximates M, using the singular-value decomposition of 
M. Then factoring M, into a full-rank decomposition 

M, = HqKp (3.10.1) 

their approximate solution to the optimal linear projection of rank q is given 

Concerning the actual computation of the approximation M, to M, let 
A1,. . .,,is be the eigenvalues of M'M in order of decreasing size, where Xk = 
0 (k = m + 1,. . .,s). Then the singular-value decomposition of M is given by 

M = UAV', (3.10.2) 

HmH,Hm = Em. 

by H;. 
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where U is an orthogonal p x p matrix consisting of the orthonormal eigenvec- 
tors corresponding to the eigenvalues A1,. . . , A p  of MM', V is an s x p matrix 
with columns consisting of the orthonormal eigenvectors corresponding to the 
eigenvalues A1,. . . , A p  of M'M, and 

A = diag(A1,. . ., Ap). 

On letting 

the right-hand side of (3.10.2) can be partitioned accordingly as 

A& = diag(X1,. . . , Ak) (k = 1, ..., m), 

The p x s matrix M, that minimizes llM - Nqll over all p x s matrices N, of 
rank q is given by 

M, = U,A,Vi. (3.10.3) 

Here llM - N,JJ is the usual Euclidean or Frobenius norm of the matrix M - 

at N, = M,. By equating (3.10.1) with (3.10,3), it follows that the approximate 
solution H i  proposed by Young, Marco, and Odell (1987) is equal to Ub. As 
noted above, the Bayes rule is invariant under any nonsingular transformation 
of the feature vector. Hence, JqUb is also an approximate solution, where Jp 

is an arbitrary q x q nonsingular matrix. 
In the case of equal groupcovariance matrices, Young, Marco, and Odell 

(1987) noted that their method can still be used but with M defined now as 
the p x (g - 1) matrix 

M = [Pz-ccl I P3-Pl I * * *  I Pg - Pll. 

This definition of M presupposes that the data have been transformed in the 
first instance so that the common groupcovariance matrix is equal to the iden- 
tity matrix. 

With this method in practical situations where the Pi and Xi are unknown, 
the latter can be replaced by their sample analogues Zi and Si (i = 1,. . .,g); see 
lbbbs, Coberly, and Young (1982). Morgera and Datta (1984) have considered 
the particular case where the groupconditional means are specified to be the 
same. The predictive version of the problem has been considered by Young, 
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Marco, and Odell (1986). In an earlier paper, Young, Odell, and Marco (1985) 
extended the normal model to a general class of density functions known as 
&generalized normal densities. 

This problem of reducing the dimension of the feature vector through the 
choice of a suitable linear projection C, has been considered on the ba- 
sis of other criteria besides the Bayes error rate. Decell and Marani (1976) 
used Bhattacharyya’s distance measure, Decell and Mayekar (1977) used the 
Kullback-Leibler information, and in a more recent paper, Bidasaria (1987) 
used Jeffreys’ measure of information. Peters (1979) invoked the mean-squared 
error criterion to select a linear projection of the feature variables. This prob- 
lem has also been considered nonparametrically (Bryant and Guseman, 1979). 



C H A P T E R  4 

Distributional Results for 
Discrimination via Normal Models 

4.1 INTRODUCI'ION 

In this chapter, we are to consider available results for the distribution of 
discriminant functions and associated rules of allocation in the case of multi- 
variate normal groupconditional distributions for which the parameters may 
or may not be known. We will consider also for these models distributional re- 
sults for the conditional error rates of sample-based rules, in particular of the 
plug-in sample version of the Bayes rule. It will be seen that analytical results 
are available only in special cases such as for g = 2 homoscedastic groups. 
Even then, the distributional problems are so complex that most have been 
tackled using asymptotic rather than exact methods. As is discussed in Chap 
ter 10, asymptotic expansions of the means and variances of the conditional 
error rates can be of use in their parametric estimation. 

4.2 DISTRIBUTION OF SAMPLE NLDF (W-STATISTIC) 

4.2.1 Historical Review 

It was shown in Section 3.3 that under the homoscedastic normal model (3.3.1) 
for g = 2 groups, the plug-in sample version rO(x;@=) of the Bayes rule is 
based on the single sample NLDF (normal-based linear discriminant function), 

(4.2.1) 
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It is obvious from (4.2.1) that t(X;&) is invariant under a nonsingular linear 
transformation. 31 show that the group-conditional distributions of t(x;&) 
depend only on the Mahalanobis distance A in addition to the sample sizes, 
we transform the feature vector x to 

(4.2.2) 

where C1 is such that C 1 X ;  = I, (the p x p identity matrix), and C2 is an 
orthogonal matrix whose first row is 

(Cl(CL1 - P2)~'/11C1(Cc1- P2)Il. 

Here again llall is used to denote the norm (a'a)lI2 of a vector a. After trans- 
formation according to (4.2.2), it can be easily seen that the feature vector is 
distributed N(pio71p) in group Ci, where 

pjo  = ( ( - I~+ '$A,O ,..., 0)' (i = 1,~). 

Hence, it can be assumed without loss of generality that 

PI = -PZ = ($A,O,. . .,O)' and C = I,. (4.2.3) 

The distribution of the sample NLDF [(x;&) is extremely complicated and 
has been the focus of many investigations over the years. Surveys of this work 
can be found in Raudys and Pikelis (1980) and Siotani (1982). The former 
paper is also a valuable source of references in the considerable Russian lit- 
erature on this problem. The latter paper by Siotani (1982) provides a review 
of allocation statistics including <(x;&). In particular, it lists all the available 
higher-order terms in the asymptotic expansions of the distributions of these 
statistics. The few exact results that have obtained apply mainly to certain uni- 
variate cases; see Schaafsma and van Vark (1977) and the references therein. 

00, is 
the same as that of t(x;&), which is 

The limiting ith group-conditional distribution of t(x;&), as nl, n2 

t(x;@E) - N((-4)'+'A2,A2) in Gi (i = 1,2). 

This limiting result, which was first given by Wald (19M), follows in a straight- 
forward manner on noting that & converges in probability to t?E as nl,n2 -+ 

00; see, for example, T. W. Anderson (1984, Section 6.5). 
Following Wald (1944), T. W. Anderson (1951), Harter (1951), and Sitg- 

reaves (1952) studied the distribution of t(X&) and associated problems. 
For the case of known XI, John (1959, 196Ob) derived the exact distribution of 
{ ( X ~ E )  and, in a later paper (John, 1%1), expressed its expectation in terms 
of the cumulative distribution of the ratio of two independent but noncentral 
chi-squared variates. An explicit justification of this last result was given later 
by Moran (1975). 

Bowker (1%1) showed that {(x;&) can be represented as a function of two 
independent Wishart matrices, one of which is noncentral. This representation 
was used by Sitgreaves (1961) to obtain an exact formula for the distribu- 
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tion of ((X;&). It was used also by Bowker and Sit eaves (1%1) to obtain 

(1%1) obtained a large-sample-size approximation to the distribution function 
of ((X;&) for univariate feature data, and Teichroew and Sitgreaves (1961) 
considered an empirical approximation. These last five papers appeared simul- 
taneously, each being a separate chapter in a volume edited by H. Solomon. 

an asymptotic expansion of the distribution of {(X f E )  for nl = n2. Elfving 

4.2.2 Asymptotic Expansions 

As indicated by Sitgreaves (1%1) at the time, her exact expression for the 
distribution of the sample NLDF ~(X;&E) was too complicated to be used 
numerically. Although Estes (1%5) was able to reduce this formula to a form 
more suitable for numerical computation, asymptotic expansions have been 
the main theoretical tool for providing insight into the distribution of t(X;&). 

Conditional on nl and n2, Okamoto (1%3,1968) derived the asymptotic ex- 
pansions of the groupconditional distributions of t(X &), appropriately nor- 
malized for each group, up to terms of order O(N-2) ,  where N = nl + n2 - 2. 
More precisely, the error of these expansions is of order O(nT3), where no = 
min(n1, n2, N). These expansions have since been used extensively in studies 
on the unconditional error rates of the rule based on t(x;&). 

Let Fwl(w;A,nl, n2) denote the probability 

pr{(W - $A2)/& < w I X E Gl,nl, m), 
where W = [ (xb~) .  Then as N 4 00 with nl/n2 4 a finite positive limit, we 
have from Okamoto (1963) that 

Fw1(w;A,n1,n2) = @(w)  + #(w)(hl/nl+ h2/n2 + h 3 / W  + 
(4.24) 

where 

hi = - $A-2{ w3 + ( p  - 3 ) ~  - PA}, 

h2 = -$A-2{ w3 + 2Aw2 + ( p  - 3 + A2)w + ( p  - 2)A), 

and 
h3 = -${4w3 + 4Aw2 + (6p - 6 + A2)w + 2@ - 1)A). 

As this expansion contains powers of A-2, it may not provide a reliable a p  
proximation for values of A less than one if nl and n2 are not large relative 
to p. Okamoto (1%3, 1968) also gave the second-order terms in this expan- 
sion, and Siotani and Wang (1975,1977) added the third-order terms. A single 
reference for these higher-order terms is Siotani (1982). 

The asymptotic expansion of F4w;A,nl,n2) can be obtained from (4.24) 
on using the result that 

(4.2.5) F W Z ( ~ ;  A, n1, n2) = 1 - FwI(-w; A, n21 nl). 
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?b see this last result, we let 41 denote 8~ with the group labels interchanged. 
The distribution of t (Xbi)  in G2 is clearly the same as the distribution of 
[ (XbE) in G1, but with the group labels interchanged; that is, with only n1 
and 112 interchanged, as A is invariant under an interchange of group labels. 
Hence, we can write 

Fwz(-w; A, n1, n2) = PT{(t(X;@E) + iA2)/A < -w I x E G2, n1, R21 

= pr{(t(x;@E) - fh2)/a > --w I x E ~1,n2,n1) 

= 1 -Fwl(-w;A,nz,nl). 

These results, which are conditional on nl and n2, apply directly to the case 
of separate sampling of the training data t. They can be easily modified to a p  
ply to mixture sampling where ni has a binomial distribution with parameters 
R and ?ri (i = 1,2); see, for example, h u n g  (198th). 

Kocherlakota, Kocherlakota, and Balakrishnan (1987) have provided a uni- 
fied development of the asymptotic expansions available for the distributions 
of the error rates of the sample rule based on <(x;dE) in univariate nonnor- 
ma1 situations. The work in the papers referenced therein are to be reported 
in Section 5.6 in the context of the robustness of the sample NLDF t (~;d)~) .  

4.23 Derivation of Asymptotic Expansions 

In this section, we present an outline of Okamoto's (1963) derivation of the 
second-order expansion of the distribution function Fwl(w;A, nl, n2) of the 
normalized sample NLDF 

{t(X;&) - %A21/A, (4.2.6) 

where X comes from GI. It is an important theoretical result in discrimi- 
nant analysis. Moreover, the differential operator used in its derivation has 
since been applied extensively in large-sample studies of the error rates of the 
normal-based linear discriminant rule (NLDR) based on <(x; b ~ ) .  

Corresponding to the form (3.3.4) for ((x;&), we express t(x;&) as 

(4.2.7) 

where 
& = + 4) 's - ' (4  - E2), (4.2.8) 

(4.2.9) 

We also need the following notation for the differential operator concerning 
the elements of XI, 4, and S. Let 

8i.j =a/a(Ei)j ( i  =L 1 9 2 ;  i = l , - . . ,p )  
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and 

Bij = Oji 

= 1(1+ Sij)O/S(S)jj (i 5 j = I, ...,PI, 
where 6ij is the Kronecker delta. We let ai be the vector 

ai = (6i,1, * ai,p)' 

and 6 the matrix with typical element Sij. 

ality that 

where 

Actually, Okamoto (1%3) adopted a slightly different canonical form with 
plo = 0 and 

Okamoto (1963) expanded Fwl(w;A, nl, nz) by first expanding the characteris- 
tic function of 

{((x PE) - 3 A2) /A, (4.2.11) 

where X belongs to GI, and then inverting the resulting expansion. This deriva- 
tion was effected by a Thylor series expansion about the point 

(Zl = C(l0, 4 = P209 s = Ip). (4.2.12) 

On writing the sample NLDF ((x;&) as W, the characteristic function 

+wl(t) = E(itA-'(W - ;A2) I X E GI}, (4.2.13) 

where i is the complex operator. The expectation in (4.2.13) over the joint 
distribution of X, XI, X2, and S can be effected by first conditioning on the 
latter three sample statistics to give 

JfWl(2) = W W l ( C 7 L X 2 ,  S)I, (4.2.14) 

As demonstrated in Section 4.2.2, it can be assumed without loss of gener- 

P1 = Plo, P2 = P20, = Ips (4.2.10) 

~ ( 1 0  = -c(& = (hA,O, ..., 0)'- 

c(& = (A,O,. . ., 0)'. 

* ~ 1 ( 1 )  of its normalized form (4.2.11) is defined by 

where 

+wl(t;Xl,Z2,S) = E{itA-'(W - $Az) I X E G1,&,K2,S}. (4.2.15) 

It can be seen from (4.2.7) that, conditional on Z1, Z2, and S, the statistic 
(W - iA2)/A within group GI has a univariate normal distribution with mean 

A-l&E +?;pio - $A2) 

and variance 
A - Y ; E J E  
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under the canonical form (4.2.10). Hence, (4.2.15) is equal to 

$wl(t;4,4,S) = exp{itA-'()& + &plo - $A2) - it2A-2&&). 

On using the fact that the function $wl(t;4,4,S) is analytic about the 

(4.2.16) 

point (4.2.12), Okamoto (1963) expressed it in the form 

?h(t;~1,j32, S) = {@(%K2, s)$wl(c~1,~2,s>l lo, 

where 8(511,512, S) is the differential operator defined formally by 

Q(%Z2,S) = exp[(511- Plo)'a, + (512 - p20)'aL + tr{(S - 47)a)l. 
In (4.2.16), the symbol lo implies evaluation of the differential operations at 
the point (4.2.12). After noting that the operations of expectation and differ- 
entiation can be interchanged, Okamoto (1963) proceeded to show that the 
expectation of (4.2.14) can be expressed as 

Yhvl(t> = m " l , X 2 ,  ~ ) $ w l ( ~ ; ~ 1 , ~ 2 , ~ ~ ~ l o l  

= {Ww1(~ ;~1 ,~2 ,S )} I0 ,  (4.2.17) 

where 
0 = E{O(Rl,X2,S)}. 

As XI, X2, and S are independently distributed, we can write 0 as 

0 = ml(&)m2(&)m3(0), (4.2.18) 

where 
mi(&) = E[exp{(Xi - e~io)'ai)I 

is the moment-generating function of Xi - pi0 with ai as the vector of dummy 
variables (i = 1,2), and 

m3(8) = E[exp{tr(S - 1,)a)l 

is the moment-generating function of S - I, with 8 as the matrix of dummy 
variables. These mornent-generating functions are well-known, because 

- 
xi - p j o  N N(O,nr'I,) (i = 1,2) 

and 
NS v w p ) ,  

where W(N,.I,) denotes a Wishart distribution with N degrees of freedom 
and expectation matrix NI,. They are given by 

rni(8,) = exp(tn;'@ai) (i = 1,2) 

and 
m,(a> = exp{-tr(a>- $NlogIIp - ~ N - ' o I ) .  
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Substitution of these expressions into (4.2.18) yields 

8 = exp{ $nL1q& + &'&& - tr(S) - iNlogI1, - 2N-'61). 
(4.2.19) 

On using the expansion 

-1og11- C I  = tr(c)+ $tr(C2)+ Qtr(C3) + - - -  
with C = (2/N)B in (4.2.19), Okamoto (1963) showed that 8 can be expanded 
as 

The second-order expansion of $wl(t), and hence of &l(w;A,nl, n2) after 
inversion, is obtained on evaluating (4.2.17) up to terms of the second order 
with 8 given by (4.2.20). 

4.3 MOMENTS OF CONDITIONAL ERROR RATES OF SAMPLE 
NLDR 

4.3.1 Unconditional Error Rates 

Under separate sampling of the training data, we let eui(A,nl,nz) denote the 
unconditional error rate specific to group Gi (i = 1,2) for the normal-based 
linear discriminant rule (NLDR) using the sample NLDF {(x;&) with cut- 
off point k. For k = log(7r2/q), this rule corresponds to the plug-in sample 
version r,(x;@E) of the Bayes rule. Now 

eul(A,nl,n2) = pr{€(X;&,) < k I X E  G,n1,nz) 

= Fwl(wo;&nl,n2), (4.3.1) 

where 
W, = (k - ~ A ~ ) / A .  
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For a zero cutoff point k corresponding to equal groupprior probabilities, 
it follows from (4.2.4) on substituting wo = -$A in (4.3.1) that 

ew(A,nl,n2) = +(-iA) + {$(iA)/16][{A + 12(p - l)A-'}/nl 

+ {A - 4(p - l)A-'}/nz + 4(p - l)A/N] + O(N-'). 
(4.3.2) 

The corresponding error rate with respect to the second group euz(A,nl,nt) is 
given by interchanging nl and n2 in (4.3.2). The leading term of order O(1) in 
both these expansions is +(-$A), which is the common value of the optimal 
error rate for each group in the case where the prior probabilities are specified 
to be equal. Concerning exact expressions for the unconditional error rates of 
the sample NLDR in special situations, in addition to the previously refer- 
enced work of John (1961) and Moran (1975) in the case of known X, there is 
the more recent paper of Streit (1979), who considered the case of unknown 
I: but known group means pl and p2 .  Srivastava (1973b) has evaluated the 
unconditional error rates under various states of knowledge of pl, p2, and 
C. Sayre (1980) has derived exactly the density of the overall conditional er- 
ror rate in the case of univariate feature data. Fatti (1983) has considered the 
distribution theory for the random effects model where the group-conditional 
means are taken to be the realizations of a multivariate normal random vector. 

In a recent study, Wyman, Young, and Turner (1990) drew attention to the 
existence in the Russian literature of three simply expressed asymptotic expan- 
sions for eui(A,nl,nz), by Deev (1972), Raudys (1972), and Kharin (1984). 
Wyman et al. (1990) compared the accuracy of these three approximations 
with that of widely available expansions, including Okamoto's (1963). It was 
found for the combinations of the parameters considered in the study that the 
approximation of Raudys (1972) has overall the best accuracy. The overall ac- 
curacy of the approximation of Deev (1972) was found to be very similar to 
that of Raudys (1972). 

For a zero cutoff point, the asymptotic expansion of e~j(A,ni,nz) by 
Raudys (1972), as reported in Wyman et al. (1990), is +(-iA2/c), where 

c = {(nA2 + 4p)/(n - p)}'I2. 

4.3.2 Variances of Conditional Error Rates 

As can be seen from their definition (1.10.2) in a general context, the condi- 
tional error rates of an allocation rule are themselves random variables, being 
functions of the realized training data t. They also depend on the unknown 
groupconditional distributions and so must be estimated in practice. Their 
estimation is considered in Chapter 10. 

In this section, we are concerned with the sampling distribution of the con- 
ditional error rates taken over the training data from which the rule has been 
formed. It has been seen in the previous work, that even for g = 2 groups 
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under the homoscedastic normal model (3.3.1), the distribution of the sample 
NLDF <(x;&) is quite complicated. The distributions of the conditional enor 
rates of the rule using the sample NLDF <(x;&) are even more difficult to 
consider analytically. 

Under the homoscedastic normal model (3.3.1) for g = 2 groups, we let 
ecj(k,&&) denote the probability conditional on t, and hence on d ~ ,  that a 
randomly chosen entity from group Gj (i = 1,2) is misallocated by the NLDR 
using the sample NLDF <(x;&) with a cutoff point k. That is, 

ec1z(k,A;&) = pr{t(x;&) < k I x € G1,Q 

ec21(k,A;&) = pr{t(x;&) > k I x € G 2 , M .  

(4.3.3) 

(4.3.4) 
and 

Closed expressions are available for the conditional errors (4.3.3) and (4.3.4). 
It can be seen from (4.2.7) that the distribution of t ( x ; b ~ ) ,  conditional on &, 
is univariate normal within group Gi, with mean 

&E + &pi 

and common variance Thus, 
(i = 1 , ~  

eci(k,A;&) = *{(-1)’+’(k -BE - & P i ) / ( & ~ b E ) ” z ]  

(i = 1,2). (4.3.5) 

It can be seen from (4.3.5) that these conditional errors are functions of the 
groupsample means X I  and Xz and the (unbiased) pooled sample covariance 
matrix S. In order to study the distributions of the conditional error rates, 
McLachlan (1973a, 1974a) considered for the canonical form (4.2.12) lkylor 
series expansions of relevant functions of them about the point 

(Zl = Ploy XZ = PZO, s = I p ) ,  (4.3.6) 

before averaging the retained terms over the joint sampling distribution of 
XI, xz, and S. The large-sample approximations so obtained are based on the 
following result, which was established by proceeding along the lines as in 
Cramk (1946, Chapter 27) on the expansion of the expectation of a function 
of sample moments. 

Let H(jil,&, S )  be a bounded function of R1,Z2, and S that satisfies certain 
regularity conditions in a neighborhood of the point (4.3.6). For the present 
distributional problems, McLachlan (1974a) provided an adequate set of con- 
ditions, but it can be considerably generalized if so desired. Then if n2/n1 

tends to a positive limit as N = nl + nz - 2 tends to infinity, the expectation 
of H(?zl,jti,S) can be expanded as 

- 

E { f W W h  S)) {QH(Xi,Xz, S))lo + O W 3 ) ,  (4.3.7) 

where 43 is the differential operator (4.2.20) obtained originally by Okamoto 
(1963) in his expansion of the distribution of the sample NLDF <(x;&). 
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As the results that follow are for a zero cutoff point (k = 0), we abbreviate 
eCj(L\,@dE) to eCi(A;&) for brevity of notation. We let euj(A;nl,nz) denote 
the unconditional or expected error rates, 

eui(A;nl,nz) = E{eCi(A;&) I nl,n2} (i = 1,2). 

Concerning expansions of eui(A, nl, n2), we let 

eui(A;nl,nz) = e!h)+ O(N-('+')) (i = 1,2), 

where ep' denotes the expansion of eui(A; nl, n2) up to terms of order 0(lVh) 
(h = 0,1,2), as introduced in the previous section. For the overall error rate, 

1 
2 

2 

eu(~;n l ,n2)  = - C e ~ i ( ~ ; n l , n z ) ,  
i=l 

we let 
su(A;nl,nz) = e@) + O(N-('+h)), 

where 
e(h) = f(eih) + ef)> 

for h = 0, 1,2. 
As 

eui(~;nl,n2) = E{eci(A;k) I ni1n2}, 

we can obtain e!2) by taking H(j31,Xz,S) to be eci(A;dE) in (4.3.7). As the 
expansions of ey) and e r )  had been derived already by Okamoto (1%3), 
McLachlan (1974a) was concerned with the application of (4.3.7) to obtain 
approimations to the distributions of the conditional error rates. Previously, 
McLachlan (1972b) had shown that the variance of ecl(A;&) can be ex- 
panded as 

var{ecl(A;dE)} = vi2) + o ( N - ~ ) ,  

where 

v?) = { [ l / ~  + l/n2 + {3A2 + 8(3p - 4) - ( p  - l)(16/A2)}/(32nf) 

+ {3A2 - 8p - (p - 1)(16/A2)}/(32n$) 

+ {3A2 + 8(p - 2) + (p - 1)(48/A2)}/(16nln2) 

+ ( p  - 1)(A2 + 12)/(4niN) 

+ ( p  - 1)(A2 - 4)/(hzN) + ( p  - 1)A2/(2N2)]. 

This result can be obtained by evaluating 

(@H2>lo - {(QH)1Ol2 (4.3.8) 
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up to terms of order O(W2)  for H(Xl,X2,S) = ecl(A;bg). Similarly, 

var{ecz(~$g)) = $1 + o ( N - ~ ) ,  

where v f )  is obtained by interchanging nl and n2 in vy) .  In the evaluation 
of (4.3.8) for H(4,X2,S) = ec(A;&) to obtain the secondsrder expansion of 
the variance of the overall conditional error rate, all the first-order partial 
derivatives are zero. Hence, the first-order expansion dl) is zero. The second- 
order expansion is given by 

var{ec(A;&)} = d2) + 0(W3), 

where 

d2) = [{$(iA)}2/128][{A2 + (p - 1)(16/A2)}(1/q + l / n ~ ) ~  

+ (p - 1)(16/lV){1/~~1+ l / n 2  + A2/N)]. 

The corresponding expansions of the variances of the overall and group 
specific conditional error rates for ((x;&) applied with an arbitrary cutoff 
point have been derived by Sayre (1980); see also Siotani et al. (1985, page 
41 1). 

4.33 Means and Variances of Conditional Error Rates: g > 2 Groups 

Up to this point, the results presented in this chapter have been limited to 
the case of g = 2 groups, primarily because of the formidable nature of the 
distributional problems involved with discrimination. The case of g > 2 groups 
has been addressed by Schervish (198la), who considered the conditional er- 
ror rates of the plug-in sample version ro(x;x,&) of the Bayes rule for known 
but arbitrary prior probabilities under the homoscedastic normal model (3.3.1) 
for the group-conditional distributions. In this situation, it can be assumed 
without loss of generality that the common groupcovariance matrix C is the 
identity matrix Ip. Further, as the groups can be relabeled, there is no loss 
of generality in taking j = g in the consideration of the conditional error rate 
e C i j ( 9 E ; b E )  that a randomly chosen entity from Gi is assigned to Gj. Let big 
be the (s - 1)-dimensional vector with jth element 

(big)j = {pi - $(Tj + Tg)}'S-'(Ej -Xg) + kijg 

for j = 1,. . . ,g - 1, where 
1 kijs = z(pj - p g l ' b j  - pg) - (pi - pg)'(pj - pg). 

Also, let C, be the (g - 1) x (g - 1) matrix whose (j,k)th element is 

(Cg) jk  = ( X j  -x~)'s-'s-'(Q -4) 
for j,k = 1 ,..., g - 1. It is assumed that the group means p1, .. .,pg lie in no 
space of dimension g - 2 or less so that C, is nonsingular with probability one. 
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Under the assumptions above, Schervish (1981a) noted that ecig(*E;8E) can 
be expressed as 

(4.3.9) 
where 

Rig =(v€R’-’: (V)jIkijg-log(?rj/sg), j =  l,...,g-l} 

for i = 1,. . .,g - 1. As demonstrated by Schervish (1981a), this representation 
(4.3.9) of eci,(@E;&E) is a convenient starting point for the expansions of 
its mean and variance. Using (4.3.9), he proceeded to give the first-order ex- 
pansions of the mean and variance of eci,(*E;dE) for separate sampling of 
the training data from an arbitrary number g of groups. In the special case 
of g = 2 roups, Schervish (1981a) noted that his expansion of the mean of 

(1963). Likewise, his first-order expansion of the variance of ec,,(!&~;dl~) for 
g = 2 groups with equal prior probabilities reduces to that provided originally 
by McLachlan (1972b). 

ecl;r(*~; f E )  reduces to the expansion available from the results of Okamoto 

4.4 DISTRIBUTIONS OF CONDITIONAL ERROR RATES OF SAMPLE 
NLDR 

4.4.1 Large-Sample Approximations 

We consider here some large-sample approximations to the distributions of 
the conditional error rates eci(A;OE) of the NLDR using the sample NLDF 
( (x ;8~ )  with a zero cutoff point. Initial work on this problem has included the 
investigations of John (1961, 1964, 1973). 

Let $j(t) denote the characteristic function of the conditional error rate 
ecj(A;&) specific to the jth group C j ( j  = 1,2), and $( t )  the characteristic 
function of the overall conditional error ec(A;dE). Then on taking 

H(Til,Ti2, S) = exp{itec(A;&)} 

in (4.3.7), where i is the complex operator, McLachlan (1974a) showed that 
for separate sampling of the training data, 

+ ( t )  = exp{ite(’) - i t 2 v ( z ) }  + o ( N - ~ ) .  (4.4.1) 

Similarly, he showed for the groupspecific conditional error rates that 

(4.4.2) 
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for 1 = 1,2, where 

m = i#(iA)j&/a)(n;1+ n;1)2. 

The second-order expansions e(2) and d2) for the mean and variance, respec- 
tively, of ec(A,&) and those for the groupspecific conditional error rates 
eCj(A;&) have been defined in the previous two sections. The expansion cor- 
responding to (4.4.2) for a nonzero cutoff point k has been given by Sayre 
(1980); see also Siotani et al. (1985, page 411). 

The expansion (4.4.1) implies that up to terms of order 0(W2), the over- 
all conditional error rate eC(A;&) has a normal distribution with mean e(2) 
and variance d2). However, it can be seen from (4.4.2) that the groupspecific 
conditional error rates have a normal distribution only up to terms of order 
O(N-'), and not O(N-2) ,  since the third moment of each about its mean is 
6m + O(N-3) .  

4.4.2 Asymptotic Distributions of Group-Specific Conditional Error Rates 

Concerning the asymptotic distributions of the groupspecific conditional er- 
ror rates eCi(A;dE) of the sample NLDR, it can be shown that if nl/nz + a 
positive limit as n = nl + n2 -+ 00, then 

{eCi(A;bE) - ey)}/,/Vy) (4.4.3) 

converges in distribution to that of a standard normal. We write 

(4.4.4) 

The leading term e$) of order O(1) in the expansion of e~i(A;nl,nj?) is the 
optimal error rate eoi(A), which has a common value of @(-$A) in the case 
here of a zero cutoff point. The expansion of the characteristic function +i(t) 
of eci(A;aE) was described in the last section. In a similar manner, the limit- 
ing result (4.4.4) can be obtained by expanding the characteristic function of 
the normalized version (4.4.3) of eCi(Ah;bE). The corresponding results for an 
arbitrary cutoff point have been given by Sayre (1980). 

The normalized version 

{ec(A;&) - e('))/,/d2) (4.4.5) 

of the overall conditional error rate does have a nondegenerate limiting dis- 
tribution as n -+ 00, although it is not a standard normal. This is because all 
first-order partial derivatives in the Taylor series expansion of ec(A;d:) are 
zero, and so the quadratic terms are dominant. 

The asymptotic distribution of the overall conditional error rate of the sam- 
ple NLDR under a mixture sampling scheme has been derived by Efron (1975) 
and ONeill (1976, 1978) in the course of their work in comparing the rela- 
tive efficiencies of sample-based rules in their estimation of the Bayes rule 
r,,(x;qE). As shown by Sayre (1980), their results can be used to obtain the 
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asymptotic distribution of the overall error rate for separate sampling of the 
training data. ONeill (1976, 1980) has also derived the asymptotic distribu- 
tion of the overall conditional error rate of a general allocation rule for g = 2 
groups. We will first present this general result and then show how it can be 
specialized to give the asymptotic distributional result for the sample NLDR. 

4.43 Asymptotic Distribution of Overall Conditional Error Rate of a 
Plug-In Sample Rule 

For g = 2 groups, we consider here the asymptotic distribution of the plug-in 
sample version r,(x;&) of a general Bayes rule ro(x;9) of the form (1.4.3). 
For g = 2, the Bayes rule ro(x;9) is based on the posterior log odds 

rl(x;*) = log(71(x;9)/72(x;9)} 

= log(.rr1/.rr2) + log{fl(X;~l)/f2(x;~2)~. (4.4.6) 

In some situations, q ( x ; 9 )  may be expressed as a function of x and a, where 
a is a q-dimendonal vector containing fewer parameters than 9. That is, a 
contains the so-called discriminant function coefficients. For economy of no- 
tation, we will still use 17 to denote this function of x and a. For example, if 
f1(x;el)/f2(x;&) is linear in x, then a will contain q = p + 1 parameters. 

We suppose that & is a consistent estimator of a formed from the training 
data t, such that as n --+ 00, 

fi(& - a ) L N ( O , A ) ,  (4.4.7) 

where A is a q x q positive definite symmetric matrix. In order to derive 
the asymptotic distribution of the overall error rate of the plug-in sample 
rule r,(x;$), it is convenient to work with its overall conditional error rate 
e c ( 9 ; 8 ) ,  expressed as a function of the training data t through 8 rather than 
&. 

ONeill (1976, 1980) derived the asymptotic distribution of 

n{ec(q;&)  - e o ( 9 ) )  

using the well-known asymptotic result, which can be stated as follows. Sup 
pose H ( a )  is a twice continuously differentiable function of Q that satisfies 

V , H ( a )  = 0, (4.4.8) 

where V, is the gradient vector 

v, = (a/aal, ..., 6/Ba,)' 

and aj = (a)j for j = 1, .  . . , q. Then for a sequence of estimators 8 satisfying 
(4.4.7), the asymptotic distribution of n{H(&)  - H ( a ) }  is given by 

n{H(&)  - H ( a ) }  A U ' J U ,  (4.4.9) 
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as n -+ bo, where U N N(O,A), and 

J = )VoV6H(a). 

The result (4.4.9) is obtained in a standard manner by a 'hylor series expan- 
sion of H(&) about the point a; see, for example, Lehmann (1983, Section 
5.1). 

ONeill(1980) used (4.4.9) to give the asymptotic distribution of 

n{ec(Y;&) - eo(*)) 

under mixture sampling of the training data. In forming q(x;&), the term 
log(xl/xZ) in (4.4.6) was estimated as log(nl/nz); that is, the cutoff point 
was taken to be -Iog(nl/nz). As noted previously, under mixture sampling, 
ni /n  provides an estimate of ri(i = 1,2). Provided regularity conditions hold, 
ONeill (1980) has shown that for a sequence of estimators 6r satisfying (4.4.7), 
the asymptotic distribution of n{ec(@;&) - eo(*)} is given as 

n{ec(*;a) - eo(*)) ~ U ' J U ,  (4.4.10) 

where U - N(O,A), and where 

1 
J = -V,V&ec(*;a) 

2 

(4.4.11) 

In (4.4.11), 
R = {X : ~ ( x ; u )  = 0)  

and 

is the mixture density of X. An adequate set of regularity conditions has been 
given by ONeilI.(1980), who notes that (4.4.10) will hold under a variety of 
such conditions. 

From (4.4.10), the mean of the asymptotic distribution of n{ec(@;&)- 
eo(@)} is equal to E(U'JU), which can be written as 

E(U'JU) = tr{E(U'JU)) 

= tr{ JE(UU')} 

= tr(JA). (4.4.12) 

Efron (1975) and ONeill (1976, 1978, 1980) have used (4.4.12) to defme the 
asymptotic relative efficiency of two rules based on different estimates &I and 
&2 of a. With respect to the estimation of the Bayes rule ro(x;g),  they defined 
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the asymptotic efficiency of a rule based on r,1(x;82) relative to a rule based 
on q(x;&,)  by the ratio 

tr(JAi )/tr(JAt), (4.4.13) 

where & is the asymptotic covariance matrix of J?i(bj - a) for i = 1,2. Efron 
(1975) evaluated the measure (4.4.13) in comparing the logistic regression 
rule with the sample NLDR under the homoscedastic normal model (3.3.1). 
O'Neill (1976, 1980) evaluated it for a comparison in nonnormal situations of 
the logistic regression rule with the sample-based rule using a fully efficient 
estimator of a. Their results are discussed in Chapter 8, where the logistic 
regression approach to discriminant analysis is presented. 

A first-order expansion of the overall unconditional error rate E{ec(\k;&)} 
can be obtained from (4.4.10) provided its asymptotic mean is equal to 

Lt,,,E[n{ec(\k;B) - eo(\lS)}]. 

For finite n, we have that 

n[E{ec(S';&) - eo(*)} ]  = n[E{ec(S';&)} - eo(S')]. (4.4.14) 

Assuming that the limit of (4.4.14) is equal to the asymptotic mean (4.4.12), 
we can write 

Lt,,,,n[E{ec(Jr;&} - eo(\k)] = tr(JA), 

E{ec(\k;B)} = eo(\k) + n-'tr(JA) + o(n-'). (4.4.15) 

It can be confirmed on evaluation of A and J for the homoscedastic normal 
model that (4.4.15) agrees with the first-order expansion given originally by 
Okamoto (1963) for the overall unconditional error rate of the sample NLDR. 
This is after allowance is made for the fact that (4.4.15) has been derived 
under mixture sampling of the training data t, including the estimation of the 
cutoff point from t as - log(nl/nz). 

More recently, O'Neill (1984a, 1984b) has considered expansions of the 
type (4.4.15), where the plug-in sample rule does not provide a consistent 
estimate of the Bayes rule. These expansions were used, for example, to in- 
vestigate the large-sample performance of the sample NLDR under a normal 
but heteroscedastic model. O"eil1 (1986) has also considered expansions of 
the variance of the overall conditional error rate in such situations. 

and so 

4.4.4 Asymptotic Distribution of Overall Conditional Error Rate of 
Sample NLDR 

We now specialize the asymptotic distributional result (4.4.10) of the previ- 
ous section for a general sample rule to provide the asymptotic distribution of 
the overall conditional error rate of the sample NLDR for g = 2 homoscedas- 
tic normal groups. In the latter case, the sample NLDR given by the plug-in 



DlSTRlBUTIONS OF CONDITIONAL ERROR RATES OF SAMPLE NLDR 117 

sample version of the Bayes rule is based on 

q(x;&E) = &k(&x')' 

= &x+, 

where BE = @oE,&)', and 

b 0 E  = lOg("l/m) + k, 
and where && and & are defined by (4.2.8) and (4.2.9), respectively. 

NLDR r,(x;&E). From (4.3.9, it follows that 
Let ec(SPE;&E) denote the overall conditional error rate of the sample 

2 

ec(*E; $E = C ria {(-lli @oE + &pi )/&& 1 - 
i=l 

Although ec(@E;&) depends on ~ P E  only through A and the vector % = (TI, 

r2)' of the group-prior probabilities, for notational convenience, we will con- 
tinue to write it as a function of !& rather than of A and %. 

In order to specify the asymptotic distribution of 

n { e C ( q E ; a E )  - eo(%)) 

under a mixture sampling scheme, it remains now to give the expressions JE 
and AE for J and A, respectively, in (4.4.7) and (4.4.10) under the normal 
model (3.3.1) with equal group-covariance matrices. O'Neill(l976) has shown 
that the necessary regularity conditions are satisfied for (4.4.10) to be valid for 
the latter model. 

From (4.4.11), JE can be expressed as 

where 

(4.4.16) 

is the mixture density of X under the homoscedastic normal model (3.3.1) 
ONeill (1976) showed that (4.4.16) can be easily evaluated under the canoni- 
cal form (4.2.10) to give 

where ko = log(r&q), and 0 is a 2 x (p - 1) matrix of zeros. Concerning the 
asymptotic covariance matrix AE of fi(& - a E ) ,  Efron (1975) has shown 



118 DlSTRlBUTIONAL RESULTS FOR DISCRIMINATION VIA NORMAL MODELS 

that it is given under the canonical form (4.2.10) by 

1 + +A2 q A ( ~ 1 -  ~ 2 )  

O 1, ( 0' CIp-1 

;A(Tl- T2) 1 + 2 ~ 1 ~ 2 A '  
AE = ( ~ 1 ~ 2 ) - ~  

where c = 1 + 7r17r2A2, and 0 is a 2 x (p - 1) matrix of zeros. 
With separate sampling of the training data, interest usually lies in the 

distribution of the overall conditional error rate of the sample NLDR using 
t(x;&) with a fixed cutoff point k. We can replace k by k, = 10g(q/171), 

since it is equal to log(7r2/~1) for some value of TI in the unit interval. Under 
separate sampling (Sayre, 1980), the asymptotic distribution of 

n{ec(*E;&) - eo(*E)) 

is as for mixture sampling, but with AE slightly modified to allow for the fact 
that the cutoff point is no longer estimated from the data. The modified ver- 
sion of AE is obtained by replacing its first diagonal element, namely, 

by 
:A2/{(nl/n)(n2/n)h 

and by replacing with ni /n  (i = 1,2) in its other elements. In the special case 
of k, = 0 and equal group-sample sizes (nl = n2 = in), it can be so confirmed 
as n 4 00 that for p = 1, 

n{ec(*E;&E) - eo(*E)) A(A/w($A)x~, 

and for multivariate feature data, 

4.5 CONSTRAINED ALLOCATION WITH THE SAMPLE NLDR 

4.5.1 Constraint on One Unconditional Error 

We consider here the problem of choosing the cutoff point k so as to control 
the error rates of the NLDR using the sample NLDF t (x ;Q~)  under the ho- 
moscedastic normal model (3.3.1) for g = 2 groups. This problem in a general 
context was discussed in Section 1.10. 

W e  first report the work of T. W. Anderson (1973a, 1973b), who showed 
how the cutoff point k can be chosen so that the unconditional error rate for 
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a designated group is asymptotically equal to a prescribed level, say, e. With 
A unknown, it is convenient to work with the Studentized version of <(x;&), 

WSl = { t ( x ; h )  - p21/a 

D = {(%I - X2)'S4(55 - %2)}1/2 
where 

is the sample Mahalanobis distance. 

00, then 
T. W. Anderson (1973a) has shown that if nz/nl+ a positive limit as N 4 

pr(Ws1 < w I x E G19n1, n2) = @(w) - @@)bl(A, w, n1, n2) + 
where 

bl(A,w,nl,n~) = {!jw - @ - l)A-'}/ni + caw3 + ( p  - ; ) w ) / N .  

(4.5.1) 

Using this result, T. W. Anderson (1973a, 1973b) showed that 

pr(W.1 c wf I X E Gt,nl,n2} = e + 0 ( W 2 ) ,  (4.5.2) 

if 

where 

wf(anl,n2) = qt + bl(Rqf,nl,nz), 

qt = @--I(€). 

It follows from (4.5.2) that if an entity is assigned to GI or G2 according 
as the Studentized version Wsl of the sample NLDF is greater or less than 
wf(D,  n1, nz), then under separate sampling, its unconditional error rate with 
respect to GI satisfies 

eust(A,nl,nz) = e + O(N-'). 
Concerning the specification of the cutoff point so that the corresponding 

rate for G2 rather than GI asymptotically achieves a prescribed level e, we 
work with the sample NLDF studentized as 

ws2 = {t(x;&) + PD2}/D. (4.5.3) 

On noting that the negative of W S ~  has the same distribution in & as that of 
W.1 in GI but with n1 and n2 interchanged, we have that 

if 
w = -wc(D,n2,n1). 
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Hence, if an entity is assigned to G1 or CZ according as to whether Ws2 is 
greater or less than - wc(D, n2, nl), then under separate sampling, the uncon- 
ditional error rate with respect to C2 satisfies 

eus2(Alnl,n2) = e + O(N-'). 

4.5.2 Confidence Bound on One Conditional Error 

McLachlan (1977b) extended these results above to give a method that ensures 
that the conditional error rate of the sample NLDF for a designated group is 
less than a prescribed bound, say, M, with a prescribed confidence, say, a. Let 

ecsl(w,A;&) = pr{Wsl< w I X E  G I , ~ )  

denote the conditional error rate of the allocation rule based on the Studen- 
tized version Wsl of the sample NLDF applied with the cutoff point w. Under 
separate sampling of the training data t, McLachlan (1977b) showed that if 
n z / n l - +  a positive limit as N 3 00, then 

pr{ecsl(w,A;&) <MI = @{(M - VI)/VZ) + O W 2 ) ,  (4.5.4) 

where 
Y = @ ( w )  - @ ( ~ ) b l ( A , ~ , n l , n 2 ) 9  

and 
4 = {@(w)I2b2(w, n1, n2), 

and where 
1 1 1  
nl 2 N 

bz(w,nl,n2) = - + -w2-, 
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and qa = @-'(a). The cutoff point wP(A,n1,nz) as it stands cannot be used 
in practice because it depends on the unknown A through the term h ( A , q ~ ,  
nl, nz). However, as the latter appears only in the terms of order O(N-l) and 
O(N-3/2)  in the expression for wa, it can be shown that the result still 
holds to order O(N-2)  with w now taken to be the random variable wo(D, 

If we wish to bound the conditional error rate with respect to GZ by M 
with an approximate prescribed confidence a, then we use the allocation rule 
based on the Studentized version (4.5.3) of the sample NLDE An entity with 
feature vector x is assigned to Cl or GZ according as to whether WS~ is greater 
or less than -w,(D, n2, nl). 

n1,n2). 

4.53 Confidence Bounds on Both Conditional Errors 

McLachlan (1977b) also considered the situation where it is desired to bound 
both conditional error rates simultaneously with an application of the sample 
NLDE Let aj be the desired level of confidence that the conditional error 
with respect to Gj does not exceed some prescribed bound Mj (i = 1,2). By 
combining the rules above for bounding separately each of the conditional 
error rates, McLachlan (1977b) proposed the allocation rule t ( x ;  fi1, fi2,bE) 
that assigns an entity with feature vector x to GI if 

WSI > I+I and WSZ> i+z (4.5.7) 

and to C2 if 

where 

WSI < I+I and W S ~ <  h, (4.5.8) 

fi1 = wal(D, nl, nz) and i+z -w,,(D, nz, nl). 

The region (4.5.7) can be expressed as 

[ ( x ; b E )  > mm(Kl~K2) 

and the region (4.5.8) as 

{ ( X ; P E )  < min(Kl,K2), 

where 
K i = D { I + i + ( - I )  i+l 2 ' D  } ( i =  1,2). 

Hence, in order to bound both errors simultaneously, the rule t ( x ;  fil, fi2,bg) 
makes no allocation for an entity with feature vector x in the region 

1% : min(K1,Kz) 5 c ( x ; ~ E )  L max(~1,~z) ) .  (4.5.9) 

Let ecsi(A; PI, @z, &) denote the conditional error rate of this rule specific 
to group G,(i = 1,2). By the introduction of the doubtful region (4.5.9) of 
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group membership for which a decision is deferred, it follows that 

for i = 1,2 under separate sampling of the training data t. 

4.6 DISTRIBUTIONAL RESULTS FOR QUADRATIC 
DISCRIMINATION 

4.6.1 Distribution of Sample NQDF 

It has been seen for g = 2 groups under the heteroscedastic normal model 
(3.2.1) that the Bayes rule ro(x;9u) is based on the NQDF (normal-based 
quadratic discriminant function) 

{(x;eu) = - 4(x - P l ) ’ q l ( x  - P I )  + i (x  - P2)‘l=& - P2) 

- ~ ~ ~ ~ t l ~ l l / ~ 2 l ~ .  (4.6.1) 

As ((x;&) is a quadratic function of the feature vector x, it is not a straight- 
forward exercise to give its groupconditional distribution as it is for the NLDF 
((x; &) with equal groupcovariance matrices. For bivariate feature data, 
Bayne and Tan (1981) have derived approximations to the error rates for 
((x;&) in order to study the effects of correlation and unequal variances on 
them. More recently, Young, Tbrner, and Marco (1987) have provided con- 
ditions under which there exists simple forms for the error rates for {(x;@u). 
Also, a simple bound on the overall error rate was derived. For the bivari- 
ate case, Bayne, Beauchamp, and Kane (1984) have provided an algorithm for 
the computation of the conditional error rates of a rule based on the sample 
NQDF ((x;&) or any other specified quadratic discriminant function. 

The distribution of ((x;&) is very complicated and manageable analyti- 
cal expressions were obtained initially only in special cases; see Hildebrandt, 
Michaelis, and Koller (1973). Okamoto (1%1) considered the distribution of 
the plug-in sample version ((x;bu) in the case of pl = p2. He gave an expan- 
sion of the group-conditional distribution of 

(X - d ’ ( q 1  - S,”X - PI, 

where p is the known common value of pl and p2; see Siotani (1982) for 
further details. 

Gilbert (1%9), Han (1969, 1974), Hawkins and Raath (1982), and McLach- 
Ian (1975~) have studied the distribution of ((x;&) and its sample versions 
under the simplifying assumption that the groupcovariance matrices are pro- 
portional, where 

x2 = K x 1 .  

We can take IG > 1 without loss of generality. 
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In this special case, the complexity of the problem is reduced substantially, 

<(x;Bu)= - ~ ( ~ + W ) - ' ( Q - W ( ~ + O ) A ~ } +  iplogn, (4.6.2) 

as ( (x;Bu) can be expressed as 

where w = 1/(n - l), and 

Q = {X - PI -W(PI - PZ))'C,'{X - PI -  PI - ~ 2 ) )  

and 

As noted by Han (1%9), if X belongs to GI, then Q is distributed as 
xF(w2A?), a noncentral chi-squared with p degrees of freedom and non- 
centralit parameter w2A:. If X comes from G2, then Q is distributed as 

tional distribution of the sample NQDF {(x;&) up to terms of the second or- 
der in the case of unknown p1 and p2, but known E and n. In a later paper, 
Han (1974) gave the fint-order expansion in the case where I: is also un- 
known, but IC is still known. In the following year, McLachlan (1975~) derived 
the unconditional error rates of the rule based on a plug-in sample version of 
(4.6.2) in the general case where all the parameters are unknown. For analpi- 
cal convenience, the plug-in estimates of C1 and n used in this study differed 
from the maximum likelihood ones in that R was taken to be 

ICX?(KW P A:). Han (1%9) proceeded to give the expansion of the group-condi- 

t IS2 I! IS1 - 
The computation of the maximum likelihood estimates of I31 and n is de- 
scribed in Section 5.4.2, where the use of proportional covariance matrices is 
discussed as a method of regularization with applications of t(x;&) in situa- 
tions where p is large relative to the groupsample sizes. 

Recently, Fukunaga and Hayes (1989a) have derived manageable analytical 
expressions for the mean and variance for a certain class of functions of the 
training data that includes the conditional error rates for the sample NQDF 
<(x; &) as well as for the sample NLDF {(x;&). There is also the theoretical 
work of ONeill (1984b) and, more recently, Wakaki (1990), who have derived 
asymptotic expansions of the unconditional error rates for [(x;&) as part 
of their large-sample comparisons of the sample NQDR and NLDR under 
the heteroscedastic normal model (3.2.1). Their comparisons are discussed in 
Section 5.3. Marco, Young, and 'hmer (198%) have derived asymptotic ex- 
pansions of the unconditional error rates for [(x;$) in the case of equal 
groupmeans and the uniform covariance structure (3.2.1 1). 

4.6.2 Distribution of Z-Statistic 

As shown in Section 3.4.2, the likelihood ratio criterion under the homoscedas- 
tic normal model (3.3.1) yields a rule based on the so-called Z-statistic, 
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where 
8j,,(x> = (X-Ki)'S-'(x-Ki) (i = 1,2). 

We let rZ(x;&) be the rule based on Z, which equals one or two according 
as to whether Z is less than or greater than zero. This scalar random variable 
should not be confused with the random vector 2 consisting of the g zero- 
one indicator variables used to define the group membership of an entity with 
feature vector x. 

The limiting group-conditional of 2 as n1,nz -+ 00 is 

Z ~ N ( ( - l ) ' A 2 , 4 A 2 )  if X E  Gi (i = 42). 

Let 
FZl(z;A,n1,n2) = pr{(2A)-'(Z + A2) < z I X E Gi,ni,nz}. 

For equal group-sample sizes, 

where W denotes the sample NLDF defined by (4.2.1). Hence, in this case, an 
expansion of Fzl(z;A,n,,n2) is easily obtained from the expansion (4.2.4) of 
Fwl(w;A, n1, n2) as derived by Okamoto (1963). The expansion of Fzl(z;A, 
n1,nz) for unequal group-sample sizes (nl # n2) can be obtained in a similar 
manner to that of Fwl(w;A,nl,nz). But it is more complicated, because the 
Z-statistic is quadratic in x and it also involves nl and n2 explicitly. Memon 
and Okamoto (1971) showed for separate sampling under the assumed normal 
model that if nl/n2 -+ a positive limit as n1,nz -+ 00, then 

Fz1(z;A, n1, nz) = @(z) + $(z){hzl/nl + hz2/n2 + hZ3/V + 
(4.6.3) 

where 

h z i =  - f A - 2 { ~ 3  - Az2 + ( p  - 3 ) ~  + A}, 

h ~ 2  = -iA-2{z3 - Az2 + ( p  - 3 - A2)z + A(A2 + l)}, 

and 
h ~ 3  = - f { 4z3 - 4AZ2 + A2z + 6(p  - l ) ~  - 2(p - 1)A). 

Memon and Okamoto (1971) also gave the second-order terms in this expan- 
sion, and Siotani and Wang (1975, 1977) have since added the third-order 
terms; see Siotani (1982). 

The expansion of 

F~z(z;A,nl,nz) = pr{(ZA)-'(Z - A') < z I X E G2,nl,n2} 
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can be obtained from that of Fzl(z;A, n1,nz) on using the result that 

Fzz(2; A, ni, nz) = 1 - Fzi(-z;A, nz, ni). 

This latter result can be established in a similar manner to the corresponding 
result (4.25) for the W-statistic. 

If euzi(A;nl,n~) denotes the unconditional error rate specific to group 
Gi (i = 1,2) for the rule rz(x;&) based on the 2-statistic with a zero cutoff 
point, then 

euzl(A;nl,nz) = pr{Z > 0 I X E GI} 

(4.6.4) 

and 

euzt(A; n1,nz) = prtZ < 0 I x E 6) 

= F Z ~ ( - & & A , ~ I , ~ Z )  

= 1 - ~ ~ ~ ( f ~ ; ~ , n ~ , n ~ ) .  (4.6.5) 

Hence, expansions of the unconditional error rates of rz(x;&) are available 
from the expansion (4.6.3) of Fzl(z;A,nl,nz). 

Siotani (1980) has derived large-sample approximations to the distributions 
of the conditional error rates ecZi(k,A;&E) of the rule based on the 2-statistic 
with an arbitrary cutoff point k. As with the conditional error rates of the 
sample NLDR rule, which uses the W-statistic, they have a univariate normal 
distribution if terms of order 0(iV2) are ignored. The first-order expansion 
of the mean of the conditional rate ecZl(k,A;&) specific to group G1 is al- 
ready available by using the expansion (4.6.3) of Fz1(z;A,nl,n2) in (4.6.4) and 
(4.6.5), but where now Fz1(z;A,nl,n2) is evaluated at t = i (A  + A-lk) be- 
cause the cutoff point k is not specified to be zero. 

Concerning the variance of eczl(k,A;dE), Siotani (1980) showed that 

var{ecZl(k,A;~E)) =[#{;(A A-'k)}lZ(hZ4/nl hZ5/n2 hZ6/N) 

+ O(N-'), (4.6.6) 

where 

hz4 aAL-4(A2 + k)', 

hz5 = 4A-4(A2 - k)', 

and 
hz6 = 4A-'kZ. 

The first-order expansion of the variance of ecZZ(k,A;&) is obtained by re 
placing k with -k and interchanging nl and n2 in (4.6.6). 
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4.63 Comparison of Rules Based on Z- and W-Statistics 

We let 

euzl(A;nl,nz) = O(-iA) + azl/nl + azz/nz + aZ3/N 

+ az1/n: + a z 2 / 4  + az12/(n1nz> 

+ aZ13/(nlN) a Z d ( n 2 N )  + aZ33/N2 + O(N-') 

denote the second-order expansion, which can be computed from the second- 
order version of (4.6.3). Then it follows that the second-order expansion of the 
overall unconditional error fate, 

euz(A; m,m)  = t{euzt(A; ~ n 2 )  + euzz(A;nl, nz)) ,  

can be expressed as 

euz(A;nl,nz) = (P(-aA) + i (az l+  azz)(n;' + nil) 
+ az3N-l + ~ ( a z 1 1 k I 2 2 2  + az12)(nl2 + n,2) 

+ $(a213 + az23)(n;' + n;l)N-' 

+ az33N-' - $4~12(n;' - + O ( r 3 ) .  (4.6.7) 

We let the corresponding expansion of the overall unconditional error rate 
eu(A;nl,nz) of the sample NLDR using the W-statistic with a zero cutoff 
point be given by (4.6.7) but with uzi and azij replaced by Qi and aij, respec- 
tively (i 5 j = 1,2,3). As noted by Memon and Okamoto (1971), 

a 3 = a ~ 3  and a 3 3 = a z ~ .  (4.6.8) 

Further, since 2 is just a constant multiple of W for equal groupsample sizes, 
it follows on noting (4.6.8) that 

(a1 + a2) = (az1+ a2219 

(a11 + a22 + a12) = (a211 + a222 + m 2 ) ,  

and 
(a13 023) = (aZ13 aZ23)- 

An obvious consequence of these relationships between the coefficients in the 
expansion (4.6.7) of euz(A;nl,nz) and those in the expansion of eu(A;nl,nz) 
is that 

euz(A; nl, 122) = eu(A; n1,nz) + 0(lV2) 

= eu(A;nl,nz) - ;(a212 - a12)(nF1 - n;')' + O ( r 3 ) .  

Memon and Okamoto (1971) used this result to show that there is no re- 
duction in the overall error rate up to the first order as a consequence of 
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using the sample rule based on 2 and not W, but that there is a second-order 
reduction, as azlz > alz. 

Das Gupta (1965) proved that r ~ ( x ; & )  is admissible and minimax in the 
case of known C and also that it is admissible and minimax in the class of 
invariant rules in the case of unknown X. Memon and Okamoto (1971) noted 
that this minimax property of rz(x;&) manifests itself in that the values of the 
coefficients uz1 and a22 are in general closer to each other than a1 and uz. 
They gave p > +A2 + 1 as the necessary and sufficient condition for this to be 
the case. Similarly, the coefficients az11 and aZz and the pair a213 and UZD 

tend to be closer to each other than the Coefficients for the corresponding 
pairs in the expansion of the overall error rate eu(A;nl,nz) of the sample 
NLDR, which uses the W-statistic. 
As explained by Siotani and Wang (1977), the groupsample sizes nl and 

n2 have to be very large for the second-order expansions of eu(A;nl,nz) 
and euz(A; n1,nz) to provide reliable approximations to the true error rates. 
For such large-sample sizes, the 'Z-and W-statistics are practically equivalent. 
Therefore, in order to provide a comparison of these two statistics for mod- 
erately sized samples, Siotani and Wang (1977) compared the third-order ex- 
pansions of eu(A; n1, n2) and euZ(A, nl, nz). With the inclusion of the third- 
order terms, the Z-based rule rz(x;&) is not uniformly superior to the sample 
NLDR, although it is generally superior. Siotani and Wang (1977) have pro- 
vided tables that summarize those situations in which euZ(A; nl, n2) is smaller 
than eu(A; n1,nz). 

4.6.4 Distribution of the Studentized Z-Statistic 

Fujikoshi and Kanazawa (1976) considered the groupconditional distribution 
of the Studentized version of 2 given by 

Zsi (Z + ( - I ~ + ' D ~ ) / ( ~ D )  

for X belonging to group Gi (i = 1,2). They showed that if nl/nz + a positive 
limit as n1, n2 4 00, then 

(4.6.9) pr(Zs1 < I. I X E GI} = O(z) - #(z)bzl(A,z,nlnz) + O(N-'), 
where 

bZl(A,z,nl,nz) = hsl/nl+ hsz/n2 + hss/N, 

and where 

hsl = ~A-'(Az - z2 + p - l), 
hsz = ~A-'((Z - A)' + p - l}, 

and 
h ~ 3  = { z ( z ~  + 4p - 3). 
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The corresponding expansion for Zs2, conditional on X belonging to G2, can 
be obtained from (4.6.9) by using a relation similar to (4.6.5). Using the result 
(4.6.9), Kanazawa (1979) has shown that 

pr{Zsl< z, I X E Gl,nl,nz} = e + 0(W2), 

if 

where qt = @-I(€). 

= q c  + h ( D , q , ,  n1,n2), 



C H A P T E R  5 

Some Practical Aspects and 
Variants of Normal Theory-Based 
Discriminant Rules 

5.1 INTRODUCTION 

In this chapter, we focus on some problems that arise with the estimation 
of normal (theory)-based discriminant rules in practical situations. One prob- 
lem to be addressed is that of discriminant rules formed from estimates with 
too much variability, which arises in fitting models with too many parameters 
relative to the size n of the available training sample. Other problems to be 
considered in this chapter concern the performance of the sample normal- 
based linear and quadratic rules under departures from normality, and robust 
estimation of discriminant rules. 

Regarding the first problem, by allowing the covariance matrices to be ar- 
bitrary in the specification of the multivariate normal densities for the group- 
conditional distributions, the consequent quadratic discriminant analysis re- 
quires a large number of parameters to be estimated if the dimension p of 
the feature vector or the number of groups g is not small. In such situations, a 
linear discriminant analysis is often carried out with the principle of parsimony 
as the main underlying thought. The reader is referred to Dempster (1972) for 
an excellent account of this principle, which suggests that parameters should 
be introduced sparingly and only when the data indicate they are required. 
This account was given in the introduction of his paper on covariance se- 
lection, in which the principle of parsimony is applied to the estimation of 
the covariance matrix of a multivariate normal distribution by setting selected 
elements of its inverse equal to zero. In this chapter, we consider estima- 
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tion of the groupcovariance matrices Ci for intermediate models between 
the overly diffuse heteroscedastic model and the overly rigid homoscedastic 
model. 

A related approach to the estimation of the C i  in situations where p is 
large relative to n is the use of regularization methods, which are introduced 
in the next section. 

5.2 REGULARIZATION IN QUADRATIC DISCRIMINATION 

When the group-Sam le sizes ni are small relative to p, the sample group- 
covariance matrices i and their bias-corrected versions Si become highly 
variable. Moreover, when ni < p, not all of the parameters are identifiable. 
The effect this has on the plug-in sample version ro(x;&u) of the normal- 
based quadratic discriminant rule (NQDR) can be seen by representing the Si 
by their spectral decompositions 

1) 

(5.2.1) 
k = l  

where &k is the kth eigenvalue of Si (ordered in decreasing size), and +ik is 
the corresponding eigenvector of unit length (k = 1, ...,p). The inverse of Si 
in this representation is 

P 
ST' = x + i k $ : k / X i k  (i = 1,...,g). 

k = l  

Hence, the log of the plug-in estimate of the ith groupconditional density 
under the heteroscedastic normal model (3.2.1) can be expressed as 

IOgfi(x;bi) = ~ ~ g + ( ~ ; g i , ~ i )  

for i = 1, ...,g. 
It is well known that the estimates Aik of the eigenvalues of Ci are biased. 

The largest ones are biased toward values that are too high, and the smallest 
ones are biased too low. This bias is most pronounced when the eigenvalues of 
Ci tend toward equality, being less severe when they are highly disparate. In 
all situations, this phenomenon becomes more pronounced as n i  decreases. If 
n i  5 p, then Si is singular with rank 5 n i .  Its smallest p - n i  + 1 eigenvalues 
are estimated then to be zero, with their corresponding eigenvectors arbitrary 
subject to orthogonality constraints. 
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As explained by Fri- (1989), the net effect of this biasing phenomenon 
on the sample NQDR r , ( x ; @ ~ )  is to (sometimes dramatically) exaggerate the 
importance of the feature subspace spanned by the eigenvectors corresponding 
to the smallest eigenvdues. It is this exaggeration that accounts for much of 
the variance in the sampling distribution of rO(x;&). 

One way of attempting to provide more reliable estimates of the Ci is to 
correct for the eigenvalue distortion in the Si. James and Stein (l%l), Stein, 
Efron, and Morris (1972), Stein (1973), Efron and Moms (1976), Olkin and 
Sellian (1977), Haff (1980, 1986), Lin and Perlman (1984), and Dey and Srini- 
vasan (1985), among others, have adopted this approach to the estimation of 
a covariance matrix by seeking estimates that minimize given loss criteria (of- 
ten some form of squared-error loss) on the eigenvalue estimates. However, 
as pointed out by Friedman (1989), none of these loss criteria that have been 
considered is related to the error rate of the discriminant rule subsequently 
formed from the estimated covariance matrices. Also, they nearly all require 
that the Si be nonsingular. 

Another approach is to use a regularization method. Regularization tech- 
niques have been applied with much success in the solution of ill- and poorly 
posed inverse problems; see Titterington (1985) and O’Sullivan (1986) for re- 
views. In the present context, quadratic discriminant analysis is ill-posed if 
the number ni of classified entities from Gj is not greater than p for any 
i ( i  = 1,. . .,g), and poorly posed if nj is not appreciably larger than p. Reg- 
ularization attempts to reduce the variances of highly unstable estimates by 
biasing them toward values that are deemed to be more physically plausible. 
The extent of the potential increase in bias depends on the aptness of the 
“plausible” values of the parameters. The trade-off between variance and bias 
is generally regulated by one or more parameters that control the strength of 
the biasing toward the plausible set of parameter values. This line of approach 
is pursued further in Section 5.5 with the description of regularized discrimi- 
nant analysis as proposed by Friedman (1989). 

It will be seen in subsequent sections that some of the discriminant rules 
used in practice can be viewed as regularized versions of the sample NQDR 
r o ( x ; & ~ ) .  As an obvious example, the use of the parsimonious linear rule 
ro(x;#E) in the presence of heteroscedascticity can be viewed also as apply- 
ing a high degree of regularization by attempting to improve the estimates Si 

of the Xi by replacing each with the pooled estimate S. If the Ci are disparate, 
then this method of regularization would introduce severe bias. A comparison 
of the sample linear rule rO(x;&=) with its quadratic counterpart rO(x;&) is 
therefore of much practical relevance and is undertaken in the next section. As 
discussed there, it is desirable if the choice between r , , ( x ; @ ~ )  and rO(x;&) 
is made on the basis of the available training data. This is the case with reg- 
ularized discriminant analysis as proposed by Friedman (1989). It avoids an 
outright choice between the alternatives of linear and quadratic sample rules, 
which is fairly restrictive, by providing a sophisticated compromise between 
them. 
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5.3 LINEAR VERSUS QUADRATIC NORMAL-BASED 
DISCRIMINANT ANALYSIS 

53.1 Introduction 

In this section, we consider the choice between the plug-in sample versions 
of the normal-based linear and quadratic discriminant rules, ro(x;&E) and 
ro(x; &u), respectively, under the assumption of multivariate normality for 
the group-conditional distributions. The sample NLDR ro(x; &E) is asymp- 
totically optimal if the covariance matrix X i  within group Gi is the same for 
all i (i = 1,. . . ,g). However, in practice, it is perhaps unlikely that homoscedas- 
ticity will hold exactly. Further, even if a preliminary test does not reject the 
null hypothesis of homoscedasticity, the null hypothesis is really a proxy for a 
small neighborhood of the null parameter values. Therefore, it is of interest to 
assess the sample NLDR r, (x; &E) under departures from homoscedasticity, 
in particular, its performance relative to the sample NQDR ro(x;&u), which 
is asymptotically optimal in the case of heterwcedasticity. 

This latter comparison is particularly relevant to the use of ro(x;&E) in 
place of r0(x;@u) as a method of regularization. If the groupcovariance ma- 
trices are markedly different, then their estimation by the pooled estimate S 
will be a source of bias. However, the consequent decrease in variance may 
lead to ro(x;@:) being overall superior to ro(x;&u), in particular in small- 
sized samples. This, coupled with its good performance for discrete or mixed 
data in many situations, explains the versatility and consequent popularity of 
linear discriminant analysis based on ro (x; &). 

Another reason for the wide use of normal-based linear discriminant analy- 
sis is ease of interpretation with the estimated posterior probabilities of group 
membership and the implied regions of allocation, arising from the simplic- 
ity of linearity. In the case of g = 2 groups, the boundary of the allocation 
regions is simply a straight line or hyperplane. With a quadratic rule, more 
complicated allocation regions can be obtained. For example, with bivariate 
feature data, the region of allocation into one group may be the interior of an 
ellipse or the region between two hyperbolas. In general with ro(x;&u), the 
regions are defined by means of a quadratic function of the feature vector x, 
which is not necessarily a positive definite quadratic form. 

5.3.2 Comparison of Plug-In Sample Versions of NLDR and NQDR 

There have been many investigations carried out on the relative performance 
of r , (x;@E) and ro(x;&u) under the heteroscedastic normal model (3.2.1). 
Many of these have been performed as part of wider studies on the behavior 
of these rules relative to their nonparametric or semiparametric competitors, 
where also multivariate normality may not apply. The results of those compar- 
isons not relevant here are reported later where appropriate, for example, in 
Section 5.6 on the robustness of r o ( x ; * ~ )  and rO(x;%), and in Chapter 9 on 
nonparametric discrimination. 
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The comparisons of r o ( x ; & ~ )  and r0(x;&) in the literature have concen- 
trated on the relative behavior of the plug-in sam le versions of the normal- 
based linear discriminant function (NLDF), (x; E ) ,  and the normal-based 

2 groups. Initial studies included those by Gilbert (1%9), Marks and Durn 
(1974), Van Ness and Simpwn (1976), Aitchison et al. (1977), Wahl and Kron- 
ma1 (1977), and Van Ness (1979). It can be seen from their work and more re- 
cent studies, such as Bayne et al. 1983), that the decision concerning whether 

should be based on consideration of the sample sizes ni relative to p, the 
degree of heteroscedasticity, and the separation between the groups. The size 
of the training data is an important initial consideration. Firstly, if there are 
adequate training data, then a preliminary assessment can be made of the 
question of homoscedasticity and also normality. The sample sizes are of in- 
terest in themselves as they often indicate a clear choice between the linear 
and quadratic rules. For instance, if the Iti  are large relative to p and the as- 
sumption of homoscedasticity is not tenable, then the quadratic rule should 
be chosen. On the other hand, if the nj are small relative to p, perhaps too 
small to allow a proper assessment of the presence of homoscedasticity in the 
training data, then the linear rule is preferable to the quadratic. For moder- 
ately sized ni relative to p, the relative superiority of the linear and quadratic 
rules depends on the degree of heteroscedasticity and the amount of sepa- 
ration between the groups. For given sample sizes, the performance of the 
normal-based quadratic rule relative to the linear improves as the covariance 
matrices become more disparate and the separation between the groups be- 
comes smaller. But how severe the heteroscedasticity must be in conjunction 
with how close the groups should be before the quadratic rule is preferable to 
the linear is difficult to resolve. It is a question of balance between the het- 
eroscedastic normal model with its unbiased estimates and the homoscedastic 
model with fewer parameters having biased but less variable estimates. 

It is therefore desirable if it can be left to the training data to decide be- 
tween the linear or quadratic rules on the basis of some appropriate crite- 
rion such as the estimated overall error rate. For instance, Devroye (1988) has 
considered model selection in terms of the overall apparent error rate of a 
discriminant rule. His approach is discussed in Section 10.8.1. 

Even if the appropriate choice between linear and quadratic rules is made 
in a given situation, the chosen rule may still have an error rate too large for 
it to be of practical use if the sample sizes are very small relative to p and the 
groups are not widely separated. However, as discussed in the subsequent sec- 
tions, there are ways of obtaining a rule with an improved error rate in such 
situations. In particular, it will be seen that regularized discriminant analysis as 
proposed by Friedman (1989) provides a fairly rich class of regularized alter- 
natives to the choice between homoscedastic and heteroscedastic models. For 
a Bayesian approach where an outright choice between linear and quadratic 
rules is avoided, the reader is referred to Smith and Spiegelhalter (1982). 

quadratic discriminant function (NQDF), ((x; 5" v), applied with respect to g = 

to use the sample NLDR ro(x; b E )  or its quadratic counterpart r0(x;&) 
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5.33 Theoretical Results 

The aforementioned results on the relative superiority of the plug-in sample 
versions of the NLDR and NQDR are of an empirical nature, because of the 
complexities involved with an analytical comparison. However, ONeill(1 W b ,  
1986) has presented some theoretical findings based on his asymptotic expan- 
sions of the expectation and variance of ec(@u;&) and of ec(@u;&u), the 
overall conditional error rates associated with the linear and quadratic sample 
rules r,,(x;$~) and ro(x; !&I), respectively, under the heteroscedastic normal 
model (3.2.1). The derivation of these expansions was discussed in Section 3.2. 
ONeill (1984b) has evaluated them in the case of g = 2 groups with 

pi = (-1)'+'~1p 

and 

for i = 1,2, where 1, is the p x 1 vector of ones. He found that the uncondi- 
tional error rate of T,,(x;@E) is asymptotically less than that of r,,(x;&) even 
for quite large 7 in moderately sized training samples. 0"eill (1986) subse- 
quently compared the asymptotic variances of the overall conditional error 
rates. The leading term in the expansion of the variance of ec(@u;&E) is of 
order O(N-'), and the corresponding term in the variance of ec(@u;&) is 
of order O(N-2) .  However, ONeill (1986) found that this latter second-order 
term sufficiently dominates the first-order term in the expansion of the vari- 
ance of ec(@u;@E) for r , , ( x ; @ ~ )  to be less variable than that of ro(x;@u) for 
most values of the parameters in small- and moderate-size training samples. 
It was found in some situations that ec(qu;@E) has a smaller mean than that 
of ec(\krr;&), but a larger variance. But ONeill (1984b) demonstrated that 
the extra variability of ec(@u;@E) in these situations is not large enough to 
warrant the use of r0(x;$u) instead of r , , ( x ; @ ~ )  with its lower error rate. 

Critchley et al. (1987) have considered the relative performance of normal- 
based linear and quadratic discriminant analyses in terms of the estimates they 
give in the case of g = 2 groups for the NQDF ((x;&), or, equivalently, the 
posterior log odds for known prior probabilities. They derived the approxi- 
mate bias, conditional on the feature vector x, of the sample NLDF ((x;&) 
under the heteroscedastic normal model (3.2.1). As n -+ 00 with n l / n  -+ k, the 
asymptotic conditional bias of t ( x ; & )  is given by 

Xi = (1 + 7)2-i1p 

bias{t(x;&)} = E{((x;&) I x }  -t(x;&) 

where 
Z(k)  = k Z i +  (1 - k)C2. 

As the bias of <(x;&) is of order O(1) in its estimation of <(x;Ou), the 
bias component in its mean-squared error remains essentially unchanged as 
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n --t 00. Hence, its performance relative to the asymptotically unbiased es- 
timator S(x;&) rapidly deteriorates as n + 00. Critchley et a]. (1987) also 
investigated the effect of misspecification of the homoscedastic model on con- 
fidence intervals for the posterior log odds provided by &; 8 ~ ) .  The problem 
of assessing the reliability of the estimated log odds is addressed in Chap 
ter 11. 

Recently, Wakaki (1990) has compared the large-sample relative perfor- 
mance of the sample NLDF and NQDF applied with a zero cutoff point with 
respect to g = 2 groups in equal roportions under the heteroscedastic nor- 
mal model (3.2.1). We let ec(llu;& and ec(&;&) denote the overall con- 
ditional error rates associated with this application of the sample NLDR and 
NQDR, respectively. Wakaki (1990) derived the first-order expansions of the 
overall unconditional error rates as given by the expectations of ec(llU;&) 
and ec(&;&). As the sample NLDR is not Bayes risk consistent under het- 
eroscedasticity, it follows that its overall unconditional error rate is greater 
than that of the sample NQDR for sufficiently large n. 

Accordingly, in the special case of proportional groupcovariance matrices 
Zz = I C Z ~  and equal group-sample sizes, Wakaki (1990) calculated the com- 
mon value no of nl and n2 at which the first-order expansions of the expec- 
tations of ec(&;&) and ec(&;&) are equal. That is, if the common value 
of the groupsample sizes is not less than no, then ec(eu;bu) is less than or 
equal to ec(6u;bE) on average, ignoring terms of the second order. Wakaki 
(1990) tabulated no for various combinations of p, IG, and p, where, without 
loss of generality, it was assumed that C1 = I,, pl = 0, and p2 = (p,O, .. .,O)'. 
He also tabulated, as percentages, the corresponding values of the leading 
terms of order O( l), eg) and e$', and of the first-order coefficients e l E  and 
elu, in the first-order asymptotic expansions of the expectations of ec(llU;&) 
and ec(ll,;&), respectively. These results are reported in ?gble 5.1, where it 
can be seen that no increases, as the number p of feature variables increases 
or as IC - 1 decreases (that is, as the groupcovariance matrices become more 
similar). 

5.3.4 Loss of Efficiency in Using the Sample NQDF Under 
Homoscedasticity 

Up to now, we have focused exclusively on sample normal-based linear dis- 
criminant analysis under heteroscedasticity, as there is a potential gain to be 
had over a quadratic analysis in certain situations. In the reverse case with 
a quadratic discriminant analysis in the case of homoscedasticity, there is of 
course nothing to be gained by having a model more general than is needed. 
Indeed, there is a loss in efficiency in having to estimate the superfluous pa- 
rameters of the heteroscedastic model. To demonstrate this loss, Critchley et 
al. (1987) have considered the efficiency of <(x;$) relative to t(x;&) in terms 
of the ratio of their variances, conditional on x. More precisely, they worked 
with the unbiased versions (~ (x )  and (~ (x )  as given by (3.2.10) and (3.3.16), 
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TABLE 5.1 Variation in Threshold n, for Common Group-Sample Sizes with 
Respect to p ,  p, and K 

P c1 n-1 eg’ el6 e t  ’ ew no 

1.0 0.2 3 1.63 
0.6 32.74 

2.0 0.2 16.97 
0.6 18.66 

3.0 0.2 7.61 
0.6 9.23 

1.0 0.2 31.63 
0.6 32.74 

2.0 0.2 16.97 
0.6 18.66 

3.0 0.2 7.61 
0.6 9.23 

1 .o 0.2 3 1.63 
0.6 32.74 

2.0 0.2 16.97 
0.6 18.66 

3.0 0.2 7.61 
0.6 9.23 

27.17 
28.60 

18.78 
20.10 

12.78 
14.40 

72.92 
77.10 

44.18 
47.74 

28.11 
32.14 

118.67 
125.61 

69.57 
75.38 

43.43 
49.88 

3 1.43 
3 1.35 

16.91 
18.25 

7.58 
9.01 

31.13 
29.46 

16.80 
17.47 

7.54 
8.69 

30.83 
27.79 

16.69 
16.73 

7.50 
8.37 

51.37 
57.52 

25.41 
27.83 

16.63 
18.22 

187.51 
184.29 

83.52 
90.33 

44.24 
50.01 

390.21 
343.40 

167.00 
174.52 

81.50 
91.49 

121.7 
20.8 

120.6 
18.6 

119.4 
17.3 

229.1 
32.6 

240.1 
35.6 

219.8 
32.7 

341.4 
44.0 

358.4 
51.3 

332.9 
48.4 

Source: From Wakaki (1990). 

respectively. We have from their results that as n ---t 00 with n l / n  --+ 1/2, 

= vartG<x>>/vartCu(x)} 

V d V 2 ,  

where 

VI = { ~ ( x ; O E ) } ~  + (2 + ~A’){&,E(x) + %,E(x)}  - $A4, 

v2 = 2{t(x;&)I2 + &E(X) + q E ( x ) 1 2  + 2P, 
and 

b j , E ( X )  = (x - &)‘C-’(% - pi) (i = 1,2). 

For example, in the case where = (50,. . .,O)’, p2 = 0, and C = I,, the 
asymptotic value of e at x = 0 is equal to 0.8 and 0.67 for p = 2 and 4, re- 
spectively. The quantity 6 - l -  1 represents the extra proportion of training 
observations needed in order to achieve the same precision with ((x;&) as 
with ( ( x ;  &) under homoscedasticity. Note that the results reported above 
on the relative performance of r o ( x ; @ E )  and r0(x;&) are qualified by the 
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assumption of multivariate normality for the groupconditional distributions. 
The effect of departures from normality on these rules is surveyed in Section 
5.6. 

5.4 SOME MODELS FOR VARIANTS OF THE SAMPLE NQDR 

5.4.1 Equal Spherical Group-Covariance Matrices (Minimum-Euclidean 
Distance Rule) 

As can be seen from (3.3.13), the use of the sample NIBR r o ( x ; @ ~ )  with 
equal group-prior probabilities Ti is equivalent to the minimumdistance rule, 

min{(x - %)‘s-’(x -Xi)}”’, (5.4.1) 

where the Mahalanobis distance is used as the metric. More generally, the use 
of (5.4.1) is equivalent to the sample plug-in version of the b y e s  rule with 
equal Ti in the case of groupconditional distributions belonging to the same 
family of elliptic distributions having different locations but a common shape. 
This follows directly from the form (1.12.5) of the elliptic density. 

In situations where the groupconditional distributions appear to have un- 
equal covariance matrices, the minimum-distance rule is often modified to 

I 

(5.4.2) 

It can be seen from (5.4.2) that this modified distance rule is not quite the 
same as the sample NQDR r o ( x ; @ ~ ) .  It ignores the normalizing term ISil-’/’ 
in the plug-in estimate #(x; Xi, Sj) of the multivariate normal density adopted 
for the distribution of X in group Gi ( i  = 1, ...,g). This term can make an 
important contribution in the case of disparate groupcovariance matrices. 

Another modification of the minimum-distance rule (5.4.2) is to completely 
ignore the covariance structure of X within a group and to base the allocation 
of an entity with feature x on 

mjn{(x -Q)‘(X-E~”’’’~ (5.4.3) 

That is, Euclidean distance is used as the metric. This rule is commonly a p  
plied in pattern recognition; see, for example, Raudys and Pikelis (1980). It 
is very easy to implement given that the estimates Si of the groupcovariance 
matrices do not have to be computed from the training data. 

The minimum-Euclidean distance rule (5.4.3) is equivalent to the sample 
NLDR r o ( x ; @ ~ )  formed under the assumption that the groupcovariance ma- 
trices have a common spherical form, 

Xi = U ’ I ~  (i = I,...,g)a 

Thus, it can be viewed as a substantially regularized version of ro (x ;? f r~) .  It 
was in this spirit that Marco, Young, and Turner (1987a) have compared its 
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performance relative to the Mahalanobis distance version, or, equivalently, 
the sample NLDR formed with a zero cutoff point (equal group-priors) in 
the case of g = 2 groups in which the feature vector has a multivariate nor- 
mal distribution with a common covariance matrix. They concluded from their 
simulation experiments that the sample Euclidean distance rule is superior to 
the sample NLDR, not only for group-conditional distributions that are spher- 
ical normal, but also for some nonspherical parameter configurations where 
p is very large relative to n. In the latter case, they found that the relative 
superiority of these two rules is highly dependent on the ratio of the Ma- 
halanobis distance to the Euclidean distance between the groups. Whenever 
this ratio was small in their experiments, the sample Euclidean distance rule 
tended to outperform the sample NLDR, whereas the reverse appeared to be 
true whenever the ratio was large. Note, however, that there is no need to 
make an outright choice between the sample Euclidean distance rule over the 
sample NLDR with applications in those aforementioned situations where the 
former has the potential to offer some improvement in error rate. We can use 
regularized discriminant analysis as proposed by Friedman (1989), whereby as 
part of the estimation of each groupcovariance matrix, shrinkage toward a 
common multiple of the identity matrix is allowed. The amount of shrinkage 
is inferred fiom the training data. Before we describe this new method of 
regularization in Section 5.5, we proceed to consider some less sophisticated 
methods of regularization that have been employed in the past in discriminant 
analysis. 

5.4.2 Proportional Group-Covariance Matrices 

The choice between homoscedasticity and the general heteroscedastic model 
is a fairly restrictive one. Also, as argued by Hawkins and Raath (1982) and 
others, the general specification of the group-covariance matrices I=i under 
the heteroscedastic model is contrary to experience in real-life applications, 
where it is usual to find a degree of similarity of pattern between the Ei. They 
therefore proposed specifying the Xi to be proportional as an intermediate 
model between the overly diffuse heteroscedastic model and the overly rigid 
homoscedastic model. It results in 4(g - l)p(p - 1) fewer parameters having 
to be estimated than with arbitrary group-covariance matrices. 

Practical applications of this proportional model in discriminant analysis 
have been considered also by Switzer (1980), Dargahi-Noubary (1981), and 
Owen (1984), among others. From a theoretical point of view, we have already 
seen in Section 4.6.1 that the distribution of the sample NQDF is simplified 
considerably for proportional group-covariance matrices. On the use of pro- 
portional covariance matrices in general and not necessarily in a discriminant 
analysis context, Flury (1988, Chapter 5) has given an account, including some 
historical remarks. 

The assumption of proportional group-covariance matrices can be repre- 
sented as 

X i  = n;xp (i = 1, ...,g), (5.4.4) 
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where K: = 1. We set kt = 1 and let $i be the sample covariance matrix of the 
training feature data from group Gi (i = 1,. . .,g). Then under the assumption 
of multivariate normality for the groupconditional distributions, the maximum 
likelihood estimates f ip  and ki of C p  and Ki, respectively, satisfy 

(5.4.5) 

and 
Ri se {tr(fi7'&)/p)"2 (i 2, ...,g). (5.4.6) 

These equations can be solved iteratively. Starting with Ri = 1 for all i, e p  

can be obtained from (5.4.5) and then used in (5.4.6) to produce new val- 
ues for R2, ..., kg. This iterative method of solution is the same, or essentially 
the same, as proposed independently by Owen (1984), Eriksen (1987), and 
Manly and Rayner (1987). Eriksen (1987) also established the convergence of 
the process and the uniqueness of the maximum likelihood estimates. Jensen 
and Johansen (1987) proved existence and uniqueness of the maximum likeli- 
hood estimates using results on the convexity of the likelihood function. Flury 
(1986) used a different parameterization of the model (5.4.4) in terms of the 
eigenvectors and eigenvalues of the Ci instead of the Ci themselves. 

The likelihood ratio test for proportional group-covariance matrices is de- 
scribed in Section 6.26, along with a test of the more general model that 
the groupconditional correlations between the variates of the feature vector 
are the same within each group. We now consider estimation of the group 
covariance matrices under this last model. 

5.43 Equal Group-Correlation Matrices 

The model of equal correlation matrices within the groups can be represented 
in terms of the group-covariance matrices Ci as 

Ei = KCcI?, (5.4.7) 

where K1 is the identity matrix, and 

Ki diag(Ki1, ..., Kip) (i = 2 ,..., g). 

Note that (5.4.4) is a special case of (5.4.7) with Kiy = Ki (v  = 1, . . . ,p).  For 
multivariate normal groupconditional distributions, the maximum likelihood 
estimates f i ~  and & of Ec and &, respectively, satisfy 

R 

(5.4.8) 
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These equations can be solved by iteration, starting with Ri j  = 1 for j = 
1,. . . ,p. Manly and Rayner (1987) note that this procedure has always con- 
verged in test data, although the number of iterations required has been quite 
large in some cases. 

The models of proportional groupcovariance matrices and equal group 
correlation matrices as given above provide ways of exploiting similarities in 
the groupcovariance matrices Xi and thereby reducing the number of param- 
eters to be estimated. These two models complete a hierarchy of models for 
the Ci with their being nested between the lower level of homoscedasticity 
and the upper level of heteroscedasticity. Another hierarchy of models for the 
Xi is considered next. 

5.4.4 Common Principal-Component Model 
Flury (1984) proposed the common principal-component (CPC) model for in- 
corporating similarities in the group-covariance matrices. This model has been 
studied in some depth in the monograph of Flury (1988, Chapter 7), who has 
outlined a hierarchical set of models for a collection of covariance matrices. 
Under the CPC model, the Zi are taken to have the same principal axes, but 
these axes can be of different sizes and rankings in the different groups. It 
is thus equivalent to the assumption that the Zi are all diagonalizable by the 
same orthogonal matrix; that is, 

ACiA’ = Ai (i = 1, ...,g), (5.4.9) 

where A is an orthogonal p x p matrix, and the Ai are all diagonal matrices, 

Ai = diag(Ai1, ..., A i p )  (i = 1 ,..., g). 

The model of proportional group-covariance matrices introduced in the pre- 
vious section can be viewed as an offspring of the CPC model obtained by 
imposing the constraints 

Aik = $Alk (i = 2, ..., g; k = 1 ,..., p ) .  

Flury (1988, Chapter 4) has given the maximum likelihood estimates of A 
and the A i  for the CPC model under the assumption of multivariate normal 
group-conditional distributions. By writing A = ($1,. . . , $p) ,  these maximum 
likelihood estimates of A and Ai satisfy 

(5.4.10) +f;Skm+m = 0 (k,m = 1 ,..., p ;  k # n), 
where 

The equation system (5.4.10) has to be solved under the orthogonality con- 
straints 

+f;$m dkm, 
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where &, is the Kronecker delta. An algorithm for solving (5.4.10) has been 
proposed by Flury and Gautschi (1986). 

If no distributional assumptions are made about the groupconditional dis- 
tributions, then the least-squares estimates of A and the Ai can be computed 
using the routine provided by Clarkson (1988). 

Schmid (1987) has investigated the performances of the usual plug-in sam- 
ple versions r,,(x;$E) and r,,(x;&u) of the normal-based linear and quadratic 
rules relative to the quadratic versions formed with the groupcovariance ma- 
trices Ci estimated under the models of proportional Ci and of common prin- 
cipal components. Some of his results and conclusions have been summarized 
by Flury (1988, Section 8.4). They indicate that the use of the CPC model 
in discriminant analysis may be worthwhile in the case of several groups and 
relatively high dimension. 

Flury (1987a) has proposed a generalization of the CPC model, namely, 
the partial CPC model, in which only q out of the p eigenvectors specific to 
a groupcovariance matrix are common to all g groups. He also proposed an- 
other generalization in the form of the common space model, in which the 
first q (or the last p - q )  eigenvectors of Si span the same subspace for each 
i (i = 1, ...,g); see also Schott (1988). The common space model is an alterna- 
tive to the suggestions of Krzanowski (1979b, 1982b, 1984b) in comparing the 
principal components of several groups. 

As cautioned by Flury (1988, Section 7.3), principal-component analysis is 
scale-dependent, and so the hierarchy of principal-component models outlined 
above may not be meaningful if the feature variables are measured on dis- 
parate scales. As the models of proportional groupcovariance matrices and 
equal groupcorrelation matrices considered in the previous section are both 
scale-dependent, they would appear to provide a preferable way of completing 
a hierarchy of models ranging from homoscedasticity to heteroscedasticity. 

5.4.5 SIMCA and DASCO Methods 

A method that has been especially developed for situations in which the num- 
ber of features p is large relative to the training sample size n is SIMCA 
(soft independent modeling of class analogy). An initial description of this 
method was given by Wold (1976). Recent accounts can be found in Droge 
and van’t Klooster (1987), Frank and Friedman (1989), and Frank and Lanteri 
(1989). Many successful applications of SIMCA to chemical problems have 
been reported; see the references in Kowalski and Wold (1982), who have re- 
viewed the use of pattern-recognition techniques, including SIMCA, in chem- 
istry. Hence, SIMCA is widely used as a discriminant technique in chemomet- 
ria, where typically p is large relative to n; see, for example, Droge et al. 
(1987). 

With the SIMCA method, the feature vector x is represented in each group 
by a principal-component model. Generally, the number of principal compo- 
nents retained will be different for each group. An unclassified entity is allo- 
cated on the basis of the relative distance of its feature vector from these group 
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models. More specifically, let +i1,. . . ,+ip be the eigenvectors of unit length 
corresponding to the eigenvalues Ail  2 . - - 2 A i p  of Si (i = 1,. . .,g). Suppose 
that p i  denotes the number of principal components retained in the model 
for the ith group G i  (i = 1,. . . ,g). Then the SIMCA allocation rule assigns an 
entity with feature x on the basis of the minimum ratio of entity to average 
groupresidual sum of squares, 

P 
where 

&x) = C { ( ~ - ~ i ) ' + i k } ~  (i = I,..,,g). 
k = p i + l  

The term dP(x) is the sum of squares of the values of the omitted principal 
components of x - T i  in group G i .  

Frank and Friedman (1989) have shown that the SIMCA rule can be viewed 
as a minimum-distance rule of the form (5.4.1), based on the estimated Maha- 
lanobis distance from each groupsample mean. To see this note that 

D 

Thus (54.11) can be expressed as 

P 
where 

(5.4.12) 

(5.4.13) 

k = l  

On contrasting this with (5.4.12), it can be seen that SIMCA is a method 
of regularization whereby all the eigenvalues associated with the ith group 
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primary subspace are estimated to be infinitely large, that is, 1/&k = 0 for k = 
l,.. .,pi. The remaining eigenvalues &k (k = pi + 1, . . . ,p) are all estimated 

As pointed out by Frank and Friedman (1989), the SIMCA method has 
two shortcomings. Firstly, by taking I /&k = 0 for k = &...,pi in the estimate 
of 23r1, it ignores all information on group differences in the primary sub- 
spaces. Secondly, by considering only the Mahalanobis distance of x from 
each group-sample mean, it effectively ignores the normalizing term 123il-1/2 
in the multivariate normal density for the distribution of X in Gi. As re- 
marked earlier, this term can make an important contribution in the case of 
disparate group-covariance matrices. Frank and Friedman (1989) introduced 
a modified method called DASCX) (discriminant analysis with shrunken co- 
variances), which overcomes these two weaknesses of the SIMCA method. As 
with SIMCA, DASCO estimates the inverse of each Ci by partitioning the 
p-dimensional feature space in Gi into two subspaces: a primary subspace of 
dimension pi and its complement (secondary subspace) of dimension p - pi. 
In forming the estimate of Ci, the p - pi eigenvalues associated with the latter 
subspace are all estimated by 

by cis 

P 

k = p i + l  
x i  = A i k / @  -pi) ,  

the average of the last p -pi  eigenvalues of Si.  It can be seen from (5.4.12) 
and (5.4.13) that this is almost the same as with SIMCA, because Xi equals 
Cj apart from a multiplicative constant. However, in contrast to SIMCA, with 
DASCO, the eigenvalues associated with the primary subspace are not taken 
to be infinitely large. Rather they are taken to be the siune as the pi largest 
ones of Sj. The estimate of C;' so obtained is given by 

k=1 k=p i+ l  

The DASCO allocation rule is then taken to be the NQDR r0(x;*u) with / lj  

and S 2 j  replaced by Xi and Ej respectively (i = 1, ...,g), and with the group 
prior probabilities Ti assumed to be equal. It reduces under the latter assump 
tion to the sample NQDR ro(x;&u) in the special case pi = p (i = 1,. . .,g). 

