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Preface

In 2006 our book, Statistical Analysis of Medical Data Using SAS, was pub-
lished and in 2010 we started to work on a second edition. But as work began, 
the number of new topics that we thought it would be valuable to include 
started to increase, to the point that we thought a new book was needed 
rather than a relatively light revision of the earlier book. The result is Applied 
Medical Statistics Using SAS. In this book, more attention has been given 
to the planning stage of medical studies in the sense that several chapters 
now contain details of sample size estimation. In addition, various methods 
of randomisation that might be employed for clinical trials are illustrated. 
Several completely new chapters cover topics that have become of great 
importance in the twenty-first century—for example, Bayesian methods and 
multiple imputation.

To save the book from becoming overly long, we have omitted the multi-
variate analysis chapters found in Statistical Analysis of Medical Data Using 
SAS. And, again with the aim of limiting the size of the book, larger data sets 
are given only in an abbreviated form; in many cases, the output has been 
edited to include only the most relevant sections. However, all complete data 
sets, all the SAS code, and complete outputs can be found on the website, 
http://support.sas.com/amsus.

The book is based on version 9.3 of SAS—the latest at press time. A major 
change in SAS since the previous book is that the output delivery system 
(ODS) has come of age. The power and flexibility of SAS for manipulating 
data prior to analysis is now equally matched at the other end of the process 
by its facilities for publishing the results. This is reflected in the book in that 
all tables and graphs are presented exactly as generated by SAS using ODS 
tables and graphs and the new graphics procedures.

We hope this new book will prove to be of use to many medical statisti-
cians and to medical researchers in general who use SAS in their work.

Brian Everitt and Geoff Der
London and Glasgow
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1
An Introduction to SAS

1.1 Introduction

SAS, originally an acronym for Statistical Analysis System, comprises a broad 
range of software modules that can be added to the basic system, known as 
BASE SAS. Here our focus is on the SAS/STAT module in addition to the 
main features of the base system. Where we use any features of SAS that 
require additional modules, this will be indicated in the text. As of version 
9.3 of SAS, there are sufficient graphical capabilities in the BASE and STAT 
modules that the SAS/GRAPH module will not be needed by most users.

Although there are graphical user interfaces to SAS, we will use SAS pro-
grams. This is the most common way of using SAS and the one which most 
users want to learn.

The SAS system is available for a wide range of different computers and 
operating systems and the way in which SAS programs are entered and run 
differs somewhat according to the computing environment. We describe the 
Microsoft Windows interface, as this is by far the most popular, although 
other windowing environments, such as X-windows, are quite similar.

At the time of writing, the latest version of SAS is version 9.3 and all the 
examples have used version 9.3 running under Microsoft Windows XP.

1.2 User Interface

Figure 1.1 shows the SAS user interface. At the top are the SAS title bar, the 
menu bar, and the tool bar with the command bar at its left end. The buttons 
of the tool bar change, depending on which window is active. The command 
bar allows less frequently used commands to be typed in. At the bottom, the 
status line comprises a message area with the current directory and editor 
cursor position at the right. Double clicking on the current directory allows it 
to be changed. Above the status line is a series of tabs, which allow a window 
to be selected when it is hidden behind other windows.
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When SAS is started, there are five main windows open: the editor, log, out-
put, results, and explorer windows. In Figure 1.1, the editor, log, and results 
windows are visible. The explorer window is hidden behind the results win-
dow and the output window is hidden behind the program  editor and log 
windows.

If any of these windows has been closed, it can be reopened using the view 
menu.

The purpose of the main windows is described in the following subsections.

1.2.1 Editor Window

The editor window is for typing in programs, editing them, and run-
ning  them.* The editor is essentially a built-in text editor specifically 

* SAS has two editors: the current default version, referred to as the enhanced editor, and an older 
version, known as the program editor. The program editor has been retained for reasons of 
compatibility but is not recommended. Here we describe the enhanced editor and may refer to it 
simply as ‘the editor’. If SAS starts up using the program editor rather than the enhanced editor, 
then from the Tools menu select Options; Preferences, then the Edit tab, and select the 
use Enhanced Editor box. The enhanced editor can be recognised by the + in its icon.

FIGURE 1.1
SAS version 9.3 running under Windows XP.
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tailored to the SAS language, with additional facilities for running SAS 
programs.

The program currently in the editor window may be run by choosing the 
Submit option from the Run menu. The Run menu is specific to the editor 
window and will not be available if another window is the active window. 
Submitting a program may remove it from the editor window (but see below 
to disable this). If so, it can be retrieved by choosing Recall Last Submit 
from the Run menu.

It is possible to run part of the program in the editor window by selecting 
the text and then choosing Submit from the Run menu. With this method, 
the submitted text is not cleared from the editor window.

Other ways of submitting programs are the F3 key, the Running Man icon, 
and right-click followed by submit all or submit selection.

The Options submenu within Tools allows the editor to be config-
ured. When the enhanced editor window is the active window (View; 
Enhanced Editor will ensure that it is), Tools; Options; Enhanced 
Editor will open a window similar to that in Figure 1.2. This shows the 
setup we recommend—in particular, that the options for collapsible code 
sections and automatic indentation are selected and that clear text on 
submit is not.

FIGURE 1.2
The enhanced editor options window with recommended options set.
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When a SAS program is run, two types of output are generated: the log and 
the procedure output, and they are displayed in the log and output windows.

1.2.2 Log Window

The log window is the main source of feedback to the user about the program 
or statements that have been submitted. It shows the statements themselves, 
together with information about the execution of the program in the form of 
notes, warnings, and error messages. Although it is tempting to assume that 
if some output is generated, the program has ‘worked’, this is by no means 
always the case. It is a good discipline to check the log every time. Whilst 
error messages and warnings obviously demand attention, the notes can also 
be important. For example, when a SAS data set is created, a note in the log 
gives the number of observations and variables which the data set contains 
and, if these are not as anticipated, there may be an error in the program.

The Clear all option in the Edit menu, or the New button on the toolbar, 
will empty the window. This is useful if a program has been run several 
times as errors were being corrected.

1.2.3 Output Window

This window shows the textual output of any procedures, if the ‘listing’ form 
of output has been enabled. It is here that the results of any statistical analy-
ses are shown.*

The output window works in tandem with the results window. The entire 
contents of the window can be cleared in the same way as the log window or 
sections can be deleted via the results window.

1.2.4 Results Window

This provides a graphical index to the various procedure results, including 
the contents of the output window, and any output in other formats, such as 
rich text format (rtf) or HTML, that may have been generated. It is useful for 
navigating around large amounts of output. Double clicking on a section of 
output opens the appropriate window with that section of the output visible. 
Right clicking on a procedure, or section of output, allows further options 
depending on the output format being used. For listing output that portion 
of the output can be viewed, printed, deleted, or saved to file.

1.2.5 Explorer Window

This performs much the same functions as the Windows explorer, but with 
the added advantage of being able to view the contents of SAS data sets or 

* In SAS 9.3 listing output is disabled by default. See the following section.
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a list of the variables they contain (right click, Open and right click, View 
Columns, respectively).

1.2.6 Results Viewer Window

The output delivery system (described in detail below) allows results to be 
produced in alternative formats. When this is enabled, a results viewer win-
dow will open to display the formatted results. In version 9.3 of SAS, the 
default setup is to produce HTML output and open a results viewer window 
to display it.

1.2.7 Options for Displaying Procedure Results

There are two main ways of displaying procedure output: listing format in 
the output window and HTML format in the results viewer window. The 
default is to produce HTML output. The main advantage of this is that all 
output appears in one window, including the graphs. Whereas with listing 
output, the graphs are not displayed by default, but double-clicking on a 
graph in the results window which will display it in a separate window out-
side SAS. The disadvantage of the default HTML format is that there is less 
control over individual sections of output. With listing output, individual 
sections of output and graphs can be deleted, saved, or printed. The ability 
to delete individual sections of output is often useful. The choice is a matter 
of personal preference.

However, we believe it is simpler while learning SAS to switch off 
HTML output and work with listing output. This is done via the tools 
menu, selecting Options, Preferences  and then clicking on the 
Results tab. Figure 1.3 shows the resulting window and the necessary 
settings, with Create HTML, View results as they are generated, 
and Use ODS Graphics all deselected and Create listing selected. The 
default settings are the converse, with all options selected except Create 
listing.

1.2.8 Help and Documentation

The Help menu tends to become more useful as experience of SAS is gained, 
although there may be access to some tutorial materials, if they have been 
licensed from SAS. There are also links to the main SAS website and the 
customer support website.

Context-sensitive help can be invoked with the F1 key. Within the editor, 
when the cursor is positioned over the name of a SAS procedure, the F1 key 
brings up the help for that procedure.

Pdf files of the documentation are available online at http://support.sas.
com/documentation/onlinedoc/.
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Note, though, that some of these are very large, so they can take time to 
open or download.

1.3 SAS Programs

SAS programs are made up of a sequence of statements that specify how 
data are to be processed and analysed. The statements specify operations to 
be performed on the data or instructions about the analysis and are grouped 
together into blocks, referred to as ‘steps’. There are two types of program 
steps: data steps and proc (procedure) steps. A data step is used to prepare 
data for analysis. It creates a SAS data set and may reorganise the data and 
modify them in the process. A proc step is used to perform a particular type 
of analysis, or statistical test, on the data in a SAS data set.

A simple program might consist of a data step to read in some raw data 
followed by a series of proc steps analysing that data. If, in the course of the 
analysis, the data need to be modified, a second data step would be used to 
do this. Although the emphasis of this book is on the statistical analysis, one 
of the great strengths of SAS is the power and flexibility it gives the user to 
perform the data manipulation that is so often a large part of the overall task 
of analysing data.

FIGURE 1.3
Setting the results options in the preferences window.
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Learning to use the SAS language is largely a question of learning the 
statements that are needed to do the analysis required and of knowing how 
to structure them into steps. There are a few general principles that are use-
ful to know.

Most SAS statements begin with a keyword that identifies the type of state-
ment. (The most important exception is the assignment statement, which 
begins with a variable name.) The enhanced editor recognises keywords as 
they are typed and changes their colour to blue. If a word remains red, this 
indicates a problem. The word may have been mistyped or is invalid for 
some other reason.

All SAS statements must end with a semicolon.
The most common mistake for new users is to omit the semicolon and 

the effect of this is to combine two statements into one. However, it may 
not be obvious that a semicolon has been omitted before the program is 
run, as the combined statement will typically begin with a valid keyword. 
Usually, the combined statement will be invalid and there will be an error 
message in the SAS log when the program is submitted. Sometimes it will 
still be a valid statement, albeit one that has unintended results.

Although statements may occupy more than one line and there may be 
more than one statement per line, keeping to one statement per line, as far as 
possible, helps to avoid errors and to identify those that do occur.

SAS statements fall into four broad categories according to where in a pro-
gram they can be used:

Data step statements

Proc step statements

Statements that can be used in both data and proc steps

Global statements, which apply to all following steps

Since the functions of the data and proc steps are so different, it is perhaps 
not surprising that many statements are only applicable to one type of step.

1.3.1 Program Steps

Data and proc steps begin with a data or proc statement, respectively, and 
end at the next data or proc statement or the next run statement. When 
a data step has the data included within it, the step ends after the data. 
Understanding where steps begin and end is important because SAS pro-
grams are executed in whole steps. If an incomplete step is submitted, it will 
not run. The statements that were submitted will be listed in the log, but SAS 
will appear to have stopped at that point without explanation. In fact, SAS 
will simply be waiting for the step to be completed before running it. For this 
reason it is good practice to mark the end of each step explicitly by inserting 
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a run statement, and it is especially important to include one as the last state-
ment in the program.

The enhanced editor offers several visual indicators of the beginning and 
end of steps. The data, proc, and run keywords are colour coded in navy 
blue, rather than the standard blue used for other keywords. If the enhanced 
editor options for collapsible code sections have been selected as shown in 
Figure 1.2, each data and proc step will be separated by lines in the text and 
indicated by brackets in the margin. This gives the appearance of enclosing 
each data and proc step in its own box.

Data step statements must be within the relevant data step—that is, after 
the data statement and before the end of the step. Likewise, proc step state-
ments must be within the proc step.

Global statements may be placed anywhere. If they are placed within a 
step, they will apply to that step and all subsequent steps until reset. A simple 
example of a global statement is the title statement, which defines a title for 
procedure output and graphs. The title is then used until changed or reset.

1.3.2 Variable Names and Data Set Names

In writing a SAS program, names must be given to variables and data sets. 
These may contain letters, numbers, and underline characters, and they may 
be up to 32 characters long but cannot begin with a number. (Prior to version 
7 of SAS, the maximum length was eight characters.) Variable names may 
be in upper or lower case, or a mixture, but differences in case are ignored: 
Height, height, and HEIGHT would all refer to the same variable.*

1.3.3 Variable Lists

When a list of variable names is needed in a SAS program, an abbreviated 
form can often be used. A variable list of the form sex -- weight refers 
to the variables sex and weight and all the variables positioned between 
them in the data set. A second form of variable list may be used where a set 
of variables have names of the form score1, score2,... score10. That is, 
there are 10 variables with the root, score, in common and ending in the 
digits 1 to 10. In this case, they can be referred to by the variable list score1–
score10 and do not need to be contiguous in the data set.

Before looking at the SAS language in more detail, the short example shown 
in Table 1.1 can be used to illustrate some of the preceding material. The data 
are adapted from Table 17 of A Handbook of Small Data Sets (SDSs) and show 
the age, sex, and percentage body fat for 18 subjects. The program consists of 
three steps: a data step followed by two proc steps. Submitting this program 
results in the log and procedure output shown in Table 1.2 and Table 1.3.

* However, the first form that SAS encounters is the one that will be used in procedure output.
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TABLE 1.1

A Simple SAS Program

data bodyfat;
 input age pctfat sex $;
cards;
23 9.5 M
23 27.9 F
27 7.8 M
27 17.8 M
39 31.4 F
41 25.9 F
45 27.4 M
49 25.2 F
50 31.1 F
53 34.7 F
53 42.0 F
54 29.1 F
56 32.5 F
57 30.3 F
58 33.0 F
58 33.8 F
60 41.1 F
61 34.5 F
;
proc print data=bodyfat;
run;
proc corr data=bodyfat;
run;

TABLE 1.2

SAS Log after Submitting the Program in Table 1.1

27 data bodyfat;
28 input age pctfat sex $;
29 cards;

NOTE:  The data set WORK.BODYFAT has 18 observations and 3 variables.
NOTE: DATA statement used (Total process time):
 real time 0.00 seconds
 cpu time  0.00 seconds

48 ;
49 proc print data=bodyfat;
50 run;

NOTE:  There were 18 observations read from the data set WORK.BODYFAT.
NOTE: PROCEDURE PRINT used (Total process time):
 real time 0.00 seconds
 cpu time  0.00 seconds

(Continued)
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TABLE 1.3

Procedure Output of the Program in Table 1.1

 Obs age pctfat sex

 1 23 9.5 M
 2 23 27.9 F
 3 27 7.8 M
 4 27 17.8 M
 5 39 31.4 F
 6 41 25.9 F
 7 45 27.4 M
 8 49 25.2 F
 9 50 31.1 F
 10 53 34.7 F
 11 53 42.0 F
 12 54 29.1 F
 13 56 32.5 F
 14 57 30.3 F
 15 58 33.0 F
 16 58 33.8 F
 17 60 41.1 F
 18 61 34.5 F

The CORR Procedure

2 Variables:  age  pctfat

Simple Statistics

Variable N Mean Std Dev Sum Minimum Maximum

age 18 46.33333 13.21764 834.00000 23.00000 61.00000
pctfat 18 28.61111 9.14439 515.00000 7.80000 42.00000

Pearson Correlation Coefficients, N = 18
Prob > |r| under H0: Rho=0

  age pctfat

 age 1.00000 0.79209
   <.0001

 pctfat 0.79209 1.00000
  <.0001

TABLE 1.2 (Continued)

SAS Log after Submitting the Program in Table 1.1

51 proc corr data=bodyfat;
52 run;

NOTE: PROCEDURE CORR used (Total process time):
 real time 0.01 seconds
 cpu time  0.01 seconds
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From the log we can see that the program has been split into steps and each 
step run separately. Notes on how the step ran follow the statements that 
comprise the step and, in the case of the data step, show that the bodyfat 
data set contains the correct number of observations and variables.*

1.4 Reading Data—The Data Step

Before data can be analysed in SAS, they need to be read into a SAS data 
set. Creating a SAS data set for subsequent analysis is the primary func-
tion of the data step. The data may be ‘raw’ data or come from a previously 
created SAS data set. A data step is also used to manipulate or reorganise 
the data. This can range from relatively simple operations, like transform-
ing variables, to more complex restructuring of the data. In many practical 
situations, organising and preprocessing the data take up a large proportion 
of the overall time and effort. The power and flexibility of SAS for such data 
manipulation are two of its great strengths.

We begin by describing how to create SAS data sets from raw data and 
store them on disk before turning to data manipulation. Each of the subse-
quent chapters includes the data step used to prepare the data for analysis 
and several of them illustrate features not described in this chapter.

1.4.1 Creating SAS Data Sets from Raw Data†

Table  1.4 shows some hypothetical data on members of a slimming club, 
giving the membership number, team, starting weight and current weight. 
The following data step could be used to create a SAS data set:

data SlimmingClub;
 infile 'c:\amsus\data\slimmingclub.dat';
 input idno team $ startweight weightnow;
run;

1.4.2 Data Statement

The data statement often takes the simple form where it merely names the 
data set being created—in this case, SlimmingClub.

* The reason the log refers to the SAS data set as ‘WORK.BODYFAT’ rather than simply ‘body-
fat’ will be explained later.

† A ‘raw’ data file may also be referred to as a text file, or ASCII file. Such files only include 
the printable characters plus tabs, spaces, and end-of-line characters. The files produced by 
database programs, spreadsheets, and word processors are not normally raw data, although 
such programs usually have the ability to export their data to such a file.
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1.4.3 Infile Statement

The infile statement specifies the file where the raw data are stored. The 
full path name of the file is given. If the file is in the current directory (i.e., 
the one specified at the bottom right of the SAS window), the file name could 
have been specified simply as 'SlimmingClub.dat'. The name of the raw 
data file must be in quotes. In many cases, the infile statement will only 
need to specify the file name, as in this example.

