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Preface 

In recent times, there has been an explosion in the development of comprehensive, 
high-throughput methods for molecular biology experimentation. An example is the 
advent in DNA microarray technologies, such as cDNA arrays and oligonucleotide 
arrays, that provide means for measuring tens of thousands of genes simultaneously. 
These technologies benefit biological research greatly and further our understanding 
of biological processes by drawing together researchers in biology and quantitative 
fields including statistics, mathematics, computer science, and physics. In addition to 
the enormous scientific potential of microarrays to help in understanding gene regula- 
tion and interactions, microarrays have very important applications in pharmaceutical 
and clinical research. 

This book has been written with two types of readers in mind: biologists who 
will undertake the statistical analyses of their own experimental microarray data, and 
biostatisticians entering the field of microarray gene expression data analysis. The 
primary focus of the book is on data analysis methods for this field; however, the 
biology and technology behind gene expression microarray experiments, as well as 
cleaning and normalization of the data, will be briefly covered. 

Although biological experiments vary considerably in their design, the data gen- 
erated by microarray experiments can be viewed as a matrix of expression levels, 
organized by genes versus tissue samples. In the case where a tissue sample cor- 
responds to a single microarray experiments, we can represent the output from M 
experiments in the form of a N x M array (matrix). Each column of the matrix (the 
expression signature vector) contains the expression levels on the N genes monitored 
in the microarrays, while each row (the expression profile) contains the expression 
levels of a gene as it varies over the M tissue samples. Outside this matrix of expres- 
sion levels, we may have covariate information for samples, genes, or both. The goal 
of microarray data analysis is to make inferences among samples, genes, and their 
expression levels and covariates. 

xv 



XVi  PREFACE 

The actual measurement of the expression levels raises several statistical issues 
in experimental design, image processing, outlier detection, transformations, and 
nonlinear modeling. We consider some of these issues (which are still ongoing as 
we complete this book) in the first two chapters. The rest of the book then consid- 
ers the analysis of the microarray data, assuming that they have been appropriately 
preprocessed. 

This analysis is centered on methods for the detection of differential expression, 
for cluster analysis (unsupervised classification), and for discriminant analysis (su- 
pervised classification) of microarray data. 

An important and common question in microarray experiments is the detection of 
genes that are differentially expressed in tissue samples across a number of specified 
classes. These classes may correspond to tissues (cells) that are at different stages in 
some process, in distinct pathological states, or under different experimental condi- 
tions. A plethora of methods to detect differential gene expression are presented. 

Cluster analyses have demonstrated their utility in the elucidation of unknown 
gene function, the validation of gene discoveries, and the interpretation of biological 
processes. Discriminant analysis is playing an ever-increasing role in predicting gene 
function classes and cancer classification. 

There are two distinct clustering problems with microarray data. One problem 
concerns the clustering of the tissues on the basis of the genes. The clusters of 
tissues can play a useful role in the discovery and understanding of new subclasses 
of diseases. The second problem concerns the clustering of the genes on the basis of 
the tissues. The clusters of genes obtained can be used to search for genetic pathways 
or groups of genes that might be regulated together. Also, in the first problem above, 
we may wish first to summarize the information in the very large number of genes by 
clustering them into groups, which can be represented by some metagenes. We can 
then carry out the clustering of the tissues in terms of these metagenes. 

In both the clustering of the tissues and the genes, hierarchical (agglomerative) 
clustering has been the most widely used method for the analysis of patterns of gene 
expression. It produces a representation of the data with the shape of a binary tree, in 
which the most similar patterns are clustered in a hierarchy of nested subsets. Never- 
theless, classical hierarchical clustering presents drawbacks when dealing with data 
containing a non-negligible amount of noise, as is the present case. Also, there is no 
reason why the clusters of tissues or genes should belong to a hierarchy such as in 
the evolution of species. In this book, the emphasis is on a model-based approach to 
clustering. An advantage of model-based clustering is that it provides a sound math- 
ematical framework for clustering. In particular, it provides a principled statistical 
approach to the practical questions that arise in applying clustering methods, namely, 
the question of what metric (distance function) to adopt and the question of how many 
clusters there are in the data. 

In recent times, model-based clustering has become very popular in the statistical 
literature. Unfortunately, as the data to be analyzed from microarray experiments 
often have gene-to-sample ratios of approximately 100-fold, off-the-shelf parametric 
methodology does not apply at least to the classification of the tissues on the basis of 
the genes. This is because the dimension of the feature space (the number of genes) 



is so much greater than the number of observations (the number of tissues). But even 
the cluster analysis of the genes on the basis of the tissues is a nonstandard problem, 
as the genes are not all independently distributed. 

An obvious way to handle the very large number of genes is to perform a principal 
component analysis (PCA) and carry out the cluster analysis on the basis of the 
leading components. But a potential problem with a PCA is the determination of an 
appropriate number of principal components (PCs) useful for clustering. A common 
practice is to choose the first few leading components. But it is not clear where to 
stop and whether some of these components are caused by some artifact or noises in 
the data unrelated to the clustering task. Also, there is the difficulty of interpretation 
of components because each component has loadings generally on all genes. 

Hence the focus in the book is on the EMMIX-GENE procedure, which is a 
normal mixture-based method of clustering that has been especially developed for 
the clustering of tissue samples or other high-dimensional data. This procedure has 
an option for an initial selection of the genes where genes that appear to have little 
clustering capacity are discarded. It then clusters the (standardized) gene profiles into 
groups, effectively using Euclidean distance as the metric, with the aim that highly 
correlated genes are put in the same cluster. Each group of genes is then represented 
by a single metagene (the group-sample mean) and then clustering is performed in 
terms of the metagenes. This divide-and-conquer approach is becoming popular in 
the bioinformatics literature for both unsupervised and supervised classification of 
tissue samples. 

The clustering step of EMMIX-GENE makes use of, if needed, mixtures of factor 
analyzers. That is, it provides a global nonlinear approach to dimension reduction as 
it postulates a finite mixture of linear submodels (factor models) for the distribution of 
the full signature vector or a reduced version of metagenes given the (unobservable) 
factors. Thus, it is a local dimensionality reduction method in contrast with a PCA, 
which is a global linear method. 

A number of discriminant rules are discussed for the supervised classification of 
the tissue samples. However, the aim of this book is not to provide a comprehensive 
review of available methods but rather to focus on what we think are useful methods 
for the analysis of microarray data. To this end, the focus in discriminant analysis of 
tissue samples is on the support vector machine. It has the advantage that it can be 
formed from all the genes and its performance is generally not too disadvantaged as 
a consequence of using all the genes. Its performance can be improved by undertak- 
ing feature selection using an easily implemented procedure called recursive feature 
elimination. 

In the statistical analyses, including discriminant and cluster analyses, some form 
of feature selection will usually be carried out. A consequence of basing the final 
analysis on a selected “top” subset of the available genes is that there will typically be 
a selection bias that needs to be corrected for in relating the conclusions to subsequent 
(new) data. In the case of a discriminant rule, it means that the selection bias has 
to be allowed for in the estimation of the generalization error. Otherwise, a false 
overoptimistic impression will be obtained for the discriminatory power of the rule. 



This bias has often been overlooked in the bioinformatics literature. Also, this bias 
arises in an unsupervised context with tests and plots on the number of clusters. 

The first two chapters of this book aim to ( 1 )  provide a bridge to the biological 
and technical aspects involved in microarray experiments, and ( 2 )  summarize and 
emphasize the need for basic research in DNA array technologies and statistical 
thinking through every step of the microarray experiment and analysis to enhance 
reliability and reproducibility of research results. 

Chapter 1 is an introductory chapter and provides a review on DNA microarrays 
and relevant technology. In particular, we begin with the biological principles behind 
microarray experiments. Background information on the substrates and technology 
used in microarray gene expression studies is intended for the biostatistician who is not 
familiar with the biological experiments. We discuss DNA, cDNA, oligonucleotides, 
and the development of microarray technology, as well as the steps involved in the 
manufacture of cDNA microarrays and in generating experimental microarray data. 
Commercial arrays, primarily the Genechipa),  are also briefly introduced in this 
chapter. 

Chapter 2 discusses cleaning and normalization of gene expression microarray 
data, as well as the need for designs of experiments with replicated data. 

Chapter 3 considers in a general context some methods for the cluster analysis of 
multivariate data consisting of n independent observations taken on a p-dimensional 
feature vector associated with the random phenomenon of interest. The focus is on 
model-based methods of clustering and it covers the use of mixtures of factor analyzers 
for high-dimensional data such as microarray data. In relation to the problem of how 
many clusters there are in the data, consideration is given to the problem of assessing 
the number of components in a mixture model by resampling. 

Chapter 4 considers the development of the model-based methodology covered 
in Chapter 3 for its application to problems in the clustering of tissue samples. The 
emphasis is on the EMMIX-GENE procedure which has been developed specifically 
for the clustering of tissue samples. Its application to real microarray data sets is 
illustrated on two well-known sets in the literature. Also, it is demonstrated on 
several real data sets how this model-based approach to clustering can be used to 
consider the question of how many clusters of tissues there are in the data. 

Chapter 5 focuses on the selection of differentially expressed genes in known 
classes of tissue samples. As this problem concerns the selection of significant genes 
from a large pool of candidate genes, it needs to be carried out within the framework 
of multiple hypothesis testing. The recent and fruitful literature on the latter topic 
in the context of microarrays is covered in depth. Distributional problems, including 
use of the t-distribution and its variants to provide robustness are introduced with a 
discussion of numerous methods, frequentist and Bayesian, to handle the multiplicity 
issue. The latter part of this chapter considers the clustering of genes that have been 
identified as being differentially expressed with a view to finding: (1) groups of genes 
that are significantly correlated with each other; (2) groups of genes that share similar 
expressions across the tissues. 

Chapter 6 considers methods in discriminant analysis or supervised classification 
in a general context with a view to their application to microarray data. Discriminant 
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rules covered include the traditional normal-based linear and quadratic discriminant 
classifiers, more flexible parametric rules based on normal mixtures or mixtures of 
factor analyzers, support vector machines and their variants, nearest-neighbor and 
nearest centroid rules, classification trees, and neural networks. The problem of 
error-rate estimation of a discriminant rule is considered too, along with ways for the 
provision of standard errors for the estimates of the error rates. 

Chapter 7 considers applications of some of the discriminant rules introduced in 
the previous chapter to the supervised classification of tissue samples. In applications 
concerned with the diagnosis of cancer, one class may correspond to cancer and the 
other to benign tumors. In applications concerned with patient survival following 
treatment for cancer, one class may correspond to the good prognosis group and the 
other to the poor prognosis group. Also, there is interest in the identification of 
“marker” genes that characterize the different tissue classes. Attention is focused on 
applications of the support vector machine and nearest-shrunken centroids, which is 
a recent version of nearest centroids to handle the very large number of genes. These 
two approaches are demonstrated on some cancer data sets. Particular attention is 
paid to the need to correct for the selection bias in estimating the prediction capacity 
of a discriminant rule formed from a subset of genes selected from a much larger set. 

Chapter 8 is concerned with linking results of a model-based clustering of tumor 
tissues on cancer biology and clinical outcome. Cancer patients with the same stage of 
disease can have markedly different treatment responses and clinical outcome. Thus 
there is much interest in whether microarray expression data can be used to provide 
prognostic information beyond that provided by stage and other traditional clinical 
criteria. We report some recent results that show that the clustering provides signif- 
icant prognostic information on the outcome of the disease beyond that available in 
current systems based on histopathology criteria and extent of disease at presentation. 
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1 
Microarrays in Gene 

Expression Studies 

1.1 INTRODUCTION 

Recently, the scientific world has witnessed an explosion in the development of com- 
prehensive, high-throughput methods for molecular biology experimentation. Po- 
tentially, these cutting-edge techniques will allow researchers to characterize genetic 
diseases such as cancer at the molecular level, and will lead to new treatments di- 
rected at specific cellular aberrations. The focus in this book is on the output from 
array technologies, which have made it straightforward to monitor simultaneously 
the expression pattern of thousands of genes. We are concerned with how to analyze 
such massive data sets. 

In this chapter, we provide background information on the substrates and tech- 
nology used in microarray gene expression studies. It is intended for biostatisticians 
who are not familiar with the biological experiments that produce their microarray 
data. We discuss DNA, cDNA, oligonucleotides, and the development of microarray 
technology as well as the steps involved in the manufacture of cDNA microarrays 
and in generating experimental microarray data. Commercial arrays, primarily the 
Genechipa,  are also introduced briefly in this chapter. In Chapter 2 we discuss 
cleaning and normalization of gene expression microarray data and their effects on 
methods for detecting differential expression. Subsequent chapters of the book are 
devoted to statistical analyses of the data taken to be cleaned and normalized. 

1 
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1.2 BACKGROUND BIOLOGY 

1.2.1 Genome, Genotype, and Gene Expression 

The human genome i s  a representation of our entire gene complement. The human 
genome map, completed in April 2003, represents the identification and prediction of 
the base-pair sequences along each of the 23 pairs of chromosomes present in the hu- 
man cell nucleus. Even as researchers celebrated the completion of the map ahead of 
its scheduled date, the human genome was not (and is not) a known entity. In addition 
to chromosomal areas that still prove difficult to map, a multitude of unknown vari- 
ations in the genome complicate the identification of individual gene complements. 
In fact, scientists use a different term when speaking about one person’s complete 
gene complement: genotype. Each person’s genotype may be unique because there 
are untold numbers of genetic sequence variations in the form of mutations and poly- 
morphi sms. 

A related research endeavor, the International HapMap project, started in October 
2002, will identify and describe the patterns of variations in DNA sequences that are 
common among humans. This research involves identifying the sites in the human 
genome where persons differ by a single base (known as a single nucleotide polymor- 
phism, or SNP), and identifying sets of associated SNPs, known as haplotypes. The 
ultimate goal of this project is to produce a database of the common haplotypes in 
the human genome and the SNPs that can be used as tags for each of the haplotypes. 
(See h t t p  : / /hapmap. org for additional information.) 

The initial mapping of the human genome has provided a common foundation to 
which researchers in the field of genetics and in the many overlapping fields of molec- 
ular biology, biochemistry and biophysics, biostatistics, pharmacogenetics, bioinfor- 
matics, computer science, and many others will contribute from this point forward. 

The development of computational models and methods for the investigation of 
gene expression patterns has already led to important biostatistical research projects, 
and its importance will continue to grow because of the increasing specialization of 
biomedicine. The greatest biomedical gains are being realized through knowledge of 
a specific subtype of a disease or disorder, the specific biochemical pathways affected 
by the disease and by the therapy prescribed, and the myriad characteristics of the 
individual patient’s genotype and phenotype’ that result in his or her very unique 
biological response to the disease or disorder and to the therapy that is prescribed. 

What is to be gained from the measurement of gene expression patterns? Exper- 
iments are designed to observe the changes in a gene in response to external stimuli 
and/or to the activation or expression of other genes, allowing the observation and 
measurement of the relative expression of a gene. Cell samples are exposed ex- 
perimentally to human hormones, toxins, pharmacologic agents, and so on, and the 
resulting increase or decrease in the transcription (expression) of a particular DNA 

’ A  phenotype comprises all the physical, biochemical, and physiological Characteristics of a person as 
determined through genetic and environmental influences. A phenotype is also the manifestation or 
expression of a gene or gene pair in human characteristics. 
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segment or gene can be measured. This information will be used to elucidate the 
potential pathways of genes as well as the interrelations among various genes. It will 
be applied to the development of pharmacologic agents and genetic therapies with 
a level of target specificity that is well beyond that of our current ability to analyze 
disorders, implement preventive measures, or prescribe medical treatments appropri- 
ately. Scientists are learning that complex disorders result from the interactions of 
many genes and are identifying the components of the interactions. 

1.2.2 Of Wild-Types and Other Alleles 

Researchers in the human genome project have determined that chromosome 20 is 
made up of approximately 60 million bases and contains 727 genes (Hattori and 
Taylor, 2001). It is believed that a human being inherits 30,000 to 40,000 genes 
from each parent. What is a gene? A gene is a specific segment of a DNA molecule 
that contains all the coding information necessary to instruct a cell to synthesize a 
specific product, such as an RNA molecule or a protein. Contained within the gene 
are segments that we acknowledge as active in the coding process (exons), as well as 
segments that are noncoding (introns). Each gene also represents a basic unit of a 
person’s biological inheritance from his or her two parents. Genes can be “mapped” 
because each occupies a specific location (or locus) on a chromosome, and each 
chromosome can be specifically identified as well. 

Genes are identified according to their apparent general or specific function. It 
is believed that housekeeping genes (for example, GAPDH, B-actin, tubulin) are 
expressed or functional in all cells because they encode proteins that are needed for 
basic cellular activity. Additional examples of gene types that have been identified 
include the immunoglobulin genes, which code to direct the synthesis of specific 
types of immunoglobulins (antibodies); and a tumor suppressor gene (antioncogene), 
which functions to limit the formation and growth of malignant cells. By definition, 
human genes function to promote and regulate biological activity that is considered 
necessary and productive for the functioning of the organism. It is not correct to state 
that a gene codes for a disease or predisposes a person to a specific disorder. Rather, 
it is a deleterious mutation in a gene that may predispose a person to a specific disease 
or disorder. 

A variation or any alternative form of a gene that is found to occupy the same locus 
on a particular chromosome is known as an allele. A wild-type allele is the form of a 
particular gene that is thought to have developed through the evolutionary processes 
that exist in nature (called “wild’ because it is a product of nature itself). A gene that 
is found to have a mutation will be labeled as a specific allele of that gene, which is 
different from the wild-type allele and from other alleles that identify other types of 
mutations occurring at that same chromosomal locus. 
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1.2.3 Aspects of Underlying Biology and Physiochemistry 

Deoxyribonucleic acid (DNA) is contained within chromosomes in the nucleus of 
each cell. The DNA rnolecule consists of two anti-parallel strands of sugar-phosphate 
linkages that are bonded together in a right-handed double helix by the noncovalent 
hydrogen bonding between pairs of attached amino bases, which lie in a flat plane 
roughly perpendicular to the long axis of the molecule. The anti-parallel arrangement 
of the nucleotide chains requires the transcription of a new RNA or DNA chain to 
run in the opposite direction of‘ the template. Hydrophobic interactions between the 
stacked bases in the interior of the DNA molecule also stabilize the double helix by 
packing it tightly to exclude water and other nonpolar molecules. Adenine, thymine, 
guanine. and cytosine are the amine bases, the sequential order of which contributes 
to the functioning of a particular segment of the DNA strand (a gene). The bases 
exhibit a characteristic and specific bonding known as buse puiring. Base pairing 
(also known as Watson-Crick base puiring) is a chemical bonding process that allows 
molecular hybridization to occur. Between two strands of DNA, the base known as 
adenine (A) specifically bonds with thymine (‘T) through two hydrogen bonds, and 
guanine (G) specifically bonds to cytosine (C) through two hydrogen bonds, in a 
manner that creates the double helix. Between a strand of DNA and a strand of 
ribonucleic acid or RNA (during transcription), adenine from the DNA strand will 
bond specifically to the base uracil (U) from the RNA strand, and guanine will again 
bond specifically to cytosine. The amine base that will form a bonding pair with 
another amine base (A with T or A with U, and G with C) is considered to be its 
complementary base, and a single strand of DNA or RNA that contains the same 
sequential order of complementary bases for bonding as a given strand is considered 
to be its complementary strand. Single DNA or RNA strands will form stable bonds 
only with a complementary strand. This specificity of bonding allows the “message” 
of the sequence of base pairing in that segment of DNA to be communicated through 
the process of transcription. 

Transcription is the communication of a genetic code from DNA to RNA through 
the synthesis of a strand of RNA that has sequences of bases complementary to that 
of the DNA strand. Genetic transcription is carried out to direct the activity of the 
cell. The sequence of the bases in a DNA segment comprises the code or genetic 
instructions that are passed on from the DNA molecule to the RNA molecule because 
of the specific pairing that occurs between the bases in DNA and RNA. Nucleic acids 
that guide the production of proteins are transcribed in the nucleus of the cell as 
messenger RNA (mRNA). Microarray technology utilizes these properties of specific 
bonding or hybridization of a single strand of DNA to a complementary strand of 
DNA or RNA. The hydrogen bonding between the bases is relatively weak and can be 
broken by heating the DNA or RNA sample to its melting temperature (approximately 
90 “C) through a process referred to as denaturing. The single denatured strands of 
the polynucleotide can then be attached to a solid substrate or used to probe strands 

2The process of synthesizing polypeptide chains from mRNA is known as translation, wherein the sequence 
of bases in the mRNA strand determines the amino acid sequence in the protein that is produced. 
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of unknown coding order in experiments. Once the denatured DNA is slowly cooled 
to approximately 60”C, reassociation occurs. Reassociation is the process whereby 
single strands of the polynucleotide associate with Complementary strands through 
random collisions, resulting in the formation of specific amine base pairs through 
hydrogen bonding. Reassociation is facilitated if the DNA sample is fragmented into 
short lengths of nucleotides, thus increasing the number of random collisions and 
increasing the probability that complementary chains will undergo base pairing. 

1.3 POLYMERASE CHAIN REACTION 

PoZymeruse chain reaction (PCR) is a technique that “amplifies” or replicates DNA 
fragments. It is commonly used to create billions of copies of specific fragments 
of DNA from a single DNA molecule. This technique has numerous applications in 
medical research, in forensic science, and in many related fields and is used to produce 
DNA for the manufacture of microarrays. The PCR technique was developed in 
1983 through the work of Kary B. Mullis, a biochemist, and his colleagues at Cetus 
Corporation in Emeryville, California (Mullis, 1990). [F. Hoffman-LaRoche Ltd. 
and Roche Molecular Systems, Inc., purchased the patent for the PCR technique 
from Cetus Corporation; however, its recognition as an acceptable patent, since it is 
based on a naturally occurring enzyme, is currently under dispute in United States 
appeals courts. European courts upheld the patent in a ruling issued in 2003. See 
Dalton (2001) and Knight (2003).] 

The PCR technique is based on the catalytic action of a DNA polymerase enzyme 
that is stable at high temperatures, such as those used to denature DNA and RNA 
molecules. The initial technique utilized a DNA polymerase enzyme isolated from 
the genetically engineered bacterium Therrnus aquaticus (Tag), which was found 
in thermal springs of Yellowstone National Park in Wyoming. Use of a polymerase 
enzyme from bacteria with characteristics similar to the Tuq bacteria enables the DNA 
replications to be conducted at high temperatures for fast reaction rates and can be 
rigorously controlled for high fidelity. In human cell division, a primer (a short RNA 
segment that functions to start the copying of the DNA strands) starts the creation 
of a template of each single strand of DNA in  each chromosome as the base pairing 
bonds separate. The polymerase then takes over, creating the DNA templates that 
reproduce the genetic material in the creation of a new cell. For the PCR technique, a 
Tuq polymerase from the bacterium is provided, along with the primers and a supply 
of the four nucleotide bases (adenine, guanine, cytosine, and thymine). The DNA 
to be duplicated is then added to a vial containing these components. The vial is 
heated to 90°C for 30 seconds to denature the DNA, separating the strands. The vial 
is then slowly cooled to 60°C to allow the primers to bind to the DNA strands, and 
it is again heated to promote the action of the Taq polymerase. The entire process, 
duplicating each piece of DNA in the vial, takes less than 2 minutes. The cycle is 
then repeated for the same vial approximately 30 times, with each new DNA segment 
acting as a new template, exponentially reproducing the number of DNA segments 
in the vial (Mullis, 1990). Recombinant TLzq polymerase, obtained by the insertion 
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of the gene for the Taq polymerase into another type of bacteria (and currently held 
under a second patent by F. Hoffman-LaRoche Ltd.), is now more commonly used 
for DNA amplification (Dalton, 2001). 

Following the PCR process, the DNA samples are purified to reduce the presence 
of unwanted components as well as salts and primers used in the PCR process. Pu- 
rification is done by precipitation, gel-filtration chromatography, or both (Duggan et 
al., 1999). PCR products representing specific genes are then applied to the array to 
manufacture DNA microarrays. 

1.4 CDNA 

Messenger RNA (mRNA) is the form of ribonucleic acid that directs the production 
of cellular proteins, so it is important in experiments of gene expression. Researchers 
want to observe what cellular proteins are produced and the function of those proteins 
in particular types of cells (such as tumor cells) or in response to specific external 
stimuli, so they are interested in testing the expression patterns of the mRNA. Al- 
though protein synthesis and activation are not regulated solely at mRNA levels in 
a cell, mRNA measurement is used to estimate cellular changes in response to ex- 
ternal signals or environmental changes. The mRNA in a biological sample is first 
chemically bound to a DNA molecule in order to remove it from the other cellular 
components. The molecule of mRNA is relatively fragile, however, and can easily be 
broken down by the action of enzymes that are prevalent in biological solutions, so 
researchers commonly manipulate a form of DNA that possesses the complementary 
bases of the mRNA while existing in a more Stdbk state. This form of DNA, known 
as complementa~ DNA (cDNA), is created directly from the sample mRNA through a 
procedure known as reverse transcription (transcribing complementary genetic base 
sequences from RNA to DNA). cDNA is also called synthetic DNA, since it is formed 
through reverse transcription from RNA rather than through self-replication during 
cell division. cDNA is generally prepared in strand lengths of 500 to 5,000 bases of 
known sequence. 

1.4.1 Expressed Sequence Tag 

Human genes contain base-pairing sequences that are replicated, as well as sequences 
that are not replicated, during mRNA translation to form specific polypeptide chains 
in protein synthesis. The sequences that are translated in protein synthesis are coding 
sequences, known as e,cons, while the noncoding sequences are known as introns. 
Enzymes activated during mRNA transcription recognize the noncoding junctions in 
the nucleotide sequence and splice together the exons for protein production after 
removing the introns. Expressed sequence tag (EST) is the name given to a short 
sequential segment from a gene. It is generated to represent the coding portion of 
a gene; thus. an EST is frequently used as a gene substitute for PCR amplification, 
microarray production, and experiments. Substituting shorter nucleotide sequences 
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for genomic DNA was proposed in the 1980s and was first undertaken in experiments 
on cDNA clones derived from human brain tissue by a research group at the National 
Institute of Neurological Disorders and Stroke, National Institutes of Health in the 
United States (Adams and Bischof, 1994). ESTs are generated through transcription 
cloning from both ends of a cDNA sequence, through what is called incomplete 
unedited single-pass sequencing reads of cDNA, resulting in frequent errors (Marra 
et al., 1998). EST data can be used in general evaluations of gene expression but are 
not considered suitable for gene expression studies that require greater detail. ESTs 
have been shown to be valuable in facilitating gene identification and in genome 
mapping, and EST data comprise the bulk of most public DNA sequence databases 
(Gerhold and Caskey, 1996; Marra et al. 1998; Quackenbush, 2001; Wolfsberg and 
Landsman, 2001). The criticism of ESTs in gene libraries has been due primarily 
to an overabundant representation in the data of genes that are frequently expressed, 
resulting in redundancies, and an absence of representation of genes that are rarely 
expressed. Researchers generally try to correct for the presence of redundant EST 
data in a gene library. 

1.5 MICROARRAY TECHNOLOGY AND APPLICATION 

High-density DNA microarray technology allows researchers to monitor the interac- 
tions among thousands of gene transcripts in an organism on a single experimental 
medium, which is often a glass microscope slide or nylon membrane. Prior to the 
computerization and miniaturization of this technology, researchers were limited to 
examinations of much smaller numbers of genetic units per experiment and were able 
to assess interactions among genes under changing conditions on a much smaller 
scale. Microarray technology is particularly useful in the evaluation of gene expres- 
sion patterns in complex disorders because of its ability to observe the expression 
of the same genes in different samples at the same time and in response to the same 
stimuli. 

The use of microarrays in biomedical research is equivalent to some of the techno- 
logical advancements found in the computer science industry, such as that of parallel 
distribution. Distributing the “work” of an experiment in a parallel fashion facilitates 
solving computationally complex problems and becomes more than the equivalent 
of running thousands of experimental steps at the same time. Microarrays are gen- 
erally designed to provide parallel distribution of the work of an experiment. Each 
microarray can represent thousands of separate biochemical assays performed in a 
much shorter time period. 

Microarrays can be used to evaluate the dynamic expression of genes in response 
to normal cellular activity (for example, changes in gene transcription, cell division) 
or in response to external stimuli (for example, a toxic substance, viral infection). 
The ability to simulate a large variety of cellular conditions and then translate and 
process the resulting large quantities of data, provides a systematic way to evaluate 
cellular function and genetic variations and may be particularly important in testing 



8 MICROARRAYS IN GENE EXPRESSION STUDIES 

for genetic susceptibility to diseases and disorders as well as genetic susceptibility 
(or the ability to respond effectively) to specific therapies or interventions. 

The biostatistician’s concern lies in the statistical methods and computations that 
are required to appropriately normalize, analyze, and interpret the vast amounts of data 
obtained from gene expression studies using microarrays. It is important, however, 
for the biostatistician to develop a basic understanding of the procedures involved 
in production of the arrays and in the experiments that generate gene expression 
data. An understanding of how the data will be applied in a biomedical context is 
also an important factor. A biostatistician’s initial task is to consider the appropriate 
statistical normalization procedures that may need to be performed on data that 
are generated from microarray experiments. Understanding the components of the 
microarray experiments and the levels of sample processing are the crucial preliminary 
requirement that will guide the biostatistician (Nguyen et al., 2002; Kerr, 2003; Simon 
et al., 2002; Dobbin et al., 2003). Chapter 2 focuses on data normalization techniques 
and relevant controversies. The present chapter will provide the biostatistician with 
some basic principles underlying the microarray technology, beginning with a review 
of some terms and concepts common to studies that use DNA microarrays. 

1.5.1 History of Microarray Development 

Microarray technology developed through the application of advanced technologies 
from the fields of biology and physiochemistry to the analysis of ligand assays, par- 
ticularly those involving immunoassays. Assays are determinations of the amount 
of a particular substance within a mixture of different substances. For example, as- 
says have been in use for decades to identify blood proteins; to test for chemical 
exposure; to perform urinalyses; to screen for drugs; to screen for certain congenital 
mutations (such as (2-fetoprotein); to test for blood clotting disorders; to measure 
antibody titers; and to test for enzymes specific to injury to the heart muscle or liver 
tissue. Immunoassays help determine the amount of antibodies present in a biological 
sample that are involved in the very specific antibody-antigen binding that occurs in 
immunologic response processes. Researchers in this field were among the first to 
introduce microarray technology. Labeling techniques implemented in immunoas- 
says included fluorescent labeling of either the antibody or the antigen to detect its 
presence. as well as radioactive labeling and enzyme-linked immunosorbent assay 
(ELIS A). 

Immunoassay technology, as developed in the 1950s and 1960s, involved the 
attachment of antibodies to solid supports and relied on the specificity of target 
molecules binding to the antibody (Polsky-Cynkin et al. 1985; Ekins, 1998). These 
same techniques would subsequently be adapted for DNA analysis. Early assays 
utilized macroarray technology, whereby the samples were applied or “spotted” man- 
ually onto a test surface, creating sample spot sizes of 300 pm or more. Once arrays 
were designed to support “sample spots” of less than 200 pm in diameter; however, 

‘Normalization is the process of standardizing the data so that reasonable data comparisons can be made. 
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the use of specialized robotics and imaging equipment became a requirement. Fur- 
ther development of the technology reduced the spot size to 20 to 25 pm (and even 
significantly smaller in some of the current technologies), allowing researchers to 
observe and evaluate changes in much greater numbers of spots (or individual as- 
says) per experiment. Early labeling methods used radioactive labeling of the known 
sequences. Additional detection methods have involved electric signal transduction 
or electron transfer reactions between the known and unknown samples. The sim- 
plest and most common detection method used in immunoassays, which is still in use 
in DNA microarray technology, is the direct labeling of biological molecules in the 
sample solution with fluorescent dyes such as fluorescein isothiocyanate. 

The Southern blot (named after E. M. Southern, a British biologist) was the first 
array of genetic material, and it is still commonly used today. The Southern blot is 
a technique for the transfer of denatured DNA fragments to a nitrocellulose filter for 
detection by hybridization to radioactively labeled probes (now commonly replaced 
by nonradioactive materials). It was based on the principle that DNA and RNA 
strands could be labeled for detection and used to probe other nucleic acid molecules 
that were attached to a solid surface. After using gel electrophoresis to separate the 
DNA fragments, E. M. Southern found that single strands of DNA could form strong 
covalent bonds with a solid surface, such that the strands would not reassociate with 
each other but would be available to bond with a complementary segment of RNA 
(Southern, 1975). This array technique used porous surfaces as the solid support for 
the DNA strands. The advance to using a glass surface for genetic arrays facilitated the 
application of fluorescent dyes for labeling, greatly decreased the chemical reaction 
time since the substances did not diffuse into a porous surface, and accommodated 
miniaturization, as well. 

In the 1980s, the group of R. P. Ekins in the Department of Molecular Endocrinol- 
ogy at the University College London were the first to use simple microspotting tech- 
niques to manufacture arrays for immunoassay studies with high sensitivity (Ekins 
and Chu, 1999). Although Ekins’ work and patents in the construction and use of 
microarray-based assays were specific to the analysis of antibodies in the field of im- 
munodiagnostics, his research group expected that the technology would have applica- 
tions for all types of biological binding assays. Researchers at Boehringer Mannheim 
(Germany; acquired as part of Corange in 1998 by Hoffman-La Roche Ltd., Basel, 
Switzerland) led the way in mechanizing the construction of the solid supports and 
methods for microspotting, decreasing the production costs and industrializing the 
technology. Ekins and Chu (1 99 1) first named the product of this technique multi- 
uizalyte microspot immunoassays. They utilized the ratio of the fluorescent signals 
to the absorbance to measure the radiometric intensity and also used a dual-channel 
scanning-laser confocal microscope to provide an image of the fluorescent signals in 
the experiment. 

Numerous groups of researchers have furthered the technology introduced by 
Ekins, Chu, and their colleagues. In the United States, notable research has been 
accomplished by Stephen P. A. Fodor and his colleagues at Affymetrix, Inc. (Santa 
Clara, California) (Fodor et al., 1991), as well as by groups at Stanford University, 
particularly Patrick 0. Brown, in the Department of Biochemistry and Biophysics 
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(Stanford, California) (Schena et al. 1995), David Botstein, Ph.D. (now director of 
the Lewis-Sigler Institute for Integrative Genomics at Princeton University), and 
among groups at the National Center for Genomic Research at the National Institutes 
of Health. Brown and his colleagues at Stanford are credited with engineering the 
first DNA microarray chip, while Stephen Fodor and colleagues at Affymetrix, Inc., 
created the first patented DNA microarray wafer chip, the Genechip@. Numerous 
commercial entities and academic groups have since contributed to advancements in 
DNA microarray technology. A small selection of these are outlined at the end of the 
chapter. 

1 S.2 Tools of Microarray Technology 

The following is a simplification of the complicated biochemical processes and de- 
tailed protocols involved in the preparation of nucleic acid materials and microarrays 
and in the conduct of gene expression studies in the biology laboratory. It is provided 
as an introduction to the technology, and readers are encouraged to consult reference 
publications and specialists in the field to improve their understanding of the tech- 
nology and of the experimental processes that create the data they will subsequently 
analyze. 

A r r q  

The array is a solid base on which a grid of “spots” or droplets of genetic material 
of known sequence is arranged systematically. The array is commonly a small piece 
of glass or nylon (similar to a microscope slide), with thousands of spots or wells 
that can each hold a droplet representing a different cDNA sequence. Array sizes 
commonly vary from that of a microscope slide (2.Scm x 7.Scm) (Schermer, 1999) 
to square silicon chips of 0.5cm x 0Scm (Warrington et al., 2000). Every spot in the 
grid of the array can represent an independent experimental assay for the presence 
and abundance of a specific sequence of bases in the sample polynucleotide strand. 

The selection of material for the array depends on the cost, density, accuracy, and 
form of polynucleotide to be fixed to the slide (Sinclair, 1999). Glass, silica chips, 
and charged nylon are common forms of array materials currently in use (Kricka 
and Fortina, 200 1). Coated glass microscope slides possess relatively low inherent 
fluorescence, which makes them a good choice for the arrays. A form of silicon 
hydride that is used in the manufacture of semiconductor devices is one of the coatings 
added to microarray slides. The coating repels water and helps the DNA stick to the 
surface of the slide while preventing the spread of each spot or deposit of DNA 
material (Cheung et al. 1999; Duggan et al., 1999; Schermer, 1999). 

An important difference between DNA microarrays and the dot blot techniques 
(such as the Southern blot) is the use of a nonporous rigid test surface such as glass. 
In dot blotting, polynucleotide products must first diffuse into pores in the test surface 
before binding to the DNA strands of the probe. This requires more time to allow 
for diffusion prior to many of the other steps throughout the biochemical processes 
(Southern et al., 1999). The transparency and rigidity of the glass slide in microarrays 
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and the precise location of each spot on the array also contribute to better image 
production and can result in better data acquisition (Schena and Davis, 1999). 

Spot sizes of cDNA applied to microscope plates were initially at least 100 to 200 
pm. Technological developments have reduced the size to 5 pm and even to 2 pm on 
some commercially prepared arrays, depending on the medium used, thus improving 
the spatial resolution of the technique (Sinclair, 1999). Microarrays containing thou- 
sands of array spots are considered high-density microarrays. They can be created in 
a variety of grid styles that facilitate the type of experiment to be undertaken. 

The cDNA of known sequence that is fixed onto the array after microspotting is 
commonly referred to as the probe, while the polynucleotide of unknown sequence 
in the biological sample solution is commonly referred to as the target. The target 
will be evaluated indirectly, through its hybridization to the known polynucleotides 
on the array (Warringtonet al., 2000; Kricka and Fortina, 2001; Quackenbush, 2001). 

Spotter 

The robotic machine that applies the droplets of different cDNA strands of known 
sequence to a well or spot on the array is called the spotter or arrayer. The product 
is applied to each spot in a grid to accommodate a large number of tests within each 
experiment. The spotter utilizes either contact or noncontact methods to apply the 
probe material to the array. Contact spotting is performed with an instrument similar 
to a fountain pen under constant pressure. Relatively new methods of noncontact 
spotting apply ink-jet technology or the piezoelectric capillary effect to complete the 
grid of probe droplets. The original spotting technology, which used a pin or needle as 
a spotter, is still in use in many labs. Noncontact spotting methods generally increase 
the speed of microarray production (Duggan et al., 1999; Theriault et al., 1999). 

Piezoelectric capillary jets are thought to be superior as efficient and accurate 
spotters; however, the need to keep the capillary nozzle full with a larger volume of 
the biological sample results in the use of a greater amount of polynucleotide probe 
material in the manufacture of a microarray than when other types of spotters are 
used. Because of this characteristic, piezoelectric capillary jet spotters are best suited 
to microarray production of a large number of spots of the same material. Laboratories 
use this characteristic to their advantage by creating large numbers of microarray slides 
at once, and programming the spotter to place a particular polynucleotide probe in 
specific wells in the grids of each slide before rinsing the solution out of the capillary 
nozzles and then applying a probe of another kind to different wells in the same 
microarray slides. Manufacturers of spotters or arrayers offer a variety of solutions 
to match each laboratory’s needs, and many laboratories customize their equipment 
as they improve their experimental protocols. 

Immobilization of cDNA of known sequence onto the array 

The cDNA that is spotted onto the array must be fixed onto the surface to maintain 
the integrity of each spot that is required for high image definition and also to prevent 
the cDNA from washing off during the various steps involved in processing the array. 
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Adherence to the slide coating is the first process that immobilizes the DNA on 
the array, followed by air drying, which is then commonly followed by ultraviolet 
irradiation for DNA fixation (Cheung et al., 1999; Duggan et al., 1999). 

Labeling a suniple,for detection 

To identify and measure the presence of a polynucleotide of unknown sequence (in 
the target sample) after it binds to the material on the microarray, it is labeled with a 
fluorescent dye such as fluorescein, rhodamine, or coumarin. The dye is incorporated 
with the molecule during reverse transcription. A different dye color is used for each 
sample, and generally only two dye colors are used, due to the accompanying scan- 
ning and imaging requirements to detect fluorescent light of specific wavelengths. 
Experimental protocols commonly call for the application of one fluorescent dye to 
polynucleotides from the experimental or unknown target sample, and a different flu- 
orescent dye to the polynucleotides from a known or control target sample (Cheung et 
al., 1999; Schermer, 1999; Brazma et al., 2000). Figure 1.1 illustrates the preparation 
of target samples. 

Hybridization 

Molecular hybridization is the association of single strands of polynucleotides 
through their specific base-pairing properties to form a complementary double-strand- 
ed molecule. This is the chemical process that occurs between the labeled polynu- 
cleotide strands of target tissues (including those of unknown sequences) and their 
complementary strands of cDNA of known sequence among the spots on the array. 
Ideally, if a polynucleotide from the target sample contains a base sequence that is 
complementary to that of a polynucleotide at one spot of the array, it will hybridize 
to the molecule at that spot. The location of that spot on the array grid will then 
be detectable by the fluorescent light that is given off during the scanning and imag- 
ing processes. When many target polynucleotides hybridize to complementary cDNA 
probe strands at one spot on the array then the fluorescent signals emitted and detected 
at that spot will have greater intensity. 

The slide or array is chemically processed to reduce a positive charge on the 
surface, and heat or a chemical alkali is applied to break some of the double-stranded 
cDNA probes into single strands for binding with the target sample. There should be 
a sufficient level of cDNA on each spot of the array so that two unknown sequences 
of polynucleotides, if complementary to the cDNA sequence at a particular spot, 
could hybridize to that spot at the same time without introducing interference. Excess 
solution containing the labeled target polynucleotides is then washed off the array prior 
to scanning. The hybridization signals that result are dependent on many variables, 
including temperature, hybridization and processing time, relative humidity, buffers 
and reagents added, salt concentration, and rinsing of the reagents and excess sample 
(Cheung et al., 1999; Duggan et al., 1999). 

Ongoing improvements in labeling and hybridization technology include the de- 
velopment of a process called deizdriiner signal detection (Stears et al.. 2000). Rather 
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Fig. 7.7 Preparation of' target samples: the process from the cell samples to the microarray. 
See the insert for a color representation. 
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than incorporating the fluorescent dyes during the reverse transcription process, re- 
sulting in modified cDNA transcripts, this process labels dendrimers, which will then 
specifically bind with complementary sequences along the unmodified cDNA strands. 
A dendrimer is a complex of partially double-stranded oligonucleotides that form a 
stable, spherical structure with a determined number of free ends. The nucleotide se- 
quence of a cDNA probe on the surface of the microarray will specifically bind to its 
complementary sequence on a free arm of the dendrimer. The dendrimers, prelabeled 
with a fluorescent dye, have a predetermined quantified fluorescent intensity. Since 
each cDNA transcript binds to a single dendrimer, the amount of signal generated 
is directly proportional to the number of cDNA molecules detected. This labeling 
method reportedly maintains a low background signal over increasing amounts of 
RNA, as well as over increasing numbers of scans, facilitating the detection of tran- 
scripts normally present in low abundance. 

Scanning/imuging the u r r q  

Many scanners use a specific frequency of light from a laser (for example, an 
argon laser) in the ultraviolet region to excite the fluorescent dye attached to the target 
samples that have hybridized to their complementary probe sequences on the array. 
The photons emitted by the excited dye are collected at a detector, which measures 
and records their levels, converting the measurements to electrical signals. A confocal 
microscope or charge-coupled device that records the intensity of the photons is used 
as the scanning detector. Since two different fluorescent labels are generally used in 
gene expression studies, each slide is scanned at two wavelengths, and the imager must 
be capable of detecting the hybridized polynucleotides and measuring their amounts 
at least at the two different wavelengths of light, and must possess high-resolution 
scanning capabilities (Evertsz et a]., 2000). Cyanine 3 (Cy3) and cyanine 5 (Cy5) are 
fluorescent dyes that are commonly used in this technology because their emission 
spectra are well separated, providing a low probability of crosstalk. 

Imagers commonly use a grid over the array to associate the signal from each spot 
with its location on the array, and thereby with its base-pairing sequence identification. 
With good filtration of the scattered light, the detector will record only the light 
from the fluorescently labeled hybridized pairs, and greater intensity of fluorescence 
will be detected at spots where more polynucleotides have hybridized to the array 
(Scliermer, 1999). The lab technician should be able to adjust the sensitivity of the 
scanner for each batch of microarrays to correct for variations in dye intensity that 
may occur during hybridization and array processing. This may involve adjusting the 
wavelength and output of the excitation laser as well as adjusting the voltage input 
ot the detector, which is commonly a photomultiplier tube. Scanners that autoinate 
the sensitivity adjustments are beneficial. The use of a confocal scanner will also 
decrease the recorded fluorescent noise by controlling the depth of focus used i n  
scanning the true signals of hybridization while reducing the capture of background 
Huorcscence. The ratio of the fluorescent light eniissions between the two different 
wavelengths (corresponding to the two different dyes used to label the unknown and 
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fig. 7.2 Micromay image showing differentially expressed genes. Red spots: gene tran- 
scripts of high expression in target labeled with cyanine 5 dye. Green spots: gene transcripts 
of high expression in target labeled with cyanine 3 dye. Yellow spots: gene transcripts with 
similar expression in both target samples. See the insert for a color representation. 

control polynucleotide target samples) is the indirect measurement of the relative gene 
transcript expression levels. 

Final image processing 

A digitized scanned array image is obtained from the microarray scannerhmager 
and is displayed on a monitor. False coloration of the fluorescent intensities, translated 
on the computer monitor as pixel intensities, is applied to the image to produce a color 
image for the analyst to read. If the biochemist tagged the polynucleotide from the 
unknown experimental sample with a red dye and the control polynucleotide sample 
with a green dye, and the false colorations mimic the fluorescent tagging, then visual- 
ization of a red spot on the final array grid indicates that the unknown polynucleotide 
hybridized abundantly to the cDNA affixed at that location on the microarray slide. 
A final green spot indicates that the control polynucleotide hybridized abundantly 
to the cDNA affixed at that location, a yellow spot indicates that the unknown and 
the control polynucleotides hybridized in relatively equal amounts at that location 
on the microarray, and a black spot indicates that neither sample of polynucleotides 
hybridized at that location (Brazma et al., 2000). An alternative image coloration 
scheme is to apply one false color (such as red) to represent up-regulation (increased 
transcription) of a gene in the experimental sample on a microarray image, while a 
second color (such as green) is applied to represent down-regulation of a gene in the 
final image (Sherlock et al., 2001). The standard image format for microarray images 
is a 16-bit tagged image file format (TIFF) (Schermer, 1999). Figure 1.2 illustrates a 
cDNA microarray image. 

Verijication of microarray data 

Laboratory researchers and manufacturers of commercial arrays will use other 
techniques to confirm the findings in a microarray experiment. Northern blot anal- 
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ysis and reverse transcriptase polymerase chain reaction (RT-PCR) are techniques 
commonly used to make such verifications. The Northern blot technique analyzes 
samples of RNA on a nylon membrane but is otherwise analogous to the Southern 
blot technique (Lockhart and Winzeler, 2000; King and Sinha, 2001). 

Carrying out a cDNA microarray experiment in a biology laboratory is a lengthy, 
complex, multistep process. In brief, it involves the mechanical preparation of so- 
lutions of cDNA clones in a 96-well grid pattern on a plate; PCR amplification of 
the cDNA; verification of the clone sequences by gel-filtration chromatography; pu- 
rification and assembly of clones; mechanical conversion of the plate format to a 
configuration of 3,072 assays; verification of the probe sequences; spotting of the 
microarray slides; hybridization; cleaning, scanning, and imaging the slides; and 
database analysis and verification of the experimental results using an alternative 
laboratory method. It is after this complex process that the experimental results can 
be analyzed statistically. Figure 1.3 presents a flowchart illustrating the production 
and processing of a cDNA microarray experiment in the Cancer Genomics Core 
Laboratory of Wei Zhang at the University of Texas M. D. Anderson Cancer Center. 

Analysis qf dutu from the array experiment 

Analysis of the cDNA microarray data is a new challenge for the biostatistician. It 
is covered in depth in subsequent chapters ofthe book, so receives only a brief intro- 
duction in this chapter. Microarray laboratory analysis requires the application of a 
filter to remove gene transcripts from the analysis that do not contribute information to 
the experimental outcome, such as transcripts that were not measured accurately, and 
those that do not change across the series of experiments. This step will probably be 
undertaken by the biology laboratory personnel during the scanning and visualization 
processes, but its effect on the raw data should be communicated to the biostatisti- 
cian (Meltzer, 2001). Data analysis by the biostatistician may require the application 
of a normalization procedure, the simplest method being a linear transformation, to 
the data from each experiment to correct for variables within the experimental pro- 
cesses (Kellam, 2001 ; Quackenbush, 2001). Nonlinear normalization will require 
the application of more sophisticated statistical methods. There are many factors of 
experimental variability that should be taken into account, such as the amount and 
purity of the polynucleotides, changes in temperature and relative humidity of the 
experimental environment, fluorescent labeling efficiency, hybridization results and 
saturation effects, and increased background fluorescence intensity levels. Normal- 
ization frequently requires the use of housekeeping genes or reference mRNA strands 
(added to a sample at a specific, measurable level) during the experiment (Hollon, 
2001; Kellam, 2001; Wu, 2001). The biologists conducting the experiments can 
provide information about the particular housekeeping genes that are used. Some re- 
searchers are proponents of repeating a microarray experiment on replicated samples 
to assist the biostatistician in correcting for variability across experimental samples 
(Wu, 200 1). Following normalization of the data, a computer visualization analysis is 
performed to identify similarities or patterns in gene expression profiling. The overall 
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results must then be applied to the biological model of interest for its meaningful and 
appropriate interpretation. 

Teinporal and end-result studies 

Microarray technology in gene expression studies provides the researcher with the 
choice of taking measurements at one point in time as an end-result study, or at several 
points in time as a serial study. The researcher can expose the cells to a change and 
then take successive samples over time. This method allows the researcher to observe 
the overall changes in gene transcript expression as well as the order of change. It 
also allows the researcher to identify which gene transcripts are actively guiding the 
responses, as well as which transcripts change expression as a result of an initial 
change in a guiding gene’s activity. 

1.5.3 Limitations of Microarray Technology 

There are many limiting factors to the accuracy and application of DNA microarray 
technology, the most basic of which is that the technology does not measure gene 
expression levels or mRNA abundance directly. The technology uses an indirect 
measurement of gene transcript levels through capture of the intensity of fluorescent 
dyes bound to the polynucleotides that hybridize to the array’s experimental probes 
(Wu, 200 I ) .  Many ofthe limiting factors will be corrected through ongoing and future 
research and the resulting advancements in the technology. Other limitations should 
be understood by the biostatistician so that corrections and normalization methods 
can be adequately performed and so that the data gained from the experiments may 
be interpreted appropriately. 

Lintitations concerning DNA and RNA samples 

The following list summarizes some of the limitations of microarray experiments 
with which the biochemists deal directly and which the biostatistician should also 
keep in mind. 

I .  The most basic limitation regarding microarray experiments in the laboratory 
is the availability of clones and/or tissue samples in sufficient quantity. 

2. The quality of the RNA and cDNA samples, depending on the purity and con- 
centrations of the polynucleotides, the storage and maintenance of the samples, 
the spotting process, and the experimental protocol, will limit the accuracy of 
the resulting data (Hollon, 2001). 

3. Different molecules of mRNA undergo reverse transcription to varying degrees 
of efficiency, resulting in what is known as reverse transcription bias. 

4. The fluorescent dyes typically have a greater binding affinity to one type of 
nucleotide, such as guanine (G); therefore, cDNA strands that contain more 
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guanine in their sequence will appear brighter upon detection of the microar- 
ray’s fluorescence. This is known as sequence bias. 

5 .  Fluorescence is a nonlinear phenomena; it is linear only over a limited range. 

6. Measurements of gene expression using cDNA microarrays currently provide 
only relative expression levels which gene transcripts are more abundantly 
expressed in one sample in relation to the same gene transcripts in another tissue 
sample or in one experiment in comparison to another experiment (Brazma and 
Vilo, 2000). 

7. Gene expression can provide only partial information about activities in a cell. 
There are many variations in expression, and a gene’s product (that is, the 
protein) may become more or less active because it is being produced at a 
faster rate, is being degraded by other proteins, or is being chemically modified. 
Therefore, it is usually not possible to make negative claims saying that some 
genes are not involved in certain biological processes. 

8. DNPJRNA hybridization is very sensitive to temperature and ionic strength in 
solution, and these characteristics depend on the base sequences in the DNA or 
RNA strand. No set of experimental conditions is optimal for all genes. Thus, 
some genes may be nondetectable because the intended hybridization simply 
does not happen under the experimental conditions chosen. 

9. The measurements of microarrays are averages of the expression of many cell 
types over a period of time. Thus, the technology has a limited space-time 
resolution to detect transient molecular events in certain types of cells. 

Limitations concerningjixed DNA on the mruy 

Preparation of the microarray and hybridization are not perfect processes, and 
some variability in the results will occur. Examples include cross-linking of the fixed 
cDNA strands into double-stranded forms that remain even after the thermochemical 
processes are applied to separate the probe molecules into single strands. This will 
decrease the number of strands available to hybridize with the target polynucleotides. 
Additionally, during the drying phase of array preparation, the cDNA molecule may 
adhere to the glass slide at various places along its strand, also decreasing its ability 
to hybridize with a complementary target. 

Light from labeled target molecules that hybridize to the glass slide and are not 
washed from the array will also be detected during scanning procedures. and this will 
form background light as n o i . ~ .  The development and use of array materials with 
higher signal-to-noise ratios will greatly improve the capability of scanning methods 
to  detect specifically fluorescence that represents complementary hybridization over 
the fluorescent background. Image processin? is a probleinatic area. Insufficient 
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concentration or labeling of the target polynucleotides, insufficient exposure time, or 
too little cDNA on a spot of the array to capture adequate signal during hybridization 
can occur (Cheung et al., 1999; Wu, 2001). Additional misreading of theresults during 
scanning and visualization processes may occur when foreign organic particles are 
present on the array, such as dust, clothing fibers, skin, or oil from direct human 
contact; and when the solid support material of the array has an inherent fluorescence 
similar to that of the labeling dyes (Schermer, 1999). The choice of method for spot 
segmentation when reading the scanned microarray image has also been shown to 
cause variability in the resulting microarray data (Ahmed et al., 2004). 

Limitations to microarray data storuge, retrieval, and shared 
communication and cniulysis 

DNA microarray data are obtained on any number of different tissue samples un- 
der diverse experimental conditions. It is the experimental variability that makes 
microarray data much more complex than the data created in the human genome se- 
quencing projects. Efforts to standardize microarray data have been under way for 
some time through work groups spanning international research organizations. Work 
groups have been actively supportive of developing standards for describing, storing, 
and using microarray data and of the creation of centralized public repositories for 
data that can be shared among researchers. Most work groups advocate the deposit 
of “raw” research data into a central repository before it has undergone normalization 
techniques, and the development of standard sets of control probes and samples to be 
used as reference points for common normalization methods (Brazma et al., 2000). 
Researchers agree that standardization of microarray data will require the adoption 
of standard descriptors to identify the specific tissue, cell type, and state of patho- 
physiology at the time a sample is taken, as well as general ontologies to describe 
the experimental environment and protocol from which data were derived. Ongoing 
efforts of the work groups of the Microarray Gene Expression Database (MGED), 
in collaboration with the Object Management Group (OMG), among others, have 
resulted in models for standardization, including (1) Minimal Information About a 
Microarray Experiment (MIAME 3.0); (2) Microarray Gene Expression - Object 
Model (MAGE-OM), and (3) Microarray Gene Expression - Markup Language 
(MAGE-ML). Additional work groups of the MGED include those for standards in 
normalization and for ontologies. The work of the MGED is accessible online through 
the support of the European Bioinformatics Institute at h t  t p  : / / www . mged . org/. 

1.5.4 Oligonucleotides versus cDNA Arrays 

Use of the term DNA microarrays usually refers to cDNA arrays, whereas DNA chips 
or oligo chips are terms commonly used to refer to oligonucleotide arrays. In this 
book, however, we use the term microarrays in a more general sense to refer to both 
cDNA and oligonucleotide arrays. Oligonucleotides are shorter sequential base-pair 
segments, ranging from 15 to 70 nucleotides in length, taken from the hundreds of 
nucleotides in a DNA segment that function as a gene (Aitman, 2001, Jordan, 2002). 
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DNA chips use oligos as the probing material on the array. Affymetrix, Inc. 
was the first company to develop commercially a DNA chip (using the trade name 
Genechip@). Oligos are synthesized by standard methods and then spotted onto the 
chip, or they can be synthesized directly on the chip (in situ or in silico) through a pro- 
cess of photolithography, which is the array production process used by Affymetrix. 
Glass or polypropylene supports are commonly used for oligo arrays (Elder et al., 
1999). Treatment of the support with chemical linkers before spotting or in situ 
synthesis of the oligo chains promotes adherence of the oligos and improves the hy- 
bridization efficiency of the oligo probes (Green et al., 1999); (Southern et al., 1999). 
Improved methods for adhering probes to the array include UV-irradiation processes 
that facilitate increased signal intensities (Kimura et al. 2004). Lockhart and col- 
leagues introduced the use of DNA chip technology in gene transcript expression 
studies with a Genechip@ array made of over 16,000 different oligo probes (Lock- 
hart et al., 1996). Some of the original products developed by Affymetrix included a 
1.28cm x 1.28cm chip onto which 450,000 individual oligo probes were synthesized, 
and provides an array chip with sufficient probes for the evaluation of over 12,000 
target “genes” in gene transcript expression profiling studies. Commercial arrays 
and their accompanying analytical systems are very costly. Some commercial arrays 
provide protocols for stripping the arrays following scanning and imaging in order to 
use them in another experiment (Elder et al. 1999). 

Researchers will want to consider issues such as specificity and efficiency of hy- 
bridization, and accuracy and reproducibility of resulting gene transcript expression 
levels when assessing the advantages and disadvantages of using oligo arrays versus 
cDNA arrays. Probe oligos may be more accessible for hybridization than the probe 
cDNA strands, due to their much shorter chains with single terminal points for at- 
tachment to the slide or chip. Another advantage of oligos is their use to detect a 
subregion of a gene, which is a valuable tool when there is a “family” of a gene with 
a high similarity of sequence. With a shorter oligo, a region that is different within 
the family can be detected. Additionally, having uniform lengths for the oligo probes 
enhances the chance of finding optimal hybridization, and it is easier to engineer. Sin- 
gle strands of cDNA must be spotted onto the array as complete molecules in order 
to promote fixation to the surface and subsequent accurate hybridization (Sinclair, 
1999); however, one spot on this type of array may be sufficient to identify a specific 
gene transcript. Oligo probes, on the other hand, may undergo cross-hybridization 
with several genes, requiring the use of the same oligo sequence in many spots on 
the array in order to identify a specific gene. Affymetrix uses 32 to 40 probes in each 
probe set of its oligo arrays, and the identification of a gene is made only if positive 
hybridization can be detected in the majority of the probes in the set. (The automated 
normalization techniques used in the Affymetrix system are explained further below.) 

There are also disadvantages to the use of oligo arrays. The potential for cross- 
hybridization mentioned previously, due to the use of only about 25 - 70 nucleotides 
in the oligo strands versus hundreds in cDNA strands, results in a loss of specificity 
in an oligo array experiment. Additionally, the oligos that are generated directly on 
the chip do not undergo a purification process - all products and by-products created 
during the photolithographic synthesis of the oligos may be fixed to the chip (Green et 
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al., 1999; Theriault et al., 1999.) Some commercially manufactured oligo chips have 
been found to have irregularities in the fluorescent intensities that are detected from 
the arrays, including bright edges and fluorescing streaks, sometimes caused by the 
packaging processes; as well as regions known as dark spots where the fluorescent 
signal is artificially low (Schadt et al. 2000). Of course, artifacts may occur on glass 
surfaces as well. An additional disadvantage to overcome when using the automated 
analytical programs that are part of the oligo chip system is that the default parameters 
in the analytical software are preset estimates based on data from the commercial 
entity; thus, they may not be updated automatically based on the user’s experimental 
findings and normalization criteria. (Affymetrix responded to this issue by developing 
“tunable” parameters allowed researchers to prioritize sensitivity versus specificity 
and to test for these using rigorous statistical methods (Foster and Huber, 2002, and 
their next generation products include some of these improvements). Commercial 
software programs include many automatic corrections, such as automatic correction 
of background fluorescence by detecting and subtracting the background intensity 
before analyzing the intensities of hybridization signals (Warrington et al., 2000). 
For a recent comparison of commercial software products, see Liu et al., 2004. 

Automated normalization techniques in the oligonucleotide array systems of A,&met- 
rix, Inc. 

To improve the signal-to-noise ratios and the specificity of gene transcript identi- 
fication, Affymetrix incorporates two forms of probe redundancy in its high-density 
oligonucleotide arrays. Firstly, the arrays are manufactured with multiple oligos of 
varying sequence that will hybridize to different parts of the same target polynu- 
cleotide; and secondly, the arrays are manufactured with probes that form a perfect 
match (PM) and a mismatch (MM) with the target polynucleotide of interest. Gen- 
erally, 11 to 20 PM and MM probe pairs are used in each probe set. The perfect 
match oligo probe will contain a segment of a wild-type allele (creating a perfect 
complementary match with a segment of the target polynucleotide of interest), while 
the mismatch oligo probe will be a copy of the PM oligo that has been altered by one 
base at a central position, usually the thirteenth position (Lipshutz et al., 1999; Schadt 
et al., 2000; Chudin et al., 2001). The altered base is created by reversing the base 
pairs at that site -replacing adenine with thymine (A T) and guanine with cytosine 
(G ---j C). Mismatches of base pairs at the center of an oligonucleotide (as opposed 
to mismatches at the end of the oligo strand) weaken the hybridization bonds enough 
that the image detector can discern a difference in signal intensity between a mis- 
match pair and a perfect match pair following hybridization. The mismatch probes 
therefore serve as controls, helping to discern a true hybridization signal from that 
produced by nonspecific hybridization. The PM-MM contrast is designed to subtract 
out cross-hybridization (that is, nonspecific binding to the probes). The assumption 
is that the nonspecific binding, which by definition does not have a detailed match, 
should not be different between PMs and MMs. The concept seems to work at the 
probe set level but not on the level of probe pairs, since about 33% of probe pairs 
have fewer PMs than MMs. 
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Affymetrix’s Genechip@ software aligns an image grid automatically, matching 
signals to their region of origin on the array; performs image segmentation; corrects 
for background noise; normalizes the data; and performs statistical calculations for the 
presence of a gene transcript and for its differential expression. The presence of a gene 
transcript is determined on the basis of a consistent pattern of hybridization that will 
occur between the sample target and the set of oligo probes on the array that are perfect 
matches and mismatches to the target. Originally, the presence of a gene transcript 
in the target solution was characterized by the signal intensity of the hybridized 
target-probe pair, derived from the average difference in fluorescent intensity between 
the PM and MM probe-target hybrid pairs (Schadt et al., 2000; Warrington et al., 
2000); Zarrinkar et al., 2001.) The presence of a specific gene transcript in the 
target solution was determined by an overall “positive” signal from the probe-target 
hybridized pairs. Affymetrix has more recently updated their software programs 
to reflect ongoing statistical research and improved methodologies. According to 
Affymetrix’s automatic analysis, a probe pair is positive when the averaged PM-MM 
intensity is greater than a calculated difference threshold, and the PM-MM ratio is 
greater than a set ratio threshold. A probe pair is “negative” when the averaged PM - 
MM intensity is less than the difference threshold or the PM/MM intensity is less than 
the ratio threshold. Genechipa system software sets default values for the difference 
and ratio thresholds that can be changed by the user (Warrington et al., 2000). 

Many researchers applying oligo chip technology have preferred to develop and 
apply their own statistical algorithms, and have found that the functional relationship 
between the paired PM and MM probe intensities is not always linear (Schadt et 
al., 2000; Chudin et al., 2001). Suggestions for improvements in the technology 
have included the use of higher numbers of replicates, longer hybridization times, 
examining the PM/MM sums as well as the differences, using quality scores from 
arrays that have already been analyzed to evaluate the performance of new probes; 
and developing and applying more sophisticated algorithms (Schadt et al., 2000). 
These methods are reviewed in detail in Chapter 2. 

1.5.5 SAGE: Another Method for Detecting and Measuring Gene 
Expression Levels 

Commonly used methods for the measurement of gene expression levels are divided 
into two general categories: analog and digital. Analog methods are based on sample 
hybridization to cDNA clones or oligonucleotides on arrays (cDNA microarrays and 
chips), while digital methods are based on the generation of sequence tags (EST 
generation and serial analysis of gene expression) (Audic and Claverie, 1997). 

Serial analysis of gene expression (SAGE) involves the sequencing of very short, 
unique sequence tags of nucleotides from a sample, with each tag representing a 
transcription product (Velculescu et al., 1995). Whereas EST methods have utilized 
segments that are 100 to 300 nucleotides in length, SAGE methods are based on 
segments of only 9 to 11 nucleotides that are located precisely within the gene. The 
abundance of the sequenced tags in a sample is then analyzed to represent the level of 



24 MICROARRAYS IN GENE EXPRESSION STUDIES 

the gene transcript expression in the sample. SAGE technique runs a high risk of error 
when two or more genes share the same tag and when a gene has more than one tag, 
due to nonspecific assignment of tags or polymorphism. A tag of 9 or 10 base pairs is 
not a complete representation of a gene’s entire transcribed sequence, but it should be 
enough to identify the gene unambiguously. SAGE does not involve hybridization, 
and evidence of relative gene expression is not dependent on the sequences affixed to 
the microarray, as is the case in cDNA microarray technology. Many public databases 
from large-scale gene expression studies use SAGE data (Audic and Claverie, 1997; 
Meltzer, 2001 ; Wolfsberg and Landsman, 2001). However, cDNA microarray tech- 
nology may still be more appropriate than SAGE for the analysis of large numbers of 
samples (Meltzer, 2001). 

1 S.6 Emerging Technologies 

Emerging mRNA/cDNA amplification techniques include the in vitro transcription 
reaction (IVT), which is thought to be particularly important for the amplification 
of very limited genetic samples, such as samples of tumor tissue obtained by laser- 
capture microdissection. The IVT method uses a linear amplification process, as 
opposed to the exponential amplification that is possible through the PCR technique. 
The advantage of using the IVT technique is the reduction in a quantitative PCR bias. 
This is a bias that occurs through application of the PCR technique in which a relative 
abundance of cDNA clones that are not truly representative of the mRNA levels in  the 
original tissue sample are generated in PCR (Lockhart and Winzeler, 2000; Nallur et 
al., 2001). 

Among the DNA microarray technologies in various levels of development are the 
DNA microfluidics chip, also known as the lab-on-a-chip, whole cell arrays, electronic 
chip activation technology (Heller et al., 1999; Ramsey, 1999), and microsphere- 
based fiber optic microarrays (Epstein et al., 2003). Increased miniaturization, to- 
gether with sample preparation and hybridization technologies that facilitate the par- 
allel analysis of greater numbers of samples on multiple arrays is leading to the 
approximation of an entire study of gene transcript expression profiles for a specific 
pathophysiological state (Zarrinkar et al., 2001, Weeraratna et al., 2004), as well as 
whole genome studies for various organisms. 

1.6 SAMPLING OF RELEVANT RESEARCH ENTITIES AND PUBLIC 
RESOURCES 

Public repositories f o r  array-based gene expression data 

International sequence databases include the GenBankm’, [National Center for 
Biotechnology Information (NCBI), National Institutes of Health, Bethesda, Mary- 
land], the DNA DataBarik of Japan (DDBJ), at the Center for Information Biology 
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in Mishima, Japan; and the European Molecular Biology Laboratory (EMBL), sup- 
ported by the European Bioinformatics Institute in Cambridgeshire, UK. Through 
an agreement known as the International Nucleotide Sequence Database Collabora- 
tion, the three organizations conduct daily exchanges of data through the Internet. 
GenBank contains nucleotide sequences from more than 140,000 organisms. As of 
August 2003, GenBankB reported that the collaboration held approximately 33.9 
billion nucleotide bases from 27.2 million individual sequences (Benson et al. 2004). 