The SIMCA and DASCO discriminant rules depend on the parameters 
p1, . . . ,pg ,  the primary subspace dimensionality for each of the groups. It is 
not computationally feasible to choose them jointly so as to minimize an esti- 
mate of the overall error rate. With the SIMCA method, each pj is assessed 
separately by the value of pj that minimizes a cross-validated estimate of 

(5.4.14) 
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see Wold (1976, 1978) and Frank and Friedman (1989). Also, Eastment and 
Knanowski (1972) have considered a similar cross-validation approach to the 
choice of the number of retained principal components. As explained by Frank 
and Friedman (1989), although (5.4.14) is not an unreasonable criterion, it is 
not directly related to the overall error rate of the consequent allocation rule. 
There is a wide variety of situations in which minimizing (5.4.14) gives very 
different results from minimizing the cross-validated error rate. An example 
occurs when the eigenvectors of the primary subspace are the same or similar 
for each group and the group differences occur along these directions. This 
latter information is ignored with the SIMCA rule, because it is based on only 
the secondary subspaces. 

The cross-validation of (5.4.14) may be too expensive to undertake, at least 
with one observation omitted at a time, if ?I is large. In order to achieve com- 
putational feasibility, the DASCO method takes a different approach to the 
assessment of each pi in order to achieve computational feasibility. Its assess- 
ment is the value of pi that maximizes a cross-validated estimate of 

Pi 

A i k / t f ( S i ) ,  (5.4.15) 
k =1 

P 
where 

k = l  

The quantity (5.4.15) is the fraction of the total variance associated with the 
primary subspace in Gj (i = 1, ...,g). 

5.5 REGULARIZED DISCRIMINANT ANALYSIS (RDA) 

5.5.1 Formulation 

Friedman (1989) has proposed regularized discriminant analysis (RDA) as a 
compromise between normal-based linear and quadratic discriminant analyses. 
With this approach, a two-parameter family of estimates of the Xi is consid- 
ered, where one parameter controls shrinkage of the heteroscedastic estimates 
toward a common estimate. The other parameter controls shrinkage toward a 
multiple of a specified covariance matrix such as the identity matrix. Through 
these two parameters, a fairly rich class of regularized alternatives is provided. 
Further, with these two parameters assessed from the training set by minimiza- 
tion of the cross-validated estimate of the overall error rate, a compromise 
between sample normal-based linear and quadratic analyses is determined au- 
tomatically from the available data. 

More specifically, let 

$,(A) = ((1 - A ) ( n i  - 1)Si + A(n -g)S}/{(I - A > ( n i  - 1) + ~ ( n  -g> ) ,  

(5.5.1) 
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where A(0 5 A 5 1) is a regularization parameter controlling the degree of 
shrinkage toward the pooled estimate S. Previously, Randles et al. (1978a) 
had proposed a weighted average of the sample NLDF and NQDF by using a 
weighted estimate of the form (5.5.1), except that it was expressed in terms of 
the inverses of the covariance matrices. The weight A was chosen adaptively 
by basing it on Wilks’ likelihood ratio statistic. 

The regularization provided by (5.5.1) is still fairly limited. Firstly, it might 
not provide for enough regularization. If n is less than or comparable to p, 
then even linear discriminant analysis is ill- or poorly posed. Secondly, bias- 
ing the Sj toward their pooled value may not be the most effective way to 
shrink them. Friedman (1989) therefore proposed that the estimate of Ci be 
regularized further as 

f i i (~97)  = (1 - 7 ) f i i ( A )  + Y C i I p ,  (5.5.2) 

where 1, is the p x p identity matrix, and 

ci = {tr$j(A>)/p. 

For a given value of A, the additional regularization parameter 7 (0 5 7 5 
1) controls shrinkage toward a multiple of the identity matrix. The multiplier 
Ci is just the average value of the eigenvalues of fii(A). This shrinkage has 
the effect of decreasing the larger eigenvalues and increasing the smaller ones 
of $i(A), thereby counteracting the bias inherent in the estimates provided 
by these eigenvalues. It is the same type of shrinkage as with ridge regression 
estimates of a covariance matrix that have been used in the context of discrim- 
inant analysis by Di Pill0 (1976, 1977, 1979), Campbell (198Ob), Peck and Van 
Ness (1982), Kimura et al. (1987), and Rodriguez (1988). A comparison of 
some of these biased methods for improving the error rate of the consequent 
sample quadratic discriminant rule has been given recently by Peck, Jennings, 
and Young (1988). Biased estimators of the group-covariance matrices such as 
these before are formally derivable by byes  and empirical Bayes arguments. 
An example of this is the empirical Bayes formulation adopted by Greene and 
Rayens (1989) in providing a compromise rule between the sample NLDR 
and the NQDR. 

Let &(A,7) be the estimate of @u obtained by replacing Si with $(A,?) 
for i = 1, ...,g. Then ro(x;@u(A,7)) is the normal-based regularized discrimi- 
nant rule (NRDR) as proposed by Friedman (1989). This rule provides a fairly 
rich class of regularization alternatives. The four corners defining the extremes 
of the 47 plane represent fairly well-known discriminant rules. The lower left- 
hand corner (A = 0, 7 = 0) gives the usual quadratic rule ro(x;@u), and the 
lower right-hand comer (A = 1, 7 = 0) gives the usual linear rule r,(x;&E). 
The upper right-hand comer (A = 1, 7 = 1) corresponds to the minimum- 
Euclidean distance rule 
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because 

fii(191) = {tr(S)/pVp. 

Finally, the upper left-hand corner (A = 0, 7 = 1) corresponds to the mini- 
mum-distance rule 

min{ci(x-jij)'(x -Ei)}'''. 
1 

Holding 7 fixed at zero and varying A provides rules between ro(x;@E) and 
ro(x;@u). A ridge regression analogue of r,,(x;?!~) is obtained by holding A 
fued at one and increasing 7. 

The linear and quadratic rules ro(x;$~) and ro(x;$u) are scale-invariant. 
However, the regularized rule r,,(x;$"(fi,?)) is generally not. This lack of 
scale invariance results from the use of the shrinkage parameter 7. In the 
formulation (5.5.2) of &(A,7), shrinkage is toward a multiple of the identity 
matrix I,. As there is nothing special about the choice of I,, Friedman (1989) 
noted that one could consider more general regularizations of the form 

* i ( ~ 9 7 )  = (1 - 7>*i(A) + 7 c i ~ 9  (5.5.3) 

where M is a prespecified positive definite matrix, and 

Cj = tr{&(A)}/tr(M). 

Let M = M1M; be the Cholesky factorization of M, where M1 is a lower 
triangular matrix. Then this generalized version of RDA can be implemented 
by first transforming the feature data xj to MT'xj ( j  = 1, ..., n), so that M 
reduces to I, in (5.5.3). 

A common procedure is to standardize the feature data so that all p feature 
variables have the same (sample) variances. This can be achieved by specifying 
M as 

M = diag(m1,. . ., mp),  

where 
n 

mk = C ( X j  - ji)E/(n - 1) 
j = 1  

or ( S ) k k ,  depending on whether the variance is computed from the training 
data t as a whole or is pooled within each group. The reader is referred to 
Friedman (1989) for further discussion on the choice of M, including the case 
where the feature vector x corresponds to a signal or image. 

5.53 Assessment of Regularization Parameters for RDA 

Without complete knowledge of the group-conditional distributions, the opti- 
mal values of A (the covariance matrix mixing parameter) and 7 (the eigen- 
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value-shrinkage parameter) are unknown. Friedman (1989) recommends that 
in a given situation without this knowledge, the optimal values of A and 7 be 
assessed by fi  and 9, defined to be the values of A and 7 that minimize the 
cross-validated estimate A(CY)(A,7) of the overall error rate associated with 
r0(x;&u(A,7)). On the basis of the available training data t as defined by 
(1.6.1), 

where, for any u and v,  Q[u,v] = 0 for u = v and 1 for u # v ,  and where 
@uti)(A,7) denotes the estimate &u(A,r) formed from the training data t with 
y j  = (xi,$)' omitted ( j  = 1,. . ., n). Cross-validation of the error rates of a sam- 
ple discriminant rule is to be considered in some depth in Chapter 10. 

The computation of the assessed regularization parameters f i  and T thus 
gives rise to a two-parameter numerical minimization problem. The strategy 
recommended by Friedman (1989) is to choose f i  and 9 on the basis of the 
smallest value of A(CV)(A,7) evaluated at each prescribed point on a grid of 
points on the A,7 plane (0 5 A 5 1, 0 5 7 5 1). 'I).pically, the optimization grid 
is taken to be from 25 to 50 points. With this strategy, each grid point requires 
the calculation of the n estimates @qo, ..., &qa,. In order to reduce this com- 
putational burden to an acceptable level, Friedman (1989) developed updating 
formulas for the computation of &ju)(A,7), the estimate Ej(A97) based on t 
with yj omitted ( j  = 1,. ..,n; i =I 1,. ..,g). In the presentation of his RDA a p  
proach, Friedman (1989) allowed for robust versions of Si and S to be used in 
the form (5.5.1) for $i(A).  Instead of the latter estimate, he used 

f i j (A)  = { ( I - A ) w ~ * ~  + Awfi l /wj(X)  (i = I,...,g), 

where 

j =1 

n 
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and where uj is the weight (0 _< uj 5 1) assigned to xi(] = 1,. . ., n). If uj = 1 
for ] = 1,. . .,n, then Ei(X) reduces to ei(X) for i = 1, .. .,g. 

The formulas given by Friedman (1989) apply to the use of the robust esti- 
mate Ei(47) defined by using %,(A) in place of $,(A) in (5.5.2). Let wi(j~(X) 

and Eiu,(X,7) denote W i ( X )  and &(X,y) with y j  omitted from the training 
data t. Friedman (1989) showed that 

Wi(j)(X)%i(j)(X,y) = 4j - aijaij, (5.5.4) 

where 

Aij = W i ( X ) g i ( X , y ) -  kijIp, 

aij = r g  (1 - 7)cij Czh j (x j  - i r h ) ,  

kij = {7(4jaij)1/{~(1- ~ ) 1 ,  
h = l  

Wi(j)(X) = Wi(X) - ujx-, 

and 

cij = ujX1-Zi, 2 z h j W h /  (2 Z h j  Wh - uj) 
h-1 h = l  

It can be seen from (5.5.4) that removing an observation from t is equivalent 
to downdating &(X,7) by a rank-one matrix plus a multiple of the identity ma- 
trix. From (5.5.4), it follows using a result of Bartlett (1951a) that the inverse 
of I&j,(X,7) can be computed as 

wi(j)(X)[AG' + {(AG'a;ja;jAG')/(l - afjAG'aij)}]. 

The matrix Aij is then inverted through its spectral decomposition to give 

P 
A X '  ' I  = C $ i v $ f v / ( h v  - k i j ) ,  

v = l  

where Xiv is the vth eigenvalue of Wi(X)Ei(X,y) ,  and $iv is its corresponding 
eigenvector ( v  = 1 ,..., p; i = 1 ,..., g). By using those results, the determinant 
of $i(j)(X,y) can be computed as 

where a i j v  = (aij)". 

Finally, the estimate jiicj) is given by j i i  for Zij = 0 and by 

jii(j) = ( W i p i  - UjXj) / (Wj  - U j )  

for Z i j  = 1. 
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As noted recently by Rayens and Greene (1991) in a critical comparison of 
RDA and the empirical Bayes approach of Greene and Rayens (1989), their 
simulated values of the cross-validated error rate A(")(X,7) of r0(x;@u(A,7)) 
were often constant for a wide range of values of A and 7. This implies that 
the optimal choice may not be uniquely determined. Thus, how ties are bro- 
ken with RDA is obviously an important issue, as illustrated by Rayens and 
Greene (1991). As reported in their study, with RDA, ties are resolved by se- 
lecting among the set of points (A,7) with the smallest cross-validated error 
rate, the grid point with the largest value of 7 from among the grid points 
with the largest value of A. Breaking ties in this way amounts to maximizing 
the shrinkage of the resulting rule with X given priority over 7. 

5.53 Effectiveness of RDA 
For the NRDR (normal-based regularized discriminant rule) ro(x; @*(A,?)) 
to be of value in practice, the assessed values fi  and 9 of the regularization 
parameters need to lead to a high degree of regularization that substantially 
reduces the variability with the use of @u. 

In order to investigate the effectiveness of the RDA approach, Friedman 
(1989) compared the NRDR ro(x;&u(fi,?)) with the sample NLDR ro(x;&E) 
and the sample NQDR ro(x;&u) in terms of their simulated overall error 
rates. The simulated examples were designed to provide a fairly wide spec- 
trum of situations in terms of the structure of the group means and covari- 
ance matrices. Some were chosen because they were highly unfavorable to 
regularization, and others were included because they were representative of 
situations where appreciable reduction in the error rate is possible through 
appropriate regularization. In each example, there were g = 3 groups and the 
training data consisted of n -- 40 observations generated from a p-dimensional 
normal mixture of these groups in equal proportions ( p  = 2, 6, 10, 20, and 
40). The optimization grid of (A,r) values was defined by the outer product of 
A = (0,0.125,0.354,0.650,1.0) and 7 = (0,0.25,0.5,0.75,1.0). When an Si with 
the quadratic rule or the pooled estimate S with the linear rule happened to 
be singular, the zero eigenvalues were replaced by a small number just large 
enough to permit numerically stable inversion. This had the effect of pro- 
ducing an Euclidean-distance rule in the zero-variance subspace (the subspace 
spanned by the eigenvectors corresponding to the essentially zero eigenvalues). 
On each simulation trial, the overall conditional error rates of ro(x; ?@u (A,?)), 
ro(x;&E), and r0(x;&) were computed. In the notation of Section 1.10, these 
error rates are given by ec(@u;&u(fi,q)), ec(?tv;!$E), and ec(@u;!$u), respec- 
tively. The sample means of these conditional error rates over 100 simulation 
trials provided the simulated values of the corresponding unconditional rates. 
Friedman (1989) concluded from his simulations that the assessment of the 
regularization parameters A and 7 on the basis of cross-validation seems to 
perform surprisingly well. In each of the situations simulated, the optimal joint 
values of A and 7 were roughly known. The simulated distributions of the as- 
sessed values fi  and 9 were concentrated near these optimal values in each 
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TABLE 5.2 Equal, Highly Ellipsoidal Group-Covariance Matrices with Mean 
Differences in Low-Variance Subspace 

p = 6  p = 10 p = 20 p = 4 0  

Error rate 

NRDR 0.07(0.04) 
NLDR O.M(O.03) 
NQDR 0.17(0.08) 

A('")(fi,?) 0.05(0.04) 

CORR 0.19 

0.77(0.32) 
0.02(0.08) 

Source: Adapted from Friedman (1989). 

0.07(0.04) 

0.14(0.12) 
O.M(O.03) 

O.M(O.04) 

0.0 

O.B(O.27) 
0.07(0.16) 

0.27(0.07) 0.39(0.06) 
0.24(0.06) 0.59(0.07) 

0.2 l(0.07) 0.34(0.08) 

0.0 0.16 

0.75(0.30) 0.72(0.32) 
0.19(0.27) 0.45(0.25) 

0.60(0.07) 0.60(0.06) 

case. This explains why r,,(x;&(A,q)) seems to gain so much over r , , ( x ; @ ~ )  
and r , , ( x ; \ f ~ )  in favorable situations, yet to lose little to them in unfavorable 
ones. The reduction in error rate in situations where n is smaller relative to p 
is most encouraging. Indeed, as remarked by Friedman (1989), it is surprising 
how small the ratio n / p  can be and still obtain fairly accurate allocation with 

As the assessed values fi  and 7 are taken to minimize the cross-validated 
estimate A(CV)(A,y) of the regularized rule for the given training data, 
A(cv)(fi,q) will provide an optimistic assessment of the overall error rate 
ec(@U;&(fi,q)) of ro(x;?C;U(fi,q)). In the simulated examples, A(cv)(fi,q) un- 
derestimated ec(@u;@u(fi,q)) by around 20% on average. A surprising result 
was the low correlation between A(cv)(fi,T) and ec(9U;@U( f i ,q ) ) .  This im- 
plies that A(cv)(!, f )  is providing an assessment of the unconditional error 
rate of r,,(x;&(A,f)) rather than its conditional error rate for the realized 
training data t. 
Ib illustrate the simulation results of Friedman (1989), we tabulate here the 

results for two of his simulation examples. The first here was the most diffi- 
cult of the simulation examples from the point of view of RDA. The group 
covariance matrices were the same and highly ellipsoidal, and the differences 
between the group means were concentrated in the low-variance subs ace. 

of the sample NLDR ro(x;&E), and of the sample NQDR r,(x;&) are re- 
ported in Table 5.2. Also listed in 'bble 5.2 are the averages of the assessed 
regularization parameters fi  and T and the minimum value A(cv)(fi,q) of the 
cross-validated estimate of the overall error rate of ro(x;@u(A, )). The en- 
try for CORR refers to the simulated correlation between A(")(I,q) and the 
apparent error rate of r,,(x;&(fi,q)) in its application to m = 100 test obser- 
vations generated subsequent to the training data t. Standard errors are listed 
in parentheses in Table 5.2. 

?fiv(fi,?)). 

The simulated overall unconditional error rates of the NRDR ro(x;?Iju( R ,?)), 
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TABLE 5.3 Unequal, Hlghly Ellipsoidal Group-Covariance Matrices with Zero 
Mean Dif'ferences 

Error rate 
NRDR 
NLDR 
NQDR 

A('")( i,9) 
CORR 

1 
3 

p = 6  

0.21(0.06) 
0.61(0.06) 
0.19(0.06) 

0.17(0.06) 

0.03 

0.03(0.05) 
0.17(0.16) 

-~ 

p = 10 

0.15(0.06) 
O.SS(0.06) 
0.35(0.13) 

0.13(0.05) 

-0.03 

0.04(0.06) 
0.27(0.18) 

p = 20 

0.12(0.05) 
0.58(0.06) 
0.44(0.10) 

O.ll(O.05) 

0.09 

0.06(0.07) 
0.46(0.17) 

p = 4 0  

0.12(0.06) 
0.63(0.06) 
0.43(0.07) 

0.12(0.06) 

0.25 

O.OS(0.07) 
0.6q0.15) 

Some: Adapted from Friedman (1989). 

It can be seen from Bble 5.2 that the sample NLDR r o ( x ; @ ~ )  performs 
slightly better in all but the highest dimension, where none of the three rules 
does particularly well. This situation, as constructed, is ideal for r o ( x ; & ~ )  be- 
cause any shrinkage away from the oint (A = l , ~  = 0) is strongly counterpro- 

the A,7 plane, the incurred increases in the average error rate from using the 
NRDR instead of the sample NLDR is only slight in this most unfavorable 
situation. In Table 5.2, the average value of 3 increases with p, so that at the 
highest level of p = 40, considerable shrinkage is needed to damp the variance 
even though this introduces substantial bias. 

For the second simulation example reported here in 'Iitble 5.3, the group 
covariance matrices were highly ellipsoidal and very unequal. As the group 
means were taken to be all the same, it represents a situation where the 
NLDR does very poorly. It can be seen from Table 5.3 that for the lowest 
dimension of p = 6, the NRDR is slightly worse than the NQDR, but for the 
other values of p, the NRDR is substantially better. As in the first example, 
the assessed values fi  and 3 of the regularization parameters appear to be a p  
propriate. The average value of fi  is near to zero for each p, indicating that 
very little covariance matrix mixing takes place at any dimension. 

Further simulation results on the RDA approach can be found in the recent 
study by Rayens and Greene (1991). They also describe the development of 
another discriminant rule, which combines ideas from RDA and the approach 
of Greene and Rayens (1989). 

ductive. As the assessed values of K and 3 are concentrated in this corner of 

5.5.4 Examples 

Friedman (1989) also analysed a real data set to demonstrate the effectiveness 
of regularization through the use of ro(x;@&q)). This data set consisted 
of p = 14 sensory characteristics measured on n = 38 wines originating from 
g = 3 different geographical regions: n1 = 9 from California, n2 = 17 from the 
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Pacific Northwest, and n3 = 12 from France. Friedman (1989) performed two 
analyses of this data set in which the groupprior probabilities were always 
taken to be equal to 1/3. In the first, the regularized, linear, and quadratic 
rules, ro(x; &(A,?)), ro(x; &E), and r,(x;&r.~), respectively, were formed from 
the entire set. Their overall error rates as estimated by the 0.632 estimator 
of Efron (1983), which is defined in Section 10.4.3, were 0.18, 0.26, and 0.36, 
respectively. The cross-validated estimate A(CV)(A,7) of ro(x; 4447)) had a 
minimum value of 0.14 at (A,?) = (0.35,O.M). 

In the second analysis, the data set was split randomly into half samples 
of size n = 19. The regularized, linear, and quadratic rules were formed from 
one sample and were applied to the other sample with apparent error rates of 
0.21, 0.50, and 0.59, respectively. As noted by Friedman (1989), this data set 
does not a pear to be favorable to regularization through the use of the linear 

with p = 14 and n = 38, the regularized rule r0(x;&(A,?)) is substantially 
superior. In the second analysis, where the size n of the training data is halved 
to 19, r o ( x ; & E )  appears to collapse completely, whereas the estimated error 
rate of r,(x;&(A,Cy)) is increased surprisingly little. 

Another way of proceeding in situations where the number of feature vari- 
ables p is large relative to the training sample size n is to use only a subset of 
the p observed feature variables. There is a variety of variable-selection tech- 
niques available for this purpose and they are reviewed in Chapter 12, which 
is devoted to the topic of feature selection. The variable-subset-selection a p  
proach, which is really another method of regularization, can be effective if 
the main differences between the group means and covariance matrices hap- 
pen to occur for a very small number of the original feature variables. How- 
ever, as argued by Friedman (1989), the influential subset of features has to be 
surprisingly small for subset-selection techniques to be competitive with other 
regularization methods, or even no regularization at all; see Copas (1983). 

rule ro(x; $ E ) .  Even though the latter is fairly well-posed in the first analysis 

5.6 ROBUSTNESS OF SAMPLE NLDR AND NQDR 

5.6.1 Continuous Feature Data 

Under the assumption of multivariate normality, the sample NLDR ro(x; \ f ~ )  
and the sample NQDR ro(x;@u) are asymptotically optimal in the presence 
of homoscedasticity and heteroscedasticity, respectively. Given that in real life 
there is no such thing as a “true model,” it is of interest to consider the be- 
havior of these two rules under departures of varying degrees from normality. 
Moreover, these rules are widely applied in practice in situations even where 
the group-conditional distributions of the feature data are obviously nonnor- 
ma]. 

There have been many studies on the robustness of ro(X;?GE) and rO(x;&”), 
mainly in the case of g = 2 groups, where these two rules are based on the 
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plug-in sample versions of the NLDF {(x;&) and of the NQDF [(x;&), re- 
spectively. 

Concerning the robustness of the sample NLDF {(x;&), it was shown in 
Section 3.3.3 that it can be obtained also, at least up to the coefficients of 
the feature variables in x, by choosing the linear combination of the features 
(appropriately normalized) that maximizes the sample index (3.3.8). This is 
regardless of the distribution of X. Hence, when the true log likelihood ratio 
s(x) is linear in x, 

€(XI = log{fl(X>/fi(~>l 
= a + P I X ,  (5.6.1) 

the sample NLDF [(x;&) should provide a reasonable allocation rule. In 
some situations, the aim of a discriminant analysis is not the outright allo- 
cation of an unclassified entity or entities. Rather it is the estimation of the 
discrimination function coefficients in order either to assess the relative im- 
portance of the feature variables or to form reliable estimates of the pos- 
terior probabilities of group membership. In these situations, the use of the 
normal-based estimates hE and of the discriminant function coefficients 
can lead to quite misleading inferences being made. As discussed in Chap 
ter 8, one way to proceed under the assumption of linearity of the log ratio 
of nonnormal groupconditional densities is to use logistic discrimination. This 
approach allows consistent estimation of the discriminant function coefficients, 
and, hence, of the posterior probabilities of group membership. 

For the allocation problem, however, the sample NLDF t(x;&) is fairly 
robust if (5.6.1) holds approximately. It is not robust against interactions be- 
tween the feature variables, unless the interaction structure is essentially the 
same for each group. 

For the remainder of this section, we are to focus on studies that have 
been carried out on the robustness of the allocation rules based on the sample 
NLDF and NQDF for continuous feature data. The case where some or all of 
the feature variables are discrete is considered in the next two sections. 

Lachenbruch, Sneeringer, and Rev0 (1973) used Johnson's system of dis- 
tributions to study the robustness of the sample NLDR and NQDR against 
lognormal, logitnormal, and inverse hyperbolic sine normal groupconditional 
distributions. They found that both these rules can be severely affected by such 
departures from normality. In the light of subsequent results in the literature 
that the sample NLDR is not badly affected by at least mild skewness and kur- 
tosis in the group-conditional distributions, Lachenbruch and Goldstein (1979) 
commented that its poor performance in the aforementioned study may be a 
consequence of the fact that the lognormal distribution used for each feature 
vector had extremely large skewness and kurtosis. Later Chinganda and Sub- 
rahmaniam (1979) investigated the robustness of the sample NLDR against 
the same class of distributions. They concluded that in practice one should 
first attempt where possible to transform the feature data to normality before 
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constructing the sample NLDF. In a parallel study, Subrahmaniam and Chin- 
ganda (1978) considered the robustness of the sample NLDR against several 
skewed distributions of the Edgeworth series type, representing a situation 
where the feature data are not amenable to being transformed to normality. 
The sample NLDR was found not to be affected to any great extent by this 
skewness. 

Using the techniques developed by Subrahmaniam and Chinganda (1978), 
Balakrishnan and Kocherlakota (1985) investigated the robustness of the sam- 
ple NLDR by modeling the group-conditional distributions as univariate nor- 
mal mixtures. The normal mixture model had been used previously by Ashik- 
aga and Chang (1981) to study the asymptotic error rate of this rule under 
departures from normality. These studies suggested that a moderate amount 
of skewness does not unduly affect the performance of the NLDR, especially 
if the groupconditional distributions are similar in shape. In more recent work 
on the robustness of the sample NLDR, Amoh and Kocherlakota (1986) have 
derived its error rates for inverse normal groupconditional distributions, and 
Kocherlakota, Balakrishnan, and Kocherlakota (1987) have investigated the 
effect of truncation on the error rates. 

Ahmed and Lachenbruch (1975, 1977) have studied the performance of the 
sample NLDR when scale contamination is present in the training data. The 
effect of contaminated training data on the sample NLDR was pursued further 
by Broffitt, Clarke, and Lachenbruch (1981) under a random-shift-location 
contamination model, where each variate was allowed to be contaminated in- 
dependently of the other variates in the feature vector. Only minimal effects 
on the error rates resulted. 
On the robustness of the sample NQDR, Clarke, Lachenbruch, and Brof- 

fitt (1979) concluded from their simulation experiments that it was robust 
to nonnormality provided the groupconditional distributions were not highly 
skewed. Heavy kurtosis caused no problems. In all cases studied, the overall 
error rate was relatively stable, whereas the group-specific error rates exhib- 
ited considerable variability. Broffitt, Clarke, and Lachenbruch (1980) subse- 
quently assessed the improvement in performance of the sample NQDR by 
Huberizing and trimming the estimated group means and covariance matrices 
before forming the sample NLDE The computation of Huber M-estimates of 
the means and covariance matrices of the groupconditional distributions is 
considered in Section 5.7.1. The use of these robust estimates provides pro- 
tection against any harmful effects of contamination of the training data, and 
also of misclassification as discussed in Section 2.5. 
As part of a wider study on the performances of the sample NLDR and 

NQDR relative to other discriminant rules under three types of nonnormality 
for bivariate group-conditional distributions, Bayne et al. (1983) reported that 
the robustness of the sample NQDR depends upon the type of nonnormality 
present. Also, they found its performance to be sensitive to the sample size. 
This last factor was seen in Section 5.3.3 to be crucial in determining whether 
the sample NQDF was superior to the sample NLDF under normality. More 
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recent investigations, where the sample NLDR and NQDR are evaluated 
as part of wider studies on various sample discriminant rules in nonnormal 
situations, include Rawlings and Faden (1986) and Joachimsthaler and Stam 
(1988). 

On the basis of the published results and their own work on the robustness 
of the sample NLDR and NQDR, Fatti, Hawkins, and Raath (1982) made the 
following generalizations. If the groupconditional distributions have lighter 
tails than the normal, then the sample NLDR and NQDR should still perform 
adequately. However, if the distributions are heavy-tailed and skewed, then 
the sample NLDR and NQDR will perform very poorly. But if the distribu- 
tions are heavy-tailed but essentially symmetric, then the sample NQDR may 
perform reasonably well in terms of its overall error rate. This is provided 
the sample size is sufficiently large to avoid excessive sampling errors in the 
estimated group means and covariance matrices. 

On this last point of the robustness the sample NQDR to heavy-tailed but 
symmetric group-conditional distributions, it is the ellipsoidal symmetry as- 
sociated with the multivariate normal assumption for the group-conditional 
distributions that appears to be the most important aspect rather than its de- 
tailed shape. It underscores the importance of normalizing transformations be- 
fore constructing the sample NQDE Even if a transformation may not achieve 
normality, it can still play a valuable role through the removal of skewness 
from the groupconditional distributions. 

5.6.2 Discrete Feature Data 

In this section, we consider the performance of the sample NLDR ((%;&) 

in situations where some or all of the feature variables are discrete. As noted 
in the previous section, for allocation purposes, the sample NLDF <(%;&) 

is quite robust to departures from normality if the true log ratio ((x) of the 
group-conditional densities is (approximately) linear in x ,  that is, if any inter- 
actions present between the feature variables are essentially the same within 
each group. 

The performance of the sample NLDF in its application to discrete and 
mixed feature data has been surveyed in some detail by Knanowski (1977). 
One of the initial investigations was undertaken by Moore (1973), who demon- 
strated how nonlinearity in the true log likelihood ratio ((x) with discrete fea- 
ture data limits the usefulness of the sample NLDF in providing an allocation 
rule. He considered the case where all the features are binary variables tak- 
ing on the values of zero or one. He adopted a second-order approximation 
to the Lazarsfeld-Bahadur reparameterization of the multinomial distribution. 
For given i (i = 1,. . . ,g), let 

f i j=pr{Xj=l IX€Gi}  

and 
xj,i = (Xj -fij)/{jij(~ -fij)}”2 
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for j = 1,. . . ,p ,  and 

Pi, jk ... m = E ( X j , i & j  . * .Xm,i  I X E Gi) 

for j , k ,  .. .,m = 1, .. . , p .  Then Lazarsfeld (1956, 1%1) and Bahadur (1%1) in- 
dependently showed that &(x) can be reparameterized as 

4- ‘ . *  4- c Pi, jk ... m X j i X k , i . . . X m j  : (5.6.2) 

Moore (1973) generated the feature vector x of binary variables, using the 
second-order approximation to (5.6.2), 

j < k <.- < m  J 

He considered the case of g = 2 groups, where, for a given i ,  the f i j  were the 
same for all j ,  and the pi , jk  were the same for all j and k. As a consequence, 
the true log likelihood ratio 

had a simple dependence on the sum of the feature variables 

that is, on the number of positive feature variables. 
If [(x) does not increase monotonically with the number of positive feature 

variables, then it is said to undergo a reversal. In such situations, the sample 
NLDF ((x;&) or indeed any linear function of the feature variables is unable 
to follow the reversal, and so will perform poorly relative to the true discrim- 
inant function ((x). In situations without reversals in ,$(x), the sample NLDF 
((x;&) was found to give good results. 

This explains why the sample NLDF was found to perform well in the ear- 
lier study by Gilbert (1%8). There were no reversals in ((x) for the binary 
feature variables generated according to her first-order interaction model for 
which ((x) was a linear function of x. That is, in each group, the feature vari- 
ables had common marginal distributions, and their first-order interactions 
were the same for both groups. 
Ib illustrate a reversal in <(x), we consider the example presented in Moore 

(1973) on the study of Yerushalmy et al. (1965) of infant maturity, using the 
indices of birth weight and gestation. The latter comprised the p = 2 binary 
feature variables, with x1 = 0 or 1 corresponding to a low or high birth weight, 
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and xz = 0 or 1 corresponding to a short or long gestation period. The two 
groups G1 and G2 represent “normal” or abnormal babies. The combination 
of a low birth weight and short gestation period (XI = 0, xz = 0) or a high 
birth weight and a long gestation (XI = 1, xz = 1) is suggestive of GI. Other 
combinations of XI and x2 are more consistent with GZ than GI. It is thus 
evident that t(x) would not be an increasing function of X I  + xz. Further, it 
can be seen that a linear discriminant function cannot allow for this reversal 
in ((x). For let 

be any linear discriminant function, where 

t(x1,xz;a) = Po” + P ’ x  

a = (%,P‘)’, 
and where an entity is assigned to GI or Gz, according as to whether t(x1, X Z ; ~ )  

is greater or less than some cutoff point k. Now 

t ( 1 , h )  = t(41;a) + tGQa) -t(O,o;a). (5.6.4) 

Hence, if x = (1,l)’ is assigned to GI, that is, 

S(1,l;a) > k, 
and both x = (0,l)’ and x = (1,O)’ are assigned to G, that is, 

((0,l;a) < k ,  t(1,Qa) < k ,  

then it follows from (5.6.4) that 

t (0,Qa) < k. 
Thus, an entity with x = (40)’ is assigned to Gz and not to GI as desired in 
this example. 

In this example, XI and XZ are positively correlated in GI, but negatively 
correlated in Gz, and so the assumption of equal groupcovariance matrices 
under which the sample NJBF t(x;&) is formed does not hold. However, 
Dillon and Goldstein (1978) have demonstrated that reversals can occur even 
in situations where the groupcovariance matrices are equal. They generated 
binary feature data using the second-order form (5.6.3) of the Lazarsfeld- 
Bahadur representation. The groupcorrelation matrices were made equal by 
specifying pl,jk = f i j k  for all j , k .  Equality of the group-covariance matrices 
was achieved then by taking f z j  = 1 - f1,j for each j .  Although the group 
covariance matrices are the same with this specification, it can be seen from 
(5.6.3) that interactions between these binary feature variables are not equal 
within each group, and so {(x) is not linear in x. 

There have been a number of empirical studies carried out in recent times 
to investigate the sample NLDR and NQDR, along with other discriminant 
rules, in situations where some or all of the feature variables are discrete. One 
such study was that by Titterington et al. (1981), who considered the applica- 
tion of several discriminant rules to a prognosis problem involving a series of 
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loo0 patients with severe head injury. The results of these broad investigations 
are reported in Chapter 9 after the various semiparametric and nonparametric 
competitors of the sample NLDR and NQDR have been defined. 

Confining remarks now to the latter two normal-based rules, Titterington et 
al. (1981) found on the basis of the data sets analyzed that the sample NLDF is 
quite robust in its provision of an allocation rule for discrete feature data. As 
they also found the independence-based rule to be robust, it suggests that any 
interactions between the discrete data analyzed are similar for each of the two 
groups. As remarked earlier, the sample NLDF is not robust against dissimilar 
interaction structures of the feature variables within each group. This has been 
confirmed in the simulations and case studies by Krz.anowski (1977), Knoke 
(1982), Vlachonikolis and Marriott (1982), and Schmitz, Habbema, and Her- 
mans (1985), among several others. Although the sample NQDF will generally 
be preferable to the sample NLDF in the presence of first-order interactions, 
it may not provide a satisfactory allocation rule because of the presence of 
higher-order interactions between the discrete feature. Discriminant rules that 
have been specifically designed for discrete and mixed features are presented 
in Chapter 7. 

5.63 Mixed Feature Data 

As in the case of all continuous or all discrete feature variables, the allocatory 
performance of the sample NLDF for mixed feature variables depends on the 
similarity of the interaction structure of the features within each group. From 
their simulations with mixed binary and continuous feature variables, Schmitz 
et al. (1985) concluded that the interaction structure of the continuous fea- 
tures has a greater impact on the performance of the sample NLDF than that 
of the binary features. A further consideration with mixed feature data is the 
similarity of the interaction structure between the discrete and continuous fea- 
ture variables within each group. High within-group correlations between the 
discrete and continuous feature variables, unless similar for each group, are 
suggestive of a situation in which the sample NLDF may perform poorly. Lin- 
ear transformations of the continuous feature variables that attempt to achieve 
zero correlations between the discrete and continuous features within each 
group are described in Section 7.6.1. With unequal interaction structures, the 
sample version of the NQDF instead of the NLDF might be considered. How- 
ever, in situations in which some of the feature variables are discrete, inter- 
actions of order higher than the first may have to be incorporated into the 
discriminant function if a satisfactory rule is to be formed. In Section 7.6.2, 
we discuss ways in which the performance of the sample NLDF can be im- 
proved in the presence of interactions by augmenting the feature vector to 
include appropriate products of the feature variables. This approach appears 
to be preferable to the use of the sample NQDF (Knoke, 1982; Vlachonikolis 
and Mamiott, 1982). 
As cautioned in the previous section, although the sample NLDF may pro- 

vide a satisfactory allocation rule under departures from normality that pre- 
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serve approximately the linearity of the log likelihood ratio, its use can lead 
to misleading inferences for at least some of the discriminant function co- 
efficients and hence for the posterior probabilities of group membership. To 
illustrate this in the present situation of mixed feature data, we now consider 
the case in which the feature vector X consists of a single binary variable XI 
and (p - 1) continuous variables X@) = (XZ,. . .,Xp-l)'. We let 

qil = pr{X1 = 1 I X E Gi} (i = 1,2). 

The distribution of X(2) given XI = x1 is assumed to be 

X(') I XI = X I  - N(@ + X ~ W ,  E(2)) in Gi (i = 1,2). (5.6.5) 

This is a special version of the location model defined in Chapter 7, where 
parametric discriminant rules for the specific case of mixed features are to be 
considered. 

For the model (5.6.5), the covariance between XI and X(2) in Gi is equal 
to 

COV(X~,X(~)) = qil(1- qi1)W' (i = 192)- 

But as the interactions between XI and the elements of x(2, are the same in 
both GI and G2, the log likelihood ratio ((x) is linear in x. It is given by 

((x) = g + p1x1 + p(2)'x(Z), 

where 
(2) 

-1 '2  1 9  Po" = l0gW - 411)/(1- q21)) - 1 Z(P, (2) + 1'f))'E(2)-'(1'!2) 

Pl = log[{qn/(l - q11)}/{q21/(1- q21))I - w'C(2)-1(1'12) - Pp) ,  

and 
p" = ~ C o - ' ( p  1 - #)I. 

As t(x) is linear in x, the sample NLDF ((x;&) should suffice here for 
allocation purposes. XI examine this further, we consider the asymptotic form 
of <(x;&) under mixture sampling of the training data in proportions 7r1 and 
q from and G2. Corresponding to the partition (x1,d2)')' of x, we express 

(5.6.6) 
W E )  as 

t (x;&) = &f$ + (blE,&?')'X, 

where from (4.28) and (4.2.9), 

lo"= = + z2)'S-yzl -%2) 

and 

The expectation and covariance matrix of X in group Gi are equal to 

pi = (qil, <#) + qiilw)')' 
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respectively, for i = 1,2. It follows that as n 4 00, Zi and S converge in prob- 
ability to pi and 22, respectively, where 

c = qc1+ 7r&. 

On substitution of these limiting values in (5.6.6), the asymptotic form of 
t(x;d,) can be expressed as 

(5.6.7) 

where 

bo = - ${(41i-+ q21)(q11 - qz1)~/{~1q11(1 - 411) + r2q21(1- q21)) 

- 1og{(l- 411)/(1- 421)) 

and 

bl = (411 - q21)/{7hq11(1- 411) + r2q21(1- q21) )  

- log[{q11/(1- q11)1/tq21/(1- q21))I- 

This result is available from Hosmer, Hosmer, and Fisher (1983a), who 
derived it in their study on the sample NLDF for mixed binary and continuous 
feature variables. They also gave the generalization of the result in the case of 
an arbitrary number of binary variables in the feature vector. In other closely 
related work, OHara et al. (1982) and Hosmer, Hosmer, and Fisher (1983b) 
have used simulation experiments to study the problem for a training sample 
of finite size. 

It can be seen from (5.6.7) that the use of the normal-based estimates 
&, and provides consistent estimation of p(2) containing the discrimi- 
nant function coefficients of the continuous feature variables. However, the 
constant term pl and the coefficient p1 of the binary feature variable are 
estimated inconsistently, their asymptotic biases being given by bo and bl, re- 
spectively. This inconsistent estimation of p1 would be of concern if an aim of 
the analysis was to assess the discriminatory importance of the binary feature 
variable X I .  For example, the two groups might correspond to the presence 
or absence of some disease in an individual and XI might be used to denote 
whether in the past the individual was exposed or not to some carcinogenic 
agent. 

But for the purposes of constructing an allocation rule, the inconsistent es- 
timation of 
and p1 serve only to locate the hyperplane in the continuous feature variables, 
that is, the cutoff point for the linear discriminant function p(2)rx(2) formed 
from the continuous variables in the feature vector. Although this cutoff point 

and Pl would not be of practical concern. This is because 
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has a bearing on the balance between the two errors of allocation, the over- 
all error rate is not greatly affected. Hence, as /3(2) is estimated consistently by 
the normal-based estimate fig), the performance of the sample NLDF s(x;&) 
should not be too far below a consistent sample version of the optimal dis- 
criminant function s(x). 

5.7 ROBUST ESTIMATION OF GROUP PARAMETERS 

5.7.1 M-Estimates 

We consider here the computation of robust M-estimates of the location vec- 
tor and scatter matrix of the feature vector X in a given group. These estimates 
give full weight to observations from the main body of the data, but automat- 
ically give reduced weight to any observation assessed as being atypical of its 
group of origin. Huber (1964) developed a theory of robust estimation of a lo- 
cation parameter using M-estimates. It was later extended to the multivariate 
case by taking an elliptically symmetric density and then associating it with a 
contaminated normal density; see Maronna (1976), Huber (1977, 1981, Chap 
ter 8), and Collins (1982). Further references on this approach and subsequent 
modifications can be found in Collins and Wiens (1985), Hampel et al. (1986, 
Chapter 5) ,  and Wiens and Zheng (1986). 

We let Xij ( j  = 1, ..., ni) denote the ni feature vectors in t that belong to 
Gi (i = 1,. ..,g). For the ith groupconditional distribution of X, the M-esti- 
mates of pi and Xi as proposed by Maronna (1976) are defined by the equa- 
tions 

C ul(&j>(Xij - pi) = o (5.7.1) 
ni 

j=l 

ni 
and 

CuZ(d;j)(xij - pi)(xj - pi)'/ni = ei, 
j=l 

(5.7.2) 

where, for convenience, S(Xij,fii;ei) is written as and where u~(s) and 
UZ(S) are nonnegative weight functions. Under fairly general conditions on 
UI(S) and uz(s), Maronna (1976) established the existence and uniqueness of 
the solution of (5.7.1) and (5.7.2). He also showed that it is consistent and 
asymptotically normal under the assumption that fi(X;Oj) is a member of the 
family of p-dimensional elliptically symmetric densities 

I xi I-~/~~S[{S(~, pi; xi )}1'2~, (5.7.3) 

where fs(llxll) is any spherically symmetric density function. Under (5.7.3), Ci 
is a scalar multiple of the covariance matrix of X. One of the conditions on 
the weight functions, that SU~(S)  and su&) be bounded, ensures that these 
estimates of pi and Ci will be robust. If 

u&) = -s-'8logfS(S)/as 
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and u2(s2) = u ~ ( s )  for s > 0, then (5.7.1) and (5.7.2) give the maximum likeli- 
hood estimates of pi and Ci (i = 1,. . .,g). 

More general to (5.7.2), Huber (1977, 1981, page 213) observed that an 
affinely invariant estimate of Cj can be defined by 

(5.7.4) 

for arbitrary functions u and v ,  and noted it was “particularly attractive” to 
take u = v.  The M-estimate of a covariance matrix in high dimensions has a 
low breakdown point a0 (which, roughly speaking, is the limiting proportion 
of bad outliers that can be tolerated by the estimate). For example, Maronna 
(1976) established that (YO 5 l / ( p  + 1) for (5.7.2), where u2 is monotone in- 
creasing and u2(0) = 0, and Huber (1977) showed that this could be improved 
only to (YO 5 l/p in the more general framework (5.7.4). Recently, Huber 
(1985) has reported projection pursuit ( P P )  estimators of pi and Ci that are 
both affine equivariant and whose breakdown point approaches 1/2 in large 
samples. These PP estimators are defined by replacing dij in (5.7.1) and (5.7.2) 
bY 

& j  = sup(a‘xij - mi)/Mj, 
a 

where mi is the median, and Mi is the mean absolute deviation of a’xj ( j  = 
1 ,..., ni)  for i = l , . .  .,g. 

One proposal by Maronna (1976) for the weight function q ( s )  in (5.7.1) is 

u1(s) = ?h(s)/s, 

where $(s) is Huber’s (1964) $-function. It is defined by $(s) = -$(-s), 

(5.7.5) 

for an appropriate choice of the “tuning” constant kl (p) ,  which is written here 
as a function of p to emphasize its dependence on the dimension of x .  

An associated choice for a weight function in the estimation of Ci is to take 

u(s) = v(s) = {ul(s)}2 

in (5.7.4) to give 

(5.7.6) 
j =1 

Note that if Ul(Ci i j )  and not its square were used as a weight in (5.7.6), then 
the influence of grossly atypical observations would not be bounded. 

The value of the tuning constant kl@) in Huber’s +function (5.7.5) de- 
pends on the amount of contamination, and so k l ( p )  is chosen to give estima- 
tors with reasonable performances over a range of situations. In the univari- 
ate case, kl(1) is generally taken to be between 1 and 2. For p > 1, Devlin, 
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Gnanadesikan, and Kettenring (1981) took kl(p) to be the square root of the 

90th percentile of the x i  distribution, &, because qj is asymptotically 
x: under normality. Campbell (19&4c, 1985) recommends kl(1) = 2 and that 
in the multivariate case, kl@) be computed corresponding to kl(1) = 2 by 
taking to be x$ and then using the approximation of Wilson and Hilferty 
(1939, 

(5.7.7) 

for the ath quantile of the x i  distribution. In (5.7.7), qa denotes the ath 
quantile of the N(0,l) distribution. Because kl(1) = 2 is approximately equal 
to the square root of ~ & 9 5 ,  this leads to 

on setting k l ( p )  = $0.95 and then approximating the latter according to 

of chi-squared to normality other than (5.7.7), suggesting the fourth root when 
p is small. Broffitt et a]. (1980) observed from their simulations on the perfor- 
mance of the sample QDF using M-estimates of pi and I=i that the choice of 
kl(p) is not critical. 

If it is desired that observations extremely atypical of Gi should have zero 
weight for values of aij above a certain level (rejection point), then a re- 
descending $-function can be used, for example, Hampel’s (1973) piecewise 
linear function. It is defined by +(s) = -$(-s), where, for s > 0, 

(5.7.7). Hawkins an i- Wicksley (1986) have discussed power transformations 

where kl(p) is chosen in the same way as kl(p) in Huber’s @-function (5.7.5). 
Care must be taken in choosing the remaining tuning constants kz(p)  and 
k3(p) to ensure that $ does not descend too steeply, as cautioned by Huber 
(1981, Chapter 4), who also warns that redescending estimators are susceptible 
to underestimation of scale and that there may be multiple solutions. It can 
be seen that using Huber’s nondescending $-function with manual rejection 
of grossly atypical observations beforehand is almost equivalent to the use of 
a redescending function, since either procedure removes very extreme obser- 
vations. The difference lies in the treatment of the observations over which 
there is some doubt as to their retention in the data. With a redescending 
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$-function, this step is carried out automatically by having $ redescend to 
zero from kz(p). For further discussion on the comparative properties of non- 
descending and redescending $-functions, the reader is referred to Goodall 
(1983), who also considers the various smooth versions subsequently proposed 
for Hampel's original $-function (5.7.9). 

For convenience of use, Campbell (1984% 1985) advocates (5.7.9) with tun- 
ing constants kl(1) = 2, kz(1) = 3, and k3(l) = 5 for p = 1. In the multivariate 
case, he recommends defining kl@) by (5.7.8) and kz(p)  and k3(p) by replac- 
ing 1.645 with 2.8 and 5, respectively, in the right-hand side of (5.7.8). With 
this choice, kl(p) and kz(p)  are approximately equal to the square root of 

2 
xp;0.95 and xi;0.99749 

5.7.2 Use of a Rank-Cutoff Point 

Randles et al. (1978b) have considered robust versions of the normal-based 
linear and quadratic discriminant rules in the case of g = 2 groups. One pro- 
posal was to form the linear discriminant function a'x, where a is chosen to 
maximize an appropriate function of the separation index (3.3.6) introduced 
by Fisher (1936). This index can, of course, be regarded as a projection in- 
dex in the spirit of projection pursuit (Huber, 1985). Another robust proposal 
of Randles et al. (1978b) is to use the linear or quadratic discriminant rules 
formed with Huber-type M-estimates in conjunction with a rank-cutoff point. 
The use of the latter provides an extra degree of robustness as it provides 
some control over the relative size of the two unconditional error rates. For 
nonnormal feature data, severe imbalances can occur between the error rates 
of the sample NLDR or NQDR when applied with a fixed cutoff point. 

We now describe the allocation procedure using a rank-cutoff point with 
the sample NLDF t(x;&). We let y = (x',~')', where z is the unknown vector 
of zero-one indicators denoting the group membership of x. Corresponding to 
x belonging to G1 or G2, we let 

y(1) = (x', 1,O)' 

y(Z) = (x,O, 1)'. 
and 

The estimate of BE based on t and y(') is denoted by b)~(:,y(~)) for i = 1,2. 
The rank of t(x;&(t,y(l))) when included among the t(X1j;BE(t,y''))) for j = 
1, .. .,nl is denoted by Rl(x;t) ,  and Rz(x;t) denotes the rank of -t(x;OE(t,y(2))) 
when included among the -t(~2j;&(t,y(~))) for j = 1,. . . , nz. As before, xij 
( j  = 1, ..., ni) denote the ni feature vectors in t that belong to Gi ( i  = 1,2). 
With the rank-cutoff point as proposed initially by Broffit et a]. (1976) and 
used subsequently by Randles et al. (1978a, 1978b), an entity with feature vec- 
tor x is assigned to GI if 

Rl(x;t)l(nl + 1) > k{Rz(x;t)/(nz + 1)19 
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and to G2 if 
Rl(x;t)l(nl + 1) < k{Rz(x;t)/(nz + I)), (5.7.10) 

where k is a constant that reflects the desired balance between the error rates. 
For example, k is set equal to one if the intent is to have comparable er- 
ror rates. The rationale behind this procedure is that the greater the value 
of Rl(x;t), the more likely it is to be from GI rather than Gz. Similarly, the 
greater the value of &(x;t), the more likely it i s  to be from G2 rather than 
a. Moreover, Broffit et al. (1976) showed that if the unclassified entity with 
feature vector x comes from Gi, then Ri(XT) has a uniform distribution over 
l,.. .,ni + 1 with mass l/(ni + 1) at each of these values (i = 1,2). This im- 
plies that allocation according to (5.7.10) is based on the relative size of the 
P-values for the affinity of x with G1 and Gz, respectively. 

5.73 MML Estimates 

We consider here the approach of Tiku (1983), Tiku and Balakrishnan (1984), 
Balakrishnan, Tiku, and El Shaarawi (1985), and Balakrishnan and Tiku (1988) 
to the construction of a robust discriminant rule in the case of g = 2 groups. 
Their approach is to use the NLDF 

t(x;eE) = {x - $(pl + Cr2)}'x"'(p1- P2), 

where pl, p2, and X are replaced by the modified maximum likelihood (MML) 
estimates of Tiku (1967, 1980). 

'RI define the MML estimate, we consider first the univariate case p = 1. 
Let ~ i ( l ) ,  ..., Xi(,,,) denote the ni order statistics for the training data Xij  (1 = 
1,. . ., ni) from group Gi (i  = 1,2). Then the MML estimate of pi is defined by 

where 
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and where 

M 1 j  = ni - 2hi, 

M 2 i  = h i a i { X i ( n i - h ; )  - x i ( h i + l ) } ,  

mi-h, 
2 

M 3 i  = [Xi",.) -k hipi{$(hi+1)  + $(ni-hi)}l - mipi, 
j = h , + l  

and 

for i = 1,2. 
< 1 and 0 < p i  < 1 (i = 1,2). For example, for qj = 0.1, 

a i  = 0.690 and pi = 0.831. For h i  = 0 (i = 1,2), PI,  j l 2 ,  and 82 reduce to the 
sample means X I ,  X2, and the pooled sample variance s2 corrected for bias. 
The choice of hi is based on robustness considerations. For distributions most 
prevalent in practice, h i  is usually chosen to be the greatest integer less than 
or equal to 0.5 + (ni/lO); see Tiku, Tan, and Balakrishnan (1986) for details 
regarding various properties and efficiency of MML estimators. 

As defined above, the MML estimates of p1, pt, and u2 can be viewed as 
approximate maximum likelihood estimates for symmetric ?Lpe I1 censoring, 
where the hi smallest and the h i  largest observations in the sample on the 
entities from G, are censored (i = 1,2). For extremely skewed distributions, a 
more appropriate procedure is obtained by censoring on only one side, in the 
direction of the long tail (Tiku et al., 1986, page 113). 

To extend the definition of the MML estimates to the bivariate case of 
p = 2, Tiku and Balakrishnan (1984) noted that instead of allocating an entity 
on the basis of its feature vector in its original form, x = ( x 1 , x 2 ) ' ,  one can 
equivalently use 

where 

and 

The sample discriminant function is taken then to be 

a i  = t $ ~ ( q 2 i ) / q l i I  - P i q ~ i  

Note that 0 < 

X* = ( X l J 2 . 1 ) ' ,  

x2.1 = x 2  - b x 1 ,  

b = ( S ) 1 2 / ( S ) l l .  

(5.7.13) 

where f ir  and S* denote the MML estimates of the mean and covariance 
matrix, respectively, of X* within C i  (i = 1,2). They are defined as follows. 

Let x t  ( j  = 1,.  . . , ni)  denote the ni replications of X' corresponding to the 
original observations xij ( j  = 1 ,..., n i )  from Gi (i = 1,2). Also, let x;"(~)  ,..., 
x;,,(,,. denote the ni-order statistics of (X&...,(X~,,~)~ for i = 1,2 and v = 
1,2. *hen as S* is diagonal, Pf and S* can be calculated by considering the 
ordered observations x;v(ll, .. . ,x ;~( , ,~ )  separately for each variate v ( v  = 1,2). 
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Thus, for each v (v = 1,2), (fir)" and (S*)"" are given by (5.7.11) and (5.7.12) 
with the xi( j )  replaced by the xrVcj) (i = 1,2; j = 1,. . . , nj). 

We let eciR)(Fi;t) for i = 1,2 denote the group-specific error rates of the 
rule based on the robust version @)(x*) of the NLDF given by (5.7.13). Tiku 
and Balakrishnan 1984) and Balakrishnan et al. (1985) have investigated the 

e c r ) ( F ~ ;  t )  achieves, at least asymptotically, a specified level. They concluded 
that &?(x*) is quite robust in the sense that the values of ecY'(F1;t) are 
more stable from distribution to distribution than those of the sample NLDF 
t(x;&). Also, g ) ( x * )  appeared to be more efficient than t(x;&) and the 
nonparametric discriminant functions studied in that it produced lower values 
for the error rate with respect to the second group. Balakrishnan and Tiku 
(1988) have pointed out that the MML estimates can be easily generalized 
to the p > 2 case by proceeding along the same lines as in Tiku and Singh 
(1982). More recently, Tiku and Balakrishnan (1989) have considered the use 
of MML estimates in providing a robust allocation rule with respect to two 
univariate distributions with unequal variances. 

performance of &! I (x*) in applications where the cutoff point is chosen so that 



C H A P T E R  6 

Data Analytic Considerations 
with Normal Theory-Based 
Discriminant Analysis 

6.1 INTRODUCTION 

With a parametric formulation of problems in discriminant analysis, there is 
a number of items in need of attention before the final version of the sample 
discriminant rule is formed and applied to the problem at hand. These prelim- 
inary items are associated with the actual fitting of the postulated models for 
the groupconditional distributions of the feature vector X. There is the de- 
tection of apparent outliers among the training data and their possible effect 
on the estimation process. One option for handling extremely atypical obser- 
vations is to use a manual rejection procedure in conjunction with a robust 
estimation procedure whereby an observation assessed as atypical of its group 
of origin is given reduced weight in the formation of the estimates of the group 
parameters. 

On the assessment of model fit, there are several tests of univariate and 
multivariate normality that can be applied to assess the validity of a normal 
model for the group-conditional distributions. The question of model fit is 
particularly relevant in situations in which reliable estimates of the posterior 
probabilities of group membership are required. In some cases where a normal 
model does not appear to provide an adequate fit, the training data may be 
able to be transformed to achieve approximate normality. 

After the question of model fit has been addressed, there is still another 
item to be considered before completing the probabilistic or outright alloca- 
tion of an unclassified entity. There is the question of whether the assumption 
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that the entity belongs to one of the g specified groups is apparently valid. In 
some situations, the question does not arise, as the specified groups by their 
very definition are exhaustive for the origin of the unclassified entity. How- 
ever, in other situations, this may not be known with certainty. For example, 
in the case where the g specified groups represent the known causes of a dis- 
ease, they may not be completely exhaustive as there may well be additional 
causes as yet unrecognized and classified. In situations like this, there is par- 
ticular interest in the monitoring of the typicality with respect to the specified 
groups of the feature vector x on the unclassified entity. 

These aforementioned aspects of detection of apparent outliers among the 
training data and robust estimation, assessment of model fit before and af- 
ter the application of data-based transformations, and the monitoring of typ 
icality of feature data on unclassified entities are discussed and illustrated in 
the following sections in the context of parametric discrimination via normal 
theory-based models. 

In the second half of the chapter, attention is devoted to the graphical r ep  
resentation of the feature data on the classified entities in the training set. As 
the human capacity for pattern recognition is limited to low dimension, highly 
revealing low-dimensional representations of the feature data are required if 
much light is to be shed on such matters as the underlying group structure. 

For homoscedastic feature data, a well-used method of portraying the group 
structure is to use the sample analogues of the population canonical variates 
introduced in Section 3.9.2. In association with this problem, we are to con- 
sider the construction of confidence regions for the group means that take into 
consideration the sampling variability in the sample versions of the canonical 
variates. Also, we are to consider a test for the number of canonical vari- 
ates, that is, the number of discriminant functions needed, with feature data 
from multiple groups. Another problem to be discussed is the generalization 
of canonical variate analysis to the case of heteroscedastic feature data. The 
role of principal components in discriminant analysis is to be examined, too. 

At the end of the chapter, we present some examples of discriminant anal- 
yses in less than straightforward situations, including a case in which there is 
not an unequivocal classification of the training data with respect to the un- 
derlying groups and a case in which there is some doubt as to the actual group 
structure. Problems of this type, which are on the interface of discriminant and 
cluster analyses, occur frequently in practice and can be difficult to handle. 

6.2 ASSESSMENT OF NORMALITY AND HOMOSCEDASTICITY 

6.2.1 Introduction 

With the parametric approach to discriminant analysis, an important consid- 
eration in practice is the applicability of the adopted forms for the group 
conditional densities of the feature vector X. This can be carried out by as- 
sessing the fitted group-conditional densities for each group in turn. On the 
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question of fit for a normal model for the distribution of X in a given group, 
there is now an extensive literature on both formal and informal methods 
for assessing univariate and multivariate normality. They are surveyed in the 
comprehensive reviews by Gnanadesikan (1977, Section 5.2), Cox and Small 
(1978), and Mardia (1980). More recent work on this topic is described in the 
compendium by Koziol (1986) and the reviews by Looney (1986) and Baring- 
haus, Danschke, and Henze (1989); see also Csorgo (1986) and the references 
therein. 

6.2.2 Hawkins’ Test for Normality and Homoscedasticity 

In discriminant analysis where more than one groupconditional distribution is 
under assessment, there is also the question of whether the groupconditional 
distributions have a common covariance matrix. A convenient test in this 
framework is the procedure proposed by Hawkins (1981), which can be used 
to test simultaneously for multivariate normality and homoscedasticity. It can 
be easily incorporated as a routine diagnostic test in a computer program. 
Also, it has very good power compared with standard inferential procedures 
such as the likelihood ratio test statistic for homoscedasticity used in conjunc- 
tion with the multivariate coefficients of skewness and kurtosis (Mardia, 1970, 
1974) for normality. We now give a brief description of Hawkins’ (1981) test, 
as the quantities used in its construction are to be used in Section 6.4 as mea- 
sures of typicality of the training feature vectors. For a more detailed account, 
the reader is referred to Fatti, Hawkins, and Raath (1982) and McLachlan and 
Basford (1988, Section 2.5). 

Corresponding to the homoscedastic normal model (3.3.1) for the group 
conditional distributions, the problem is to test the hypothesis 

HO : X - N(p i ,C)  in G i  (i = 1, ...,g) 

on the basis of the training data t. It is  more convenient here if we relabel the 
n feature vectors xi,. . .,x,, in t to explicitly denote their group of origin. We 
let x i j  ( j  = 1,. . . , ni) denote the ni training feature vectors from group Gi, that 
is, those with Zi j  = 1 (i = 1 ,..., g). 

For a given group Gi, Hawkins’ (1981) test considers the squared Maha- 
lanobis distance between each Xij ( j  = 1,. . .,ni) and the mean of the sample 
from Gi, with respect to the (bias-corrected) pooled sample covariance matrix 
S. In forming this distance, or equivalently Hotelling’s T2, each x i j  is deleted 
first from the sample in case it severely contaminates the estimates of the 
mean and covariance matrix of G i  (i = l,.. .,g). Accordingly, the squared Ma- 
halanobis distance 

a ( x i j , % ( i j ) ; s ( i j ) )  (6.2.1) 

is computed, where Xii(ij) and S( i j )  denote the resulting values of Xi and S, 
respectively, after the deletion of x j j  from the data. Under Ho, it follows that 

(6.2.2) 
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is distributed according to an F-distribution with p and u = n - g  -p degrees 
of freedom, where 

c(ni,u) = (ni - l)v/(nip)(u + p - 1). (6.2.3) 

Note that for economy of notation, we are using v elsewhere to denote the 
underlying measure on RP appropriate for the mixture density of the feature 
vector X. 

The quantity (6.2.2) can be computed using the result that 

which avoids the recomputation of j3i and S after the deletion of each x i j  from 
the data. If aij denotes the area to the right of the observed value of (6.2.4) 
under the FP,” distribution, then under Hi we have that 

(6.2.5) iid 
HN : Ui1,...,Ujmi N U(0,l) (i 1 ,..., g) 

holds approximately, where U(0,l) denotes the uniform distribution on the 
unit interval. The result (6.2.5) is only approximate as for a given i, the aij 
are only independent exactly as ni --t 00, due to the presence of estimates of 
pi and I: in the formation of (6.21). Hawkins (1981) has reported empirical 
evidence that suggests that subsequent steps in his test that treat (6.2.5) as if it 
were an exact result should be approximately valid. He also noted that (6.2.5) 
can be valid for nonnormal groupconditional distributions, but it is likely that 
such cases would be very rare. 

A close inspection of the tail areas aij including Q-Q plots can be un- 
dertaken to detect departures from the g hypotheses Hoi, and hence from 
the original hypothesis Ho. In conjunction with this detailed analysis, Haw- 
kins (1981) advocated the use of the Anderson-Darling statistic for assessing 
(6.2.5), as this statistic is particularly sensitive to the fit in the tails of the dis- 
tribution. It can be computed for the sample of ni values U i j  ( j  = 1, ..., ni) by 

(i = 1, ...,g), 

where for each i, ai(1) 5 ai(2) 5 .-. < u i ~ , ~ )  denote the nj order statistics of the 
U i j .  In the asymptotic resolution of each Wi into standard normal variates wik 
according to 

m 

w;: = C w , 2 , / k ( k  + 1) (i = 1, ...,g), 
k-1 

attention is focused on the first two components 
n: 

j =I 
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and 

Similarly, the Anderson-Darling statistic WT and its first two components w-1 

and Wn can be computed for the single sample where all the aji are com- 
bined. 

Caution should be exercised in any formal test based on the Anderson- 
Darling statistics W;: and WT and their components in view of the reliance on 
asymptotic theory in establishing their validity. However, Hawkins (1981) has 
provided simulations to demonstrate that the asymptotic theory will not lead 
one seriously astray and errs on the side of conservatism. Note that further 
conservatism is introduced into the problem if the data have been transformed 
first according to a data-based transformation; see Linnett (1988). 

The primary role of the statistics Wi and WT and their components as pro- 
posed by Hawkins (1981) is to provide quick summary statistics for interpret- 
ing qualitatively departures from the null hypothesis Ho of multivariate nor- 
mality and homoscedasticity. Nonnormality in the form of heavy tails in the 
data leads to a U-shaped distribution with an excess of the aij near zero or 
one for a given i. The second component, Wiz, which is essentially the sam- 
ple variance of the aij ( j  = l,...,fii), is useful in detecting this (and other 
departures from normality). The presence of heteroscedasticity in normally 
distributed data generally will result in large positive values for the first com- 
ponent of one of the Wi, say, Whl, and large negative values for the first com- 
ponent of another Wi7 say, Wul. For nonnormal data, Whl and Wul may not 
necessarily have different signs, but there should be large differences between 
them to indicate heteroscedasticity. If a normal model provides an adequate 
fit, then the imbalances in the tail areas due to heteroscedasticity tend to can- 
cel each other out in the formation of WT and its components from the totality 
of the n areas aij (i = 1,. ..,g; j = 1,. . ., ni). Thus, significant values of WT and 
its components can be taken as a fair indication of nonnormality. 

6.23 Some Other Tests of Normality 

The question of multivariate normality for some data may be considered in 
terms of radii (distances of the data points from the center) and angles (direc- 
tions of the data points from the center). Andrews, Gnanadesikan, and Warner 
(1973) provided an informal graphical procedure for assessing multivariate 
normality in terms of the radii and angles. Hjort (1986a, Section 11.2) has 
since given a rigorous test based on them. Fatti et al. (1982) are of the view 
that tests of model fit in discriminant analysis should be directed toward the 
detection of heavy-tailed and skewed departures from normality, as the perfor- 
mance of discriminant rules based on normal models can be severely affected 
by such departures. In this pursuit, they suggested that the multivariate sample 
measures of skewness and kurtosis as proposed by Mardia (1974 1974) should 



ASSESSMENT OF NORMALITY AND HOMOSCEDASTICITY 173 

be useful. For the training data q j  (1 = 1, ..., ni) from group Gi (i = 1 ,..., g), 
the sample measures of skewness and kurtosis are given by 

1 ni 
and 

b i , p  = -C{(qj -gi)'Sr1(*j -Z i ) )2 ,  
ni j=l 

respectively. Note that in contrast with the scalar coefficient of skewness, b1j,p 

can be used only to assess whether skewness is present, not whether it is in 
any particular direction. 

Under the heteroscedastic normal model, 

X - N(pi ,Ei )  in Gi ( i  1, .. .,g), (6.2.6) 

we have from Mardia (1970) that asymptotically, 

(ni/Wli,p N x:, (6.27) 

where d = ( p / 6 ) ( p  + l)(p + 2), and 

{ h i , p - p ( p  +2) ) / { (8 /n i )p (p  +2)11'2 - N ( o , ~ ) .  (6.2.8) 

On a cautionary note, it would appear that the exact significance level of the 
test based on the large-sample result (6.2.8) may be quite different from the 
assumed nominal level (Gnanadesikan, 1977, Section 5.4). 

Fatti et al. (1982) have pointed out how these statistics can be easily com- 
bined to give composite test statistics for skewness and kurtosis. One way is to 
use the asymptotic results that under (6.2.6), 

i l l  

Another way is to use Fisher's method for combining tests, which they note is 
more powerful but not as easy to apply. For example, for this method applied 
to the testing of skewness in the group-conditional distributions, we use the 
result that under (6.2.6), 

-2Clogp1,i N x Z g ,  (6.2.9) 

where, for each i ,  PI,; denotes the P-value for the test based on bli ,p,  that is, 
the area to the right of the realized value of (ni/6)bli,p under the x: distribu- 
tion. Note that (6.2.9) does not hold exactly, as (6.27) is only a large-sample 

8 

i =I 
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result. If there were prior grounds for assuming homoscedasticity, then consid- 
eration might be given to using the pooled estimate S of the common group 
covariance matrix in the formation of the k i , p  and the b i , p .  However, as it 
is not clear what effect this would have on the distribution of the consequent 
test statistics, the question of model fit is usually considered separately for 
each group-conditional distribution. 

One explanation for skewness or heavy-tailed departures from normality for 
a particular group-conditional distribution is that it may be a finite mixture 
of normal or some other distributions, as discussed in Section 2.11. In such 
situations, the assessment of multivariate normality for, say, the ith group- 
conditional distribution, may lead to the consideration of a test for gi = 1 ver- 
sus gi = 2, or possibly a greater value, where gi denotes the number of compo- 
nents in a gi-component normal mixture. This problem is far from straightfor- 
ward, as explained in McLachlan (1987a). However, it can be tackled by boot- 
strapping the likelihood ratio test statistic as outlined in Section 1.10. Note that 
the presence of a normal mixture is not always the only explanation for depar- 
tures from behavior €or a single normal distribution. For example, a single log 
normal density can be well approximated by a mixture of two univariate densi- 
ties with a common variance; see Titterington et al. (1985, page 30). However, 
where the sole aim is to provide an adequate model for a groupconditional 
distribution, the question of whether a group is a genuine mixture of two or 
more subgroups, or has an inherently skewed distribution, is not of primary 
interest; see Schork and Schork (1988) for a discussion of this point. 

6.2.4 Absence of Classified Training Data 

It has been assumed in the preceding work that each ni is sufficiently large 
to provide reasonable estimates of the unknown parameters in the group 
conditional densities f i ( X ; O i ) ,  i = 1, . . . , g .  If some or all of the ni are very 
small, some unclassified data may be used, too, in forming these estimates. 
Then the assessment procedure is essentially the same as for an unclassified 
sample. The problem of testing for multivariate normality and homoscedastic- 
ity in this situation is covered in McLachlan and Basford (1988, Chapter 2). 
They follow the approach of Hawkins, Muller, and ten Krooden (1982) in sug- 
gesting that the unclassified data be clustered first by fitting a mixture of nor- 
mal but heteroscedastic component distributions. Then Hawkins’ (1981) test 
be applied to the resulting clusters as if they represent a true classification of 
the data. As cautioned by McLachlan and Basford (1988), it is self-serving to 
cluster the data under the assumption of normality when one is subsequently 
to test for it, but it is brought about by the limitations on such matters as 
hypothesis testing in the absence of classified data. 

6.2.5 Likelihood Ratio Test for Homoscedasticity 

The standard method €or testing homoscedasticity under the assumptio I of 
multivariate normality uses the likelihood ratio test, although it is sensitive to 
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nonnormality in the data (Layard, 1974). Therefore, it is wise to first check that 
a normal model is a viable assumption before applying this test. One attractive 
feature of this test is that the test statistic can be decomposed to provide some 
explanation as to the nature of any heteroscedasticity that may be detected. 
Information obtained in this way can be exploited in the formulation of the 
final model to be adopted for the formation of the sample discriminant rule; 
see Section 5.4. 

For the normal model (6.26), the likelihood ratio test for homoscedasticity 

HO : Ci = C(i l,...,g), (6.2.10) 

is based on the statistic 

where $j is the sample 

(6.2.11) 

covariance matrix of the training feature data from 

i =l 

is the pooled within-group sample covariance matrix; see, for example, T. W. 
Anderson (1984, Section 10.3) and Seber (1984, Section 9.2). Note that each 
nj must exceed p in order for Q to be formed. Under Ho, Q is distributed 
asymptotically as chi-squared with q(g - l)p(p + 1) degrees of freedom. 

Fatti et al. (1982) have commented on the convenience of being able to 
decompose the likelihood ratio test statistic to explore the nature of any het- 
eroscedasticity present. There is the obvious decomposition from the defini- 
tion of Q, where the ith term in its definition, 

can be interpreted directly as a standardized measure of how the general- 
ized sample variance within group Gi compares with the generalized pooled 
within-group sample variance. They exhibited another decomposition of Q 
based on the res.ult that the determinant of a covariance matrix can be decom- 
posed into a product of partial variances. The resultant decomposition of Q 
focuses on the individual variates in the feature vector. The vth component in 
this decomposition of Q provides a measure of the additional heteroscedastic- 
ity arising from the vth feature variate conditional on the first v - 1 features; 
see Fatti et al. (1982, page 60). 

6.2.6 Hierarchical Partitions of Likelihood Ratio Test Statistic for 
Homoscedasticity 

Recently, Manly and Rayner (1987) have shown how the likelihood ratio test 
can be made more informative by hierarchically partitioning the test statistic 
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Q into three components, Qo, Ql, and Q2, for testing the nested hypotheses 
Hi (i = 0,1,2,3). The hypothesis Ho of homoscedasticity is defined by (6.2.10), 
and H3 denotes the hypothesis of heteroscedasticity. Using the same notation 
as in Section 5.4, the hypotheses HI and H2 are defined by 

HI : xi = “$p (i = 1, ...,g), 

where 61 = 1, and by 

H2 : Xi = KXcK (i = 1, ...,g), 

where Ki = diag(ki1,. . ., kip)  for i = 2,. . .,g, and K1 is the identity matrix. The 
component statistic Qi is minus twice the log likelihood ratio for the test of Hi 
versus Hi+l, and so is evaluated in terms of the maximum likelihood estimates 
of the parameters under Hi and fl+l (i = 0,1,2). The latter estimates were 
given in Section 5.4. It follows that 

g 

QO = n log{ 12 1 / 1  f i ~  I }  - 2p C ni log&, 
i=2 

and 
R P  

i = l  i=2 v = l  

The hypothesis Hi may be tested against Hi+l, using the result that Q, is 
asymptotically distributed under Hi, as chi-squared with di degrees of freedom 
(i = 0,1,2), where do = g - 1, dl = (p - l)(g - l), and d2 = $(g - l ) p ( p  - 1). 
The hierarchical testing proceeds as follows. First, Qz is assessed to see whether 
it is significantly large. If so, then the within-group correlations are concluded 
to vary between the groups and testing stops. If Q2 is not significant, then Q1 
is assessed for significance. If a significant result is obtained, then the within- 
group variances are concluded to be different but the correlations the same, 
and testing ceases. If Ql is not significant, then Qo is assessed for significance. 
If a significant result is obtained, then the group-covariance matrices are as- 
sumed to be proportional; otherwise they are assumed to be equal. 

The likelihood ratio test statistic is usually based on the modified statistic 

Q* = - C ( n i  - l>log{ISil/ISI}t 
g 

i = l  

where 

is the bias-corrected estimate of Xi (i = 1, ...,g), and 

Si = nj$i/(ni - 1) 

s = n&/(n -g) 
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is the bias-corrected estimate of the common groupcovariance matrix X un- 
der homoscedasticity. The replacement in Q of the group-sample size ni by 
the degrees of freedom ni - 1 (i = 1,. . . ,g)  and the total sample size n by the 
total degrees of freedom n -g  is the multivariate analogue of Bartlett’s (1938) 
suggested modification to Q in the univariate case. When the ni are unequal, 
it is well known that the test based on Q is biased. However, Perlman (1980) 
has shown that the test based on Q* is unbiased. As noted by Manly and 
Rayner (1987), the decomposition of Q* can be undertaken in the same man- 
ner as for Q, simply by replacing tlj by nj - 1 (i  = 1, ...,g) and n by n - g  in 
the process. Greenstreet and Connor (1974) showed how the statistic Q or Q* 
can be modified by a multiplicative constant to give a test with essentially the 
same power as before, but with the actual size closer to the nominal level. In 
the case of Q*, the multiplicative constant is defined to be 

On the use of the likelihood ratio statistic for testing homoscedasticity un- 
der a normal model, McKay (1989) has employed it as the basis of a simulta- 
neous procedure for isolating all subsets of the variates in the feature vector 
that have the same covariance matrix within each of two groups. If the group 
covariance matrices are taken to be the same, McKay (1989) showed how 
his approach can be applied to isolating subsets of the feature variates for 
which the corresponding groupcovariance matrix is diagonal. The case of a 
diagonal covariance matrix within each group corresponds to the conditional 
independence factor model (Aitkin, Anderson, and Hinde, 1981). That is, the 
observed correlations between the features result from the grouped nature of 
the data, and that within the underlying groups, the features are independently 
distributed. 

Flury (1987b, 1988) has shown how the likelihood test statistic can be par- 
titioned hierarchically for testing his proposed hierarchy of models containing 
the principal-component models for similarities in the group-covariance ma- 
trices Ci. It was shown in Section 5.4 that this hierarchy differs from the four- 
level hierarchy considered by Manly and Rayner (1987) in that the model of 
equal groupconelation matrices at the third level between the models of pro- 
portionality and heteroscedasticity is replaced by the common principal com- 
ponent (CPC), partial CPC, and common space models. Further details can 
be found in Flury (1988, Chapter 7). We give in what follows the components 
of the likelihood ratio statistic Q for the test of the hypothesis HO of ho- 
moscedasticity versus Hcpc and the test of Hcpc versus the hypothesis H3 of 
heteroscedasticity, where Hcpc denotes the hypothesis of common principal 
components as stated by (5.4.9). 

A test of Hcpc versus H3 can be undertaken on the basis that 
P 

Q4 = C ni log{ I& I / lA12 lei I ]  
i=l 
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is asymptotically distributed under Hcpc as chi-squared with degrees of free- 
dom equal to i(g - l)p@ - 1). The computation of the estimates .& and & 
was described in Section 5.4. If required, a test of Ho versus Hcpc can be 
undertaken using 

i3 

Q5 nlogl*I - Cnilog{I&I/I.&IZ}, 
i= l  

which has an asymptotic null distribution of chi-squared with p(g - 1) degrees 
of freedom. 

6.3 DATA-BASED TRANSFORMATIONS OF FEATURE DATA 

6.3.1 Introduction 

Although a normal model can be assessed as providing an inadequate fit to 
the training data t, one may well decide in the end to still use discriminant 
procedures based on normality. As seen in Section 5.6, moderate departures 
from normality are not necessarily serious in their consequences for nor- 
mal theory-based discriminant rules. This point has been emphasized also by 
Hjort (1986a, Section 11.2). Indeed, only a rough description of the group 
conditional densities is needed to produce an effective allocation rule for 
widely separated groups. On the other hand, the question of model fit for the 
group-conditional densities is important in the case where reliable estimates 
of the posterior probabilities of group membership are sought. One option, if 
it is concluded that the normal model does not provide an adequate fit, is to 
seek a transformation of the feature data in an attempt to achieve normality. 
This course of action would be particularly relevant in the last case. 

6.3.2 Box-Cox Tkansformation 

An account of transformations can be found in Gnanadesikan (1977, Section 
5.3). One approach discussed there is the multivariate generalization by An- 
drews, Gnanadesikan, and Warner (1971) of the univariate power transfor- 
mations of Box and Cox (1964). In the present discriminant analysis context 
with the training data xjj (i = 1, ...,g; j = 1, ..., nj), the vth variate of each 
x j j ,  Xjjv (v = 1, . . . , p )  is transformed into 

(6.3.1) 

Let C = ((1,. . . , cp)’ be the vector of powers. Consistent with our previous 
notation, we let @E contain the elements of p1, ...,pg and the distinct ele- 
ments of XI, ..., Xg under the constraint C1 = = Cg = C, where now pi 
and Cj denote the mean and covariance matrix, respectively, in the multivari- 
ate normal distribution assumed for the ith groupconditional distribution of 
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the transformed feature vector. We can estimate C by maximum likelihood. Let 
L(C,&;t) denote the likelihood function for C and & formed from t under 
the assumption of multivariate normality and homoscedasticity for the feature 
data when transformed according to (6.3.1). Then C can be estimated by 2, 
obtained by maximization with respect to C of 

P 8 ni 1 
2 lOgL(C;t) = --nlOglel+ C(Cy - l)CClOgXijv, (6.3.2) 

v = l  i=f  j=1 

where e is the pooled within-group sample covariance matrix of the trans- 
formed feature data. Here L(C;t) denotes (up to an additive constant) the 
maximum value of L(C,&;t) with respect to 0, for specified t. This initial 
maximization, therefore, replaces t9E in L(C,&; t) by its maximum likelihood 
estimate for specified C, which amounts to replacing the group means and 
common groupcovariance matrix of the transformed feature data by their 
sample analogues. 

Asymptotic theory yields an approximate lOO(1- a)% confidence region 
for ( given by 

where denotes the quantile of order 1 - a of the xi distribution. This 
approach also yields another assessment of multivariate normality as the like- 
lihood ratio statistic 

2tlogUt;t) - logL(1p;t)) (6.3.3) 

can be used to test the null hypothesis that C = 1, = (1,. . . ,1)'. The asymptotic 
P-value is given by the area to the right of (6.3.3) under the x i  density. 

If heteroscedasticity is apparent in the transformed data and the adoption 
of homoscedasticity is not crucial to the discriminant procedure to be used, 
then before making a final choice of C, one might consider its maximum like- 
lihood estimate under the heterwcedastic normal model (3.2.1). For the latter 
model, the term 

-in log 191 

2tlogL(&t)- logL(t;t)) 5 Xi;l-or 

where ei denotes the sample covariance matrix of the transformed training 
data from group Gi (i = 1,. . .,g). 

The maximization of (6.3.2) with respect to ( involves much computation. 
A simpler method is to focus only on the marginal distributions of the variates 
in the feature vector. Then tv is estimated by maximizing 
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separately for each Cv ( v  = 1, . . . ,p ) .  Although normal marginals certainly do 
not ensure joint normality, empirical evidence suggests it may suffice in prac- 
tical applications; see Andrews et al. (1971), Johnson and Wichern (1982, 
Section 4.7), and Bozdogan and Ramirez (1986). This last approach, which 
chooses on the basis of enhancing marginal normality of each of the p vari- 
ates in the feature vector, is thus concerned with only p directions, namely, 
those in the directions of the original coordinate axes. In contrast the first 
approach chooses to improve the joint normality of the p variates of the 
feature vector and so is Concerned with all possible directions. Gnanadesikan 
(1977, Section 5.3) has described a method of transformation that identifies 
directions (not necessarily confined to prespecified directions such as the co- 
ordinate axes) of possible nonnormality and then selects a power transforma- 
tion so as to improve normality of the projections of the original observations 
onto these directions. 

A requirement for the use of the transformation (6.3.1) is that the original 
feature variates X i j v  be nonnegative. A simple way of ensuring this is to shift 
all the Xijv by an arbitrary amount to make them all nonnegative. Another 
way is to use the more general shifted-power class of transformations, where 
the shift for each of the p variates is treated as an additional parameter to be 
estimated (Gnanadesikan, 1977, Section 5.3). 

6.33 Some Results on the Box-Cox 'kansformation in Discriminant 
Analysis 

Dunn and Tubbs (1980) have investigated the use of the transformation (6.3.1) 
as a means of enhancing homoscedasticity in the classical Iris data set (Fisher, 
1936). Although heteroscedasticity was reduced as a consequence of the trans- 
formation, it was still assessed as highly significant. This is to be expected in 
general as it is an ambitious requirement for a transformation to achieve both 
approximate normality and homoscedasticity for a number of groups if the 
original data are heteroscedastic. Hermans et al. (1981) have drawn attention 
to this point. However, even if a transformation does not induce homoscedas- 
ticity, nor even near normality, it will have played a useful role if it has been 
able to produce good symmetry in the data. 

The transformation (6.3.1), along with more robust methods, has been con- 
sidered by Lesaffre (1983), who surveyed normality tests and transformations 
for use, in particular, in discriminant analysis. In the context of g = 2 groups, 
he used a modified version of the transformation (6.3.1), where C was allowed 
to be different for each group Gi. The ith group-specific value of (, ti, was ob- 
tained by maximization of the log likelihood formed separately from the trans- 
formed data from Gi (i  = 1,2). It was proposed that the group-conditional 
distributions be simultaneously normalized by taking to be a value of C in 
the overlap of the 95% confidence regions for (1 and (2. This approach, where 
C is taken to be different for each group, is perhaps most useful in situations 
where there would appear to be no C for achieving at least approximate nor- 
mality in the transformed data. By subsequently allowing ( to be different for 
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each group, the group-specific estimates of C can serve as useful diagnostic 
tools in indicating particular departures from normality. Knowledge of these 
group-specific departures can be used in postulating more adequate models 
for the group-conditional distributions. 

Beauchamp and Robson (1986) have investigated the use of the transfor- 
mation (6.3.1) in discriminant analysis in terms of the asymptotic error rates 
of the sample normal-based linear and quadratic discriminant rules. For g = 2 
groups with univariate or bivariate feature data, they compared the asymptotic 
error rates of these discriminant rules formed before and after transformation 
of the data according to (6.3.1) in which the appropriate value of C was used. 
Their results, therefore, serve as a guide to the maximum improvement that 
can be expected in the error rate for data-based versions of the transforma- 
tion (6.3.1). Previously, Beauchamp, Folkert, and Robson (1980) had consid- 
ered this problem in the special case of the logarithmic transformation applied 
to a univariate feature vector. 

In the context of a single group, Bozdogan and Ramirez (1986) have pre- 
sented an algorithm for transforming data according to transformation (6.3.1) 
if multivariate normality is assessed as untenable. The latter assessment is un- 
dertaken using the multivariate coefficients of skewness and kurtosis of Mar- 
dia (1970, 1974). Their algorithm, which can be routinely incorporated into any 
preprocessing analysis, also has the provision for assessing the transformed 
data for normal model assumptions. 

6.4 TYPICALITY OF A FEATURE VECTOR 

6.4.1 Assessment for Classified Feature Data 

The detection of outliers is a challenging problem, particularly in multivariate 
data. Generally, an identification of observations that appear to stand apart 
from the bulk of the data is undertaken with a view to taking some action to 
reduce their effect in subsequent processes such as model fitting, parameter 
estimation, and hypothesis testing. In some instances, however, the atypical 
observations can be of much interest in their own right. Extensive surveys 
on the subject can be found in the books of Barnett and Lewis (1978) and 
Hawkins (1980), and in the review paper of Beckman and Cook (1983). More 
recent references include Cltrow, Helbling, and Ranger (1986), Bacon-Shone 
and Fung (1987), and Marco, Young, and lbrner (1987~). 

We consider now the detection of apparent outliers among the training 
data t. It is still convenient to denote the n feature vectors in t as x i j  (i = 
1 ,..., g; j = 1, ..., ni). For each feature vector q, we have, from the assess- 
ment of multivariate normality and homoscedasticity described in the previous 
section, the associated tail area ail computed to the right of the (normalized) 
squared Mahalanobis distance 

c(ni, v)d(x i j ,R( i j ) ;  S(ij)) (6.4.1) 
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under the FP," distribution. If U i j  is close to zero, then q j  is regarded as atyp- 
ical of group Gi. Under the restriction to tests invariant under arbitrary full- 
rank linear transformations (Hawkins, 1980, page 107), (6.4.1) is equivalent to 
the optimal test statistic for a single outlier for both the alternative hypotheses 

Hli : Xij N ( ~ ! , z )  

and 
H z  : Xij N(pi,KiX),  

where p! is some vector not equal to pi, and /ci is some positive constant 
different from unity. A more relevant question than whether an observation 
is atypical is whether it is statistically unreasonable when assessed as an ex- 
treme (a discordant outlier), for example, with univariate data, whether, say, 
the largest of the n, observations from Ci is unreasonably large as an obser- 
vation on the nith order statistic for a random sample of size nj. However, 
generalizations to multivariate data are limited as the notion of order then is 
ambiguous and ill-defined; see Barnett (1983). 

If it were concluded that it is reasonable to take the group-distributions to 
be multivariate normal but heteroscedastic, that is, 

X N ( p i , X i )  in Gi (i = 1, ...,g), (6.4.2) 

then the aij should be recomputed under (6.4.2) before being used to assess 
whether there are any atypical observations among the training data. Under 
(6.4.2), we modify the squared Mahalanobis distance (6.4.1) by replacing Sgj )  
with the ith group-specific estimate Si(ij). Consequently, Ui  j would be taken to 
be the area to the right of 

~ ( n i , ~ i ) ~ ( ~ j , ~ i ( i j ) ; S i ( i j ) )  (6.4.3) 

under the Fp,vi distribution, where Vj = ni - p - 1. The value of (6.4.3) can be 
computed from (6.2.4), where w is replaced by Vi and S by Si. 

The fitting of the groupconditional distributions depends on how the pres- 
ence of apparently atypical observations among the training data is handled. 
If the aim is to undertake estimation of the groupconditional distributions 
with all atypical feature observations deleted from the training data, then x i j  

would be a candidate for deletion if uij < a, where a is set at a conventionally 
small level, say, a = 0.05. A second approach is to eliminate only those fea- 
ture observations assessed as being extremely atypical, say, a = 0.01 or 0.005. 
Protection against the possible presence of less extreme outliers can be pro- 
vided by the use of robust M-estimators, as discussed in Section 5.7. A third 
course of action might be to use redescending M-estimators to accommodate 
all discordant outliers, no matter how atypical. Another approach might be 
to proceed as in Aitkin and "bnnicliffe Wilson (1980) and allow for another 
group(s) through the fitting of a mixture model. More recently, Butler (1986) 
has examined the role of predictive likelihood inference in outlier theory. 
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On other approaches to the detection of atypical observations among the 
training data, Campbell (1978) and Radhakrishnan (1985) have considered the 
use of the influence function as an aid in this pursuit. A Bayesian approach to 
the problem of assessing influence can be found in Geisser (1987). 

6.4.2 Assessment for Unclassified Feature Data 

A preliminary matter for consideration before an outright or probabilistic al- 
location is made for an unclassified entity with feature vector x is whether x 
is consistent with the assumption that the entity belongs to one of the target 
groups GI,. . ., G,. One way of approaching the assessment of whether the fea- 
ture x on an unclassfied entity is typical of a mixture of GI, .  . . , Gg is to assess 
how typical x is of each Gi in turn. For a given x, the squared Mahalanobis 
distance 

6(x,Ej;Si) (6.4.4) 

is computed for i = 1, ...,g. Then under the heteroscedastic normal model 
(6.4.2), 

c(ni + 1,vi + l)d(X,Zi;Sj) (6.4.5) 

has the Fp,vi+l distribution, where, as before, vi = ni - p - 1, and the function 
c( . , - )  is defined by (6.2.3). The situation here is more straightforward than with 
the assessment of typicality for a classified entity, because x is the realization 
of a random vector distributed independently of Xi and Si (i = 1,. . .,g). An 
assessment of how typical x is of Gi is given by ai(x;t), the tail area to the 
right of (6.4.5) under the Fp,vi+l distribution. For the homoscedastic normal 
model, Ui(x;t) is defined similarly, but where Si is replaced by the pooled 
within-group estimate S in (6.4.4) and (6.4.5), and, as a consequence, vi is 
replaced by v = n -g - p in (6.4.5). A feature vector can be assessed as being 
atypical of the mixture G if 

u(x;~) = mpai(x; t) 5 O, (6.4.6) 

where a is some specified threshold. Although this measure of typicality a(x; t) 
is obtained under the assumption of normality, it should still be useful pro- 
vided the groupconditional densities are at least elliptically symmetric. 

The work of Cacoullos (1%5a, 1%5b) and Srivastava (196%) is related to 
this problem. 

I 

6.43 Qpicality Index Viewed as a P-Value 

Concerning the use of a(x;t) as a measure of typicality of x with respect to 
the groups GI,  ..., Gg, it can be interpreted also as a P-value for a test of the 
compatibility of x with the g groups, as specified by 

: X - N ( p i , Z i )  for i = I, %..., org. 
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For under the null hypothesis H r )  that x is a realization of the feature vector 
X on an entity from one of the g groups GI, ..., Gg, the distribution of ai(X;T) 
should be approximately uniform on the unit interval. Indeed, the distribution 
of a(XT) would be precisely uniform on (41) if the allocation rule ro(x;t) 
based on the ai(x; t) were infallible, where 

ra(x;t) = i if ai(x;t) 2 ah(x;t) (h = 1, ...,g; h # i). (6.4.7) 

Of course, this rule is fallible, but its overall error rate will be small if the 
groups GI,. . . , Gg are well-separated. For example, it can be seen from (3.4.7) 
that under the homoscedastic normal model (3.3.1), (6.4.7) defines the allo- 
cation rule based on the likelihood ratio criterion. Hence, depending on the 
extent to which the Gi are separated, we have approximately that 

ai(X;T) N U(0,l). 

Suppose that H r )  holds and that without loss of generality the entity comes 
from the hth group, that is, the associated feature vector X is distributed 
N(ph,Ch).  Then as 

pr{a(XT)< a} 5 pr{ai(XT) 5 a} (i = 1, . . . ,g),  

we have 

pr{a(XT) 5: I @)} 5: pr{Uh(XT) 5 I Hr)} 

= a. 

Thus, the probability of a Type I error of the test of compatibility with a re- 
jection region defined by (6.4.6) does not exceed a. For g = 2 groups with 
homoscedastic normal distributions, McDonald et al. (1976) showed that this 
test is not too conservative, as the probability of a Type I error does not fall 
below %a. More recently, Hjort (1986a, Chapter 6) has considered the use of 
(6.4.6) and slightly modified versions as measures of typicality. 

Another measure of typicality of x with respect to the g groups GI,. . ., Gg 
is 

C fiai(x;t), (6.4.8) 
i = l  

where 2 = (41, .. .,2g)’ denotes the allocation of the entity with feature x to 
one of these groups on the basis of the plug-in sample version of the normal- 
based Bayes rule, that is, on the basis of the sample NLDR or NQDR. The 
extent of the agreement between a(x;t) and (6.4.8) depends on the separation 
between the groups, the disparity of the group-sample sizes and group-priors, 
and the severity of the heteroscedasticity. For equal groupsample sizes, the 
homoscedastic versions of these two measures coincide provided the sample 
NLDR is formed with equal group-prior probabilities. 