In some circumstances, additional options on the infile statement will 
be needed. One such instance is where the values in the raw data file are not 
separated by spaces. Common alternatives are files where the data values are 
separated by tabs or commas. The expandtabs option changes tab charac-
ters into a number of spaces. The delimiter option can be used to specify 
a separator. For example, delimiter=',' could be used for files where the 
data values are separated by commas. More than one delimiter can be speci-
fied. Tab- and comma-separated data are discussed in more detail later.

TABLE 1.4

Hypothetical Data for a Slimming Club

1023 red 189 165
1049 yellow 145 124
1219 red 210 192
1246 yellow 194 177
1078 red 127 118
1221 yellow 220   .
1095 blue 135 127
1157 green 155 141
1331 blue 187 172
1067 green 135 122
1251 blue 181 166
1333 green 141 129
1192 yellow 152 139
1352 green 156 137
1262 blue 196 180
1087 red 148 135
1124 green 156 142
1197 red 138 125
1133 blue 180 167
1036 green 135 123
1057 yellow 146 132
1328 red 155 142
1243 blue 134 122
1177 red 141 130
1259 green 189 172
1017 blue 138 127
1099 yellow 148 132
1329 yellow 188 174
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Another situation where additional options may be needed is to specify 
what happens when the program requests more data values than a line 
in the raw data file contains. This can happen for a number of reasons, 
 particularly  where character data are being read. Often the solution is 
to use the pad option, which adds spaces to the end of each data line as it 
is read.

There is one situation where an infile statement is not needed: when 
the data are contained within the SAS program itself. This is referred to as 
‘instream’ data. If data are instream, an infile statement is only needed 
when additional options are required. When data are instream, SAS 
 automatically expands tabs according to the tab size setting for the editor 
(see Figure 1.2), so the expandtabs option is not needed. In practice, raw 
data are more commonly contained in an external file.

1.4.4 Input Statement

The input statement in the example specifies that four variables are to be 
read in from the raw data file: idno, team, startweight, and weightnow. 
The dollar sign after team indicates that it is a character variable. SAS only 
has two types of variables: numeric and character.

The function of the input statement is to name the variables, specify their 
type as numeric or character, and indicate where in the raw data the corre-
sponding data values are. If the data values are separated by spaces, as they 
are here, a simple form of the input statement is possible in which the vari-
able names are merely listed in order and character variables are indicated 
by a dollar sign after their name. This is the so-called ‘list’ form of input. SAS 
has three main modes of input*:

List—for data separated by spaces

Column—for data arranged in columns

Formatted—for data in nonstandard formats

There is often a choice of which mode of input to use and it is a question of 
which mode is more convenient for the data at hand.

1.4.4.1 List Input

List input is the simplest and is usually preferred for that reason. However, 
the requirement that the data values be separated by spaces has some 
important implications. The first is that missing values cannot be repre-
sented by spaces in the raw data; a period (.) should be used instead. In 
the example, the value of weightnow is missing for member number 1221. 

* There is a fourth form, named input, but data suitable for this form of input occur so rarely 
that its description can safely be omitted.
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The second is that character values cannot contain spaces. With list input, 
it is also important to bear in mind that the default length for character 
variables is eight.

When using list input always examine the SAS log. Check that the correct 
number of variables and observations have been read in. The message ‘SAS 
went to a new line when INPUT statement reached past the end of a line’ 
often indicates a problem in reading the data. If so, the pad option on the 
infile statement may be the answer.

With small data sets, it is advisable to print them out with proc print or 
open the data set via the explorer window and check that the raw data have 
been read in correctly. It is worth paying particular attention to checking the 
first and last observations.

1.4.4.2 Column Input

If list input is problematic and the data are arranged in columns, column 
input may be simpler. Table 1.5 shows the slimming club data with members’ 

TABLE 1.5

Hypothetical Slimming Data with 

Members’ Names

David Shaw red 189 165
Amelia Serrano yellow 145 124
Alan Nance red 210 192
Ravi Sinha yellow 194 177
Ashley McKnight red 127 118
Jim Brown yellow 220 
Susan Stewart blue 135 127
Rose Collins green 155 141
Jason Schock blue 187 172
Kanoko Nagasaka green 135 122
Richard Rose blue 181 166
Li-Hwa Lee green 141 129
Charlene Armstrong yellow 152 139
Bette Long green 156 137
Yao Chen blue 196 180
Kim Blackburn red 148 135
Adrienne Fink green 156 142
Lynne Overby red 138 125
John VanMeter blue 180 167
Becky Redding green 135 123
Margie Vanhoy yellow 146 132
Hisashi Ito red 155 142
Deanna Hicks blue 134 122
Holly Choate red 141 130
Raoul Sanchez green 189 172
Jennifer Brooks blue 138 127
Asha Garg yellow 148 132
Larry Goss yellow 188 174
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names instead of their membership numbers. To read in the data in the 
 column form of input statement would be the following:

input name $ 1-18 team $ 20-25 startweight 27-29 weightnow 
31-33;

As can be seen, the difference between the two forms of input statement 
is simply that the columns containing the data values for each variable are 
specified after the variable name, or after the dollar in the case of a character 
variable. The start and finish columns are separated by a hyphen, but for 
single column variables it is only necessary to give the one column number. 
Note also that Jim Brown’s current weight is missing, but the blank columns 
are treated as a missing value, so the period is not needed as it would be with 
list input.

1.4.4.3 Formatted Input

With formatted input, each variable is followed by its input format, 
referred to as its informat. Alternatively, a list of variables in parentheses 
is followed by a format list, also in parentheses. Formatted input is the 
most flexible, partly because a wide range of informats is available. To 
read the preceding data using formatted input, the following input state-
ment could be used:

input name $19. team $7. startweight 4. weightnow 3.;

The informat for a character variable consists of a dollar sign, the number 
of columns occupied by the data values, and a period. The simplest form of 
informat for numeric data is simply the number of columns occupied by the 
data and a period. Note that the spaces separating the data values have been 
taken into account in the informat.

Formatted input must be used if the data are not in a standard numeric 
format. Such data are rare in practice. The most common use of special SAS 
informats is likely to be the date informats. When a date is read using a date 
informat, the resultant value is the number of days from January 1, 1960, to 
that date. The following data step illustrates the use of the ddmmyyw. infor-
mat. The width w may be from 6 to 32 columns. There is also the mmddyyw. 
informat for dates in American format. (There are also corresponding output 
formats, referred to simply as ‘formats’, to output dates in calendar form.)

data days;
input day ddmmyy8.;
cards;
020160
01/02/60
31 12 59
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231019
231020
23101919
;
run;
proc print data=days;
run;
proc print data=days;
 format day ddmmyy10.;
run;

As the example illustrates, if the year is only given by its last two digits, val-
ues of 20 or above are assumed to be in the twentieth century (i.e., 1920, etc.). 
As the last date shows, the same format can be used for dates where the year 
is given as four digits, and this is clearly the safest option. If separators were 
used, the width of the informat would need to be increased (e.g., to ddmmyy10).

This data step is also an example of instream data. The data are contained 
between a cards statement (datalines is a synonym for cards) and a 
line with a single semicolon on it. The data must always be at the end of the 
data step.

Another instance where formatted input may be needed is when numeric 
data contain an implied decimal point. In this case, the informat has a second 
number after the period to indicate the number of digits to the right of the deci-
mal point. For example, an informat of 5.2 would read five columns of numeric 
data and, in effect, move the decimal point two places to the left. Where the 
data contain an explicit decimal point, this takes precedence over the informat:

data decimals;
 input realnum 5.2;
cards;
1234
 4567
123.4
  6789
;
proc print;
run;

Leading or trailing spaces within the field width, as in lines 1 and 2, will not 
prevent the number from being read correctly. In the case of the last line, the 
final digit is outside the field width (i.e., in column 6), so it is not read as part 
of the number.

Formatted input can be much more concise than column input, particu-
larly when consecutive data values have the same format. If the first 20 col-
umns of the data line contain the single digit responses to 20 questions, the 
data could be read as follows:

input (q1 - q20) (20*1.);
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In this case, using a numbered variable list makes the statement even more 
concise. The informats in the format list can be repeated by prefixing them 
with n*, where n is the number of times the format is to be repeated—20 in 
this case. If the format list has fewer informats than there are variables in the 
variable list, the whole format list is reused. Thus, the preceding input state-
ment could be rewritten as

input (q1 - q20) (1.);

This feature is useful where the data contain repeating groups. If the 
answers to the 20 questions occupied one and two columns alternately, they 
could be read with

input (q1 - q20) (1. 2.);

The different forms of input may be mixed on the same input statement for 
maximum flexibility.

1.4.4.4 Multiple Lines per Observation

Where the data for an observation occupy several lines, the slash character 
(/), used as part of the input statement, indicates where to start reading data 
from the next line. Alternatively, a separate input statement could be written 
for each line of data, since SAS automatically goes on to the next line of data 
at the completion of each input statement.

1.4.4.5 Multiple Observations per Line

In some circumstances, it is useful to be able to prevent SAS from automati-
cally going on to the next line; this is done by adding an @ character to the 
end of the input statement. The usual reason for doing this is that there are 
data for more than one observation on the same line. These features of data 
input will be illustrated in later chapters.

1.4.4.6 Delimited Data

There are two commonly occurring forms of raw data that are worth com-
menting on specifically: tab-separated data and comma-separated data. 
Whilst list input is most commonly used for data separated by spaces, it can 
also be used to read data with other separators, referred to as ‘delimiters’. 
One question which arises when delimiters other than spaces are used is 
how to treat two consecutive delimiters. With spaces as delimiters, list input 
by default treats consecutive spaces as a single delimiter. This is why spaces 
cannot be used for missing values. With comma-separated data, it is more 
likely that two consecutive commas are intended to indicate that the value 
that would have been between them is missing. Tabs are more commonly 
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treated like spaces but could be intended to be read either way. To change 
the default so that two consecutive delimiters are treated as having a miss-
ing value between them, use the dsd (delimiter-sensitive data) option on the 
infile statement.

Tab-separated data. The simplest way to read tab-delimited data is to use 
list input with the expandtabs option on the infile statement. This sub-
stitutes a number of spaces for the tab character. If consecutive tabs indicate 
missing values, the delimiter= and dsd options are needed, as follows:

Infile 'filename' delimiter='09'x dsd;*

Comma-separated data. Comma-delimited data files may also be referred 
to as comma separate value (CSV) files, with a file extension of .csv; many 
PC programs can produce files in this format. For most of these, the dsd 
option on the infile statement will suffice, as it assumes that the delim-
iter is a comma. Some comma-delimited files will have data values enclosed 
in quotes to avoid problems where data values include commas. The dsd 
option deals with this, too, by ignoring commas within quotes and removing 
the quotes from the data values. The missover option is also recommended 
for CSV files to prevent SAS going to a new line where the last value on a 
data line is missing (see example in Chapter 14). CSV files may also contain 
the names of the variables as the first line of the file. To skip this line when 
reading the data, use the firstobs=2 option. Thus, the recommended form 
of infile statement is

infile 'filename' dsd missover;

or

infile 'filename' dsd missover firstobs=2;

where the variable names are on the first line.

1.4.5 Reading Data—Proc Import

For tab- and comma-delimited data, particularly where the first line contains 
the variable names, proc import is a useful alternative to reading in the data 
with a data step. For example, to read a tab-delimited file with the variable 
names in the first line, use

proc import datafile='c:\amsus\data\SlimmingClub.tab' 
out=SlimmingClub dbms=tab replace;
  getnames=yes;
run;

For comma-separated value files, substitute dbms=csv.

* The value 09 is the hexadecimal code for the tab character in the ASCII character set.



19An Introduction to SAS

In order to determine whether variables are numeric or character, proc 
import looks at the first 20 rows to see whether they contain non-numeric 
characters. This usually gives the correct result, but does need to be 
checked.

An alternative way of using proc import is via the import wizard. From 
the file menu, select import data....

SAS has a comprehensive set of modules enabling data held in proprie-
tary databases to be read directly into SAS. This needs the appropriate SAS/
ACCESS module to be licensed and is beyond the scope of this book. In the 
PC context, however, it is worth mentioning that the SAS/ACCESS module 
for PC file formats will enable proc import to read data from Access, Excel, 
Dbase, and Lotus files. The first screen of the import wizard will show which 
data sources have been licensed.

1.4.6 Reading and Writing Excel Files

Microsoft Excel is probably the most commonly occurring proprietary data 
format. If the SAS/ACCESS module for PC file formats is licensed, data in 
this format can be read or written using proc import and proc export, 
respectively:

proc import datafile='c:\amsus\data\usair.xls' out=usairmiss 
dbms=excel replace;
 sheet=usairmiss;
run;

This example reads the worksheet named ‘usairmiss’ from the usair work-
book and creates the SAS data set usairmiss. If there were only one work-
sheet in the Excel file, the sheet statement would not be needed.

To read a range of cells from a worksheet, the range statement is used:

proc import datafile='c:\amsus\data\usair.xls' out=usairsub 
dbms=excel replace;
 getnames=no;
 range="usairfull$a8:f42";
run;

The range comprises the name of the worksheet followed by a $, the upper 
left cell number, a colon and the lower right cell number. In this example, we 
also specify getnames=no as it is unlikely that the first row of the range does 
include the variable names.

To create an Excel file from a SAS data set, proc export is used in an 
analogous fashion:

proc export data=usairmiss file='c:\amsus\data\myExcel.xls' 
dbms=excel replace;
run;
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1.4.7 Temporary and Permanent SAS Data Sets—SAS Libraries

So far, all the examples have shown temporary SAS data sets. They are tem-
porary in the sense that they will be deleted when SAS is exited. To store 
SAS data sets permanently on disk and to access such data sets, the libname 
statement is used and the SAS data set referred to slightly differently:

libname db 'c:\amsus\data';
data db.SlimmingClub;
 set SlimmingClub;
run;

The libname statement specifies that the libref db refers to the directory 
'c:\amsus\data'. Thereafter, a SAS data set name prefixed with 'db.' refers 
to a data set stored in that directory. When used on a data statement, the effect 
is to create a SAS data set in that directory. This data step reads data from the 
temporary SAS data set SlimmingClub and stores it in a permanent data set 
of the same name.

Since the libname statement is a global statement, the link between the 
libref db and the directory 'c:\amsus\data' remains throughout the SAS 
session, or until it is reset. If SAS has been exited and restarted, the libname 
statement will need to be submitted again.

In Table  1.2 we saw that the temporary data set bodyfat was referred 
to in the log notes as 'WORK.BODYFAT'. This is because work is the libref 
pointing to the directory where temporary SAS data sets are stored. SAS 
automatically sets up this directory when it starts and deletes the directory 
and its contents when SAS is closed.

To use the SAS explorer window to examine the contents of a temporary 
data set, or its variables, double click on libraries in the explorer window 
and then double click on work. To do the same for permanently stored data 
sets, after opening the libraries folder, double click on the libref (e.g., db in 
the previous example).

1.4.8 Reading Data from an Existing SAS Data Set

To read data from a SAS data set, rather than from a raw data file, the set 
statement is used in place of the infile and input statements. For example, 
to retrieve a previously stored data set and continue working with a tempo-
rary copy,

libname db 'c:\amsus\data';
data SlimmingClub;
set db.SlimmingClub;
run;

creates a new, temporary, SAS data set SlimmingClub (which will be 
referred to as WORK.SLIMMINGCLUB in the log) reading in the data from 
the stored version of SlimmingClub.
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1.5 Modifying SAS Data

As well as creating a SAS data set, the data step may also be used to modify 
the data in a variety of ways.

1.5.1 Creating and Modifying Variables

The assignment statement can be used both to create new variables and to 
modify existing ones. The statement

weightloss=startweight-weightnow;

creates a new variable weightloss and sets its value to the starting weight 
minus the current weight. The following statement will convert the starting 
weight from pounds to kilograms:

startweight=startweight * 0.4536;

SAS has the normal set of arithmetic operators: + (add), – (subtract), 
/ (divide), * (multiply), and ** (exponentiate), plus various arithmetic, math-
ematical, and statistical functions, some of which will be illustrated in later 
chapters.

1.5.1.1 Missing Values in Arithmetic Expressions

The result of an arithmetic operation performed on a missing value is itself 
a  missing value. When this happens, a warning message is printed in the 
log. Missing values for numeric variables are represented by a period (.) and 
a numeric variable can be set to a missing value by an assignment statement 
such as

age = . ;

With any arithmetical operation, it is worth considering what the effect 
of missing values will be. Say that we want to calculate the mean of five 
variables, x1–x5. An assignment of the form xmean=(x1+x2+x3+x4+x5)/5; 
will result in a missing value if any of x1–x5 are missing. On the other hand, 
xmean=mean(x1,x2,x3,x4,x5); will only result in a missing value if all of 
them are missing.

To assign a value to a character variable, the text string must be enclosed 
in quotes—for example,

team='green';

A missing value may be assigned to a character variable as follows:

team='';
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To modify the value of a variable for some observations and not others, 
or to make different modifications for different groups of observations, the 
assignment statement may be used within an if then statement:

reward=0;
if weightloss > 10 then reward=1;

If the condition weightloss > 10 is true, then the assignment statement 
reward=1 is executed; otherwise, the variable reward keeps its previously 
assigned value of 0. In cases like this, an else statement could be used in 
conjunction with the if then statement:

if weightloss > 10 then reward=1;
   else reward=0;

The condition in the if then statement may be a simple comparison of 
two values. The form of comparison may be one of the following:

Operator Meaning Example

EQ = Equal to a = b

NE ~= Not equal to a ne b

LT < Less than a < b

GT > Greater than a gt b

GE >= Greater than or equal to a >= b

LE <= Less than or equal to a le b

Comparisons can be combined into a more complex condition using and (&), 
or (|), and not (~):

if team='blue' and weightloss gt 10 then reward=1;

In more complex cases, it may be advisable to make the logic explicit by 
grouping conditions together with parentheses.

Some conditions involving a single variable can be simplified. For exam-
ple, the following two statements are equivalent:

if age > 18 and age < 40 then agegroup = 1;
if 18 < age < 40 then agegroup = 1;

Conditions of the form

x = 1 or x = 3 or x = 5

may be abbreviated to

x in(1, 3, 5)
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using the in operator. If the data contain missing values, it is important to 
allow for this when recoding.