Notable contributors to the EST database of the U.S. National Center for Biotech- 
nology (dbEST) and to supporting its public availability include Washington Uni- 
versity Genome Sequencing Center (St. Louis, Missouri) through its support by 
the Howard Hughes Medical Institute; members of the I.M.A.G.E. Consortium (see 
below); and Merck & Co., Inc. (Whitehouse Station, New Jersey). 

The Institute for Genomic Research (TIGR) in Rockville, Maryland, is a not-for- 
profit research institute with academic partnerships throughout the world. This group 
focuses on the analysis of genomes and gene products from a wide variety of organ- 
isms, including many viruses and bacteria. TIGR researchers have completed the 
genome sequencing of many pathogens. Published EST sequence data are available 
through the TIGR Web site, h t t p :  //www. t i g r .  org. 

GeneX Database, supported by the U.S. National Center for Genomic Research 
(NCGR), and ArrayExpress, supported by the European Bioinformatics Institute 
(EBI) in the UK, are compliant with current recommendations of standardization 
(Brazma et al., 2000). 

I.M.A.G.E. Consortium (Integrated Molecular Analysis of Genomes and their 
Expression), brought together four researchers and their colleagues, with finan- 
cial support from the U.S. Department of Energy, in the creation of an extensive 
cDNA library. Researchers from the University of Iowa (Iowa City, Iowa), Cen- 
tre National de la Recherche Scientifique (Villejuif, France), Novartis Corporation 
(Hagerstown, Maryland), the National Institutes of Health (Bethesda, Maryland), 
and Lawrence Livermore National Laboratory (Livermore, California) were the orig- 
inal contributors to the I.M.A.G.E. research product, which is Internet accessible at 
http://image.llnl.gov/. 

Institutes of the Human Genome Project: 

0 Whitehead Institute for Biomedical Research in Cambridge, Massachusetts 

The Wellcome Trust Sanger Institute in Hinxton, Cambs, United Kingdom 

Baylor College of Medicine in Houston, Texas 

Washington University in St. Louis, Missouri 

Department of Energy’s Joint Genome Institute (JGI) in Walnut Creek, Cali- 
fornia 

The U.S. Department of Energy’s Joint Genome Institute (JGI) is a consortium 
of researchers from the Department of Energy’s Lawrence Berkeley, Lawrence Liv- 
ermore. and Los Alamos National Laboratories. Partner institutions include Oak 
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Ridge National Laboratory (genome annotation), Brookhaven National Laboratory 
(molecular biology), Pacific Northwest National Laboratory (proteomics), and Stan- 
ford Genome Center (finishing). 

Peter Lemkin, a computer scientist at the Laboratory of Experimental and Compu- 
tational Biology, National Cancer Institute (NCI), developed a program (MicroArray 
Explorer) for the quantitative analysis of cDNA expression profiles across a group of 
microarrays (Hollon, 2001). 

The Stanford Microarray Database (SMD), which is Internet accessible (h t  t p  : 
//genome - www5 . stanf ord . edu/) is implementing annotations developed by 
the Array SML working group at Stanford University, Laboratory of Patrick 0. Brown, 
Department of Biochemistry and Biophysics. 

Some commercial entities in the United States 

Affymetrix, Inc. (Santa Clara, California) uses silica chips for the support structure 
of an array. Their product requires the use of specialized equipment for scanning 
and processing data from each study. Affymetrix developed the process of in situ 
synthesis of oligonucleotides of specific sequences on a silica surface, known as the 
Genechip@. 

The oligos in the Genechip@ have the characteristics of photospecificity and 
varying sequences in predetermined locations on an array. The National Institutes 
of Health established an agreement with Affymetrix, Inc., known as the Academic 
Access Program, through which Affymetrix offers volume discount pricing of its 
array products to academic researchers. The company agreed in early 2002 to provide 
public access to the sequence data of their oligonucleotide probes (Foster and Huber, 
2002). New Affymetrix products include the Human Genome U133A array, which 
all researchers to test gene expression in 96 biological samples at one time, and 
the Genechip@ Mapping lOOK Array Set, a two-microarray set that can be used 
to genotype over 100,000 SNPs and is the first in a family of commercial products 
that will facilitate large-scale whole-genome association studies, which had been 
previously unaffordable or impractical. 

Agilent Technologies, Inc. (Palo Alto, California) developed a whole genoma on 
a single microarray chip in 2003. 

Amersham Biosciences (Piscataway, New Jersey) provides products and services 
for gene and protein research. CodeLinkTM prearrayed slides are among the products 
distributed by Amersham Biosciences. 

Applied Biosystems (Foster City, California) developed the first automated DNA 
sequencer in 1986 that labeled different nucleotide bases with fluorescent dyes, elim- 
inating the need for radioactivity in gene studies. 

BioDiscovery (Marina del Rey, California) develops software products for auto- 
mated microarray work flow. 

BioTrove, Inc. (Woburn, Massachusetts) has developed the Living ChipM sys- 
tem, a process for rapid and parallel nanoliter-scale liquid processing for ultra high- 
throughput analysis of molecular, biochemical and cellular samples. Its array support 
consists of 25,000 isolated nanoliter reaction containers in individually stackable 
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plates the size of a standard microplate, and is designed for the analysis of much 
smaller volumes of sample more quickly. 

CLONTECH Laboratories (Palo Alto, California) produces cDNA arrays on nylon 
membranes and offers some arrays on glass slides. CLONTECH offers two general 
types of arrays: (1) arrays containing genes that are grouped according to their func- 
tion in the cell (that is, apoptosis, oncogenesis, normal cellular regulation), and (2) 
arrays specific to the area of application (for example, immunology, hematology) (De 
Francesco, 1998). 

CombiMatrix Corporation (Burlingame, California) manufactures Arraychips us- 
ing programmable in situ synthesis of oligonucleotides on a highly porous membrane 
overlying a semiconductor chip. Array densities range from 1,000 to 500,000 indi- 
vidual assay sites per square centimeter (Montgomery, 1999). 

Compugen (Tel Aviv, Israel) has developed a computer platform (LEADS) that 
uses advanced proprietary algorithms to create a complete view of the transcriptomes 
of complex organisms, and to model complex biological phenomena. 

Eurogentec(Likge, Belgium) produces DNA microarrays and provides custom 
oligo synthesis. 

Exigon (Vedback, Denmark) produces DNA analogues (LNA) for oligonu- 
cleotides, as well as nucleotide embolization products. 

Gene Logic, Inc. (Gaithersburg, Maryland) has created GeneExpress databases for 
specific research applications through an analytical system known as Restriction En- 
zyme Analysis of Di~erentially-expressed Sequences (READS). They use Genechip@ 
arrays licensed from Affymetrix, Inc., to generate gene expression data from a variety 
of tissue samples. Commercial databases that they have created include BioExpress, 
ToxExpress, and PharmExpress. Gene Logic demonstrated accurate applications 
of gene transcript expression profiling in hepatotoxicity analysis at a conference on 
microarray data analysis in November 2001 that was presented by the Cambridge 
Healthtech Institute (Newton Upper Falls, Massachusetts) (Foster and Huber, 2002). 

Genisphere, a developer and manufacturer of array labeling and hybridization 
products, is a division of Datascope Corporation (Montvale, New Jersey). Genisphere 
produces dendrimer labeling products. 

Genometrix, Inc. (The Woodlands, Texas) manufactures microarrays specifically 
for the study of gene expression in the mouse as well as for experiments in cancer 
and toxicity, using a glass or microplate substrate (De Francesco, 1998). 

Illumina, Inc. (San Diego, California), in competition with manufacturers of other 
high-density arrays, has developed the Sentrixm BeadChip and BeadArray technol- 
ogy for whole-genome studies. Each BeadChip contains over ten million features, 
distributed across a number of discrete array regions. The SNP genotyping Bead- 
Chip will contain over 200,000 sequence-specific bead types (each locus requires two 
allele-specific probe sequences), with greater than 30 times the average redundancy 
of each bead, or feature. 

Invitrogen Life Technologies (Carlsbad, California) is a leading supplier of molec- 
ular biology reagents and kits. Invitrogen produced the first complete kit for making 
cDNA libraries (The Librarian), in 1987. Invitrogen launched a pre-cast electrophore- 
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sis gel in 1996 that is the only room-temperature stable gel to offer rapid and accurate 
protein electrophoresis. 

Link Technologies, Ltd. (Lanarkshire, Scotland) manufactures S ynBas; control- 
led-pore glass supports for arrays. 

Matrix Science, Inc. (London, UK) offers proprietary algorithms to be used with 
its search engines to search mass spectrometry data against sequence databases. 

Micralyne (Edmonton, Alberta, Canada), has developed micro-electro-mechanic- 
al-systems (MEMS)-based components. Micralyne’s MEMS solutions include lab- 
on-a-chip devices and microfluidics. 

Motorola Life Sciences (Pasadena, California) manufactures high-performance 
microarray tools for genetic analysis. This company developed CodeLinkTM prear- 
rayed slides, subsequently purchased by Amersham Biosciences. 

MWG Biotech AG (Ebersberg, Germany) has developed HPSF(R) synthesis tech- 
nology for microarray applications. This technology facilitates rapid production of 
purified, salt-free oligonucleotides. 

Nanogen (San Diego, California) has developed electronic chip activation tech- 
nology, a process wherein the DNA solution is poured over a microchip and a row, 
column, or spot on the chip is activated electrically, introducing a positive charge onto 
the chip’s surface. The single strands of negatively charged DNA in solution migrate 
in microfluidic channels toward the charge, where they undergo chemical bonding to 
the chip’s surface. The chip is then washed off, and another DNA solution is poured 
over it. After hybridization, the charge is reversed. Electronic activation at the chip 
surface can also increase hybridization efficiency between the DNA strands of known 
and unknown sequences. 

NextGen Sciences, Ltd. (Cambridgeshire, UK) developed the first bench-top au- 
tomated 2-D electrophoresis system. 

RZPD (Berlin, Germany) provides high-throughput technology and automation 
solutions. RZPD’s portfolio includes clones of genomic and cDNA libraries, expres- 
sion clones with full open reading frames, siRNA resources, high-density colony, 
DNA, and protein arrays, custom microarrays, expression profiling, Affymetrix ser- 
vice, high-throughput PCR amplification, and cDNA library generation. 

Sequenom Genetic Systems (San Diego, California) has developed the MassAR- 
RAY TM system of hardware, software, and reagent products for large-scale, high- 
throughput DNA analysis. 

SIRS-Lab GmbH (Jena, Germany) produces pre-defined and custom biochips 
and arrays from polynucleotides and from 6,000 sequenced cDNA clones in their 
databases. 

Stratagene (La Jolla, California) develops and manufactures amplification and 
microarray products. 

Among the companies manufacturing microarray spotters are BioRobotics, Inc. 
(Woburn, Massachusetts); Cartesian Technologies, Inc. (Irvine, California); and 
Genomic Solutions (Ann Arbor, Michigan). 

Tecan Group, Ltd. (Maennedorf, Switzerland) offers a suite of products for gene 
expression and analysis. 
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Zeptosen AG (Witterswil, Switzerland) has developed the SensiChipTM Microarray 
Bar, which consists of six different or identical microfluidic arrays, using planar 
waveguide technology. 
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3 
Cleaning and 

Normalization 

2.1 INTRODUCTION 

It is crucial for any high-throughput technology to have sufficient quality control for 
each operation or step in the study, especially at the data acquisition level. The tech- 
nology for microarray studies is still evolving, and many researchers are conducting 
their studies using different types of customized microarrays, including home-made 
array chips. In general, the current technology does not consistently generate robust 
and reliable data when used in the average laboratory. Ideally, reliable microarray 
data should exhibit the qualities of accuracy, assessed by the probable error of a 
measurement, and precision, defined by the reproducibility of a measurement. The 
images from the hybridized arrays constitute the essential raw data for microarrays, 
where intensities of the signals are measured using specialized imaging software. 
The intensities of the signal represent the amount of fluorescent DNA bound to mi- 
croarrays and is subject to considerable uncertainty because of large- and small-scale 
intensity fluctuations within spots, nonadditive background, and fabrication artifacts 
(Brown et al. 2001), contributing to poor-quality images. 

Other sources of systematic variation, internal or external to the sample, include 
fluctuations in the physical properties of the dyes, efficiency of dye incorporation, 
probe coupling and processing procedures, target and array preparation in the hy- 
bridization process, background and overshining effects, and scanner settings, among 
others. Critical first steps in any analysis of gene expression data include an attempt to 
clean the data by automatic procedures that can improve image quality, by separating 
signal from noise, and by handling missing values. Subsequently or simultaneously, 
the removal of the various sources of variation can also be accomplished by perform- 
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ing appropriate normulization procedures. The literature that describes normalization 
methods for different types of cDNA, oligonucleotide, and other arrays is expansive 
and constantly evolving. Researchers distinguish DNA microarray data analysis into 
primarily two types: ( I )  one-channel DNA data that reflect absolute intensities and 
are derived from technologies that employ the hybridization of individual labeled 
cDNA probes to a microarray; versus (2) two-channel DNA data that represent rela- 
tive intensities or ratio data derived from the simultaneous competitive hybridization 
of two distinct cDNA probes, each labeled with a different fluorescent dye. Many 
technologies use background subtraction methods that precede both global and lo- 
cal normalizations. In particular, one-channel radioactivity-based technologies may 
use a low number of background measurements to generate a single background in- 
tensity that can be subtracted from all array element signal intensities. In contrast, 
two-channel fluorescence-based technologies may subtract the local measurement of 
background intensity from each array element individually. 

In this chapter we focus mainly on describing standard cleaning processes and on 
summarizing common normalization methods for oligonucleotide arrays and cDNA 
arrays. The different normalization procedures may be described as global or local 
(with intensity and location dependence), linear or nonlinear, and by the characteristic 
of whether they are applicable to single or multiple array analyses. The importance of 
replication and limitations of the different normalization methods is also addressed. 

2.2 CLEANING PROCEDURES 

Gene spots are often composed of characteristic imperfections such as irregular con- 
tours, donut shapes, artifacts, and low or heterogeneous expression. The simplest 
initial cleaning attempt is to perform background correction. It is often assumed that 
the signal observed is a combination of the true signal (from the specific hybridiza- 
tion of interest) and the background signal (due to nonspecific hybridization andlor 
contamination). The standard approach is simply to subtract the background esti- 
mate directly from the spot intensity. However, the background signal may increase 
due to dust, fibers, fingerprints, autofluorescence of the coated glass, hybridization 
problems resulting from dehydration near the edge of coverslips, or residual effects 
from inadequate washing (Hess et al. 2001). Quality assurance is required in the 
initial step of extracting numerical foreground and background intensities (that is, the 
image processing step). Further, physical contaminations can cause missing values 
in the extracted image; thus, appropriate methods to handle missing values are also 
considered. 

2.2.1 Image Processing to Extract Information 

Many image analysis methods have been adapted to deal with the specific problems of' 
microarrays. Two issues of great importance in obtaining good data are determining 
the background signal and reducing the impact of poor-quality spots on the data set. 
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Fig- 2.7 Target patch, mask, and site. 

Fig, 2.2 Examples of spot imperfections. A. donut shape; B. oval or pear shape; C. holey 
heterogeneous interior; D. high-intensity artifact; E. sickle shape; F. scratches. 
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Good reviews of existing methods can be found in Bozinov and Rahnenfiihrer (2002) 
and Smyth et al. (2002). For cDNA arrays, the image processing phase consists of 
three steps: (1 )  The addressing step identifies the target areas or the combined area 
of a spot and its background; (2) the segmentation step partitions the target area into 
foreground and background areas; and ( 3 )  the reduction step extracts the red (R)  and 
green (G) intensities and assigns the ratio RIG to represent the relative abundance 
of each spot. The image needs to be segmented into target patches corresponding to 
predetermined cDNA targets positioned by the robot. Depending on how the robot 
finger places the cDNA on the slide or how the slide is treated, the target site may 
exhibit between-image variability and even between-target variability. Ideally, every 
spot on a microarray has the shape of a circle, and all spots should have consistent 
diameters. A diagrammatic representation of target patch, mask, and site is given in 
Figure 2.1. Problems arise when the observed spots present with variable diameters, 
variable contours (sickle shape, donut shape, oval or pear shape, scratched or inter- 
rupted shape), black holes inside spots, high background andlor low foreground, or 
spatial artifacts due to dirt on the slide or slide treatment (Figure 2.2). Image analysis 
procedures may try to rectify the spatial problems by capturing the true shape of the 
spots. Other image methods may use the distributional properties of the pixel intensity 
values, such as their histogram, to discriminate between foreground and background 
areas. There are also hybrid image analysis approaches that combine the spatial and 
distributional methods. 

Basic implementations that assume circular spots and ignore irregular shapes are 
included in most of the common software packages, such as ScanAlyze (Eisen, 1999), 
GenePix (Axon Instruments Inc., 1999), and QuantArray (GSI Lumonics, 1999). 
Both ScanAlyze and GenePix allow estimation of the spot diameter for each circle 
individually. 

QuantArray also implements two distributional methods for image analysis. The 
first method, described in Chen et al. (1  997), relies heavily on first defining a good 
background region from which eight pixels are selected at random. It is assumed that 
the foreground pixels from within the target mask form a sorted list. The analysis 
starts with a target window consisting of the lowest eight foreground intensities in 
the list. Pixels in the target window are compared to the background pixels via the 
Mann-Whitney rank sum statistic at some fixed critical value (a = 0.05 or 0.01). If 
the test statistic is not significant, the target window is slid up the sorted list by 2 

(perhaps 1) pixel(s) to form an updated target set. This procedure is iterated until 
statistical significance is reached. The true spot signal thus consists of the final 
target set of eight pixels and all lighter ones in the sorted list. The second method 
implemented by QuantArray relies on the observed histogram of the pixels and defines 
the background as pixels with intensities between the 5th and 20th percentiles while 
those with intensities between the 80th and 95th percentiles form the foreground. 
This method is not adaptive since it does not account for the variable size of the spot. 

Two adaptive segmentation methods that do not assume spot circularity are the 
watershed method (Beucher and Meyer, 1993) and seeded region growing (Adams 
and Bischof, 1994). Both methods require the specification of starting points and the 
spot detected area is enlarged in a stepwise manner until some criterion is reached. 
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Seeded region growing is implemented in the Spot software (Buckley, 2000), based 
on the R programming language. Details can be found in Yang et al. (2002b) and at 
http://www.stat.berkeley.edu/users/terry/zarray/. 

For background estimation, the Spot software uses a nonlinear filter, the morpho- 
logical opening (Soille, 1999), to smooth out all local peaks and artifacts over the 
entire slide image, thus extracting only the background intensities. The nonlinear 
filter combines a local minimum filter called erosion with a local maximum filter 
called dilution. The advantages of this method of background estimation are that the 
background estimates derived are obtained at the actual spot locations and are not 
influenced directly by the bright pixels belonging to the actual spots. A comparison 
study of various segmentation and background estimation methods was carried out 
by Yang et al. (2002). They concluded that morphological opening is a more reliable 
background estimation method than others and that the choice of background correc- 
tion method has a larger influence on the log ratios of intensities than does the choice 
of segmentation method. 

The methods described above do not work well when an artifact falls into the 
background area, resulting in an overestimation of the background value, or when 
the signals are so weak that there is no marked transition between foreground and 
background. ImaGene (BioDiscovery Inc., 1997) attempted to circumvent these 
problems with a hybrid solution of shape segmentation and distributional methods. 
Initially, a circular shape is selected to form the basis of the separation of pixels into 
foreground and background. Subsequently, the distribution of the pixels is depicted 
from which an arbitrary fixed interval is chosen. All pixels with intensities that lie 
outside this interval are considered as extreme and eliminated, thus minimizing the 
effects of outliers and artifacts. 

A more recent approach was proposed by Bozinov and Rahnenfuhrer (2002) based 
on the use of pixel clustering methods to discriminate a target area of one gene spot 
into foreground and background pixels. The clustering procedure is simplified since 
the number of clusters is known to be two (foreground and background). They 
implemented two pixel extraction methods: (1) Partitioning Around Medoids (PAM) 
(Kaufman and Rousseeuw, 1990), and (2) k-means (MacQueen, 1967; Bock, 1992). 
Let R, and G, denote the expression values for the ith pixel of a particular spot 
corresponding to the red and green dyes, respectively, and let w, = (R,, G 2 ) T .  
Also, let wi and wa denote the medoids (data points) that are representative of the 
foreground and background clusters. The PAM pixel extraction algorithm is applied, 
using the Manhattan distance function d(w,, wJ) = I R, - R, I + IG, - G, I to measure 
the distance between the ith and j th  pixels. This algorithm solves for wT and wa by 
finding a local minimum of the objective function 

Alternatively, the k-means pixel extraction algorithm uses an objective function 
based on the sum of the squared Euclidean distances to the two cluster centers w; and 
wf and looks for minimum variance partitions. Both the PAM and Ic-means methods 



36 CLEANING AND NORMALIZATION 

require some random starting points, and the optimization step is iterated until con- 
vergence according to some predefined criterion. Exact algorithmic details can be 
found in Bozinov and Rahnenfuhrer (2002). Their proposed methods can cope with 
exemplary spots that contain one or more imperfections commonly encountered in 
practice. The methods proved to be robust with respect to variability in target area 
size, shape, or pixel intensity; and even artifacts encapsulated within the spots could be 
isolated dynamically. However, one of the shortcomings of these methods manifests 
itself in the case of low expression spots with large bright artifacts, thus misleading 
the clustering algorithm to classify the artifact as foreground while merging the actual 
gene spot with the real background. Possible remedies to this problem are still being 
investigated. 

Other researchers suggested more sophisticated methods of background adjust- 
ment to produce positive adjusted intensities when the resulting background estimate 
is larger than the foregroundestimate, or for highly irregular spots. A simple measure 
of spot irregularity was proposed by Brown et al. (2001) where the normalized stan- 
dard deviation of the ratio measurement yi, termed the spot ratio variability (SRV), 
can be calculated as SRV, = a,/y,. This SRV can subsequently be employed in 
assigning significance estimates to expression ratios through the calculation of robust 
confidence limits. Theilhaber et al. (2001) proposed a Bayesian algorithm of putting a 
prior distribution on the foreground intensity before estimating the fold change based 
on expression ratios on a regular scale. Kooperberg et al. (2002) proposed a Bayesian 
method for background correction and the computation of log-expression ratios from 
glass spotted arrays. They assumed that there are two additive effects: ( I )  the effect 
of RNA attaching to the unprocessed array within the background region, and (2) 
the effect of RNA hybridizing to the target cDNA or to the glass medium. Thus, 
the intensity of background and foreground pixels may be assumed to be, respec- 
tively, random variables with mean p b  and pf = p t  + pb,  where both pt and pb are 
nonnegative. They formulated relationships between the background and foreground 
intensities observed, 21, and xf, with their respective true intensities, pb and p f ,  and 
appropriate prior beliefs on the true intensities. Subsequently, a posterior distribu- 
tion can be calculated from which a better estimate of pt can be derived. The main 
advantage of this Bayesian method is that it reduces the variation of the estimates of 
the expression ratio when the expression levels are low, while maintaining unchanged 
estimates for expression ratios corresponding to higher expression levels. 

2.2.2 Missing Value Estimation 

Another problem often encountered in practice is that gene expression microarray 
experiments can generate data sets with multiple missing expression values. Missing 
values occur for diverse reasons, including insufficient resolution, image corruption, 
or due simply to dust or scratches on the slide. Missing data may also occur systemat- 
ically as a result of the robotic methods employed in generating the microexpression 
arrays. 

Some simple strategies often employed in practice to handle missing or suspicious 
data are to flag their positions manually and exclude them from subsequent analysis, 
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or to replace missing log-transformed data by zeros or by an average expression over 
the rows (samples or experiments) (Alizadeh et al. 2000). Such approaches are 
not optimal since the correlation structure of the data is not taken into account. An 
expensive alternative is to repeat the experiment. 

More sophisticated imputation methods of missing data that take advantage of the 
correlation structure of the data have been proposed by Troyanskaya et al. (2001) based 
on k-nearest neighbors (k-NN) or a singular value decomposition (SVD approach). 
These methods are summarized briefly below. 

Imputation based on k-nearest neighbors 

The k-NN imputation algorithm uses a gene similarity measure (Euclidean dis- 
tance, Pearson correlation, variance minimization) to impute missing values. Suppose 
that for the j t h  sample or experiment, the expression value yrJ is missing for gene 
z. A weighted average is calculated from the k genes with nonmissing values for 
experiment j that have closest expression profiles to gene i in the remaining samples 
or experiments; the weight may be proportional to the similarity measure. 

Imputation based on Singular Value Decomposition 

As a preliminary step, all missing values in matrix A are imputed using the row 
average method. The SVD algorithm produces a set of mutually orthogonal expres- 
sion patterns that can be combined linearly to approximate the gene expressions in the 
N x M microarray data matrix A of N genes and M conditions/samples/experiments. 
The singular value decomposition of A is 

where U1 and U, are orthogonal matrices. The columns of Uz form the eigenvectors 
or eigengenes of ATA, corresponding to the eigenvalues on the diagonal of matrix 
A. The largest k significant eigengenes are selected empirically to form the basis for 
the imputation process. Gene i with missing value for a sample j is regressed against 
the k eigengenes (while ignoring all expression values corresponding to experiment 
, I ) .  An estimate of the missing giJ is obtained from a linear combination of the k 
eigengenes weighted by the regression coefficients. The SVD imputation process 
is iterated until the total change in the matrix A converges to an sufficiently small 
arbitrary value. 

Troyanskaya et al. (2001) compared the performance of their proposed methods 
to the row-average algorithm in terms of computational complexity and accuracy 
measured via normalized root mean square (RMS) errors as a function of the fraction 
of missing values. They concluded that although row averaging is the fastest method, 
it does not perform well in terms of accuracy. They recommend the k-NN imputation 
method as the most robust against the increasing fraction of missing data. However, 
they also extended a cautionary note in drawing critical biological conclusions from 
partially imputed data. Researchers should flag locations with missing data and assess 
carefully any significant biological results suggested by the corresponding imputed 
data. 
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2.2.3 Sources of Nonlinearity 

A key assumption in the analysis of microarray data is that the quantified signal in- 
tensities are related linearly to the expression levels of the corresponding genes. A 
recent study by Ramdas et al. (2001) examined this relationship experimentally for 
two types of microarrays commonly encountered: radioactively labeled cDNAs on 
nylon membranes and fluorescently labeled cDNAs on glass slides. They uncovered 
two discrepancies: signal quenching associated with excessive dye concentrations, 
and a nonlinear (square-root) transformation ofthe raw data introduced by the scanner. 
These nonlinearities were revealed by serial dilution experiments, which is recom- 
mended as a quality control step. The problem of nonlinearity has been recognized 
by many other researchers, and there are normalization methods proposed to correct 
for nonlinearity, as described below. 

2.3 NORMALIZATION AND PLOTTING PROCEDURES FOR 
OLIGONUCLEOTIDE ARRAYS 

A major concern with oligonucleotide arrays is the problem of saturation, where 
both PM and MM probe intensities reach the maximum intensity allowed by the 
scanner. Much of the important information may lie in the high values ofPM and MM. 
Saturation may result in missing out on differential expressions between chips due to 
the artificial maximum tableau applied to intensities at the high end. A simple way to 
circumvent this problem is to tune down the scanner. Others perform normalization 
procedures in a simultaneous attempt to reduce the effects of multiple sources of 
variation. Exploratory plots are helpful in detecting obscure sources of variation. 
For example, one may consider direct chip-to-chip comparison of PM values via box 
plots of log,(PM), log,(MM), log,(PM/MM), or PM-MM. Alternatively, one can 
explore intensity-related biases for each pairwise chip comparison via M-A plots of 
A 1  = log,(PMk/PM,) versus abundance A = log, J P R I k  x PnlIl for two different 
chips A: and b .  If the M-A plots exhibit any obvious curvature deviating from the 
horizontal line at zero, normalization is recommended. 

2.3.1 Global Approaches for Oligonucleotide Array Data 

Most classical normalization procedures for oligonucleotide arrays are global ap- 
proaches, based on normalization of the overall mean or median array intensity to a 
common standard, such as those implemented in the Affymetrix GeneChip software 
(Affymetrix Inc., Santa Clara, California). Detailed descriptions of Affymetrix nor- 
malization methods can be found in the Version 5.0 Affymetrix Microarray Suite User 
Guide. Normalization methods implemented are similar to scaling and enable com- 
parison analysis of an expression and baseline array. The main goal is to minimize 
discrepancics between an experiment and baseline array due to variation in sample 
preparation, hybridization conditions, staining, or probe array lot. Microarray Suite 
offers three types of normalization: 
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User-Dejined Normalization. User-defined normalization multiplies the signal 
of each probe set on an array by a user-specified normalization value, where a 
value of 1 is equivalent to no normalization. 

All Probe Sets Normalization. This method adjusts or normalizes the trimmed 
mean signal (TMS) of the experiment to the trimmed mean signal of the base- 
line. A normalization value is computed such that 

TMSbascline = (normalization value) x TMSexperiment. 

Selected Probe Sets Normalization. For this normalization option, Microarray 
Suite utilizes user-selected probe sets to compute the trimmed mean signal of 
the experiment and baseline and to derive a normalization value analogous to 
that shown above. User-selected probe pairs may be excluded or masked from 
an expression analysis by creating a probe mask file that specifies the probe pairs 
to be excluded from an analysis. Microarray Suite allows the user manually to 
include or exclude specific probe set names or to utilize more advanced features 
that automatically generate three types of probe masks: cross-hybridization, 
hybridization, or spike probe mask. The cross-hyhridization probe mask spec- 
ifies probe pairs that have a perfect match (PM) or mismatch (MM) probe cell 
with an intensity that exceeds a user-specified limit. The hybridization probe 
mask method analyzes one or more user-specified cell intensity files to gener- 
ate a hybridization probe mask composed of probe pairs that meet either of the 
following criteria: PM - MM 5 Su or P M M M  5 b ~ ;  where 60  and 6~ are 
threshold values that are user-modifiable with defaults of 30 and 1.5, respec- 
tively. The spike probe mask method compares two user-specified cell intensity 
files, one derived from aspiked target that contained known amounts of acontrol 
transcript, and one derived from an unspiked target. A hybridization probe mask 
is generated comprising probe pairs that meet either of the following criteria: 

< 1 + CYR, where ag and CVR are threshold values that are user-modifiable with 
defaults of 30 and 1, respectively. 

(PM-MM)spike - (PM-MM)unspike < Q D  Or (PM-MM)spike/(PM-MM),,,,pikc 

2.3.2 Spiked Standard Approaches 

Normalization procedures implemented in the Affymetrix GeneChip software are 
referred to as global or vzaled average difference. There are several limitations 
to global normalization. First, global normalization does not absolutely quantify 
mRNA abundances. Second, global normalization implicitly assumes that the mean 
expression level of all monitored mRNAs is constant. The validity of this assumption 
depends on the number and biological characteristics of genes monitored by an array 
and does not hold for smaller arrays, where only a limited set of mRNAs is monitored. 
Third, global normalization does not deal well with low-abundance transcripts that 
are present at levels below the detection sensitivity, typically about 1 : 100,000mRNAs 
for Affymetrix GeneChip assays. Such mRNAs induce noisy and sometimes negative 
intensity values, which cannot be log-transformed automatically. 
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Fraction of transcriptome 
Fig. 2.3 Plot to assess constant-mean normalization. The overall data set represents 
19,031 mRNAs for samples covering widely divergent developmental stages of the nema- 
tode Cuenorhabditis elegnns. The mRNAs were monitored by three array designs with 13 
hybridizations for each design. The subsets were chosen randomly and ranged in size from 20 
to 19,03 1 genes or 0.05% to 100% of this transcriptome, respectively. From Hill et al., (2001). 

Hill et al. (2001) evaluated two alternative approaches to the standard global nor- 
malization scheme, which they coined frequency and scaled frequency normalization 
based on the use of spiked standards. These procedures require the presence of a 
common pool of biotin-labeled transcripts of known concentrations spiked into each 
hybridization. Appropriate plotting procedures can assist in deciding if the global 
normalization method is adequate; that is, whether the assumption that the mean 
expression level on an array should be the same for all samples and all arrays. To 
evaluate the constant-mean assumption, Hill et al. (2001) constructed hypothetical 
arrays of their overall data by choosing random subsets of genes with varying sizes 
represented by fractions of transcriptome. One can examine the associated coefficient 
of variation (CV) of the mean expression level via plots such as Figure 2.3. This plot 
indicates that the constant-mean assumption for global normalization may be accept- 
able for arrays measuring more than 10% of the genes, but the CV is substantially 
increased for smaller subsets and can be more dramatic if there is bias in the selection 
of genes on the array. 

Spike-in frequency normalization: This procedure consists of two main steps: 

Step 1. Calibration of the arrays: This step allows investigators to transform 
average differences (ADS) to cRNA frequency estimates. First, a number of control 
scripts are spiked into the hybridization solution at known concentrations. From a 
single hybridization one can produce a plot of the AD values for the spike-in controls 
versus the transcript frequency in units of transcripts per million. A generalized model 
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may be fitted to the plotted points, which can subsequently be used to calibrate the 
AD values of the other genes on the array. 

Step 2. Estimation of the minimum detectable frequency on the array. Logistic 
regression can be applied to define chip sensitivity as the frequency at which the 
estimated probability of a gene being present is at least p%, where p is often greater 
than 50%. 

Hill et al. (2001) noted that frequency estimates might be biased by experimental 
limitations on the accuracy with which control transcripts can be spiked into cRNA. 
cRNA impurities can lead to spike-skew normalization effects where all readouts 
from one array are systematically higher or lower than those from another array. To 
mitigate the effects of spike-skew, Hill and colleagues developed the hybrid scaled 
frequency normalization method described below. 

Spike-in scaled frequency normalization: The principle here is to remove technical 
variation in the ratio of spiked transcripts to cRNAs. The process consists of two main 
steps: 

Step 1. Initially, assume constant mean and compute globally scaled average 
differences for all arrays in a set. Pool together all spiked cRNAs on all the arrays 
and fit a single linear model to their corresponding scaled average differences to 
produce a calibration function. 

Step 2. Individual array sensitivities are computed similarly to step 2 of frequency 
normalization, where low-end frequencies can be damped out based on the sensitivity 
values for each array. 

Hill et al. (2001) also compared the performance of their proposed methods to the 
globally normalized approach in terms of reproducibility and accuracy (in measuring 
true biological variation). To assess reproducibility, the basis of comparison was ex- 
perimental data from sets of three or four replicated hybridizations of the same array 
design, augmented by simulations. Reproducibility performance for each method was 
measured by the median absolute coefficient of variation (MEDACV) of probe sets 
across the replicated hybridizations. Perfect agreement or reproducibility of all tran- 
script readouts in the set of hybridizations is reflected by a zero value for MEDACV. 
Accuracy assessment was based on calculating the fraction of computed fold changes 
between the modulated condition and a chosen baseline, under different levels of 
spike-skew. The spike-in scaled frequency normalization method consistently ex- 
hibits the lowest MEDACV values, is the most effective in eliminating spike-skew 
effects, and possesses high accuracy levels of above 99% regardless of spike-skew. 

2.3.3 Geometric Mean and Linear Regression Normalization for 
Multiple Arrays 

Geometric mean normalization is similar to the common standardization technique 
often used by statisticians. First, for each array, all data values on the original scale 
that are considered outliers, that is, are more than 3 standard deviations from the mean, 
are flagged. Next, the mean and standard deviation of the logged data are calculated, 
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ignoring the outliers. Finally, the logged expression data are transformed linearly 
such that the normalized (logged) values lie on a standard scale with mean zero and 
unit variance. This method acquired its name from the fact that normalization with 
respect to the mean of the logged data is equivalent to normalization with respect to 
the geometric mean in the unlogged data. 

For any two arrays, the simplest approach is to fit a curve or a linear regression 
with the intensities of array A on the x-axis versus the intensities of array B on the 
y-axis, or vice versa. The intensities of array A (or B) are then normalized simply by 
subtracting the difference between the fitted curve and the line through the origin of 
coordinates with slope 1 .  This approach is simple enough to apply to a multiple of 
k arrays where a baseline array is chosen. It is easily extendable to additional arrays 
without affecting the analysis of the original set of arrays by using the baseline array 
of the original k arrays to normalize the new arrays. However, this approach has the 
obvious drawback of being baseline-array dependent, which may affect subsequent 
analyses of the raw intensities, such as computing expression indices. The use of 
standard linear regression therefore leads to an asymmetrical method in which the 
result of normalization is not equivalent for different choices of the baseline array. 

2.3.4 Nonlinear Normalization for Multiple Arrays Using Smooth 
Curves 

h t r a n d  (2001) proposed an alternative approach where all arrays are treated uni- 
formly. Briefly, the raw feature intensities (PM and MM intensities) of all the A1 
arrays, denoted by a N x 11.1 matrix A, are logged and transformed using an or- 
thonormal matrix H to produce a transformed matrix Aproj. The first row of H has 
each element equaling m, and the remaining rows form a set of orthonormal 
contrast; H is unique only when A1 = 2 .  One can choose a specific column of 
the transformed matrix Aproj as a baseline array and fit a smooth curve, such as a 
loess curve, for each of the other columns. A curve-fitting technique is proposed 
which uses a re-descending M-estimator and a biweight function with an appropriate 
modification to ensure that the same set of robust weights is employed for each of 
the M - 1 contrast vectors. The weights and fitted curves are invariant to the choice 
of orthonormal contrasts. In the special case of M = 2 the transformation reduces 
to a transformed basis of the difference versus the mean of the two arrays. To add a 
new set of arrays to an original set of M original arrays that have been normalized 
and further analyzed, the new set is normalized separately first and scale-transformed 
to match the scale of the original set. The scales for the original and the new set of 
arrays may be determined by their respective geometric means. 

Other approaches using nonlinear smooth curves have been proposed in Schadt 
et al. (2000, 2001) and Li and Wong (2001a,b). For many experimental situations, 
plots of the PM/MM ratios between a baseline and an experimental array often show 
substantial slope change from the low-intensity region to the high-intensity region (10 
to 50% in slope value differences). An immediate extension of the linear method is to 
fit a nonlinear regression of the baseline array values on the experimental array val- 
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ues. One such procedure using smoothing splines with generalized cross-validation 
(GCVSS) was described in Schadt et al. (2000). However, such a procedure is in- 
adequate if the expression profiles of the two arrays are very different. Schadt et al. 
(2001) extended the nonlinear normalization method to an invariant difference selec- 
tion algorithm (IDS) with the GCVSS procedure defined previously. A set of probes 
is defined to be invariant if the orderings of these probes (based on the PM/MM ratios) 
are identical for both the baseline and experimental arrays. IDS is an iterative process 
that updates M ,  the total number of ordered PM/MM ratios at the current step. Let the 
ranks for the ith PM/MM ratio corresponding to the baseline and experimental arrays 
be denoted by B, and E?, respectively. For the ith PM/MM ratio, one calculates 
Ri, the threshold for ratio intensity i ,  by interpolating between a low-ratio-intensity 
threshold (L) and a high-ratio-intensity threshold ( H )  with the following formula: 

1 
2 M  

Ri = -[L(& + Ei) + H ( 2 M  - Bi - E,)]. 

To determine if the ith ratio belongs to the invariant set, a rank ratio test statistic, Di, 
is calculated where Di = 2 1 Bi - E;i I / (B ,  + Ei). The ith ratio is considered approx- 
imately invariant if D, < Ri. The nonlinear normalization curve is constructed by 
applying the GCVSS technique to the final approximately invariant set. This particular 
approach, among others, is implemented in the software DNA-chip Analyzer (dChip) 
(Li and Wong, 2001 a,b) and is available at the Web site ht tp : / /www . dchip . org. 

Quantile normalization was recently discussed by Bolstad (200 1) and Bolstad et 
al. (2003). This approach aims to synchronize the quantiles over the entire set of 
chips available and assumes that there is an underlying common distribution of in- 
tensities across chips. For multiple arrays, one can use pairwise quantile-quantile 
plots or overlaying density plots of cell intensities across chips to visualize the inten- 
sity distributions. The intensities of N genes from M arrays may be arranged in a 
N x llrl matrix A, where each column corresponds to intensities in one array. Each 
column of A is sorted; then each row of A is projected onto the vector (l/a).l~, 
to yield Aproj. This projection is equivalent to replacing each individual element in 
a particular row of matrix A with the quantile values averaged over the columns or 
arrays. The normalization process is achieved by rearranging each column of AProj 
according to the ordering of the original A.  This method can be improved further to 
allow greater differentiation between chips in the tails of the distributions. Further 
investigation is warranted on scaling and centering extreme tail values appropriately 
without affecting the corresponding quantiles in the other chips. 

Bolstad et al. (2003) also discussed a cyclic loess approach based on initially plot- 
ting the difference in log expression values versus the average of the expression values, 
termed the M versus A plot (Yang et al. 2001; Dudoit et al. 2002a). Let yi1 and yi2 
denote probe intensities for the ith probe for arrays 1 and 2,respectively. A loess (local 
regression, described by Cleveland and Devlin, 1988) normalization curve is fitted to 
the AI,  versus Ai plot where Mi = log(yLl/yi2) and Ai = l o g ( z ~ ~ ~  giz) to produce 
fitted values A?i. The normalization correction is derived from the residual Mi - Afi 
and is applied with equal weights to the probe intensities from the two arrays. For 
more than two arrays an orthonormal contrast-based method can be used for normal- 
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ization. The cyclic loess approach can also be applied to paired, two-color-channel 
cDNA data (Yang et al., 200 1,2002), and the contrast-based method has also been used 
for multiple cDNA array normalization (h t r and ,  2001). We discuss these in further 
detail in a subsequent section. Bolstad et al. (2003) conducted a careful comparison 
study of these three normalization methods (quantile, cyclic loess, orthonormal con- 
trast). They established that all three methods are able to reduce the variation of a 
probe set measure across a set of arrays to a greater degree than two other methods 
that make use of a baseline array (Affymetrix scaling method; nonlinear method by 
Schadt et al., 2001). Specifically, the quantile method performed favorably in terms 
of speed as well as bias and variability measures, and thus is the recommended nor- 
malization method for high-density oligonucleotide arrays. Software implementing 
these three normalization methods (in R) is available via the package Affy, part of the 
Bioconductor project, and can be found at http : //www . bioconductor . org. 
Accompanying literature include those by Cope et al. (2004) and Gautier et al. (2004). 
A very recent development calledfcstlo was discussed by Ballman et al. (2004). It 
is a model-based normalization technique that yields normalized values similar to 
cyclic loess and quantile normalization, but is at least an order of magnitude faster 
than cyclic loess. A particularly innovative model of molecular interactions on short 
oligonucleotide microarrays proposed by Zhang, Miles, and Aldape (2003) is the 
positioizal-dependent-nearest-neighbor (PDNN) model. Such a model reveals how 
probe signals depend on probe sequences and indicates that the amount of nonspe- 
cific binding can be estimated from a simple rule. In particular, a simple free-energy 
model was developed for the formation of RNA-DNA duplexes on short oligonu- 
cleotide microarrays based on the nearest-neighbor model. It takes into account two 
different modes of binding on the probes - gene-specific binding versus nonspecific 
binding - and assigns a different weight factor at each nucleotide position on a probe 
to reflect that different parts of the probe may contribute differently to the stability of 
binding. A key advantage of the PDNN model is that it offers a means to check data 
quality and appropriateness of probe design, allowing problematic probe signals to 
be detected directly from the model fitting. Since the determination of NSB and GSB 
requires only PM probe signals in the PDNN model, the capacity of the array can be 
doubled through replacement of MM probes with additional PM probes. Thus, the 
model provides a practical guide for microarray design in terms of probe selection. 

2.4 NORMALIZATION METHODS FOR cDNA MICROARRAY DATA 

For cDNA microarrays, normalization methods focus on balancing the fluorescence 
intensities of green (Cy3) and red (Cy5) dyes, allowing comparison of the expression 
levels across slides. When two identical mRNA samples labeled with different dyes 
are hybridized on the same slide, one often observes higher intensities for the green 
dye. This phenomenon, referred to as dye bias, may result from a variety of inter- 
nal and external factors to  the sample, such as the physical properties of the dyes, 
efficiency of dye incorporation, fluctuations in processing procedures, or scanner set- 
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Fig. 2.4 Plot for normalization. From Schuchhardt et al. (2000). 

tings. Plots of the log ratio intensities versus the overall spot intensity may reveal dye 
biases that are spot-intensity dependent. 

Schuchhardt et al. (2000) compared normalization strategies in the context of 
cDNA microarrays, spotted on glass slides and hybridized with a radioactively 1a- 
beled probe. The experiment was based on several mouse tissues with a fixed amount 
of spike-in Arabidopsis tlzaliana cDNA. A grid of 384 blocks (36 spots per block) 
was spotted with a 384-pin gridding head. All clones were spotted twice within a 
grid, and altogether, nine slides with an identical spotting pattern were produced, The 
sources of variation in this study could have been attributable to double spotting, con- 
stant Arubidopsis controls versus Aruhidopsis dilution control series (six steps, each 
corresponding to a twofold dilution), and pin-tip and slidewise fluctuations, among 
others. A graphical approach to assess background noise is to plot the intensity of 
background spots versus the average signal intensity of k nearest neighbors, overlaid 
with a regression line. To gain insight into the magnitude of fluctuations and corre- 
lations between double-spotted signals, scatter plots of the 384 doubly spotted pairs 
were produced for every block within each slide. These scatter plots should conform 
to a straight-line pattern along the diagonal; where deviations from this expected be- 
havior essentially reflect random fluctuations in target volume. Figure 2.4 illustrates 
how the presence of a control signal can help to distinguish the various classes of the 
dilution series. The intensity of the averaged diluted control signal is plotted versus 
the intensity of the averaged constant control signal. Figure 2.4 shows that the six 
classes of the dilution series are reasonably well separated. With the presence of a 
reference control signal, investigators can decide whether an observed strong signal 
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intensity is due to high task concentration in the target clone or rather, is a conse- 
quence of systematically excessive volume spotted by the corresponding pin. The 
most direct normalization method with a constant control signal is to calculate the ra- 
tio of the dilution signal and the constant control signal. Four normalization strategies 
(none, slidewise, pinwise, average pinwise) were compared in terms of classification 
and prediction performance. The prediction task was to predict the correct dilution 
class of a given spot using the nearest mean classifier trained on a different slide. 
The quality of classification was measured by the percentage of correct assignments. 
This experiment led to the conclusion that the average pinwise normalization strategy, 
by first averaging intensities over several slides and then calculating the ratio of the 
averaged quantities, was superior to the other methods considered. In particular, this 
strategy minimizes the effect of a strong fluctuation in the denominator. 

Yang et al. (2002) present a detailed review of existing normalization methods 
and propose improved methods that can account for intensity and spatial dependence 
in the dye biases for different experimental setups. They distinguish between three 
situations: (1) within-slide normalization (Figure 2.5), (2) paired-slide normalization 
for dye-swap experiments (Figure 2.6), and (3) multiple-slide normalization. For each 
situation, one needs to consider the set of genes to use for normalization. For example, 
if only a small proportion of genes are expected to be expressed differentially or there 
is symmetry in the expression levels of the up- or down-regulated genes, then all 
genes on the array may be used for normalization. Alternatively, a smaller subset of 
housekeeping genes that have constant expression across a variety of conditions may 
be used for normalization purposes. One can also use spiked controls or a titration 
series of control sequences for normalization purposes. For spiked control methods, 
DNA sequences from an organism different from the one being studied are spotted on 
the array and included equally in the two different mRNA samples. This would induce 
equal dye intensities expressed by these spotted control sequences. This desirable 
property can also be achieved by the titration series approach, where spots consisting 
of different concentrations of the same gene or EST, such as genomic DNA that are 
known to express constant expressions, are printed on the array. 

2.4.1 Single-Array Normalization 

Global normalization methods are the most widely used mainly because they are 
mathematically and computationally easy to implement. For single-slide cDNA mi- 
croarray experiments, location normalization can be performed by subtracting a lo- 
cation parameter c from the log-intensity ratios. Letting R and G represent red and 
green intensities, respectively, and assuming that RIG = k ,  

Normalized Expression = log,(R/G) - c; 
where c = log, k may be estimated as the gene-specific mediadmean of the log- 
intensity ratios. Others estimated k along with cutoffs for the intensity values by an 
iterative method (Chen et al., 1997) or by constraining the arithmetic mean of the 
intensity ratios of all the genes on a specific microarray to be equal to 1 (GenePix). 

When there is evidence of spot intensity dependence, one can perform an intensity 
dependent normalization by calculating 
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Fig. 2.5 M versus A plot for within-slide normalization. The plot depicts loess curves 
corresponding to 16 print tips and for the entire data set (labeled 9). Data was collected 
from mice (eight treatment mice with the apo A1 gene knocked out, and a control group of 
eight normal mice). Data details are given in Callow et al. (2000). See the insert for a color 
representation. From Yang et al. (2001a). 

Normalized Expression = log, (R /G)  - c( I ) ,  
where I represents overall spot intensity. There are a variety of ways to estimate 
c ( I ) .  Yang et al. (2001) suggested performing a robust locally linear fit using the 
Splus function Zowess() of log,(R/G) versus I based on 20% of the the data used 
for smoothing at each point. A more general approach was proposed by Kepler et 
al. (2002), based on a different local regression method, to estimate the normalized 
expression levels as well as the expression-level dependent error variance. Their 
method is based on two main assumptions: (i) that a large majority of genes will not 
exhibit significant differences in relative expression levels between treatment groups; 
and (ii) that departures of response from linearity are small and slowly varying. Sapir 
and Churchill (2000) considered a more constrained approach by fitting a robust 
regression line of log, ( R / G )  versus I .  

Analogously, Yang et al. (2002b) also proposed using the loess fit to handle sys- 
tematic differences that may exist between the print tips due to different physical tip 
properties (length, opening) or just tip degradation over time. Print tip normalization 
depends on both the print tip and the overall spot intensity. Let k represent the kth 
grid in an array that shares the same print tip; then normalization is performed by 
calculating 

Normalized Expression = log, (R/G)  - c k  ( I ) ,  
where, as before, c k ( I )  is the normalization function obtained by the loess fit of 
log,(R/G) versus I for the lcth print tip. This process recenters the log-intensity 
ratios from the various print tip groups. However, if print tip differences also show 
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Fig. 2-6 AT versus A plot for paired-slide normalization. The plot depicts loess curves ob- 
tained from a follow-up experiment of the apo A1 mice study. Details of the experiment are 
described in Yang et al. (200 1 a). The dots represent log ratios for slide C3KS with a con-espond- 
ing solid loess curve. The crosses represent log ratios for slide CSK3 with a corresponding 
dotted loess curve. See insert for color representation. From Yang et al. (2001a). 

evidence of different spreads, scale norrnulizarzon is also performed. Yang et al. 
(2002) assume that for the same print tip group k ,  log(R/G) - N ( 0 ,  ozo2), where 
o2 is the true variance of the log-intensity ratios and u: is the scale factor for the kth 
print tip group. Estimates for u k  can be calculated using the maximum likelihood 
method or a robust alternative based on the median absolute deviation approach. 

2.4.2 Multiple Slides Normalization 

The simplest multiple slides experiment is the dye-swap experiment when the slides 
are paired. Reverse assignment of dyes is applied to two hybridizations of two mRNA 
samples. Any within-slide normalization may be applied to each of the paired slides 
to adjust for location. One would expect the normalized log-intensity ratios on the 
paired slides to be of equal magnitude with opposite signs. Thus, assuming that the 
normalization constant c is approximately the same on the two slides, one can write 

where c can be estimated, using all the genes, by a loess curve of [log,(Rl/G'~) + 
log, (XJ /G2)] versus (log, d m  + log, d m ) .  

When one wishes To perform experimentwise comparisons, multiple unpaired 
slides are involved, which introduce scale heterogeneity. This problem can anal- 
ogously be rectified by using scale adjustment methods similar to those described 
above for within-slide scale normalization. 
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2.4.3 ANOVA and Related Methods for Normalization 

A common practice with microarray data is to estimate a differential expression based 
on ratios of the raw signals. This simple approach is inadequate because simple ratios 
do not necessarily account for the differential behavior of dyes or variations between 
samples and arrays. In addition, ratios expressing fold change in fluorescence do not 
correspond directly to fold changes in the raw expressions. 

Many researchers use ANOVA models for microarray data that can account for 
experiment-wide systematic effects that could bias inferences made on the data from 
the individual genes. The ANOVA models are designed to effectively normalize the 
data without the need to introduce preliminary data manipulation by combining the 
normalization process with downstream data analysis. 

In particular, Kerr et al. (2000) identified four basic experimental factors: (1) Ar- 
ray main effects (A) measure overall variation in fluorescent signal that arise when, 
for example, arrays are probed under inconsistent conditions that increase or reduce 
hybridization efficiencies of labeled cDNA; (2) dye main effects ( D )  measure differ- 
ences in the two-dye fluorescent labels; (3) gene main effects (G) occur when certain 
genes emit a consistently higher or lower fluorescent signal compared to other genes 
(these effects may be due to the natural property of these specific genes or because of 
differential hybridization efficiency and differential labeling efficiency for different 
sequences); and (4) variety main effects (V) occur when the categories or varieties of 
the factor of interest induce a consistently higher or lower trend in expression levels for 
the genes spotted on the arrays. Gene-specific interaction effects due to array x gene, 
variety x gene, or dye x gene can also be included in the model. For experiments in 
which each gene is spotted only once on each array, Kerr et al. (2000) proposed an 
ANOVA model based on the logarithms of the original fluorescence measurements 
that can incorporate such main effects and gene-specific interaction effects. Let 

l o g ( Y , j k l )  = P + Gz +A,  + Dk + V, + (GA)zj + (GD)zk + (GV),Z + ~ z j k ~ ,  (2.1) 

where p is the overall average signal; i ,  j ,  k ,  and 1 index genes, arrays, dyes, and 
varieties; and eLllkl represents independently, identically distributed error terms with 
mean zero. If one is only interested in the interactions between genes and varieties 
(GV) that can give evidence of differential expression for a given gene, one does not 
need to include the terms G A  or GD to obtain a more parsimonious model. Param- 
eter estimates for the ANOVA model can be computed by using a least-squares fit 
with constraints that all main and interaction effects sum to zero over their respective 
indices. From the resulting ANOVA table, the sums of squares reflect the relative 
contribution of each set of effects. The data can be adjusted or normalized to remove 
the overall effects of uninteresting factors. For example, if one is interested in testing 
for array x gene interactions, one can fit model (2.1) without the (GA),, terms and 
create a new data set from the residuals, considered as the normalized values. Sub- 
sequently, a resampling-based approach, such as permutation or the bootstrap, based 
on the residuals and the full model (2.1) can be carried out to test for the interactions 
in question and also to construct relevant confidence intervals. The properties of 
ANOVA estimates are tied to the experimental design. For microarray experiments, 
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it is impossible to design full factorial designs. However, Kerr et al. (2000) suggested 
the use of designs that are balanced across the samples of interest since they provide 
the greatest efficiency: for example, the Latin square design. An extended model 
discussed in Kerr et al. (2002) allows for the incorporation of a spot effect when there 
are duplicated spots within an array. In more recent work, Wu et al. (2003) devel- 
oped a software package called MicroArray ANalysis Of VAriance (MAANOVA), 
implemented in both Matlab and R environments. 

In contrast to Ken et al. (2000), who considered only additive linear effects, Rattray 
et al. (2001) allowed a multiplicative effect. For each experiment j ,  let u3 and b, 
denote the parameters determining the systematic linear effects, and let a, denote the 
true expression value for gene i corrupted by noise F , ~ .  Rattray et al. (2001) proposed 
the linear normalization model 

The multiplicative effect in the first term can account for variance fluctuations in 
distribution of the logged expression levels for different arrays or experiments. One 
cannot incorporate a general parameter with gene and experiment indices in this 
model since this will result in overparameterization; thus, not all parameters are 
identifiable. For n experiments, the probability density for yz = (yL1. yz2, ..., Y , , ) ~  
may be expressed as an appropriate multivariate normal density from a distribution 
with mean Cy,a + b where a = ( ~ 1 ,  u2, ..., ( L , ~ ) ~  and b = ( b l ,  b2 ,  .... b7L)T.  Assuming 
equal variance for every gene, two maximum likelihood approaches (least squares or 
latent variables) can be used to estimate a and b as solutions of 

c a  = Xla, b I y, 

where y and C denote, respectively, the mean vector (dimension n )  and covariance 
matrix (dimension n x n) estimated from the observed data, and XI is the largest 
eigenvalue of C. Thus, a is the first principal component of C and may be referred to 
as an eigenurruy. Finally, the normalized data are obtained by linearly transforming 
the data so that they are distributed about the 45" line through the origin of the two- 
dimensional principal subspace where the axes are formed by the first and second 
principal components. Effectively, 

Yv - bJ normalized gZ3 = -. 
0 3  

2.4.4 Mixed-Model Method for Normalization 

Wolfinger et al. (200 1 )  extended the ANOVA model to include a mixture of fixed and 
random effects. Specifically, they considered fitting the normalization mixed model 
to explain the fixed treatment ( T )  main effect and random effects representing array 
(A) effects and array x treatment interaction (AT) effects. For the ith gene, let 
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where A,, (AT)Jk,  and E y k  are assumed to be independently normally distributed 
with mean zero and variance components OK, p i T ,  and a;, respectively. To fit this 
normalization model, the method of restricted maximum likelihood (REML) can be 
used where REML parameter estimates are found by the usual numerical methods, 
such as Newton-Raphson. Once again the residuals from this model form the nor- 
malized data and can be used as input data to a subsequent gene model that allows 
gene-specific inferences to be made using separate estimates of variability. Wolfin- 
ger et al. (2001) advocated the use of mixed models for their additional flexibility. 
Researchers are free to select fixed and random effects in the models to portray scien- 
tifically reasonable patterns of variability and covariability in the data, or to include 
additional random effects, such as those arising from biological replicates. Further, 
the simple mixed model described above can be extended to accommodate more 
complex covariance structures. 

Related work includes an application of the mixed-model ANOVA to a complex 
microarray described by Jin et al. (2001). Currently, MAANOVA by Wu et al. (2003) 
can carry out computations for the fixed effects model, but future releases will include 
functions for mixed-model analysis. 

2.4.5 SNOMAD 

Colantuoni et al. (2002) developed SNOMAD, a collection of general approaches and 
specific algorithms that aim to refine the meaning and validity of differential gene 
expression ratios, thus facilitating the identification of differentially expressed genes 
and a comparison of expression data across diverse microarray technologies, exper- 
imental paradigms, and biological systems. Since much artifactual variation present 
in gene expression data is not constant across the range of element signal intensities, 
global normalization is not sufficient to address this variation. SNOMAD focuses 
on local normalization processes that address bias and variance that are distributed 
nonuniformly across absolute signal intensity. The majority of the transformations 
within SNOMAD are directed at the refinement of paired microarray data that derive 
from either (1) two sets of element signal intensities generated in two individual hy- 
bridizations using a one-channel microarray technology (mostly radioactivity based), 
or (2) two sets of intensities generated in a single two-channel fluorescent experiment 
(from simultaneous two-color hybridizations). 

In a single two-channel hybridization, one can use SNOMAD to draw standard 
scatter plots, such as (1) a scatter plot of normalized raw intensities for control versus 
experimental conditions; (2) a scatter plot of the logarithm of the normalized raw 
intensities for control versus experimental conditions; (3) a scatter plot of the loga- 
rithm of geometric mean intensity or mean log(intensity) (z-axis) versus the ratio of 
intensities (y-axis). Plots of type I will display similarity in expression levels across 
the two experiments but cannot depict proportional change well. For plots of type 2, 
one can look for patterns that deviate from the line of slope 1; however, these plots 
still accentuate similarity rather than difference in expression levels, an attribute that 
is easily captured by type 3 plots. 
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Colantuoni et al. (2002) discussed local mean normalization, called balancing of 
gene expression ratios, based on calculating a mean intensity locally (via the loess 
function) across the range of mean expression levels. Practically, the residuals from 
the loess fit are obtained by subtracting the fitted values from the original log ratio 
values. A plot of the residuals (y-axis) versus the mean log intensity (r-axis) can 
depict the points that are at least twofold significant judged by their distance from the 
line (parallel to the x-axis) that crosses y at zero. Another method discussed by the 
same authors is the l o d  variance correction, which performs a variance-stabilizing 
function by dividing each log(ratio) value by the corresponding locally calculated 
standard deviation (also via a loess function). The resulting values are called local 
Z-scores. A subsequent plot of the derived local Z-scores (y-axis) versus the mean log 

xis) can highlight the significant differential genes. SNOMAD 
is implemented in the R statistical language and allows users flexibility to input their 
own choice of window span for the loess function and the appropriate fold size for 
differential determination. SNOMAD can be found at the following Web site 
http://pevsnerlab.kennedykrieger.org/snomadinput.html 

2.5 TRANSFORMATIONS AND REPLICATION 

2.5.1 Importance of Replication 

The importance of replication in microarray gene expression studies has been ad- 
dressed by Lee et al. (2000). They conducted a controlled experiment involving 
replication of cDNA hybridizations on a single microarray to investigate inherent 
variability in gene expression data and the extent to which replication in an experi- 
ment can affect consistent and reliable findings. Their study was based on a biological 
assumption. For a g e m  to be detected on a slide, the following assumptions must 
be met: ( 1 )  The mRNA must be contained in the target sample tissue; (2) some of 
the mRNA in the sample must be converted to probe; and (3) some of the probe 
must be detected by the cDNAs deposited on the slide as an observed gene expres- 
sion. Statistical models were developed for these three events, and subsequently, a 
mixed normal distribution was used to model the distribution of the gene expressions 
observed. From the mixture distribution, a posterior probability can be calculated 
from the gene expression observed that quantifies the likelihood that the gene is truly 
expressed in the tissue and thus can be used to classify whether the gene transcript 
is present. The results of this study showed that ( I )  any single microarray output 
is subject to substantial variability; (2) false positive expressions may be prevalent 
in microarray studies; and (3) the precision of gene classification (as expressed or 
unexpressed) varies with the number of replicates but seems to level out with three 
replicates. However, the optimal number of replicates in a general microarray study 
will depend on many factors, including array equipment type, laboratory technique, 
and the condition and preparation of samples. Another study that emphasizes the 
importance of replicate microarray experiments has been reported by Pritchard et al. 
(200 1 ) based on mouse gene expression data collected from different tissues, such 
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as the kidney, liver, and testis. They demonstrated that even for genetically identical 
mice of the same age housed under the same conditions, there were still genes that 
expressed significant variation at the mouse level. In particular, their data suggest that 
both specific genes and functional classes of genes will be consistently variable, even 
in multiple tissue types. Genetically diverse populations such as humans are likely 
to show even greater variability in gene expression. A more recent study by Pan et 
al. (2002b) discussed how to calculate the number of replicates (arrays or spots) in 
the context of applying a normal mixture model approach to detect changes in gene 
expression. Their estimation depends on several factors, including a given magni- 
tude of expression change, a desired statistical power to detect it, a specified type 
I error rate, and the statistical method being used to detect it. In general, although 
most researchers agree that replication is desirable, there is still no clear answer as to 
whether replication of spots, or arrays, or subjects is the most important. However, 
as microarray technology advances, perhaps this will become a moot point. 

2.5.2 Transformations 

We have seen that there are a multitude of normalization strategies. A similar situation 
exists for detecting differentially expressed genes. There are two main approaches to 
distinguish real signals from noise in a chip-to-chip comparison: thresholding or repli- 
cate analysis. The latter approach is desirable but expensive. The former approach 
involves imposing an arbitrary threshold of signal difference, or fold-change ratio, 
between experimental and control samples, above which differences are considered to 
be real. Often, differential expression is assessed by taking ratios of expression levels 
of different samples at a spot on the array and flagging those where the magnitude 
of the fold difference exceeds some threshold, incorporating the common fact that 
the variability of these ratios is not constant. For example, an increase or decrease 
of at least twofold may be considered significant. The use of fold-change ratios can 
be inefficient and erroneous. The uncertainty associated with dividing two intensity 
values further increases overall errors (Miles, 2001; (Newton et al., 2001; Yang et 
al. 2002b). The methods are often variants of Student’s t-test; earlier simple meth- 
ods were discussed by Schena et al. (1995, 1996), and DeRisi et al. (1996). Chen 
et a]. (1997) considered a less arbitrary threshold by using replicated housekeeping 
genes. More recently, methods that implicitly assume a nonconstant coefficient of 
variation were discussed by Hughes et al. (2000), Baggerly et al. (2001), Newton 
et al. (2001), and Rocke and Durbin (2001), among others. Parametric tests often 
rely on the assumption that the data are normally distributed with equal variances 
across experimental conditions. Such assumptions are not usually met with real data. 
In contrast, a simple alternative such as the Mann-Whitney nonparametric test does 
not rely on such strong assumptions, but a large number of replicate experiments is 
required. 

Most methods for normalization or for the detection of differentially expressed 
genes often employ some form of data transformation. Log transformations provide 
good variance stabilization at high levels of gene expression, but inflate the variance 
of near-background observations, particularly in data that have been background 
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corrected. This result was proven by Rocke and Durbin (2001) via asymptotic variance 
results from a straightforward delta-method approach based on a two-component error 
model of the expression levels 

where y is the measured expression level for a single array, Q is the mean background 
noise, p is the true expression level, and rl and F are normally distributed error terms 
with means 0 and variance 0: and a:, respectively. This model implies that at low 
expression levels the measured expression y E a + t and thus is approximately nor- 
mally distributed with mean a and constant variance 0:. A promising transformation 
was introduced independently by Munson (2001), Durbin et al. (2002), and Huber et 
al. (2002), of the form 

d Y )  = log[(y - a )  + J(Y - ..I2 + .)I (2.2) 

Such a transformation can stabilize the asymptotic variance of microarray data 
across the full data range and symmetrize the data simultaneously. One main ad- 
vantage of this transformation is that low-level observations need not be removed 
before performing subsequent analyses. A variant of the procedure of Rocke and 
Durbin (200 1)  was discussed in Geller et al. (2003), the main differences being use of 
the median and interquartile range (IQR) instead of the mean and standard deviation 
for robustness against outliers. Baggerly et al. (2001) explored different models for 
the variability to be expected of a log ratio under different types of replication: (1) 
within-sample (channel) replication; and (2) between-sample (arrays andor  channels) 
replication. For within-sample replication, a beta distribution was used to model p ,  the 
probability of a single labeled target strand binding to one of the two replicated spots. 
Thus, the distribution of X ,  the number of target strands that will bind to a particular 
spot, follows a beta-binomial distribution with parameters Q = ~7 = 0.5, assuming 
symmetry about p = 0.5. The variance function of the log ratio of replicate densities 
could be calculated asymptotically and a plot of the variance of the log ratio against 
the log intensity can depict an exponential decay curve displaced vertically from zero. 
An immediate extension to between-sample replication (assuming two samples come 
from two independent experiments but measure the same thing) is to model n,, the 
number of labeled strands of gene i as a Poisson random variable with parameter 
A,; variation can be incorporated by letting A, be a random variable from a gamma 
distribution. Other scenarios discussed by Baggerly et al. (2001) include replicating 
ratios between samples on a single array and replicating ratios between samples on 
two arrays. In general, their models can be used to predict how the variance of a log 
ratio changes with the intensity of the signal at the spot, independent of the identity 
of the gene. The variance estimable from the replicate ratios can be used to define the 
precision with which a ratio measurement can be made, thus allowing the differences 
to be scaled or studentized, with the aid of a robust loess fit to the absolute values 
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of the differences between replicate ratios. A case study was thoroughly described 
by Baggerly et al. (2002). The experiment used spotted two-channel (red and green) 
cDNA arrays involving 1,152 genes spotted in duplicate, together with 96 positive 
controls, 96 negative controls, and 576 blanks. Spot intensities were measured as the 
sums of all pixel intensities within a fixed-radius circle with some local background 
correction. Figure 2.7 demonstrates how appropriate plots can typically be used for 
quality control, to identify outliers, as well as to fit the standard deviation of replicate 
ratios, and subsequently, identify the differentially expressed genes. To assess the 
degree that a gene is differentially expressed, one can locally studentize values by 
subtracting the fitted loess value from the observed channel difference and then divide 
it by the local standard deviation estimated by one of the models discussed above. 