8 
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6.4.4 Predictive Assessment of Qpicality 

Another way of monitoring the typicality of the feature x with respect to a 
given group Gi (i = 1, ...,g) is to adopt the index of Aitchison and Dunsmore 
(1975, Chapter 11). Their index of typicality for Gi of x is defined by 

(6.4.9) 

where 
a ( x )  = {w : fi(w;Oi) > f i (x ;Oi ) }  (6.4.10) 

is the set of all observations more typical of Gi than x. In order to provide 
an assessment of a y ' ( x ) ,  Aitchison and Dunsmore (1975) replaced the ith 
groupconditional density f i (X;Oi)  by its predictive estimate #"(x) in (6.4.9) 
and (6.4.10). If d y ) ( x )  denotes the estimate of aiP)(x)  so obtained, then it can 
be shown under the heteroscedastic normal model that 

~ Y ) ( x )  ai (x;  t) (i = I,. . .,g>. (6.4.11) 

That is, di'p)(x) can be interpreted in a frequentest sense as the level of signif- 
icance associated with the test of the compatibility of x with Gj on the basis 
of the squared Mahalanobis distance di (x,Zj;  Si), or, equivalently, Hotelling's 
T2; see Moran and Murphy (1979). The result (6.4.11) also holds under ho- 
moscedasticity. 

Note that if fi(X;Oj) were replaced in (6.4.9) and (6.4.10) by its estimative 
version #(x;Zi,  Si) ,  a multivariate normal density with mean Zi and covariance 
matrix Si, then this assessment of aY)(x) is equal to the area to the right of 
di(x,sSi; S i )  under the x i  distribution. This is equivalent to taking jri = pi and 
Si = X i  in considering the distribution of di(X,$;Si) ,  and so gives a cruder 
assessment than the predictive approach. Of course, although the estimative 
approach can be used to assess the groupconditional densities for the pro- 
vision of an allocation rule, it is another matter to proceed further with this 
approximation in the calculation of the typicality index (6.4.9), thereby com- 
pletely ignoring the variation in the sample estimates Ei and Sj .  

6.5 SAMPLE CANONICAL VARIATES 

6.5.1 Introduction 

As discussed in Section 3.9.1, exploratory data analysis of multivariate feature 
observations is often facilitated by representing them in a lower-dimensional 
space. In Section 3.9.5 a canonical variate analysis was introduced for provid- 
ing the optimal linear projection of the feature vector x from RP to Rq (q < p) 
for a certain class of measures of spread of g homoscedastic groups, based on 
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the nonzero eigenvalues of X-lB,.,, where 

and 

In the present situation where B, and I: are unknown, this class of measures 
of spread can be based on the nonzero eigenvalues of S-'B, where S is the 
pooled within-group sample covariance matrix corrected for bias and where 

In a multivariate analysis of variance, B is the between-group sums of squares 
and products matrix on its degrees of freedom. As n -, 00 under mixture sam- 
pling of the training data T, B/n converges in probability to B,/g in the special 
case of equal group-prior probabilities. In some situations where the group 
sample sizes ni are extremely disparate, one may wish to use 

in place of B. 
We let 

V j  = r d x j  

= (TjXj, .  . . ,7AXj)'  

be the vector of canonical variates for x j  ( j ,  . . ., n), where I'd is defined as pre- 
viously by (3.9.2), but now with & and 2=, replaced by B and S, respectively. 
That is, 71,. . . ,7d satisfy 

7As7k = 6hk (h,k = 1 ,..., d) ,  (6.5.1) 

and are the eigenvectors of S-'B corresponding to &I,. . .,XB,d, the d nonzero 
eigenvalues of S-'B, ordered in decreasing size, where d = min(p, b), and b 
is the rank of B. Generally, in practice, b = g - 1. It is assumed here that 
n - g  3 p so that S is nonsingular. Note that we could equally use (g - l)B 
and (n-g)I: instead of B and I3, as suggested sometimes in the literature. 
The eigenvectors 71,. . . , 7 d  are unchanged, whereas the eigenvalues are now 
multiplied by (g - l ) / ( n  - g).  

By direct analogy with the results in Section 3.9.2 in the case of known 
parameters, the sample canonical variate analysis finds those linear combin- 
ations 7 ' x  of the original p feature variables in x that successively maximize 
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the ratio 
r'BrIr'S7. (6.5.2) 

Applied to the training data t, the n original p-dimensional feature vectors 
x j  ( j  = 1,. . . , n) are transformed to the scores on the canonical variates r d x j  

(j' = 1,. . . , n), which can be represented in d-dimensional Euclidean space (the 
canonical variate space). The first q dimensions of this space provide the opti- 
mal (for the aforementioned class of measures of spread) q-dimensional con- 
figuration of the training data in which to highlight the differences between 
the groups. In particular, plotting the first two canonical variates of the group- 
sample means against each other, that is, rijili versus 7iXi (i = 1,. . . ,g), gives 
the best two-dimensional representation of the differences that exist between 
the groupsample means. In terms of the canonical variates rqx (q 5 d), the 
sample analogue of the result (3.9.12) shows that the sample NLDR (formed 
with equal groupprior probabilities) assigns an unclassified entity to the group 
whose sample mean is closest in the canonical variate space to rpx. 
As noted by Fatti et al. (1982), another use of canonical variates when p 2 g 

is in testing whether an unclassified entity with feature vector x comes from 
one of the g groups or a mixture of them. For if it does, it follows from (3.9.8) 
and (3.9.9) that, asymptotically as n -+ 00, 

$(X - X) - N ( 0 , l )  

fork = d + 1, ...,p, and so 

P c - m2 
k=d+l 

(6.5.3) 

is the realization of a random variable with an asymptotic chi-squared distri- 
bution having p - d degrees of freedom. Hence, an approximate test can be 
constructed that rejects this hypothesis if (6.5.3) is sufficiently large. The re- 
sult (6.5.3) requires the assumption of multivariate normality in addition to 
homoscedasticity for the group-conditional distributions. 

The computation of the population, and hence by analogy the sample, 
canonical variates, was discussed in Section 3.9.2. Additional references on 
this topic include Campbell (1980b, 1982). In the first of these papers, he pro- 
posed a ridge-type adjustment to s, and in the second, he developed robust 
M-estimates using a functional relationship model. The model-based approach 
is pursued in Campbell (1984a). 

6.5.2 Tests for Number of Canonical Variates 

We saw in the previous section that under homoscedasticity, the number of 
sample canonical variates required, that is, the number of sample linear dis- 
criminant functions required, is given by d = min@,b), where b is the rank of 
B. Let b,, denote the rank of the population analogue of B. Then the number 
of population discriminant functions is min(p,b,). In practice, we can assess 
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b, by b and so use d = min(p,b) discriminant functions. Rather than basing d 
as such on a point estimate of b,, we may wish to infer bo by carrying out a 
test of significance. 

If the population group means are collinear, then b, = 1 and so a single 
discriminant function will be adequate. A test that b, equals some specified 
integer not less than one has been constructed by analogy to the test of bo = 0. 
The latter value is equivalent to the usual null hypothesis of equality of group 
means 

in a one-way multivariate analysis of variance (MANOVA). The hypothesis HO 
can be tested using Wilks' likelihood ratio statistic 

A = IWl/lB + W(, 

Ho : J A ~ = c ( ~ = * * *  = P g  

where 
B = (g - l)B (6.5.4) 

is the between-group matrix of sums of squares and products, and 

W = (n -g)S (6.5.5) 

is the within-group matrix. As assumed previously, n -g 2 p so that W is non- 
singular. It follows that A can be expressed in terms of the nonzero eigenval- 
ues ~ g , ~ , . .  . , x B , ~  of W-'B as 

d 

A = - l o g n ( l +  Ab,j). 
j = 1  

The statistic A has Wilks' A(n - l,p,g - 1) distribution under Hi; see, for ex- 
ample, T. W. Anderson (1984, Chapter 8) and Kshirsagar (1972, pages 202- 
204). The assumption of multivariate normality is implicitly assumed in all the 
distributional results stated here. 

Concerning the exact null distribution of A in special cases, for do = min(p, 
g - 1) = 1, 

1 - A  c2+1 
A ~ l + l  Fzc, +2,2c*t2, -.-- 

and for do = 2, 
1--A'f2 2 ~ 2 + 2  

Al l2  2 ~ 1  + 3 cy F4c,t6,4c2+4, -.- 

where 
c1 = k(lg - 1 -pJ  - l), 

c 2 = + - g - p - 1 ) .  1 

-{n-1-  k(P+g)llogA-x2p(g-1) 

and 

In general, Bartlett (1938) has shown that 

(6.5.6) 
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holds approximately under Ho; see Seber (1984, Section 2.5.4) for other a p  
proximations to the null distribution of A. 

We return now to the problem of testing that bo is equal to a specified 
integer not less than one. For the hypothesis Hibo) : bo = s (s 2 l), where p > 
s, Bartlett (1939, 1947) proposed by analogy with (6.5.6) the use of the statistic 

which under Hibo) is distributed approximately as chi-squared with (p - s) 
(g - 1) degrees of freedom. 

Bartlett (1951b) and Williams (1952, 1955, 1967) have derived an exact 
goodness-of-fit test for the adequacy of an arbitrarily specified discriminant 
function, say, a‘x, to discriminate between the g groups. In order for this single 
discriminant function a’x to be adequate, the g means must be collinear (that 
is, b, = 1 in the terminology above) and a must be an eigenvector of W-lB, 
corresponding to the only nonzero eigenvalue of W-lB. Thus, there are two 
aspects of the hypothesis that a’x is an adequate discriminant function: (a) 
collinearity of the group means and (b) the direction a of the specified dis- 
criminant function. 

Let A, denotes Wilks’ statistic based on the data transformed as a’x. Then 

A, = la’Wal/la‘Ba + a’WaJ. 

Bartlett (1951b) proposed that the residual form AR of Wilks’ A statistic after 
allowance for the relationship between the groups and a’x, 

A R  = A/Aa,  

be used to test the null hypothesis that a’x is an adequate discriminant func- 
tion. The null distribution of AR is Wilks’ A(n - 2,p - 1,g - 1). 

In the case of a significant result, it is useful to know the source of the 
significance. Bartlett (1951b) showed that this can be done by factorizing AR 
into two factors, 

AR = A D A ( c ~ ) ,  

where 

is the “direction” factor, and is the “partial collinearity” factor. The 
statistic AD can be used to test the direction aspect of a‘x, and A ( c i ~ )  can 
be used to test the collinearity aspect, after elimination of the direction as- 
pect. Under the null hypothesis, AD and A(cp) are distributed independently 
according to A(n - l , p  - 1,l) and A(n - 2,p - 1,g - 2), respectively. 

Bartlett (1951b) also gave an alternative factorization of AR, 

A R  ACA(DlC),  
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where 

is the collinearity factor, and 

A(DlC) = A R / k  

is the partial direction factor. The null distribution of AC is A(n - l , p  - 1, 
g - 2), independent of which has a null distribution of A(n -g  + 1, 

These factors were derived by Bartlett (1951b) by a geometrical method. 
An alternative analytical method of derivation has been given since by Kshir- 
sagar (1964, 1970). Williams (l%l, 1%7) has extended the factorization of 
Wilks' A to the goodness-of-fit test of bo > 1 specified discriminant functions; 
see also Radcliffe (1966, 1968) and Kshirsagar (1969). Williams (1%7) and 
Kshirsagar (1971) have considered the problem where the discriminant func- 
tions are specified not as functions of x, but in terms of dummy variates with 
respect to the g groups. Additional discussion of the results presented in this 
section can be found in Kshirsagar (1972, Chapter 9), who has provided an 
excellent account of this topic. 

P - 41). 

6.53 Confidence Regions in Canonical Variate Analysis 

It is usually desirable with plots of the groupsample means if some indication 
of their sampling variability can be given. lb this end, let i j , k ( t )  denote the 
sample mean of the scores on the kth canonical variate computed for the 
training data from group Gi, that is, 

cjk(f) = yizi (i = 1,. ..,g; k = 1,. . . ,d).  

The expectation of Vik(T) is given by 

(ik = E { v i k ( T ) }  

= W h k ( T ) } ,  

where we have written r k  as - y k ( T )  to denote explicitly that it is a random 
vector, being a function of the training data T. 

Put 
V i ( t )  = ('iTil(t) , . . . , iTid(  t))' 

and 

The traditional confidence region for ci is constructed using the result that 

ci = ( C i l , - . . t ( i d ) ' -  

ni{vi(T)- Ci}'{vi(T)-Ci} N ~ $ 9  (6.5.7) 

which ignores the fact that the canonical variates were computed using the 
sample matrices B and S rather than their unknown population analogues. For 
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two-dimensional plots of the canonical group means, the approximation (6.5.7) 
yields confidence circles centered at the respective groupsample means, with 
squared radii equal to the appropriate upper percentage point of the x$ dis- 
tribution, divided by the relevant groupsample sizes; see, for example, Seber 
(1984, page 273). Note that instead of confidence regions for a mean, toler- 
ance regions for a group can be constructed These are regions within which 
a given percentage of the group is expected to lie. They are constructed in 
the same way as confidence regions, but since the variability being assessed 
is that due to individuals rather than group means, the relevant dispersion is 
increased by the factor ni. That is, the tolerance region for the ith group Gj 
is given by (6.5.7), but with nj replaced by unity (i  = 1,. . . ,g). One of the ear- 
liest examples of tolerance circles in canonical variate diagrams was given by 
Ashton, Healy, and Lipton (1957). 

Recently, Knanowski (1989), through a series of approximations to the ex- 
act sampling distribution of the canonical variates, has derived confidence el- 
lipses for the canonical group means, which appear from empirical assessment 
to have much more accurate probability content than the traditional circles. 
As explain by Krzanowski (1989), the asymptotic distributions of the VikOr) 
would be available from T. W. Anderson (1984, page 545) if (g - l)B followed 
a Wishart distribution. However, it follows a noncentral Wishart distribution. 
This led Krzanowski (1989) to approximate (g - l)B by a random matrix hav- 
ing a central Wishart distribution with the same degrees of freedom and ex- 
pectation as the noncentral Wishart distribution of (g - l)B and with a covari- 
ance matrix that differs only slightly. It is analogous to the approximation of 
a noncentral chi-squared distribution by an appropriate multiple of a central 
chi-squared distribution. 

Under separate sampling of T, Krzanowski (1989) obtained an approxima- 
tion Ci to the covariance matrix of Vj(T)  - ci in the situation where n - g and 
g - 1 each tend to infinity in such a way that (g - l)/(n - g) + n > 0. We let 

denote the estimate of Ci obtained by using Vjk for ( i k  and A B ~  for its 
population analogue in the expression for Ci (i  = 1 ,..., g; k = 1 ,..., d). The 
estimate so obtained is given by 

- ..-, (C;L = - -V:LVL (k f m = &...,a), ' 

where 
wk = 1 + A B & / ( g  - 1). 

An approximate confidence region for the ith group canonical mean <i can 
be constructed using the large sample result 

{ ~ i ( T ) - ~ j } ' ~ ~ ' { ~ i ( ~ - ~ i }  N x:. 
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In particular, it allows confidence ellipses to be imposed on the plot of the 
group-sample means of the first two canonical variates. Denoting by v1 and 
v2 the coordinate values along the first two canonical axes, respectively, the 
equation of this confidence ellipse for the ith groupcanonical mean can be 
written as 

ci22(~1- Fi l l2  - 2ci12(~1- tril)(vZ - ~ i 2 )  + ci11(~2 - i7i2l2 

2 2  = (ci11ci22 - ci12)~~;1-0,  

where Cikm = ( b i ' ) k m  for k,m = 1,2 ( i  = 1 ,..., g). 
Krzanowski and Radley (1989) have described an alternative approach to 

that above for adjusting confidence region shapes in a practical situation. Their 
approach allows for sampling variability in the canonical variates through 
a nonparametric resampling approach with either the jackknife or bootstrap 
schemes. These two resampling schemes are considered in some detail in 
Chapter 10, where they are employed in the context of error-rate estimation. 
We now briefly describe the bootstrap scheme in its application to the present 
problem; the jackknife scheme is implemented in a similar manner. 

The bootstrap resampling approach yields an ellipsoidal confidence region 
of the form 

(6.5.8) 

where VT and S; are the sample mean and covariance matrix of the boot- 
strap replications (say, K in number) of Ti(") for i = 1,. ..,g. As proposed by 
Knanowski and Radley (1989), a bootstrap replicate of Vi(T) is obtained by 
sampling ni feature vectors randomly with replacement from the training data 
from Gi and then performing a sample canonical variate analysis on them in 
conjunction with the original training data from the other g - 1 groups. In 
order to allow for varying frames of reference between the replicates, each 
replicate configuration is rotated to position of best fit with respect to the 
original configuration by means of a Procrustes analysis. For a lOO(1- a)% 
confidence region, a suggested value for the constant CB in (6.5.8) is 

t * - 1  -* 
($' - C i )  Si (vi - C i )  5 C B ,  

C B  = 2(K - 1)/K(K - 2)F2,~-2;1-0, 

where F2,K-Z;l-o denotes the (1 - a)th quantile of the F 2 , ~ - 2  distribution. 
This choice of CB corresponds to the use of the normal approximation to the 
distribution of the bootstrap replicates of Vi(T). 

'RI illustrate their resampling approach, Krzanowski and Radley (1990) ap 
plied it to the well-known set of Iris data as originally collected by E. Ander- 
son (1935) and first analyzed by Fisher (1936). It consists of measurements 
of the length and width of both sepals and petals of 50 plants for each of 
three types of Iris species, virginicu, versicolor, and setosu. Figure 6.1 shows 
the two-dimensional canonical variate diagram, in which points A, B, and C, 
representing the sample means of the virginica, versicolor, and setosu species, 
respectively, are surrounded by tolerance regions computed using the classi- 
cal approach based on (6.5.7) and the bootstrap and jackknife resampling a p  
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I 

I - 
FIGURE 6.1. lblerance regions for Fisher's Iris data. Circles repwent the classical approach, 
solid-line ellipses represent the jackknife regions, and dash-line ellipses represent the bootstrap 
regions. From Krzanowski and Radley (1989), with permission from the Biornetric Society. 

proaches. The classical regions are circles, the jackknife regions are the solid- 
line ellipses, and the bootstrap regions are the dash-line ellipses. 

It can be seen from Figure 6.1 that the bootstrap and jackknife regions are 
very similar for each group, but the former are consistently slightly smaller 
than the latter. For the sefmu species, both the bootstrap and jackknife regions 
are very long and very thin, differing greatly from the classical circle. The non- 
parametric regions for the other extreme species (wi@nicu) in the diagram are 
also both longer along the first axis than the second, whereas the correspond- 
ing regions for the middle species (wersicolot) are most similar to the classical 
circle. 

6.5.4 Alternative Formulation of Canonical Variates 

As an alternative to the derivation of the canonical variates by direct computa- 
tion of the canonical variates of S-'B, we consider now a formulation that we 
will see in the next section is useful in the development of canonical variate 
analysis in the case of unequal group-covariance matrices. 

An obvious way of carrying out the maximization of (6.5.2) subject to (6.5.1) 
is to first transform the X j  as 

uj = AS~''&X~ (j = 1, ..., n), (6.5.9) 

where 

and as.1,. . . , as,p are the eigenvectors of S corresponding to the eigenvalues 
As.1,. ..,As,p of S in order of decreasing size. Also, 

As = (as,1,...,as,p)', 

AS = diag(As,l,...,h,p). 
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Hence, the original feature data x j  are first rotated so that the axes coincide 
with the principal ones of S. Then they are scaled so that the (bias-corrected) 
pooled within-group sample covariance matrix for the transformed data is the 
p x p identity matrix. The probem of maximizing (6.5.2) for the transformed 
data reduces to maximizing the transformed between-group matrix 

which can be expressed as 

where 

(6.5.10) 

n 

iii = Czi ju j /n i  (i = I, ...,g), 
j = l  

and 
B 

il = C niilj/n. 
i =1 

?b this end, let 8 B J , .  . . ,a~,d denote the eigenvectors corresponding to the 
d nonzero eigenvalues of (6.5.10), in order of decreasing size. Then the d 
principal components of U j ,  

(a;,luj ,..., ahduj)' ( j  = I, ...,n), 

give the scores V j  on the d-dimensional canonical variates of the n original 
feature observations x j  ( j  = 1,. . . , n); see, for example, Campbell and Atchley 
(1981). It follows that 

y& = A:A;'''aBk (k 1, ..., d).  

Another way in which the canonical variates of the group means can be 
computed is by performing a principal-coordinate analysis (metric scaling) of 
the g x g dissimilarity matrix whose elements give the squared Mahalanobis 
distances 

D?. = (Q - yj)'s-l(q - yj) 
' l  

between the group-sample means ( i , j  = 1,. . ,,g). This follows from Gower 
(1%6); see also Jolliffe (1986; Section 5.2). 

6.5.5 Heteroscedsstic Case 

The generalization of canonical variate analysis to the case of unequal group 
covariance matrices X i  is considered now. One approach is to ignore the dif- 
ferences between the X i  and compute the canonical variates as in the ho- 
moscedastic case. However, it can lead to unrealiable results if the Ei are 
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sufficiently disparate. There appears to be few results in the literature on 
techniques that specifcally allow for the heteroscedasticity. One generalization 
of canonical variate analysis to the heteroscedastic case has been suggested 
by Campbell (1984b), who makes no assumptions about the similarities of 
the Cia 

Recently, Krzanowski (1990) has considered generalizations of canonical 
variate analysis in the heteroscedastic case by working with the common prin- 
cipal-component (CPC) model to exploit any similarities in the Cj. This model 
was introduced in Section 5.4 and the likelihood ratio test for its validity was 
presented earlier in this chapter. Under the common principal-component 
model, we have that 

where A is an orthogonal p x p matrix, and the hi are all diagonal matrices, 

We let A and fi be estimates of A and Ai computed as described in Section 
5.4.4. It was suggested there that maximum likelihood or least squares can be 
used according as multivariate normality does or does not hold for the group 
conditional distributions. 

Krzanowzki (1990) proposed one generalization of canonical variates for 
the CPC model by basing it on the alternative formulation that obtains the 
solution through a principal-component analysis of the matrix of total sums 
of squares and products for the feature data after appropriate transforma- 
tion. Proceeding analogously to this formulation, the original feature axes 
are first rotated so that they align with the common’ principal axes of the Xi. 
The feature data so transformed are then scaled, where, given the hetero- 
genetiy of the Cj, the scaling is now specific to their group of origin. Accord- 

uj CzijA;1‘2Axj ( j  = I, ..., n). (6.5.11) 

ingly, 
8 

i = l  

The generalized canonical variates for X j  are defined to be 

where 88.1,. . . , 8B ,d  are the eigenvectors corresponding to the ordered (non- 
zero) eigenvalues of the between-group matrix for the transformed feature 
data, given by (6.5.10), but where now Uj is defined by (6.5.11). 

The other generalization of canonical variates proposed by Krzanowski 
(1990) for the CPC model uses the principal-coordinate formulation. As noted 
in the previous section, with this approach in the homoscedastic case, the 
canonical variates for the groupsample means can be obtained through a 
principal-coordinate analysis of the dissimilarity matrix whose elements con- 
tain the squared Mahalanobis distances between the group means. As dis- 
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cussed in Section 1.12, the Mahalanobis distance is an appropriate measure 
between not only multivariate normal distributions with a common covariance 
matrix, but also between distributions belonging to the same family of ellip 
tically symmetric distributions with common shape. However, in the present 
situation, the group-conditional distributions have unequal covariance matri- 
ces. 

For the CPC model under the additional assumption of multivariate nor- 
mality for the group-conditional distributions, Knanowski (1990) suggested 
that the intergroup distances be given by 

(6.5.12) 

In (6.5.12), /2ij denotes the plug-in estimate of pij, which is taken to be Ma- 
tusita’s (1956) measure of affinity between the N(p i ,Z i )  and N(pi,Zj) dis- 
tributions under the CPC model. Knanowski (1990) showed that pij, which is 
defined in general by (1.12.1), reduces in this particular case to 

pij  = Cijexp{-$(pi -pj)‘A’(Ai + Aj)-’A(pi - P I ) } ,  

where 
cij = 2P/2{lAiAj11/4/IAi + AjI1/*}. 

Note that another way to proceed is to use the sample analogue of the 
feature-reduction method of Young et al. (1987), as described in Section 3.10.2. 

6.6 
REVEAL GROUP STRUCTURE 

SOME OTHER METHODS OF DIMENSION REDUCTION TO 

6.6.1 Mean-Variance Plot 

For g = 2 groups, W. C. Chang (1987) has proposed a two-dimensional display 
of the training data, which is known as a mean-variance plot or graph. This 
is because the first coordinate reflects mainly differences between the group 
sample means, and the second coordinate reflects the separation between the 
groups solely due to their covariance matrices. The mean-variance plot is in- 
tended as an improvement of Sammon’s graph. Sammon (1970) and Foley 
and Sammon (1975) considered a plot in which the first coordinate is used 
to display the separation of the two groups based on the sample NLDF, or, 
alternatively, the best linear discriminant rule in the case of unequal covari- 
ance matrices, as defined in Section 3.10.1. The second coordinate is chosen 
by finding a vector orthogonal to the first one that maximizes the difference 
between the group means. However, as pointed out by W. C. Chang (1987), 
with this method of defining the second coordinate, any differences between 
the group-covariance matrices are not captured. He therefore proposed that 
the second coordinate be chosen for the latter purpose; see also Fukunaga 
and Ando (1977). W. C. Chang (1987) proposed that the first coordinate v1 be 
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defined as 

v 1 =  {ai(x - jiz) - ai(Z1- ~2)}~/a;s la l  

- {ei(x - ~ 2 ) ) ~ / a i ~ 2 a ,  

where 

and 

for 0 < w < 1. For w = (n1- l)/(n - 2), S, = S, and a1 corresponds to Fisher's 
(1936) choice of a linear discriminant function. Another value of w that might 
be considered is one that defines the best linear rule, as considered in Section 
3.10.1. 

a1 = S J ~ ( Z ~  - ZZ), 

s, = WSI + (1 - w)S2 

Concerning the second coordinate, W. C. Chang (1987) defined it as 

v2 = c1- c2, 

where 

and where 

Here a2, . . . , ap are orthogonal to El- 4 ,  so that 

Ci = {H(x-E~)}'(HS~H')-~{H(X-Z~)} (i = 1,2), 

H = (82, ..., ap)'. 

- ~ 2 )  = 0 (i = 2,.. . ,p). 

Thus, the sample mean of v2 is zero both in GI and C2. This coordinate 
therefore provides information on the covariance structure of the feature data 
in each group. 

A simple way to compute H is to take 8 2 , .  . .,ap to be the eigenvectors of 
(El - E2)(Zl- &)' corresponding to its p - 1 zero eigenvalues. This matrix has 
only one nonzero eigenvalue, being of rank one. 

6.6.2 Principal Components: Classified Feature Data 

As shown in Section 5.4.5, principal components play a fundamental role 
in the SIMCA method of discriminant analysis, where essentially a separate 
principal-component analysis is undertaken for each group. Also, we saw in 
Section 5.4 how a hierarchy of principal-component models can be formu- 
lated for incorporating similarities in the groupcovariance matrices. However, 
a single principal-component analysis of the pooled within-group sample co- 
variance matrix of the training feature data xi is generally of limited value 
in discriminant analysis. Indeed, the use of a principal-component analysis as 
a procedure for dimensionality reduction is not based on any discrimination 
considerations. Ib examine this in more depth, we consider the partition 

(n- 1)V = B + w 
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of the matrix ( n  - 1)V of the sums of squares and products for all the training 
feature data xj ( j  = 1,. . ., n )  into the between-group matrix B and the within- 
group matrix W, as defined by (6.5.4) and (6.5.5), respectively. 

A principal-component analysis of W, or, equivalently, S = W/(n -g), is 
not going to assist in finding those directions in which the differences between 
the group-sample means are greatest, unless the first few principal axes of the 
analysis based on W fortuitously coincide with the dominant axes of 8. This 
can be seen from the principal-component formulation of a canonical variate 
analysis, as described in Section 6.5.4; see also Jolliffe (1986, Section 9.1). 

A principal-component analysis performed on V can actually be more use- 
ful. For if there are only a few groups, and they are well-separated, and the 
between-group variation dominates the within-group variation, then projec- 
tions of the training feature data xi onto the first few principal axes should 
portray the group structure. However, a principal-component analysis of V 
may not always be useful. Ib illustrate this point, W. C. Chang (1983) cal- 
culated the squared Mahalanobis distance between g = 2 groups GI and G2 
after the feature data have been transformed according to Avxj ( j  = 1,. . ., n),  
where 

AV = (av.1,. . .,av,p)' (6.6.1) 

and av,l,...,av,p are the eigenvectors of unit length corresponding to the 
eigenvalues X I , .  . . , A p  of V, in order of decreasing size. W. C. Chang (1983) 
effectively considered the case of an infinitely large training sample of size n 
from a mixture in proportions 51 and ?r2 of two distributions with a common 
covariance matrix I=. As n 3 00, V converges in probability to the covariance 
matrix of the mixture distribution, 

I= + 5152(1(1 - crd(cL1- Cr2)'. 

Let A: denote the squared Mahalanobis distance between G1 and G2 using 
the kth principal component of x,abkx, that is, 

A: = {a:k(Pl- 1(2))2/a:pa",&. 

W. C. Chang (1983) showed that 

A: = w;/(l- 517&2>, (6.6.2) 

where 
w; = {a:,k(ILl- 1(2))2/A&. 

It can be seen from (6.6.2) that the principal component of the feature vec- 
tor that provides the best separation between the two groups in terms of Ma- 
halanobis distance is not necessarily the first component a'y,lx, corresponding 
to the largest eigenvalue A1 of V. Rather it is the component that maximizes 
w t  over k = 1, . . . ,p .  
W. C. Chang (1983) also derived an expression for A;l,,..,ig, the squared Ma- 

halanobis distance between GI and G2, using q (not necessarily the first) prin- 
cipal components of x. Here the subscripts il,. ,.,in are a subset of { 1,2,. . . , p } .  
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He showed that 

The last expression implies that, in terms of the Mahalanobis distance, the 
best subset of size q of the principal components is obtained by choosing the 
principal components with the q largest values of w t .  

Some recent results on the case of principal components in the presence of 
group structure can be found in Krzanowski (1987b), Malina (1987), Duchene 
and Leclercq (1988), and Biscay, Valdes, and Pascual (1990). In the role of 
reducing the dimension of the feature vector from p to q(q < p), the modified 
selection method of Krmowski (198%) has the added advantage in that only 
q of the original p feature variables are needed to define the new q feature 
variables in the subsequent analysis. Note that in the pattern-recognition lit- 
erature, dimension reduction by the use of principal components tends to be 
referred to as linear feature selection via the discrete Karhunen-Ldve expan- 
sion; see Fukunaga (1972, Section 8.2). 

The work of W. C. Chang (1983) underscores the ineffectiveness of a prin- 
cipal-component analysis in a typical discriminant analysis situation. However, 
it does suggest how it can be useful in an exploratory data analysis in situations 
where there are no classified training data available. This is pursued further in 
the next section. 

6.63 Principal Components: Unclassified Feature Data 

In this section, we briefly outline how a principal-component analysis using 
the sample covariance matrix of the unclassified feature data can be em- 
ployed to elicit information on the group structure in the absence of classi- 
fied data. In exploring high-dimensional data sets for group structure, it is 
typical to rely on “second-order” multivariate techniques, in particular, prin- 
cipal component analysis; see Huber (1985) and Jones and Sibson (1987) and 
the subsequent discussions for an excellent account of available exploratory 
multivariate techniques. It is common in practice to rely on two-dimensional 
plots to exhibit .any group structure. No doubt three-dimensional plots can do 
the task more effectively, as demonstrated by the now well-known example in 
Reaven and Miller (1979) considered in Section 6.8. However, the technology 
for three-dimensional plots is not as yet widely available, although this situa- 
tion is changing rapidly with the development of dynamic graphics programs 
such as MacSpin (Donoho, Donoho, and Gasko, 1985); see Becker, Cleveland 
and Wilks (1987), Friedman (1987), and Huber (1987). 

We proceed here on the basis that any obvious nonnormal structure in the 
feature data such as substantial skewness in the marginal distributions as evi- 
denced from preliminary scatter plots has been removed by appropriate trans- 
formations on the highly structured variates. Such transformations were dis- 
cussed in Section 6.3. After suitable transformation of the data, clusters are 
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often essentially elliptical, and so then they can be characterized by the loca- 
tion of their centers and the scatter matrix of the points lying within each. ?b 
this end, let V j  denote the principal components of the original feature vector 
xi, where 

and AV is the matrix (6.6.1) containing the eigenvectors of the (bias-corrected) 
sample covariance matrix V of the xi, corresponding to the eigenvalues of V in 
order of decreasing size. Given the sensitivity of V to outliers, a robust version 
might be used, as considered in Section 5.7. Also, we may wish to perform 
a principal-component analysis on the correlation matrix, particularly in the 
case in which the variates are measured on disparate scales. 

Suppose for the moment that there are g = 2 underlying groups in each of 
which the feature vector X has the same covariance matrix. Let vo), ..., v ( ~ )  
denote the principal components in v ranked in order of decreasing size of 
the Mahalanobis distance for each of these components. Then it follows from 
the results of W. C. Chang (1983) given in the last section that the most in- 
formative q-dimensional (q < p) scatter plot of the principal components for 
revealing the two-group structure is provided by the plot of the scores for 
v ( ~ ) ,  . . ., v ( ~ ) .  Of course, in practice, the Mahalanobis distance for each princi- 
pal component is not known to effect the ranking v( l ) ,  . . ., v(~). However, this 
ranking can be based on the estimated Mahalanobis distances. Equivalently, it 
can be taken to correspond to the ranking of the values -21ogAk (k = 1,. . . , p) 
in order of decreasing size. Here Xk is the likelihood ratio statistic for the test 
of a single normal distribution versus a mixture of two normals with a com- 
mon variance, performed using the data on just the kth principal component 
(k = 1,. . . ,p ) .  Rather than actually fitting a univariate normal mixture to the 
data on each principal component in turn, a Q-Q plot, or a @ - P  versus 
Q plot as proposed by Fowlkes (1979), can often indicate which components 
show marked departure from a single normal distribution, and hence which 
are most useful in revealing a mixture of groups; see also McLachlan and 
Jones (1988). 

In general situations where the presence of at most two groups and also ho- 
moscedasticity cannot be assumed as above, two- and three-dimensional plots 
involving all the principal components need to be considered. At least all (,") 
scatter plots of the principal components should be inspected provided p is 
not too large. A useful graphical tool would be the scatter plot matrix; see 
Becker et al. (1987). Commonly in practice, p is between 4 and 10, so that 
the examination of all two-dimensional scatter plots is then a feasible exercise. 
Also, with most statistical packages, it is a simple matter to request all such 

Vj = Avxj (i = l , . . . , t~ ) ,  

plots. 

6.6.4 Projection Pursuit: Unclassified Feature Data 

We saw in the previous section how the principal axes are not necessarily the 
optimal directions in which to view the data. This has led to projection pur- 
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suit as considered by Wright and Switzer (1971), Friedman and 'fbkey (1974) 
and, more recently, by Huber (1985), Friedman (1987), and Jones and Sibson 
(1987), among others. In carrying out projection pursuit as recommended in 
the latter references, the data are first sphered to give 

vj = A ; ' / ~ A ~ ( x ~  -iz) ( j  = I, ..., n), (6.6.3) 

where Av is the matrix (6.6.1), containing the eigenvectors of V, and Av is a 
diagonal matrix containing its eigenvalues. 

One- and two-dimensional projections of the vj are then considered that 
maximize some index that reflects interesting departures from multivariate 
normality; see the aforementioned references for details. 

On contrasting (6.6.3) with the transformation (6.5.9) in the alternative for- 
mulation of a canonical variate analysis, it can be seen why sphering of the 
data is not really designed for the detection of groups. This is because the 
(bias-corrected) sample covariance matrix V of all the feature data is used 
instead of the pooled within-group estimate S. The latter is, of course, not 
available in the present situation of only unclassified feature data. 

6.7 EXAMPLE DETECTION OF HEMOPHILIA A CARRIERS 

6.7.1 Preliminary Analysis 

In this example, we illustrate the updating of a sample discriminant rule using 
unclassified feature data in conjunction with the classified training observa- 
tions. The data set under consideration is that analyzed originally by Hermans 
and Habbema (1975) in the context of genetic counseling. The problem con- 
cerns discriminating between normal women and hemophilia A carriers on the 
basis of two feature variables, x1 = log,, (AHF activity) and xz = log,, (AHF- 
like antigen). We let G1 be the group corresponding to the noncarriers, or 
normals, and G2 the group corresponding to the carriers. 

The classified training data consist of nl = 30 observations X j  ( j  = 1,. . .,n1) 
on known noncarriers and nz = 22 observations X j  ( j  = nl + 1,. . . , n = nl + 
n2) on known obligatory carriers. They are plotted in Figure 6.2, and the 
group-sample means, variances, and correlations are displayed in lhble 6.1. 
There are also m = 19 unclassified women with feature vector X j  and with 
specified prior probability Xlj of noncarriership ( j  = n + 1,. . ., n + m). 

As concluded by Hermans and Habbema (1975) from the scatter plot of the 
classified training data, it is reasonable to assume that the group-conditional 
distributions ate bivariate normal. To confirm this, we applied Hawkins' (1981) 
test for normality and homoscedasticity, whereby for each classified feature 
vector x j  from Gi, the tail area aij to the right of the statistic corresponding to 
(6.4.3) was computed. The results are summarized in n b l e  6.2 As explained in 
the presentation of Hawkins' (1981) test in Section 6.4, the Anderson-Darling 
statistic and its first two asymptotic N(0 , l )  components for the aij from Gi 
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FIGURE 6.2. Hemophilia data with 1 and 2 representing noncarrien and carriers, respectively. 
(Fkom Hermans and Habbema. 1975.) 

TABLE 6.1 Sample Means, Standard Deviations, and Correlations for the 
Classified Feature Data by Groups with Updated Estimates in Parentheses 

Sample estimates 

source Means Standard Deviations Correlation 

GI -0.006 -0.039 0.134 0.147 0.894 
(-0.016) (-0.048) (0.121) (0.136) (0.878) 

G2 -0.248 0.026 0.134 0.149 0.576 
(-0.226) (0.040) (0.140) (0.141) (0.607) 

and for the totality of the ujj are useful in interpreting qualitatively depar- 
tures from the null hypothesis. The nonsignificance of the Anderson-Darling 
statistic and its first two components for the totality of the Ui j  here gives a 
fair indication that bivariate normality is a tenable assumption for the group 
conditional distributions of X. The difference in sign of the first components 
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TABLE 6.2 Results of Hawkins' (1981) lkst for Normality and Homoscedasticity 
Applied to Classifled Data (nl = 30 thm Gt and n2 = 22 from G2) 

Components of Anderson-Darling 
Statistic Anderson-Darling 

Source Statistic First Second 

GI 1.18 - 1.23 1.24 
G2 2.00 1.89 0.12 

Totality 0.42 0.30 1.02 

of the Anderson-Darling statistics for the individual groups and the signifi- 
cance of one of these components suggest the presence of some heteroscedas- 
ticity. It can be seen from Bble 6.1 that any heteroscedasticity present must 
be attributable to the difference between the group-sample correlations, as the 
sample standard deviations are practically the same within each group. 

6.7.2 Fit Based on Classified Feature Data 

Consistent with our previous notation, we let & contain the elements of pl 
and pz and the distinct elements of I31 and I32 in the two bivariate normal 
group-conditional distributions to be fitted, and OE denotes tlv under the con- 
straint of equal groupcovariance matrices 21 = C2. We let & and &, be 
the fits obtained in fitting a bivariate model under homoscedasticity and het- 
eroscedasticity, respectively, to the n = 52 classified feature observations. The 
estimated group means common to both fits and the estimated standard de- 
viations and correlations for the heteroscedastic fit are given by the sample 
quantities in Table 6.1. In forming &v = (+',&)' and &E = (+',&;)' for as- 
sessing the fit of the model to the classified feature data, the estimate of the 
vector A = (1r1,1r2)' containing the group-prior probabilities was taken to be 

= (30/52,22/52)' in each instance, in the absence of any information on the 
prior probabilities for the classified women. 

For a classified feature vector xi from group Gi, we computed its measure 
aij of typicality of Gi, along with its estimated posterior probability of mem- 
bership of Gi for both fits &E and &. This information is reported in 'Iilble 
6.3 for those classified feature vectors X j  from Gi with either a measure of 
typicality of Gi less than 0.05 or an estimated posterior probability of mem- 
bership of Gi less than 0.85 under either the homoscedastic or heteroscedastic 
versions of the normal model. They represent the cases of most interest in 
an examination of the fit of the postulated model for the group-conditional 
distributions. In Table 6.3, we have written Ui j  as either aij,E or Uij,c/ to ex- 
plicitly denote whether it was computed from (6.4.1), as appropriate under the 
homoscedastic normal model, or from (6.4.3), as under the heteroscedastic 
version. 
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TABLE 6.3 Fitted Posterior Probabilities of Group Membership and Qpieality 
Values for Some of the Classifled Feature Data 

4 0.63 0.43 0.94 0.86 
13 0.42 0.16 0.82 0.59 
15 0.68 0.46 0.94 0.87 
18 0.70 0.48 0.95 0.88 
23 0.02 0.02 0.96 0.91 
29 0.40 0.17 0.93 0.85 
30 0.37 0.13 0.89 0.74 

azj(+E) a2j(&U) 72(Xj; SE)  T2(Xj; &) 

33 0.02 0.09 1 .oo 1 .oo 
44 0.18 0.40 0.35 0.68 
46 0.08 0.17 0.16 0.39 
52 0.02 0.09 1 .OO 1.00 

It can be seen from Table 6.3 that under the heteroscedastic normal model, 
there is only one feature vector (xa  from GI) with a typicality value less than 
0.05. Under the homoscedastic version of the model, there are also two other 
feature vectors with the same typicality value of 0.02 as ~ 2 3 ,  namely, x33 and 
~ 5 2  from G 2 .  In Figure 6.2, x~ is the observdion from GI, with the smallest 
values of both feature variables x 1  and x 2 ,  and ~ 5 2  has the smallest value of x1 

and x33 the largest value of x2, among the observations from G 2 .  

It can be seen from Figure 6.2 that there is little overlap between the clas- 
sified feature observations from each of the two groups. Hence, the sample 
NQDR r,,(x;&~) and sample NLDR r 0 ( x ; & ~ )  are able to allocate these clas- 
sified data to their groups of origin with at most two misallocations. The sam- 
ple NQDR misallocates only one observation, w, from G 2 ,  and the sample 
NLDR also misallocates another observation, x44, from G 2 .  

Although the fitted estimates T i ( X j ; & u )  and T i ( X j ; & E )  imply the same out- 
right allocation of the feature vectors Xj  except for j = 44, it can be seen from 
Table 6.3 that there are practical differences between these estimates for some 
of the other feature vectors. For example, although there is little doubt over 
the group of origin of observations ~ 1 3 ,  ~ 3 0 ,  and x46 according to their fitted 
posterior probabilities of group membership under homoscedasticity, there is 
quite some doubt under their heteroscedastic estimates. 

6.7.3 Updating Assessed Posterior Probabilities of Noncarriership 

We proceed now to the assessment of the posterior probabilities of group 
membership for the m = 19 unclassified feature observations x j  with speci- 
fied vector m; = (Tl;,Tzj)’ of prior probabilities of group membership ( j  = 
53, ..., 71). These Xj  and T 1 j  are listed in lhble 6.4, along with their asses- 
sed typicality a ( x j ; & )  and their assessed posterior probability 71(Xj;=j ,&)  
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TABLE 6.4 Assessed Posterior Probability of Noncarriership for an Unclassified 
Woman with Feature Vector xj  and Prior Probability 171j of Noncarriershlp 

53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 

-0.210 -0.044 
-0.250 0.095 
-0.043 -0.052 
-0.210 -0.090 

0.064 0.012 
-0.059 -0.068 
-0.050 -0.098 
-0.094 -0.113 
-0.112 -0.279 
-0.287 0.137 
-0.002 0.206 
-0.371 -0.133 
-0.009 0.037 

0.030 0.224 
-0.357 0.031 
-0.123 -0.143 
-0.162 0.162 

0.069 0.192 
0.002 -0.075 

0.75 
0.75 
.67 

0.67 
0.67 
0.50 
0.50 
0.50 
0.50 
0.50 
0.50 
0.50 
0.50 
0.50 
0.33 
0.33 
0.33 
0.33 
0.33 

0.72 
0.85 
0.91 
0.50 
0.84 
0.88 
0.92 
0.80 
0.08 
0.52 
0.18 
0.53 
0.51 
0.11 
0.60 
0.68 
0.66 
0.06 
0.80 

0.03 
0.00 
0.98 
0.16 
0.99 
0.95 
0.98 
0.95 
0.98 
0.00 
0.01 
0.00 
0.90 
0.04 
0.00 
0.89 
0.00 
0.44 
0.98 

0.02 
0.00 
0.98 
0.14 
0.99 
0.95 
0.98 
0.96 
0.99 
0.00 
0.01 
0.00 
0.87 
0.02 
0.00 
0.91 
0.00 
0.30 
0.98 

of membership of GI (noncarriership) for j = 53,. . . ,71. The typicality 
a(xj;&) of each unclassifjed X j  of the mixture of GI and Gz was assessed 
from (6.4.8). 

Also listed in Table 6.4 is the updated assessment of noncarriership q ( x j ;  

7rj,&), where 6, denotes the estimate of 8, calculated on the basis of the 
classified data in conjunction with the m = 19 unclassified feature obser- 
vations. The updated estimates of the group means, standard deviations, 
and correlations are listed in parentheses in Table 6.1. The updated esti- 
mate 8, is the maximum likelihood estimate of 8v obtained by fitting a 
mixture of two bivariate normal heteroscedastic components to the combined 
data set of n + m = 71 feature vectors. This can be carried out, using the 
EM algorithm as described in Section 3.8, for a partially unclassified sample. 
The only modification needed here is to allow for the fact that the group 
prior probabilities are specified for each of the unclassified feature obser- 
vations. 

By comparing the estimated posterior probability of noncarriership with 
the updated assessment for each of the unclassified observations in Table 6.4, 
it can be seen that where there is a difference, the effect of the updating 
is to give a more extreme estimate, that is, a less doubtful assessment. This 
difference is greatest for observation X70, for which the updated assessment 
of the posterior probability of noncarriership is 0.30, which, although still in 
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the doubtful category, is not a borderline case as implied by the assessment 
of 0.44 based on just the classified feature data. It can be seen from Table 6.4 
that ~ 7 0  has the lowest typicality value of the 19 unclassified feature vectors, 
with a(x70;bu) = 0.06. 

6.8 EXAMPLE STATISTICAL DIAGNOSIS OF DIABETES 

6.8.1 Graphical Representation of Data 

In Section 2.10, the situation was discussed in which an unequivocal classifica- 
tion of the training feature data may not be available. An example cited there 
concerned medical applications in which initially only a provisional grouping 
is specified, based on a clinical diagnosis using perhaps just one of the feature 
variables measured on the patients. We now give such an example, using the 
data set analyzed by Reaven and Miller (1979) in their investigation of the 
relationship between chemical diabetes and overt diabetes in 145 nonobese 
adult subjects. Attention in their study was focused on three variables: (1) the 
area under the plasma glucose curve for the three-hour oral glucose-tolerance 
test (OGTT), (2) the area under the plasma insulin curve for the OGTT, and 

FIGURE 6.3. Artist’s rendition of data as seen in three dimensions. Mew is approximately along 
4 9  line as seen through the PRIM-9 computer program. (From Reaven and Miller, 1979.) 
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FIGURE 1.4. Scatter plot of the fist two principal component, (second vemn first) of metabolic 
data. 

(3) the steady-state plasma glucose response (SSPG). These data were exam- 
ined with the now-defunct PRIM-9 program at the Stanford Linear Accelera- 
tor Computation Center. This program permits any three variables to be se- 
lected and then displayed as a two-dimensional image of the projection of the 
points along any direction. By continuously moving the direction, the three- 
dimensional configuration of the points is revealed. From a study of the vari- 
ous combinations of three variables, the configuration displayed in Figure 6.3 
(an artist’s rendition of the data cloud) emerged. This figure was considered to 
be very interesting to medical investigators. The plump middle of the points 
roughly corresp~nds to normal patients, the right arm to chemical diabetes, 
and the left arm to overt diabetes. It was noted by Reaven and Miller (1979) 
that this apparent separation between subjects with chemical and overt dia- 
betes may explain why patients with chemical diabetes rarely develop overt 
diabetes. 
As commented by Huber (1985), this work of Reaven and Miller (1979) 

represents one of the first successful applications of three-dimensional displays 
to statistical data. The “rabbit head” structure of the diabetes data is strikingly 
visible in three dimensions and it then assists with the understanding of two- 
dimensional projections. Ib illustrate this point, we have plotted in Figure 6.4 
the two-dimensional projection of the data as given by the first two principal 
components, computed using the sample covariance matrix of the data. This 
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TABLE 6.5 Clinical Classification of 145 Subjects into Three Groups on the Basis 
of the Oral Glucose 'Iblerance Test with Results fkom FItting a Normal Mixture 
Model Given in Parentheses 

Metabolic Characteristics (mean f SD) 

Group 
Glucose Area Insulin Area SSPG 

No. (mg1100 mL-hr) (pU/mL-hr) (mg/100 mL) 

Gt(norma1) 76 350 f 37 173 f 69 114 f 58 
(76) (356 f 44) (165 f 52) (105 f 43) 

(32) (477 f 73) (344 f 151) (244 f 37) 

G3(overt diabetes) 33 1044 f 309 106 f 93 319 f 88 
(37) (939 f 358) (104 f 60) (285 f 106) 

Gz(chemica1 diabetes) 36 494 f 55 288f 158 209f60 

two-dimensional plot appears to represent two wings emanating from a central 
core, and the resemblance to the artist's three-dimensional depiction of the 
data set is apparent. 

Using conventional clinical criteria, Reaven and Miller (1979) initially 
classified the 145 subjects on the basis of their plasma glucose levels into 
three groups, GI (normal subjects), G2 (chemical diabetes), and G3 (overt 
diabetes); see Table 6.5. They subsequently clustered the 145 subjects into 
three clusters corresponding to these three groups in order to develop a com- 
puter classification that took into account all three metabolic variables and 
was independent of u priori clinical judgments. Their clustering criterion 
utilized the trace of the pooled within-group sample covariance matrix, 
supplemented by typical central values for groups from an earlier set of 
125 patients that were similar to the groups represented in Figure 6.3. Ad- 
ditional clustering criteria have since been applied to this data set by Symons 
(1981). 

6.8.2 Fitting of Normal Mixture Model 

To provide another objective division of these 145 subjects into three clus- 
ters, we fitted a mixture of three trivariate normal components. Their covari- 
ance matrices were allowed to be different in view of the heteroscedasticity 
present in the clusters in Figure 6.3. This model was fitted iteratively using 
the EM algorithm as described in Section 3.8, with the initial estimates of the 
group parameters based on their clinical classification. We let @u now denote 
the estimate of the vector of unknown parameters obtained by fitting a mix- 
ture model with heteroscedastic normal components. The estimates of the 
group means and standard deviations obtained are listed in' parentheses in 
Table 6.5. 
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6.8.3 Statistical Diagnosis 

Let CC denote the clinical classification in Reaven and Miller (1979) of the 
j th  subject with feature vector x j  ( j  = 1,. . . ,145). The corresponding diagnosis 
here is given by the value of the sample NQDR t O ( X j ; @ u )  defined in terms 
of the relative size of the fitted posterior probabilities of group membership 
q(xj;&u). In an outright assignment of the 145 subjects to the three groups 
according to this statistical diagnosis, 76 are assigned to group GI, 32 to 
G, and 37 to G3. More precisely, if Ni = (41,&&y, where nS:h is the 
number of clinically classified subjects from Gi assigned to Gh by r0(x;&), 
then 

N3 = (0,2,31)'. 

It was found that the clinical classification and outright statistical diagnoses 
are different for 24 subjects. For the latter, we have listed in Tmble 6.6 their 
feature vectors X j ,  their clinical classification, and statistical diagnosis in terms 
of their outright allocation given by r o ( X j ; @ u )  and their probabilistic grouping 
given by the fitted posterior probabilities of group membership T i ( X j ;  @u) for 
i = 1,2, and 3. 

A comparison of the feature vectors X j  in Table 6.6 with the estimates of the 
group means in Tmble 6.5 sheds light on why the statistical diagnosis that takes 
into account all three metabolic variables differs from the clinical classifica- 
tion. For example, r O ( X j ; & )  assigns subjects j = 131 and 136 to & (chemical 
diabetes) rather than to G3 (overt diabetes) as their second variable (insulin 
area) is atypically high for membership of G3. 

6.8.4 Validity of Normal Model for Group-Conditional Distributions 

The nonellipsoidal nature of the two noncentral clusters in Figure 6.3 suggests 
that this is an example where the normal-based mixture model may be put 
to the practical test. 'Ib examine the assumption of multivariate normality €or 
the group-conditional distributions, we applied Hawkins' (1981) test for mul- 
tivariate normality (but not also homoscedasticity) to the clusters implied by 
the fitted normal mixture model, proceeding as if they represented a correct 
partition of the data with respect to the three possible groups. No significant 
departures from normality were obtained. Of course, as cautioned in Section 
6.2.4, it is self-serving to first cluster the data under the assumption of the 
model whose validity is to be tested subsequently. 
As discussed in Section 6.4, Hawkins' (1981) test also provides a measure 

of typicality of a feature observation with respect to the group to which it 
is specified to belong. This measure, which is given by (6.4.8) for unclassified 
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TABLE 6.6 Stetisticel Diagnosis for 24 Subjects with Different Clinicel 
Clessificetion (CC) 

Subject Metabolic 
No. Characteristics Statistical Diagnosis 

X l j  X2j  x 3 j  cc r o ( X j ; & )  7 1 ( X j ; & )  T t ( X j ; & / )  T 3 ( X j ; % / )  

26 
51 
62 
65 
68 
69 
71 
75 

77 
78 
79 
80 
81 
85 
88 
96 

105 
107 
109 
110 
111 
112 

131 
136 

365 228 235 1 
313 200 233 1 
439 208 244 1 
472 162 257 1 
391 137 248 1 
390 375 273 1 
413 344 270 1 
403 267 254 1 

426 213 177 2 
364 156 159 2 
391 221 103 2 
356 199 59 2 
398 76 108 2 
465 237 111 2 
540 188 211 2 
477 124 60 2 
442 109 157 2 
580 132 155 2 
562 139 198 2 
423 212 156 2 
643 155 100 2 
533 120 135 2 

538 460 320 3 
636 314 220 3 

2 
2 
2 
2 
2 
2 
2 
2 

1 
1 
1 
1 
1 
1 
3 
3 
1 
3 
3 
1 
3 
3 

2 
2 

0.20 
0.13 
0.04 
0.00 
0.02 
0.00 
0.00 
0.04 

0.87 
O.% 
0.99 
0.99 
0.99 
0.95 
0.00 
0.41 
0.79 
0.00 
0.00 
0.95 
0.00 
0.01 

0.00 
0.00 

0.68 
0.50 
0.84 
0.78 
0.89 
1 .00 
1 .00 
0.95 

0.07 
0.01 
0.00 
0.00 
0.00 
0.00 
0.41 
0.00 
0.03 
0.01 
0.09 
0.01 
0.00 
0.01 

1.00 
1.00 

0.12 
0.37 
0.12 
0.22 
0.09 
0.00 
0.00 
0.01 

0.06 
0.03 
0.01 
0.01 
0.01 
0.05 
0.59 
0.59 
0.18 
0.99 
0.91 
0.04 
1.00 
0.98 

0.00 
0.00 

data, revealed an extremely atypical observation, namely, 

xj  = (554748,122)' 

on subject j = 86, who is both clinically and statistically diagnosed as com- 
ing from group G2 (chemical diabetes). This subject has relatively a very 
large reading for its second feature variable (insulin area); indeed, so large, 
that the measure (6.4.8) of typicality is zero. Concerning other subjects with 
a typicality measure less than 0.05, there were four in the first cluster (sub- 
jects j = 25, 39, 57, and 74) and one in the third cluster (subject j = 145), 
with the typicality measure equal to 0.04, 0.02, 0.04, 0.04, and 0.02, respec- 
tively. 

A robust version of a normal mixture model can be implemented without 
difficulty by incorporating the robust estimation of the group-conditional dis- 
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tributions as considered in Section 5.7; see also McLachlan and Basford (1988, 
Section 2.8). When fitted here, it was found to give similar results as before 
with the ordinary version. Not surprisingly, because of the aforementioned 
presence of one observation in the second group with an extremely atypical 
value for the second feature variable, the estimated standard deviation for 
the latter variable was reduced; it fell from 151 to 139. So far as the clustering 
produced, there were different outright allocations for two subjects ( j  = 40,59) 
from group GI (normal) according to their clinical classification. On the basis 
of their posterior probabilities fitted robustly, they are marginally assigned to 
G3 (overt diabetes), whereas previously they were marginally put in the same 
group GI as their clinical classification. 

6.9 EXAMPLE: TESTING FOR EXISTENCE OF SUBSPECIES IN 
FISHER’S IRIS DATA 

6.9.1 Testing for Subspecies in Iris Yirginicu Data 

We consider an example in which we wish to test for the existence of further 
grouping to that supplied for the training data. We consider Fisher‘s (1936) 
Ifis data set, which was described in Section 6.5.3. As pointed out by Wilson 
(1982), the Iris data were collected originally by E. Anderson (1935) with the 
view to seeing whether there was “evidence of continuing evolution in any 
group of plants.” In keeping with this spirit, Wilson (1982) applied her au- 
ral approach to data analysis to explore each of the three species separately 
for signs of heterogeneity. She concluded that the sefosa sample was homoge- 
neous apart from an outlier, which she noted could be explained by a possible 
misprintlmisrecording in one of the sepal width values. However, her analysis 
suggested that both versicolor and viw’nica species should be split into two 
subspecies. 

To examine this further, we fitted a four-dimensional mixture of two het- 
eroscedastic normal components, firstly to the 50 vitginicu observations. ?b 
explore these 50 four-dimensional observations for the presence of clusters, 
we applied the projection pursuit algorithm of Friedman (1987). The two- 
dimensional projection of the data as given by the first solution of this aL 
gorithm is displayed in Figure 6.5, where the observations are labeled 1 to 50 
in order of their listing in ab le  1.1 in Andrews and Herzberg (1985). This plot 
may be of use in searching for group structure as a basis for the specification 
of the initial values of the posterior probabilities of component membership 
of the mixture to be fitted. 

The fitting of a two-component normal mixture produces a cluster contain- 
ing the five observations numbered 6,18,19,23, and 31, with the remaining 45 
observations in a second cluster. This two-component clustering is portrayed 
in Figure 6.6, where the cluster labels are attached to the two-dimensional pro- 
jection pursuit representation of these 50 vitgz’nicu observations. It differs from 
that obtained by Wilson (1982), who also put the four observations labeled 8, 
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FIGURE 6.5. Xvodimensional projection of data on Iris Virginica as given by first solution of 
Friedman’s (1987) projection pursuit algorithm. 

26, 30, and 32 with those five in the first cluster as above. This latter cluster- 
ing is obtained by fitting the two-component normal mixture model, using the 
solution of the likelihood equation that corresponds to the second largest of 
the local maxima that we located. 

The likelihood ratio statistic A was calculated for the test of a single compo- 
nent (one virginicu species) versus two components (two virginica subspecies). 
An assessment of the P-value for this test can be obtained by resampling 
of -2 log& as described in Section 2.10. Ninety-nine replications of -21ogA 
were generated, and the original value of 46.37 for -210gA fell between the 
85th and 86th smallest replicated values. This implies a P-value of approx- 
imately 0.15. Thus, at any conventional level of significance, the null hypoth- 
esis of a single virginicu species would not be rejected in favor of two sub- 
species. 

A common way of proceeding with the assessment of P-values for tests 
performed on the basis of -2logA is to use the approximation of Wolfe (1971), 
whereby the null distribution of -21ogA is taken to be chi-squared, but with 
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FIGURE 6.6. Tko-group clustering imposed on two-dimensional projection of data on Iris vir- 
gtnica, as given by the first solution of Friedman’s (1987) projection pursuit algorithm. 

the degrees of freedom modified from the number that would apply if reg- 
ularity conditions held. The degrees of freedom are taken to be twice the 
difference between the number of parameters under the null and alterna- 
tive hypotheses, ignoring the mixing proportions. As cautioned by McLachlan 
(1987a) and Mcbchlan and Basford (1988), this approximation is applicable 
essentially only for univariate normal components with a common variance, 
and then only if the sample size is large. Otherwise, this approximation under- 
estimates the P-value and so leads to too many groups being inferred from 
the data. This has been demonstrated further by McLachlan, Basford, and 
Green (1990). With the present application of testing for the presence of two 
subspecies within the Iris vitghicu data, Wolfe’s approximation takes the 
null distribution of -210gA to be &. It implies a P-value of 0.016 for 
the realized value of 46.37 for -2logX, as obtained above in testing for a 
single versus a two-component normal mixture. Hence, at the 2% level, it 
leads to the rejection of the hypothesis that Iris vi@nica is a homogeneous 
species. 
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6.9.2 Testing for Subspecies in Iris Versicdor Data 

We now consider the existence of subspecies in the 50 Iris versicolor observa- 
tions. Their two-dimensional projection as given by the first solution of Fried- 
man's projection pursuit algorithm is displayed in Figure 6.7. The observa- 
tions are labeled 1 to 50 in order of their listing in "hble 1.1 of Andrews 
and Hexzberg (1985). The fitting of a four-dimensional mixture of two het- 
eroscedastic normal components to the 50 versicolor observations produced 
one cluster containing 13 observations labeled 1, 3, 5, 9, 16, 19, 23, 25, 26, 
27, 28, 37, and 38, and with the other cluster containing the remaining 37 
versicolor observations. This clustering, which is portrayed in Figure 6.8, is 
different from that of Wilson (1982), who split the 50 versicolor observations 
into a cluster containing the twelve observations labeled 8, 10, 12, 15, 17, 21, 
35, 36, 39, 46, 47, and 49, and with the remaining 38 observations in another 
cluster. Concerning the significance of the clustering effected by fitting a two- 
component normal mixture model, the P-value of the likelihood ratio test of 
one versus two components was assessed by resampling on the basis of 99 
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replications of -210gA to be approximately 0.4. It suggests at any conventional 
level of significance that the versicolor species can be regarded still as being 
homogeneous. 



C H A P T E R  7 

Parametric Discrimination via 
Nonnormal Models 

7.1 INTRODUCTION 

In this chapter, we consider the use of nonnormal models to fit the group 
conditional distributions of the feature vector in the parametric construction 
of discriminant rules. The case in which all the feature variables are discrete 
is to be considered first. The parametric models to be considered in the dis- 
crete case can be viewed as attempts to smooth the nonparametric estimates 
obtained with the multinomial model. 

In the case of mixed feature variables in which some are discrete and some 
are continuous, we will highlight the role of the location model. It assumes 
that within each group, the continuous feature variables have a multivariate 
normal distribution with a common covariance matrix, conditional on each 
distinct realization of the discrete feature variables. Given its computational 
simplicity, we will also consider ways in which the performance of the sample 
NLDF ((x;&) can be improved for applications to mixed feature data. Finally 
in this chapter, a brief account is given of some nonnormal models that have 
been adopted for discrimination in the case of all continuous feature variables. 

7.2 DISCRETE FEATURE DATA 

7.2.1 Multinomial and Independence Models 

In this and the next few sections, it is supposed that the feature vector X 
consists of variables that are all discrete, Suppose that the k th feature variable 
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in X takes on, after appropriate truncation if necessary, dk distinct values (k = 
1,. . . , p). Then there are 

P 
m = n d k  

k =1 

distinct realizations of the random feature vector X. Although we are con- 
cerned in this chapter with parametric estimation of the groupconditional 
distributions, we will first briefly introduce the multinomial model. This is 
because the parametric models to be considered are equivalent in their fully 
saturated form to the multinomial. 

The m distinct realizations of X define m multinomial cells with fi(x) de- 
noting the probability of the realization x in Gi (i = 1, ...,g). The maximum 
likelihood estimate of fi(x) under the nonparametric multinomial model is the 
naive or counting estimate, 

hc.1 = ni(x>/ni, 

where ni(x) is the number of training feature vectors from Gi equal to x (i  = 
1,. . .,g). Unless n is large relative to m, several of the frequencies ni(X) will 
be zero. In which case, other estimates of A(%) have to be considered, using 
some form of smoothing. Cox (1972b) has provided a concise summary of the 
analysis of multivariate discrete data. 

The independence model is perhaps the simplest way to smooth the multi- 
nomial estimates. Under this model, the p feature variables are taken to be 
independent, so that the ith groupconditional density of X is given by 

P 
fi(x) = n r i k ( x k ) ,  

k s l  

where 

for i = 1,. . ,,g and k = 1,. . ., p. This model has been applied by Warner et al. 
(l%l), among others. The maximum likelihood estimate of f i k ( x k )  is 

(7.21) 

A k ( X k )  = p{xk = Xk I X E Gi} 

$ I ; ( x ~ )  = ni(Xk) /ni  (i = 1,. . .,g; k = 1,. , . ,p) ,  

where n i ( X k )  is the number of training feature vectors from Gi with the kth 
element equal to xk. A modified version of (7.2.1) is 

(7.2.2) 
k=l  

which employs a zero-avoiding device; see Hilden and Bjerregaard (1976), Tit- 
terington et al. (1981), and Schmitz et al. (1985). In the first two of these 
references, a small amount of smoothing is imposed on fik by taking its square 
root or using some other fractional power of it. As noted by Titterington 
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et al. (1981), an attractive feature of the independence model in addition to its 
simplicity is the ease with which it can deal with incomplete data. 

The independence model, however, can impose too extreme a degree of 
smoothing. In some situations, models intermediate between it and the multi- 
nomial may be more appropriate. One way of fitting an intermediate model is 
to postulate a parametric model for f;:(x) in each group Gi (i = 1,. . .,g). If the 
postulated models contain as many parameters as the number of cells rn, then 
it is fully saturated and so will yield the multinomial estimates. But by fitting a 
model with a reduced number of parameters, a degree of smoothing is applied 
to the multinomial estimates. 

7.3 PARAMETRIC FORMULATION FOR DISCRETE FEATURE DATA 

7.3.1 Log-Linear Models 

One parametric approach to the estimation of the multinomial probabilities 
fi(x) for discrete data x is to adopt a log-linear representation. In a given 
group Gi (i = 1,. ..,g),logfi(x) is modeled as 

(7.3.1) 

where u(x) is a vector of ones and minus ones, and (j is a vector of param- 
eters. In the fully saturated form of this model, (i  consists of M parameters 
and so maximum likelihood estimation of <i leads to the multinomial estimate 
for fi(x). A reduced version of the model can be formulated by eliminating 
those parameters in ( i  corresponding to interactions higher than a certain or- 
der, for instance, the first. Then the retained parameters in ( j  represent the 
main effects of the feature variables and their first-order interactions. If also 
the first-order interactions are specified to be zero, then the log-linear model 
is equivalent to the independence model. If we specify the first- and higher- 
order interaction terms to be the same in each group, then we obtain the 
logistic model to be considered in the next chapter. 
To examine more closely the log-linear representation (7.3.1), suppose that 

p = 3 and that the realization x of X = (Xl,X2,Xj)’ corresponds to, say, the 
rth level of XI, the sth level of X2, and the tth level of X3. On writing fi(X) 
as first now to denote this, the representation (7.3.1) implies that 

logfirst = ( i  + (i1.r + (i2,s + 4 3 , r  + (i12,rs + h , r r  + Ciu,sr + ( i lu , rs t ,  (7-3.2) 

where the parameters on the right-hand side of (7.3.2) satisfy the constraints 

( i j ( + )  = 0 (i = 1,2,3), 

( i j k ( + )  = 0 ( j , k  = 1,2,3; i < k), 
and 
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In these constraints, 

and ( i j k (+)  and < i 1 ~ + )  are defined similarly. This is the fully saturated version 
of the log-linear model for p = 3. A reduced version with (dl - l)(& - l)(& - 
1) less parameters can be fitted by setting 

Cilzyrst) = 0 

for r = 1,. . . , d ~ ;  s = 1,. . .,dz; t = 1,. . .,d3. That is, second-order interactions 
between the feature variables are taken to be zero. 

One way to compute the maximum likelihood estimates of the parame 
ters of the log-linear model in a reduced form is to use iterative propor- 
tional fitting, as described in Bishop, Fienberg, and Holland (1975, Section 
3.5) and Fienberg (1980, Chapter 3). An alternative approach based on the 
Newton-Raphson method is described by Haberman (1974, 1978, 1979). The 
widely available package GLIM (1986) uses Newton-Raphson; see Krzanowski 
(1988, Section 10.2). The adequacy of the fitted model can be tested using the 
goodness-of-fit statistics, as described in the aforementioned references. 

Brunk and Pierce (1974) have provided a Bayesian analysis of an alterna- 
tive to the log-linear model with interactions expressed as multiplicative ad- 
justments to the independent binary model. Recently, Wernecke et al. (1989) 
have developed an algorithm for model selection for discrimination with cat- 
egorical feature variables. It is based on the hierarchical application of four 
models (multinominal, log-linear with retention of first-order interactions, lo- 
gistic, and independence). 

7.3.2 Lancaster Models 

In the last section, the multinomial probabilities were represented by log-linear 
models, which used the factorial-type structure of the features when recorded 
in the form of discrete variables. Another way with this structure of formulat- 
ing parametrically a full range of models ranging from the basic independence 
model to the full multinomial is by the use of the models of Lancaster (1969). 
In the case in which all the feature variables are binary, the Lancaster models 
are equivalent to the Lazarsfeld-Bahadur representation, as given by (5.6.2). 

Lancaster’s (1969) definition of interaction can be used to give an expres- 
sion for fi(x) explicitly in terms of the marginal distributions of the feature 
variables, under the presupposition that all interactions higher than a cer- 
tain order vanish. Assuming that the hth and higher-order interactions vanish, 
Zentgraf (1975) has given an expression for fi(x) using only the hth and lower- 
order marginal distributions of the feature variables. ?b demonstrate this, we 
consider now the case of p = 3 discrete variables. We let first be defined as in 
the previous section when p was set equal to 3. Then under the assumption 
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that all second-order interactions vanish within group Gi (i = 1,. . .,g), the first 

must satisfy for all r, s, and t (r = 1,. . .,dl; s = 1,. . ., d2; t = 1,. . .,d3), 

f i r s t  = firsofioor + fiosrfiroo + firotfioso - 2firoofiosofioot (i = 1, - - -,g), 

where, for instance, f i r so  and f ir00 denote the two- and one-dimensional mar- 
ginal probabilities, that is, in group Gi, firso is the joint probability that XI 
takes on its rth value and X2 its sth value, and f ir00 is the marginal prob- 
ability that XI takes on its rth value. As first is specified by the two- and 
one-dimensional marginal probabilities, it suffices to estimate just the latter in 
order to estimate it. These marginal probabilities can be estimated simply by 
the relative frequencies, although this does not in general provide the maxi- 
mum likelihood estimates of the f i rs , .  Also, the estimates so obtained can be 
negative; see Moore (1973) and Trampisch (1976). 

The treatment of missing values with Lancaster models is straightforward 
since, as with independence models, the estimates of the probabilities are 
based on the nonmissing feature vectors. Additional references to those above 
on the use of Lancaster models in discriminant analysis include Victor, Tramp 
isch, and Zentgraf (1974), Titterington et al. (1981), and "Ilampisch (1983). 

7.33 Latent Class Models 

With latent class models (Lazarsfeld and Henry, 1%8), the ith group-condi- 
tional density fi(x) is modeled as a mixture of the same C densities, 

c 

f i ( x )  = Wikfoh(X), 
h= l  

where C denotes the number of classes, and foh(X)  denotes the density of X 
in the hth class within any of the groups. In latent class analysis, conditional 
independence of the feature variables with each class in a group is widely 
assumed, so that 

where f k h ( X k )  is the density of the kth feature variable in the hth class of any 
of the groups. The fkh and the Wjh can be estimated using the EM algorithm 
of Dempster, Laird, and Rubin (1977); see, for example, Skene (1978), Everitt 
(1984, Section 4.3), and McLachlan and Basford (1988, Section 3.9,  and the 
references therein. 

7.4 LOCATION MODEL FOR MIXED FEATURES 

7.4.1 Introduction 
In this section, attention is focused on the case of mixed feature variables, 
where some are discrete and some are continuous. Suppose that the p-dimen- 
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sional feature vector x consists of p1 discrete variates and p2 = p - p1 con- 
tinuous variates. We assume here that the variates are labeled so that x = 
(x(~)‘ ,x(~)’)’ ,  where the subvector x(l) contains the p1 discrete features and x ( ~ )  
the p2 continuous features in x. We further assume without loss of generality 
that the p1 discrete variates are all binary, each taking on zero or one val- 
ues. For example, a discrete random variable taking on d distinct values with 
nonzero probabilities can be replaced equivalently by d - 1 dummy binary ran- 
dom variables, where some combinations of them are constrained not to be 
observable; see Krzanowski (1982a). If the values taken on by the discrete 
random variable are ordered, then information will be lost. If it is essential 
to retain this information, then one might consider treating such a variable as 
continuous. Krzanowski (1982a) considers this to be the best course of action 
if there is a moderate number of distinct values and if there is good reason 
to assume that the log likelihood ratio is linear with this respect to this vari- 
able. On the other hand, it is certainly advisable to replace this variable by 
binary ones if nonlinear behavior is suspected or apparent. An example of 
nonlinearity occurs when the discrete variable takes on three distinct values, 
corresponding to the categories of absent, mild, or severe of a medical condi- 
tion, and where “absent” and “severe” are prevalent in group GI,  but “mild” 
is prevalent in group Gz. 

Each particular realization of the p1 binary feature variables XI,. ..,X,, in 
the subvector Xy) gives rise to m = 2P1 different multinomial cells. As noted 
by Krzanowski (1976), we can uniquely order the cells by letting the cell num- 
ber c(x(’)) corresponding to the realization x(’) be given by 

Pl 
c(y&’)) = 1 + c p 2 ( V - - l ) ,  (7.4.1) 

V t l  

where xi1) = (x(’))~ for v = 1,. . . ,PI .  
The location model as introduced by Olkin and ’Itrte (1961), and as used 

in discriminant analysis initially by Chang and Afifi (1974) and Krzanowski 
(1975), assumes that in group Gi, the conditional distribution of X(2) given 
~ ( 1 )  = X U )  is 

d2) Id1) - N(pic (2) ,C (2) ) in Gi (i = 1 ,..., g), (7.4.2) 

where c = c(x(I)) is defined by (7.4.1). With this model (7.4.2), the conditional 
mean of the subvector X(2) of continuous feature variables is modeled within 
each group as an arbitrary p2-dimensional vector for each of the m = 2,: cells 
c(x(’)) corresponding to the different realizations x(l)  of the subvector sl) 
of binary features. The within-group covariance matrix of X(?), however, is 
specified to be the same for all cells and for all groups. 

The location model (7.4.2) with g = 2 groups was applied by Chang and 
Afifi (1974) in the special case of p1 = 1, and Krzanowski (1975) extended its 
use for an arbitrary number p1 of binary features. Actually, in the formulation 
of the problem by Chang and Afifi (1974), the within-cell covariance matrix 



222 PARAMFXRIC DISCRIMINATION VIA NONNORMAL MODELS 

of X(2) was allowed to be different for each of the two levels of the single 
binary feature variable. The location model in a discriminant analysis context 
has since been studied in a series of papers by Knanowski (1976, 1977, 1980, 
1982a, 1983b, 1986), including for g > 2 group. 

Under (7.4.2), the ith group-conditional density of X = (X(1)',X(2)')' can 
therefore be expressed as 

h(x;qic, E c  = qi;.c+(x'2'; pj:), c(~)>, (7.4.3) 

where c = c(x(l)) is defined by (7.4.1), and where 

qjc = pr{X(') = I X E  Gi} (i = 1, ...,g) ; 

In the left-hand side of (7.4.3), the vector of parameters 0:: is defined as f l E  

was for the homoscedastic normal model (3.3.1), that is, d$L denotes @E when 

pi is replaced by PI:) for i = 1, ...,g and C by C(2). Similarly, corresponding 
to 

*E = (x',e;y 

(2) = (*' @(a' '. 
*E.c 9 E s  1 

in Section 3.3.1, we let 

In the case of g = 2 groups, Afifi and Elashoff (1969) have considered the 
problem of testing whether 

7.4.2 Optimal Rule 

The Bayes rule of allocation for the location model (7.4.2) is denoted here by 
ro(x; w,q,@A), where 

q = (qi,...,q;)' 

and 

This location-model-based discriminant rule (LODR), ro(x; x,q,@f?J, is spec- 
ified by (3.3.2), where (7.4.3) is used for the ith group-conditional density of 
X. It therefore assigns an entity with feature vector x = (X(~)',X(~)')' to Gg if 

log(qic/qgc) + qig(x(2);*g:) 5 0 (i = ~ - - * , g  - 1) (7.4.4) 

is satisfied, where the label c of the location cell is determined from x(l) by 
(7.4.1), and where 

qig(x(2);*$) = log(ri/rg) + tig(x(2);t$i), (7.4.5) 
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and &g(d2);@L) is defined according to (3.3.3). If (7.4.4) does not hold, then 
the entity is assigned to Gh if 

log(qic/qgc> + qig(x”;*gt) 5 log(qhc/qgc) + qhg(x(2); qgi) 
for i = 1, ...,g - 1; i f h. 

7.4.3 Maximum Likelihood Estimation: Fully Saturated Model 

The location model (7.4.2) has 

(m - 1) + mgp2 + $P2(P2 + 1) 

parameters to be estimated from the training data t. This is in addition to the 
prior probabilities of the groups. 

Let X j  = (x(’)’ x(’)‘)’ for j = 1, ..., n denote the classified data in t. It is I ’ i  
convenient here if the Xj are relabeled as qj,c( i  = 1, ..., g; j = 1 ,..., ni,; c = 
1, .. ., m), where the Xij& = 1,. ..,nit) denote those X j  from Gi, nic in num- 
ber, which give rise to the cell c = c(x$)). If n is very large, then the naive 
estimates of the parameters (that is, the maximum likelihood estimates) will 
suffice. They are defined by 

4ic = nic/ni (7.4.6) 

and 

(7.4.7) 

for c = 1 ,..., m and i = 1 ,..., g, and 

The bias-corrected version of $(2) is given by 

(7.4.9) 

Recently, in the special case of g = 2, p1 = 1, and p2 = 1 or 2, Balakrishnan 
and Tiku (1988) have shown how a robust sample version of the LODR can be 
formed, using the modified maximum likelihood (MML) estimates as defined 
in Section 5.7.3. 

The location model (7.4.2) can be generalized by allowing the within-cell 
covariance matrix to be different within each group. A further generalization 
would be to allow the within-cell covariance matrix to be different not only 
within each group, but also for each cell. However, these generalizations ex- 
acerbate the problem of precision estimation of a large number of parameters 
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from training sets of limited size. The first generalization requires an addi- 
tional ipz(p2 + l)(g - 1) parameters to be estimated and, with the second, 
the number of parameters increases dramatically by +pz(pz + l)(rng - 1). 

7.4.4 Maximum Likelihood Estimation: Reduced Model 

In practice, estimation under the location model is generally only feasible if 
the size n of the training set t is very large. If n is not very large, then for 
a given group Ci, niC may be zero for several of the cells. For parsimonious 
estimation of the and the qic, Krzanowski (1975) has proposed fitting, say, 
a second-order log-linear model to the qic and a second-order model, in the 
binary variables, to the conditional means p!:) of the continuous variables. 
The linear model for the estimation of the pi:) has the form 

pg) = I?U(X(l)), (7.4.10) 

where K, is a p x m matrix of parameters, and u(x(')) is a m x 1 vector of 
ones or zeros defined as 

(7.4.11) 
The rn cell probabilities qie can be modeled using the log-linear representation 
(7.3.1) discussed in Section 7.3.1. 

These models for the qic and pf)  are fully saturated, and so as they stand, 
they provide no reduction in the number of parameters to be estimated. They 
provide the naive estimates of the q i c ,  &), and I=(2), as given by (7.4.6) to 
(7.4.8). However, a reduced form of (7.4.2) can be formulated by eliminating 
all products in u(x@)) of, say, third or higher order. This corresponds to tak- 
ing all second- or higher-order interactions to be zero. Let Uij = u(xii)) for 

i = 1,. . .,g and j = 1,. .., ni, when third- and higher-order terms in u(xij ) are 
deleted. That is, uij is of dimension 

(1) 

h = 1 + P1+ 4PdP1- 1). 

it& = Clic;l, 

Then the maximum likelihood estimate of & is given as 

where 

j=l 

and 
n; 
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for i = 1,. . .,g. For this reduced model, an unbiased estimate of C@) is given 
by 

(7.4.12) 

A log-linear model in which second- or higher-order interactions are set 
equal to zero can be fitted to the cell probabilities qic, as described in the 
previous section for discrete feature variables in general, and not necessarily 
binary as in the present context. 

Krzanowski (198%) has given the sample version of the reduced LODR in 
the case where the likelihood ratio criterion, as defined in Section 3.4.1, is used 
to estimate the optimal form of the rule. He also gave the associated computa- 
tions required to implement economically the cross-validation method for the 
estimation of the error rates. Little and Schluchter (1985) have considered the 
handling of missing values for the location model. 

7.4.5 Minimum-Distance Rules for Location Model 

Krzanowski (1983a, 1984a, 1987a) has considered the distance between two 
groups under a variety of assumptions about the groupconditional distribu- 
tions. In this work attention was focused on the use of Matusita's (1956) dis- 
tance measure, as defined in Section 1.12. It was seen there that in the case of 
g = 2 groups in which the feature vector X has groupconditional distribution 
functions F~(x)  and FZ(X), the Matusita distance is given by 

where 

is the affinity between F1 and F2. For the location model (7.4.2), Krzanowski 
(1983a) has shown that the affinity pij between the distributions of X in Gi 
and GI, respectively, is given by 

m 

pij = C(qicqjc)1'2Pijc, 
c=l  

where pijc is the affinity between the distributions of X(') in Gi and Gj, con- 
ditional on X(') = x('), and where the cell label c is determined from x(') by 
(7.4.1). That is, pijc is the affinity between the distributions N(PE),C(~))  and 
N(&),C@)) for i # j = 1, ...,g. The squared Mahalanobis distance between 
these two multivariate normal distributions is 
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From (1.12.4), the affinity Pijc is given by 

pijc = e ~ p ( - A : ~ ~ / 8 ) .  

Krzanowski (1986) proposed that as an alternative allocation procedure to 
the plug-in sample version rO(x;*,Q,bfA) of the Bayes rule, an entity be as- 
signed on the basis of the minimum distance 

min hf (FX ,  m, (7.4.13) 

where! Fx is the degenerate distribution that places mass one at the point x. 
He showed that 

hf(Fx,fi) = [2{1 - p ( F x , f i ) ~ l ” 2 ,  

where 
(7.4.14) 

and c = c(x(’)) is defined by (7.4,l). It can be seen from (7.4.14) that the 
minimum-distance rule defined by (7.4.13) is equivalent to the plug-in sam- 
ple version ro(x;+,Q,dfA) of the Bayes rule with d specifying equal prior 
probabilities for the groups. 

A sample version of (7.4.13), 

mjn 4 4  (Fx, fii), (7.4.15) 

can be obtained by plugging in estimates of the unknown parameters. Dil- 
Ion and Goldstein (1978) highlighted some unsatisfactory behavior with this 
sample plug-in version of the minimum Matusita distance rule in the case of 
multinomial group-conditional distributions. They therefore proposed an al- 
ternative principle for distance-based allocation. Let f i i ( X )  denote the usual 
plug-in estimate Fi(x;bi) of the distribution function &(x;Oi) of X in group 
Gj, where Pi is based on the classified training data t (i = 1,. . .,g). Further, let 
&(x) denote the plug-in estimate of f i (x;Oi) ,  where 8i is estimated from t 
and also x with the latter specified as belonging to Gi(i = 1, ...,g). The entity 
with feature x is assigned then on the basis of 

@n h ( F x ,  k,). (7.4.16) 

For g = 2 groups, Krzanowski (1987a) showed that the rules (7.4.15) and 
(7.4.16) have the same asymptotic form and, in the case of the homoscedas- 
tic normal model (3.3.1), are asymptotically equivalent. This last result fol- 
lows immediately on noting that the minimum-distance rule (7.4.16), as mod- 
ified by Dillon and Goldstein (1978), is the same as the rule (3.4.6) obtained 
with the likelihood ratio criterion under the homoscedastic normal model 
(3.3.1). Krzanowski (1987a) also established the asymptotic equivalence of the 
minimum-distance rules (7.4.15) and (7.4.16) in the case of multinomial group 
conditional distributions. Because of the asymptotic equivalence of these two 
distance rules in the situations in which the feature variables are either all 
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discrete or have a multivariate normal distribution with the same covariance 
matrix in each group, Krzanowski (1987a) speculated that their asymptotic 
equivalence should carry over under the location model to mixed feature vari- 
ables. As cautioned by Krzanowski (1987a), these results have been obtained 
asymptotically, and so may not always be applicable in small to medium- 
size training samples. For example, as discussed in Section 9.2.3, Dillon and 
Goldstein (1978) have provided evidence that their modification (7.4.16) of 
(7.4.15) yields a superior rule in certain circumstances with discrete feature 
data. 

Another distance-based rule for the location model can be constructed by 
modifying the definition of the Mahalanobis distance to allow for discrete vari- 
ates in the feature vector; see KrwMska (1987). 

7.4.6 Predictive Approach 

In the previous sections, we have described the so-called estimative approach 
to the fitting of the location model for mixed binary and continuous feature 
vectors. Recently, Vlachonikolis (1990) has presented the predictive approach 
to the fitting of this model in the case of g = 2 groups. As with the predictive 
approach for the homoscedastic normal model (3.3.1), Vlachonikolis (1990) 
adopted the vague prior density for the p ic  and C ,  

(7.4.17) 

For the vector of cell probabilities, qi = (qil,. . .,qim)', he adopted a prior den- 
sity of the Dirichlet form, 

m 

p(qi) a n&-l (i = 1,2), (7.4.18) 

where the Qjc are positive constants. As suggested by Vlachonikolis (1990), 
they may be chosen so that they reflect previous cell frequencies or intuitive 
impressions about the frequencies of the cells. When no prior information 
edsts about the location cells, we can adopt a vague prior with Qic = ai (i = 
1,2) for all c = 1, ..., m. The choice ~ i = 1 / 2  leads to the standard Jeffrey' 
prior density proportional to 

i = l  

This and other approaches are discussed in Vlachonikolis (1990). 

sity of X = (X(1)f,X(2)f)' can be expressed as 
With the prior densities (7.4.17) and (7.4.18), the ith groupconditional den- 
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where M = (n - 2m)/(n - 2m - p2 + l), c = c(x(')) is defined by (7.4.1), S(2) 
is defined by (7.4.9), and where 

The last term on the right-hand side of (7.4.19) is the multivariate t-density 
defined by (3.5.4). 

As explained by Vlachonikolis (1990), the predictive estimates of the pic 
will, like their estimative counterparts, be poor in situations with sparse data. 
The predictive estimates of the cell probabilities qic will be less affected by 
sparse data than the estimative ones, since they are smoothed by the presence 
of the ai, terms introduced through the Dirichlet prior density. Vlachoniko- 
lis (1990) consequently derived the predictive estimates of the &) and C@), 
where the number of parameters under estimation is reduced by the use of 
the linear model (7.4.10). Again, we let h be the dimension of u(x(')) after 
elimination of terms, say, those of third- or higher-order, in (7.4.11). 

For the case of g = 2 groups, Vlachonikolis (1990) adopted, following Tiao 
and Zellner (lW), the vague prior density 

p(Kl,K2, x(2)) o( lx(2)l-(1/2)(Pz+1) 

for K1, K2, and C@). He proceeded to show that the predictive estimate of the 
ith groupconditional density of X is 

where 

= 1 + u(x('))'c;lu(x(')), 

and 
c3i = c Z ~  + u(dl))u(x(l))' 

for i = 1,2, and where now M = (n - 2h)/(n - 2h - p2 + l), and S(2) is de- 
fined by (7.4.12). It can be seen that for h = m, (7.4.21) is equal to the predic- 
tive density (7.4.19) obtained previously under the full model. 
As mentioned above, the estimate (7.4.20) of qic  as obtained under the full 

model may be satisfactory. Suppose, however, that a reduced model for the 
qic is to be fitted. One straightforward approach as proposed by Vlachonikolis 
(1990) is to adopt a vague prior with 

ai, = ai + 1 (C = 1, ..., m) 
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for i = 1,2, where the ai are positive constants. This leads to a posterior den- 
sity for qje,  proportional to 

m n *?+ad (i = 1,2). 
C = l  

A second-order log-linear model can be fitted to the cell frequencies taken as 

Vlachonikolis (1990) performed some simulation results to compare the 
predictive and estimative approaches to allocation under the location model 
for mixed binary and continuous feature vectors. He concluded that, except 
perhaps in those cases in which the binary variables provided no discrimina- 
tion between the two groups, the predictive rule did not provide lower error 
rates. 

?lie + ai. 

7.5 ERROR RATES OF LOCATION MODEL-BASED RULES 

7.5.1 Expressions for Optimal and Conditional Errors (g = 2 Groups) 

Since conditional on x(l), the location-model-based discriminant rule (LODR) 
given by rO(x;x,q,t$A) is linear in the subvector x ( ~ )  containing the contin- 
uous feature variables, it is straightforward to give closed expressions for the 
optimal error rates and for the conditional error rates of its plug-in sample 
version ro(x;n,4,@,) in the case of g = 2 groups. Corresponding to the def- 
inition (3.3.4) of the NLDF, we write &(~(~);d$.) in the case of g = 2 as 

denote the Mahalanobis distance between G1 and G2 in the cth location cell 

We consider the LODR ro(x;k,q,f$A) with a general cutoff point k, that 
is, log(nl/n2) is replaced by -k in (7.4.5). Then by proceeding conditionally 

(c = 1, ..., m). 
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on x(l) ,  or, equivalently, the location cell c, the error rate of the LODR with 
respect to Cj is given by 

m 

eoiLO = xqiceoi(kc,Ac) (i = 1,2), 
c-1 

where eoj(k,,A,) is the optimal error rate of the NLDF ,$(x(2);Ogi) applied 
with cutoff point 

kc = k - lOg(qlc/qk) (7.5.2) 

with respect to G1 and G2, separated by a Mahalanobis distance A,(c = 1,. . ., 
m). That is, 

eoj(k,,A,) = @[AF1{(-lj+lkc- ;A:}] (C = 1, ..., m). 

In a similar manner, we can obtain expressions for the conditional er- 
ror rates of the plug-in sample version of the LODR, using the naive esti- 
mates (7.4.6) to (7.4.8) obtained with the fully saturated version of the loca- 
tion model. Corresponding to equations (4.2.7) to (4.2.9) defining the sample 
NLDF <(x;&), we let 

C(x'2);&Lc) = &,c -l- &#), 

where 
1 4 2 )  4 2 )  #$2)-1(42)  -$I), 

f 4 E . c  = + x2 1 
and 

bE,, = s(2)-1($) - $1) 
for c = 1,. . ., m. Then the conditional error rate with respect to Gj of the naive 
sample version ro(x;k,Q,8fA) of the LODR with cutoff point k is given by 

m 

c=l  

where eci(f,, 8gi;dgi) denotes the ith group-specific conditional error rate of 

, $ ( ~ ( ~ ) ; d g ; )  applied with cutoff point kc with respect to GI and (22, and where 

f ,  denotes k, with qjc replaced by Qjc (i = 1,2) in (7.5.2). A closed expression 
for eci(kc,Ogi; agi) is available from (4.3.5). 

7.5.2 Asymptotic and Empirical Results for Unconditional Errors 

In the case of separate sampling, the unconditional error rates of the sample 
LODR r,,(x;tj,l@,) are given by 

eujL0 = E{eciLo I nl,nz} (i = 1,2). 
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By adopting a similar approach to that used by Okamoto (1963) and de- 
scribed in Section 4.2, Vlachonikolis (1985) obtained under the location model 
(7.4.2) for g = 2 groups the second-order expansion eufz, of eUiLo for i = 

1,2. The principal term of order 0(1) in the expansion eu!?, is eOiLO, because 
eujLo + eOiL0, as n1,n2 + 00 (i = 1,2). In this and a later study (Vlachoniko- 
lis, 1986), he performed some simulation experiments to assess the reliability 
of these asymptotic expansions in situations where n is not very large. 

In both of these studies, the asymptotic and simulated values of the uncon- 
ditional error rates of the sample LODR were examined for combinations of 
the parameters similar to those chosen by Krzanowski (1977) in his earlier in- 
vestigation of the optimal error rates. In the Monte Carlo study of Vlachoniko- 
lis (1986), the simulations were conducted for a total of 324 combinations with 
p1 = 2,3; p2 = 1,3,5; nl = n2 = 50,100,200, and with Qic = qi (C = 1, .. ., m), 
where qi w a s  chosen in the range 0.3 5 qi 5 0.7 (i = 1,2). The p1 binary fea- 
ture variables were taken to be independent. Three different settings with 
respect to the cell Mahalanobis distances Ac were considered: (a) A: = 1; 
(b) A: equal to the mean of the cth-order statistic of a sample of size c 
from the standard half-normal distribution; (c) A: = 1 (c = 1, ...,i m) and 
2 (c = irn + 1, ..., m). For those combinations of the parameters with p1 = 3 
binary variables, a reduced version of the LODR was formed by fitting a 
second-order log-linear model to the cell probabilities and a second-order re- 
gression model, in the original binary variables, to the means of the continu- 
ous feature variables. As the groupprior probabilities were taken to be equal, 
the unconditional overall error rate is given by 

l 2  

i= l  
= -CeuiLo, 

and its second-order asymptotic approximation by 

A comparisoh of the asymptotic and empirical values of the unconditional 
overall error rate revealed that eufA is greater than the corresponding simu- 
lated value in each instance. Hence, it is apparent that eufA provides a con- 
servative assessment of the exact unconditional error rate euto. Overall, it 
was found that at least for moderately sized training samples, eufA provides 
a good approximation to the unconditional overall error rate of not only of 
the fully saturated version of the sample LDDR, but also of its reduced ver- 
sion. 