In numeric comparisons, missing values are treated as smaller than any 
number. For instance,

if age >= 18 then adult=1;
   else adult=0;

would assign the value 0 to adult if age were missing, whereas it may be 
more appropriate to assign a missing value. The missing function could be 
used to do this by following the else statement with

if missing(age) then adult=.;

Care needs to be exercised when making comparisons involving 
 character  variables, since these are case sensitive and sensitive to leading 
blanks.

A group of statements may be executed conditionally by placing them 
between a do statement and an end statement:

If weightloss > 10 and weightnow < 140 then do;
target=1;
reward=1;
team ='blue';
end;

Every observation that satisfies the condition will have the values of 
 target, reward, and team set as indicated. Otherwise, they will remain at 
their previous values.

Where the same operation is to be carried out on several variables, it is 
often convenient to use an array and an iterative do loop in combination. 
This is best illustrated with a simple example. Suppose we have 20 variables, 
q1 to q20, for which ‘not applicable’ has been coded –1 and we wish to set 
those to missing values, we might do it as follows:

array qall {20} q1-q20;
do i= 1 to 20;
 if qall{i}=-1 then qall{i}=.;
end;

The array statement defines an array by specifying the name of the array 
(qall here), the number of variables to be included in it in braces, and the list 
of variables to be included. All the variables in the array must be of the same 
type—that is, all numeric or all character.

The iterative do loop repeats the statements between the do and the end 
a fixed number of times, with an index variable changing at each repetition. 
When used to process each of the variables in an array, the do loop should 



24 Applied Medical Statistics Using SAS

start with the index variable equal to 1 and end when it equals the number 
of variables in the array.

The array is a shorthand way of referring to a group of variables. In effect, 
it provides aliases for them so that each variable can be referred to by using 
the name of the array and its position within the array in braces. For exam-
ple, q12 could be referred to as qall{12} or, when the variable i has the 
value 12, as qall{i}. However, the array only lasts for the duration of the 
data step in which it is defined.

1.5.2 Deleting Variables

Variables may be removed from the data set being created by using the drop 
or keep statements. The drop statement names a list of variables that are 
to be excluded from the data set, and the keep statement does the converse; 
that is, it names a list of variables that are to be the only ones retained in 
the data set, with all others excluded. Thus, the statement drop x y z; in 
a data step results in a data set that does not contain the variables x, y, and 
z, whereas keep x y z; results in a data set that contains only those three 
variables.

1.5.3 Deleting Observations

It may be necessary to delete observations from the data set—for example, if 
they contain errors. Deleting erroneous observations is best done by using 
the if then statement with the delete statement:

if weightloss > startweight then delete;

In a case like this, it would also be useful to write out a message giving more 
information about the observation that contains the error:

if weightloss > startweight then do;
put 'Error in weight data' idno= startweight= weightloss=;
delete;
end;

The put statement writes text (in quotes) and the values of variables to 
the log.

1.5.4 Subsetting Data Sets

If analysis of a subset of the data is needed, it is often convenient to create a 
new data set containing only the relevant observations. This can be achieved 
with either the subsetting if statement or the where statement. The subset-
ting if statement consists simply of the keyword if followed by a logical 
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condition. Only observations for which the condition is true are included in 
the data set being created:

data women;
 set bodyfat;
 if sex='F';
run;

The statement where sex='F'; has the same form and could be used to 
the same effect. The difference between the subsetting if statement and the 
where statement will not concern most users, except that the where state-
ment may also be used with proc steps as discussed below. More complex 
conditions may be specified on either statement in the same way as for an 
if then statement.

1.5.5 Concatenating and Merging Data Sets

Two or more data sets can be combined into one by specifying them on a 
single set statement:

data survey;
 set men women;
run;

This is also a simple way of adding new observations to an existing data 
set. First, read the data for the new cases into a SAS data set and then com-
bine this with the existing data set as follows:

data survey;
 set survey newcases;
run;

1.5.6 Merging Data Sets—Adding Variables

Data for a study may arise from more than one source, or at different times, 
and need to be combined. For instance, demographic details from a ques-
tionnaire may need to be combined with the results of laboratory tests. To 
deal with this situation, the data are read into separate SAS data sets and 
then combined using a merge with a unique subject identifier as a key. 
Assuming that the data have been read into two data sets, demograph-
ics and labtests, and that both data sets contain the subject identifier 
 idnumber, they can be combined as follows:

proc sort data=demographics;
  by idnumber;
proc sort data=labtests;
  by idnumber;
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data combined;
 merge demographics (in=indem) labtest (in=inlab);
 by idnumber;
 if indem and inlab;
run;

First, both data sets must be sorted by the matching variable, idnumber. 
This variable should be of the same type, numeric or character, and same 
length in both data sets. The merge statement in the data step specifies the 
data sets to be merged. The option in parentheses after the name creates a 
temporary variable which indicates whether that data set provided an obser-
vation for the merged data set. The by statement specifies the matching vari-
able. The subsetting if statement specifies that only observations that have 
both the demographic data and the lab results should be included in the 
combined data set. Without this, the combined data set may contain incom-
plete observations (i.e., those where there are demographic data but no lab 
results, or vice versa). An alternative might be to retain the incomplete obser-
vations but print messages in the log to identify them as follows:

If not indem then put idnumber 'no demographics';
If not inlab then put idnumber 'no lab results';

This method of match merging is not confined to situations where there is 
a one-to-one correspondence between the observations in the data sets; it can 
be used for one-to-many or many-to-one relationships as well. A common 
practical application is in the use of lookup tables. For example, the research 
data set might contain the respondent’s post code (or zip code), and another 
file might contain information on the characteristics of the area. Match merg-
ing the two data sets by post code would attach area information to the indi-
vidual observations. A subsetting if statement would be used so that only 
observations from the research data were retained.

1.5.7 Operation of the Data Step

In addition to learning the statements that may be used in a data step, it is 
useful to understand how the data step operates.

The statements that comprise the data step form a sequence according to 
the order in which they occur. The sequence begins with the data statement 
and finishes at the end of the data step and is executed repeatedly until the 
source of data runs out. Starting from the data statement, a typical data step 
will read in some data with an input or set statement and use that data 
to construct an observation. The observation will then be used to execute 
the statements that follow. The data in the observation may be modified or 
added to in the process. At the end of the data step the observation will be 
written to the data set being created. The sequence will begin again from the 
data statement, reading the data for the next observation, processing it, and 
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writing it to the output data set. This continues until all the data have been 
read in and processed. The data step will then finish and the execution of the 
program will pass on to the next step.

In effect, then, the data step consists of a loop of instructions executed 
repeatedly until all the data are processed. The automatic SAS variable 
( _n_ ) records the iteration number but is not stored in the data set. Its use 
will be illustrated in later chapters.

The point at which SAS adds an observation to the data set can be con-
trolled by the use of the output statement. When a data step includes one or 
more output statements, an observation is added to the data set each time 
an output statement is executed, but not at the end of the data step. In this 
way the data being read in can be used to construct several observations. 
This will be illustrated in later chapters.

1.6 Proc Step

Once data have been read into a SAS data set, SAS procedures can be used to 
analyse the data. Roughly speaking, each SAS procedure performs a specific 
type of analysis. The proc step is a block of statements that specify the data 
set to be analysed, the procedure to be used, and any further details of the 
analysis. The step begins with a proc statement and ends with a run state-
ment or when the next data or proc step starts. We recommend including a 
run statement for every proc step.

1.6.1 Proc Statement

The proc statement names the procedure to be used and may also specify 
options for the analysis. The most important option is the data= option, 
which names the data set to be analysed. If the option is omitted, the proce-
dure uses the most recently created data set. Although this is usually what 
is intended, it is safer to specify the data set explicitly. When ODS graphics 
(described below) is enabled, the procedure may produce graphical output 
and this can be controlled by the plots= option.

Many of the statements that follow particular proc statements are spe-
cific to individual procedures and will be described in later chapters as 
they arise. A few, though, are more general and apply to a number of 
procedures.

1.6.2 Var Statement

The var statement specifies the variables that are to be processed by the proc 
step. For example,
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proc print data= SlimmingClub;
   var name team weightloss;
run;

restricts the printout to the three variables mentioned, whereas the default 
would be to print all variables.

1.6.3 Where Statement

The where statement selects the observations to be processed. The keyword 
where is followed by a logical condition and only those observations for 
which the condition is true are included in the analysis:

proc print data= SlimmingClub;
   where weightloss > 0;
run;

1.6.4 By Statement

The by statement is used to process the data in groups. The observations are 
grouped according to the values of the variable named on the by statement 
and a separate analysis is conducted for each group. In order to do this, the 
data set must first be sorted on the by variable:

proc sort data= SlimmingClub;
   by team;
proc means;
   var weightloss;
   by team;
run;

1.6.5 Class Statement

The class statement is used with many procedures to name variables that 
are to be used as classification variables, or factors. The variables named may 
be character or numeric variables and will typically contain a relatively small 
range of discrete values. There may be additional options on the class state-
ment depending on the procedure.

1.7 Global Statements

Global statements may occur at any point in a SAS program and remain in 
effect until reset. The title statement is a global statement and provides 
a title that will appear on each page of printed output and each graph until 
reset. An example would be
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title 'Analysis of Slimming club data';

The text of the title must be enclosed in quotes. Multiple lines of titles can 
be specified with the title2 statement for the second line, title3 for the 
third line, and so on up to ten. The title statement is synonymous with 
title1. Titles are reset by a statement of the following form:

title2;

This will reset line two of the titles and all lower lines (i.e., title3, etc.), and 
title1; would reset all titles.

Comment statements are global statements in the sense that they can occur 
anywhere. There are two forms of comment statement. The first form begins 
with an asterisk and ends with a semicolon—for example,

* this is a comment;

The second form begins with /* and ends with */:

/* this is also a
   comment
*/

Comments may appear on the same line as a SAS statement—for example,

bmi=weight/height**2; /* Body Mass Index */

The enhanced editor colour codes comments green, so it is easier to see 
if the */ has been omitted from the end or if the semicolon has been omitted 
in the first form of comment.

The first form of comment is useful for ‘commenting out’ individual state-
ments, whereas the second is useful for commenting out one or more steps, 
since it can include semicolons.

1.7.1 Options

The options global statement is used to set SAS system options. Most of the 
system options can be safely left at their default values. Some of those con-
trolling the procedure output that may be considered useful include

nocenter  aligns the output at the left, rather than centring it on the 
page (useful when the output line size is wider than the 
screen)

nodate suppresses printing of the date and time on the output

ps=n sets the output page size to n lines long

ls=n sets the output line size to n characters
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pageno=n  sets the page number for the next page of output (e.g., 
pageno=1 at the beginning of a program that is to be run 
repeatedly)

Several options can be set on a single options statement, for example,

options nodate nocenter pagegno=1;

1.8 SAS Graphics

There are a number of ways of producing high-quality graphical output. The 
three main approaches include

Graphical options within a statistical procedure

Statistical graphics procedures

Traditional graphics procedures

We concentrate on the first two of these.
As of version 9.3, the statistical graphics procedures have been incorpo-

rated into the BASE part of SAS, whereas the traditional graphics still require 
the SAS/GRAPH module to be licensed. By ‘traditional’ graphics procedures 
we mean those that have names beginning with ‘g’, such as gplot, gchart, etc. 
The statistical graphics procedures have names beginning with ‘sg’, such as 
sgplot, sgpanel, sgscatter, and sgrender. The new procedures, particularly 
sgplot, can produce a wide range of attractive graphs relatively simply and 
will be all that most users need.

The graphical options that are available within statistical procedures will 
be dealt with in later chapters as they arise.

1.8.1 xy Plots—proc sgplot

An xy plot is one in which the data are represented in two dimensions 
defined by the values of two variables. The simplest such plot is a scatter plot 
and can be illustrated using the bodyfat data set described earlier:

proc sgplot data=bodyfat;
  scatter y=pctfat x=age;
run;

The syntax is straightforward: A scatter statement is used and the x and 
y variables specified explicitly. For different types of plots, a statement other 
than scatter is used. Table 1.6 shows some xy plots that could be generated 
by sgplot. Most of these will be illustrated in later chapters.



31An Introduction to SAS

For line plots and step plots, the points will be plotted in the order in which 
they occur in the data set, so it is usually necessary to sort the data by the 
x axis variable first.

A common variant of the xy plot distinguishes separate groups in the data 
by using different plotting symbols and/or different lines. This is done by 
the group=var option:

proc sgplot data=bodyfat;
  scatter y=pctfat x=age / group=sex;
run;

It is often useful to combine the information from two or more plots by 
overlaying them. Sgplot does this automatically when more than one plot-
ting statement is included. For example, a plot to compare the fits from lin-
ear and locally weighted regression could be produced as follows (locally 
weighted regression is explained in Chapter 10):

proc sgplot data=bodyfat;
  reg y=pctfat x=age;
  loess y=pctfat x=age / nomarkers;
run;

The nomarkers option is specified on the loess statement to prevent the data 
points being plotted twice as sgplot uses different plotting symbols for each.

The basic xy plot can be enhanced with confidence bands (band) or lines 
(highlow or vector) and reference lines (refline). When used in conjunc-
tion with some data processing, quite sophisticated plots can be produced.

1.8.2 Summary Plots

Plots of summary statistics are often useful when comparing groups. Sgplot 
can produce plots of means, frequencies, or sums as a bar plot, line plot, or 
dot plot. The plot statements are vbar/hbar and vline/hline, depending 

TABLE 1.6

xy Plots Using sgplot

Type of Plot Plotting Statement

Scatter plot—data values are plotted scatter

Line plot—data values are joined with lines series

Step plot—data values joined with stepped lines step

Needle plot—vertical line joins the value to the x axis needle

Regression plot—a scatter plot with a regression line reg

Locally weighted regression loess

Penalised beta splines pbspline
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on whether vertical or horizontal orientation is desired, and dot. To illus-
trate, age in the bodyfat data set is first recoded into 10-year bands:

data bodyfat;
  set bodyfat;
  decade=int(age/10);
run;

proc sgplot data=bodyfat;
  vline decade / response=pctfat stat=mean limitstat=stddev;
run;

Another useful summary plot is the box plot described in Chapter 2, which 
can be produced with the vbox/hbox statement as follows:

proc sgplot data=bodyfat;
  vbox pctfat / category=sex;
run;

Proc sgplot is used extensively throughout the book and many more 
options are illustrated in subsequent chapters.

1.8.3 Panel Plots

Both Proc sgpanel and proc sgscatter produce multiple plots con-
tained within a grid of related panels. Within sgpanel, the grid is defined by 
the values of variables in the data set with the result that each plot contains 
a subset of the data. With sgscatter, each plot contains the full set of data and 
the grid is an arrangement of pairs of variables, with or without common 
axes. There are examples of both types in later chapters (see the index).
Proc sgrender is for bespoke plots programmed in the graphics template 

language which underlies the statistical graphics procedures. A detailed 
description is beyond the scope of this book but a simple example that could 
be easily adapted is given in Chapter 6.

1.9 ODS—Output Delivery System

The output delivery system began as a means of generating SAS output in 
different formats. From this beginning as something of a cosmetic luxury, 
ODS is now an essential part of SAS. There are three reasons for this:

It produces publication-quality procedure output.

Output can be saved in SAS data sets.

ODS graphics are available.
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1.9.1 ODS Procedure Output

The first of these might appear cosmetic, but the time and effort saved by 
using ODS should not be underestimated. Whatever the final form in which 
the results of an analysis are to be published, ODS simplifies the process 
by saving the output directly in the appropriate format. Html is the default 
format in SAS 9.3 and, together with rtf (rich text format), is probably the 
most commonly used of the formats, although there are many others, includ-
ing xml, latex, and pdf. Rtf is specifically designed for incorporating into 
word processors. Each of these output formats is referred to as an ‘ODS des-
tination’. The plain text format, which is displayed in the output window, is 
referred to as the listing destination.

The output of one or more procedures can be saved in a particular format 
by opening the corresponding ODS destination beforehand and closing it 
afterwards.* The rtf destination is opened by the ods rtf; statement and 
closed by the ods rtf close; statement, as in the following example:

ods rtf;
proc print data=bodyfat;
proc corr data=bodyfat;
run;
ods rtf close;

The output appears in the output window as usual, but the formatted 
version is also saved in a file named sasrtf.rtf in the current directory. 
As this file will be overwritten the next time the rtf destination is opened, 
it is usually better to save the output to an explicitly named file with the 
file='filename' option on the ods rtf statement.

1.9.1.1 ODS Styles

ODS output can be formatted according to a number of built-in styles. Each 
output destination has a default style optimised for that destination. The 
default style for html is called htmlblue and that for rtf is called rtf. The 
output in this book has been produced with the theme style, so the preced-
ing ods rtf statement could be replaced with

ods rtf file='c:\amsus\rtfexample.rtf' style=theme;

The names of other built-in styles can be listed by submitting

proc template;
  list styles;
run;

* The listing and html destinations can be permanently selected via the preferences menu as 
shown in Figure 1.3.
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Where the final output is to be in black and white, with greyscale fills or 
shading, the journal style is a good choice.

The rtf output may also appear in a results viewer window and this 
may  need to be closed before more rtf output is generated. The results 
viewer  is switched on or off via the View results as they are gener-
ated option as shown in Figure 1.3. If the output rtf file has been opened 
with a word processor, it will need to be closed before more output is sent 
to it.

1.10 Saving Output in SAS Data Sets—ods output

Another useful feature of ODS is the ability to save procedure output as SAS 
data sets. Prior to ODS, SAS procedures could save output—parameter esti-
mates, fitted values, residuals, etc.—in SAS data sets via the output state-
ment or other procedure-specific options. As part of the development of 
ODS, each procedure’s output was broken down into a number of tables and 
any one of these may be saved to a SAS data set by including a statement of 
the form

ods output table = dataset;

within the proc step that generates the output.
The names of the tables created by each procedure are given in the details 

section of the procedure’s documentation. To find the variable names, use 
the SAS explorer window, proc contents data=dataset;, or even proc 
print if the data set is small.