The problem of detecting genes that are differentially expressed is to be covered 
in Chapter 5.  

Fig. 2.7 Average differences in log intensities (sVol) for the Cy5 and Cy3 channels, with 
local standard deviation bounds. Genes are represented by light grey spots, negative controls by 
triangles, positive controls by stars, and blanks by circles. Spots outside the bands correspond 
to differentially expressed genes. There is a clear extreme case at the bottom, corresponding 
to p53 which had been transfected into one of the two samples used in this experiment. Note 
that the positive controls appear to have some differences. From Baggerly et al. (2002). 
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2.6 ANALYSIS OF THE ALON DATA SET 

Alon et al. ( 1  999) used Affymetrix oligonucleotide arrays to monitor absolute mea- 
surements on expressions of over 6,500 human genes in 40 tumor and 22 normal 
colon tissue samples. These samples were taken from 40 different patients, so that 22 
patients supplied both a tumor and a normal tissue sample. Alon et al. (1 999) focused 
on the 2,000 genes with highest minimal intensity across the samples. 

We performed quantile normalization on the logged expression values obtained 
from the Alon data set, using the 2,000 genes with the highest minimal intensities. 
Figure 2.8 displays MA plots and fitted loess curves to illustrate the before and after 
effects on the gene intensities from a select subset of 12 tumor samples corresponding 
to patients 1, 5 ,  6, 8, 9, 12, 13, 25, 29, 30, 37, and 38, using the data on patient 1 
as the baseline array. It can be seen that after normalization, the point clouds are all 
centered around A f  = 0 and all nonlinear relationships between arrays have been 
removed. Figure 2.9 displays the normalized densities for all genes for the 40 tumor 
and 22 normal samples. 

2.7 COMPARISON OF NORMALIZATION STRATEGIES AND 
DISCUSSION 

After normalization, the data measured should be adjusted in such a way that subse- 
quent comparison or analysis should reveal only biological differences relevant to the 
scientific question being addressed. The separation of normalization and modeling 
into two distinct tasks is convenient but may be a controversial issue. Normalization 
that i s  carried out blindly may result in removing large components of biological sig- 
nal, treated as noise in the prior step, which are then lost in subsequent analysis. Some 
researchers may even consider this as “unprincipled” (Kerr et al., 2000) and would 
prefer to combine these two steps of the analysis within a unified probabilistic frame- 
work. The question of how different normalization strategies and parameterizations 
may affect subsequent analysis, such as clustering, does not have a straightforward 
answer. Different researchers have attempted to carry out comparison studies. For 
example. Rattray et al. (2001) investigated the effects of normalization and prepro- 
cessing in a reduced dimension projection based on principal components analysis. 

Kroll and Wolfl (2002) recently introduced a new ranking diagram to compare 
global normalization methods based on mean or median values. They proposed use 
of the rank intensity plot (RIP) to plot intensity values versus their corresponding 
ranks. When experimental data are available from different experiments with the 
same gene set, the RIP should display a separate curve for each experiment, and each 
curve would feature the global distribution of the values. A measure for the extent of 
normalization is provided by the relative rank deviation (RRD) curve superimposed 
on RIP curves, defined as the standard deviation of the intensities of a given rank 
divided by the mean of intensities of that given rank. 
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Fig- 2.8 Effect of normalization on the Alon data set. Upper four panels: pairwise MA plots 
using unadjusted data from 12 randomly selected tissue samples. Lower four panels: pairwise 
MA plots for these same 12 tissues after normalization. 
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Fig. 2.9 A plot of the densities of the logged expression values for the Alon data set, 40 
tumor and 22 normal tissue samples, after quantile normalization. 

Hoffmann et al. (2002) used a specific prototype data set to study the impact of 
global scaling and different invariant-set normalization methods (either taking the raw 
fluorescence values at the feature level or the average difference at the probe set level 
as input) and all possible combinations with three different statistical algorithms 
for detection of differentially expressed genes (parametric ANOVA using the F- 
test, nonparametric ANOVA using the Kruskal-Wallis test, and the SAM procedure 
(Tusher, Tibshirani, and Chu, 2001)). Thus, three different statistical criteria were 
considered for filtering the data to detect differential expression: confidence, fold 
change, or absolute difference. The general findings of this study indicate that the 
normalization method has a very high influence, even more so than the choice of 
statistical criterion, on the final set of differentially expressed genes that were detected. 
In particular, the number of genes detected as differentially expressed varies by a 
factor of almost 3. In comparing any two different combinations of methods, the 
percentage of genes detected simultaneously by both methods vary between 41 and 
100%. In particular, under the same normalization scheme, the genes detected by 
SAM generally are a much smaller subset of those detected by nonparametric ANOVA 
which, in turn, form a subset of slighter smaller size than those genes detected by 
parametric ANOVA. 

Human gene expression data present great challenges for microarray-based stud- 
ies due to their genetically diverse nature. In addition, environmental conditions 
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cannot be controlled carefully in humans. Meaningful interpretation of global gene 
expression in humans will require an extensive characterization of normal variability. 
Some researchers have suggested the creation of a comprehensive database of nor- 
mally variable genes for human tissues and organs as well as highly variable genes 
(Pritchard et al., 2001). 
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3 
Some Cluster Analysis 

Methods 

3.1 INTRODUCTION 

In bioinformatics, much attention is centered on the cluster analysis of the tissue 
samples and also the genes. Cluster analyses have demonstrated their utility in the 
elucidation of unknown gene function, the validation of gene discoveries, and the 
interpretation of biological processes; see Alizadeh et al. (2000), Eisen et al. (1998), 
and Iyer et al. (1999) for examples. The main goal of microarray analysis of many 
diseases, in particular of unclassified cancer, is to identify novel cancer subtypes 
for subsequent validation and prediction, and ultimately to develop individualized 
prognosis and therapy. Limiting factors include the difficulties of tissue acquisition 
and the expense of microarray experiments. Thus, many experiments attempt to 
perform a cluster analysis of a small number of tumor samples on the basis of a large 
number of genes, often resulting in gene-to-sample ratios of approximately 100-fold. 
Many researchers have explored the use of clustering techniques to arrange genes 
in some natural order, that is, to organize genes into groups or clusters with similar 
behavior across relevant tissue samples (or cell lines). Although a cluster does not 
automatically correspond to a pathway, it is a reasonable approximation that genes in 
the same cluster have something to do with each other or are directly involved in the 
same pathway. 

The clustering techniques that have been used in the past to cluster tissue samples or 
the genes include hierarchical agglomerative clustering, k-means clustering, and the 
self-organizing map, among many others. A natural generalization of these methods 
is to extend to two-way clustering procedures that simultaneously cluster both genes 
and samples. These procedures seek global organization of genes and samples. A 
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nice review of these methods with application to DNA microarray experiments can 
be found in Tibshirani et al. (1999). 

In this chapter, we briefly outline in a general context some methods for the cluster 
analysis of multivariate data consisting of n independent observations yl. . . . . y n  
taken on a p-dimensional feature vector Y associated with the random phenomenon 
of interest. The focus is on model-based methods of clustering. These methods will 
be applied in the next two chapters to the classification of microarray data. Before we 
proceed to describe model-based clustering, we shall very briefly outline some other 
methods of cluster analysis that have been commonly used to cluster microarray data. 
For a more detailed account of cluster analysis, the reader is referred to the many books 
that either consider or are devoted exclusively to this topic; for example, Hartigan 
(1975), Hastie et al. (2001b, Chapter 14), Ripley (1996), and Seber (1984, Chapter 
7). 

Some of the clustering methods to be considered here, like the hierarchical agglom- 
erative methods, can be applied directly to cluster gene expression data. However, 
there is no reason why the clusters should be hierarchical for microarray data. Also, 
there are other disadvantages with these hierarchical methods, as to be discussed in 
Section 3.4. As advocated by Marriott (1974, Page 67), “it is better to consider the 
clustering problem ab initio, without imposing any conditions.” 

In recent times, model-based clustering has become very popular in the statistical 
literature. As to be discussed in some detail in Section 3.7.2, an advantage of model- 
based clustering is that it provides a sound mathematical framework for clustering. In 
particular, it provides a principled statistical approach to the practical questions that 
arise in applying clustering methods, namely, the question of what metric (distance 
function) to adopt and the question of how many clusters there are in the data (Fraley 
and Raftery, 1998). 

3.2 REDUCTION IN THE DIMENSION OF THE FEATURE SPACE 

We shall focus on normal mixture models for the clustering of continuous data, which 
means that a covariance matrix E, has to be estimated for each group G,. We shall 
see in Section3.9 that a mixture model with unrestricted group-covariance matrices 
in its normal component distributions is a highly parameterized one with $ p ( p  + 1) 
parameters for each component-covariance matrix E, (i = 1, . . . , 9). Thus for the 
clustering of tissue samples on the basis of the available genes, a normal mixture 
model with unrestricted component-covariance matrices cannot be applied directly 
to the data. 

One way to handle this dimensionality problem is to ignore the correlations be- 
tween the genes and to cluster the tissue samples by fitting mixtures of normal com- 
ponent distributions with diagonal covariance matrices. Elliptical clusters can be 
obtained under this restricted model, but their axes must be aligned with the axes 
of the feature space. Thus it is proposed to use mixtures of factor analyzers. This 
approach enables a normal mixture model to be fitted to a sample of n data points of 
dimension p ,  where p is large relative to n. The number of free parameters is con- 
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trolled through the dimension of the latent factor space. By working in this reduced 
space, it allows a model for each component-covariance matrix with complexity lying 
between that of the isotropic and full covariance structure models. 

Even with the use of factor analysis to reduce the number of parameters in the 
normal mixture model, it is still not feasible to fit mixtures of factor analyzers directly 
to microarray data without first reducing the dimension of the feature vector. That is, 
the dimension of the expression-signature vector in the clustering of the tissues and 
the dimension of the expression profile vector in the clustering of the genes. With the 
EMMIX-GENE clustering procedure of McLachlan et al. (2002), which has been 
developed specifically for the clustering of tissue samples, the number of genes are 
reduced first by a combined screening and clustering approach. The EMMIX-GENE 
procedure is to be described in the next chapter. 

The mixture of factor models discussed above provides a global nonlinear approach 
to dimension reduction as it postulates a finite mixture of linear submodels (factor 
models) for the distribution of the full observation vector given the (unobservable) 
factors. Thus, it is a local dimensionality reduction method. 

A more straightforward and commonly used approach to dimension reduction is 
principal component analysis (PCA), which is to be discussed in Section 3.19 of 
this chapter. But it is only a global linear method, and so is not as effective as a 
mixture of factor models. As a consequence, the leading principal components need 
not necessarily reflect the direction in the feature space best for revealing the group 
structure of the tissues. Thus a potential problem with a PCA is the determination 
of an appropriate number of principal components (PCs) useful for clustering. A 
common practice is to choose the first few leading components. But it is not always 
clear where to stop and whether some of these components are caused by some artifact 
or noises in the data unrelated to the clustering task (Liu et al., 2003). 

Finally, in the last section of this chapter we consider linear projections of the 
feature data that are able to incorporate the class structure of the data when available, 
as in supervised classification (discriminant analysis). 

3.3 CLUSTER ANALYSIS 

In discriminant analysis (supervised classification), the existence of the different 
classes is known and there are observations of known class origin (training data) for 
the purposes of forming a prediction rule. In contrast, cluster analysis (unsupervised 
classification), is concerned with multivariate techniques that can be used to create 
groups amongst the observations, where there is no a priori information regarding 
the underlying group structure, or at least where there are no available data from each 
of the groups if their existence is known. The problem of discriminant analysis is to 
be considered in Chapter 6. 

Available methods of cluster analysis can be categorized broadly as being hierar- 
chical or nonhierarchical. The former category is one in which every cluster obtained 
at any stage is a merger or split of clusters at other stages. Thus it is possible to visual 
not only the two extremes of clustering, that is, n clusters with one observation per 
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cluster and a single cluster with all ?z observations, but also a monotonically increasing 
strength of clustering as one goes from one level to another. A hierarchical strategy 
always optimizes a route between these two extremes. An hierarchical method may 
proceed by progressive fusions, beginning with n single observation groups (agglom- 
erative hierarchy) or it may proceed by progressive divisions, beginning with a single 
group of n observations (divisive hierarchy). The route may be defined by progressive 
fusions, beginning with n entities (agglomerative), or by progressive divisions, begin- 
ning with a single group and decomposing it finally into individual entities (divisive 
hierarchy). In practice, divisive methods that seek to optimize some criterion over all 
possible subdivisions present impossible computational difficulties unless 71 is very 
small. For example, there are 2n-1 - 1 ways of making the first subdivision, and to 
compute a statistic for each of them and choose the optimum quickly is a prohibitive 
task. 

In nonhierarchical procedures, new clusters are obtained by both lumping and 
splitting of old clusters. Thus the intermediate stages of clustering are different, 
although the two extremes of clustering are the same as with hierarchical techniques. 

3.4 SOME HIERARCHICAL AGGLOMERATIVE TECHNIQUES 

Most of the hierarchical agglomerative clustering procedures used in practice, can be 
implemented with the data represented by a matrix D of proximities, where 11~~. = 

(D)Jk is the proximity between the j t h  and kth observations. Usually, D will be 
symmetric for the adopted method of defining the proximities; see, for example, 
Section 2.2 of Jain and Dubes (1988) for the properties that proximities must satisfy. 
The proximity D,?k is either a similarity or dissimilarity measure. The closer the 
features of the observations j and k resemble each other, the larger or smaller DJk is, 
depending on whether it is a measure of similarity or dissimilarity. For example, if 
Djk is given by the Euclidean distance between the feature vectors of observations j 
and k ,  

then DJk is a dissimilarity measure. 
In average linkage clustering, the distance between two clusters is the average of 

the pairwise distances between two observations, one from the first cluster and the 
other from the second cluster. With single-link (nearest neighbor) clustering, the 
distance between two clusters is defined as the distance between their two closest 
members. For complete-link (farthest neighbor) clustering, the distance between two 
clusters is defined as the distance between their two farthest members. 

It is the different ways of defining distances between clusters that gives rise to the 
variety of hierarchical clustering techniques. One of the more commonly employed 
ways of defining the dissimilarity between two expression signatures in microarray 
analysis is 1 - p or 1 - lpl, where p is the sample correlation. It is invariant under 
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location and scale transformations of the data. So it is invariant under standardization 
of the columns of the microarray data matrix A. As to be discussed further in 
Section 3.6, hierarchical agglomerative methods specify in advance the metric for 
defining distances between points and clusters without sufficient prior knowledge 
about the problem. 

Suppose that cluster r' and cluster s are being combined to form the single cluster 
u.  Then Lance and Williams ( 1  967) showed that the distance d(v,  t )  between this 
new cluster u and any currently existing cluster t can be expressed as 

d ( v , t )  = Q , ~ ( T ,  t )  + a,d(s,  t )  + / 3 d ( ~ ,  S )  + y ld ( r ,  t )  - d ( ~ ,  t)I, (3.2) 

where the coefficients a,, as, p, and y characterize the particular technique. This 
formula (3.2) applies to most of the commonly referenced hierarchical clustering 
techniques. For example, for single linkage, a, = a,9 = 5 ,  = 0, and y = -+, 
while for complete linkage, the values of the coefficients are the same apart from y 
which is now i. 

Under a hierarchical clustering, the data points are thus fashioned into a phylo- 
genetic tree (a dendrogram) whose branch lengths represent the degree of similarity 
between the sets. Strict phylogenetic trees are best suited to situations of true hier- 
archical descent (such as in the evolution of species) and are not designed to reflect 
the multiple distinct ways in which expression patterns can be similar; this problem 
is exacerbated as the size and complexity of the data set grows (Tamayo et al., 1999). 

The results of a hierarchical clustering can be conveniently represented by a den- 
drogram. It is a special type of tree structure that depicts the nested structure of the 
clusters. A seminal paper in the analysis of microarray data is Eisen et al. (1 998), 
in which the authors propose hierarchical clustering of genes as a means to identify 
patterns in the high-dimensional data generated by microarrays. 

Bittner et al. (2000) used an average-linkage(agg1omerative) hierarchical clustering 
procedure to cluster M = 31 cutaneous melanoma samples on the basis of N = 3,613 
genes. The distance was based on the correlation p (the dissimilarity measure was 
taken to be 1 -p). A replica of their dendrogram from Goldstein, Ghosh, and Colon 
(2002) is given in Figure 3.1. It can be seen in Figure 3.1 that each node of the 
dendrogram represents a cluster. 

Another example of a dendrogram for this data set in Bittner et al. (2000) is given 
in Figure 3.2, but this time for single linkage with correlation-based distance. Based 
on cutting the dendrogramin Figure 3.1 at a value of 0.54, Bittner et al. (2000) found a 
cluster of 19 samples. It can be seen that if we were to cut the dendrogram in Figure 3.2 
at the same cutoff point of 0.54, then we would obtain a cluster of 27 tissue samples. 
Ideally, it would be nice to have an objective function for choosing the cutoff point 
other than by visual inspection of the dendrogram. With a normal mixture model- 
based approach to clustering to be discussed shortly, we have an objective function, 
namely the likelihood function, for choosing a clustering for a specified number of 
clusters g and for deciding on the value of 9. This model-based approach is applied 
to this data set in Section 4.13.3. 

A commonly used hierarchical technique is the agglomerative method of Ward 
(1963). With this method the objective function to be minimized is the increase in 

1 
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Fig. 3.7 An example of a dendrogram. From Goldstein, Ghosh, and Conlon (2002). 

the pooled within-cluster sum of squares as the clustering proceeds hierarchically 
from g to g - 1 clusters, commencing with g = n. It can be implemented using 
the formula (3.2) for the revised distance between two clusters as a consequence of 
the fusion of two clusters. The appropriate values of the coefficients are given by 

= (72, + n t ) / n r s t )  0, = (ns + nt)/nrst, P = - nt/nrSt, and y = 0, where 
n,,t = n, + n, + nt and n,, n,, and nt denote the number of members of clusters 
T ,  s ,  and t ,  respectively. Several of the comparative studies discussed in Jain and 
Dubes (1988) (Section 3.5.2) have concluded that Ward's method outperforms the 
other hierarchical clustering methods. 

Strictly hierarchical techniques of clustering have proven to be popular, mainly 
because of their simple implementation in an agglomerative manner, particularly for 
the clustering of tissue samples containing thousands of genes. As argued in Marriott 
(1974, Chapter 8), strictly hierarchical techniques may have serious disadvantages, 
unless there is some special reason for imposing the nested structure of the dendro- 
gram. This structure is not a natural one to impose if the primary purpose of the 
clustering is to find a natural grouping of the data. It is true that if there is a genuine 
grouping of the data set, with little or no overlap between the groups, then it will be 
revealed by any method of cluster analysis. But in less obvious cases, a typical ques- 
tion is whether a partition of the data into g + 1 clusters gives a better representation 
of the data than a partitioning into g clusters for some g. To answer this it is necessary 
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Fig. 3.2 Another example of a dendrogram. From Goldstein, Ghosh, and Conlon (2002). 

to compare the best division into g clusters with the best division into g + 1 clus- 
ters. But hierarchical methods will not usually give both. The deterministic nature 
of hierarchical clustering can cause points to be grouped based on local decisions, 
with no opportunity to reevaluate the clustering. In particular, there is the problem of 
chaining, the risk of which increases with the dimensionality of the feature space. We 
give in Figure 3.3 a two-dimensional scatter plot, which shows fairly clearly that there 
are two clusters. Most divisive methods of cluster analysis would produce these two 
clusters. However, most agglomerative hierarchical methods would join up the chain 
between them at an early stage in the process, and it would never be broken thereafter. 
Also, hierarchical clustering has been noted by statisticians to suffer from lack of ro- 
bustness, nonuniqueness, and the inversion problems that complicate interpretation 
of the hierarchy (Morgan and Ray, 1995). 

Note that care must be taken in interpreting the results of experiments which 
have been undertaken to compare hierarchical clustering methods with model-based 
methods. For example, if Euclidean distance is used to assess the quality of the 
clusters as in Datta and Datta (2003), then methods that use Euclidean distance such 
as several of the hierarchical ones, will be favored over normal-based methods that 
use Mahalanobis distance. 



68 SOME CLUSTER ANALYSIS METHODS 

0 
e 

Fig- 3.3 Two-dimensional scatter plot illustrating possible chaining of clusters. 

3.5 k-MEANS CLUSTERING 

A commonly used clustering method is k-means, where k refers to the number of 
clusters to be imposed on the data. It can be implemented by randomly selecting 
k observations to be the initial k seeds (cluster centers). The observations are then 
visited in turn in some prespecified order with an observation being assigned to the 
ith cluster if it is closest (in Euclidean distance) to the current mean of the ith cluster 
(the ith seed point in the first instance). After an observation has been assigned to 
a cluster, its mean is updated and the next observation is visited. The process is 
terminated when there is no change in the cluster memberships of the observations. 
As to be discussed further in Section 3.9.3, the k-means method of clustering attempts 
to impose spherical clusters on the data. However, clusters tend to be elliptical in 
many problems in practice. Also, the use of squared Euclidean distance is sensitive 
to atypical observations that can produce very large distances. 

The procedure can he made more robust but more computationally expensive as, 
for example, with k-medoids, as proposed by Kaufman and Rousseeuw (1990). They 
refer to this approach as PAM (partitioning around medoids). With this approach, a 
cluster center is restricted to being one of the observations. 

Self-organizing Maps (SOMs) are implemented in a similar manner to k-means 
clustering, but now the cluster centers (prototypes) are represented as the nodes (ini- 
tially at random) on a grid usually in two-dimensional space. During training, an 
observation is selected randomly. The prototype closest to it is identified. The iden- 
tified prototype is and its neighbors are adjusted to look similar to the observation. 
This process is repeated until it converges. Although SOMs are favored by some 
biologists, it may be hard to come up with an initial spatial structure in real problems. 
The reader is referred to Hastie et al. (2001b, Chapter 14) for further details on the 
SOM and PAM methods. 

In addition to the clustering methods discussed above, many ad hoc methods of 
clustering have been proposed for microarray data. 
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3.6 CLUSTER ANALYSIS WITH NO A f‘RzoRz METRIC 

It has been seen with the clustering methods presented in the previous sections that 
they assume a similarity measure or metric is known a priori. Often the Euclidean 
metric is used as with k-means clustering. However, it is more appropriate to use a 
distance function (metric) that depends on the shape of the clusters. For example, if a 
cluster is multivariate normal with mean p and covariance matrix E, the appropriate 
distance between a pointy and the center p of the cluster is the squared Mahalanobis 
distance 

4 Y ,  P )  = (Y - d T E - Y Y  - P )  (3 .3)  

between y and p. The difficulty is that the shape of the clusters is not known until the 
clusters have been identified, and the clusters cannot be effectively identified unless 
the shapes are known. Indeed, as noted by Hansen and Tukey (1 992), “The shakiest 
part of any clustering procedure is the choice of the metric.” 

To avoid reliance on any n priori metric, Coleman et al. (1999) advocate the use 
of affine invariant clustering algorithms. This means that the clustering produced 
on the transformed data Cy + a is the same as on the untransformed data y. Here 
C is a nonsingular matrix. It means that the clustering is invariant under location 
(translations of the data), scale (stretchings of the data), and rotation (orientations 
of the data). Thus affine-invariant metrics are particularly appropriate for use in 
clustering, since the results do not depend on irrelevant factors such as the units of 
measurement or the orientation of the clusters in space. Hartigan (1975, Page 63) has 
commented that “Invariance under this general class of linear transformations seems 
less compelling than invariance under the change of measuring units of each of the 
variables.” 

Essentially, affine invariance of clustering is equivalent to assuming that the metric 
is quadratic but otherwise unspecified; that is, the distance between any two points 
y1 and y2 is given by 

4 Y 1 ,  Yy2) = (Y1 - Y2)TB-1(YY1 - 9 2 )  (3.4) 

with B a positive-definite symmetric matrix. Quadratic metrics can arise naturally 
in a number of ways, such as with mixture models with component distributions 
such as the multivariate normal or other elliptically symmetric distributions (the t- 
distribution). Note that Euclidean distance corresponds to the use of (3.4) with B 
equal to the p x p identity matrix. 

3.7 CLUSTERING VIA FINITE MIXTURE MODELS 

3.7.1 Definition 

In recent times much attention has been given in the statistical literature to the use 
of finite mixture models as a device for clustering; see, for example, McLachlan and 
Basford (1988) and McLachlan and Peel (2000). With this approach, the observed 
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data yyl. . . . yn, are assumed to have come from a mixture of a finite number, say 
y, of groups GI, . . . , G, in some unknown proportions T I ,  . . . , xY. The mixing 
proportions T ,  lie between zero and one, and sum to one. The feature vector Y is 
taken to have the density f,(y) in group G, (i = 1, . . . , g). Thus unconditionally 
with respect to its group of origin, the feature vector Yhas the mixture density 

In this mixture framework, the posterior probability that an observation with feature 
vector yJ belongs to the zth component of the mixture is given by 

T2(YJ) = TtfZ(Y7) / f (Yy3)  (3.6) 

for i = 1, . . . , g. 

fit this parametric mixture model 
On specifying a parametric form fz(y,; 0,) for each component density, we can 

by maximum likelihood via the expectation-maximization (EM) algorithm of Demp- 
ster, Laird, and Rubin (1977); see also McLachlan and Krishnan (1997). Here 
!P = (wT,  TI, . . . , 7 r - 1 ) ~  is the vector of unknown parameters, where w con- 
sists of the elements of the 0% known a priori to be distinct. In order to estimate !P 
from the observed data, it must be identifiable. This will be so if the representation 
(3.5) is unique up to a permutation of the component labels. 

The actual fitting of finite mixture models by maximum likelihood via the EM 
algorithm is to be be described shortly in Section 3.1 1. Let &denote the estimate of 
!P so obtained. Then 

9 

Tt(yJ; &) et fz(Yy3; e t ) /  e h  fh(Yy3; a h )  (3.8) 
h = l  

is the estimated posterior probability that the j th  observation with feature vector 
yJ belongs to the ith component of the mixture (,i = 1, . . . , g;  j = 1, . . . n).  
The mixture approach gives a probabilistic clustering in terms of these estimated 
posterior probabilities of component membership. An outright partitioning of the 
observations into g nonoverlapping clusters C1, . . . , Cg is effected by assigning 
each observation to the component to which it has the highest estimated posterior 
probability of belonging. Thus the ith cluster Ci contains those observations assigned 
to group Gi. That is, Ci contains those observations j with Si j  = (2j)i = 1, where 

2tJ = 1, i f T 2 ( z j ;  &) 2 7 h ( z J ;  &) (/I = I, . . . , g ;  f~ # i ) ,  

= 0, otherwise. (3.9) 
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As the notation implies, i,, can be viewed as an estimate of za3 which, under the 
assumption that the observations come from a mixture of g groups GI,  . . . , G,, is 
defined to be one or zero according as the j t h  observation does or does not come from 
G, ( Z  = 1, . . . , g; j = 1, . , . , n). 

Although the estimated posterior probabilities r, (y, ; &) may have limited reliabil- 
ity in small samples, they may well give a satisfactory outright assignment of the data. 
If the maximum of the fitted posterior probabilities 7% (y3 ; @) over i = 1, . . . , g is 
near to one for most of the observations y3, then it suggests that the mixture likelihood- 
based approach can put the n observations into g distinct clusters with a high degree 
of certainty. Conversely, if the maximum is generally well below one, it indicates that 
the components of the fitted mixture model are too close together for the n observa- 
tions to be clustered with any certainty. Hence these estimated posterior probabilities 
of component membership can be used to provide a measure of the strength of the 
clustering (Basford and McLachlan, 1985). 

The mixture likelihood-based approach to clustering, which is a divisive technique, 
is usually applied in a nonhierarchical manner. However, initially it may be applied 
hierarchically, in that any obvious group structure would be removed first before 
proceeding to investigate any further grouping in the data set. For example, if initially 
fitting a two-component mixture model splits the data into two widely separated 
clusters, then the search for further clusters would proceed by fitting mixture models 
to each of these two clusters considered separately. 

In the above, there is a one-to-one correspondence between the mixture compo- 
nents and the groups. For multivariate data of a continuous nature, attention has 
concentrated on the use of multivariate normal components because of their compu- 
tational convenience. In those cases where the underlying population consists of g 
groups in each of which the feature vector is able to be modeled by a single normal 
distribution, the number of components g in the fitted normal mixture model corre- 
sponds to the number of groups. However, when the distribution of a group is unable 
to be modeled adequately by a single normal distribution but rather needs a normal 
mixture distribution, the components in the fitted g-component normal mixture model 
and the consequent clusters will correspond to g subgroups rather than to the smaller 
number of actual groups represented in the data. 

3.7.2 Advantages of Model-Based Clustering 

It can be seen that this mixture likelihood-based approach to clustering is model based 
in that the form of each component density of an observation has to be specified in 
advance. Hawkins, Muller, and ten Krooden (1 982) commented that most writers on 
cluster analysis “lay more stress on algorithms and criteria in the belief that intuitively 
reasonable criteria should produce good results over a wide range of possible (and 
generally unstated) models.” For example, the trace W criterion, where W is the 
pooled within-cluster sums of squares and products matrix, is predicated on normal 
groups with (equal) spherical covariance matrices; but as they pointed out, many 
users apply this criterion even in the face of evidence of nonspherical clusters or, 
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equivalently, would use Euclidean distance as a metric. They strongly supported the 
increasing emphasis on a model-based approach to clustering. Indeed, as remarked 
by Aitkin, Anderson, and Hinde (1981) in the reply to the discussion of their paper, 
“when clustering samples from a population, no cluster method is, apriori believable 
without a statistical model.” Concerning the use of mixture models to represent 
nonhomogeneous populations, they noted in their paper that “Clustering methods 
based on such mixture models allow estimation and hypothesis testing within the 
framework of standard statistical theory.” Previously, Marriott (1974) had noted that 
the mixture likelihood-based approach “is about the only clustering technique that is 
entirely satisfactory from the mathematical point of view. It assumes a well-defined 
mathematical model, investigates it by well-established statistical techniques, and 
provides a test of significance for the results.” In the present context of the analysis 
of gene expression data, Yeung et al. (2001a) commented that “in the absence of 
a well-grounded statistical model, it seems difficult to define what is meant by a 
‘good’ clustering algorithm or the ‘right’ number of clusters.” A mixture model- 
based approach to the clustering of microarray data has been adopted also by Ghosh 
and Chinnaiyan (2002), Medvedovic and Sivaganesan (2002), and Liu et al. (2003), 
among others. 

In finite mixture models, each component corresponds to a cluster. Thus the 
problem of choosing an appropriate clustering method can be recast as statistical 
model choice. Outliers are handled by adding one or more components representing 
a different distribution for outlying data. It also allows the important question of how 
many clusters there are in the data to be approached through an assessment of how 
many components are needed in the mixture model. These questions of model choice 
can be considered in terms of the likelihood function. 

In recent times, microarray experiments are being carried out with replication. 
With a model-based approach to clustering, the model is able to be adjusted to allow 
for repeated measurements, as to be discussed in Section 5.15. 

3.8 FITTING MIXTURE MODELS VIA THE EM ALGORITHM 

We consider now the fitting of the mixture model (3.5) by the method of maximum 
likelihood. The log likelihood for 9 formed from the observed feature data 

(3.10) 

is given by 
?7 

1ogL(@) = c l o g s ( Y , ;  9). (3.1 1) 

assuming the observed data represents an observed random sample. As discussed 
in McLachlan and Peel (2000, Chapter 3), an estimate & of 9 is provided by an 
appropriate root of the likelihood equation 

J=1 

3logL(!P)/dS= 0. (3.12) 
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It is straightforward, at least in principle, to find solutions of (3.12) using the EM 
algorithm of Dempster et al. (1 977). For the purpose of the application of the EM 
algorithm, the observed data are regarded as being incomplete. The complete data 
are taken to be the observed feature vectors y1 . . . yn, along with their component- 
indicator vectors zl, . . . , z,, which are unobservable in the framework of the mixture 
model being fitted. Consistent with the notation introduced in the last section, the ith 
element zi3 of zj is defined to be one or zero, according as the j th  with feature vector 
yj does or does not come from the ith component of the mixture, that is, from group 
G i ( i = l ,  . . . , g ; j =  1, . . . ,  n). 

For this specification, the complete-data log likelihood is 

3.8.1 E-Step 

The EM algorithm is easy to program for this problem and proceeds iteratively in two 
steps, E (for expectation) and M (for maximization). The addition of the unobservable 
data to the problem (here the z3)  is handled by the E-step, which takes the conditional 
expectation of the complete-data log likelihood, log Lc(*), given the observed data 
3, using the current fit for @. Let &‘I be the value specified initially for @. Then 
on the first iteration of the EM algorithm, the E-step requires the computation of the 
conditional expectation of log L,(lk) given y, using do) for lk, which can be written 
as 

Q(q do’) == Ely(a{logL(@) j Y}. (3.14) 

The expectation operator E has the subscript do) to explicitly convey that this ex- 
pectation is being effected using &’) for @. 

It follows that on the ( k  + 1)th iteration, the E-step requires the calculation of 
Q ( q  ! I ? ( k ) ) ,  where !I?(k) is the value of *after the kth EM iteration. As the complete- 
data log likelihood, log &(*), is linear in the unobservable data zz3 ,  the E-step (on 
the (I; + 1)th iteration) simply requires the calculation of the current conditional 
expectation of Z,, given the observed feature observation y3, where Z,, is the random 
variable corresponding to zLJ.  Now 

where, corresponding to (3.6), 

4 

h=l 

(3.15) 

(3.16) 

for i = 1, . . . , g; j = 1, . . . , n. The quantity 7,(y3; &‘I) is the posterior proba- 
bility that the j t h  member of the sample with observed value y3 belongs to the ith 
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component of the mixture. Using (3.15), we have on taking the conditional expecta- 
tion of (3.1 3) given the y, that 

a n  

(3.17) 

3.8.2 M-Step 

The M-step on the ( k  + 1)th iteration requires the global maximization of Q(* &'"') 
with respect to @over the parameter space 0 to give the updated estimate &'+'). For 
the finite mixture model, the updated estimates ~z('"+') of the mixing proportions T ,  

are calculated independently of the updated estimate w('+') of the parameter vector 
w containing the unknown parameters in the component densities. 

If the z , ~  were observable, then the complete-data ML (maximum likelihood) 
estimate of .ir7 would be given simply by 

(3.18) 
j=1 

As the E-step simply involves replacing each zZ3 with its current conditional expec- 
tation T~ (y, ; !P(k) )  in the complete-data log likelihood, the updated estimate of T ,  is 

given by replacing each z,, in (3.18) by q (yJ ;  &'"I) to give 

n 

nz (li+l) = C.(y,; !P('c))/n ( 2  = 1, . . . , 9 ) .  (3.19) 
,=1 

Thus in forming the estimate of T% on the ( k  + 1)th iteration, there is a contribution 
from each observation yJ equal to its (currently assessed) posterior probability of 
membership of the zth component of the mixture model. 

Concerning the updating of w on the M-step of the ( k  + 1)th iteration, it can be 
seen from (3.17) that w ( ~ + ' )  is obtained as an appropriate root of 

(3.20) 
2 = 1 , = 1  

One nice feature of the EM algorithm is that the solution of (3.20) often exists in 
closed form, as is to be demonstrated for the normal mixture model in Section 3.9. 

The E- and M-steps are alternated repeatedly until the difference 

L ( & k + l ) )  - L(&") 

changes by an arbitrarily small amount in the case of convergence of the sequence 
of likelihood values { L ( d k ) ) } .  Dempster et al. (1977) showed that the (incomplete- 
data) likelihood function L(@) is not decreased after an EM iteration; that is, 

L ( d k + l ) )  2 L(!@(k)) (3.21) 
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for k = 0,1 ,2 ,  . . .. Hence, convergence must be obtained with a sequence of likeli- 
hood values { L(lk('))} that are bounded above. In almost all cases, the limiting value 
L* is a local maximum. In any event, if an EM sequence {d')} is trapped at some 
stationary point ly" that is not a local or global maximizer of L(!P) (for example, a 
saddle point), a small random perturbation of !P away from the saddle point ly" will 
cause the EM algorithm to diverge from the saddle point. Further details may be 
found in the monograph of McLachlan and Krishnan (1997, Chapter 3) on the EM 
algorithm. 

Let !k be the chosen solution of the likelihood equation. For an observed sample, 
!k is usually taken to be the root of (3.12) corresponding to the largest of the local 
maxima located. That is, in those cases where L(!P) has a global maximum in the 
interior of the parameter space, &is the maximum likelihood estimate of !P, assuming 
that the global maximum has been located. 

3.8.3 Choice of Starting Values for the EM Algorithm 

The monograph of McLachlan and Peel (2000) provides an in-depth account of the 
fitting of finite mixture models. Briefly, with mixture models the likelihood typically 
will have multiple maxima; that is, the likelihood equation will have multiple roots. 
There are obvious difficulties with this selection in the typical cluster analysis setting, 
where there is little or no a priori knowledge of any formal group structure on the 
underlying population. As the likelihood equation (3.12) tends to have multiple roots 
corresponding to local maxima, the EM algorithm needs to be started from a variety 
of initial values for the parameter vector 9 or for a variety of initial partitions of the 
data into g groups. The latter can be obtained by randomly dividing the data into 
g groups corresponding to the g components of the mixture model. With random 
starts, the effect of the central limit theorem tends to have the component parameters 
initially being similar at least in large samples. Nonrandom partitions of the data can 
be obtained via some clustering procedure such as k-means. Also, Coleman et al. 
(1999) have proposed some procedures for obtaining nonrandom starting partitions. 

3.9 CLUSTERING VIA NORMAL MIXTURES 

Frequently, in practice, the clusters in the data are essentially elliptical, so that it is 
reasonable to consider fitting mixtures of elliptically symmetric component densi- 
ties. Within this class of component densities, the multivariate normal density is a 
convenient choice given its computational tractability. 

3.9.1 Heteroscedastic Components 

Under the assumption of multivariate normal components, the ith component-con- 
ditional density f,(y; 6,)  is given by 

fi(Y; 6%) = d Y ;  P,, &I,  (3.22) 
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where 0, consists of the elements of pz and the i p ( p  + 1) distinct elements of 
E7 (z = 1. . . . , y). Here 

@(y: p,. E,) = ( 2 ~ ) - $  lE,l-1’2 exp{-$(y - p7)T’EF1(y - p , ) }  (3.23) 

In this case the solution of (3.20) exists in closed form. It follows that on the M-step 
of the ( k  + 1)th iteration, the updatcs of the component means p, and component- 
covariance matrices Et are given explicitly by 

n 

J’1 j = 1  

and 
71 

j-1 j = 1  

for i = I .  . . . . y, where 

= Tt(yJ; dk)) ( i  = 1, . . . , 9: j = 1, . . . , n) .  

The updated estimate of the ith mixing proportion T, is as given by (3.19). 

3.9.2 Homoscedastic Components 

Often in practice, the component-covariance matrices Ei are restricted to being the 
same, 

(3 26) 

where E is unspecified. In this case of homoscedastic normal components. the 
updated estimate of the common component-covariance matrix E is given by 

E, = E ( i  = 1. . . . . 9). 

(3.27) 
r=l  

i k t l )  . 
where E7 
heteroscedastic case. 

15 given by (3.25), and the updates of K~ and p, are as above i n  the 

3.9.3 Spherical Components 

A further simplification is to take the component-covariance matrices to have a com- 
mon spherical form. where the covariance matrix of each component is taken to be a 
multiple of the p x p identity matrix I, ,  namely 

E/ = cT2 1, ( i  = 1; . . . . 9). (3.28) 

The constraint (3.28) means that the clusters produced are spherical. If we also take 
the mixing proportions to be equal, then it is equivalent to a “soft” version of k-means 
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clustering. It is a soft version as with k-means, the observations are assigned outright 
at each of the iterations. That is, the current values of the posterior probabilities 7::’ 

are replaced by 2!:), where 

2:;) = 1, if 7::’ 2 7:;’ ( h  = 1, . . . . g;  h # i). 
= 0, otherwise. (3.29) 

3.9.4 Choice of Root 

The choice of root of the likelihood equation in the case of homoscedastic normal 
components is straightforward in the sense that the ML estimate exists as the global 
maximizer of the likelihood function. The situation is less straightforward in the case 
of heteroscedastic normal components as the likelihood function is unbounded. It is 
known that as the sample size goes to infinity, there exists a sequence of roots of the 
likelihood equation that is consistent and asymptotically efficient. With probability 
tending to one, these roots correspond to local maxima in the interior of the parameter 
space; see McLachlan and Peel (2000, Chapter 3). Usually, the intent is to choose 
as the ML estimate of the parameter vector !P the local maximizer corresponding 
to the largest of the local maxima located. But in practice, consideration has to be 
given to the problem of relatively large local maxima that occur as a consequence 
of a fitted component having a very small (but nonzero) variance for univariate data 
or generalized variance (the determinant of the covariance matrix) for multivariate 
data. Such a component corresponds to a cluster containing a few data points either 
relatively close together or almost lying in a lower-dimensional subspace in the case 
of multivariate data. There is thus a need to monitor the relative size of the fitted 
mixing proportions and of the component variances for univariate observations, or of 
the generalized component variances for multivariate data, in an attempt to identify 
these spurious local maximizers. 

3.9.5 Available Software 

The reader is referred to the appendix in McLachlan and Peel (2000b) for the avail- 
ability of software for the fitting of normal mixture models, including the EMMIX 
program of McLachlan et al. ( I  999). The current version of EMMIX is available 
from the World Wide Web address 

http://www.maths.uq.edu.au/”gjm/emmix/emrnix.html 

Concerning the availability of mixture modeling facilities in general-purpose statisti- 
cal packages, there is the MCLUST software package of Fraley and Raftery (1 998), 
which is interfaced to the S-PLUS commercial software. 
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3.10 MIXTURES OF t DISTRIBUTIONS 

For many applied problems, the tails of the normal distribution are often shorter than 
appropriate. Also, the estimates of the component means and covariance matrices can 
be affected by observations that are atypical of the components in the normal mixture 
model being fitted. McLachlan and Peel (2000, Chapter 7) and Peel and McLachlan 
(2000) have considered the fitting of mixtures of (multivariate) t-distributions. The 
f distribution provides a longer tailed alternative to the normal distribution. Hence 
it provides a more robust approach to the fitting of normal mixture models, as ob- 
servations that are atypical of a normal component are given reduced weight in the 
calculation of  its parameters. 

The t density with location parameter p! ,  positive-definite matrix Ef, and v, 
degrees of freedom is given by 

where 
h(Y,: pz; EL) = b7 - P l ) 7 ' q 1 ( Y J  - P,) (3.31) 

denotes the Mahalanobis squared distance between yj and p, (with Et as the covari- 
ance matrix). If ~ / i  > 1, pi is the mean of YJ, and if v, > 2, vi(vi ~ 2)--'& is its 
covariance matrix. As v, tends to infinity, Y, becomes marginally multivariate nor- 
mal with mean p,  and covariance matrix X,.  Hence this parameter z/i may be viewed 
as a robustness tuning parameter. It can be fixed in advance or it can be inferred 
from the data for each component, thereby providing an adaptive robust procedure 
(McLachlan and Peel. 2000). 

The t distribution does not have substantially better breakdown behavior than the 
normal. The advantage of the t mixture model is that, although the number of outliers 
needed for breakdown is almost the same as with the normal mixture model, the 
outliers have to be much larger. This point is made more precise by Hennig (2002) 
who has provided an excellent account of breakdown points for ML estimation of 
location-scale mixtures with a fixed number of components 9. 

3.1 1 MIXTURES OF FACTOR ANALYZERS 

As noted in Section 3. I ,  a normal model with unrestricted group-covariance matri- 
ccs is a highly parameterized one with $ p ( p  $- 1) parameters for each component- 
covariance matrix .E( ( i  = 1. . . . { I ) .  Banfield and Raftery (1993) introduced a 
parameterization of the component-covariance matrix E; based on a variant of the 
standard spectral decomposition of Xi .  

Another approach for reducing the number of unknown parameters in the form 
for a component-covariance matrix is factor analysis, which models the covariance 
structure of high-dimensional data using a small number of latent variables. For 
clustering purposes. {.his model can be extended by the mixture of factor analyzers 



MIXTURES OF FACTOR ANALYZERS 79 

model, which effectively allows different local factor models in different regions 
of the feature space (McLachlan and Peel, 2000a,b). This model was originally 
proposed by Ghahramani and Hinton (1997) and Hinton, Dayan, and Revow (1997) 
for the purposes of visualizing high-dimensional data in a lower-dimensional space 
to explore for group structure. 

With the mixture of factor analyzers model, the zth component-covariance matrix 
E, has the form 

(3.32) 

where B, is a p x q matrix of factor loadings and D, is a diagonal matrix. It 
assumes that the component correlations between the observations can be explained 
by the conditional linear dependence of the latter on q latent or unobservable variables 
specific to the given component. Unlike the PCA model, the factor analysis model 
(3.32) enjoys a powerful invariance property: changes in the scales of the feature 
variables in yJ appear only as scale changes in the appropriate rows of the matrix B, 
of factor loadings. 

If the number of factors q is chosen sufficiently smaller than p ,  the representation 
(3.32) imposes some constraints on the component-covariance matrix 22, and thus 
reduces the number of free parameters to be estimated. Note that in the case of q > 1, 
there is an infinity of choices for B,, since (3.32) is still satisfied if B, is replaced 
by B,C,, where C, is any orthogonal matrix of order q.  One (arbitrary) way of 
uniquely specifying B, is to choose the orthogonal matrix C, so that BYDF'B, is 
diagonal (with its diagonal elements arranged in decreasing order). Assuming that 
the eigenvalues of B,BT are positive and distinct, the condition that BTDL'B, is 
diagonal as above imposes $ q ( q  - 1) constraints on the parameters. Hence then the 
number of free parameters for each component-covariance matrix is 

E, = B,BT + D, (Z = 1, . . . , g ) ,  

+ ?, - - 1) 

In our experience with microarray data sets, we have found that the choice of the 
number of factors q is not crucial in the clustering of the tissue samples. A formal 
test for q can be undertaken using the likelihood ratio A, as regularity conditions 
hold for this test conducted at a given value for the number of components 9. For 
the null hypothesis that Ho : q = qo versus the alternative H I  : q = qo + 1, 
the statistic -210gX is asymptotically chi-squared with d = g ( p  - yo) degrees 
of freedom. However, in situations where n is not large relative to the number of 
unknown parameters, we prefer the use of the Bayesian information criterion (BIC) 
of Schwarz (1978). Applied in this context, it means that twice the increase in the 
log likelihood (-2 log A) has to be greater than dlog n for the null hypothesis to be 
rejected. 

With the factor analysis model, we avoid having to compute the inverses of iterates 
of the estimated p x p covariance matrix E, that may be singular for large p relative to 
n. This is because the inversion of the current value of the p x p matrix (B,BT + 0,) 
on each iteration can be undertaken using the result that 

(B,B? + DJ1 = - D,lBz(1, + BTD,'B,)yBTD,1, (3.33) 
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where the right-hand side of (3.33) involves only the inverses of q x q matrices, since 
Df  is a diagonal matrix. The determinant of (BiBT + Di) can then be calculated as 

1 B,;BT + .Di I = /  D, I / 1 Iq - BT(BiBT + Di)-lBi 1 . 

The estimates of the elements of the diagonal matrix Di (the uniquenesses) will 
be close to zero if effectively not more than q observations are unequivocally assigned 
to the ith component of the mixture in terms of the fitted posterior probabilities of 
component membership (McLachlan et al., 2003). This will lead to spikes or near 
singularities in the likelihood. One way to avoid this is to impose the condition of a 
common value D for the Di, 

D , = D  ( i = l >  . . . , g ) .  (3.34) 

The mixture of probabilistic component analyzers (PCAs) model, as proposed by 
Tipping and Bishop (1999), has the form (3.32) with each D,;, now having the isotropic 
structure 

(3.35) 

where Ip  denotes the p x p identity matrix. 
The mixtures of factor analyzers model can be fitted by using the alternat- 

ing expectation-conditional maximization (AECM) algorithm (Meng and van Dyk, 
1997). McLachlan et al. (2002) showed how use can be made of the link of factor 
analysis with the probabilistic PCA model (3.35) to specify an initial value do) for 
!P. 

D, = a ~ I I 1  (i = 1, . . . ~ g). 

3.12 CHOICE OF CLUSTERING SOLUTION 

If it were known that the data at hand came from a mixture of 9 normal components, 
then the aim is to seek a single solution of the likelihood equation to estimate the vector 
of parameters in the mixture model. However, in the absence of such knowledge in a 
clustering context, it is not suggested that the clustering of a data set be based solely 
on a single solution of the likelihood equation, but rather on the various solutions 
considered collectively. The set of plausible solutions may reveal that there are some 
points that always cluster together (core members). Also, often the clusters are meant 
to correspond to some discrete states (degrees of sickness of a patient). As there is 
a continuous gradation, in some patients, from one state to the other, it is reasonable 
to expect some overlap between the clusters. In such cases, the best one can hope to 
achieve is to identify the "core" patients of the states. 

In applications of normal mixture models to the clustering of tissue samples, the 
sample size is typically too small relative to the dimension of the feature space to 
enable a choice to be made about the forms of the normal components on the basis 
of the likelihood function. In such situations, care has to be exercised in allowing the 
component-covariance matrices Ei to be completely unrestricted as then it is very 
difficult to distinguish between genuine and spurious local maximizers, assuming that 
the EM algorithm has managed to avoid some of the singularities. 
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For very sample sample sizes, the E, may have to be constrained to be equal. 
For sufficiently large sample sizes, we attempt to obtain solutions with less stringent 
constraints on the Et. One way to proceed is to fit mixtures of normal components 
with the component-covariance matrices Et taken to be unequal but diagonal. That 
is, the clusters are allowed to have different shapes, but their axes must be aligned with 
the axes of the feature space. Call this solution Sue. Solutions with the orientations 
of the clusters not necessarily aligned with the axes of the feature space can be 
obtained by (1) fitting mixtures of factor analyzers with unrestricted component- 
covariance matrices (that is, unequal matrices B, of factor loadings and unequal 
diagonal matrices D,), starting the EM algorithm from Sue; (2) fitting mixtures of 
factor analyzers with unequal factor loadings B, but equal diagonal matrices D,, 
using random and k-means-based starts. Note that if mixtures of factor analyzers 
are fitted from random or k-means-based starts for very small sample sizes, the EM 
algorithm will typically not converge. 

3.13 CLASSIFICATION ML APPROACH 

Another likelihood-based approach to clustering besides the mixture likelihood ap- 
proach is what is sometimes called the classification likelihood approach. With this 
approach, rk and the unknown component-indicator vectors z1, . . . , z,, of the ob- 
served feature data yl, . . . , yYn are chosen to maximize L,(!@), the likelihood for 
rk formed on the basis of the so-called complete-data as introduced within the EM 
framework for the ML fitting of the mixture likelihood. In principle, the maximiza- 
tion process for the classification likelihood approach can be carried out for arbitrary 
n, since it is just amatter of computing the maximum value of I&(@) over all possible 
partitions of the n observations to the g components. In some situations, for exam- 
ple with multivariate normal component densities with unequal covariance matrices, 
the restriction that at least p + 1 observations belong to each component is needed to 
avoid the degenerate case of infinite likelihood. Unless n is small, however, searching 
over all possible partitions is prohibitive. As noted by McLachlan (1982), a solution 
corresponding to a local maximum can be computed iteratively by alternating a mod- 
ified version of the E-step with the same M-step, as described in Section 3.8.2 for 
the application of the EM algorithm in fitting the mixture model (3.5). In the E-step 
on the ( k  + 1)th iteration, zt3 is replaced not by the current estimate of the poste- 
rior probability that the j th  entity belongs to the zth component, but by one or zero 
according to whether 

holds or not (i = 1, . . . , g ;  j = 1, . . . , n).  
The classification ML approach can be shown to be equivalent to some com- 

monly used clustering criteria under the assumption of normal groups with various 
constraints on their covariance matrices, as noted originally by Scott and Symons 
(1 97 1). For example, if the mixing proportions are taken to be equal or, equivalently, 
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a separate sampling scheme is assumed for the data, then the classification ML ap- 
proach with the constraint of equal covariance matrices leads to the 1 W I criterion, 
as originally suggested by Friedman and Rubin (1967). If the covariance matrices are 
further assumed to be diagonal, then it yields the trace W criterion or, equivalently, 
the k-means procedure. More recently, Celeux and Govaert ( 1995) have consid- 
ered the equivalence of the classification ML approach to other clustering criteria 
under varying assumptions on the component densities. From an estimation point of 
view, the classification ML approach yields inconsistent estimates of the parameters 
(McLachlan and Peel, Chapter 2,2000). 

3.14 MIXTURE MODELS FOR CLINICAL AND MICROARRAY DATA 

In this section, we consider the case where, in addition to the microarray expression 
data, there are also available data of a clinical nature on the cases on which the tissue 
samples have been recorded. The tissue samples can be clustered on the basis of 
the clinical and microarray data considered separately. But the simultaneous use of 
the clinical and microarray should lead to more powerful clustering procedures in 
situations where the clinical data contains information beyond that provided by the 
microarray experiments. 

Two types of mixture models (unconditional and conditional) are proposed for the 
simultaneous use of clinical and microarray data for the clustering of tissue samples. 
With the unconditional approach, the mixture distribution models the joint distribu- 
tion of the clinical and microarray data, while with the conditional approach, the 
mixture distribution models the conditional distribution of the microarray data given 
the clinical data. These approaches are to be illustrated in the clustering of breast 
cancer tissues, as studied recently in van 't Veer et al. (2002). 

It is supposed that the microarray data consist of n, tissue samples, yyl. 
from r )  microarray experiments on p genes. That is, yJ is a p-dimensional 
is assumed further that there is available a vector x9 of clinical measurements taken 
on the j t h  case with tissue sample y,7 (j = 1, . . . . n,). For the clustering of the rI 
tissue samples (really the n, cases) into g clusters, we shall fit a y-component mixture 
model, where the ith component represents the ith external class G, corresponding 
to the ith cluster ( i  := 1, . . . ~ y). We let z,, be the (unobservable) class indicator 
associated with the *jth tissue sample yJ, where z3 = i implies that the j th  case is 
from the ith class ( i  = I ,  
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3.14.1 Unconditional Approach 

The combined clinical and microarray data (y:, z;)~ (3  = 1.. . . . n) are taken to 
be n (independent) realizations from the mixture density, 

i=l 

(3.36) 

where 7i-i = pr{Z = i } ,  f z ( x )  denotes the ith class-conditional density of the vector 
x of clinical features, and f,(y I x) denotes the ith class-conditional density of the 
vector of the gene expression levels given the clinical-data vector x ( i  = 1, . . . . g ) .  
The symbol f is being used generically here to denote a density where, for discrete 
random variables, the density is really a probability function. 

On specifying the forms of the densities of f7(x) and ft(y 1 x), we can fit the 
mixture model (3.36) by maximum likelihood, using the EM algorithm of Dempster 
et al. (1977); see McLachlan and Krishnan (1997) and McLachlan and Peel (2001). 
In practice, the clinical features are usually nearly all discrete variables or are coded 
to be so. In discriminant and cluster analyses, it has been found that it is reasonable to 
proceed by treating discrete variables as if they are independently distributed within 
a class or cluster. This is known as the NAIVE assumption (Hand and Yu, 2001). 
Under this assumption, the ith class-conditional density of the vector of clinical 
features reduces to 

(3.37) 

where f i U ( x U )  denotes the ith class-conditional density of the vth clinical feature in 

Concerning the ith class-conditional density of the vector y of gene expressions 
given the clinical-data vector x, we can take y not to depend on the clinical-data 
vector x and model its marginal density j", (y) by the multivariate normal density. For 
clinical features that are all discrete, we can allow for some dependence between the 
microarray-data vector y and the clinical-data vector x by adopting the location model 
as, for example, in Hunt and Jorgensen ( 1999). With the location model, ,fi (y I x) is 
taken to be multivariate normal with a mean that is allowed to be different for some 
or all of the various levels of x. 

Given that the dimension p of the vector y of gene expressions is so much greater 
than the number rr of available tissue samples, we would not be able to use all the 
genes in x. In the example to be presented in Section 4.15, we replace x by the vector 
of the means of the first 15 groups into which the genes have been clustered via the 
EMMIX-GENE software of McLachlan et al. (2002). 

2. 
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3.14.2 Conditional Approach 

As an alternative to the use of the full mixture model (3.36), we may proceed condi- 
tionally on the realized values of the clinical-data vectors z1, . . . , xTL.  This leads to 
the use of the conditional mixture model, 

(3.38) 

where T? (z) denotes the conditional probability that the class indicator takes on the 
value i given the vector x of clinical features. A common model for 7rTr,(x) is the 
logistic model under which 

(3.39) 

where 0, = ( . j I l .  . . . . d,I,)T for i = 1. . . . , g - 1, and 

a - 1  

11-1 

3.15 CHOICE OF THE NUMBER OF COMPONENTS IN A MIXTURE 
MODEL 

With a mixture model-based approach to clustering, the question of how many clusters 
there are can be considered in terms of the number of components of the mixture model 
being used. 

3.15.1 Order of a Mixture Model 

A mixture density with g components might be empirically indistinguishable from 
one with either fewer than g components or more than g components. It is therefore 
sensible in practice to approach the question of the number of components in a mixture 
model in terms of an assessment of the smallest number of components in the mixture 
compatible with the data. To this end, the true order go of the g-component mixture 
model 

Y 

f ( y :  *) c.2 fTr,(y; 01) (3.40) 
1=1 

is defined to be the smallest value of ,q such that all the components f j ( y :  13,) are 
different and all the associated mixing proportions T ,  are nonzero. 

3.1 5.2 Approaches for Assessing Mixture Order 

In most of the work on inference on the number of components g in a mixture model, 
Bayesian or otherwise, the approach has been to separate the problem of testing for 
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g from the fitting of the mixture model, and hence estimation, for fixed g. However, 
with the Bayesian approach, increasing attention is being given to the more direct line 
of modeling the unknown g case by mixing over the fixed g case (Phillips and Smith, 
1996; Richardson and Green, 1997). 

The estimation of the order of a mixture model has been considered mainly by 
consideration of the likelihood,using two main ways. One way is based on apenalized 
form of the likelihood. As the likelihood increases with the addition of a component 
to a mixture model, the likelihood (usually, the log likelihood) is penalized by the 
subtraction of a term that “penalizes” the model for the number of parameters in it. 
This leads to a penalized log likelihood, yielding what are called information criteria 
for the choice of g; see McLachlan and Peel, (2000, Chapter 6). 

The other main way for deciding on the order of a mixture model is to carry out 
a hypothesis test, using the likelihood ratio as the test statistic. Penalized likelihood 
criteria, like Akaike’s AIC and the Bayesian information criterion (BIC), are less 
demanding than the likelihood ratio test (LRT), which requires bootstrapping in order 
to obtain an assessment of the P-value. However, they produce no number that 
quantifies the confidence in the result, such as a P-value. 

3.15.3 Bayesian Information Criterion 

The main Bayesian-based information criteria use an approximation to the integrated 
likelihood, as in the original proposal by Schwarz (1978) leading to his Bayesian 
information criterion (BIC). Available general theoretical justifications of this ap- 
proximation rely on the same regularity conditions that break down for inference on 
the number of components in a frequentist framework. 

In the literature, the information criteria so formed are generally expressed in terms 
of twice the negative difference between the log likelihood and the penalty term. This 
difference for the Bayesian information criterion (BIC) is given by 

210gL(@) f d l o g n  (3.41) 

where d is the number of parameters in the model. The intent is to minimize the 
criterion (3.41) in model selection, including the present situation for the number of 
components g in a mixture model. 

3.15.4 Integrated Classification Likelihood Criterion 

Another criterion in the cluster analysis context is the ICL (Integrated Classifica- 
tion Likelihood) criterion, which is an a la BIC approximation to the complete-data 
log likelihood. It was proposed by Biernacki, Celeux, and Govaert (1998). In its 
simplified form, it is given by 

-2IogL(@) + 2EN(‘i) + d l o g n ,  (3.42) 
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where 
4 11 

L-1 J=1 

is the entropy of the fuzzy classification matrix C = ( ( T ~ ~ ) )  and where 

and 
= *)> . . ' ,  Tq(yj; *))T (3.44) 

is the vector of posterior probabilities of component membership of yj (3 = 

1. . . . , ? L ) .  

3.16 RESAMPLING APPROACH 

A guide to the final choice of g can be obtained from monitoring the increase in 
the log likelihood as g is increased from a single component. Unfortunately, it is 
difficult to carry out formal tests at any stage of this sequential process for the need 
of an additional component, since as is well known, regularity conditions fail to hold 
for the likelihood ratio statistic X to have its usual asymptotic null distribution of 
chi-squared with degrees of freedom equal to the difference between the number of 
parameters under the null and alternative hypotheses. 

A formal lest of the null hypothesis Ho : g = go  versus the alternative H I  : g = 

91 (gl > ,yo) can be undertaken using a resampling method, as described in McLach- 
Ian (1987). Previously, Aitkin et al. (1 98 1) had adopted a resampling approach in 
the context of a latent class analysis. Bootstrap samples are generated from the mix- 
ture model fitted under the null hypothesis of go components. That is, the bootstrap 
samples are generated from the go-component mixture model with the vector Ik of 
unknown parameters replaced by its ML estimate computed by consideration of 
the log likelihood formed from the original data under Ho. The value of - 2  log X is 
computed for each bootstrap sample after fitting mixture models for g = go and g1 to 
it in turn. The process is repeated independently B times, and the replicated values 
of -2 log X formed from the successive bootstrap samples provide an assessment 
of the bootstrap, and hence of the true, null distribution of -2 log A. It enables an 
approximation to be made to the achieved level of significance P corresponding to 
the value of -2 log X evaluated from the original sample. The rth-order statistic of 
the €? bootstrap replications can be used to estimate the quantile of order T / ( B  + 1). 
A preferable alternative would be to use the rth-order statistic as an estimate of the 
quantile of order (31. ~- 1)/(3B + 1); see Hoaglin (1985). 

If a very accurate estimate of the P-value were required, then B may have to be 
very large (Efron and Tibshirani, 1993). Usually, however, there is no interest in 
estimating a P-value with high precision. Even with a limited replication number B, 
the amount of computation involved is still considerable, in particular for values of 
go  and g1 not close to one. However, as noted by Smyth (2000), the process can be 
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easily and efficiently implemented on parallel computing hardware, for example, by 
using B parallel processors (Smyth, 2000). 

In the narrower sense where the decision to be made concerns solely the rejection or 
retention of the null hypothesis at a specified significance level a,  Aitkin et al. (1 98 1) 
noted how, analogous to the Monte Carlo test procedure of Barnard (1963) and Hope 
(1 968), the bootstrap replications can be used to provide a test of approximate size 
a. The test that rejects Ho if -2 log X for the original data is greater than the jth 
smallest of its B bootstrap replications has size 

(Y = 1 - j / ( B  + 1) (3.45) 

approximately. For if any difference between the bootstrap and true null distributions 
of - 2  log X is ignored, then the original and subsequent bootstrap values of - 2  log A 
can be treated as the realizations of a random sample of size B + 1, and the probability 
that a specified member is greater than j of the others is 1 - j / ( B  + 1). For some 
hypotheses the null distribution of X will not depend on any unknown parameters, and 
so then there will be no difference between the bootstrap and the true null distribution 
of -2 log A. An example is the case of normal populations with all parameters 
unknown where go = 1 under Ho. The normality assumption is not crucial in this 
example. 

in place of the unknown value of Ik under 
the null hypothesis, will affect the accuracy of the P-values assessed on the basis 
of the bootstrap replications of -2 log A. McLachlan and Peel (1997) performed 
some simulations to demonstrate this effect. They observed that there was a tendency 
for the resampling approach using bootstrap replications to underestimate the upper 
percentiles of the null distribution of -2 log A, and hence overestimate the P-value 
of tests based on this statistic. 

In general, the use of the estimate 

3.17 OTHER RESAMPLING APPROACHES FOR NUMBER OF 
CLUSTERS 

3.17.1 The Gap Statistic 

On other resampling approaches, Tibshirani et al. (2001) proposed a gap statistic as 
a general method for determining the number of clusters. This method compares an 
observed internal index, such as the within-cluster sum of squares, to its expectation 
under a reference null distribution. More recently, Dudoit and Fridlyand (2002) 
proposed a prediction-based resampling method to estimate the number of clusters 
in a data set. As we shall be reporting the results of some simulations in which this 
method is compared with a normal mixture model-based resampling approach, we 
now briefly describe this method. 
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3.17.2 The Clest Method for the Number of Clusters 

The Clest method of Dudoit and Fridlyand (2002) is a prediction-based resampling 
method for assessing the number of clusters in the data. It is concerned with the 
reproducibility or predictability of the clusters. For a fixed number of clusters g, 
it proceeds by repeatedly dividing the original sample into two sets, a training or 
learning set S L , ~  and a test set ST,,] on a given replication b. A clustering of S L , ~  
is obtained and a classifier is found on the basis of this clustering as if the cluster 
labels were the true class labels. This classifier is then applied to the test set  ST.^ 
and the predicted group labels are compared using some external index ob. This 
procedure is repeated B times to give n l ,  . . . ~ ag  and their median m9. The null 
distribution of !my is approximated by the bootstrap under the uniformity hypothesis 
whereby the data are sampled from a uniform distribution in p-dimensional space. If 

~ . . . , i ~ i ; ~ ~ , ,  denote the B, bootstrap values corresponding to mq so obtained, 
we let r?i3z denote their sample mean and wi is taken to be the proportion of these B, 
bootstrap samples that are at least as large as mg (the assessed P-value). Finally, let 
d* = r r i y  - a;. 

To complete the definition of the Clest procedure, we need the set J ,  which is 
defined as 

!J 

J = { 2 I 5 .qmax: W ;  5 winax, d i  2 &in}, 

where gmax is the maximum value of y to be considered and wnlax and &in are preset 
thresholds. The ad hoc choice in Dudoit and Fridlyand (2002) for w,,, and dmin was 
0.05 each. If this set J is empty, the number of clusters is estimated as one (i == 1). 
Otherwise, let the number of clusters be estimated by 

= arg niax ";. 
'I 

Dudoit and Fridlyand (2002) applied their test procedure using the partitioning 
around medoids (PAM) method of Kaufman and Rousseeuw (1 990), a linear normal- 
based classifier with diagonal group-covariance matrices, and the external index of 
Fowlkes and Mallows (1 983). They compared the performance of their Clest proce- 
dure with six other methods using simulated data and gene expression data from four 
published cancer microarray studies. The six methods were the silhouette criterion 
of Kaufman and Rousseeuw (1990), the gap/gap PC statistics of Tibshirani et al. 
(2001), and the criteria proposed by Calinski and Harabasz (1974), Krzanowski and 
Lai (1985), and Hartigan (1985). 

3.18 SIMULATION RESULTS FOR TWO RESAMPLING APPROACHES 

We now report the results of some simulation experiments performed by McLachlan 
and Khan (2004) to compare the likelihood ratio test (LRT) under the normal mixture 
model with the nonparametric Clest procedure for the choice of number of clusters. 
They used the same eight population models as adopted by Dudoit and Fridlyand 
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(2002) to compare their Clest procedure with six other criteria, using the same number 
of replications (50) per model. From their simulations, Dudoit and Fridlyand (2002) 
concluded that Clest was the most robust and accurate. Hence McLachlan and Khan 
(2004) compared only the performance of the Clest procedure with the LRT in their 
simulations. Their comparison is reported here in Table 3.1. 