Concerning the behavior of the true unconditional overall error rate euL0, 
it was noted that both asymptotic and empirical assessments exhibited the 
following patterns across the combinations of the parameters specified. 
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1. They increase as p2 increases, although some exceptions were noted for 

2. they both decrease as the A, increase, for example, situation (c) against 

3. for large n, they both decrease as p1 increases, except for combinations 

combinations with small n; 

(a), as above; 

with q1 = 42 and certain combinations with larger values of pz. 

It was noticed that these patterns are similar to those for the optimal overall 
error rate, apart from (l), of course, because the latter does not depend on p2. 

Balakrishnan, Kocherlakota, and Kocherlakota (1986) have derived exact 
expressions for the unconditional error rates of the LODR in the special 
case of g = 2, p1 = p2 = 1, and 411 = 421. The difference between the group- 
conditional means of the continuous variable X2 was taken to be the same 
within each of the two location cells (that is, &) -&) = &) - pi:)), but the 
group-conditional variance of X2 was allowed to be different within each of 
the two location cells, although still common to each group. For the same case, 
Balakrishnan, Kocherlakota, and Kocherlakota (1988) have obtained asymp 
totic expressions for the unconditional error rates in situations in which the 
groupconditional distributions of X(2)  are not univariate normal. They con- 
sidered nonnormal distributions represented by the truncated normal and nor- 
mal mixtures (contamination model) in the course of their investigation of the 
robustness of the LODR. Also for the same case, Tiku, Balakrishnan, and 
Amagaspitiya (1989) have used asymptotic and simulative methods to investi- 
gate the error rates of the robust sample version of the LODR by Balakrishnan 
and Tiku (1988), using modified maximum likelihood (MML) estimates. Var- 
ious nonnormal group-conditional distributions were adopted. The extension 
to pz = 2 continuous variables was considered. 

Previously, Tu and Han (1982) considered the error rates of a sample ver- 
sion of the LODR in the special case of g = 2 groups and a single (p1 = 1) 
binary feature variable. Plug-in estimates were obtained by a double-inverse 
sampling scheme, whereby feature observations are recorded sequentially at 
random and sampling is continued until ni, 1 nice, where nice is a constant 
integer greater than p2. This is to ensure the sample covariance matrix for 
each of the two location cells is nonsingular. For this sample version of the 
LODR, fi and Han (1982) obtained asymptotic expansions of its error rates 
in the case in which the binary variable is independent of the continuous vari- 
ables. The error rates in the dependent case were studied using simulations. 

7.6 ADJUSTMENTS TO SAMPLE NLDR FOR MIXED FEATURE DATA 

7.6.1 Linear lkansformations 

Given its computational simplicity, it is not surprising that the sample NLDR 
r o ( x ; @ ~ )  is still widely used in situations in which the full feature vector obvi- 
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ously does not have a multivariate normal groupconditional distribution, such 
as with mixed feature variables. The robustness of the sample NLDR to de- 
partures from normality has been reported in Section 5.6, where it was seen 
that it is not robust to dissimilar interaction structures for the feature variables 
within each group. In this section, we consider the use of linear transforma- 
tions of the continuous feature variables to improve the performance of the 
sample NLDR with mixed feature data under the location model. 

In the previous chapter, we considered linear transformations of the feature 
vector x in the case in which all its components are continuous. In the case 
in which all the feature variables are binary, there is a transformation analo- 
gous to a principal component analysis, as discussed by Bloomfield (1974). The 
transformed binary variables, which are linear functions of the original ones, 
are such that their frequencies of occurrence can be described by a log - 1' inear 
model containing as few interaction terms as possible. 

In order to apply the aforementioned techniques in the present situation of 
mixed feature variables, we either have to treat the binary features as contin- 
uous or dichotomize the continuous variables. The former step can result in 
transformed variables that are not readily interpretable, and the latter may re- 
sult in loss of information. This led Knanowski (1979a) to consider for g = 2 
groups linear transformations that are directly applicable to mixed feature vari- 
ables and so which pay due regard to the inherent structure of the feature data. 
As explained in Krzanowski (1979a), in order for the sample NLDR r,,(x; 

&) to perform well relative to the sample LODR ro(x;o,4,@f9 under the 
location model, the means of the continuous feature variables conditional 
on the binary features should be as homogeneous as possible within groups. 
The homogeneity of those conditional means is equivalent to zero correla- 
tions between binary and continuous feature variables. This can be seen from 
the result that under the location model (7.4.2), the covariance between the 
uth binary variable in X(l) and the vth continuous variable in X@) in group 
Gi(i = 1,2) is given by 

(7.6.1) 

for u = 1,. . .,pl.and v = 1,. . . ,pz, where c = c(x(')) is as defined by (7.4,1), the 
summation in (7.6.1) is over all values of x(l) with (x(l))u = 1, 

pi:i = E{(XO)v I x('),X E Gi}, 

and where 

c=1 

Knanowski (1979a) suggested transforming 
ables as a'x(2), where a is chosen to minimize 

a'Hla/a'Z(2)a, 

the continuous feature vari- 
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where 

i=1 c= l  

and where 

and 

for i = 1,2. By analogy with canonical variate analysis, the solution is given by 
the eigenvector vector corresponding to the smallest eigenvalue of E(2)-'€Il. 

Another suggestion of Krzanowski (1979a) for the choice of a is to take a 
so as to minimize 

a'H1a/ar&a, 

where 
m 

E2 = c(&) - &))(&) - &))'. 

Krzanowski (197%) noted that a slight adjustment to the above analyses will 
ensure that the variables in a'X(2) are uncorrelated unconditionally, although 
it may disturb their correlation structure with the binary variables. The adjust- 
ment is to use the weighted between-cell matrix, 

c= l  

2 m  

i = l  e=l  

in place of HI. In practice, the matrices HI, B2, H3, and l2 are unknown and 
must be replaced in the analyses by their sample analogues computed from 
the training data t. 

Krzanowski (197%) has given the likelihood ratio test for the effectiveness 
of the discriminant rule based on the location model over the sample NLDR. 
As pointed out by Krzanowski (1979a), this test requires estimation to be per- 
formed under the location model, and so may not be appropriate in situations 
in which the aim is to reduce the computational effort through the possible 
use of the sample NLDR. However, the test would be worthwhile if the dis- 
criminant rule were being designed for extensive future use. 

7.6.2 Augmenting the Sample NLDF 
Another approach to the problem of improving the performance of the sample 
NLDF in its application to mixed feature data is to augment the original fea- 
ture vector with appropriate products of the binary and continuous variables. 
Before proceeding to show how this can be effected, we consider briefly the 
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applicability of the original form <(x;&) of the sample NLDF under the loca- 
tion model. Vlachonikolis and Marriott (1982) have given a lucid account of 
this topic. 

It can be seen from (7.5.1) that the sample LODR r0(x;k,4,dfA) effects an 
allocation of an entity with mixed feature vector by fitting a separate hyper- 
plane 

&.cX(2) (7.6.2) 

in the region of the continuous feature variables. These hyperplanes (7.6.2) 
are in general nonparallel, their direction being different for each location cell 
c, that is, for each distinct realization x(l) .  Also, for the cutoff point k, they 
have different positions, as determined by 

for the cth location cell, where kc is given by (7.5.2). On the other hand with 
the use of the sample NLDF ~ ( x ; & E ) ,  allocation is effected by using the same 
hyperplane 

D 

in all location cells, where 

b v E  = @ E l v  for v = I, . . . ,p.  

Its position is specified by 

v=l  

that is, by a weighted sum of the binary feature variables. When this additiv- 
ity in the binary feature variables and the implied assumption of parallelism 
of the hyperplanes in the continuous feature variables do not apply, that is, 
when the interactions between the binary features and between the binary 
and continuous features are different for each group, the sample NLDF will 
not perform well. 

h o k e  (1982), following the approach of Thett, Cornfield, and Kannel 
(1%7), and Vlachonikolis and Marriott (1982) have proposed various modi- 
fications of the sample NLDF t ( x ; & ~ )  in its application to mixed feature data 
from g = 2 groups. Their approach is to augment the feature vector x with 
appropriate products of the feature variables to allow for interactions between 
the binary features and between the binary and continuous features that are 
not common to both groups. Suppose the p1 binary variables in x(l) are re- 
placed by m = 2P1 variables wl , . . . ,~ , , , ,  where wu = &,, and c is determined 
from x(l) by (7.4.1). 'Ib avoid linear dependence between these variables wu, 
only m - 1 of them, say, ~ 1 , .  .., wm-l, should be used. In order to allow for 
interactions between the binary feature variables, the sample NLDF is formed 
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with the feature vector augmented by the inclusion of the m - 1 variables in 

w = (w1,. . . , wm..-#. 

x+ = (w',x(2)')' 

corresponding to X j  ( j  = 1, .. .,n). The sample NLDF formed from x1+, . ..,xn + 

[(x+;&) = {x+ - +(z; + x;)}'(S+)-yq - Q, 

Let 

be the feature vector so augmented, and let xi' be the jth observation on x+ 

is given by 

where 
n 

E: = C ZjjXT /ni ( i  = 1,2), 
j=l 

and 
2 ni 

Here 4; denotes 8~ with PI, 4, and S replaced by Ti:, Ti;, and S+, respec- 
tively. 

With the use of this augmented sample NLDF {(x+;bE+), the same hyper- 
plane is still used in each location cell, but now its position is determined 
separately for each cell. The sample NLDF [(x+;&) can be augmented fur- 
ther by letting x+ consist of the elements of w, x(4, and all products of the 
form W , X $ ~ )  (u  = 1, .. .,m - 1; v = 1,. . . ,pz) .  The latter products are to allow 
for interactions between the binary and continuous feature variables. As x+ 
is now of dimension m ( p 2  + 1) - 1, the augmented sample NLDF {(x+;&E+) 
so obtained is now analogous to the sample location model-based discrimi- 
nant function in that it fits a separate hyperplane at each location cell. It is 
more general than the location model in that it does not assume the covari- 
ances of the continuous variables to be the same within each cell, although 
this homoscedasticity can be easily incorporated into the estimation process. 
Under the location model, it is assumed that the common covariance matrix 
of the continuous feature variables within each location cell is also common 
to each group. If this assumption is relaxed, it can be handled by forming the 
sample NLDF with the feature vector augmented with also quadratic terms in 
the continuous feature variables. As remarked in Section 5.6.3, Schmitz et al. 
(1985) have concluded that interactions between the continuous feature vari- 
ables have a greater impact on the performance of the sample NLDF than the 
interactions involving the binary feature variables. 
As with the location model, this approach of augmenting the sample NLDF 

involves too many parameters unless p1 is small. Vlachonikolis and Marriott 
(1982) proposed that this problem be tackled in a similar manner to that with 
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the location model. They noted that (w1,. . . , wm-# has an equivalent repre- 
sentation as 

(1) x(l) (1) (1) (1) x(l) (1) (1) (1) (1) '"...xffl. 
( X I  ,.*., PI, x1 x2 , . . . , X p , - l  p ) ,  x1 x2 x3 1 . . . , q  x2 

This suggests the formation of a reduced sample version of the NLDF, where 
only terms corresponding to main effects and interactions up to a certain or- 
der are retained. Thus, to allow for first-order interactions between the bi- 
nary variables and also between the continuous variables and the binary fea- 
tures taken both separately and in pairs, the augmented sample NLDF can 
be formed by taking the feature vector x+ to consist of x and all products 
of the form x!')x$'), x!')x?), and X ! ~ ) X ~ ~ ) X $ ~ )  (t # s = 1,. ..,PI; v = 1,. . .,p2). 
This reduction in the number of parameters to be fitted may not be sufficient 
or it may not be applicable. There may be some higher-order interactions that 
have a significant effect on allocation. In such circumstances, the feature vector 
can be augmented by stepwise selection. There are major statistical packages 
(Section 3.3.3) for the fitting of the sample NLDF, in a stepwise manner if 
so required. Indeed, this is the main advantage of this approach of augment- 
ing the sample NLDE It is easily implemented in practice and so provides a 
quick way of identifying those interaction terms that are needed in the provi- 
sion of a satisfactory allocation rule. Hence, it is quite useful, whether in the 
role of improving the allocatory performance of the sample NLDF or in the 
preliminary screening of the interaction terms to be retained in the fitting of 
a reduced version of the location model. 

In Section 5.6.3, it was demonstrated in a simple case of the location model 
in which a single binary feature variable has a common interaction structure 
with the continuous variables in each group that the use of the sample NLDF 
does not yield consistent estimates of all the discriminant function coefficients. 
Similarly, in the presence of unequal interaction structures within the groups, 
the fully augmented sample NLDF will not, in general, provide consistent 
estimates of the discriminant function coefficients, and, hence, of the pos- 
terior probabilities of group membership under the location model. Thus, it 
is stressed that the analogy of the fully augmented sample NLDF with the 
location-model-based approach is limited only to the allocation problem. This 
is not surprising as it has been seen that the use of the augmented sample 
NLDF has been motivated by ad hoc considerations. For instance, it is formed 
as if the augmented feature vector x+ has a multivariate normal distribution 
with a common covariance matrix in each group, although these assumptions 
are obviously not met. If consistent estimation is required, then the location- 
model-based approach provides a parametric way of proceeding. A semipara- 
metric approach using logistic discrimination and nonparametric approaches 
to this problem are described in the next two chapters. Irrespective of what 
approach is adopted to the estimation problem, the augmented sample NLDF 
can still be of value initially in providing a quick and cheap way computation- 
wise of identifying those terms to be included either in the reduced form of 
the location model or in the logistic formulation. 
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7.7 SOME NONNORMAL MODELS FOR CONTINUOUS FEATURE 
DATA 

7.7.1 Introduction 

Cooper (1%2a, 1962b, 1963, 1%5) and Day (1969) have investigated the a p  
plicability of linear discriminant rules for nonnormal groupconditional distri- 
butions. Day (1969) showed that the optimal discriminant rule is linear in the 
feature vector x for groupconditional distributions in any linear exponential 
family. This result can be generalized. 

Suppose that the ith group-conditional density is a member. of the family of 
p-dimensional elliptically symmetric densities 

(7.7.1) 

where, as previously, f ~ (  Ilxll) is any spherically symmetric density function. 
Also, as before, 

Then for group-conditional distributions of the form (7.7.1) with equal prior 
probabilities, the optimal rule is linear if the Ci are all equal and fs is strictly 
monotonically decreasing (Glick, 1976). 

For unequal Ei, Cooper (1963) considered some distributions of the type 
(7.7.1), for which the optimal discriminant rule is of the same form as the 
NQDR. These particular distributions are multivariate extensions of the Pear- 
son ’Qpes I1 and VII distributions. Cooper (1%5) studied the likelihood ratio 
statistics for these groupconditional distributions. 
As discussed in Section 2.11, one parametric approach to discriminant anal- 

ysis when normality does not appear to be a tenable assumption for a group 
conditional distribution is to model it as a finite mixture of, for example, multi- 
variate normal components. An example of this is presented shortly in Section 
7.8. But, first, we briefly report some other nonnormal models that have been 
suggested for parametric discrimination. 

6(x ,p i ;  X i )  = (X - pj)’Ci’(x - pi). 

7.7.2 8-Generalized Normal Model 

Chhikara and Ode11 (1973) proposed a parametric family of multivariate den- 
sity functions known as r-normed exponential densities for the groupcondi- 
tional distributions in discriminant analysis. Goodman and Kotz (1973) inves- 
tigated the same family of densities and labeled it the family of @-generalized 
normal densities. 

The family of univariate 8-generalized normal densities can be represented 
as 

f ( x ; e , p , a )  = {2ar(1+ e-l))-lexp{-i(x - p)/aIe} ,  (7.7.2) 

for all real x,  where a, 8 (a > 0,e > 0), and j 6  are f m d  real numbers. This 
family becomes the Laplace for 8 = 1, the normal for 8 = 2, and approaches 
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the uniform on (p - u,p + a)  as 8 tends to infinity. As 8 tends to zero, (7.7.2) 
defines an improper uniform distribution over the whole real line. It can be 
verified for any 8 > 0 that if U is distributed according to a gamma distribution 
with parameter l/8, then U1le has the density given by (7.7.2), appropriately 
modified by being restricted to the positive half of the real line. 

The multivariate 8-generalized normal density is given by 

where A is a p x p nonsingular matrix, p = (PI,. . .,pp)', 8 > 0, and 

K(p,8,A) = [{2I'(1+ 8-1)}plAl]-1, 

and where Bk is the kth row of B = A-'. The covariance matrix I: of this 
p-dimensional random vector is given by 

I: = C(B)AA', 

c(e) = r(3/e)/r(i/e). 
where 

For 8 = 5 (7.7.3) reduces to the p-variate normal distribution with mean p 
and covariance matrix D. 

7.7.3 Exponential Model 

The exponential distribution appears as a natural model in problems of life 
testing and reliability analysis. For this model, the ith groupconditional den- 
sity of the feature variable X is given by 

f i ( x ; p i )  = ~ ~ ' e X p ( - x / ~ i ) l ~ ~ , m ~ ( x )  (i = A-*-,g), 

where the indicator function l [ ~ , ~ ) ( x )  = 1 for x > 0 and zero elsewhere. The 
implied optimal discriminant rule is linear in x ,  because 

log{fi(x;pii/fg(x;pg)} = (pi1 -p;')x - log (~ i /~g )  (i = L***,g - 1)- 

(7.7.4) 

In the case of the group means pj being unknown, a sample discriminant 
rule can be formed by plugging into (7.7.4) the maximum likelihood estimate 
of pi, given by the sample mean Zj of the training feature data from group 
Gi (i = 1,. . .,g). The use of the optimal discriminant rule and its sample plug- 
in version for exponential groupconditional distributions has been considered 
by Bhattacharya and Das Oupta (1964) and Basu and Gupta (1974), among 
others. 
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7.7.4 Inverse Normal Model 

The inverse normal distribution is frequently used in applications involving, for 
example, Brownian motion, sequential analysis, reliability theory, and electron- 
ics. It is a good representative of a positively skewed long-tailed distribution 
and is often recommended as an alternative to the log normal distribution; 
see Folks and Chhikara (1978) and Chhikara and Folks (1989). As reported in 
Section 5.6.1, Amoh and Kocherlakota (1986) modeled the groupconditional 
distributions of the feature variable as inverse normal in their study of the 
robustness of the sample NLDR under departures from normality. 

Let pj and c ~ f  denote the mean and variance, respectively, of the univariate 
feature variable X in group Ci (i = 1,. . .,g). Also, put 

where it is supposed that pi > 0 (i = 1,. ..,g). Then with the groupconditional 
distributions of X modeled by the family of inverse normal distributions, the 
ith groupconditional density of X is given by 

(7.7.5) 

where 8i = (pi,&)'. For small values of Xi this distribution is highly positively 
skewed. As Aj tends to infinity, the distribution approaches the normal. 

Amoh and Kocherlakota (1986) have derived the n-*-order asymptotic ex- 
pansions of the unconditional error rates of the sample plug-in version of the 
optimal discriminant rule in the special case of ?rl = ?r2 = 0.5 and A1 = A2 = A, 
where X is known. More recently, El Khattabi and Streit (1989) have derived 
the asymptotic unconditional error rates of the sample plug-in rule in the spe- 
cial case of 7~1 = 7r2 = 0.5 and p1 = p2 = p, where p is known. 

We let rj(x;*) denote the posterior log odds for g = 2 groups, so that 

tl(x;*) = 10g{71(x;*)/72(x;9)}, (7.7.6) 

where 
* = (7r1,712,111,A1,p2,X2)'. 

q(x;*) = log(n1/?rz) + x-l(a2x2 + a1x + (Yo), 

Then, on substituting the inverse normal form (7.7.5) for fi(x;Oi) in (7.7.6), we 
have that 

(7.7.7) 

where 

Qt = $(A2p;2 - 

a1 = (X1pT' - A&) + ilog(A1/A2), 
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and 
a0 = ~ ( A Z  - ~ 1 ) .  

It can be seen from (7.7.7) that the optimal discriminant rule is based on the 
quadratic discriminant function 

a22 + {a1 + log(lrl/lrz)}x + ao. 

w x 2  = PIlP2. 

This reduces to a linear discriminant function if a 2  = 0, that is, if 

2 2  

In the case of unknown Pi  and Ai, a sample discriminant rule can be formed 
by plugging in their maximum likelihood estimates from the training data, 

pi e - Xi 

and 

for i = 1,2. 

7.7.5 Multivariate 2-Model 

Recently, Sutradhar (1990) used the classical multivariate t-density to model 
the groupconditional distributions in situations in which they may have tails 
longer than those of the multivariate normal. If the ith group-conditional den- 
sity f i ( x ; e i )  is modeled as the p-dimensional t-density fs,(x; rn,p,pi,C) with 
m degrees of freedom, as given by (3.5.4), then it has mean p i  and covari- 
ance matrix {m/(rn - 2)}Z (i = l,.. .,g). As the degrees of freedom m tends 
to infinity, this 2-density tends to the multivariate normal density with mean 
p i  and covariance matrix C. 

Sutradhar (1990) actually modeled f i (X ;Oi )  as 

fi(x;ei) = (m- 2) (1 /2 )mc(m,p) l~ l~1 /2 { (m - 2) + ~ ( x , ~ i ; I = ) } - ( ” 2 ) ( m + p )  

(i = 1 ,..., g),  (7.7.8) 

where the constant term c(rn,p) is as defined in Section 3.5.1. This was 
achieved after a reparameterization so that the common group-covariance 
matrix does not depend on the degrees of freedom rn. Here e i  consists 
of the elements of pi, the distinct elements of Z, and the degrees of free- 
dom m (i = 1,. . .,g). Also, Sutradhar (1990) gave a model for the joint den- 
sity of the ni training observations from Gi in the situation in which they 
are not independent, but are pairwise uncorrelated with marginal density 
(7.7.8). 
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TABLE 7.1 Common Value of the Group-Spedflc E m r  Rates of the Optimal 
Rule Based on Group-Conditional Multivariate t-Densities in the Case of Equal 
Group-Prior Probabilities 

m 

A 3 

0 0.5000 
1 0.2251 
2 0.0908 
3 0.0403 
4 0.0114 
7 0.0045 

4 

0.5000 
0.2593 
0.1151 
0.0506 
0.0121 
0.0039 

5 

0.5000 
0.2375 
0.1266 
0.0553 
0.0117 
0.0032 

6 8 10 00 

0.5000 0.5000 0.5000 0.5000 
0.2814 0.2897 0.2942 0.3085 
0.1333 0.1408 0.1449 0.1587 
0.0579 0.0607 0.0622 0.0668 
0.0111 0.0101 0.0095 0.0062 
0.0026 0.0019 0.0015 O.OOO2 

Source: From Sutradhar (1990). with permission from the. Biometric Society. 

For g = 2 groups, the error rates of the optimal discriminant rule ro (x ;q )  
are easily computed, as demonstrated by Sutradhar (1990). In the case of 
equal group-prior probabilities, both groupspecific error rates are given by 

( i  = 1,2). 

Their common values are displayed in Table 7.1 for selected combinations of 
the Mahalanobis distance A and m, along with the values of @(-$A), the 
error rate of the NLDR, which corresponds to rn = 00. It can be seen that for 
small A, the ?-based discriminant rule has a smaller error rate than that of the 
NLDR. This arises directly from the heaviness of the tails of the t-density. 

Sutradhar (1990) illustrated the use of the multivariate ?-density for model- 
ing the groupconditional distributions by fitting this model to some bivariate 
data on two species of flea beetles, as given in Lubischew (1%2). The mean 
pi and the common groupcovariance matrix Z were estimated by the sample 
mean Zi and the (bias-corrected) pooled sample covariance matrix S, respec- 
tively. The method of moments was used to estimate the degrees of freedom 
rn. This estimate of m based on the fourth moment was given by 

h = 2(3Cl- 2~2)/(3 - C2), 

where 
D 

and 
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7.8 CASE STUDY OF RENAL VENOUS RENIN IN HYPERTENSION 

7.8.1 Description of Data 

The case study undertaken by Mchchlan and Gordon (1989) is reconsidered 
here using a subset of their data. The purpose of this analysis is twofold. One 
is to give an illustration of a case in which the group-conditional distributions 
are modeled as a finite mixture (here a normal mixture). The other is to give 
a practical example of a partially classified sample, where the classified fea- 
ture vectors do not represent an observed random sample from the mixture 
distribution of the feature vector. 

The data under analysis were collected as part of a study carried out at the 
Endocrine-Hypertension Research Unit, Greenslopes Hospital, Brisbane, be- 
tween 1973 and 1985 on patients suffering from hypertension. Patients were re- 
ferred to the study from all over Queensland and Northern New South Wales 
with either (a) suggestive features of renal artery stenosis; or (b) severe hyper- 
tension, either not sufficiently well controlled with high-dose medications or 
sufficiently well controlled but with unacceptable side effects; or (c) an arte- 
riogram suggestive of renal artery stenosis. Catheters were introduced via the 
femoral veins into the right and left renal veins, and samples of renal venous 
blood were obtained with the patient recumbent ( X L ~ , X R ~ ) ,  then tilted 45 de- 
grees (&, XRZ),  and then after pharmacological stimulation by intravenous 
bolus injection of Diazoxide either 150 mg or 300 mg (&;&)a Peripheral 
blood samples ( x A 1 , & 2 , x A 3 )  were also taken in the three situations, and are 
considered equivalent to artery renin levels. Hence, the full feature vector for 
a patient consists of the nine measurements: 

A renal venous renin ratio (RVRR) greater than 1.5 (that is, XLV/XR~ or 
XR"/XLV greater than 1.5 for any v from 1 to 3) was considered suggestive 
of renovascular hypertension, which is potentially curable by surgery. Patients 
with an RVRR greater than 1.5 were subjected to arteriography and, on the 
basis of the X-rays so obtained, were categorized as having renal artery steno- 
sis (RAS) or not. A ratio of 1.5 is often used as a cutoff point for further 
investigations; see also Sealey et al. (1973) and the references therein. Hence, 
there are two groups, with G2 denoting the group of patients with RAS and G1 
the group of those without RAS, as diagnosed by an arteriogram. It should be 
noted that an arteriogram does not reveal with absolute certainty the absence 
or presence of RAS in a patient. 

Of the 163 patients considered in this analysis, 60 had an RVRR greater 
than 1.5 and had subsequently undergone arteriography; 50 were diagnosed as 
having RAS, and the results for the other 10 are not available. For the remain- 
ing 103 patients with an RVRR less than 1.5, there is no arteriogram-based 
diagnosis, although for 70 patients, there is supplementary evidence suggestive 
of their not having RAS. They had a normal creatinine level, which is consis- 
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TABLE 7.2 Summary of Information on M = 163 Patients with Hypertension 

Presence of RAS 
RVRR unknown No Yes Total 

< 1.5 103 0 0 103 
> 1.5 10 0 50 60 

Total m = 113 nt = O  n2 = 50 M = 163 

tent with normal kidney function. For the remaining 33 patients, the creatinine 
level was either abnormal or not available. 

The partial classification of the patients is summarized in Table 7.2. On the 
basis of this information, we wish to construct a discriminant rule for use as 
a guide to the diagnosis of future patients suffering from hypertension due 
to RAS. As there is an element of risk associated with arteriography, there 
is some concern not to use the procedure needlessly. On the other hand, if 
a patient has RAS, then it is potentially curable by surgery. With respect to 
the patients in the study, of particular interest are the diagnoses for those 
10 patients with a high RVRR (greater than 1.5) for which the results of the 
performed arteriography are not available. 

7.83 Modeling the Distribution of Renal Venous Renin Ratio (RVRR) 

A preliminary inspection of the data suggested taking logs of the measure- 
ments for the RVRR to induce normality. The feature vector X is taken to be 
(xl, x2, x3)), where 

xv = log(xLv/xRv) ( V  = 453). 
In group G1 corresponding to the absence of RAS, each Xi should be dis- 
tributed symmetrically about zero. As an initial choice for the density of X in 
GI, we took 

the (trivariate) normal density with zero mean and arbitrary covariance matrix 
El. Correspondingly, the density of X in G2 was taken as 

f2(x;@2) = 4{@(x;IL2,E2) + @(x;-IL2,X2)h (7.8.1) 

a mixture in equal proportions of two normal component densities with a 
common covariance matrix and with the mean of one component equal to the 
negative of the other. This reflects the left and right kidneys having the same 
chance of developing RAS. 

From preliminary analyses along the lines described in the previous study 
of McLachlan and Gordon (1989), it was concluded that a single normal distri- 
bution is not adequate for modeling the distribution of the feature vector X in 

f1(x;@1> = m o , w ,  
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GI.  This is because of the presence of some values with relatively large disper- 
sion about the origin in the data on the 70 patients for whom, as mentioned 
before, it is reasonable to assume do not have RAS, at least for the pur- 
poses of this exercise. Accordingly, a two-component normal mixture model is 
adopted for the density f l ( x ; & )  of X in GI,  namely, 

f l  (%el) = a l h f l h  (x; el), 
h=l 

where 

and all + a12 = 1. That is, the group GI is decomposed into two subgroups, 
G11 and G12, where, with probability a l h ,  X has density flh(%;&) in G1h (h = 

Likewise, plots of the data from the 50 patients known to have RAS clearly 
suggest that G2 consists of two subgroups, in one of which the observations 
are widely dispersed in a direction away from the origin. The density of X in 
GZ was taken, therefore, to have the form 

f lh(x;&) = #(X;O,&h) (h = &2), 

192). 

2 

f2(x;  02) = c ~ u , f u , ( x ;  821, 

fih(x;&) = ~{$(x;c(2h,%d + $(~;--CLzh,%l)), 

h 3 1  

where 

and a21 + a22 = 1. That is, Gz is decomposed into two subgroups, G21 and 
Gn, where, with probability a%,X has density fu,(x;&) in Gu, (h = 1,2). 

With a two-component normal mixture model for the feature vector X in 
each separate group Gi (i = 1,2), the density of an observation in the mixture 
G of the two groups G1 and G2 is therefore modeled as a four-component 
normal mixture, 

2 

fx(x;*)  = C { r l h f l h ( X ; @ l )  + mful(x;&)l, (7.8.2) 
h=l 

2 
where 

C(Tl/# f xu,) = 1. 
h el 

The parameters ~ 1 1 ,  ~ 1 2 ,  ~ 2 1 ,  and TZ are the proportions in which the sub- 
groups G11, G ~ z ,  G21, and Gu occur in the mixture G of GI and G2, and it 
follows that 

aih = Tih/ (Ti l+  Tiz) ( i ,h = 1,2). 

In this example, the classified data are only on patients with an RVRR 
greater than 1.5. However, as shown in Section 2.8, we can effectively ig- 
nore this conditioning in forming the likelihood function on the basis of the 
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classified and unclassified feature data and the observed sample size as given 
in Bble 7.2. That is, we can treat the observations on the 50 classified pa- 
tients as if they were an observed random sample from the mixture distri- 
bution of X. We proceed here on the basis that the patients have been re- 
labeled so that X j  (] = 1, ..., n) denote the n classified feature vectors and 
X j  ( j  = n + l,.. .,M = n + m) the m unclassified ones. We assume for the mo- 
ment that there are no classified data. Then by a straightforward extension of 
the application of the EM algorithm as described in Section 3.8, it follows that 

fiih = C.P~~(X~) /M (i = 1~2)~ (7.8.3) 
M 

j = l  

M 
1 h = %I ( x  j / (M filh ), (7.8.4) 

j = l  

M 

PU = C q h ( x j ) [ G h ( X j ) x j  - (1 - ~ h ( x j ) } x j l / ( ~ f i ~ ) ,  (7.8.5) 
j = l  

and 
M 

= C . P 2 h ( x i ) [ d h ( X j ) ( x j  - P,)(xj - PU)' 
j = l  

+ { 1 - -cjh(xj)}(xj  + i h ) ( X j  + f i ~ ) ' I / ( M f i ~ )  (7.8.6) 

for h = 1,2. In these equations, & ( x j )  = wh(xj ;$ ) ,  where 

u h ( x ; * )  = #(x; !42h,&h)/{#(X;C(2ht xU) -k #(x; -!4U, %h))* 

A h ,  +ih(xj) = Tih(Xj;@), where 

7 i h ( ~ ; * )  = aihf ih(x;@i) / fx  (x ;  *) 

is the posterior probability that the patient belongs to subgroup Gih (i = 1,2; 
h = 1,2). I€ G h ( x j )  is set equal to 1 in (7.8.3) to (7.8.6), then they reduce to 
those for a four-component normal mixture. The presence of Ljh(Xj) in (7.8.5) 
and (7.8.6) is a consequence of the assumption that in Gu, (h = 1,2), X is a 
mixture in equal proportions of two normal densities with a common covari- 
ance matrix and with the mean of one component equal to the negative of the 
other. 

Equations (7.8.3) to (7.8.6) have to be modified to reflect the fact that the 
group of origin of 50 obsevations x j  (] = 1, ..., 50) is known to be GI. The 
modification is effected by replacing .P~h(x j )  with 

f l h ( x j ) l { f 1 1 ( x j )  + +1Z(xj)), 

and ? S ( X j )  by zero (h = 1,2) €or j = 1 ,..., 50. Equations (7.8.3) to (7.8.5) so 
modified can be solved iteratively by substituting some initial values for the 
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TABLE 7.3 Estimates of Parameters in Four-Component Mixture Model Fitted to 
the RVRR for lkro Groups (RAS, no RAS) of Pstients wIth Hypertension 

Group Parameters Estimates 

GI (no RAS) 

Gz (RAS) 

0.16 
0.03 

-0.00 
-0.02 

0.02 
0.01 
0.01 

0.18 
0.45 
1.01 
0.05 
0.04 
0.01 
0.34 
0.28 
0.16 

0.48 

0.02 
0.01 0.02 

0.03 
0.01 0.03 

0.18 
0.69 0.61 
1.16 1.33 

0.13 
0.04 0.04 

0.34 
0.25 037 

estimates into the right-hand side to produce new estimates on the left-hand 
side, and so on; see McLachlan and Gordon (1989) for further details, includ- 
ing choice of initial values. 
R, provide some guide as to the validity of the adopted model (7.8.2), we 

first clustered the data with respect to the four subgroups. Hawkins’ (1981) 
test for multivariate normality was then applied to the resulting clusters as 
if they represented a correct partition of the data with respect to the sub- 
groups. For the two subgroups of the RAS group C2, we worked with the 
absolute values of the data for if the density f ~ ( x )  of X in subgroup CU, 
has the specialized normal mixture form (7.8.1), then (IX~I,IXZ~, 1x31)’ should 
be essentially trivariate normal with mean pa and covariance matrix &, in 
Ca (h = 1,2). This is because in group G2, XI, X2, and X3 tend to have the 
same sign. No significant departures from normality were obtained for the 
subgroupconditional distributions. 

7.83 Fitted Mixture Distribution of RYRR 
We report in Thble 7.3 the estimates obtained for the unknown parameters in 
the mixture density (7.8.2) for the feature vector X containing the RVRR as 
measured on a patient while recumbent, tilted at 45 degrees, and after phar- 
macological stimulation. In this table, (Tih,rs denotes the (r,s)th element of 

We have plotted in Figure 7.1 the fit obtained for the marginal density of 
Cih. 

X3 in GI and in G2. 
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FIGURE 7.1. Marginal density of log(RVRR) after pharmacological stimulation (X3)  in the no 
RAS group (C,) and in the RAS group (Gz). 

7.8.4 Diagnosis of RAS on Basis of Estimated Posterior Probabilities 

Once the mixture density (7.8.2) has been fitted, a patient with feature vector 
x can be assigned to G2 (diagnosed as having RAS) if 

As explained previously, there was no arteriogram-based diagnosis for RAS in 
113 of the 163 patients in this study. Of particular interest are the estimated 
posterior probabilities for the presence of RAS in the 10 patients with an 
RVRR greater than 1.5 (more appropriately here, logRVRR > 0.405 in magni- 
tude), but for whom the results of the subsequent arteriography are not avail- 
able. In Table 7.4, we list for those 10 patients their log(RVRR) as measured 
while recumbent ( X l j ) ,  tilted 45 degrees ( x z j ) ,  and after pharmacological stim- 
ulation ( ~ 3 j ) .  The patients have been relabeled here for convenience so that 
j = 1, ..., 10. 

It can be seen from Table 7.4 that all but one of these 10 patients would be 
put in the RAS group G2 in an outright assignment on the basis of the relative 
sizes of f ~ ( x j )  and &(xi). For this patient ( j  = 6) and patient numbered j = 5,  
the diagnosis is not clear-cut. It is not suggested that a diagnosis should be 
made solely on the base of these estimated posterior probabilities. However, 
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TABLE 7.4 Estimated posterior Probabilities Cor AbsencePresence of RAS in 10 
Patients with Absolute Value of log(RVRR) > 0.405 

No R M  R M  

Subgroups Group Subgroup Group 
Gii G12 GI G21 G z  Gz 

Patient log( RVRR) 
NO. X l j  x2j ~ 3 j  41(xj) h(xj )  +](xi) h ( x j )  +&j) 4(xj) 

1 1.29 1.62 1.93 0.00 0.00 0.00 0.00 1.00 1.00 
2 0.34 1.14 1.65 0.00 0.00 0.00 0.00 1.00 1.00 
3 0.56 1.09 0.27 0.00 0.00 0.00 0.92 0.08 1.00 

5 0.42 0.32 0.40 0.00 0.28 0.28 0.66 0.06 0.72 
4 0.67 0.40 -0.02 0.00 0.00 0.00 0.08 0.92 1.00 

6 -0.44 -0.21 -0.17 0.00 0.60 0.60 0.30 0.10 0.40 
7 -0.48 -0.47 -0.82 0.00 0.00 0.00 0.70 0.30 1.00 
8 0.07 -0.32 -0.52 0.00 0.02 0.02 0.73 0.25 0.98 
9 0.88 0.62 0.61 0.00 0.00 0.00 052 0.48 1.00 

10 1.07 1.02 1.00 0.00 0.00 0.00 0.02 0.98 1.00 

they do provide the clinician with a quantitative guide as to the presence of 
RAS. 

Of the 103 patients with log(RVRR) less than 0.405 in magnitude, all but 
four were clearly diagnosed as not having RAS on the basis of the relative size 
of the estimated posterior probabilities +1(xj) and .Pz(xj). We also computed 
the estimated posterior probabilities for the 50 patients diagnosed by arteriog- 
raphy to have RAS. All 50 were predicted to have RAS, although two were 
borderline cases. 

7.9 EXAMPLE: DISCRIMINATION BETWEEN DEPOSITIONAL 
ENVIRONMENTS 

7.9.1 Mass-Size Particle Data 

As considered by Novotny and McDonald (1986), model selection can be un- 
dertaken using discriminant analysis. It is in this spirit that we now describe 
an example in which the feature vector used in the formation of the discrimi- 
nant rule contains the fitted parameters of a postulated parametric family of 
distributions. It concerns the use of the mass-size particle distribution of a soil 
sample in an attempt to determine its depositional environment. Suppose that 

Xk (ak,b&) 

for k = 1, ..., v denote the v intervals into which the diameter width of a par- 
ticle is divided. Let 

w = w1+ . .. + w y  
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be the total weight of a soil sample, where wk denotes the weight of particles 
in it with diameters in Xk (k = 1,. . ., v). This situation in which the percentage 
of particle sizes by weight is observed, and not the explicit number of parti- 
cles, occurs frequently in studies of size phenomena. It is because of this that 
by far the most common method for measuring particle sizes in geological 
applications is to pass a sample of soil through a sequence of sieves with pro- 
gressively finer meshes. The particles trapped on a particular sieve have size 
in a known interval and can be weighed. 

One approach to the problem of characterizing and then discriminating be- 
tween specified depositional environments is to take the feature vector equal 
to (w1,. . ., wv)'. However, this approach ignores the implicit. ordering of the 
intervals and is not applicable if different sets of intervals are used for dif- 
ferent samples. An approach that avoids these two shortcomings is to model 
the mass-size distribution. Let m(u;C), where C is a vector of parameters, de- 
note the probability density function chosen to model the theoretical mass-size 
distribution. Following Barndorff-Nielsen (1977), C can be estimated by t, ob- 
tained by maximizing the expression 

where 

and uk  = wk/w (k = 1,. 
minimization of 

~ K L  

., v ) .  The maximization of (7.9.1) is equivalent to the 

V 

u,p(C>} = uklog{uk/Pk(C))r 
k = l  

which is the Kullback-Leibler distance function between the vector of the em- 
pirical mass-size relative frequencies, u = (ul,. . .,uv)), and its theoretical coun- 
terpart, 

P(C) = (Pl(0, - -. 9 Pv (C))' . 
Barndorff-Nielsen (1977) termed this estimation procedure maximum like- 

ness as it coincides with maximum likelihood in the case where the random 
vector U, corresponding to the realization u, is distributed for some positive 
integer M as 

MU - Mult(M,P(C)), 

a multinomial distribution consisting of M independent draws on v categories 
with probabilities specified by P(C). A multinomial distribution would apply if 
the explicit number of particles were observed rather than their mass-size rel- 
ative frequencies in the present situation. With only the latter being observed, 
there are difficulties in providing standard errors and carrying out tests of sta- 
tistical hypotheses; see Jones and McLachlan (1989) for a discussion of this. 
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FIGURE 7.2. Empirical massaize distribution of a soil sample. 

Before proceeding with the characterization and allocation of depositional en- 
vironments, using the fit as the feature vector, we briefly consider some 
methods of modeling mass-size distributions. 

7.9.2 Modeling Mass-Size Particle Distributions 

To illustrate some of the models postulated for mass-size distributions, we con- 
sider the data set analyzed by Jones and McLachlan (1989). It was taken from 
Walker and Chittleborough (1986) and consisted of the percentages by weight 
of particles falling in diameter ranges of 1 unit on a log scale for three hori- 
zons labelled Bt,BC, and C for each of two soil profiles labeled C and Q. An 
example of these data is given in Figure 7.2 where, for horizon BC of profile 
C, the natural log of mass-size relative frequencies expressed as percentages 
is plotted against the log to the base 2 of the diameter (in mm) of particles. 
This type of plot was used by Bagnold (1941) and subsequently by Barndorff- 
Nielsen (1977) in his introduction of the log hyperbolic distribution to model 
mass-size distributions of sand deposits. The hyperbolic density is given by 

where (7.9.2) 
w ( u ; C )  = cexp[-$W + 7>d/(a2 + (u  - PI2)  + &j - 7)(u - P)I, 

c = w/a/CK1(a/c), 

w = l / ( p  + 7-9 ,  

u = f i ,  

and K1(.) is the modified Bessel function of the third kind and with index 
v = 1. Bagnold and Barndorff-Nielsen (1980) have given a geological interpre- 
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tation of these parameters for wind and water deposited sources. The normal 
distribution with mean p and variance u2 is a limiting case of (7.9.2), when 
$ = 7 and a -+do while a*-+ u2. 

It would appear from the bimodality exhibited in Figure 7.2 that a mixture 
model is appropriate for this profile. Jones and McLachlan (1989) showed how 
a mixture of two log hyperbolic components can be fitted satisfactorily, at least 
to the midpoints of the intervals (with the two extreme intervals discarded), 
using a generalized EM algorithm. However, they found for the data sets they 
analyzed that the a parameter in each log hyperbolic component is essentially 
zero or the likelihood is rather flat in it. This latter behavior of the likelihood 
was observed, too, by Fieller, Gilbertson, and Olbright (1984) in their modeling 
of sand particle sizes by the log hyperbolic family. 

In these situations, there is, therefore, little to be gained, for the consider- 
able additional computation, in adopting the hyperbolic distribution over its 
limiting form as a tends to zero, which is 

m(u;O=weV{-7lu-~I)  ( U > P )  

(u < PI* = wexp{-+lu - PI}  

This limiting form is the skew Laplace or asymmetric double exponential dis- 
tribution. It can be fitted to mass-size data in their original categorized form. 

Jones and McLachlan (1989) concluded that mixtures of two log skew Lap 
lace components gave an excellent fit to their data. This is evident from Fig- 
ure 7.3, in which the relative frequencies and the fitted mixture of two log 
skew Laplace components are displayed for six profilehorizon combinations. 
The estimates of the parameters for these fits are listed in Table 7.5, and f?l 

and ft2 = 1 - 31 denote the estimates of the proportions in which the two log 
skew Laplace components are mixed. Note that elsewhere in this book the use 
of f?i and pi is reserved solely for the estimates of the prior probability and 
mean, respectively, of the ith group Gi (i = 1, ..., g). 

7.93 Discrimination on Basis of Mass-Size Fit 

It was shown in the present example how a horizon/profile combination can 
be characterized by its mass-size distribution, as modeled by a mixture of two 
log skew Laplace components. Therefore, for the purposes of assigning a soil 
sample, say, of unidentified horizon within a known profile, we can take the 
feature vector x to be the fit 

2 = ( ~ ~ , ~ 1 , ~ 1 , ~ 1 , ~ 2 , ~ 2 , ~ 2 ) ' ,  

obtained by fitting a mixture of two log skew hyperbolic components in pro- 
portions ~1 and 12. A sample discriminant rule with if as feature vector can 
be formed provided there are replicate samples from each of the specified 
horizons within a given profile to enable classified training replications of the 
fit if to be calculated. Because 2 is a minimum-distance estimator, it will have 
asymptotically under the usual regularity conditions a multivariate normal dis- 
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FIGURE 7.3. Mas-sizc histograms for profiles C and Q of Walker and Chittleborough (1986) 
along with fitted log skew Laplace mixtures. (From Jones and McLachlan (1969). by courtesy of 
Marcel Dekker, Ic.) 
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TABLE 7.5 Parameter Estimates for Log Skew Laplace Mixture Model Fitted to 
Data from Horizons of l h  Soil Profiles 

Horizon ff1 b1 $1 91 P 2  6 9 2  

Profile C 

Bt 0.54 -14.02 0.81 0.29 -4.35 0.80 1.44 
BC 0.47 -13.25 0.64 0.39 -4.28 0.75 1.50 
c 0.30 -13.23 0.65 0.32 -4.19 0.38 l.% 

Profile Q 
Bt 0.61 -13.77 1.08 0.35 -4.73 1.52 0.63 
BC 0.48 -14.04 1.19 0.28 -4.72 1.10 .059 
C 0.41 -14.07 1.01 0.34 -4.69 0.84 0.45 

Some: Adapted from Jones and McLachlan (1989). 

tribution for a given horizodprofile combination. Thus, the use of the sample 
NQDR with as feature vector can be justified in the present context, at least 
asymptotically. 

In other applications of this type, Wyrwoll and Smyth (1985) used the sam- 
ple NLDR to discriminate between three Australian dune settings: dune sides, 
dune crests, and interdunal corridor. The feature vector was taken to be 

x = (),log&)', 

where = @,a2)' is the fit obtained from modeling the mass-size distribution 
of a sand sample by a single log normal component with mean p and variance 
u2. They noted that the logarithmic transformation of B in the feature vector 
was to make more tenable the assumption of multivariate normality with a 
common covariance matrix for the group-conditional distribution of X, which 
is implicit in the use of the sample NLDR. They compared the apparent error 
rate of this rule with that of the same rule, but with the feature vector x based 
on the fit of a single log hyperbolic component, 

x = (~,logh,logg,log~)'. 

The three group-specific apparent error rates were actually increased rather 
than decreased with the fitting of this more complicated model. Fieller, Flen- 
ley, and Olbright (1990) noted a similar result in their comparison of the a p  
parent error rates of the sample NLDR with feature vector based on the log 
hyperbolic model with those of the sample rule based on the simpler log nor- 
mal model for discriminating between beach and dune samples collected near 
the eastern shore of the Hebridean island of Oronsay. On the other hand in 
their comparative study, the use of the log skew Laplace model in forming the 
feature vector resulted in smaller apparent error rates. 

For other approaches to problems of the type above, the reader is referred 
to Aitchison (1986), who has given a systematic account of statistical methods 
designed to handle the special nature of compositional data. 



C H A P T E R  8 

Logistic Discrimination 

8.1 INTRODUCI'ION 

8.1.1 Formulation of Logistic Model 
In Chapters 2 to 7, we have considered a fully parametric approach to dis- 
criminant analysis, in which the groupconditional densities fi(x) are assumed 
to have specified functional forms except for a finite number of parameters to 
be estimated. Logistic discrimination can be viewed as a partially parametric 
approach, as it is only the ratios of the densities {fi(X)/fj(X), i # j )  that are 
being modeled. For simplicity of discussion, we consider first the case of g 2 
groups. 

The fundamental assumption of the logistic approach to discrimination is 
that the log of the group-conditional densities is linear, that is, 

log{f1(x)/f2(x)) = A -t P'x, (8.1.1) 

where P; and fl  = (PI, ...,pppY constitute p + 1 parameters to be estimated. 
Let 

The assumption (8.1.1) is equivalent to taking the log (posterior) odds to be 
linear, as under (8.1.1), we have that the posterior probability of an entity with 
X = x belonging to group GI is 

71(x) = eqNP0 + P'x)/{1+ e q w l +  P ' X ) ) ,  (8.1.2) 

Po = f$ + log(r1/r2). 

and so 

10&{(71(~)) = log{71(74)/72(~)) 

= po + P'X. (8.1.3) 
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Conversely, (8.1.1) is implied by the linearity (8.1.3) of the log odds. The lin- 
earity here is not necessarily in the basic variables; transforms of these may 
be taken. 

The earliest applications of the logistic model were in prospective studies 
of coronary heart disease by Cornfield (1962) and ’Ruett, Cornfield, and Kan- 
nel (1%7), although there the parameters were estimated subsequently under 
the assumption of normality. The estimation problem in a general context was 
considered by Cox (1966, 1970), Day and Kerridge (1%7), and Walker and 
Duncan (1967). For reviews of the logistic model in discriminant analysis, the 
reader is referred to J. A. Anderson (1982) and Albert and Lesaffre (1986). 
More generally, van Houwelingen and le Cessie (1988) have given the devel- 
opment of logistic regression as a multipurpose statistical tool. There is also 
the recent monograph of Hosmer and Lemeshow (1989) and the expanded 
and substantially revised second edition (Cox and Snell, 1989) of Cox(1970). 
To define the logistic model in the case of g > 2 groups, let 

pi = (pli,. . .,ppi)’ (i = I,. . .,g - I) 
be a vector of p parameters. Corresponding to the conventional but arbitrary 
choice of GB as the base group, the logistic model assumes that 

log{fi(x)/fg(x)) = P I $  +Pix (i  = I,..., g - I), (8.1.4) 

or, equivalently, that 

(8.1.5) 
where 

poi =pii + I o ~ ( T ~ / T ~ )  (i = 1, ...,g - 1). 

As emphasized by J. A. Anderson (1982), logistic discrimination is broadly 
applicable, as a wide variety of families of distributions and perturbations of 
them satisfy (8.1.4), including (i) multivariate normal distributions with equal 
covariance matrices; (ii) multivariate discrete distributions following the log- 
linear model with equal interaction terms; (iii) joint distributions of continu- 
ous and discrete random variables following (i) and (ii), but not necessarily 
independent; and (iv) truncated versions of the foregoing. 

8.1.2 Applicability of Logistic Model 

J. A. Anderson (1972) did note for discrete feature variables that the logistic 
assumption (8.1.1) of linearity in x is quite severe for all but binary variables. 
Consider, for example, the trichotomous variable x ,  which takes on the values 
of 0, 1, and 2. In some cases, it will be reasonable to assume that the log 
likelihood ratio is linear in x .  In other cases, this will not be so and, in order 
to apply the logistic model, x must be transformed into two binary variables, 
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x1 and x2, where x = 0 if and only if x1 = 0 and x2 = 0; x = 1 if and only if 
x1 = 1 and x2 = 0; and x = 2 if and only if X I  = 0 and x2 = 1. Analogously, 
each variable with more than r 2 2 levels can be replaced by r - 1 binary 
variables. 

The logistic model has been introduced before from a discriminant analysis 
point of view. However, the logistic form (8.1.2) for the posterior probabilities 
of group membership provides a way of modeling the relationship between a 
g-valued categorical response variable and a vector x of explanatory variables 
or covariates. In this regression context, the groups GI,. . ., GB can be viewed 
as corresponding to the different categories of the response variable. Multi- 
ple logistic regression as such has been used extensively in epidemiology. The 
covariate vector represents levels of risk factors thought to be related to a 
disease under study and the categorical response variable denotes the disease 
status. For example, in a study of the effect of exposure to smoking, the dis- 
ease categories might be the absence of lung cancer and two or three histolo- 
gies of lung cancer. For a binary response indicating the presence of a disease 
(GI) or the absence (G), the logistic formulation (8.1.2) implies a log - 1' inear 
model for the posterior odds for an individual with covariate x compared with 
a baseline individual with covariate XO. Under (8.1.2), 

Often the disease under study is fairly rare, so that 72(x) and ~ ( x o )  are 
close to one, and hence the odds ratio is approximately 

7-1(x)/71(xo), 

which is the relative risk of contracting the disease. This makes the odds ra- 
tio an even more natural quantity to model in epidemiological studies. For 
an account of the logistic model and its further developments in the latter 
context, the reader is referred to Breslow and Day (1980) and Kleinbaum, 
Kupper, and Chambless (1982). Some of the developments, for example, have 
been concerned with the use of the logistic model where there is a pairing or 
matching. Indeed, many medical case-control studies involve the close match- 
ing of controls (individuals free of the disease) to cases (diseased individuals), 
for instance, on age and sex, rather than using regression modeling to allow 
for such effects. 

Other choices besides the logistic transform are possible in (8.1.3) for re- 
lating x to the posterior probability q(x). For example, Albert and Anderson 
(1981) considered the concept of probit discrimination by replacing logit{ 7'(x)} 
with 

probit {q(x)} = F1{ 71(x)}, 

in (8.1.3), where a(.) denotes the standard normal distribution function. How- 
ever, the logistic and probit models are virtually indistinguishable for practical 
purposes, since 

logit { 71 (x)} 2! c@ -1 { 71 (x)}, (8.1.6) 
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where c = = 1.6. The approximation (8.1.6) has a maximum error of 
0.01767 (Page, 1977). The logistic model is usually preferred for its computa- 
tional convenience. Albert, Chapelle, and Smeets (1981) have described one 
of the few applications of the probit approach. 

A more general approach to logistic or probit discrimination is to use the 
class of generalized additive models proposed by Hastie and Tibshirani (198f5, 
1990). The linear form (8.1.3) is generalized to a sum of smooth functions xT51 S j ( ( X ) j ) ,  where the Sj(.) 'S are unspecified functions that are estimated 
using a scatter plot smoother, in an iterative procedure called the local scoring 
algorithm. 

It was assumed above that the groups are qualitatively distinct or, in the 
regression context, that the categories of the response variable are unordered. 
However, as explained by J. A. Anderson (1982), the groups or categories can 
be quantitatively defined. For example, they may correspond to different lev- 
els (high or low) of some test scores. In which case, the groups are not qual- 
itatively distinct as the difference between them is one of degree. For g = 2 
groups or categories, Albert and Anderson (1981) showed that the probit or 
logistic models apply equally well to ordered groups or categories. Anderson 
and Philip (1981) provided an extension to the case of g > 2 groups or cat- 
egories, where the latter may be viewed as corresponding to the grouping of 
an unobservable continuous variable. This extended model does not belong to 
the exponential family. J. A. Anderson (1984) subsequently showed how the 
logistic model may be applied to his proposed stereotype model for assessed 
ordered categorical variables. The latter are viewed as being generated by an 
assessor who provides a judgment of the grade of the ordered variable. This 
ordinal model was independently proposed by Greenland (1985). Campbell 
and Donner (1989) have investigated the impact of incorporating an ordinality 
assumption into the logistic model in the case where ordinality is indeed a cor- 
rect assumption. They derived the efficiency of the ordinal logistic approach 
of J. A. Anderson (1984) relative to the ordinary logistic approach in terms of 
the asymptotic error rates of the implied allocation rules. 

8.13 Quadratic Logistic Discrimination 

J. A. Anderson (1982) in reviewing his series of papers on the logistic model 
has stressed that the fundamental assumption (8.1.4) of the logistic model is 
not restricted to linearity of the log ratios of the group-conditional densities 
in the basic variables. On the contrary, any specified functions of these can be 
included as x-variates. Perhaps most common are the log, square, and square 
root transformations, which arise for the same reasons as in linear regression. 

There is a type of quadratic transformation introduced for a rather different 
reason. Suppose that 

X-N(pi ,Ci )  in Gj (i = 1 ,..., g) .  

(8.1.7) 
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where Ai is a p x p symmetric matrix. Now (8.1.7) is linear in the coefficients 
given by &, the elements of pi, and the distinct elements of Ai, so that it can 
be written in the form of (8.1.4) with p + 1 + # p ( p  + 1) parameters. 

J. A. Anderson (1975) has discussed the logistic model in some detail for 
(8.1.7). He suggested some approximations for the quadratic form X'AiX, which 
enables estimation to proceed when the number of basic variables p is not 
small (p > 4 or 5, say). The simplest of his approximations is 

Ai 2 hidlidii, 

where Xlj is the largest eigenvector of Aj, and qb1i is the corresponding eigen- 
vector (i = 1,. ..,g - 1). As explained by J. A. Anderson (1975), the need for 
a quadratic discriminant rule is by no means restricted to situations where all 
the variables in x are continuous. For example, if the variables are binary and 
the first-order interactions on the log-linear scale are not equal in each group, 
then (8.1.7) holds provided the higher-order interactions are the same for all 
groups. 

8.2 MAXIMUM LIKELIHOOD ESTIMATION OF LOGISTIC 
REGRESSION COEFFICIENTS 

8.2.1 %-Conditional !3ampling 

We consider now maximum likelihood estimation of the parameters in the 
logistic model on the basis of the observed training data t, where, as before, 

t' = o.l,...,Yn), 

t: = (XI,. . . ,&) 

t: = (21, ..., Zn) 

and yj  = (x$z)>' for j = 1,. ..,n. We let 

be the matrix containing only the feature observations and 

the matrix containing only the associated groupindicator vectors. 
In principle,.we have to distinguish between the sampling design under 

which t was realized. In practice, however, it turns out that there is a mi- 
nor consideration with the same function being maximized for three impor- 
tant study designs: %conditional sampling, joint or mixture sampling, and z- 
conditional or separate sampling. They correspond respectively to sampling 
from the distribution of 2 conditional on x, sampling from the joint distribu- 
tion of Y = (X',C)', and to sampling from the distribution of X conditional 
on z. 

The first design applies to a multiple logistic regression where it is assumed 
that conditional on %I,. . .,x,,, Z1,. . .,Z, are distributed independently with 

ZjIxj"Multg(1,Tj) ( j =  1, ...,n), (8.21) 
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where T j  = (T1j ,..., 7g j ) l  is the vector of posterior probabilities for X j ,  and 

T i j  = . r i ( X j ; a )  (i = 1, ...,g). 

Here 
a = (a;, (8.2.2) 

denotes the vector of the logistic regression coefficients, where 

ai = (PW,~:)’ (i = 1 ,..., g - I). 

The dimension of the vector a is thus (g - l)@ + 1). The use of this design is 
exemplified by a dose-response investigation in bioassay in which the response 
is noted at each of a series of dose levels x .  

From (8.2.1), we have that the log likelihood function for a, formed from 
z1,. . .,Zn conditional on X I , .  . . ,Xn, is 

n 

logL(a;t, I tx) = C l o g L ( a ; z j  I x j ) ,  (8.2.3) 
j = l  

where 
B 

I O ~ L ( ~ ; Z ~  1 xi) zij l o g T i ( x j ; a )  (8.2.4) 

is the contribution to the log likelihood !?om the single response vector Z j  con- 
ditional on x j  ( j  = 1,. . ., n). It can be written in the exponential family form 

i-1 

g-1 

logL(a;t, I tx) = Caiui - k(a), (8.2.5) 
i = l  

where, on putting xi’ = (l ,x;)’ ,  

j =I 

and 

j = 1  

With multiple logistic regression, it is this likelihood that is maximized. 
However, we will see that it is also appropriate for both mixture and sepa- 
rate sampling schemes, which are more relevant in discriminant analysis. 

8.2.2 Mixture Sampling 

We now consider maximum likelihood for the logistic model under a mixture 
sampling scheme, which is common in prospective studies and diagnostic situ- 
ations. In a prospective study design, a sample of individuals is followed and 
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their responses recorded. Under a mixture sampling scheme, XI,. . . ,x,, are the 
observed values of a random sample drawn from a mixhue of the g group 
G;, . . ., G8. Hence, the associated groupindicator vectors are distributed un- 
conditionally as 

21,. . .,Zn eMultg( 1, I), (8.26) 

where ‘IC = (XI, ...,?F#)’. 

The log likelihood function for a formed from t under mixture sampling is 
n 

logl(a;t) = log+;tz I tx) + Clogf.(xj) ,  (8.2.7) 
j=1 

where 
8 

~ x ( x )  = Crifi(x) 
is the mixture density of X. As no assumption is made about the functional 
form for fx(x)  under the logistic model, the maximum likelihood estimate 
of a obtained by maximizing (8.27), is the same value of a that maximizes 
L(a; tZ I tx) in the regression situation. 

i= l  

From (82.6), an estimate of 1pi is provided by 

where 
n 

(8.28) 

(8.2.9) 

8.23 Separate Sampling 

Maximum likelihood estimation for the logistic model under a separate sam- 
pling scheme is not as straightforward at first sight. Under a separate sampling 
scheme, the training data t have been obtained by sampling nj observations 
separately from each group Gj (i = 1,. . .,g). Hence, it is appropriate to ret- 
rospective studies, which are common in epidemiological investigations. For 
example, with the simplest retrospective case-control study of a disease, one 
sample is taken from the cases that occur during the study period and the 
other sample is taken from the group of individuals who remained free of the 
disease. As many disease conditions are rare and even a large prospective 
study may produce few diseased individuals, retrospective sampling can result 
in important economies in cost and study duration. 
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As the are not estimable from t under separate sampling, the vector of 
parameters to be estimated from t is 

a' = (a:',. . .,ag-l)', 0 )  

where af' = (&,pi)' for i = 1,. . .,g - 1. Under separate sampling, the log like- 
lihood formed from t by proceeding conditionally on tz is 

8 n  

logL(ao;tx I tz) = C Czijlogfi(xj) 
i=l j=1 

under the assumption (8.1.4). It can be seen from (8.2.10) that the difficulty 
here is that a full specification of the likelihood L(ao;tx I tz) depends also on 
the unknown density function f g ( x )  in addition to a'. 

Suppose that X is a discrete random variable, taking on a finite number, 
say d, of distinct values with nonzero probabilities f'l,. . . , fgd in G,, where the 
only assumption on these probabilities is that they sum to one. Let 
denote the estimates of poi and pi obtained by maximization of the log like- 
lihood function L(a;t  I tx), and let & be the corresponding estimate of &. 
defined by (8.2.8), i = 1,. . .,g - 1. Then J. A. Anderson (1972, 1974, 1982) and 
Anderson and Blair (1982) showed that the estimates of &. and pi obtained 
by maximization of L(a;t ,  I tz) over ao and the fgh(h = 1, ..., d )  are given by 
& and &(i = 1, ...,g - 1). Thus, the estimate of ao is precisely the same as 
obtained under a mixture sampling scheme. Extrapolation to the case where 
all or some of the observations XI,. . ., Xn are continuous was given using a dis- 
cretization argument. However, Prentice and Pyke (1979) showed there was no 
need to make the sample space finite in order to establish that the maximum 
likelihood estimates f l i  of the Pi(i = 1,. . .,g - 1) under mixture sampling are 
also the maximum likelihood estimates under separate sampling, with the 8; 
having similar asymptotic properties under either scheme. These results also 
follow from Cosslett (1981a, 1981b); see Scott and Wild (1986). Anderson and 
Blair (1982) showed that the mixture sampling solution can be obtained under 
separate sampling by using a penalized &mum likelihood procedure. 

Using conditional likelihood derivations similar to those given by Cox 
(1972a) and Prentice and Breslow (1978), Farewell (1979) eliminated the terms 
fg(Xj) in the log likelihood L(ao;tx I tZ) formed under separate sampling by 
considering the conditional probability that T = t given nl, . . ., ng and the set 
C of the values obtained for XI,. . .,Xn. The log of the conditional likelihood so 
formed can be expressed as 

and 
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where the zero-one variables t i j  satisfy 

B n 

Ctij = 1 ( j  = 1 ,..., n) 
i = l  j = l  

and Ciij = ni (i = 1 ,..., 8) .  (8.2.12) 

The summation with respect to the t i j  in (8.2.11) is over the n!/(nl!..-n,!) 
possible assignments of zero-one values to the Z i j  so that (8.2.12) is satisfied 
always. Estimation of PI,. . .,&-I from (8.211) is computationally feasible in 
circumstances in which at most one of nl, . . . , ng is large; see Efron (1977) and 
Prentice and Pyke (1979). 

8.2.4 Computation of Maximum Likelihood Estimate 

Day and Kerridge (1967) and J. A. Anderson (1972) originally suggested us- 
ing the Newton-Raphson procedure to maximize L(a;t, I tx) in obtaining the 
maximum likelihood estimator 6 of a. J. A. Anderson (1982) subsequently 
recommended quasi-Newton methods, as they combine the Newton property 
of speed of convergence near the optimum with the advantage possessed by 
the steepest descent method with poor starting values (Gill and Murray, 1972). 
A further advantage of the quasi-Newton methods is that they require only the 
first-order derivatives at each iteration while giving an estimate of the matrix 
of second-order derivatives at the maximizer. On the choice of starting value 
for &, both J. A. Anderson (1972) and Albert and Lesaffre (1986) have re- 
ported very satisfactory results with the Newton-Raphson procedure started 
from & = 0. The latter authors found that convergence usually takes no more 
than a dozen iterations, except in those circumstances to be described shortly, 
where the likelihood L(a;t, I tx) does not have a maximum for finite a. The 
major statistical packages listed in Section 3.3.3 all offer some form of logis- 
tic regression analysis; see Panel on Discriminant Analysis, Classification, and 
Clustering (1989, Section 4.2). 

The asymptotic covariance matrix of 6 under x-conditional or mixture sam- 
pling can be estimated as usual by the inverse of the observed information 
matrix, 

cov(a) = I-', (8.2.13) 

where f = I(&) is the observed information matrix and 

I(a) = -8210gL(a;tz I t,)/&Ba'. 

Prentice and Pyke (1979) showed that the appropriate rows and columns of 
f-' also provide a consistent assessment of the covariance matrix of &, ..., 
4-J under separate sampling. Concerning an assessment of standard errors 
and covariances involving the &., J. A. Anderson (1972) showed for discrete 
x under separate sampling that 

cov(a0) = f-l - ng'c, (8.2.14) 
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where C is a (g - l)(p + 1) square matrix with all elements zero, except for 
some elements in the 1 + ( r  - l)(p + 1) row ( r  = 1, ...,g - 2). In this row, the 
element in the 1 + (s - l)(p + 1) column is 1 + (n,/n,) for s = r and is 1 for 
s # r (s = 1,. ..,g - 2); all other elements in the row are zero. In particular, 

var(&) = var(&) - n;’ - n i l  (i = I , .  . .,g - 1). 

The effect of collinearity of the data on maximum likelihood estimation for 
the logistic model has been studied by Schaefer (1986). He presented some 
simple transformations of the maximum likelihood estimator & that reduce 
the effect of the collinearity. More recently, Duffy and Santner (1989) have 
described the computation of norm-restricted maximum likelihood estimators 
of the logistic regression coefficients. 

8.2.5 Existence of Maximum Likelihood Solution 

We consider now the pattern of data points for which the likelihood appropri- 
ate under the logistic model, L(a;t, I tx), does not have a maximum for finite 
a. It is convenient here to write those observations from XI, ..., x,, belonging 
to Gi (that is, those with Zij = 1) as xij (i = 1,. ..,g; j = 1,. . ., ni). 

Although the likelihood L(a;t, I tx) is bounded above by one for all a, 
some configurations of the data can result in a nonunique maximum on the 
boundary of the parameter space at infinity. It is necessary, therefore, to rec- 
ognize those data configurations that lead to infinite estimates, in order to 
avoid unnecessary iterations in the optimization process. Albert and Lesaffre 
(1986) have explored this problem and, by considering the possible patterns 
of the data XI,. . .,xn, have proved existence theorems for the maximum likeli- 
hood estimates. The patterns fall essentially into three distinct categories: com- 
plete separation, quasi-complete separation, and overlap. Albert and Lesaffre 
(1986) have noted since that this categorization does not cover all possibilities, 
and that other data configurations can cause problems. 

The first category of complete separation was recognized by Day and Ker- 
ridge (1%7). By definition, there is complete separation in the sample points 
if there exists a belonging to Rd such that for a given i (i = 1,. . . ,g), 

(i = 1 ,..., ni; h = 1 ,..., g; h # i). Tj(Qj;a) > T/,(Xij;a) (8.2.15) 

Here d = (g - l)(p + 1) denotes the dimension of a. To examine this more 
closely for g = 2 groups, suppose that /!lo1 +&x is a separating hyperplane, 
whose existence is implied by (8.2.15). Suppose that &u + pix  > 0 for x lying 
on the same side of the hyperplane as the x1j from GI, so that +&x < 0 
for the ~ 2 j  from G2. Let a = (c&,c&)’. Then, as c 4 00, 

L(a;tz 1 tx) + 1. 

Hence, there is a maximum of L(a; tz I tx) at infinity. Although this implies 
that a cannot be estimated with much precision, the discriminant function 
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corresponding to any separating hyperplane will have Zero overall misalloca- 
tion rate in its application to the training data. Although the apparent er- 
ror rate of a discriminant rule can provide an optimistic assessment of the 
rule in its application to data outside the training data, it is desirable that 
a discriminant rule with a zero apparent error rate be found if it exists; 
see Greer (1979). In fitting a logistic model, it is quick and simple to check 
whether there is complete separation at any each stage of the iterative pro- 
cess; see Day and Kerridge (1%7) and J. A. Anderson (1972) for further 
details. 

The second category of quasi-complete separation occurs if there exists a 
nonzero a belonging to Rd such that for a given i (i = 1,. . .,g), 

Ti(Ki j ; ( r )>Th(&j;a)  ( j -1 ,  ..., t l i ;  h = l ,  ...,g; h f i ) ,  

with equality for at least one (h,i, j)-triplet. A special case of this general con- 
cept as defined above by Albert and Anderson (1984) was noted by J. A. An- 
derson (1974) in the case of g = 2 groups, where one of the variables, say, the 
first element of x, is binary and where (X1j)l = 0 ( j  = 1, . . . ,q) and (~2j)l = 1 
for at least one value of j ( j  = 1,. . . , n2). Then the upper bound of one is 
attained by L(a;t, I tx) as (&)I + -00. Further discussion of this category 
is found in Albert and Lesaffre (1986), who also discuss some intermediate 
situations, neither complete nor quasicomplete separation, where the maxi- 
mum likelihood estimate of a does not exist. These are referred to as partial 
separation. A simple example of such a data pattern for g = 3 groups occurs 
where two of the groups overlap, but the other is completely separated from 
these two. This concept can be generalized to several groups, as considered 
by Lesaffre and Albert (1989a). Geometrically, partial separation is defined as 
complete separation of clusters of groups. 

The third category is overlap and it occurs if neither complete, quasi-com- 
plete, nor (quasi)-partial separation exists in the sample points. The maximum 
likelihood estimate of a exists and is unique if and only if there is overlap 
of XI, ..., xn. The work of Albert and Anderson (1984) on the existence and 
uniqueness of the maximum likelihood estimate of Q in the logistic regression 
model has been expanded recently by Santner and Duffy (1986). They have 
given a linear program that determines whether the configuration of the data 
belongs to category one, two, or three as defined above. Lesaffre and Albert 
(1989a) have developed a general algorithm to help to distinguish separation 
from multicollinearity given divergence in the maximum likelihood estimation 
procedure. 

8.2.6 Predictive Logistic Discrimination 

In the predictive framework of Aitchison and Dunsmore (1975), the estimated 
posterior probability of membership of the first of two groups, 

71(x;a) = exp(a'x+)/{ 1 + exp(a'x+)}, 
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is replaced by 

fy'(X) = /Tl(X;a)$(CX;&.v)dCY, (8.2.16) 

where, corresponding to the Bayesian version of maximum likelihood theory, 
the posterior density of a is taken to be multivariate normal with mean h and 
with covariance matrix equal to an estimate 9 of the covariance matrix of 6.  
Using the approximation (8.1.6), Aitken (1978) showed that (8.2.16) reduces 
to 

+y'(X) = +{(c + x+fvx+)-1/2hfx+}. (8.2.17) 

Other values of c besides c = 1.6 can be used in the approximation (8.1.6) 
leading to (8.2.17); see Aitchison and Begg (1976) and Lauder (1978). Aitken 
(1978) has compared this predictive version of the logistic discriminant rule 
with several other rules for the case of multivariate binary data. 

8.3 BIAS CORRECTION OF MLE FOR g = 2 GROUPS 

8.3.1 Introduction 

It is well known that the bias of maximum likelihood estimators can be of 
some concern in practice in small samples. As in the previous sections, ti 
refers to the estimate of the vector a of parameters in the logistic model, 
obtained by maximization of L(a;t ,  I tx). One way of correcting & for bias is 
by an application of the bootstrap as introduced by Efron (1979). The use of 
the bootstrap to assess the sampling distribution of the posterior probabilities 
of group membership is described in Chapter 11 in a general context, where 
the logistic model need not necessarily be assumed to hold. 

We therefore focus here on results specific to the logistic model. Most of 
the results in the literature are for g = 2 groups and so we will confine our 
attention to this case. As a consequence, we will write pol and p1 as PO and 
p, suppressing the subscript one which is now superfluous. Hence, now 

a = (m,...,aP+i)' 

= (P0,P')'. 
In most situations, it is the bias of q(x;d), conditional on x, that is of 

interest. It is analytically more convenient to work with the log odds q(x;h)  
and to consider bias correction of h = @0,8,>, since, from (8.1.3), 

q(X; h)  = lOg{T1(X;h)/T2(X;h)} 

Moreover, in an epidemiological context, it is the estimation of Q that is of 
central interest. However, even if the unbiased estimation of T1(x;a)  were 
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of prime concern, bias correction of & should still be a useful exercise, in 
particular for the region 

because there T j ( X ; & )  is approximately linear in q(x;&); see cox (1970). 
We consider the bjas correction of & firstly in the regression situation, 

where L(a,t ,  I tx) is the relevant likelihood, as under the x-conditional or 
mixture sampling schemes. For brevity of expression, we will henceforth write 
this likelihood as L(a), suppressing the notation that denotes that it has been 
formed from 21,. . ., z,, conditional on XI,. . . ,%, respectively. 

Ih + 8'4 5 3, 

8.3.2 Asymptotic Bias for Both x-Conditional and Mixture Sampling 
Schemes 

From the general expansion for the asymptotic bias of a maximum likelihood 
estimator under regularity conditions as given, for example, by Cox and Snell 
(1%8), the bias of & can be expanded in the form 

bias(&) = ~ T S Z " ' ( K r f ,  + U t , r u )  + o(l/n) (8.3.1) (S = 1, . . . ,p + l), 
where 

KrfU = ~(4log~(a) /8a ,8a ,6a , ) ,  

Jr,tr = E{(OlogL(a)/aat)(@ logL(a)/8ar8au)), 

and where the summation convention applies to multiple suffmes. The super- 
scripts in Zrs denote matrix inversion of the information matrix Z, so that 
zTs = (Z-l)rs, where 

and 

(Z)rs  = E{(alog~,(a)/aa,)(alogt(a)/Ba,)) 

= -E(a210gL(a)/Oa,0as) (r,s = 1 ,..., p + 1). 

There is no need for expectations to be taken in (8.3.1), as we may use the 
approximations 

~ ( 0 ~  log L(a )/6a, Bat 6a, ) = 4 log L(&)/aa, 6at6aU 

and 

E((alogL(a)/Ba,)(a2logL(a)/Bar6a,)) 

a ~ ( ~ l o g ~ ~ & ; ~ j  I xj)/aat)(@ logL(&;zj I xj)/aa,aa,), 

j=l 

where L(a;zj I Xj) given by (8.24) is the likelihood formed from the single 
response Z j  conditional on X j .  This device has been used extensively in maxi- 
mum likelihood estimation to provide standard errors. 
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However, in this particular instance where E in (8.3.1) refers to expectation 
under the x-conditional sampling scheme as specified by (8.2.1), the expansion 
(8.3.1) is simplified considerably by evaluating the expectations. lb this end, 
let t: be the n x (p + 1) matrix defined by 

t;' = (x;, ..., Xl ) ,  

t:, = (XI, ...,&). 

so that t: = (ln,tx), where 1, denotes the n-dimensional vector with each el- 
ement one and, as before, 

From the exponential family form (8.2.5) for L(Q), it can be' seen for g = 2 
that 

57 = cov(U1) 

= tlfHtx, (8.3.2) 

where H = diag(h1,. . . , hn), and 

hj = Tl(Xj;a)T2(Xj;a) ( j  = 1, ..., n). 
Also, Jr,ru is zero and KIlU reduces to 

n 

Krr, = - X i + r X i : X i + u T l ( X j ; a ) T 2 ( X j ; c T ) { 1  - 271(Xj;a)}, (8.3.3) 
j = l  

where xi:  = ( j  = 1 ,..., n; r = 1 ,..., p + 1). On substituting (8.3.2) and 
(8.3.3) into (8.3.1), it can be verified that the asymptotic bias of & can be 
expressed in the form 

bias(&) x B(a;t,), (8.3.4) 

where 
B(a;tx) = -!j(t,"Ht,')-'t~fHa, (8.3.5) 

and where 

(a)j = (1 - 2q(xj;a)}xj +f (tx + I  Ht,) + -1 xj + ( j  = 1, ..., n). (8.3.6) 

As pointed out by McLachlan (1985) and Richardson (1985), the result (8.3.4) 
is available from the work of Byth and McLachlan (1978), Anderson and 
Richardson (1979), and McLachlan (198Oa); see also Schaefer (1983). Walter 
(1985) showed that (8.3.4) reduces, in the special case of a single dichotomous 
covariate variable, to an earlier result of Haldane (1956), for the estimation of 
a single log-odds ratio. 

From (8.3.4), a may be corrected for bias in the x-conditional sampling 
design, as 

t5 - B(&; tx). (8.3.7) 

This bias-corrected version of d applies also under mixture sampling. We saw 
in Section 8.2 that & is also the maximum likelihood estimate of a under 
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mixture sampling, as the latter estimate is obtained by maximization of the 
same function L(a) as for x-conditional sampling. It follows that (8.3.4) can 
be used to correct & for bias under mixture sampling. 

8.33 Asymptotic Bias fbr Separate SPmpling Scheme 

Concerning the case of separate sampling, Anderson and Richardson (1979) 
performed some simulations to support their conjecture that (8.3.4) can be 
used for separate sampling. McLachlan (19th) subsequently confirmed on a 
theoretical basis the applicability of (8.3.4), with minor adjustment, to separate 
sampling. With the latter scheme, the estimable parameters are A and p. 
Of course, if the prior probabilities Tj are known, or estimates of them are 
available from another source, can be estimated from the relation 

8 = Po - log(m/Tz). 

k = Po - log(n1/n2), 

We let &' = (&,&', where 

and where, as before, b o  and B are the maximum likelihood estimates for 
both x-conditional and mixture sampling schemes. It was seen in Section 8.2.3 
that the use of do a plies also under separate sampling. We let b i ( ~ 1 , ~ , a ' )  
denote the bias of (i = O,l, . . . ,p)  under mixture sampling. Its asymptotic 
assessment is denoted by &(a; tx), the (i + 1)th element of B(a; tx) as defined 
by (8.3.5). The bias of & and of pi under separate sampling is denoted by 
b&(ql,q2,a0) and by bis(q1,q2;a0), respectively (i = 1, . . . ,p),  where 41 = 1 - 
42 = nl /n.  McLachlan (1980a) showed that 

b&(q1,q2,a0) = bo(q1,q2,a0) + (q2 - 41)/(2qr42n) + o w n )  
(8.3.8) 

and 

bis(ql,q~,a') = bi(qr,q2,ao) + o(l/n) (i = l,...,~). 
(8.3.9) 

It was noted above that Bi(d; tx) can be used under mixture sampling to as- 
sess the bias of bj, which we have expressed as bj(~19~2, a'), for i = 0,1,. . . ,p .  
As Bi(&;tx) is formed from a sample of size nqj from Gi (i = 1,2) and qi 
converges in probability to mi, as n + 00, for mixture sampling, it follows that 
!i(&;tx) can be used to assess bj(q1,q2,(1'). Hence, from (8.3.8) and (8.3.9), 
6 and bi can be corrected for bias under separate sampling as 

k - Bo(&;tx) - (q% - r11)/(24142n) 

bi - ~ i (&; tx ) ,  

and 
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respectively (i = 1, . . . ,p ) .  Thus, the bias correction of bj is the same as for 
x-conditional or mixture sampling schemes. 

In addition to the asymptotic theory to support the case of bias correc- 
tion of 6, Anderson and Richardson (1979) provided empirical evidence from 
studies using simulated and real data. They found that a reduction in bias was 
achieved by and large without a corresponding increase in variability and thus 
with a reduction in the mean-squared error. 

8.3.4 Effect of Bias Correction on Discrimination 

Besides their work on the asymptotic bias of Cir, Byth and McLachlan (1978) 
also considered the asymptotic biases of the posterior probabilities q(x; 8)  
in a discriminant analysis context. They showed that unconditionally over X, 
where 

X - N ( p j , X )  with prob. Tj in Cj (i = 1,2), (8.3.10) 

the bias of T~(X&)  is o(l/n). By contrast, the unconditional bias of T~(X&E) 
is O(l/n), where 8~ is the maximum likelihood estimator of a obtained from 
the full likelihood function formed from t under the normal mixture model 
(8.3.10) with equal component-covariance matrices. The full maximum likeli- 
hood estimator &E is as defined in Section 4.4.4. 

More generally, Byth and McLachlan (1978) were able to show that the 
unconditional bias of T ~ ( X & )  is o(l/n) for mixture sampling from all con- 
tinuous distributions that are valid under the logistic model (8.1.1) and that 
satisfy certain regularity conditions. These results, where the bias of q ( X  8) 
is taken over the mixture distribution of X in addition to over the sampling 
distribution of 6, are, of course, only relevant in global considerations of the 
estimated posterior probabilities of group membership. 

Of associated interest is the combined effect of bias correction of 6 on the 
sampling properties of the misallocation rates of the logistic discriminant rule 
r,(x;&). This effect was investigated asymptotically by McLachlan (198Oa) for 
mixture sampling of T under (8.3.10). In this particular case, he established 
that bias correction of 6 produces no first-order reduction in the overall un- 
conditional error rate of r, (x;&). The individual unconditional error rates do 
undergo a first-order change under bias correction for unequal prior proba- 
bilities. It was concluded from this study that the effect of bias correction is 
to generally decrease the rate for the group whose prior probability is greater 
than 0.5, but at the same time to increase by more the rate for the other group. 

8.4 ASSESSING THE FIT AND PERFORMANCE OF LOGISTIC 
MODEL 

8.4.1 Assessment of Model Fit 

Several chi-squared goodness-of-fit tests have been proposed for evaluating 
the fit of the logistic regression model. Among these are the methods consid- 
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ered by Hosmer and Lemeshow (1980), Tsiatis (1980), Lemeshow and Hosmer 
(1982), Hosmer and Lemeshow (1985), and Hosmer, Lemeshow, and Klar 
(1988). A review of some of these goodness-of-fit statistics has been given 
recently by Green (1988), who has proposed a simple measure of the discrimi- 
natory power of the fitted logistic regression model, based on maximization of 
Youden's J index. 

Indeed, in recent times, much attention has been devoted to the assess- 
ment of model fit for binary logistic regression. For example, there are the 
regression diagnostics of Pregibon (1981), the resistant techniques considered 
in Pregibon (1982), Johnson (1985), and Stefanski, Carroll, and Rupert (1986), 
and the graphical methods of Landwehr, Pregibon, and Shoemaker (1984). 
Kay and Little (1986) have illustrated the developments in model choice and 
assessment in terms of a case study. Fowlkes (1987) has discussed some diag- 
nostic tools that use smoothing techniques. More recently, Lesaffre and Albert 
(1989b) have extended the logistic regression diagnostics of Pregibon (1981) 
to g > 2 groups. They have developed diagnostics that measure the influence 
of each observation on the performance of the sample logistic rule ro(x;&). 
Copas (1988) has considered the nature of outliers in the context of binary 
regression models. He has proposed a simple model that allows for a small 
number of the binary responses being misrecorded. 

For logistic regression models, Kay and Little (1987) have investigated how 
to improve the fit to the data by transformations of the explanatory variables. 
The generalized additive models of Hastie and Tibshirani (1986, 1990) can be 
used to suggest suitable transformations of x. 

There is also the approach of Copas (1983), based on smoothed estimates 
of the log odds, for assisting model choice in terms of functions of x. For 
univariate data X j  with ( Z j ) l  = Z l j  (i = 1, ..., n), 7 1 ( X ; Q )  is estimated by 

(8.4.1) 

where the standard normal density # ( x )  is taken as the smooth kernel, and h is 
a suitably chosen smoothing constant. That is, 4 ( x )  is the observed proportion 
of observations from GI, smoothed over neighboring values of x.  This smooth- 
ing is needed if x is discrete and n is not large or if x is continuous so that 
XI,. . . ,xn are essentially distinct. Plotting logit{SI(x)} against x will provide 
information about how x should be included in the logistic model. A linear 
trend, for example, would confirm that &x is the appropriate form to use. As 
noted by Copas (1981), this plot can be drawn both retrospectively (using the 
original data) and prospectively (using new data). In the former plot, lack of 
linearity indicates inadequacies in the model; in the latter, a flattening of the 
line from 45 degrees indicates the loss of discriminatory power as one goes 
from original to new data. Some examples of these plots are given in Copas 
(1983). For multivariate x, one can conduct this plot for a particular compo- 
nent, say, (xx, by splitting the data according to ( x ) ~  (s = 1, . . . ,p; s # r )  and 
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assessing the form of T~((x)~)  separately within these groups; see Kay and 
Little (1986). The method can be extended also to model validation for more 
than g = 2 groups (Cops, 1981). 

In a discriminant analysis context, the suitability of the logistic model may 
be approached through consideration of the group-conditional distributions of 
X. For example, if the latter appear to be multivariate normal with unequal 
covariance matrices, then quadratic terms need to be included in the model 
as described in Section 8.1.3; see also Kay and Little (1987). However, even 
in a regression context, Rubin (1984) favors this approach of checking the 
logistic model by consideration of its implied distribution for X given Z. His 
proposal is based on the result of Rosenbaum and Rubin (1983) that X and Z 
are conditionally independent given the value of 71 of Tl (x ;a ) ,  that is, 

f ( x  I71,X E GI) = f(x I n , X  E Gz). 
If 
should be the same for the data in both groups GI and G2. ?b check this, 
Rubin (1984) suggests 

1. plot x versus 91 using different symbols for the points from GI than those 

2. regress x on ?I for the X j  from GI and then separately for the X j  from G2, 

3. categorize ?I and compare the distribution of X for ( z ) ~  = 1 and (z)1 = 0 

= Tl(x;&) is a good estimate of q ( x ; a ) ,  then the regression of x on 

from G2; 

and compare fits and residuals; 

within categories of 4'1. 

In this list of suggestions, x refers to a component of x ,  a scalar function 
of x, or a vector of components of x, depending on the context and purpose. 
As explained by Rubin (1984), evidence of inequality in these regressions of x 
on is evidence of inadequacy in the estimated logistic regression. 

8.4.2 Apparent Error Rate of a Logistic Regression 

After the logistic model has been fitted to the data, there is the question of 
its capacity to accurately predict future responses, that is, in a discriminant 
analysis context, to correctly allocate future entities. Under the logistic model 
(8.1.5), we write the Bayes rule of allocation as ro(x;a) to denote explicitly 
its dependence on the vector a containing the logistic regression coefficients. 
We will refer to r,,(x;B) as the logistic discriminant rule (LGDR). An obvious 
guide to the performance of the LGDR r, (x;b) is its apparent error rate given 

. K  n 
bY 

where, for any u and v ,  Q[u,v] = 0 if u = v and 1 for u # v.  As the same 
training data t are being used both to fit the model and then to assess its 
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accuracy, the apparent error rate tends to provide an optimistic assessment of 
the performance of ro(x;&). 

The overall conditional error rate of ro(x;&) is given by 
8 

ec(F;t) = ~ E { Z i Q [ i , r , ( X ; & ) ]  I t }  
i= l  

8 

= xriE{Q[4ro(%&)l  I t ,  XE Gi}, 
i= l  

where Y = (X1,Z1)' is distributed independently of T, and where F denotes the 
distribution function of Y. The bias of A(t) in its estimation of ec(F;t) is 

b(F) = E { A Q  - ec(F;T)}. 

Error-rate estimation for an arbitrary sample-based discriminant rule is 
covered in Chapter 10. The general methodology described there, including 
the bootstrap and cross-validation, can be applied directly here to correct the 
apparent error rate of the LGDR ro(x;&) for bias. Hence, this topic is not 
pursued here. Rather we present some theoretical results for the bias of the 
apparent error rate, which are specific to the logistic model in a regression 
context. 

By conditioning on tx,  Efron (1986) has derived the asymptotic bias of the 
apparent error rate A(t)  in its estimation of 

It can be seen that ec,(a;&,t,) is the average of the conditional error of 
ro(x;B) in its application to n future entities with feature observations fixed at 
X I , .  . . ,xn, respectively. 

Let b(a; t x )  denote the asymptotic bias of A(t)  in its estimation of ec,(a;b,  
tx), so that 

Efron (1986) showed in the case of g = 2 that 

b(a;tx) a E[{A(T)-ecx(a;&,tx)} I tx]. 

where aj is the jth element of a defined by (8.3.6), divided by { 1 - 2 ~ 1 ( ~ j ; ~ ) } .  
As explained by Efron (1986), the most obvious use of (8.4.2) is to correct 

A(t)  for bias to give 

The estimated bias b(h;t,) is also an interesting measure of how vulnerable 
ro(x;&) is to overfitting. A large absolute value of b(&;tx) or b(&; t ,) /A(t)  
suggests retreating to a more parsimonious rule. 

A(t) - b(&; tx) .  
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TABLE 8.1 The First 10 Mals and Summary Statistks for 100 a i d s  of a 
Simulation Experiment for the Bias of the Overall Apparent Error Rate of a 
Logistic Regression and its Bootstrap Correction 

Rial 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

0.364 
0.302 
0.378 
0.276 
0.320 
0.369 
0.2% 
0.437 
0.336 
0.354 

4) 
0.300 
0.300 
0.250 
0.200 
0.250 
0.200 
0.200 
0.100 
0.350 
0.150 

A(t) - b(8;tx) 

0.409 
0.405 
0.324 
0.289 
0.335 
0.284 
0.278 
0.177 
0.450 
0.234 

b(h;tr) 

-0.109 
-0.105 
-0.074 
-0.089 
-0.085 
-0.084 
-0.078 
-0.077 
-0.100 
-0.084 

100 trials 
Average 0.342 0.254 0.346 -0.093 
(S.D.) (0.055) (0.094) (0.105) (0.015) 

Some:  Adapted from Ekon (1986). 

To illustrate the bias of the apparent error rate of the LGDR ro(x;&) ,  we 
have listed in Table 8.1 the values of the overall error rate ecx(a;&,tx), the 
apparent error rate A(t), and its bias-corrected version on the first 10 trials 
of a simulation experiment as reported in Efron (1986) for n = 20 observa- 
tions drawn from a mixture of g = 2 bivariate normal distributions under the 
canonical form (4.2.3) with A = 1. 

Efron (1986) also derived the asymptotic bias of A(t) in its estimation of 
ecx(a;&,tx)  in the case where the LGDR ro(x;&)  is based on a possibly in- 
adequate parametric model where some of the variables in x are omitted in 
the fitting. Suppose that a is partitioned into (ai,ai)’ and, correspondingly, 
x j  = (XI .  x! ) I .  Let xi:  = ( 1 , ~ : ~ ) ’  for j = 1,. ..,n. If 61 denotes the maximum 
likelihood estimate of a1 under the reduced logistic model where a2 is as- 
sumed to be zero, Efron (1986) established that the asymptotic bias of the 
apparent error rate of r (x ;&1)  is 

11’ 12 
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for j = 1,. . ., n, and where 

and 

Actually, Efron (1986) considered the bias of the apparent error rate in a 
wider context for general exponential family linear models and general mea- 
sures of the apparent error besides the proportion of misallocated entities. 

8.43 P-Confidence Logistic Discrimination 

In these situations where attention is focused on the allocation of an entity 
with a particular observation x, it is the sampling variation in the estimated 
posterior probabilities of group membership, conditional on x, which is of 
central interest. An assessment of the reliability of the estimated posterior 
probability provided by the logistic model can be undertaken using the meth- 
ods described in Chapter 11. There the problem of assessing the variability in 
the estimated posterior probabilities of group membership is addressed for a 
general discriminant rule. Rather than work directly with the posterior proba- 
bilities of group membership, for the logistic model, it is mathematically more 
convenient, as noted in Section 83.1, to work with the log odds, given its lin- 
earity in a. 

In a study of patients with severe head injuries, Stablein et al. (1980) made 
use of this linearity of the log odds in the logistic model to construct a confi- 
dence interval for the discriminant score on each patient and to check whether 
the upper and lower limits of this interval were ~ ~ ~ e c t l y  allocated. In proceed- 
ing in this way, they were able to assess the sharpness of their prognosis for an 
individual patient. Lesaffre and Albert (1W) extended this work of Stablein 
et al. (1980) to multiple groups (g > 2). 