1.10.1 ODS Graphics

ODS graphics are a relatively recent development of ODS whereby many of 
the statistical procedures produce a range of useful plots either automati-
cally or by specifying some optional plots, usually with the plot option on 
the proc statement. As with the ODS tables, information on the ODS graph-
ics that are available for each procedure is given in the details section of 
the procedure’s documentation. ODS graphics are switched on and off with 
the ods graphics on; and ods graphics off; statements or via the Use 
ODS Graphics option in the preferences window (Figure  1.3). Although 
ODS graphics are produced even when the listing (normal output) is the 
only destination open, they will more typically be used with another ODS 
 destination open, so a full example might be

ods html;
ods graphics on;
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<one or more procedures that produce graphs>
ods graphics off;
ods html close;

We could also have used ods rtf;, but there is a difference. With rtf, the 
graphs are included in the rtf document along with the tables. With html, 
the graphs are each in a separate file, even though they appear in the same 
results viewer window. The directories that html output and the graphs are 
stored in can be specified by the path= and gpath= options on the ods html 
statement. The default image file type of the graphs varies according to the 
ODS destination but GIF, JPEG, and PNG are alternatives that can be set via 
the outputfmt= option on the ods graphics statement. In the example, we 
could use the following to store JPEG format graphs in the named directory:

ods html gpath='c:\amsus\figures';
ods graphics on / outputfmt =jpeg;

Since the ODS graphics are sent to the currently open ODS destinations, 
they are also formatted with the same style as the tabular output. Any graphs 
produced independently using the new ‘statistical’ graphics procedures will 
also use the same style.

NOT E:  producing ODS graphics leads to longer processing times. Those with 
large data sets to analyse may need to be selective in their use. In version 9.3 
of SAS, ODS graphics are enabled by default; see Figure 1.3 to view how to 
deselect this option.

It is important to bear in mind that the output produced by ODS for the rtf 
destination is tailored to the current page setup and this should, therefore, 
match that of the document for which the output is intended. Whilst this can 
easily be done from the page setup menu (File, Page Setup), it can also be 
done via the options statement as in the following example:

options papersize=a4 orientation=portrait
   bottommargin=1in topmargin=1in
   leftmargin=1in rightmargin=1in;

The default for papersize is letter. Margins can also be specified in 
 centimetres—for example, bottommargin=2.5cm.

When output is to be incorporated in a word processor document, the 
 following options and settings can be useful:

options nodate nonumber; Switches off date and page numbers

ods noproctitle; Omits the procedure name from the output

ods rtf bodytitle; Titles are placed in document body rather than the header

title; Sets null titles
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1.11 Enhancing Output

1.11.1 Variable Labels

Whereas variable names are limited to 32 characters with no spaces, variable 
labels can contain spaces and can be much longer—up to 256 characters. If a 
variable has been given a label, then this can be used in the output. Whether 
or not labels are used in the output is controlled by the option label; and 
option nolabel; statements. The default is on.

The label statement is used to give variables a label and has the form of

label variable ='variable label';

For example,

label pctfat='Fat as a % of body mass';

If the label statement is used in a data step, the label is permanently 
associated with the variable, whereas if it is used in a proc step, the label 
is  only used for the output from that procedure. To remove a variable’s 
label, include a statement of the form label sex=' '; in the data or 
proc step.

1.11.2 Value Labels—SAS Formats

SAS formats are used to give variable values more meaningful labels. Proc 
format is used to create the format and the format statement is used to 
associate the format with a variable. For example,

proc format;
  value $sex 'M'='Male' 'F'='Female';
run;
proc sgplot data=bodyfat;
  scatter y=pctfat x=age /group=sex;
  format sex $sex.;
  label pctfat='Fat as % of body mass';
run;

The value statement within proc format has the general form of

value format-name value1='label1' value2='label2';

There may be as many value='label' pairs as required. Where the val-
ues are character values, as in the example, they must be in quotes and the 
format name must begin with a $. Character values are case sensitive, so 
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'm'='Male' would not have worked in the preceding example as all the 
values of sex are uppercase.

Format names are like variable names but should not end in a number. 
Note that in the format statement, the format name ends in a period but 
that it does not in the value statement. If, instead of the variable sex, the 
bodyfat data set contained a numeric variable called gender, the value 
and format statements might be

value gender 1='Male' 2='Female';
...
format gender gender.;

More than one variable can be associated with the same format. If a num-
ber of variables were coded 0 and 1, meaning ‘no’ and ‘yes’, the value and 
format statements might be

value yn10f 0='No' 1='Yes';
...
format q1-q20 yn10f.;

1.12 SAS Macros

SAS macros are general purpose SAS programs—‘general purpose’ in the 
sense that they can be run repeatedly using different data sets, variables, or 
settings. Of course, any SAS program can be adapted to use another data set 
and other variables by editing it and changing the names of the data sets and 
variables throughout. The advantage of a macro is that the user supplies the 
new names once and SAS does all the necessary substitution. A macro may 
also be a long and complicated program where manual substitution of new 
data set and variable names would be tedious and error prone.

It is useful to know how to use macros, even if one has no inclination to 
write any. A simple example will help to illustrate how they work. First, we 
write a macro definition:

%macro xyplot(data=,x=,y=);
proc sgplot data=&data;
  scatter y=&y x=&x;
run;
%mend plotxy;

This is a macro to plot two variables. The definition begins with a %macro 
statement, which declares the name of the macro, xyplot, and then in 
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parentheses the values it needs when it is used. These are referred to as the 
macro’s parameters. The body of the macro follows and the %mend statement 
signals the end of the macro definition. The body of the macro consists of 
a proc sgplot step, but with &data, &y, and &x in place of the data set and 
variable names,

options mprint;

will print in the log the statements that the macro creates when it is run. 
Before running the macro, we must submit the macro definition—that is, 
select and submit the whole macro definition. If the macro definition is 
stored in a file, this can be done by including it with, for example, %inc 'c:\
amsus\macros\xyplot.sas';

The macro is run as follows:

%xyplot (data=bodyfat,x=age,y=pctfat);

and the log shows how the values provided have been substituted into the 
body of the macro:

MPRINT(XYPLOT): proc sgplot data=bodyfat;
MPRINT(XYPLOT): scatter y=pctfat x=age;
MPRINT(XYPLOT): run;

Macro parameters have two different forms. The form already illustrated is 
the so-called keyword form. The alternative is positional form. If the macro 
had been defined as

%macro xyplot (data,x,y);
proc gplot data=&data;
  plot &y*&x;
run;
%mend plotxy;

then it would have to be run with

%xyplot(bodyfat,age,pctfat);

A few macros that we have written will be used in later chapters. There 
are also macros supplied by SAS, and others are available on the SAS website 
and elsewhere. Often users will have written macros to perform a type of 
analysis that is not yet available in SAS. The keyword form of parameters 
is the more common, partly because the parameters can be given default 
values. A macro will usually come with some documentation on how to 
use it: what the parameters are, which form they take, and what the default 
values are.
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1.13 Some Tips for Preventing and Correcting Errors

When writing programs:

Have one statement per line, where possible.

End each step with a run statement.

Indent each statement within a step (i.e., each statement between the 
data or proc statement and the run statement) by a couple of spaces. 
This is automated in the enhanced editor.

Give the full path name for raw data files on the infile statement.

Before submitting a program:

Check that each statement ends with a semicolon.

Check that all opening and closing quotes match.

Use the enhanced editor colour coding to double check.

Check any statement that does not begin with a keyword (blue or 
navy blue) or a variable name (black).

Large blocks of purple may indicate a missing quotation mark.

Large areas of green may indicate a missing */ from a comment.

‘Collapse’ the program to check its overall structure. Hold down the 
Ctrl and Alt keys and press the numeric keypad minus key. Only the data, 
proc statements and global statements should be visible. To expand the 
program, press the numeric keypad plus key while holding down Ctrl 
and Alt.

After running a program:

Examine the SAS log for warning and error messages.

Check for the message ‘SAS went to a new line when INPUT state-
ment reached past the end of a line’ when using list input.

Verify that the number of observations and variables read in is 
correct.

When reading raw data, check the number of lines read and the 
maximum and minimum line lengths reported.

Print out small data sets to ensure that they have been read correctly.

If there is an error message for a statement that appears to be correct, check 
whether the semicolon was omitted from the previous statement.
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The message that a variable is ‘uninitialised’ or ‘not found’ usually means 
that it has been misspelled. If not, it might have been included in a drop 
statement or left out of a keep statement.

To correct a missing quote, submit: '; run; or "; run; and then correct 
the program and resubmit it.
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2
Statistics and Measurement in Medicine

2.1 Introduction

Statistics is a general intellectual method that applies wherever data, 

variation, and chance appear. It is a fundamental method because data, 

variation, and chance are omnipresent in modern life. It is an inde-

pendent discipline with its own core ideas, rather than, for example, a 

branch of mathematics.… Statistics offers general, fundamental, and 

independent ways of thinking. (Moore 1998)

Quintessentially, statistics is about solving problems: Data (measurements 
or observations) relevant to these problems are collected, and statistical 
analyses are used to provide useful answers. But the path from data collec-
tion to analysis and interpretation is often not straightforward. Most real-
life applications of statistical methodology have one or more nonstandard 
features, meaning in practice that there are few routine statistical questions, 
although there are questionable statistical routines. Many statistical pitfalls 
lie in wait for the unwary. Indeed, statistics is perhaps more open to  misuse 
than most other subjects, particularly by the nonstatistician with access 
to powerful statistical software. The misleading average, the graph with 
‘fiddled axes’, the inappropriate p-value, and the linear regression  fitted 
to nonlinear data are just four examples of horror stories that are part of 
statistical folklore.

Medical statistics is simply the application of the science of statistics in 
medical studies and nowadays medical statistics is ubiquitous throughout 
medicine from the analysis of data from clinical trials (see Chapter 3) to the 
investigation of high-dimensional data (see Everitt 2011) arising from imaging 
research (see Glasbey and Horgan 1996) and the application of microarray 
technology in genetics (see Kafadar 2011). But how and when did medical 
statistics begin?
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2.2 A Brief History of Medical Statistics

The first attempts at ‘medical statistics’ might perhaps be considered the early 
efforts to keep track of births and deaths through church records of weddings, 
christenings, and burials. But, more ambitious statistical procedures than sim-
ple counting would have been largely unwelcome to physicians until well into 
the seventeenth century simply because they might have raised the unthink-
able spectre of questioning the invulnerability most of them still claimed. 
Medical practices at the time were largely based on uncritical reliance on past 
experience, post hoc, ergo propter hoc reasoning, and veneration of the ‘truth’ as 
proclaimed by authoritative figures such as Galen (130–200), a Greek physi-
cian whose influence dominated medicine for many centuries. Such attitudes 
largely stifled any interest in experimentation or proper scientific investiga-
tion or explanation of medical phenomena. Even the few clinicians who did 
strive to increase their knowledge by close observation or simple experiment 
often interpreted their findings in the light of the currently accepted dogma.

But by the late seventeenth and early eighteenth centuries, medicine had 
begun its slow progress from a sort of mystical certainty to a scientifically 
more acceptable uncertainty about many of its procedures. The taking of sys-
tematic observations and carrying out of experiments became more wide-
spread. For example, John Graunt (1620–1674), the son of a London draper, 
published in 1662 his Natural and Political Observations Made upon the Bills of 
Mortality and derived the first ever life table. Graunt was what might today 
be termed a vital statistician: He examined the risk inherent in the process of 
birth, marriage, and death and used bills of mortality (weekly reports on the 
numbers and causes of death in an area) to compare one disease with another 
and one year with another by calculating mortality statistics. Graunt’s work 
and ideas had considerable influence and bills of mortality were also intro-
duced in Paris and other cities in Europe.

Early experimental work in medicine is illustrated by the oft quoted example 
of James Lind’s (1716–1794) study undertaken on board the ship the Salisbury in 
1747. Lind assessed several different possible treatments for scurvy by giving 
each to a different pair of sailors with the disease. He observed that the two 
men given oranges and lemons made the most dramatic recovery, although it 
was another 40 years before the Admiralty were convinced enough by Lind’s 
finding to issue lemon juice to members of the British Navy.

The 1700s also saw the first appearance of a procedure that looks remark-
ably similar to a modern day significance test—specifically, a sign test. This 
arose from John Arbuthnot’s (1667–1735) attempt to argue the case for divine 
providence in the stability of the ratio of number of men to women. Arbuthnot 
maintained that the guiding hand of a divine being was to be discerned 
in the nearly constant ratio of male to female christenings recorded annu-
ally in London over the years 1629–1710. The data presented by Arbuthnot 
showed that in each of the 82 years in this period, the annual number of 
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male christenings had been consistently higher than the number of female 
christenings, but never very much higher. He then essentially tested a null 
hypothesis of ‘chance’ determination of sex at birth against an alternative 
of divine providence by calculating, under the assumption that the null 
hypothesis is true, a probability defined by reference to the observed data. 
Arbuthnot’s representation of chance in this context was the toss of a  fair 
two-sided die, in which case the distribution of births would be
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Therefore, the observed excess of male christenings on each of 82 occasions 
had an extremely small probability, thus providing support for the divine 
providence hypothesis.

Arbuthnot offered an explanation for the greater supply of males as a wise 
economy of nature, as the males are more subject to accidents and diseases, hav-
ing to seek their food and deal with danger. Therefore, to repair the loss, provi-
dent nature brings forth more males. The near equality of the sexes is designed 
so that every male may have a female of the same country and of suitable age.

Other mathematical developments in the eighteenth century that were of 
special relevance for medical statistics included Daniel Bernoulli’s (1700–
1782) development of the normal approximation to the binomial distribution. 
This was also used in studies of the stability of the sex ratio at birth.

The power of medical statistics in pursuing reform is illustrated by the 
work of Florence Nightingale (1820–1907). In her efforts to improve the squalid 
hospital conditions in Turkey during the Crimean War and in her subsequent 
campaigns to improve the health and living conditions of the British Army, 
the sanitary conditions and administration of hospitals, and the nursing pro-
fession, Florence Nightingale was not unlike many other Victorian reform-
ers. But in one important respect she was very different, since she marshalled 
massive amounts of data and carefully arranged, tabulated, graphed, and 
presented this material to ministers, viceroys, and others, to convince them 
of the justice of her case. No other major national cause had previously been 
championed through the presentation of sound statistical data and those 
who opposed Florence Nightingale’s reforms went down to defeat because 
her data were unanswerable; their publication led to an outcry.

Another telling example of how careful arrangement of data was used in 
the nineteenth century to save lives is provided by the work of the epidemiolo-
gist John Snow (1813–1858). After an outbreak of cholera in central London in 
September 1854, Snow used data collected by the General Register Office and 
plotted the location of deaths on a map of the area and also showed the loca-
tion of the area’s 11 water pumps. The resulting map is shown in Figure 2.1 
(deaths are marked by dots and water pumps by crosses). Examining the 
scatter over the surface of the map, Snow observed that nearly all the cholera 
deaths were among those who lived near the Broad Street pump.
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But before claiming that he had discovered a possible causal connection, 
Snow made a more detailed investigation of the deaths that had occurred 
near some other pump. He visited the families of ten of the deceased and 
found that five of them, because they preferred its taste, regularly sent 
for water from the Broad Street pump. Three others were children who 
attended a school near the Broad Street pump. One other finding that 
initially confused Snow was that there were no deaths amongst work-
ers in  a brewery close to the Broad Street pump, a confusion that was 
quickly resolved when it became apparent that the workers drank only 
beer, never water! Snow’s findings were sufficiently compelling to per-
suade the authorities to remove the handle of the Broad Street pump and, 
in days, the neighbourhood  epidemic that had taken more than 500 lives 
had ended.

Pump Deaths from cholera

0 50

Yards

100

FIGURE 2.1
A map constructed by John Snow in 1854 showing that most of the deaths due to cholera 

clustered around the Broad Street water pump. (From Dunn, G. 2004. Statistical Evaluation of 
Measurement Errors. London: Arnold.)
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Later in the nineteenth century and in the early twentieth century, the work 
of people like Sir Francis Galton (1822–1911), Wilhelm Lexis (1837–1914) and, 
in particular, Karl Pearson (1857–1936) began to change the emphasis in statis-
tics from the descriptive to the mathematical. The concept of correlation and 
its measurement by a correlation coefficient was introduced. Statistical infer-
ence began to develop and enter most areas of scientific investigation, includ-
ing medical research. And, in 1909, Ronald Aylmer Fisher (later, Sir Ronald 
Fisher; 1890–1962) entered Cambridge to study mathematics, the first step to 
becoming the most influential statistician of the twentieth  century. Fisher 
developed maximum likelihood estimation, worked on evolutionary  theory, 
made massive contributions to genetics, and invented the analysis of variance 
(ANOVA; see Chapter 6).

But perhaps Fisher’s most important contribution to medical statistics was 
his introduction of randomisation as a principle in the design of certain exper-
iments. In Fisher’s case the experiments were in agriculture and were con-
cerned with which fertilisers led to the greatest crop yields. Fisher divided 
agricultural areas into plots and randomly assigned the plots to different 
experimental fertilisers. But the principle was soon adopted in medicine 
in studies to compare competing therapies for a particular condition, lead-
ing, of course, to the randomised clinical trial (RCT) described by Sir David 
Cox as ‘the most important contribution of twentieth century statistics’. The 
first properly performed RCT is now generally acknowledged to be that car-
ried out in 1948 by another giant of twentieth century medical statistics, Sir 
Austin Bradford Hill (1897–1991), who investigated the use of streptomycin 
in the treatment of pulmonary tuberculosis. Nowadays, over 8,000 RCTs are 
undertaken annually. Clinical trials are covered in detail in the next chapter.

At about the time that Bradford Hill was busy with the first randomised 
clinical trial, another development was taking place that by revolutionising 
man’s ability to calculate was to have a dramatic effect on the science of sta-
tistics and the work of statisticians. The computer age was about to begin, 
although it would be some years before statisticians were entirely relieved 
of the burden of undertaking large amounts of laborious arithmetic on some 
precomputer calculator. But in the 1960s the first statistical software pack-
ages, which made the application of many complex statistical procedures 
easy and routine, began to appear.

The influence of increasing, inexpensive computing power on statistics 
 continues to this day and, over the last 20 years, its almost universal avail-
ability has meant that research workers in statistics in general, and medical 
statistics in particular, no longer have to keep one eye on the computational 
difficulties when developing new methods of analysis. The result has been the 
introduction of many exciting and powerful new statistical methods, many of 
which are of great importance in medical statistics. Notable examples include

Cox’s regression (see Chapter 16)

Logistic regression (see Chapter 9)
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Multiple imputation (see Chapter 18)

Generalised estimating equations (see Chapter 14)

In addition, Bayesian methods (see Chapter 17), at one time little more than 
an intellectual curiosity without practical implications because of their asso-
ciated computational requirements, can now be applied relatively routinely.