The eight models can be described briefly as follows, where x3  (3 = 1, . . . , n,) 
denote the n, observations generated independently in group G, (i = 1. . . . . 9) .  

Model 1 (g = 1,p  = 10,n = 200), where y 3  is from the uniform distribution 

Model 2 (9 = 3 , p  = 2, n1 = 25, n2 = 25. n3 = SO), where 

over the unit hypercube in 10 dimensions. 

K J  - A r b , ,  1 2 )  

and where 

Model 3 (g  = 4, p = 10, n~ = 25 or 50 with probability 0.5 each), where 

and where 

and w7 is a realization of the random variable W, distributed as 

Here 07 denotes a seven-dimensional vector of zeros. Any simulation where the Eu- 
clidean distance between the two closest observations belonging to different clusters 
is less than 1 is discarded. 

Model 4 (g  = 4,p = 10, n, = 25 or 50 with probability 0.5 each), where 

and where p, = 20, and w? is a realization of the random variable W, distributed as 

Any simulation where the Euclidean distance between the two closest observations 
belonging to different clusters is less than 1 is discarded. 

Model 5 (g  = 2 , p  = 3, n, = loo), where 

KJ - N P h J >  13) 
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and where 

pi3 = -0.5 + 0 . 1 ( ~  - 1)/99 

and pZ3 = pi3 + 10. 

Model 6 ( g  = 2 , p  = 10,n, = loo), where the simulated observations yL3 = 

(Y:ij, Y i 3 ) T  are formed independently by generating the YlZ3 as in Model 5 and 
by generating the Y;Lz7 as 

YZZJ - N ( 0 7 .  &), 

and 0 7  is a 7 x 7diagonalmatrix whose vth diagonalelement is equal to (v+3)’ (v = 

1; . . . , 7 ) .  

Model 7 ( g  = 2 , p  = 10, n, = 50), where 

y 2 3  - N(P%,IlO) 

and where pl = Ol0 and p2 = (2.5, O T ) T .  

Model 8 (,y = 3 , p  = 13, n, = 50). where 

y z 3  - “P,,  

and where 

T ’r 
PI = 0, b2 = ( 2 ,  -2, 2,0T0)T, and p3 = ( -2 ,2 ,  - 2 , O I 0 )  , 

and 

( E 1 i ) U V  = 1.0 ( u = v ) ,  

= 0.5 (U # u), 

for U ,  71, = 1 , 2 , 3 .  Here 03.7 denotes a 3 x 7 matrix of zeros. 
For each simulated sample, McLachlan and Khan (2004) fitted a g-component 

normal mixture model, starting with g = 1. They kept increasing g until they reached 
a value of g, go,  such that the LRT of HO : g = go versus H I  : g = gC, + 1 was 
not significant with the P-value assessed by resampling as described in Section 3.16. 
The component-covariance matrices were taken to be unrestricted for all but models 
3 and 4 for which they were specified to be equal. For each of the eight simulation 
models, the value of go obtained in this manner on the 50 simulation trials per model 
are displayed in Table 3.1. 

It can be seen in Table 3.1 that the relative performance of the LRT with the P-value 
assessed via resampling is quite encouraging for choosing the number of clusters. 
The good simulation results for this approach are to be expected since it is favored 
by having multivariate normal data. 
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Table 3.7 Estimating the Number of Clusters in Simulated Data 

Model Method Number of Clusters 
~ ~ 

1* 2 3 4 
1 Clest 48 2 0 0 
1 LRT 50 0 0 0 

1 2 3* 4 
2 Clest 0 1 49 0 
2 LRT 0 0 49 0 

1 2 3 4* 
3 Clest 0 1 20 29 
3 LRT 0 0 0 47 

1 2 3 4* 
4 Clest 0 0 1 49 
4 LRT 0 0 0 50 

1 2* 3 4 
5 Clest 0 44 0 6 
5 LRT 0 50 0 0 

1 2* 3 4 
6 Clest 0 43 7 0 
6 LRT 0 50 0 0 

1 2* 3 4 
7 Clest 26 15 6 3 
7 LRT 0 46 0 0 

1 2 3* 4 
8 Clest 0 16 34 0 
8 LRT 0 1 48 1 

Source; McLachlan and Khan (2004). The true number of groups is denoted by the asterisk. 

3.19 PRINCIPAL COMPONENT ANALYSIS 

3.19.1 Introduction 

In exploring high-dimensional data sets for group structure, it is typical to rely on 
“second-order’’ multivariate techniques; in particular, principal component analysis 
(PCA). Here we briefly discuss a PCA on the sample covariance matrix 

(3.46) 
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where 
I L  

j=1 

We let al. . . . , up be the (unit) eigenvectors, corresponding to the eigenvalues A1 2 
A2 2 . . . 2 A, of V: In the case where the variates are measured on disparate scales, 
we may wish to replace Vby the sample correlation matrix. 

If there are only a few groups and they are well separated, and the between-group 
variation dominates the within-group variation, then projections of the feature data 
yJ onto the first few principal axes should portray the group structure. However, a 
PCA of Vmay not always be useful. This point was stressed by Chang ( 1  983), who 
showed in the case of two groups that the principal component of the feature vector 
that provides the best separation between the two groups, in terms of the Mahalanobis 
distance, is not necessarily the first component a y y i ;  see McLachlan (1992, Section 
6.6). 

To illustrate this, we generated a sample of size n = 500 bivariate observations 
from two groups GI and G2 with means 

pI = (5; 0)‘ and pa = 0 

and covariance matrices 
El = diag(1, 10) 

and 

These data are plotted in Figure 3.4, where it can be seen that these two groups 
are well separated. The first principal component is the diagonal line with equation 
roughly yz = -y l  that separates the two groups. It accounts for most of the variation 
in these data with the first component accounting for approximately 90%. However, 
if it can be seen that if the data were to be projected onto it, then the group differences 
between the observations would not be revealed, as essentially all the cluster infor- 
mation is contained in the second principal component. Of course it could be argued 
that if both principal components were used, then the group differences would be 
revealed. But with high dimensional data sets, one cannot be be sure that an adequate 
number of principal components have been used for the purposes of finding the group 
structure in the data. 

Principal component analysis has been commonly applied to microarray data; see, 
for example, Liu et al. (2003). In a comparison of three multivariate methods that 
included principal component analysis, Wouters et al. (2004) did claim that “principal 
component analysis has the disadvantage that the resulting principal factor scores are 
not very informative.” However, Pittelkow and Wilson (2004) have since pointed out 
that suitable PC representations are possible for the data set considered in Wouters 
et al. (2004) if conventional practice is followed with the measurements on the genes 
being first mean corrected. 
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Fig. 3.4 Sample of bivariate observations. 

3.19.2 Singular Value Decomposition 

In the context of analyzing the tissue samples where p may be extremely large, we 
can avoid the computational burden of undertaking the singular value decomposition 
(SVD) of the p x p matrix Vby working in the dual space. To see this, we note from 
(3.46) that the sample covariance matrix Vcan be written as 

V= YTY/n, (3.47) 

where Y = (yl - 3, . . . , yn - j j )T  is the n x p data matrix. The singular value 
decomposition (SVD) of Y i s  given by 

Y =  UIAUT (3.48) 

where A is a diagonal matrix of singular values ordered from largest to smallest and 
U1 ( n  x n)  and Uz ( p  x p )  are orthogonal matrices. The columns of Uz are the 
eigenvectors of V; 

Now working in the dual space, we have 

v = W T / p  
= ( n / p )  U1 A2 Uy. 

On noting that 
YTUl = UzA, 

(3.49) 

(3.50) 

it follows from (3.49) and (3.50) that we can find A and U, via the SVD of 

decomposition of microarray data. 
Recently, Liu et al. (2003) have developed a robust analysis for the singular value 
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3.1 9.3 Some Other Multivariate Exploratory Methods 

There are of course other multivariate methods besides principal component analysis 
for exploratory analyses and dimension reduction. For example, there is multidimen- 
sional analysis (principal coordinate analysis) whereby the interpoint distances (or 
proximities) between the feature vectors are calculated. Then a representation of the 
feature data in a reduced dimensional space is formed to make the interpoint distances 
within the latter space as close as possible to the original interpoint distances; see 
Seber (1984, Section 5.5) for further details. 

We conclude this section by noting that another alternative to principal component 
analysis is the biplot introduced by Gabriel (1971). Pittelkow and Wilson (2003) 
have developed a variant of the biplot for microarray data called the GE-biplot (gene 
expression biplot). In the GE-biplot, standardized distances between the tissues and 
the variancekovariance structure of the genes are represented. 

3.20 CANONICAL VARIATE ANALYSIS 

3.20.1 Linear Projections with Group Structure 

We consider now a reduction in the number of dimensions via linear projections 
in the case where the group structure of the data is known. That is, we know the 
classification of the data with respect to some g groups (GI,  . . . , Gg). However, 
the linear projections to be discussed here can be used in the unclassified case, for 
example, to portray clusters in a low dimensional space, by taking the clusters to 
represent the group structure. 

In dealing with multivariate feature observations, it often facilitates visualization 
and understanding to represent them in a lower-dimensional space. In particular, 
two- and three-dimensional scatter plots are often helpful in exploring relationships 
between the groups, assessing the group-conditional distributions, and identifying 
atypical feature observations. However, if the dimension p of the data is greater than 
about 7 or 10, then considerable patience and concentration are needed for a careful 
scrutiny of all (;) and (g) scatter plots of pairs and triples of the feature variables. 
One approach to reducing the effort involved in such an exercise is first to transform 
linearly the p original feature variables into a smaller number q of variables. This 
process is referred to in the pattern recognition literature as linear feature selection. 

For the linear pro-jection C,, where C, is a q x p matrix of rank q ( q  5 p ) ,  there 
is the problem of how to choose C, so as to best preserve the distinction between 
the groups, where q may or may not be specified. Often, q will be specified to be 
at most 2 or 3 for convenience of the subsequent analysis, in particular the graphical 
representations of the transformed feature data. In some situations there is interest in 
finding the single linear combination that best distinguishes the g groups, and so q is 
specified to be one. 
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3.20.2 Canonical Variates 

A starting point in the consideration of linear projections of y is a canonical variate 
analysis, which expresses the differences between the means p l ,  . . . , pg in d = 

min(p, b,) dimensions, where b, is the rank of the matrix B, defined below. A 
canonical variate analysis does not depend on the assumption of normality, as only 
knowledge of the first two moments of the group-conditional distributions is required. 
Let 

where 
9 

i=l 

The matrix B, is of rank b, 5 g - 1, where b, = g - 1 if pl, . . . , pg are linearly 
independent. In practice, we work with the sample between-group sums of squares 
and products matrix on its degrees of freedom, 

(3.51) 

For mixture sampling in equal proportions from the groups, B/n  converges in prob- 
ability to B,/g, as n + 00. 

The canonical variates of y are defined by 

(3.53) 

and where y1 maximizes the ratio 

7TB7/7TS7. (3.54) 

(3.55) 

where W denotes the pooled within-class sums of squares and products matrix, 

9 n  

(3.56) 
2 = 1  j = 1  

where z2j is one or zero, according as yj belongs to the ith group Gi or not. 
Fork = 2, . . . , d, 7k maximizes the ratio (3.54) subject to 

7 3 7 h  = 0 ( h = l ,  . . . ,  Ic-1). (3.57) 



96 SOME CLUSTER ANALYSIS METHODS 

Hence the correlation between ../;CYand yEYis  zero for h # k = 1, . . . ~ d. The 
usual normalization of T~ is 

-&9yli = 1 ( k  = 1, . . . ,  d ) ,  (3.58) 

which implies that y r Y  has unit variance. This normalization along with the con- 
straint (3.57) implies that 

rdsc = I d 3  

where I,i is the d x d identity matrix. The eigenvalues and eigenvectors of S-.' B 
can be found using a singular-value decomposition algorithm. For example, y k  is the 
eigenvector corresponding to the kth largest (nonzero) eigenvalue of S- ' B. 

The sample version of a canonical variate analysis is just the multiple-group gen- 
eralization of Fisher's ( 1936) approach to discriminant analysis in the case of g = 2 
groups for which 

71 s-Yr/1 - 3 2 ) .  

It will be seen from both allocatory and separatory aspects that the new set of co- 
ordinates 'q. . . . , ud are the complete set of multiple linear discriminant functions. 
Hence sometimes in the literature they are referred to as discriminant coordinates 
rather than by the more usual name of canonical variates. 

For p > d, we let yd+L , . . . , 7, denote the eigenvectors of S-l B corresponding 
to its p - r l  zero eigenvalues, normalized as 

y;sy, = 1 ( A :  = d + 1, . . . I p ) .  

It follows then that 

rY- N ( I ' p , , I p )  in G, ( i  = 1, . . . . g )  

(3.59) 

(3.60) 

where, corresponding to the partition (3.59) of r, 

and 
r p - d P L  = r p - d p  (2  = 1. . . . , 9). (3.61) 

It is clear from (3.60) and (3.61) that for the purposes of allocation, the last p - d 
canonical variates can be discarded without an increase in any of the group-specific 
error rates. This is because rp--dYis distributed independently of r'& with the same 
distribution in each group. Of course, the overall error rate of the Bayes rule will be 
increased if it is based on a linear projection of y, C,y, where the rank q of C, is less 
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than d. McLachlan (1992, Section 3.9) has discussed in some detail the allocatory 
and separatory aspects of discrimination on the basis of C,y. Consider a given q < d 
in the case of g > 2 groups. Then, although an intuitively desirable projection C, 
would be one that minimizes the error rate while maximizing the separation between 
the groups, the optimal choice of C, depends on whether the error rate or a separatory 
measure is to be optimized. This point can be illustrated by the example of Habbema 
and Hermans (1977) in which they considered the univariate projection Cy y in the 
case ofy = 3 groups with u1 = w1, y = w2, and UQ = -wl, where 0 < w2 < w l  and 
where v, = CTpL (i = 1,2,3) .  Then the measure of spread (3.54) can be expressed 
as 

CTBoCI/CyEC1 = $(w: + wz/3). (3.62) 

while the overall error rate of the Bayes rule is given by 

where @(y) denotes the standard normal (cumulative) distribution. For fixed w1, the 
minimum value of eo(C1) with respect to w2 occurs at w2 = 0, at which the measure 
of spread (3.62) is minimized rather than maximized. 

3.21 PARTIAL LEAST SQUARES 

For high-dimensional feature vectors, a canonical variate analysis may not be able 
to be implemented, as the (pooled) within-class covariance matrix will be singular. 
One way to proceed is to carry out a principal component analysis, ignoring the class 
memberships of the feature data. But as noted in Section 3.19, a principal component 
analysis might result in a serious loss in the group structure in the data. As stressed by 
Antoniadis, Lambert-Lacroix, and Leblanc (2003), a principal component analysis 
does not use information on the class labels. Thus it would always give the same 
principal components for two data sets that have the same feature data, but different 
class labels. 

A method that makes use of the information on the class labels of the observations is 
partial least squares (PLS), a tool often applied in the chemometrics literature after its 
introduction there by Wold (1966). It constructs weighted linear combinations of the 
feature variables that have maximal covariance with the outcome (response variable); 
see (Frank and Friedman, 1993; Garthwaite 1994; Stone and Brooks 1990). 

The PLS method resembles that of a principal component analysis (PCA) in that 
linear combinations of all the feature variables are formed at each stage. Since PLS 
makes use of the class labels it is more able than principal component analysis to 
assign patterns of weights that are predictive of the classes. 

The PLS solution forces each of the linear combinations of original variables to 
have a sample correlation of zero, which is likely to be an inappropriate requirement 
for molecular signatures. More importantly, the main problem of PLS is similar to 
that of a PCA on the complete set of feature variables: difficulty in the interpretation 
of components because each component has loadings on all variables. 
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Clustering 

4.1 INTRODUCTION 

of Tissue 
Samples 

In this chapter, we consider the cluster analysis of tissue samples. There are two dis- 
tinct clustering problems with microarray data. One problem concerns the clustering 
of the tissues on the basis of the genes. The clusters of tissues can play a useful 
role in the discovery and understanding of new subclasses of diseases. Examples 
of such studies include classifying sixty human cancer cell lines (Ross et al., 2000), 
distinguishing two different human acute leukemias (Golub et al., 1999), dissecting 
and classifying breast cancer tumors (Perou et al., 1999), and classifying subtypes of 
B-cell lymphoma (Alizadeh et al., 2000) and cutaneous malignant melanoma (Bittner 
et al., 2000). More recent examples include the work of Bullinger et al. (2004) and 
Valk et al. (2004), who identified prognostic subclasses in acute myeloid leukemia, 
and of Lapointe et al. (2004), who found tumor subtypes of prostate cancer that may 
provide a basis for improved prognostication and treatment stratification. 

The second problem concerns the clustering of the genes on the basis of the tissues. 
The clusters of genes obtained can be used to search for genetic pathways or groups of 
genes that might be regulated together. Also, in the first problem above, we may wish 
first to summarize the information in the very large number of genes by clustering 
them into groups, which can be represented by some metagenes. We can then carry 
out the clustering of the tissues in terms of these metagenes. This second problem of 
clustering the genes is to be considered in the next chapter. 

In microarray studies, the application of clustering techniques is often used to 
derive meaningful insights into the data. In the past, hierarchical methods have 
been the primary clustering tool employed to perform this task. The hierarchical 
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algorithms have been mainly applied heuristically to these cluster analysis problems. 
Further, a major limitation of these methods is their inability to determine the number 
of clusters. Thus there is a need for a model-based approach to these clustering 
problems. To this end, McLachlan et al. (2002) developed a mixture model-based 
algorithm (EMMIX-GENE) for the clustering of tissue samples. 

In this chapter, we focus on the EMMIX-GENE procedure developed by McLach- 
lan et al. (2002) for the specific purpose of mixture model-based clustering of tissue 
samples on the basis of the available genes. It enables elliptical clusters of arbitrary 
orientation to be imposed on the tissue samples. The method is generic and can be 
applied to other large data sets that require feature selection. We shall demonstrate 
the implementation of the EMMIX-GENE procedure by reporting the case studies of 
McLachlan et al. (2002) and Mar and McLachlan (2003), involving two well-known 
data sets in the bioinformatics literature. In the latter study, EMMIX-GENE was 
applied to the breast cancer data of van 't Veer et al. (2002), while in the former, it 
was applied to the colon data of Alon et al. (1999), which was first introduced in 
Section 2.6. 

Among other work on model-based approaches to the clustering of gene expression 
data, there are the studies of Yeung et al. (2001,2003), Ghosh and Chinnaiyan (2002), 
Medvedovic and Sivaganesan (2002), and Liu et al. (2003). A Bayesian approach is 
adopted in the latter two papers. 

Before we proceed to consider here the clustering of the tissue samples via 
EMMIX-GENE, we introduce the following notation. 

4.2 NOTATION 

Although biological experiments vary considerably in their design, the data generated 
by microarray experiments can be viewed as a matrix of expression levels. For hl 
microarray experiments (corresponding to M tissue samples), where we measure the 
expression levels of N genes in each experiment, the results can be represented by 
the N x M matrix. For each tissue, we can consider the expression levels of the N 
genes, called its expression signature. Conversely, for each gene, we can consider 
its expression levels across the different tissue samples, called its expression profile. 
The M tissue samples might correspond to each of hf different patients or, say, to 
samples from a single patient taken at Ad different time points. The expression levels 
are taken to be the measured (absolute) intensities for oligonucleotide microarrays and 
the ratios of the intensities for the Cy.5-channel (red) images and Cy3-channel (green) 
images for cDNA microarrays; see, for example, Dudoit et al. (2002b). It is assumed 
that one starts the clustering process with preprocessed (relative) intensities, such as 
those produced by RMA (for Affy data), loess-modified log ratios, or differences of 
logged/generalized-logged data; see, for example, Parmigiani et al. (2003), Huber et 
al. (2003), Irizarry et al. (2003), Rocke and Durbin (2003), and Speed (2003). 

The N x A/f matrix is portrayed in Figure 4. I ,  where each sample represents a 
separate microarray experiment and generates a set of N expression levels, one for 
each gene. 
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Sample I Sample 2 ... Sample M 

Gene 1 

Gene 2 

Gene N 

Fig. 4.7 Gene expression data from A4 microarray experiments represented as a matrix of 
expression levels with the N rows corresponding to the N genes and the A2 columns to the A2 
tissue samples. 

In the sequel, we shall use the vector yJ to represent the measurement (feature 
observation) on the j t h  entity to be clustered. In the context of the classification of 
the tissues on the basis of the gene expressions, we can represent the N x M matrix 
A of gene expressions as 

(4.1) 

where the feature vector yj (the expression signature) contains the expression levels 
on the N genes in the j t h  experiment (j = 1, . . . , M ) .  The latter is a nonstandard 
problem in parametric cluster analysis because the dimension of the feature space 
(the number of genes) is typically much greater than the number of observations (the 
number of tissues). 

In the context of the classification of the genes on the basis of the tissues, we can 
represent the transpose of the matrix A in terms of the feature vectors as 

A = (Yl, . . . > YM), 

where the feature vector yj (the expression projile) contains the expression levels 
on the M tissues on the ith gene (j = 1, . . . , N )  For this clustering problem, the 
number of observations (the number of genes) is very large relative to the dimension 
of the feature space (the number of tissues), and so in this sense it falls in the standard 
framework. However, it is not really a standard problem, as not all the genes are 
independently distributed. 

4.3 TWO CLUSTERING PROBLEMS 

In the standard setting of a model-based cluster analysis, the n observations 
yl, . . . , y, to be clustered are taken to be independent realizations where the sample 
size n is much larger than the dimension p of each vector yj, 

n, >> p .  (4.3) 
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It is also assumed that the sizes of the clusters to be produced are sufficiently large 
relative to p to avoid computational difficulties with near-singular estimates of the 
within-cluster covariance matrices. 

In the cluster analysis of the A,l tissue samples on the basis of the N genes, we have 
fn = M and p = N.  Thus the sample size ri will be typically small relative to the di- 
mension p ,  thus causing estimation problems under the normal mixture model. This is 
because the g-component normal mixture model (3.22) with unrestricted component- 
covariance matrices is a highly parameterized model with i p ( p  + I )  parameters for 
each component-covariance matrix El (7; = 1, . . . , 9). Some ways to handle this 
dimensionality problem were outlined in Section 3.2. 

An obvious way to handle the very large number of genes is to perform a principal 
component analysis and carry out the cluster analysis on the basis of the leading 
components. This approach for the clustering of microarray data has been studied 
by Alter et al. (2000), Yeung and Ruzzo (200I), and Liu el al. (2003), among many 
others. 

There is also another clustering problem of interest, namely the clustering of the 
genes on the basis of the tissue samples. For this problem, the sample size n is equal 
to the number of genes AT and the dimension p is equal to the number of tissues Al. 
Thus condition (4.3) for a standard cluster analysis will be satisfied usually. The 
condition of independent data will not hold given that not all the genes in a given 
tissue sample are independently distributed. But in practice we can proceed with 
the standard clustering methodology, ignoring any correlations between genes in the 
same tissue sample. But tests concerned with the smallest number of components in 
the mixture model would need to take into account the breakdown in the independence 
condition. Also, although the dimension p may be very small relative to the n, it can 
be large in absolute terms. Also, the number of clusters g may be large. Thus one 
might not be able to fit a normal mixture model directly to the genes. One option 
would be to use principal components. Another option would be to use mixtures of 
factor analyzers to effect the clustering of the genes. We consider this in the next 
chapter. 

4.4 PRINCIPAL COMPONENT ANALYSIS 

Given the high dimensionality of the feature vector y representing the signature 
expression of a tissue sample, k-means and hierarchical agglomerative methods of 
clustering are convenient first choices off the shelf for the scientist. However. as set out 
in Section 3.7.2, there are advantages to be had by adopting a model-based approach 
to clustering. Given the high dimensionality of y for the clustering of tissue samples, 
there is a need to first reduce the dimension of the feature space. As noted in the 
previous section, an obvious way of dimension reduction in an unsupervised context 
is to carry out a principal component analysis (PCA) as described in Section 3.19. 
The shortcomings of a PCA in such a context is that the leading components need 
not necessarily reflect the direction in the feature space best for revealing the group 
structure ofthe tissues. This is because it is concerned with the direction of maximum 
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variance, which is composed of variance within the clusters and variance between the 
clusters. If the latter are relatively large, then the leading components may not be so 
useful for the purposes of cluster analysis. But with the analysis of microarray data, 
this problem is compounded by the very large number of genes and their associated 
noise. Thus artificial directions can result from noisy genes and highly correlated 
ones. Consequently, a potential problem with a PCA is the determination of an 
appropriate number of principal components (PCs) useful for clustering. A common 
practice is to choose the first few leading components. But as noted in Section 3.2, it 
may not be clear where to stop and whether some of these components are caused by 
some artifact or noises in the data. An excellent account of these problems may be 
found in Liu et al. (2003). They have developed a Bayesian approach to model-based 
clustering which after an initial PCA simultaneously clusters the observations and 
selects “informative” variables or components for the cluster analysis. 

4.5 THE EMMIX-GENE CLUSTERING PROCEDURE 

The EMMIX-GENE procedure handles the problem of a high-dimensional feature 
vector by using mixtures of factor analyzers whereby the component correlations 
between the genes are explained by their conditional linear dependence on a small 
number q of latent or unobservable variables specific to each component. This factor 
analysis model has been defined explicitly in Section 3.1 1. 

In practice we may wish to work with a subset of the available genes, particularly 
as the fitting of a mixture of factor analyzers will involve a considerable amount of 
computation time for an extremely large number of genes. Indeed, the simultaneous 
use of too many genes in the cluster analysis may serve only to create noise that masks 
the effect of a smaller number of genes. Also, the intent of the cluster analysis may 
not be to produce a clustering of the tissues on the basis of all the available genes, 
but rather to discover and study different clusterings of the tissues corresponding to 
different subsets of the genes; see the recent paper of Friedman and Meulman (2004) 
on this point. 

Therefore, the EMMIX-GENE procedure has two optional steps before the final 
step of clustering the tissues. The first step considers the selection of a subset of 
relevant genes from the available set of genes by screening the genes on an individual 
basis to eliminate those which are of little use in clustering the tissue samples in 
terms of the likelihood ratio test statistic. The second step clusters the retained 
genes no into groups on the basis of Euclidean distance so that highly correlated 
genes are clustered into the same group. The third and final step of the EMMIX- 
GENE procedure considers the clustering of the tissues by fitting mixtures of factor 
analyzers. It can be either by considering the groups of genes simultaneously on the 
basis of their means or by considering the groups individually on the basis of all or 
a subset of the genes in a given group. We now describe these three steps in more 
detail. 
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4.6 STEP 1: SCREENING OF GENES 

In step I of EMMIX-GENE, we screen the genes by attempting to delete those genes 
that individually are of little use in clustering the tissue samples into two groups. 
This screening is undertaken in the absence of tissue samples that are of known 
classification. The relevance of a gene for clustering the tissue samples can be assessed 
on the basis of the value of -2 log A, where X is the likelihood ratio statistic for testing 
g = 1 versus g = 2 components in the mixture model. In order to reduce the effect of 
atypically large observations on the value of A, we fit mixtures o f t  components with 
their degrees of freedom inferred from the data. However, the use o f t  components in 
place of normal components still does not eliminate the effect of outliers on inference 
of the number of groups in the tissue samples. For example, suppose that for a given 
gene there is no genuine grouping in the tissues, but that there are a small number 
of gross outliers. Then a significantly large value of X might be obtained, with one 
component representing the main body of the data (and providing robust estimates of 
their underlying distribution) and the other representing the outliers. That is, although 
the t mixture model may provide robust estimates of the underlying distribution, it 
does not provide a robust assessment of the number of groups in the data. 

Suppose now that for a given gene there are two groups in the tissue samples. 
If there are no outliers present in the tissue samples, we should obtain a significant 
value of X with the two components of the fitted t mixture model corresponding to 
the two groups. But if there are outliers present, then the two components of the 
fitted t mixture model may still correspond to the two groups, or it may happen that 
one component corresponds to the main body of the data and the other component 
to the outliers. An illustration of the former case is given in Figure 4.2 and of the 
latter case in Figures 4.3 and 4.4, using the expression levels of two genes over the 
62 tissue samples from the colon cancer data of Alon et al. (1999); this data set has 
been described in detail in Section 2.6 and is to be analyzed further in Section 4.10. 

Fig. 4.2 Histogram of gene 1,758 (H20819) with mixture of y = 2 fitted t components. 
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Fig, 4.3 Histogram of gene 474 (T70046) with mixture of g = 2 fitted t components. 

Fig. 4.4 Histogram of gene 474 (T70046) with mixture of g = 3 fitted t components. 

4.7 STEP 2: CLUSTERING OF GENES: FORMATION OF METAGENES 

Concerning the end problem of clustering the tissue samples on the basis of the genes 
considered simultaneously, we could examine the univariate clusterings provided 
by each of the selected genes taken individually. But this would be rather tedious 
when a large number of genes have been selected. Thus with the EMMIX-GENE 
approach, there is a second (optional) stage for clustering the genes into a user- 
specified number ( N o )  of groups by fitting a mixture in equal proportions of g = No 
normal distributions with covariance matrices restricted to being equal to a multiple 
of the ( p  x p )  identity matrix. That is, if the mixing proportions were fixed at 0.5, 
then it would be equivalent to using a soft version of k-means and grouping the 
genes in terms of the Euclidean distance between them. One could attempt to make 
a more objective choice of the number No of groups by using, say, the likelihood 
ratio criterion or BIC. There is an extra complication here since the genes are not 
independently distributed within a tissue sample. 

The groups of genes are ranked in terms of the likelihood ratio statistic calculated 
on the basis of the fitted mean of a group over the tissues for the test of a single versus 
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two t components. This is provided that the minimum cluster size is greater than a 
specified threshold. Otherwise, such a group of genes would be put at the end of the 
list. 

A heat map of genes in a group versus the tissues is provided for each of the 
groups where, in each group, the tissues can be left in their original order or rearranged 
according to their cluster membership obtained by fitting a univariate t mixture model 
on the basis of the group mean. Alternatively, one could cluster the tissues by fitting 
a two-component mixture of factor analyzers on the basis of the genes within the 
group. Concerning the use of heat maps, they present a grid of colored points where 
each color represents a gene expression value for a gene in the tissue sample. They 
are used here primarily to exhibit similarities between groups or clusters of the tissue 
samples. Thus they are most effective in this role when the tissue samples have been 
grouped according to their group (cluster) memberships. Of course the heat maps are 
also useful in revealing similarities between the genes. 

We have found in our analyses of microarray data sets that the means of the groups 
into which the genes have been clustered as above provide a useful representation 
of the genes in a lower dimensional space (the dimension of this space is equal to 
the number of groups iVo). If we cluster the tissues on the basis of the group means 
only, we are ignoring the relative sizes of the groups. This might have some impact 
on the accuracy of predictions if the aim were to construct a classifier for assigning 
the tissues to externally existing classes. For instance, one group may contain many 
genes that are useful in distinguishing between healthy and unhealthy. Thus, if the 
genes within this group act independently, then there would be a loss in accuracy in 
using only the mean of this group and not making use of its size. But as the genes 
have been clustered into groups by working in terms of Euclidean distance (after 
normalization of the data), the impact of ignoring the size of the groups should be 
limited. This is because the genes within a group should in the main be at least 
moderately correlated with each other, as the Euclidean distance between any two 
genes is equal to 2 ( p  - 1)(1 - p) ,  where p denotes the sample correlation between 
them. 

Each cluster of genes can be represented by one or more M-dimensional profile 
vectors over the M tissues. We follow Huang et al. (2003) in referring to these 
cluster representatives as metagenes. In their work on using classification trees to 
predict breast cancer, they first clustered the genes into a number of groups via the k- 
means algorithm. That is, it can be viewed as corresponding to this cluster-genes step 
of EMMIX-GENE. The only difference is that they do not first eliminate apparently 
nondifferentially expressed genes as on the select-genes step of EMMIX-GENE. Thus 
they have to cluster a much larger number of genes and so they summarize them by a 
larger number of clusters as on the cluster-genes step of EMMIX-GENE. They take 
the first principal component of a cluster of genes to be the metagene. In EMMIX- 
GENE, we take the sample mean of the genes within a cluster to be the metagene 
representing the cluster. This strategy of using a linear combination of the genes 
within a cluster to represent it and so thereby reducing the dimension of the feature 
(gene) space also helps smooth out gene-specific noise through the aggregation within 
a cluster. 
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In addition to the approach of Huang et al. (2003) in supervised classification, 
a number of authors in the same context have proposed clustering the genes into 
groups as a way of reducing the feature space of genes; see Section 7.12.2 Also, in 
Section 7.12.5, we discuss ways of forming tight clusters of genes or at least having 
highly correlated genes within the same cluster in the context where the end focus is 
on the clustering of genes themselves and not the tissues. 

In ongoing work on EMMIX-GENE, consideration is being given to the choice of 
metagene or metagenes for each cluster of genes. It may be that the use of the first 
principal component might be preferable to the sample mean. The sample mean was 
chosen for computational convenience. Note that if the genes within a cluster have 
the same sample correlation, then the first principal component will be proportional 
to the sample mean since the genes all have the same sample variances from the row 
(gene) normalization. 

We have observed that in some clusters of genes the leading (top) gene has a much 
larger value of -2 log X than the remaining genes within the cluster. In this case, it 
might be worth representing this group of genes by two metagenes, one given by the 
leading gene within the cluster and the other by the sample mean of the remaining 
genes within the cluster. These issues are currently being investigated. 

4.8 STEP 3: CLUSTERING OF TISSUES 

If a clustering is sought on the basis of the totality of the genes, then it can be obtained 
by fitting a mixture model to these group means. However, it may be that the number 
of group means No is too large to fit a normal mixture model with unrestricted 
component-covariance matrices. In this circumstance EMMIX-GENE has the option 
on the third step that allows for the fitting of mixtures of factor analyzers. The use 
of mixtures of factor analyzers reduces the number of parameters by imposing the 
assumption that the correlations between the genes can be expressed in a lower space 
by the dependence of the tissues on q ( q  < N )  unobservable factors. In addition to 
clustering the tissues on the basis of all of the genes, there may be interest in seeing 
if the different groups of genes lead to different clustering of the tissues when each 
is considered separately. For example, only a subset of the genes may be useful in 
identifying certain subtypes of the cancer being studied. 

It can be seen from above that with the EMMIX-GENE procedure, the genes 
are being treated anonymously. That is, we do not incorporate existing biological 
information on the function of genes into the selection procedure. Spang (2003) 
infuses some biological context into an otherwise unsupervised learning task. He 
structures the feature space by using a functional grid provided by the Gene Ontology 
annotations. 
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4.9 EMMIX-GENE SOFTWARE 

The EMMIX-GENE program is an interface to EMMIX, which adds functionality to 
the standard EMMIX through the display of heatmaps of the expression profiles of 
genes clustered into groups and of metagenes, unsupervised and supervised classi- 
fication via mixtures of factor analyzers, and many facilities for reordering, sorting, 
processing, and selecting relevant features of microarray data. 

Simple command-line versions of EMMIX-GENE for Linux are available at the 
website h t t p  : / /www . rnaths . uq . edu . au/"g jrn/ernmix- gene/. This web- 
page also provides updates on the availability and licensing terms for versions with a 
graphical user interface for Windows. 

4.10 EXAMPLE: CLUSTERING OF ALON DATA 

As an illustration of the EMMIX-GENE procedure applied to some real data, we report 
here the results of McLachlan et al. (2002), in their cluster analysis of the colon data 
in Alon et al. ( 1999). In particular, we demonstrate the different clusterings that can 
be obtained by using different subsets of the genes on the tissues as provided by the 
cluster-genes step of EMMIX-GENE. 

In the Alon data set, which was introduced in Section 2.6, prefiltering of the total 
set of 6,500 genes gave a microarray data matrix A with N = 2,000 rows and 
A1 = 62 columns. The samples comprised 40 tumor and 22 normal colon tissue 
samples, taken from 40 different patients, with 22 patients supplying both tumor and 
normal ti\sue samples. 

In Alon et al. (1999), the tissues are not listed consecutively, but here we have 
rearranged the data so that the tumors are labeled 1 to 40 and the normals 41 to 
62. Before we considered the clustering of this set, we processed the data by taking 
the (natural) logarithm of each expression level in A. Then each column of this 
matrix was standardized to have mean zero and unit standard deviation. Finally, each 
row of the consequent matrix was standardized to have mean zero and unit standard 
deviation. 

4.10.1 Clustering on Basis of 446 Genes 

On the first screening step of EMMIX-GENE, McLachlan et al. (2002) selected 446 
genes as relevant. In practice, clustering tissues on the basis of the entire gene set 
(2,000 genes) or even this reduced set of 446 genes may not reveal the extent of any 
group structure in the tissues. For the purpose of this example, McLachlan et al. 
(2002) fitted a two-component mixture of factor analyzers to the tissues, to cluster on 
the basis of the 446 selected genes. They fitted mixtures of g = 2 factor analyzers for 
various levels of the number y of factors ranging from y = 2 to q = 8, but there was 
little difference between the clustering results. The clustering corresponding to the 
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largest of the local maxima obtained gave the following clustering for q = 6 factors, 

C1 = { 1-12,20,25,41-52) 

U { 13-39,21-24,26-40,53-62}. (4.4) 

Getz et al. (2000) and Getz (2001) reported that there was a change in the protocol 
during the conduct of the microarray experiments. The 11 tumor tissue samples 
(labeled 1 to 11 here) and 11 normal tissue samples (41 to 5 1) were taken from the 
first 1 1 patients using a poly detector, while the 29 tumor tissue samples (12 to 40) 
and normal tissue samples (52 to 62) were taken from the remaining 29 patients 
using total extraction of RNA. It can be seen from (4.4) that this clustering C1 almost 
corresponds to the dichotomy between tissues obtained under the “old” and “new” 
protocols. 

McLachlan et al. (2002) also considered the clustering of the 62 tissue samples 
on the basis of the top 50 genes in the retained set of 446 genes. Fitting mixtures 
of factor analyzers with q = 6 factors, using 50 random and 50 Ic-means starts, we 
obtained the following clustering, 

Cz = (1-26,29,31,32,34,38,41-52) 

U (27-28,30,33,35-37,39,40,53-62). 

This clustering not only splits the tissue samples obtained under “old” and “new” 
protocols, but it also splits some of the “new” tumor samples and some of the “new” 
normal tissue samples. 

4.10.2 Clustering o n  Basis of Gene Groups 

The tissue samples were also clustered after the retained set of 446 genes had been 
clustered into No = 20 groups on the second step of the EMMIX-GENE approach. 
In Figure 4.5, we have plotted the 18 genes in the first group GI for the 62 tissues, 
with the latter arranged in order of the 40 tumors followed by the 22 normal tissues. In 
Figure 4.6, we give the corresponding plot of the 24 genes in the second group of genes 
Ga. A heat map of the genes in a group versus the tissues for all No = 20 groups 
may be viewed at http://www.maths.uq.edu.au/”gjm/emmix-gene/ 
We have also listed there the heat map of the reduced set of 446 genes to show that 
this heat map, in contrast to the heat maps for the groups of genes, is not informative 
visually in revealing group structure in the tissues. 

The clustering of the tissues on the basis of the 18 genes in GI using Q = 4 factors 
in the mixture of factor analyzers model resulted in a partition C, of the tissues that 
is fairly similar to CZ, namely, 

C, = { I-26,29-32,41-52,55-56} 

U (27-28,33-40,53-54,57-62}. 

The clustering of the tissues on the basis of the 24 genes in Gz resulted in a partition 
of the tissues in which one cluster contains 37 tumors (1-29, 31-32, 34-35, 3740)  
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Fig. 4.5 Heat map of 18 genes in group GI on 40 tumor and 22 nonnal tissues in Alon data. 
See the insert for a color representation. 

Fig. 4.6 Hcal map o f  24 genes in group G z  on the 40 tumor and 22 normal tissues in Alon 
data. See the insert for a color representation. 
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and 3 normals (48, 58,60), and the other cluster contains 3 tumors (30,33, 36) and 
19 normals (41-47,49-57,59,61-62). Calling this clustering Cg, we have that 

C, = { 1-29,31-32,34-35,37-40,48,58,60} 

U {30,33,36,41-47,49-57,59,61-62}. 

It can be seen from Figure 4.5 that the clustering of the tissues on the basis of the 
genes in group GI gives two clusters with large intercluster differences between the 
tissues. The clusters are also quite cohesive, but this is accentuated by the fact that 
we are using genes that were put into the same group by carrying out the grouping 
effectively in terms of Euclidean distance between genes. Similarly, Figure 4.6 shows 
that the clustering of the tissues on the basis of the genes in group G2 gives two 
cohesive clusters with large intercluster differences. But it appears that the first 
clustering is stronger in terms of the likelihood ratio statistic X formed from the 
individual genes in the groups and on their means. This clustering C, produced by 
the second group of genes G2 is quite similar to the external classification, as its error 
rate is only 6. 

It can be seen from Figure 4.6 that the genes in group G2 tend to be more highly 
expressed in the normal tissues than in the tumors. Alon et al. (1999) and Ben-Dor 
et al. (2000) noted that the normal colon biopsy also included smooth muscle tissue 
from the colon walls. As a consequence, smooth muscle-related genes showed high 
expression levels in the normal tissue samples compared to the tumor samples, which 
generally had a low muscle content. Ben-Dor et al. (2000) identified a large number 
of muscle-specific genes as being characteristic of normal colon samples. We note 
that two of these genes (502854 and T60155) are in group G2, while group Gz also 
contains two genes (M63391 and X74295) that Ben-Dor et al. (2000) suspected of 
being expressed in smooth muscle. 

The six tissues that are misallocated under this second clustering (tumor tissues 
30,33, and 36 and normal tissues 48,58, and 60) occur among those tissues that have 
been misallocated in other cluster and discriminant analyses of this data set. Tissues 
30, 33, and 36 are taken from tumor tissue on patients labeled 30,33, and 36 in Alon 
et al. (1999), while tissues 48, 58, and 60 are taken from normal tissue on patients 
8, 34, and 36. These six tissues have been misallocated in previous analyses even 
in a discriminant analysis context where use is made of the external classification 
of these tissues. For example, with the support vector machine classifier formed in 
Chow et al. (2000) using the known classification of tissues, these six tissues along 
with tumor tissue 35 were misallocated in the (leave-one-out) cross-validation of 
this classifier. There is thus some doubt as to the validity of the so-called “true” 
classification of these six tissues, which was determined by biopsy. An inspection 
of Figure 4.6 reveals that at least for the 24 genes in this plot, tumor tissues 30, 33 
and 36 are very similar to the normal ones, while the normal tissues 48, 58, and 60 
are very similar to the tumors. As explained in Chow et al. (2000), misclassification 
might be due to, say, simple error during sample handling, RNA preparation, data 
acquisition, and data analysis. They also noted that the normal tissues could have 
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been misclassified because pathologically “normal” regions of the colon could have 
substantial tumor-like properties from a molecular standpoint. 

Applying a hierarchical procedure to cluster the 62 tissues on the basis of the 
2,000 genes, Alon et al. (1 999) observed that the topmost division in the dendrogram 
divides the samples into two groups that misallocates three normal and five tumor 
tissues (tissues 2, 30, 33, 36, 37, 48, 52 and 58). The method used by Alon et 
al. (1 999) can be viewed as fitting a normal mixture model with common spherical 
component-covariance matrices (although the variance was not estimated from the 
data; it was varied deterministically during the fitting process). Also, Alon et al. 
(1999) did not log the data. It is of interest to note that in fitting mixtures of diagonal 
normal components to the tissues on the basis of all the genes, the only way we could 
get the algorithm to converge to a local maximum that gave an implied clustering the 
same as C4 or a perturbation of it (that is, similar to the external classification) was to 
use the unlogged data and to impose the condition of common spherical component- 
covariance matrices. Hence when the data are logged (as is appropriate), or when 
Euclidean distance is not used as the metric, the smooth muscle-related genes have 
a diminished capacity in the presence of other genes to distinguish between normal 
and tumor tissues. 

4.10.3 Clustering on Basis of Metagenes 

McLachlan et al. (2002) also clustered the 62 tissues on the basis of the No = 20 
fitted group means obtained above by fitting a mixture of g = 2 factor analyzers for 
various levels of the number of factors y. The largest local maximum so located with 
y = 8 factors gives a clustering (C5) that is similar to Cz and Cs with 

Cij { 1-23,25,26,41-52,58} 

U {24,27-40,53-57,59-62). 

4.1 1 EXAMPLE: CLUSTERING OF VAN ’T VEER DATA 

As a second example of the cluster analysis of tissue samples, we consider the work of 
Mar and McLachlan (2003), who applied the EMMIX-GENE procedure to the breast 
cancer data set of van ’t Veer et al. (2002). Here we show how EMMIX-GENE may 
typically be applied to a data set. We describe the clustering of selected genes into 
gene groups and discuss how these gene groups compare with those of van ’t Veer. 
Then we show how Mar and McLachlan (2003) cluster the tissues on the basis of the 
metagenes and discuss the relation of the tissue clusters with other known clinical 
indicators. 

In their original study, van ’t Veer et al. (2002) used inkjet synthesized oligonu- 
cleotide arrays to measure the expressions of 24,881 genes in 98 primary breast can- 
cers acquired from three groups of patients: 44 representing a good-prognosis group 
(that is, those who remained metastasis free after a period of more than 5 years), 
34 from a poor-prognosis group (those who developed distant metastases within 5 
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Fig. 4.7 Heat map of the filtered set of 4,869 genes on the 98 tumor tissues in van 't Veer 
data. See the insert for a color representation. 

years), and 20 representing a hereditary form of cancer, due to a BRCAl (18 tumors) 
or BRCA2 (2 tumors) germline mutation. The 78 sporadic (non-BRCA) breast cancer 
patients were chosen specifically on the basis of their clinical outcome. An aim of 
the study was to identify gene expression profiles which could discriminate between 
good- and poor-prognosis patients. 

van 't Veer et al. (2002) applied a filter in which only genes with both a P-value 
of less than 0.01 and at least a two fold difference in more than five out of the ninety- 
eight tissues for the gene were retained. This filter effectively reduced the initial set 
of genes to 4,869. This gene set was used by Mar and McLachlan (2003) to give a 
microarray data matrix A with N = 4,869 rows and hf = 98 columns. As can be 
seen by the heat map displayed in Figure 4.7, discerning an underlying class structure 
in the data on the basis of this set of 4,869 genes would be extremely difficult without 
further reduction in the number of genes. 

4.1 1.1 Screening and Clustering of Genes 

Mar and McLachlan (2003) used the first step of EMMIX-GENE to select the most 
relevant genes from this filtered set of 4,869 genes, further reducing the number to 
1,867. The I ,867 retained genes were clustered into No = 40 groups using the second 
step of the EMMIX-GENE procedure, and the majority of gene groups produced were 
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Fig. 4.8 Heat map of 146 genes in group GI on 98 tumor tissues in van 't Veer data. See the 
insert for a color representation. 

reasonably cohesive and distinct. Based upon these forty group means, the tissue 
samples were clustered into two and three clusters using a mixture of factor analyzers 
with q = 4 factors. 

They found that the heat maps of the genes in a group tend to mainly support the 
same breakup of the 98 tissues. To illustrate this, we list in Figures 4.8 to 4.10 the heat 
maps for the top three groups GI,  Gz, and G3 , which contain 146,93, and 61 genes, 
respectively. An important feature to note from these heat maps is that they each 
indicate a change in gene expression is apparent between the sporadic (first 78 tissue 
samples) and hereditary (last 20 tissue samples) tumors. For instance, in Figure 4.8, 
the genes in this cluster are generally down-regulated for the former group of tumors, 
and up-regulated in the latter. Genes in G2 were largely constant in expression across 
the sporadic tumors but notably down-regulated for the hereditary tumors. 

Additionally. the final two tissue samples, which represent the two BRCA2 tumors 
show consistent patterns of expression in each of the clusters that are different from 
those exhibited by the set ofBRCA1 tumors. 

It can be seen from these groups that the problem of trying to distinguish be- 
tween the two classes, patients who were disease-free after 5 years II1 and those 
with metastases within 5 years l I 2 ,  is not straightforward on the basis of the gene 
expressions. 
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Fig. 4.9 Heat map of 93 genes in group GZ on 98 tumor tissues in van 't Veer data. See the 
insert for a color representation. 

4.1 1.2 Usefulness of the Selected Genes 

In clustering the genes, van 't Veer et al. (2002) relied upon an agglomerative hier- 
archical algorithm to organize the genes into dominant genes groups. Two of these 
clusters were highlighted in the paper and the genes contained in these two groups 
correspond to biologically significant features. We denote cluster A as the group of 
genes van 't Veer et al. (2002) have identified as containing genes coregulated with 
the ER-a gene (ESR1) and cluster B as the group containing coregulated genes that 
are the molecular reflection of extensive lymphocytic infiltrate, and comprise a set of 
genes expressed in T and B cells. Both of these clusters contain 40 genes. 

Of these 80 genes, the first step of the EMMIX-GENE algorithm select-genes 
retains only 47 genes (24 from cluster A, 23 from cluster B). When compared to 
the 40 groups that the cluster-genes step of the EMMIX-GENE algorithm produces, 
subsets of these 47 genes appeared inside several of these 40 groups (see Table 4.1 
below). 

The motivation behind select-genes is to isolate the most informative genes to be 
used for the cluster analysis. For any clustering algorithm, genes that lack distinctive 
expression pattern changes across different tumor groups only serve to confuse the 
clustering algorithm and increase the number of misallocation errors made. 

The 21 genes that appear in luster A have been grouped in the second cluster 
constructed by EMMIX-GENE. In Figure 4.1 1 (below), these genes demonstrate 
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Fig. 4.70 Heat map of 61 genes in group G3 on 98 tumor tissues in van 't Veer data. See the 
insert for a color representation. 

Table 4.7 Comparing Clusters Constructed by an Hierarchical Algorithm with those Pro- 
duced by the EMMIX-GENE Algorithm 

Cluster Index Number of Percentage 
(EMMIX-GENE) Genes Matched Matched (%) 

2 21 87.5 
Cluster A 3 2 8.33 

14 1 4.17 

17 18 78.3 
Cluster B 19 1 4.35 

21 4 17.4 
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Fjg. 4.11 Genes in van 't Veer data retained by EMMIX-GENE appearing in cluster A. See 
the insert for a color representation. 

clear expression changes for the three groups of tumors (indicated by the vertical 
blue lines). 

For the remaining sixteen genes that were rejected by select-genes but belong to 
cluster A, it is evident from Figure 4.12 that these genes bear very little information 
in distinguishing between the tumor groups. 

The heat maps displayed in Figures 4.13 and 4.14 display the corresponding in- 
formation for the genes in cluster B. The genes in Figure 4.14 (those retained by 
EMMIX-GENE) show much variation across the tumor groups. In contrast, the 
genes in cluster B (those rejected by EMMIX-GENE) show little variation between 
the tumor groups. 

The expression profile of the gene that received the highest -2 log X value is shown 
in Figure 4.15. This gene is notably up-regulated for the disease-free tumor group 
and the metastases tumor group, and down-regulated in the hereditary tumor group. 

An expression profile is shown in Figure 4.16 for a gene which appeared in cluster 
A, but whose -2 log X value was not high enough for it to be retained by the select- 
genes step. The overall expression of the gene is essentially unchanging, however, 
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Fig. 4.12 Genes in van 't Veer data rejected by EMMIX-GENE appearing in cluster A. See 
the insert for a color representation. 
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Fig. 4.13 Genes in van 't Veer data retained by EMMIX-GENE appearing in cluster B. See 
the insert for a color representation. 
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Fig. 4.14 Genes in van 't Veer data rejected by EMMIX-GENE appearing in cluster B. See 
the insert for a color representation. 
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Fig. 4.15 Expression profile for the gene with the highest -2 log X value. 

excessively large values for the seventeenth disease-free patient in the first tumor 
group and the sixth BRCA patient in the third tumor group appear to dominate the 
expression profile. These outliers seem to account for this gene's inclusion in cluster 
A. 

4.1 1.3 Clustering of Tissues 

We turn next to the problem of clustering tissues on the basis of gene expression. 
Mar and McLachlan (2003) investigated the clusters constructed by the EMMIX- 
GENE algorithm in light of the genuine tissue grouping. The tissue samples can be 
subdivided into two groups corresponding to the 78 sporadic tumors and 20 hereditary 
tumors. Figure 4.17 shows the two-cluster assignment produced by EMMIX-GENE 
with respect to this genuine grouping (black denotes the hereditary tumor cluster, 
white denotes the sporadic tumor cluster; gray distinguishes the genuine grouping). 

Clearly, EMMIX-GENE has correctly clustered the majority of the hereditary 
tumors (misallocation error of 1/20), although 37 of the sporadic tumors were incor- 
rectly assigned to the cluster of hereditary tumors. The set of sporadic tumors has 
been divided into good- and poor-prognosis groups (that is, 44 patients who continued 
to be disease-free after 5 years, and 34 patients who developed metastases within 5 
years, respectively). Hence they also considered the partitioning of the tissues into 
three clusters, corresponding to the disease-free, metastases, and hereditary groups. 
Figure 4.18 shows the tissue samples rearranged according to the three cluster assign- 
ments allocated by EMMIX-GENE when a mixture of factor analyzers model with 
q = 4 factors. 



122 CLUSTERING OF TISSUE SAMPLES 

Fig. 4.76 Example of a gene rejected by select-genes but retained by cluster A. 

Fig. 4.77 Comparing EMMIX-GENE cluster assignments with the genuine two-group struc 
ture (Sporadic; Hereditary). 



EXAMPLE: CLUSTERING OF VAN 'T VEER DATA 123 

Fig. 4.18 Comparing EMMIX-GENE cluster assignments with a genuine three-group struc- 
ture (Disease-free; Metastases; BRCA). 

Using a mixture of factor analyzers model with q = 8 factors, they would misal- 
locate 7 of the 44 members of II, and 24 of the 34 members of Ilz; one member of 
the 18 BRCAl samples would be misallocated. 

The misallocation rate of 24/34 for the second class II2 is not surprising given the 
gene expressions as summarized in the groups of genes (see Figures 4.8 to 4.10). 
Also, one has to bear in mind that we are classifying the tissues in an unsupervised 
manner without using the knowledge of their true classification. But even when 
such knowledge is used in a supervised classification via an SVM using RFE, the 
cross-validated error rate (with allowance for the selection bias) is not less than 3 1 % 
depending on the number of genes used; see Table 7.6. Further analysis of this data 
set in a supervised context by Tibshirani and Efron (2002) confirms the difficulty in 
trying to discriminate between the disease-free class III and the metastases class II2. 

4.1 1.4 Use of Underlying Signatures with Clinical Data 

For each of the tumor samples in this data set, additional clinical predictors contain- 
ing information about histological grade, angioinvasion, and lymphocytic infiltrate 
was included. Mar and McLachlan (2003) investigated whether the three clusters 
constructed by EMMIX-GENE followed patterns according to these biological indi- 
cators. The tumor samples have been ordered in Figure 4.19 according to the three 
clustered groups. 

Tumors assigned to cluster 3 appear to match tumors labeled ER positive, while 
the majority of tumors in clusters 1 and 2 were ER negative. A close association was 
also noted between tumors assigned to cluster 1 and a histological grade of 3, while 
the tumors in clusters 2 and 3 were more likely to have a histological grade of 1 or 2 .  
Some association was visible between clusters 1 and 2 and the lymphocytic infiltrate 
score, where the majority of tumors in these clusters had scores of 0, while tumors 
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Fig. 4.79 Comparing EMMIX-GENE cluster assignments with other clinical indicators. 

in cluster 3 had scores of 1 .  Indicators related to angioinvasion did not bear a strong 
association with the EMMIX-GENE clusters. These observations were consistent 
with those reported by van 't Veer et a1 (2002). 

4.12 CHOOSING THE NUMBER OF CLUSTERS IN MICROARRAY DATA 

In this section we demonstrate how the mixture model-based approach can be used 
for assessing how many clusters of tissues there are in the data. A test for the smallest 
number of components in the mixture model compatible with the data can be per- 
formed on the basis of the likelihood ratio statistic. Firstly, we briefly describe other 
work done in this area. 

4.12.1 Some Previous Attempts 

Fraley and Raftery (1998) have provided a summary of methods used to determine 
the number of clusters in the cluster analysis of gene expression data. Many of the 
methods rely on graphical display and visual inspection to choose the number of clus- 
ters (Eisen et al., 1998; Tamayo et al., 1999). In the cluster affinity search technique 
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(CAST) method of Ben-Dor, Shamir, and Yakhini (1999) for the clustering of genes, a 
cluster is incrementally grown by adding one gene after the other. Subsequent clean- 
ing steps enable spurious members of the cluster to be removed. Genes are added and 
removed until the cluster stabilizes, and then the process starts with a new cluster. 

In the hierarchical clustering approach of Hastie et al. (2000), the model size and 
hence the number of clusters is chosen by cross-validation. In the plaid model ap- 
proach of Lazzeroni and Owen (2002), layers are added only if they make a significant 
contribution to the model (in terms of minimizing a sum of squared errors). Thus 
the number of clusters is effectively determined by the number of layers added to 
the model. van der Laan and Bryan (2000) have considered the use of the average 
silhouette width measure in the PAM method of clustering (Kaufman and Rousseeuw, 
1990). 

On resampling approaches, Tibshirani et al. (2001) proposed a gap statistic as a 
general method for determining the number of clusters. This method compares an 
observed internal index, such as the within-cluster sum of squares, to its expectation 
under a reference null distribution; see Section 3.17.1. More recently, Dudoit and 
Fridlyand (2002) proposed a prediction-based resampling method to estimate the 
number of clusters in a data set. This nonparametric resampling method was defined 
in Section 3.17.2 and compared in some simulations with the parametric approach 
based on the likelihood ratio statistic (LRT) in Section 3.18. 

4.13 LIKELIHOOD RATIO TEST APPLIED TO MICROARRAY DATA 

To further demonstrate the effectiveness of the resampling approach based on the 
LRT for the choice of number of clusters, we now report the results of McLachlan 
and Khan (2004), who applied it to some microarray data sets as available in the 
literature and used in the comparisons of Dudoit and Fridlyand (2002). 

4.13.1 Golub Data 

We firstly consider the clustering of the leukemia data set as in Golub et al. (1999). 
They used Affymetrix oligonucleotide arrays to measure gene expressions in two 
types of acute leukemias: acute lymphoblastic leukemia (ALL), and acute myeloid 
leukemia (AML). The entire data set comprised M = 72 tissue samples and N = 

7,129 genes. The 72 samples were made up of 47 cases of acute lymphoblastic 
leukemia (ALL) of which there were 721 = 38 ALL B-cell cases and 122 = 9 ALL 
T-cell cases, along with 123 = 25 cases of acute myeloid leukemia (AML). McLach- 
lan and Khan (2004) followed the processing steps of Dudoit et al. (2002a) of (1) 
thresholding: floor of 100 and ceiling of 16,000; (2) filtering: exclusion of genes with 
max/min 5 5 and (max - min) 5 500, where max and min refer, respectively, to the 
maximum and minimum expression levels of a particular gene across a tissue sample; 
(3) taking the natural logarithm of the expression levels. Before they standardized the 
genes (the rows of the (logged) data matrix A) to have means zero and unit standard 
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deviations over the tissue samples, they first standardized the arrays (the columns of 
the data matrix A)  to have zero means and unit standard deviations. This was done 
in an attempt to remove systematic sources of variation, as discussed, for example, 
in Dudoit and Fridlyand (2003). This preprocessing of the genes resulted in 3,731 
genes being retained. 

Obviously, there were far too many genes relative to the tissue samples to fit a 
normal mixture model directly to the n = 72 samples on the basis of all the genes. 
Thus they used the EMMIX-GENE program to first remove those genes assessed as 
having little discriminatory capacity across the n = 72 tissue samples by fitting a 
mixture of t-distributions to each of the 3,731 genes considered separately. This led 
to 2,069 genes being retained where, for the retention of a gene, the threshold for 
the increase in twice the log likelihood ( - 2  log A) was set to be 8 and the minimum 
cluster size was set to be 5. They then summarized the retained genes by clustering 
them into No = 40 groups on the basis of the 72 tissue samples by fitting in equal 
proportions a mixture of 40 normal components with a common spherical covariance 
matrix, 2 1 7 2 .  

We first clustered the 72 tissue samples by fitting a mixture of g = 2 factor analyzers 
to the means of the 40 gene groups produced by the EMMIX-GENE program. It 
resulted in two clusters of size 48 and 24, respectively, that correspond almost perfectly 
to the external classification n,l = 47 ALL tissues and n2 = 25 AML tissues. One 
AML tissue is put in the first cluster, corresponding to the ALL tissues. 

We then fitted a mixture of g = 3 factor components with the same number of 
factors and constraints as for the two-component model. It led to three clusters with 
one cluster corresponding to the AML cases (with 24 AML tumors and one B-cell 
ALL); a second cluster with eight of the nine T-cell ALL tumors, along with 15 B-cell 
ALL tumors; and a third cluster with 22 B-cell ALL tumors, one T-cell ALL tumor, 
and one AML tumor. 

We carried out the LRT test of g = 2 versus y = 3 component factor analyzers via 
a resampling approach using B = 39 bootstrap samples. As the value of - 2  log X for 
the original sample is greater than the largest of the 39 bootstrap values of -2 log A, 
the P-value is estimated to be less than 0.025. This suggests that there is strong 
support for g = 3 clusters in this set. 

4.13.2 Alizadeh Data 

The second data set to be considered here concerns the case study of Alizadeh et 
al. (2000), which measured the gene expression levels using a specialized cDNA 
microarray, the Lymphochip. The data consist of M = 80 tissue samples and N = 

4,062 genes. The former consist of n1 = 29 cases of B-cell chronic lymphocytic 
leukemia (B-CLL), 712 = 9 cases of follicular lymphoma (FL), and n3 = 42 cases 
of diffuse large B-cell lymphoma (DLBCL). The missing data were imputed as in 
Dudoit et al. (2002a). 

We first clustered the 80 tissue samples by fitting a mixture of g = 3 factor analyzers 
to the means of the 40 gene groups produced by the EMMIX-GENE program. If we 
start the iterative fitting process from the aforementioned external classification of the 
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tissues, we obtain a solution (S1) of the likelihood equation that leads to an outright 
clustering (C, ) that corresponds perfectly with the external classification. However, 
if we use 10 random and k-means-based partitions to start the iterative fitting, we 
obtain a nonspurious solution (Sz )  at which the likelihood has greater value than 
for SI. The clustering C2 produced by the solution S2 has one cluster consisting 
of the 29 B-CLL cases, another consisting of the 9 FL cases and 7 DLBCL cases, 
and a third cluster consisting of the remaining 35 DLBCL cases. On the basis of the 
likelihood ratio test, it was concluded that a mixture model of g = 3 factor analyzers 
(with q = 4 factors) is adequate for describing the group structure in the data set 
(0.075 < P < 0.1 using B = 39 bootstrap samples). 

4.13.3 Bittner Data 

The third data set we considered concerns the melanoma data of Bittner et al. (2000). 
It consists of M = 31 tissue samples and N = 3,613 genes. We again used EMMIX- 
GENE (with the same thresholds as for the leukemia data) to reduce the number of 
genes in this set to 571, which were then clustered into 15 groups. As an inspection 
of the heat maps in which the genes within a cluster group are displayed for the 3 1 
tissue samples shows that the first cluster group (containing some 49 genes) is one of 
the more useful groups for revealing the separation of the last I9 tissues from the rest, 
we worked with this cluster of genes for our subsequent testing for cluster structure 
among the 3 I tissues. As noted in Dudoit and Fridlyand (2002), there are no a priori 
classes known for this data set. The analysis of Bittner et al. (2000) suggests that 
two classes may be present, as they identified a major cluster of 19 tissues. The Clest 
procedure (Dudoit and Fridlyand (2002)) also yielded two classes, although their 
clustering has four tissues joined to the 19-member cluster identified in Bittner et al. 
(2000). 

Application of the likelihood ratio test in conjunction with the fitting of a mixture 
of g factor analyzers with q = 4 clusters gives a significant result (but close to the 
borderline) at the 5% level (0.04 < P < 0.05, using B = 99 bootstrap samples) for 
the test of g = 2 versus g = 3. The two-cluster solution has the last 19 tissues along 
with the first, seventh, eighth, and tenth tissues in one cluster with the remaining 9 
tissues in the other cluster. If we use the solution obtained from starting with the 
partition that has the first 12 tissues in one group and the last 19 in another, then we 
obtain this clustering, but it corresponds to a smaller local maximum. 

4.13.4 van 't Veer Data 

We finally considered the choice of the number of components g to be used in our 
normal mixture for the breast cancer data of van 't Veer et al. (2002) discussed 
previously in Section 4.1 1. The likelihood ratio statistic was adopted for this purpose, 
and we used the resampling approach of McLachlan (1987) to assess the P-value. This 
is because the usual chi-squared approximation to the null distribution of -2 log X 
is not valid for this problem, due to the breakdown in regularity conditions. We 
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proceeded sequentially, testing the null hypothesis H ,  : g = go versus the alternative 
hypothesis H1 : g = go+ 1, starting with go = 1 and continuing until a nonsignificant 
result was obtained. We concluded from these tests that g = 3 components were 
adequate for this data set. 

4.14 EFFECT OF SELECTION BIAS ON THE NUMBER OF CLUSTERS 

Note that in the examples above we did not attempt to account for the preprocessing in 
these applications of the resampling approach. Caution must be exercised in drawing 
conclusions in analyses based on a subset of the genes selected from a very large 
number due to the consequent selection bias. This selection bias is to be pursued in 
some depth in Chapter 7 on unbiased estimation of the error rates of a discriminant rule 
formed from a subset ofa  very large number of genes. Hence we need to consider how 
to allow for this selection in drawing conclusions from tests concerning the smallest 
number of components in a mixture model fitted to the tissue samples based on a 
relatively small subset of the genes. 

One way of proceeding would be to carry out the likelihood ratio test on the basis 
of the leading principal components formed from all the genes. That is, we do not 
carry out any gene selection before performing the principal component analysis. As 
noted in Section 4.4, an analysis of a full set of genes implies that all aspects of the 
variation are incorporated into the singular value decomposition, and so the principal 
components are affected by the noise affecting each of the genes. But this full set 
analysis should at least provide a lower bound on the smallest number of components 
needed in a mixture modeling of the distribution on the basis of a selected set of 
informative genes. 

4.15 CLUSTERING ON MICROARRAY AND CLINICAL DATA 

In Section 3.14, we considered the case where, in addition to the microarray expression 
data, there are also available data of a clinical nature on the cases on which the 
tissue samples have been recorded. Two types of mixture models (unconditional and 
conditional) are proposed there for the simultaneous use of clinical and microarray 
data for the clustering of tissue samples. 

We illustrate the approaches above on the breast cancer data of van 't Veer et al. 
(2002), as described in detail in Section 4.1 1. The EMMIX-GENE algorithm was run 
as in Section 4.1 1.1, and the 1,867 genes were clustered into 40 groups over the 98 
tissues as before. The forty groups were ranked in decreasing order of the clustering 
capacity of their means. For the purposes of our illustration here, the vector y of 
microarray data was taken to be the means of the top 15 ranked groups. 

The clinical data vector z consisted of six binary clinical variables, as considered 
in the Supplementary Information of van 't Veer et al. (2002). The six variables 
comprised tumor grade (21 = 0, sizes 0 and 1, and 5 1  = 1, size 2); estrogen receptor 
(ER) status ( 2 3  = 0 , I  10, and 2 3  = 1, > 10); progesterone receptor (PR) status 
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(24 = 0,s 20, and 2 4  = 1, > 20); age ( 2 5  = O , <  40, and z5 = 1, > 40), and 
angioinvasion (zg = 0, no, and 2 6  = 1, yes). 