Corresponding to the logistic model (81.4), let 

fii(x) = log{ %(x; &)/Tg(x;&)} 

= &!X+ 

denote the discriminant score with respect to group Gj (i = 1, ...,g - 1). For 
given x, the vector of estimated discriminant scores is denoted by * = (fi,~, . . ., 
)2ts-l)‘ and w is the true score vector corresponding to with 8 replaced by 
a. For known a, an entity with X -- x is allocated to group Gj if and only if 

Wi 2 ~h (h = l,m..,g; h # i), (8.4.3) 

where wg = 0. The pconfidence logistic discriminant rule proposed by Lesaf- 
fre and Albert (1988) assigns an entity with X = x to Gj if and only if (8.4.3) 
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holds for all w belonging to the ellipsoidal region 

Rp(*) = {w : (w - *)'V-'(w - *) 5 C ( P ) } ,  (8.4.4) 

where c(p) denotes the pth quantile of the chi-squared distribution with g - 1 
degrees of freedom, and where 9 denotes an estimate of the covariance matrix 
of fi conditional on x, given by 

(8.4.5) 

From (8.4.5), an estimate of V can be formed from an available stimate of the 
covariance matrix of &, say, I-', the inverse of the observed information ma- 
trix for a as considered in Section 8.2.4. This is provided there is no complete, 
quasi-complete, or partial separation of the data points where the latter esti- 
mate breaks down (Albert and Lesaffre, 1986). It follows from the asymptotic 
theory of maximum likelihood estimation that (8.4.4) defines asymptotically a 
p-level confidence region for the vector w of true scores at x. They showed 
that (8.4.3) holds for w satisfying (8.4.4) if and only if 

(V)ij = x+'~~~(Cjri,Cjrj)~+ (i, j = I ,..., g - I). 

- CCo)(CiO'Ch) > 0 

(/t =(61i-61ht... ,dg-li--g-1,h)'t 

(h = 1, * *  .,g; h # 0, 
where 

and dij  is the usual Kronecker delta. They noted a more convenient approach 
is to proceed as follows with the allocation of an entity with given x. If the 
entity is assigned to some group Gi in the ordinary sense (that is, with p = 0 
in the P-confidence rule), determine the maximum value p m  of /3 for which 
the entity is still allocated to Gi. It follows that pm is given by the area to the 
left of cm under the xi-l density, where c,,, is the maximum value of 

( c * i r ) 2 1 ( c x h )  
over h = 1,. . .,g - 1; h # i. A value of Pm close to zero gives little weight to 
the assignment, whereas a high value implies a reliable decision about the 
group membership. 

8.5 LOGISTIC VERSUS NORMAL-BASED LINEAR DISCRIMINANT 
ANALYSIS 

8.5.1 Relative Efficiency of Logistic Approach Under Normality 

The asymptotic efficiency of logistic discriminant analysis (LGDA) relative to 
sample normal-based linear discriminant analysis (NLDA) has been derived 
by Efron (1975) in the case of g = 2 groups under the normal mixture model 
(8.3.10) with mixture sampling of the training data. As previously, &E denotes 
the maximum likelihood estimate of a obtained by maximization of the full 
likelihood function formed from t under (8.3.10). Hence, when the latter as- 
sumption is valid, i j lE  is asymptotically efficient. By contrast then, the logistic 
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estimate 6 is not fully efficient, as it is computed from the conditional likeli- 
hood function for a, L(a;t ,  I tx). 

Under (8.3.10), let ec(*E;&) denote the overall conditional error rate of 
the LGDR ro(x;&). Then ec(*E;&E) is the corresponding rate for the sam- 
ple NLDR r , ( x ; & ~ ) .  As in the previous work, 9~ denotes the vector of pa- 
rameters associated with the normal mixture distribution of x, as specified by 
(8.3.10). The efficiency of LGDA relative to sample NLDA can be defined by 
the ratio 

E = [E{ec(YE;&)} - e o ( Y ~ ) ] / [ E { e c ( * ~ ; & ) }  - e o ( 9 ~ ) ] ,  (8.5.1) 

where eo(\k'E) is the common limiting value (the optimal error rate) of the 
overall unconditional error rates E{ec(*E;&E} and E(ec(*E;&}, as n ---t 00. 

As explained in Section 4.4.3, Efron (1975) derived the asymptotic relative ef- 
ficiency (ARE) of LGDA in terms of the ratio of the means of the asymptotic 
distributions of n{ec(@E;&E) - eo(@E)} and n{ec(JiE;&) - eo(*E)). For this 
problem, it is equivalent to evaluating the numerator and denominator of 
(8.5.1) up to terms of order O(l/n). The values of the ARE so obtained for 
LGDA are displayed below for some values of the Mahalanobis distance A 
with ~1 = ~ r z  = 0.5, the case most favorable to the logistic procedure. 

A 0 0.5 1 1.5 2 2.5 3 3.5 
ARE 1.ooO 1.ooO 0.995 0.968 0.899 0.786 0.641 0.486 

It can be seen that the LGDR compares quite favorably with the sample 
NLDR for groups having a small Mahalanobis distance A between them (A 5 
1.5, say), but, as the groups become more widely separated, the ARE falls off 
sharply. 

?b investigate further the difference between the LGDR and the sample 
NLDR under (8.3.10), McLachlan and Byth (1979) derived the asymptotic 
expansions of the individual unconditional error rates E{eci(@E;S)} and 
E{eci(\k'E;&E)} specific to group Gi for i = 1,2. On the basis of these expan- 
sions, it was found that the unconditional error rates of the LGDR are always 
close in size to the corresponding error rates of the sample NLDR, even for 
widely separated groups. Thus, although the terms of order O(l/n) in the 
asymptotic unconditional error rates of the LGDR may be approximately two 
to three times as large as the corresponding first-order terms with the sample 
NLDR, when A is large, the actual differences between the error rates of the 
two procedures are quite small in absolute terms. 

More recently, Bull and Donner (1987) have evaluated the ARE of LGDA 
in the case of more than g = 2 normal groups. The ARE was defined by the 
ratio of the asymptotic variances of the slope parameters. In order to study the 
ARE of LGDA in situations other than (8.3.10), O'Neill(1980) had previously 
derived the asymptotic distribution of the overall conditional error rate associ- 
ated with the LGDR ro(x;&) for a general exponential family with respect to 
Lebesgue measure. The ARE of LGDA was evaluated for g = 2 groups with 
univariate normal distributions having unequal variances and with bivariate 
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exponential distributions. In both cases, the inefficiency of LGDA relative to 
the full maximum likelihood procedure is more marked than for groups with 
homoscedastic normal distributions. 

8.5.2 LGDA Versus NLDA Under Nonnormality 

In this section, logistic discriminant analysis (LGDA) is compared with sam- 
ple normal-based linear discriminant analysis (NLDA) in situations where a 
homoscedastic normal model does not apply for the group-conditional distri- 
butions of the feature vector. In these situations, NLDA does not provide a 
consistent estimator of a and so the more robust LGDA is preferable, at least 
asymptotically, if the logistic model still holds. 

Halperin, Blackwelder, and Verter (1971) compared LGDA with NLDA for 
nonnormal data. In particular, they showed that the estimator &E from NLDA 
can be quite biased for data consisting entirely of binary variables as well 
as of a mixture of binary and continuous variables. Further work by OHara 
et al. (1982) and Hosmer, et al. (1983a, 1983b) also showed that &E can be 
severely biased for mixed continuous and discrete variables. This last point 
was discussed in Section 5.6.3, where an example of the bias of &E for mixed 
feature data was given. Amemiya and Powell (1983), however, found in the 
models they considered that the degree of inconsistency in the error rate of 
the sample NLDR is surprisingly small. For x consisting of binary, mutually 
independent variables, they compared LGDA and NLDA asymptotically in 
terms of the mean-squared error of estimation and the unconditional error 
rates of the associated discriminant rules. Their main asymptotic conclusion is 
that NLDA does quite well in prediction (allocation) and reasonably well in 
estimation of a; see also Amemiya (1985, Chapter 9), Halperin et al. (1985), 
and Brooks et al. (1988). 

Press and Wilson (1978) found that LGDA generally outperformed NLDA 
in their application to two data sets with both continuous and discrete vari- 
ables, although the differences in their apparent error rates were not large. 
On the basis of a simulation study, Crawley (1979) concluded that LGDA is 
preferable to NLDA when the groupconditional distributions are clearly non- 
normal or their dispersion matrices are clearly unequal. 

For some univariate normal distributions that satisfy the logistic model, 
Byth and Mchchlan (1980) compared the LGDR with the sample NLDR 
in terms of the ratio 

e = MSE{ T ~ ( X  a)} /MSE{ q(X&)}, (8.5.2) 

where the numerator and denominator of (8.5.2) are evaluated up to terms of 
order O(n-l). In (8.5.2), 

MSE{T~(X&)} = E { T ~ ( X ; & )  - ~ ( X C Y ) } ~ ,  

where E refers to expectation ovet the distribution of d as well as over the 
mixture distribution of X similarly, for MSE{T~(X&E)}. As noted by Day and 
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Kerridge (1%7), the logistic model is valid if 

f i ( x )  = cj((x)exp{-%(x- pi)'C-'(x-pi)] (i  = 1,2), (8.5.3) 

where ci is a normalizing constant, pi is a vector of parameters, I: is a positive 
definite symmetric matrix of parameters, and ( ( x )  is a nonnegative integrable, 
scalar function of x .  If ((x) E 1, then (8.5.3) reduces to the multivariate normal 
density with mean pi and covariance matrix C (i = 1,2). For ((x) f 1, E -+ 0 
as n -+ 00, because &E is not consistent, but & is. For univariate continuous x ,  
Byth and Mchchlan (1980) evaluated E for three specific forms of ((x), corre- 
sponding to various levels of skewness and truncation in the groupconditional 
densities. They concluded that if the distance between the groups is small, 
then the LGDR is preferable to the sample NLDR whenever the mixture dis- 
tribution has a reasonably high proportion of members from the more heavily 
truncated or distorted group. This behavior appears to be true in truncated 
situations even when the groups are widely separated. However, for groups 
whose distributions have only been distorted and not so fundamentally altered 
as under truncation, the relative performance of the LGDR and the sample 
NLDR tends to resemble that under normality unless the distortion to both 
distributions is quite severe. 

Many of the investigations referenced in Sections 5.6.2 and 5.6.3 on the 
robustness of the sample NLDR for discrete and mixed feature data have in- 
cluded the LGDR for comparative purposes. Also, the LGDR has been in- 
cluded mostly in the various comparative studies of nonparametric discrimi- 
nant rules, which are referenced in Section 9.6. A common conclusion of these 
studies is that the allocatory performance of the LGDR is similar to that of 
the sample NLDR. 

Concerning comparisons of the logistic estimator 8 with other estima- 
tors of a besides &E for the dichotomous (g = 2) logistic model, Amemiya 
(1980) found for many examples, both real and artificial, that the minimum 
chi-squared estimator of a has smaller K2-order mean-squared error than 
that of &. However, L. Davis (1984) subsequently showed that the minimum 
chi-squared estimator of a has smaller tr2-order mean-squared error only for 
certain designs and parameter values. 

8.6 EXAMPLE DIFFERENTIAL DIAGNOSIS OF SOME LIVER 
DISEASES 

We consider here the differential diagnosis of four liver diseases from a en- 
zyme laboratory profile, as envisaged in Plomteux (1980) and analyzed further 
by Albert and Lesaffre (1986), Lesaffre and Albert (1988, 1989b). The three 
analytes, aspartate aminotransferase (AST), alanine aminotransferase (ALT), 
and glutamate dehydrogenase (GIDH), all expressed in International units per 
liter (IUL), were taken to be the feature variables. The training data con- 
sisted of observations on nl = 57 patients from group G1 (viral hepatitis), 
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TABLE 8.2 Maximum Likelihood Estimates of the Logistic Regression 
Coemcients with Their Standard Errors in Parentheses 

- ~ ~ ~~~ ~ ~ 

Constant -1.930 (0.800) 1.140 (0.630) -3.500 (0.StM) 
AST -0.055 (0.010) -0.057 (0.010) -0.021 (0.006) 

GIDH -0.170 (0.079) -0.240 (0.070) 0.061 (0.019) 
ALT 0.073 (0.010) 0.063 (0.010) 0.042 (0.009) 

Some: From Lesaffre and Albert (1988). 

n2 = 44 from G2 (persistent chronic hepatitis), n3 = 40 from G3 (aggressive 
chronic hepatitis), and n4 = 77 from G4 (postnecrotic cirrhosis). These data 
are reproduced in Albert and Harris (1987). The empirical groupconditional 
distributions of the three feature variables exhibit marked positive skewness. 
Thus, in a fully parametric approach such as NLDA, the first action would 
be to transform the data in an attempt to remove the skewness. However, in 
fitting a semiparametric model such as the logistic, it is debatable whether to 
apply the transformation to the data; see Kay and Little (1987) and Lesaffre 
and Albert (1989b) on this point. 

In Table 8.2, we display the maximum likelihood fit of the logistic model, 
using the original scale of the feature variables and with GQ taken as the base 
group. As reported by Albert and Lesaffre (1986), the overall apparent er- 
ror rate of this logistic rule when it is applied to the training data is 83%. 
It compares with 83% and 82% for the apparent and cross-validated rates, 
respectively, for the sample NLDR. 

This fit of the logistic model to the four groups of hepatitis was used by 
Lesaffre and Albert (1988) to illustrate their /3-confidence logistic discriminant 
rule. They applied it to a patient with feature vector x = (165,330,21)'. The es- 
timates of the group-posterior probabilities were equal to 0.64, 0.11, 0.25, and 
0.0, respectively. The value of & for this patient is equal to 0.28, indicating a 
fair degree of uncertainity about the assignment. Lesaffre and Albert (1988) 
also considered the allocation of a second patient with feature vector x equal 
to (75,125,50)', for which Ti(X;&) is equal to 0.09,0.15,0.64, and 0.12 for i = 1, 
2, 3, and 4, respectively. The value of /3m for this x is equal to 0.72. Thus, al- 
though in this instance the highest posterior probability of group membership 
also equals 0.64, the reliability of the assignment is much higher, implying a 
clearer decision. As remarked by Lesaffre and Albert (1988), this can be ex- 
plained to some extent by the fact that the feature vector for the first patient 
lies somewhat extreme in the feature space, where prediction is generally less 
stable. 

The previous data set was used also by Lesaffre and Albert (1989b) to illus- 
trate the regression diagnostics they developed for the multiple-group logistic 
model. As part of their illustration, they also analyzed an augmented version 
of this set, where a control group (Gs) of ng = 82 presumably healthy individ- 
uals was added to the four existing hepatitis groups. The application of logistic 
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TABLE 8.3 Allocation Rates Iw the Loglstic Model with iog(AST), iog(ALT), and 
log(G1DH) Fitted to the Five-Group Hepatitis Data Set 

'Rue Group 

Allocated 
Group GI G2 G3 GI Gs 

GI 53 4 1 0 0 

G2 2 38 2 1 2 

0 G3 2 0 23 

GI 0 1 14 66 1 

G.5 0 1 0 0 79 

(93%) (9.1%) (2.5%) (0%) (0%) 

(2%) (3.5%) (86.4%) (5%) 

(3.5%) (0%) (57.5%) (13%) (0%) 

(2.2%) (3.5%) (86%) (1.2%) (0%) 

(0%) (2.2%) (0%) (0%) (%.3%) 

(1%) 
10 

Total 57 44 40 77 82 

Some: From Lesaffre and Albert (1W). 

regression diagnostics to this five-group data set revealed a number of influen- 
tial and outlying points. Following Kay and Little (1987), Lesaffre and Albert 
(198%) logarithmically transformed all three feature variables. It resulted in 
an overall apparent rate of 86.3%, compared to 86.7% for the logistic model 
based on the untransformed data. The apparent allocation rates for the logistic 
model fitted to the transformed data are displayed in Table 8.3. In can be seen 
that there is some overlap between the diseases, but that most patients from 
GI, G2, and G4 are correctly allocated. The controls are well separated from 
the diseased patients, with only three cases, 221, 245, and 268, misallocated. 

The logarithmic transformation of the variables diminished the outlying 
character of most points, except for one on a control patient numbered 268. 
Lesaffre and Albert (1989b) subsequently found that the logistic model fitted 
to log(AST), log(ALT), and to GIDH rather than log(G1DH) no longer con- 
tained any influential observations. They expressed their surprise that the log- 
arithmic transformation of variable GIDH, suggested by its group-conditional 
distribution (Kay and Little, 1987), resulted in such a clearly distinct influen- 
tial observation. However, in order to quantify the impact of this case on the 
allocatory performance of the logistic discriminant rule, Lesaffre and Albert 
(1989b) deliberately chose to work with the model fitted to the logarithms of 
all three variables. In so doing, they found that case 268 influenced all the 
6i (i = 1,2,3), but none of the &i -&, (i,h = 1,2,3,4; i # h). Thus, only d- 
location between the diseased cases and the controls is affected. However, 
because each &i occurs in each T i ( X ; & ) ,  it is not obvious in what way case 
268 affects the estimates of the posterior probabilities of group membership. 
In checking on this, Lesaffre and Albert (198%) computed the change in the 
estimate of T~(x;(Y) as a consequence of deleting case 268. That is, they com- 
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TABLE 8.4 Effect of Removing Case 268 on the Estimate of the Posterior 
Probability of Membership of the Wue Group for the Most Affected Cases Under 
the Logistic Model with lop(AST), iog(ALT), and log(G1DH) FItted to the 
Five-Group Hepatitis Data Set 

Case True Group 
i Label i T i (x j ;b )  ~ ( x j ;  &(w)) 

60 2 0.5 1 0.14 
75 2 0.72 O.% 
97 2 0.46 0.84 

147 4 0.73 0.84 
221 5 0.12 6.38 
237 5 0.43 0.71 
245 5 0.46 0.77 
268 5 0.42 0.00 

Some: Rom Lesaffre and Albert (1989b). 

puted the difference 

where &(m) denotes the estimate of a when case 268 is deleted from the 
training data t. 

This difference is listed in Table 8.4 for the group of origin of the most 
affected cases. On the whole, it was found that the effect of observation 268 
is minor except for cases lying on the edge between G2 and G5, a relatively 
sparse region. Concerning the cases in 'bble 8.4, it can be seen that only for 
cases 60 and 268 is the estimate of the posterior probability of membership of 
the true group not improved (that is, prediction deteriorates) as a consequence 
of the deletion of case 268 from the training data t. 

7 i (x ;&)  - Ti(x;&(m)) ,  
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Nonparametric Discrimination 

9.1 INTRODUCTION 

Up to now, we have been concerned with approaches to discriminant analysis 
that can be viewed as being parametric or semiparametric as with the logistic 
model in the last chapter. It has been seen that, although these approaches 
were developed by the explicit assumption of some model, some of them with 
little or no modification are fairly robust to certain departures from the as- 
sumed model. However, there is a need also for discriminant procedures that 
can be used regardless of the underlying groupconditional distributions. 

In this chapter, we are to focus on discriminant procedures that have been 
developed without postulating models for the groupconditional distributions. 
In this sense they are referred to as being distribution-free. As T W. Anderson 
(1966) has pointed out, an allocation procedure cannot be distribution-free in 
a literal sense. For if it were, then its error rates would not depend on the 
groupconditional distributions of the feature vector and would be constants 
even when the groupconditional distributions were identical (by a continuity 
argument). That is, the error rates would correspond to a pure randomization 
procedure. 

Given the obvious application of the multinomial distribution in this role of 
providing a nonparametric approach to discrimination, we will first consider 
multinomial-based discriminant rules. As mentioned in Section 7.2.1, unless 
the number m of multinomial cells is very small or the sample size n is ex- 
tremely large, some of the cells will contain no observations and so some 
form of smoothing has to be applied. 
As remarked in Section 7.21, the nonparametric estimates of the multi- 

nomial cell probabilities under the assumption of independence of all the p 
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feature variables may impose too high a degree of smoothing on the multino- 
mial estimates. Indeed, as discussed in Section 5.6.2, the independence-based 
discriminant rule is not robust against different interaction structures of the 
feature variables within the groups. Therefore, as with the parametric a p  
proaches to smoothing considered in Chapter 7, the aim with the nonpara- 
metric smoothing to be considered is to provide a degree of smoothing in- 
termediate to that obtained under the extremes of the full multinomial and 
independence models. 

With the kernel method dominating the nonparametric density estimation 
literature, the emphasis in this chapter is on so-called kernel discriminant anal- 
ysis, whereby the groupconditional densities are replaced by their kernel esti- 
mates in the defining expressions for the posterior probabilities of group mem- 
bership and consequent allocation rule. As to be discussed, the discrete kernel 
estimates can be viewed as smoothed estimates of the multinomial probabil- 
ities, obtained by a linear prescription. The recent advances to be described 
in kernel discriminant analysis essentially mirror the advances made with the 
kernel method of density estimation, in particular on the crucial problem of 
selecting the degree of smoothing to be incorporated into the kernel estimates. 

9.2 MULTINOMIAL-BASED DISCRIMINATION 

9.2.1 Multinomial Discriminant Rule (MDR) 

The most universally applicable nonparametric discriminant rule is that based 
on the multinomial model for the groupconditional distributions of the fea- 
ture vector X. This is because even if a feature variable is continuous, it can 
be discretized. Cochran and H o p b s  (1961) examined the loss of discriminat- 
ing power when continuous feature variables are discretized. They obtained 
asymptotic results for the best points of partition and the error rates when a 
large number of independent normal variates is partitioned to form discrete 
ones. More recently, Hung and Kshirsagar (1984) have considered the optimal 
partitioning of a continuous feature variable. 

As in Section 7.2.1, where the multinomial model was first introduced, we 
suppose that there are m distinct realizations of the feature vector X, defining 
m multinomial cells. We let qi1,. . . ,q im denote the associated cell probabilities 
in group Gj (i = 1,. . .,g). That is, if the realization x corresponds to the cth 
cell, then qic = fi(x) for i = 1, ...,g. We let ro(x;w,q) denote the Bayes rule 
of allocation, where q = (qi,. . .,qk)’, qj = (qi1,. ..,qjm)’, and where as before, 
w = (TI, ..., rg)’ is the vector of groupprior probabilities. Its sample plug-in 
version r,,(x;+,4) is formed with Qic replaced by 

qic = niclni, (9.2.1) 

where in the training data t, niC is the number of feature vectors corresponding 
to the cth cell out of the ni observations from Gi (i = 1, ...,g). Under mixture 
sampling of the training data t, ni /n provides an estimate of rj (i = 1,. . .,g). 
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9.2.2 Error Rates of Sample MDR 

By using the theorems of Glick (1972), the plug-in sample version r,(~;*,q) of 
the multinomial-based allocation rule (MDR) can be established to be Bayes 
risk consistent. That is, the overall conditional error rate ec(.rr,q,;li,$) con- 
verges in probability to the optimal or Bayes error eo(.rr,q), as n --.) 00. Glick 
(1973a) subsequently showed that this convergence rate is at least exponen- 
tial for the sample plug-in MDR. Let m, denote the number of points x with 
fl(x) # f2(x), and let do be the infimum of lm- over these m, 
points x. 

Glick (1973a) showed that 

0 I 1 - pr{ec(.rr,q,;*,a) = eo(.rr,q)) 5 ;m,(l - 42)" 

0 I eu(.rr,q) - eo(.rr,q) I { t  - eo(x,s))(l- &", 
and 

where eu(x,q) denotes the overall unconditional error rate of the plug-in sam- 
ple MDR. 

Glick (1973a) also considered the bias of the apparent error rate A = ec(*, 
4;#,4) of the sample plug-in MDR. If the sample space contains no point x 
such that ?rlfl(x> = ?r&(x), then Glick (1973a) established that 

o 5 eo(q,.rr) - E(A) 5 $m,n-1/2(l - d,2)". (9.22) 

This exponential convergence contrasts with the convergence rate of n-l for 
the apparent error rate of the normal-based sample linear discriminant rule 
under the homoscedastic normal model (3.3.1); see Section 10.21. 
As conjectured by Hills (1966), intuitively it might be expected that the 

mean of the apparent error rate of a sample-based allocation rule is less than 
that of its unconditional error rate, Hills (1966) proceeded to show that his 
conjecture is indeed valid for the sample plug-in MDR. Also, for this rule, he 
showed in the special case of m = 2 multinomial cells that 

a4 < eo(x,q) < eu(n,q). 

An algebraic expression for the exact bias of the apparent error rate of the 
sample MDR was obtained by Goldstein and Wolf (1977), who tabulated it 
under various combinations of n,m, and the cell probabilities. Their results 
demonstrated that the bound (9.22) is generally quite loose. 

9.23 Minlmum-Distance Rule fbr Multinomial Feature Data 

Krzanowski (1983a, 1984a, 1987a) has considered the distance between two 
groups under the full multinomial model with cell probabilities qic (c = 1,. . ., m) 
in Gi (i = 1,2). The affinity p between the multinomial distributions of X in 
G1 and GZ is given by 

h(Fl,F2) = G(1- p > P 2 ,  
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where 
m 

c=l 

As an alternative allocation procedure to the Bayes rule r,,(x;x,q) under 
the multinomial model, an entity with feature vector x can be assigned on the 
basis of the minimum distance 

m i n b ~  (Fx, Fi), 

where Fx is the degenerate distribution that places mass one at the point x. If 
cell c corresponds to the realization x, then 

aM(Fx,Fi)= {2(1-qtc !I2 )} 112 - (9.2.3) 

It can be seen from (9.2.3) that this minimum-distance rule is equivalent to 
the Bayes rule. However, it does provide a distinct alternative rule for the 
simultaneous allocation of nu > 1 unclassified entities where all are known to 
be from the same group. Let nu, denote the number of these entities with 
feature vector corresponding to the cth cell (c * 1,. . . , m). Then if &nu denotes 
the empirical distribution function based on these nu unclassified entities, the 
latter are assigned collectively on the basis of 

(9.2.4) 

where 

In the case of unknown group-conditional distributions, the use of the em- 
pirical distribution function & for Fi formed from the training data t leads 
to the replacement in (9.2.4) of qic by nic/ni ,  as defined by (9.2.1). It can be 
seen that it does not matter whether the estimates of the cell probabilities are 
plugged in before or after the calculation of the Matusita distance. The sample 
version of the rule (9.2.4) was proposed and studied by Matusita (1956, 1%4, 
1%7a, 1971), who also obtained lower bounds for its error rate and approxi- 
mations to the latter when n is large. 

As mentioned in Section 7.4.5, for the allocation of a single entity, Dil- 
Ion and Goldstein (1978) highlighted some unsatisfactory behavior with the 
sample plug-in version of the Bayes rule ro(x;+,4), or, equivalently, of the 
minimum- distance rule (9.2.3). They therefore proposed an alternative rule 
obtained by modifying the minimum-distance rule (9.2.3). As before, we let &i 

denote the empirical distribution function formed from, the classified training 
data in t belonging to the ith group Gi. We now let Fi,x denote the empiri- 
cal distribution function based on the latter data and also x, with the latter 
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specified as belonging to Gi (i = 1,. . .,g). The entity with feature vector x is 
assigned to GI if 

fi*(L fi2) > fiM(&,&), (9.2.5) 

and to G2, otherwise. That is, the entity is assigned to the group that max- 
imizes the consequent estimate of the Matusita distance between the two 
groups. 

With cell c corresponding to the realization x, the inequality (9.2.5) can be 
written as 

< [{(n1+ l)nz}/{n1(n2 + 1)}11/2. (9.2.6) 

It can be seen that for nl = n2, (9.2.6) holds if and only if 

n2c < n1c; 

that is, if and only if 

Thus, (9.2.4) is equivalent to the Bayes rule under the multinomial model for 
equal groupsample sizes. However, it is distinct from the Bayes rule for un- 
equal groupsample sizes. As explained by Goldstein and Dillon (1978, Section 
2.4), the sample minimum-distance rule defined by (9.2.5) does alleviate one 
unattractive property of the plug-in sample version of the multinomial-based 
Bayes rule in the case of disparate group-sample sizes, which arises as a conse- 
quence of the sparseness of the training data. For example, suppose nl is much 
smaller than n2, and that nlc = 0. Then an entity with feature vector x will be 
assigned to G2 if nk > 0, no matter how small nk is and how much greater 
n2 is than nt. However, with the sample minimum-distance rule (9.2.5), the 
entity in some situations can be assigned to GI. It will be assigned to G1 if 

42c < 41c. 

Recently, Knanowski (1987a) has established that these rules are asymptoti- 
cally equivalent, as nl, n2 tend to infinity. 

9.2.4 Convex Smoothing of Multinomial Probabilities 

In the context of discrimination between g groups, the maximum likelihood 
estimate q j  = (4j1,. . .,4jm)’ for the ith groupconditional multinomial distribu- 
tion with cell probabilities given by qj = (qil,. . . ,qjm)’ can be smoothed as 
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where ci is a vector of probabilities, and is a smoothing parameter ( 0 5  
wi 5 1) to be selected from the data. The smoothing parameter Wi typically 
has the property that it tends to zero, as tti  + 00. In a Bayesian approach to 
the problem, ci may be specified as the prior distribution of qi. A possible 
choice for ci when there is no prior knowledge on the distribution of qi is the 
uniform prior for which 

ci = ( l /m, . . . , l /m) f .  

Good (1965); Fienberg and Holland (1973); Sutherland, Fienberg, and Hol- 
land (1974); M. Stone (1974); Leonard (1977); Van Ryzin and Wang (1978); 
Wang and Van Ryzin (1981); and Wang (1%) have considered estimators of 
the form (9.2.7). Fienberg and Holland (1973) showed that fji can often be 
better than the maximum likelihood estimate q i  on the basis of risk. 

Titterington (1980) has discussed various ways of choosing the smoothing 
parameter W i .  For example, the value of Oj that minimizes the mean-squared 

where 
m 

G = 1 - Xq$. 
c=l  

A data-based smoothing parameter Gj is then obtained by replacing qic by Qic. 

Titterington (1980) and Titterington and Bowman (1985) have demonstra- 
ted how the discrete kernel estimator (9.3.12) of Aitchison and Aitken (1976) 
for a single unordered categorical variable with m categories can be expressed 
in the form (9.2.7), where 

wi = (1 - hi){m/(m - 1)) 

and 

Discrete kernel estimators are to be considered, commencing in Section 9.3.5. 
The link between (9.2.7) and other discrete kernels in the literature is pur- 

sued in Titterington and Bowman (1985). They also considered other forms 
of smoothing for ordered categorical data, including Bayes-based methods and 
penalized minimum-distance methods. Hall and Titterington (1987) have de- 
veloped asymptotic theory for the problem of smoothing sparse multinomial 
data. 

cj = (l/m,...,lm)f. 

9.2.5 Smoothing of Multinomial Probabilities by Orthogonal Series 
Methods 

Another way of smoothing multinomial probabilities is to use orthogonal se- 
ries methods. Orthogonal series methods for the estimation of a density for 
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continuous data were introduced by Whittle (1958), bncov (1%2), Schwartz 
(1%7), and Kronmal and Tarter (1%8). Ott and Kronmal (1976) suggested 
using Walsh series to estimate a density for multivariate binary data. More re- 
cently, Hall (1983b) has shown how orthogonal series methods can be applied 
to density estimation for discrete data not necessarily binary and for mixed 
data. 

We now outline the approach of Ott and Kronmal(l976) to the estimation 
of the groupconditional densities in discriminant analysis with multivariate 
binary data. Corresponding to the feature vector X consisting of p zem-one 
random variables, we let c = (~1, .  . .,cp)', where each c, is a zero-one variable 
( v  = 1,. . . ,p) ,  be an index of the realizations of X. 

The ith groupconditional density fi(x) can be represented then in the form 

(9.2.8) 

where the summation in (9.2.8) is over all values of c, and where &(x) is the 
cth Walsh function defined by 

&(x) = (-l)X1'. 

The orthogonality of these functions $c(x) is given by 

as demonstrated in Ott and Kronmal(l976). 
It follows from (9.2.9) that the coefficients Uic in (9.2.8) are given by 

Qic = C $c(x)fi (x) 

= E{$c(X)l. 

X 

The maximum likelihood estimate of Ujc is 
n: 

ai, = 2-pni' C+c(xij)ni(x), 
j=1 

where ni(x) is the number of feature vectors equal to x out of those $1,. . .,xjni 

from Gi (i = 1,. . .,g). Let h(x) be the estimate of fi(x) obtained on replacing 
ajc by bi, in the full-rank expansion (9.2.8); that is, h(x) is the unsmoothed 
multinomial estimate ni(x)/ni. 

A degree of smoothing is imposed by taking some of the coefficients aiC 
in (9.2.8) to be zero. A basic method for deciding which coefficients to be set 
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equal to zero is to work in terms of the mean integrated squared error (MISE) 
r 1 

L x  J 

It can be shown that the MISE is reduced by putting uic equal to zero if 

2-Pn;'{ 1 - (ni + l)a;c} (9.2.10) 

is positive; see, for example, Goldstein and Dillon (1978, Section 2.3). An 
estimate of (9.2.10) is 

On the basis of this assessment, a reduction in the MISE is achieved by setting 
aie to zero if 

a:c < 2/(ni + I). (9.2.1 1) 

Of course, as ni + bo, (9.2.11) will not be satisfied by any estimated coefficient 
so that we end up with the full-rank expansion (9.2.8), that is, the unsmoothed 
multinomial estimate. 

The approach above was adopted by Goldstein (1977). In their original pro- 
posal, which was in the context of mixture sampling from g = 2 groups, Ott 
and Kronmal (1976) proceeded in a slightly different manner. They used the 
orthogonal series method to represent the density of Y = (X',Z') and also the 
difference between the densities of (X', 1,O)' and (X',O, 1)'. Here, as before, Z 
is the vector of zero-one indicator variables defining the group of origin of the 
unclassified entity with feature vector X. 

Ott and Kronmal (1976) noted that another representation of fi(x) is ob- 
tained by working with (2xv - 1) and taking qC(x) to be 

P 
&(x) = n ( 2 x v  - 1 p .  

v = l  

This orthogonal series expansion had been used previously by Martin and 
Bradley (1972) to represent {J;:(x) - f ( x ) } / f ( x )  for multivariate binary fea- 
ture data for g = 2 groups. A third representation noted by Ott and Kronmal 
(1976) is to make use of Rademacher functions and Gray code. They showed 
that these representations are all equivalent to the discrete Fourier transform 
for binary variables. 

A drawback of orthogonal series methods is that they have not yet been 
adapted to cope with missing values or high-dimensional data (Titterington 
et al., 1981). Also, they can produce smoothed estimates that are negative. 
Further discussion on this last point may be found in Hand (1981a, Section 
5.3), who contrasts this approach with those based on log-linear models and 
the Lazarsfeld-Bahadur representation, as presented in Section 7.3. 
As mentioned in the introduction to this section, Hall (1983b) has shown 

how orthogonal series methods can be used for density estimation with all 
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types of data. An application of his work to a discrimination problem with 
mixed feature variables has been given by Wojciechowslci (1988). 

9.3 NONPARAMEI'RIC ESTIMATION OF GROUP-CONDITIONAL 
DENSITIES 

9.3.1 Introduction 

A common approach to nonparametric discriminant analysis with either con- 
tinuous or discrete feature data is to substitute nonparametric estimates of the 
groupconditional densities, in particular kernel estimates, into the definition 
(1.4.4) of the Bayes rule ro(x;F). Reviews of nonparametric density estimation 
have been given by Wegman (1972a, 1972b) and Fryer (1977), and Wertz and 
Schneider (1979) have given a comprehensive bibliography. More recently, en- 
tire monographs have been devoted to the topic, including those by Tepia and 
Thompson (1978), Prakasa Rao (1983), Silverman (1986), Devroye and Gyiirfi 
(1985), and Devroye (1987). There are also the monographs of Hand (1982) 
and Coomans and Broeckaert (1986), which focus exclusively on discriminant 
analysis via kernel estimates of the groupconditional densities. 

Fix and Hodges (1951,1952) introduced a number of ideas that have proved 
to be basic to the development of nonparametric density estimation and non- 
parametric discrimination. Recently, Silverman and Jones (1989) have pro- 
vided a commentary of the first of these two papers, placing it in context 
and interpreting its ideas in the light of more modem developments. As noted 
in Silverman (1986) and Silverman and Jones (1989), it was for the express 
purpose of discriminant analysis that Fix and Hodges (1951) introduced their 
nonparametric procedures. They were responsible for introducing the widely 
used class of nearest neighbor allocation rules for nonparametric estimation. 
They also first introduced two popular methods for nonparametric density es- 
timation: the kernel density and, rather briefly, the nearest neighbor density. 
We focus firstly on the kernel method, as it is the most widely used nonpara- 
metric method of density estimation. 

9.3.2 Definition of Kernel Metbod of Density Estimation 

'Tb define the kernel method, it is more convenient if we first relabel the 
n training feature observations XI,. ..,x,, to explicitly denote their group of 
origin. Accordingly, we let q j  (i = 1,. . . , ni) denote the ni observations from 
Gi (i = 1,. . .,g). Without loss of generality, we focus for the present on the 
density estimation for one of the groups, namely, Ci. For a continuous p- 
dimensional feature matrix X, a nonparametric estimate of the ith group 
conditional density fi(x) provided by the kernel method is 

(9.3.1) 
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where K, is a kernel function that integrates to one, and hi is a smoothing 
parameter. The analogue of (9.3.1) for a discrete feature vector is considered 
in Section 9.3.5. The smoothing parameter hi is known also as the bandwidth 
or window width. Although the notation does not reflect it, hi is a function 
of the ith group-sample size ni. With most applications, the kernel K ,  is fixed 
and the smoothing parameter hi is specified as a function of the data. Usually, 
but not always, the kernel K ,  is required to be nonnegative and symmetric, 
that is, 

Kp(x) 2 0, x E RP,  (9.3.2) 

and 

Kp(x) = K ~ ( - x ) ,  x E RP. (9.3.3) 

If (9.3.2) holds, the kernel density estimate #K’(x) can be interpreted as a 
mixture of n component densities in equal proportions. 

The use of the kernel method in forming estimates of the group-conditional 
densities is demonstrated in Figure 9.1, which gives the kernel density (9.1.1) 
formed from a simulated data set of size n = 200 for three values of the 
smoothing parameter with the univariate normal density as kernel. Figure 9.2 
gives the true density, which is a mixture in equal proportions of two univari- 
ate normal densities with means -1 and 1 and common variance 1. 

The kernel density estimator originally suggested by Fix and Hodges (1951) 
in the univariate case corresponds to the form (9.3.1), where p = 1, hi = 1, 
and where K1 is the uniform density over a prescribed neighborhood N;: of 
zero. This gives the univariate version of what is now often called the naive 
kernel density estimate. If, for example, the neighborhood Ni is taken to be the 
hypercube [-ki, ki]”, then the naive estimate becomes (9.3.1) with smoothing 
parameter hi = ki and with K,(x)  the uniform density over [-1,l]P. Since 

inherits the smoothness properties of K,, it is now more common for 
exploratory and presentation purposes to use a smooth kernel. When plotted 
out, a naive estimator has a locally irregular appearance; see Silverman (1986, 
Figure 2.3). 

The potential for more general kernels was recognized by Rosenblatt 
(1956), which was the first published paper on kernel density estimation. There 
is now a vast literature concerning the theory and practical applications of 
the kernel density estimator. Silverman (1986) gives a good discussion of 
many important applied aspects of this estimator. A lead into the theoret- 
ical literature is provided by Prakasa Rao (1983) and Devroye and Gyorfi 
(1985). 

By virtue of its definition, the kernel density approach to estimation is re- 
sistant to the effect of outliers. This is because KP{ ( x  - q j ) / h i }  must become 
small if xij  is far from x .  The reader is referred to Silverman (1986, Section 
3.5) for compttational aspects of kernel density estimation. As advised there, 
it is much faster to notice that the kernel estimate is a convolution of the data 
with the kernel and to use Fourier transforms to perform the convolution, 
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FIGURE 9.1. Kernel density estimate #‘)(x) for 200 simulated data points for various valws of 
the smoothing parameter hi: (a) hi = 0.1; @) hi = 0.3 and (c) hi = 0.6. 



294 NONPARAMETRlC DlSCRlMlNATION 

0.24 

0.21 

0.18 

0.15 

0.12 

0.09 

0 . 0 6  

0.03 

FIGURE 9.2. l t ue  density f i ( x )  underlying simulated data wed to produce kernel density esti- 
mates in Figure 9.1. 

rather than to directly compute it from its defining formula (9.3.1). The use of 
the fast Fourier transform makes it possible to find direct and inverse Fourier 
transforms very quickly. 

In the widely available statistical computer packages, there are routines 
for nonparametric density estimation, at least in the univariate case; see, for 
example, IMSL (1984) subroutines NDKER (for kernel density estimation) 
and NDMDLE (for maximum penalized likelihood density estimation), the S 
package (Becker, Chambers, and Wilks, 1988) for kernel density estimation 
with a choice of cosine, normal, rectangular, and triangular kernels, and the 
SAS (1990) package for kernel and nearest neighbor methods of estimation. 
Concerning computer packages designed specifically for discriminant analysis, 
there is the algorithm ALLOC1 of Habbema, Hermans, and van den Broeck 
(1974a). Hermans, Habbema, and Schaefer (1982) have given an extension 
of this algorithm ALLOCSO, which is in wide practical use. The procedures 
in this algorithm use the kernel method to nonparametrically estimate the 
groupconditional densities. In particular, this algorithm has the facility for 
the selection of feature variables, and it is discussed further in that role in 
Section 12.4.5. 

9.33 Large-Sample Properties of Kernel Estimates 

The large-sample properties of the kernel estimator were investigated initially 
by Rosenblatt (1956) and Panen (1%2) for the univariate case and by Cacoul- 
los (1%) and Epanechnikov (1969) for the multivariate case. They showed 
that conditions can be imposed on Kp and hi to ensure that f i ’ K ’ ( ~ )  is asymp 
totically unbiased and pointwise consistent in mean-squared error. For exam- 
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ple, suppose that 

(9.3.4) 

IlxllpKp(x) 0, as llxll -+ 00, (9.3.5) 

J IKp(x)ldv < 0% (9.3.6) 

and, as stated above, 

Kp(x)dv = 1. (9.3.7) 

If conditions (9.3.4) to (9.3.7) hold and hi -+ 0 as ni + 00, then as tli -+ 00, 

E{3y’(X)3 + f i ( x ) .  

E{&@’(X) - f ; ( X ) l 2  + 0, 

Suppose that in addition (9.3.2) and (9.3.3) hold, and that hi -+ 0 and nih; -+ 

00, as nj + 00. Then as nj + 00, 

wherever f;: is continuous in x;  in particular, $K)(x) is consistent for f i ( x ) .  

9.3.4 Product Kernel 

We now consider the choice of kernel function in the definition (9.3.1) of 
the kernel density estimator. The more crucial problem of how to select the 
smoothing parameter for a given kernel is to be addressed in Section 9.4. 

Epanechnikov (1969) and Dehewels (1977) used an asymptotic argument 
to show that there is very little to choose between different kernel functions. 
Among the various kernels considered by Cacoullos (1%) was the so-called 
product kernel, 

P 

Kp(X) = n K l ( x v ) ,  
v=l 

where K1 is a uhivariate probability density function. This yields 

(9.3.8) 

where xV = ( x ) ~ ,  and Xi jv  = (Xij)v for v = 1, . . . ,p.  A common choice for the 
univariate kernel KI(x) is the univariate standard normal density function. 
With this choice, f j K ) ( x )  is estimated via a spherical normal keme1, 

(9.3.9) 
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where Mi = hfI,, and, as before, $(x;p,I3) denotes the multivariate normal 
density function with mean p and covariance matrix I3. The form (9.3.8), and 
hence (9.3.9), assumes that the feature data have been standardized. Other- 
wise, 

Mi = h?diag(sill,. . . ,S ipp ) ,  

where Sivv = ( S i ) v v ,  and Si denotes the (bias-corrected) sample covariance 
matrix of xj1,. . . ,Wn; (i = 1,. . .,g). 

9.3.5 Kernels for Multivariate Binary Data 

Suppose for the present that each variable in the feature vector is a zero- 
one variable. In this situation, Aitchison and Aitken (1976) proposed using a 
binomial kernel, whereby f i ( x )  is estimated by 

ni 

f j ( K ' ( ~ >  = C ~ p ( ~ ; y i  j ,  hi), 
j =1 

where 
p -dz. 

K,(x;xij ,hi)  = hi "(1 - hi)d$ 

(9.3.10) 

with 4 5 hi 5 1, and 

ti$ = I ~ X  - Kill2 

= ( X  - xij)'(x - x i j ) .  

The squared Euclidean distance between x and y i j  is simply the number 
of disagreements in their corresponding elements. 

If we put hi = 1, then &'K' (~)  reduces to the multinomial estimate ni(x)/ni,  

where ni(x) is the number of sample points with q j  = x ( j  = 1,. . ., ni). As hi 
decreases from one, the smoothing of the multinomial estimates increases, so 
that at hi = 1/2, it puts equal mass 1/2P at each possible realization of X. 

Further insight into this form of the kernel can be obtained if we rewrite 
Kp(X;* j ,h i )  in the form of a product of binomial kernels, 

(9.3.1 1) 

where 
wijv = I(x)v - (xi j )v lq  

It can be seen from (9.3.11) that Kp(X;Qj,hi) gives weight hf at x itself and 
hf-' ( l -  hi) at those cells that differ from x in only one feature, hfe2(1 - 
at those that differ from x in two features, and so on. Hence, it is required that 
hi 2 1/2. 
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93.6 Kernels tor Unordered Categorical Data 

Discrete feature variables with more than two categories can be converted to 
binary data, as explained in Section 7.4.1. Alternatively, Aitchison and Aitken 
(1976) have provided an extension of their kernel estimator for categorical 
feature data. Suppose that all the features are represented by unordered cate- 
gorical variables, where c, denotes the number of categories for the vth fea- 
ture variable X ,  (v = 1, . . . ,p).  Then Aitchison and Aitken (1976) proposed 
that (9.3.11) be modified to 

v= l  

where 
maxc;' 5 hi 5 I. 

This restriction ensures that the kernel has the desirable property of being a 
probability density function with its mode at x = X j .  

In the case where the smoothing parameter hi is allowed to be different for 
each feature variable, the kernel (9.3.12) has the form 

P 

K p ( X ; X j , h i )  = ~h,',-""{(l - h i V ) / ( C ,  - l)}wijv, (9.3.13) 

where hi = (hil, ..., hi,)' is the vector containing the p smoothing parameters 
corresponding to each feature, and c;' 5 hi, _< 1 ( v  = 1,. . . ,p). This general 
approach is advocated by Titterington (1980), because of the possibly differ- 
ent variances of the feature variables. He notes that it is not practicable with 
categorical data to first standardize the variables, as is often done with multi- 
variate continuous data when a common smoothing parameter hi is specified. 
Also, this general approach allows the smoothing parameter hi, to be con- 
veniently chosen on the basis of the marginal feature data X i j v  ( j  = 1,. . ., ni). 
Smoothing parameters chosen in this manner, however, do tend to provide 
less smoothing than those selected simultaneously on the basis of the joint 
distribution of all the feature data (Titterington, 1980). This was particularly 
noticeable in the study of Titterington et al. (1981), where marginally chosen 
smoothing parameters gave density estimates too sharp from a multivariate 
point of view. 

v r l  

9.3.7 Kernels for Ordered Categorical Data 

The discrete kernel (9.3.13) can be modified to allow for an ordered categor- 
ical variable. This was demonstrated by Aitchison and Aitken (1976) for an 
ordered trinomial variable and has been considered further by Titterington 
and Bowman (1989, among others. Suppose that Xv is an ordered trinomial 
variable taking on the values of 0, 1, and 2. Then, under the suggestion of 
Aitchison and Aitken (1976), the vth term in the product on the right-hand 
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TABLE 9.1 Values of Contribution @ “ ) ( x v ; X i j v , h i v )  to the Product Kerml for an 
Ordered Binomial Variable Xv 

X i i v  x v  = o  x v  = 1 x v  - 2  

side of (9.3.13) is replaced by K ~ ) ( x , ;  Xijv,hiv), as defined in Table 9.1, where 
hi, 2 2/3. From this table, it can be seen how the contribution to the kernel 
falls away from h:, as Ix, - xi jv l  increases from zero. 

9.3.8 Kernels for Categorical Data with an Infinite Number of Cells 

Aitken (1983) proposed a kernel function for univariate data in the form of 
counts. It is of the form 

ni 
p ( X )  = n;’CKl(x;x i j ,h i ) ,  

j = l  

where 
K ~ ( x ;  X i j ,  hi) = hi, X = X i j ,  

= 2-(dij+1) (1 -hi), dij I X ,  (9.3.14) 

= 2 - d i i ( l  -hi), dij > X ,  

and where dij = I X  - xijl ,  and 1/3 5 hi 5 1. 

form 
Habbema, Hermans, and Remme (197th) discussed a kernel function of the 

Kl(x;xij,hi) = hi”/C(hi) (9.3.15) 

for each type of feature variable, continuous, binary, ordered and unordered 
categorical. The distance measure dij = IIx - XijII  and the normalizing con- 
stant C(hi) depend on the type of variable; see Schmitz et al. (1983b, Appendix 
A) for further details. Aitken (1983) showed how (9.3.15) can be adapted to 
data in the form of counts. 

d?. 

9.3.9 Kernels for Mixed Feature Data 

For mixed feature data as described in Section 7.4.1, fitchison and Aitken 
(1976) suggested a sum of the product of normal and discrete kernels corre- 
sponding to the continuous and discrete subvectors, respectively. As stressed 
by them, this factorization does no way imply independence of the continuous 
and discrete feature variables. Suppose that the feature variables have been 
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TABLE 9.2 Values of Contribution Ki’” ) (xv ;x i j v ,h iv )  to the Product Kernel for 
Missing Data on an Unordered or Ordered Binomial Variable Xv 

X i i v  x v  = o  x v  = 1 xv = m 

labeled so that x = (x(~)‘,x(~)’)’, where the subvector x(’) contains the p1 dis- 
crete features and x(~)  the p2 continuous feature variables. Then a mixed ker- 
nel estimate of f i ( x )  is given by 

where K$f)  is a kernel and hli a smoothing parameter for the subvector x(l)  

of discrete variables, and Kg) is a kernel and hz a smoothing parameter for 
the subvector x ( ~ )  of continuous variables. 

9.3.10 Incomplete Feature Data 

In the case of a missing value for X i j v  in multivariate binary data, Titterington 
(1977) suggested that one way of dealing with this problem is to set hi, equal 
to ln in the vth term in the product on the right-hand side of (9.3.13). For 
hi, = 1/2, each term in the product is equal to ID, regardless of the value of 
Wijv .  In the assessment of the smoothing parameters hi,, Titterington (1977) 
pointed out that for a training observation &j with some missing elements, 
fi‘K’(xij)  can be evaluated as 

where the summation is over all possible completions 4j of q j .  

Titterington (1976) and Murray and Titterington (1978) have suggested 
other ways of handling missing data for kernel estimation from discrete data. 
One way is to treat “missing” as an extra category which, for ordered cate- 
gorical variables, destroys the ordered nature of the data. Another way is to 
adopt a more genuine missing-data kernel (Murray and Titterington, 1978). 
They proposed that for the binary variable X, with cy = 2, the three cate- 
gories can be sensibly treated as unordered or ordered with “missing” in the 
middle, using the missing-data kernel K ~ m ) ( X v ; X i j ~ ; h ~ v ) ,  as given in ’llible 9.2, 
in place of the vth term in the product on the right-hand side of (9.3.13). In 
nble 9.2, m refers to the “missing” category. 
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The general form of this kernel for c, categories is 

K ( m ’ ( x v ; X i j v , h i v ) =  h i v K c , ( X v ; X i j v , h i v )  if XV # m and xi jv  # m, 

1 -hi, if X, = m and X i j v  # m, 

if x, = m and X i j v  = m, c +1 
h i ;  

= (1 - h?+’)/c, if X, # m and X i j v  = m, 

where K c , ( x , ;  x+, h i v )  is a c,-category kernel. Murray and Titterington (1978) 
consider constraints on the smoothing parameters in order for the missing- 
data kernel as given above to have its mode at xv = X i j v .  More recently, Tit- 
terington and Mill (1983) have considered the problem of forming kernel esti- 
mates from missing data in continuous variables. 

9.4 SELECTION OF SMOOTHING PARAMETERS IN KERNEL 
ESTIMATES OF GROUP-CONDITIONAL DENSITIES 

9.4.1 Separate Selection for Each Croup 

As the choice of kernel is not as important as it might first seem, the usual 
approach in forming & ( K ’ ( ~ )  is to fix the kernel K ,  in (9.3.1) and then to 
assess the smoothing parameter hj from the observed data. The effective per- 
formance of the kernel estimator is crucially dependent on the value of the 
smoothing parameter hi. With the traditional approach to discriminant analysis 
via kernel density estimates, the smoothing parameters hi (i = 1,. . . ,g) are de- 
termined separately for each groupconditional density estimate #K) (x )  rather 
than jointly. This approach is pursued first, and a joint approach is described 
in Sections 9.4.7 to 9.4.9. 

The choice of a value for h i  is crucial in the estimation process. If hi is 
too small, then #K’(x) will have sharp peaks at the sample points Xij  and 
be ragged elsewhere. If hi is too large, excessive smoothing will occur result- 
ing in bias. Thus, the aim is to choose h i  so as to give a suitable degree of 
smoothness relative to the amount of bias that can be tolerated. The latter is 
influenced by the purpose for which the density estimate is to be used. For use 
of #K’(x) in an exploratory data analysis role, it may be sufficient to choose 
hi subjectively, as described in Silverman (1986, Section 3.4). But for routine 
problems in discriminant analysis, an automatic choice of the smoothing pa- 
rameter hi is appropriate. 

The vital dependence of the performance of the kernel estimator on its 
smoothing parameter has led to many proposals for its selection from the 
observed data. We now consider some of these proposals. 
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9.4.2 Minimization of Mean Integrated Squared Error (MISE) 
If f;:(x) were known, then hi could be chosen to minimize the integrated 
squared error (ISE), 

ISE(hj) = / { A ( K ’ ( ~ )  - f i ( ~ ) } ~  d ~ ,  (9.4.1) 

whose minimizer is denoted by Ri(1SE). Alternatively, hi could be chosen to 
minimize the mean integrated squared error (MISE), 

MISE(hi) = E{ISE(hi)}, (9.4.2) 

whose minimizer is denoted by hi(M1SE). 
There is some controversy concerning which of ki(1SE) or ki(M1SE) should 

be called the “correct” smoothing parameter. This is discussed by Marron 
(1989), who notes that there is, for all reasonable sample sizes, a very con- 
siderable difference between these goals (Hall and Marron, 1987a). In his re- 
cent investigation into the method of the choice of the smoothing parameter 
in the univariate case, Marron (1989) chose to work with MISE for a number 
of reasons, including its sample stability. MISE admits, under certain technical 
assumptions, which include that Kp(x) is a radially symmetric density function, 
the asymptotic representation 

AMISE(hi) = ni1hiP71+ )h47:r3i1 (9.4.3) 

as ni -+ 00, hi --+ 0, with nihf 4 00; see, for example, Silverman (1986, page 
85). In (9.4.3), 

71 = j { K p ( X ) l 2 d V ,  

72 = J XfKp(X)dV, 

r3i = / tV2fi(X)I2d4 
and 

where V is the gradient vector with vth component a/& (v = 1, . . . ,p ) .  
The minimizer of AMISE(hi) is 

%(WISE) = CY;, Kp)n~1’ (P+4) ,  (9.4.4) 

~ ( f i  ~ p )  = tprl/(+r3i) I 1’(P+4)* 

where 
(9.4.5) 

Hall and Marron (1987a) have shown that hi(ISE), ki(MISE), and hj(AM1SE) 
all come together in the limit. 

The result (9.4.4) suggests one possible way of selecting hi, by evaluating 
(9.4.5) for an estimate of fi(x) in 7%; see Devroye (1989). 
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9.43 Pseudo-Likelihood Cross-Validation Method 

As hj 4 0, f K ’ ( x )  approaches zero at all x except at x = X i j ,  where it is l/ni 
times the Dirac delta function. This precludes choosing hj by maximization of 
the pseudo-log likelihood 

n; 

j =1 

with respect to hj. It led Habbema et al. (1974.a) and Duin (1976) to choose 
hj by maximizing the cross-validated pseudo-log likelihood, 

n 

with respect to hi, where f i g ; ( x )  denotes the kernel density estimate &(K’(x) 

formed from (k = 1, ..., ni; k # j ) .  Let Ri(PLCV) denote the value of hi 
so obtained. 

This procedure has been shown by Titterington (1980) to be cross-validatory 
in the sense of M. Stone (1974). It is not consistent for compactly supported 
kernels with infinitely supported densities (Schuster and Gregory, 1981), but 
it is consistent with compactly supported densities (Chow, Geman, and Wu, 

Bowman, Hall, and Titterington (1984) showed that the use of Ri(PU3V) 
leads to asymptotic minimization of the Kullback-Leibler loss in the case 
of univariate discrete data. The Kullback-Leibler loss in estimating fi(x) by 
l ( K ’ ( x )  is defined to be 

1983). 

In the univariate continuous case, Hall (1Wa) has demonstrated that the use 
of I;i(PLCV) can lead to infinite Kullback loss. In a further study of this prob- 
lem, Hall (198%) provided an explicit account of how Kullback-Leibler loss 
and pseudo-likelihood cross-validation are influenced by interaction between 
tail properties of the kernel K1 and of the unknown density f i ( x ) .  He showed 
that if the tails of the kernel K1 are sufficiently thick for tail-effect terms not 
to play a role in determining minimum Kullback-Leibler loss, then the use of 
Rj(PLCV) does lead to asymptotic minimization of Kullback-Leibler loss. Hall 
(1986c, 198%) noted that the tails of the standard normal kernel are too thin 
for most purposes and even the double exponential is not always suitable. He 
suggested that a practical alternative is the kernel 

Kl(x)  = 0.1438exp[-f{log(l+ I x ~ ) } ~ ] ,  --oo < x < 00, 
whose tails decrease more slowly than exp(-lxv) for any a > 0. 

These theoretical results are supported by the empirical work of Remme, 
Habbema, and Hermans (1980), who investigated the use of the kernel method 
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in estimating the groupconditional densities in discriminant analysis. They ob- 
served that while the use of the PLCV method of selection led to very good 
results for short-tailed distributions, it was an inappropriate method for long 
tailed distributions. 

9.4.4 Least-Squares Cross-Validation 

With the least-squares cross-validation (LSCV) method, hi is chosen to be 
Rj(LSCV), the minimizer of 

(9.4.6) 

This method was suggested by Rudemo (1982) and Bowman (1984); see also 
Bowman et al. (1984) and Hall (1983a). It is motivated by the fact that the 
expectation of (9.4.6), minus the term 

/ { f i ( r ) W  

/{ f , (x ) } ’dv  c -; 

which obviously does not depend on hi, is an unbiased estimator of MISE(hi), 
as defined by (9.4.2). The method is asymptotically optimal for all bounded 
fi and all bounded compact support kernels K1 (C. J. Stone, 1984). Also, it 
seems to be consistent whenever 

see Devroye (1989). He notes that fij(LSCV) is probably much too small when- 
ever the data show clustering around one or more points. 

Also, as demonstrated by Marron (1989) in the univariate case, the sample 
variability in Ri(LSCV) is very high. Previously, Hall and Marron (1987a) had 
shown under certain technical conditions that 

C;j(LSCV)/Rj(MISE) - 1 = Op(tt;”’O). 

As commented by Marron (1989), this very slow rate of convergence goes a 
long way toward explaining why R i ( L s c v )  has not performed as well as antic- 
ipated in simulation studies, such as those by Kappenman (1987) discussed in 
the next section. 

9.4.5 Moment Cross-Validation 

The value of the smoothing parameter hi proposed by Kappenman (1987) is 
the solution of the equation 

n; 

(9.4.7) 
J j=l 
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We refer to this method as moment cross-validation (MCV), as it is analo- 
gous to the method of moments applied to the estimation of the mean of the 
density, after cross-validation. 
As pointed out by Marron (1989), a potential flaw to this reasoning is that 

estimation of the mean of the density (the integrated squared density) is a 
different goal than estimation of the density itself (Hall and Marron, 198%). 
Indeed, Marron (1989) showed that hj(MCV) provides a value of hi that is 
too small. More precisely, he showed under certain technical conditions in the 
univariate case that, as ni -+ 00, hj(MCV) essentially tends to zero at the rate 
nr1l3 and, from (9.4.4), the appropriate rate is tar1/’. However, in the simu- 
lation study conducted by Kappenman (1987), the performance of hi(MCV) 
was found to be superior relative to hi(LscV), as obtained by least-squares 
cross-validation. This relative superiority of hi(MCV), in spite of its bias, can 
be explained by the large variance of hi(rSCV), which was referred to in the 
previous section. As illustrated by Marron (1989), hi(MCV) has a bias that be- 
comes worse for larger sample sizes ni. On the other hand, hi(LSCV) suffers 
from a high degree of variability, which, for large enough ni, is eventually less 
debilitating than the bias of hi(MCV). The points where the trade-off occurs 
depend on the true density fi, but except for the standard normal, it seems 
to happen typically for nj around 100. Marron (1989) also considered a way 
of removing the bias inherent in hi(MCV). In the particular case of a stan- 
dard normal kernel, he found that the bias-corrected estimate is the same as 
&(LsCV). 

9.4.6 Minimization of MISE for Multivariate Binary Features 

A common way of choosing the smoothing parameter hi in the discrete ker- 
nel density estimator (9.3.10) is to use pseudo-likelihood cross-validation, as 
defined in Section 9.4.3. As shown by Aitchison and Aitken (1976), if cross- 
validation is not employed here with this pseudo-likelihood approach, then the 
smoothing parameter hi in (9.3.10) is estimated to be one. Hall (1981a) has 
shown that even with pseudo-likelihood cross-validation, if several cells are 
empty and all other cells contain two or more observations, then the value of 
hi is likely to be estimated as one. To avoid this potential difficulty with multi- 
variate binary data, Hall (1981a) has suggested that the smoothing parameter 
hi be chosen by finding the value of hi that minimizes a truncated expansion, 
in powers of (1 -hi), of the discrete analogue of the mean integrated squared 
error of #K’(x), as given by (9.4.2). If terms of order (1 - hi)z are retained 
in this expansion and the unknown probabilities replaced by their maximum 
likelihood estimates, then the value of hi is given by 

hi(1MSE) = 1 - Cil/Ciz, 

(9.4.8) 
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and 

and where njk(x) is the number of the ni feature vectors x i j  (1 = 1,. . . , ni) from 
Gi for Which 

I ~ x  - xijl12 = k (k = 1,2). 

In (9.4.8) and (9.4.9), summation is over all possible 2P realizations of X. 

form of the discrete kernel density estimator (9.3.10), 
'Ib cut down further on the calculations, Hall (1981a) also gave a reduced 

It is obtained from (9.3.10) by eliminating terms of order (1 - hi)' and smaller. 
This reduced estimator ignores the effect of observations distant more than 
one unit from x on the full form (9.3.10) of the estimator. As noted by Hall 
(1981a), is thus an alternative to the nearest-neighbor estimator of 
order one suggested by Hills (1%7). In a later paper, Hall (1981b) showed 
how to construct an adaptive weighted version of Hills' (1967) estimator using 
the MISE criterion. 

9.4.7 Joint Selection of Smoothing Parameters 

In the preceding sections, we have considered the selection of the smooth- 
ing parameter hi separately for each group Gi (i = 1, ...&). In discriminant 
analysis, the essential aim of estimation of the individual groupconditional 
densities is to produce estimates of the posterior probabilities of group mem- 
bership and/or a discriminant rule. This implies that the smoothing parameters 
should be selected jointly, rather than separately, using loss functions directly 
related to the discrimination problem at hand. This approach has been con- 
sidered by Van Ness and Simpson (1976) and Van Ness (1979) for continuous 
feature data and by 'htz (1986, 1988, 1989) for discrete feature variables. Also, 
Hall and Wand (1988) have considered a joint selection approach that is appli- 
cable for either Continuous, discrete, or mixed feature variables in the case of 

The approach of Tutz (1986) applies to the use of the discrete kernel esti- 
mator of Aitchison and Aitken (1976). The smoothing parameters are selected 
simultaneously by minimization of the leave-one-out or cross-validated esti- 
mate of the overall error rate of the sample version of the Bayes rule formed 
by plugging in these kernel estimates of the groupconditional densities. The 
cross-validated estimate of the error rate of a sample discriminant rule is to 
be considered in Section 10.22. Tutz (1986) showed that his approach leads 
to a Bayes risk consistent rule. However, the cross-validated estimate of the 
error rate is a discontinuous function of the smoothing parameters, and itself 
requires smoothing for effective implementation; see Tutz (1988, 1989). 

g = 2 groups. 
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9.4.8 Joint Selection via Estimation of Differences Between 
Croup-Conditional Densities 

For the allocation problem in the case of g = 2 groups, Hall and Wand (1988) 
have proposed that the smoothing parameters be chosen by applying least- 
squares cross-validation with respect to the estimate of the difference between 
the two groupconditional densities. We consider first the case of discrete fea- 
ture variables, taking on only a finite number of distinct values with nonzero 
probabilities. As noted in Section 7.4.1, it can be assumed without loss of gen- 
erality that each X, is a zero-one variable. That is, the sample feature space 
is the binary space {O,l}P, the set of all p-tuples of zeros and ones. For this 
situation, Hall and Wand (1988) worked with the discrete kernel density of 
Aitchison and Aitken (1976), 

p-d?. ni 
#K)(x) = n;’ hi ‘ J (  1 - (i = 1,2), (9.4.10) 

j =1 

where d$ = Ilx - %ill2 for j = 1, ..., ni and i = 1,2. 

either GI or G2, according as 
From (1.4.4), the optimal ro(x;F) assigns an entity with feature vector x to 

Xlfl(X) 2 r 2 f 2 ( 4  (9.4.11) 

holds or not. The inequality (9.4.11) is equivalent to 

Xlfl(X) - nf2(x) 2 0. 

Thus, for the allocation problem, it led Hall and Wand (1988) to consider the 
estimation of the difference 

v(x) = .lfl(X) - XZfi(X) 

for fixed XI  and ~ 2 .  Let 

W ( X )  = X l p ( X )  - %Qf,’K’(x) 

be an estimate of v(x), formed using the discrete kernel estimate (9.4.10). 
Then with their approach, a variant of cross-validation is used as a tool to 
choose hl and hz jointly to minimize 

MISE(hl,h2) = J ! ? ~ { O ( ~ ) ( X )  - u(x)}~, (9.4.12) 
X 

where the summation in (9.4.12) is over all values of x. 
Hall and Wand (1988) found the values of hl and h2 that minimize (9.4.12), 

as nl and n2 tend to infinity. They noted that one or other of these asymptotic 
optimal values of hl and h2 may be negative. However, as they explained, 
this is not so absurd as might at first appear, for it is the difference between 
two densities that is being estimated and not an individual density. However, 
a negative smoothing parameter does lead to kernel weights that oscillate in 
sign as the distance from the cell at which the estimator is evaluated increases. 
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In practice, Hall and Wand (1988) suggested that hl and h2 be given by 
their values that minimize 

(9.4.13) 

where fi$;(x) denotes the kernel density estimate &(K)(x) formed from &k 
(k = 1,. . ., ni; k # j ) .  A simplification of this selection procedure is to carry 
out the minimization of (9.4.13) with the restriction hl = h2 imposed from the 
outset. Apart from a term not involving hl and h2, (9.4.13) is an unbiased 
estimator of MISE(h1,hz). Thus, their method has the same motivation of 
least-squares cross-validation in its application to the separate choice of the 
smoothing parameters in the individual estimation of the groupconditional 
densities. 

For continuous feature data, Hall and Wand (1988) based their approach on 
the product kernel estimator (9.3.8), which supposes that the data have been 
standardized first. The values of the smoothing parameters hl and hz are again 
taken to be those that minimize (9.4.13), but where now the first-term sum in 
(9.4.13) is replaced by the integral 

(9.4.14) 

and where the product kernel estimator (9.3.8) is used throughout in place of 
the discrete kernel estimator (9.3.10). The integral in (9.4.14) can be calculated 
explicitly if the standard normal kernel is used. 
As noted by Hall and Wand (1988), their procedure for selecting the 

smoothing parameters could be framed in terms of the ratio of the two group 
conditional densities, rather than their difference. However, they warn that 
such a technique is hardly practicable, because of serious problems when the 
denominator of the ratio is close to zero. Some asymptotic results on the 
kernel approach applied to the problem of estimating the ratio of the group 
conditional densities have been given recently by hYik and Mielniczuk (1989). 

9.4.9 Example: Separate Versos Joint Selection of Smoothing Parameters 

We present here one of the examples given by Hall and Wand (1988) to 
demonstrate their approach. It concerns the diagnosis of keratoconjunctivitis 
sicca (KCS) in people suffering from rheumatoid arthritis. The feature vec- 
tor consists of p = 10 binary variables, each corresponding to the presence or 
absence of a particular symptom. The training data consist of nl = 40 obser- 
vations on patients with KCS (group G I )  and 122 = 37 observations on patients 
without KCS (group a). On the basis of these training data and with the 
groupprior probabilities each taken equal to half, Hall and Wand (1988) 
formed the plug-in sample version of the &yes rule with the groupconditional 
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TABLE 9.3 Smoothing Parameters and Group-Speciflc Cross-Validated Error 
Rates for Each of Three Selection Methods 

Cross-Validated 
Smoothing Parameters Error Rates 

Selection 
Method hi hi G1 Gz 
Lscv 0.216 0.012 4/40 2/37 

(difference 
behveen densities) 

PLCV 0.157 0.040 4140 107 
Lscv 0.195 0.008 4/40 307 

densities replaced by their discrete kernel estimates (9.4.10). The smoothing 
parameters hl and h2 were selected by three methods, including their joint se- 
lection approach. The other two methods selected hl and h2, separately, using 
pseudo-likelihood cross-validation (PLCV) and least-squares cross-validation 
(LSCV). The values of the smoothing parameters obtained with each method 
are displayed in Thble 9.3, along with the cross-validated error rates of the 
groupspecific conditional error rates of the sample-based rule corresponding 
to each method. It can be seen that in terms of these estimated error rates, 
the method of Hall and Wand (1988) performs in between the methods of 
pseudo-likelihood cross-validation and least-squares cross-validation applied to 
the individual estimation of each group-conditional density. 

9.5 ALTERNATIVES TO FIXED KERNEL DENSITY ESTIMATES 

9.5.1 Introduction 

As discussed by Silverman (1986, Chapter 9, a practical drawback of the ker- 
nel method of density estimation is its inability to deal satisfactorily with the 
tails of distributions without oversmoothing the main part of the density. Two 
possible adaptive approaches to this problem discussed in the next sections 
are the nearest neighbor method and the adaptive kernel method. Of course, 
there are various other approaches, including maximum penalized likelihood, 
as proposed initially by Good and Gaskins (1971). As noted in Section 9.4.3, 
the pseudo-likelihood can be made arbitrarily large by letting the smoothing 
parameter hj in the kernel estimate tend to zero. With the maximum penal- 
ized approach, a penalty term is added to the log likelihood, which reflects the 
roughness, in some sense, of the likelihood under consideration; see Silverman 
(1986, Section 5.4) for further details. In a related approach, Silverman (1978) 
estimated the ratio of two densities by consideration of a penalized conditional 
log likelihood. 

Other nonparametric methods of density estimation not pursued here in- 
clude those based on projection pursuit and splines. Exploratory projection 
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pursuit as described in Section 6.6.4 can be incorporated into a density estima- 
tion procedure (Friedman, Stuetzle, and Schroeder, 1984). This approach for 
the purposes of discrimination has been considered recently by Flick 
et al. (1990). On the use of splines, Villalobos and Wahba (1%3) have pro- 
posed a nonparametric estimate of the posterior probabilities of group mem- 
bership, using multivariate thin-plate splines. The degree of smoothing is de- 
termined from the data using generalized cross-validation. 

9.5.2 Nearest Neighbor Method 

As noted in Section 9.4, Fix and Hodges (1951) introduced the naive kernel 
density estimator formed by counting the number of sample points Mi(X) ly- 
ing in some prescribed neighborhood x. of x .  They also briefly mentioned the 
complementary approach of nearest neighbor density estimation. Rather than 
fiing Ni and counting Mr(x), they proposed that Mi(X) be fmed at some value, 
say, k, and Ni be found just large enough to include the k nearest points to x .  
The first mention of this method in the published literature is by Loftsgaarden 
and Quesenberry (1965). It subsequently formed the basis of the nonparamet- 
ric discriminant procedure proposed by Pelto (1969). 

Let d i ~ ( x )  be the Euclidean distance from x to the kth nearest point among 
~j (j = 1, ..., ni). Then the nearest neighbor density estimate of order k is 
defined by 

where 

and v p  is t.e volume a the unit sphere in p dimensions (so L A  v1 = 2, 
v2 = ?r, v3 = (4/3)n, etc.). Recently, Chanda (1990) has derived asymptotic 
expansions of the error rates for the sample-based rule obtained by using 
#"'(x) in place of fi(x). The new allocation method proposed by Patrick 
(1990), called The Outcome Adviser, evolved from this type of density esti- 
mate (Patrick and Fisher, 1970). 

The generalized kth nearest neighbor estimate is defined by 

j=l 

which reduces to the nearest neighbor estimate if 

K p ( x ) =  vp l ,  llxll 5 1, 
= 0, otherwise. 

For multivariate binary feature data, Aitchison and Aitken (1976) showed 
how a generalized kth nearest neighbor estimate of f;(x) can be defined in 
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terms of their discrete kernel function. It is given by (9.3.10) with 

if d:j 5 k ,  
(9.5.1) 

= 0, otherwise, 

where 4 5 hi 5 1, and where 

k 
C(hj,k) = C (") hf'-"(l-hi)". 

V v-0 

They noted that the nearest neighbor estimate of order k proposed by Hills 
(1%7) is obtained from (9.5.1) on putting hi = 1/2. 

The estimates obtained by the nearest neighbor method are not very sat- 
isfactory. They are prone to local noise and also have very heavy tails and 
infinite integral; see Silverman (1986, Section 5.2) for further discussion. 

9.53 Adaptive Kernel Method 

An adaptive kernel estimator is given by 

(9.5.2) 

where the ni smoothing parameters hij ( j  = 1, ..., ni) are based on some pi- 
lot estimate of the density fi(x). The adaptive kernel method has been shown 
to have good practical and theoretical properties and to be more accurate in 
the tails than either the fixed kernel or nearest neighbor methods; see Bow- 
man (1985) and Worton (1989) for recent comparative studies of fixed versus 
adaptive kernel estimates. In a discriminant analysis context, Remme et al. 
(1980) reported in the case of log normal groupconditional distributions, that 
the poor performance of the sample discriminant rule based on fwed kernel 
density estimates was improved by using a variable kernel. 

Silverman (1986, Section 5.3) has suggested a useful algorithm for obtaining 
adaptive kernel estimates. The smoothing parameters hij are specified as hiaij, 

where hi is a global smoothing parameter, and the aij are local smoothing 
parameters given by 

aij = { A ( X i j > / C i ) - O  ( j  = 1,. - 9  nj), 

where 
ni 

logc;: = n;'Clog$(xij), 
j=l 

and $(x)  is a pilot estimate of fi(x) that satisfies 

f i ( x i j )  > 0 (.j = ~ , * . . , n i ) ,  
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and where ai is the sensitivity parameter, satisfying 0 5 CYi 5 1. Silverman 
(1986) has reported that the adaptive kernel method with ai = 1/2 has good 
practical and theoretical properties. The choice of the pilot estimate $(x) is 
not crucial, as the adaptive estimate appears to be insensitive to the final detail 
of the pilot estimate. With using this approach, there is only one smoothing 
parameter to select as with the fixed kernel method. 

?b illustrate the differences between fixed and adaptive kernel methods, 
Worton (1989) compared the estimates produced for data sets of size n = 100 
simulated from four different bivariate densities, (i) the standard bivariate nor- 
mal, (ii) a log normal-normal, (iii) a light-tailed density, and (iv) the standard 
bivariate Cauchy. The density in case (iii) was 

f i ( x )  = 3 ~ - l ( l -  x ' x ) ~ ,  if x'x < 1, 

= 0, otherwise. 

The contour plots of these four densities are given in Figure 9.3, and the con- 
tour plots of their fixed and adaptive kernel estimates are given in Figures 9.4. 
and 9.5, respectively. In forming these kernel density estimates, Worton (1989) 
used the optimal choice of the smoothing parameter for the bivariate version 
of the kernel of Epanechnikov (1%9), given by 

&(x)  = 2r-l(1- x'x),  if x'x < I, 

= 0, otherwise. 

The true density was used as the pilot estimate in forming each adaptive esti- 
mate. 

A comparison of the kernel density estimates in Figures 9.4 and 9.5 with the 
true densities in Figure 9.3 demonstrate how the adaptive produces a clearer 
picture than does the fixed method, particularly in the tails of densities that 
are not light-tailed. 

Breiman, Meisel, and Purcell (1977) considered a particular case of (9.5.2) 
by taking the pilot estimate of f i ( x )  as the kth nearest neighbor estimate (using 
a fairly large value of k) and setting the sensitivity parameter CY equal to l/p. 
Their variable-kernel estimate is, therefore, of the form 

ni 

AtK'(x) = n ; ' h ; P C { d i h ( ~ i j > } - ~ ~ p [ ( X  - ~ i j ) / { h i d i , k ( x i j ) } l .  (9.5.3) 
j=l 

The order k of nearest neighbor has to be chosen, along with the smoothing 
parameter hi. 

Aitken (1983) showed how his discrete kenel for univariate data in the form 
of counts can be adapted to a variable form like (9.5.3). The variable-kernel 
analogue of (9.3.14) is obtained by replacing hi with hi / {d ih (x ) }" .  The factor 
CY (>O) is introduced so that the kernel satisfies the requirements of mono- 
tonicity. 
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FIGURE 93. Contour plots of true bivariate densities (i) to (iv) underlying simulated data used 
to produce kernel density estimates in Figures 9.4 and 9.5. From Worton (1989). 

9.6 COMPARATIVE PERFORMANCE OF KERNEL-BASED 
DISCRIMINANT RULES 

9.6.1 Introduction 

With the usual kernel approach to discriminant analysis, the unknown group 
conditional densities in the expressions for the posterior probabilities of group 
membership are replaced by kernel density estimates formed from the train- 
ing data t. The associated sample-based discriminant rule is therefore a plug- 
in version of the Bayes rule with kernel density estimates used in place of 
the groupconditional densities. It will be a Bayes risk consistent rule pro- 
vided the kernel adopted satisfies certain regularity conditions as discussed 
in Section 9.3.3; see, for example, Marron (1983) and, more recently, Chanda 
and Ruymgaart (1989). For a more direct approach to the problem of estimat- 
ing the posterior probabilities of group membership, the reader is referred to 
Lauder (1983), who considers direct kernel assessment of these probabilities. 
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' I  1 
FIGURE 9.4. Contour plots of f d  kernel density estimates for 100 data points simulated from 
the densities (i) to (iv) with the optimal choice of smoothing parameter. Rom Worton (1989). 

There has been a number of comparisons reported in the literature be- 
tween kernel-based discriminant rules (KDRs) and other sample-based dis- 
criminant rules. Hand (1982) has provided a comprehensive summary of such 
comparisons published prior to his monograph. We first consider here those 
comparisons undertaken for continuous feature data. 

9.6.2 Continuous Feature Data 

Initial studies on the performance of KDRs for continuous feature variables 
include those in the case of g = 2 group by Gessaman and Gessaman (1972), 
Goldstein (1975), Hermans and Habbema (1975), Van Ness and Simpson 
(1976), Koffler and Penfield (1979), Van Ness (1979), and Remme et al. (1980). 
The latter study was an extensive one and considered not only the alloca- 
tory performance of KDR rules, but also the estimates provided by the ker- 
nel approach for the posterior probabilities of group membership, or, equi- 
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FIGURE 9.5. Contour plots of adaptive kernel density estimates for 100 data points simulated 
from the densities (i) to (iv) with the optimal choice of smoothing parameter. From Worton 
(1=)- 

valently, the posterior log odds. In some of the simulation experiments per- 
formed in these studies, the product normal KDR was quite superior to 
the sample NLDR. However, many of the experiments were carried out un- 
der conditions favorable to the product normal KDR. This was discussed by 
Hand (1982) and has been taken up more recently by Murphy and Moran 
(1986). 

9.63 Loss of Generality of Product Normal Kernel Estimates Under 
Canonical lkansformation 

Murphy and Moran (1986) showed explicitly how the product normal KDR 
is not invariant under the linear transformation (4.2.2) that achieves the usual 
canonical form (4.2.3) without loss of generality for the sample NLDR applied 
under the homoscedastic normal model (3.3.1) for g = 2 groups. 
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More specifically, the product normal kernel estimate of the ith group 
conditional density A(x) is given by 

(9.6.1) 

for feature data that have been standardized. For the linear transformation 
(4.2.2), 

the estimate f fK)(x)  becomes 

f = C2Clb - i(Ccl+ PZ)), 

n; 

(9.6.2) 

where 

and 

M = C2ClC\Ci, 

4j=c2~1{%j- & + P z ) )  (j=1,...,ni). 

As M is not a diagonal matrix in general, (9.6.2) shows that is not a 
product normal kernel estimate of fi(x). 

Hence, the canonical form (4.23) cannot be assumed without loss of gener- 
ality in studies of the product normal KDR. It means that in those studies that 
have adopted the canonical form (4.2.3), the performances of the kernel den- 
sity estimates are favored since they are formed using a product kernel that is 
appropriate for independent feature variables as specified by (4.23). Remme 
et al. (1980) did qualify their optimistic conclusions for KDRs using product 
kernels by noting they were limited to problems in which the feature variables 
were not highly correlated. 

Another factor that would have contributed to the optimistic results of Van 
Ness and Simpson (1976) for KDRs with product normal and Cauchy kernels 
was that there were additional observations of known origin beyond the train- 
ing set for use in choosing the smoothing parameters hi in (9.6.1). These pa- 
rameters were chosen so as to maximize the overall error rate of the product 
normal KDR in its application to the additional classified data. This resulted 
in much larger values of hi than would have been obtained without these extra 
data. As shown by Specht (1%7), the nonparametric density estimate (9.3.8) 
with either a product normal or Cauchy kernel approaches, for large values 
of the smoothing parameter hi, the Euclidean distance rule. As the latter is 
the same as the sample normal-based rule formed with the knowledge that 
C = I, (or G = a21p), KDRs with product normal or Cauchy kernels have an 
advantage over rules using the general form of the sample groupcovariance 
matrices. 

Murphy and Moran (19%) thus performed a series of simulation experi- 
ments in which the product kernel estimates of the groupconditional densities 
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did not have this advantage and in which the feature variables were not always 
specified to be independent. They concluded that for independent or moder- 
ately positively correlated feature variables with multivariate normal group 
conditional distributions, sample discriminant rules based on product kernel 
density estimates are superior to sample normal-based rules with regard to 
both allocation and estimation of the posterior log odds for group member- 
ship. However, in the presence of other patterns of correlation, the kernel 
approach gave poor allocation or poor estimation of the posterior log odds, or 
both, depending on the underlying parametric configuration. 

9.6.4 Discrete Feature Data 

Comparative studies of KDRs in the case of discrete feature data have been 
undertaken by Aitken (1978), Titterington et al. (1981), and Hand (1983). 
These studies have been augmented by those for mixed feature data, where 
some variables are discrete and some are continuous. The latter studies are 
described in the next section. With the exception of the study by Tittering- 
ton et al. (1981) in which there were g = 3 groups, the studies above were 
concerned with the case of g = 2 groups. 

Aitken (1978) studied the KDR with the group-conditional densities esti- 
mated by using the Aitchison and Aitken (1976) type kernel, where for each 
group, the smoothing parameter was taken to be the same for each feature 
variable, corresponding to (9.3.10), and where it was allowed to be different 
for each variable, corresponding to (9.3.13) with cv = 2. These two KDRs, 
along with the nearest neighbor procedure of Hills (1%7), were compared 
with the predictive logistic discriminant rule (LGDR), as defined through 
(8.2.17), and the independence-based rule, as based on (7.2.2). These sample 
discriminant rules were applied to two real data sets consisting of multivariate 
binary feature variables. For one data set, the KDRs had the smallest cross- 
validated error rate, with the KDR based on (9.3.10) and the nearest neighbor 
rule of Hills (1967) being preferable to the KDR based on (9.3.13). However, 
the latter was the better of the two KDRs for the other data set, for which the 
predictive LGDR was the best. 

The extensive comparative study by Titterington et al. (1981) was referred 
to in Section 5.6.2 on its reported findings in relation to the robustness of the 
sample NLDR and NQDR for discrete feature data. The feature variables in 
their study were all categorical and were either binary or ordered. Besides 
the sample NLDR and NQDR, the study considered several other sample dis- 
criminant rules, including those based on the independence, Lancaster, latent 
class, and logistic models, and the nonparametric kernel approach. For the 
latter, the basic kernel adopted was of the form (9.3.13) for an unordered cat- 
egorical feature variable Xv and was modified as in Section 9.3.7 if X, were 
an ordered categorical variable. Two techniques were used to handle missing 
data. One involved using the kernel specifically designed for missing data (for 
ordered or unordered variables), as defined in TLgble 9.2, whereas the other 



COMPARATIVE PERFORMANCE OF KERNEL-BASED DISCRIMINANT RULES 317 

treated missing as an extra category. For a given group, the smoothing pa- 
rameters were selected by various methods, which included marginal and mul- 
tivariate choices and pseudo-&yes choice, and which allowed both common 
and variable-specific smoothing. 

In their comparisons between the KDRs and the other types of sample dis- 
criminant rules, Titterington et al. (1981) found that the performances of the 
KDRs were disappointing. The lack of success of the kernel methods, partic- 
ularly with high-dimensional data, was noted. Among the KDRs, the one with 
a common smoothing parameter for the feature variables in the formation of 
each group-conditional density and with missing treated as an extra category 
was noticeably the best. 

Hand (1983) reported the results of a comparison, along the lines of Aitken 
(1978) and Titterington et al. (1981). The kernel method was compared to 
the sample NLDR in their applications to two real data sets involving multi- 
variate binary feature variables. The kernel (9.3.10) of Aitchison and Aitken 
(1976) was used and the smoothing parameter hi common to each feature 
was selected according to two methods, pseudo-likelihood cross-valida- 
tion and minimization of an expansion of the MIS& as proposed by Hall 
(198la); see Section 9.4.6. Hand (1983) concluded that there was little to 
choose between the sample NLDR and either KDR, and between the two 
methods for selecting the smoothing parameters in the kernel density esti- 
mates. 

9.6.5 Mixed Feature Data 
Vlachonikolis and Marriott (1982); Schmitz, Habbema, and Hermans (1983a); 
and Schmitz et al. (1983b, 1985) have carried out comparative studies of KDRs 
in the case of mixed feature variables. In the first of these studies, the perfor- 
mance of the kernel and some other sample discriminant rules were compared 
on the basis of their performances when applied to two real data sets with bi- 
nary and continuous feature variables. The KDR was formed by using a kernel 
of the form (9.3.16), where a product normal kernel was used for the continu- 
ous variables and, effectively, an Aitchison and Aitken (1976) type kernel for 
the binary variables. The other sample discriminant rules in the study were the 
sample NLDR, .the sample NLDR with the sample NLDF augmented as de- 
scribed in Section 7.6.2, the logistic discriminant rule (LGDR), and the sample 
location model-based discriminant rule (LODR). They reported that the KDR 
was less effective than the other sample rules. This study demonstrated that 
provided the sample NLDF is augmented with the appropriate interaction 
terms, it is a good choice of a sample allocation rule. A similar conclusion 
was reached by Knoke (1982), although his study did not include KDRs. As 
stressed in Section 7.6.2, the usefulness of this approach of augmenting the 
sample NLDF is in its role of improving the allocatory performance of the 
sample NLDF and in the preliminary screening of interaction terms to be 
retained in the fitting of a reduced version of the location model or in the for- 
mulation of the logistic model. It is not applicable to the problem of providing 
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estimates of the discriminant function coefficients, and hence of the posterior 
probabilities of group membership. Schmitz et al. (1983a) have pointed out 
that with a large number of feature variables, detection of relevant interaction 
terms for augmenting the sample NLDF may require much effort. In such 
instances, they suggest that one may prefer to use the kernel method, which 
is an option that automatically attempts to take into account the interaction 
structures. 

In their study, Schmitz et al. (1983a) considered the sample NLDR and 
NQDR, LGDR, and KDR, where the latter used a mixed kernel based on the 
variable kernel (9.3.15) of Habbema et al. (1978). These sample discriminant 
rules were evaluated on the basis of their application to a myocardial infarc- 
tion data set, consisting of three binary and nine continuous variables. The 
KDR, sample NLDR, and LGDR were found to perform nearly identically 
and better than the sample NQDR. Schmitz et al. (1983a) remarked on how 
the optimistic bias of the apparent error rate of the KDR was greater than 
that of the other sample rules. Nonparametric methods of reducing the bias 
of the apparent error rate of a sample rule are discussed in Section 10.2. This 
tendency of the kernel method to overfit the data has been noted in other 
studies, for example, Hand (1983). It is exacerbated by small groupsample 
sizes ni relative to the number p of feature variables; see Schmitz et a]. (1985) 
on the sensitivity of KDRs to the groupsample sizes ni. 

The sample discriminant rules in the previous study were compared further 
by Schmitz et al. (1983b), using simulated mixed data that were generated from 
a four-dimensional normal distribution for each group, before three of the 
variables were discretized. The relative performance of the KDR depended 
on the similarity of the two groupcovariance matrices. In the unequal situa- 
tion, the KDR performed as well as or better than the sample NQDR, which 
was superior to the sample NLDR. For equal group-covariance matrices, the 
sample NJDR was found to be best with the KDR again being better or as 
good as the sample NQDR. As in the other studies referred to here and in 
the previous section, the LGDR provided comparable allocation to that of the 
sample NLDR. 

These four sample discriminant rules, along with the independence-based 
rule, were investigated further by Schmitz et al. (1985) in a simulation study 
with mixed feature variables. Whereas the earlier study of Schmitz et al. 
(1983b) indicated a preference for the KDR over the sample NQDR, the re- 
sults of this later study reversed this preference. Schmitz et al. (1983b) did 
comment that the fact that the sample NQDR was never the best rule in their 
study may be explained by the absence of substantial nonlinearities in the Iike- 
lihood ratios for the generated data. Indeed, in the later study of Schmitz et al. 
(1985), the sample NQDR generally outperformed the KDR in the presence 
of nonlinearities in the likelihood ratios. 

Schmitz et al. (1985) observed that remarkably good results were obtained 
by the sample rule that corresponded to the better of the sample NLDR and 
NQDR in any given situation. This in itself is a strong recommendation for 
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the regularized discriminant approach of Friedman (lW), as formulated in 
Section 5.5. For as seen there, this rule is essentially a compromise between 
the sample NLDR and NQDR, as decided automatically from the data. 

9.7 NEAREST NEIGHBOR RULES 

9.7.1 Introduction 

As noted by Fix and Hodges (1951), nearest neighbor allocation is based on 
a variant of nearest neighbor density estimation of the groupconditional den- 
sities. Suppose that f l ( x )  is estimated from (9.3.1) by the naive kernel density 
estimator fiK’(x), where Kp is the uniform density over the neighborhood n/l 
taken large enough so as to contain a given number k of points in the com- 
bined sample Xij (i = 1,2; j = 1, ..., ni) .  The same neighborhood r/l is then 
used to construct the naive kernel density fi’R)(x) of fz(x). Then it can be 
seen that the allocation rule based on the relative size of j !K’(x) and f iK ) (x )  

is equivalent to that based on the relative size of k l / q  and kz/nz, where kj 
is the number out of the k points from the combined sample in the neighbor- 
hood & of x ,  that come from Gi (i = 1,2). 

For k = 1, the rule based on the relative size of k l /n l  and kz/nz is precisely 
the 1-NN discriminant rule (nearest neighbor rule of order l), which assigns 
an entity with feature vector x to the group of its nearest neighbor in the 
training set. For k > 1, their approach incorporates a variety of so-called k- 
NN discriminant rules, including simple majority vote among the groups of a 
point’s k nearest neighbors and modifications that take differing groupsample 
sizes into account; see Silverman and Jones (1989). 

9.7.2 Definition of a R-NN Rule 

We now give a formal definition of a kth nearest neighbor (k-NN) rule within 
the regression framework, as adopted by C. J. Stone (1977) in his impor- 
tant paper on consistent nonparametric regression. For an unclassified entity 
with feature vector x ,  consider estimates of its posterior probabilities of group 
membership having the form 

n 

% ( x ; t )  = C w n j ( x ; t x ) z i j  (i l,...,g), (9.7.1) 

where Wnj(X; tx )  are nonnegative weights that sum to unity and that may de- 
pend on x and the training feature vectors XI,...,&, but not their associ- 
ated groupindicator vectors 21,. . .,Zn. As previously, t: = (XI,. . .,x,,) and t‘ = 
(yl, ..., yn), where yj = ( x )  2‘)’ for j = 1 ,..., n. Rank the n training observa- 
tions y1,. . .,yn according to increasing values of llxj - x I I  to obtain the n in- 
dices R1,.  . .) R,. The training entities j with Rj 5 k define the k nearest neigh- 
bors of the entity with feature vector x. Ties among the Xj can be broken by 

j=1 

’ j. 
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comparing indices, that is, if JIXjl - xI1 = )IXj2 - xll, then Rj, < Rjr if j l  < j 2 ;  

otherwise, Rjl > Rjz. In C. J. Stone's (1977) work, any weight attached to kth 
nearest neighbors is divided equally when there are ties. 

If W n j  is a weight function such that Wnj(x;tx) = 0 for all Rj > k, it is 
called a k-NN weight function. The sample rule obtained by using the esti- 
mate ?i(X;t) with these weights in the definition (1.4.3) of the Bayes rule is a 
k-NN rule. For example, if k = 1, then 

Wnj(X;t) = 1, if Rj = 1, 

= 0, if Rj > 1, 

so that 

These estimates of the posterior probabilities of group membership imply that 
in an outright allocation of the unclassified entity with feature vector x, it is 
assigned to the group of its nearest neighbor in the training set. 

.Pj(x;t) = Z ~ R ~  (i = 1, ...,g). 

In the case of k > 1 with uniform weights, where 

w,j(X;t)= l lk ,  if Rj 5 k, 
= 0, if R j > k ,  

we have that 
k 

j =1  

implying that the entity with feature vector x is allocated on the basis of simple 
majority voting among its k nearest neighbors. 