2.3 Measurement in Medicine

Stone-dead has no fellow, and preeminent therefore stands the number 

of patients who die. No statistician, so far as I know, has in this respect 

accused the physician of an over-reliance upon the clinical impression. 

(Bradford Hill 1962)

The basic material, the data that are the foundation of all medical investi-
gations, consists of the measurements and observations that are made on the 
patients or subjects of interest. Measurements are central to clinical practice 
and medical and health research and form the basis of diagnosis, progno-
sis, and evaluation of the results of medical interventions (deVet et al. 2011). 
Clearly, such measurements need to be objective, precise, and reproducible 
for reasons nicely summarised by the following extract from Fleiss (1999):

The most elegant design of a clinical study will not overcome the dam-

age caused by unreliable or imprecise measurement. The requirement 

that one’s data be of high quality is at least as important a component 

of a proper study design as the requirement for randomization, double 

blinding, controlling where necessary for prognostic factors, and so on. 

Larger sample sizes than otherwise necessary, biased estimates, and 

even biased samples are some of the untoward consequences of unreli-

able measurements that can be demonstrated.

As Bradford Hill points out in the quotation which began this section, the 
death of a patient is the most objective outcome observation that might be 
made in a study. Fortunately, however, most medical investigations are con-
cerned with diseases that are not lethal and where the assessment of the 
patient’s condition or outcome depends on a measure or observation that is 
less drastic than simply dead or alive. The appropriate measurements and 
observations that are needed will depend on the particular area of investi-
gation and could range from measurements of blood pressure, weight, and 
temperature to a rating of anxiety or depression or even simply a classifica-
tion as to ‘improved’ or ‘not improved’ in respect of some course of treat-
ment. The characteristics of the observations will, in part at least, help to 
determine the appropriate methods of statistical analysis.
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Measurements differ according to the degree of precision they give; for 
example, saying that an individual’s serum uric acid level is high is not as 
precise as saying that the individual has 8.5 mg/100 mm of serum uric acid. 
The comment that a woman is obese is less precise than saying that she is 
1.6 m tall and weighs 95 kg. Certain patient characteristics will be more ame-
nable to precise measurement than others; for example, given an accurate 
thermometer, a patient’s temperature can be measured with great precision. 
Assessing the degree of pain of a patient suffering from migraine is a far 
more difficult task. It is time to say a little about scales of measurement.

2.3.1 Scales of Measurement

Four levels of measurement scales are generally distinguished.

2.3.1.1 Nominal or Categorical Measurements

Nominal measurements allow patients to be classified with respect to some 
characteristic. Examples of such measurements are marital status, sex, and 
blood group. The following are properties of a nominal scale:

The categories are mutually exclusive (an individual can belong to 
only one category).

The categories have no logical order—numbers may be assigned to 
categories but merely as convenient labels.

2.3.1.2 Ordinal Scale Measurements

The next level of measurement is the ordinal scale. This scale has one addi-
tional property over those of a nominal scale—a logical ordering of the cat-
egories. With such measurements, the numbers assigned to the categories 
indicate the amount of a characteristic possessed. A psychiatrist may, for 
example, grade patients on an anxiety scale as ‘not anxious’, ‘mildly anxious’, 
‘moderately anxious’, or ‘severely anxious’ and use the numbers 0, 1, 2, and 3 
to label the categories, with lower numbers indicating less anxiety.

The psychiatrist cannot infer, however, that the difference in anxiety between 
patients with scores of, say, 0 and 1 is the same as the difference between 
patients assigned scores of 2 and 3. The scores on an ordinal scale, however, do 
allow patients to be ranked with respect to the characteristic being assessed.

The following are the properties of an ordinal scale:

The categories are mutually exclusive.

The categories have some logical order.

The categories are scaled according to the amount of a particular 
characteristic that they indicate.
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2.3.1.3 Interval Scales

The third level of measurement is the interval scale. Such scales possess all 
the properties of an ordinal scale plus the additional property that equal 
differences between category levels, on any part of the scale, reflect equal 
differences in the characteristic being measured. An example of such a 
scale is temperature on the Celsius (C) or Fahrenheit (F) scale; the difference 
between temperatures of 80°F and 90°F represents the same difference in 
heat as that between temperatures of 30° and 40° on the Fahrenheit scale. An 
important point to make about interval scales is that the zero point is simply 
another point on the scale; it does not represent the starting point of the scale 
or the total absence of the characteristic being measured. The properties of 
an interval scale are as follows:

The categories are mutually exclusive.

The categories have a logical order.

The categories are scaled according to the amount of the character-
istic that they indicate.

Equal differences in the characteristic are represented by equal dif-
ferences in the numbers assigned to the categories.

The zero point is completely arbitrary.

2.3.1.4 Ratio Scales

The final level of measurement is the ratio scale. This type of scale has one 
property in addition to those listed for interval scales—namely, the pos-
session of a true zero point that represents the absence of the characteris-
tic being measured. Consequently, statements can be made about both the 
differences on the scale and the ratio of points on the scale. An example is 
weight, where not only is the difference between 100 and 50 kg the same as 
that between 75 and 25 kg, but an object weighing 100 kg can also be said to 
be twice as heavy as one weighing 50 kg. This is not true of, say, temperature 
on the Celsius or Fahrenheit scales, where a reading of 100° on either scale 
does not represent twice the warmth of a temperature of 50°. If, however, two 
temperatures are measured on the Kelvin scale, which does have a true zero 
point (absolute zero or –273°C), then statements about the ratio of the two 
temperatures can be made.

The properties of a ratio scale are the following:

The categories are mutually exclusive.

The data categories have a logical order.

The categories are scaled according to the amount of the character-
istic that they possess.
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Equal differences in the characteristic being measured are repre-
sented by equal differences in the numbers assigned to the categories.

The zero point represents an absence of the characteristic being 
measured.

In many statistical textbooks, discussion of different types of measure-
ments is often followed by recommendations as to which statistical tech-
niques are suitable for each type. For example, analyses on nominal data 
should be limited to summary statistics such as the number of cases, the 
mode, etc., and for ordinal data, means and standard deviations are said not 
to be suitable; Andersen (1990) gives a nice illustration of why this is the case. 
But Velleman and Wilkinson (1993) make the important point that restricting 
the choice of statistical methods in this way may be a dangerous practice for 
data analysis. In essence, the measurement taxonomy described is often too 
strict to apply to real-world data. This is not the place for a detailed discus-
sion of measurement, but we think a fairly pragmatic approach to such prob-
lems is advisable. For example, we would not agonise too long over applying 
statistical techniques that strictly require interval scale data to variables such 
as measures of depression or anxiety, although they are essentially ordinal.

2.4 Assessing Bias and Reliability of Measurements

In all medical studies, it is important to ensure that the data collected are as 
accurate as possible and that measurement error is absent or very small. In 
assessing the accuracy of any particular measuring ‘instrument’ (where this 
term is used for any type of measurement situation from, say, using a ther-
mometer to assessing the presence or absence of some particular property in 
a patient) it is usual to distinguish between the reliability of the data collected 
and their validity. Reliability is essentially the degree to which the measure-
ment provided by the measuring instrument is free from measurement error, 
and validity is the extent to which a measurement provides a true assessment 
of the characteristic which it purports to measure. There are several compre-
hensive accounts that deal with the reliability and validity of  measurements—
for example, Fleiss (1999), Dunn (2004), and de Vet et al. (2011).

The question of measurement validity is complex and we will not deal 
with it here; readers can find a detailed discussion of validity in the three 
references given in the previous paragraph. But we will now say a little 
about reliability where the issues usually involve whether different observ-
ers making the same measurement agree (inter-rater reliability) or whether 
two measurements of a patient characteristic that does not change with time 
made at different times by the same observer agree (intra-rater reliability). In 
the following subsections we give a relatively brief account of determining 
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the reliability of different types of measurements primarily via some numer-
ical examples. We begin in the next subsection with an example of assessing 
the reliability and bias of a simple categorical ‘measurement’ with just two 
categories (i.e., a binary variable) and then, in Subsection 2.4.2, we consider an 
example that involves quantitative measurements.

2.4.1  Assessing Reliability and Bias for Binary and 
Other Categorical Observations

Landis and Koch (1977) and Fleiss (1999) suggest that, when studying the 
variability of observer ratings, two components of possible lack of accuracy 
must be distinguished. The first is interobserver bias, which will be reflected 
in differences in the marginal distributions of the observation for each of 
the observers. The second is observer disagreement, which is indicated by how 
observers classify individual subjects into the same category on the mea-
surement scale. We will illustrate how both interobserver bias and observer 
disagreement can be investigated using the data shown in Table 2.1 which 
arise from histological assessments of 118 biopsy slides made by seven 

TABLE 2.1

Histology Assessment Made by Seven 

Pathologists on the Presence or Absence 

of Cancer of the Cervix

A B C D E F G Frequency
1 1 1 1 1 1 1 16
1 1 1 1 1 0 1 10
1 1 1 0 1 1 1 5
1 1 0 1 1 1 1 3
1 1 1 0 1 0 1 13
1 1 0 1 1 0 1 2
1 1 0 0 1 1 1 1
1 1 0 1 0 0 1 1
1 1 0 0 1 0 1 7
1 0 1 0 1 0 1 1
1 1 0 0 1 0 0 2
1 1 0 0 0 0 1 1
0 1 0 0 1 0 1 5
1 1 0 0 0 0 0 2
0 1 0 0 1 0 0 4
0 1 0 0 0 0 1 1
1 0 0 0 0 0 0 2
0 1 0 0 0 0 0 6
0 0 0 0 1 0 0 2
0 0 0 0 0 0 0 34
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independent pathologists of the presence (1) or absence (0) of cancer of the 
cervix (the data are given in Dunn 2004).

The proportions of the 118 slides perceived to be displaying carcinoma by 
each of the seven pathologists can be found using the following SAS code:

data pathologists;
infile 'c:\AMSUS\data\pathologists.dat';
 input A B C D E F G;
run;
proc means data=pathologists;
 var a--g;
run;

The 118 ratings made by the seven pathologists are in the file patholo-
gists.dat represented by seven variables, labelled A to G and coded zero 
or one. These are read in using list input. As a positive rating is coded 1, 
the proportions rated positive by each of the pathologists can be calculated 
using proc means. The default output from proc means is as shown, but a 
wide range of other descriptive statistics is also available.

The calculated proportions are the following:

Variable N Mean Std Dev Minimum Maximum
A 118 0.5593220 0.4985856 0 1.0000000
B 118 0.6694915 0.4724022 0 1.0000000
C 118 0.3813559 0.4877910 0 1.0000000
D 118 0.2711864 0.4464679 0 1.0000000
E 118 0.6016949 0.4916366 0 1.0000000
F 118 0.2118644 0.4103718 0 1.0000000
G 118 0.5593220 0.4985856 0 1.0000000

Pathologists A, B, E, and G appear to have reasonably similar marginal 
proportions (average 0.597) and pathologists C, D, and F also have reasonably 
similar proportions, although their average proportion, 0.288, is considerably 
different from that of the other group. We can formally test the marginal 
homogeneity of the seven pathologists with Cochran’s Q-test,  calculated as 
follows:
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where
n = 118 is the number of slides
r = 7 is the number of pathologists
yij equals 1 if the ith slide is rated by the jth pathologist as showing the 

presence of carcinoma and 0 otherwise
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yi. is the total number of pathologists who judge the ith slide as showing 
the presence of carcinoma

y.j is the total number of slides the jth pathologist judges to show the pres-
ence of carcinoma

y.. is the total number of slides judged to show the presence of carcinoma.

If the null hypothesis of marginal homogeneity is true (i.e., all seven pathol-
ogists have an equal probability of judging that a slide in the population of 
such slides shows the presence of carcinoma and there is, consequently, no 
interobserver bias), then for large samples, Q will be approximately distrib-
uted as a chi-square with r – 1 degrees of freedom.

Cochran’s Q is one of the statistics options available in proc freq for 
square symmetric tables via the agree option. In most cases this will be for 
a two-way table. To obtain the value of Q for all seven pathologists together, 
we specify the seven-way table formed by crossing all seven of the variables. 
As we are only interested in the value of Q and not the contents of this table 
itself, we use the noprint option to suppress printing of the table:

proc freq data=pathologists;
 tables a*b*c*d*e*f*g /noprint agree;
run;

The resulting Cochran’s Q-test value is

Cochran’s Q, for A by B by 
C by D by E by F by G

Statistic (Q) 181.5947
DF 6
Pr > Q <.0001

The test statistic is highly significant, so the hypothesis of marginal homo-
geneity for the seven pathologists is rejected. Having established that there 
are highly significant differences between the seven pathologists in their 
probabilities of identifying carcinoma from the biopsy slides, we can move 
on to look at differences between pairs of pathologists. (An alternative would 
be to examine differences in a priori contrasts between groups of patholo-
gists, but here there is no justification for such an approach.) Table 2.2 sets out 
a standard notation for the general 2 × 2 contingency table for the compari-
son of a binary variable made by each of two raters.

In the case of just two raters (r = 2 in Equation 2.1), Cochran’s Q-test is 
equivalent to the well-known McNemar test for the comparison of two cor-
related proportions (McNemar 1947); using the notation in Table  2.2, the 
 relevant test statistic can be written as
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Under the null hypothesis of marginal homogeneity, X2 will have an 
asymptotic chi-squared distribution with a single degree of freedom. We 
can find the X2 values and the associated p-values for each of the possible 
21 paired comparisons amongst the seven pathologists in our example using 
the McNemar test (available as an ODS table, called McNemarsTest) when 
the agree option is specified on the tables statement. The ODS output 
statement is used to save the table in the SAS data set mcn. To save having 
to type all 21 pairs of variables out explicitly, variable lists are used in the 
table statement. Thus, a*(b--g) is equivalent to a*b a*c a*d a*e a*f a*g. 
The noprint option is used to suppress printing of the 21 separate tables.

ods output McNemarsTest=mcn;
proc freq data=pathologists;
  tables a*(b--g)
 b*(c--g)
  c*(d--g)
  d*(e--g)
  e*(f--g)
  f*g
   / agree noprint;
run;

proc transpose data=mcn out=mcn2;
 var nvalue1;
 id name1;
idlabel label1;
by table;
run;
proc sort data=mcn2; by p_mcnem; run;
proc print label;
 format p_mcnem pvalue6.4;
run;

The mcn data set contains three observations for each of the tables: one 
each for the test statistic, its degrees of freedom (DF), and p-value, along 
with variables indicating which is which (name1 and label1) and the table 

TABLE 2.2

Two-Way Contingency Table for Assessment of Bias and Agreement 

between Two Binary Measurements Giving Observed Counts and 

Corresponding Proportions

Rater 2 Category

0 1 Total

Rater 1 0 n00(p00) n01(p01) n0. p0. = n0./n
Category 1 n10(p10) n11(p11) n1. p1. = n1./n

Total n.0 n.1 n
p.0 = n.0/n p.1 = n.1/n
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to which they relate. We can use proc transpose to restructure the data 
set so that the three values are part of a single observation. Proc trans-
pose swaps around the rows and columns of a data set so that the variables 
become observations and vice versa. It can also do this separately for groups 
of observations using a by group.

Here we want the three values in separate observations for each table to 
become three variables in a single observation. The variable that contains 
these values, nValue1, is specified on the var statement. (The variable called 
cValue1 is a character representation of the same value.) The id and idla-
bel statements specify variables in the input data set that are used to pro-
vide names and labels for the transposed values. The default names would 
be col1, col2, and col3. The out option on the proc statement names the 
transposed data set.

The resulting data set is then sorted in ascending order of p-value and 
printed. By convention, p-values that would otherwise appear as 0.0000 
are printed as <.0001 instead; this is achieved by using the pvalue format, 
which is one of the many formats built into SAS. The numbers specify the 
field with and number of decimal places (i.e., a field width of 6 with four 
decimal places). The label option on the proc print statement uses the 
variable labels as column headers instead of the variable names. The output 
is shown in Table 2.3.

As we have carried out 21 tests, we should adjust the nominal signifi-
cance level of, say, 0.05 in some way to take account of the multiple tests. The 
simplest way to do this is to use the Bonferroni adjustment (see Fleiss 1999), 
which is to divide the nominal significance level by the number of com-
parisons being made; in this case, this leads to a revised significance level 
of 0.05/21 = 0.0024 with a corresponding critical value for a single degree 
of freedom chi-squared of about 9.5. Examining the critical values and sig-
nificance levels in Table 2.3, we see that many of the comparisons between 
pairs of pathologists remain significant even when using the Bonferroni 
adjusted significance level. And the results in Table 2.3 strongly suggest that 
the pathologists make up two distinct groups: [A, B, E, and G] and [C, D, 
and F], as suggested previously by their different average proportion values. 
Perhaps the pathologists in each group have had different levels of training 
or experience?

In the original study involving the seven pathologists, they each classified 
the 118 biopsy slides into one of the following five categories based on the 
most involved lesion:

Category 1: negative

Category 2: a typical squamous hyperplasia

Category 3: carcinoma in situ

Category 4: squamous carcinoma with early stromal invasion

Category 5: invasive carcinoma
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(In the example analysed previously, the two categories were the result of 
combining categories 1 and 2 for the ‘carcinoma absence’ rating and catego-
ries 3, 4, and 5 for the ‘carcinoma present’ rating.)

Here we look at the results for just two of the pathologists, as given in 
Table 2.4. How do we assess the agreement between the two pathologists 
from this table? Intuitively, we might be tempted to use the simple pro-
portion of agreement found as (22 + 7 + 36 + 7 + 3)/118 = 0.064. But this 
ignores the chance agreement that would result if the two pathologists sim-
ply rated according to their respective marginal proportions without regard 
to the nature of the slides. Aware of this problem, Cohen (1960) introduced 
a chance-corrected agreement index now known as Cohen’s kappa (κ) and 
given by

 κ = −
−

P P
P1

c

c

0  (2.3)

where P0 is the observed proportion of agreement and Pc is the chance agree-
ment based on the observed marginal values of the two raters.