We clustered the n = 78 tissue samples into g = 2 clusters on the basis of 
the full (unconditional) model (3.36) and the conditional model (3.38) fitted to the 
microarray and clinical data together. We first report the results for the former model, 
using the NAIVE-independent version of it. That is, the binary variables are taken 
to be independent within a class, and the microan-ay-data vector y is taken to be 
independent of the clinical data (within a class). 

The clustering corresponding to the largest of the local maxima located gave the 
following clustering: 

C1 = { 1-17,9-11,13-23,25-27,2942,44-46} 

U (48-53,56,58-63,66,69-70,72,76-78}. 

(4.5) 

In Table 4.2, we have listed the fitted values of fxv(z, = l), which is the probability 
that the vth clinical (binary) variable is equal to one given its membership of the ith 
component of the mixture model ( i  = 1,2) .  Concerning these clinical variables, it 
can be seen from Table 4.2 that the estimated probability of a high-grade tumor in 
the second component is close to one. However, high-grade tumors are not confined 
to this second component, as the estimated probability of a high-grade tumor in the 
first component is 0.426. 

Table 4.2 Estimates of Component Probabilities for Clinical Binary Variables 

1 (grade) 
2 (ER) 
3 (PR) 
4 (size) 
5 (age) 

6 (angioinvasion) 

0.426 
0.894 
0.787 
0.277 
0.745 
0.213 

0.968 
0.45 1 
0.226 
0.710 
0.710 
0.387 

The first cluster contains 36 of the 44 tumors in the metastasis-free class GI 
of tumors; the second cluster, however, contains only 12 of the 34 tumors in the 
metastases class G2. The misallocation rate of 22/34 for the metastases class G2 
is not surprising given the gene expressions as summarized in the groups of genes 
(see Figures 4.1 and 4.2). It can be seen from these heat maps that there are several 
tumors in class GP that have gene expression patterns similar to those of tumors in 
class GI. Thus, it is very difficult to distinguish between the two tissue classes GI 
(metastasis-free) and G2 (with metastases) on the basis of these gene expressions. 

It would therefore be helpful if the clinical data could be used to aid in the cluster 
analysis of the tissue samples. But using just the microarray data (that is, ignoring 
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the clinical data), we obtained the same clustering as CI. Thus, it would appear that 
for the purposes of clustering these tissue samples into two clusters corresponding 
to the external classes II1 and n ~ ,  the clinical data do not contribute any additional 
useful information. 

We also fitted this mixture model by starting the EM algorithm from the external 
classification as given by the two classes II1 and II2. It led to a clustering correspond- 
ing to a smaller local maximum than C1, where the first cluster still contains 36 of the 
44 tumors in the metastasis-free class HI,  but where the second cluster corresponds 
to 22 of the 34 tumors in the metastases class I I z .  This second clustering clearly cor- 
responds more closely to the external classification I31 and n,. But we could locate 
it only by starting the EM algorithm using this classification of the tissues. In any 
application of the EM algorithm using random starts, we always located the solution 
that yielded the first clustering C1. It thus shows that this clustering C1 corresponds 
to a local maximum of the likelihood function that dominates the other local maxima. 
Although C1 does not correspond directly with the external classification II1 and I I z ,  
it is nonetheless an interesting finding. For example, it sheds light on the group struc- 
ture that exists among the tissue samples in terms of the available clinical variables 
and gene expression data. Concerning the use of the conditional model (3.38), we 
obtained results similar to those reported above for the full mixture model. 

4.1 6 DISCUSSION 

A major advantage of the mixture model-based approach to cluster analysis is that 
it provides a sound mathematical basis for clustering and the subsequent testing for 
group structure in a data set. In the case of microarray data, the dimension p of 
the feature vector (the number of genes) is so much greater than the number n of 
observations (the tissues) to be clustered, that the normal mixture model cannot be 
fitted directly. 

In this chapter, we show how the EMMIX-GENE program handles this dimen- 
sionality problem in a three-step approach as follows: (1) eliminate those genes with 
little variation across the tissue samples; ( 2 )  cluster the remaining genes into a man- 
ageable number of groups, using essentially Euclidean distance; and (3) cluster the 
tissue samples either by considering the clusters of genes individually or collectively 
with each cluster represented by its sample mean (metagene). If the gene count is 
too large, even after our reduction steps, to fit the normal mixture model of interest 
directly, then we fit mixtures of factor analyzers. 

We illustrate the EMMIX-GENE procedure on two well-known data sets, and 
highlight different aspects of the cluster analysis. For the Alon data, cluster analyses 
performed on the basis of various subsets of the genes selected as being relevant by 
EMMIX-GENE tended to provide strong support for a partitioning of the tissues into 
two classes that split the tissue samples obtained under “old” and “new” protocols. 
There is also support for the splitting of some of the “new” tumor samples and some 
of the “new” normal tissue samples, which can be partly explained by some of these 
tissues being outliers if the external classification is valid. 
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In the analysis of the van 't Veer data, Mar and McLachlan (2003) demonstrated 
how EMMIX-GENE can be applied to cluster a limited number of tissue samples 
(98 breast cancer tumors) on the basis of subsets of 1,867 genes selected from a 
filtered set of 4,869 genes. The tissue samples were clustered into two and three 
clusters using a mixture of factor analyzers model with q = 4 factors. Identification 
of the clusters produced by EMMIX-GENE with the externally existing classes n1 
(disease-free group), I I 2  (metastases group), and II3 (BRCA), gives a large error 
rate. However, this clustering is consistent with the gene expressions as displayed 
in the heat maps for the 40 groups of similar genes. For example, in the first three 
groups given in Figures 4.8 to 4.10, it can be seen that those tissues of class n2 that 
have been misallocated to n1 (&) have gene expression patterns similar to those of 
the majority of the tissues in class II, (II3). Similarly, the tissues of class IT1 that 
have been misallocated to I12 have gene expression patterns similar to those of the 
majority of the tissues in class I I 2 .  This comparison provides some insight into why 
even in a supervised context there is difficulty in trying to discriminate between the 
disease-free class II, and the metastases class I I 2  . 

In the second part of the chapter we have shown how we can use a mixture model- 
based approach to determine the number of tissue clusters, and we illustrated the 
application of this method to four micromay cancer data sets. We propose that 
the choice of the number of clusters be made by testing for the smallest number of 
components in the mixture model compatible with the data. The test can be carried 
out on the basis of the likelihood ratio test statistic -2 log X with its null distribu- 
tion approximated by resampling. In the examples, this approach was implemented 
starting with a single component factor analyzer and proceeding to add a component 
factor analyzer into the mixture model until the test for an additional component is 
nonsignificant. We also consider how to allow for selection bias in determining the 
number of components. 
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5 
Screening and Clustering of 

Genes 

In this chapter, we consider initially the detection of differentially expressed genes 
in known classes of tissue samples. Although the identification of differentially 
expressed genes is the first objective in an exploratory gene expression study, it is 
not the only objective. The identification of clusters of genes that are over- or under- 
expressed in the same class of, say, cancer tissues would be of interest. This is because 
biological insights into the pathways and pathogenesis of cancer may result. Thus in 
the latter part of this chapter, we focus on the clustering of the genes on the basis of 
the tissue samples. Another problem of interest after the identification of genes that 
are differentially expressed is the selection of small subsets of genes (gene markers) 
that are useful in being able to discriminate between the classes of tissues. This is 
known as the feature-selection problem in discriminant analysis and it is to be covered 
in Chapter 7 on supervised classification of tissue samples. 

5.1 DETECTION OF DIFFERENTIALLY EXPRESSED GENES 

5.1 .I Introduction 

An important and common problem in microarray experiments is the detection of 
genes that are differentially expressed in a given number of classes C1, . . . , C,  . 
The classes may correspond to tissues (cells) that are at different stages in some 
process, in distinct pathological states, or under different experimental conditions. 
By comparing gene expression profiles across these classes, researchers gain insight 
into the roles and reactions of various genes. One can compare, for example, healthy 
cells to cancerous cells within subjects in order to learn which genes tend to be over- 
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(or under-) expressed in the diseased cells; regulation of such genes could produce 
effective cancer treatment and/or prophylaxis. DeRisi et al. (1996) suppressed the 
tumorigenic properties of human melanoma cells and compared gene expression 
profiles among “normal” and modified cells. This experiment allowed investigators 
to study the differential expression that is associated with tumor suppression (van der 
Laan and Bryan, 2000). 

In screening for cancer, there is interest in detecting genes that are differentially 
expressed in cancer tissue compared with normal tissue. The cancer tissue may not 
be able to be used directly for population screening. However, if a gene is found that 
is expressed differentially in cancer tissue, then the corresponding protein product 
(or an antibody to it) may be detectable in blood or urine, and could be the basis 
for a population screening test; see Pepe et al. (2001,2003). In finding differentially 
expressed genes, in particular overexpressed genes, with the potential for use in cancer 
screening, a sizeable number of genes need to be obtained. This is because many 
genes cannot lead to screening markers; for example, genes that relate simply to 
inflammation or growth are not candidates as these processes also occur naturally in 
the body. Also, clinical assays for some gene products may be too difficult to develop 
for technical reasons (Pepe et al., 2003). 

We are concerned with the identification of a subset of genes that are differentially 
expressed between tissue types from a large pool of candidate genes in microarray 
experiments. The same statistical problem arises in experiments involving other 
recently developed high-throughput technologies. For example, the methods to be 
discussed will also be useful in analyzing experiments in protein mass spectrometry. 

5.1.2 Fold Change 

The simplest method for identifying differentially expressed genes is to evaluate the 
log ratio between two classes (or averages of the log ratios when there are replicates) 
and consider all genes that differ by more than an arbitrary cutoff value to be differ- 
entially expressed; see Schena et al. (1996) and DeRisi et al. (1997). For example, if 
a two-fold difference is chosen as the cutoff value, then genes are taken to be differ- 
entially expressed if the expression in one class is over two-fold greater or less than 
in the other class. This test, sometimes called a ‘fold’ change, is not a statistical test, 
and there is no associated level of confidence in the designation of a gene as being dif- 
ferentially expressed or not differentially expressed (Cui and Churchill, 2003). Also, 
this method ignores the variance of the replicates in each class. Thus it is widely 
recognized now that simply using the fold changes is unreliable and inefficient (Chen 
et al., 1997). 

5.1.3 Multiplicity Problem 

The statistical significance of the differential expressions can be tested by performing 
a test for each gene. When many hypotheses are tected, the probability that a type 
I error (a false positive error) is committed increase$ sharply with the number of 
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hypotheses. This multiplicity problem is not unique to microarray analysis, but its 
magnitude where each experiment may involve many thousands of genes dramatically 
intensifies the problem. Correlation between the test statistics attributed to gene 
coregulation and dependency in the measurement errors of the gene expression levels 
further complicates the problem. 

There is now a very large literature on the problem of detecting differentially 
expressed genes with microarray data. Dudoit et al. (2002) was one of the first 
studies to recognize the importance of the multiplicity problem as one of the key 
statistical issues in microarray data analysis. An excellent review of this problem has 
been given recently by Dudoit, Shaffer, and Boldrick (2003). 

The Bonferroni method is perhaps the best known method for dealing with multiple 
testing. It controls the family-wise error rate (FWER), which is the probability that 
at least one false positive error will be committed. However, it is known to be conser- 
vative. Westfall and Young (1989) proposed adjusted P-values for less conservative 
multiple testing procedures which take into account the dependence structure between 
the test statistics. But control of the FWER is only appropriate in situations where the 
intent is to identify only a small number of genes that are truly different. Otherwise 
the severe loss of power in controlling the FWER is not justified (Reiner, Yekutieli, 
and Benjamini, 2003). Instead, it is more appropriate to emphasize the proportion 
of false positives among the identified differentially expressed genes. The expecta- 
tion of this proportion is essentially the false discovery rate (FDR) of Benjamini and 
Hochberg (1995). The FDR will be defined formally in the next section. 

The noise introduced by the nondifferentially expressed genes may obscure the 
signal in the data. Preselection of genes that pass an FDR testing at a moderate level 
of significance may largely suppress this noise, thereby improving more specific 
analyses such as discriminant and cluster analyses. 

Recently, a number of key papers have been written on controlling the FDR, 
including the papers by Genovese and Wasserman (2002), Storey (2002), Storey and 
Tibshirani (2003a,b), and Storey, Taylor, and Siegmund (2004). Hence methods for 
the detection of differentially expressed genes are still evolving. We now briefly 
review the current literature. 

5.1.4 Overview of Literature 

Among nonparametric methods that are directed toward controlling the FDR in detect- 
ing differentially expressed genes are the nonparametric empirical Bayes approach of 
Efron el al. (2001), the significance analysis of microarrays (SAM) method of Tusher, 
Tibshirani, and Chu (2001), and the mixture model method (MMM) of Pan, Lin, and 
Le (2001,2003). A review of these methods may be found in Pan (2002,2003). 

The empirical Bayes approach of Efron et al. (2001) is implemented within the 
framework of a two-component mixture model whose two components correspond to 
the set Go of genes that are not differentially expressed and the set GI (the complement 
of Go) that are. Recently, Do, Mueller, and Tang (2003) have proposed a model-based 
version of the empirical Bayes approach of Efron et al. (2001). Previously, Lonnstedt 
and Speed (2001) considered a parametric empirical Bayes approach for two-color 
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microarray experiments to derive an expression for the posterior odds of differential 
expression for a gene. More recently, Smyth (2004) has developed the hierarchical 
model of Lonnstedt and Speed (2001) with an arbitrary number of classes and RNA 
samples. 

In other work, a parametric frequentist approach to comparing classes via mixture 
models in terms of gene-specific summary statistics has been given by Lee et al. 
(2000), Pan, Lin, and Le (2002), and Allison et al. (2002), while a Bayesian approach 
has been given by Broet, Richardson, and Radvanyi (2002) and Broet et al. (2004). 
Working in terms of the observed gene expression levels, Newton (2001), Kendziorski 
et al. (2003), Newton and Kendziorski (2003), and Newton et al. (2004) have adopted 
parametric empirical Bayes approaches to this problem. In the latter paper, which is 
on two-class comparisons, a semiparametric approach was also proposed. Ibrahim, 
Chen, and Gray (2002) and Garrett and Parmigiani (2003) have considered the fitting 
of mixture models to the gene expression levels by a parametric Bayesian approach. 

With a mixture model approach to inference in this problem, the question of 
whether the genes are differentially expressed can be formulated in a decision- 
theoretic framework, which is to be considered in more detail in Chapter 7 on super- 
vised classification. A rule for deciding whether gene j is differentially expressed 
can be formulated in terms of its (estimated) posterior probability ?Q of belonging 
to component Go corresponding to no differential expression (3 = 1, . . . , N ) .  The 
estimated Bayes rule decides gene j to be differentially expressed if 

TOJ < c, (5.1) 

where (1 - c ) / c  is the relative importance placed on the two errors of the rule. This 
is to be stated more precisely in Section 5.7.2. The Bayes rule minimizes the linear 
combination of these two errors so weighted. The link of this rule with those that set 
out to control the FDR or pFDR was made recently by Storey (2003), who showed 
that the Bayes error is a linear combination of the pFDR and pFNR. As to be defined 
formally in Section 5.4.6, pFDR is the conditional expectation of the proportion of 
false positives among all rejected hypotheses N,  given N,  > 0, while pFNR is the 
conditional expectation of the false negatives among all N - N, hypotheses that are 
not rejected given N - N ,  > 0. 

Thus, this mixture model-based rule approach to the multiple testing problem of 
differential expression among N genes is attractive. It provides gene-specific sum- 
maries in terms of the posterior probabilities of differential expression and, consider- 
ing all multiple comparisons, it minimizes (asymptotically in N )  a linear combination 
of the pFDR and pFNR. By letting the threshold c in (5.1) increase (decrease), we 
can place less (more) weight on the pFDR relative to the pFNR. 

In addition to the papers referenced above, several others have addressed the prob- 
lem of testing for differential expression, including Ideker et al. (2000), Kerr, Martin, 
Churchill, (2000), Manduchi et al. (2000), Thomas et al. (2001), van der Laan and 
Bryan (2001), Westfall, Zaykin, and Young (2001). Wolfinger et a]. (2001), Chilin- 
garyan et al. (2002), Troyanskaya et al. (2002), and Tsai, Hsueh, and Chen (2003). 
There is also the paper of Cui and Churchill (2003), which gives a review of test 
statistics for differential expression for microarray experiments. 
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5.2 TEST OF A SINGLE HYPOTHESIS 

From the previous section, it has been seen that the biological question of differential 
expression can be restated as a problem in multiple hypothesis testing. Before we 
consider the simultaneous testing of all N genes, we consider the test of a single 
hypothesis. 

In the notation of Section 4.2, the M tissue samples on the N available genes are 
classified with respect to g classes or conditions. These classes might correspond 
to discrete levels of a covariate, for example, health status (normal versus cancer), 
subtypes of cancer, or survival outcomes following treatment for a disease. The 
classes might also correspond to continuous covariates, for example, dose of a drug 
or time as in time-course experiments. It is assumed that there are ni tissue samples 
from each class Ci (i = 1, . . . , g) ,  where 

M = nl + . . . + ng. 

For simplicity, we shall take g = 2 ,  but the methodology to be described applies in 
the case of multiple classes. 

The aim is to detect whether the expression levels of some of the thousands of genes 
are different in class C1 than in class Cz. That is, we wish to identify those genes 
with differential expression. In the context of statistical inference, we can formulate 
the problem as a multiple hypothesis testing problem. For gene j ,  we let Hj denote 
the null hypothesis of no association between its expression level and membership of 
the response or covariate ( j  = 1, . . . , N ) .  Here we consider a response that defines 
the class membership of the gene. In some cases more specific null hypotheses may 
be of interest, for example, the null hypothesis of equal mean expressions in the two 
classes as opposed to identical distributions. We shall say that Hj = 0 if the null 
hypothesis for the j th gene holds and that H j  = 1 if it does not hold. 

In testing a single hypothesis such as H 3 ,  one can commit two types of errors. One 
can reject Hj when the null hypothesis Hj holds (a type I error), or one can retain 
Hj when it does not hold (a type I1 error). With the traditional approach to the test 
of a single hypothesis, one aims to maximize the power (one minus the probability 
of making a Type I1 error), while keeping the probability of a type I error at or below 
a specified level. 

We let Tj denote a test statistic for testing Hj for the j th gene. A gene-specific 
summary is given by the observed value t ,  of the test statistic Tj or the associated 
P-value, p j .  Note that t j  should not be confused with the t random variable having a 
Student’s t-distribution with j degrees of freedom. The null hypothesis Hj is rejected 
if there is enough evidence in favor of the alternative. That is, if Tj falls in some 
predetermined rejection region rj or if the P-value p j  is less than some conventional 
value such as cy = 5%. For example, the critical region (that is, the rejection region) 
might have the form rj = { t j  : I t j  I 2 c,}, where 

pr{/T,I 2 ca I H j }  = a.  

P j  = pr{lT,I 2 It,l I Hj>. 
The P-value p j  for an observed value t j  of the test statistic Tj is then given by 
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In practice, the number of genes N can be very large. Thus if we were to carry out 
separate tests in the case of N = 6,000 genes, the number of false positives could be 
quite large. For instance, if all N = 6,000 genes were not differentially expressed, 
then the expected number of false positives would be 300. Thus there is a need to 
control the false positive rate. 

Before we proceed to formulate the problem in a multiple hypothesis framework, 
we consider the calculation of some gene statistics; in particular, some two-sample 
t-statistics applicable in the case of g = 2 classes. 

5.3 GENE STATISTICS 

5.3.1 Calculation of Interactions via ANOVA Models 

We let y i j k  denote the (logged) gene expression level for the kth replicate of the j t h  
gene in the ith class ( k  = 1, . . . , nj; j = 1 . . . , N ;  i = 1, . . . , g) ,  where 

denotes the total number of microarrays. Assuming that the gene expressions have 
been preprocessed with adjustment for array effects, (for example, by standardization 
of each tissue sample), we can consider the classical two-way ANOVA model, 

where p,  ~1~ , pz, and ytJ refer to the overall effect, the j t h  gene-main effect, the sth 
class-main effect, and the zth class-jth gene interaction effect, respectively, and e zJk  

is the error term. 
In the detection of differential expression, the effect of interest is the interaction 

term yzJ , as it capture? the expression of the j t h  gene specifically attributable to the 
ith class (3 = 1. . . . . N :  z = 1, . . . , 9) .  Hence the raw data for the formation of 
the gene statistics to be considered below are the 1 ~ 2 + 3 ~ ,  where 

and where ji = J ..., 6j = y.j, - y ,.., and = yi.. ~ g...  denote the estimates of the 
overall, the j t h  gene- and the ith class-main effects, respectively; see, for example, 
Lee et al. (2000) and Broet et al. (2004). Note that if we let A denote the N x Ad 
matrix of (logged) expression values, then the process above is achieved by column 
and row standardization of the elements of the matrix A. This same standardization 
was carried out before the clustering of the tissue samples as considered in the previous 
chapter. 

As an alternative to (5 .2) ,  we could allow for array effects through the fitting of 
a three-way model with main and interaction terms involving the arrays (Kerr et al., 
2002); see, for example, Tsai et al. (2004). 
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5.3.2 Two-Sample t-Statistics 

A commonly used statistic for testing for a difference in the means of two classes is 
the well-known Student's t-statistic defined by 

- 

(5.4) 
Y1J - 3 2 3  

T3 = d-: 
where yy and s z  denote the sample mean and variance of the nt replicates y:Jk, ( k  = 

1, . . . , n,) for the j th  gene in the /th class C, ( z  = 1,2). Under the assumption of 
normality, it can be shown using the Satterthwaite (1 946) approximation that T3 has 
a t-distribution with degrees of freedom 

In the case of an assumed common variance in the two classes, the pooled form of 

(5 .5)  

- (5.4) has the form 
Yl, - 3 2 3  

sJ J l /n l+  1/n2 ' 
T3 = 

where 
s; = {(nl - I)S?, + (n2 - I)s&}/(M - 2 )  

is the pooled within-class sample variance. 
Because of the large number of genes in the microarray experiments, there will 

always be some genes with a very small sum of squares across replicates, so that 
their (absolute) t-values will be very large whether or not their averages are large. 
Tusher et al. (2001) have proposed a refinement that avoids this difficulty. They use 
the modified t-statistic by adding a constant a0 to the denominator of (5.4) to give 

- - 

(5.6) 

The constant a0 was chosen to make the coefficient of variation of T, approximately 
constant as a function of s7.  This has the added effect of dampening values of TJ 
that arise from genes whose expression is near to zero. In Efron et al. (2001), a0 was 
chosen to be the percentile of the distribution of the sJ that maximizes the posterior 
probability of a gene being differentially expressed. Baldi and Long (2003) and 
Broberg (2003) have used t-statistics with an offset. 

Y l j  - Y2, T3 = 
sJ J l /n l+  l/n2 + ao ' 

5.4 MULTIPLE HYPOTHESIS TESTING 

As discussed earlier in this chapter, there is a need to consider a measure that is less 
stringent than the false positive rate. To this end, we now consider some measures of 
error suitable when multiple hypotheses are being tested simultaneously. The focus 
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Table 5.1 Possible Outcomes from N Hypothesis Tests 

Accept Null Reject Null Total 

Null True No0 
Non-True NlO 

Total N - N,  

No 1 

N11 
NT 

will be on the rate of false positives with respect to the number of rejected hypotheses 
N,. One may be willing to bear some false positives as long as their number is small 
in comparison to N,. 

5.4.1 Outcomes with Multiple Hypotheses 

The field of multiple hypothesis testing tries to extend the basic paradigm for testing a 
single hypothesis to the present situation where several hypotheses need to be carried 
out simultaneously. 

Table 5.1 describes the various outcomes when applying some significance test to 
perform N hypothesis tests. The specific N hypotheses are assumed to be known in 
advance, but the number NO and N1 of true and false null hypotheses are unknown 
parameters. The number of rejected null hypotheses N,  is observable, while the 
number of false positives N O I ,  the number of false negatives NIO, the number of 
true negatives NO", and the number of true positives Nl1 are unobservable random 
variables. 

We have seen that the family wise error rate (FWER) is the probability of yielding 
one or more false positives out of all hypotheses tested; that is, 

FWER = pr(No1 2 l}. (5.7) 

5.4.2 Controlling the FWER 

There are many adjustment methods for multiple comparisons, including control of the 
FWER. The most commonly used method for controlling the FWER is the Bonferroni 
method. The test of each H3 is controlled so that the probability of a Type I error is 
less than or equal to a," for some a. This ensures that the overall FWER is less than 
or equal to ( Y .  Closely related to Bonferroni's method is the Sidhk (1967) method 
which calculates the adjusted gene-specific P-value as pJ'ij = 1 ~ (1 - ~ j ) ~ ,  where 
pJ is the unadjusted P-value for the j t h  gene ( j  = 1, . . . , N ) .  A less conservative 
adjustment method is the Holm (1979) method that orders the P-values and makes 
successively smaller adjustments. Let the ordered gene-specific P-values be denoted 
by ) 5 p ( 2 )  5 ... 5 p ( ~ ) .  Then the Holm method calculates the adjusted P-values 
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To cater for correlated gene expression levels in certain groups of genes, a more 
preferable method for bioinformaticians is one that accounts for dependence structure 
between the genes, such as that proposed by Westfall and Young (1 993). This method 
requires the estimation of the joint null distribution of the unadjusted unknown P- 
values. Dudoit et al. (2002b) proposed to estimate the joint null distribution of the test 
statistics TI for the N genes by permuting the class labels of the M tissue samples. 
This approach ensures that the dependence structure between genes is preserved, while 
allowing one to estimate the joint distribution of interest via the empirical distribution 
generated by the B permutations. Let tibi denote the value of TJ computed for the 
j th  gene from the bth permutation. Then the unadjusted permutation P-values for 
the t-statistics are 

Suppose that the observedt-statistics are sorted such that It(l) I 2 I 2 ... 2 It(,) 1 .  
Then the adjusted Westfall and Young P-values estimated from the permuted data 
are given by 

( b )  

B 
a d j  - c,"=l ' ( I U , 7  1 2 I t ( j ) I )  

P j  - > 

where 

5.4.3 False Discovery Rate (FDR) 

There is a fundamental issue with approaches that set out to control the FWER. 
They control the probability of at least one false positive regardless of the number of 
hypotheses N being tested. When N is very large, they are much too strict, and will 
lead to many missed findings. The goal in the present situation is therefore to identify 
as many genes with significant differences as possible, while incurring a relatively 
low proportion of false positives. 

In a seminal paper, Benjamini and Hochberg (1995) introduced a new multiple 
hypothesis testing error measure called the false discovery rate (FDR), which they 
define as 

> >  
No 1 

N,. V 1 
F'DR = E{ - 

where N, V 1 = max(N,., 1). The effect of N, V 1 in the denominator of the 
expectation in (5.8) is to set No,/N,. = 0 when N,. = 0. The FDR can be written 
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also as 
FDR = E{Nol/N,, I N,  > 0} pr{N, > O}. (5.9) 

The FDR can also be written in terms of the proportions All = N11 / N I  and Aoo = 
Noo/No, corresponding to the apparent sensitivity and specificity of a prediction rule, 

(5.10) 

5.4.4 Benjamini-Hochberg Procedure 

Controlling the FDR offers a less strict multiple-testing criterion than the FWER. 
As set out in Storey, Taylor and Siegmund (2004), two approaches to providing 
conservative FDR procedures are the following. One is to fix the acceptable FDR 
level beforehand, and to find a data-dependent thresholding rule so that the FDR of 
this rule is less than or equal to the prechosen level. This is the approach adopted by 
Benjamini and Hochberg (1 995). Another is to fix the thresholding rule, and to form 
an estimate of the FDR whose expectation is greater than or equal to the FDR rule 
over the significance region. This was the approach taken by Storey (2002). It avoids 
having to choose a single acceptable FDR level before any data are seen which, as 
noted by Storey and Tibshirani (2003a), is often too impractical and restrictive. 

In either case, the desire is to be conservative regardless of the value of No, which 
is usually unknown. If this holds, then strong control is provided. Weak control is 
provided when the procedure is conservative only when No = N ;  in general this is 
not of interest in the FDR case (Benjamini and Hochberg, 1995). 

Benjamini and Hochberg (1995) proved by induction that the following procedure 
(referred to here as the BH procedure) controls the FDR at level Q. when the P-values 
following the null distribution are independent and uniformly distributed. 

Step 1 .  Let rql) 5 . . . 5 p ( N )  be the observed P-values. 

Step 2. Calculate 
k = arg rnax { I c  : p ( k )  5 a k / N } .  (5.1 1) 

Step 3. If k exists, then reject null hypotheses corresponding to p(1)  5 . . . 5 p ( k ) .  

l<k<N 

Otherwise, reject nothing. 

The BH procedure was originally introduced by Simes (1986) to control weakly 
the FWER when all P-values are independent, but it provides strong control of the 
FDR as well. 

Benjamini and Yekutieli (2001) showed that 

FDR 5 ~rN0," 

for positively dependent test statistics as well. Since the BH procedure controls the 
FDR at a level too low by a factor of NOIN, it is natural to try to estimate NO and use 

( Y *  = fY(N/N")  
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instead of (Y to gain more power. Estimating No from a set of P-values goes back 
to Schweder and Spjdvtoll (1982), which was later formalized by Hochberg and 
Benjamini (1 990). Benjamini and Hochberg (2000) suggested an adaptive procedure 
that combines the estimation of NO with the BH procedure. A similar version has 
been suggested by Storey (2003), as to be considered further in Section 5.6. 

5.4.5 False Nondiscovery Rate (FNR) 

Genovese and Wasserman (2002) noticed that one can define a dual quantity to the 
FDR, which they call the false nondiscovery rate (FNR). It is defined to be the expected 
proportion of false negatives among all hypotheses that are not rejected, with the ratio 
being set to zero if all hypotheses are rejected. That is, 

1 NlO 
( N  - N T )  v 1 

FNR = E{ 

= {E(Nlo / (N  - N T )  I ( N  - N T )  > 0} pr{(N - NT) > 0}.(5.12) 

5.4.6 Positive FDR 

The term pr{N, > 0} in the definition (5.9) of the FDR was included by Benjamini 
and Hochberg (1 995) as a way of allowing the FDR to be bounded in the case when 
all the null hypotheses are true, NO = N .  But as argued in Storey (2003), if all the 
null hypotheses are true, one would want the false discovery rate to be one, and one 
is not interested in cases where no test is significant. These considerations led Storey 
(2003) to propose the the positive false discovery rate (pFDR), defined by 

pFDR = E(No,/N, 1 NT > 0). (5.13) 

It is called the pFDR because it is conditioned on the fact that at least one positive 
outcome has resulted. 

5.4.7 Positive FNR 

Analogous to the FNR, we can define the positive false nondiscovery rate (pFNR) by 

pFNR = E(Nlo / (N  - N T )  1 ( N  - N T )  > 0). (5.14) 

5.4.8 Linking False Rates with Posterior Probabilities 

Storey (2003) showed under the assumptions of N independent hypotheses with 
critical region r and with pr{HJ = 0} = T O  that 

pFDR = pr{H, = 0 1 Tj  E r}, (5.15) 

where the right-hand side of (5.15) is the same for each j because of the independent 
and identically distributed data assumptions. Similarly, 

pFNR = pr{Hj = 1 I Tj  # r}. (5.16) 
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5.5 NULL DISTRIBUTION OF TEST STATISTIC 

Before we proceed further with procedures that control the FDR or pFDR, we discuss 
the assessment of the null distribution of the test statistic Tj under the null hypothesis 
H.7, using the two-sample test statistic (5.4) as an illustration. 

5.5.1 Permutation Method 

In practice it may not be valid to assume that the null distribution of TJ is a t- 
distribution, especially as small sample sizes are very common with microarray data. 
Even if it were, the null distribution of the modified t-statistic (5.6) would still need 
estimating. We now discuss nonparametric methods for assessing the null distribution 
of Tj, where TJ is given by (5.4). As pointed out in Pan (1992), the loss in power 
may not justify the use of the robust Wilcoxon rank sum test, which also requires 
that the two class distributions have the same shape with the only difference in their 
location parameters. The null distribution of Tj can be found easily by permuting 
the class labels or by using bootstrap methodology described in Efron and Tibshirani 
( 1  993). As discussed in Storey and Tibshirani (2003b), the permutation method has 
the strength that if the null distribution is true, then we are able to calculate the null 
distribution exactly. Storey and Tibshirani (2003b) go on to discuss whether the null 
distribution of Tj should be calculated on the basis of just the data on the j th gene 
or by pooling across the N available genes as, for example, in the empirical Bayes 
approach in Efron et al. (2001). If the null distribution of Tj is calculated on the 
basis of just the data on the j t h  gene, then it suffers from a granularity problem. 
For example, there are only ten ways to divide six microarrays into two equal sized 
groups; see also Gadbury et al. (2004). The null distribution has a resolution on the 
order of the number of permutations. If we perform B permutations, then the P-value 
will be estimated with a resolution of 1/B. If we assume that each gene has the same 
null distribution and combine the permutations, then the resolution will be l/(NB) 
for the pooled null distribution. 

Using just the B permutations of the class labels for the gene-specific statistic Tj, 
the P-value for T j  = t ,  is assessed as 

(5.17) 

where tc' is the null version o f t ,  after the bth permutation of the class labels. If we 
pool over all N genes, then 

R # { j  : It:,"3'1 2 lt,l, j = 1 . . . , B} 
(5.18) 

Pl  =c M B 
h= 1 

The drawback of pooling the null statistics tg' across the genes to assess the null 
distribution of T, is that one is using different distributions unless all H, are true; see 
Dudoit et al. (2003, Page 84) on this point with respect to the SAM method of Tusher 
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et al. (2001). As explained in Storey and Tibshirani (2003b), this is not a problem in 
estimating the FDR. The null statistics just have to converge to some overall “null” 
distribution in N ,  which will generally hold as N is very large. Storey and Tibshirani 
(2003b) recommend pooling the null statistics tg)  across the genes to make for more 
accurate and more powerful procedures as well as reducing the computation time. 
The empirical results of Pan (2003) support this for the SAM method. 

5.5.2 Null Replications of the Test Statistic 

The empirical Bayes approach to the selection of differentially expressed genes is 
to be discussed in Section 5.8.1. It will be seen there that with the nonparametric 
method of Efron et al. (2001), the model-based version proposed by Do et al. (2003), 
and the MMM method of Pan et al. (2001, 2003), we need to be able to provide 
suitable estimates of the density of the test statistic T,, f 0 ( t 3 ) ,  in the population Go 
of nondifferentially expressed genes. That is, we need to be able to form replications 
t$) oft, that will have a distribution that is as near as possible to the null distribution 
of T,, regardless of whether HJ holds or not. 

Working, for example, with the t-statistic T3 given by (5.4), Pan, Lin, and Le 

(2002) suggested null replications tc’ of t j  be formed by randomly computing the 
tissue samples within each class separately in the statistic 

(5.19) 

where 

The term a3 in the numerator of (5.19) is formed by dividing each sample into 
two almost equally-sized subsamples. For i = 1,2,  define n , 2  = n,1 if n, = 2n,l, 
and n,2 = n,1 + 1 if R, = 2n,1 + 1. Also, for use in (5.21) below, we let s : ,~  
and s : ~ ~  denote the sample variances of the subsamples yC3k ( k  = 1, . . . , n, l )  and 
y,,k (Ic = nzl + 1, . . . , nl),  respectively (z = 1,2).  The motivation behind the 
formation of a3 is under the assumption that the errors are distributed symmetrically 
about the origin, the distribution of To3 should be the same as the null distribution 
of T3. However, Pan (2002) noticed that the use of null replications of ToJ led to 
too many genes being declared significant with its use in the MMM method. He 
pointed out that whereas the numerator and denominator of (5.4) are independently 
distributed, this is not so for the statistic TO,. He subsequently proposed a modified 
version, 

T o J  = a3 / g J ,  (5.21) 

where 

(5.22) 
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The degrees of freedom of this statistic is n1 + n2 - 4. A limitation in its use is that 
at least four or more tissue samples are required in each class, whereas only two or 
more are required with To,. 

Under the assumption of normality of the genes within a class, the numerator and 
denominator in (5.22) are independently distributed. Thus the distribution of ?o, 
should provide a better approximation to the null distribution of the statistic T3. This 
has been confirmed in the empirical results of Pan (2003). 

( b  = 1, . . . , B )  of ToJ are obtained by randomly computing the 
tissue samples within each class before the sample from each class is partitioned 
into two subsamples for the formation of (5.21). For example, if B = 50, then 
the null density fo(il) can be estimated on the basis of the B = 50 replications 
- (b )  . - t,, (3  ~ 1. . . . . N ;  b = 1, . . . , B) .  

Replications 

5.5.3 The SAM Method 

The permutation method is used to calculate the null distribution of the modified 
t-statistic (5.6) in the significance analysis of microarrays (SAM) method of Tusher 
et al. (2001). But rather than use a symmetric critical region of the form It, I > c, 
SAM derives cutoff points c1 and c2 so that the critical region has the form t ,  > c2 or 
f ,  < c1, and so can lead to a more powerful test in situations where more genes are 
over expressed than under expressed, or vice-versa. With SAM, the order statistics 
t ( l ) ,  . . . , t ( ~ )  are plotted against their null expectations assessed as 

(5.23) 

Then as described in Storey and Tibshirani (2003b), one proceeds as follows. Firstly, 
for a fixed threshold A, start at the origin and, moving up to the right, find the first 
j = j l  such that t(,) - 2 A. All genes past j l  are called “significant positive.” 
Secondly, start at the origin and, moving down to the left, find the first j z  such that 
?o(J)  - t(,,) 2 A. All genes past j 2  are called “significant negative.” For each A, 
define the upper cutoff point tz(A) as the smallest t j  among the significant positive 
genes, and similarly define the lower cutoff point tl (A).  If tl (A) > tz(A), then set 

The FDR can be estimated from the same permuted null statistics. In Tusher et al. 
(200 1 j. the FDR is taken to be the proportion of the t$) that are found to be significant, 
while in Storey and Tibshirani (2003b), the estimates developed in Storey (2002) are 
used. We shall discuss these latter estimates of the FDR in Section 5.6. 

t l (A) = t,(A) 10. 

5.5.4 Application of SAM Method to Alon Data 

We applied the SAM method to the cancer colon data of Alon et al. (1999), as 
considered in Chapter 4. The aim was to identify potentially significant changes in 
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expression of the genes. There are two classes of tissue samples consisting of 2,000 
genes with n1 = 40 tumor samples in one class and n2 = 22 samples in the other. 

We first applied SAM to the quantile normalized data set above. Figure 5.1, 
produced by the computer package SAM, presents a scatter plot of the observed 
relative difference t, versus the expected relative difference For the vast majority 
of genes, t(,) and t o ( J )  are almost equivalent. Some genes are represented by points 
displaced from the t(,) = line by a distance greater than a threshold A = 

0.7, illustrated by the dashed lines in Figure 5.1. The estimated number of falsely 
significant genes was the average of the number of genes called significant from all 
the permutations. For A = 0.7, the permuted data sets geiierated an average of 27 
falsely significant genes, compared with 540 genes called significant, yielding an 
estimated FDR of 5% (Table 5.2). As A decreased, the number of genes identified 
as significant by SAM increased along with an increasing FDR. Investigators can use 
Table 5.2 to calibrate the results that give the best biological interpretation. 

- 

Fig. 5.7 SAM plot for the Alon data set. The dashed lines are drawn at a distance of A = 0.7 
from the solid line. The upper and lower cut points are the first ones that lie outside the band. 
All genes to the right of the upper cut point and to the left of the lower cut point are called 
significant. 
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Table 5.2 SAM False Positive Results for Different Vahes of the Threshold A 

# False Positive Genes (Nol) # Significant FDR (%) 

0.10 811.88 873.13 1,676 48.44 52.10 
0.20 597.56 695.75 1,478 40.43 47.07 
0.30 352.78 485.83 1,200 29.40 40.49 
0.40 227.57 355.32 1,000 22.76 35.53 
0.50 86.01 178.79 720 11.95 24.83 
0.60 58.66 135.42 660 8.89 20.52 
0.70 27.07 78.96 540 5.01 14.62 
0.80 11.28 41. I7 430 2.62 9.57 
0.90 5.92 25.38 375 I .58 6.77 
1 .OO 2.26 12.46 287 0.79 4.34 
1.20 0.56 3.38 204 0.28 1.66 
1.30 0.56 1.69 160 0.35 1.06 

A Median 90th percentile Genes (N,) Median 90th percentile 

5.6 RECENT APPROACHES FOR STRONG CONTROL OF THE FDR 

We come now to the recent and fruitful results of Storey (2002, 2003), Storey and 
Tibshirani (2003a), and Storey et al. (2004) on controlling the FDR. 

5.6.1 The q-Value 

We now consider the pFDR analogue of the P-value, which Storey (2003) called the 
q-value. An excellent account of the role of the q-value in multiple testing has been 
given recently by Storey and Tibshirani (2003a). As they note, the P-value can be 
used to assign to each gene a level of significance in terms of the false positive rate. A 
P-value threshold of 5% yields a false positive rate of 5% among all null hypotheses 
being tested. However, it does not provide a measure of the errors among the genes 
declared to be significant. Information on this is provided by the FDR, which gives 
a measure of the proportion of false positives among the significant genes. However, 
as pointed out by Storey and Tibshirani (2003a), one would also like a measure of 
significance that can be attached to each individual gene. The q-value is a measure 
designed to reflect this level of attachment. 

As to be made more precise in the next section, the q-value for a gene is the expected 
proportion of false positives incurred when calling that gene significant. Suppose that 
the genes are ranked in increasing order of their P-values. Then calculating the q- 
values for each gene in the list and thresholding them at some q-value level Q: produces 
a set of genes (each with q 5 a )  so that a proportion Q: of them is expected to be 
false positives. Further, with this thresholding, the q-value can be estimated to control 
conservatively for large N the FDR at a level 5 Q: when all N genes are considered 
simultaneously. 
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The P-value can be viewed as the probability under the null hypothesis of obtaining 
a value of the test statistic as or more extreme than its observed value. The q-value for 
an observed test statistic can be viewed as the expected proportion of false positives 
among all genes with values of their test statistics as or more extreme than the observed 
value. This analogy between the P-value and the q-value is considered further in the 
next section. 

5.6.2 Technical Definition of q-Value 

Firstly, we consider the test of a single null hypothesis H on the basis of a test 
statistic T ,  where the event { H  = 0} denotes that the null hypothesis holds and 
{ H  = l} implies that the alternative hypothesis holds. As explained in Storey (2003), 
hypothesis tests are usually derived according to a nested set of significance regions. 
As long as the null and alternative densities f o ( t )  and f l ( t )  have common support, 
we can denote this nested set of significance regions without loss of generality by 

where a is such that 

a = pr{Tj E F a  I H = O}. (5.24) 

Note that a* 5 Q implies that Fa* C F a ,  giving the nested property. Using this 
notation, the P-value p ( t )  of an observed statistic T = t is defined to be 

(5.25) 

It is the minimum type I error that can occur when rejecting a statistic value t,, 
given the set of nested significance regions. Storey (2003) defined an analogous 
quantity in terms of the pFDR, 

(5.26) 

In words, (5.26) says that the q-value is a measure of the strength of an observed 
statistic with respect to the pFDR; it is the minimum pFDR that can occur when 
rejecting a statistic with value t for the set of nested significance regions. Under the 
mixture model (5.36), Storey (2003) showed that 

(5.27) 

Storey (2003) called (5.27) a q-value because it is equivalent to the P-value (5.25) 
with the events {T E r,} and { H  = 0} reversed. 

For N identical tests T, with observed values t, and P-values p,, Storey (2003) 
showed that the q-value can be calculated from either the original statistics or their 
P-values. Also, when the tests are independent and follow the mixture distribution, 

q b , )  = min PFDR(7) (5.28) 
Y > P ,  
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if and only K ( c Y ) / ~ L  is a decreasing function of a, and 

K ( a )  = pr{T3 E re I H = 1). 

From (5 .28) ,  a y-value of a statistic is the minimum pFDR at which that statistic can 
be called significant. Note that this definition of the q-value guarantees that the q(p,)  
are in the same order as the P-values p J  . 

We can estimate pFDR(y) by the estimator FyRc(7) to be defined in the next 
section. Because N is large here, 

pr{N > 0) RZ I, (5.29) 

and so 

(5.30) 

Thus the distinction between pFDR and FDR is not crucial here (Storey and Tibshirani 
et al., 2003a). 

5.6.3 Controlling FDR Strongly 

Let FDR(7) denote the FDR when rejecting all null hypotheses with y ,  5 y for 
j = 1, . . . , IV, and 

N ( Y )  = #{PJ  : P ,  5 7). 

Storey (2002) proposed FDR(y) be estimated as 

(5.31) 

The term eO([) is an estimate of 7ro = No/N, the proportion of true null hypotheses. 
This estimate depends on the tuning parameter E and is defined as 

(5.32) 

As explained in Storey (2002), when the P-values corresponding to the null hy- 
potheses are uniformly distributed, we have 

for a well-chosen <. This is because most of the P-values near 1 should be null 
if each test has a reasonable power. There is an inherent bias-variance trade-off in 
the choice of E. In most cases as [ grows smaller, the bias of +o(<) grows larger, 
but the variance becomes smaller. Therefore, < can be chosen to try to balance this 
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trade-off. A general algorithm for the automatic calculation of E is given in Storey 
and Tibshirani (2003a). 

Under the assumption that the P-values are independent and identically distributed 
under the null hypotheses, Storey et al. (2004) showed that 

(5.34) 

Storey et al. (2004) showed that FTRc(7) can be used to provide a step-up rule that 
controls strongly the FDR. They also showed that this rule has a useful interpretation in 
the context of the BH procedure. Under the assumption of independent and uniformly 
distributed null P-values, the BH procedure controls the FDR at exactly level 7ro([)a. 

Thus, if N is replaced by 7ro(<)N in the BH procedure, then the FDR is controlled 
exactly at level a;  see also Benjamini and Yekutieli (2001). The reader is referred 
to Storey (2002), Storey (2003), and Storey et al. (2004) for a more detailed and 
mathematical account of these results. 

5.6.4 Selecting Genes via the q-Value 

Rather than fixing the threshold a on FDR and estimating k in (5.11) (that is, esti- 
mating the critical region), Storey (2002) suggested fixing the critical region I?. We 
can list the genes in increasing order of their P-values pJ . If a threshold a is chosen, 
then we can call all genes with p ,  5 a significant. The q-value of a particular gene 
j is the expected proportion of false positives incurred when calling that gene signif- 
icant. Therefore calculating the q-values and then thresholding them at q-value level 
a produces a set of significant genes so that a proportion a is expected to be false. 

As explained in Storey and Tibshirani (2003a), there are two results concerning 
the accuracy of the estimated q-values that hold for large N under what we call 
“weak dependence” of the P-values. Weak dependence can loosely be described as 
any form of dependence whose effect becomes negligible as the number of genes 
increases to infinity. The first result is that if we call all genes significant with q- 
values less than or equal to a, then for large N the FDR 5 a. The second result 
is that the estimated q-values are simultaneously conservative for the true q-values. 
This means that the estimated q-value of each gene is greater than or equal to its true 
q-value, across all genes at once. Under this result, one can consider each gene’s 
significance simultaneously without worrying about inducing bias. In a sense, the 
second result implies that one can consider all cutoffs simultaneously, which is a much 
stronger generalization of the first result. These conservative properties are desirable 
because one does not want to underestimate the true q-values or the true proportion 
of false positives. The reader is referred to Storey and Tibshirani (2003a) for further 
discussion on these results and on the most likely form of dependence between genes 
in a microarray data set. 



152 SCREENING AND CLUSTERING OF GENES 

5.6.5 Application to Hedenfalk Data 

We report here the results of Storey and Tibshirani (2003a) for one of the data sets that 
they considered to demonstrate their approach to the selection of a list of differentially 
genes on the basis of their q-values. It concerns the study of Hedenfalket al. (2001), 
which consisted of n1 = 7 BRCAl arrays and 712 = 8 BRCA2 arrays, along with 
some arrays from sporadic breast cancer, which Storey and Tibshirani (2003a) did 
not use. One of the goals of this study of Hedenfalk et al. (2001) was to find genes 
that are differentially expressed between BRCA I - and BRCA2-mutation-positive 
tumors by obtaining several microarrays from each cell type. In their analysis they 
computed a modified F-statistic and used it to assign a P-value to each gene. A 
threshold of Q = 0.001 was selected to find 5 1 genes from a total of N = 3,226 that 
show differential gene expression. These authors subsequently used a threshold of 
a = 0.0001 and they concluded that 9-1 1 genes are differentially expressed. 

Storey and Tibshirani (2003a) considered 3,170 genes after eliminating any gene 
that had one or more expression levels exceeding 20, which was several interquartile 
ranges away from the interquartile range of all the data. They calculated the P-values 
for the retained N = 3,170 genes using the t-statistic (5.4) with the associated 
P-values p j  calculated using the permutation-based estimate (5.18) with B = 100 
permutations. These P-values so obtained were plotted in histogram form which 
is repeated here in Figure 5.2. In this figure, the dashed line gives the uniform 
density that would be expected if all the genes were null (not differentially expressed). 
Using the estimate (5.32) with 5 = 0.5, Storey and Tibshirani (2003a) found that at 
least 33% genes of the 3,226 genes are differentially expressed between BRCAl- 
and BRCA2-mutation-positive tumors. This compares with only 9-1 1 genes that 
Hedenfalk et al. (2001) were comfortable in concluding to be differentially expressed, 
using traditional P-value thresholds. Storey and and Tibshirani (2003a) noted that 
thresholding genes with q-values less than or equal to Q = 0.05 yields 160 genes 
significant for differential expression. This means that 8 of the 160 genes called 
significant are expected to be false positives. As stressed by Storey and Tibshirani 
(2003a), the q-value threshold of a = 0.05 is arbitrary, and they do not recommend 
that this value necessarily be used. 

Storey and Tibshirani (2003a) used this data set to demonstrate how one can use 
various plots to calibrate the q-value cutoff point, notwithstanding that a single cutoff 
is not always necessary, as each estimated q-value could simply be reported. We report 
here in Figure 5.3 the plots from Storey and Tibshirani (2003a), displaying (a) a plot 
of the q-values versus their statistics t j ;  (b) a plot of the q-values versus their P-values 
p j ;  (c) a plot of the number of significant genes N, versus each q-value; (d) a plot of 
the expected number of false positives versus the number of genes called significant. 

From Plot (c) in Figure 5.3, it can be seen that for estimated q-values slightly 
greater than 0.02, a sharp increase occurs in the number of significant genes over 
a small increase in the q-value. This allows one to easily see that a slightly larger 
q-value cutoff results in many more significant genes. From Plot (b) in Figure 5.3, 
one can see the expected proportion of false positives for different P-value cutoff 
points. As Storey and Tibshirani (2003a) point out, the last three plots can be used 



RECENT APPROACHES FOR STRONG CONTROL OF THE FDR 153 

N -  

................................. 

0 -  

0.0 0.2 0.4 0.6 0.8 1.0 

Fig. 5.2 A histogram of the 3,70 P-values from the Hedenfalk data set. The dashed line is 
the histogram that would be expected if all genes were null (not differentially expressed). The 
dotted line is at the height of the estimate of the proportion of null P-values. From Storey and 
Tibshirani (2003a). 

concurrently to give the researcher a comprehensive view as to what genes to examine 
further. 

Storey and Tibshirani (2003a) commented on their results for some particular 
genes in this data set. For example, the MSH2 gene (clone 32,790) is the eighth 
most significant gene for differential expression with a q-value of 0.013 and a P- 
value of 5.05 x lo5. This gene is overexpressed in the BRCAl-mutation-positive 
tumors, indicating increased levels of DNA repair. This P-value for the MSH2 genes 
means that the probability a null (nondifferentially expressed) gene would be as or 
more extreme than MSH2 is 5.05 x lo5. The estimated q-value for this gene is 
0.013, meaning that 0.013 of the genes that are as or more extreme than MSH2 are 
false positives. As cautioned by Storey and Tibshirani (2003a) the q-value is not the 
probability that a gene is a false positive just as the P-value is also not the probability 
that a gene is a false positive. For example, the aforementioned value of 0.013 for the 
q-value for the gene MSH2 does not imply that it is a false positive with probability 
0.0 13. Rather, 0.013 is the expected proportion of false positives incurred if we call 
MSH2 significant. Because the q-value measure includes genes that are possibly 
much more significant than MSH2, the probability that MSH2 is itself a false positive 
may be substantially higher. 

As Storey and Tibshirani (2003a) point out, when assigning significance to multiple 
test statistics, it is necessary to account for the fact that decisions are made for N 
features simultaneously. The q-value measure of significance accomplishes this by 
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Fig. 5.3 Results for the Hedenfalk data set. (a) The q-values of the genes versus their 
respective observed test statistics t, .  (b) The q-values versus their respective P-values p,. 
(c) The number of genes occurring on the list up through each q-value versus their respective 
q-value. (d) The expected number of false positive genes versus the total number of significant 
genes given by the q-values. From Storey and Tibshirani (2003a). 

conditioning, based on the fact that every gene with a test statistic as or more extreme 
will also be called significant. As they comment, the probability that a gene is a 
false positive does not do this. But ideally one would like to have an estimate of the 
probability that a significant gene such as the aforementioned MSH2 is actually a 
false positive. We will see that with a mixture model approach to be presented in the 
next three sections, we are indeed able to provide such an estimate. 

5.7 TWO-COMPONENT MIXTURE MODEL FRAMEWORK 

5.7.1 Definition of Model 

We can approach the problem of finding genes that are differentially expressed using 
a prediction rule approach based on a two-component mixture model as formulated 
in Lee et al. (2000) and Efron et al. (2001). We let G denote the population of 
genes under consideration. It can be decomposed into Go and GI, where Go is the 
population of genes that are not differentially expressed, and GI is the complement 
of Go; that is, GI contains the genes that are differentially expressed. 

We let the random variable .ZL, be defined to be one or zero according as the j t h  
gene belongs to G, or not (i = 0 , l ;  j = 1, . . . , N ) .  In Section 5.2, we defined 
HI to be zero or one according as to whether the null hypothesis of no differential 
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expression does or does not hold for the jth gene. Thus Zlj is zero or one according 
as to whether Hj is zero or one. 

The prior probability that the jth gene belongs to Go is assumed to be no for all j .  
That is, 

and n1 = pr{Hj = l}. Assuming that the test statistics Tj all have the same 
distribution in Gi, we let f i ( t j )  denote the density of Tj in Gi (i = 1 ,2 ) .  The 
unconditional density f ( t j )  of TI is given by the two-component mixture model 

T O  = pr{Hj = 0}, (5.35) 

f ( t j )  = T o  fO(tj) + 7rl f l ( t j ) .  (5.36) 

Thus the posterior probability that the jth gene is not differentially expressed (that 

(5.37) 

Insofar as the fitted mixture model provides a good fit and dependence among some 
of the genes can be ignored, the estimates of the gene-specific posterior probabilities 
TO ( t j )  form the basis of optimal statistical inference about differential expression 
(Newton et al., 2004). 

is, belongs to Go) is given by 

~ ~ ( t j )  = rofo(tj)/f(tj) ( j  = 1, . . . >  N ) .  

5.7.2 Bayes Rule 

Let eol and el0 denote the two errors when a rule is used to assign a gene to either Go 
or GI, where eZ3 is the probability that a gene from G, is assigned to G, (i, j = 0 , l ) .  
That is, eol is the probability of a false positive and el0 is the probability of a false 
negative. Then from Section 6.4, the risk is given by 

Risk = (1 - c)nOeo1 + cn1e10, (5.38) 

where (1 - c) is the cost of a false positive. As the risk depends only on the ratio of the 
costs of misallocation, they have been scaled to add to one without loss of generality. 

The Bayes rule, which is the rule that minimizes the risk (5.38), assigns a gene to 
GI if 

otherwise, the j th gene is assigned to Go. In the case of equal costs of misallocation 
(c = 0.5), the cutoff point for the posterior probability 7 0 ( t 3 )  in (5.39) reduces to 0.5. 

- r O ( t j )  5 c; (5.39) 

5.7.3 Estimated FDR 

In practice, we do not know the prior probability T O  nor the densities f o ( t j )  and 
f ( t j ) ,  which will have to be estimated. If ?o, f o ( t j ) ,  and fl( t j)  denote estimates 
of TO, fa ( t j ) ,  and fi ( t j ) ,  respectively, the gene-specific summaries of differential 
expression can be expressed in terms of the estimated posterior probabilities ?o ( t j ) ,  

where 
(5.40) F0iot.j) = + O f O ( t j ) / f ( t j )  ( j  = 1, ’ .  ’ > N )  
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is the estimated posterior probability that the j t h  gene is not differentially expressed. 
An optimal ranking of the genes can therefore be obtained by ranking the genes 
according to the ?o( t3)  ranked from smallest to largest. A short list of genes can be 
obtained by including all genes with ?o(t,) less than some threshold c,, or by taking 
the top X, genes in the ranked list. 

Suppose that we select all genes with 

?o(t,) I co.  (5.41) 

Then an estimate of the FDR rate is given by 

N 

(5.42) 
3=1 

where 
N 

NT = c 4 O , c , J ( ~ o ( ~ J )  (5.43) 
,=1 

is the number of the selected genes in the list. 
Thus we can find a data-dependent c, 2 1 as large as possible such that 

FTR 5 a. (5.44) 

This assumes that there will be some genes with ?o(t,) 5 a, which will be true in the 
typical situation in practice. This bound is approximate due to the use of estimates in 
forming the posterior probabilities of nondifferential expression and so it depends on 
the fit of the densities f 0 ( t J )  and f ( t 3 ) .  We shall discuss various methods that have 
been used to fit these densities in Sections 5.8 and 5.9. 

5.7.4 Bayes Risk in terms of Estimated FDR and FNR 

The Bayes prediction rule minimizes the risk of an allocation defined by (5.38). We 
can estimate the error of a false positive eo1 and the error of a false negative el() by 

N N 

and 
N N 

(5.45) 

j=1 3=1 

respectively, where &I, is taken to be zero or one according as to whether To@,) is 
less than or greater than c in (5.39), and 213 = 1 - &. Also, we can estimate the 
prior probability TO as 

N 

(5.47) 
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On substituting these estimates (5.45) to (5.47) into the right-hand side of (5.38), the 
estimated risk is 

j=1 j=1 

where 

and 

N N 

j=1 .I = 1 

N N 

(5.49) 

(5.50) 
j=1 j=1 

are estimates of the FDR and FNR, respectively. Thus from (5.48), it can be seen 
that if we choose to select a gene as being differentially expressed if its estimated 
posterior probability ?o( t j )  is less than c, then we are approximately minimizing the 
risk, which can be estimated as 

h 

Risk = (1 - c)GjFFR + c( 1 - Gj)FTR,> (5.51) 

where 

(5.52) 

is an estimate of the probability that a gene is selected; that is, belongs to the critical 
region r of the rule. 

Thus unlike the tests or rules that are designed to control just the FDR, the Bayes 
rule approach in its selection of the genes can be viewed as controlling a linear 
combination of the FDR and FNR. The balance between the FDR and the FNR is 
controlled by the threshold c. An early reference on the Bayes rule in the context of 
hypothesis testing is Lehmann (1959). 

Recently, Storey et al. (2002) established formally a result similar to (5.51) in 
which the weight 8 was replaced by the probability that the test statistic Tj falls in 
the critical region r and the estimated FDR and FNR are replaced by the pFDR and 
pFNR. To see this, we have from the results (5.15) and (5.16) for the pFDR and pFNR, 
respectively, 

pFDR = pr{Hj = OlTj E r} 
= 7r"eOl/w (5.53) 
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and 

(5.54) 

where 
w = pr{Tj t r} 

is the probability that a gene is selected (that is, Tj falls in the critical region r). On 
using (5.53) and (5.54) in (5.38), we have that 

Risk = (1 - c)w pFDR + c(1 - w )  pFNR. (5 .55)  

5.8 NONPARAMETRIC EMPIRICAL BAYES APPROACH 

5.8.1 Method of Efron et al. (2001) 

To apply the nonparametric empirical Bayes approach of Efron et al. (2001) in the 
present context, the null density fo(t,) and the ratio f o ( t J ) / f ( t 3 )  are estimated using 

the empirical distributions for the t$) and the t ,  . More specifically, Efron et al. (2001) 
used logistic regression to estimate the ratio f o ( t ) / f ( t ) .  The N values of t ,  and the 

N B  null values tb’J) are plotted on a line, with values oft ,  considered as “successes” 

and values of tg’ as “failures”. The probability of a success is given in terms of the 
ratio f o ( t ) / f ( t )  as 

1/P + B{fo(t)/f(t))l. 

The probability TO,  which is not estimable in a nonparametric setting, is estimated 
using the following inequality 

(5.56) 

or more stable upper bounds can be constructed by integrating over an interval A near 
t = 0, that is, 

(5.57) 

The upper bound in (5.57) is directly estimated by the proportion of t j  in A divided 
by the proportion of t o j  in A. 

5.8.2 Mixture Model Method (MMM) 

Following the idea in Efron et al. (2001) and Tusher et al. (2001) of creating repli- 
cations of a null version of the test statistic, Pan (2002, 2003) and Zhao and Pan 
(2003) considered a nonparametric approach, which they called the mixture model 
method (MMM). They advocated modeling the densities f o ( t 3 )  and f ( t , )  in the 
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two-component mixture model (5.36) by normal mixtures. With this mixture model 
method approach, the likelihood ratio test statistic 

W,) = fo(W/f(W 
can be used to test the null hypothesis that the j th gene is not differentially expressed. 
The critical region F’ thus has the form 

r j  = { t j  : X ( t j )  < k } ,  

where for a test of size a, the constant k can be obtained by solving the equation 

Q: = J;, fo( t )  d t ,  (5.58) 

using the bisection method. Pan (2002) suggests a simplification by working with 
the critical region l?j = { t j  : l t j l  > k * }  and solving (5.58). An advantage of this 
mixture method approach is that it is amenable to power calculations (Pan, Lin, and 
Le et al., 2002) for determining how many replicates are needed. 

Following the spirit of SAM (Tusher et al., 2001), we can estimate the FDR as 

(5.59) 
b= 1 

where 
N,  = #{j : It,\ > k * } .  (5.60) 

Guo et al. (2003) have extended the MMM and SAM methods to their application 
to longitudinal gene expression data from time-course microarray experiments, where 
each class corresponds to a time point. They developed a test statistic that properly 
accounts for the within-subject correlation in longitudinal microarray data. 

5.8.3 Nonparametric Bayesian Approach 

Do et al. (2003) proposed an extension to the nonparametric approach of Efron et al. 
(2001) by adopting a fully model-based approach. While Efron’s method proceeds by 
plugging in point estimates, the fully model-based approach constructs a probability 
model for the unknown mixture, allowing investigators to deduce the desired infer- 
ence about differential expression as posterior inference in that probability model. 
Dirichlet process mixture models are chosen to represent the probability model for 
the unknown distributions. Markov chain Monte Car10 (MCMC) posterior simu- 
lation was developed to generate samples from the relevant posterior and posterior 
predictive distributions. 

5.8.4 Application of Empirical Bayes Methods to Alon Data 

We return to the colon cancer data set of Alon et al. (1 999) as analyzed in Section 5.5.4 
to demonstrate how the nonparametric empirical Bayes method of Efron’s can be ap- 
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plied to this data set to identify a subset of genes that differentially express between 
the colon tumors and the colon normal tissues. Concerning the use of the modified 
t-statistic (5.6), Figure 5.4 (top panel) shows that the best choice for no is zero. The 
lower panel of Figure 5.4 gives the empirical Bayes estimate of the posterior proba- 
bility of differential expression, ( t ) ,  which is seen to increase with ltl. The positive 
end of the f-axis corresponds to genes that overexpress for tumor samples, while neg- 
ative values o f t  indicate underexpression when compared to normal samples. Out of 
the 2,000 genes 227 genes had .il ( t )  exceeding .90, more on the negative than posi- 
tive end of the t scales. The estimate of T O ,  which is derived as a bound on possible 
values for TO,  is given by i?" = 0.39 for this data set. In contrast, Figure 5.5 shows 
the marginal posterior distribution of T O .  The bound 7io is far out in the tail of the 
posterior distribution, indicating that i i o  might lead to very conservative estimates for 
T O  and 7r1 (by underestimating TI ) .  Figure 5.6 summarizes the posterior distributions 
for f o ( t ) ,  f l  ( t ) ,  and f ( t )  obtained from applying the nonparametric Bayesian mixture 
model approach of Do et a]. (2003). 

5.9 PARAMETRIC MIXTURE MODELS FOR DIFFERENTIAL GENE 
EXPRESSION 

In the previous sections, we have considered approaches to the detection of genes that 
are differentially expressed via the two-component mixture model (5.36). Nonpara- 
metric methods have been described for estimating the distribution of the statistic 
T, given its membership of the null component of the mixture corresponding to 
nondifferential expression and to its unconditional distribution represented by the 
two-component mixture model (5.36). In this section, we consider methods that use 
parametric mixture models to estimate these distributions. 

5.9.1 Parametric Empirical Bayes Methods 

Newton (200 l), Kendziorski et al. (2003), Newton and Kendziorski (2003), and New- 
ton et al. (2004) have adopted parametric empirical Bayes approaches to the problem 
of the detection of differential expression. They have used hierarchical mixture mod- 
els to form estimates of the density f(y,,), where 

and 'y,jk denotes the expression level for the kth replicate on the j th  gene in the ith 
class ( k  = 1, . . . sri,; j = I, . . . , N ;  i = 1, . . . , 9). These models are hierarchical 
in the sense that at the lower level, the component distribution in the mixture model 
describes the conditional variation in the expression profiles given their expected 
means while, at the upper level, there is a distribution that describes the variation 
in the expected means. As explained by Newton et al. (2004), such hierarchical 
modeling enables the sharing of information among the genes; genes become linked by 
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Fig. 5.4 Plots of Prob{Event I t} where ‘Event’ refers to a gene being differentially expressed; 
that is, Prob{Event I t} is denoting the (estimated) posterior probability il ( t )  of differential 
expression given the value t of the test statistic. Upper panel: Choice of a() in the modified t- 
statistic. Logit of 713 ( t )  was estimated with TO = 1; “inf” is limit as a0 i oo. The horizontal 
line corresponds to the threshold lower bound of 0.9 for nJ ( t ) ;  a0 = 0 is the best choice in 
terms of maximizing A, ( t ) .  Lower panel: Empirical Bayes-based curve depicting Ti, ( t ) .  See 
the insert for a color representation. 

virtue of having expected expression values drawn from a common, albeit unknown, 
probability distribution. 

For multiple classes, Kendziorski et al. (2003) considered mixtures of gamma 
and log normal component distributions with an inverse gamma distribution for the 



162 SCREENING AND CLUSTERING OF GENES 

Histogram of n 

1 c 
I I I I I I 

0.16 0.18 0.20 0.22 0.24 0.26 

i i o  

Fig. 5.5 Analysis of Alon data set. The histogram depicts the marginal posterior distribution 
of from the nonparametric Bayesian model. Compare with the point estimate -ire = 0.39 
under the nonparametric empirical Bayes method. 

component means. In the case of g = 2 classes, Newton et al. (2004) modeled the joint 
distribution of Y l j k  and Y2j,+ by a mixture of h = 3 components with restrictions on 
the means of Yljk and Y 2 j k  in the two components corresponding to the cases of under- 
and over-expression under the alternative hypothesis. These means were set equal to 
each other in the other component corresponding to the null hypothesis. Newton et 
al. (2004) also considered a nonparametric approach by postulating a nonparametric 
prior distribution for the component means. 