The obvious metric on RP to use is the Euclidean metric. This metric, how- 
ever, is inappropriate if the feature variables are measured in dissimilar units. 
In which case, the feature variables should be scaled before applying the Eu- 
clidean metric. A recent study on the influence of data transformations and 
metrics on the k-NN rule is 'Ibdeschini (1989). Also, Myles and Hand (1990) 
have considered the choice of metric in NN rules for multiple groups. 

Nearest neighbor rules with a reject option were introduced by Hellman 
(1970); see Loizou and Maybank (1987) for some recent results on the error 
rates of such rules. Luk and MacLeod (1986) have proposed an alternative 
nearest neighbor rule in which neighbors are examined sequentially in order 
of increasing distance from the unclassified feature data. In some other work 
on NN rules, Wojciechowski (1987) has described rules of this type for mixed 
feature data, and Davies (1988) has investigated whether NN rules take proper 
account of the group-prior probabilities. 

9.7.3 Asymptotic Results for Error Rates of k-NN Rules 

We let ec(F, k; t) and eu(F, k )  denote the overall conditional and uncondi- 
tional error rate, respectively, of a k-NN allocation rule formed from the 
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training data t. Devroye and Wagner (1982) have provided a concise account 
of nearest neighbor methods in discrimination. As they point out, most of 
the results dealing with nearest neighbor rules are of the asymptotic variety, 
concerned with the limiting behavior of ec(F,k;t), as n tends to infnity. The 
usefulness of these results lies in the fact that if ec(F, k ;  t) converges to a value 
favourable relative to the error of the Bayes rule, then there is hope that the 
rule will perform well with large-sized training sets. 

The first result of the type above, and certainly the best known, is that of 
Cover and Hart (1%7), who showed that 

eu(F,k) ek, (9.7.2) 

as n -+ 00, if the posterior probability of ith group membership Ti(%) has an al- 
most everywhere continuous version for i = l,. . . ,g. In (9.7.2), ek is a constant 
satisfying 

for k = 1, where eo(F) denotes the optimal or Byes error rate. For arbitrary 
k,  ek satisfies 

eo(F) 5 ek 5 2eo(F){ 1 - eo(F)} 5 2eo(F) (9.7.3) 

eo(F) < ek 5 akeo(F){ 1 - eo(F)} 5 2eo(F), (9.7.4) 

ec(F, k;T)  + ek (9.7.5) 

where a k  1 1 as k 4 00. For these same assumptions, it is also known that 

in probability, as n -+ 00 (Wagner, lWl), with convergence being with proba- 
bility one for k = 1 (Fritz, 1975). 

The result (9.7.3) shows that any other allocation rule based on a training 
sample of infinite size can cut the error rate of the 1-NN rule at most by half. 
In this sense, half of the available information in a training set of infinite size 
is contained in the nearest neighbor. 

If k is allowed to vary with n, then C. J. Stone (1977) showed that for any 
distribution function F of Y = (X',Z')', 

ec(F,k;T) -t eo(F) in probability, as n + 00, (9.7.6) 

if k = kn + 00 and kn/n + 0, as n -+ 00. This distribution-free result extends 
to a large class of nearest neighbor rules, as discussed by C. J. Stone (1977). 
As remarked by Devroye and Wagner (1982), because of its sheer technical 
achievement, the result (9.7.6) rivals the original accomplishment of Fix and 
Hodges (1951), who proved Bayes risk consistency of nearest neighbor rules 
(with uniform neighbor weights) under analytic assumptions on the distribu- 
tion of Y. 

Devroye (1981a) has since shown that if one also assumes that 

k*/(logn) 4 00, 

as n 3 00, then (9.7.6) holds with the convergence being with probability one. 
Following the distribution-Eree work of C. J. Stone (1977), Devroye (1981b) 
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showed that the results (9.7.4) and (9.7.5) for fixed k can be established with- 
out any condition on the distribution of Y. For additional results on the large- 
sample behavior of error rates of k-NN rules, the reader is referred to De- 
vroye and Wagner (1982) and Devijver and Kittler (1982, Chapter 3) and the 
references therein. 

9.7.4 Finite Sample Size Behavior of Error Rates of R-NN Rules 

For a training sample size of finite size, a R-NN rule can have an error rate 
that is much more than twice the optimal error eo(F). Recently, Fukunaga 
and Hummels (1987a) have considered eu(F, k) - eo(F) in training samples 
of finite size. They termed this difference the bias of ec(F, k;T), which it is 
if the conditional error rate ec(F,k;T) of the k-NN rule of interest is viewed 
as an estimator of the optimal error eo(F). Up until the work of Fukunaga 
and Hummels (1987a), most of the work in reducing the size of the bias had 
been concentrated on the selection of an optimal metric (Short and Fukunaga, 
1981; Fukunaga and Flick, 1984). 

Fukunaga and Hummels (1987a) were able to give expressions that relate 
the bias of 1-NN and 2-NN errors to the sample size n, dimensionality, met- 
ric, and groupconditional distributions. These expressions isolated the effect 
of the sample size n from that of the distributions, giving an explicit relation 
showing how the bias changes as n is increased. It was shown that, in many 
cases, increasing n is not an effective way of estimating the asymptotic errors 
of NN rules. Fukunaga and Hummels (1987b) have considered ways of modi- 
fying k-NN and kernel-based rules to reduce this bias. 

Previously, Cover (1968) had investigated the size of eu(F,k)-ek in 
the univariate case of p = 1. He showed that it is bounded by a function 
of order 0(r2), assuming that T i ( X )  is continuous almost everywhere (i = 1 
, . . . ,g). Wagner (1971) tackled this problem by providing an exponential 
bound on 

pr{Iec(F,k;T)-- ekl> c), 

where c is a constant. This bound was improved by Fritz (1975) under signif- 
icantly reduced conditions on the underlying groupconditional distributions. 
As the actual error ec(F,k;t) is unknown in practice, Rogers and Wagner 
(1978) and Devroye and Wagner (1979a, 197%) considered bounds on the dif- 
ference between the asymptotic error rate ek of a k-NN rule and its apparent 
error rate before and after cross-validation. Devroye (1982) has given a gener- 
alization of the aforementioned work of Cover (1%8). 

Bailey and Jain (1978) proved that the asymptotic error rate of the un- 
weighted k-NN rule (i.e., the k-NN rule with uniform weights) is smaller than 
that of any weighted k-NN rule (i.e., with nonuniform weights). On this prob- 
lem of unweighted versus weighted k-NN rules for finite n, Fukunaga and 
Flick (1985) used both distance-weighted and unweighted distance measures 
in NN estimation of the Bayes error, and obtained lower error rates when 
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using the weighted measures. More recently, MacLeod, Luk, and Tittering- 
ton (1987) argued intuitively that for fmite n, a weighted k-NN rule may in 
some cases have a lower error rate than the traditional unweighted rule. They 
confirmed this conclusion analytically in a particular example. 

Goin (1984) has studied the group bias of k-NN rules, defined to be 4.- 
eu(F, k), where the latter is evaluated in the particular case of no group dlf- 
ferences. 

9.7.5 Choice of k 

It was seen that the result (9.7.6) holds only if k is chosen such that k -4 00 

and k/n -+ 0, as n -+ 00. Hence, in practice, with small to moderate size train- 
ing samples, the choice of k is important (Fukunaga and Hostetler, 1973). 
More recently, Enas and Choi (1986) looked at this problem in a simulation 
study performed to assess the sensitivity of the k-NN rule to the choice of 
k in the case of g = 2 groups. In their study, k was set equal to [ i /n ]  for 
j = 0,1,. . ., 5, when [u] denotes the closest odd integer to u. They reported 
that their study suggests the following rough guidelines in selecting k for op- 
timal performance of the k-NN rule with uniform weights. For comparable 
group-sample sizes, choose k to be approximately n3I8 or n2I8, depending on 
whether there are small or large differences between the groupcovariance 
matrices. These two recommended choices of k, depending on the similar- 
ity of the underlying groupcovariance structures, are reversed for disparate 
groupsample sizes. 

On the algorithmic problem of searching for nearest neighbors, Fukunaga 
and Narendra (1975) used a branch and bound algorithm to increase the 
speed of computing the nearest neighbors. Other algorithms for finding near- 
est neighbors have been suggested by Friedman, Baskett, and Shustek (1975), 
among several others. More recently, Niemann and Goppert (1988) and Bryant 
(1989) have described efficient algorithms. for the implementation of nearest 
neighbor rules. 

9.8 TREE-STRUCTURED AWCATION RULES 

9.8.1 Introduction 

In practice, missing data and noisy feature variables can have a detrimental 
effect on the performance of nearest neighbor rules. Also, as remarked in 
Panel on Discriminant Analysis, Classification, and Clustering (1989, Section 
3.2.4), another criticism that might be made of estimates of the form (9.7.1) 
is that the weights are insufficiently adaptive because they ignore the known 
group-indicator variables z1,. . .,z,, of the training feature data XI,. . .,x,. An 
extension to the case where the weights wnj(x;t) depend on 21, ..., z,, as well 
as XI,. . . ,x,, was made by Gordon and Olshen (1980). They considered tree- 
structured recursive partitioning rules, which are now discussed. 
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A rather different approach to the allocation problem as considered up to 
now is to portray the rule in terms of a binary tree. The tree provides a hi- 
erarchical representation of the feature space. An allocation is effected by 
proceeding down the appropriate branches of the tree. 

nee-structured rules are the subject of Breiman et al. (1984). The earlier 
work is often referred to as AID (automatic interaction detection), and the 
contributions by Breiman et al. (1984) are known by the acronym CART (clas- 
sification and regression trees). The software CART (1984) is available for 
implementing these latter contributions. Their line of development follows 
work started by Morgan and Sonquist (1963) and Morgan and Messenger 
(1973). Other relevant references include T. W. Anderson (1.966), Friedman 
(1977), and Gordon and Olshen (1978, 1980). The evolution of tree-structur- 
ed rules has taken place in the social sciences and the fields of electrical en- 
gineering, pattern recognition, and most recently, artificial intelligence. As 
discussed in Breiman et al. (1984), CART adds a flexible nonparametric 
tool to the data analyst’s arsenal. Its potential advantages over traditional 
approaches are in the analysis of complex nonlinear data sets with many var- 
iables. 
As tree-structure rules are treated in depth in Breiman et al. (1984), we 

will only give a brief sketch of them here. We will also outline a new method 
of tree-structured allocation FACT (fast algorithm for classification trees), as 
proposed by Loh and Vanichsetakul (1988). 

9.8.2 Basic Terminology 

Bee-structured rules or, more correctly, binary tree-structured rules are con- 
structed by repeated splits of subsets of the feature space into two descendant 
subsets, commencing with the feature space itself. The terminal subsets form 
a partition of the feature space. Each terminal subset s is associated with a 
group assignment r(s).  If r(s) = i, then an entity with feature vector x leading 
to terminal subset s will be assigned to group Gi (i = 1,. . . ,g). There can be 
two or more terminal subsets giving the same allocation. 

In the terminology of tree theory, the subsets of the feature space are called 
nodes. Those subsets that are not split in the final version of the allocation tree 
are called terminal nodes. The root node s1 is the entire feature space. The 
set of splits, together with the order in which they are used, determines what 
is called a binary tree S. 

In order to describe the splitting procedure and the subsequent pruning of 
the tree, we need the following notation. Following Breiman et al. (1984), let 

Pi, = zjnj(s)/nj, (9.8.1) 

where 
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and &(xi) equals one or zero, according as the feature vector X j  falls in node 
s or not. That is, t t i (s)  is the number of the entities in the training set that 
are from group Gj and that have feature observations in the node s. Hence, 
A, can be viewed as the resubstitution estimate of the joint probability that 
an entity belongs to Gi and has a feature vector in node s. 

The quantity 
P 

is thus an estimate of the marginal probability that the feature vector will fall 
in node s. The corresponding estimate of the conditional probability that an 
entity belongs to Gi, given its feature vector is in node s, is, therefore, 

f i ( ~ )  = Pi.,/&, (i = I,...,g), 

which reduces to 

(9.8.2) 

9.83 Outline of CART 
Given the training data t, CART constructs the binary decision tree by re- 
cursively partitioning the training data, and hence the feature space, in a for- 
wardbackward stepwise manner. The idea is to “grow” a large tree in the 
first instance, which ensures against stopping too early. The bottom nodes are 
then recombined or “pruned” upward to give the final tree. The degree of 
pruning is determined by cross-validation using a cost-complexity function that 
balances the apparent error rate with the tree size. Because CART recursively 
partitions the training data into subsets of ever decreasing size, it requires n to 
be very large in order to maintain reasonable sample sizes at each successive 
node. Breiman et al. (1984) proved that under mild regularity conditions, rules 
based on recursive partitioning are Bayes risk consistent. 

With CART, an initial tree is produced as follows. Starting at the root node 
s1, the best splitting feature variable, say, xv, and its cutoff point kv are chosen 
to maximize the group purity of the two daughter nodes defined by the split 

xv < kv. (9.8.3) 

This same procedure is then recursively applied to the subset of the training 
observations associated with the left split (those that satisfy (9.8.3) at the root) 
and to the subset associated with the right split (those that do not satisfy (9.8.3) 
at the root), producing four new nodes. Each of these nodes is then split, and 
so on. The splitting can be continued until all nodes remaining to be split are 
pure (i.e., they contain observations all from the same group). The allocation 
rule r(s) at each terminal node s is taken to be the Bayes rule formed with 
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the posterior probabilities of group membership estimated by f l ( s ) ,  . . .,.Pg(s), 
as defined by (9.8.2). 

In problems where linear structure is suspected, (9.8.3) can be replaced by 
splits of the form 

a'xv < k 

for some vector a and cutoff point k. Here xy is a subvector containing a 
subset of the continuous variables in the full feature vector x. 

In other variations of (9.8.3), the allowable splits can be extended to include 
Boolean combinations where a Boolean structure is suspected. For example, 
in medical diagnosis, a decision is often made on the basis of the presence 
or absence of a large number of symptoms, which tend to occur in certain 
combinations. Another example is in the allocation of chemical compounds 
through the peaks in their mass spectra; see Breiman et al. (1984, Section 
5.2.). Also, Marshall (1986) has tackled some of the difficulties in recursive 
partitioning in the presence of a Boolean combination structure. 

A decision tree constructed in the manner above will produce an accurate 
allocation rule only if the underlying groupconditional distributions do not 
overlap. If this is not so, then the splits at the lower levels of the tree will be 
determined mainly by sampling fluctuations, with a consequent deterioration 
in allocatory capacity. To guard against this a backward recursive node recom- 
bination strategy is employed on the tree obtained in the first instance by the 
successive splits into pure terminal nodes. 

It can be seen that the crux of the problem is how to determine the splits 
and the terminal nodes. In CART, splitting procedures are proposed on the 
basis of an impurity measure m(s) associated with each node s. If 3 denotes 
the current set of terminal nodes of the tree S, set 

M ( s )  = m(s)B,. 

Then the tree impurity MS is defined by 

Ms = ~ M ( S )  = C m(~)Bs .  
S € S  S€S 

Breiman et al. (1984) showed that selecting the splits to minimize (9.8.4) is 
equivalent to selecting the splits to maximize 

m(s) - BsRm(s,) - psLm(sL), (9.8.5) 

where SR and s~ denote the splits of each node s of the tree S. For the im- 
purity measure m(s), they used the so-called Gini index, which for zero-one 
costs of misallocation is 

(9.8.4) 
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Splitting according to this criterion is continued until all terminal nodes are 
either small or pure or contain only identical feature measurements. Let S- 
denote a tree obtained in this manner. The next step is to prune this tree S-. 

9.8.4 Minimal Cost-Complexity Pruning 

The initial intent is to produce a sequence of subtrees of S-, which eventually 
collapse to the tree (s1) consisting of the root node. 'RI describe the pruning of 
a tree as adopted by Breiman et al. (1984), we need to introduce the following 
terms. 

A branch S, of a tree S with root node s E S consists of the node s and all 
descendants of s in S. Pruning a branch S, from a tree S consists of deleting 
from S all descendants of s, that is, cutting all of Ss except its root node. If 
S" is obtained from S by successively pruning off branches, then S" is called 
a pruned subtree of S and denoted by S" 4 S. It has the same root node as S. 

The complexity of any subtree S of S,, is defined to be $1, the number of 
terminal nodes in S. The cost complexity of S is defined to be 

Ca(S) = A(S) + ~~131, 
where A is the apparent error rate of the S-based rule in its application to 
the training data t, and a is a positive real number called the complexity 
parameter. 

The smallest minimizing subtree S(a)  for complexity parameter a is defined 
by the conditions 

Ca(S(a)) = min Ca(S) (9.8.6) 
s5smaa 

and 
if Ca(S) = Ca(S(a)), then S(a) 5 S. (9.8.7) 

This definition breaks ties in minimal cost complexity by selecting the smallest 
minimizer of C,. 

Breiman et al. (1984) showed that for every a, there exists a smallest min- 
imizing subtree as defined by (9.8.6) and (9.8.7). Although a runs through a 
continuum of values, there are at most a finite number of subtrees of S-. 
They showed how a decreasing sequence of subtrees 

s1 t s2 t s3 t * . a  t (s1) 

can be obtained, where there is a sequence {ak} with a1 = 0 and ak < ak+l 
(& 2 1) for which 

S(a) = S(ak) = Sk for ak 5 a < ak+l. 
The problem is now reduced to selecting one of these subtrees. This can 

be performed on the basis of their apparent error rates. Thus, if Sk,, is the 
optimum subtree in this sense, then 

A(&,) = mid(&) .  
k 
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As the apparent error rate produces too optimistic an estimate of the actual 
error of a discriminant rule, the choice of subtree is made after cross-validation 
of the apparent error rates. For this task, it is common to use cross-validation 
with 10 or 25 observations removed at a time. Because of the dual role of 
cross-validation in error-rate estimation and tree construction, it has been 
noted that the assessed mror rate of the rule based on the final pruned tree 
is not genuine (Loh and Vanichsetakul, 1988, page 176). However, Breiman et 
al. (1984, page 81) and Breiman and Friedman (1988) have reported that the 
relative effect is minor. As considered by Breiman and Friedman (1988), the 
optimal tree-pruning algorithm described above is probably the most impor- 
tant contribution of Breiman et al. (1984) to the evaluation of tree-structured 
methodology, for it intends to produce right-sized trees reliably. 

In practice, there may be missing measurements on some of the feature 
variables of the classified entities in the training set or the unclassified entities 
to be allocated. CART handles both of these problems using surrogate splits 
to proceed down a tree. If the best split of node s is the split u on the feature 
variable x y ,  find the split U* on the feature variables other than x y  that is most 
similar to u. The split U* is called the best surrogate for u. Similarly, define 
the second best surrogate, and so on. If an entity has a missing value for xv ,  
the best surrogate split is used. If it is missing an observation on the variable 
defining the best surrogate split, the second best surrogate split is used, and 
so on. The reader should consult Breiman et al. (1984, Chapter 5) for further 
information on surrogate splits and also other aspects of CART, such as the 
question of variable ranking. 

9.8.5 Tree-Structured Rules via FACT Metbad 

Loh and Vanichsetakul (1988) have proposed a new method of producing a 
tree-structured allocation rule, known as FACT Its splitting rule uses normal- 
based linear discriminant analysis with F ratios to decide when to split and 
when to stop splitting. By sacrificing CART'S thorough nonparametric ap- 
proach with the use of this normal theory-based splitting rule, execution speed 
is greatly increased. 
To avoid near singular groupcovariance matrices, a principal-component 

analysis, described in Section 6.6.2, is performed at each node. Those principal 
components whose eigenvalues exceed c times the largest eigenvalue (c = 0.05 
in the examples of Loh and Vanichsetakul, 1988), are retained. A split is se- 
lected at the root node using the sample NLDR, as defined by (3.3.2) and 
(3.3.6). The only difference here is that the full feature vector x and its sam- 
ple group-means and common covariance matrix are replaced by the vector of 
retained principal components and corresponding sample moments. Similarly, 
a split is made at a subsequent node s, except that the ith group-prior prob- 
ability Xj is now replaced by the estimate .Pi, defined by (9.8.2), which is the 
estimated posterior probability that an entity belongs to Gi, given its feature 
vector is in node s. 



TREE-STRUCTURED ALLOCATION RULES 329 

The F ratio for between- to within-group sums of squares (see Section 
6.5.2) is used to select the variable for splitting. A split is made on the vari- 
able with the largest F ratio provided it exceeds some threshold Fo. Loh and 
Vanichsetakul (1988) commented that Fo = 4 usually, because it coincides with 
the F-to-enter value in the stepwise discriminant analysis program in BMDR If 
the largest F ratio is not greater than F,, suggesting that the group means are 
relatively close, then Loh and Vanichsetakul (1988) suggest looking for splits 
based on dispersion. this end, each variable is replaced by its absolute dis- 
tance from the sample mean of its group of origin. Polar coordinate splits are 
introduced to deal with possible radial symmetry. 

A c-category categorical variable is converted into c - 1 zero-one variables, 
and then replaced by the first canonical variate for this c - 1 dimensional 
space. Missing data are handled by analogy to maximum likelihood under the 
assumption of normality. 

9.8.6 Example on CART and FACT Methods 

Loh and Vanichsetakul (1988) have compared their FACT method with the 
CART method of Breiman et al. (1984); see also the response of Breiman and 
Friedman (1988). As part of their comparison, Loh and Vanichsetakul (1988) 
contrasted CART and FACT in their application to the 1970 Boston housing 
data gathered by Harrison and Rubinfeld (1978). This example is reported 
here to illustrate the practical use of these two methods for producing tree- 
structured rules. 

The Boston housing data became well known when they were extensively 
used in Belsley, Kuh, and Welsch (1980). Breiman et al. (1984) fitted a re- 
gression tree to these data using CART This set consists of n = 506 cases 
(census tracts) and 14 variables, including the median value (MV) of 
homes in thousands of dollars. This variable was used to define g = 3 groups: 
low (GI) if log(MV) 5 9.84, high (6) if log(MV) > 10.075, and medium 
(G2) otherwise. The n = 506 cases belong in roughly equal proportions to 
these three groups. The p = 13 feature variables are CRIM, crime rate; DIS, 
the weighted distance to employment centres; ZN, the percentage of land 
zoned for lots; .CHAS = 1 if on Charles River and CHAS = 0, otherwise; 
AGE, the percentage built before 1940, B = (Bk - 0.63)2, where Bk is the 
proportion of blocks in the population; INDUS, the percentage of nonretail 
business; RAD, accessibility to radial highways; RM, the average number 
of rooms; NOX, nitrogen oxide concentration; TAX, tax rate; LSTAT, 
the percentage of lower-status population; and P/r, the pupiyteacher 
ratio. 

The tree rules produced by CART and FACT in their application to this 
data set are presented in Figures 9.6 and 9.7. In Figure 9.6, there is the bi- 
nary tree rule produced by the CART with pruning by tenfold cross-validation 
and with equal costs of misallocation. In this figure, nonterminal nodes are 
indicated by circles and terminal nodes by squares. The corresponding tree 
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LSTAT < I 4  4’ 

FIGURE 9.6. nee from the CART method. ‘Ripla beside nodes are the node decompositions; 
for example, there are 167 GI cases, 173 Gz cases, and 166 Go cases in the root node. (mom Loh 
and WchretaM,  I=.) 

obtained with FACT is given in Figure 9.7, using FO = 4 and equal misallo- 
cation costs. The CART and FACT trees took 8.5 minutes and 30 seconds, 
respectively, to build. 
Both trees, which were obtained using univariate splits, split on the variable 

LSTAT first. This variable effectively splits the feature space into two pieces in 
Figure 9.6 and into five pieces in Figure 9.7. The next variables split are RM 
and NOX with CART and RM and AGE with FACT. The CART tree splits 
NOX if LSTAT > 14.4, and FACT splits AGE if LSTAT > 15.7. This observa- 
tion, along with the variable importance rankings given in Table 13 of Loh and 
Vanichsetakul (1988), suggests that NOX and AGE are proxies for each other 
if LSTAT > 15. 

Figure 9.8 gives the FACT tree after transformation of five of the feature 
variables, according as log(LSTAq, RM2, NOX2, log(RAD), and log(D1S). 
The CART tree after transformation is indistinguishable from that in Figure 
9.6, to the accuracy shown. This is because CART is essentially invariant of 
monotone transformations in the ordered variables when univariate splits are 
used. The FACT2 tree is shorter than the FACTl tree and one of the cut 
points at the root node is the same as the cut point at the root node of the 
CART tree. 

The apparent allocation rates of the CART and FACT rules in their a p  
plication to the training data are displayed in Table 9.4. In this table, FACTl 
refers to the tree rule in Figure 9.7 and FACT2 to the rule in Figure 9.8. It 
can be seen the apparent error rates are similar, with the CART tree hav- 
ing slightly the lowest overall rate. However, as pointed out by Breiman and 
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FIGURE 9.7. Pee from the FACT method. Piples beside nodes are the node decomposition. 
(From Loh and Wnichsetakul, 1988.) 

FIGURE 9.8. Pee from the FACT method, using transformed feature variables. @om Loh and 
Wnichsetakul, 1988.) 

Friedman (1988) in their comment on the comparative study of CART and 
FACT made by Loh and hichsetakul (1988), the data sets used in this study 
should not be considered as serious test beds for accuracy comparisons, as 
they are ones on which almost any allocation rule would do fairly well. For 
example, the Boston housing data are essentially a three/four variable data 
set. 
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TABLE 9.4 Apparent Allocation Rates for the Three ' h e  Rules CART, FACT1, 
and FACT2 

Predicted Grouping 

CART FACT1 FACT2 

Actual G1 G2 C3 G1 GI G3 G1 G2 G3 
~~ ~ ~ 

GI 128 37 2 128 38 1 141 23 3 
G2 10 144 19 14 127 32 23 116 34 
G3 2 29 135 2 26 138 5 25 136 

Total 140 210 156 144 191 171 169 164 173 

81.3% correct 77.7% correct 77.7% correct 

Sowe: Adapted from Loh and Vanichsetakul(1988). 

Loh and Vanichsetakul (1988) prefer multiway splitting as with FACT than 
binary splitting as with CART. In particular, they have argued that interpre- 
tation may be easier if the root node is able to be decomposed into as many 
subnodes as the number of groups. The node decompositions of the FACT1 
and FACT2 trees in Figures 9.7 and 9.8 show how typically the first split pro- 
duces subtrees (here three), each with one group dominant. Subsequent splits 
on a subtree merely try to separate minority cases. Later nodes do not have 
three splits each, because the F ratios are weighted by the estimated group 
priors for the nodes. To understand where most of the cases in a particular 
group go, the tree may be read top-down. For example, in Figure 9.8, the 
training cases are split into three subsets according to the value of the vari- 
able LSTAT (a) housing values are high (group G3) in more affluent tracts 
(left branch of tree); (b) values in less affluent tracts (right branch) are either 
low (GI) or medium (Gz), depending on age; (c) tracts with average values 
of LSTAT (middle branch) are mostly white. In the latter case, housing values 
are determined largely by the number of rooms. 

On multiway versus binary splits, Breiman and Friedman (1988) have ar- 
gued that multiway splitting does not make an effective use of the conditional 
information potentially present in the tree as does binary splitting. Concern- 
ing interpretation, they have pointed out how it is difficult to beat the simple 
nonprametric binary recursive partitioning used by CART in its production 
of parsimonious trees. 

9.9 SOME OTHER NONPARAMETRIC DISCRIMINANT 
PROCEDURES 

9.9.1 Partial Discrimination via Rank Methods 

In Section 5.7.2, consideration was given to the use of a rank cutoff point as 
proposed by Randles et al. (1978a) in order to control the balance between the 
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error rates of the sample NLDR or NQDR when applied with respect to g = 2 
groups. This rank method had been used previously by Broffitt et al. (1976) 
to bound simultaneously both unconditional error rates of a partial allocation 
rule, which has the option of not making an assignment for a highly question- 
able value of x on an unclassified entity. We now consider their formulation 
of partial discriminant analysis in the case of g = 2 groups. 

As mentioned in Section 1.10.2, Quesenberry and Gessaman (1968) had 
proposed a nonparametric approach to partial discrimination, using tolerance 
regions. The idea of using tolerance regions for allocation was first suggested 
by T W. Anderson (I%), although it is implicit in the work of Fix and Hodges 
(1951). Let Ai denote a region in the feature space that is highly suggestive of 
an entity belonging to group Gi (i = 1,2). Then a partial allocation rule can 
be formed that assigns an unclassified entity with feature vector x to GI if 

X E A ~ ~ A ~ ,  

x E ~ ~ n & .  
and to G2 if 

Thus, no allocation is made if x falls in the region 

Quesenbery and Gessaman (1W) suggested using tolerance regions to con- 
struct the regions AI and A2. 

This formulation, however, does not take into account the direction of 
group G3-i when defining Aj (i = 1,2). As a consequence, such a rule will 
often be conservative and will fail to allocate many realizations of X. 'Ib re- 
duce the conservative nature of this partial allocation rule, Broffitt et al. (1976) 
introduced a rank method that takes into account the direction of the groups. 
That is, the rank approach creates 21 in the direction of G2 and 2 2  in the di- 
rection of GI, and so increases the probability that an allocation will be made. 

If this rank method is applied with the sample NLDF t(x;&) as in Section 
5.7.2, then A; is defined to be 

Aj = {X : Rj(x;t) > ki}  (i = 1,2), 

where the rank Rj(X;t) is as defined in Section 5.7.2. The constant ki (kj 5 
nj + 1) can be so specified to impose a bound aj on the unconditional error 
rate e q ( F )  specific to group Gi, regardless of the underlying groupconditional 
distributions. This can be seen from 

eui(F) pr{X E 443-i n2ii) 
6 pr{X E 2;) 
= [kj]/(nj + 1) (i = 1,2) (9.9.1) 

because, as noted in Section 5.7.2, Ri(X,T) has a uniform distribution over 
1, ..., nj + 1, conditional on X belonging to Gj. In (9.9.1), [ki] denotes the 
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greatest integer less than or equal to ki. By setting 

aj = [kj]/(ni + 1) (i 1,2), 

a partial allocation rule is obtained with both unconditional error rates bound- 
ed simultaneously as desired. 

In this rank method of partial allocation as presented above, the sam- 
ple NLDF t(x;&) can be replaced by essentially any discriminant function. 
The basic requirement is that the chosen discriminant function depends on 
the training data t only through statistics that are symmetric functions of 
~11,.  ..,XI,,* and of x21, .. .,xznz. In practice, Broffitt et al. (1976) suggest try- 
ing a variety of different types of discriminant functions. 

Beckman and Johnson (1981) proposed a modification of the rank method 
of Broffitt et al. (1976), which imposes constraints on the unconditional error 
rates given that an allocation has been adopted. Broffitt (1982) and Ng 
and Randles (1983) have considered an extension of the rank method to 
g > 2 groups. For further information, the reader is referred to the review 
by Ng and Randles (1986) on partial discrimination by nonparametric pro- 
cedures. 

Conover and Iman (1980) proposed a nonparametric allocation rule by first 
ranking the feature data and then computing the sample NLDF or NQDF on 
the basis of these ranks. The motivation behind this approach is that hopefully 
the rank vectors will appear more like normal data than the original feature 
observations xi. This approach has been considered also by Koffler and Pen- 
field (1982). 

9.9.2 Nonprametric Discrimination with Repeated Measurements 

The construction of a nonparametric allocation is facilitated if there are inde- 
pendent repeated measurements available on the entity to be allocated. Vari- 
ous nonparametric approaches in the situation of repeated measurements have 
been considered by Kanazawa (1974), Das Gupta (1964), Hudimoto (1964), 
Gupta and Kim (1978), Lin (1979), and Haack and Govindarajulu (1986), 
among others. 

One approach in this situation has been to use standard nonparametric 
rank tests to devise allocation rules, following the idea of Das Gupta (1964). 
He proposed a rule that allocates an entity to Gi if lWjl is the smaller of 
W1 and W2, where Wj is the Wilcoxon statistic based on Xj1 , .  ..,xini and the 
repeated measurements xml, .. . ,Xmk on the unclassified entity (i = 1,2). Hudi- 
mot0 (1964) modified this rule by using wl. instead of 1wl.l when F ~ ( x )  2 F2(x) 
for all x .  Govindarajulu and Gupta (1977) considered allocation rules based 
on linear rank statistics for the g-group problem. For a more detailed account 
of the work above and for additional referees, the reader is referred to Das 
Gupta (1973) and the aforementioned survey article on nonparametric dis- 
crimination by Broffitt (1982). 
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9.93 A Nonmetric Approach to Linear Discriminant Analysis 

Recently, Raveh (1989) proposed a metric approach to linear discrimination 
between g = 2 groups. Allocation is performed on the basis of the linear com- 
bination a'x, where a is chosen so that as many of the discriminant scores 
d x l j  ( j  = 1,. . ., nl )  as possible will be greater than a'xa (k = 1,. . .,n2). The 
procedure chooses that a that maximizes an index of separation between the 
groups. The method is nonmetric, since the index to be maximized is based on 
the set of inequalities 

d x l j  2 a'xa (i = 1 ,..., nl; k 1 ,..., n2). (9.9.2) 

The inequalities (9.9.2) are equivalent to 

a'xlj - a'xzk la'xlj - a'xal (j = I,. . .,n1; k = I, .. .,n2). (9.9.3) 

The index of separation is 

j=l k-1 

It varies between -1 and 1 and is equal to 1 if (9.9.2) or (9.9.3) holds. The 
extreme values fl occur when there is no overlap between the discriminant 
scores P'xlj ( j  = 1,. . ., n l )  and the a'x* (k = 1,. . ., n2). It was shown in Section 
3.3.3 that Fisher's (1936) linear discriminant function is given by a'x, where a 
maximizes the quantity (3.3.8). 
As suggested by Raveh (198!J), the maximization of 6(a) can be undertaken 

by an algorithm such as Powell's conjugate direction algorithm or its modifi- 
cation; see Zangwill(1967). An initial choice of a in the computation of local 
maximum by this algorithm is the vector 

defining the coefficients of x in the sample NLDF t(x;&), or equivalently 
Fisher's LDF, as given by (3.3.9). Another initial choice suggested by Raveh 
(1989) is a0 , where (Po)" is f l ,  being +1 if the (Xlj)" tend to be larger than 
the (xa )"  and -1 if the reverse behavior is observed (v  = 1, . . . ,p).  

The advantage of this proposed nonmetric approach is that there is no need 
to specify group-conditional distributions and that it produces perfect discrim- 
ination when there is no overlap between the groupfeature data. In compar- 
isons with the sample NLDF on empirical data and simulations, Raveh (1989) 
found that the nonmetric LDF yielded fewer misallocations for skewed (log- 
normal and chi-squared) groupconditional distributions with very different 
covariance matrices. For multivariate normal group-conditional distributions 
with the same or comparable covariance matrices, the nonmetric LDF was 
only slightly inferior to the sample NLDF. 
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The procedure of Raveh (1989) can be generalized so that each difference 
of discriminant scores a'xlj - a'xu, is replaced by a function of the difference. 
If the sign function is adopted in this role, then Raveh (1989) noted that it 
leads to the linear rule that minimizes the overall apparent error rate, as con- 
sidered by Greer (1979); see Section 3.10.1. 



C H A P T E R  10 

Estimation of Error Rates 

10.1 INTRODUCTION 

In this chapter, we consider the estimation of the error rates associated with 
a discriminant rule. The relevance of error rates in assessing the performance 
of a discriminant rule was discussed in Chapter 1, where the various types 
of error rates were introduced and their properties discussed in some depth. 
For the allocation of an entity with feature vector x to one of the g groups 
GI, ..., Gg, let r(x; t )  denote a discriminant rule formed from the realized 
training data, 

where yj = (x~,z))’ and ( Z j ) i  = Z i j  equals one if X j  belongs to Gi and is zero 
otherwise (i  = 1,. . . ,g; j = 1,. . ., n). This is consistent with our previous nota- 
tion. 

For a given realization t of the training data T ,  it is the conditional or actual 
allocation rates of t ( x ;  t) ,  eCij(fi; t) ,  that are of central interest, where 

t’ = (yl, - a .  ,Y”), 

ec i j (~ , t )=pr{ t (Xt )= j IXEGi , t }  ( i , j  = I  ,..., g).  

That is, ecij(Fi;t) is the probability, conditional on t, that a randomly chosen 
entity from Gi is assigned to Cj by r(x;t). As before, Fi denotes the distribu- 
tion function of X in group Gi (i = 1, ...,g), and F denotes the distribution 
function of Y = (X’,Z’)’ when X is drawn from a mixture of these g groups 
and Z specifies its group of origin. 

The unconditional or expected allocation rates of r(x; t )  are given by 

euij(F) = pr{r(XT) = j I X E Gi} 

= E{eCij(Fi;T)} (i,j = 1 ,..., g). 
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The unconditional rates are useful in providing a guide to the performance of 
the rule before it is actually formed from the training data. 

Concerning the error rates specific to a group, the conditional probability 
of misallocating a randomly chosen member from Gi is 

B 

i t i  
eci(Fi;t) = Cecij(F;.;t)  (i = 1, ...,g). 

The overall conditional error rate for an entity drawn randomly from a mixture 
G of G I , .  . . , Gg in proportions TI,.  . .,ug, respectively, is 

Similarly, the individual 
and eu(F), are defined. 

B 

ec(F;t) = CTieci(Fi;t). 
i=1 

group and overall unconditfonal error rates, eui(F) 

If t(x;t) is constructed from t in a consistent manner with respect to the 
Bayes rule ro(x;F),  then 

Lt,,,eu(F) = eo(F), 

where eo(F) denotes the optimal error rate. Interest in the optimal error rate 
in practice is limited to the extent that it represents the error of the best 
obtainable version of the sample-based rule r(x; t). 

Unless F,  or the group-conditional distribution functions E in the case 
of separate sampling, is known, the conditional allocation rates, as well as 
the unconditional and optimal rates, are unknown and therefore must be esti- 
mated. This task is far from straightforward and poses a number of formidable 
problems. Indeed, as described by Glick (1978), “the task of estimating prob- 
abilities of correct classification confronts the statistician simultaneously with 
difficult distribution theory, questions intertwining sample size and dimension, 
problems of bias, variance, robustness, and computation costs. But coping with 
such conflicting concerns (at least in my experience) enhances understanding 
of many aspects of statistical classification-and stimulates insight into general 
methodology of estimation.” 

Over the years, there have been numerous investigations on this topic; see, 
for example, Hills (l%fi), Lachenbruch and Mickey (1968), and McLachlan 
(1973a, 1974b, 1974c, 1974d), and the references therein. ?bussaint (1974a) 
has compiled an extensive bibliography, which has been updated by Hand 
(1986a). An overview of error-rate estimation has been given by McLachlan 
(1986), and recent work on robust error-rate estimation has been summarized 
by h o k e  (1986). Further advances are covered in McLachlan (1987b). More 
recently, Fukunaga and Hayes (1989b) have applied the expression derived by 
Fukunaga and Hayes (1989a) for the assessed error rate of a sample-based 
discriminant rule to analyze theoretically various methods of error-rate esti- 
mation. There is also the empirical study of Ganeshanandam and Krzanowski 
(1990), which is to be considered further in Section 10.6. 
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Following the major studies done in the 1960s on error-rate estimation, 
there has always been a high level of interest in the topk, promoted more 
recently by the appearance of Efron's (1979) paper on the bootstrap, with its 
important applications to all aspects of error-rate estimation. In the last few 
years, there has been a considerable number of papers produced in this area. 
Much of the recent work has arisen from consideration of the novel ideas p re  
sented on the subject in the seminal paper of Efron (1983). The main thrust 
of the recent studies has been to highlight the usefulness of resampling tech- 
niques in producing improved estimators of the error rates through appropri- 
ate bias correction of the apparent error rate. Attention has also been given to 
ways of smoothing the apparent error rate in an attempt to reduce its variance. 

McLachlan (1974) has investigated the relationship between the separate 
problems of estimating each of the three types of error rate (conditional, un- 
conditional, and optimal). In the subsequent exposition, we concentrate on the 
estimation of the conditional allocation rates since they are of primary concern 
once the training data have been obtained. We will only give the definitions 
of the estimators in their estimation of the groupspecific errors eCi(fi;t), as 
they can be extended in an obvious manner to the estimation of the allocation 
rates ecij(Fi; t), where the assigned group is specified in addition to the p u p  
of origin. In some situations, as with the estimation of the mixing proportions 
as considered in Section 2.3, the full confusion matrix, which has ecij(fi;t) 
as its (i,j)th element, has to be estimated. Of course, for g = 2 groups, the 
confusion matrix is specified by the eCi(Fi; t). 

10.2 SOME NONPARAMETRXC ERROR-RATE ESTIMATORS 

10.2.1 Apparent Error Rate 

As the groups can be relabeled, we will consider without loss of generality 
the estimation of the error rate for the first group. An obvious and easily 
computed nonparametric estimator of the conditional error rate ecl(F1;t) is 
the apparent error rate Al(t) of r(x;t) in its application to the observations in 
t from G. That is, Al(t) is the proportion of the observations from GI in t 
misallocated by r(x;t), and so we can write 

(10.2.1) 

where 
n 

j=1 

is the number of observations from C; in t, and where, for any u and v ,  
Q[u,v] = 0 for u = Y and 1 for u # v .  The apparent error rate, or resubsti- 
tution estimator as it is often called, was first suggested by Smith (1947) in 
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connection with the sample NQDR r, (x; &). As the apparent rate is obtained 
by applying the rule to the same data from which it has been formed, it pro- 
vides an optimistic assessment of the true conditional error rates. In partic- 
ular, for complicated discriminant rules, overfitting is a real danger, resulting 
in a grossly optimistic apparent error. Although the optimism of the apparent 
error rate declines as n increases, it usually is of practical concern. 

As discussed in Section 8.4, Efron (1986) has derived the bias of the a p  
parent error rate for the logistic model in a regression context, where the 
aim is to estimate the average of the overall conditional error rate associated 
with the application of the rule to n future entities with observations fixed at 
xl,. . .,x,,, respectively. In the present discriminant analysis context, under the 
homoscedastic normal model for g = 2 groups, 

X - N ( p i , I l )  in Gi ( i =  1,2), (10.2.2) 

Mchchlan (1976a) has derived the asymptotic bias of A1 for the plug-in sam- 
ple version t , ( x ; @ ~ )  of the NLDR. The cutoff point was taken to be zero, or 
equivalentlyy with the group-prior probabilities taken to be the same. McLach- 
lan (1976a) showed that up to terms of the first order that 

bias(A1) = E{Al(T) - ecl(F1;T)) 

= E{Al(T)} - eul(A) 

= -$(@)[{$A + (P - I)A-’)/n1+ $(P - I)(A/N), 
(10.2.3) 

where N = nl + n2 - 2, A is the Mahalanobis distance between GI and G2, 
and #(-) denotes the standard normal density function. The asymptotic bias of 
A2 is obtained by interchanging nl with n2 in (10.2.3). The unconditional error 
eul(F) is written here as eul(A), since it depends on only A under (10.2.2) 
for g = 2 and 7r1 = 7r2. 

For the use of the sample NLDR with zero cutoff point under (10.2.2), Hills 
(1966) and Das Gupta (1974) have considered some inequalities between the 
unconditional error rate eul(F), the average apparent error rate E{Al(T)}, 
the optimal error rate @(-4A), and the so-called plug-in error rate @(-ill), 
where 

is the sample version of the Mahalanobis distance between GI and G2. The 
latter rate is discussed in more detail in Section 10.6 on parametric estimation 
of error rates. The questions not answered were whether 

E(Al(T)} < @ ( - f a )  (10.2.4) 

D = {(TI - Z2)’S--’(Z1 - slr2)}”2 

(10.2.5) 

where nl # n2 and p # 1. 
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It can be seen from (10.2.3) that the asymptotic bias of A; is always nega- 
tive, implying that (10.25) holds asymptotically. Considering (10.24), McLach- 
lan (1976a) showed that 

E{Al(T))  = *(-)A) + {#(4A)/(16A))[-{3A2 + 4@ - W n l  

+ {A2 - s(P - l)}/nz - 4(P - 1)(A2/W (10.26) 

From (10.2.6), it can be seen that as n; -+ 00, the difference 

becomes positive if A2 > 4(p - 1) and n2 is sufficiently large. Hence, (10.2.5) 
does not hold for some nl # n2 and p # 1. 

Schervish (1981b) extended the asymptotic expansions of McLachlan 
(1976a) to g > 2 group within which X is normally distributed with a common 
covariance matrix. If the latter is assumed to hold in practice, then (10.2.3) 
and its multiple-group analogue provide a way of correcting parametrically 
the apparent error rate for bias. If BI(*E) denotes the first-order asymptotic 
bias of Al, then the bias of 

A$ = A;(T) - Bl(Q'E) (10.2.7) 

is of the second order. Here &E need only be a consistent estimator of ~ P E ,  but 
usually it would be taken to be the same fully efficient estimator used to form 
the sample NLDR ro(x;Q'E) in the first instance. Of course, if the present 
normal model were assumed to hold, then consideration would be given to 
basing the final estimate of the true error rate on a fully parametric method 
of estimation, as discussed in Section 10.6. 

It is worth noting that although one may be willing to use a particular para- 
metric rule due to its known robustness to mild departures from the adopted 
model, parametric estimators of the error rates of the rule may not be rO- 
bust. For example, the sample N m R  is known to be fairly robust, but the 
normality-based estimators of its error rates are not; see Konishi and Honda 
(1990). It explains why much attention has been given to the development 
of nonparametric estimators of the error rate, in particular, to nonparametric 
methods of correcting the apparent error rate for bias. We now proceed to 
consider some of these methods. 

10.2.2 Cross-Validation 

One way of avoiding the bias in the apparent error rate as a consequence 
of the rule being tested on the same data from which it has been formed 
(trained) is to use a holdout method as considered by Highleyman (1%2), 
among others. The available data are split into disjoint training and test sub- 
sets. The discriminant rule is formed from the training subset and then as- 
sessed on the test subset. Clearly, this method is inefficient in its use of the 
data. There are, however, methods of estimation, such as cross-validation, the 
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Quenouills-?iskey jackknife, and the recent bootstrap of Efron (1979), that ob- 
viate the need for a separate test sample. An excellent account of these three 
methods has been given by Efron (1982), who has exhibited the close theoret- 
ical relationship between them. 

One way of almost eliminating the bias in the apparent error rate is through 
the leave-one-out (LOO) technique as described by Lachenbruch and Mickey 
(1968) or cross-validation (CV) as discussed in a wider context by M. Stone 
(1974) and Geisser (1975). For the estimation of ecl(F1;t) by the apparent 
error rate Al(t), the leave-one-out cross-validated estimate is given by 

(10.2.8) 

where tcj) denotes t with the point yj deleted ( j  = 1,. . . , n). Hence, before the 
sample rule is applied at xi, it is deleted from the training set and the rule 
recalculated on the basis of '0.1. This procedure at each stage can be viewed 
as the extreme version of the holdout method where the size of the test set is 
reduced to a single entity. 

According to M. Stone (1974), the refinement of this type. of assessment 
appears to have been developed by Lachenbruch (1%5) following a sugges- 
tion in Mosteller and Wallace (1963). Toussaint (1974a) in his bibliography 
on error-rate estimation traces the idea back to at least 1964 in the Russian 
literature on pattern recognition. 

It can be seen that, in principle at least, cross-validation requires a consid- 
erable amount of computing as the sample rule has to be formed n1 times 
in the computation of Af'). For some rules, however, it is possible to calcu- 
late A y )  with little additional effort. This is so with the normal-based linear 
or quadratic discriminant rules. 'Ib see this, consider firstly the calculation of 
r(xj;t(j)) in (10.2.8) for the sample NLDR. In order to calculate r(xj;t(j)) in 
this case, we require the value of 

h( j)(xj> = xi( j), s( j)) 
O( exp{-~d(Xj,iii(j);S~j)} (i = I, ...,g), 

- where 

and Pi(j) and S(j) denote the ith groupsample mean and the bias-corrected 
pooled (within-group) sample covariance matrix, respectively, based on t(j) 
for j = 1, .. .,n. Concerning the computation of d(Xj,Q(j); So)), Lachenbruch 
and Mickey (1%) noted how S$ can be expressed in terms of S-' using 
a result of Bartlett (1951a). Recently, Hjort (1986a) considered this problem 
using this now common device. He showed that 

G(xj,zi(j); S(j)> L= (xj - jii(j))'S$)(xj - XiG)), 

d(xj,%(j);s(j)) = ($zujciu,j) d(xj,Zi;s) 
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for i = 1,. . . ,g, where 

and where for u # i ,  

For the sample NQDR formed under the assumption of unequal group 
conditional covariance matrices, we have from Hjort (1986a) that 

d(xj,Ki(jl;Siu)) = (1 + Zij(Ci,j - l)}d(xj,&;Si) 

for i = 1,. . . ,g , where 

ci,j = {$(ni -2)/(ni - I)}/{(ni - ~)'-nid(~j,%;Si)}- 

This result, which is also available from (6.2.4), suffices for the calculation of 
the rule r(xj;t(j)) formed on the basis of minimum (Mahalanobis) distance. 
For the sample version r,(x;&") of the Bayes rule, we need to calculate 
h(j,(xj), and not just its exponent. Hjort (1986a) showed that 

h(i)(xj) 3 +(xj;Ziu),si(j)) 

= { 1 + zij(kli,j - l)}#(Xj;%, Si), 

for i = 1, ...,g, where 

kli,j = kzi.jeq{-f(ci,j - l)d(Xj,R;si)}, 

and 

kzi,j = (ni - l){(ni - 2)/(ni - l)}(1'2)p{(ni - 1)2 - nid(xj,gi;Si)}-'/'. 

Hjort (1986a) and Fukunaga and Hummels (1989) also have considered 
the computation of r(Xj;t(j)), where r(x;t) is based nonparametrically on k- 
NN and kernel density estimates of the group-conditional densities. Lesaffre, 
Willems, and Albert (1989) have considered the computation of the cross- 
validated estimate of the error rate for the logistic discriminant rule. As dis- 
cussed in Section 8.2.4, the maximum likelihood estimates of the parameters 
in this model have to be computed iteratively. Hence, this can be quite time 
consuming even with small sample sizes. As a consequence, Lesaffre and Al- 
bert (1989b) have proposed a useful way of approximating the cross-validated 
estimate by one-step approximations to the maximum likelihood estimates. 

It can be seen from the definition (10.2.3) of the apparent error rate A1 that 
a modest perturbation in an X j  can switch the indicator function Q[l,r(~j;t)] 
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from zero to one and vice versa. As explained by Glick (1978), the leave- 
one-out modification of A1 to give A r Y )  exacerbates rather than smoothes 
such fluctuations. Thus, although cross-validation circumvents the bias prob- 
lem, there is a consequent higher level of variability in the estimate. 

For g = 2 groups, Hand (1986b) considered shrinking the cross-validated 
version A(cv) of the overall apparent error rate in an attempt to reduce its 
variance at the expense of increasing its bias in its estimation of the overall 
conditional rate ec(F,t). For shrinking toward the origin in the case where 
there is no prior knowledge of the true error rate, Hand (1986b) studied 
two shrunken estimators, A(scy) = W A ( ~ ~ ) ,  where w = n / ( n  + 1) or n / ( n  + 3). 
These two choices of w correspond to taking ?rl = 0.5 and 0.25, respectively, 
in 

wo = n?r1/(nn1+ 7r2). (10.2.9) 

The shrinking factor (10.2.9) is a conservative estimate of the optimal value of 
w under the assumption that the optimal overall error rate eo(F) is less than 
TI ,  where, without loss of generality, ?rl is the minimum of ?rl and n2. 

In terms of mean-squared error, 

MSE{A(sCV)} = E{A(SCV) - ec(F;T)}’, 

Hand (1986b) compared these two estimators with A(cy) and some other es- 
timators, using simulations for the sample NLDR formed under (10.2.2) with 
the common covariance matrix taken to be known. For the combinations of 
the parameters considered, these two shrunken estimators were found to be 
superior to A(cv) although, as anticipated, they were more biased. Sometimes, 
however, they were more biased than A. The use of wo in shrinking A(cv) has 
been considered further by Hand (198%). The relatively large variability in 
A(cv) is discussed further in Section 10.3 on a comparison of its performance 
relative to the bias-corrected version A@) using the bootstrap. 

With the main statistical packages, the error rates in the programs for dis- 
criminant analysis are usually estimated by the apparent error rate. The dis- 
criminant analysis program BMDP7M in the BMDP (1988) suite of programs 
has the provision for the calculation of not only the apparent error rate, but 
also its cross-validated version for the sample NLDR. The latter version is also 
available in the SAS (1990) package. 

10.23 The Jackknife 

There has been confusion in the literature over the roles of cross-validation 
and the jackknife in correcting the apparent error rate for bias. This is un- 
derstandable as both methods delete one or more observations at a time in 
forming the bias-corrected estimates. According to M. Stone (1974), “Gray 
and Schucany (1972, pp. 125-136) appear to initiate the confusion in their 
description of Mosteller and Tukey’s sophisticated, simultaneous juggling act 
with the two concepts.’’ Consider the jackknife version of the apparent error 
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rate given by 
A?) = A1 + (n1 - 1)(A1 - Al(.)), 

345 

(10.2.10) 

where 

and A1u) denotes the apparent error rate of t(X,t(j>) when applied to the ob- 
servations in from GI, that is, 

n 

k # j  
4 ( j )  = CzaQ[l ,r(~;t(j))I / (n~ - 1)- 

This jackknifed form of A1 is appropriate for the estimation of the limiting 
value of the unconditional error rate eul(F), as n1,nz 3 00, that is, the opti- 
mal error eol(F) assuming r(x;t) is a Bayes consistent rule. As an estimator 
then of eol(F), the bias of A?) is of order O(ne2). But A?) is frequently 
used or suggested as an estimate of the conditional error ecl(F;t), as in Crask 
and Perreault (1977). However, as an estimator of ecl(F1; t), the bias of A?) 
is still of order O(n-'). 

It follows from Efron (1982, Chapter 7) that the jackknifed version of A1, 
which reduces its bias as an estimator of ecl(F1;t) to the second order, can be 
written as 

where 

A?) = A1 + (n1- l)(A1- Al()) ,  (10.2.11) 

(10.2.12) 

see also Efron and Gong (1983). Efron (1982) noted that the last term on the 
right-hand side of (10.2.11) can be rearranged to give 

A?) =c A ( W  + Al - A, (10.2.13) 

demonstrating the close relationship between the jackknife and the cross-valid- 
ation methods of bias correction of the apparent error rate in estimating the 
conditional error rate of a sample-based rule. Also, he showed how the jack- 
knife estimate of bias, A1 - &) in this instance, can be considered as a 
quadratic approximation to the nonparametric bootstrap estimate of bias de- 
fined in the next section. The underlying assumption here that r(x;t) is sym- 
metrically defined in y1,. ..,yn has to be strengthened to r(x;t) depending on 
y1,. . .,yn through a functional statistic in order to establish the above connec- 
tion between the bootstrap, cross-validation, and the jackknife. 

The misunderstanding over the use of AT)  to estimate ecl(F1;t) would 
appear to still occur in the literature. For example, for g = 2 groups, Rao 
and Dorvlo (1985) used the formula corresponding to (10.2.10) to jackknife 
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cP(-iD), @(-ills), and D for use in a(-@), for the purpose of estimating 
the optimal error rate cP(-qA), but then considered these jackknifed versions 
as estimators also of the unconditional error rate. The version @ ( - i D S )  of 
the plug-in error rate, where 

DS = { (n  - p - 3)/(n - 2))”2D, 

partially reduces its optimistic bias; see Section 10.6 to follow. 
Wang (1986b) used the formula (10.2.10) to jackknife the apparent error 

rate for the estimation of the unconditional error rate in the case of g = 2 
multinomial distributions. The inappropriate choice of the jackknifed version 
of the apparent error rate was reflected in his simulation results, where this 
estimate was generally well below that of the cross-validated estimate. 

10.3 THE BOOTSTRAP 

10.3.1 Introduction 

The bootstrap was introduced by Efron (1979), who has investigated it further 
in a series of articles; see Efron (1981a, 1981b, 1982, 1983, 1985, 1987, 1990) 
and the references therein. A useful introductory account of bootstrap meth- 
ods has been given by Efron and Tibshirani (1986). Over the past 10 years, 
the bootstrap has become one of the most popular recent developments in 
statistics. Hence, there now exists an extensive literature on it, as evident in 
the survey articles of Hinkley (1988) and DiCiccio and Romano (1988); see 
also Hall (1988). It is a powerful technique that permits the variability in a 
random quantity to be assessed using just the data at hand. An estimate P of 
the underlying distribution is formed from the observed sample. Conditional 
on the latter, the sampling distribution of the random quantity of interest with 
F replaced by &, defines its so-called bootstrap distribution, which provides 
an approximation to its true distribution. It is assumed that & has been so 
formed that the stochastic structure of the model has been preserved. Usu- 
ally, it is impossible to express the bootstrap distribution in simple form, and 
it must be approximated by Monte Carlo methods whereby pseudo-random 
samples (bootstrap samples) are drawn from &. The bootstrap can be imple- 
mented nonparametrically by using the empirical distribution function con- 
structed from the original data. In recent times, there has been a number 
of papers written on improving the efficiency of the bootstrap computations 
with the latter approach; see, for example, Davison, Hinkley, and Schechtman 
(1986); Hall (1989a, 1989b); HinMey and Shi (1989); Efron (1990); and Gra- 
ham et d. (1990). 

10.3.2 Bias Correction of Apparent Error Rate 

We now consider the application of the bootstrap in the present context of 
correcting nonparametrically the apparent error rate of a sample-based rule. 
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The bias correction of A1 in its estimation of the conditional error ect(F1; t) 

Step 1. In the case of mixture sampling, a new set of data, 

may be implemented according to the bootstrap as follows. 

* f  *I I t* = {yi = (xi 921 ) ,-..,Y: = (x:I,z3), 

called the bootstrap sample, is generated according to ft, an estimate of the 
distribution function of Y formed from the original training data t. That is, t* 
consists of the observed values of the random sample 

Yi, . . , ,Y: ZP, (10.3.1) 

where P is held fixed at its observed value. 
With separate sampling, the bootstrap group-indicator vectors are fixed at 

their original values. The bootstrap observations Xi,. . .,xi are then generated 
according to this group specification, which ensures that ni of them are from 
the ith group Gi (i = 1, ...,g). Hence, the bootstrap training set t* is given by 

t* {Yf (Xif,zi1)',...,y: = (X;',Z~~)'), 

where if (Z;)i = 1 for i = u, then XI is the realized value of XI distributed 
according to &. Thus, for a given i (i = 1, ...,g), there are ni of the xi' with 
(ZJ)i = 1. If they are relabeled as xi;, ..., xtn,, then they may be viewed as the 
observed values of the random sample 

xi.,, ..., xini * i idj . ,  - (i = l,.,.,g) (10.3.2) 

where each Pi is held fixed at its observed value. 
Step 2. As the notation implies, the rule r(x;t*) is formed from the train- 

ing data t* in precisely the same manner as r(x;t) was from the original set. 
Step 3. The apparent error rate of r(x;t*) for the first group, Al(t*), is 

computed by noting the proportion of the observations in t* from GI misalb 
cated by r(x; t*). That is, 

1 -- 
Al(t*) = - Cz;iQ[l,r(x;;t*)], 

ni j31 

where 
#I 

and where nt = ni (i = 1,. . .,g) with separate sampling. The difference 

di = Al(t*) - ecl(P1; t*) (10.3.3) 

is computed, too, where ecl(fil;t*) is the bootstrap analogue of the conditional 
error rate for the first group. 
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Step 4. The bootstrap bias of the apparent error for the first group is given 
by 

bC4 = E*(a;)  

= E*{Al( f )  - ecl(&;T*)}, 

where E* refers to expectation over the distribution of T defined according 
to (10.3.1) for mixture sampling and (10.3.2) for separate sampling. It can be 
approximated by sf)' M 8, obtained by averaging (3; over K independently 
repeated realizations of T*, that is, 

(10.3.4) 
k = l  

where 
a;,& = Al(ti) - ecl(P1; ti) (10.3.5) 

denotes the value of A1(T*) - ecl(&;T*) for the kth bootstrap replication 
tz of l". The standard error of the Monte Carlo approximation to the 
bootstrap bias E*((zi)  

The bias-corrected 
given by 

is calculated as the positive square root of 

k =I 

version of A1 according to the bootstrap, therefore, is 

where the Monte Carlo approximation (z; can be used for the bootstrap bias 
by'. Efron (1983) subsequently gave a more efficient way of approximating 
by), which is described in Section 10.4. In this and other applications of the 
bootstrap, Efron (1979, 1981a, 1981b) noted that the choice of replication 
number usually does not seem to be critical past 50 or 100. Of course, as 

K + 00, the standard error of tends to zero, but, as explained by Efron 
(1979), there is no point in taking - K to be any larger than necessary to en- 
sure that the standard error of a; is small relative to the standard deviation 
of E*(d*l). More recently, Efron (1985), Tibshirani (1985), Efron and Tibshi- 
rani (1986), and Gong (1986) have shown that whereas 50 to 100 bootstrap 
replications may be sufficient for standard error and bias estimation, a large 
number, say, 350, is needed to give a useful estimate of a percentile or P- 
value, and many more for a highly accurate assessment. This problem of the 
number of bootstrap replications has been studied in some depth recently by 
Hall (1986b). 

- 
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In Step 1 of the above algorithm, the nonparametric version of the boot- 
strap would under mixture sampling take P to be the empirical distribution 
function with mass l /n at each original data point yj  in t ( j  = 1,. ..,n). Under 
separate sampling, 4 would be the empirical distribution function with mass 
l/ni at each of the ni original observations from XI,..., x,, in Gi (i = 1 ,..., g). 
Under either sampling scheme with the nonparametric bootstrap, the rate 
ecl(&;t*) in (10.3.3) is given by 

10.3.3 Some Other Uses of tbe Bootstrap 

The bootstrap is a very powerful technique and it can be used to assess other 
sampling properties of the apparent error rate besides its bias. For instance, 
an estimate of the mean-squared error (MSE) of A1 in estimating ecl(F1;t) is 
provided by 

MSE@)(A,) = C { ~ l ( t i )  - ecl(P1;t;>}2/K, (10.3.6) 

where the right-hand side of (10.3.6) is the Monte Carlo approximation to the 
bootstrap MSE of ecl(tl;T*). As noted by Efron and Gong (1983), the sample 
variance of the &, 

K 

k = l  

k = l  

suggests a lower bound for the MSE of A?) in estimating ecl(F1;t). This is 
because the variance of A 1 Q  - ecl(F1;T) can be viewed as the mean-squared 
error of the “ideal constant” estimator, 

A(fc) 1 = A l p )  - bl, 

which would be used if we knew bl, the bias of Al(T). ’RI see this, note that 

var{&(T) - ecl(F1;T)) = E{A1(T) - eq(F1;T) - 
E[{A1(T) - h} - e c l ( f ‘ ~ T ) ] ~  

= M S E ( A ~ ~ ) ) .  

It would be anticipated that A?) would have mean-squared error at least as 
large as A!’‘). 

The bootstrap can be used to assess the performance of the apparent error 
rate in its estimation of the other types of error rates. Replacing ecl(k1;t;) 
by eol(&) in (10.3.5) and (10.3.6) yields the bootstrap estimates of the bias 
and mean-squared error, respectively, of A1 in estimating the optimal error 
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rate eol(F). For the nonparametric version of the bootstrap, where P is the 
empirical distribution function, eol(8’) = A1 at least if t(x;t) depends on t 
through k. Similarly, an assessment of the mean-squared error of A1 in its 
estimation of the unconditional rate eul(F) is obtained by replacing eq(&; ti) 
with 

K 

(10.3.7) 

in the Monte Carlo approximation (10.3.6). The quantity (10.3.7) is the Monte 
Carlo approximation to the bootstrap estimate of the unconditional error rate 
for the first group. 

The assessment of the distribution of A l p )  - ecl(F1;T) provided by the 
bootstrap can be used also to form approximate confidence intervals for the 
unobservable error rates, as discussed in Section 10.7. 

10.3.4 Parametric Version of the Bootstrap 

With the parametric version of the bootstrap, the pseudo-data are generated 
according to (10.3.1) or (10.3.2) with the vector SP of unknown parameters 
in the parametric form adopted for F or Fi (i = 1,. . .,g), replaced by an ap- 
propriate estimate !% formed from the original training data t. Usually, ?@ is 
the maximum likelihood estimate, perhaps corrected for bias as typically done 
with the estimates of the group-covariance matrices under normality. Suppose, 
for example, that normality is adopted for the groupconditional distribution 
of X, where 

X - N(pi,Ci) with prob. Ti in Gi (i = 1 ,..., g). (10.3.8) 

Then the generation of the bootstrap data Z i t  s.., x i  according to (10.3.1) for 
mixture sampling can be achieved as follows. For each j (j = 1, ..., n), a ran- 
dom variable that takes the values 1,. . . ,g with probabilities %I,. . .,.R, is gener- 
ated where f f j  = ni/n for i = 1, ...,g. If the generated value is equal to, say, u, 
then 2; is set equal to 1 for i = u and to zero otherwise. The observation xi’ 
is then generated from the density Cp(x;X,, S,), the multivariate normal density 
with mean Z, and covariance matrix S,. This implies that X i , - . . , X i  are the 
observed values of a random sample from the normal mixture density 

8 

fx (x; @) = C fiiCp(x; 4, Si ), 
i =1 

and that zr,. . .,z; are the realized values of the random sample Zi, . . . ,Zi,  
where 

Zi, . . ., 2: eMUltg(1, ii), 

a multinomial distribution consisting of one draw on g categories with prob- 
abilities %I, ..., #g. For separate sampling according to (10.3.2),  xi;,...,^;^^ are 



THE BOOTSTRAP 351 

the realized values of a random sample generated from the multivariate nor- 
mal density @(x;Zi, Si) for 5 = 1,. . . ,g. 

In this parametric framework with mixture sampling for g = 2 groups hav- 
ing a common covariance matrix, ecl(ft,; to) is given by 

(10.3.9) ecl(&;t*) = a{-@&? + & ~ ) / ( & S b E )  * 112 )t 

where 

and 
&E = log(ni/nj)- @i + W& (10.3.10) 

are the bootstrap analogues of the coefficients f i ~  and in the sample 
NLDR, defined from (3.3.5). For separate sampling, the term log(nr/nZ) on 
the right-hand side of (10.3.10) is replaced by minus the cutoff point k speci- 
fied initially with the application of the sample NLDR. 

Under the normal model (10.3.8), there is really no need to resort to Monte 
Carlo approximation of the (parametric) bootstrap bias of A l p ) ,  as asymp 
totic approximations are available from McLachlan (1976a) and Schervish 
(1981b). For example, for g = 2 and nl = 1r2 = 0.5, we have that 

E*{Al(T*) - ecl(Pl;T*)} x B1(D), 

where &(A) is the n-’-order asymptotic bias of A(”) given by (10.2.3), and 
D is the sample counterpart of A. McLachlan (1980b) carried out some simu- 
lations in which he compared the mean-squared error of by), as obtained with 
the nonparametric version of the bootstrap, with that of Bl(D). This com- 
parison demonstrated the high efficiency of the nonparametric version of the 
bootstrap estimator of the bias of the apparent error rate. Similar results were 
reported by Schervish (1981b) for g > 2 group. 

Returning to the nonparametric bootstrap, where the pseudedata are gen- 
erated using the empirical distribution function, one might wish to attribute 
some smoothness to & without going all the way to the normal model (10.3.8). 
The reader is referred to Efron (1982, page 30) and Silverman and Young 
(1987) for various ways of smoothing the empirical distribution for use in gen- 
erating the data. 

& = S*-.1(7q -XZ) 

103.5 Relationship of Bootstrap with Some Other Methods of Bias 
Correction 

Efron (1983) has reported some simulation results on the performance of the 
bootstrap relative to other methods such as crowvalidation in their bias cor- 
rection of the overall apparent error rate, 
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The simulations were performed in the context of estimating the overall con- 
ditional error rate ec(F, t) of r(x; t) formed under the homoscedastic normal 
model (10.2.2) for g = 2 groups in equal proportions. Preliminary simulations, 
which compared the bootstrap estimate P) of the bias of A with the jackknife 
and cross-validation estimates, b('c) = A - and b(cy) = A - A(='), respec- 
tively, showed that &'c) and &(c") are very close in value. This is not surprising, 
given the close relationship in the forms of their estimates for the bias of A, 
as demonstrated by (10.2.12) and (10.2.13) for the bias correction of A1. Also, 
under smoothness conditions on the indicator function Q, Gong (1982) has 
shown that h('c) and have asymptotic correlation one. As summarized by 
Efron (1983), is the obvious nonparametric maximum likelihood estima- 
tor for b, the bias of A; is a quadratic approximation to W') and 6(Cv)  

is similar in form and value to &'el. Efron (1983) carried out further simula- 
tions to compare cross-validation with the bootstrap and some variants, which 
are described shortly. It was concluded that the cross-validation estimator of 
the overall error rate, A("), is nearly unbiased, but that it has often an unac- 
ceptably high variability if n is small. The bootstrap bias-corrected version of 
A, A@), has much less variability, but, unfortunately, is negatively corre- 
lated with A(T) - ec(F;T), the actual difference between the apparent error 
rate and the overall conditional error rate. In contrast, b(") has a correlation 
near to zero with this difference. 

The mean-squared error of A(B) = A - &') is given by 

MSE(A(B)) = E{A(B)  - ec(F;T)}2 

= E { A  - 6(4 - ec(F;T)}2, 

which can be expressed as 

MSE(A@)) = var(A - ec(F;T)) + var(6(B)) + {E(&(B)) - b}2  

- 2cov(A(T) - ec(F;T), 6 ( 9 .  
It can be seen that a negative value for the correlation between A(T)- 
ec(F;T) and inflates the mean-squared error of A(B). Nevertheless, the 
simulated mean-squared error of A@) was still less than that of A(cy). 

As explained further by Efron (1986), b@) is really intended to estimate the 
bias b = E{A(T)  - ec(F;T)}, rather than the actual difference A(t) - ec(F; t). 
However, in using A@) = A(t) - to estimate ec(F;t), we are employing 

in the latter role. This point is demonstrated by expressing the mean- 
squared error of A@) as 

MSE(,dB)) = E{A(T)  - - ec(F;T)}2 

= E[{A(T) -  ec(F;T)} - b(')I2. (10.3.11) 

It can be seen from (10.3.11) that, as an estimator of ec(F;t), A@) is judged 
by how well bcB) estimates the difference A(t) - ec(F; t). 



VARIANTS OF THE BOOTSTRAP 353 

TABLE 10.1 The First 10 Trials and Summary Statietics for 100 Wide of a 
Simulation Experiment br the Bias of the Overall Apparent Error Rate and Some 
Bias-Corrected Versions nlth the Bootstrop Based on K = 200 Replications 

.Rial A(t) A(t) - cc(F; t) b(m h(CV) &JC, 

1 0.286 -0,172 -0.083 -0.214 -0.214 
2 0.357 0.045 -0.098 o.Oo0 -0.066 
3 0.357 0.044 -0.110 -0.071 -0.066 
4 0.429 0.078 -0.107 -0.071 -0.066 
5 0.357 0.027 -0.102 -1.43 -0.148 
6 0.143 -0.175 -0.073 -0.214 -0.194 
7 0.071 -0.239 -0.047 -0.071 -0.066 
8 0.286 -0.094 - 0.097 -0.071 -0.056 
9 0.429 0.069 -0,127 -0.071 -0.W7 
10 0.143 -0.192 -0.048 o.oO0 -0.010 

100 trials 
Average 0.264 -0.096 -0.m -0.091 -0.093 
(S.D.) (0.123) (0.113) (0.028) (0.073) (0.W) 

Sowe: Adapted from Efron (1983). 

'lb illustrate the aforementioned simulation experiments of Efron (1983), 
we have listed in lhble 10.1 the values of the overall error rate, the apparent 
error rate, and the various estimates of its bias for one of the experiments 
performed for n = 14 observations drawn from a mixture in equal proportions 
of two bivariate normal distributions under the canonical form (4.23) with 
A = 1. 

In another comparison of the bootstrap with cross-validation and the jack- 
knife, Gong (1986) reported some results for simulations and real data for 
a moderately complicated rule formed using forward logistic regression. The 
bootstrap was found to offer a significant improvement over cross-validation 
and the jackknife for estimation of the bias of the apparent error rate and for 
providing a bias-corrected estimate. For the same purposes, Wang (19861>) also 
found the bootstrap to be the best of these three methods for some simulations 
performed for a discriminant rule in the case of two groups with multinomial 
distributions. 

10.4 VARIANTS OF THE BOOTSTRAP 

10.4.1 Double Bootstrap 

For g = 2 groups, Efron (1983) has developed more sophisticated versions 
of his ordinary bootstrap, including the double bootstrap, which corrects its 
downward bias without an increase in its mean-squared error, and the random- 
ized bootstrap and 0.632 estimates which appreciably lower its mean-squared 
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error. The double bootstrap corrects the bias of the ordinary bootstrap a p  
parently without increasing its mean-squared error (Efron, 1983). The bias- 
corrected version of A so obtained for estimation of the overall conditional 
error is 

where biascB)(A@)) is the bootstrap estimate of the bias of the ordinary boot- 
stra estimator A@). Although it appears that the computation of the estimate 
biasi)B,(AcB)) requires two layers of bootstrapping with a total of K2 bootstrap 
replications, Efron (1983) has shown that, by using a Monte Carlo “swindle,” 
it can be implemented with just 2K replications. 

A(DB) = A@) - bias(B)(A(B)), 

10.4.2 The Randomized Bootstrap 

The randomized bootstrap in the case of mixture sampling with respect to 
g = 2 groups generates the bootstrap data with taken to be the distribution 
function that assigns nonzero mass over the 2n points, yj and yj ( j  = 1,. . ., n), 
with mass V(yj) /n and v ( y j ) / n  at y j  and y j ,  respectively, and V ( y j )  + V @ j )  = 1. 
Here y j  is taken to be yj, but with the group of origin of x j  switched to the 
other group, that is, for j = 1, .. .,n, 

where 
z j  = (22j,Zljy. 

Efron (1983) studied the use of 

V @ j )  = 0.9, @ j )  L= 0.1, (10.4.1) 

and a more complicated version, equivalent here to taking 

V @ j )  = +l(xj;t), V o j )  = .Pz(xj;t), (10.4.2) 

with the restriction that ~(yj ) ,  and hence V(jii), lie in the range 0.149. In 
(10.4.2), .Pi(xj; t) denotes the estimated posterior probability of membership of 
Gj (i = 1,2). It can be seen that the randomized bootstrap is an attempt to 
smooth 8 in the z direction. The use of either (10.4.1) or (10.4.2) in Step 1 
of the bootstrap algorithm was found to substantially lower the mean-squared 
error of the ordinary bootstrap estimator of the overall conditional error, with 
(10.4.1) giving almost as much improvement as the more complicated version 
(10.4.2). 

10.43 The 0.632 Estimator 

We let A(0.632) be the estimator of the overall conditional error rate, termed 
the “0.632” estimator by Efron (1983), who reported that it was clearly the best 
in his simulation experiments. It is a weighted sum of the apparent error rate 
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and &@I, the bootstrap error rate at an original data point not in the training 
set t. It is defined by 

= 0.368A + 0.6328'), 

where t@) is approximated by 

(10.4.3) 

and 8jk = 1 if yj is not present in the bootstrap training set t i  and is zero 
otherwise. Efron (1983) developed the 0.632 estimator by consideration of the 
distribution of the distance d(x,t) between the point x at which the rule is 
applied and the nearest feature observation in the training set t. The distribu- 
tion of this distance is quite different in the nonparametric bootstrap context 
than in the actual situation, with the bootstrap distance d(X*,P) having a high 
probability of being zero. This probability is equal to the probability that the 
point at which the rule is applied is included in the bootstrap sample, which 
is 1 - (1 - l/n)" and which tends to 0.63% as n -+ 00. In his ingenious argu- 
ment, Efron (1983) showed that the points that contribute to aB) (i.e., those 
with d(X*,T*)>O in the bootstrap context) are about 1B.632 too far away 
from the training set than in the actual situation. This leads to 

& O W  3 0.632(A - &B)) (10.4.4) 

as the estimate of the bias of A, and hence 
~(0.632) = A - b(0.632) 

= 0.3684 + 0.6328'), 

as the bias-corrected version of A. 

10.4.4 Outline of Derivation of A(0*632) 

We now give a brief outline of the result (10.4.4) as derived by Efron (1983) 
in the context of sampling from a mixture of g = 2 groups. He introduced a 
notion of distance between the point x at which the rule r(x;t) is applied and 
the training data t by defining S(x,a) to be a set around the point x in the 
feature space having probability content a under the true distribution F for Y. 
Thus, 

pr, { X E S(x, a)}  = a. 

As a -+ 0, it is assumed that S(x,a) tends to the single point x. The distance 
between x and the observed training data t is defined then as 
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As noted above, in the bootstrap framework d(X*,T*) has a high probability 
of being zero, with 

prp{G(X*,T*) = 0) = 1 - (1 - l/n)" 

w1-e-' 

= 0.632. 

Efron (1983) was able to establish that 6(X*,T*) is roughly distributed as 
d(X,T)/0.632, so that 

I 6(X*,T) > O} pr,{G(X,T) > A} 6(X*,T*) > - A 
0.632 

1 - Fa(A), (10.4.5) 

where Fa denotes the distribution function of S(X,T). We will use ky) to 
denote its bootstrap analogue. Also, let 

Qi(A) = E{Q2(X;T) I d(X;T) = A), 

where 

Then Ql(A) is the overall unconditional error rate of r(XT) given that X 
is distributed independently of T at a distance A away. Notice that Ql(0) = 
E{A(T)} .  We let &?'(A) denote the bootstrap analogue of Ql(A). For econ- 
omy of notation, we are using A here to denote a realization of 6(X,T) or its 
bootstrap analogue. Elsewhere, A is used always to denote the Mahalanobis 
distance between two distributions with a common covariance matrix. 

With the above notation, it follows that 

E'{Qz(X*,T*) I6(X*,T*) > 0) - E{A(T)} 

- O ~ ) ( A ) & ~ ) ( A )  - ~ ~ ( 0 )  
- L > O  

{QY'(A) - QY'(O)}dfif'(A) 
L > O  

(10.4.6) 

(10.4.7) 

(10.4.8) = -( 1/0.632)b. 
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The approximation (10.4.6) follows from (10.4.5), and the final approxi- 
mation (10.4.7) assumes that Ql(A) is reasonably linear for small A. From 
(10.4.8), the bias of A is given approximately by 

b w 0.632[E{A(T)} - E * { e c ( P ; T )  I 6(X',T) > O}], (10.4.9) 

which suggests estimating b as 

6°*632 = 0.632(A - #'I), 

where is the Monte Carlo approximation (10.4.3) to 

E'{ec(&;T) I d(X*,T*) > 0). 

Hjort (1986a) has since generalized this result to the estimation of the 
group-conditional error rates for an arbitrary number of group. For either 
mixture or separate sampling, the 0.632 estimator of the error rate for the first 
group is 

AYa) =Z 0.328A1+ 0.6328?), 

where is approximated as 

10.4.5 Linear Combinations of the Apparent and Cross-Validated Error 
Rates 

Efron (1983) showed that is almost the same as A(Hcv), the estimated 
overall error rate obtained after a cross-validation that leaves out half of the 
observations at a time. For even n, we can define A(Hcy) as 

where for a given j ( j  = 1, ..., n), the third sum is taken over all subsamples 
qSj! of ti, containing fn observations. As remarked by Efron (1983), cross- 
validation is often carried out, removing large blocks of observations at a time. 
Suppose, for example, that the training set is divided into, say, q blocks, each 
consisting of m data points, where, thus, n = qm (m 2 1). Let now 

that is, the training set after the deletion of the kth block of m observations. 

requires only q recomputations of the rule. 
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As eCE) is almost the same as A(Hcv), A(o.6n) is almost the same as 

0.368A + 0.632A(HCq. (10.4.10) 

Estimators of this type were considered previously by 'Ibussaint and Sharpe 
(1975) and McLachlan (1977~) in the context of choosing the weight w so that 

A ( W )  ( l - w ) A + ~ A ( ~ " q ) ,  

where, as above, A(Cvq) denotes the estimated rate after cross-validation re- 
moving rn = n/q observations at a time. 

For the rule based on the sample NLDF with zero cutoff point, McLachlan 
(1977~) calculated the value w, of w for which A(w) has zero 'first-order bias. 
The training data were taken to have been obtained by separate sampling from 
each of g = 2 groups under the homoscedastic normal model (10.22) with 
~1 = 172 = 0.5. The value of w, was computed as a function of q, A, p, and 
the relative size of n1 and n2. For q = 2, McLachlan (1977~) showed that w, 
ranged from 0.6 to 0.7 for the combinations of the other parameters consid- 
ered (A = 1,2; p = 4,816; n l / n z  = 1/3,1,3). Hence, at least under the ho- 
moscedastic normal model, the estimator A(wo) is about the same as Efron's 
0.632 estimator. The latter, therefore, should have almost zero first-order bias 
under (10.2.2), at least for the sample NLDR. Efron (1983, lbble 4) did calcu- 
late the first-order bias of A(0.632) for this rule in the various cases of (10.2.2) 
under which it was applied in his simulations, and it was small. With one excep 
tion, the asymptotic bias was in a downward direction, and in the simulations, 

exhibited a moderate downward bias. The reason for the remarkably 
low mean-squared error of A(0*632) in the simulations was the lack of negative 
correlation between 8(0.632) and A(T) - ec(F;T). 

Estimators of the type A(w) have been considered, too, by Wernecker, Kalb, 
and Stiirzebecher (1980) and Wernecke and Kalb (1983, 1987). In particular, 
Wernecke and Kalb (1983) focused on the choice of the weighting function w 
for g > 2 groups. The recent simulations of Wernecke and Kalb (1987) provide 
further support of the superiority of this type of estimator over the apparent 
error rate corrected for bias according to the ordinary bootstrap. 

as an estimator in its own right, it has been sug- 
gested in the literature (Chatterjee and Chatterjee, 1983) that will be an 
unbiased estimator, since it is computed by applying the rule to those original 
data points not in the bootstrap sample. Actually, Chatterjee and Chatterjee 
(1983) proposed a slightly different version where p C E )  was computed for each 
single bootstrap training set and then averaged over the K replications. How- 
ever, it follows from the work of Efron (1983) briefly outlined above, that aE) 
is biased upward, which has been confirmed empirically in the simulation ex- 
periments of Chernick, Murthy, and Nealy (1985, 1986a). These experiments 
did suggest, though, that in some instances where the error rate is high, is 
superior to ~ ( 0 . ~ ~ 2 ) .  

Efron (1983) proposed a more efficient way of estimating the bootstrap 
bias than via (10.3.4), by expressing it in terms of the bootstrap repetition 

Concerning the use of 
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error rates. The hth repetition error rate is defined to be the bootstrap 
error rate at a point replicated h times in the bootstrap training data. It was 
established that 

where 
PL? = (;) (n  - l)n-h/n". 

(10.4.11) 

As expined by Efron (1983), the method of estimation basec on (10.4.11) 
can be quite more efficient than the obvious Monte Carlo algorithm giving 
(10.3.4) if the number of bootstrap replications K is small. The improvement 
arises from not having to estimate by Monte Carlo the theoretical constants 
pi?. Usually, the @) must be estimated by Monte Carlo as 

x n K  

where 6s) = 1 if y j  occurs h times in ti, the kth bootstrap replication oft, and 
is zero otherwise. Note that Z(O) is the same as defined earlier by (10.4.3). 

10.4.6 Comparative Performance of A(0.632) 

Much of the work in comparing error-rate estimators has concentrated on 
multivariate normal groupconditional distributions, and then mostly for the 
sample NLDR applied under the appropriate homoscedastic normal model 
(10.2.2) for g = 2 groups. For the latter case, the simulation results of Cher- 
nick, Murthy, and Nealy (1985, 1986a) on nonparametric error rate estima- 
tors confirm the aforementioned findings of Efron (1983) that, in terms of 
mean-squared error, A(o.632) is superior to its competitors in those situations 
where bias correction of the apparent error rate is warranted. In the former 
study, which also considered g = 3 groups, some new variants of the bootstrap 
were proposed, including the convex bootstrap, which takes convex combina- 
tions of neighboring training observations in the resampling. Also, some fur- 
ther variants of the bootstrap approach to error-rate estimation are considered 
in SBnchez and Cepeda (1989), including the Bayesian bootstrap based on the 
idea of Rubin (1981). 

Further support of the superiority of A(o.632) in estimating the owrall error 
rate of the sample NLDR has been provided by the extensive simulation study 
conducted by Fitzmaurice, Knanowski, and Hand (1990). Also, previous simu- 
lations by Jain, Dubes, and Chen (1987) confirm the superiority of for 
the k = 1 nearest neighbor (1-NN) and sample quadratic discriminant rules 
applied to data arising under the normal model (10.2.2). 

Further simulations by Chernick, Murthy, and Nealy (1986b) for g = 2 and 
3 groups with nonnormal distributions led to similar conclusions as in the case 
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of normality. However, they caution about the use of for heavy-tailed 
distributions such as the Cauchy, as their simulations suggest that z(B) does 
not have its usual positive bias then to compensate for the downward bias of 
the cpparent error rate. 

10.5 SMOOTHING OF THE APPARENT ERROR RATE 

10.5.1 Introduction 

Various attempts have been made to smooth the apparent error rate with a 
view to reducing its variance in estimating the conditional error rate. Let h(u) 
denote a function ranging from zero to one, which is continuous, monotonic 
decreasing, and satisfies 

over the real line. For g = 2 groups, suppose that a sample-based rule r(x;t) 
is 1 or 2 according as some statistic u(x; t) is greater or less than zero. Then a 
smoothed version of the overall apparent error rate A is given by 

h(u) = 1 - h(-u) 

Hence, A(s) is formed by replacing the zero-one function Q [ i , r ( ~ j ; t ) ]  in the 
definition of the apparent error rate by a smoothing function that can take on 
values between zero and one. It can be seen that a modest perturbation of an 
x i  can switch the indicator function Q from zero to one or vice versa, but will 
cause only a small perturbation for a smooth function. 

For univariate normal and uniform distributions, Glick (1978) performed 
some simulations to study A(s) with h(u) having a straight-line slope. Tutz 
(1985) proposed the logistic form for h(u), 

h(u,C) = 1/{1 +exp(@)}, 

where ((( > 0) determines the slope of the function, and, hence, the prop 
erties of the smoothed estimator A((). For example, for ( = 0, A(() is 0.5, 
and in the other direction, it approaches the apparent error rate as C -+ 00. 

Tutz (1985) suggested that ( be based on the observed training data by letting 
( = %D2, where K is chosen to depend on the sample sizes. He subsequently 
showed how, using the single function h(u;(), a smoothed version of the ap- 
parent error rate for g > 2 can be defined recursively. Some simulations were 
performed to demonstrate the usefulness of this smoothing. 

Snapinn and h o k e  (1985) extended the ideas of Glick (1978) to the multi- 
variate case. In particular, for the sample NLDF [(x;&) applied with a cutoff 
point k with respect to g = 2 groups, they considered a smoothed estimator 
by taking 

h(u(xx;t);O = @{--u(JK;t)/((D)I, (10.5.2) 



SMOOTHING OF THE APPARENT ERROR RATE 361 

where 

The smoothing constant, 

U(x;t) =m €(x;~E) - k. 

C = [ { ( p  + 2)(n1- 1) + (n2 - l)}/{n(n - p  - 3)}]'12, (10.5.3) 

was chosen so that the bias of the smoothed estimator of eq(li1;t) is approx- 
imately equal to that of the modified plug-in estimator @(-ills) for sepa- 
rate sampling under the homoscedastic normal model (10.2.2). For nonnormal 
as well as normal groupconditional distributions, Snapinn and Knoke (1985) 
compared their normally smoothed estimator (10.5.2) with the apparent error 
rate A1 and its cross-validated version AF'), and the ideal constant estimator 

is the bias of A1. They concluded that the normally 
smoothed estimator has a smaller mean-squared error than AyC) if the sample 
size n is sufficiently large relative to p. In a later study, Snapinn and Knoke 
(1988) demonstrated how the performance of their smoothed estimator can be 
improved by using the bootstrap to reduce its bias. They also suggested a new 
smoothed estimator with reduced bias. It corresponds to using (10.5.2) with 

= A1 - bl, where 

( =: {D2/(C1D2 - ~ 2 )  - (nl - l)/fi~}''~ 

if D2 > C Z / C ~  and n > p + 3; otherwise 6 is taken to be infinitely large. Here 

~1 = (n - p - 3)/(n - 2) 

and 
c2 = pn/nlnz. 

Note that with D2 5 C Z / C ~  or n 5 p + 3, this method returns an estimate of 
1/2. 

In later work, Snapinn and h o k e  (1989) found on the basis of a simula- 
tion study performed under both normality and nonnormality that their new 
smoothed error rate estimated performed generally at least as well as the or- 
dinary bootstrap. In their study, the problem was to estimate the error rate of 
the final version of the sample NLDR formed from a subset of the available 
feature variables, using a forward stepwise algorithm. 

10.5.2 Posterior Probability-Based Error-Rate Estimator 

In many situations, the sample-based rule r(x;t) is defined from (1.4.3) in 
terms of the estimated posterior probabilities fi(xj;t). In which case a natural 
way of smoothing the apparent error rate is to define the smoothing function in 
terms of the available estimates of the posterior probabilities. The smoothed 
estimator so obtained is given by 
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By virtue of its definition in terms of the estimated posterior probabilities, 
A(pp) is sometimes referred to as the posterior probability error rate estima- 
tor. It is also referred to as the average conditional error-rate estimator since 
the minimum of the known posterior probabilities of group membership is 
the error, conditional on x, of misallocating a randomly chosen entity from a 
mixture of the groups on the basis of the Bayes rule ro(x;F).  

Before proceeding to consider the use of A(pp) as an estimator of the over- 
all conditional error rate ec(F;t), we consider first the case of known poste- 
rior probabilities of group membership. The usz of the posterior probability- 
based error-rate estimator originally arose in the context of estimating the 
overall error rate eo(F) of the Bayes rule r,(x;F) formed on.the basis of the 
known posterior probabilities q(x). In their extension of the work of Chow 
(1970), Fukunaga and Kessell (1975 1973) showed for g = 2 groups that 

is an unbiased estimator of eo(F) with smaller variance than the apparent 
error rate of ro(x; F) applied to t, 

More specifically, they showed that the variance of AO(PP) can be expressed 
as 

var(AdPP)) = var(A0) - n-'E[T(X){ 1 - T(x)}] 

= var(A0) - n-'eo(F) + n-'E{T(X)}2, (10.5.4) 

where 
T(X) = Il@Ti(X) 

I 

and 
var(A0) = n-leo(F){l- eo(F)}. 

The result (10.5.2) provides a lower bound on the reduction in the variance 
by using AO(PP) instead of AO. For since 

E{T(x)}~ 5 ~E{T(x)) = leo(F), (10.5.5) 

it follows from (10.5.4) that 

var(A0) - var(AO(pP)) 2 fn-'eo(F). 

More precisely, the bound 1/2 on the right-hand side of (10.5.5) may be re- 
placed by the maximum of 7(x) over x to give 

(10.5.6) var(A0) - var(AO(PP)) 2 n-'eo(F) { 1 - mp(x)} ,  

as established by Kittler and Devijver (1981) for g 3 2 groups. 
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Fukunaga and Kessell (1973) also considered the case where the posterior 
probabilities of group membership were estimated nonparametrically from the 
training data using &-nearest neighbor (k-NN) and kernel density estimates of 
the groupconditional densities. 
As remarked by Fukunaga and Kessell (1973) and reiterated by Kana1 

(1974), the result (10.5.6) that AO(PP) has smaller variance than A0 may seem 
paradoxical, since A(pp) does not make use of the known labels of group ori- 
gin of the feature observations in the training data t, as does AO. This para- 
dox was considered further by Kittler and Devijver (1981) in a wider context. 
Suppose that r(x) is a rule formed independently o f t  for the allocation of 
an entity with X = x to one of g groups. Suppose further that the training 
data t is split into two subsets, say, 4 = (y1, ...,yml) and % = (yml+l, ..., ym). 
The m2 = n - ml observations in t2  are used to estimate ~ ( x ) ,  where now 
T(X) denotes the error of misallocation of the rule r ( X )  given X = x. The ml 

observations in tl are solely for the testing of r(x). We let G,x = (X1,...,Xml) 

be the matrix containing the feature observations in tl. Kittler and Devijver 
(1981) considered the posterior probability-based estimator, 

where f (~j i ;  t2) is the k-NN estimate of T(Xj) computed from t2, that is, ?(Xi; t.2) 
= kj/k, where kj is the number of the k nearest neighbors of Xj in t.2 belong- 
ing to groups other than the group to which Xj is allocated according to r(Xj). 

They showed that, although A(PP)(t1,,t2) does not make use of the known 
group labels Z j  in tl, it still has smaller variance than 

Kittler and Devijver (1981) then went on to show how the known group labels 
in tl can be utilized to produce a more efficient estimator. They showed that 

(10.5.7) 

has smaller variance than A(PP)(tl,x, tz). Notice that in (10.5.7), the known 
group label of Xj is used to create an additional neighbor of Xj (j = 1, ..., m1). 

More recently, Fitmaurice and Hand (1987) have compared A(pp)(tl,t2) for 
two different choices of the metric in specifying what is meant by “nearest” in 
the formation of the k-NN estimates. 

The posterior probability-based error-rate estimator has been considered 
also by Fukunaga and Hostetler (1973); Lissack and Fu (1976); and Moore, 
Whitsitt, and Landgrebe (1976), among others. More recent references in- 
clude Kittler and Devijver (1982) and Hand (1986d). A good deal of work 
on error-rate estimation in pattern recognition, including that on the posterior 
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probability-based error-rate estimator, has concentrated on the provision of 
point estimates and bounds for the optimal overall error rate. For references 
additional to those cited above, the reader is referred to Hand (1986a), who 
has given an informative account of the pattern recognition literature on this 
topic. 