TABLE 2.3

Results of McNemar’s Test on All 21 Pairs of Pathologists

Obs Table
NAME OF FORMER 
VARIABLE

Statistic 
(S) DF Pr > S

1 Table B * F nValue1 54.000000 1.000000 <.0001

2 Table B * D nValue1 47.000000 1.000000 <.0001
3 Table E * F nValue1 46.000000 1.000000 <.0001
4 Table A * F nValue1 41.000000 1.000000 <.0001
5 Table F * G nValue1 41.000000 1.000000 <.0001
6 Table D * E nValue1 37.097561 1.000000 <.0001
7 Table A * D nValue1 34.000000 1.000000 <.0001
8 Table D * G nValue1 34.000000 1.000000 <.0001
9 Table B * C nValue1 32.111111 1.000000 <.0001

10 Table C * E nValue1 26.000000 1.000000 <.0001
11 Table A * C nValue1 21.000000 1.000000 <.0001
12 Table C * G nValue1 21.000000 1.000000 <.0001
13 Table C * F nValue1 14.285714 1.000000 0.0002
14 Table B * G nValue1 11.266667 1.000000 0.0008
15 Table A * B nValue1 8.894737 1.000000 0.0029
16 Table C * D nValue1 6.760000 1.000000 0.0093
17 Table B * E nValue1 4.571429 1.000000 0.0325
18 Table D * F nValue1 2.578947 1.000000 0.1083
19 Table E * G nValue1 2.272727 1.000000 0.1317
20 Table A * E nValue1 1.470588 1.000000 0.2253
21 Table A * G nValue1 0 1.000000 1.0000
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We see that κ is simply the ratio of the difference in observed and chance 
agreement to the maximum possible excess of observed over chance agree-
ment; κ takes values in the interval [0,1]. The variance of κ is given in Everitt 
(1994) and can be used to test hypotheses about κ and to construct confidence 
intervals. The value of κ and its confidence intervals also form part of the 
output generated by the agree option on the tables statement.

First, the 5 × 5 table is read into a SAS data set. Two iterative do loops are 
used to form the rows and columns of this table. The count for each cell is 
read into the variable num and the trailing @ prevents the input statement 
from going to the next line. The output statement writes an observation for 
each of the 25 cells to the data set p12. This is one occasion when the mes-
sage in the log, 'NOTE: SAS went to a new line when INPUT statement 
reached past the end of a line', is to be expected. A more detailed 
explanation of this process is given with the medical imaging example later 
in this chapter. The weight statement in proc freq specifies the number 
of observations for each cell:

data p12;
 do p1=1 to 5;
   do p2=1 to 5;
   input num @;
   output;
   end;
 end;
datalines;
22 2  2 0 0
 5 7 14 0 0
 0 2 36 0 0
 0 1 14 7 0
 0 0  3 0 3
;

proc freq data=p12;
 tables p1*p2 /agree;
 weight num;
run;

TABLE 2.4

Observed Frequencies of Biopsy Slides Classified by Two Pathologists 

according to the Most Involved Lesion of Uterine Cervix

Pathologist 2

Category 1 2 3 4 5 Total

1 22 2 2 0 0 26

Pathologist 1 2 5 7 14 0 0 26

3 0 2 36 0 0 38

4 0 1 14 7 0 22

5 0 0 3 0 3 6

Total 27 12 69 7 3 118
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The resulting output is shown in Table 2.5. The 95% confidence interval 
for kappa shows that there is strong evidence that it differs from zero, so the 
two pathologists’ agreement is beyond the chance value. But is the level of 
agreement satisfactory? Judged against the arbitrary but practically useful 
benchmarks for evaluating observed values of kappa given in Landis and 
Koch (1977), which are given in Table 2.6, the agreement between the two 
pathologists is only between fair and moderate.

2.4.2 Assessing the Reliability of Quantitative Measurements

In this section, we will consider assessing the reliability of quantitative mea-
surements. We will begin by constructing a simple model for such variables 
in which we let x represent the observed value for a particular patient; if the 
measurement were made a second time—say, some days later or by a differ-
ent investigator or by a different measurement instrument—it would almost 
certainly differ to some degree from the first recording. If we now let t rep-
resent the ‘true’ value of the measurement for a patient—a value which the 
measurement process is seeking to record—then a model for x is

 x = t + ε (2.4)

where ε represents measurement error (i.e., the difference between the true 
value t and the observed value x).

We now assume that, in the population of patients under investigation, 
t has a distribution with mean μ and variance σt

2 and the error terms have 

TABLE 2.6

Landis and Koch Benchmarks for Evaluating 

the Kappa Statistic

Kappa Strength of Agreement

0.00 Poor

0.00–0.20 Slight

0.21–0.40 Fair

0.41–0.60 Moderate

0.61–0.80 Substantial

0.81–1.00 Almost perfect

TABLE 2.5

Results for Kappa Statistic Calculated from Data in Table 2.4 

(Statistics for Table of p1 by p2)

Kappa Statistics

Statistic Value ASE
Simple kappa 0.4984 0.0566 0.3875 0.6094
Weighted kappa 0.6492 0.0487 0.5538 0.7446
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a distribution with mean zero and variance σε
2; in addition, we assume that 

the true score and the error are not correlated. A consequence of this model 
is that the variability in the observed values is a combination of true score 
variance and error variance (i.e., the variability in the observed values equals 
the sum of σt

2  and σε
2 ). An index that reflects the relative magnitude of the 

two components of variance is the intraclass correlation coefficient, R, given by

 = σ
σ + σε

R t

t

2

2 2
 (2.5)

This can be rewritten as

 =
+ σ σε

R
1

1 / t
2 2

 (2.6)

As σ σε
2 2/ t  decreases (i.e., the error variance forms a decreasing part of the 

variability in the observations), R increases with its upper limit of one being 
achieved when the error variance is zero. In the reverse case, when σε

2  forms 
an increasing proportion of the observed variance, R decreases to a lower 
limit of zero reached when all the variability in the measurements results 
from the error term in Equation (2.6). The intraclass correlation coefficient 
can be directly interpreted as the proportion of variance of a measurement 
due to between-subject variability in the true scores.

The interclass correlation coefficient is most often used as a measure of 
reliability in situations when each of a number of investigators (or measuring 
instruments) independently records the value of some characteristic of inter-
est on a number of patients or subjects. For this, we need a slightly more com-
plicated model to represent the observations with a new term (o) to allow for 
differences between observers/investigators being added to the basic model 
in Equation (2.4) to give

 x = t + o + ε (2.7)

The term o represents a randomly selected observer’s effect on a measure-
ment and is assumed to have a distribution with zero mean and variance, σo

2. 
The three terms x, t, and o are assumed to be independent of one another with 
the result that the variance of an observation is

 σ = σ + σ + σεt o
2 2 2 2  (2.8)

The corresponding intraclass correlation is

 = σ
σ + σ + σε

R t

t o

2

2 2 2
 (2.9)

In Equation 2.9, R is given in terms of population variances; thus, the ques-
tion arises: ‘How do we estimate R?’ This involves carrying out a two-way 
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analysis of variance of the observers’ measurements on a number of patients. 
(We shall have a more detailed look at analysis of variance in Chapter 6.) 
The analysis of variance table and the expected values of the relevant mean 
squares are given in Table 2.7.

From the expected mean squares, we can derive the following unbiased 
estimators for the three components of variance in the model:

 σ = −
r

ˆ PMS EMS
t
2  (2.10)

 σ = −
n

ˆ RMS EMS
o
2  (2.11)

 σ =εˆ EMS2  (2.12)

The estimator of the intraclass correlation coefficient is found from

 = σ
σ + σ + σε

R̂
ˆ

ˆ ˆ ˆ
t

t o

2

2 2 2
 (2.13)

We will now look at an example of estimating the intraclass correlation 
using the data shown in Table  2.8. These data arise from computer-aided 
tomographic scans (CAT scans) of the heads of 25 psychiatric patients (see 
Turner, Toone, and Brett-Jones 1986). The primary aim of such scans is to 
determine the size of the brain ventricle relative to that of the patient’s skull 
to given ventricle–brain ratio (VBR), which is usually calculated as VBR = 100 
ventricle size/brain size. For a given scan of ‘slice’, the VBR is determined 
from measurements of the perimeter of a patient’s ventricle together with the 
perimeter of the inner surface of the skull.

Such measurements can be made in two ways using either a hand-held 
planimeter or a projection of the x-ray image. We will label this measure-
ment PLAN. The second way of making the required measurements is from 
an automated pixel count based on the image displayed on a television 
screen, and this we will label PIX. Table 2.8 shows the logged VBRs from 
single scans of the 25 patients; the first three columns in the table show the 
results obtained from repeated measurements using the planimeter and the 
last three rows to repeated measurement by the pixel count approach.

TABLE 2.7

Analysis of Variance Table for Reliability Data

Source of Variation DF Mean Square Expected Mean Square

Patients n – 1 PMS σ + σε r t
2 2

Raters r – 1 RMS σ + σε n o
2 2

Error (n – 1)(r – 1) EMS σε
2
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We begin by reading the data in from the text file cat_scan.dat using list 
input. The first line of the file contains the variable names, so the firstobs 
option is used to begin reading the data values at line 2. The automatic SAS 
variable _n_ is used to generate an id variable to identify the individual 
observations, if needed. Proc means is then used to list summary statistics:

data cat_scan;
infile 'c:\AMSUS\data\cat_scan.dat' firstobs=2;
 input plan1-plan3 pix1-pix3;
 patient=_n_;
run;
proc means data=cat_scan;
 var plan1-plan3 pix1-pix3;
run;

TABLE 2.8

CAT Scan Data (Logged VBRs)

Plan1 Plan2 Plan3 Pix1 Pix2 Pix3

2.05 2.13 2.10 1.79 1.77 1.81

1.72 1.28 1.83 1.53 1.55 1.54

1.93 1.79 1.65 1.57 1.57 1.56

2.16 1.96 2.01 1.65 1.70 1.60

2.27 1.95 1.78 2.05 2.12 2.10

2.53 2.17 2.40 2.03 1.98 2.16

1.79 1.67 1.80 1.63 1.65 1.67

1.87 1.48 1.90 1.51 1.49 1.50

1.57 1.57 1.60 1.69 1.79 1.62

1.39 1.39 1.43 1.50 1.55 1.53

1.89 1.84 1.75 1.74 1.72 1.81

2.39 2.26 2.18 1.95 1.89 1.93

1.67 1.72 1.71 1.74 1.77 1.78

1.57 1.39 1.45 1.67 1.69 1.69

2.30 2.25 2.18 1.91 1.74 1.81

2.03 1.93 2.08 2.03 1.99 2.00

1.19 1.70 1.61 0.88 0.96 1.00

1.13 0.41 0.75 1.25 1.28 1.27

1.63 1.22 1.71 1.79 1.77 1.81

1.93 2.03 1.95 1.84 1.89 1.78

1.89 1.50 1.82 1.22 1.22 1.24

1.63 2.03 1.71 1.90 1.99 1.91

1.70 1.96 2.01 2.11 2.15 2.07

2.82 2.84 2.87 2.19 2.03 2.01

0.53 0.99 1.01 1.10 1.19 1.21

Source: Turner, S. W., Toone, B. K., Brett-Jones, J. R. 1986. Psychological 
Medicine, 16:219–225.
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The resulting output is shown in the following table. The means and stan-
dard deviations of the three PIX measurements are lower than those of the 
three PLAN recordings:

Variable N Mean Std Dev Minimum Maximum
plan1 25 1.8232000 0.4777440 0.5300000 2.8200000
plan2 25 1.7384000 0.4853923 0.4100000 2.8400000
plan3 25 1.8116000 0.4179581 0.7500000 2.8700000
pix1 25 1.6908000 0.3245243 0.8800000 2.1900000
pix2 25 1.6980000 0.2996109 0.9600000 2.1500000
pix3 25 1.6964000 0.2965479 1.0000000 2.1600000

The Pearson correlation coefficients for each pair of the six measures can 
be generated with proc corr. The nosimple option suppresses the listing 
of descriptive statistics for the variables, as these have already been given by 
proc means:

proc corr data=cat_scan nosimple;
 var plan1-plan3 pix1-pix3;
run;

The resulting correlations, etc. are given in Table 2.9. We see that correla-
tions between the PIX and PLAN measurements are somewhat lower than 
those for the repeated PIX and PLAN measurements.

TABLE 2.9

Pearson Correlations for the Data in Table 2.8a

Prob > |r|

plan1 plan3 pix1 pix3
plan1 1.00000 0.81205 0.89031 0.74323 0.64867 0.69970

<.0001 <.0001 <.0001 0.0005 <.0001
plan2 0.81205 1.00000 0.89891 0.69510 0.63683 0.65682

<.0001 <.0001 0.0001 0.0006 0.0004
plan3 0.89031 0.89891 1.00000 0.69169 0.59762 0.64382

<.0001 <.0001 0.0001 0.0016 0.0005
pix1 0.74323 0.69510 0.69169 1.00000 0.97917 0.97964

<.0001 0.0001 0.0001 <.0001 <.0001
pix2 0.64867 0.63683 0.59762 0.97917 1.00000 0.97226

0.0005 0.0006 0.0016 <.0001 <.0001
pix3 0.69970 0.65682 0.64382 0.97964 0.97226 1.00000

<.0001 0.0004 0.0005 <.0001 <.0001
a Six variables: plan1, plan2, plan3, pix1, pix2, and pix3.
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We can now move on to the estimation of the intraclass correlation 
coefficients for the two types of measurement, PIX and PLAN. To carry 
out the necessary separate analyses of variance for the PLAN and PIX 
 measurements, we first need to restructure the data so that each rating 
is a separate observation with new variables indicating the type of mea-
surement and the rater. To do this, we include all six measurements in 
an array and process them with an iterative do loop. The output state-
ment is placed within the do loop to write an observation out on each pass 
through the loop:

data cat_long;
 set cat_scan;
 array pl {*} plan1-plan3 pix1-pix3;
 do i=1 to 6;
  rater=i;
  type='plan';
  vbr=pl{i};
  if i>3 then do;
 rater=i-3;
 type='pix';
 end;
  output;
 end;
 keep patient rater type vbr;
run;

proc sort data=cat_long; by type; run;
proc anova data=cat_long;
   class rater patient;
   model vbr=rater patient;
by type;
run;

The data set is then sorted by the type of measurement so that the two 
ANOVAs can be produced with the same proc anova step with the by 
statement. The relevant output is contained in two proc anova subtables 
and is shown in Table 2.10(a) and (b).

Taking first the results for the planimeter recordings, we obtain the fol-
lowing estimates of the variance components: σ =ˆ 0.182817t

2 , σ =ˆ 0.0009128o
2 , 

σ =εˆ 0.030032  leading to an estimated intraclass correlation coefficient of 0.855. 
For the pixel method, the corresponding estimates are σ =ˆ 0.09195t

2 , σ <ˆ 0o
2 , 

σ =εˆ 0.002392  with an estimated intraclass correlation coefficient of 0.975. (Here 
the error mean square is greater than that due to raters so that σ <ˆ 0o

2  and 
thus, in the calculation of the intraclass correlation, is set to zero.) The results 
suggest that the pixel method is considerably more reliable than the older 
planimetry-based approach.
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2.5 Diagnostic Tests

Some of the most important observations and measurements that clinicians 
make (at least from the patient’s point of view) are those used in diagnosis. 
Although diagnosis is an essential part of clinical practice, the field of diag-
nostic medicine is complex and it is often difficult to formulate straightfor-
ward scientific questions that can be addressed with simple study designs. 
In this section we will ignore the complex nature of diagnosis and give a 
relatively simple account of the evaluation of the tests used in terms of their 
accuracy and therefore their usefulness to the clinician.

A diagnostic test is said to have high accuracy if it achieves a high overall 
proportion of correct diagnoses. There are actually two aspects of accuracy—
namely, the proportion of patients that the diagnostic test correctly identifies 
as having the disease of interest (the sensitivity of the test) and the proportion of 
patients that the test correctly identifies as not having the disease (the specific-
ity of the test). The calculation of both assumes that we have a ‘gold standard’ 
diagnosis against which to evaluate the performance of our diagnostic test. For 

TABLE 2.10

Analysis of Variance Table for the Pix and Plan Measurements

(a) Dependent variable: vbr 

Source DF
Sum of 

Squares Mean Square F Value Pr > F
Model 26 6.67878933 0.25687651 107.70 <.0001
Error 48 0.11448533 0.00238511
Corrected total 74 6.79327467

Source DF ANOVA SS Mean Square F Value Pr > F
Rater 2 0.00071467 0.00035733 0.15 0.8613
Patient 24 6.67807467 0.27825311 116.66 <.0001

(b) Dependent variable: vbr 

Source DF
Sum of 

Squares Mean Square F Value Pr > F
Model 26 13.98914667 0.53804410 17.92 <.0001
Error 48 1.44136800 0.03002850
Corrected total 74 15.43051467

Source DF ANOVA SS Mean Square F Value Pr > F
Rater 2 0.10569867 0.05284933 1.76 0.1830
Patient 24 13.88344800 0.57847700 19.26 <.0001
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example, after patients for whom we have the results of the diagnostic test die, 
they are examined by a pathologist and given a ‘true’ diagnosis. In the account 
that follows, we shall assume that we are assessing how well our diagnostic 
test predicts this true diagnosis and conveniently ignore the complications that 
may arise if the diagnosis against which the test is evaluated is itself fallible.

The simplest way to start describing how to evaluate the performance of a 
diagnostic test is where the test classifies the patients into two groups: ‘ disease’ 
and ‘no disease’. It will be useful to have a particular example in mind and the 
one we will use is shown in Table 2.11. This table shows the comparison between 
the results of what a liver scan predicts about the pathology of a patient’s 
liver (abnormal or normal) and that found on the later autopsy of the patient.

We could simply calculate the agreement between the two classifications 
using the methods described earlier in the chapter, but here the problem 
is rather different because of the asymmetry of the relationship between 
the two classifications. Our interest lies in assessing how well or otherwise 
the liver scan diagnosis predicts the true autopsy classification. Let us first 
return to the sensitivity and specificity of a diagnostic test as defined previ-
ously. In this case the sensitivity is explicitly

 Sensitivity = probability (liver scan positive|autopsy result positive)

The sensitivity reflects how well the liver scan can identify patients who 
truly have a liver abnormality. The estimate of sensitivity for the liver data in 
Table 2.11 is 231/258 = 0.8953.