As noted in Newton et al. (2004), their approach which is based on models for the 
actual gene expression levels should be more sensitive than those that consider models 
for a test statistic Tj (or its P-valuepj) that has been formed for the test of no differen- 
tial expression between the classes for the j t h  gene. This is because one-dimensional 
gene-specific summary statistics are usually isolated from each other in the sense that 
evaluation of the test statistic for one gene does not use data from any other gene. By 
contrast, information sharing can be beneficial because it can counteract the effects of 
low sample size. However, the approach using one-dimensional gene-specific sum- 
mary statistics is more straightforward to carry out, as it involves modeling only a 
one-dimensional random variable. We henceforth focus on approaches that are based 
on mixture models for the test statistics or their P-values. 
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Fig- 5.6 Posterior distributions for the unknown densities (Alon data set). The first three 
panels summarize the posterior information on f o .  f i  and f ,  respectively, by showing these 
densities for 10 draws from the posterior distribution of their parameters. For easier comparison 
the fourth panel combines the plots from the first three panels into one figure. See the insert 
for a color representation. 
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5.9.2 Finding Clusters of Differentially Expressed Genes 

For a continuous test statistic, the normal mixture model will provide an arbitrarily 
accurate estimate of its density under both the null and alternative hypotheses. Thus 
we can model the density of the test statistic Tj for the j t h  gene by a finite normal 
mixture model, 

h 

f ( t j ;  9) = C.ir,r;h(tj; pi ,  8 , 2 1 3  

where 9 is the parameter vector containing the mixing proportions 7rTT2, the means pi, 
and the variances 0: ( a  = 1, . . . , h,). 

Ignoring the correlations between the test statistics Tj, we can fit this mixture 
model (5.61) of h univariate normal components to the observed values t j  for the 
T', ( j  = 1; . . . N ) .  The genes can then be put into h clusters on the basis of the 
fitted posterior probabilities of component membership. 

The clusters corresponding to the components in the fitted normal mixture model 
with means close to zero can be considered as containing those genes that are not 
differentially expressed. 

This was the approach adopted by Pan, Lin and Le (2002a) in the case of g = 2 
classes. We shall give an example from their paper in the next section. A Bayesian 
approach to this problem has been considered by Broet et al. (2002). 

In the case of more than two classes, we can proceed above with the 7'-statistic 
(5.5) replaced by, say, an F-statistic Fj 

(5.61) 
i=l 

where the between-class sum of squares is (B)73 obtained by a one-way analysis 
of variance of the expression values of the N genes over the M tissues classified 
into g classes. In (5.62), B and S denote the between- and within-class sums of 
squares and products matrices (on their degrees of freedom), as given by (3.51) 
and (3.55), respectively. Their diagonal elements and (S)3J give the relevant 
sums of squares for the j t h  gene. Under the null hypothesis that the j th  gene is not 
differentially expressed (that is, given that the j t h  gene belongs to population Go), 
FJ has a F-distribution with (g - 1) and ( M  - g) degrees of freedom. 

In a recent paper, Broet et al. (2004) suggested transforming this F3 statistic as 

(5.63) 

The distribution of the transformed statistic TJ is approximately a standard normal 
under the null hypothesis that the j t h  gene is not differentially expressed (that is, given 
its membership of population Go). As noted in Broet et al. (2004), it is remarkably 
accurate for ( M  ~ g) 2 10(Johnson and Kotz, 1970). 
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In their normal mixture model for Tj, Broet et al. (2004) specified the mean of 
one component to be zero. This component corresponds to the group of genes that 
are not differentially expressed. The order restriction, 

is placed on the means of the other h components in the mixture model corresponding 
to the genes that are differentially expressed. The assumption that the means of the 
h nonnull components should be positive is based on the fact that Fj has a central 
F-distribution under the null hypothesis and a noncentral F-distribution under the 
alternative hypothesis. 

In the mixture model of Broet et al. (2004), just one component (the null com- 
ponent) has mean specified to be zero. This assumes that all genes that are not 
differentially expressed have the same variance. The case where this is not so can be 
handled by allowing more than one component in the mixture model to have mean 
zero. The specification of a component (or components) with mean zero in the mixture 
model avoids the post-fitting decision that has to be made when the mixture model is 
fitted without any restrictions on the component means. This decision concerns how 
small in magnitude the fitted component means should be before they are interpreted 
as corresponding to genes that are not differentially expressed. In some instances as 
in the example in the next section, this interpretation is relatively straightforward for 
the biologist. 

5.9.3 Example: Fitting Normal Mixtures to t-Statistic Values 

We consider an example from Pan et al. (2002a), who analyzed data from a study car- 
ried out at the University of Minnesota. In the original study, they used radioactively 
labeled cDNA microarrays to measure changes in gene expression in response to pneu- 
mococcal middle-ear infection. They extracted mRNA from the middle-ear mucosa 
of rats infected with pneumococcus, and also from a non-infected control group. They 
measured the expression levels for 1,176 genes in each of six microarray experiments; 
two arrays were run with pooled control mRNA and four with mRNA pooled from 
infected rats. After logging the data, a measure of possible differential expression t ,  
was calculated for each gene j ,  using the t-statistic (5.5) ( j  = 1, . . . , 1,176). 

Pan et al. (2002a) fitted a mixture of 11 normal components to the 1,176 values oft,, 
using the EMMIX program (McLachlan et al., 1999). They investigated the number 
of components h by using several criteria, including AIC, BIC, and the resampling 
approach of McLachlan (1987), as described in Section 3.16. Their results are given 
in Table 5.3, where it can be seen that the null hypothesis of h = 3 components would 
be retained over the alternative hypothesis of h = 4 components according to both 
BIC and the resampling approach (the P-value for the latter is 0.18). The fitted model 
is given in Table 5.4, where it can be seen that more than 95% of the genes fall into 
two clusters with either no or little change in their expression levels. On the other 
hand, 30 genes in the first cluster seem to have a change in expression levels equal to 
6.74 on average. To demonstrate this, Pan et al. (2002a) plotted the profiles of gene 
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Table 5.3 Clustering Results for Various Numbers of Components h 

h BIC log L P-value 

5.877.26 
5,282.85 
5,248.80 
5,263.06 
5,280.94 

-2; 931.56 
-2,623.75 
-2,596.12 
-2,592.64 
-2,590.98 

- 

0.01 
0.18 

Source: Adapted from Pan et al. (2002a). 

Table 5.4 Fitted Normal Mixture Model for h = 3 Components 

n 

1 " i  Pi 0; 

1 0.042 6.74 77.07 
2 0.510 0.88 5.56 
3 0.448 -0.31 1.15 

Source; From Pan et al. (2002a). 

expression levels across all six experiments for each cluster in the case of h = 4. 
These plots are displayed here in Figure 5.7. 

5.10 USE OF THE P-VALUE AS A SUMMARY STATISTIC 

An alternative summary statistic to (5 .5)  is to use the value p j ,  where p j  is the P- 
value associated with t ,  in the test of the null hypothesis that there is no difference 
in expression between the two classes. This is the approach adopted by Allison et al. 
(2002). The distribution of p j  has support on the unit interval, and so its distribution 
can be represented by a mixture of beta distributions of the first kind (Diaconis and 
Ylvisaker, 1985). Under the null hypothesis of no differential expression for the 
j t h  gene, p j  will have a uniform distribution on the unit interval; that is the p1,1 
distribution. The pal ,cyz density is given by 

Allison et al. (2002) discusses the fitting of mixtures of pol ,a2 components to 
the values of pJ for the N genes, including the caution that needs to be exercised in 
interpreting the existence of modes in the fitted mixture density as a consequence of 
the correlation between some of the pJ values. 
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f ig.  5.7 Gene expression profiles of the four clusters. From Pan et al. (2002a). 
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5.10.1 Beta Mixture for Distribution of P-Values 

Instead of working directly with the test statistics for the test of no difference in the 
expression of the genes over the tissues, we can work in terms of the associated P -  
values p ,  of the test, as discussed above. With this approach of Allison et al. (2002), 
the distribution of the P-value is modeled by the h-component mixture model 

11 

f (&)  = x X i f ( P j ;  ~ i l , w 2 ) ,  (5.66) 

where a11 = 012 = 1. If it is concluded that an additional component beyond the first 
component (the uniform) is needed in (5.66) to model the P-values p j  ( j  = 1. 
adequately, then the global null hypothesis of no change in the mean expression level 
for all the genes can be rejected. Allison et al. (2002) considered carrying out tests 
on the number of components g in (5.66) using the resampling approach as described 
above. They used the nonparametric bootstrap (that is, sampling with replacement 
from the p j  values) to provide standard errors of the fitted parameters. An estimate 
of the number of genes from the total of N for which there is a true difference in gene 
expression is given by N(1 - % I ) .  They discuss situations where this estimate is not 
applicable due to the estimate of TI being not interpretable. They also discuss potential 
complications with their approach in small samples. The effect of the assumption 
of independently distributed expression levels for the genes was investigated by a 
simulation experiment. 

In this experiment, M vectors yJ of dimension N were generated randomly from 
a multivariate normal distribution with covariance matrix specified to be 

(5.67) 

i= 1 

22 = 2 B  @ Ifj 

and 

Here 1500 denotes the unit vector of length 500 and I,, is the m x m identity matrix. 
For the simulations the common variance was g2 = 4, while the correlation p 

varied over three values of 0 (independence), 0.4 (moderate dependence), and 0.8 
(strong dependence). They noted that this covariance structure seems plausible since 
groups of genes are likely to be coexpressed, but it is unlikely that a particular gene 
is correlated with all other genes. For 20% of the genes (600 randomly selected), a 
true mean difference in expression between the two classes of mice was incorporated 
by adding d to the gene measurements yj from ,j = ;A[ + 1 through to M. 

Allison et al. (2002) observed in their simulations that a second beta component 
was only significant in the mixture model under a certain type of gene expression 
data. This occurred in the case of high correlation ( p  = 0.9), and when d > 0. 
This high dependency created a bimodal distribution of P-values. The first beta 
distribution modeled the peak near zero, and the second component beta distribution 
modeled the second peak that occurred, typically, between 0.5 and 1 .  This second 
peak corresponded to 80% of the genes that were generated with no difference in 
mean expression between the two classes. Hence Allison et al. (2002) cautioned that 
care needs to be exercised in interpreting the mixture model in such situations. 

B = 15001~00 + (1 - p)1500. 
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Fig. 5.8 Histogram of 6,347 P-values with beta mixture models for 2 and 3 components. 
From Allison et al. (2002). 

5.10.2 Example: Fitting Beta Mixtures to &'-Values 

Allison et al. (2002) gave an illustrative example in which they analyzed data de- 
scribed by Lee et al. (2000). In the original study, Lee et al. (2000) used Affymetrix 
microarrays to measure changes in gene expression related to the aging brain in mice. 
In particular, they were interested in the effects of caloric restriction, which is known 
to slow the aging process in mammals. To this end they considered two groups of 
mice; one group of control mice on a normal diet, while the second group were fed a 
calorie restricted diet (CR mice). There were three mice in each group, and the ex- 
pression levels of 6,347 genes were measured from mRNA extracted from the brain 
tissue of each mouse. For each gene j ,  the P-valuepl, was calculated for the &statistic 
as defined by (5.4). In Figure 5.8, we display the histogram of the 6,347 P-values so 
obtained, along with the fitted beta mixture models for h = 2 and h = 3 components. 
It can be seen that there is little difference between the fitted densities for h = 2 and 
h = 3. These two mixture distributions model the peak near zero very well. 

The P-value for the test of h = 1 (uniform) component was estimated by re- 
sampling to be less than 0.005. For the h = 2 model, the fitted value of T I  was 
0.712, while the parameters in the second beta component were 6 2 1  = 0.775 and 
&22 = 3.682. Given these estimates, the number of genes that have a real difference 
can be estimated as 6347(1 - 0.712) = 1828. 

In Figure 5.9, we give the plot that Allison et al. (2002) obtained for the posterior 
probability +2 ( p j )  that the gene j belongs to the second component of the beta mixture 
model given the P-value p j  ( j  = 1, . . . , 6347). This plot shows that as long as the 
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Fig, 5.9 Posterior probability given the P-value. From Allison et al. (2002). 

p I  is less than about 0.35, there is more than a 50% chance that the gene is a gene 
for which there is a real difference in expression. Thus, as pointed out by Allison et 
al. (2002), if one were to use the unconventionally large LY level of 0.35 as indicative 
of genes that are differentially expressed, then there is at least 50% chance of being 
correct. 

Allison et al. (2002) also make some interesting observations about three specific 
genes, which we shall repeat here. Firstly, the gene identified by accession number 
LO645 1 was more highly expressed among calorie-restricted animals and had a P- 
value of 0.06 and a posterior probability ;j2(pJ) of 0.68. Thus, although this gene 
would not be significant at the conventional 5% a level, there is is still a 68% chance 
that it is a gene with a real difference in expression induced by caloric restriction 
(CR). This gene encodes a protein that is homologous to agouti signaling protein. As 
this gene product is believed to be involved in body weight and appetite regulation, 
it is therefore quite plausible that it is affected by CR. Secondly, the gene identified 
by accession number M74180 had, by Affymetrix’s definition, a “fold change” of 2.7 
(increased expression among CR animals) which, while large, was not the largest of 
those reported by Lee et al. (2000). Nevertheless, this gene had the highest value 
(0.95) of the posterior probability ?z ( (pJ ) .  This gene encodes a protein that is ho- 
mologous to mouse hepatocyte growth factor-like or macrophage stimulating protein 
(MSP). Thirdly, they consider the gene identified by accession number W75705 which 
encodes a protein that is over 80% homologous to mouse cyclophilin. This gene had 
II fold change of 3.3, which many investigators would consider clearly significant. 
Nevertheless, its estimated posterior probability .;Z ( p j  ) was only 0.44, indicating that 
i t  has more chance of not being differentially expressed as a function of CR. The 
reason why the estimated posterior probabilities do not ‘agree’ (that is, have a one- 
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to-one correspondence) with the fold-change metric is that the latter does not take 
the within-class variability in gene expression into account. As Allison et al. (2002) 
point out, the fold-change is a measure of magnitude effect (and not necessarily an 
optimal one), not a direct measure of strength of evidence for an effect. Their work 
illustrates how the mixture model can guide the interpretation of the overall suite of 
class gene expression differences as well as differences in individual gene expression 
levels. 

5.1 1 CLUSTERING OF GENES 

In the previous work in this chapter, we have been concerned with the detection of 
genes that are differentially expressed. Having drawn up a list of genes that are 
considered to be differentially expressed, there is the problem of clustering the genes 
into groups in which they have similar expression profiles. Although genes might be 
assigned to the same component in the mixture model (5.66) fitted to the test statistics 
T3 for the N genes, it does not follow that genes with similar values will have similar 
expression profiles except in simple cases like g = 2 classes in which the genes are 
assumed to have the same variances. But clearly in the case of g > 2 classes, genes 
with similar values of the F3 statistic given by (5.62) need not have similar expression 
profiles. Thus there is a need to undertake the clustering of the genes that have been 
identified as being differentially expressed among the classes of tissues. 

In the remainder of this chapter, we consider the clustering of the genes on the 
basis of the tissues, that is, on the basis of the expression-profile vector. 

In Chapter 4, we were concerned with the clustering of the tissue samples on the 
basis of the genes within each sample (the expression-signature vector). Here the 
problem is to cluster the genes on the basis of the tissues, that is, on the basis of the 
expression-profile vector. 

In the EMMIX-GENE procedure considered in Chapter 4 for the clustering of the 
tissue samples, there is a step in which the genes are clustered into a number of groups. 
This clustering of the genes in terms of Euclidean distance is carried out solely as 
a means of data reduction. Each group of genes is represented by a single vector 
(a metagene) for the subsequent clustering of the tissue samples. Also, as exhibited 
in some of the examples in which EMMIX-GENE was applied, the use of different 
clusters of genes can lead to different clusterings of the tissues. Thus the clustering 
of genes has an important role to play in the clustering of the tissues. We will also see 
in Chapter 7 on supervised classification of the tissue samples that the clustering of 
genes can also be usefully employed to provide summary statistics on which to form 
parametric or nonparametric discriminant rules (classifiers) for the class prediction 
of a new tissue sample. 

In addition to the above need for a clustering of the genes into a smaller number of 
sets, the clustering of the genes can be of interest in its own right; that is, independent 
of any subsequent classification of the tissue samples. Examples where this is the 
case concern the clustering of the genes in order to discover genes that belong to the 
same molecular pathway (Segal et al., 2003a). Another aim of clustering the genes 
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might be to find clusters of genes that are potentially coregulated in order to search 
for common motifs in upstream regions of the genes in each cluster (Segal et al., 
2003b). In the work of Eisen et al. (1998), cluster analysis was used to identify genes 
that showed similar expression patterns over a wide range of experimental conditions 
in yeast. Such genes are typically involved in related functions and are frequently 
coregulated (as demonstrated by other evidence, such as shared promoter sequences 
and experimental verification). 

In considering the clustering of the tissue samples, the rows of the microarray 
matrix A represented by (4.1) were standardized. This can be done without affecting 
the subsequent clustering of the tissue samples if a location and scale invariant method 
of clustering is used, such as a normal mixture model-based method. In clustering the 
genes, we shall also assume that the rows have been normalized. Although a normal 
mixture model-based clustering of the genes is not invariant under row normalization, 
it is usually camed out, as researchers are interested only in the relative behavior 
of the genes across the tissues, rather than in the absolute expression values of the 
genes. This same standardization was carried out in Section 5.3 prior to implementing 
procedures for the detection of differentially expressed genes. With this column and 
row standardization, we are effectively working with the residuals after the fitting of 
a two-way ANOVA model to the expression levels in A; see, for example, Ghosh and 
Chinnaiyan (2002). Also, in the sequel we consider the clustering of the genes on the 
basis of the M tissue samples without consideration of their class memberships. This 
is because we are primarily concerned with the pattern of the genes over the individual 
M tissue samples rather than their collective behavior as given by the patterns in the 
class means. Of course if we were interested in the latter, we could cluster the genes 
on the basis of the class means, although this approach would not be allowing for 
differences in the variability of the tissues within each class. 

The clustering of the genes on the basis of their expression-profile vectors differs 
from the standard clustering problem in that the observations to be clustered (the 
genes) are not all independently distributed. There is interest in finding 

(1) Groups of genes that are significantly correlated with each other. 

(2) Groups of genes that share similar expressions across the tissues. 

Concerning (1) and (2) ,  there is much interest in genes whose expression levels 
tend to vary together (that is, genes that are coexpressed), because such genes might 
be part of the same pathway or the same causal mechanism. Clusters of genes that 
have similar expression levels across biological samples can be investigated for the 
presence of shared regulatory motifs among the genes (Tavazoie et al., 1999). This 
may lead to the identification of genes that are not only coexpressed but are also under 
similar regulatory control. Joint analysis of transcript level and sequence data should 
lead to greater biological insight into molecular characterization of tumors (Dudoit 
and Fridlyand, 2002). 

The aims ( I )  and (2) above are closely related in that the Euclidean distance 
between two (normalized) gene profiles is proportional to one minus the correlation 
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between them. Thus two genes with very similar profiles across the tissues will be 
highly (positively) correlated. 

In the final sections of this chapter, we describe the gene-shaving method proposed 
by Hastie et al. (2000). Their method has the specific goal of identifying small, 
homogeneous subsets of genes that have maximal variance across the tissues. 

5.12 FINDING CORRELATED GENES 

As mentioned above, researchers are interested in finding highly correlated genes. 
But there is also an interest in finding highly correlated genes to assist in the data 
analysis of the gene expressions; cluster analysis methods can be applied as in the case 
of independently distributed observations, but the usual approaches for assessing the 
number of clusters in the data may be affected by the fact that some of the genes are 
highly correlated. One way to avoid this problem would be to find highly correlated 
genes and remove some of them from the data set before undertaking the cluster 
analysis. For instance, two highly (positively) correlated genes could be replaced by 
one of them or their mean (Hardin, Rocke, and Woodruff, 2000). 

Jaeger, Sengupta, and Ruzzo (2003) have discussed the problem of handling cor- 
related genes in the context of improved feature selection. In feature selection, if two 
genes are highly correlated, then there is no need to include both of them in the test 
statistic for detecting differential expression between the classes of tissues or, say, in 
the discriminant rule for distinguishing between the classes. To this end, they consider 
some methods that prefilter the genes and then delete those genes that are very similar. 
The genes are ranked in order of importance according to the P-value of some test 
statistic for the detection of differential expression. To find the correlated genes, they 
employ a greedy algorithm whereby genes that have a pairwise correlation below a 
certain threshold are selected and ranked according to some test statistic. The lcth 
ranked gene selected is the gene with the highest P-value among all the genes whose 
correlation with each of the first (lc - 1) genes is below the specified threshold. 

They also consider a method that clusters the genes and then selects one or two 
representative genes from each cluster. This method is in the spirit of the cluster- 
genes step of the EMMIX-GENE procedure of McLachlan et al. (2002), as discussed 
in Section 4.5. With thic EMMIX-GENE step, the genes are clustered on the basis 
of a mixture of normal components with common spherical covariance matrices with 
the aim that genes that are close in Euclidean distance (that is, highly positively 
correlated) are put in the same cluster. 

5.13 CLUSTERING OF GENES VIA FULL EXPRESSION PROFILES 

We now consider the clustering of the genes on the basis of the individual tissues, 
assuming that a decision has been taken as to which genes are to be used in the cluster 
analysis. For instance, some genes may have been eliminated because they were 
highly correlated with others, as discussed in the previous section, or they may have 
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been eliminated because they were judged not to be differentially expressed across 
the tissue classes as discussed in Section 5. I .  

If there is only a small number M of tissue samples, then a mixture of M-variate 
normal components can be fitted directly to the N expression-profile vectors. Other- 
wise, one has to give consideration to fitting mixtures of factor analyzers in a manner 
similar to that of the clustering of the tissue samples considered in the previous chap- 
ter. Alternatively, one may choose to work with the principal components of the 
expression profiles. 

In the case where each tissue sample has been obtained independently (say from hf 
different patients), it may be thought that the component-covariance matrices should 
be taken to be diagonal to reflect the independent sampling of the tissue samples. 
However, the correlations between some of the genes within a tissue sample can result 
in the genes belonging to elliptically shaped clusters, and so nondiagonal component- 
covariance matrices may need to be specified. The latter obviously need to be specified 
in the case where the tissue samples are part of a time-course experiment (Park et al., 
2003). 

Examples of mixture model-based clustering of genes on the basis of the expression 
profiles may be found in Yeung et al. (2001a); see Holmes and Bruno (2000) and 
Barash and Friedman (2001) for some previous work on mixture models. Hardin, 
Rocke, and Woodruff (2000) have considered robust model-based clustering of genes 
in microarray data. 

5.14 CLUSTERING OF GENES VIA PCA OF EXPRESSION PROFILES 

We now consider an example in which the clustering of genes was undertaken on the 
basis of the leading principal components (PCs) of the expression profiles. Muro et al. 
(2003) used adapter-tagged competitive PCR to measure the expression levels of 1,536 
genes in 100 colorectal cancer and 1 1 normal tissues. Although this does not, strictly 
speaking, represent a microarray experiment, it is a high-throughput technique for 
which cluster analysis methods are applicable, and we include it here as a nice example 
of gene clustering. Muro et al. (2003) concluded that the multivariate nature of the 
gene expression vectors could be represented by the first three PCs. They then fitted a 
mixture of h, trivariate normal distributions to the first three PCs. They concluded that 
there were h = 3 clusters of expressed genes. Two clusters contained large numbers 
of genes, one of which correlated well with both the differences between tumor and 
normal tissues and the presence or absence of distant metastasis. The other was found 
to correlate only with the tumorhormal difference. The third cluster contained only a 
small number of genes. Approximately half showed an identical expression pattern, 
and cancer tissues were classified into two groups by their expression levels. The 
high-expression group had a strong correlation with distant metastasis and a poorer 
survival rate than the low-expression group, indicating possible clinical applications 
of these genes. 
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5.15 CLUSTERING OF GENES WITH REPEATED MEASUREMENTS 

In recent times, microarray experiments are being carried out with replication. The 
importance of replication has been demonstrated by Lee et al. (2002). More recently, 
Pavlidis, Li, and Noble (2003) and Novak, Sladek, and Hudson (2003) have examined 
the effect of replication. 

The simplest way to proceed with a cluster analysis of tissues with replication is to 
average the repeated measurements and work with the mean expression for each tissue. 
However, with this approach, the information on the variability between replicates is 
discarded and only the information about the mean expression level utilized. 

With a model-based approach to clustering, the model is able to be adjusted to 
allow for repeated measurements. Work on this problem has been considered by 
Medvedovic and Sivaganesan (2002), Yeung et a]. (2003), and Celeux, Martin, and 
Lavergne (2004). 

5.15.1 A Mixture Model for Technical Replicates 

We now consider the clustering of the genes where there are available technical 
replicates for each tissue; that is, replicates obtained from the same biological source. 
More specifically, we let there be n, measurements for the wth tissue (patient) for 
TJ = 1, . . . , n, where n denotes the number of distinct tissues (patients). The feature 
vector on the jth gene is therefore given by 

T Yj = ( Y l j ,  . ' ' , T T  
Ynj )  , (5.68) 

where 
Y,j = ( Y v l j ,  . ' ' , YVILJ- (. = 1, ' ' ' , n) 

contains the n, replications on the j th gene from the wth tissue. 
It is assumed that conditional on its membership of the hth component of the 

normal mixture model to be fitted, the wth replicate on the j th gene from the wth 
tissue, Yvjw, can be written as 

(5.69) 

Yvgw = pTIZ + b,, + ezIJ ,  (i = 1, . . . . h) (5.70) 

for w = 1, . . . , n,; v = 1, . . . , n; j = 1, . . . , N ,  where p v z  denotes the zth com- 
ponent mean of YvJw and the bo, denote the (unobservable) random effects for the 
biological sources, which are independent of the measurement errors c , , ~ ~ ~ .  Condi- 
tional on their membership of the zth component of the mixture, the random effects 
b,, are taken to be jointly normal with mean zero and variance m i v t .  They are in- 
dependent of the measurement errors eWJw, which are also taken to be jointly normal 
with mean zero; their common variance is &. 

We now illustrate the fitting of a normal mixture model to correlated replicate data. 
We consider the straightforward case where the random effects bvJw are all uncor- 
related and where the measurement errors euJw are also all uncorrelated. The latter 
will not hold in practice for all pairs of genes as not all the genes are independently 
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distributed. Aslo, the former assumption would not hold in the case of a time-course 
study, as Y,jW and Y!!j,,, would be correlated then; see Celeux et al. (2004). 

Under these assumptions, we have that ylj , . . . , yTL3 are independently distributed 
with an hth component-conditional distribution given as 

y ; . j  N N(p7)z ,  E,;) (?I = 1, . . . , n: j = 1: . . . N ) .  (5.71) 

where pu7, is a n,,-dimensional vector with common element p1,i and E7,i is n, x n, 
matrix with 

(5.72) 2 (Ewi)w7,,/ = c& + OR,i (w = w’), 

- - 4hJi  (w # 4. (5.73) 

Note that in the case of a time-course study, Y,,j,(,, and Y,tju, would not be uncorrelated 
as assumed here; see Celeux et al. (2004). 

We let k = ( w T ,  T I ,  . . . , 7r&1)T be the vector of unknown parameters, where 
w = (w:. . . . . w ; ) ~  and where wi is the vector containing the unknown parameters 
p u z ,  o;, , and the oLUi (zq = 1. . . . , n) for i = 1, . . . , 11. 

5.15.2 Application of EM Algorithm 

McLachlan and Krishnan (1997, Section 5.9) have demonstrated the use of the EM 
algorithm to fit a single component linear mixed model. The unobservable random 
effects (the bprJTU in the present context) are treated as missing data in the EM frame- 
work. This approach can be extended to the present context where a mixture of h 
linear mixed models with normal errors is to be fitted. The unobservable component- 
indicator variables z,,, as defined in Section 3.7.1, are introduced and treated as 
missing data in addition to the b,, . 

5.1 5.3 M-Step 

Following McLachlan (2004), we have that the estimate of the vector of unknown 
parameters k can be updated on the ( k  + 1)th iteration of the M-step as follows, 

N 

N N 

(5.77) 
j=1 3=1 
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where 

and 

(5.78) 
w = l  

w=l  

(5.80) 

In (5.74) to (5.80), T::’ denotes the value of the posterior probability that the jth 

gene belongs to the ith component of the mixture model using for !Pin 

h 

4 Y j ;  @) = % f i ( Y j ;  w i ) / C K l f d Y j ;  W l ) ,  (5.81) 
1=1 

where 

f i ( Y J ;  Wi) = ‘ c = l d ) ( Y W j ;  p V i 7  (5.82) 

f o r i = l ,  . . . ,  h ; j = l ,  . . . ,  N .  
Let &be the estimate of @obtained by applying the EM algorithm as above. Then 

the genes can be clustered on the basis of the fitted posterior probabilities 7i(yj; &). 

5.16 GENE SHAVING 

5.16.1 Introduction 

The development of the gene-shaving methodology, as proposed by Hastie et al. 
(2000), was motivated by research to identify distinct sets of genes for which varia- 
tion in expression could be related to a biological property of the tissue samples. In 
subsequent sections, we shall discuss gene shaving in the context of (i) unsupervised, 
where the genes and samples are treated as unlabeled and the main goal is to identify 
any coherent patterns; or (ii) supervised, either fully or partially, by using known 
properties of the genes or samples to assist in finding meaningful clusters. For exam- 
ple, if the goal is to identify the subset of genes that can discriminate between cancer 
classes or different clinical response groups, then the supervised method would be the 
appropriate choice where the clustering process of the genes (rows) does incorporate 
prior information about the samples (columns). 

5.16.2 Methodology and implementation 

Let A = aij be a row-centered N x M matrix of real-valued measurements repre- 
senting the gene expression matrix, assuming no missing values. The rows are genes, 
the columns are tissue samples or cell lines, and aij is the measured (log) expression 
relative to a baseline. Suppose that we are interested in finding g distinct gene clusters 
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that express similar patterns across the samples, with g chosen apriori. Gene shaving 
is an iterative algorithm based on the singular value decomposition (SVD) of the data 
matrix. It starts with the entire microarray gene expression matrix A and seeks a 
function of the genes in the direction of maximal variation across the tissue samples. 
The simplest form of this function is a normalized linear combination of the genes 
weighted by its largest principal component loadings, referred to as the super gene. 
The genes may be sorted according to the principal component weights. A fraction a 
of the genes having lowest correlation (essentially the absolute inner product) with the 
super gene is then shaved off (discarded) from the original data matrix. The process 
of calculating the leading principal component and shaving off some genes is iterated 
on the reduced data matrix until only two genes remain. This iterative top-down 
process produces a sequence of nested gene blocks of sizes ranging from the full set 
of n genes down to the final block, consisting ofjust two genes. Let S denote the total 
number of shaving iterations, and let B, denote the particular gene block after the sth 
shave and denote the sequence of gene blocks by A = Bo 3 B1 3 B2 3 . . . 3 Bs. 
An optimal gene block BOpt, or cluster C1, is isolated from this nested sequence via 
the Maximum Gap statistic criterion by comparing the columnwise variance for each 
block to that obtained by applying the procedure to permuted data. 

The next step is to remove the effect of genes in the optimal cluster C1 from the 
original matrix A. By computing the average gene or the vector of column averages 
for C1, denoted by C1, we can remove the component that is correlated with this 
average. This is equivalent to regressing each row of A on the average gene row Cl. 
and replacing the former with the regression residuals. Such a process is referred to as 
orthogonalization by Hastie et al. (2000), from which a modified data matrix Aort/t,o 
is produced. With AorttLo, the whole process is repeated, including the calculation 
of the leading principal component, producing another nested sequence of shaved 
gene blocks, applying the Gap statistic to obtain the next optimal cluster C2, and 
orthogonalizing the current data matrix. This sequence of operations is iterated until 
y gene clusters CZ, . . . C!) are found, which can be displayed graphically for visual 
inspection. 

The shaving process requires repeated computation of the largest principal com- 
ponent of a particular data matrix A or its subset (after at least one step of shaving). 
This process is easily implemented using the singular value decomposition. 

5.16.3 Optimal cluster size via the Gap statistic 

One important goal for any clustering technique is the ability to assess whether the 
extracted cluster is real; that is, we should be able to distinguish real patterns from 
random small clusters. Even for a totally random N x A f  matrix where the rows 
and columns are independent of each other, a nayve application of any clustering 
technique can still result in the identification of spurious clusters by pure random 
chance. Therefore, the Gap statistic was devised by Tibshirani et al. (2001) to select 
a reasonable cluster size from the sequence of nested clusters. It is an adaptation of 
the usual permutation test based on randomization and an appropriate definition of a 
quality measure, or test statistic, for each cluster. 
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5.16.4 Supervised Gene Shaving 

Supervised PC shaving can be implemented in the context of class discrimination 
with a slight modification to the unsupervised algorithm. It also can be generalized 
to incorporate prior information on the tissues in the form of continuous attributes 
and also survival times with possible censoring. 

Hastie et al. (2000) noted that the fully supervised approach in a general regression 
setting reduces to finding clusters from simply ranking the genes in order of the 
regression model score test. 

5.16.5 Real Data Example 

In this chapter, we consider the application of both supervised and unsupervised gene 
shaving to the well-known data set, the colon data of Alon et al. (1999), as considered 
in Chapter 4 and previously in this chapter. Heat maps of the first four gene-shaving 
clusters using 10% shaving and 20 permutations are presented in Figure 5.10. Figure 
5.1 1 shows the percent-variance curves for both the original and randomized data as 
a function of cluster size, as well as the gap curves used to select the specific cluster 
sizes. Visual examination of the first four unsupervised gene-shaving clusters reveal 
some interesting patterns. The first cluster of50 genes groups 2.5 of the tumors to the 
right, indicating that these specific genes are highly expressed in tumors. The second 
cluster of 40 genes can be interpreted similarly, although the pattern of high expression 
is different from that of the first cluster. The third cluster of 41 genes corresponds to 
the clustering of the “old’ versus “new” protocols where most samples (tumor and 
normal) from the 11 patients using a poly detector are mostly underexpressed for 
these genes and are grouped toward the left-hand side of the heat map. Subsequent 
clusters display coherent patterns of expression with high values of the ratio of the 
between-cluster to the within-cluster sums of squares, but do not suggest any clear 
clusterings that resemble either the external classification or the change in protocol 
paradigms identified by Getz et al. (2000). 

We also reanalyzed the full Alon data set with different levels of supervision, 
ranging from 10 to 100% supervision, using the external classification of tumor versus 
normal. The first cluster (samples are not reordered) shows 50 genes (including the 
two smooth-muscle genes 502854 and T60155), representing two distinct groups of 
negatively correlated genes that correspond well to the external classification. The 
third cluster of five genes (sorted by the column means of the cluster) groups the 
tissues according to the old versus new protocols. When 100% supervision is used 
(Figure 5.12), the most coherent cluster that corresponds to the external classification 
consists of nine genes and classifies the tumors and normals with an error rate of 6, 
as found by other methods. These nine genes also correspond to those with the top 
TNoM scores used by Ben-Dor et al. (2000). Inspection of the variance and Gap 
plots under the fully supervised scenario indicates that only the first cluster captures 
the full external classification. 

We note that the Gap curve of the gene-shaving clusters may be flat near the maxi- 
mum, or may not be unimodal. This implies that there are larger cluster sizes that may 
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include additional genes highly correlated with the cluster super gene and possessing 
a Gap statistic almost as large as the Maximum Gap value. An automatic implemen- 
tation of choosing the cluster size according to the Maximum Gap statistic criterion 
would usually end up with smaller cluster sizes than those from other methods, but 
with much higher coherence in the cluster. We relaxed the Maximum Gap statis- 
tic criterion to allow for the choice of picking the largest cluster size within 5% of 
the Maximum Gap value. Under 50% supervision, the relaxed gene-shaving method 
picks out the first cluster with 77 genes, thus capturing the normal-versus-tumor struc- 
ture and encompassing all of the six smooth muscle genes (502854, T60155, M6339 I ,  
D31885, X74295, X12369), as well as two ribosomal genes (T95018, T62947). 

5.16.6 Computer Software 

We have implemented the gene-shaving method,for both unsupervised and supervised 
analyses, in an S-language package that we call Geneshaving. The source code is 
available from the StatLib S-archive collection at 

http://lib.stat.cmu.edu/S/. 

A faster implementation, the GeneClust software package, described in Do, Bro- 
om, and Wen (2003), has the following properties. GeneClust has a graphical user 
interface (GUI) written in JAVA. The GUI allows users to: 

0 Perform a simple one-way hierarchical clustering by genes or by samples, 

0 Perform unsupervised, fully supervised, or partially supervised gene shaving; 
if the latter is chosen the user can also select the amount of partial supervision, 

0 Specify the number of clusters to extract, the percent to shave for each iteration, 
the number of permutations used to calculate the Gap statistic, and the level of 
gap tolerance . 

GeneClust may be used either to analyze a real data set by selecting the Raw 
Data mode, or to investigate the performance of gene shaving for simulated data 
sets, by selecting the Demo mode. When the user starts the gene-shaving procedure, 
the JAVA GUI invokes the back-end statistical analysis process. This is an S-PLUS 
(or R) application with which the GUI communicates using a pseudo terminal. The 
computationally intensive gene-shaving algorithm is implemented using C, and is 
dynamically loaded into S-PLUS (or R) to perform the analysis. After the clusters 
have been extracted, the S-PLUS (or R) application presents graphically presents the 
results of the analysis. 

The GeneClust software has been implemented for the Solaris and Linux operating 
systems, and for the S-PLUS and R statistical programming environments, discussed 
in details by Do et al. (2003). For exact details and continuous updates, check the 
website 

http://odin.mdacc.tmc.edu/"kim/geneclust. 
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Fig- 5.10 Heat maps of the first four unsupervised gene-shaving clusters for the colon data, 
sorted by the column-mean gene. See the insert for a color representation. 
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(a) Variance plots for the original and randomized data. Each plot depicts the 
percent variance explained by each cluster, both for the original data, and for an average of 
over twenty randomized versions for different cluster sizes. (b) Gap estimates of cluster size. 
The Gap curve corresponds to the difference between the pair of variance curves. 
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Fig. 5.12 Analysis of the Alon data set (2,000 genes) under full supervision. (a) Heat maps of 
the first two gene-shaving clusters with samples sorted by the column-mean gene (b) Variance 
plots for the original and randomized data. Each plot depicts the percent variance explained by 
each cluster, both for the original data, and for an average of over twenty randomized versions 
for different cluster sizes. (c) Gap estimates of cluster size. The Gap curve corresponds to the 
difference between the pair of variance curves. See the insert for a color representation. 
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6 
Discriminant Analysis 

6.1 INTRODUCTION 

In this chapter, we consider some methods in discriminant analysis or supervised 
classification in a general context. In the next chapter, these methods are to be 
applied to the classification of the tumors on the basis of the genes. There are many 
discriminant rules in the statistical literature, but in this chapter we consider only those 
rules that we consider sufficient for the class prediction of tissues. For a full account 
of discriminant analysis, the reader is referred to one of the books on or related to 
the topic; for example, Hand, Mannila and Smyth (2001), Hastie, Tibshirani, and 
Friedman (2001), McLachlan (1992), and Ripley (1996). 

6.2 BASIC NOTATION 

We let Ydenote the p-dimensional random feature vector corresponding to the real- 
ization y as measured on the entity under consideration. The class of origin of y 
(really the entity) can be denoted by a g-dimensional vector z of zero-one indicator 
variables. The ith component of z is defined to be one or zero according as y belongs 
or does not belong to the ith class Ci ( i  = 1, . . . , g); that is, 

for i = 1, . . . , g. 

185 
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In discriminant analysis, the aim is to construct a discriminant or prediction rule 
~ ( y )  for assigning y to one of the g classes; that is, the aim is to predict the class 
of origin of y. If ~ ( y )  = i, then it implies that y should be assigned to the ith 
class C, ( i  = 1, . . . . 9) .  Also, there may be interest in seeing what features in y 
are most useful in making this prediction. In the situation where the intention is 
limited to making an outright assignment of the entity to one of the possible classes, 
it is perhaps more appropriate to use the term prediction rather than discriminant 
to describe the rule. However, we shall use either nomenclature regardless of the 
underlying situation. In the pattern recognition jargon, such a rule is referred to as a 
classifier. 

The probability density function (p.d.f.) of Y in  class C, is denoted by f,(y) for 
1 = 1, . . . , g. These class-conditional densities may be probability functions for 
a feature vector of discrete variables. It is typically assumed that the observation 
has been drawn from a mixture of the g classes C1, . . . , C, in some proportions 
T I ,  . . . , 7rg respectively, where 

E n ,  = 1 and 7r7, 2 0 (z = 1 , . . . ,  9 ) .  
a = ]  

The p.d.f. of Ycan therefore be represented in the finite mixture form 

An equivalent assumption is that the random vector 2 of zero-one class indicator 
variables with z as its realization is distributed according to a multinomial distribution 
consisting of one draw on g categories with probabilities T I ,  . . . , 7rg respectively; 
that is, 

(6.2) pr{Z = z }  = nf'7rF ...rig. 

We write 
2 N M u l t g ( l , r ) ,  (6.3) 

where 7r = (7rl, . . . , 
probability that the entity belongs to Ci (i = 1, . . . , 9). 

y belongs to Ci is given by 

The ith mixing proportion ni can be viewed as the prior 

With Yhaving been observed as y, the posterior probability that the observation 

We are to consider the formation of an optimal discriminant rule (known as the 
Bayes rule) in terms of these posterior probabilities of class membership ~ ~ ( 9 ) .  But 
firstly, we shall define the error rates of a prediction rule. 
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6.3 ERROR RATES 

The error rates associated with the discriminant rule r (  y) are denoted by eij (T ) ,  where 

ei j (r)  = pr{r(Y) = j I YE C i }  

is the probability that a randomly chosen entity from C i  is allocated to Cj 
(i,j  = 1, . . . , 9). The probability that a randomly chosen member of Ci is mis- 
allocated can be expressed as 

(6.5) 

For a diagnostic test using the rule ~ ( y )  in the context where C1 denotes the absence 
of a disease and C2 its presence, the error rate e12(r) corresponds to the probability 
of a false positive, while e 2 1 ( ~ )  is the probability of a false negative. The correct 
allocation rates 

e 2 z ( ~ )  = 1 - e21(~)  and ell(.) = 1 - e 1 2 ( ~ )  

are known as the sensitivity and specificity, respectively, of the diagnostic test. 

6.4 DECISION-THEORETIC APPROACH 

Decision theory provides a convenient framework for the construction of prediction 
rules in the situation where an outright allocation of an unclassified entity is required. 
The case where the prior probabilities of the classes and the class-conditional densities 
are taken to be known is relatively straightforward. 

Let cij denote the cost of allocation when an entity from Ci is allocated to class 
C,, where cij = 0 for i = j = 1, . . . , g; that is, there is zero cost for a correct 
allocation. We assume for the present that the costs of misallocation are all the same. 
We can then take the common value of the ctJ (i # j )  to be unity, since it is only 
their ratios that are important. 

For given y, the loss for allocation performed on the basis of the rule r(y) is 

where, for any u and v, 

The expected loss or risk, conditional on y, is given by 
0 

(6.7) 
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An optimal rule of allocation can be defined by taking it to be the one that minimizes 
the conditional risk (6.4) at each value y of the feature vector. In decision-theory 
language, any rule that so minimizes (6.4) for some 7r1. . . . , 7rY is said to be a Bayes 
rule. It can be seen from (6.6), that the conditional risk is a linear combination of the 
posterior probabilities, where all coefficients are zero except for one, which is unity. 
Hence it I S  minimized by taking ~ ( y )  to be the label of the class to which the entity 
has the highest posterior probability of belonging. Note that this is the “intuitive 
solution” to the allocation problem. 

If we let I’, (y) denote this optimal rule of allocation, then 

We can write this as 
ro (y) = arg inax 7; ( y). 

2 
(6.10) 

The rule ro(y) is not uniquely defined at y if the maximum of the posterior prob- 
abilities of class membership is achieved with respect to more than one class. In 
this case the entity can be assigned arbitrarily to one of the classes for which the 
corresponding posterior probabilities are equal to the maximum value. 

As the posterior probabilities of class membership q(y) have the same common 
denominator f(y), r,(y) can be defined in terms of the relative sizes of the class- 
conditional densities weighted according to the class-prior probabilities; that is. 

ro ( y ) = arg rnax q f ,  ( y) . (6.11) 

Note that as the optimal or Bayes rule of allocation minimizes the conditional risk 

z 

(6.8) over all rules T ,  it also minimizes the unconditional risk 

i=l 

which is the overall error rate associated with T .  

Up to now we have taken the costs of misallocation to be the same. The reader is 
referred to McLachlan (1 992, Section 1.4) for the form of the Bayes rule in the case 
of unequal costs of misallocation c i j .  For g = 2 classes, it reduces to the definition 
(6.9) for ro(y) in the case of equal costs of misallocation, except that 7r1 is replaced 
now by ~ 1 ~ 1 2  and 7r2 by 7r2c21, where cij  is the cost incurred when an entity from 
class Ci is assigned incorrectly to class C, ( i  # j ) .  As it is only the ratio of c12 and 
c21 that is relevant to the definition of the Bayes rule, these costs can be scaled so that 

T l C 1 2  + 7r2c21 = 1. 
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Hence we can assume without loss of generality that el2 = c21 = 1, provided 
T I  and 7 ~ 2  are now interpreted as the class-prior probabilities adjusted by the relative 
importance of the costs of misallocation. Due to the rather arbitrary nature of assigning 
costs of misallocation in practice, they are often taken to be the same in real problems. 
Further, the class-prior probabilities are often specified as equal. This is not as 
arbitrary as it may appear at first sight. For example, consider the two-class situation 
where C1 denotes a class of individuals with a rare disease and C2 those without it. 
Then although 7r1 and 7r2 are disparate, the cost of misallocating an individual with 
this rare disease may well be much greater than the cost of misallocating a healthy 
individual. If this is so, then 7r1c12 and 7i-2~21 may be comparable in magnitude and, 
as a consequence, the assumption of equal class-prior probabilities with unit costs of 
misallocation in the formation of the Bayes rule T , ( Y )  is apt. Also, it would avoid 
in this example the occurrence of highly unbalanced class-specific error rates. The 
latter are obtained if r,(y) is formed with extremely disparate prior probabilities 7rz 
and equal costs of misallocation. This imbalance between the class-specific error 
rates is a consequence of ~,(y) being the rule that minimizes the overall error rate. 
The construction of rules that are optimal with respect to other criteria is discussed in 
McLachlan (1992, Section 1.5. In particular, it is shown there that by specifying the 
prior probabilities 7i-% in ro(y) so that its consequent error rates are equal, we obtain 
the rule that minimizes the maximum of the class-specific error rates. 

6.5 TRAINING DATA 

A basic assumption in discriminant analysis is that in order to estimate the unknown 
class-conditional densities there are observations of known origin on which the feature 
vector Yhas been recorded for each. We let yl, . . . , yn denote these recorded feature 
vectors and z1, . . . , z ,  the corresponding vectors of zero-one indicator variables 
defining the known class of origin of each. The collection of the data 

(6.12) 

is referred to in the literature as either the initial, reference, design, training, or 
learning data. The last two have arisen from their extensive use in the context of 
pattern recognition. Also in the latter field, the formation of a prediction rule from 
training data of known origin is referred to as supervised learning. 

There are two major sampling designs under which the training data t may be 
realized, joint or mixture sampling and z -conditional or separate sampling. They 
correspond, respectively, to sampling from the joint distribution of Y and 2 and to 
sampling from the distribution of Y conditional on z. The first design applies to 
the situation where the feature vector and class of origin are recorded on each of n 
entities drawn from a mixture of the possible classes. Mixture sampling is common in 
prospective studies and diagnostic situations. In a prospective study design, a sample 
of individuals is followed and their responses recorded. 

With most applications in discriminant analysis, it is assumed that the training data 
are independently distributed. For a mixture sampling scheme with this assumption, 
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yl, . . . , yn are the realized values of n independent and identically distributed (i.i.d.) 
random variables Yl, . . . , Y, with common distribution function F(y). We write 

Y1, . . . . Y, ''Z:'. F. 

The associated class-indicator vectors z1, . . . , z, are the realized values of the ran- 
dom variables 21, . . . , 2, distributed unconditionally as 

(6.13) 
i.1.d. 

21, . . . , 2, - Mult,(l, T). 

The prior probabilities 7r, can be estimated by 

n 
+. - cz../n (2  = 1, . . . .  9) .  

23 2 -  

j = 1  

(6.14) 

With separate sampling in practice, the feature vectors are observed for a sample 
of n ,  observations taken separately from each class C, ( i  = 1, . . . , 9) .  Hence it is 
appropriate for retrospective studies, which are common in epidemiological investi- 
gations. As many diseases are rare and even a large prospective study may produce 
few diseased individuals, retrospective sampling can result in important economies 
in cost and study duration. Note that as separate sampling corresponds to sampling 
from the distribution of Yconditional on z ,  it does not provide estimates of the prior 
probabilities 7r, for the classes. 

6.6 DIFFERENT TYPES OF ERROR RATES 

For a given realization t of the training data T, it is the conditional or actual allocation 
rates of a sample prediction rule r(y; t )  that are of central interest. The conditional 
allocation rates are given by 

eci j (r)  = pr{r(Y; t )  = j j Y E  Ci, t}  ( i , j  = 1, . . . , 9). (6.15) 

That is, ec,j ( r )  is the probability, conditional on t ,  that a randomly chosen observation 
from Ci is assigned to Cj by r(y; t ) .  

The unconditional or expected allocation rates of r(y; t )  are given by 

eui j (r)  = pr{r (y  T, = j  I YE Ci} 

= E{eci j (r)}  ( i , j  = 1, . . . , g )  

The unconditional rates are useful in providing a guide to the performance of the rule 
before it is actually formed from the training data. 

Concerning the error rates specific to a class, the conditional probability of misal- 
locating a randomly chosen member from Ci is 

9 

eci(r) = C ecij ( r )  (2 = 1, . . . , 9 ) .  

j # i  
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The overall conditional error rate for an entity drawn randomly from a mixture G of 
C1, . . . ! C, in proportions T I ,  . . . ! T ~ ,  respectively, is 

The individual class and overall unconditional error rates, eue and eu, are defined 
similarly. 

If r(y; t )  is constructed from t in a consistent manner with respect to the Bayes 
rule T, ( y) , then 

where e(r,) denotes the optimal error rate. Interest in the optimal error rate in practice 
is limited to the extent that it represents the error of the best obtainable version of the 
sample-based rule r(y; t ) .  

6.7 SAMPLE-BASED DISCRIMINANT RULES 

We now consider the construction of a prediction rule from available training data 
in the situation where the class-conditional densities and perhaps also the class-prior 
probabilities are unknown. The initial approach to this problem, and indeed to dis- 
criminant analysis in its modern guise, was by Fisher (1936). In the context of g = 2 
classes, he proposed that an entity with feature vector y be assigned on the basis 
of the linear discriminant function a*y, where a maximizes an index of separation 
between the two classes. The index was defined to be the magnitude of the difference 
between the class-sample means of aTy normalized by the pooled sample estimate of 
its assumed common variance within a class. The derivation of Fisher’s (1936) linear 
discriminant function is to be discussed further in Section 6.10, where it is contrasted 
with normal theory-based discriminant rules. 

With the development of discriminant analysis through to the decision-theoretic 
stage, an obvious way of forming a sample-based prediction rule r(y; t )  is to take it 
to be an estimated version of the Bayes rule ro(y) where, in (6. lo), the posterior prob- 
abilities of class membership T~ (y) are replaced by some estimates F2 (y; t )  formed 
from the training data t .  One approach to the estimation of the posterior probabilities 
of class membership is to model the ~ ~ ( y )  directly, as with the logistic model. Dawid 
(1976) calls this approach the diagnostic paradigm. 

A more common approach, called the sampling approach by Dawid (1976), is 
to use the Bayes formula (6.4) to formulate the T,(Y) through the class-conditional 
densities fe(y). With this approach the Bayes rule is estimated by the so-called 
plug-in rule, whereby the class-conditional densities are replaced by estimates of the 
posterior probabilities ~ , ( y )  in the form (6.10) of the Bayes rule ro(y). 
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6.8 PARAMETRIC DISCRIMINANT RULES 

Under the parametric approach to the estimation of the class-conditional distributions, 
and hence of the Bayes rule, the class-conditional distributions are taken to be known 
up to a manageable member of parameters. More specifically, the ith class-conditional 
density is assumed to belong to a family of densities 

{fi(Y; 62) : 8i E @ z > .  (6.16) 

where 8, is an unknown parameter vector belonging to some parameter space 0, 
(i = 1, . . . , 9). Often the class-conditional densities are taken to belong to the same 
parametric family, for example, the normal. We can now write the Bayes rule r,(y) 
as r,(y; @), where 

(6.17) 

where w is the vector consisting of the elements of 81, , 8, known a priori to 
be distinct. For example, if the class-conditional distributions are assumed to be 
multivariate normal with means pl, . . . , pq and covariance matrices El; . . . , E,, 
then 8i consists of the elements of pi andbf the distinct elements of Ei, while w 
consists of the elements of p l ,  . . . , p, and of the distinct elements of El, . . . , Eg. 
Note that since the mixing proportions 7ri sum to one, one of them is redundant. Here 
we have (arbitrarily) not included 7rg in (6.17). 

With the so-called plug-in approach to the choice of a sample-based prediction 
rule, unknown parameters in the adopted parametric forms for the class-conditional 
densities are replaced by appropriate estimates obtained from the training data t .  
Hence if r,(y; @)A now denotes the optimal rule, then with this approach r(y; t )  = 

r,(y: &), where P is an estimate of P formed from t .  Provided 8, is a consistent 
estimator of 8i and fi(y; 8i) is continuous in 8i ( i  = 1, . . . , g ) ,  then r,(y; !P) is 
a Bayes risk-consistent rule in the sense that its risk, conditional on &, converges in 
probability to that of the Bayes rule, as n approaches infinity. This is assuming that 
the postulated model (6.16) is indeed valid and that the class-prior probabilities are 
estimated consistently, as possible for instance, with mixture sampling of the training 
data. 

Given the widespread use of maximum likelihood as a statistical estimation tech- 
nique, the plug-in rule rc,(y; !&) is usually formed with &, or at least w, taken to be 
the maximum likelihood (ML) estimate. Since their initial use by Wald (1944), Rao 
(1948, 1954), and Anderson (195 1) among others, plug-in rules formed by ML esti- 
mation under the assumption of normality have been extensively applied in practice. 

Another way of proceeding with the estimation of the class-conditional densities, 
and hence of ro(y;  !P), is to adopt a Bayesian approach; see, for example, McLachlan 
(1992, Section 2.2). 

For high-dimensional data, the total sample size n is too small relative to the 
number p of feature variables in y for a reliable estimate of 8 to be obtained from 
the full set t of training data. This is referred to as “the curse of dimensionality”, a 
phrase due to Bellman (1961). Consideration then has to be given to which variables 
in y should be deleted in the estimation of 8 and the consequent allocation rule. 
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Even if a satisfactory discriminant rule can be formed using all the available feature 
variables, consideration may still be given to the deletion of some of the variables 
in y. This is because the performance of a rule fails to keep improving and starts 
to fall away once the number of feature variables has reached a certain threshold. 
It is an important problem in its own right in discriminant analysis; as with many 
applications the primary or sole aim is not one of allocation, but rather to infer which 
feature variables of an entity are most useful in explaining the differences between 
the classes. 

6.9 DISCRIMINATION VIA NORMAL MODELS 

We have seen in Section 6.4 that discriminant analysis is relatively straightforward 
for known class-conditional densities. Generally in practice, the latter are either par- 
tially or completely unknown, and so there is the problem of their estimation from 
data t on training entities, as defined by (6.12). As with other multivariate statisti- 
cal techniques, the assumption of multivariate normality provides a convenient way 
of specifying a parametric structure. Hence normal models for the class-conditional 
densities provide the basis for a good deal of the theoretical results and practical appli- 
cations in discriminant analysis. In this section we therefore focus on discrimination 
via normal-based models. 

6.9.1 Heteroscedastic Normal Model 

Under a heteroscedastic normal model for the class-conditional distributions of the 
feature vector Yon an entity, it is assumed that 

Y- N ( p , ,  E t )  in C, ( i  = 1, . . . , g), (6.18) 

where p1, . . . , pg denote the class means and E,, . . . , Eg the class-covariance 
matrices. Corresponding to (6.1 S), the ith class-conditional density f,(y; 0,) is given 
by 

f t ( Y ;  0,) = &(Y; P , . Z )  
= ( 2 7 r - g  1 ~ ~ 1 - i  exp{-$(y - p , ) T ~ r ' ( y  - p, ) } .  

where 0, consists of the elements of p, and the $ p ( p  + 1) distinct elements of 
E, (z = 1, . . . , 9) .  It is assumed that each Et is nonsingular. There is no loss of 
generality in so doing, since singular class-covariance matrices can always be made 
nonsingular by an appropriate reduction of dimension. 

If T I ,  . . . , 7rg denote the prior probabilities for the classes C,, . . . , C,, then we 
let 

@ =  ( T I ,  . . . , 7rg-l, J ) T ,  (6.19) 

where 0 consists of the elements of pl,  . . . , pq and the distinct elements of 
221, . . . , Eq. 
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The posterior probability that an entity with feature vector y belongs to class Ci 
is denoted by ~ i ( y ;  *) for i = 1, . . . , g. In estimating these posterior probabilities, 
it is more convenient to work in terms of their log ratios. Accordingly, we let 

where 

C ? , ( X  w) = log{fz(Y; @z)/f,(YY; @,)I ( i  = 1. . . . ~  g -  1). 

The definition (6.20) corresponds to the arbitrary choice of C, as the base class. 
Under the heteroscedastic normal model (6.18), 

1 
C7s(Y; w) = -&vY, Pt; -%I - 6(Y, pq; -%I> 

- ;{log l ~ t l / l 4 l l  ( i  = 1, . . ., g - l), (6.21) 

where 
b(Y,PL,; Z) = (Y - P z ) T , m Y  - P L )  

is the squared Mahalanobis distance between y and p2 with respect to E7 ( i  = 

1, . . . , g). The notation d(a, b; C)  for the squared Mahalanobis distance 

( a  - b)?'C-l(a - b)  

between two vectors a and b with respect to some positive-definite symmetric matrix 
C applies throughout this book. For typographical brevity, we henceforth abbreviate 
6(y, p, ;  El) to &(y) for i = 1, . . . , g. 

In this setting, the optimal or Bayes rule r,(y; *) assigns an entity with feature 
vector y to C, if 

%g(Y: *) 5 0 (2  = 1,. . . ,y - 1) 

is satisfied. Otherwise, the entity is assigned to Ch if 

Vt,(Y; *I 5 rlhg(Y; *I ( i  = 1, . . . ,  g -  1; i # h)  

holds. In the subsequent work, we shall refer to r,,(y; @) as the normal-based 
quadratic discriminant rule (NQDR). 

6.9.2 Plug-in Sample NQDR 

In practice, w is generally taken to be unknown and so must be estimated from 
the available training data t ,  as given by (6.12). With the estimative approach to 
discriminant analysis, the posterior probabilities of class membership ~i (y; *) and 
the consequent Bayes rule ro(y; !P) are estimated simply by plugging in some estimate 
2, such as the ML estimate, for w in the class-conditional densities. 
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The ML estimates of pi and Ei computed under (6.18) from the training data t 
are given by the sample mean jji and the sample covariance matrix &, respectively, 
where 

n 

j=1 

and 
n 

j=1 

for 1; = 1, . . . , 9. Consistent with our previous notation, 

denotes the number of entities from class C, in the training data t (i = 1, . . . , g). It 
is assumed here that n, > p ,  so that 2% is nonsingular ( i  = 1, . . . , 9). In practice, 
the unbiased estimator of EL, 

si = niez/(nz-l) (i = 1, . . . , g ) ,  

tends to be used instead of the ML estimate 2%. 
With w estimated as above, 

where 

&(Y) = 6(Y,gz; Si) 
(6.23) = (y-gz) T si -1 (y-gz) ( i=  1, . .  . ,  9). 

6.9.3 Homoscedastic Normal Model 

Under a homoscedastic normal model for the class-conditional distributions of the 
feature vector Yon an entity, it is assumed that 

Y -  N ( p i ,  E) in C, (i = 1, . . . , 9) ;  (6.24) 

that is, 
Ei = 22 (2 = 1, . . . , g) .  (6.25) 

It can be seen from (6.22) that a substantial simplification occurs in the form 
for the posterior probabilities of class membership and the consequent Bayes rule 
if the class-covariance matrices .El, . . . , .Eg are all the same. This is because the 
quadratic term in y, yT CF1 y, in the exponent of the ith class-conditional density is 
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now the same for all classes, and so vanishes in the pairwise ratios of these densities 
as specified by (6.22). 

Corresponding to (6.22), we have under the homoscedastic normal model (6.24) 
that 

where 

Czg(y: w )  = - i {&(y )  - 6,(y)} 

= { Y  - +(PL + PLS)ITX:-  - p,) ( 1  = 1, . .. , g - 1) 

(6.27) 

and where 

&(Y) = S(y,CL,; ( i  = 1, . . . , g ) .  

The optimal or Bayes rule ro(y; G?) assigns an entity with feature vector y to Cg if 

is satisfied. Otherwise, the entity is assigned to Ch if 

'/,q(Y: @) 5 7/hg(Y: @) (2 = 1, . . . ,  g -  1; 7 # h)  

holds. We shall refer to ro(y; @) as the normal-based linear discriminant rule 
(NLDR). 

In the ca4e of g = 2 classes, we write ?]12(y; @) and (12(y; w )  as ~ ( y ;  *) and 
C(y; a). respectively. For future reference, we express the normal-based linear dis- 
criminant function (NLDF) ((y; w )  in the form 

<(Yi w )  = P o  + DTY> (6.28) 
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6.9.4 Optimal Error Rates 

It can be seen from (6.28) that the NLDR ~,(y; @) is linear in y. One consequence 
of this is that it is straightforward to obtain closed expressions for the optimal error 
rates, at least in the case of g = 2 classes. For it can be seen from (6.26) and (6.27) 
that in this case, r,(y; @) is based on the single linear discriminant function {(y; w )  
with cutoff point 

k = log(747r1). 

That is, an entity with feature vector y is assigned to C1 or C2 according to whether 
((y; w )  is greater or less than k .  

The optimal error rate specific to C1 is therefore given by 

= @ { ( k  - $A”/A),  

where 

is the squared Mahalanobis distance between C1 and C, and ‘P( .) denotes the standard 
normal distribution function. Similarly, 

e021(!P) = @ { - ( k  + +A2)/A}. 

In the above, we have followed the notation for the allocation rates as introduced in 
Section 6.3, so that eoi3 (@) denotes the probability that arandomly chosen entity from 
class Ci is allocated to Cj on the basis of the Bayes rule ~,(y; !P) (i, j = 1, . . . , g). 

For a zero cutoff point ( k  = 0), the class-specific error rates eo12 (!P) and eozl(!P) 
are equal with the common value of @(-+A). Often in practice, Ic is taken to be 
zero. Besides corresponding to the case of equal prior probabilities, it also yields the 
minimax rule, as defined in Section 6.4. 

6.9.5 Plug-in Sample NLDR 

For unknown w in the case of an arbitrary number g of classes, the maximum like- 
lihood estimate of p, is given as under heteroscedasticity by the sample mean y, 
of the feature observations from C, in the training data t ( i  = 1, . . . , 9) .  The ML 
estimate k of the common class-covariance matrix 22 is the pooled (within-class) 
sample covariance matrix. That is, 

i=l 
q n  
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In using these estimates to form the plug-in sample versions Cig (y; G) and ~i (y; &) 
of the log likelihood ratios and the class-posterior probabilities, we follow here the 
usual practice of first correcting 2 for bias, so that 

s = n3:/(n-,q) 

is used instead of 2. With w estimated as above, 

cig(y: LJ) = {y - $ ( j j i  + g,q)}TS-l(jj,, - 3,) ( i  = 1, . . . , g - 1). (6.29) 

It can be seen from (6.29) that for g = 2 classes, the plug-in sample version 
r0 (y; !&) of the normal-based linear discriminant rule (NLDR) T, (y; !I?) is based on 
the sample version 

C(y; 5) = {Y - + Y,)}s-l(Y, - Y2)r (6.30) 

of the NLDF <(y; w), as defined by (6.28). The sample NLDF <(y; G) is often 
referred to in the literature as the W classification statistic (Wald, 1944). 

6.9.6 Normal Mixture Model 

In some instances, the class-conditional distributions of the feature vector Yis unable 
to be modeled adequately by a single normal distribution. Hence we may consider 
modeling the ith class-conditional density fi(y) as a gi-normal mixture density, 

gt 

fi(Y1 = ?rth4(yi pih. Ezh) (i = f .  . > gi)i (6.31) 

where !Pi contains the mixing proportions ?rib, the elements of the pZtL and the distinct 
elements of the &h ( h  = 1: . . . , g i ) .  For continuous data feature data, the normal 
mixture model (6.31) will provide an arbitrarily accurate estimate of the ith class- 
conditional density fi(y); see, for example, Li and Barron (2000). Hastie and Tib- 
shirani (1996) have proposed the use of (6.3 1) with common component-covariance 
matrices, 

(6.32) 

Of course the normal mixture model (6.31) for the ith class-conditional density 
contains many parameters and so the ith class sample size ni has to be very large. 
As this will not be the case with high-dimensional data such as in applications to 
microarray data, this model may not be able to be fitted directly. One way to cir- 
cumvent this problem is to reduce the dimension of the feature vector (that is, the 
number of genes with microarray data) by the dimension-reduction options of the 
EMMIX-GENE procedure, as described in Chapter 4. One can then fit a normal 
mixture model or mixtures of factor analyzers to the reduced features. This is to be 
considered further in the context of microarray data in the next chapter. 

Although consideration is being given to ways of forming estimates of the posterior 
probabilities of class membership for a given observation with nonparametric rules 
like the SVM (Lee and Lee, 2003), these estimates can be formed directly from (6.4) 
with parametric rules as provided by normal mixture models. 

h = l  

Z L I L  = E ( h  = 1, . . . , gz; i = 1 . . . , 9) .  
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6.1 0 FISHER’S LINEAR DISCRIMINANT FUNCTION 

6.10.1 Separation Approach 

The sample NLDF ((y; LJ) is essentially the same as Fisher’s (1936) linear discrim- 
inant function derived without the explicit adoption of a normal model. As noted in 
Section 6.7, Fisher’s linear discriminant function is given by aTy, where a maximizes 
the quantity 

(6.33) 

which is the square of the difference between the class-sample means of aTy scaled 
by the (bias-corrected) pooled sample variance of aTy. The maximization of (6.33) 
is achieved by taking a proportional to ,8, where 

T T  
{aT@1 -Yz)I2/l(. s a ) ,  

= s-yy, -yz). 

This leads to the sample linear discriminant function 

y’j = y W 1 ( y l  - y2). (6.34) 

Since 

(31 - 32)TS-1(Y1 - 3,) L 0; 

the sample mean of yT6 in class C1 is not less than what it is in Cz. Hence an entity 
with feature vector y can be assigned to C1 for large values of yT6 and to C2 for 
small values. If the cutoff point for the linear discriminant function (6.34) is taken 
to be equidistant between its class-sample means, then it is equivalent to the sample 
NLDF <(y; LJ) applied with a zero cutoff point. 