From here on, we focus on results for A(pp) in its role as an estimator of the 
overall conditional error rate ec(F;t) of the sample-based rule r(x;t) defined 
by (1.4.3) in terms of the estimated posterior probabilities f'i(X;t). Matloff and 
Pruitt (1984) have given sufficient conditions on the form of the posterior 
probabilities of group membership q(x) for - ec(F;T)} to have a 
distribution converging to the normal with mean zero and finite variance. Em- 
pirical evidence (for example, Glick, 1978; Hora and Wilcox, 1982) suggests 
that A(pp) has a smaller mean-squared error than A, but is biased in the same 
direction as A. This is not surprising, as A(pp) is closely related to the op- 
timistic plug-in estimator (Ganesalingam and McLachlan, 1980). The compo- 
nent of the bias of A(pp) due to using the estimated posterior probabilities 
of the training feature observations rather than new (independent) data in its 
formation can be reduced to the second order by cross-validation. Let 

Ignoring terms of the second order, A(cypp) will have the same bias as A(pp) 
formed using the estimated posterior probabilities of n feature observations 
independent of the training data. The coefficient of l / n  in the leading term 
of the asymptotic bias of the latter estimator was derived by Ganesalingam 
and McLachlan (1980) for the ?i(X;t) and the consequent sample rule r(x;t) 
formed parametrically for g = 2 groups under the homoscedastic normal 
model (10.2.2). Their tabulated results for a variety of the combinations of 
TI, p, and A suggest that the bias of A(cypp) is still of practical concern for 
small A or large p relative to n. Further, their results suggest that A(cvpp) will 
provide a more optimistic assessment if a logistic model were adopted rather 
than directly using the appropriate normal model in obtaining estimates of 
the posterior probabilities. One way of correcting A(pp)  for bias is weighting 
it with an estimator biased in the opposite direction. Hand (1986b) reported 
some encouraging results for A(pp) weighted with A(c') with arbitrarily cho- 
sen weights 0.1 and 0.9, respectively. 

An advantage of the posterior probability-based estimator A(pp) is that it 
does not require knowledge of the origin of the data used in its formation, and 
so is particularly useful when data of known origin are in short supply. Basford 
and McLachlan (1985) used this to propose an estimator of the same form 
as A(pp) for assessing the performance of a rule formed from training data 
that are unclassified with respect to the underlying groups. The bootstrap 
was found to be quite effective in reducing the optimistic bias of the assess- 
ment so obtained; see McLachlan and Basford (1988, Chapter 5) for further 
details. 
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There is not an obvious extension of the posterior probability-based error- 
rate estimator for a specified group or for a specified group and a s@- 
fied assignment. W e  consider this extension now, firstly for the allocation 
rate eoij(F), i, j = 1,. ,.,g, of the Bayes rule ro(x;F). Proceeding similarly to 
Schwemer and Dunn (15)80), we can write 

X E G,]. (10.5.8) 

is an unbiased estimator of eij(F), where 2. is taken to be one or zero ac- 
cording as Q[j , rO(a;F) ]  is zero or one, that IS, according as 

7/(xk) 2 7u(x&) (u = L. . ,g;  u # i) (10.5.10) 

holds or not. It would be unusual for the prior probabilities Ti to be unknown 
when the posterior probabilities 7 i (~ )  are known. However, if the former were 
unknown and t were obtained by mixture sampling, then ni/n provides an 
estimate of Ti (i = 1,. . .,g). On substitution of this estimate into the right-hand 
side of (10.5.9), the expression for AOiy )  reduces to 

Jk. 

(10.5.11) 

(10.5.12) 

for the estimation of the conditional allocation rate ecij(fi;t) of the rule r(x;t) 
defined on the basis of the maximum of the estimated posterior probabilities 
+,(x; t) over u = 1,. . .,g . Accordingly, in (10.5.12), 2jk. !s defined on the basis 
of (10.5.10) now, using the estimated posterior probahhties of group member- 
ship. 

From (10.5.12), 
l7 

~ A j y )  = ( 1 / n i ) e  fi(a;t). (10.5.13) 
j=l k = l  
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Although (10.5.13) converges in probability to one as n 4 00, it is desirable 
that it equals one for finite n, since 

This can be achieved by replacing ni in (10.5.12) by Ci , l? i (Q; t )  and so defin- 
ing A~Y' as 

n 

(10.5.14) 
k = l  ' k = l  

This approach was adopted by Basford and McLachlan (1985) in their esti- 
mation of the conditional error rate for the ith group on the basis of a com- 
pletely unclassified sample. In the latter situation, ni is unknown and so there 
is no option but to use (10.5.14) in place of (10.5.12). It can be seen from 
(10.5.14) that if the entity with Q has a high estimated posterior probabil- 
ity of belonging to Gi, then fjk gets almost full weight, but if this posterior 
probability is estimated to be low, then i?jk is downweighted accordingly. 

In the case of separate Sam ling, ni /n  cannot be taken as an estimate of 
xi (i = 1, ...,g). However, A(fd; as given by (10.5.14) is still applicable for the 
estimation of ejj(Fi;t), proviaed we continue to set f f i  = n j / n  in the formation 
Of ?j(a;t) .  

10.6 PARAMETRIC ERROR-RATE E$"IMATORS 

With any application of a sample-based rule, it would be usual to compute, at 
least in the first instance, the apparent error rate with respect to each group 
and overall to provide an initial guide to the performance of the rule based 
on the training data at hand. In the previous sections, we have considered 
how the apparent error rate can be modified to give an improved estimate 
of the conditional error rate, concentrating on nonparametric methods of bias 
correction. 

In the case of a sample-based rule formed parametrically from the training 
data t, we may wish to adopt a parametric method of estimation of its associ- 
ated error rates, not withstanding the cautionary note in Section 10.2 on this 
approach. We denote the Bayes rule here as '&;!I?) to emphasize its depen- 
dence on the vector of unknown parameters in the parametric form adopted 
for the distribution of Y = (X',Z')'. The corresponding sample-based rule is 
given by r(x;t) z To@;&), where 4 is an appropriate estimate of SP formed 
from t under the adopted parametric model. The associated conditional error 
rate for the ith group is denoted by eci(*;$) and overall by ec(*;&). Note 
that ecj(*;*) and ec(Jl;?!) are the optimal error rates for the ith group and 
overall, respectively, that is, eoi(3P) and eo(Y). As in the previous sections, 
we focus without loss of generality on the estimation of the conditional error 
rate for the first group. 
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A number of parametric error-rate estimators have been proposed and 
evaluated over the years, mainly under the assumption of a homoscedastic 
normal model for the groupconditional distributions; see Dunn and Varady 
(1%6), Lachenbruch (1%8), Lachenbruch and Mickey (1968), Dunn (1971), 
Sedransk and Okamoto (1971), Sorum (1971,1972,1973), Broffitt and Williams 
(1973), McLachlan (1974b, 197% 1974d), and the references therein. More 
recent studies include those by Snapinn and Knoke (1984), Page (1985), and 
Huberty, Wisenbaker, and Smith (1987). 

A common approach is to use plug-in estimates whereby unknown param- 
eters are estimated by the same estimates used in the formation of the rule. 
Thus, the plug-in estimator C("') of ecl(Y;&) is ecl(&;&). Hence, we are re- 
ally estimating the conditional error rate by the optimal error rate of the Bayes 
rule for 9 = 4. 

For the homoscedastic normal model (10.22) for g = 2 groups with equal 
prior probabilities, the plug-in estimator is given by (Fisher, 1936), 

ecl(&; &) = a(- f ~ ) .  
The sample Mahalanobis distance D tends to overestimate the true value A 
of this distance, as can be seen from 

E(D2) {A2 + p( l /n l+  l/nz)}{N/(N - p  - l)}, (10.6.1) 

where N = n1+ n2 - 2. Hence, as @(-lo) is the optimal error rate under 
the normal model (10.22) with a true Mahalanobis distance D between the 
groupconditional distributions, and D overestimates A, the plug-in estima- 
tor a(-@) provides an optimistic estimate not only of the conditional error 
rate, but also mostly of the optimal error rate @(-;A). McLachlan (1973b) 
expanded the expectation of @(-@) to give 

E { @ ( - f D ) }  k: *(-)A) + Bip"(A), 

where the asymptotic bias Bip')\A) of the plug-in estimator of @(-$A) was 
given up to terms of order O(n- ). Up to terms of the first order, 

dP' ) (A)  = {#(iA)/32}[2{A- (P - 1)(4/A)}(l/nl+ I/&?) 

+ A { A ~  - 4(2p + 1)}(1/~)].  (10.6.2) 

For the sample NLDF [(x;&) applied with a zero cutoff point, McLachlan 
(1973b) used the result (10.6.2) to derive under (10.2.2) the N-2-order bias 
of @(- i D )  in its estimation of the conditional error rate ecl(\k; *), which is 
given by (4.3.5) on putting i = 1 and k = 0. This asymptotic bias is given up to 
terms of the first order by 

A 4 ( 1 = -#(iA)[@ - l)(A/n1) 

+ (4(4p - 1) - A2}(A/(32N)}]. (10.6.3) 
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As established in McLachlan (1976a), the asymptotic expectations of the plug- 
in and apparent error rates under (10.2.2) are related as 

E { O ( - i D ) }  E{Al(T)} + $($A)(A/32){8/nl+ (Az- 12)/N}. 

Using (10.6.3), the bias-corrected version of a( - i D ) ,  

@( - $0) - sy’(D), (10.6.4) 

has bias of the second order. The estimator (10.6.4) corresponds to applying 
the bootstrap parametrically to correct 0(- ill) for bias, where the bootstrap 
bias is calculated analytically up to terms of the first order. As with the asymp 
totic result (10.2.3) of McLachlan (1976a) for the bias of the apparent error 
rate, Schervish (1981b) extended (10.6.4) to the case of g > 2 groups. He per- 
formed also some simulations in the case of g = 3 groups with bivariate nor- 
mal distributions having a common covariance matrix. They demonstrated the 
superiority in terms of mean-squared error of the parametric bias correction 
analogous to (10.6.4) over nonparametric methods in the situation where the 
adopted parametric model is valid. 

From (10.6.1), an unbiased estimator of Az for separate sampling under 
(10.2.2) is given by 

AZ = {(N - p - l)/N}DZ - p(l/n1 + l/nz), (10.6.5) 

but, if nl and nz are small relative to p, it can be negative. As a consequence, 
Lachenbruch and Mickey (1968) suggested using @(-qDS) as an estimate, 
both of the optimal and conditional error rates, where 

DS = {(N - p - l ) /N}1 /2D.  

Lachenbruch and Mickey (1968) also proposed eual(a) as an error-rate 
estimator, where eual(A) is the N-2-order asymptotic expansion of the un- 
conditional error rate eul(A) under the homoscedastic normal model (10.2.2). 
They labeled eual(A) as the 0 or OS estimator, correspondin to the use of 
8 = D or DS, respectively. The bias of i?‘O’ = eual(D) or of 8: = eual(DS) 
is of the second order. The estimator P$ can be viewed as the N-2-order ex- 
pansion of the bootstrap unconditional error rate for the bootstrap applied 
parametrically; see Chen and Tu (1987). 

For the estimation of the conditional error rate ecl(*;?fi), McLacNan 
(1974b, 1975b) showed that the bias can be reduced to the third order only by 
using 

8 

8p’ = O(-$D)  + $ ( i D ) [ ( p  - l)/(Dn1) 

+ D{4(4P - 1) - D2}/(32N) + {(P - l)(P - 2)}/(4Dn?) 

+ ( p  - ~ i - 0 3  + ~2~ + 110 + (16/D)}/(64nlN) 

+ (D/12288){3D6 - 4(24p + 7)D4 + 16(48p2 - 48p - 53)D2 

+ 192(-8p + lS)}/Nz]. (10.6.6) 
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Lachenbruch (3968) proposed another parametric estimator obtained by re- 
placing the numerator and denominator of the argument in (4.3.5) with their 
expectations in which A2 is replaced by its unbiased estimate (10.6.5). This 
so-called L estimator is given by 

elL' -- 'P[-M-lI2{ 4D - @ND-')/(nl(N - p - l))}], 
where 

M = N(N - l)/(N - p) (N  - p - 3). 
Note that by interchanging nl and n2 in the expressions above for the var- 

ious parametric error estimators for the first group, the corresponding error- 
rate estimators for the second group are obtained. 

estimator by 
using cross-validation in conjunction with a normal-based a proach for g = 2 

Lachenbruch and Mickey (1W) proposed their so-called 

groups. The estimator of the conditional error rate ecj(\k; i ) so produced is 

given by - 
e,cU) = @{(-l>'si/sf,} (i = 1,2), 

where ti and si, denote the sample mean and variance of those <(Xj;&o)E) ,  

nj in number, from Ci (i = 1,2), and where d(i, denotes the estimate of 
formed from qj) for j = 1,. ..,n. 

Results on the relative superiority of parametric estimators of the various 
types of error rates of the sample NLDR are available from the compara- 
tive studies reported in the references cited near the beginning of this section. 
For example, Lachenbruch and Mickey (1968) put forward recommendations 
on the basis of an empirical study conducted under (10.22), and McLach- 
Ian (1974b) provided theoretical confirmation using the criterion of asymp 
totic mean-squared error. Among more recent studies, Page (1985) performed 
a series of simulation experiments devoted exclusively to parametric error- 
rate estimators, including all of those defined above. The results reported by 
Page (1985) are generally consistent with the results of the earlier studies of 
Lachenbruch and Mickey (1968) and McLachlan (1974b, 1974~). Page (1985) 
concluded that, so far as the estimation of the conditional error rate is con- 
cerned, the estimators d?p), @fN), and Lys) are to be preferred. The latter es- 
timator appears to be best for small and medium p, whereas the former two 
are best for large p. 

Recently, Ganeshanandam and Krzanowski (1990) have compared several 
parametric estimators of the overall conditional error rate of the sample 
NLDF ((x;&) applied with a zero cutoff point with respect to g = 2 groups. 
The groupconditional distributions were taken to be multivariate normal with 
a common covariance matrix (ideal conditions) and multivariate binary (non- 
ideal conditions). Their study also included nonparametric estimators. Alto- 
gether, they compared 11 estimators: #), d ? ( M ) ,  i?(Os), &(p'), @), A, &), 

A(0.632), A(s) with the smoothing constant defined by (10.5.3), A("), and also 
A(cy) as computed for the sample NQDF <(x;&). For multivariate normal 
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group-conditional distributions, Ganeshanandam and Krzanowski (1990) found 
that in terms of mean-squared error, the best estimators are, in order of de- 
creasing superiority, C@), C(OS), A(cv), and A(cv) as for the sample 
NQDR. These estimators performed well above the remaining ones. In terms 
of bias, A(cv) was found to be the least optimistic, followed by A('<), 
C(L),  and tcF). They noted that although 8(OS) is in the class of best estimators 
on the basis of mean-squared error, it has an unacceptably large optimistic 
bias. 

For multivariate binary groupconditional distributions representing non- 
ideal conditions for the parametric estimators, Ganeshanandam and Krzanow- 
ski (1990) concluded that A(cv), C(@, A('.), €?(OS), i?(L), and bCM) are the best. 
Again C(OS) w a s  found to be overly optimistic in its assessment. 

Of course, there is little absolute difference between the various parametric 
estimators when the sample size n is large relative to the dimension p of 
the feature vector. The formation of parametric error-rate estimators under 
models more general than (10.2.2) is limited by the difficulty in calculating 
manageable analytical expressions for the unconditional or even optimal error 
rates; see Section 4.6. 

10.7 CONFIDENCE INTERVALS 

McLachlan (1975b) considered interval estimation of the conditional error 
rate ecl(F1;t) of the sample NLDR under the homoscedastic normal model 
(10.2.2) with equal groupprior probabilities. With his proposal, an approxi- 
mate 100( 1 - a)% confidence interval for ecl(F1; t) has the form 

(10.7.1) 

where CiM) is the asymptotically unbiased estimator of eq(F1; t) defined by 
(10.6.6). The interval (10.7.1) is based on the result that for sufficiently large 
n1 and n2 under separate sampling, &IM) - ecl(F1;T) is approximately normal 
with mean zero and variance vl(A), where 

V1(A) = {#($A)}2[n,' + (A2/8)N-' + {A2 + 4(3p - 4) 

+ {(A2 - 2p)/8}(nln2)-' + {A4 + 2(llp - 16)A2 

+ 8(Sp - 4)}(64nlN)-' 

+ {2A6 + 16(2p - 5)A4 - 32(4p - 13)A2}(32N)-*]. 

Previously, Lachenbruch (1%7) had considered interval estimation of the 
unconditional error rate eul(F) for g = 2 groups, using his proposed estimator 
AY'). The Iower and upper limits of an approximate lOO(1- a)% confidence 
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interval for eu1(F) can be obtained as roots of the equation 

This interval is formed on the basis that A y )  has a binomial distribution with 
parameters nl and eul(F). As noted by Lachenbruch (1%7), the expectation 
of ~1") actually equals eul(F; nl - 1, nz), the unconditional error rate for a 
discriminant rule based on nl - 1 observations from GI and n2 from 9 Also, 
the correlation between the summands in the definition (10.2.8) of A(, has 
to be ignored for the variance of A y )  to be 

eul(F;nl- l,nz){l- eul(F;nl- l,nz)}/nl. 

However, this correlation decreases as nl becomes large, and Lachenbruch 
(1%7) performed some simulations to demonstrate that it is small for the nor- 
mal model (10.2.2). 

For an arbitrary sample-based discriminant rule t(x;t), let &(t) denote an 
estimate of its unconditional error rate euI(F). Tjpically, ,/Z{Cl(T) - eut(F)} 
is asymptotically normal with mean zero and finite variance, say, v1. In which 
case, a standard approximate confidence interval for eul(F) is 

tl(t) f (o~/~)''~Q-'(I - 4.1, 
where 01 denotes an estimate of the asymptotic variance formed from the 
training data t. For special cases such as multivariate normal groupconditional 
distributions, expressions are available for v l ;  see McLachlan (1972b) and 
Schervish (1981a). In those instances where there is no result available for 
w1, it can be assessed using the bootstrap. 

However, although the standard approximation may be asymptotically cor- 
rect, it can be quite misleading in small samples. In a series of p a p s ,  Efron 
(1981b, 1982, 1985, 1987) has developed methods for constructing approxi- 
mate confidence intervals for a real-valued parameter using the bootstrap. Let 
ti,. . . , tz denote K bootstrap replications of t generated according to the boot- 
strap algorithm described in Section 10.3. For this generation, the distribution 
function F of Y = (X',Z')' is replaced by an appropriate estimate $' formed 
from t. The nonparametric bootstrap uses $' = k,, the empirical distribution 
function of Y formed from t. If a parametric form is adopted for the distri- 
bution function of Y, where i& denotes the vector of unknown parameters, 
then the parametric bootstrap uses an estimate 4 formed from t in place of 
9. That is, if we write F as FV to signify its dependence on 9, then the 
bootstrap data are generated &om P = F+ 

In the subsequent discussion, we will assume a mixture sampling scheme 
for t, but the results apply similarly under separate sampling. As above, &(t) 
denotes an arbitrary enor-rate estimator formed from t. The distribution func- 
tion of &1(T) can be approximated by 

CEF(U) #{&(ti) 5 u } / K ,  (10.7.2) 
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the empirical distribution function formed from the K bootstrap replications 
&l(ti) , . . . ,&l(t i) .  With the percentile method of Efron (1981b, 1982), a nomi- 
nal lOO(1- a)% confidence interval for eul(F) is given by 

h -1 - -1 
[CDF ( ia) ,CDF (1 - la)], (10.7.3) 

- -1 
where 

CDF (a) = sup{u : CxF(u) 5 a}. (10.7.4) 

That is, the percentile method interval consists of the central 1 - a proportion 
of the (simulated) bootstrap distribution of i?(P). 

Efron (1982) showed that (10.7.3) will have the desired coverage probability 
1 - a if &(T) - eul(F) has the same distribution, symmetric about the origin, 
as &(T') - eul(P) does with k held fmed at its observed value. This will be 
so for the parametric bootstrap if &(T) - eul(Fe) is a pivotal quantity, that 
is, if its distribution does not depend on @. Also, if the latter holds, it should 
be approximately so for the nonparametric bootstrap. The accuracy of the a p  
proximation depends on how close the empirical distribution function fin is to 
F+. It can be much different for small n; see Schenker (1985). 

As explained by Efron (1982), a bias correction to the percentile method is 
called for if el(T') is median-biased, that is, if 

where pr, refers to probability with respect to P held fixed at its observed 
value. The bias-corrected percentile interval has the form 

h -1 h -1 
[CDF ( @ P o  + z(l/2)a)),CDF ( W Z O  + Zl -a /2 ) )1 ,  (10.7.5) 

where za = @-'(a), and where z, is estimated by 

{cEP(eul(P))).  

The assumption underlying the bias-corrected percentile method is that there 
exists a monotonic transformation h such that h(i?l(T)) - h(eu1 F ) )  has the 

at its observed value. Efron (1987) subsequently proposed the bias-correc- 
ted percentile acceleration method where the assumption underlying the bias- 
corrected percentile method is relaxed by allowing the scaling of the distri- 
bution of h(&(T) - h(eul(F)) to vary linearly with h(eul(F)). Note that al- 
though the validity of these bootstrap intervals rely on the existence of such a 
transformation h, it is not necessary to know h to form them. 

In recent times, there has been much attention devoted to the bootstrap 
approach to the formation of confidence intervals. In particular, Efron (1985) 
showed that there is a wide class of problems for which the bootstrap intervals 
are an order of magnitude more accurate than the standard intervals. How- 
ever, there are only a few results available on bootstrap confidence intervals 
in a discriminant analysis context. Hence, these intervals should be used with 

same normal distribution as h(&(T*)) - h(eul(P)) does with 6 held fixed 
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caution. If the assumptions underlying them are inapplicable, then the cover- 
age probability may be substantially different from the nominal level. These 
assumptions are difficult or impossible to check in complicated situations such 
as the present one of error-rate estimation. Indeed, it is unlikely that the un- 
derlying assumptions are satisfied for this problem. 

There is also the percentile-t method of Efron (1982) for forming bootstrap 
confidence intervals. Additional references on this method include Abramo- 
vitch and Singh (1985), Hall (1986a, 1986b, 1988), and Efron (1987), who con- 
sider applications where it has the capacity to provide improved confidence 
intervals over the percentile method. In the present context of error-rate es- 
timation, suppose that there is available an estimate of the variance of 
el("). Then with the percentile-t method, a nominal lOO(1- a)% confidence 
interval for eul(F) is given by 

where CsF(u) denotes the empirical distribution function defined by (10.7.2), 
but with &(ti) now replaced by its Studentized version 

{tl(ti) - eul(P)}/{ol(ti)l'/2 

fork = 1, ..., K. 

10.8 SOME OTHER TOPICS IN ERROR-RATE ESTIMATION 

10.8.1 Rule Selection via Apparent Error Rate 

Recently, Devroye (1988) has considered the use of the overall apparent error 
rate as the basis for selecting the best rule from a class of discriminant rules 
based on some given training data t. For this purpose, it is proposed that in 
addition to t, there are test data tm, where 

tk = (Yn+1, ..-,Yn+m), 

and yi = (xi, 2))' for j = n + 1,. . . , n + m. With this provision for test data tm, 
the overall apparent error rate of a sample rule r(x;t) formed from t is given 

g n i m  
by 

A(')(t,tm) C C ~ijQ[i,r(~j;t)]/m. 
i = l  j=n+l 

It is an unbiased estimator of the overall conditional error rate of r(x;t), which 
is given by 

ec(')(F;t) = x~il?{Q[i ,r(Xt)]  I XE Gi,t). 

As a class of rules is under consideration here, the notation now for the vari- 
ous error rates explicitly shows the particular rule to which reference is made. 

B 

i r l  
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On the drawback of splitting up the data into training and test subsets, De- 
vroye (1988) argued that the size m of the test subset can often be taken much 
smaller than the size n of the training subset (m = o(n)). Also, he surmised 
that more sophisticated methods such as cross-validation would do equally well 
or better than the split-data method. 

For a specified class R of sample rules based on the training data t, the 
automatic selection procedure considered by Devroye (1988) chooses the rule 
that minimizes the overall apparent error rate A(')& tm) over all rules r (x;  t) 
in the class R. We let rt,(x;t) denote the rule so chosen, where the subscript 
t,,, is to emphasize that this rule also depends on tm, as well as t. For brevity, 
we henceforth abbreviate rtm to rm. By the definition of rm(X; t), 

A r m ) ( t ,  tm) = rninA(')(t, tm). 
rER 

The overall conditional error rate of r,,,(x; t) is given by 

8 

ec('")(F;t) = C~iiE{Q[i,r~(Xt)] I X E Gi, t , tm}.  
i =1 

For a finite class R with cardinality bounded by N,,, Devroye (1988) estab- 
lished that, for all E > 0, 

prtsup I A(')(T,Tm) - ec(')(F;T) I >  c I 2N,, exp(-ic2) (10.8.1) 
r E R  

and that 

(10.8.2) 

Since 

(10.8.2) provides an upper bound for the suboptimality of rm(x;t) in R. For 
instance, if we take m = n and assume that Nn is large, then (10.8.2) shows 
that the chosen rule rm(x;t) has on the average an error rate within 2{10g(Nn)/ 
(2n)}'I2 of the best possible rate, whatever it is. 
As explained by Devroye (1988), the apparent error rate is employed in the 

present context as a tool for the selection of a rule and not for the provision 
of estimates of the error rates per se. However, it turns out that the apparent 
error rate A('m)(t, tm) of the selected rule can serve as an estimate of its error 
rate. This follows from (10.8.2) on noting the inequality 
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which is trivially true. Thus, although A ( ' m ) ( t ,  tm) will usually provide an opti- 
mistic estimate of ec('-)(F;t), (10.82) and (10.8.3) show that it is within given 
bounds of the latter rate. 

On the specification of the class R, Devroye (1988) advises that it is a com- 
promise between having R rich enough so that every Bayes rule can be a p  
proached asymptotically by a sequence of rules selected from a sequence of 
R's, but not having R so rich that trivial selection ensues. In practice, R can 
be specified by a variety of parametric and nonparametric rules, including, 
say, a few linear discriminant rules, nearest neighbor rules, a couple of tree 
classifiers, and perhaps a kernel-type rule. 

Devroye (1988) also has derived bounds corresponding to (10.8.1) and 
(10.8.2) for infinite classes. He showed how these bounds for finite and infinite 
classes can be used to prove the consistency and asymptotic optimality for 
several popular classes, including linear, nearest neighbor, kernel, histogram, 
binary tree, and Fourier series-type discriminant rules. 

10.8.2 Estimation of Realized Signal-*Noise Ratio 

Reed, Mallet, and Brennan (1974); Khatri, Rao, and Sun (1986); and Khatri 
and Rao (1987) have approached the estimation of the conditional error rates 
of the sample NLDR in terms of the realized signal-to-noise ratio in the con- 
text of signal detection. The feature vector represents an incoming message 
that is taken to have a multivariate normal distribution with unknown co- 
variance matrix I: and mean vector either pl = p, corresponding to a known 
signal p, or p 2  = 0, corresponding to pure white noise. In this situation, since 
p1 and j42 are both known, only C needs to be estimated. We let e denote 
an estimator of C for which 

M e  e u  W ( M ,  C)) (10.8.4) 

a Wishart distribution with M degrees of freedom and expectation matrix 
ME. Khatri and Rao (1987) suggest that the estimation of C is best done by 
generating n2 independent observations x2j ( j  = 1,. . ., n2) from the pure white 
noise process and taking & to be the maximum likelihood estimate of C, 

j =1 

In which case, (10.8.4) holds with M = 122. 

normal-based linear discriminant function 
With I: estimated by 9, a message can be filtered using the simplified 

(x - fp)'*-lp 

applied with a zero cutoff point. Its conditional error rates have the common 
value of 
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where 

is the realized signal-to-noise ratio. As noted by Reed et al. (1974), p($, C) 5 
jdC-'p = A2. Thus, A2 - p(9,Z) represents the loss in information in using 
& to estimate C. 

p($,C) = ( ~ f $ - l p ) 2 / ( ~ f * - l C $ - l ~ )  

An obvious point estimate of p($, C) is 

p($ ,$)  = pf*-lp 

= D2, 

which overestimates unless M is large compared to p. Khatri and Rao (1987) 
consequently suggested estimating p($,X)  by cD2, where c is chosen so that 

E{p(&, C )  - c D ~ } ~  

is a minimum. They showed that this minimum is achieved at 

c = (A4 - p + 2)(M - p - 3 ) / M ( M  + 1). 

In order to provide a lower confidence bound on (e,E), Khatri and Rao 
(1985) considered the distributions of the statistics p(#, E)/A2 and $MA2/D2 .  
They proved that (e, C)/A2 is distributed according to a beta distribution 

which is distributed as a gamma distribution with parameter $(M - p  + 1). 
Also, they have derived the corresponding results for a complex feature vector. 
Previously, Reed et al. (1974) had obtained the distribution of p(!&Z)/A2 for 
the complex case. 

An exact confidence bound for p ( 9 , Z )  can be obtained from the distribu- 
tion of the product of these two statistics 

U = &W/D2)p($,C). (10.8.5) 

Khatri and Rao (1987) showed that this pivotal statistic U has the confluent 
hypergeometric density 

with parameters %(M P - p + 2) and 4(p - l), independently of ;MA2/D2 ,  

{r(~,)}-~e-"u"'-~{r(u~ + a3 - a2 + i)/r(a3 - a2 + 1)}h(u;al,a2), 

where a1 = f(p - l), a2 = f, a3 = $(A4 - p + l), and where 

is the confluent hypergeometric function of the second kind. If uo denotes the 
quantile of order a of this distribution, then 

p(e,v 2 ( 2 O 2 / W u a  

provides a lower confidence bound on the realized signal-to-noise ratio with 
a confidence coefficient of 1 - a. Khatri, Rao, and Sun (1986) have tabulated 
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uo for various combinations of a,p ,  and M. They also have given several 
approximations to the distribution of U. 

Khattree and Gill (1987) have derived some more estimators of p(fi,C) 
under various loss functions that are dimension-free. Recently, Khattree and 
Gupta (1990) have considered the bivariate extension of this problem, where 
the incoming message is either pure white noise or one of a pair of known 
multivariate signals. 



C H A P T E R  11 

Assessing the Reliability of the 
Estimated Posterior Probabilities 
of Group Membership 

11.1 INTRODUCTION 

In this chapter, we focus on the assessment of the reliability of the posterior 
probabilities of group membership as estimated from the training data t. As 
before, the posterior probability that an entity with X = x belongs to Gj is 
denoted by Ti(X), where 

7 i ( x )  = r i f i (x) / fx(x)  (i = 1, - * -,g), 

and 
8 

f x W  = C T h f h W  
h=l  

is the mixture density of X. 
The point estimation of the posterior probabilities of group membership 

T i ( X )  has been considered in the previous chapters. It was seen there that 
the Bayes or optimal discriminant rule r,(x;F) is defined on the basis of the 
relative size of the Tj(X). A sample version of ro(x) can be formed by replacing 
the ~ i ( x )  with some point estimates *(x;t). A variety of ways of procuring 
suitable point estimates *(x; t) has been discussed. For example, in Chapter 
8, the logistic approach was described, whereby the posterior probabilities of 
group membership q ( x )  are estimated by adopting a log-linear model for the 
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ratios of the groupconditional densities. The assessment of the reliability of 
the estimates of the posterior probabilities so formed was considered there for 
this approach. 

Here we consider the problem of assessing the reliability of the estimated 
posterior probability of group membership for the approach where the T~(x) 
are estimated indirectly through estimation of the groupconditional densities 
fi.(x), so that 

This is called the sampling approach by Dawid (1976); see Section 1.7. 
As discussed in Section 1.11, if the posterior probabilities have been esti- 

mated for the express purpose of forming a discriminant rule, then their over- 
all reliability can be assessed through the global performance of this rule as 
measured by estimates of the associated error rates. However, often it is more 
appropriate to proceed conditionally on the observed value x and to provide 
standard errors for the estimated posterior probabilities .Pi(%; t) and also inter- 
val estimates for the T~(x) if possible. For example, one of the objectives of 
the Glasgow dyspepsia study (Spiegelhalter and Knill-Jones, 1984) was to ob- 
tain an accurate assessment of the probability of a peptic ulcer being present, 
based on symptoms alone, in order to provide an objective basis for further 
selection of patients for investigation, treatment, or clinical trials. 

We will concentrate here on interval estimation of the posterior proba- 
bilities of group membership q(x), firstly in the special case of multivariate 
normal groupconditional distributions for which there are some analytical re- 
sults available. We will then describe methods of forming interval estimates, in 
particular the bootstrap, in the general case of arbitrary groupconditional dis- 
tributions. An excellent account of interval estimation of the posterior proba- 
bilities T i ( X )  was given recently by Critchley et al. (1987). An empirical com- 
parison of several methods of interval estimation was provided recently by 
Hirst, Ford and Critchley (1990). 

.Pj(x;t) *j~(x>/fx<x> (i = 1, ...,g). 

11.2 DISTRIBUTION OF SAMPLE POSTERIOR PROBABILITIES 

11.2.1 Distribution ot  Sample Log Odds (g = 2 Homoscedastic Groups) 

We adopt the same notation as introduced in Section 3.1 in the case of mul- 
tivariate normal groupconditional densities. The vector t9u contains the ele- 
ments of the group means p1, ...,pg and the distinct elements of the group 
covariance matrices C1, ..., Cg, and YU = (#,@&)'. Also, @E and YE denote 
t9v and Yu, respectively, under the constraint that C1 = 

As seen in previous sections, for g = 2 groups, it is more convenient to work 
with the posterior log odds rather than directly with the posterior probabilities 
of graup membership. In the case of a mixture of two homoscedastic normal 
groups, so that 

= Cg = C. 

X - N(pj,C) with prob. Ti in Gj ( i  = 1,2), (11.2.1) 
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the posterior log odds can be expressed as 

q(x; * E )  = 1 o g { ~ l ( X ; ~ E ) / ~ Z ( x ; * E ) }  

= log(rl/r2) + t ( x ; @ E ) ,  

where 
( ( x ; @ E )  = - ~ { ~ l , E ( x ) - ' % E ( X ) } ,  

and where 

&,E(X)  = 6 ( x , ~ i ;  x) 
= ( X - P i ) ' Z - ' ( x - P i )  ( i =  1 , ~ ) .  

As discussed in Section 3.3, t ( X ; @ E )  is commonly estimated by 

t ( x ; P E )  = - ~ { & , E ( x ) - & , E ( x ) } ,  (1 1.2.2) 

where & , E ( x )  = S ( X , Z i ; S ) .  In their work leading to the provision of an inter- 
val estimate for ((x;&JE), Critchley et al. (1987) chose to work with its uni- 
form minimum variance unbiased estimator t&), given by (3.3.16). Schaaf- 
sma (1984) noted that the choice of estimate of e(x ;BE)  is not crucial in the 
context of interval estimation. This is because differences between estimators 
such as ( (x;&)  and $ ( x )  are of order n-l,  whereas their standard errors are 
of order n-lI2. For brevity, ( ( x ; @ E )  is written henceforth as {~ (x ) .  

The exact sampling distribution of &(x) appears to be intractable, although 
Critchley and Ford (1985) have shown that it depends upon only three param- 
eters, the Mahalanobis distance A, ~ E ( x ) ,  and 

C(x)  = f { h , E ( X )  + d Z , E ( x ) } ,  

which may be viewed as the average atypicality of x with respect to G 1  and 
Gz. The exact variance of &(x), however, has been obtained by Schaafsma 
(1982) and Critchley and Ford (1984). They showed that 

var{[E(x)} = V ( ( E ( X ) , C ( X ) , A ) ,  

where 

(n - P - 2)(n - P - 5 ) V ( € E ( X ) , C ( X ) , A )  

- 1  2 = (n - p - l ) { & ( x )  - j(n - 3)(n,' - )} 

+ ( n  - p  - 3)[C(x){(n - 3)(n;' + n;') + A'} - :A4] 

+ $(n - 3)(n -p  - 3){2p(nT2 + n t 2 )  - (n - l)(n[' - n;')'}. 
(11.2.3) 

Schaafsma (1982) reported that this exact variance is a substantial improve- 
ment over the asymptotic variance given in Schaafsma and van Vark (1979). 
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By using the asymptotic normality of &x), an approximate lOo(1- a)% 
confidence interval for &(x)  is 

&(XI f @-'(I - ~a){v(~=(x),((x),~)~1'2.  

Hirst et al. (1990) have shown by a practical example that this method can be 
unstable in high-dimensional, small sample size situations. 

Critchley and Ford (1985) also considered another method, which sub- 
stitutes estimates for ((x) and A only in v(<E(x),((x),A). An approximate 
lOo(1- a)% confidence interval is given then by the set of <E(x) values satis- 

(11.2.4) 

which, for n > p + q, is an interval whose end points are found by solving the 
associated quadratic equations. They concluded from some simulations per- 
formed that the latter method, which explicitly allows for the quadratic depen- 
dence of the variance on <E(x), is to be preferred. They suggested that their 
method would be improved if information on the skewness and kurtosis of 
&(x) was used. 

A. W. Davis (1987) subsequently extended the approach of Critchley and 
Ford (1985) by incorporating the cumulants of &(x) up to the fourth order. 
His initial attempt using only plug-in estimates of ( ( x )  and A2 proved to be 
unsuccessful. It was concluded that the joint distribution of &x), ( (x) ,  and b2 
needed to be taken into account. A. W. Davis (1987) showed how this could 
be effected using the procedure of Peers and Iqbal (1985) for constructing 
confidence intervals in the presence of nuisance parameters. From a simula- 
tion study carried out following the basic scheme of Critchley and Ford (1985), 
A. W. Davis (1987) found that a considerable improvement is achieved with 
this procedure of Peers and Iqbal (1985). The asymptotic expressions for the 
joint cumulants of &x), ((x), and b2 are not given here, as they are quite 
lengthy; see A. W. Davis (1987) for details. 

fying 
{ $ ( x )  - bI(X))2 < {@-'(I - f a ) ) 2 V ( b ( X ) , g ( x ) ,  A), 

11.2.2 Distribution of Sample Log Odds (g = 2 Heteroscedastic Groups) 

We consider now the case of a mixture of g = 2 heteroscedastic normal com- 
ponents, so that. 

X N(pj ,  Cj) With pmb. Tj in Gi (i = 1,2). (11.25) 

Under (11.2.5), we have from (3.2.2) that the posterior log odds are given by 

t l (x;*u) = log(7h/.rr2) + €(x;@u), 

where 
. 2  

(11.2.6) 
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The uniform minimum variance unbiased estimator of ((x;Ou), denoted by 
&(x), is given by (3.2.10). The exact variance of &(x) appears intractable. 
Critchley et al. (1987) established asymptotically for ni > p + 4 that 

var{&r(x)) = Vu { W ) ,  62(x)), 

where 

(1 1.2.7) 

By using the asymptotic normality of &x), an approximate lOO(1 -a)% 

6 ( x )  f @-l(1 - ~~) [V"{~~(x) ,~2(x) }11 '2 .  (1 1.2.8) 

Critchley et al. (1987) explored by simulation the performance of (11.2.8) with 
a = 0.05 as a nominal 95% confidence interval for <(x;@v). Various combi- 
nations of the parameters were taken with ni = 20, 40, or 400 ( i  = 1,2), and 
p = 2 or 5. In summary, they found that (11.2.8) gave a very reliable approxi- 
mation for very large sample sizes (nl  = nz = SOO), a good approximation for 
moderate sample sizes (nl  = nz = 40), and rather uncertain results for smaller 
sizes (nl  = n2 = 20). 

Ambergen and Schaafsma (1984) have considered approximate interval 
estimates for the estimated posterior probabilities rather than for the log pos- 
terior odds. Also, Machin et al. (1983) have given the asymptotic standard 
error of 

confidence interval for ((x;&) is given by 

71(x; r, 4,) = (71.1 h 2 )  exp t€(x; 47 1 / { 1 + (71.1 /7r2) exp(€(x; &>I 
in the univariate case of (11.2.5), where the prior probabilities 71.1 and a2 are 
specified. 

11.2.3 Joint Distribution of Sample Posterior Probabilities (g > 2 
Groups) 

In the case of g > 2 groups under normality, the relative sizes of the posterior 
probabilities of group membership can be considered in terms of the quanti- 
ties 7,Iig(X;@u) for i = 1 ,..., g - 1, where, from (3.3.2), 

qig(x;%) = l o g ( X i / r g )  + ( ig (x ;&)  

and 
tig(@U) = - 4 t 6i (x) - 6g<x>> - j log{ Ixi I /  ICg I I 
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for i = 1, ...,g - 1. For pairwise group comparisons, an unbiased estimator of 
,$ig(x;&) and an expression for its asymptotic variance are available from 
the results in the previous sections for g = 2 groups. Also, in the case of 
homoscedasticity, an exact expression exists for the variance of the unbiased 
estimator of (ig(X; &). 

Concerning the joint distribution of the estimated posterior probabilities 
of group membership, Ambergem and Schaafsma (1985) have considered this 
problem under the homoscedastic normal (11.2.1). We let 

r ( x ; g E )  = (Tl(x;gE),.0.,Tg(x;gE))' 

be the vector containing the g posterior probabilities of group membership. 
Further, for specified x, we let r(x;x,&) denote the plug-in estimate of 

For separate sampling under (11.2.1), Ambergen and Schaafsma (1985) 
showed that the asymptotic distribution of fi{z(x;?r,&) - T(x;@E)}  is mul- 
tivariate normal with mean zero and singular covariance matrix YI'Y, 

fi{r(x;x,dE)- T(x;*E)} N(O,yry), (1 1.2.9) 

r ( x ;  *E) .  

where 
(r)ii (4n/ni)dig(x) + ~ { s , E ( x ) } ~  

and 
(r)ij 2((x - pi)'x-'(x - pj>l2 (i # j ) ,  

and where 
(Y)ij = iTi(x;*E){-I + T ~ ( x ; * E ) )  

and 
(Y)ij = ${Ti(x;*E) + Tj(x;*E)}  (i # j ) .  

By plugging in estimates for the unknown parameters in the covariance ma- 
trix in the asymptotic distribution (1 1.2.9), simultaneous confidence intervals, 
for example, Scheffd-type intervals, can be constructed for the q(x; q~). Only 
estimates of the diagonal elements of the covariance matrix are needed for 
intervd estimation of each Ti(X;*E) separately. For example, an approximate 
lOO(1- a)% confidence interval for q ( x ; g ~ )  is provided by 

Ambergen and Schaafsma (1!385) concluded from some simulations performed 
under (11.2.1) that, for a nominal 95% confidence interval, each )ti should not 
be smaller than 50(25) if the actual confidence probability is not to fall below 
0.90(0.85). Ambergen and Schaafsma (1984) have considered the extension of 
the result to the case of arbitrary group-covariance matrices with no assump 
tion on their equality. 
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11.3 FURTHER APPROACHES TO INTERVAL ESTIMATION OF 
POSTERIOR PROBABILITIES OF GROUP MEMBERSHIP 

113.1 Profile Likelihood Approach 

Critchley, Ford, and Rijal (1988) have considered the profile likelihood a p  
proach to the provision of an interval estimate for the posterior log odds 
t(x;&) in the case of g = 2 normal groups with unequal covariance matri- 
ces. For brevity, we will write in this section 8u as 8 and <(x;B,) as t, where, 
for the given feature vector x, t = h(B). With < the parameter of interest, the 
profile log likelihood function p ( t )  is defined to be the supremum of the log 
likelihood function L(B) over all admissible values of 8 subject to h(8) = 5, 
that is, 

P ( t )  = SUP L(@)* (11.3.1) 
W)=€ 

A confidence region for ( based on p ( ( )  has the form 

{t : 2[P(b - P(<)l< €1 (11.3.2) 

for some constant e and where is the maximum likelihood estimate of <. 
Large-sample theory suggests taking e = xt, l-a for an approximate lOO(1- 
a)% confidence region. 

The major obstacle in constructing the interval defined by (11.3.2) is the 
computation of the profile Iikelihood p(,$). However, Critchley et al. (1988) 
showed that the computations are simplified by using strong Lagrangian the- 
ory. It follows from this theory, which was presented in a general context, 
that, provided certain conditions hold, the profile likelihood can be obtained 
through the maximization of 

L(e) - q e )  (11.3.3) 

with respect to 8, for a given A E A, where A denotes the set of values of A for 
which a solution 8, to the maximization of (11.3.3) exists. The entire function 
p ( t )  is obtained by letting A vary throughout A since, if h(&) = [A, say, then 

P(&> = L(h)* 

For the present problem of estimating the posterior log odds under separate 
sampling with respect to g = 2 groups under normality, (11.3.3) has exactly the 
same form as L(8), and so &, can be computed exactly. As noted by Critchley 
et al. (1988), the Lagrange multiplier A has an interpretation as a weight with 
which the feature vector x is subtracted from the training set from the first 
group and added to the second. For each A E A, the unique 8, consists of the 
elements of &+(A)  and the distinct elements of $,(A) for i = 1,2, where 

&(A) = {n& + (-l)ClX}/rti(A), 

$ i ( ~ )  = [(nj - 1)Si + {(-IyAnj/nj(A)}(x -z~) 'I /~z~(A),  
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and 

for i = 1,2. Here A is the open interval 

nj(A) = ni + ( - I ~ A  

(-nz(l + Lg)-',n1(1 +DI)-1), 

and, apart from an additive constant depending only upon n1, n2, and p, 

where 

and 

for i = 1,2. 
Critchley et al. (1987) have considered the profile likelihood approach for 

multivariate normal linear discrimination, corresponding to the assumption of 
equal covariance matrices. Hirst et al. (1990) have noted that the use of a 
Bartlett-type correction could improve this approach and the approach that 
yields (11.2.4). 

fii(X) = ni(.A) + (-I>'XD:, 

mi(A) ( p  + l)logni(X)-logfii(A)-logI(ni - 1)SiI 

11.3.2 Illustration of the Profile Likelihood Approach 

Critchley et al. (1988) illustrated the profile likelihood approach, using data 
from the example on the diagnosis of Conn's syndrome, as reported in Aichi- 
son and Dunsmore (1975, Chapter 1) and broadly referred to in Section 1.1. 
More specifically, the data set consisted of observations on nl = 20 patients 
from group GI, having a benign tumor (i.e., confirmed adenoma), and on 
n2 = 11 patients from group a, having a more diffuse condition, bilateral hy- 
perplasia. For this illustration, the feature vectors on the patients were taken 
to contain the measurements of their age (in years) and the concentrations 
(in meq/L) of potassium, carbon dioxide, and renin in their blood plasma. 
As recommended by Aitchison and Dunsmore (1975, Section 11.6), Critchley 
et al. (1988) worked with the logarithms of the raw data on these four vari- 
ables, which were taken to have a multivariate normal distribution within each 
group; see also Aitchison et al. (1977) and Hawkins (1981) on the feasibility 
of this assumption. 
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FIGURE 11.1. Plot of potassium versus renin ooncentrations for the unclassifed case (a) and the 
classified case (b) from GI, along with the other 30 classifid points, labeled as 1 or 2 according 
as they belong to GI or G2, respectively. 

t 

FIGURE 11.2. Profile log likelihood p(<)  for two cases (a) and (b). (From Critchlcy et al., 1988.) 

Critchley et a]. (1988) focused on two cases, (a) and (b). Case (a), which is 
labeled u l  in ab le  11.4 in Aitchison and Dunsmore (1975), is an unclassified 
patient with feature vector x, = (50,3.2,27.0,8.5)’. Case (b), which is labeled 
A8 in nble  1.6 in Aitchison and Dunsmore (1975), is a member of the 30 pa- 
tients classified from group GI, and has feature vector Xb = (18,2.5,30.0,2.5)’. 
The raw values of the potassium and renin variables for these two cases are 
plotted in Figure 11.1, along with the corresponding values of these two vari- 
ables for the other 19 classified patients from GI and the 11 from G2. 
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The profile log likelihood p(4) is illustrated in Figure 11.2 for cases (a) 
and (b) under the assumption of the heteroscedastic normal model (11.2.1) 
with ~1 = 7r2 = 0.5. The horizontal line in Figure 11.2 corresponds to taking 

= Xk.95 in the definition (11.3.2) of the interval estimate. The upper and 
lower bounds, L and U, are indicated on the figures. Note that, due to the 
extreme nature of Figure 11.2(b), U is not indicated on the plot. 

In Figure 11.2(a), the point estimate for ((&;&J) would suggest that case 
(a) is a bilateral hyperplasma. However, the interval estimate includes zero, 
indicating uncertainty over whether €(&;&) is negative or positive. It can be 
seen in Figure 11.2@) that, although we are uncertain about the exact value of 
{(u;8u), we could be certain that <(%;8u) is positive. Thus, on a probability 
scale, the interval for the posterior probability of an adenoma is very close 
to 1. 

11.33 Bayesian Approach 

As discussed in Section 2.2, the semi-Bayesian approach to the estimation of 
the groupposterior probabilities is carried out in terms of their posterior dis- 
tribution computed on the basis of the information in t but not x. Rigby (1982) 
has investigated this approach applied to the estimation of T~(x;*u). His pro- 
posal for interval estimation of q(x;Yu) is to calculate the moment-generating 
function of the posterior distribution of T~(x;*u).  The first four moments of 
the posterior density are then computed and Pearson curves are used to a p  
proximate this density. From this approximated density, a Bayesian posterior 
or credibility interval can be formed for 71(X;*U). 

Although this approach of Rigby (1982) is not designed to produce a clas- 
sical confidence interval, Hirst et al. (1990) have found it to have extremely 
good properties as such. Indeed, in their simulation study, it performed the 
best out of the methods investigated in achieving the target confidence coeffi- 
cient. 

11.3.4 Bootstrap 

The use of the bootstrap to assess the distribution of the estimated error rates 
of a discriminant rule was described in the previous chapter. It can be applied 
in a similar manner to assess the sampling distribution of the estimated pos- 
terior probabilities of group membership or the log odds conditional on the 
observed value x of the feature vector. Let 

3(x;t) = (?1(x;t), ...,?,( x;t))' 

be the vector of estimated posterior probabilities. Also, let ti ,...,ti denote 
K bootstrap applications of t generated with the distribution function F of 
Y = (X',Z')' replaced by an estimate P formed from t. Then, conditional 
on x, the bootstrap distribution of +(x;T*), approximated on the basis of 
+(x; ti), . . ., +(x; t;), can be used to assess the distribution of +(x;T). 
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The distribution of the log odds, conditional on x, also can be assessed in 
the same manner. More specifically, consider a two-group parametric model, 
where the posterior log odds are given by 

v(x;q) = ~og{~1(~;*)/72(~;*)) 

= log(7r1/7r2) + W O ) .  

For given 7r1 and 112, the posterior log odds, or equivalently ,$(x;O), can be 
bootstrapped as follows. Let &, ...,&& denote the estimates formed from 
the K bootstrap replications of the training data ti ,..., tz, respectively. Let 
CTF(u) be the empirical distribution function defined by 

C z F ( u )  = #{((x;&) 5 u } / K .  (11.3.4) 

For multivariate normal group-conditional distributions with either equal or 
unequal covariance matrices, Critchley et al. (1987) considered various ways of 
using the bootstrap to construct confidence intervals, including the percentile 
and percentile-t methods. For a nominal lOO(1- a)% confidence interval, the 
percentile method gives - -1 h -1 

[CDF (;a), CDF (1 - fa)]. 
The percentile-t method gives 

h -1 h -1 
[((x;&)- {v(X;d9)}1’2CDF ($a), ,$(x;d) + {v(x;d9)}1’2CDF (1 - 4a)], 

where C ? F ( u )  is defined by (11.3.4), but now with ((x;&) replaced by its 
Studentized version 

{ ~ ( x ; ~ ~ ) - ( ( x ; ~ ) } / { v ( x ; & ) } 1 ~ 2  (k = 1, ..., K). 
Here v(x;O) denotes the variance (exact or asymptotic) of ,$(x;d). For equal 
groupcovariance matrices, v(x;P) is given exactly by (11.2.3), and for unequal 
group -covariance matrices, v(x;O) is given asymptotically by (11.2.7). 



C H A P T E R  12 

Selection of Feature Variables in 
Discriminant Analysis 

12.1 INTRODUCTION 

12.1.1 Background of Variable-Selection Problem 

If in the formation of a discriminant rule, the number p of available feature 
variables is large relative to the total sample size, then consideration might be 
given to the use of a subset of the feature variables. This is because too many 
feature variables can harm the performance of a sample discriminant rule. 
This point was discussed in Section 5.5.4, where it was seen that an option to 
forming a discriminant rule from a subset of the observed feature variables is 
to use regularized discriminant analysis as proposed by Friedman (1989). 

Of course, there may be other reasons for not wishing to use the entire 
set of variables. For example, the cost of gathering and processing a large set 
of variables may be too prohibitive; or the primary aim of the discriminant 
analysis might be to determine the set of variables most relevant for identi- 
fication of the underlying group structure of the problem. There are various 
other reasons, and the reader is referred to Schaafsma (1982), who has given a 
comprehensive account of the aims leading to the selection of suitable feature 
variables and the corresponding methods to achieve them. 

Various criteria have been proposed in the literature for subset selection of 
feature variables. The sense in which a subset of the available feature variables 
is considered important or adequate depends on the ultimate aim of the un- 
derlying investigation. If the aim of the investigation is to form a discriminant 
rule for the allocation of subsequent unclassified entities, then the error rate 
is an appropriate criterion for the choice of feature variables. On the other 
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hand, the aim may be to identify those featwe variables that are most useful 
in describing differences among the possible groups. In this context, it is a p  
propriate to assess the adequacy of a subset of feature variables in terms of 
the separation they provide among the groups. Thus, the choice of the selec- 
tion criterion should depend on the aim of the discriminant analysis. It was 
already shown in Section 3.9 that allocatory and separatory criteria can lead 
to quite different decisions being made in the reduction of the dimension of 
the feature vector for use with the sample NLDR for g > 2 groups. 

In many situations, attention is focused not on just one subset of the avail- 
able feature variables. Rather the intention is to find the “best subset” in some 
sense. Thus, consideration of a number of subsets has to be undertaken. Ide- 
ally, the performance of the discriminant rule should be assessed on the basis 
of the specified criterion for each possible subset. But unless the total num- 
ber p of variates is small, an exhaustive search is computationally prohibitive; 
see McCabe (1975). As a consequence, stepwise selection procedures, either 
forward or backward, are commonly employed; see, for example, Farmer and 
Freund (1975) and Jennrich (1977). Their use raises a number of important is- 
sues, such as the overall significance level at which the final subset of variables 
is concluded to be “best.” Another problem with variable selection is how to 
provide an unbiased and not an overly optimistic assessment of the final ver- 
sion of the discriminant rule in its application to subsequent feature data of 
unknown origin. These issues are discussed further in the following sections. 

The selection problem for g > 2 groups is much more difficult than for 
g = 2 groups, where there is a close tie with multiple regression. Variable se- 
lection in the latter context is a well-studied problem in the literature; see 
Miller (1984, 1990) for a recent account. Fowlkes, Gnanadesikan, and Ketten- 
ring (1987) have considered the variable-selection problem in three different 
contexts, namely, multiple regression, discriminant analysis, and cluster analy- 
sis. They noted that the strong theoretical underpinnings of regression and dis- 
criminant analysis make possible a variety of formal and informal approaches 
to variable selection in these two contexts, although the state of development 
in the latter context is not at the same stage as in the former. 

Initial studies of subset selection methods in discriminant analysis include 
those by Dixon and Massey (1957); Kendall(l957); Cochran (1964a); Weiner 
and Dunn (1966); Eisenbeis, Gilbert, and Avery (1973); McCabe (1975); Mc- 
Lachlan (1976b); Habbema and Hermans (1977); Costanza and Afifi (1979); 
and Farver and Dunn (1979). A two-stage approach was considered by 
Zielezny and DUM (1975), and Zielezny (1976). The focus in these studies is 
on applications of the sample NLDF for g = 2 groups under the assumption of 
normality and homoscedasticity. It should be noted that although the sample 
NLDF may be robust to moderate departures from this assumption as con- 
sidered in Section 5.6, little is known about the robustness of subset selection 
procedures per se. 

Studies that address subget selection for discrete feature variables include 
those by Elashoff, Elashoff, and Goldman (1%7); Hills (1967); Goldstein and 
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Rabinowitz (1975); Goldstein and Dillon (1977, 1978, Chapter 4); Haerting 
(1983); and Krusiriska and Iiebhart (1988, 1989). Kmnowski (1983b) and 
Daudin (1986) have considered the problem for mixed feature variables. 

In other work on variable selection, Fu, Min, and Li (1970) applied the 
Kullback-Leibler criterion, and Chen (1975) proposed the use of the Bhat- 
tacharyya distance as a criterion. Fu ( lW) ,  C. Y. Chang (1973), and Hand 
(1981b) devised mathematical programming approaches. Lam and Cox (1981) 
presented an algorithm that selects variables in pairs. More recently, Ridout 
(1988) has provided an improved version of the branch and bound algorithm 
as described by Fukunaga and Narendra (1977) for selecting a subset of the 
feature variables that maximizes a criterion function over all possible subsets 
of a specified size; see also Roberts (1984). 

McKay and Campbell (1982a, 1982b) have given an excellent review of 
variable-selection methods in discriminant analysis. Their first article focuses 
on methods that are appropriate to selection where the primary aim is to ob- 
tain a more parsimonious description of the groups, and the second addresses 
the problem where the aim is to allocate future entities of unknown origin to 
the groups. In the first of their two papers, they have provided a table that 
concisely summarizes the main issues and their recommendations on variable- 
selection methods. Some references to more recent theoretical results in the 
special case of the homoscedastic normal model for g = 2 groups can be found 
in Steerneman (1987). 

Another way of variable selection is to adapt the approach of Rissanen 
(1989) and work in terms of the stochastic complexity of the data. Variables 
are then selected according to the minimum description length (MDL) princi- 
ple. In his monograph, Rissanen (1989, Chapter 7) has sketched two applica- 
tions of stochastic complexity and the MDL principle to variable selection in 
discriminant analysis. 

12.1.2 Peaking Phenomenon 

For training samples of finite size, the performance of a given discriminant 
rule in a frequentist framework does not keep on improving as the number 
p of feature variables is increased. Rather, its overall unconditional error rate 
will stop decreasing and start to increase as p is increased beyond a certain 
threshold, depending on the particular situation. Consider, for example, the 
case of g = 2 groups under the homoscedastic normal model (3.3.1). Although 
the deletion of some variables from the feature vector x can never increase 
the Mahalanobis distance between the groups c;l and G2, the overall uncon- 
ditional error rate of the sample NLDR can be reduced if the subsequent 
reduction in the distance is sufficiently small relative to the number of vari- 
ables deleted. This was first illustrated by Rao (1949). A more recent exam- 
ple was given by Boullion, Well, and Duran (1975) in the context of remote 
sensing; see also Kanal and Chandrasekaran (1971), Foley (1972), and Kanal 
(1974). 
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An appreciation of the peaking phenomenon as the number of feature vari- 
ables is increased can be obtained from the expansion (4.3.2), which gives 
the asymptotic overall error rate of the sample NLDR in terms of A, p, nl, 
and n2, under the homoscedastic normal model (3.3.1). For further details, 
the reader is referred to Jain and Waller (1978), who have studied the peak- 
ing phenomenon under (3.3.1) in order to relate the optimal number of fea- 
ture variables to the total sample size n and A. This situation was considered 
also by Chandrasekaran and Jain (1975, 1977), Van Ness and Simpson (1976), 
Raudys (1979), and Van Ness (1979). The latter study extended the model to 
allow for unequal covariance matrices, as well as considering nonparametric 
discriminant rules based on kernel density estimation of the group-conditional 
densities; see also Van Ness (1977, 1980). 

Jain and Chandrasekaran (1982) have given a comprehensive review of this 
problem of dimensionality versus sample size. A good deal of the work has 
been on the sample NLDR as considered above. However, the problem has 
been studied in a wider context, including in a Bayesian framework where the 
overall unconditional error rate is averaged over the prior distribution adopted 
for the vector of unknown parameters in the group-conditional distributions. 
Hughes (1968) showed that for multinomial groupconditional distributions, 
that by increasing the number of cells, corresponding to the increasing of the 
dimensionality of the feature vector, the overall error rate decreases to a mini- 
mum and then deteriorates. Lindley (1978) attributed this apparently paradox- 
ical behavior of the error rate to the incoherence of the prior distributions 
used in Hughes’ (1968) model. Lindley (1978) furthermore derived an explicit 
expression for the error rate with an infinite training sample size and coher- 
ent priors, showing that it tends monotonically to zero. Although coherence 
guarantees monotonicity on the overall error rate, it does not imply the latter 
will be zero in the limit, even with infinite training sample sizes. An example 
demonstrating this was provided by Brown (1980). 

The abovementioned apparent paradox was considered also by Van Camp 
enhout (1978) and Waller and Jain (1978). More recent references on the 
effect of dimensionality from the Bayesian point of view include Kokolakis 
(1981, 1985), who has derived exact and asymptotic results for two particular 
linear discrimination problems, demonstrating the positive effect of increasing 
the number of features. 

12.2 TEST FOR NO ADDITIONAL INFORMATION 

12.2.1 Multiple Groups 

Let 
S = {s; s is a nonempty subset of 1, . . . , p }  

and, for each s in S, let ps  denote the number of elements in s. If 

s = {kl , . . . ,kp,) ,  
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then ~ ( $ 1  denotes the subvector of the full feature vector x, defined by 
rtc") = . ., Xk,,)'. 

The complement of s with respect to S is denoted by S. Thus, the subvector 
xm contains those p - ps variables in x that are not in ~($1. Note that without 
loss of generality, we can relabel the elements of x so that 

x = (X(J)',XO')'* (12.2.1) 

We let 
pi = ( 4 1 , ~ ! 2 ) '  (i 1, * - *,g) 

and 

be the corresponding partitions of pi and C, respectively, under the usual 
assumption of the homoscedastic normal model, 

X N(pi ,  C )  in Gj (i = 1,. . .,g). (12.2.2) 

In terms of the conditional distribution of X@ given ~("1, the notion of the 
additional information supplied by the subvector x o  in the presence of x(') 
plays an important role in many variable-selection methods; see Rao (1973). 
Additional references on this notion can be found in McKay and Campbell 
(1982a), Krishnaiah (1982) and Fujikoshi, Krishnaiah, and Schmidhammer 
(1987). Under (12.2.2), the hypothesis HO that xo provides no additional in- 
formation over that supplied by %(#) can be formulated as 

H$) : pi2  - C(h2 - ~ 2 1 ~ ~ ' ( ~ i 1  - p&) = 0 (i # h = 1,. .,g). 

Let B = (g - l)B be the between-group matrix of sums of squares and prod- 
ucts and let W = ( n  -g)S be the pooled within-group sums of squares and 
products matrix, as defined by (6.5.4) and (6.5.5), respectively. Corresponding 
to the partition (12.2.1) of x into the subvectors x ( ~ )  and xO, we partition B 
and Was  

and 

Rao (1973, page 551) has described a procedure for testing the hypothesis 
Hf) based on the matrices W and 8, adjusted for dS), namely, 

WZ.1 = w22 - W21W,,'W12 

B2.1 = (B22 + W,) - (B21+ W21)(*11 + w11)-1(B12 + W12) - W2.l 

and 
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with degrees of freedom n - g - ps  and g - 1, respectively. Test criteria paral- 
lel those used in MANOVA, being functions of the nonzero eigenvalues of the 
matrix Wi:B2.1, such as the largest root or the likelihood ratio test statistic 

A2.S = IW2.ll/lB2.1 + W2.d 

as obtained under (12.2.2). 
It was seen in Section 3.9 on separatory measures that a class of measures 

of sample spread of the g groups on the basis of the full feature vector x is 
provided by any scalar function that is increasing in the nonzero eigenvalues 
of W-lB. Likewise for x@ adjusted for the subvector I@), a class of measures 
of sample spread is provided by any scalar function that is increasing in the 
eigenvalues of W<;B2.1. The hypothesis of no additional information can be 
interpreted as one concerning the adequacy of x@). For as noted by McKay 
(1977), the hypothesis Hf) is true if and only if the variables in ~ ( $ 1  provide 
the same overall separation as the full set of p variables in x, that is, if and 
only if the eigenvalues of ISL1B0,11 are the same in number and magnitude as 
those of IS-lB,, where B, is the population analogue of B. 

The statistic A Z . ~  provides further insight into the test for no additional 
information. As noted by McKay and Campbell (1982a), it satisfies the relation 

1 + Ax.$ = (1 + A)/(l + As), 

(12.2.3) 

and 
A = IWl/lB + Wl 

are the statistics arising from the likelihood ratio test that there are no differ- 
ences between the means of the groups on the basis of x@) and x, respectively. 

In testing for the adequacy of ps = p - 1 of the p feature variables, B2.l 

and W2.1 are scalars, being the adjusted between- and within-group sums of 
squares, respectively. It follows in this special case of p - p s  = 1 that 

(n -g - p + 1)(1- Ag.S)/@ - 1)Az.s (12.2.4) 

is distributed under If,(") according to the F-distribution with g - 1 and n - 
g - p + 1 degrees of freedom; see Rao (1973, page 553). 

12.2.2 '1Rvo-Group Case 

As previously in the case of g = 2 groups, A denotes the Mahalanobis distance 
(and D its sample counterpart) between GI and G2 on the basis of the group 
conditional means and common covariance matrix of the full feature vector X. 
Corresponding to the partition (12.2.1) of x, we let 
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be the Mahalanobis distance between GI and 
conditional means and common covariance matrix of xCs). It follows that 

on the basis of the group 

Ar = (A2 - A;)’’’ 

can be expressed as 

AF = {(c(I,u - ~(2,2.1)’C~,’(~r1,2.1- ~2,2 .1) )~ ’~ ,  

where, conditional on dS), 

~(i,2.1 = pi2 - ~ 2 1 x f i 1 ~ i 1 ,  

C2.1 = C22 - C21Cfi1C12 

and 

are the expectation and covariance matrix, respectively, of X@) in group Gi 

For g = 2 groups, the hypothesis of no additional information is equivalent 
(i = 1,2). 

to the hypothesis 

It follows (Rao, 1973) that H,f) can be tested using the statistic 

Hf) : AX = 0. 

which, under the homcwcedastic normal model (12.2.2), is distributed accord- 
ing to the F-distribution with p - p ,  and N - p + 1 degrees of Ereedom. In 
(12.2.5), D, is the sample analogue of As and N = n1+ 112 - 2. The hypothe- 
sis I f f )  is rejected for large F,, so that the significance probability Ps is given 
by the area to the right of the observed value of FS under the Fp--p,3N-p+l 
density. Under Hf), PI is thus uniformly distributed on (0,l); otherwise Ps 
will tend to be small. 

The test statistic (12.2.5) was obtained originally by Rao (1946). Subrahma- 
niam and Subrahmaniam (1976) have since shown that the test based on 

(12.2.6) 

has superior power to that based on F.. if 05 is not small. However, unless 
A, = 0, its null distribution is quite complicated and percentage points are 
difficult to obtain. 

The test statistic Fs was ori hally suggested by Rao (1949) as an alterna- 
tive to Fs in the case where XR is a covariate vector, that is, where A, = 0. 
However, as noted by Rao (1%6b), it is customary to still use 35 to test Hf) 
in the case where there is prior knowledge that As = 0. This test statistic is 
formed and applied regardless of the value of As. But as a result, it is not as 
efficient for A, = 0 as the test statistic F,, which has been formed with the 
knowledge that A, = 0. Subrahmaniam and Subrahmaniam (1973) have con- 



3% SELECHON OF FEATURE VARIABLES IN DISCRIMINANT ANALYSIS 

cluded in the case of A, = 0 that the test based on F, is superior to Fa. They 
have provided tables of percentage points of the null distribution of Fa. Also, 
they found that the chi-squared approximation to the null distribution of 
is better than the approximation given by the F-distribution. Both of these 
approximations were suggested by Rao (1950). They are conservative in that 
the actual level of significance is less than the prescribed level of significance. 
The F-distribution-based approximation to the null distribution of 3, is 

N - p + l  N - p s + l -  
3, - Fp-p .N-p+l ,  P - P s  N + l  

and the chi-squared approximation is 

Further discussion on tests of Ho in the case of A, = 0 can be found in Rao 
(1%6b) and Kshirsagar (1972, Chapter 6). 

A number of procedures for reducing the number of variables in discrimi- 
nant analysis is based on the use of Fs. Das Gupta and Perlman (1974) have 
suggested a modified version of the F-test for variable selection. They showed 
that the power of Hotelling's T2-test may be increased by elimination of a 
subset of the variables represented as xo,  provided the reduction in the non- 
centrality parameter is small. This led them to consider the problem of testing 
for reduced power due to the exclusion of xm and they presented a test on the 
basis of a preliminary sample. In the present context, their procedure would 
test H,' : AT 5 h, rather than H$) : A? = 0, where h is the bound on AF in or- 
der for the power to be reduced on deleting xm; it depends on the unknown 
population parameters and so must be estimated. Their test rejects H,' at level 
a if F, exceeds the lOO(1- a) percentile of the noncentral F-distribution with 
degrees of freedom p - ps  and N - p + 1 and noncentrality parameter based 
on estimated h. A similar problem has been studied by Sinha, Clement, and 
Giri (1978). 

12.3 SOME SELECTION PROCEDURES 

123.1 Selection via Canonical Variate Analysis 

One way of proceeding with variable selection is through a sample canonical 
variate analysis, which was described in Section 6.5. For variable selection, 
the aim is to eliminate those variables that do not appear to contribute to 
the canonical variates. This procedure in the two-group situation was used by 
Weiner and Dunn (1966) and Eisenbeis et al. (1973). The more complicated 
multiple-group case was considered by Hawkins and Rasmussen (1973) and 
McKay and Campbell (1982a). 
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12.33 All-Subsets Approecb 

McCabe (1975) has advocated that the selection of variables in discriminant 
analysis should begin with an examination of all possible subsets wherever fea- 
sible. He proposed an algorithm DISCRIM, using Fumival’s (1971) algorithm 
for evaluating the Wilks’ statistic A,, defined by (122.3), for all possible sub- 
sets s. As a guide for finding important variables, subsets of the Same size can 
then be ordered with respect to their values for A,. McCabe (1975) proposed 
the use of A, simply as a descriptive statistic that measures the separatory 
potential of the subset selected. However, he noted that it can be used to con- 
struct hypothesis tests about any subsets under the imposition of the normal 
distributional assumption (12.22). 

When all subsets are to be considered simultaneously, there is the prob- 
lem of how to choose critical values for individual tests on its subsets so as 
to specify a significance level for the entire tests that are performed. A for- 
mal treatment of the variable-selection problem in discriminant analysis was 
provided by McKay (1976, 1977). For g = 2 groups, he showed that a simul- 
taneous test procedure (STP) of the type described and illustrated by Gabriel 
(1968, 1%9) can be used to isolate those subsets of the feature variables that 
provide adequate discrimination. His procedure for ensuring that the family 
type I probability error rate does not exceed a specified value a considers the 
variables contained in dS) to be adequate for discrimination purposes if 

(p - P ~ ) Z  < P F p , N - p + l ; l - a ,  (12.3.1) 

where Fp&N-p+kl-a denotes the lOO(1- a) percentile of the F-distribution 
with p and N - p + 1 degrees of freedom. That is, the subset of variables 
defined by s is adequate if 

P, 2 as, 
where a, satisfies 

P - PsFp-ps ,N-p+l ; l -a ,  = ~ F p , ~ - p + ~ ; i - a ,  

and where, as before, P, is the area to the right of 3, under the F P - P , , ~ - p + l  

density. Hence, a, is the significance level of the test concerning the adequacy 
of the particular subvector x@) in the STP. The set of subsets of the feature 
variables for which this condition is satisfied is denoted here by B,; it includes 
all adequate subsets with probability at least 1 - a. 

In order to isolate all adequate subsets, it is in general not necessary to 
examine all subsets because of a certain coherence property. If the subset s 
(really the subset of the feature variables defined by s) belongs to Ba, then so 
must any subset containing s. Alternatively, if s does not belong to B,, then 
neither does any subset of s. As illustrated in the example presented in Section 
12.4, if p ,  is near to p ,  then a, is very small and so the test of adequacy of 
the particular subset s is quite conservative. As explained by McKay (1978), 
this is the price paid for the protection of the family type I probability error 
rate a. To overcome this problem, McKay (1978) has suggested either using 
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a large (Y or reducing B, to the set A,, in which each subset s must satisfy 
either PI 2 (Y (i.e., s is considered adequate at significance level a) or it must 
contain a subset s satisfying Ps 2 a. 

In a similar manner to the two-group case, an STP can be provided to han- 
dle variable selection for g > 2 groups. Of course, now the choice of test crite- 
rion on which the STP is based arises (e.g., the likelihood ratio or largest root 
statistics), since they are no longer identical. McKay and Campbell (1982a) 
prefer the likelihood ratio test statistic because it is easier to handle compu- 
tationally (McHenry, 1978; Hintze, 1980). Also, it can be expected, in general, 
to have greater power. The latter compensates for the greater resolution pro- 
vided by the STP based on the largest root statistic. 

In multiple regression, the C, plot (Mallows, 1973) is a well-known graphi- 
cal aid to variable selection. Alternatives to C, have been suggested by Spjat- 
voll (19’77). One of Spj@tvoll’s proposals was applied by McKay (1978) in the 
two-group discriminant analysis case. A graphical representation is obtained 
by plotting Ps against ps .  On such a graph, points above the curve Ps = as 
correspond to members of the set B,. The idea can also be utilized in the 
multiple-group case; see McKay and Campbell (1982a) and Fowlkes et al. 
(1987). 

12.33 Stepwise Procedures 

As mentioned in the previous sections of this chapter, it is not always compu- 
tationally feasible to examine every possible subset of the variables in the full 
feature vector x in the selection of a best subset with respect to some speci- 
fied criterion. Hence, many selection methods proceed in a stepwise fashion, 
assessing the variables one at a time for their contribution. They often in- 
volve both forward selection and backward elimination. Algorithms for step 
wise selection are widely available in the major statistical packages, for ex- 
ample, the programs BMDPW, DISCRIMINANT, and STEPDISC in the 
packages BMDP (1988), SPSS (lW), and SAS (1990), respectively. There is 
also the well-known ALLDC program discussed in the next section. 

We now describe a stepwise forward selection procedure, based on the 
criterion of no additional information. For each k considered in turn (k = 
1,. . . ,p),  compute the statistic 

(n -g)(l  - As)/@ - 1)AS (12.3.2) 

for s = {k}, where As is given by (12.23). The statistic (123.2) is the usual 
ukvariate analysis of variance F-statistic with g - 1 and n -g degrees of free- 
dom. The variable corresponding to the largest of the p values of this statistic 
is selected, provided it exceeds a specified value, say, Fg-l,n-g;l-a. 

Let xk,  denote the variable selected. Then for each k in turn (k = 1, . . . ,p ;  
k # k,), compute the (partial) F-statistic given by (122.4) for s = {k,} and 
S = {k} to assess the individual contribution of each of the remaining p - 1 
variables in the presence of Xk,. The variable with the largest value of the 
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partial F-statistic is added to the current subset consisting of qe, provided it 
exceeds the specified threshold. Otherwise, the process is terminated. If the 
process is not terminated, then consideration is given to the selection of an 
additional variable in the same manner as on the previous step. The selec- 
tion continues along these lines and is terminated at the current subset of ps 
variables if none of the p - ps  values of the partial F-statistic for an addi- 
tional variable exceeds the specified threshold. Otherwise, the variable with 
the largest value of the F-statistic is added to constitute a subset of ps  + 1 
variables, and consideration is given to the selection of an additional variable 
in the same manner as on the previous steps. 

The sequence of partial F-statistics so produced occur in a factorization 
of the likelihood ratio statistic; see, for example, Kshirsagar (1972, Chap 
ter 8) and McKay and Campbell (1982a). More recently, Fatti and Hawkins 
(1986) have considered the decomposition of the likelihood ratio statistic in 
the heteroscedastic case, where the groupconditional covariance matrices are 
allowed to be unequal. Their decomposition gives rise to three components, 
testing the residual homoscedasticity of each variable, the parallelism of its re- 
gression on its predecessor, and the identity of location. They have proposed 
a variety of uses of this decomposition in selecting variables. 

With a backward elimination procedure, consideration is given first to the 
deletion of a single variable from the full set of p variables. For each variable 
in turn, the partial F-statistic is computed for the test of whether it provides 
additional information over the remaining p - 1 variables. The variable with 
the smallest value of this partial F-statistic is eliminated provided that the 
statistic does not exceed a specified initial value. If this variable can be elimi- 
nated, the process is repeated on the remaining p - 1 variables. 

Stepwise procedures employed in practice often use a combination of for- 
ward selection and backward elimination. One such way of proceeding is to 
use backward elimination following each forward step. For example, suppose 
that the best subset of size ps + 1 variables has been selected on the basis of 
the criterion of no additional information. Then before consideration is given 
to the selection of the best subset of ps + 2 variables, the partial F-statistic is 
computed in turn for each of the ps + 1 variables in the current subset to ex- 
amine what information it supplies in addition to that supplied by the remain- 
ing ps  variables.'If the smallest value of this partial F-statistic does not exceed 
a specified critical value, it is deleted and so the process is shifted back one 
stage with the current subset containing ps  variables. The whole procedure 
terminates when none of the subset variables can be excluded, and no further 
variables can be included. Note that although forward selection may stop at 
a subset of size, say, pso, the best subset of size pa, - 1 should be formed to 
allow for the possibilitjl of the removal of a variable from it through backward 
elimination. 
As noted in Section 121, the use of stepwise procedures raises a number of 

issues. For example, although with the stepwise selection procedure described 
above, the F-distribution is usually adopted to specify the threshold value, it 
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is not really appropriate given that it is the smallest of a number of I;-statistics 
that is under consideration. Thus, at each stage the test is not carried out 
at the nominal significance level. Further, as cautioned by McKay and Camp 
bell (1982a), the tests are not independent and it is extremely difficult to 
judge the magnitude of the simultaneous significance level for the sequence 
of tests. 

Hawkins (1976), however, has given some guidelines to adopt if the desire 
is to ensure that the overall probability of including an irrelevant variable will 
be less than a predetermined value a. In the forward selection phase, if p s  
variables have been included, and p - ps  remain for possible inclusion, the 
suggested critical value for the partial F-statistic is Fg-l,n-g-ps;l-cro, where 
a* = a / ( p  - ps).  In the elimination phase, if ps variables have been included, 
the suggested critical value is FB-l,n-g-p,;l-ao, where a* = G / ( p  - p s  + 1) 
and 6 >a. The exclusion level & is (slightly) larger than a to ensure that 
the procedure does not continually delete and include variables, never termi- 
nating. Hawkins (1976) indicated that his rules for inclusion and deletion may 
be a little conservative at each step. 

For the homoscedastic normal model (12.4.3) with g = 2 groups, Costanza 
and Afifi (1979, 1986) have performed some Monte Carlo experiments to in- 
vestigate the choice of the critical value of the partial F-statistic for stepwise 
forward selection based on this statistic. 

Although up to now we have described stepwise selection procedures in 
terms of the no additional information criterion, other criteria may be used. 
For example, another criterion considers the contribution of an additional 
variable on the basis of the increase in Rao's (1952, page 257) generalized dis- 
tance measure, which is equivalent to using the increase in Hotelling's (1951) 
trace statistic. Another criterion adds the variable, which, together with the 
variables already selected, maximizes the likelihood ratio statistic, as in the 
example in Horton, Russell, and Moore (1968). This leads to the same deci- 
sion as choosing the variable corresponding to the largest partial F-statistic. 
J. A. Anderson (1982) has suggested a forward selection procedure, using the 
likelihood ratio statistic in the context of logistic discrimination. There is also 
the use of the error rate as a criterion, which is considered now. 

12.4 ERROR-RATE-BASED PROCEDURES 

12.4.1 Introduction 

As explained in the previous section, the use of the error rate as a criterion 
for selection of suitable feature variables in discriminant analysis is particularly 
appropriate where the aim is to form a discriminant rule for the subsequent al- 
location of unclassified entities to the groups. The use of this criterion in selec- 
tion problems has been advocated by McLachlan (1976b) and Habbema and 
Hermans (1977), among others. Menzefricke (1981) used this criterion in a 
Bayesian framework. More recently, Ganeshanandam and Krzanowski (1989) 
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considered a stepwise procedure with combined forward selection and back- 
ward elimination, as described in the previous section, but with the criterion 
of no additional information replaced by the overall error rate. A variable is 
added or deleted if there is a consequent decrease or increase in the estimated 
overall error rate. For the location model in mixed-variable discrimination, 
Knanowski (1983b) has proposed a stepwise backward elimination method to 
reduce the number of discrete variables. 

In keeping with our previous notation, we let ec(F; t) and eu(F) denote the 
conditional and unconditional overall error rate, respectively, of the sample- 
based rule r ( ~ ;  t). Pertaining to the use of the subvector ~("1, we let F(") denote 
the distribution function of Y(") = (X@)', Z')' and t(") denote the reduced form 
of t obtained when X j  is replaced by xy) for j = 1, ..., n in (1.6.1). Then the 
conditional and unconditional overall error rates of the sample rule r(x@); t(") 
based on the subvector x(") are given by ec(F@); t@)) and eu(F(")), respectively. 

The change in the overall conditional error rate consequent to the deletion 
of the variables in x@ from x is therefore given by 

ec(R t) - ec(F("); t'")). (12.4.1) 

In practice, F, and hence also F@), is unknown, and so the change in the 
conditional error rate must be estimated from the training data t, employing 
one of the methods of error-rate estimation, as described in Chapter 10. Let 

&(t) - &(t("') (12.4.2) 

denote an estimate of (12.4.1). An assessment of the usefulness of the vari- 
ables x@ can be made on the basis of &(t)-&(t@)). Obviously, if this differ- 
ence is positive, or is only slightly less than zero relative to &(t), then it would 
appear that the variables in x@ can be deleted without any detrimental effect 
on the error rate. The greater the magnitude of this difference, the more con- 
fident one can be that x@ should be either deleted or retained, depending on 
whether (12.4.2) is positive or negative. 

12.4.2 Variable Selection Based on the Assessed Error Rate of the Sample 
NLDR 

To demonstrate the use of the error rate as a criterion in the selection of suit- 
able feature variables, McLachlan (1976b) considered the special case where 

X - N(pj,)3) with prob. Tj in Gj (i = 1,2), (12.4.3) 

and where rl and r2 are set equal to 0.5. It follows from (10.6.6), that under 
(12.4.3), an N-'-order unbiased estimator of the difference (12.4.1) between 
the conditional error rates is given by 

&(M)(D,p) - &(M)(D,,pS). (12.4.4) 
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Let 

where 
c(A) = {i#(iA)}2{nT' + "2' + $A2N-'}. 

McLachlan (1976b) established that the limiting distribution of 

{ d M ) ( D , p )  - C(*)(D,,p,)) - {ec(F;T) - ec(F(');T(")) 

scaled by v(A,A,) is a standard normal. It follows that 

pr{ec(F;T) - ec(F(');T(*')) 1 &(*)(D,p) - i@)(D,,pS) - +-'(l- a,)v(A, A,)} 

N a, 

By finding the value of a, for which 

dM)(D,p)  - 8@f)(D, ,ps)  - cp -' ( 1 - a,)v(D,D,)  = 0, (12.4.5) 

an approximate confidence level a, is obtained that corresponds to no increase 
in the overall conditional error rate of the sample NLDR on deleting x(') from 
x. By replacing zero with c on the right-hand side of (12.4.4), we can test 
whether 

ec(F; t) - ec(F@); t@)) 2 c 

for c < 0, rather than E = 0. 
The magnitude and sign of the difference (12.4.2) is reflected in a,, which 

indicates the additional discrimination by xo .  If the elimination of a subset of 
variables is to be considered by examining the separate contribution of more 
than one subset of variables, then the various subsets can be ranked according 
to their associated values of a,. 

In practice, we do not wish to delete xm if there is a fair chance that the 
overall error rate can be increased; on the other hand, we do not wish to 
retain xu0 if the error rate is not likely to be decreased. If a, falls in the 
interval, say, [0.9,1] or, say, [0,0.1], then we can either delete or retain xo ,  
respectively, with a high degree of confidence that the error rate is not in- 
creased as a consequence of the selection process. For a, in (0.1, 0.9), there 
will be reasonable doubt as to whether the error rate is reduced, no matter 
what decision is taken. If considerable expense or inconvenience is involved 
with using the feature variables in x(3, then we might retain x o  only if a, is 
in [0.0.1] or perhaps in a slightly longer interval. If the inclusion of xm does 
not involve any appreciable effort with subsequent applications of r(x; t), then 
it would be reasonable to delete or retain xo ,  according as a, is greater or 
less than 0.5, that is, according as the estimated change in the error rate is 
greater or less than zero. Wolde-Tsadik and Yu (1979) considered an error- 
rate-based criterion. They proposed that the adequacy of the subvector x(') be 
measured by the probability of concordance, equal to the probability that the 
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entity is allocated to the same group on the basis of x@) as with the full vector 
x; see McLachlan (19804. 

12.4.3 Akaike’s Intonnatim Criterion dg = 2 Groups) 

For the special case (12.4.3) considered by McLachlan (1976bX Fujikoshi 
(1985) has compared the use of the estimated error rate (124.4) with Akaike’s 
information criterion (AIC) for the selection of feature variables. More 
recently, Daudin (1986) has used this criterion for variable selection in a 
MANOVA log-linear formulation of the location model for mixed feature 
variables. Akaike’s (1974) information criterion is given by 

AIC(X(~)) = 2d, - 210gL(83, 

where denotes the maximum likelihood estimator of 6:) computed under 
the hypothesis H,(s) of no additional information in xm, and d, denotes the 
dimension of the parameter space under Hf). Here OE contains the elements 
of pl, c(2, and the distinct elements of I3. Suppose, as before, the variables of 
x are relabeled so that x = (X(~)‘,X@’)’. The hypothesis Hf) of no additional 
information is equivalent then to 

f @ ) : P & E = O  (k=ps+l, . . . ,p), (12.4.6) 
where 

P E  VlE, *. . ,PpE)’  = Z-’(Ml- c(2) (12.4.7) 

is the vector of the coefficients in the NLDF t(x;eE) defined by (3.3.4). It can 
be seen from (12.4.3) and (12.4.6) that d, is given by 

d, = 2P + #P(P + 1) - (P - ps)  

= p + Ps + i p ( p  + 1). 
Fujikoshi (1985) established that 

AIC(x@)) - AIC(x) - Nlog{ 1 + (p - pS)3,/(N - p - 1)) + 2(ps - p ) ,  

where 3, is the F-statistic for the test of Ht) as defined by (12.25). 
With a view to selecting the “best” subset of feature variables in x for dis- 

crimination between G1 and 6, Fujikoshi (1985) adopted the model where, 
in addition to (124.6), 

PkE # 0 (k  = 1,--.,ps)- (12.4.8) 
An equivalent condition in terms of the Mahalanobis distance As for the sub- 
set of the feature variables defined by s is that 

As, < As 
for any proper subset s1 of s. mus, x(,) contains the smallest subset of the 
original set of variables in x that provides the same separation between G1 
and G2 as x. 
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Fujikoshi (1985) addressed the problem of finding the subvector x@), or 
equivalently the subset s, by selecting the subset s that minimizes AIC(x@)). 
Let $A be the subset so obtained and JM denote the subset obtained by min- 
imizing the estimated difference (12.4.4) between the error rates. Fujikoshi 
(1985) showed that these two criteria are asymptotically equivalent in that g A  
and JM have the same asymptotic null distributions. Also, under (12.4.6) and 
(12.4.8), the sample discriminant rules using the subvectors of x corresponding 
to QA and 9~ have asymptotically the same overall error rates. 

More recently, Zhang (1988) showed that $A is a strongly consistent esti- 
mator of so, where (12.4.6) and (12.4.8) both hold for the subset SO. Zhang 
(1988) proposed also a modified version of this criterion that requires much 
less computation. For example, he noted that if p = 20, then consideration of 
all possible subsets would require the calculation of the sample Mahalanobis 
distance D, for 1,048,575 subvectors x(~). 

With his proposed criterion, this quantity has to calculated only 21 times. 
The selected subset $2 is taken to be the subset for which 

JZ = {k : 15 k 5 p and B(k,Cm) > 0}, 

where 

g(k,Cm)= m(D-Ds,)-Crn, 

sk = {i : 1 5 i 5 p ;  j # k), 
m = min(n1, n2), 

and where Cm is chosen to satisfy 

lim Cm/m = 0 
m+m 

and 
lim Cm/loglogm = 00. 

m - m a  

Zhang (1988) showed that $2 is a strongly consistent estimator of SO. 

12.4.4 Variable Selection Based on the Assessed Error Rates of the 
Sample NQDR 

Young and Odell (1986) have considered the variable-selection problem in 
the situation in which there may be more than g = 2 groups and in which 
the covariance matrices are allowed to be unequal in the specification of the 
normal model for the groupconditional distributions. Their approach is now 
described. 

For a specified value of p s  (1 5 p s  < p), let Up, be the sample analogue of 
the matrix defined from (3.10.3), which is the approximate solution proposed 
by Young, Marco, and Odell (1987) to the problem of finding the linear pro- 
jection of rank ps that minimizes the overall error rate of the quadratic Bayes 
rule. Corresponding to the choice of the subvector x@) of the feature variables, 
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let C,, denote the ps x p permutation matrix defined by 

x(") = Cp,X. 

Then Young and Ode11 (1986) have suggested that the subvector containing the 
optimal subset of size ps  of the feature variables be determined by the matrix 
C, that is closest in Euclidean norm to Ub,. This requires the evaluation of 

(12.4.9) 

over all (L) distinct choices of Cp,. 
In situations where it is not possible to consider all such choices of C,,, 

Young and Ode11 (1986) have proposed computationally efficient methods of 
considering (124.9) that use either forward or backward selection procedures. 
They concluded from some simulation studies performed that their proposed 
methods of variable selection are superior to several methods currently used 
in popular statistical packages. 

12.4.5 ALLOC Algorithm 

Habbema et al. (1974a) developed an algorithm ALLDCl for selection of vari- 
ables in terms of the overall error rate. Hermans et al. (1982) have given an 
extension of this algorithm AI.UXXO. In order to handle the cases of multi- 
ple groups and nonnormality, Habbema et al. (1974a) use the plug-in sample 
version of the Bayes rule, where the groupconditional densities are estimated 
nonparametrically by the kernel method. Their algorithm uses the multivariate 
normal density with a diagonal covariance matrix as the kernel. The smooth- 
ing parameter is estimated by the program. A subsequent modification allows 
the program to use variable kernels to provide better estimates of the group 
conditional densities. 

For the subvector x (~ )  of ps  feature variables, let e(tc")) denote an esti- 
mate of the overall conditional error rate of the sample-based rule t(x(s);t(s)). 
Habbema et al. (1974a) proposed that e(ds)) be formed nonparametrically, us- 
ing the method of cross-validation, which was described in Section 10.2. Actu- 
ally, they presented their algorithm in terms of 1 - 8(dS)), that is, the estimate 
of the overall correct allocation rate. With their algorithm, consideration of 
all possible subvectors x(#) is not possible if p is large, particularly since the 
groupconditional densities and the associated error rate of the subsequent 
discriminant rule are estimated nonparametrically, which requires extensive 
computation. 
As a consequence, Habbema et al. (1974a) proposed a forward stepwise 

selection procedure to fmd a suboptimal subset of the p feature variables. Let 
sob define the subset of variables having the smallest estimated error rate for 
subsets of size k. Suppose that the selection process is at the qth step. Then it 
is terminated at this step if 

&(t(so.r+d) > &(t("*d). 
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12.5 TEE F-TEST AND ERROR-RATE-BASED VARIABLE 
SELECTIONS 

12.5.1 Introduction 

For the sample NLDR applied to three data sets, McLachlan (1980~) has ex- 
amined the relationship between the significance probability Ps of the F-test 
for no additional information in the subvector x@ and the approximate con- 
fidence coefficient a, corresponding to no increase in the overall conditional 
error rate, as determined from (12.4.5). 

If Ps is very large, then it suggests that the variables in xo. make little con- 
tribution to the Mahalanobis distance between G1 and G2 (i.e., A, is small), 
and so it is likely that the overall conditional error rate will not be increased 
on using dS) in place of x. On the other hand, a small P, would suggest that 
the overall conditional error rate would be increased. 

For the three data sets examined, McLachlan (198Oc) concluded that pro- 
vided the significance level of the F-test is not set at too conservative a level, 
there should be a fairly high degree of confidence that the overall conditional 
error rate is not increased by the selection decision based on the F-test of no 
additional information. For instance, if the feature variables in x o  are deleted 
according to the F-test with a significance level a greater than, say, 0.10, then 
the associated confidence a, of no increase in the overall error rate should be 
quite high. If we are willing to allow a small increase in the error rate relative 
to its value for the entire set, then the F-test with a more conservative a, say, 
around 0.05, should also give a selection decision in accordance with a,, now 
corresponding to the confidence that the error rate is not increased beyond 
the specified bound. 

We report here two of the three examples considered in McLachlan (1980~). 

12.5.2 Example 1 

This example concerns some data of Lubischew (1%2) on the characteristics 
of flea-beetles from the genus Chaetocnema. They were analyzed by McKay 
(1977, 1978), whose aim was to find which subsets of p = 6 variables provide 
adequate discrimination between the two species Ch. concinna and Ch. heik- 
ertingeri. The value of D2, based on the p = 6 variables, was 42.971, and the 
group-sample sizes were nl = 21 and n2 = 31. However, N, the degrees of 
freedom for the estimate of C,  was 71 (and not n1 + n2 - 2 = 50) since the 
estimate was computed by pooling over an additional sample of n3 = 22 ob- 
servations. 