Moving on to specificity, we have

 Specificity = probability (liver scan negative|autopsy result negative)

The specificity reflects the ability of the liver scan to identify patients who in 
truth have no liver abnormality. The estimate of specificity for the liver data 
in Table 2.11 is 54/86 = 0.6279.

We now need to consider whether the estimated sensitivity and speci-
ficity give us all the information we need to judge the performance of the 

TABLE 2.11

Relation between Results of Liver Scan and an Autopsy Diagnosis in 344 Patients

Autopsy Assessment 
of Pathology

Liver scan prediction Abnormal (+) Normal (–) Total

Abnormal (+) 231 (True positive) 32 (False positive) 263

Normal (–) 27 (False negative) 54 (True negative) 81

Total 258 86 344

Source: Altman, D. G. 1991. Practical Statistics for Medical Research. London: CRC/Chapman 

& Hall.
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diagnostic test. A little thought shows that they do not; for example, the main 
concern of a patient who gets a positive liver scan will be his or her chance 
of actually having abnormal liver pathology. Understandably, perhaps, most 
patients who get a positive result will quickly conclude that they have prob-
lems with their liver or at least that there is a very high probability that this 
is the case. But statisticians (and some clinicians) know that the probability 
of a positive liver scan given that the patient has a liver abnormality is not 
the same as the probability that the patient has abnormal liver pathology 
given a positive liver scan. To evaluate the diagnostic test properly, we need 
to estimate the following two further probabilities:

Positive predictive value (PPV) = probability that a patient with a posi-
tive liver scan truly has a liver abnormality

Negative predictive value (NPV) = probability that a patient with a 
negative liver scan does not have liver abnormality

The PPV and the NPV give a direct assessment of the usefulness of the test 
in practice. But to calculate their values, we need to know the prevalence of 
liver abnormality in the population from which our patients are taken (i.e., 
the proportion of subjects in the population having the abnormality). It is 
then relatively easy to apply Bayes’s theorem to show that

 =
×

× + − × −
PPV

sensitivity prevalence

sensitivity prevalence (1 specificity) (1 prevalence)

and

 =
× −

− × + × −
NPV

specificty (1 prevalence)

(1 sensitivity) prevalence specificity (1 prevalence)

When the calculations for the liver data are performed assuming a preva-
lence of 0.5, a patient with a positive test result has a 71% chance of having 
a liver abnormality. However, if the prevalence were 0.1, this would be 21%. 
This demonstrates how the conclusion from the application of a diagnostic 
test that is most relevant to the patient depends heavily on the prevalence of 
the condition in the population.

Now let us consider the situation where the diagnostic test result is con-
tinuous or quasicontinuous. Figure 2.2 shows an idealised graph of the distri-
butions (assumed normal for convenience) of the test result for patients with 
and without a disease of interest. The two distributions overlap and the test 
(like all diagnostic tests) cannot distinguish normal from diseased with 100% 
accuracy. In practice, we choose a cut point (a possible cut point is indicated 
in the figure by the vertical line) above which we consider the test to suggest 
the presence of the disease and below which we consider its value to sug-
gest that the patient is disease free. The position of the cut point will deter-
mine the number of true positives (TPs), the number of true negatives (TNs), 
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the number of false positives (FPs), and the number of false negatives (FNs). 
How do we evaluate the performance of such a test?

An example of data from the application of a ‘continuous’ valued diagnos-
tic test is shown in Table 2.12. The data (taken from Faraggi and Reiser 2011) 
arise from a medical imaging study in which a clinician is asked to look at 
100 images—50 from healthy subjects and 50 from people with a particular 
 disease—and to rate each image on a scale from 1 to 5 with (1) definitely 
normal, (2) probably normal, (3) questionable, (4) probably abnormal, and (5) 
definitely abnormal. (Here the test is actually on an ordinal scale rather than 
a truly continuous scale but we shall ignore this relatively minor point in 
what follows.)

We begin by reading the cell counts into a SAS data set using two iterative 
do loops, one nested within the other. The first of the two data lines contains 
the cell counts for the healthy cases and the first iteration of the outer do loop 
sets disease = 0. Then each iteration of the inner do loop reads one of the five 
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FIGURE 2.2
Distributions of the values of a continuous diagnostic test for diseased and disease-free patients.

TABLE 2.12

Data Arising from a Medical Imaging Study

Rating

True Disease Status (1) (2) (3) (4) (5) Total

Healthy 28 14 5 2 1 50

Diseased 2 4 10 14 20 50

Total 30 18 15 16 21 100
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cell counts for the ratings 1 to 5 and writes an observation to the data. The 
trailing @ on the input statement holds the data line so that further values 
can be read from it. Without the trailing @, only the first value from each line 
would be read since, by default, the input statement would go to the next line.

The output statement forces an observation to be written to the data set 
being created. Having read and written the five values for healthy cases, the 
inner do loop ends. The outer do loop then sets disease = 1 and the inner do 
loop starts again with rating = 1 and the next five values are read. The trail-
ing @ is still holding the first line, but as there are no more data values to be 
read from it, SAS automatically goes on to the next line and the log will con-
tain the note 'SAS went to a new line when INPUT statement reached 
past the end of a line':

data imaging;
do disease= 0 to 1;
 do rating=1 to 5;
 input count @;
 output;
 end;
end;
datalines;
28 14 5 2 1
2  4 10 14 20
;

A useful graph to display these data is the stacked bar chart, which can be 
produced with the vbar statement within proc sgplot:

proc sgplot data=imaging;
 vbar rating /group=disease freq=count;
run;

The rating variable is used to form the categories for which separate 
bars are to be produced. The group=disease option names disease as 
the variable that will be used to subdivide the bars into sections and the 
freq=count option specifies that each observation corresponds to a num-
ber of cases. The result is given in Figure 2.3.

Now we will compute the sensitivity and specificity of the test for each 
possible threshold from (1) to (5). The principal use of proc logistic for 
logistic regression is described in Chapter 9, but it is also useful for this type 
of method comparison. Here the model statement is predicting the definitive 
diagnosis, as made at autopsy, from the results of the liver scan. The value of 
the autopsy variable corresponding to a positive diagnosis is indicated by 
event='1' in parentheses. By default, proc logistic predicts the lower value. 
Note that the value ‘1’ must be in quotes even though autopsy is a numeric 
variable. Alternatives are event=first or event=last. The outroc option 
on the model statement saves the results we are interested in to a SAS data 
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set, rocres. As the data are in the tabular format, the freq statement is used 
to indicate how many observations there are in each cell.

A short data step calculates the PPV and NPV assuming a population 
prevalence of 0.5, and the results are printed out. The label option is used 
on the proc print statement so that the variable labels are used for the col-
umn headings in the output and a format is used to print the PPV and NPV 
values with two decimal places:

proc logistic data=imaging;
 model disease(event='1')=rating /outroc=rocs;
 freq count;
run;
data rocs;
 set rocs;
 sensitivity=_sensit_;
 specificity=1-_1mspec_;
 prevalence=0.5;
 PPV=(sensitivity*prevalence)/((sensitivity*prevalence) +  
(1-specificity)*(1-prevalence));
 NPV=(specificity*(1-prevalence)) / ((1-sensitivity)* 
prevalence + specificity*(1-prevalence));
 drop _sensit_;
run;

proc print data=rocs label;
format PPV NPV 4.2;
run;

30

25

20

15

10

F
re
q
u
en

cy

5

0
1 2 3 4

Rating

5

Disease 0 1

FIGURE 2.3
Stacked bar chart for medical imaging data.
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Each line of the output in Table 2.13 shows the results of choosing one of the 
predicted probabilities from the model as the cut point to classify observations. 
The first line corresponds to a rating of 5, the second to a rating of 4, and so on.

Altman (1991) makes it clear that the choice of a cut-off is not a statistical 
decision as it involves a consideration of the relative ‘costs’ (not necessarily only 
financial costs) associated with false positive and false negative test results.

A useful way to display the sensitivities and specificities in Table 2.13 is by 
means of a receiver operating characteristic (ROC) curve. This is simply a plot 
of specificity versus 1 – sensitivity and is one of the ODS graphics that can be 
produced by proc logistic. When ODS graphics is on, the ROC curve plot 
will be generated if one of the ROC options is used (such as the outroc= 
option on the model statement). Thus,

ods graphics on;
proc logistic data=imaging;
 model disease(event='1')=rating /outroc=rocs;
 freq count;
run;

will produce the plot shown in Figure 2.4. The plots= option on the proc 
statement could also have been used.

A diagnostic test performs well in correctly discriminating between 
healthy and diseased subjects if both sensitivity and specificity are high 
for a reasonable range of threshold values. In terms of the ROC plot, this 
means that the closer the curve comes to the left-hand border and then the 

TABLE 2.13

Sensitivities, Specifi cities, PPVs, and NPVs for the Data in Table 2.12

Obs
Probability 

Level

No. of 
Correctly 
Predicted 

Events

No. of 
Correctly 
Predicted 

Nonevents

No. of 
Nonevents 

Predicted as 
Events

No. of 
Events 

Predicted as 
Nonevents

1 0.96910 20 49 1 30
2 0.87371 34 47 3 16
3 0.60414 44 42 8 6
4 0.25187 48 28 22 2
5 0.06913 50 0 50 0

Obs 1-Specificity sensitivity specificity prevalence PPV NPV
1 0.02 0.40 0.98 0.5 0.95 0.62
2 0.06 0.68 0.94 0.5 0.92 0.75
3 0.16 0.88 0.84 0.5 0.85 0.88
4 0.44 0.96 0.56 0.5 0.69 0.93
5 1.00 1.00 0.00 0.5 0.50
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top border, the better the test is. The closer the ROC curve of a diagnostic test 
is to the diagonal (45°) line, the worse the test performance is.

The area under an ROC curve of a test (AUC) is an index of how well the test 
discriminates between healthy and diseased subjects (or images in our exam-
ple). This area is an estimate of the probability that for one subject randomly 
selected from the healthy group and one subject randomly selected from the 
diseased group, the value of the diagnostic test is lower for the healthy sub-
ject (assuming that larger values of the test are more indicative of disease). 
A larger area implies a more accurate test, with an area of one representing a 
perfect test and an area of a half representing a worthless test, which is no bet-
ter than allocating patients to the healthy and diseased group by the toss of an 
unbiased coin. For this example, the AUC is given in Figure 2.5 and its value 
is 0.91; such a high value indicates the high discriminatory ability of the test.

The effectiveness of alternative diagnostic tests for identifying the same 
disease can be assessed by comparing the areas under the respective ROC 
curves. The file imaging.dat contains the ratings already examined plus a 
second set from a (hypothetical) second rater. To produce a comparative ROC 
curve plot, we include both ratings on the model statement and one each on 
two roc statements with optional labels in quotes. By default, an ROC curve 
is generated for the overall model including both ratings. The nofit option 
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on the model statement suppresses this. A test for the difference between the 
ROC curves can be invoked with the roccontrast statement. The compara-
tive ROC curve is shown in Figure 2.5. The second rater performs slightly 
less well, although this difference is not large:

data imaging2;
infile 'c:\AMSUS\data\imaging.dat';
 input disease rating1 rating2;
run;

ods graphics on;
proc logistic data=imaging2;
 model disease(event=last)= rating1 rating2 /nofit;
 roc 'rater 1' rating1;
 roc 'rater 2' rating2;
 roccontrast;
run;
ods graphics off;

The statistics of ROC curves is now a large area of research; interested 
readers are referred to Krzanowski and Hand (2009) for details.
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2.6 Summary

Statistical methods have been used in medicine for some 200 to 300 
years;  in the twenty-first century—an era of evidence-based medicine and 
 healthcare—statistics plays a crucial and central role. In this chapter we have 
looked at how statistical methods can be used to assess the reliability of mea-
surements made in medical studies and in diagnoses. This is an important 
first stage in many investigations in medicine because, unless the measure-
ments are objective, precise, and reproducible, irrespective of how elegant 
and acceptably designed is the rest of the study, the results will be almost 
worthless.
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3
Clinical Trials

3.1 Introduction

Research investigations in medicine can be broadly divided into the 
 experimental and the observational. The two classes are differentiated 
essentially by the amount of control the investigator has over what hap-
pens to the subjects/patients involved in the study. In an observational 
study, the investigator collects information but does not influence events. 
A number of people who smoke and a collection of nonsmokers, for exam-
ple, may have their systolic blood pressures recorded and an estimate of 
the population difference in the mean systolic blood pressure for popu-
lations of smokers and nonsmokers calculated along with the relevant 
 confidence interval (see later in this chapter). The investigator does not, how-
ever, have the option of allocating some individuals to be smokers and 
others to be nonsmokers (at least, not any option likely to pass an ethical 
committee). Observational studies are the foundation of epidemiology, the 
study of the possible causes or aetiology of disease. Such studies have 
three main aims:

To describe the distribution and size of disease problems in human 
populations

To identify possible aetiological factors in the pathogenesis of 
disease

To provide data essential for the management, education, and 
planning of services for the prevention, control, and treatment 
of disease

Epidemiological studies will be the subject of the next chapter.
But in an experimental study, the investigator can deliberately influence 

events and then assess the effect of the intervention. The most common type 
of experimental study in medicine is, of course, the clinical trial—a topic we 
take up in the next section.
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3.2 Clinical Trials

This chapter is concerned with a fundamental question for medicine: How 
do we tell if a treatment works, is ineffective, or even harmful? If a doctor 
claims that a certain type of psychotherapy will cure patients of their depres-
sion or a drug company maintains that a new product relieves the symptoms 
of asthma, how should these assertions be assessed? What sort of evidence 
do we need to decide that the claims made for the efficacy of clinical treat-
ments are, indeed, valid? One thing is certain: We should not rely on the 
views of ‘experts’ unless they produce sound empirical evidence to support 
their views, nor should we credit the anecdotal evidence of people who have 
undergone the treatment and, in some cases, have been ‘miraculously’ cured. 
One of the principal changes in medical practice and culture during the last 
100 years has been the increasing realisation that it is not enough for a doctor 
to say that his or her treatment works, nor it is enough for a patient to say 
likewise. These forms of anecdotal evidence, even if expanded into a series 
of anecdotes (dignified by the title of case series), are inadequate for the task.

Thus, if anecdote and number of people successfully treated alone is no real 
guide, how can we decide if a specific treatment works or not? We need to 
experiment, a fact recognised over 50 years ago by Pickering in his 1949 presi-
dential address to the Section of Experimental Medicine and Therapeutics of 
the Royal Society of Medicine:

Therapeutics is the branch of medicine that, by its very nature, should be 

experimental. For if we take a patient affected with a malady, and we alter 

his conditions of life, either by dieting him, or putting him to bed, or by 

administering to him a drug, or by performing on him an operation, we 

are performing an experiment. And if we are scientifically minded we 

should record the results. Before concluding that the change for better 

or for worse in the patient is due to the specific treatment employed, we 

must ascertain whether the result can be repeated a significant number 

of times in similar patients, whether the result was merely due to the 

natural history of the disease, or in other words to the lapse of time, or 

whether it was due to some other factor which was necessarily associ-

ated with the therapeutic measure in question. And if, as a result of these 

procedures, we learn that the therapeutic measure employed produces a 

significant, though not very pronounced improvement, we would experi-

ment with the method, altering dosage or other detail to see if it can be 

improved. This would seem the procedure to be expected of men with 

six years of scientific training behind them. But it has not been followed. 

Had it been done we should have gained a fairly precise knowledge of the 

place of individual methods of therapy in disease, and our efficiency as 

doctors would have been enormously enhanced. (Pickering 1949)

The experimental procedure needed in the evaluation of competing 
treatments is the clinical trial, which is a medical experiment designed to 
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evaluate which (if any) of two or more treatments is the more effective. It is 
based on one of the oldest principles of scientific investigation—namely, that 
new information is obtained from a comparison of alternate states. The three 
main components of a clinical trial are

A group of patients given the treatment under investigation (the 
treatment group) is compared with another group of patients given 
either an older or standard treatment, if one exists, or an ‘inert treat-
ment’ generally known as a placebo (the control group). (Some trials 
may, of course, involve several treatment groups and a control group, 
but it eases this general discussion to concentrate on the simple two-
group situation.)

There is a method of assigning patients to the treatment and control 
groups.

There is a means of assessing effectiveness (i.e., a measure of outcome). 
This may range from a simple rating of ‘improved/not improved’ to 
a numerical measure of some characteristic of a patient such as his 
or her weight. Many clinical trials will involve several measures of 
outcome. All need to be precise, objective, and reproducible, as dis-
cussed in Chapter 2.

One of the most important aspects of a clinical trial is the question of 
how patients should be allocated to the treatment group and control group. 
Silverman (1986) states:

How is the impossible decision made to choose between the accepted 

standard treatment and the proposed improved approach when a fel-

low human being must be assigned to one of the two (or more) treat-

ments under test? Despite the most extensive preclinical studies, the first 

human allocation of a powerful treatment is largely a blind gamble and 

it is perhaps not surprising that so much has been written on the most 

appropriate fashion to allocate treatments in a trial.

The objective in allocation is that the treatment group and control group 
should be alike in all respects except the treatment received. As a result the 
clinical trial is more likely to provide an unbiased comparison of the differ-
ence between the two treatments. Let’s begin by considering some flawed 
allocation procedures that are unlikely to achieve the desired degree of simi-
larity of the two groups:

Perhaps the clinician should decide which patient goes into which 
group? Possibly, but then the results of the trial would be viewed 
with a considerable amount of scepticism. For example, the clinician 
might allocate the patients with the worst prognosis to what was, in 
his or her opinion, a ‘promising’ new therapy and the better ones 
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to the older treatment, no doubt with the best possible intention in 
respect of her patients. Or older patients might receive the tradi-
tional therapy and youngsters the new one, and so on. All of these 
procedures would tend to invalidate the results from the trial.

Should the patients themselves decide what treatment to receive? 
Again, this would be highly undesirable. They are likely to believe 
that the new therapy is about to solve all of their problems. Why else 
would it be featuring in the trial? What patient would knowingly 
select a placebo?

Perhaps the first patients to volunteer to take part in the trial should 
all be given the novel treatment, for example, and the later ones used 
as controls? Again, early volunteers might be more seriously ill, des-
perate to find a new remedy that works.

What about putting alternate patients into each group? The objection 
to this is that the clinician will know who is receiving what treat-
ment and may be tempted to ‘tinker’ with the scheme to ensure that 
his patients who are most ill receive the new treatment.