6.10.2 Regression Approach 

Fisher (1936) also derived the sample linear discriminant function (6.34) using a 
linear regression approach. The discrimination problem can be viewed as a special 
case of regression, where the regressor variables are given by the feature vector y 
and the dependent variables by the vector z of class-indicator variables. In the case 
of g = 2 classes, the dependent variable associated with the entity having feature 
vector y3 can be taken to be z13 = (z3)1 where, as defined previously, z13 is one or 
zero according as y3 belongs to G1 or (32. Then for a linear relationship between the 
dependent and regressor variables, we have 

( j  = 1, . . . , n) ,  (6.35) 

where €1, . . . , E ,  are the errors. The two values taken by the dependent variable in 
(6.35) are irrelevant, provided they are distinct for each class. Fisher (1936) actually 
took 

T z13 = uo + a y3 + c3 

ZIJ = (-l)zn,/n if y3 E c, (i = 1,2) .  
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The least-squares estimate of a satisfies 

n 

(6.36) 
j=1  

n 
where 

v= Cb7 - Y>(Y, - Y Y  
,=1 

denotes the total sums of squares and products matrix. It can be decomposed into the 
within-class sums of squares and products matrix W, given here by (n  - 2)S, and 
the between-class matrix of sums of squares and products. The latter is given by 

2 

i=l 

which can be expressed as 

(7),1n2/n)(Y1 - 32)(Yl - & I T .  
Concerning the right-hand side of (6.36), it equals 

'ri n 

.j=1 

On using (6.37) and substituting 

into the left-hand side of (6.36), it follows that 

which shows that the least-squares estimate of a satisfies 

a cx s-'(y, - y2) 

It can be confirmed by using (6.37) and (6.38), that 

el(. - 2) = P 3 ( 1  - d ) ,  (6.39) 

where pV is the correlation between the vth feature variable and the class label z1 and 
where 

(6.40) Ylv - Y2v t ,  = 
s,, J l /n1  + 1/n*2 ' 
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Giv denotes the sample mean of the n, expression values for the j th  gene in class 
Ci (i = 1 , 2 )  and sz = (S)vu (u = 1, . . . , p ) .  

Thus ranking the feature variables in terms of the correlation of the feature variables 
with their class labels is equivalent to ranking them in terms of the values of the usual 
(pooled) two-sample t-statistic. We note this as there is a tendency in the biological 
and medical literature (for example, van 't Veer et al., 2002) to express the selection of 
the genes in terms of their correlation with the class labels of the tissue samples rather 
than in terms of the t-statistic, which is commonly used in the statistics literature. 

6.1 1 LOGISTIC DISCRIMINATION 

In Section 6.9 we have considered a fully parametric approach to discriminant anal- 
ysis, where the class-conditional densities fi(y) are assumed to have specified func- 
tional forms except for a finite number of parameters to be estimated. Logistic dis- 
crimination can be viewed as a partially parametric approach, as it is only the ratios 
of the densities {fi(y)/fj(y), i # j }  that are being modeled. For simplicity of 
discussion we consider first the case of g = 2 classes. 

The fundamental assumption of the logistic approach to discrimination is that the 
log of the class-conditional densities is linear; that is, 

l og { f l (Y ) / f i (Y ) )  = Po + PTY? 

where ,Oo and P = (P I ,  . . . , /3p)T constitute p + 1 parameters to be estimated. Let 

(6.41) 

Po* = Po + 1 o g ( m / m ) .  

The assumption (6.41) is equivalent to taking the log (posterior) odds to be linear, as 
under (6.41), we have that the posterior probability of an entity with Y = y belonging 
to class C1 is 

R(Y)  = exp(Po* + P T Y ) / { l  + exp(P,* + P'Y)), (6.42) 

and so 

logi t { ( r l (Y))  = log {n (Y) /n (Y ) )  
= Po* +pTy. (6.43) 

Conversely, (6.41) is implied by the linearity (6.42) of the log odds. The linearity 
here is not necessarily in the basic variables; transforms of these may be taken. 

To define the logistic model in the case of g > 2 classes, let 

0, = (Plz, . . . , P p J T  (i=l, . . . , g -  l), 

be a vector of p parameters. Corresponding to the conventional but arbitrary choice 
of C, as the base class, the logistic model assumes that 

log{fi(Y)/f,(Y)) = Pot + PTY (i = 1, . . . , g - I), (6.44) 
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6.12 NEAREST-CENTROID RULE 

It can be seen from (6.22) and (6.29) that to be able to apply the sample versions of 
the NQDR or the NLDR, we need to be able to invert the sample class-covariance 
matrices Si or the pooled within-class sample covariance matrix S. In order for the 
S, to be nonsingular, we need 

n z > p + l  ( i = 1  . . . , g ) ,  (6.46) 

while for S to be nonsingular, we require 

n2P+g. (6.47) 

These inequalities will not hold for high-dimensional feature data. One way to 
proceed with such data is to ignore the correlations between the feature variables; that 
is, to take the sample class-covariance matrices Si to be diagonal, 

Si = diag ( s i l ,  . . . , s ip ) ,  (6.48) 

where s , ,  = (S,)uL,  is the vth diagonal element of Si (v = 1, . . . , p ;  i = 1, . . . , 9). 
Under (6.48). this sample version of the NQDR rule can be expressed as 

P 

r(y; t )  = arg min C ( y w  - y,,)2/s,, - log(*i), 

where yw is the ,uth element of the feature vector y and yiv = (Y,)?,, and j j i  is the 
sample mean of the training data from the ith class. 

This simplified rule (6.49) is referred to as the nearest-centroid rule in Tibshirani 
et al. (2002a, 2003). In the case where the estimated prior probabilities .irL are equal 
and the sample class variances siv are taken to have the common value s2 (si.,, = s2 
for i = 1, . . . , 9; 21 = 1 . . . , p ) ,  the rule (6.48) assigns the feature vector y to the 
class whose mean (centroid) is closest in Euclidean distance. 

In the case of high-dimensional data, Tibshirani et al. (2002a, 2003) proposed a 
modified version of (6.49), which they called the nearest-shrunken centroid rule. We 
shall consider it in the next chapter in the context of class prediction for microarray 
data. 

It is noted that for a microarray data matrix A in which the columns (but not 
the rows) have been standardized, the Euclidean squared distance between a feature 

(6.49) 
L 

w = l  
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vector yo and the centroid of the ith class Tji is proportional to the negative of the 
(sample) correlation between yo and j j i .  Thus in those situations in the biological 
literature where the allocation of a signature expression vector of a tissue is expressed 
in terms of maximizing the correlation between the signature vector and the class 
centroid (van 't Veer et al., 2002), a nearest-centroid rule is effectively being used. 

6.13 SUPPORT VECTOR MACHINES 

The use of a support vector machine is an example of the algorithmic approach to 
statistical modeling. It contrasts with the mainstream statistical approach where the 
data are assumed to have been generated from a stochastic model. A nice account of 
these two approaches may be found in Breiman (2001) and its discussion. 

6.13.1 Two Classes 

Vapnik (1998) considered support vector machines (SVMs) in the case of g = 2 
classes. In this section, we replace the vector z3 of zero-one class labels by the scalar 
z J ,  where in the usual notation with SVMs, z3 = 1 or -1, according as y3 belongs 
to the class C1 or Cz. Support vector machines are a direct implementation of the 
Structural Risk Minimization Principle. The SVM learning algorithm (with linear 
kernel) aims to find the separating hyperplane 

PTY - Po = 0 

that is maximally distant from the training data of the two classes. 
When the classes are linearly separable, the hyperplane is located so that it has 

maximal margin (that is, so that there is maximal distance between the hyperplane and 
the nearest point in any of the classes), which should lead to better performance on 
test data. When the data are not separable, there is no separating hyperplane; in this 
case, we still try to maximize the margin but allow some classification errors subject 
to the constraint that the total error (distance from the hyperplane on the wrong side) 
is less than a constant. 

The standard SVM achieves this by solving the following optimization problem: 

Yz(PTY - P o )  2 1 - E z ,  vi , { 6% 2 0, CtZ 5 constant, 
min PTP, subject to 

( p + l + r r )  (m"L)€R 

where 6 = ( E l .  . . . , En)T  is the vector of so-called slack variables. It is easy to prove 
that 

n 

(6.50) 
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where the a,  (3 = 1, . . . , n) are the Lagrange multipliers corresponding to the 
zJ (pTy - ~ " 1  2 1 - cj constraints. 

Given the solutions of the optimization problem above, the corresponding discrim- 
inant rule is 

n 

~ ( y ;  t )  = s i g n ( C  aJzJIJJTy - P O ) .  

j = 1  

The standard SVM can be extended to nonlinear decision functions by using the 
kernel technique, which consists of mapping the data to a higher-dimensional space 
'Ft by means of the function 

(b : Rd + 'Ft. 

For a particular choice of 4 ,  the inner product K(y, ~ yk) = (q5(yJ) . d(yk)) can be 
easily computed and the discriminant rule becomes 

rr 

T(YY; t )  = "ign(Cn,z ,W?/ , , !d  - P o ) .  
]=1 

In Figure 6.1, we display the separating surfaces for two types of kernel functions: 

0 the linear kernel K(yJ ,yk)  = (yy,, yk). 

lYJ-l/k12 

0 the Gaussian kernel K ( y J ,  yk) = e - " 2  

(4 (b) 

Fig, 6.1 
the insert for a color representation. 

Separating surface spawned by SVM with (a) linear kernel (b) Gaussian kernel. See 

6.13.2 Selection of Feature Variables 

For the SVM with linear kernel, a ranking of the feature variables can be obtained on 
the basis of the magnitude of the coefficients of the variables. For high-dimensional 
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problems, Guyon et al. (2002) have proposed that the feature variables be selected 
according to a backward elimination process, which they call recursive feature elimi- 
nation (WE). It is a recursive process. Starting by considering all available features, 
each step consists in ranking the features according to the order of magnitude of their 
associated coefficients (weights) pi, and then discarding the bottom-ranked variables. 
The process continues by considering the remaining features. As noted by Guyon et 
al. (2002), removing one variable at a time is more accurate than removing chunks 
of variables at a time. However, as they observed that there are only significant dif- 
ferences for smaller subsets of variables (less than loo), they suggested that, without 
trading accuracy for speed, one can use RFE by removing chunks of features in the first 
few iterations and then remove one feature at a time once the feature set size reaches 
a few hundred. In the application of the SVM with RFE to microarray data, we first 
discarded enough bottom-ranked genes so that the number retained was the greatest 
power of 2 (less than the original number of genes). We then sequentially proceeded 
to discard half the current number of genes on each subsequent step. This practice 
was adopted in the examples in Guyon et al. (2002). More recently, Furlanello et al. 
(2003) have proposed an accelerated version of RFE. 

6.1 3.3 Multiple Classes 

Several solutions have been proposed for generalizing two-class SVMs to multiclass 
SVMs. They can be divided in two types of approaches: 

0 combination of binary SVM classifiers; 

0 consideration of all classes at once in a general optimization problem. 

The binary approaches were first implemented. Among them, the one-against-all 
approach may be the earliest. It constructs g SVM models, where g is the number 
of classes. Each classifier is trained using the examples of a given class against all 
other classes. A new observation is assigned to the class with the largest decision 
function output among the g estimated functions. Another binary approach is the 
one-against-one, where g(g - 1) /2  binary classifiers are trained, from all possible 
two-class problems. The appropriate class is found by a voting scheme: each binary 
classifier votes for one class. Other more sophisticated binary approaches have been 
devised, such as Direct Acyclic Graph SVM (DAGSVM), where the estimation phase 
is identical to the one-against-one classifier, but the assignment phase uses a directed 
acyclic graph whose nodes are the g(g - 1 ) / 2  binary SVM classifier and leaves the 
g classes (Platt et al., 2000). 

The g-class SVM has been proposed independently under various formulations in 
Vapnik (1 998), Bredensteiner and Bennett (1 999), Weston and Watkins (1 999), and 
Guermeur et al. (2000). As with the one-against-all approach, g decision functions 
are estimated, but they are all obtained by solving one problem. 

A comparison of these methods on large-scale problems can be found in Hsu and 
Lin (2002). It appears that all-together methods need less support vectors but more 
training time than one-against-one and DAG approaches. Considering their relative 
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performances, there is not a significant difference between the methods, and Hsu and 
Lin (2002) thus conclude that one-against-one and DAG may be more suitable for 
practical use. Greater differences may show up in problems with a large number of 
classes with few data points. 

6.13.4 Computer Software 

We have implemented the Recursive Feature Elimination method for two- and multi- 
class problems in a R language package that we call rfe. The source code is available 
from the Comprehensive R Archive Network (CRAN) under the section Download 
from 
http://www.r-project.org/ 
or alternatively from 
http://www.hds.utc.fr/"ambroise/RFE/. 

As noted above, the Recursive Feature Elimination Algorithm was first proposed 
by Guyon et al. (2002) for selecting relevant features in the two class problem using 
linear SVM. 

For multiclass problems, the RFE procedure needs some adaptation. First, one 
has to choose the approach for dealing with multiple classes using SVM. Second, it is 
necessary to adapt the ranking criterion. In the rfe package, the following solutions 
are considered: 

0 Multiclass classification is achieved using the one-against-one approach, in 
which g(g ~ l ) / 2  binary classifiers are trained, from all possible two-class 
problems. The appropriate class is found by a voting scheme: each binary 
classifier votes for one class. The observation to be classified is assigned to 
the class having the maximum number of votes. This procedure was first used 
by Friedman (1996) and KreBel (1 999). An interesting comparison with other 
multiclassification SVM algorithms can be found in Hsu and Lin, 2002. 

0 Each two-class SVM classifier is described by a weight vector. The g-class 
classifier based on the "one-against-one" approach is characterized by g(g - 
1)/2 weight vectors. The sum of the absolute value of the weight vector 
coordinate is used to characterize the discriminatory power of the associated 
feature. 

The rfe package depends on the e 107 1 package for the implementation of linear 
Support Vector Machines (SVM). The underlying C++ code for linear SVM is pro- 
vided by Chang, Chih-Chung and Lin, Chih-Jen: 
LlBSVM: a library for Support Vector Machines 
http://www.csie.ntu.edu.tw/"cjlin/lin/libsvm 



VARIANTS OF SUPPORT VECTOR MACHINES 207 

6.14 VARIANTS OF SUPPORT VECTOR MACHINES 

Recently, Marron and Todd (2002) and Benito et al. (2004) have considered a variant 
of the support machine for the discrimination of data that are of very high dimension 
relative to the sample size, as in a typical microanay analysis. Their method of 
“distance weighted discrimination” aims to reduce the “data piling” at the margin 
with applications of the SVM to high-dimensional data. 

In other work for high-dimensional data, Bhattacharyya et al. (2003) have formu- 
lated the minimax probability machine (MPM) as a viable alternative to the SVM. 
The MPM forms a discriminant rule by the minimization of an upper bound on the 
overall error rate. They describe LIKNON, a specific implementation of a statistical 
approach for creating a rule and identifying a small number of relevant features si- 
multaneously. Given two-class data, LIKNON estimates a sparse linear discriminant 
rule by exploiting the simple and well-known property that minimizing the L1 norm 
(via linear programming) yields a sparse hyperplane. 

6.15 NEURAL NETWORKS 

We consider the case of g = 2 classes, but the definition extends in a straightforward 
manner to g > 2 classes. In this section, we replace the class-indicator vector zj of 
the feature vector y3 by the scalar z3,  where z3 is one or zero, according as yj belongs 
to class C1 or C2. 

For a feedforward neural network with one hidden layer of m units (see Figure 
6.2), we can analytically represent the output Z corresponding to the input y as 

2 = a2(Q”2 + &w), (6.5 1) 

where 20 = (q, . . . , w , ) ~  and where wh = ul(ah01 + aTly) is the hth hidden 
variable (h = 1, . . . , m). Here ah01 is the bias term, a h 1  is the vector of weights 
used to produce the hth hidden variable, a02 is the bias term, and a2 is the m- 
dimensional vector of weights used to produce the (scalar) output 5; see, for example, 
Bishop (1995). 

The activation function a1 transforming the linear sum aEly to give the hth hidden 
neuron, is usually taken to be the sigmoidal function s(w), where 

s(u) = exp(u)/{l + exp(u)}. 

The activation function a2 for the output units is also usually taken to be the sigmoidal 
(logistic) function s(u) .  In the present context of classification problems where 
a2(.) = s(.), the consequent output 5 represents the conditional probability that the 
entity belongs to class C1 given the input y (that is, it is the posterior probability 
of class membership of C1). In those instances where a2 is taken to be a threshold 
function, the output 5 is a direct estimate of the membership label z of y. 
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For a feedforward network, the conventional learning rule uses the back-propagat- 
ion algorithm to minimize a target function such as the sum of the squared errors, 

n 
2 C(-t.I - 3) 

j=1 

where ZJ = ~ ~ ( N O Z  + cr,Twj) and where now wj = (wj, . . . ~ , j ) ~ ,  and 

wh.i = a1 (who1 + wz19,j) (6.52) 

is the hth hidden variable corresponding to the input yj (h  = 1, . . . , m; j = 
1, . . . , n). Recently, Ng and McLachlan (2004) have considered the use of the 
EM algorithm in the training of neural networks. 

An example of an application of neural networks to the classiiication of microarray 
gene-expression data has been given by Khan et al. (2001) 

Input Neurons Hidden Neurons 

Fig. 6.2 Multilayer perceptron neural networks. 

Output Neuron 

6.16 NEAREST-NEIGHBOR RULES 

6.1 6.1 Introduction 

As noted by Fix and Hodges (1 95 l), nearest-neighbor allocation is based on a variant 
of nearest-neighbor density estimation of the class-conditional densities; see McLach- 
lan (1992, Chapter 9). Suppose that .fl(y) is estimated by the naive kernel density 
estimator f j K ’ ( y ) ,  using as its kernel the uniform density over the neighborhood 
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JV~ taken large enough so as to contain a given number k of points in the combined 
sample yj ( j  = 1, . . . n). The same neighborhood& is then used to construct the 

naive kernel density f$"'(y) of f2(y). Then it can be seen that the allocation rule 

based on the relative size of fjK'(y) and fiK'(y) is equivalent to that based on the 
relative size of kl /nl and k2/n2, where ki is the number out of the k points from the 
combined sample in the neighborhood NI of y, that come from Ci (i = 1,2). 

For k = 1, the rule based on the relative size of k1/n1 and k2/n2 is precisely the 
1-NN discriminant rule (nearest-neighbor rule of order l), which assigns an entity 
with feature vector y to the class of its nearest neighbor in the training set. For 
k > 1, their approach incorporates a variety of so-called k-NN discriminant rules, 
including simple majority vote among the classes of a point's k nearest neighbors and 
modifications that take differing class-sample sizes into account. 

6.16.2 Definition of a k-NN Rule 

We now give a formal definition of a kth nearest neighbor (k-NN) rule within the 
regression framework, as adopted by Stone (1977) in his important paper on consistent 
nonparametric regression. For an unclassified entity with feature vector y, consider 
estimates of its posterior probabilities of class membership having the form 

n 

+t(Y; t )  =C"n,(Y;t,,)z,l (2 = 1, ' " ,  g) ,  

where w,, (y; tY )  are nonnegative weights which sum to unity and which may depend 
on y and the training feature vectors yl, . . . , yn, but not their associated class- 
indicator vectors z1, . . . , z,. As previously, the classified training data t are defined 
by (6.12), while 

Rank the n training observations yl ,  . . . , yn according to increasing values of I ly, - 
yI I to obtain the n indices R1 , . . . , R,. The training entities j with R, 5 k define 
the k nearest neighbors of the entity with feature vector y. Ties among the yyg can be 
broken by comparing indices; that is, if 1 Iy,, - yI I = I (yJ2 - yll, then R,, < R,, if 
31 < j 2 ;  otherwise, R,, > RJ2.  In Stone's (1977) work, any weight attached to kth 
nearest neighbors is divided equally when there are ties. 

If wnJ is a weight function such that wn3 (y; tY) = 0 for all RJ > k ,  it is called a 
k-NN weight function. The sample rule obtained by using the estimate ;i, (y; t )  with 
these weights in the definition (1.4.3) of the Bayes rule is a k-NN rule. For example, 
if k = 1, then 

(6.53) 
,=1 

T T T  t ,  = ( Y l l  . . .  1 Y,) . 

wnj(y; t Y )  = 1 if Rj  = 1, 

= o  if Rj > 1, 

so that 
.il(y; t )  = Z i R ,  (2  = 1. . . . g )  



2 10 DlSCRlMlNA NT A NA LYSlS 

These estimates of the posterior probabilities of class membership imply that in an 
outright allocation of the unclassified entity with feature vector y. it is assigned to the 
class of its nearest neighbor in the training set. 

In the case of k > 1 with uniform weights, where 

w,,(y;t) = l / k  if RJ 5 k :  

= o  if Rj > k ,  

we have that 
k 

J = 1  

implying that the entity with feature vector y is allocated on the basis of simple 
majority voting among its I;  nearest neighbors. 

The obvious metric on RP to use is the Euclidean metric. This metric, however, is 
inappropriate if the feature variables are measured in dissimilar units; in which case, 
the feature variables should be scaled before applying the Euclidean metric. The 
influence of data transformations and metrics on the k-NN rule has been considered 
by Todeschini (1989). Also, Myles and Hand (1990) have considered the choice of 
metric in NN rules for multiple classes. 

6.17 CLASSIFICATION TREES 

Tree-structured rules are the subject of the book by Breiman et al. (1984). Their 
contributions are known by the acronym CART (classification and regression trees). 
Another popular methodology is the program ID3 and its later versions, C4.5 and 
C5.0, as developed by Quinlan (1986, 1993). There is also the method known as 
FACT proposed by Loh and Vanichsetakul ( I  988), among others. 

An attractive feature of tree-based classifiers is their interpretability. A classifi- 
cation tree partitions the space into a set of hypercubes, and each decision can be 
interpreted using AND-OR rules in a straightforward manner. In this chapter we 
describe and use the CART method, which has had a seminal influence in the field. 

It is easy to grow a tree having a zero apparent error rate (see Figure 6.3) with only 
a few genes. Thus, some pruning of the tree is required. With the CART method, a 
large tree is grown in the first instance, which ensures against stopping too early. The 
bottom nodes are then recombined or “pruned” upward to give the final tree. The 
degree of pruning is determined by cross-validation using a cost-complexity function 
that balances the apparent error rate with the tree size. An example of a pruned tree 
produced by CART is given in Figure 6.4; see also Figure 6.5. The data being used 
here are the colon cancer data of Alon et al. ( 1  999), as described in Section 2.6. 

Because CART recursively partitions the training data into subsets of ever decreas- 
ing size, it requires n to be very large in order to maintain reasonable sample sizes 
at each successive node. Breiman et al. (1984) proved that under mild regularity 
conditions, rules based on recursive partitioning are Bayes risk consistent. 
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Fig. 6.3 A tree with zero apparent error rate in its application to the Alon data. 

Trees are different from previously considered classifiers because they are learning 
and selecting features simultaneously. Consequently, an optimal tree is defined for a 
given set of features. A characteristic of binary tree classifiers is the embedding of the 
feature selection within the learning procedure. Usually, the optimal tree complexity 
and the estimation of the error rate are considered at the same time using the same 
sample. 

6.18 ERROR-RATE ESTIMATION 

We consider now the estimation of the error rates associated with a discriminant 
rule ~ ( g ;  t )  formed from some realized training data t ,  as defined by (6.12). There 
is a very extensive subfield of discriminant analysis and the reader is referred to 
McLachlan (1992, Chapter 10) and Schiavo and Hand (2000) for an in-depth account. 
As discussed in Section 6.6, it is the conditional or actual error rates of ~ ( y ;  t )  that 
are of central interest once the training data t have been obtained. We let ec( t )  denote 
the overall conditional error rate of ~ ( y ;  t ) ,  as defined in Section 6.6. This error 
rate, which is conditional on the training data t ,  also depends on the class-conditional 
distributions. But this dependence is suppressed here for simplicity of notation. 

6.18.1 Apparent Error Rate 

An obvious and easily computed nonparametric estimator of the conditional error 
rate ec( t )  of r ( g ;  t )  is the apparent error rate A of ~ ( y ;  t )  in its application to the 
observations in t .  That is, A is the proportion of the observations in t misallocated 
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M36634>0.147 

U04953<0.184 U04953>0.184 

011 9 511 

Fig. 6.4 Optimal pruned tree for Alon data obtained by CART method. The ten-fold cross- 
validated error rate is 15%. 

Fig. 6.5 Partition of the Alon data using the optimal pruned tree. 
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by r(y; t ) .  Thus we can write 

. ~ n  

(6.54) 

where for any u and u, Q[u, u] = 0 for u = u and 1 for u # u. 
The apparent error rate, or resubstitution estimator as it is often called, was first 

suggested by Smith (1947) in connection with the sample NQDR. As the apparent 
rate is obtained by applying the rule to the same data from which it has been formed, 
it provides an optimistic assessment of the true conditional error rates. In particular, 
for complicated discriminant rules, overfitting is a real danger, resulting in a grossly 
optimistic apparent error. Although the optimism of the apparent error rate declines 
as n increases, it usually is of practical concern. 

6.18.2 Bias Correction of the Apparent Error Rate 

We now proceed to consider some nonparametric methods for correcting the appar- 
ent error rate for bias. One way of avoiding the bias in the apparent error rate as 
a consequence of the rule being tested on the same data from which it has been 
formed (trained), is to use a holdout method as considered by Highleyman (1962), 
among others. The available data are split into disjoint training and test subsets. The 
discriminant rule is formed from the training subset and then assessed on the test 
subset. Clearly, this method is inefficient in its use of the data. There are, however, 
methods of estimation, such as cross-validation, the Quenouille-Tukeyjackknife, and 
the bootstrap of Efron (1979), that obviate the need for a separate test sample. An 
excellent account of these three methods has been given by Efron (1982), who has 
exhibited the close theoretical relationship between them. 

6.19 CROSS-VALIDATION 

6.1 9.1 Leave-One-Out(L00) Estimator 

One way of almost eliminating the bias in the apparent error rate is through the 
leave-one-out (LOO) technique as described by Lachenbruch and Mickey (1968) or 
cross-validation (CV) as discussed in a wider context by Stone (1974) and Geisser 
(1 975). For the estimation of ec ( t )  by the apparent error rate A, the leave-one-out 
cross-validated estimate is given by 

(6.55) 
i=l j=1 

." 
where t ( j )  denotes t with the point yj deleted ( j  = 1, . . . , n). Hence before the 
sample rule is applied at yj, it is deleted from the training set and the rule recalculated 
on the basis of t ( j ) .  This procedure at each stage can be viewed as the extreme version 
of the holdout method where the size of the test set is reduced to a single entity. 
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According to Stone (1974), the refinement of this type of assessment appears to 
have been developed by Lachenbruch (1965) following a suggestion in Mosteller and 
Wallace ( 1963). Toussaint ( 1  974) in his bibliography on error-rate estimation traces 
the idea back to at least 1964 in the Russian literature on pattern recognition. 

It can be seen that, in principle at least, cross-validation requires a considerable 
amount ofcomputing, as the sample rule has to be formed n times in the computation 
of A(cv).  For some rules, however, it is possible to calculate A(cv) with little 
additional effort. 

6.1 9.2 q-Fold Cross-Validation 

As remarked by Efron (1 983), cross-validation is often carried out, removing large 
blocks of observations at a time. Suppose, for example, that the training set is divided 
into, 5ay q blocks, each consisting of m data points where, thus, n = qni ( M  2 1). 
Let now 

T ?' T T T .  
t ( k )  = (YI ' . . . , Y ( k - l ) m ,  Yk?"L+l, . . '  7 Y,) > 1 

that is, the training set after the deletion of the kth block of rn observations. Then the 
q-fold cross-validated error rate is given by 

~ = 1 ~ = 1  k = l  

which requires only y recomputations of the rule. 
The choice of y = n (leave-one-out) does not perturb the data enough and results 

in higher variance. With y = 2, the training sets are too small relative to the full 
training sets. The values q = 5 or 10 are a good compromise. 

6.20 ERROR-RATE ESTIMATION VIA THE BOOTSTRAP 

6.20.1 The 0.632 Estimator 

As shown by Efron (1979, 1983), suitably defined bootstrap procedures can reduce 
the variability of the leave-one-out error in addition to providing a direct assessment 
of variability for estimated parameters in the discriminant rule. Also, if we take the 
number of bootstrap replications K to be less than ri, it will result in some saving in 
computation time relative to leave-one-out cross-validation. 

As discussed by Efron and Tibshirani (1997), a bootstrap smoothing of leave- 
one-out cross-validation is given by the leave-one-out bootstrap error which 
predicts the error at a point y3 only from bootstrap samples that do not contain the 
point yJ . To define B ( l )  more precisely, suppose that K bootstrap samples of size 
n are obtained by resampling with replacement from the original set of n classified 
tissue samples. We let ~ ( y ;  t z )  be the bootstrap version of the rule ~ ( y ;  t )  formed 
from the kth bootstrap sample in exactly the same manner that ~ ( y ;  t )  was formed 
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from the original training set t .  Then the (Monte Carlo) estimate of B(l)  on the basis 
of the K bootstrap samples is given by 

71 

= c q / n ,  (6.57) 
j=1 

where 

k = l  ?=1 k = l  

and where I,, is one if yj is not contained in the kth bootstrap sample and is zero 
otherwise. 

Typically, B(l )  is based on about 0.632n of the original data points and Efron 
(1983) confirmed that it closely agrees with the half-sample cross-validation (that is, 
two-fold) error rate A(cv2). Thus B(l )  is upwardly biased and Efron (1983) proposed 
the 0.632 estimator, 

B("."') = 0.368 A + 0.632 B( l )  (6.58) 

with the downwardly biased apparent error A. for correcting the upward bias in 
As B(l )  is almost the same as A(cv2),  B(.632) is almost the same as 

0.368 A + 0.632 A(cv2). (6.59) 

Estimators of this type were considered previously by Toussaint and Sharpe (1975) 
and McLachlan (1 977) in the context of choosing the weight w so that 

A(w) = (1 - w)A + U A ( ~ " ~ )  (6.60) 

where, as above, A(cvq) denotes the estimated rate after cross-validation, removing 
m = n/q  observations at a time. 

For the rule based on the sample NLDF with zero cutoff point, McLachlan (1977) 
calculated the value w, of w for which A(") has zero first-order bias. For q = 2, 
McLachlan (1977) showed that 20, ranged from 0.6 to 0.7 for the combinations of the 
parameters considered. Hence, at least under the homoscedastic normal model, the 
estimator A(".) is about the same as the 0.632 estimator of Efron (1983). The latter 
therefore should have almost zero first-order bias under (6.24), at least for the sample 
NLDR. 

6.20.2 Mean Squared Error of the Estimated Error Rate 

We have seen in the previous sections that the actual error rate of a discriminant 
rule can be estimated nonparametrically by the use of cross-validation and that the 
bootstrap provides a viable alternative with less variation. In practice, it is also of 
interest to provide a guide to the variability in the error-rate estimator. Here we 
outline how the root mean squared error (RMSE) of the cross-validated estimator can 
be estimated by the bootstrap. 
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Let ~ ( y :  t )  be some rule formed from the training data t and let A(cv) be its 
cross-validated error rate as defined by (6.55). Its RMSE can be estimated by the 
bootstrap as follows. 

Let r(y; tz )  be the rule formed from the kth bootstrap sample t i  obtained by 
sampling with replacement from the original training data t ( I ;  = 1, . . . , K ) .  The 
conditional or actual error rate eck of r(y; tz) when it is applied to a randomly chosen 
observation from the bootstrap distribution F, is given by 

Here F, denotes the empirical distribution function that places mass l / n  at each 
point (y;, z:)’ in the training data t as given by (6.12). We let ALcv) be the 
cross-validated error rate of r(y; t ; )  formed from t ; .  

Then the RMSE of A(cv) can be approximated by 

K 

RIIISE(A(‘V)) = [ ~ ( A F ~ )  - r c k ) 2 / ~ 1  i .  (6.62) 
X = l  

For y-fold cross-validation, there is an easily computed estimate of the standard 
errors of the estimated error rates It is given by the standard error of the q 
apparent error rates that are obtained when the discriminant rule is applied to the y 
validation subsamples during the cross-validation. This standard error of A(c”q) is 

(C ‘17q )  . where A,< is the apparent error rate when the rule formed from the hth training 
subsample is applied to the hth validation subsample. Similarly, the standard errors 
of the individual q-fold cross-validated error rates can be formed. 

6.21 SELECTION OF FEATURE VARIABLES 

With high-dimensional feature data, consideration has to be given to the choice of 
feature variables to be used in the formation of the sample discriminant rule. For 
some rules, like the nearest-neighbor centroid or a SVM, it is possible to construct 
the rule using all the feature variables. But with, say, Fisher’s linear discriminant 
rule, it cannot be formed unless the number of feature variables is sufficiently small 
for the inequality (6.47) to hold. Also, even if it is possible to form the rule using 
all the feature variables, the use of all the variables may harm the performance of 
the sample rule. This is because for training samples of finite size, the performance 
of a given discriminant rule in a frequentist framework does not keep on improving 
as the number p of feature variables is increased. Rather, its overall unconditional 
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error rate will stop decreasing and start to increase as p is increased beyond a certain 
threshold, depending on the particular situation. Consider, for example, the case of 
g = 2 classes under the homoscedastic normal model (6.24). Although the deletion of 
some variables from the feature vector y can never increase the Mahalanobis distance 
A between the classes C1 and CZ,  the overall unconditional error rate of the sample 
NLDR may be reduced if the subsequent reduction in the distance is sufficiently 
small relative to the number of variables deleted (McLachlan, 1992, Chapter 12). 
This peaking phenomenon will be demonstrated further in the next chapter with the 
application of Fisher’s rule and SVMs to some microarray data. 

Of course there may be other reasons for not wishing to use the entire set of 
variables. For example, the primary aim of the discriminant analysis might be to 
determine the set of variables most relevant for identification of the underlying class 
structure of the problem. This is a common aim in the analyses of microarray data, 
where the aim is to find so-called marker genes, which are genes that are most useful 
in assigning an unclassified tissue to its correct class of origin. 

Numerous heuristic search algorithms have been proposed in the literature. Ex- 
cellent reviews have been given recently by Kudo and Sklansky (2000) and Molina, 
Belanche, and Nebot et al. (2002). All these approaches involve searching for an 
optimal or near optimal subset of features that optimize a given criterion. If the selec- 
tion process takes place before the construction of the discriminant rule, the method 
is said to follow a filter approach. If the computation of the criterion uses the rule as a 
subroutine, the method is said to follow a wrapper approach (Kohavi and John, 1997). 
Also, feature-selection schemes are classified as to whether they are embedded or not. 
An embedded scheme is one for which a rule has its own feature-selection procedure, 
such as with tree classifiers and nearest-shrunken centroids. The latter is to be defined 
in the next chapter. 

Feature subset selection can also be classified into three categories according to the 
strategy used for searching the feature subset space: they are (1) exhaustive search, 
(2) heuristic search, and (3) random search. 

In many situations attention is focused not on just one subset of the available 
feature variables. Rather the intention is to find the best subset in some sense. Thus 
consideration of a number of subsets has to be undertaken. Ideally, the performance 
of the discriminant rule should be assessed on the basis of the specified criterion for 
each possible subset. But unless the total numberp of variates is small, an exhaustive 
search is computationally prohibitive unless the number of features is small enough, 
or the evaluation criterion is known to be monotonic. 

As a consequence, stepwise selection procedures, either forward or backward, are 
commonly employed. The two basic algorithms are Sequential Forward Selection 
(SFS) and Sequential Backward Selection (SBS). SFS starts with an empty set of 
features and adds the best possible feature at each stage. SBS starts with the complete 
set of features and removes the worst feature at each stage. Both algorithms fail to take 
into account the complexity in the dependence relationships of the features and are 
only optimal at each stage. Usually backwards algorithms perform better than their 
counterpart, but they are computationally more expensive. Among all the alternative 
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search strategies available, the sequential floating strategies of Pudil et al. ( 1  994) rank 
among the best. 

Random search algorithms offer an alternative to heuristic search to avoid being 
stuck on local optima of the chosen criterion. Genetic algorithms have proved to be 
effective tools in variable selection. 

6.22 ERROR-RATE ESTIMATION WITH SELECTION BIAS 

6.22.1 Selection Bias 

Caution has to be exercised in selecting a small number of variables from a large set, 
as there will be a selection bias associated with choosing the optimal of a large number 
of possible subsets, regardless of the criterion used. This problem in discriminant 
analysis has been considered by Murray (1977), Gong (1986), Ganeshanandam and 
Krzanowski ( 1  989), and Snapinn and Knoke (1 989), among others. Miller ( 1  984, 
1990) makes a number of allied points regarding the selection of variables in multiple 
regression. 

Consider the selection of the subvector y(") of the full feature vector y. Suppose 
that s, defines the subset of feature variables of some specified sizepso that minimizes 

the adopted estimate e( t ( ' ) )  over all possible ( iso) distinct subsets s of size ps,. 

Although G(t(")) may be an unbiased estimator of the overall conditional error rate, 
G(t(")) is obviously not as it is obtained by taking the smallest of the estimated error 
rates after they have been ordered. As noted by Murray (1977), the situation is 
exacerbated if an optimistic estimator of the error rate, such as the apparent error rate, 
is used. There is then a double layer of overoptimistic bias inherent in the assessment. 

6.22.2 External Cross-Validation 

Suppose that y(',) contains the subset of feature variables selected as being the best 

of size p ~ , ,  according to some criterion. Let ~(y('0): d s 0 ) )  denote some arbitrary 

sample discriminant rule formed from the classified training data d S o )  on the feature 

vector y ( ~ 0 ) .  
The overall apparent error rate of this rule may be expressed as 

(6.64) 

where the Q-function is defined by (6.7). The optimism arising from the use of the 
apparent error rate may be almost eliminated using cross-validation. The (leave-one- 
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out) cross-validated estimate is 

where tlir’ denotes the training data d S o )  with ( ~ y ’ ) ~ ,  z:)~ deleted. 
In order to reduce the selection bias which is still present in the estimate (6.65), 

an external cross-validation should be performed whereby the selection process is 
undertaken for each deletion of a feature vector from the training set. This external 

cross-validated estimate of the overall error rate of ~ ( y ( ~ 0 ) ;  t ( ” 0 ) )  is given by 

where soj denotes the optimal subset, according to the adopted selection criterion 
applied to the training data t ( j )  without (y:, z:)’ . As the notation implies, the 
selected subset soJ for the allocation of the j t h  entity may be different for each 

This way of overcoming the selection bias involves a high computing penalty. But 
there are many situations in practice where its implementation is computationally 
feasible to implement. An illustration of its use is to be given in Chapter 7 on the 
supervised classification of microarray data. 

j ( j  = 1, . . . , n). 

6.22.3 The 0.632+ Estimator 

An alternative method for error-rate estimation in the presence of selection bias is 
the use of the so-called 0.632+ estimator, B(0.632+). Efron and Tibshirani (1 997) 
proposed this estimator for highly overfit rules like nearest neighbors, where the ap- 
parent error rate is zero. It puts relatively more weight on the leave-one-out bootstrap 
error B(’). Ambroise and McLachlan (2002) subsequently applied it in the context of 
microarray data, where the prediction rule is an overfit as a consequence of its being 
formed from a very large number of genes relative to the number of tissues. 

The .632+ estimate B(.6”2+) is defined as 

where the weight w is given by 

.632 
1 - .368u ’ w =  

and where 

(6.68) 
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is the relative overfitting rate and y is the no-information error rate that would apply if 
the distribution of the class-membership label of the j th  feature vector did not depend 
on its feature vector y3. It is estimated by 

(6.69) 
z= 1 

where p ,  is the proportion of the (original) training data from the ith class and 4% is 
the proportion of them assigned to the ith class by ~ ( y ;  t ) .  The rate u may have to be 
truncated to ensure that it does not fall outside the unit interval [0,1]. The weight UI 
ranges from 0.632 when 11, = 0 (yielding B( 6 3 2 ) )  to 1 when u = 1 (yielding B(l ) ) .  

The B( G 3 2 + )  estimate hence puts more weight on the bootstrap leave-one-out 
error B(l )  in situations where the amount of overfitting as measured by B(l )  - A is 
relatively large. It is thus also applicable in situations where the discriminant rule 
r(y: t )  is overfitted due to feature selection. This is to be illustrated in the next 
chapter. 



7 
Supervised ClassiJication of 

Tissue Samples 

7.1 INTRODUCTION 

In Chapter 4, we have considered the unsupervised classification (cluster analysis) 
of microarray data. In this chapter, we apply some of the methods of discriminant 
analysis described in the previous chapter to carry out supervised classification of 
tissue samples. 

As explained by Xiong et al. (2001), there is increasing interest in changing the 
emphasis of tumor classification from morphologic to molecular. In this context, 
the problem is to construct a discriminant (prediction) rule ~ ( y )  that can accurately 
predict the class of origin of a tumor tissue with feature vector y, which is unclassified 
with respect to a known number g (> 2) of distinct tissue types, denoted here by 
C1, . . . , C,. Here the feature vector y contains the expression levels on a very 
large number N of genes (features). In applications concerned with the diagnosis of 
cancer, one class C1 may correspond to cancer and the other (CZ) to benign tumors. 
In applications concerned with patient survival following treatment for cancer, one 
class (C,) may correspond to the good-prognosis group and the other Cz to the poor- 
prognosis group. Also, there is interest in the identification of “marker” genes that 
characterize the different tissue classes. This is the feature selection problem as 
discussed in Section 6.21. 

A recent study on breast cancer suggested that a set of 70 genes could better predict 
the clinical outcome in patients than could standard clinical criteria (van de Vijver et 
al., 2002). Following these results, the first microarray-basedprognostic screening of 
cancer patients has been set up in the Netherlands and will be used to guide treatment 
(Schubert, 2003). 

221 
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In order to train the discriminant (prediction) rule, there are available training data t 
consisting of n = M tissue samples of known classification. These data are obtained 
from hf microarrays, where the j t h  microarray experiment gives the expression levels 
of the p = N genes in the j th  tissue sample y3 of the training set. In the notation 
introduced in Section 4.2, yj is the gene expression signature vector for the j th  tissue. 
The class of origin of the j t h  tissue sample yj i s  denoted by the g-dimensional vector 
of zero-one class labels .zj ( j  = 1, . . . , n). As in Chapter 3, we write the sample rule 
formed from the training data t as ~ ( y ;  t )  to show its dependence on t ,  which can 
be represented by (6.12). In the sequel, we shall refer to the tissue sample yj simply 
as a tissue, since in statistics the collection of the n tissue samples from yl, . . . , Y, ,~  
that belong to a given class would be referred to as a sample. 

There are many techniques available for supervised learning, some of which have 
been described in Chapter 6, in a general context. However, most of these techniques 
are not likely to work “off the shelf”, as expression data present special challenges. 
The difficulty is that the number of feature variables (genes) is large compared with 
the number of observations (tissue samples), and they tend to be highly correlated. 

The supervised learning problem for the class prediction of a tissue sample is easier 
than in an unsupervised context, as considered in Chapter 4. But it is still a challenging 
problem, due to the difficulty of prediction in molecular biology. For example, in 
the classification of liver cancer, both normal and liver tumors are complex tissues 
composed of diverse specialized cells. Indeed, whenever we assay gene expression 
in a tissue, we are observing a mixture of cell types (Churchill, 2003), Further, not all 
interesting class distinctions are determined by gene expression levels alone. Cellular 
differences may be regulated by alternative splice variants or by rnethylation, neither 
of which would necessarily be evident from expression chip data (Slonim, 2002). 

7.2 REDUCING THE DIMENSION OF THE FEATURE SPACE OF GENES 

In a standard discriminant analysis, the number of training observations n is usually 
much larger than the number of feature variables p.  But in the present context of 
microarray data, the number of tissue samples ( n  = hf) is typically between 10 and 
100, and the number of genes ( p  = N )  is in the thousands. This presents a number of 
problems. Firstly, the prediction rule ~ ( y ;  t )  may not be able to be formed using all 
p available genes. For example, the pooled within-class sample covariance matrix S 
required to form Fisher’s linear discriminant function (6.34) is singular if n < y + p .  
Secondly, even if all the genes can be used as, say, with the nearest-centroid rule 
or a support vector machine (SVM), the use of all the genes may allow the noise 
associated with genes of little or no discriminatory power, to inhibit and degrade 
the performance of the rule ~ ( y ;  t )  in its application to unclassified data. That is, 
although the apparent error rate A (the proportion of the training tissues misallocated 
by r(y; t ) )  will decrease as it is formed from more and more genes, its error rate 
in classifying tissues outside of the training set will eventually increase. That is, the 
generalization error of ~ ( y ;  t )  will be increased if it is formed from a sufficiently large 
number of genes. The conditional and unconditional forms of the generalization error 
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have been defined in Section 6.6. Hence, in practice, consideration has to be given 
to implementing some procedure for reducing the dimension of the feature vector of 
genes to be used in constructing the rule r(y; t ) .  

7.2.1 Principal Components 

A common approach is to carry out a principal component analysis (PCA) and work 
with the leading components. The PCA can be implemented via a singular value 
decomposition as outlined in Section 3.19; see, for example, West et al. (200 1 )  and Liu 
et al. (2003). The disadvantages of this approach are that the PCA does not take into 
account the class structure of the genes, and genes that show a large variation across 
the tissues may not be differentially expressed. Also, as the principal components are 
linear combinations of the original number of genes, biological interpretation of the 
components is not straightforward. 

7.2.2 Partial Least Squares 

One method that does take into account the class structure of the tissue samples in 
reducing the dimension of the feature space is partial least squares, as explained in 
Section 3.21. However, it still suffers from the same interpretation difficulties as with 
principal components, as the components are linear combinations of all the genes. 

Partial least squares for the supervised classification of tissue samples has been 
considered by Nguyen and Rocke (200 l,2002a, 2002b), using logistic discrimination 
and the normal-based quadratic rule. The response vector is taken to consist of the 
class-indicator variables. Nguyen and Rocke (2002a) demonstrated in their study 
that if the top genes for discrimination purposes were selected before performing 
the principal component analysis, then it would give similar results to partial least 
squares. 

There are other methods of dimension reduction; for example, (Antoniadis, et al., 
2003) consider the MAVE method of dimension reduction. 

7.2.3 Ranking of Genes 

One common way of approaching the gene selection problem is to perform a prelim- 
inary ranking of genes on the basis of a fast computable criterion and then arbitrarily 
select a number of the best-ranked genes. Then either a discriminant rule is formed on 
the basis of these selected genes or further selection is undertaken before constructing 
the rule. 

A commonly used criterion for ranking the individual genes yv = (Y)~ (u = 

1, . . . , p )  is the ratio of the between-class sum of squares to the within-class sum of 
squares, 

Fv = ( % N / ( S ) v v ,  (7.1) 

where the sums of squares and products matrices B and S are defined by (3.5 1) and 
(3 .53,  respectively. Under the null hypothesis that the wth gene has the same variance 
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in each class, the statistic F,, has an F-distribution with g - 1 and n - g degrees of 
freedom. The use of (7.1) is equivalent to the likelihood ratio statistic -2 log X for 
the test of no differences between the means of the classes under the assumption of 
the homoscedastic model (6.24) for the class-conditional distributions of the genes. 
Also, in the case of g = 2 classes, it is equivalent to the usual two-sample (pooled) 
Studentized f-statistic. 

Another criterion is to use the apparent error rate A, of the rule r(yY,; tb) ,  where 
the latter is formed using just the training data on the vth gene (Braga-Neto et al., 

(CV)  2004). Alternatively, we may use the (leave-one-out) cross-validated error rate A, . 
A further criterion is to rank the genes on the basis of the absolute values of their 
coefficients in the linear form of ~ ( y ;  t )  for an SVM formed with linear kernel. This 
is to be discussed further in the next section. 

There are also rules where the ranking is being done implicitly in their construction; 
for example, nearest-shrunken centroids to be considered in Section 7.9. 

7.2.4 Grouping of Genes 

Another way to handle the problem of having to form a discriminant rule from a very 
large number of feature variables (genes) is to put the genes into groups either by 
some clustering method or by some supervised selection procedure that makes use 
of' their known class labels. There is now a variety of ways proposed in the literature 
for the grouping of the genes, which shall be outlined in the final section of this 
chapter. Having so grouped the genes, a discriminant rule can be formed from the 
genes (metagenes) selected to represent each group. Recent papers that make use of 
this approach include Dettling and Buhlmann (2002), Liu et al. (2002). Diaz-Uriarte 
(2003), Hastie et al. (2001 a), and Goh, Song, and Kasabov (2004). 

7.3 SVM WITH RECURSIVE FEATURE ELIMINATION (RFE) 

In Section 6.13.1, we briefly described the support vector machine (SVM) as a dis- 
criminant rule. Support vector machines are becoming increasingly popular classifiers 
in many areas, including microarrays (Brown et al., 2000; Furey et al. 2000; Guyon 
et al., 2002; Ramaswamy et al., 2001). 

Advantages of an SVM in the present context, where the number of feature vari- 
ables (genes) p is so large relative to the sample size n, are that it is able to be fitted 
to all the genes and that its performance appears not to be too affected by using the 
full set of genes. However, in practice, some form of gene selection would generally 
be contemplated. Another advantage of the SVM (with a linear kernel) is that gene 
selection can be undertaken fairly simply using the vector of weights as the criterion. 

For an SVM with linear kernel, the rule ~ ( y ;  t )  can be written as 

where f iu = (B)21 denotes the coefficient of the expression level yv for gene i i .  
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As shown by Guyon et al. (2002), a good guide to the relative importance of the 
genes in this SVM is given by the relative size of the absolute values of their fitted 
coefficients bu (that is, the weights). Hence a ranking of the discriminatory power of 
the genes can be given by ranking the genes from top to bottom on the basis of the 
absolute values of the weights bu. 

We consider here the selection procedure of Guyon et al. (2002), who used a 
backward selection procedure, which they termed recursive feature elimination (RFE). 
This recursive selection procedure has been described in Section 6.13.2. It considers 
initially all the available genes, which are ranked according to their weights and the 
bottom-ranked genes discarded. The SVM is then refitted to the remaining genes, 
which are then reranked according to their new weights. Again, the bottom-ranked 
genes are discarded, and so on. 

In the applications to follow on microarray data, we first discarded enough bottom- 
ranked genes so that the number retained was the greatest power of 2 (less than the 
original number of genes). We then proceeded sequentially to discard half the current 
number of genes on each subsequent step. Initially, the error rate usually falls as 
genes are deleted, but generally, it will start to rise once a sufficiently large number 
of genes have been deleted. 

The error rate at any stage can be assessed by undertaking an external cross- 
validation as described in Section 6.22.2. An alternative is to use the 0.632+ estimator 
of Efron and Tibshirani (1997); see Section 6.22.3. As explained in Section 6.22.3, 
there may be a considerable selection bias present in the apparent error rate when a 
reduced number of genes is selected from a very large number. Thus it is not sufficient 
to use an ordinary (internal) cross-validation, as employed by several authors in the 
past, including Guyon et al. (2002). With an external cross-validation of the error 
rate at a given stage of the selection process, at each split of the original training data 
into training and validation subsets, the selection process has to be implemented from 
the beginning on the basis of the training subset. That is, with the present selection 
process of RFE, the SVM has to be fitted to all the genes and then the process continued 
until the present stage of the selection process has been reached. Then the rule for 
this newly selected subset of genes is applied to the validation subset. 

We note that results in the bioinformatics literature on the relative performances 
of error-rate estimators in the case of a small number of genes do not apply to the 
present case, where there may be thousands of genes. For example, Braga-Net0 and 
Dougherty (2004) considered results for only p=2 and 5 genes in their recent study. 

Before discussing other discriminant rules for the prediction of class membership 
of tissues, we shall report the results of Ambroise and McLachlan (2002) to illustrate 
this selection bias. These results will also serve to demonstrate the performance 
of the SVM with RFE. The size of the selection bias has also been investigated by 
Nguyen and Rocke (2002b) for multiclass discrimination via the logistic and the 
normal quadratic discriminant rules, using partial least squares. 
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7.4 SELECTION BIAS: SVM WITH RFE 

Ambroise and McLachlan (2002) investigated the magnitude of the selection bias 
and its correction for an SVM (with linear kernel) and Fisher's linear discriminant 
function in their application to two cancer data sets. They were the colon data of 
Alon et al. (1999) and the leukemia data of Golub et al. (1999), as considered in an 
unsupervised context in Chapter 4. The former set consists of 40 tumor tissues and 22 
normal tissues, while the latter set consists of 72 tissues from 47 patients with acute 
lymphoblastic leukemia (ALL) and 25 patients with acute myeloid leukemia (AML). 

To illustrate the size of the selection bias for the colon data set, Ambroise and 
McLachlan (2002) split it into a training set and a test set, each of size 3 1, by sampling 
without replacement from the 40 tumor and 22 normal tissues separately, so that each 
set contained 20 tumor and 11 normal tissues. The training set is used to carry 
out gene selection and to form the apparent error rate A, the (leave-one-out) cross- 
validated error rate A(cv) using just internal validation, and the external ten-fold 
cross-validated rate for a selected subset of genes. An unbiased error-rate 
estimate is given by the test error (T) ,  equal to the proportion of tissues in the test 
set misallocated by the rule. They calculated these quantities for 50 such splits of 
the colon data into training and test sets. For the leukemia data set, they divided the 
set of72 tissues into a training set of 38 tissues (25 ALL, 13 AML) and a test set of 
34 tissues (22 ALL, 12 AML) for each of the 50 splits. The average values of the 
error-rate estimates are plotted in Figure 7.1, while the corresponding averages for 
the leukemia data are plotted in Figure 7.2. The error bars on T refer to the 95% 
confidence limits. The 0.632+ bootstrap error estimate, B(0.G32+),  was formed using 
K = 30 bootstrap replications for each of the 50 splits of a full training set. In 
Figures 7.1 and 7.2 and subsequent figures, the apparent error A, the (leave-one-out) 
cross-validated error A(""), the external ten-fold cross-validated error A(cv1""), 
the 0.632+ bootstrap error estimate B(0.G32'), and the test error are denoted by A, 
CV, CV 1 OE, B .632+, and T, respectively. 

It can be seen from Figure 7.1 that the true prediction error rate as estimated by 
T is not negligible, being above 15% for all selected subsets. The lowest value of 
17.5% occurs for a subset of 2G genes. Similarly, for the leukemia data set, it can be 
seen from Figure 7.2 that the selection bias cannot be ignored when estimating the 
true prediction error, although it is smaller (about 5%)  for this second set as the two 
leukemia classes ALL and AML are more easily separated. 

Concerning the estimation of the prediction error by external ten-fold 
cross-validation and the bootstrap, it can be seen that A(cV1oE) has little bias for 
both data sets. For the colon data set, the bootstrap estimate B(o.6"2+) is more bi- 
ased. However, B(O."'+) was found to have a slightly smaller root mean squared 
error than A(Cv1oE) for the selected subsets of both data sets. Efron and Tibshirani 
(1 997) comment that future research might succeed in producing a better compromise 
between the unbiasedness of cross-validation and the reduced variance of the leave- 
one-out bootstrap. It would be of interest to consider this for the present problem 
where there is also feature-selection bias to be corrected for. 
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Ambroise and McLachlan (2002) observed comparable behavior of the SVM rule 
formed using all the available tissue samples (62 and 72 tissue samples for the colon 
and leukemia data sets, respectively). As to be expected for training samples of twice 
or nearly twice the size, the (estimated) bias was smaller: between 10 and 15% for 
the colon data set and between 2 and 3% for the leukemia data set. 

0 2 4 6 8 10 12 
log2(number of genes) 

Fig- 7.1 Error rates of the SVM rule with RFE procedure averaged over 50 random splits of 
the 62 colon tissue samples into training and test subsets of 3 1 samples each. 

It can be seen from Figures 7.1 and 7.2 that the estimated prediction rate according 
to and remains essentially constant as genes are deleted in the 
SVM, until around about 64 or so genes when these estimates start to rise sharply. 
The internal cross-validated error A(””), which is uncorrected for selection bias, also 
starts to rise then. Hence feature selection provides essentially little improvement in 
the performance of the SVM rule for the two considered data sets. But it does show 
that the number of genes can be greatly reduced without increasing the prediction 
error. 

It is of interest to note that the plot in Guyon et al. (2002) for their leave-one-out 
cross-validated error is very similar to the plot of A(CV1oE) in Figure 7.1. However, 
for this data set, Guyon et al. transformed the normalized (logged) data further by 
a squashing function to “diminish the importance of outliers.” This could have an 
effect on the selection bias. For example, for this data set there is some doubt (Moler, 
2000) as to the validity of the labels of some of the tissues, in particular, tumor tissues 
on patients 30, 33, and 36, and normal tissues on patients 8, 34, and 36, as labeled 
in Alon et al. ( I  999). When Ambroise and McLachlan (2002) deleted these latter 
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Fig. 7.2 Error rates of the SVM rule with RFE procedure averaged over 50 random splits of 
the 72 leukemia tissue samples into training and test subsets of 38 and 34 samples, respectively. 

tissue samples, the selection bias of the rule was estimated to be almost zero. But in 
a sense, this is to be expected, for if all tissue samples that are difficult to classify are 
deleted, then the rule should have a prediction error that is close to zero regardless of 
the selected subset of genes. 

7.5 SELECTION BIAS: FISHER’S RULE WITH FORWARD SELECTION 

Ambroise and McLachlan (2002) also considered the selection bias incurred with a 
sequential forward selection procedure for the rule based on Fisher’s linear discrimi- 
nant function. For the selection of genes for Fisher’s rule, they first reduced the set of 
available genes to 400 for each data set in order to reduce the computation time. This 
was undertaken by selecting the top 400 genes as ranked in terms of increasing order 
of the average of the maximum (estimated) posterior probabilities of class member- 
ship. Ambroise and McLachlan (2002) noted that this initial selection incurs some 
(small) bias, which they ignored in their illustrative examples. The forward selection 
procedure was applied with the decision to add a feature (gene) based on the leave- 
one-out cross-validated error. For this, Ambroise and McLachlan (2002) used all the 
available tissue samples (62 for the colon data set and 72 for the leukemia) to train the 
Fisher rule, and so there was no test set available in each case. The cross-validation 
and bootstrap estimates of the prediction error of Fisher’s rule formed via forward 
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selection of the genes are plotted in Figures 7.3 and 7.4 for the colon and leukemia 
data sets, respectively. 
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Fig. 7.3 Error rates of Fisher’s rule with stepwise forward selection procedure using all of 
the colon data (62 samples). 

Considering the colon data set, it can be seen in Figure 7.3 that the leave-one-out 
cross-validated error A(cv) (with the selection bias still present) is optimized (6.5%) 
for only three genes. However, the external cross-validated error A(Cv1oE), which 
has the selection bias removed, is approximately equal to 15% for more than four 
genes. The fact that the estimates B(0.632+) and A(Cv1oE) are around 15% for 10 
or so genes for the colon data set would appear reasonable given that this set has six 
tissues whose class of origin is in some doubt. 

Similarly, it can be seen in Figure 7.4 that the selection bias incurred with forward 
selection of genes for Fisher’s rule on the leukemia data set is not negligible. As 
a consequence, although the leave-one-out error A(cv) error is zero for only three 
selected genes, the external ten-fold cross-validated error A(cV1oE) and the bootstrap 
B(o.632+) error estimate are about 5%. 

The results above for A(Cv) for Fisher’s rule formed via forward selection of 
the genes are in agreement with the results of Xiong et al. (2001). Their error rate 
corresponding to our A(cv), was reported to be equal to 6.5 and 0% for the colon 
and leukemia data sets, respectively; see Table 2 in Xiong et al. (2001). 

Comparing the performance of forward selection with Fisher’s rule to backward 
elimination with SVM, Ambroise and McLachlan (2002) found that the latter pro- 
cedure leads to slightly better results, with a 2% or 3% improved error rate for both 
data sets. When trying forward selection with SVM, they found results very similar 
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Fig. 7.4 Error rates of Fisher's rule with stepwise forward selection procedure using all of 
the leukemia data (72 samples). 

to those obtained using Fisher's rule with a comparable number of genes. Hence it 
seems that the selection method and the number of selected genes are more important 
than the classification method for constructing a reliable prediction rule. 

Consideration has been given recently in the bioinfonnatics literature (Braga-Neto 
et al., 2004) to whether the apparent error rate is competitive with cross-validation 
in ranking the genes or sets of genes. It can be seen from Figures 7.1 to 7.4 that the 
use of the apparent error rate would not be sufficiently reliable for deciding when 
the gene selection process should be terminated with the SVM and Fisher's linear 
discriminant rule. 

7.6 SELECTION BIAS: NONINFORMATIVE DATA 

To further illustrate this selection bias, Ambroise and McLachlan (2002) generated a 
no-information training set by randomly permuting the class labels of the colon tissue 
samples. For each of 20 no-information sets so obtained, an SVM rule was formed 
by selecting genes by the RFE method and the apparent error A and the leave-one-out 
cross-validated error A("v) were calculated. The average values of these two error 
rates and the no-information error y (6.69) over the 20 sets are plotted in Figure 7.5, 
with the average value of the A("V1"E) and B( 632+) error estimates that correct 
for the selection bias. It can be seen that, although the feature vectors have been 
generated independently of the class labels, we can form an SVM rule that has not 
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only an average zero apparent error A but also an average A (cv) error close to zero 
for a subset of 128 genes and around 20% for only eight genes in the selected subset. 
It is reassuring to see that the error estimates A(CV1oE) and B(0.632+),  which correct 
for the selection bias, are between 0.40 and 0.45, consistent with the fact that we are 
forming a prediction rule on the basis of a no-information training set. 
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Fig. 7.5 Error rates of the SVM rule averaged over 20 noninformative samples generated by 
random permutations of the class labels of the colon tumor tissues. 

As noted in Section 6.21, some rules such as tree classifiers have an embedded se- 
lection procedure whereby feature selection is implicitly undertaken in the formation 
of the rule. Thus an ordinary cross-validation of such a rule should correct adequately 
for the selection bias provided that the original rule is formed by a method that allows 
for the selection bias. This will be true with the tree classifier CART (Breiman et 
al., 1984). To illustrate this, we generated another no-information training set by 
randomly permuting the class labels of the colon tissue samples. For each of these 20 
no-information sets, a tree (CART) was grown and the average values of the apparent 
error A and the ordinary ten-fold cross-validated error rate A (cV1o) were calculated 
for the subtrees on the validation trials. They are plotted versus the average size of 
the corresponding trees in Figure 7.6, along with the no-information error rate y. It 
can be seen that the curve for A(cV1o) is close to the curve representing y. 

Thus concerning the CART rule formed from thousands of genes, selection bias is 
not an issue as with ordinary cross-validation of the SVM or Fisher's linear discrimi- 
nant function. An explanation of this is that the tree classifier CART is a rule formed 
via an embedded feature selection scheme that almost eliminates the selection bias 
in its growing and pruning of the tree. 
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Nearest-shrunken centroids is an example of another rule with an embedded feature 
selection scheme which, for the soft thresholding version, automatically corrects for 
the selection bias during the cross-validation trials conducted to choose the threshold. 

Tree Size 

Fig. 7.6 Error rates of the tree rule (CART) averaged over 20 noninformative samples gen- 
erated by random permutations of the class labels of the colon tumor tissues. 

7.7 DISCUSSION OF SELECTION BIAS 

For two data sets commonly analyzed in the microarray literature, Ambroise and 
McLachlan (2002) have demonstrated that it is important to correct for the selection 
bias in estimating the prediction error for Fisher's rule or SVM formed using a subset 
of genes selected from a very large set of available genes. 

From these examples presented, it can be seen that it is important to recognize 
that a correction for the selection bias be made in estimating the prediction error of a 
rule formed using genes selected from a very large set of available genes. It is also 
important to note that if a test set is used to estimate the prediction error, then there 
will be a selection bias if this test set was used also in the gene-selection process. 
Thus the test set must play no role in the feature selection process for an unbiased 
estimate to be obtained. 

Given that there are usually only a limited number of tissue samples available for 
the training of the prediction rule, it is not practical for a subset of tissue samples to 
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be so put aside for testing purposes. However, we can correct for the selection bias 
either by cross-validation or by the bootstrap, as implemented above in the examples. 
Concerning the former approach, an internal cross-validation does not suffice. That is, 
an external cross-validation must be performed whereby at each stage of the validation 
process with the deletion of a subset of the observations for testing, the rule must be 
trained on the retained subset of observations by performing the same feature selection 
procedure used to train the rule in the first instance on the full training set. 

7.8 SELECTION OF MARKER GENES WITH SVM 

7.8.1 Description of van de Vijver Breast Cancer Data 

In Section 7.4, we have seen that the subset of variables selected during the external 
cross-validation of the error rate of an SVM formed from a reduced set of genes can 
vary considerably for each split of the original (full) training set into training and 
validation subsets. Concerning the importance of a gene with the use of the support 
vector machines (SVMs), we can note the number of times a gene is chosen in the 
selected subset on each split of the training data during the external cross-validation. 

To demonstrate this approach, we consider the application of a SVM with RFE 
to the breast cancer data set in van de Vijver et al. (2002). In Section 4.11, we 
considered in an unsupervised context some breast cancer data from van 't Veer et 
al. (2002). Following on from this, van de Vijver et al. (2002) studied a larger series 
of breast cancer patients. The original study of van 't Veer et al. (2002) included 78 
sporadic (non-BRCA carrier) breast tumors, which had been specifically selected on 
the basis of outcome; 34 patients developed distant metastases within 5 years, and 44 
patients remained disease-free after 5 years. Using supervised classification methods, 
van 't Veer et al. (2002) were able to identify a set of 70 genes with expression profiles 
associated with the risk of early metastasis. This selection was carried out on the basis 
of the correlation between the gene expression profile and the class label, which is 
equivalent to using the (pooled) two-sample t-statistic; see Section 6.10.2 on this 
point. They called these 70 genes the prognostic marker genes. In the larger study 
of van de Vijver et al. (2002), 61 of the 78 original patients were included, as well as 
an additional 234 patients not chosen on the basis of outcome. van de Vijver et al. 
(2002) ran oligonucleotide arrays, using N = 25,000 genes (as in van 't Veer et al., 
2002) for the total of M = 295 tissues. They used the expressions of the 70 marker 
genes to classify the larger set of tumors into either good- (no metastases within 5 
years) or poor- (early metastasis) prognosis categories defined in the study of van ' t  
Veer et al. (2002). 

For each of the tumors, they calculated the correlation coefficient of its expression 
signature vector comprised of the 70 marker genes with the class label (defining 
the two prognosis categories); that is, they effectively used a nearest-centroid rule 
(see Section 6.12 on this point). For the 234 new patients, those with a correlation 
coefficient above a threshold of 0.4 (this value gave a 10% rate of false negatives in 
the original study of van 't Veer et al., 2002) were assigned into the good-prognosis 
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category and all other patients were assigned to the poor-prognosis category. For the 
61 patients from the original study, a cutoff of 0.55 was used, which gave a 10% 
rate of false negatives in the cross-validation performed in van ’t Veer et al. (2002). 
This resulted in nl = 115 tumors classified into the good-prognosis class (C1) and 
n,2 = 180 tumors classified into the poor-prognosis class (C2). 

7.8.2 Application of SVM with RFE 

The SVM with RFE was applied to this van de Vijver data, with half of the genes being 
eliminated at each stage of the WE procedure. The external ten-fold cross-validated 
error rate A(CV1oE) is plotted in Figure 7.7 as the number of genes is reduced from 70 
to 64, and then successively halved; see also Table 7.1. It can be seen that A(Cv1o”) 
starts to increase as the number of genes is reduced, but only slightly down to 32 
genes. So we decided to adopt as our prediction rule the SVM based on 32 genes. 
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Fig. 7.7 External ten-fold cross-validated error rate of the 295 breast cancer tissue sampIes 
on 70 genes in the van de Vijver data. 

To provide some guide to the relative importance of the genes in the formation of 
this rule, we noted how many times a gene was selected in the ten subset of size 32 
selected for each of the ten splits of the training data. The frequencies are reported 
in Table 7.2 for the 44 genes that were selected for at least one of the ten splits. 
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Table 7.1 Results of SVM with RFE Applied to 295 Breast Cancer Tissue Samples on 70 
Genes in the van de Vijver Data 

Number of Genes Overall Error Rate 

1 
2 
4 
8 
16 
32 
64 
70 

0.298 
0.203 
0.203 
0.138 
0.118 
0.105 
0.108 
0.105 

Table 7.2 Selection Frequencies of Genes in External Ten-Fold Cross-Validation of SVM 
with RFE Applied to 295 Breast Cancer Tissue Samples on 70 Genes in the van de Vijver Data 

Gene No. Frequency of Selection on Ten-Fold Validation 

666564605755 
525149464240 
3938332221 15 

9 8 7 4 3 2  

63 59 23 

68 13 

1 

61 25 20 10 

43 

5427 14 

535048443412 

10 
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In Table 7.2, the gene number refers to its numbering in the data set as supplied at 
the supplementary website (http: //www. rii . com/publications/2002/ 
ne jm. htm) in van de Vijver et al. (2002). This gene number is the rank of the 
gene when the 70 marker genes are ordered on the basis of the magnitude of their 
correlation with the class label for the good-prognosis class (that is, the F-ratio), 
using the 78 tissue samples in van 't Veer et al. (2002). 