Consistent with our previous notation, we let s refer to the subset of the 
available feature variables to be retained and hence its complement S to the 
subset of variables to be deleted. The values of 3, and Ps for the various sub- 
sets s, or equivalently S, considered by McKay (1978) are listed in ?8ble 12.1, 
along with the corresponding values of D,", €@)(D,p) - 8(")(Ds, ps) ,  which 
is written henceforth as 4 - L,, and a,. The subsets S are listed in order of 
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TABLE 12.1 Significance Probe#litier for F-1Lst of No Additional Information 
in 3 versus Asymptotic Confldmce d No Increase In the Overall Emr  Rate: 
Example 1 

Subset Deleted 3 T. P I  a# Df 2 - 2* 

35' 0.66 0.51 0.77 42.02 0.m1 
5' 053 0.48 0.76 4259 0.m1 
3' 0.73 0.41 0.66 42.44 O.oo00 
356' 2.53 0.064 0.30 37.95 -0.oo03 
36' 3.30 0.042 0.233 38.55 -0.oo04 
56' 3.37 0.039 0.229 38.46 -0.oo04 
235' 3.50 0.019 0.227 36.29 -0.oo06 
6' 5.87 0.017 0.1597 39.00 -0.oo04 
23' 5.08 0.0089 0.1604 36.48 -0.OOO8 
25' 5.25 0.0078 0.1559 36.29 -0.OOO8 
2' 10.10 0.0026 0.1046 3652 -0.0010 
26 10.07 0.00033 0.0869 31.60 -0-0023 
1 26.27 0.00003 0.04444 29.12 -0.0041 
4 45.21 0.00000 0.0211 23.20 -0.0104 

Some: From McLachlan (1980c). with permission from the Biometric Society. 

decreasing P, and, for example, the entry 35 under S refers to the situation 
in which the subset consisting of variables 3 and 5 is deleted from the entire 
system of p = 6 variables. An asterisk denotes a subset whose complement 
satisfies the condition (123.1) of McKay (1976) for adequacy at simultaneous 
level a = 0.05. 

McLachlan (198Oc) ranked the various subsets according to their associated 
Ps values so as to contrast this ranking with that obtained on the basis of 
a,. This is because he wished to illustrate how large P, must be for one to 
be reasonably confident that the error rate is not increased on deleting the 
particular subset ;S. This confidence is approximately measured by the cone- 
sponding value of a,. Note that it was not the objective of McKay (1976) to 
rank the subsets s. He was concerned solely with isolating the set B,  of ade- 
quate subsets s and considered that the final choice among the subsets in B ,  
must be a subjective one. 

It can be seen from Table 12.1 that the ranking of the subsets S according 
to P, is almost the same as using a, and, as explained in the previous section, 
this is to be expected. The subsets whose rankings are different when using a, 
are S = (6) and S = (23); their ranks according to Ps are interchanged on the 
basis of a,. 
As D2 is very large for this problem, the overall conditional error rate, at 

least for the entire p = 6 variables, is small; indeed, it is estimated by b to be 
only 0.0008. 

Consequently, unless D2 is drastically reduced by the deletion of a subset 
S, any change in the error rate should only be small in the absolute sense, 
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although it can be appreciable in relation to the size of the error rate for the 
entire system. 

For the first three subsets, their P, values are quite large and the sub- 
sets would certainly be deleted at any conventional significance level specified 
with the F-test in practice. The a, values associated with these three subsets 
range from 0.66 to 0.77, indicating a fair degree of confidence that the error 
rate is not increased on the separate elimination of each of these three sub- 
sets. 

The fourth subset S = (356) is a more interesting case to discuss. According 
to its P, value of 0.064, it would be retained using the F-test, at a = 0.10, but 
deleted at a = 0.05. The corresponding a, value of 0.3 suggests that there is 
over twice the chance that the error rate is increased rather than decreased 
on deleting S: The increase in the error is estimated by 8 - 2 ,  to be 0.0003, 
suggesting that the error rate has increased by over a third of its estimat- 
ed value for p = 6 variables. If we are willing to accept an increase of this 
size [i.e., 6 = -0.0003 replaces zero on the right-hand side of (12.4.5)], 
then a,, now corresponding to the confidence that any increase in the error 
rate does not exceed 0.0003, is equal to 0.5. 
As regards the fifth and sixth subsets, their P, values show that each would 

be deleted only if the significance level a of the F-test were smaller than 0.042 
and 0.039, respectively; otherwise, they would be retained. It can be seen that 
the associated a, values suggest that the chance of the error rate being reduced 
is only a little over 20%. 

McLachlan (1980~) noted that the simultaneous test procedure of McKay 
(1978) leads to the complement of each subset in Table 12.1, except for those 
of the last three subsets, being considered adequate at simultaneous level a = 
0.05. This is because the a, value that P, must exceed for s to be considered 
adequate is very small for p ,  near p, as explained earlier. 

12.53 Example 2 

As another example, we consider the third example in McLachlan (1980~) 
on the data of Zaslavski and Sycheva (1965), concerning the diagnosis of 
stenocardia on the basis of 13 ballisto-cardiographical variables and described 
by Urbakh (1971). The latter author suggested that a variable be deleted if 
& - A2 2 0, where A2 and & are possible estimates of A2 and A:, respec- 
tively; for example, the unbiased estimates defined from (10.6.5). For this data 
set, 

D 2 =  10.90, 8 =0.0639, nl = 100, n2 =93, and p = 13. 

According to Urbakh's criterion described above, any one of the variables 3, 
4, or 10 can be omitted; McLachlan (1976b) showed that these selections were 
in agreement with those based on a,. Subsequently, Schaafsma and 
van Vark (1979) showed that the same selections are obtained from their crite- 
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TABLE 12.2 Signitlcance Probabilities for F-Test of No Additional Information 
in 5 versus Approximate Confldence of No Increase in the Overall Error Rate: 
Example 2 

Variable Deleted S F, PJ a J  0: 2 - i J  

8 
4 
3 

10 
9 
7 
5 
1 

13 
2 

11 
12 
6 

0.1205 
0.3620 
0.4830 
0.6042 
2.1943 
6.1021 
6.4892 

12.9114 
13.6060 
14.1653 
23.7325 
24.6636 
46.2130 

0.73 
055 
0.49 
0.44 
0.14 
0.014 
0.012 
0.00042 
0.00030 
O.OOO22 
0.00000 
0.00000 
0.00000 

0.99 
0.89 
0.83 
0.78 
0.40 
0.14 
0.12 
0.03 1 
0.027 
0.024 
0.0043 
0.0036 
o.oO01 

10.89 
10.87 
10.86 
10.85 
10.72 
10.41 
10.38 
9.90 
9.85 
9.81 
9.16 
9.10 
7.85 

0.0011 
O.ooo9 
0.0008 
0.O007 

-0.0005 
-0.0035 
-0.0038 
-0.0087 
-0.0093 
-0.0097 
-0.0172 
-0.0180 
-0.0352 

S o w e :  From McLachlan (198Oc), with permission from the Biomctric Society. 

rion based on the mean difference of x'S-'(jZ1- Z2) between the groups rela- 
tive to its standard deviation. 

The values of P, and a, corresponding to the deletion of a single variable 
from the system of p = 13 variables are displayed in Bble 12.2 me dele- 
tion of subsets of more than one variable was not considered by McLach- 
lan (198Oc). This is because the corresponding values of 0: could not be 
computed with sufficient precision from the tabulated data in Urbakh (1971), 
which were given to two decimal places only. 

We see from Bble 12.2 that the ranking of each variable according to Ps is 
the same as for a,. For the first four variables in the table, P, is quite large, 
and so according to the F-test, each can be deleted separately with no loss 
of discrimination. The associated values of a, are correspondingly large, in- 
dicating that there is a high degree of confidence that the overall conditional 
error rate is not increased if either of these four variables is deleted sepa- 
rately. The case of variable 9 is of interest. With its P, value of 0.14, it would 
be deleted according to the F-test at any conventional significance level a. 
However, the value of a, suggests that the error rate is slightly more likely to 
be increased than decreased on its deletion. Regarding the next two variables 
(7 and 5 )  listed in nble  122, each would be deleted according to the F-test 
if a was specified at the conservative level of 0.01. The associated a, values 
indicate only a small chance that the error rate is not increased on deleting 
either variable. If we are willing to accept a relatively small increase in the 
error rate, provided it is less than, say, 0.01 then a,, now corresponding to the 
confidence that any increase in the error rate does not exceed 0.01, is equal to 
0.98 and 0.97 for variables 7 and 5, respectively. 
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TABLE 12.3 Apparent Error Rate of Sample NLDR Formed b m  Best Subset so 
of speeltied size ps0 

1 2  3 4 5 6 7 8 9 10 
A$)) 25.2 18.0 13.9 11.5 10.6 10.0 10.8 12.2 15.3 21.4 

ro(F(I0)) 40.1 36.2 33.3 30.8 28.8 27.0 25.4 24.0 22.7 21.5 

Some: Murray (1977b). 

12.6 ASSESSMENT OF TEE ALLOCATORY CAPACITY OF TEE 
SELECTED FEATURE VARIABLES 

12.6.1 Selection Bias 

Caution has to be exercised in selecting a small number of variables from a 
large set, as there will be a selection bias associated with choosing the opti- 
mal of a large number of possible subsets, regardless of the criterion used. 
This problem in discriminant analysis has been considered by Murray (197%), 
Hecker and Wagner (1978) and, more recently, by Gong (1%6), Queiros and 
Gelsema (1989), Snapinn and Knoke (1989), and Ganeshanandam and Krzan- 
owski (1989), among others. Rencher and Larson (1980) considered this bias 
problem with the use of Wilks' ratio As, which is biased downward, in partic- 
ular if p exceeds n -g. In the latter case, a value of A, cannot be obtained 
for the entire set of p variables. Miller (1984, 1990) makes a number of allied 
points regarding the selection of variables in multiple regression. 

Consider the selection of the subvector dS) of the full feature vector x. Sup 
pose that so defines the subset of feature variables of some specified size ps, 
that minimizes the adopted estimate i?(tcs)) over all possible (,,:) distinct sub- 
sets s of size pso. Although i?(t(")) may be an unbiased estimator of the overall 
conditional error rate, 2(t(so)) is obviously not as it is obtained by taking the 
smallest of the estimated error rates after they have been ordered. As noted 
by Murray (1977b), the situation is exacerbated if an optimistic estimator of 
the error rate, such as the apparent error rate, is used. There is then a double 
layer of overoptimistic bias inherent in the assessment. For a given selection 
method, the magnitude of the bias obviously depends on the sample size n, 
being greatest for small values of n. 

?b illustrate this bias, Murray (1977b) performed some simulation experi- 
ments for the sample NLDR under the homoscedastic normal model (12.2.2) 
with g = 2 and independent feature variables having unit variances in each 
group and means 1/4 and -1/4 in GI and G2, respectively. For the case of 
p = 10 and nl = nz = 25, we list in ?gble 12.3 as a percentage his simulated 
value of the apparent error rate A(ds0)), corresponding to the best subset so 
of size pso, for pso = 1,. . . ,lo. For comparative purposes, Murray (1977b) also 
tabulated the optimal overall error rate given by 

in the case where so contains pso elements. 
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It can be seen that as pso increases, the apparent error rate corresponding 
to the selected subset so falls initially, but then increases again. This behavior 
can be explained by the fact that the number of subsets (p!') increases rapidly 
as po increases to i p ,  and then falls as ps,, increases to p. Hence, the selection 
bias is greatest for pso near i p  and decreases to zero as pa,, tends to zero 
or p. 

The empirical results of Murray (197%) emphasize the point that one 
should not use the apparent error rate of the sample rule based on the best 
subset to provide a reliable assessment of its performance in allocating new 
entities of unknown origin. Murray (19'7%) also noted that they raise a more 
difficult point of whether it is in fact sensible to choose the best subset of 
feature variables that appears to be optimal for a given set of data. 

12.6.2 Reduction of Selection Bias 

Suppose that x('o) contains the subset of feature variables selected as being 
the best of size pso, according to some criterion. Let r(x('0); t@O)) denote some 
arbitrary sample discriminant rule formed from the classified training data t('0) 

on the feature vector ~('0).  

By using the same notation as adopted in Chapter 10, the overall apparent 
error rate of this rule can be expressed as 

(12.6.1) 

The optimism arising from the use of the apparent error rate can be almost 
eliminated using cross-validation. The cross-validated estimate is 

where tk) denotes the training data t('o) with y y )  = (xy)',zj)' deleted. In 
order to reduce the selection bias that is still present in the estimate (12.6.1), 
Ganeshanandam and Krzanowski (1989) proposed that cross-validation should 
precede the variable selection itself. Their proposed estimate of the overall 
error rate of r(x(so); t($O)) is given by 

where Soj denotes the optimal subset, according to the adopted selection cri- 
terion applied to the training data '0.1 without y j  = (xj,z)>'. As the notation 
implies, the selected subset Soj for the allocation of the /th entity can be dif- 
ferent for each j (j' = 1,. . ., n). 
As conceded by Ganeshanandam and Knanowski (1989), this way of over- 

coming the selection bias involves a high computing penalty. But they note 
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there are many situations in practice where its implementation is computa- 
tionally feasible. To demonstrate the usefulness of their approach in overcom- 
ing this problem of selection bias, Ganashanandam and Krzanowski (1989) 
performed a number of simulation experiments under ideal conditions as rep  
resented by the normal model (12.2.2) and also under nonideal conditions as 
represented by multivariate binary data. They concluded that their approach 
leads to much greater accuracy relative to that of other available methods of 
assessment of the selected subset. In their simulation experiments, they em- 
ployed a fully stepwise procedure that included the possibility of deleting as 
well as entering variables at each stage. 



C H A P T E R  13 

Statistical Image Analysis 

13.1 INTRODUCTION 

13.1.1 Image Processing 

In this chapter, we consider applications and extensions of discriminant anal- 
ysis motivated by problems in statistical image analysis, in particular in the 
area of remote sensing. Image processing is required in a very wide range 
of practical problems. In addition to the analysis of remotely sensed images 
from satellites, examples include problems in medicine (e.g., automatic analy- 
sis and classification of photomicrographs of tissue cells in blood and cancer 
tests, and recognition of chromosome properties for genetic studies), nuclear 
medicine (e.g., photon emission tomography and scans obtained by nuclear 
magnetic resonance or gamma camera), ultrasound, computer vision (e.g., au- 
tomatic object recognition), and astronomy, where it is now common to collect 
data using two-dimensional arrays of detectors. In the past, contributions by 
statisticians in the latter area were limited possibly, as conjectured by Ripley 
(1986), because of the barrier imposed by a different jargon. Much of im- 
age analysis presents challenges that have been traditionally statistical, such as 
data reduction and detecting patterns amongst noise. Statisticians have begun 
to work on these challenges, in particular, on those in remote sensing with 
the segmentation of satellite images, in which pioneering work using statistical 
theory was undertaken by Switzer (1969, 1980, 1983). There is now an exten- 
sive literature on statistical image analysis. A detailed and systematic overview 
of the field was given recently by Ripley (1986, 1988, Chapter 5) and Switzer 
(1987). Venetoulias (1988) provides a useful annotated bibliography, contain- 
ing 85 papers of a statistical nature on image processing. In a further report, 
Venetoulias (1989) considered problems of parameter estimation in the con- 
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text of image-processing applications. A concise but informative account of 
statistical image analysis was given by Besag (1986) in the presentation of his 
ICM algorithm, which is considered in Section 13.6. Further references on the 
topic can be found in the work by Fu and Yu (1980); Yu and Fu (1983); Ge- 
man and Geman (1984); Hjort and Mohn (1984, 1987); Kittler and Foglein 
(1984); Mardia (1984); Haslett (1985); Saebo et al. (1985); Kay and Tittering- 
ton (1986); Mohn, Hjort, and Storvik (1986); Glaz (1988); and Owen (1984, 
1989). There is also the special issue of the Journal ofAppried Statistics on 
Statistical Methods in Image Analysis (1989, 16, 125-290), which is a source 
of additional references. 

13.1.2 Remote Sensing 

Remote sensing is a generic term that includes aerial surveys and sonar and 
radar mappings, but which is principally applied to digital imaging from satel- 
lites. Integrated studies on earth resources have assumed a lot of impor- 
tance recently, with the availability of data from a variety of satellites such as 
LANDSAT Multispectral Scanner (MSS), Thematic Mapper (TM), the French 
satellite SPOT, and the Indian Remote Sensing Satellite (IRS). 

Every point on the earth’s surface is constantly reflecting and emitting elec- 
tromagnetic radiation. The intensities vary for the different wavelengths of the 
electromagnetic spectrum. This spectral distribution, or spectral signature, de- 
pends upon several factors, of which the most important ones are surface con- 
ditions, type of land cover, temperature, biological activity, and the angle of 
incoming radiation. Satellites equipped with a multispectral scanner are able 
to measure the intensity in several various bands of the spectrum. A portion 
of the surface of the earth is partitioned into a grid of small squares called pix- 
els. For LANDSAT 1-3, these pixels, or picture elements, are nominally 80 m 
square but overlap. For each pixel, a satellite records the intensity of reflected 
electromagnetic radiation at each of several wavelengths, typically four (green, 
red, and two infrared bands). More recent satellites have resolutions down to 
10 m x 10 m and/or more colors. For example, the French SPOT satellite has 
20 m x 20 m surface elements. 

The traditional analysis of remotely sensed images has been done by pho- 
tointerpreters. However, human interpretation is slow, expensive, and open to 
dispute. Thus, much attention has been directed in recent times on the auto- 
matic classification of pixels in remotely sensed scenes from satellites such as 
LANDSAT and SPOT. The output is an image segmentation, partitioning the 
scene into blocks, each belonging to one of a small number of different classes 
or groups representing the type of vegetation, rock type, etc. 
As explained by Ripley (1986), the spatial structure of pixels is relevant in 

two distinct ways. It has already been mentioned that the pixels overlap. The 
true situation is much worse, with 50% of the light received by the scanner 
when pointing at one nominal pixel coming from nearby pixels. The noise that 
corrupts the signal is also spatially autocorrelated. Hence, the whole obser- 
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vation process has a spatial component. Of perhaps even greater importance 
is the need to use contextual rules in allocating the pixels to the specified 
groups. By a contextual allocation rule is meant one formed under a model 
that attempts to incorporate the u priOri knowledge that spatially neighboring 
pixels tend to belong to the same group. Thus, with a contextual allocation 
rule, a pixel is allocated not only on the basis of its observed feature vector, 
but also on the feature data of neighboring pixels. The use of a noncontextual 
rule that allocates a pixel on the basis of its feature vector only and thereby 
ignores the information on neighboring pixels leads to a “patchwork quilt” of 
colors representing the different groups. However, in the situation where the 
colors represent different categories of land use, it is known aprwri that the 
land-use categories tend to occur in blocks of moderate size (a few to tens of 
pixels across). 

13.1.3 Notation 

It is supposed that there is a two-dimensional scene S of pixels, forming a 
MI x Mz rectangular array. For the (u,v)th pixel, a p-dimensional vector Xu, 
of intensities is observed with xu, denoting its observed value. With some a p  
plications, each Xu, is augmented with further variables, perhaps related to to- 
pography and texture. For the present, it is computationally convenient to rela- 
bel the pixels in some manner by the integers j = 1, ..., m, where m = MI&. 
The associated feature vectors containing the intensities are denoted corre- 
spondingly by XI, ..., Xm. It is assumed that each pixel has a true color, lying 
in a prescribed set. If the colors have a natural ordering (usually ranging from 
black to white), they are referred to as grey levels. In this case, the colors r ep  
resent the value per pixel of some underlying variable, such as intensity. We 
will focus here on the situation where the colors are unordered. In this case, 
the colors are usually tokens for other characteristics of the scene, such as the 
types of vegetation or the predominant rock type. The assumption that each 
pixel has a true color is unlikely to hold for pixels on the boundary between 
different surface categories. They would be expected to contain at least two 
different categories. Such pixels are said to be mixed; see Kent and Mardia 
(1986) for a recent treatment of mixed pixels. 

We let the groups representing the g possible (unordered) colors be de- 
noted by GI, ..., Gg. That is, a pixel belongs to group Gi if it is of the ith 
color (i = 1, ...,g). The possibility that none of the pixels belong to these 
groups can be handled by the introduction of another group if so desired; see 
Hjort and Mohn (1984). Also consistent with our previous notation, Zj is the 
groupindicator vector defining the color of the jth pixel with feature vector 
Xj, where Zij = (Zj)i = 1 if the jth pixel belongs to Gi and is zero otherwise 
(i = 1, ...,g). We let 

Note that we are now using X to denote an m-tuple of points in RP, whereas in 
the previous chapters, it was used to denote a single random vector of feature 

x- (Xi, ..*, XL)’. 
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variables in RP, having Xj  as its jth replication ( j  = 1, ..., m). Similarly, we 
now let 

z = (ZI, ..., 2;)' 

Y = (Yi, . . .,Y&)', 
and 

where Yj = (X;,Zi>' for j = 1, .. .,m. The observed values of X, Y, and Z are 
denoted by x, y, and z, respectively. 

13.1.4 Image Segmentation or Restoration 

In the framework above, the problem is to produce an estimate ft of the un- 
known vector z that defines the colors of the rn pixels in the given scene S, 
on the basis of the observed feature data x. This process is referred to as 
segmentation. It can also be referred to as image restoration. 

An estimate 2 can be produced either by simultaneous estimation of its m 
subvectors zj ( j  = 1, ..., M )  or by estimation of each zj  considered individu- 
ally. An example of the former approach is taking f to be the value of z that 
maximizes 

pr{Z = z I x}. (13.1.1) 

That is, f is taken to be the mode of the posterior distribution of Z. It is 
therefore referred to as the MAP (maximum a posteriori) estimate. From a 
decision-theoretic viewpoint, 2 corresponds to the adoption of a zero-one loss 
function according as to whether the reconstructed image is perfect or not. 
The maximization of (13.1.1) would appear at first sight to be an ambitious 
task given there are g" possible values of z. Nevertheless, this is the approach 
of Geman and Geman (1984) described in Section 13.7. 

The pixels can be individually allocated by choosing 2j to be the value of Z j  

that has maximum posterior probability given X = x, that is, fj maximizes 

(13.1.2) 

This approach of maximizing the posterior marginal probability for each pixel 
corresponds to maximizing the expected number of correctly assigned pixels in 
the scene. It is thus biased toward a low rate of misallocated pixels rather than 
overall appearance. A low misallocation rate does not necessarily produce a 
good-looking segmentation; see Figure 2 of Ripley (1986). Individual alloca- 
tion of the pixels according to (13.1.2) may be more pertinent than a simul- 
taneous allocation procedure in some circumstances. An example where this 
would be the case is the construction of a crop inventory from satellite data, 
where the reconstruction of the scene itself is of secondary importance; see 
the special issue of Communications in Statistics-Theory and Methods (1984, 
13, 2857-29%) on Crop Surveys Using Satellite Data. 
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A key aspect in the development of an estimate f of the true colors of the 
pixels, whether undertaken simultaneously or individually, is the prior distribu- 
tion specified for 2. In modeling this distribution, the intent is to pmbabilis- 
tically reflect the extent to which spatially neighboring pixels are of the same 
color. In this endeavor, models known as Markov random fields can play a 
very useful role. 

13.2 MARKOV RANDOM FIELDS 

13.2.1 Definitions 

Markov random fields are commonly employed in image-processing problems 
to model departures from independence in the prior distribution of the colors 
of the pixels within a given scene. We therefore provide here a brief account 
of Markov random fields, focusing on two broad classes of such models: sym- 
metric (noncausal) models and mesh (causal) models. 

Markov random fields are models that extend the concept of one-dimen- 
sional Markov processes to the two-dimensional plane. Let P(z) define a prob- 
ability distribution for 2 that assigns colors to the pixels in the scene S. Let 
20) denote z with zj deleted and consider the conditional probability 

~ { z j  = zj I ZO.)), (13.2.1) 

where, as noted by Besag (1986), ~ 0 )  is the only natural conditioning set for 
spatial distributions. Viewed through the conditional probability (13.2.1) for 
each pixel j ,  the probability distribution is termed a Markov random field 
(MRF). 

A Markov random field is said to be locally dependent if the conditional 
distribution (13.2.1) depends only on the colors of the pixels in the immediate 
vicinity of pixel j .  That is, if Nj = { j l ,  . . .,is} is a subset of { 1,. . .,m}, contain- 
ing the labels of the s pixels in some so-called neighborhood of pixel j ,  the 
Markov random field is locally dependent if and only if 

(13.22) pr{Zj = zj I qj)} = Pj(zj;Zq) (j = 1, ..., m), 
where the function Pi(.;.) is specific to pixel j and 

specifies the colors of the pixels in the neighborhood of pixel j .  
In practice, the construction of a Markov random field on S is usually car- 

ried out by first imposing a neighborhood structure on S and then choosing 
a probability distribution that satisfies the condition (13.2.2). The alternative 
approach of trying to fit a model to a particular image by choosing, for exam- 
ple, the most “appropriate” neighborhood structure has been used occasionally 
(Kashyap and Chellappa, 1983), but is not very common. The first approach 
where the neighborhood structure is specified Q pnon may at first sight seem 



418 STATISTICAL IMAGE ANALYSIS 

unrealistic, but is less restrictive than it appears. As discussed in the following 
sections, locally dependent Markov random fields have formed the basis for a 
number of relatively successful image-segmentation algorithms. 

The simplest departure from independence is a first-order Markov random 
field, in which the neighbors of each pixel j comprise its available N, S, E, and 
W adjacencies. On the boundary, where pixels have less neighbors, assump 
tions are made for convenience. A first-order assumption is viewed by Besag 
(1986) to be unrealistic for most practical purposes. For a second-order field, 
the available pixels that are diagonally adjacent to pixel j are included also. 
Thus, each interior pixel j has eight neighbors. 

The first- and second-order neighborhoods are the first two members of 
a whole hierarchy of symmetric neighborhoods. It should be noted, however, 
that the probability distribution (13.2.2) is generally subject to restrictive con- 
sistency conditions, which are not all obvious. These conditions are identified 
by the Hammersley-Clifford theorem; see Besag (1974). For instance, this the- 
orem implies that there is a symmetry in designating neighbors, that is, if pixel 
k is a neighborhood of j ,  then j must be a neighbor of k. 

A Markovian random field should not be viewed as a definitive representa- 
tion of an image. Rather, locally dependent Markov random fields serve only 
to provide a way of formalizing the notion that nearby pixels are likely to 
have the same color. As explained by Besag (1986), the effect of choosing a 
nondegenerate field to describe the local properties of the scene is to induce 
large-scale characteristics of the model that are somewhat undesirable. Even 
relatively simple Markov random fields can exhibit positive correlations over 
arbitrarily large distances when adjacent pixels are very likely to be the same 
color. Indeed, on the infinite lattice, there is a strong tendency to form infi- 
nite single-color patches. Thus, the aim has been to devise methods of image 
segmentation that, besides being relatively straightforward to implement, are 
unaffected by the large-scale characteristics of the chosen Markov random 
field. 

The conditional probability distribution (13.2.2) is not the only possible def- 
inition of a Markov random field. There exists an equivalent definition in 
terms of energy functions (or Gibbs potentials), but it is not needed here. 
For further details on Markov random fields, the reader is referred to Besag 
(1974), Kinderman and Snell(1980), Dubes and Jain (1989), Qian and Titter- 
ington (1989), and Venetoulias (1989). 

13.2.2 Spatially Symmetric Models 

Besag (1986) has suggested the use of the following Markov random field 

(13.2.3) 

where the functions Hj and Hjk are arbitrary, subject to the restriction that 
Hjk must be zero if pixels j and k are not neighbors. This is a pairwise inter- 
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action Markov random field. It is possible to have interactions among three 
or more pixels; see Kinderman and Snell (1980) and Venetoulias (1989) for 
further details. The normalizing constant for (13.2.3) is known as the partition 
function and is usually intractable as it is a sum of gm terms. Fortunately, it 
is not required in the implementation of the image-segmentation algorithms 
that use (13.2.3) as the prior distribution for 2. Besag (1986) discussed some 
interesting versions of (13.23) that can be applied to discrete or continuous 
grey levels. 

The present situation of g groups representing g unordered colors of the 
image can be modeled (Besag, 1976; Strauss, 1977) by a special case of (13.2.3), 
namely, 

(13.2.4) 

where mi is the number of pixels that belong to Gi, and Mhi is the num- 
ber of distinct pairs of neighboring pixels that belong to groups Gh and Gi, 
respectively. The constants pi and pfi are arbitrary parameters. In the sub- 
sequent work, phi  is taken to be postive, which discourages pixels from Gh 
and Gi being neighbors. Note that there is a redundancy among the pi's, since 
rnl + - - * + rng = M. 

By considering any two realizations of Z that differ only at pixel j ,  one 
can compute the conditional probability that pixel j belongs to Gi (i.e., Zij = 
(Zj)i = l), given the group membership of all other pixels (i.e., given ~0.1). It 
follows that 

pr{zij = 1 1 w)} cx exP pi - cphiuhj  9 (13.2.5) 

where uhj denotes the number of neighbors of pixel j belonging to Gh (h = 
1,. . .,g). This defines the probability distribution for P(z)  through the condi- 
tional probabilities (13.2.5), which confirms the Markov property of (13.2.4). 
The interaction parameters phi are required to satisfy the condition of sym- 
metry, 

( h#i ) 

phi = pih (h,i = 1,. . .&). 

A further simplication of (13.2.5) is to take the phi to have a common value 
(p), so that 

pr{Zij = 1 I ~0.1) exP(pi + Puij), (13.2.6) 

on noting that U1j  + + U g j  is the total number of neighbors of pixel j .  The 
result (13.2.6) implies that the conditional odds in favor of pixel 1 belonging to 
Gi depend only on the number of its neighbors belonging to the same group 
Gi. A final simplification occurs if all the groups GI,. . . , Gg are equally likely, 
in which case the pi must all be equal and so can be set equal to zero. This 
yields 

pr{Zij = 1 I ~ ( j ) }  oc eT(puij) (i = 1 ,..., g; j = 1 ,..., rn). (13.2.7) 
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This simple model for binary scenes (g = 2) is the autologistic model due to 
Besag (1972). It is known as the Ising model in statistical physics, where it 
has been used to describe the behavior of magnetic particles in which the two 
groups represent the two polarities (Kinderman and Snell, 1980). 

It can be seen from (13.2.7) that for this model, the geometry of the neigh- 
borhood does not affect the conditional probability that pixel j has a certain 
color, given the colors of all the other pixels. Rather, it depends only on the 
number of neighbors of pixel j that are of the same color. 

13.2.3 Markov Mesh Models 

For image-segmentation methods using a Markov random field to model the 
prior distribution of the scene, a drawback is that 

pr{Zj = zj,Z4 = 2 4 )  

does not exist in closed form, even for Nj corresponding to simple choices of 
a neighborhood. The exceptions to this fall within the special class of Markov 
random field models known as Markov mesh models (Abend, Harley, and 
Kanal, 1%5), which have been designed specifically with this aim. The Markov 
mesh model is defined by the conditional distribution of Zj given the value of 
q for all pixels k that precede pixel j .  To define the concept of precedence, 
suppose that pixel j k  corresponds to the (uk,vk)th pixel in the rectangular 
array comprising the scene S. Then pixel j l  precedes pixel j 2  if and only if 
u1 < u2 or u1 = u2 and v1 < v2. 

Markov mesh models are also called causal Markov random fields because 
their unilateral nature resembles the time causality present in time series. In 
accordance with the Markovian condition (13.2.2), the conditional distribution 
of Zj given the group membership of the pixels that precede it is taken 
to depend on only a few of the predecessors of pixel j .  The unilateral nature 
of these models implies that the unobvious consistency conditions do not 
arise. 

The specifications underlying Markov mesh models are unnatural in a spa- 
tial context and can be very restrictive; see Besag (1986) for further discus- 
sion on this. The one exception to the asymmetry that pervades the family of 
Markov mesh models is the model of Pickard (1977, 1980), adopted in image 
processing, implicitly by Kittler and Foglein (1984) and explicitly by Haslett 
(1985); see also Derin et al. (1984). It corresponds to the Markov mesh model 
in which the predecessors of the (u,v)th pixel are taken to be the pixels with 
coordinates 

{ (u - l,v), (u,v - l), (u  - l , v  - 1)). (13.2.8) 

As such, the Pickard (1977, 1980) model lays emphasis inappropriately on the 
orientation of a pixel with respect to the scene. Computation, however, is sim- 
plified considerably. This model has the curious property that, given the color 
of any pixel, the colors of immediately adjacent pixels are conditionally inde- 
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pendent. Thus, 

pr{z, = I z j )  = n pr{zk = I zj ) ,  (13.2.9) 

where Nj denotes the labels of the predecessors of pixel j ,  corresponding to 
(13.2.8). It will be seen in Section 13.5 that the model (13.2.9) for the transition 
probabilities for the colors of neighboring pixels provides the basis for several 
approaches to contextual segmentation performed pixel by pixel. 

k ENj 

13.3 NONCONTEXlllAL ME"I'H0DS OF SEGMENTATION 

The simplest way of proceeding with the allocation of the pixels is to ignore all 
their spatial characteristics and to take their associated feature vectors Xj to be 
independently distributed. Segmentation is then performed by assigning each 
pixel j on the basis of its observed feature vector X j  only. This is a standard 
problem in discriminant analysis, as surveyed in the preceding chapters. In 
very low noise settings, noncontextual methods will work well. However, they 
will perform poorly if the group-conditional distributions of the feature data 
overlap substantially. In any event, a noncontextual allocation rule may be 
of use in that it can be applied to provide an initial specification do) of the 
colors of the pixels from which an estimate of z can be computed iteratively 
via a contextual method of segmentation. 

If the groupconditional densities for the feature vector of intensities 
are not completely specified, then they have to be assessed from the avail- 
able data. For this purpose with typical applications of discriminant analysis, 
there are available training data, consisting of observations on independent 
feature vectors whose classification with respect to the underlying group is 
known. 

However, given the spatial structure in a scene of pixels, the assumption 
of independence may not be valid if the training feature observations corres- 
pond to several rows of pixels rather than to pixels selected at intervals suf- 
ficiently far apart. This selection aspect is discussed further in Section 13.9, 
where the effect of correlated training data on a sample discriminant rule is 
considered. 

In the absence of any training data of known origin, the groupconditional 
densities can be estimated parametrically by maximum likelihood under the 
assumption that XI, ..., Xm constitute a random sample from a mixture of the 
g possible groups. The fitting of this mixture model w a s  discussed in a general 
context in Section 2.10 and for the special case of multivariate normal group 
conditional distributions in Section 3.8. 

A common assumption in practice is to take the groupconditional distri- 
bution of the feature vector of intensities to be multivariate normal. Although 
the intensity measurements are not really continuous (the spectral reflectance 
is usually recorded as a number between 0 and 255), the scale is sufficiently 
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fine to make the conceptual leap to continuous data acceptable. Moreover, 
the histograms of the feature data from the same group are well modeled by 
multivariate normal densities; see Hjort and Mohn (1987). 

13.4 SMOOTHING MJiTHODS 

13.4.1 Spatial Assumptions 

Switzer (1980, 1983) and Switzer, Kowalik, and Lyon (1982) have incorporated 
contextual information in ways they describe as smoothing. Before defining the 
allocation rule of Switzer (1980), we will set up this smoothing problem in a 
wider context, along the lines of the formulation in Mardia (1984). 

Consider the scene S of M pixels with associated feature vectors X I , .  . . ,Xm, 
where 

(13.4.1) 

where zij equals one if pixel j is in Gi and is zero otherwise (i = 1,. . . ,g; j = 
1, .. .,m), and where the noise €1, ..., em are the realizations of a zero-mean 
stationary spatially correlated random process. The first assumption is that this 
noise process is Gaussian with a locally spatial isotropic covariance. Hence, 
the (common) group-conditional covariance between any two feature vectors 
Xj and & can be factored as 

(13.4.2) 

where p ( )  is the isotropic correlation function, p(0) = 1, and d = l j  - kl refers 
to the Euclidean distance between pixels j and k in the two-dimensional rep  
resentation of the scene S. For p = 1, (13.4.2) is the usual assumption in krig- 
ing; see Matheron (1971). 

We let Nj be the subset of { l,?.. ., m} containing the labels of the pixels 
that belong to the prescribed neighborhood of pixel j .  If the neighborhood 
contains s pixels labeled jl, . . . ,is, then we let X, contain the feature vectors 
on those pixels in the prescribed neighbor of pixel j ,  that is, 

x, = (x ; l ,  ..., Xj,) ' .  

For example, s = 4 for the first-order neighborhood of adjacent pixels, while 
s = 8 for the second-order neighborhood including also the diagonally adjacent 
pixels. 

The second assumption about the joint distribution of XI,. . . , X,,, assumes 
local spatial continuity of the neighborhood in that if pixel j belongs to Ci, 
then so does every neighbor. Thus, on letting 

xi' = (x;,Xh,)' ,  
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we have that 

423 

= L+l@Pi (i = l,...,g), (13.4.3) 

where 8 is the Kronecker delta, and lS+1  is the (s + 1)dimensional vector of 
ones. The covariance matrix of Xi', given that X j  belongs to Gi, is 

c+ = C@D, (13.4.4) 

where C is the spatial correlation matrix of order (s + 1) x (s + 1). It can be 
written down once the neighborhood of pixel j has been specified. 

Local spatial continuity of the neighborhood was assumed also by Wove 
(1981). However, he adopted a two-dimensional Markov process to model the 
feature observations Xj,, . . ,Xi,, which were taken to be univariate. 

13.4.2 Presmoothing of Data 

Presmoothing of the data is accomplished by basing the assignment of pixel 
j on the basis of the observed value xT of the augmented feature vector XT. 
Under the assumptions above, which imply that the ith groupconditional dis- 
tribution of X ?  is multivariate normal with mean (13.4.3) and covariance ma- 
trix (13.4.4), the optimal rule of allocation is given by the NLDR formed for 
the augmented feature x i ,  that is, by r,(xT;*;), where 

9; = (d,eE+')', 
and 6; denotes QE with pi and C replaced by pr and Z+, respectively (i = 
1,. . .,g). It can be seen from equations (3.3.2) and (3.3.3) defining the NLDR 
r,(Xj;BE) that in order to apply ro(xT;\kE+) at the augmented feature vector 
xi+, we have to compute 

<. 18 (+e+) 1 9  E = {xi' - &pT + p : ) ) ) ( ~ + ) - ~ ( p T  - p l )  (i = 1, ...,g-- 1). 

Mardia (1984) showed that &g(xT;8E+) can be reduced to the form 

(i = 1, ...,g - l), (13.4.5) 

where 
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and where 

The result (13.4.5) implies that allocation is effectively based on the observed 
value of the linear combination of the feature vectors given by 

(70,..-,7s)' = C-'~S+I. 

k = l  

which has mean C2Pi and covariance matrix c2E in Ci (i = 1,. . .,g). 

(13.4.6) 

13.43 Reduction in Error Rate 

From this last result, it follows on noting the expression in Section 3.3.2 for 
the optimal error rate of the NLDR that the overan optimal error rate of 
rO(xT;8E+) in the case of equal group-prior probabilities is equal to 

e o ( @ i )  = @ ( - ~ c A ) ~  (13.4.7) 

where 
A = {(PI - ~ r z ) ' I = - ~ ( ~ r l  - ~ 2 ) ) " ~ .  

As the optimal error rate of r o ( x ; * ~ )  in the same situation is @(-fa), the 
error rate is reduced by augmenting the feature vector with the intensities of 
neighboring pixels, since it is easy to establish that c > 1; see Mardia (1984). 
The maximum value of c is s + 1 in the case in which Xj,Xj,, ..., Xj, are inde- 
pendently distributed. 

For the first-order neighborhood containing the s = 4 adjacencies of pixel 
i, 

70 = (w1- %)/(wl- W j )  

and 

where 

and 

7 k  = (1 -w2)/{4(wl -w,")> (k = 1,&3,4), 

w1 = ;{ 1 + 2 p ( J z )  + p(2)) 

(w1 > 4). w2 = p(1) 

Thus, it can be seen from (13.4.6) that for this prescribed neighborhood, allo- 
cation is performed on the basis of the linear sombjnation 

{(a - w2)q + (1 - W2)%vj I/(w - WZ), 2 (13.4.8) 

where 

The use of (13.4.8) was proposed initially by Switzer (1980). 
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Concerning the reduction in error rate in this case, the value of c is 
2 112 c = ((1 + w1 - &2)/(w- 02))  * 

Mardia (1984) also gives the corresponding result for the second-order neigh- 
borhood in which the diagonally adjacent pixels are included, too. 

13.4.4 Estimation of Parameters 

In practice, the parameters of the model proposed above for smoothing the 
data will be unknown. Switzer (1980) and Mardia (1984) have considered their 
estimation from available training data; see also Lawoko (1990). In particu- 
lar, regarding the estimation of w1 and w ~ ,  Mardia (1984) suggests that they 
be estimated by first estimating p c ) ,  as in kriging procedures (Joumel and 
Huijbregts, 1978). The prior probabilities of the groups can be estimated by 
the method proposed by Switzer, Kowalik, and Lyon (1982), which introduces 
some spatial smoothing in the prior distribution for the colors of the pixels. 
This method is based on the so-called discriminant analysis approach to the 
estimation of mixing proportions as described in Section 2.3; see equation 
(2.3.4). 

13.4.5 Another Method of Presmoothing 

Switzer (1985) has proposed the use of midmax autocorrelation factors (MAF) 
as a noise separation procedure for general-purpose processing of multivariate 
spatial imagery. The feature vector Xj is transformed to a vector gj = AXj, 
which has the following property. The first few variates in %j have minimal 
spatial autocorrelation, identified as mainly noise, and the latter variates have 
maximal spatial autocorrelation, identified as mainly signal. The procedure o p  
erates pointwise to avoid the signal blurring introduced through smoothing or 
spatial averaging procedures. However, the pointwise operator itself is defined 
using primitive global spatial characteristics of the data. 

The MAF procedure has other formulations that permit the use of stan- 
dard multivariate routines to extract the factors. Specifically, the factors are 
obtained as eigenvectors of the matrix CdX-l, where 

C = COV(Xj), 

Cd = COV(Xj - a), 
and where d = l j  - kl is the specified spatial log. 

13.5 INDIVIDUAL CONTEXTUAL ALLOCATION OF PIXELS 

One way of providing a contextual method of segmentation is to consider the 
allocation of each pixel individually on the basis of its posterior probabilities 
of group membership given the recorded feature vectors on all the m pixels in 
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the scene S. The jth pixel is allocated then on the basis of the maximum of 
the posterior probability 

pr{Zj = zj I x} 

with respect to Zj, where Z j  defines the group of origin (color) of pixel j ( j  = 
1,. . .,m). 

A common assumption is to form this posterior probability under the as- 
sumption of white noise, that is, the feature vectors are conditionally inde- 
pendent given their group of origin (color). In many image problems, this as- 
sumption of white noise is reasonable. But in remote sensing applications with 
high-resolution satellite data, this is not so; see Hjort and Mohn (1985, 1987) 
and Mohn, Hjort, and Storvik (1987) for further discussion on this. As noted 
in these papers, contextual rules that assume white noise offer less improve- 
ment in terms of error rate over noncontextual rules in situations where the 
feature data are autocorrelated. 

Under the assumption that the feature vectors Xj are groupconditionally 
independent with the same density fi(.;ei) in group Gi, we have up to an 
additive term not involving zj that 

where the assumption is over all admissible values of qj). It can be seen that 
(13.5.1) depends on all the observed feature vectors X j  for (almost) any proba- 
bility function P(z)  for Z. Therefore, in order to reduce the complexity of the 
problem, Z j  might be chosen to maximize 

pr{Zj = zj I xj,x4}, 

where Nj is the subset of (1, ..., M}, containing the labels of the prescribed 
neighbors of the jth pixel. We have that 

where the summation is over all admissible values of Z N ~  defining the group 
membership (colors) of the pixels in the prescribed neighborhood of pixel j ,  
and where N t  is the union of Nj and { j } .  

Even with this simplification, analytical progress is barred, in general, be- 
cause pr(2j = z j , Z ~ ~  = ZN~} is unavailable in closed form. The exceptions to 
the general rule fall within the Markov mesh family as defined in Section 
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13.2.3. With the Pickard (1977, 1980) model defined there, 

F { z j  = z j , z N ,  = z N j }  = p { z j  = z j }  n pr{& = a I z j } ,  (13.5.3) 
kENj  

since given Zj ,  the & for the neighbors of pixel j are independently dis- 
tributed. The use of (13.5.3) or generalizations of it in (13.5.2) have provided 
the basis for the contextual approaches to allocation as considered by Welch 
and Salter (1971), Owen (1984), Hjort and Mohn (1984), and Haslett (1985), 
among others. 

Haslett (1985) has extended the calculation of the left-hand side of (13.5.3), 
where the prescribed neighborhood consists of all pixels in the same row 
and column as pixel j .  The transition probabilities pr(& = I Z j }  were as- 
sumed to be stationary and were taken to be known along with the group 
conditional densities f i ( ~ ; B i )  and the common prior distribution for the Z j .  

Using (13.5.3), Haslett (1985) was able to compute the right-hand side of 
(13.5.2) exactly. Haslett (1985) also has given an approximation to include 
second-order neighbors. 

The procedures of Hjort and Mohn (1984) and Owen (1984) also maximize 
the posterior probability (13.5.2) for Nj corresponding to first-order neighbors 
of pixel j .  Whereas Haslett (1985) assumes the zk with k belonging to N j  

to be conditionally independent given Z j ,  Owen (1984) and Hjort and Mohn 
(1984) allow only certain configurations of the prescribed neighbors. Suppose 
that pixel j belongs to group Gi, that is, it is of color i. Then its neighbors 
must either all be of this color or have at most two members of some other 
color (say, h # i) ,  with only configurations of the form 

i i i 

i i i  i i h  i i h  

i i h 

allowed. Hence, the number of configurations for pixel j and its neighbors has 
been reduced from gs to 

g + 4g(g - 1) + 4g(g - 1) = g(8g - 7). 
Hence, there are only g(8g - 7) possible values for 2%. Owen (1984) specifies 
the transition probabilities from a geometrical probability model with one 
parameter, whereas Hjort and Mohn (1984) allow an arbitrary (exchange- 
able) distribution. Hjort (1985) has generalized these procedures to include 
diagonal neighbors. Also, Hjort and Mohn (1985) have obtained a natural 
generalization of this to the case where spatial autocorrelation between 
the feature vectors is allowed for. More recently, Devijver (1988) has dis- 
cussed approximation techniques for parameter estimation in Markov mesh 
models. 
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13.6 ICM ALGORITHM 

13.6.1 Underlying Assumptions 

This section is devoted to the so-called ICM (iterated conditional modes) al- 
gorithm, which is one of the standard algorithms for the segmentation of im- 
ages. The ICM algorithm was introduced by Besag (1983, 1986). The image 
it produces was proposed as an approximation to the maximum u posteriori 
(MAP) image in his first paper and as an improvement in his second paper. 
The ICM algorithm is based on the imposition of a locally dependent Markov 
random field for the prior distribution for the image as represented by Z. The 
algorithm makes use of the desirable local properties of the Markov model, 
but is not influenced by some of their undesirable properties, notably strong 
long-term dependence that favors near constant colors. 

More specifically, the ICM algorithm was developed under two main as- 
sumptions. The first is that given z specifying the colors of the pixels, the 
feature vectors XI,. . .,X, containing the intensities measured on pixels 1 to m 
are conditionally independent, with each Xj having the same density A( - ;&)  
in Gi (i = 1,. . .,g). In the notation of the previous sections, it implies that the 
joint density of XI, ..., X,,, given z is equal to 

(13.6.1) 

The applicability of this assumption was discussed in the previous section. 
The second assumption is that the true image z is a realization of a locally 

dependent Markov random field with probability distribution P(z;P), specified 
up to a vector /3 of unknown parameters. As discussed in Section 13.2, where 
Markov random fields were defined, the intended role of this model is that it 
should be consistent with the true scene as regards its local rather than gZubul 
characteristics. We have from (13.2.2) that for a locally dependent Markov 
field, 

(13.6.2) 

where the function Pj is specific to pixel j ,  and Nj is the subset of { 1,. . ., m} 
containing the labels of the pixels in the immediate vicinity of pixel j .  This 
neighborhood of pixels is prescribed before implementation of the algorithm; 
see the discussion on this in Section 13.2.1. 

pr{Zj = zj I ~ ( j ) }  = Pj(zj;zNj,P) ( j  = 1, ..., m), 

13.6.2 Definition 

Besag (1986) proposed that segmentation be carried out by allocating each 
pixel individually on the basis of 

pr{zj = zj I x,z(j)l ,  
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where z(i) specifies the colors of all the pixels in the scene apart from pixel 
j (j = 1, .. .,m). Under assumptions (13.6.1) and (13.6.2), it follows from Bayed 
theorem that 

8 

logpr{Zj = zj I X,%)} = CZijlOgfi(Xj;Bi) + IOgPj(Zj;ZNi,P) (13.6.3) 
i-1 

up to an additive term not involving Zj. 

An estimate fij is computed iteratively, using the following dgorithm, which 
is described firstly in the case where the 6, and p are treated as known. Let 
do) denote an initial estimate of z obtained, for example, by using a non- 
contextual rule, as discussed in Section 13.3. Then starting with pixel j ,  2j is 
chosen to maximize (13.6.3) at z ~ i  = 2;. The initial estimate do) of z is then 

updated so that the current estimate 2 becomes do) but with 27)  replaced by 
2j. The procedure is then applied to the next pixel, say j + 1, by choosing 2j+l 
to maximize (13.6.3) at z+, = 2+,. The estimate of z is then updated and the 
procedure applied to the next pixel. After application to each pixel in turn, 
this procedure defines a single cycle of the ICM algorithm for the iterative 
computation of the estimate of z. The algorithm is applied for a prespecified 
number of cycles, or until convergence. Since 

pr{Z I X} = pr{Zj = zj I X,z(j)}Pr{Z(j) = qj) I XI, 
it can be seen that pr{Z = f I x} is never decreased at any stage and eventual 
convergence is assured. 

Besag (1986) has found in practice that convergence, to what must be a 
local maximum of pr{Z = z I x}, is extremely rapid with few if any changes oc- 
curring after the sixth cycle. As remarked earlier, it was as an approximation to 
the maximization of pr{Z = z I x} that this algorithm was originally proposed 
by Besag (1983). This iterative computation of the estimate fij was suggested 
independently by Kittler and Foglein (1984), who applied it to LANDSAT 
data, as did Kiiveri and Campbell (1986). As stressed by Besag (1986), its de- 
pendence only on the local characteristics of the scene is ensured by the rapid 
convergences. The guarantee of convergence holds no matter in what order 
the pixels are scanned. However, there is no guarantee of convergence if the 
image is updated synchronously, whereby each new estimate of Zj  is calculated 
in turn according to (13.6.3), but the current estimate of z is not updated until 
each cycle is completed. 

13.6.3 Estimation of Parameters by the ICM Algorithm 

We now consider the estimation of the vector Bi of parameters in the ith 
groupconditional density of the feature vector (i = 1, ...,g) and the vector p 
of parameters in the locally dependent Markov random field specified for the 
prior distribution of Z. It is supposed that there are no training data of known 
origin to provide suitable estimates of these parameters for adoption in the 
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application of the ICM algorithm as outlined above. Besag (1986) suggested 
that the ICM algorithm be modified as follows. 

Let z(&) be the estimate of z after completion of the kth cycle of the al- 
gorithm. Then an estimate @(k) of the vector B of the distinct elements of 
el,. . .,ag is obtained by maximization of 

~m 

(13.6.4) 
i=l j=1 

with respect to 8. An estimate p(&) of p can be obtained by maximum pseudo 
likelihood, whereby p(&) is chosen to maximize 

m 

(13.6.5) 

where terms in this sum corresponding to boundary pixels might be excluded 
because of the added artificiality of the model there. The sum (13.6.5) is not 
in general a genuine log likelihood, since it is formed under the assumption 
of independence. Exact maximum likelihood estimation of p is generally not 
computationally tractable. This is because the normalizing constant in (13.2.3) 
cannot be evaluated in general. Exceptions under (13.2.4) are the Markov 
mesh models and first-order Ising models; see Besag (1975, 1986) and Vene- 
toulias (1989) for further discussion of the estimation of p. 

After computation of 8(&) and p(&), a new estimate of z is obtained by 
carrying out another cycle of the algorithm with 8 and p replaced by B(&) 
and f l ( k ) ,  respectively, in (13.6.3). As reported by Besag (1986), little is known 
of the convergence properties of this process, but limited results so far are 
encouraging. 

13.6.4 A Priun’ Specification of Parameter in Prior Distribution of Image 

Besag (1986) found that his ICM algorithm performed well for the (second- 
order) locally dependent Markov random field model for which 

pr{zij = 1 I qj)} a expC0uij), (13.6.6) 

where U i j  is the number of the prescribed neighbors of pixel j ,  belonging to 
Gi (i = 1, .. .,g; j = 1,. .., m), and ,LJ is a single unknown parameter to be esti- 
mated or specified. The development of this spatially symmetric model (13.6.6) 
was described in Section 13.2.2. Here the prescribed neighborhood of pixel j 
consists of the four adjacent pixels and the four diagonally adjacent pixels, 
where available. Thus, segmentation is local to the extent that it depends only 
on data up to eight pixels distant from the pixel undergoing allocation. 

The model (13.6.6) for the prior distribution of the image has the advan- 
tage of only one parameter. As an alternative to its estimation during the im- 
plementation of the ICM algorithm, it can be specified beforehand by (1 priuri 
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reasons, as demonstrated by Ripley (1986) in the case ofg = 2 colors. If all of 
the eight neighbors of a pixel are of the same color, then the probability that 
the central pixel has the same color as its eight like neighbors should be very 
high. Ripley (1986) suggests that this probability, which is given from (13.6.6) 
by 

eXP(8P)l t 1 + exP(8P>), 

should be at least 0.999, requiring p 2 0.86. On the other hand, if the colors 
of the neighbors of a pixel are split five versus three, then the probability that 
the central pixel has the same color as its three like neighbors, which is 

exP(3P)/(exP(3P) + exP(5P)}, 

should be at least 0.01, requiring p 5 2.3. Previously, Besag (1986) recom- 
mended empirically that p be set at 1.5, or better still slowly increased to 1.5 
as the iterations continue. To some extent, the higher values of p compensate 
for the fast convergence and very local behavior of the ICM algorithm. Ex- 
periments of Ripley (1986) suggest that smaller values of p may be preferable. 
Owen (1986) finds /3 = 0.7 more appealing. This value in the two aforemen- 
tioned examples considered by Ripley (1986) gives probability 0.996 that a 
pixel is of the same color as its eight like neighbors and a probability of 0.2 
that it is of the same color as its three like neighbors. 

13.6.5 Examples of ICM Segmentation 

We consider firstly a binary example taken from Ripley (1986). There are 
g = 2 groups representing two colors, white (GI) and black (Gz). In Gi, each 
feature observation Xj is univariate normal with mean pi and variance u2 (i = 
1,2), where p1 = 0 and p2 = 1. Corresponding to (13.6.6), the locally depen- 
dent Markov random field for the prior distribution of the image is the king 
model, for which 

except at the edges, where ulj is the number of white neighbors of pixel j ,  and 
~ 2 j  = 8 - U l j  is the number of black neighbors. For known parameters p1, p2, 
c2, and /3, we have from (13.6.3) that 

log[Pr{zlj 1 I x ,~)}/pr{&j = 1 I x,z(j)}l 

= -(xi - f>/g2 + p(u1j - ~ 2 j ) .  (13.6.7) 

Hence, with the ICM algorithm, pixel j is allocated on the basis of (13.6.9, 
where Uij is replaced by its current estimate &j  ( i  = 1,2). Thus, 21j = 1 (allo- 
cates pixel j to white) if 
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which is both simple and intuitive. The noncontextual version of this rule, 
corresponding to p = 0, would take 2 l j  = 1 if X j  < 4, thereby ignoring the in- 
formation G l j  and G2j  on the colors of the neighboring pixels. 

We now generalize the model in the example above to multivariate fea- 
tures and multiple groups (colors), where the group means pi, common group 
covariance matrix C, and the parameter p in the Markov random field model 
(13.6.6) are all unknown. Then it follows from (13.6.3) that the (k + 1)th cycle 
of the EM algorithm requires the minimization of 

(13.6.8) 
i =1 i = l  

with respect to z j ,  for each pixel j in turn. In (13.6.8), G i j  denotes the current 
number of neighbors of pixel j that belong to Ci (i = 1,. . .,g; j = 1,. . ., m). 
Also, 

m m 

j=l j=1 

and 

where zCk) denotes the estimate of z at the completion of the kth cycle. 
That is, they are the ith group-sample means and the pooled within-group 
Sam le covariance matrix of the feature data XI,. . . ,Xm partitioned according 

In the present context, we give an artificial example taken from Besag 
(1986). The true scene contains g = 6 colors, on a 120 x 120 array. It was 
originally hand-drawn and chosen to display a wide variety of characteris- 
tics. The univariate feature observations were generated from the color la- 
bels by superimposing Gaussian noise with u2 = 0.36. The first 64 rows and 
the last 64 columns are displayed in Figure 13.1(a), in which the adjacencies 
are less contrived than in the scene as a whole. A color key, which is part 
of the pattern, is shown at the top right-hand corner of Figure 13.1(a), where 
“minus”= 1, “cross”= 2, and so on. The initial reconstruction using the non- 
contextual NLDR (i.e., p = 0 in the univariate version of (13.6.8)), produced 
an overall misallocation rate of 32%, as in Figure 13.1(b). With the correct 
value of o2 and with p = 1.5 throughout, the ICM algorithm gave an overall 
error rate of 2.1% on the eighth cycle. The ICM algorithm applied with /3 in- 
creased by equal increments from 0.5 to 1.5 over the first six cycles, reduced 
the overall error rate to 1.2% on the eighth cycle, as in Figure 13.1(c). For a2 
known but p estimated as in Section 13.6.3, the eventual error rate was 1.1% 
after eight iterations, with @ = 1.8, as in Figure 13.1(d). With both p and u2 
estimated during reconstruction, the error rate again settled at 1.2%, now with 

to z 6). 
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FIGURE 13.1. Image reatoration: (a) true color scene: 64 x 64, @) noncontextual reconstruction 
(p  = 0): 32% error rate; (c) ICM reconstruction with /3 t 1.5 1.2%; and (d) ICM reconstruction 
with estimated (6 = 1.80): 1.1%. (From Bmag, 1966.) 

B = 1.83 and b2 = 0.366. As commented by Switzer (1986), this simulated ex- 
ample with spatially uncorrelated feature data in conjunction with single color 
patches that consist of ten or more pixels does not imply that very low error 
rates will be achievable in more complicated situations with real images. 

13.6.6 Modifications of the ICM Algorithm 

Besag (1986) has considered various modifications of his ICM algorithm to 
handle, for example, grey-level scenes and overlap of the pixels, among other 



434 STATISTICAL IMAGE ANALMSIS 

departures from the basic model considered here. Further modifications of the 
ICM algorithm have been proposed by other authors. 
As discussed in McLachlan and Basford (1988, Chapter 1) on the fitting of 

finite mixture models, if the fractional weights given by the current estimates 
of the posterior probabilities of group membership were replaced by zero-one 
weights, then inconsistent estimators of the groupconditional parameters are 
obtained. This led Hjort and Mohn (1987) to suggest using the posterior prob- 
abilities of group membership ./;"I in place of the zero-one weights 2;;' in 
the estimation process on the (k + 1)th cycle of the ICM algorithm. For the 
Markov random field defined by (13.6.6), the posterior probability of member- 
ship of Gi for pixel j is assessed on the (k + 1)th cycle as . 

(13.6.9) 

where 

and where hij denotes the current number of neighbors of pixel j that belong 
to Gi (i = 1 ,..., g; j =: 1, ..., m). 

In order to make the assumption of groupconditional independence for 
the feature vectors XI, ..., X,,, more tenable, Hjort and M o b  (1987) suggest 
a further modification to the estimation process of the ICM algorithm. They 
suggest that the log likelihood (13.6.4) be formed for only a subset of the pix- 
els by choosing distant grids. They also demonstrate an alternative approach 
by proposing a simple model that allows for the presence of spatial autocor- 
relation between the feature vectors. The ith groupconditional density of Xj 
given z and x(j) is taken to be multivariate normal with mean 

1 (13.6.10) 

and covariance matrix C, where N, contains the labels of the four first-order 
neighbors of pixel j .  As a consequence of (13.6.10), the log likelihood (13.6.4) 
has the additional term 

where 7vw = 7 if pixels v and w are first-order neighbors and equals zero oth- 
erwise. The relaxation of the assumption of group-conditional independence 
of the feature data was considered in a similar manner by Kittler and Fliglein 
(1984) and Kiiveri and Campbell (1986), among others. 
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Modifications to ICM have been suggested also by Owen (1986, 1989) and 
by Jubb and Jennison (1988). As noted by Owen (1989), the number of it- 
erations with the ICM algorithm does not seem to increase rapidly with the 
noise level. Thus, ICM is like a smoothing algorithm with a small bandwidth 
built in. 

With the simple modification of the ICM algorithm proposed by Owen 
(1986), the number U i j  of neighbors of pixel j that belong to Gi on the (k + 
1)th cycle is replaced by its assessed conditional expectation 

(13.6.11) 

where T$) is the estimate (13.6.9) of the posterior probability that pixel j be- 
longs to Gi ( i  = 1 ,..., g;  ] = 1 ,..., m). This avoids the discretization in count- 
ing the neighbors. For most pixels, the fractional neighbor count (13.6.11) is 
near 8 or 0, but near boundaries it can differ appreciably from uij. 

Owen (1986) termed this modified version of the ICM algorithm the ICE 
(iterated conditional expectations) algorithm. He found in a low-noise situa- 
tion that ICE produced smoother image estimates than did ICM when both 
used the same value of p. An intuitive explanation put forward by him is that 
information from neighboring pixels can flow through without their having to 
change colors. Owen (1986) found no special advantage to ICE over ICM in 
accuracy. More recently, however, Owen (1989) has demonstrated that in very 
noisy images, the ICE algorithm dramatically improves image segmentation. 

Jubb and Jennison (1988) suggest another modification that extends the 
range of the ICM algorithm to very noisy images and greatly reduces the com- 
putational costs through aggregation. Owen (1989) has since shown that there 
is a natural combination of the methods of Owen (1986) and Jubb and Jen- 
nison (1988) that retains the speed of the latter method, while improving its 
accuracy. 

13.7 GLOBAL MAXIMIZATION OF THE POSTERIOR DISTRIBUTION 
OF THE IMAGE 

13.7.1 Maximum A Pbsterbri (MAP) Estimate 

It was seen in the previous section that the ICM algorithm finds a local max- 
imum of the posterior distribution pr{Z = z I x} near the starting point. The 
method of Geman and Geman (1984) to be described now is directed at find- 
ing the global maximum. Their procedure, therefore, estimates simultaneously 
the groupindicator vectors Z j  defining the colors of the pixels by taking 2 to 
be the mode of the posterior distribution 

pr{Z = z I x}. (13.7.1) 
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Under the assumptions (13.6.1) and (13.6.2), it follows that 

where P(z) denotes the probability distribution for the specified Markov ran- 
dom field, for example, as given by (13.2.4). The last term on the right-hand 
side of (13.7.2) can be viewed as a smoothness penalty; see Titterington (1985) 
for an account of smoothing techniques in a general framework. 

13.7.2 Computation of the MAP Estimate 

The maximization of (13.7-1) with respect to z is clearly formidable, as there 
are gm different colorings of the scene. Geman and Geman (1984) approached 
it, using a procedure from combinatorial optimization known as simulated an- 
nealing. This technique was popularized by Kirkpatrick, Gelatt, and Vecchi 
(1983), but dates back to Pincus (1968, 1970). 

Let 
PT(z) = [pr{z = z I x) ] ’ IT ,  (13.7.3) 

where T > 0 is a parameter, and, in physical terms, represents the “absolute 
temperature” of the system. Then, as T 4 0, PT concentrates on the mode 
of the posterior distribution (13.7.1), the required solution. If multiple global 
maxima exist, it is uniformly distributed over them. Further, PT(z) also speci- 
fies the probability distribution of a Markov random field. Thus, if a series of 
samples is taken from PT with T -+ 0, these samples should converge to the 
required solution. Unfortunately, it is not possible to simulate discrete Markov 
random fields directly, except in special cases; see Besag (1986) for further dis- 
cussion of this point. 

In simulating (13.7.3), Geman and Geman (1984) used an approach they 
termed the “Gibbs sampler.” In the basic version, the pixels are scanned in 
turn in some prescribed order. At pixel j ,  Zj is chosen to have value z, with 
probability 

where the current estimate is used for z(j).  Under the assumption (13.6.1) and 
(13.6.2), pr{Zj = Z j  I x,z(j)} can be evaluated from (13.6.3). It follows that this 
process has (13.7.3) as its limit distribution. 

The random choice of zj enables the algorithm to escape from any local 
maxima. However, to ensure such escapes, the process must be simulated long 
enough and T must eventually be decreased extremely slowly. On the sched- 
ule for progressively decreasing T to zero, Geman and Geman (1984) suggest 
decreasing T at each scan, according to 

T = 3/ log(1 + scan no.), 

for several hundred scans. To ensure convergence of the Gibbs sampler and 
of simulated annealing, Geman and Geman (1984) make only weak demands 

[PriZj = zj I X, ~ ( j ) } ] ’ ” ,  
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on the manner in which the pixels are scanned; see also Besag (1986) and 
Lakshmanan and Derin (1989). 

13.7.3 Comparison with the ICM Algorithm 

Suppose that the homoscedastic normal model holds for the groupconditional 
distributions of X j  and that the locally dependent Markov random field cor- 
responding to (13.6.6) is adopted, where all parameters are specified. Then it 
follows from (13.2.4) and (13.7.2) that the simultaneous estimation approach 
of Geman and Geman (1984) requires the minimization of 

with respect to z, where u(z) is the number of neighbor pairs having like col- 
ors. From the previous section, it can be seen that the ICM algorithm of Besag 
(1983) requires the minimization of 

8 8 

C zij(xj - pi)’Z-’(Xj - pi) -PC zijaij (13.7.5) 

with respect to Z j ,  for each pixel j considered in turn. The coefficient of p in 
(13.7.5) is the current number of neighbors of the same color as pixel j .  

It is of interest to examine the extremes of p in (13.7.4) and (13.7.5). For 
p = 0, both methods reduce simply to noncontextual allocation, where pixel j 
is assigned on the basis of the sample NLDR applied to its observed feature 
vector X j .  However, the two methods are radically different, as /3 4 00. With 
the ICM algorithm, Z j  is estimated recursively on the basis of a majority vote 
among the neighbors of pixel j ,  using only x j  to break ties. On the other hand, 
(13.7.4) produces an estimate 2 for which 

i= l  i = l  

fitn * Q1 = = ... = 

That is, it produces a single-color solution, corresponding to the color that the 
majority of the pixels would be assigned on the basis of the minimum-distance 
rule, using 

(xj  - pi)‘Z-’(Xj - pi). 

13.7.4 Exact Computation of the MAP Estimate for Binary Images 

Recently, Greig, Porteous, and Seheult (1989) have shown how in the special 
case of g = 2 colors (binary images), the M A P  estimate can be computed ex- 
actly using efficient variants of the Ford-Fulkerson algorithm for finding the 
maximum flow in a certain capacitated network. Their results indicate that 
simulated annealing, applied according to pructicd “temperature” schedules, 
can produce a poor approximation to the MAP estimate. However, their ex- 
perimental results suggest that good approximations are more likely for smaller 
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values of the parameter /3 in the prior distribution (13.6.6) for the image, and 
in such cases, geometric schedules outperform logarithmic schedules. An in- 
formal explanation of this behavior offered by Greig et al. (1989) is that the 
amount of smoothing required to obtain an MAP estimate increases with p 
and, as conjectured by Besag (1986, page 2%), the simulated annealing algo- 
rithm then appears to become increasingly bogged down by local maxima, re- 
sulting in undersmooth approximations. Concerning the use of the MAP esti- 
mate for image restoration, Greig et al. (1989) demonstrate that as p increases, 
the global properties of the prior distribution of the image very rapidly domi- 
nate the likelihood contribution to the posterior distribution. They conjecture 
that corresponding multicolor estimates will behave similarly: 

13.8 INCOMPLETE-DATA FORMULATION OF IMAGE 
SEGMENTATION 

13.8.1 EM Framework for Incomplete Data 

The problem of estimating the vector z of group-indicator variables defining 
the colors of the rn pixels can be viewed as an incomplete-data problem. This 
suggests that the estimation of z can be approached by attempting to apply the 
EM algorithm of Dempster et al. (1977), as proposed for maximum likelihood 
estimation from incomplete data. This line of approach was undertaken by 
Kay and Titterington (1986), who related some of the relaxation algorithms 
for image analysis (Rosenfeld et al., 1976; Hummel and Zucker, 1983) with 
methods in the literature on the statistical analysis of incomplete data. The 
incomplete data are represented by X, consisting of the observable feature 
vectors associated with the rn pixels. The complete-data vector is given by 
Y = (X',Z')l, where Z is unobservable. We let logL(@) denote the incomplete- 
data log likelihood for *, as formed from x, where @ denotes the vector of 
unknown parameters in the parametric model adopted for the density of X, 
that is, for the joint density of the feature vectors XI, ..., X,. 

13.8.2 Application of the EM Algorithm 

An estimate of @ can be attained by solving the likelihood equation 

alogL(@)/a* = 0. 

This can be attempted iteratively, using the EM algorithm of Dempster et al. 
(1977), which was considered in Section 2.10 in the context of independent 
unclassified data. At the (k + 1)th cycle of this algorithm, the E-step requires 
the calculation of 

If(*,*@)) = E{logLc(*) I x = x;*(k)}, (13.8.1) 

which is the conditional expectation of the log likelihood for the complete data 
Y, given X = x and the current fit @@) for %P. On the M-step, the intent is to 



INCOMPLETE-DATA FORMULATION OF IMAGE SEGMENTATION 439 

find the value of ?Ir that maximizes H(?t ,9(k)) ,  which gives ?t(k+l). Recently, 
Silverman et al. (1990) have introduced a simple smoothing step at each EM 
iteration. 

If we make the common assumption that the feature vectors Xj are in- 
dependently distributed given z, with a common density A(.;&) in Gi (i = 
1,. . .,g), the log likelihood formed from the complete-data vector Y is given 
by 

x m  

i= l  jrl 

8 
+ C ~ i , l  * * * ~i,m 1 0 g ~ i ~ . . . i ~ ,  (13.8.2) 

where zij = (Zj)i ( i  = 1, .. .,g; j = 1, .. .,m), fi(Xj;Oi) denotes the density of Xj 
in Gi (i = 1,. . .,g), and where 

i t ,  ..., i,,, =I 

,... j ,  = pr{Zjjj = 1 ( j  = 1,. ..,m)}. 

Here \k consists of the elements of 81,. . .,8, known a prbri to be distinct and 
the joint prior probabilities 'il...i, (ij = 1,. . .,g; j = 1,. . .,m). 

13.8.3 Noncontextual Case: Exact E-Step 

We consider first the case in which contextual information is ignored, by taking 
the Zj to be independently distributed. Under this independence, 

m 

Til, ...j, = nrijj, 
j=l 

where 

9 j j  = pr{Zijj 1) (ij 1 ,..., g; j = 1 ,..., m). 
The complete-data log likelihood then reduces to 

8 m  

IogLc(?Ir) = C Czij{Iogfi(xj;Oi> + 10g~i j ) .  (13.8.3) 
i=l j=l 

Corresponding to (13.8.1), the E-step on the (k+l)th cycle gives 

8 m  
~( \k ,e (~ ) )  = C C 7 i j ( x j ; ? t ( ~ ) ) { l o g f i ( x j ; B , )  + 10g~i,j}, 

i=1 j=1 

where 

Tij(xj;*) = ri,jfi(xj;ei) 
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The M-step then gives fly") and T$+') as solutions of the equations 

T(k.+l) ' 9 1  = T i j ( X j ; * c k ) )  (i = 1 ,..., g; j = 1 ,..., m) (13.8.4) 

and 
m 

CTij(Xj;*'k')s10gfi(xj;8~k+1))/aei = 0 (i = 1, ...,g). (13.8.5) 
j = l  

As noted by Kay and Titterington (1986), if the f l i  in the groupconditional 
densities are taken to be known, then (13.8.4) provides the. relaxation algo- 
rithm 

= riJ (k) c i ( z j  (k) ) (i = 1 ,..., g; j = 1 ,..., m), 
where 

' h=l 

and 
7rjQ = (n$ ,..., T g , j ) ' .  (k) 

As k -+ 00, my) clearly tends to +,, where (+j)i is one or zero according as 

f i ( x j )  2 fh(Xj) (h  = &***,g; h # i )  

holds or not. This constitutes a familiar algorithm for segmentation; see, for 
example, Sclove (1983) and Titterington (1984). 

If we further assume that the Z j  are identically distributed with Tj,, = 
Ti ( j  = 1 ,..., g) for each i (i = 1 ,..., g), then 

where q j ( X j ; * ( ' ) )  is written as ~ i ( x j ; \ k ( ~ ) ) ,  since this posterior probability spe- 
cific to pixel j depends on j only through X j  in this case of homogeneous 
group-prior probabilities for the pixels. 

The solution of (13.8.4) and (13.8.5) for B,!k+') on the M-step on the 
(k + 1)th cycle was discussed in Section 2.10. 

13.8.4 Contextual Case: Approximations to E-Step 

In order to use contextual information that reflects the spatial relationships 
amongst the pixels, one must go beyond the case of independence as assumed 
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in the last section. However, it can be seen from (13.8.2), that in the general 
case, the E-step requires the calculation of the term 

E(Zi,l***Zi,m 1 X = X), 

which is usually not possible even for rather straightforward models for the 
joint distribution of the Zj. Hence, approximations to the E-step have to be 
considered. 

Consider the allocation of the jth pixel. Kay and Titterington (1986) have 
derived approximations to the E-step, which can be linked to existing methods 
of segmentation. They considered factorizations of Til...i, of the form 

Ti, ...i, = 7rij,jpr{Zi,k = 1 (k = 1,. ..,m; k # j )  I Zijj = l}, 

where the latter term is functionally independent of Tij,j. It follows from the 
E- and M-steps in this case that on the (k + 1)th cycle, the estimate of 8 , j  is 

‘$1 = pr(k){zij = 1 I X I ,  (13.8.6) 

where pdk) refers to the fact that the probability is computed using the current 
estimate for q. 

Letting x(,) denote x with X j  deleted, the right-hand side of (13.8.6) can be 
expressed as 

(13.8.7) pr’k’{Zij = 1 I X I  ~r’~’{zij = 1 I xj)cij (4 , 
where 

In (13.8.7) and subsequent work, /z(~)(.) is used as a generic symbol for the 
density to obviate the need for a new symbol each time a specific density is 
introduced. 

From (13.8.7), a first approximation to pr@){Zij = 1 I x) is prCk){Zij = 1 I 
xi}, which can be expressed as 

pr(k’{Zij = 1 I xi) = &r(”{Zij = I , Z ~  = I x j ) ,  (13.8.8) 

where the summation is over all admissible values of zq,  specifying the colors 
of the member pixels of an appropriately prescribed neighborhood of pixel j .  
Now (13.8.8) can be expressed further as 

because the conditional density of Xj  given Zij = 1 is the same as its density 
conditional also on ZN~. Thus, from (13.8.9), 

pr’k’{Zij = 1 I xj) = T.(x.*\ ,I(k)) ,  I1 1 )  (13.8.10) 
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where 

and where 

where again the summation is over all admissible values of z,vj, specifying the 
colors of the neighbors of pixel j .  

13.8.5 Link with the ICM Algorithm 

The ICM algorithm can be viewed in the incomplete-data scheme as devel- 
oped above (Kay, 1986; Kay and Titterington, 1986). On the (k + 1)th cycle of 
the iterative computation of 2 with the ICM algorithm, the estimate of the ith 
component of Zj  is taken to be one or zero, according as 

Tij(Xj;*(&)) 2 7hj(Xj;*ck)) (h  = 1, . . . ,g; h # i) 

holds or not, where qis) is computed as follows. In forming qf from (13.8.11), 
pr@){ZNj = ZN,} is taken to be one for z 4  = 2 4  and zero otherwise, where 

is the current estimate of ZN~. Thus, 4;;) is computed as 

= pr('){Zij = 1 I zN, = 2 , ) .  

Under the model (13.6.6) specifying a locally dependent second-order Markov 
random field for the prior distribution of 2, 

4i,j ('1 = expv(')aij)/ &expvC*)qj), 

where hhj is the current number of the prescribed (second-order) neighbors of 
pixel j that belong to Gh (h = 1,. . .,g; j = 1,. . ., m). 

Qian and Titterington (1989) have outlined the link between the ICM algo- 
rithm and the EM algorithm for parameter estimation in the case of autonor- 
ma1 models for continuous intensities. 

h = l  

13.8.6 Links with Some Other Methods of Segmentation 

If the prescribed neighborhood of pixel j consists of a single pixel, say, pixel 
s, so that Nj = {s), then from (13.8.11), 

B 

qf:) = ~pr 'k ' {zhs  = l}pr@){Zij = 1 I z h s  = 1). (13.8.12) 
h=l 
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Kay and Titterington (1986) noted that the use of (13.8.12) in conjunction with 
(13.8.10) is equivalent to the relaxation algorithm of Hjort and Mohn (1985). 
In the case where the prescribed neighborhood contains more than a single 
pixel, they suggested evaluating (13.8.12) for each pixel in the neighborhood 
and then taking a weighted average in order to create a value for @. 

Kay and Titterington (1986) also noted that the expression (13.4.12) sum- 
med over those s that are labels of the prescribed neighbors of pixel ] gives a 
version of the first-order compatibility function of Rosenfeld et al. (1976) and 
Hummel and Zucker (1983). 

On other links of (13.8.12) with existing methods of segmentation, Kay and 
Titterington (1986) noted how the method of Haslett (1985), which was out- 
lined in Section 13.5, fits into this incomplete-data framework under the addi- 
tional assumption of a common prior distribution for the color of each pixel. 

13.9 CORRELATED TRAINING DATA 

13.9.1 Introduction 

It was seen in the previous sections that some of the approaches to image seg- 
mentation or restoration require the groupconditional densities to be com- 
pletely specified beforehand. One way of achieving this is to adopt some p ra -  
metric family, in particular the multivariate normal, for each groupconditional 
density, where the parameters taken to be unknown are estimated from train- 
ing data of known origin. In a typical discriminant analysis, the training data 
are taken to be independent for the purposes of forming the sample discrim- 
inant rule of interest. However, it was seen in the previous sections with a p  
plications in image analysis, such as in remote sensing, that there is a positive 
correlation between the feature vectors of neighboring pixels, which attenuates 
as the distance between the pixels increases. 

Craig (1979) experimentally examined LANDSAT pictures covering several 
areas at different times. He concluded that the data must be sampled no closer 
than every tenth pixel in order to treat the observations as independent. How- 
ever, in practice, one might not have the luxury of sampling at intervals of a 
sufficient number of pixels apart for the training data to be taken to be in- 
dependent. Hence, consideration needs to be given to the effect of correlated 
training data on the performance of the sample discriminant rule formed from 
such data. We now report some results on this effect for noncontextual appli- 
cations of the sample KDR. 

13.9.2 Effect of Equicorrelated Raining Data on Sample NLDR 

The effect of correlated training data on the performance of a sample dis- 
criminant rule has been investigated mainly for the sample NLDR, given the 
widespread use of the latter in practice; see, for example, Weber and Baldes- 
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sari (1988). One of the initial studies of the performance of the sample NLDR 
formed from dependent data w a s  by Basu and Odell (1974). They were led to 
relaxing the usual assumption of independent training data, as it had been fre- 
quently observed with applications of the sample NLDF to remotely sensed 
data that its actual error rates were higher than their theoretically antici- 
pated values under the assumption of independence. Basu and Odell (1974) 
investigated the effect of equicorrelated training data classified with respect to 
g = 2 groups. The replicated observations XI,. . ., Xi,; from Gi are said to be 
equicorrelated if 

COV(xi j ,  X i k )  = Yj ( j  f k = 1,. . . , ni), 
where Yi is a symmetric matrix (i = 1,2). The same observations are said to 
be simply equicorrelated if 

where 0 < lpil < 1, and Xj is the common covariance matrix of the observa- 
tions from Gi (i = 1,2). In their study of the sample NLDR, Basu and Odell 
(1974) assumed the same covariance structure within each group, where p1 = 
p2 = p, and -(ni - l)-l < p < 1 ( i  = 1,2). Basu and Odell (1974) distinguished 
between simply equicorrelated and equicorrelated training data because they 
felt that the error rates of the sample NLDR were unaffected by simple equi- 
correlation. However, McLachlan (1976~) showed that the error rates do 
change in the presence of simple equicorrelation; indeed, the error rates asymp- 
totically increase in size for positive correlation. 

Yj = pixj, 

13.9.3 Effect of Autocorrelated lkaining Data on Sample NLDR 

As explained by Foglein and Kittler (1983), physical characteristics of the pro- 
cess for obtaining the LANDSAT imagery allow one-dimensional models to be 
used. For example, the spatial location of a pixel along a single scan line can be 
considered. These one-dimensional models can be adopted when there exists a 
trade-off between the precision and the complexity of two-dimensional spatial 
models. Of course, LANDSAT multispectral scanner data are neither simply 
equicorrelated nor equicorrelated, but are instead serially correlated. Tubbs 
and Coberly (1978) suggested that the correlation structure is similar to that of 
a stationary autoregressive process of order one, AR( l), with the correlation p 
between successive observations typically in the 0.65-0.90 range. Craig (1979) 
suggested a moving average model of order one-one, ARMA(1,1), would be a 
more appropriate model for the correlation structure of the LANDSAT data. 
Foglein and Kittler (1983) have considered the effect of correlated data on 
the separation between the groups when pixel dependencies are modeled as 
an ARMA process. 

Previously, Tubbs (1980) had investigated the effect of serially correlated 
training data on the unconditional error rates of the sample NLDR under the 
homoscedastic normal model (3.3.1). He supposed further that the ni train- 
ing observations Xij ( j  = 1,. . ., nj) from group Gi (i = 1,2), follow a simple 
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multivariate stationary AR( 1) model, where 

COV(xij,&) = p d x  (i # k = 1, ..., 11i) 

for d = 11 - k I and 0 < Ipd I < 1 (i = 1,2). 
The effect of correlated training data on the sample NLDR under the ho- 

moscedastic normal model (3.3.1) has been explored further in a series of pa- 
pers by Lawoko and McLachlan (1983, 1985, 1986, 1988, 1989). For the same 
model considered by Xbbs (1980), Lawoko and McLachlan (1983) have de- 
rived the asymptotic expansions of the group-specific unconditional error rates 
of the sample NLDR. To illustrate the magnitude of the increase in the un- 
conditional error rates for positively correlated training data, they evaluated 
the asymptotic expansions for a univariate stationary autoregressive process 
of order one, for which pd = pd, where 0 < jpI < 1. These numerical results 
demonstrated how the group-specific unconditional error rates increase with 
positive correlation p and with the dimension p of the feature vector. 

For univariate training data following a stationary autoregressive process of 
order k, AR(k), Lawoko and McLachlan (1985) compared the performance 
of the sample NLDR with the plug-in sample version formed using the maxi- 
mum likelihood estimates of the group means and variances appropriate for an 
AR(k) model. They showed that there was no first-order difference between 
the overall unconditional error rates, but that there are first-order changes of 
varying degrees between the groupspecific error rates. For k = 1, they demon- 
strated that the use of the appropriate maximum likelihood estimates improves 
the balance between the groupspecific error rates. 
As considered in Section 10.6, the plug-in method of estimation of the enor 

rates of the sample NLDR provides an optimistic assessment of its conditional 
error rates. Lawoko and McLachlan (1988) showed that the optimism of this 
method is magnified by positively correlated training data following a station- 
ary AR(1) model as above. This is because the effect of positive correlation 
is to increase the expectation of each conditional error rate, but to decrease 
the expectation of the corresponding plug-in rate. To demonstrate the rnagni- 
tude of the increase in the bias, Lawoko and McLachlan (1988) tabulated the 
asymptotic bias of the plug-in estimator a(- 40) for equal groupsample sizes 
and a zero cutoff point. In this special case, the plug-in estimator has the same 
bias in estimating both groupspecific error rates of the sample NLDR. Their 
results are reported in Tmble 13.1, in which we have listed the coefficient of 

In related work on dependent training data, Lawoko and McLachlan (1986) 
have shown asymptotically that the Z-statistic defined by (3.4.7) is preferable 
to the sample NLDF for positively correlated univariate training data follow- 
ing a stationary AR(1) process. Also, as mentioned in Section 2.3, Lawoko 
and McLachlan (1989) have studied the effect of correlated training data on 
the estimates of the mixing proportions obtained by an application of the sam- 
ple NLDR, as in area estimation via remote sensing. The effect of serially cor- 
related training data on the sample NQDR has been investigated by Young, 

n-l in the n-'-order expansion of the bias of @ ( - t D )  for n1 = 112 = Zn. 1 
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TABLE 13.1 Coemcient of n-' in the n-'-Order Expansion ol the Bias of 
@(- $0) Under AR(1) Model €or nl = nz 

P A = l  A = 2  A = 3  

0 
0.1 
0.2 
0.4 
0.6 

0 
0.1 
0.2 
0.4 
0.6 

-0.121 
-0.163 
-0.219 
-0.402 
-0.785 

-2.761 
-3.283 
-3.960 
-6.060 
- 10.357 

p = l  

-0.121 
-0.177 
-0.252 
-0.490 
-0.983 

p = 4  

- 1.573 
- 1.805 
-2.127 
-3.186 
-5.429 

-0.036 
-0.080 
-0.137 
-0.309 
-0.660 

-0.878 
-0.991 
-1.156 
-1.719 
-2.935 

Sowe: From Lawoko and McLachlan (1988), with permission from the Pattern Recognition So- 
ciety. 

Turner, and Marco (1988) in the special case where in the multivariate nor- 
mal group-conditional densities, the means are taken be equal, and where the 
uniform covariance structure (3.2.11) is adopted for the covariance matrices. 
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nonmetric approach, 335-336 
rank methods, 332-334 

tree-structured allocation rules, 323-332 
for repeated measurements, 334 

CART method, 324-332 
FACT method, 324,328-332 

conditional distributions, see Kernel 
discriminant analysis; Nonparametric 
discrimination 

Normal discrimination, see Discrimination via 
normal models 

Normality, see Multivariate normality, 
assessment of 

Notation, basic, 4-6 
statistical image analysis, 415-416 

Number of groups, testing for, 47 
likelihood ratio statistic, 48 
resampling approach: 

bootstrap method, 48 
examples, 212-215 

Nonparametric estimation of group- 

Odds ratio, posterior log odds, 255,257,266, 
275. See also Posterior probabilities of 
group membership, distribution of, sample 
log odds 

Outliers, detection of, see Robust estimation 
of group parameters; Typicality index 

Parametric discrimination via nonnormal 
models: 

caw Study, 243-247 
example, 249-254 
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Parametric discrimination (Continued) 
models for continuous feature data, 238-254 

exponential, 239 
inverse normal, 240-241 
multivariate-t, 68, 241-242 
normal mixtures, 50-51, 238, 244-248 
0-generalized normal, 238-239 

models for discrete feature data: 
independence, 217-218 
Lancaster, 219-220 
latent class, 220 
log-linear, 218-219 
multinomial, 216-217, 283-284 

adjustments to sample NLDR 
models for mixed feature data: 

augmenting the sample NLDF, 234-237 
linear transformations, 232-234 

error rates of location model-based 
location model, 220-232 

rules: 
conditional, 229-230 
optimal, 229-230 
unconditional, 230-232 

full saturated version, 223-224 
reduced version, 224-225 

minimum-distance rules, 225-227 
optimal rule, 222-223 
predictive approach, 227-229 

Pattern recognition, see Statistical pattern 
recognition, definition of 

Plug-in sample rules, see Allocation rules, 
estimation of, estimative method; 
Discrimination via normal models, 
heteroscedastic model, plug-in sample 
NQDR Discrimination via normal 
models, homoscedastic model, plug-in 
sample NLDR 

maximum likelihood estimatipn: 

Posterior probabilities of group membership: 
definition of, 5 
distribution of 

sample log odds (g = 2 heteroscedastic 

sample log odds (g = 2 homoscedastic 

sample posterior probabilities (g > 2 

groups), 381-382 

groups), 379-381 

groups), 382-383 
intewal estimation of 

Bayesian approach, 387 
bootstrap approach, 387-388 
profile likelihood approach, 384-385 

illustration of, 385-387 
point estimation of, 20, 378-379 

Bayesian approach, 29-31 

semi-Bayesian approach, 30-31 

Predictive method of discrimination, see 
reliability of, 379 

Allocation rules, estimation of, predictive 
method 

Prevalence rates, see Group-prior probabilities 
Principal components: 

classified feature data, 197-199 
unclassified feature data, 199-200 

Prior probabilities, see Group-prior 
probabilities 

Projections, linear, see also Canonical variate 
analysis; Dimension reduction; Principal 
components 

best linear rule (g = 2 groups), 96-97 
best quadratic rule, 97-99 

allocatory aspects, 92-93 
allocatory us. separatory solution, 93-95 
best linear rule in terms of error rate, 

heteroscedastic data: 

homoscedastic data: 

92-93 
computation of, 95-96 

separatory measures, 91 
Proportional group-covariance matrices, see 

Variants of normal theory-based 
discrimination, proportional group- 
covariance matrices 

P-STAT statistical package, 62 

Quadratic discriminant function, see 
Discrimination via normal models, 
heteroscedastic model, normal-based 
quadratic discriminant rule (NQDR) 

Rank methods, see Nonparametric 
discrimination, rank methods 

Regression approach, see Fisher’s linear 
regression approach 

Regularized discriminant analysis: 
assessment of regularization parameters, 

effectiveness of, 149-151 
examples: 

146-149 

real, 151-152 
simulated, 150-151 

formulation, 144-146 
Repeated measurements, discrimination with, 

Risk of misallocation, 7-8. See aLFo Error rates 
Robust estimation of group parameters: 

80-81 

M-estimates, 161-164 
MML estimates, 165-167 
use of rank-cutoff point, 164-165 
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Robustness of sample NLDR and NQDR 
continuous feature data, 152-155 
discrete feature data, 155-158 
mixed feature data, 158-161 

Sampling schemes: 
mixture sampling, 11 
prospective sampling, 11 
retrospective sampling, 12 
separate sampling, 11 

SAS statistical package, 62, 398 
Screening tests, see Diagnostic tests 
Selection of feature variables, 389-391 

ALLOC algorithm, 294,398,405 
criteria for selection: 

additional information criterion: 
multiple groups, 392-394 
two-group case, 394-3% 

Akaike’s information criterion, 403-404 
all-subsets approach, 397-398 
canonical variate analysis, 3% 
error rate-based criteria, 400-403, 

F-test, 395 
404-405 

us. error rate-based selections, 406 
examples, 406-409 

stepwise procedures, 398-400 
peaking phenomenon, 391-392 
selection bias, 410-411 

reduction of, 411-412 
Sensitivity, see Diagnostic tests 
Separatory measures, see Distances between 

groups, measures of; Projections, linear, 
homoscedastic data, separatory measures 

Sequential discrimination, 85-86 
SIMCA method of discrimination, see Variants 

of normal theory-based discrimination, 
SIMCA method of discrimination 

Specificity, see Diagnostic tests 
SPSS-X statistical package, 62, 398 
S statistical package, 62, 398 
Statistical image analysis, 413-414 

correlated training data, 443 
effect of autocorrelation on sample 

effect of equicorrelation on sample 
NLDR, 444-446 

NLDR, 443-444 
ICM algorithm: 

definition of, 428-429 
estimation of parameters, 429-431 
examples, 431-433 
underlying assumptions, 428 
modifications, 433-435 

image restoration, 416 
image segmentation, 416-417 

contextual methods, 415, 422-438 
incomplete-data formulation, 438 

EM framework, 438 
E-step, contextual case, 440-442 
E-step, noncontextual case, 439-440 

link with ICM algorithm, 442 
link with some other methods of 

segmentation, 442-443 
noncontextual methods, 441-442 

individual allocation of pixels, 425-428 
Markov mesh models, 420-421 
Markov random fields: 

definitions, 417-418 
spatially symmetric models, 418-420 

MAP (Maximum A Posteriori) estimate, 
435-436 

comparison with ICM algorithm, 437-438 
computation of, 436-437 

binary images, 437-438 
posterior distribution of image, 

global maximization of, see Statistical 
image analysis, MAP (Maximum 
A Posteriori) estimate 

remote sensing, 414-415 
smoothing methods, 422-425 

estimation of parameters, 425 
presmoothing approaches, 423-425 
reduction in error rate, 424-425 
spatial assumptions, 422-423 

Statistical pattern recognition, definition of, 4 
SYSTAT statistical package, 62 

Time series: 
discrimination between, 82-83 
discrimination within, 83-84 

correlated data, 443. See aho Statistical 
image analysis 

misclassified data: 
nonrandom, 36 
random, 36,49-50 

Training data: 

missing data 43, 
partially classified data, 37-39 

Transformations, see Multivariate normality, 

Typicality index, 181, 185 
assessment of, data-based transformations 

assessment oE 
classified feature data, 181-183 
predictive approach, 185 

image processing, 413-414 unclassified Gature data, 183 
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Typicality index (Continued) 

diabetes data, 209-210 
hemophilia data, 203-204 

viewed as a P-value, 183-184 

examples: 

Unequal (unrestricted) group-covariance 
matrices, see Discrimination via normal 
models, heteroscedastic model 

Updating a discriminant rule, see Likelihood- 
based approaches to discrimination, 
updating a discriminant rule 

Variants of normal theory-based 
discrimination, 129. See aLFo Regularized 
discriminant analysis 

common principal-component model, 
140-141 

DASCO method of discrimination, 143-144 
equal group-correlation matrices, 139-140 
equal spherical group-covariance matrices, 

proportional group-covariance matrices, 

regularization in quadratic discrimination, 

SlMCA method of discrimination, 141-144 

137-138 

138-139 

130-131 

W-statistic, see Discrimination via normal 
models, homoscedastic model, sample 
NLDF 

2-statistic, 66. See also Distributional results 
for normal models, asymptotic results for 
distribution of, 2-statistic 
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