To contrast these frequencies with the rankings of the genes considered individually 
on the basis of the criterion (7. I ) ,  equivalent to the F-ratio (or the pooled two-sample 
t-statistic since g = a), we list in Table 7.3 the genes in descending order of rank 
according to this criterion. Only those genes (59 in total) for which the criterion 
exceeded the 95th percentile of the F-distribution with 1 and 293 degrees offreedom 
have been listed. For each gene, the criterion (7.1) was calculated using the n = 295 
tissue samples. It can be seen that several of the top genes in terms of the F-statistic 
in Table 7.3 had high frequencies of selection in the ten-fold cross-validation process, 
as summarized in Table 7.2. 

For the highly selected genes, we searched for functional annotation in order to link 
possible biological mechanisms with their apparent role in early tumor metastasis. 
Out of the 24 genes selected 10 times in Table 7.3, we found 12 with gene products 
of known function. These included cell nucleus proteins: CENPA, PRCl , RAMP, 
NUSAPl , and MELK (many of which seem to be involved in chromatin structure), and 
also the protein, ORC6L, essential for the initiation of replication, suggesting a role for 
these genes in tumor cell division. In addition, we identified cell signaling proteins; 
including IGFBPS (which appears twice), a known potent inhibitor of growth of breast 
cancer cells in vitro and in vivo, as well as others involved in cell cycle control and 
tumorigenesis (FGF18 and TGFB3), and also CEGP1, a secreted protein expressed 
in vascular endothelium, suggesting a possible role for this gene in angiogenesis as 
part of tumor metastasis. Finally, we identify the protein AP2B1, involved in the 
cellular processes of endocytosis and Golgi assembly as it forms part of the clathrin 
coat assembly. 

7.9 NEAREST-SHRUNKEN CENTROIDS 

7.9.1 Definition 

For high-dimensional data, Tibshirani et al. (2002a, 2003) have considered a modifi- 
cation to the nearest-centroid rule, as defined in Section 6.12. It is directly applicable 
in the present context of the supervised classification of tissue samples. With this 
approach, termed nearestbhrunken centroids by Tibshirani et al. (2002a, 2003), the 
usual estimates of the class means 3, are shrunk toward the overall mean 3 of the 
data, where 

j=l 
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and 

Table 7.3 Rank on Basis of F-Ratio of Frequently Selected Genes in External Ten-Fold 
Cross-Validation of SVM with RFE Applied to 295 Breast Cancer Tissue Samples on 70 
Genes in the van de Vijver Data 

Rank Gene No. F-Ratio Rank Gene No. F-Ratio 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

64 
15 
49 
39 
9 
40 
51 
21 
4 
33 
30 
8 
7 
3 
66 
54 
68 
34 
14 
13 
52 
23 
25 
38 
42 
55 
1 

60 
10 
32 

108.49 
93.37 
92.10 
75.49 
74.10 
69.61 
63.58 
62.19 
60.67 
60.18 
58.69 
57.81 
57.33 
52.25 
52.00 
45.52 
45.19 
44.35 
42.28 
35.57 
35.45 
32.00 
3 1.02 
30.06 
29.74 
25.89 
25.84 
22.95 
22.37 
22.27 

31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 

12 
50 
48 
43 
57 
2 

22 
70 
46 
53 
65 
26 
35 
36 
20 
37 
59 
16 
44 
24 
6 

45 
56 
5 
11 
47 
61 
31 
28 

20.87 
20.65 
19.45 
18.89 
18.53 
18.26 
18.24 
17.98 
16.70 
16.60 
16.04 
15.64 
12.72 
11.18 
10.75 
10.11 
7.32 
7.14 
6.09 
6.07 
6.05 
5.73 
5.47 
5.22 
5.20 
5.05 
4.79 
4.37 
4.06 
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From Section 6.12, the nearest-centroid rule is given by 

where yl,  is the 7ith element of the feature vector y and y,, = (y) u .  in the definition 
(7.3) of the nearest-shrunken centroid rule, we replace the sample mean jj,, of the 
vth gene by its shrunken estimate 

and where mi = (nL1 - 7 i - l ) ; .  In (7.6), s, is the pooled within-class sample 
standard deviation of gene v ;  that is, s i  is the ith diagonal of the pooled (bias- 
corrected) sample covariance matrix S defined by (3.55). Also, in (7.9,  the subscript 
plus means positive part; that is, a+ = a;  if a > 0, and zero otherwise. The 
denominator nits, in (7.6) is the standard error of the numerator jj,,, - 3,. 

This shrinkage proposed by Tibshirani et al. (2002a, 2003) is called soft thresh- 
olding. The absolute value of each &, is reduced by an amount k and is set to zero 
if the result is less than zero. As explained by Tibshirani et a]. (2003), since many 
of the 7jy,,, will be noisy and close to the overall mean yi ,  soft thresholding usually 
produces “better” (more reliable) estimates of the true class means prU.  

An attractive property of this shrunken approach is that many of the genes are 
eliminated as far as their contribution to the sample rule if the threshold k is chosen 
sufficiently large. For if k causes di,, to shrink to zero, then yi*, is the same as the 
overall mean GI , ,  and so gene ‘u does not contribute to the class decision based on 
(7.4). 

Tibshirani et al. (2003) use ten-fold cross-validation to choose the value of the 
threshold k .  it  is external in the sense that for a given value of k the selection of 
genes is carried out separately on each of the ten cross-validation trials. They also 
consider adaptive choice of thresholds, soft versus hard thresholding, and ways to 
capture heterogeneity in the class training data. 

Tibshirani et al. (2003) propose forming estimates of the posterior probabilities 
~ ~ ( y )  of class membership of a new observation y by taking the estimate of the ith 
class-conditional density of y to be given by 
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7.10 COMPARISON OF NEAREST-SHRUNKEN CENTROIDS WITH SVM 

To illustrate the application of nearest-shrunken centroids to a real data set, we now 
apply it to the colon data of Alon et al. (1999), using the program as supplied in 
Tibshirani et al. (2003). This data set was analyzed in an unsupervised context in 
Section 4.10. Also, we apply the (linear) SVM with RFE to this data set, as it will be 
of interest to contrast the performance of nearest-shrunken centroids with this method. 
Note that the results given earlier in Section 7.4 for the SVM applied to this data set 
did not use the full set for training, as test sets were put aside in order to estimate 
the true error rates. So for comparative purposes, we train the SVM with RFE on the 
full data set. We also apply nearest-shrunken centroids and SVM to the van de Vijver 
cancer data considered in Section 7.8. 

7.10.1 Alon Data 

The results for nearest-shrunken centroids applied to the colon data are given in in 
Table 7.4, where the overall (estimated) error rate versus the number of retained genes 
is reported. In this table, the “No. of Genes” refers to the number of active genes in 
the formation of the shrunken rule; that is, the number of genes with at least one dTv 
nonzero for each gene. 

The overall and class-specific error rates (with their standard errors) are plotted in 
Figure 7.8. A “cross” in the plot of the overall error rate denotes its minimum value 
over the number of active genes. The corresponding results for the SVM with RFE 
with its overall and class-specific error rates estimated by external ten-fold cross- 
validation are displayed in Figure 7.9 and Table 7.5. 

On comparing the results in Tables 7.4 and 7.5, it can be seen that the SVM with 
the genes selected by RFE has a similar error rate over the genes to nearest shrunken- 
centroids. 

As noted in Guyon et al. (2002) on the use of RFE with SVM, removing one 
variable at a time is more accurate than removing chunks of variables at a time. So 
we reapplied the SVM with the RFE implemented as before down to 128 genes, but 
from then on eliminating only one gene at a time. It led to a slightly better error rate 
of 10% for 10 to 18 genes on the Alon data. 

7.10.2 van de Vijver Data 

To compare further SVM with nearest-shrunken centroids, we consider now the breast 
cancer data set from van de Vijver et al. (2002). The compilation of this set has been 
described in Section 7.8. It consists of n = 195 breast cancer tumor samples of 
p = 70 genes with 71.1 = 115 tumors in the good-prognosis class (C,) and 712 = 180 
tumors in the poor-prognosis class (C2). 

We trained the SVM with RFE on these n = 295 tumors using the p = 70 
available genes. The external ten-fold cross-validated error rate A(cV1oE) is plotted 
in Figure 7.10 as the number of genes is reduced from 70 to 64, and then successively 
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Table 7.4 Overall Error Rate for Nearest-Shrunken Centroids Applied to the Alon Data 

Iteration Threshold No. of Genes Error 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

0.00 
0.12 
0.23 
0.34 
0.46 
0.57 
0.69 
0.80 
0.92 
1.03 
1.15 
1.26 
1.38 
1.49 
1.61 
1.72 
1.84 
1.95 
2.07 
2.18 
2.29 
2.41 
2.52 
2.64 
2.75 
2.87 
2.98 
3.10 
3.21 
3.33 

2,000 
1,784 
1,601 
1,432 
1,257 
1,095 
928 
786 
67 1 
556 
475 
397 
312 
254 
20 1 
160 
123 
88 
68 
49 
35 
23 
16 
8 
6 
4 
4 
3 
2 
0 

0.15 
0.15 
0.15 
0.15 
0.15 
0.15 
0.15 
0.15 
0.15 
0.15 
0.15 
0.15 
0.13 
0.13 
0.13 
0.13 
0.13 
0.13 
0.13 
0.15 
0.13 
0.16 
0.27 
0.32 
0.34 
0.35 
0.35 
0.35 
0.35 
0.35 

halved. It can be seen that A(CV1oE) starts to increase as the number of genes is 
reduced, but only slightly, down to 32 genes, after which it starts to increase markedly. 

The results of the nearest-shrunken centroid rule applied to this data set are dis- 
played in Figure 7.1 1. It can be seen that SVM and nearest-shrunken centroids have 
comparable (estimated) error rates. For economy of space, we have not listed the 
class-specific cross-validated errors here, but they are similar for both rules too. 



COMPARISON OF NEAREST-SHRUNKEN CENTROIDS WITH SVM 241 

Number of genes 

2000 1257 671 397 201 88 35 8 4 3 0 

W 

6 8  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 

Value of threshold 

2000 1257 671 397 201 88 35 8 4 3 0 2 

.- c 

W Q 
(I) 

Turnour 

? , "  
0 

- 
0.0 0.5 1.0 1.5 2.0 2.5 3.0 

Value of threshold 

Fig. 7.8 Plot of overall and class-specific error rates for nearest-shrunken centroids applied 
to Alon data. 

Table 7.5 Ten-Fold External Cross-Validated Error Rates of SVM with RFE Applied to the 
Alon Data 

No. of Genes CVlOE SE AE Normal Tumor 

1 
2 
4 
8 
16 
32 
64 
128 
256 
512 

1,024 
2,000 

0.55 
0.18 
0.17 
0.20 
0.22 
0.17 
0.12 
0.13 
0.13 
0.13 
0.13 
0.16 

0.06 
0.06 
0.05 
0.06 
0.07 
0.04 
0.04 
0.05 
0.05 
0.05 
0.05 
0.05 

0.52 
0.11 
0.08 
0.05 
0.05 
0.02 
0.02 
0.02 
0.02 
0.03 
0.03 
0.03 

0.82 
0.27 
0.27 
0.32 
0.27 
0.23 
0.14 
0.18 
0.18 
0.18 
0.18 
0.32 

0.40 
0.12 
0.10 
0.12 
0.17 
0.12 
0.10 
0.10 
0.10 
0.10 
0.10 
0.07 
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Fig. 7.9 Overall and class-specific error rates for SVM with RFE applied to Alon data. 
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Fig. 7.70 Plot of overall and class-specific error rates for SVM with RFE applied to the 295 
tissue samples of 70 genes in the van de Vijver data. 
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Fig. 7.7 7 Plot of overall and class-specific error rates for nearest-shrunken centroids applied 
to the 295 tissue samples of 70 genes i n  the van de Vijver data. 



SELECTION BIAS WORKING WITH THE TOP 70 GENES 245 

Finally, we trained the model-based rule, using a mixture of g factor analyzers with 
q = 4 factors to model the class-conditional densities for the two classes. We took 
g = 1 for the good-prognosis class and g = 2 for the poor-prognosis class. In the 
latter case, we took the component-factor models to have the same diagonal matrices 
but unrestricted loading matrices. The (leave-one-out) cross-validated error rate was 
equal to 12.8%. Thus these three rules (SVM with RFE, nearest-shrunken centroids, 
and mixtures of factor analyzers) have comparable error rates on this set. 

As explained in Section 7.8, given the way the training data have been compiled, 
they are not really the observed outcomes of random samples drawn from the two 
classes. Indeed, since 234 of the tumors have been assigned to the two classes on the 
basis of a rule formed from 61 of the tumors in the training set, the error rates could 
be expected to be biased downward. Moreover, the rule based on the 61 tumors was 
actually formed using the top 70 genes, which was based on 98 tissues that contained 
these 61 tumors. This also would serve to introduce a further bias. Ideally, we should 
try to estimate the error rate by performing an external cross-validation using all 5,422 
genes, as to be discussed in the next section. This could not be done here, as we had 
access only to the top 70 genes. 

We now proceed to look at the bias that can result in using the error rate of a 
discriminant rule formed from a optimal subset of genes. 

7.1 1 SELECTION BIAS WORKING WITH THE TOP 70 GENES 

7.11.1 Bias in Error Rates 

We return now to the breast cancer data from van 't Veer et al. (2002) that were 
analyzed in an unsupervised context in Section 4.1 1. As explained in Section 7.8, 
they selected a set of 70 top genes (marker genes) on the basis of the 78 tissues in 
their study. 

To demonstrate the bias in estimating the error rate of a rule formed from a subset 
set of genes without using the full set during the cross-validation, Zhu, Ambroise, and 
McLachlan (2004) applied an SVM with RFE to the 78 tissue samples on the top 70 
genes in the van 't Veer et al. (2002) data. In Section 4.1 I ,  we obtained 4,869 genes 
from the prefiltering process applied to the 24,881 genes in the 98 tissue samples, 
consisting of 78 sporadic and and 22 breast cancer tumors. Zhu et al. (2004) applied 
the same filtering process to the 24,881 genes in the tissue samples for just the 78 
sporadic breast cancer tumors, which resulted in 5,422 genes being retained. 

At each stage of the feature elimination process with the SVM, Zhu et al. (2004) 
estimated the overall error rate using ten-fold cross-validation. They performed the 
latter, using both internal and external cross-validation. For internal cross-validation, 
the top 70 genes were fixed during the validation process, and so it ignores the selection 
bias in working with the top 70 genes from the set of 5,422 genes. 

In the external cross-validation, this bias is corrected for by going back to the full 
set of 5,422 genes and selecting the top 70 genes on the training subset at each stage 
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Table 7.6 Number of Genes and Error Rates with and without Corrections for Selection Bias 

Number of Genes Error Rate Error Rate Error Rate 
for Top 70 Genes for Top 70 Genes 

for Selection Bias for Selection Bias for Selection Bias) 
as Top 70) 

for 5,422 Genes 
(without Correction (with Correction (with Correction 

as Top 70) 

1 
2 
4 
8 
16 
32 
64 
70 
I28 
256 
512 

1,024 
2,048 
4,096 
5.422 

0.50 
0.32 
0.26 
0.27 
0.28 
0.22 
0.20 
0.19 

0.53 
0.41 
0.40 
0.32 
0.3 1 
0.35 
0.34 
0.33 

0.56 
0.44 
0.41 
0.43 
0.35 
0.34 
0.35 

0.39 
0.33 
0.34 
0.33 
0.37 
0.40 
0.44 

- 

of cross-validation. Then the SVM with RFE is applied to this selected set of top 70 
genes, which may have little in common with the original set of top 70 genes. 

The results for the internal ten-fold cross-validated overall error rate A("v1o) 
and the corresponding external rate are listed in Table 7.6 and plotted in 
Figure 7.12. 

It can be seen from Table 7.6 and Figure 7.12 that the selection bias in ignoring 
the fact that the SVM is being applied to the top 70 genes from a total of 5,422 is 
approximately 12%. 

We have also li4ted in Table 7.6 the external cross-validated error for the SVM 
with RFE, starting with the full set of 5,422 genes. It can be seen that it is similar to 
that of the external cross-validated error rate of the rule starting with the top 70 genes. 

7.1 1.2 Bias in Comparative Studies of Error Rates 

This example also serves to make the point that care must be exercised in comparing 
the error rates of two discriminant rules formed from the same tissue samples of 
different sets of genes. For example, one rule r1 may be formed from a training set 
of n. = A1 tissue samples of p = N genes, while another rule r2 might be formed 
using a subset of these N genes, say, the top 100 genes. If a fair comparison is to 
be made between the error rates of these two rules, then the error rate of the second 
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Fig. 7.12 The solid line is the ten-fold cross-validated error rate of the SVM with RFE applied 
to the top 70 genes in the 295 tissue samples in the van de Vijver data, calculated without 
correction for selection bias due to using top 70 genes. The dashed line is the corresponding 
rate with correction for this bias. 
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Fig. 7.73 Plot of the first two components for 60 observations, with 20 from each of three 
classes (class 1 x, class 2 +, class 3 0 )  calculated on the top 100 genes according to the F-ratio. 

rule 7 3  should not be estimated by just working with the top 100 genes during the 
cross-validation. Rather, one should start initially with the full set of N genes and 
select the top 100 genes on each stage of the training of r2 in the cross-validation 
trials. 

7.1 1.3 Bias in Plots 

This selection bias also is present in plots of the expression signatures formed from the 
top genes taken from a much larger set of genes. To illustrate this bias, we generated 
three random samples, each consisting of ni = 20 observations of dimension p = 
2,000 drawn from a normal distribution with mean zero and covariance matrix equal to 
the identity matrix. We then ranked the feature variables (corresponding to the genes) 
in terms of the F-ratio for a one-way analysis of variance for g = 3 classes. We then 
performed a principal component analysis of the combined sample of 60 observations, 
using the top 100 features. In Figure 7.13, we have plotted the first two principal 
components so obtained for the 60 observations. This plot by itself would suggest 
that the three classes are widely separated, whereas in fact they represent observations 
with identical distributions. Maindonald (2004) has suggested that to circumvent this 
selection bias a cross-validation be performed, using Procmstes analysis (see Sibson, 
1978) to allow for the varying reference frames obtained at each stage of the process. 
Note that if we fitted a g-normal mixture model to the PCs in Figure 7.13 and then 
used a resampling approach to test the null hypothesis that g = 1, it would be retained, 
thus providing no evidence for any group structure. 



DISCRIMINANT RULES VIA INITIAL GROUPING OF GENES 249 

7.12 DISCRIMINANT RULES VIA INITIAL GROUPING OF GENES 

As mentioned in Section 7.2, one way to handle the formation of a discriminant rule 
for the supervised classification on the basis of a very large number of genes is to 
first put the genes into groups. This can be effected by either clustering the genes or 
selecting groups of genes in a supervised manner based on the known classification of 
the tissues. Then a reduced feature vector can be formed consisting of representatives 
from each of the groups (metagenes). 

We consider next some methods of supervised classification that first cluster the 
genes. 

7.12.1 Supervised Version of EMMIX-GENE 

We can implement a model-based approach to supervised classification that makes 
use of the first steps in the EMMIX-GENE procedure of McLachlan et al. (2002) in 
a supervised manner. The select-genes step is run to rank the genes with respect to 
the F-ratio based on the specified classification of the tissues. 

Then the cluster-genes step is run to cluster all genes ranked above a specified 
threshold; for example, a specified percentile of the F-distribution with g - 1 and 
n - g degrees of freedom, where g is the number of classes. The genes are clustered by 
fitting in equal proportions a mixture of normal components with common spherical 
component-covariance matrices, which is equivalent to a “soft” version of k-means. 
The intent is to have highly correlated genes within the same group. A discriminant 
rule can then be formed by modeling the class-conditional densities of the metagenes 
by normal mixtures or mixtures of factor analyzers, as discussed in Section 6.9.6. 
In the current version of EMMIX-GENE, the metagenes are taken to be the sample 
means of the gene clusters. 

7.1 2.2 Bayesian Tree Classification 

A similar approach to supervised classification has been adopted by Huang et al. 
(2003). They apply k-means clustering after an initial screen to remove genes that 
show little variation. Each cluster of genes is represented by a metagene taken to 
be the first principal component of the cluster of genes. This approach varies from 
the one above in that it clusters a much larger number of genes; that is, it does not 
undertake a preliminary step (beyond the initial screen) corresponding to the select- 
genes step in EMMIX-GENE. It thus produces a much larger number of metagenes 
(for example 495 in the analysis in Huang et al., 2003). The discriminant rule is 
formed from the metagenes using a Bayesian classification tree analysis. 

7.1 2.3 Tree Harvesting 

Another approach that first clusters the genes is the procedure proposed by Hastie et 
al. (2001a), which they call “tree harvesting”. They carry out the clustering of the 
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genes using hierarchical clustering (average linkage). They note that this strategy has 
two advantages. Firstly, hierarchical clustering has become a standard descriptive 
tool for expression data. Secondly, by using clusters as input, they bias the inputs 
toward correlated sets of genes. As they explain, this reduces the rate of overfitting 
of the model. 

They consider all 2p - 1 clusters in the hierarchy produced by their hierarchical 
clustering, and they build a model with the aim of finding additive and interaction 
structure among the clusters of genes in their relation to an outcome measure. The 
latter can take many forms besides class labels, including censored survival times. 
Their model is fitted using a forward stepwise strategy, involving sums and products 
of the average gene expression of chosen clusters (metagenes). They prefer this model 
as it provides interpretable, biologically plausible models. However, their procedure, 
and probably any procedure with similar aims, requires a large number of samples to 
uncover such structure successfully. 

Their initial clustering of the genes is biased toward large clusters, because they 
are more likely to be biologically meaningful. As they explain, large clusters can 
result from a pathway of genes involved in a biological process, or a heterogeneous 
experimental sample containing different cell types. In addition, the finding of a large 
cluster correlated with the outcome is less likely to be spurious than that of a small 
cluster, because there are many more smaller clusters than larger clusters. 

7.12.4 Block PCA 

Liu et a]. (2002) propose dividing the genes into blocks according to correlation 
using cluster analysis so as to obtain blocks of high correlation among the genes 
in a block. These clusters of genes are formed without using information from a 
dependent variable (such as the class labels). Within each block they perform a 
principal component analysis (PCA) to select “important” genes. Then they use a 
second PCA with the selected genes from the previous step. Finally, they use these 
components for classification. Thus, Liu et al. (2002) explicitly try to obtain blocks 
with high internal correlation. 

7.12.5 Grouping of Genes via Supervised Procedures 

We now discuss procedures that have been proposed recently for the formation of 
discriminant rules from groups of genes that have been formed using the known 
classification of the tissues. They involve forming groups of genes to ensure that 
highly correlated genes are not duplicated and that the clusters are not very large. 
These procedures contrast with the approaches described earlier. 

With the method developed by Dettling and Biihlmann (2002), the aim is to identify 
sparse linear combinations of genes whose average expression level is uniformly low 
for one response class and uniformly high for the other class(es). A cluster of genes 
is grown incrementally by adding one gene after another. Subsequent cleaning steps 
are carried out to remove spurious genes that were incorrectly added to the cluster at 
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earlier stages. As with the CAST procedure of Ben-Dor et al. (1999), the growth and 
removal steps are repeated until the cluster stabilizes. Then a new cluster is started. 
Each cluster consists of genes for which the metagene is a linear combination of 
the genes (with weights of 1 or minus 1). The genes are chosen to provide a good 
discriminant rule as assessed in terms of a specified objective function that makes use 
of the known classification of the tissues in the training data. For this, they use the 
Wilcoxon statistic (1 945). The use of possibly a minus one in forming the metagene 
from a cluster of genes is to allow for negatively correlated genes. The number 
of clusters has to be specified by the user. In summary, the aim is to identify sparse 
linear combinations of genes whose average expression level is uniformly low for one 
response class and uniformly high for the other class(es). In their approach, Dettling 
and Biihlmann (2002) used a nearest-neighbor rule and a normal-based linear rule with 
diagonal component-covariance matrices. They have since investigated performing 
feature selection with the nonparametric scoring method of Park et al. (2001) in 
conjunction with the use of boosting in forming discriminant rules. They adopted the 
LogitBoost procedure of Friedman et al. (1998). 

With the method proposed by Diaz-Uriarte (2003), the intent is to form tight 
groups of genes so far as the coexpression of the genes. Initially, a seed gene with 
good discriminatory capacity is selected. Then a search is conducted for a group 
of genes that are highly correlated with the seed gene, shows tight coexpression, 
and has good discriminatory power. The latter is assessed by using internal cross- 
validation. This set of genes is reduced to a vector of metagenes (signature component 
in the terminology of Diaz-Uriarte, 2003), using principal components analysis. The 
process is repeated until the addition of a metagene vector does not reduce the assessed 
error rate by a specified threshold. It is claimed that the suggested method can recover 
signatures present in the data and has predictive performance comparable to state-of- 
the-art methods. 

More recently, Goh, Song, and Kasabov (2004) have proposed using an evolv- 
ing connectionist system (ECOS) with the genes put into groups using a supervised 
measure in conjunction with the degree of their correlation with other genes. 



This Page Intentionally Left Blank



Linking Microarray Data 
with Survival Analysis 

8.1 INTRODUCTION 

In clinical medicine, determining the stage of disease is crucial in the management of 
cancer patients. Stage is defined using a combination of clinical parameters (tumor 
size, lymph node involvement and the presence of metastases). Together with other 
criteria (such as age, the histologic type and pathological grade of cancer, or hormone- 
receptor status) stage provides a measure for future recurrence and overall survival, 
and is used to guide treatment. However, patients with the same stage of a particular 
cancer can have very different treatment responses and also clinical outcomes. This 
clinical heterogeneity is probably due to the genetic complexity of individual tumors, 
with changes in the expression of many genes that drive tumor growth, invasion and 
metastasis. Microarrays allow the simultaneous measurement of complex multigene 
expression patterns in cancer. Currently there is much interest in directly linking gene 
expression data with patient outcomes, and to determine whether microarrays can be 
used to provide better prognostic tools for cancer. 

A common approach in this type of survival analysis is to first cluster the tissue 
samples, usually by some hierarchical method, and then to compare the survival curves 
for each cluster so obtained using a nonparametric Kaplan-Meier analysis (Alizadeh 
et al., 2000). On approaches that attempt to include gene expressions in models in 
survival analysis, there is the tree harvesting approach of Hastie et al. (2001a), as 
discussed in Section 7.12.3, used as a method of supervised classification when the 
response vector defines the class memberships of the tissues. It also applies when the 
response variable is the survival time. But as noted there, their procedure requires a 
very large number of samples. West et al. (2001) used principal components and then 
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used probit regression with Bayesian regularization. Nguyen and Rocke (2002~) and 
Park et al. (2002) used partial least squares (PLS) with the proportional hazards model 
of Cox (1972). In their study, the continuous response variable was taken to represent 
the survival times, some of which may be censored. Hence the PLS components 
constructed may contain some bias, depending on the amount of censoring. Also, as 
noted by Nguyen and Rocke (2002c), interpretation of the fitted parameters of the PLS 
gene-component profiles in terms of the original gene expression profiles does not 
appear to be feasible directly. This is due to the fact that the PLS gene components 
are linear combinations of all the predictor genes. Park et al. (2002) showed that 
the issues can be circumvented by reformulating the problem as a standard Poisson 
regression problem. More recently, Li and Gui (2004) have developed a partial Cox 
regression method for constructing mutually uncorrelated components based on gene 
expression data for predicting the survival of future patients. 

In their recent study of breast cancer patients, van de Vijver et al. (2002) showed 
that the gene expression profiles were a better predictor of clinical outcome than 
any of the currently used criteria. Following on from these promising results, 
theCAMDA'03 chal lenge(ht tp:  //www. camda. duke. eduL/camda03)setthe 
task of linking microarray gene expressions from four lung cancer data sets with pa- 
tient outcomes. In this chapter, we consider the approach of Ben-Tovim Jones et 
al. (2004a,b) to this problem. They initially used model-based clustering to clas- 
sify the tumor tissues, and then examined the association between the tissue clusters 
and patient survival (or recurrence) times. They went on to show that the clustering 
provides significant prognostic information beyond that based on stage of disease at 
presentation. 

8.2 FOUR LUNG CANCER DATA SETS 

The CAMDA'03 challenge included a total of four lung cancer data sets. Each data set 
was made up of different numbers and types of lung tumors; see Table 8.1. These four 
data sets had been analyzed previously by Wigle et al. (2002), Garber et al. (2001), 
Bhattacharjee et al. (2001), and Beer et al. (2002). They were referred to there as 
the Ontario, Stanford, Harvard, and Michigan data sets, respectively, and we shall 
continue with this labeling here for convenience. The first two used cDNA arrays, 
while the latter two used different versions of Affymetrix oligonucleotide arrays. 
These data may be downloaded from the CAMDA'03 contest website as above. 

Ben-Tovim Jones et al. (2004a) used the available genes for the two cDNA arrays 
(2,880 for the Ontario set and 9 18 for the Stanford set). For the Affymetrix arrays, they 
started with the 3,312 genes in the Harvard set and the 4,965 genes in the Michigan 
set, but these had outlier values. Therefore, in the Harvard set, they imposed a floor 
of 1 and a ceiling of 3,000, leaving 3,190 genes. For the Michigan data set, they 
imposed a floor of minus 1 and a ceiling of 26,000, leaving 4,'728. In all four data 
sets, missing values were replaced by values obtained via the method in Dudoit et 
al. (2002a). In each data set, the data were logged except for the Michigan data 
set, in which the generalized log transformation (2.2) was used with c = 1. Each 
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Table 8. I Tumor Types in the Four Data Sets 

Tumor Type Number of Samples 

Adenocarcinoma 
Squamous Cell 

Large Cell 
Carcinoid 
Small Cell 

Normal 
Other 

TOTAL 

Ontario 
19 
14 
4 
1 
0 
0 
1 

39 

Stanford 
41 
16 
5 
0 
5 
5 
1 

73 

Harvard 
127 
21 
0 
20 
6 
17 
12 

203 

Michigan 
86 
0 
0 
0 
0 
10 
0 

96 

data set was subsequently column and then row standardized, although no column 
standardization was carried out in the Harvard data set, as it had been column-adjusted 
in its originally available form. 

By comparing Unigene identifiers, Ben-Tovim Jones et al. (2004a) found that the 
cDNA arrays had at least 105 genes in common, while the Affymetrix arrays had at 
least 1,257 genes in common in the input data sets. The Harvard data set has by far 
the most tumors. However, in the Harvard, Stanford, and Michigan data sets, clinical 
data were available only for the adenocarcinoma (AC) patients. In the Ontario study 
the outcome was provided for both AC and non-AC patients, in the form of tumor 
recurrence versus nonrecurrence. 

8.3 STATISTICAL ANALYSIS OF TWO DATA SETS 

In the analyses of Ben-Tovim Jones et al. (2004a), the EMMIX-GENE procedure was 
initially applied to cluster all the tumor types in an unsupervised context. They were 
able to retrieve the histological classification for at least the non-AC tumors in all data 
sets, except for the Ontario set. For the other three data sets, they focused on just the 
AC tumors (for which clinical data were available). 

We now consider an analysis of the two cDNA lung cancer sets from the 
CAMDA'03 contest (the Ontario and the Stanford sets) to demonstrate how a model- 
based cluster analysis in conjunction with a survival analysis can be used to assess 
the prognostic information in the microarray data. We follow the same approach as 
in Ben-Tovim Jones et al. (2004a,b). We shall first perform a model-based clustering 
using the EMMIX-GENE algorithm (McLachlan et al., 2002). Then we shall perform 
a survival analysis to determine the association between clusters formed and patient 
survival (or recurrence) times. In the survival analysis, only tissues from patients 
with known survival times (or recurrence times) are considered. 
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8.4 ONTARIO DATA SET 

8.4.1 Cluster Analysis 

We firstly consider the Ontario data set, which consists of n3 = 39 tumor samples 
on p = 2,880 genes. With the Ontario data set, the outcome is defined as the time 
between surgery and the recurrence. The tumors labeled 1 to 24 here are those for 
which there has been a recurrence of the cancer, while those labeled 25-39 have 
had no recurrence before the end of the study; that is, their times to recurrence 
are censored. After applying the screening step of EMMIX-GENE to this data set, 
766 genes remained. The top genes included immunoglobulin lambda light chain 
IGL, hypothetical protein FLJ 10404, HLA-B associated transcript 2 D6S5 IE, Friend 
leukemia virus integration 1 FLIl, and ATP-binding cassette ABCD3. 

The latter were then clustered into No = 20 groups on the second step of this 
algorithm. The means of these 20 groups (the metagenes) can be used to represent 
the initial set of 2,880 genes. 

The final step of EMMIX-GENE can be used to cluster tisiwes in terms of the 
metagenes. Given the very small number of tumors (n. = 39) available here relative 
to the number of genes or, indeed, metagenes, some constraints need to be imposed 
on the component-covariance matrices in fitting a normal mixture model to cluster 
these tumors. We considered fitting to all 20 metagenes (a) mixtures of normals with 
equal component-covariance matrices; (b) mixtures of normals with (unrestricted) 
diagonal component-covariance matrices; and (c) mixtures of factor analyzers with 
equal component-covariance matrices for q = 6 factors. 

All three models led to the same clustering, namely 

c = Cl u c,: (8.1) 

where 
C1 = {15,30 - 32,31; 35,37,39}. 

and 
= (1 - 14.16 - 29.33,36,38} 

Thus cluster CI corresponds to the good-prognosis group with seven patients who 
are recurrence-free plus one patient who had experienced relapse of the tumor. This 
patient, however, was still alive at the end of the follow-up period. The second cluster 
C, corresponds to the poor-prognosis group, as it contains 23 of the 24 patients with 
recurrence of their tumor plus eight patients having censored recurrence times. 

That is, in one cluster C1, it put one recurrencc tumor (tumor 15) with seven of the 
tumors with censoredrecurrence times (30-32,34,36,38). In the other cluster (C,), 
it put 23 of the 24 tumors with recurrence along with eight tumors (25-29,33,36, and 
38) with censored recurrence times. Thus cluster GI (apart from tumor 15) would 
appear to correspond to the recurrence-free group, whereas cluster C, corresponds to 
the recurrence group. 

To provide further support that the first cluster C1 can be viewed as corresponding 
to the recurrence-free group, we follow Ben-Tovim Jones et al. (2004b) and consider 
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Fig. 8.7 Fitted LTS model versus the Kaplan-Meier estimate. From Ben-Tovim Jones et al. 
(2004b). 

the long-term survival model 

where t is the time to recurrence, &(t )  is the conditional survival function for time 
to recurrence given that recurrence will occur, and 7 ~ 2  = 1 - 7r1 is the probability of 
a recurrence. Under (8.2), a proportion .ir1 of the patients will not have a recurrence; 
that is, their recurrence time is at infinity. The survival function SZ(t) is taken to have 
the Weibull form, 

~ z ( t )  = a ~ t " - l  exp(-Xt"). (8.3) 

The exact recurrence times of two of the patients in C2 were unknown and so they 
were excluded from this and the subsequent survival analyses. It meant that there 
were 37 patients with 15 censored (recurrence-free and still alive at the end of the 
follow-up period). 

In Figure 8.1, we have plotted the fitted Weibull-based long-term survival model 
S ( t )  along with the Kaplan-Meier estimate. It can be seen that there is excellent 
agreement between the nonparametric estimate as given by the Kaplan-Meier estimate 
and the parametric estimate S(t) .  In particular, it can be seen from the asymptote of 
these curves in Figure 8.1 that the probability 7r1 of a patient being recurrence-free is 
approximately 0.2. Thus on average, one would expect to have approximately eight 
recurrence-free patients in a set of 39. Here the cluster C1, which is conjectured as 
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Fig. 8.2 PCA of tissues based on 20 metagenes. From Ben-Tovim Jones et al. (2004b). 
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Fig. 8.3 PCA of tissues based on all genes (via SVD). From Ben-Tovim Jones et al. (2004b). 
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Table 8.2 Nonparametric Survival Analysis for the Ontario Data Set 

Cluster No. of Patients (Censored) Mean Time to Recurrence (.t SE) 

1,388 5 155.7 
665 & 85.9 

Source: From Ben-Tovim Jones et al. (2004b) 

corresponding to the recurrence-free group, has eight members. Interestingly, five 
of the censored patients from the poor-prognosis cluster (72, were also put together 
in a cluster corresponding to early recurrence in the hierarchical clustering of Wigle 
(2002). 

This long-term survival model (8.2) can be used also to estimate the posterior 
probability that a patient with a censored recurrence time will be recurrence-free. 
Unfortunately, unless the censored time is very long, these estimated posterior prob- 
abilities are equal, being around 0.5. Patient 25 (P81 AC), who has a censored time 
of 1,16 1 days, has a high posterior probability of being recurrence-free, so her mem- 
bership of cluster C, would appear to be atypical. 

To further investigate the validity of their clusters, Ben-Tovim Jones et al. (2004b) 
also considered clustering the tumors by just looking at the first two principal compo- 
nents (PCs) of the tumors obtained by a singular-value decomposition, as explained in 
Section 3.19. The scatter plots for the first two PCs based on (a) the 20 metagenes and 
(b) all the genes are shown in Figures 8.2 and 8.3, respectively. In each of the plots, 
the allocation boundary corresponding to the clusters obtained previously in (8.1) 
is imposed. In each case, it can be seen that this boundary represents a reasonable 
partition of the data into two clusters in the space of the first two PCs. 

8.4.2 Survival Analysis 

Among the 37 patients with survival data available, the clustering described in the 
preceding section showed that 29 were classified as poor prognosis and eight were 
classified as good prognosis. The Kaplan-Meier estimate is used to provide an es- 
timate of the overall probability of being recurrence-free following surgery. Given 
that there is only one recurrence in the good-prognosis cluster C1, it should have a 
significantly better Kaplan-Meier estimate than that of the poor-prognosis cluster C,, 
and this is confirmed in Table 8.2. These two Kaplan-Meier estimates are plotted in 
Figure 8.4. The Kaplan-Meier curves were compared using the log-rank test. 

We also fitted the proportional hazards model of Cox (1972), using covariates to 
represent the clinical data and a zero-one indicator variable to represent membership 
or lack of membership in cluster C2. The fit for the final form of this model is 
given in Table 8.3. The significance of estimated hazard ratios were tested using the 
Wald test. All calculations in the survival analysis were performed with the S-Plus 
statistical package. It can be seen that membership of cluster C, (the poor-prognosis 
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Fig. 8.4 Kaplan-Meier curves of recurrence-free probability for the two clusters (Ontario 
data set). From Ben-Tovirn Jones et al. (2004b). 

Table 8.3 Multivariate Cox Hazards Analysis of the Risk of Recurrence (Ontario Data Set) 

Variable Hazard Ratio (95% CI) P-Value 

Poor-prognosis cluster (vs. good-prognosis) 6.8 (0.9-5 1.8) 0.06 
Stage 2 or 3 (vs. Stage 1) 1.1 (0.4-2.7) 0.88 

Source: From Ben-Tovim Jones et al. (2004b) 

cluster) was the only factor approaching significance ( P  = 0.06) in its effect on the 
event of being recurrence-free. 

8.4.3 Discriminant Analysis 

We have seen in the last section, that at the 6% level, there is additional prognostic 
information in the microarray gene expressions beyond that provided by the clinical 
criteria. To further investigate the predictive power of the microarrays, we fitted a 
support vector machine (SVM) with recursive feature elimination (RFE) to the two 
clusters. We estimated the error (generalization) rate of this discriminant rule, using 
external ten-fold cross-validation as defined in Section 6.22.2. That is, we treated 
the two clusters C1 and Cz as if they represented random training samples from 
good- and poor-prognosis groups. This approach is therefore somewhat self-serving 
in that we are treating the two clusters as if they are representative samples of the 
two underlying groups of interest. The error rate of this discriminant rule is thus 
more optimistic than that which would be achieved for properly constituted training 
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Fig. 8.5 External ten-fold cross-validated error rate of SVM with RFE applied to g = 2 
clusters of tumors in Ontario data set. From Ben-Tovim Jones et al. (2004b). 

samples. But it may be useful in that if the error rate of this clustering-based rule 
is not small, then the error rate of a rule based on random trainings samples will be 
higher. Also, it should be noted that the discriminant rule formed here from these 
clusters is a nonparametric one and starts with all the available genes, which lessens 
the incestuous nature of this exercise. Another use for this prediction rule is that it 
provides a method for revealing potential marker genes, as it can be noted how many 
times a gene was selected in the final form of the SVM on each of the ten subsamples 
during the ten-fold cross-validation. In this use, it complements the “cluster-genes’’ 
step of EMMIX-GENE, which can be used to find marker genes. 

In Figure 8.5, we have plotted the external ten-fold cross-validated error rate 
A(CV1oE) of the SVM with RFE applied to the Ontario data set. It can be seen 
that A(cV10E) is zero up to eight genes after which the error rate starts to rise as 
further genes are eliminated from the SVM. 

8.5 STANFORD DATA SET 

We now consider the Stanford lung cancer data set, which is the second of the two 
cDNA array sets. It includes measurements for 67 lung tumor samples, of which 
the majority were classified histologically as adenocarcinoma (AC) tumors (see Ta- 
ble 8.1). Eleven of the tumors were sampled twice (or in one case three times) from 
the same patient (such as a primary tumornymph node pair), and the 41 AC tumor 
samples came from a total of 34 patients. Using the EMMIX-GENE procedure, Ben- 
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Fig. 8.6 Heat maps for all of the genes, the 20 metagenes, and the 20 gene groups on 
the 73 tissues in the Stanford data. Tissues are ordered by their histological classification: 
Adenocarcinoma ( 1  -41), Fetal Lung (42), Large cell (43-47), Normal (48-52), Squamous cell 
(53-68), Small cell (69-73). From Ben-Tovim Jones et al. (2004b). See the insert for a color 
representation. 

Tovim Jones et al. (2004a) reduced the number of genes from 91 8 to 453, which were 
then clustered into 20 groups; see the heat maps in Figure 8.6. 

On the basis of the 20 metagenes so obtained, they clustered the 73 tumors into 
five clusters, corresponding to adenocarcinoma (AC), large cell lung cancer (LCLC), 
normals, squamous cell (SCC) and small cell lung cancer (SCLC). Six of the adeno- 
carcinoma samples were put into non-AC clusters (tumors 5, 6 and 26 as LCLC; 7 
and 29 as SCLC; 40 as SCC). These samples were subsequently excluded, leaving 35 
AC tumors to be analyzed. In the study of Garber et al. (2001), two non-AC tumors 
(43 LCLC and 68 SCC) were clustered as AC tumors and so were included with the 
latter for analysis. These were were not included in the study of Ben-Tovim Jones et 
al. (2004a), as they were put in the cluster corresponding to LCLC. 

8.5.1 Cluster Analysis of AC Tumors 

As in Ben-Tovim Jones et al. (2004b), we reapplied the select-genes and cluster-genes 
options of the EMMIX-GENE procedure to the 35 AC tumors, reducing the number 
of genes from 9 1 8 to 2 19, which were then clustered into 15 groups. The top genes 
among the retained 2 19 genes included CD36 antigen, signal transducer and activator 
of transcription 4, aldo-keto reductase family 1 member C1, and kynureninase. The 
heat maps for these 15 groups are displayed in Figure 8.7. A plot of the expression 
profiles of the metagenes from the first four groups of genes is given in Figure 8.8. 
Here we order the 35 AC tumors according to groups obtained by Garber et al. 
(2001), using hierarchical clustering. When EMMIX-GENE was used to cluster 
the AC tumors into ,q = 3 clusters based on the metagenes, we find our clusters 
essentially agree with those of Garber et al. (2001). Our cluster C1 corresponds to 
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fig. 8.7 Heat maps for all of the genes, the 15 metagenes, and the 15 gene groups on the 35 
tissues in the Stanford data. Tissues are ordered according to the AC groups of Garber et al. 
(2001): AC group 1 (1-19), AC group 2 (20-26), AC group 3 (27-35). From Ben-Tovim Jones 
et al. (2004b). See the insert for a color representation. 

their good-prognosis group (AC group 1: tumors 1 to 19), cluster Cz to the long-term 
survivors (AC group 2: tumors 20 to 26), and Cs to the poor-prognosis group (AC 
group 3: tumors 27 to 35). Only tissue 15 is put into a different cluster (Cz) by us. 
Indeed, cluster C, had only one patient that died. Therefore for the survival analysis, 
the tissues were reclustered into g = 2 clusters. This gave a single good-prognosis 
cluster C1 which corresponded to AC groups 1 and 2, and a poor-prognosis cluster 
Cz which corresponded to AC group 3.  There was one exception; now patient 29 
appeared in cluster C1. The expression profiles for patients 15 and 29 are shown in 
pink in Figure 8.8. 

8.5.2 Survival Analysis 

With the Stanford data set, there were clinical data available for 26 AC tumor samples, 
with four tumor pairs derived from the same patients. In the analysis, each tumor 
pair was treated as one observation. This gave a total of 22 observations, with 10 
censored. 

The Kaplan-Meier survival curves (Figure 8.9) show a significant difference in 
the probability of overall survival between the good-prognosis and poor-prognosis 
clusters ( P  <0.001). The mean (fSE) survival times are 37.5*S.0 and 5.23~2.3 
months, respectively. Table 8.4 shows the results of the multivariate Cox regression 
analysis. It is evident that the two prognosis clusters are different after the adjustment 
for the clinical factors (P=0.002). The estimated hazard ratio for overall survival 
in the poor-prognosis cluster as compared with the good-prognosis cluster is 15.5 
(95% confidence interval: 2.7 to 90.2). In Table 8.5, we present the univariate Cox 
proportional hazards analysis for each of the top 15 metagenes. 
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Fig. 8.8 Expression profiles for top metagenes (Stanford 35 AC tissues). From Ben-Tovim 
Jones et al. (2004b). See the insert for a color representation. 

Table 8.4 Multivariate Cox Proportional Hazards Analysis of the Risk of Death (Stanford 
Data Set) 

Variable Hazard Ratio (95%CI) P-Value 

Poor-prognosis cluster (vs. good-prognosis) 15.5 (2.7-90.2) 0.002 
Tumor grade 3 (vs. grade 1 or 2) 1.8 (0.4 - 9.2) 0.47 
Tumor size 1 (vs. sizes 2 to 4) 0.5 (0.03-7.4) 0.59 

Presence of tumor in lymph nodes 4.4 (0.4-48.6) 0.23 
Presence of metastases 4.3 (0.8-24.6) 0.10 

Source: From Ben-Tovim Jones et al. (2004b). 
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Fig. 8.9 Kaplan-Meier survival curves for the two prognosis clusters (Stanford data set). 
From Ben-Tovim Jones et al. (2004b). 

Table 8.5 Univariate Cox Proportional Hazards Analysis of the Metagenes (Stanford Data 
Set) 

Metagene Coefficient (SE) P-value 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

1.37 (0.44) 

0.14 (0.34) 

0.66 (0.65) 

-0.24 (0.31) 

-1.01 (0.56) 

-0.63 (0.50) 
-0.68 (0.57) 
0.75 (0.46) 

0.73 (0.39) 
0.35 (0.50) 

-1.13 (0.50) 

-0.55 (0.41) 
-0.61 (0.48) 
0.22 (0.36) 
1.70 (0.92) 

0.002 
0.44 
0.68 
0.07 
0.31 
0.20 
0.24 
0.10 
0.02 
0.06 
0.48 
0.18 
0.20 
0.53 
0.06 

Source: From Ben-Tovim Jones et al. (2004b). 
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Fig. 8.70 External ten-fold cross-validated error rate of SVM with RFE applied to g = 2 
clusters of AC tumors in Stanford data set. From Ben-Tovim Jones et al. (2004b). 

8.5.3 Discriminant Analysis 

As with the Ontario data set, we considered the Stanford data set in a discriminant 
analysis context by treating the three clusters as obtained in Section 8.5.1 as if they 
were randomly obtained training samples. Again, we formed an SVM with RFE to 
progressively reduce the number of genes. The external ten-fold cross-validated error 
rate is plotted in Figure 8.10 versus the retained number of genes. It can 
be seen that A("V1oG' is zero provided that the number of genes is between 4 and 
32 

8.6 DISCUSSION 

In the work of Ben-Tovim Jones et al. (2004a,b) considered partially above, a model- 
based clustering approach has been applied to classify tumor tissues, using their gene 
signatures, into cluster3 corresponding to tumors of a given subtype. The clusters were 
then able to be identified with clinical outcomes such as recurrence versus nonrecur- 
rence of tumor and death versus long-term survival. It was able to be established that 
the gene expression data provide prognostic information, beyond clinical indicators 
wch as stage. 

A limiting factor in the analyses was the small numbers of tumors available. In 
addition, the clinical data were available for only subsets of the tumors (for example, 
only for one tumor type, adenocarcinoma, in the Stanford data set). Further, the high 
proportion of censored observations limited the comparison of survival rates. 
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AECM algorithm, 80 

80 

formation criteria for, AIC 

mixtures of factor analyzers, for, 

AIC, see Number of components, in- 

Akaike’s criterion, see AIC 
Alternating expectation-conditional 

maximization algorithm, 
see AECM algorithm 

Bayesian estimation, 87, 159, 215. 
See also Markov chain 
Monte Carlo methods 

Dirichlet, 159 
gamma, 54, I6 I 
inverse gamma, 16 1 

Bayesian information criterion, see 
BIC 

Beta distribution, see Distributions, 
beta 

BIC, 79, 85, 105, 165-166. See 
also Number of compo- 
nents, BIC 

Subject Index 

Bootstrap, 49, 85-88, 126-127, 144, 
168, 213-216, 219-220, 
226,228-229,233 

likelihood ratio test of number of 
components, for, see like- 
lihood ratio test statistic, 
number of components, for 

CART, see Discriminant analysis, 

Canonical variates, 94-97 
Chi-squared distribution, see Distribu- 

tions, chi-squared 
Classification ML approach, 8 1-82 
Classification of data 

classification trees, CART 

Supervised, See also 

Unsupervised, 
Discriminant analysis 

Clest method see Number of clusters, 
Clest method 

Clustering. See also Cluster analysis 
genes, of, 171-184 
gene shaving, 173,177-181,183 
tissue samples, of, 99-132 
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EMMIX-GENE, 63, 83, 100, 
103-109, 112-113, 115- 
124, 126, 128, 130-131, 
171, 173, 198, 249, 255- 
256,261-262 

Cluster analysis 
agglomerative methods, see hier- 

decision-theoretic approach, 

hierarchical methods, 61-68,71, 

136, 180, 250, 253, 259, 
262 

agglomerative, 61-68, 102, 
115 

divisive, 64, 67,7 1 
finite mixture models, via, 63, 

69-72,74,75 
k-means, 35, 61, 68-69, 75-77, 

81-82, 102, 105, 109, 127, 
249 

likelihood-based criteria, 7 I ,  72, 
81 

mixture likelihood approach, 
71, 72, 81 

model-based approach, 
65, 72, 84, 100, 102, 124, 
130, 175,249 

advantages, 72, 84, 100, 102, 
124,130 

spurious clusters, 125, 127, 178, 
250 

Cross-validation, 43, I I I ,  123, 125, 
210, 213-216, 218-219, 

261,266. 

archical methods 

187-188 

99,102,112,115-I 16,125, 

224-241, 245-248, 260- 

half-sample validation, 2 15 
ten-fold, 212, 226, 229, 231, 

234-239, 24 I ,  245-247, 
260-26 1,266 

Data sets 
Alizadeh data, I 26-- I27 

Alon data, 56-58, 100, 104, 108, 
110-1 12, 130, 146-147, 
159, 162-163, 179, 210- 
212, 226-227, 231, 239- 
242 

Bittner data, 65,99, 127 
Golub data, 99, 125,226 
Harvard data, 254-255 
Michigan data, 254-255 
Ontario data, 254-256,259-261, 

Stanford data, 254-255, 261- 

van de Vijver data, 221,233-237, 

256 

266 

239-240, 243-245, 247, 
254 

van 't Veer data, 82, 100, 112- 
124, 127-131, 233-234, 
236,245 

tion of, 58, 133-1 7 1 
Differentially expressed genes, detec- 

Fold change, 134 
Multiplicity problem, 134-135. See 

also Multiple hypothesis 
testing. 

SAM procedure, 146-148 
t-test, 139 
permutational methods, 144- 145 
Diagnostic tests, 187 

error rates, assessment of, 187 
sensitivity, 187 
specificity, 187 

Dirichlet distribution, see Distribu- 

Discriminant analysis, 185-220 
tions, Dirichlet 

classification trees, 106,2 10,2 1 1 

c4.5, 210 
diagnostic paradigm, 191 
error rates. See Error rates 
logistic discrimination, 201 -202, 

nearest-neighbor rules, 208-2 10, 

neural networks, 207-208 

CART, 210,212,231-232. 

24 1 
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normal mixture models, 53, 62, 

88, 102, 107, 112, 126, 130, 

256 

function, 96, 191, 199,216, 

heteroscedastic classes, 75- 
77, 193, 194,197 

homoscedastic classes, 76,77, 
195,196,215,217,224 

plug-in sample rule, 191-192, 

quadratic discriminant func- 

selection of feature variables, 

suport vector machines, 11 1, 

65, 71, 74, 77-78, 80, 87- 

164-166, 175, 198, 248, 

Fisher’s linear discriminant 

217,222,226,228-232 

194, 197-198 

tion, 194,223, 225 

204-205,2 16-2 18 

123, 198, 203-207, 216- 
217, 222, 224-237, 239- 
247,260-26 1,266 

multiple classes, 205-206 
recursive feature elimination, 

205-206, 224-228, 230, 
233-235, 237, 239, 241- 
243,245-246,260 

software, see Software, sup- 
port vector machines 

Distributions 
beta, 54, 166, 168, 169 
chi-squared, 79, 86, 127 
Dirichlet, 159 
F ,  164-165,224,236,249 
log normal, 161 
location model (conditional 

Gaussian distribution), 
83 

multinomial, 186 
normal 

multivariate, 50, 69, 71, 75, 
78, 81, 83, 90, 168, 192- 
193 

univariate, 164 

t, 78, 137, 139 
uniform, 88, 89, 166 
Weibull. 257 

EM algorithm, mixtures, for 70, 72- 
75, 80-81, 83, 130, 176, 
208 

convergence of 

112 
local maximum, to a, 7.5, 8 1 ,  

saddle point, to a, 75 
factor analyzers, 81, 103, 106- 

109 
E-step, 73,74, 81 
M-step, 74,76, 8 1, 176 
single component, 13 1, 176 

normal components, 75-78,80- 
81,112,126,165,173-174, 
249 

root, choice of, 77 
starting points, 75, 81 
t components, 104-106 

EMMIX, 77, 165 
Error rates. 53, 96-97, 1 1  1, 123, 

128, 131, 135, 140, 179, 
186-191, 197, 207, 210- 
220, 222, 224-235, 239- 
240, 245-247. See also 
error-rate estimation 

apparent error, 2 10-2 13, 2 1 5- 
216, 218-219, 222, 224- 
226,230-23 1 

Error-rate estimation 

validation 
cross-validation. See Cross- 

external, 2 18-2 19 
leave-one-out (LOO), 2 13 
q-fold, 2 14 

bootstrap approach 
0.632 estimator, 2 14-2 15 
0.632+ estimator, 21 9-220 

EST, 6,7,23, 25 
Estimation, mixtures, for 

Bayesian methods, see Bayesian 
estimation 
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maximum likelihood, see ML es- 
timation 

Estimation, robust, I04 
mixtures, for, See also Mixtures 

M-estimation of components, 
o f t  components 

42 
Examples 

spurious clusters, 125, 127, 196, 
250 

spurious local maximizers, 77, 
80 

Expectation-maximization algo- 
rithm, see EM algorithm, 
mixtures, for 

Exponential distribution, see Distribu- 
tions, exponential 

Expressed sequence tag, see EST 
Extensions of EM algorithm, see 

AECM algorithm 

F-distribution, see Distributions, F 
Factor analysis, see Factor analyzers 
Factor analyzers, 78-81, 102-103, 

106-109, 112, 114, 126, 
127, 130-131, 174, 198, 
245, 249, 256. See also 
Mixtures of factor analyzers 

application of EM algorithm, 

probabilistic PCAs. link with, 80. 
False discovery rate, see Multiple hy- 

pothesis testing, False dis- 
covery rate 

False nondiscovery rate, see Multi- 
ple hypothesis testing, False 
nondiscovery rate 

False positive rate, see Multiple hy- 
pothesis testing, single hy- 
pothesis, false positive rate 

FDR, see Multiple hypothesis testing, 
False discovery rate 

Finite mixtures, see Mixture models 

Gamma distribution, see Distribu- 

62-63,78-81 

tions, gamma 

Gap statistic, see Number of clusters, 
Gap statistic 

Gene expression, 1-3 
Genetics, 2 
Genome, 2-3,25-27 
Genotype, 2 

Hazard functions 
proportional, 254,259,263,265 

ICL criterion, see Number of compo- 
nents, information criteria 
for, classification-based, in- 
tegrated classification like- 
lihood criterion 

Identifiability, 50, 70 
Image analysis. See Microarrays, 

preprocessing of, image 
analysis 

Information criteria, see Number of 
components, information 
criteria for 

Integrated classification like- 
lihood criterion, 85. See 
Number of components, 
information criteria for, 
classification-based, in- 
tegrated classification 
likelihood criterion 

Likelihood ratio test statistic, 105 
Likelihood ratio test statistic, number 

of components, for, 85, 86, 
88 

applications of, 104-105, 125- 
131,159,224 

bootstrapping of, 85-87, 126 
definition of, 79, 86, 159 
effect on P-values, 87, 126 
regularity conditions, break- 

simulation results, 87 
down of, 79,85,86, 127 
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Local maximizers, see ML estima- 
tion, local maximizers, mul- 
tiplicity of 

Log likelihood, see Mixture likelihood 
Log normal distribution, see Distribu- 

tions, log normal 
LRTS, see Likelihood ratio test statis- 

tic; Likelihood ratio test 
statistic, number of compo- 
nents, for 

Mahalanobis distance, 67, 69,78, 92, 
194,197,217 

Markov chain Monte Carlo methods, 
85. See also Bayesian esti- 
mation 

Maximum likelihood estimation, see 
ML estimation 

Maximum penalized likelihood esti- 
mation, see ML estimation, 
penalized, 

MCMC or (MC)2 methods, see 
Markov chain Monte Carlo 
methods 

Metagenes, 99, 105-108, 112, 224, 
249-251, 256, 258, 259, 
262-265 

Microarrays 
Affymetrix, 9, 10,21-23,26-28, 

38-39, 44, 56, 125, 169- 
170,254-255 

biology of, 2 4 ,  10-16 
definition of, 10 
cDNA, 6-7 
DNA, 1-12 
GeneChip, 1, 10, 21, 23, 26-27, 

history of, 8-10 
hybridization, 4, 9, 11-14, 16- 

38-39 

17, 19-24, 27-28, 31-32, 
38-41,48%49,51-52 

limitations of, 18-20 
missing values, 31-32, 36-37, 

mismatch, 22-23,38-39,42,44 
254 

normalization, 38-52 
ANOVA, mixed model, 49- 

51,58,138,172 
cyclic loess, 43,44 
multiple-slide, 48 
nonlinear, 16, 32, 38, 42-44, 

quantile, 43,44, 56,58, 147 
spiked-in, 40 
titration series, 46 
transformations, 53-55 
within-slide, 46-48 

56,63 

oligonucleotide, 20-23,3844 
perfect match, 22-23,38-39,44 
preprocessing of 

cleaning, 32-38 
image processing, 32,34 
normalization, see Microar- 

rays, 
normalization 

standardization, 20 
RNA, 3-6,9 
spiked, 3 9 4 1  
technology of, 7-24 

tools, 10-18 
Mixed feature variables, see Mix- 

ture models, mixed vari- 
ables, for 

Mixing proportions 
definition of, 70 
estimation of, 74,76 

Mixture likelihood, see also ML esti- 
mation 

definition of, 8 1 
EM framework, in 

complete-data, 73,74, 8 1, 85 
incomplete-data, 74 

local maxima of, see ML estima- 
tion, local maximizers, mul- 
tiplicity of 

multiple maxima of, see ML es- 
timation, local maximizers, 
multiplicity of 

unboundedness of, 77 
Mixture models 
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definition of, 62,69 
estimation of, 69-90. See also 

Estimation, mixtures, for 
incomplete structure of, 73,74 
nonparametric estimation of, see 

Mixing distribution, non- 
parametric estimation of, 

parametric formulation of, 160- 
166 

Mixtures of factor analyzers, 78-80, 

application of AECM algorithm, 

examples, 108-109, 112, 114, 

I 02- 103, 106.- 107 

80 

121, 123, 126-127, 130- 
131,245 

likelihood ratio statistic, number 
of factors, for, 125-128 

mixtures of probabilistic PCAs, 
link with, 80 

Mixtures of normals, 62,81, 173,249, 
256 

application of EM algorithm, 8 1, 
112, 126, 164-165, 173, 
174,249 

M-step, sufficient statistics, 
74-75 

choice of covariance matrices, 
76-82 

choice of root, 77 
global maximizer, 74, 75, 77 
heteroscedastic components, 75- 

homoscedastic components, 76 
local maximizers, spurious, 77, 

singularities, 98 
spherical components, 76 

76 

80 

Mixtures of probabilistic PCAs, see 
Mixtures of factor analyz- 
ers, mixtures of probabilis- 
tic PCAs, link with 

Mixtures of survival functions 
censored data, with, 254, 256- 

257,259,263,266 

example, 257 
long-term survivor model, 257, 

Weibull components, 257 
Mixtures o f t  components, 104-106 
Mixtures of uniform components, 

Mixtures of Weibulls, 257 
MLE, see ML estimation 
ML estimation, 48,50,70,72,75,77- 

choice of root of likelihood equa- 
tion, 77 

EM algorithm for, see EM algo- 
rithm, mixtures, for 

global maximizer, 74-75,77 
local maximizers, multiplicity 

of, 77. See also Mixtures of 
normals, local maximizers, 
spurious 

penalized, 85 
properties of MLE, 69-72. See 

also Mixtures of normals, 
properties of MLE 

Markov chain Monte Carlo 
methods 

259,263,266 

168,169 

78,83,86,194-195,197 

Monte Carlo methods, see also 

bootstrap, for, 68-70 
Multinomial distribution, see Distri- 

Multiple hypothesis testing 
butions, multinomial 

Approaches to, 137-143 
Bayesian, 159 
Empirical Bayes, 158-1 60 

Nonparametric, 159 
Parametric, 136 

Mixture model, 154-158 
Bayes risk, 156-158 

False discovery rate, 135, 136, 

Positive false discovery rate, 
14 1-160 

143 
False nondiscovery rate, 143 

Positive false nondiscovery 
rate, 143 
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Familywise error rate, 135, 140, 

q-value, 148-154 
single hypothesis, 137-138 

142 

false positive rate, 134-136, 
138-141, 148-149, 151- 
156 

P-value, 140-144, 148-1 54, 

Multivariate normal distribution, see 
Distributions, normal, mul- 
tivariate 

Multivariate normal mixtures, see 
Mixtures of normals 

Multivariate t distribution, 78. See 
also Distributions, t 

162,165-170,173 

Neural networks, 207-208 
Nonparametric MLE, see Mixing dis- 

tribution, nonparametric es- 
timation of 

Normal distribution, see Distribu- 
tions, normal 

Normalization of microarrays. See 
Microarray s, 
preprocessing of, normal- 
ization 

Notation, 100-101 
Number of clusters. See also Number 

of components 
Clest method, 87-89, 91, 127. 
Gap statistic, 87, 125, 178, 180. 

Number of components, 7 1,84-85 
bias-correction of log likelihood, 

cross-validation, 125 
information criteria for 

213 

AIC, 85, 165 
BIC, 79,85,105,165,166 

information criteria for, classi- 

classification likelihood crite- 

integrated classification likeli- 

fication-based, 

rion, 81-82,85 

hood criterion, 85-86 

likelihood ratio, see Likelihood 
ratio test statistic, number of 
components, for 

order of a mixture model, 84-85 
simulation results on, 88-9 1 
testing for, 84, 104 

Outlier detection from a mixture, 78, 
104 

Order of a mixture model, 84, 85 See 
also Number of components 

approaches for assessing 

PAM, see Partitioning around medoids 
Partial least squares, 97-98,223-225, 

Partitioning around medoids, 35,68 

pFDR, see Multiple hypothesis 
testing, positive false dis- 
covery rate 

pFNR, see Multiple hypothesis 
testing, positive false 
nondiscovery rate 

Polymerase chain reaction, see PCR 
Posterior probabilities of component 

membership, 70-7 1,73-74, 

254 

PCR, 5,6, 16-17,24,28 

77, 80-81, 86, 136, 164, 
169, 177, 186, 191, 194- 
195, 198, 201, 207, 209- 
210,228,238,259 

Multiple hypothesis testing, 
positive false discovery rate 

Principal component analysis, 252- 
253. See also Mixtures of 
probabilistic PCAs 

Prior densities, see Bayesian estima- 
tion, prior densities 

Probabilistic principal component an- 
alyzers, see Factor analyz- 
ers, probabilistic PCAs, link 
with 

P-value, see Multiple hypothesis test- 
ing, single hypothesis, P- 
value 

Positive false discovery rate, see 
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q-value, see Multiple hypothesis test- 
ing, hypothesis, q-value 

Resampling approach, see Likelihood 
ratio test statistic, bootstrap- 
ping, of 

Robust estimation, see Estimation, ro- 
bust; Mixtures of t compo- 
nents, robust estimation via 

SAGE, 23-24 
Selection bias, 123, 128, 218-219, 

Self-organizing maps, 61,68 
Simulation, 

225-233,245-248 

posterior distribution, of, see 
Markov chain Monte Carlo 
methods, posterior simula- 
tion 

Singular value decomposition, 37,93, 
96, 128, 178, 223, 259. 
See also Principal compo- 
nent analysis 

SOM, see Self-organizing maps 
Software 

Bioconductor, 44 
DNA-chip Analyzer, 43 
EMMIX-GENE, 63, 83, 100, 

103-109, 112-1 13, 115- 
124, 126-128, 130-131, 
171, 173, 198, 249, 255- 
256,261-262. 

GeneClust, 180-183 
GenePix, 34,46 
Geneshaving, 180-1 83 
QuantArray, 34 
ScanAlyze, 34 
SNOMAD, 5 1,52 

rfe, 206 
support vector machines, 206 

spot, 35 

Spurious clusters, see Clustering, spu- 
rious clusters 

Spurious local maximizers, see ML 
estimation, local maximiz- 
ers, multiplicity of 

Standard error estimation, 21 6 
Starting values, see EM algorithm, 

starting points 
Sufficient statistic, see Mixtures of 

normals, application of EM 
algorithm, M-step, suffic- 
ient statistics 

Survival analysis, see Mixtures of sur- 
vival functions 

SVD, see Singular value decomposi- 
tion 

t distribution, see Distributions, t;  
Mixtures o f t  components 

Transformations, see Microarrays, 
normalization, transforma- 
tions 

Tree-structured classifiers, see Dis- 
criminant analysis, classifi- 
cation trees 

Uniform distribution, see Distribu- 
tions, uniform 

Univariate normal mixtures, see Mix- 
tures of normals 
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