Therefore, how should we form treatment and control groups? The answer 
is deceptively simple: use randomisation. The group to which a participant in 
the trial is allocated is decided by chance. It could be arranged by flipping a 
coin each time a new eligible patient arrives and allocating the patient to the 
new treatment if the result is a head or to the control group if a tail appears. 
In practice, of course, a more sophisticated randomisation procedure will 
be used, as we shall see later in this chapter. The essential feature for now, 
however, is the randomisation rather than the mechanism used to achieve it.

Why is randomisation the allocation method of choice? There are a variety 
of reasons:

It provides an impartial method of allocating patients to treatments 
free from possible personal biases. In other words, randomisation 
deals with the selection bias problem identified in the introduction 
of this chapter. It ensures that like is being compared with like and 
that hidden biases favouring one arm of the trial or the other have 
not crept in.

Randomisation deals directly with confounders by ensuring that 
they are distributed randomly (and hence without bias) between 
those who do and those who do not receive the treatment. And 
here lies the real beauty of randomisation: It deals not only with the 
confounders that you had thought of and possibly even recorded, 
but also with those that you had not (Sibbald and Roland 1998). For 
example, you might be aware that response to a particular interven-
tion is better in females than males. Gender would then be a con-
founder since, if you had one arm of the trial that had more females 
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than males, then that treatment would falsely appear to be superior. 
You could deal with the situation by requiring that the two arms 
have equal numbers of males and females and thus eliminate the 
effect of the confounder, although if the trial were large enough you 
could reasonably rely on randomisation alone to take care of the 
problem. But much is mysterious in medicine, and we can say with 
confidence that there is much we do not known about why some 
people respond better to any given treatment than others. Here is 
the elegance of randomisation: It will take care of these ‘mystery’ 
confounders so that you no longer need to worry about them, either 
now or in the future—not least when you submit your papers!

Randomisation provides a firm basis for the application of the sta-
tistical methodology likely to be needed when evaluating the results 
from a trial. Technically, it provides a probabilistic basis for infer-
ence from the observed results when considered in reference to all 
possible results.

What happens if you don’t randomise? The answer is simple. You are more 
likely to come up with the wrong answer. In a series of studies, it has been 
established beyond all doubt that when you don’t randomise, all sorts of 
biases creep in (Chalmers et al. 1983; Kleijnen 1997; Sacks et al. 1987; Schulz 
et al. 1995). These biases systematically overstate the effectiveness of the new 
treatment. Study after study that compares the results of evaluations of new 
treatments that do not include randomisation find that these designs are far 
more likely to report that the new treatment works. Now it could be that, for 
some perverse reason, doctors tend to perform randomised controlled trials 
on weaker, less effective treatments, reserving the inferior research designs 
for the more powerful treatments. However, one can show the same even 
within randomised controlled trials—the better the design of the trial is and 
the greater the protection from bias is, the less is the chance of showing that 
the new treatment works.

By ensuring a lack of selection bias and distributing both known and 
unknown confounders impartially among the treatment and control groups, 
random allocation goes a long way to making the interpretation of an 
observed treatment effect unambiguous; its cause is very likely to be in the 
different treatments received by the patients in the two groups—a long way, 
but not the whole way, because there remain questions of blinding and allo-
cation concealment. But here we intend to concentrate on the randomisation 
aspect of clinical trials; for details of the other necessary aspects of treatment 
allocation, see, for example, Everitt and Wessely (2008).

3.2.1 Types of Randomisation

Randomisation is an elegant way of allocating participants to different 
treatments in a clinical trial that avoids selection bias, provides a sound 
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basis for the estimation of the treatment effect, and deals directly with the 
problem of bias from potential confounders by distributing them randomly 
between the different treatments. It would seem, in principle at least, that 
randomisation would be simplicity itself, involving little more than the toss 
of a fair coin. In practice, however, things are a little more complicated. 
Simply tossing a coin and allocating a participant in the trial to, say, treat-
ment A if the coin is a head and to treatment B if the coin comes down tails 
has a disadvantage that may make it unattractive in practice—namely, that 
there is the considerable potential for an imbalance in the number of par-
ticipants allocated to each treatment, particularly when the trial is relatively 
small.

Randomisation by simply tossing a coin (or complete randomisation, as it is 
generally known) is no guarantee of equally sized groups. If, say, 60 patients 
are to be allocated randomly between two treatments, it is very unlikely that 
complete randomisation will result in 30 in each group; when randomising 
50 patients to two treatments using this approach, there is about a 5% prob-
ability of ending up with an imbalance between the groups of 14 patients or 
worse (Rosenberger and Lachin 2002).

Let’s see what happens when we use SAS to apply the ‘coin toss’ allocation 
method a number of times to allocate, say, 100 participants to two treatment 
groups. We can mimic coin tossing using one of SAS’s random number func-
tions. To create 10 repetitions of 100 ‘tosses’, we use two iterative do loops, 
one nested within the other. For each value of set in the outer loop, the 
inner loop will create 100 tosses. The rand function is capable of produc-
ing random numbers with a variety of different distributions. The Bernoulli 
distribution gives a result of zero or one with the probability of a one speci-
fied by the second argument. The output statement writes an observation 
each time the inner loop iterates. The call streaminit statement gives a 
number that forms the start of the random number sequence, known as the 
seed. Although setting the seed explicitly like this is optional, it is useful as 
it enables the same random number sequence to be generated when the pro-
gram is rerun. The SAS code is

data cointoss;
call streaminit(12345);
do set=1 to 10;
do toss=1 to 100;
  result=rand('bernoulli',.5);
  output;
  end;
end;
run;

proc freq data=cointoss;
  tables set*result /norow nocol nopercent;
run;
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The results are given in Table 3.1. We see that, in the first repetition, the 
imbalance between the two groups is 18, which for many investigators would 
be unacceptable. Why does an imbalance in the size of treatment groups 
matter (or does it)? The reasons usually given are that the precision of an esti-
mate of treatment effect will decrease and the power of the study (see later in 
this chapter) will be less than for an equal division of participants between 
treatment groups for the same overall total number of subjects. But these 
are, in fact, not very convincing reasons for seeking equally sized groups as 
precision and power will decrease only minimally for moderate imbalances 
(see Pocock 1983 and Rosenberger and Lachin 2002).

But despite the seeming lack of any dire statistical consequences result-
ing from an imbalance produced by complete randomisation, investigators 
designing clinical trials will often still hanker after equally sized groups. 
The reason is that very uneven treatment group sizes can cause problems 
in the administration or even financing of a trial, particularly if the treat-
ment under investigation is a psychological one or a complex health inter-
vention that may be subjected to limited resources. Consequently, a number 
of restricted randomisation methods have been developed that ensure simi-
lar numbers in each treatment group throughout the trial. The most com-
monly used of these procedures is blocked randomisation. (It should perhaps 
be mentioned here that, under certain conditions, unequal group sizes may 
be a sensible design requirement. Arranging to allocate a larger number of 
patients to a new treatment than to the standard treatment, for example, may 

TABLE 3.1

Numbers of Subjects Allocated to Each of Two 

Treatment Groups by a ‘Coin-Tossing’ Process 

in Which Subject Has an Equal Probability of 

Being Allocated to Each Group

Table of Set by Result

Set
Frequency

Result

0 1 Total
1 59 41 100
2 55 45 100
3 48 52 100
4 42 58 100
5 54 46 100
6 55 45 100
7 53 47 100
8 46 54 100
9 53 47 100

10 53 47 100
Total 518 482 1000



80 Applied Medical Statistics Using SAS

be warranted by the need for fuller information about the general character-
istics of the new treatment.)

3.2.1.1 Blocked Randomisation

This method, also known as permuted block randomisation, guarantees that at 
no time during randomisation will the imbalance be large and that, at cer-
tain points, the number of subjects in each group will be equal. The essential 
feature of this approach is that blocks of a particular number of patients are 
considered and a different random ordering of treatments assigned in each 
block; the process is repeated for consecutive blocks of patients until all have 
been randomised.

For example, with two treatments (A and B), the investigator may want to 
ensure that, after every sixth randomised subject, the number of subjects in 
each treatment group is equal. Then a block of size six would be used and 
the process would randomise the order in which three As and three Bs are 
assigned for every consecutive group of six subjects entering the trial. There 
are 20 possible sequences of three As and three Bs, and one of these is cho-
sen at random and the six subjects are assigned accordingly. The process 
is repeated as many times as possible. When six patients are enrolled, the 
numerical balance between treatment A and treatment B is equal and the 
equality is maintained with the enrolment of the 12th patient, 18th patient, 
and so on.

Friedman, Furberg, and De Mets (1985) suggest an alternative method 
of blocked randomisation in which random numbers between 0 and 1 are 
generated for each of the assignments within a block, and the assignment 
order is then determined by the ranking of these numbers. For example, 
with a block of size six in the two-treatment situation, we might have the 
following:

Assignment Random Number

A 0.112

A 0.675

A 0.321

B 0.018

B 0.991

B 0.423

This leads to the assignment order BAABAB.
In trials that are not double blind, one potential problem with blocked 

randomisation is that at the end of each block, alert clinicians can begin to 
guess the next allocation by noting the pattern of past assignments. Should 
the clinician become aware that the two groups are equal in size, for exam-
ple, after every four participants, then it is not difficult to start influencing 
the allocation (Schultz and Grimes 2002). The smaller the block size is, the 
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greater is the risk of the randomisation becoming predictable. For this rea-
son, repeated blocks of size two should not be used. One common solution is 
to insist that clinicians do not know the block size or even to vary the block 
sizes themselves randomly, which makes it very difficult to determine the 
next assignment in a series.

The great advantage of blocking is that balance between the number of 
subjects is guaranteed during the course of the randomisation. The num-
ber in each group will never differ by more than b/2 where b is the size of 
the block. This can be important for two reasons. First, if enrolment in a 
trial takes place slowly over a period of months or even years, the type of 
patient recruited for the study may change during the entry period (tem-
poral changes in severity of illness, for example, are not uncommon), so 
blocking will produce more comparable groups. A second advantage of 
blocking is that if the trial should be terminated before enrolment is com-
pleted because of the results of some form of interim analysis (see Everitt 
and Wessely 2008), balance will exist in terms of number of subjects ran-
domised to each group.

Strictly speaking, the statistical analysis of a trial in which blocked ran-
domisation is used needs to take into account the blocking procedure. In 
practice, however, there is some consensus that the complexities introduced 
are not worth the minimal extra gain in power (Wittes 2001).

The method suggested by Friedman et al. (1985) can be programmed with 
only minor alterations to the earlier coin toss example. The necessary SAS 
code is

data blkdes;
 call streaminit(12345);
 do block=1 to 50;
  do unit=1 to 6;
  rndx=rand('uniform');
  if unit<4 then assignment='A';
 else assignment='B';
  output;
  end;
 end;
run;
proc sort data=blkdes;
by block rndx;
run;
proc print data=blkdes(obs=12);
run;

The outer do loop generates 50 blocks and the inner one six units per block. 
The first three of these are assigned to treatment A and the second three to 
treatment B. A uniform random number is generated and the data set is then 
sorted by block and within each block by the random number. The first 12 
observations are printed and shown in Table 3.2.
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An alternative approach is to use proc plan, which is specifically for 
 generating experimental designs. Now the code is

proc plan seed=12345;
 factors block=50 ordered unit=6 random;
  output out=blkdes2 unit cvals=('A' 'A' 'A' 'B' 'B' 'B') 

random;
run;

The random number seed is specified on the proc statement. Then the 
factors statement gives the details of the design. Here, we want 50 blocks, 
ordered—that is, generated in order. Within each block there are to be six 
units in random order. The output statement writes the design to a SAS 
data set, blkdes2. The unit factor is to be given the character values ‘A’ 
and ‘B’ and in random order. An alternative to the cvals= option would be 
nvals=(1 1 1 2 2 2). Whichever is used, there need to be the same number 
of values as there are levels of the factor. Again, the first 12 observations are 
printed in Table 3.3.

3.2.1.2 Stratified Randomisation

As mentioned before, one of the objectives in randomising patients to treat-
ment groups is to achieve between-group comparability on certain relevant 
patient characteristics usually known as prognostic factors. Measured prior to 
randomisation, these are factors that it is thought will likely correlate with 
subsequent patient response or outcome. For example, if it is known that edu-
cated patients are more likely to respond to a particular psychotherapy than 
the less educated, then one would want levels of education to be reasonably 

TABLE 3.2

Results of Friedman’s Method for Blocked Randomisation

Obs block unit rndx assignment
1 1 6 0.28057 B
2 1 1 0.58330 A
3 1 3 0.58789 A
4 1 5 0.82469 B
5 1 4 0.85747 B
6 1 2 0.99363 A
7 2 2 0.38192 A
8 2 3 0.44896 A
9 2 5 0.51838 B

10 2 1 0.64740 A
11 2 6 0.84267 B
12 2 4 0.87578 B
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comparable between the groups; otherwise, that might be an alternative 
explanation for why one group improved and the other did not.

Simple randomisation tends to produce groups that are, on average, simi-
lar in their entry characteristics, both known and unknown. The larger a 
trial is, the less chance there will be of any serious noncomparability of treat-
ment groups; however, for a small study (and in many areas of medicine—
for example, psychiatry—sample size is not always what it should be), there 
is no guarantee that all baseline characteristics will be similar in the two 
groups. If prognostic factors are not evenly distributed between treatment 
groups, it may give the investigator cause for concern. If so, the solution 
may be to use stratified randomisation, which is a procedure that helps to 
achieve comparability between the study groups for a chosen set of prognos-
tic factors. According to Pocock (1983), the method is rather like an insurance 
policy in that its primary aim is to guard against the unlikely event of the 
treatment groups ending up with some major difference in patient charac-
teristics. The method is frequently performed in multicentre trials because, 
despite every effort by the investigators, differences between centres are the 
rule rather than the exception.

The first issue to be considered when contemplating stratified randomisa-
tion is which prognostic factors should be considered. Experience of earlier 
trials may be useful here. When several prognostic factors are to be con-
sidered, a stratum for randomisation is formed by selecting one subgroup 
from each of them (continuous variables such as age are divided into groups 
of some convenient range). Since the total number of strata is therefore the 
product of the number of subgroups in each factor, the number of strata 
increases rapidly as factors are added and the levels within factors are 

TABLE 3.3

Results from Using proc plan 

for Blocked Randomisation

Obs block unit
1 1 A
2 1 B
3 1 B
4 1 A
5 1 A
6 1 B
7 2 A
8 2 A
9 2 B

10 2 A
11 2 B
12 2 B
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refined. Consequently, only the most important variables should be chosen 
and the number kept to a minimum.

Within each stratum, the randomisation process itself could be simple ran-
domisation, but in practice most clinical trials will use some blocked ran-
domisation approach. As an example, suppose that an investigator wishes to 
stratify on age and sex, and to use a block size of four. First, age is divided 
into a number of categories—say, 40–49, 50–59, and 60–69. The design thus 
has 3 × 2 strata, and the randomisation might be as shown in Table 3.4.

Although the main argument for stratified randomisation is that of mak-
ing the treatment groups comparable with respect to specific prognostic fac-
tors, it may also lead to increased power, if the stratification is taken into 
account in the analysis, by reducing variability in group comparisons. Such 
reduction allows a study of a given size to detect smaller group differences 
in outcome measures or to detect a specified difference with fewer subjects.

The disadvantage of stratification is its complexity. As the technical require-
ments of the chosen randomisation process increase, so do the chances of 
error. The costs of the trial also increase, and there is always the chance that 
some strata will have insufficient numbers, thus reducing power. The gen-
eral advice if stratified randomisation is to be used is to keep it simple. For 
example, only stratify on variables that are easy to measure, such as gender 
or age (assuming that these are considered predictive of outcome).

Stratified randomisation is of most relevance in small trials, but even here 
it may not be profitable if there is uncertainty over the importance or reliabil-
ity of prognostic factors or if the trial has a limited organisation that might 
not cope well with complex randomisation procedures. In many cases, it may 
be more useful to employ a stratified analysis (subgroup analysis) or analysis 
of covariance to adjust for prognostic factors when assessing treatment differ-
ences (see Chapter 6).

Designs for stratified randomisation can be produced in the same way 
as for blocked designs, but incorporating the strata as an extra level. If we 

TABLE 3.4

Stratified Randomisation Example

Strata Age Sex Group Assignment

1 40–49 Male ABBA BABA…

2 40–49 Female

3 50–59 Male

4 50–59 Female

5 60–69 Male

6 60–69 Female

Note: Male patients between 40 and 49 years old would be 

assigned to treatment groups A and B in the sequences 

ABBA BABA…. Similarly, random sequences would 

appear in the other strata.
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had six age–sex strata, as in the preceding example, and wanted them to be 
blocked in blocks of four, we could use proc plan as follows:

proc plan seed=12345;
 factors stratum=6 ordered block=10 ordered unit=4 random;
 output out=stdesign unit cvals=('A' 'A' 'B' 'B') random;
run;

This would be assuming that the maximum in any given stratum would 
be 40. The number of blocks could be increased if this were not sufficient.

In any of the preceding designs, it might also be desirable to generate an 
id number that will be allocated at the time of randomisation. Sequential 
numbers could be generated using the SAS automatic variable _n_ , as 
follows:

data stdesign;
 set stdesign;
 id=_n_;
run;

3.2.1.3 Minimisation Method

A further approach to achieving balance between treatment groups on 
selected prognostic factors is to use an adaptive randomisation procedure 
in which the chance of allocating a new patient to a particular treatment 
is adjusted according to any existing imbalances in the baseline charac-
teristics of the groups. For example, if sex is a prognostic factor and one 
treatment group has more women than men, the allocation scheme is such 
that the next few male patients are more likely to be randomised into the 
group that currently has fewer men. This method is often referred to as 
minimisation because imbalances in the distribution of prognostic factors 
are minimised.

In general, the method is applied in situations involving several prog-
nostic factors and patient allocation is then based on the aim of balancing 
the marginal treatment totals for each level of each factor. As an example of 
the application of minimisation, imagine a clinical trial comparing a new 
treatment of depression (A) with the standard treatment (B). Table 3.5 shows 
60  patients already allocated to the two treatments categorised by four 
prognostic factors. Suppose the next patient to be allocated is less than 40 
years old, has a current episode of depression that has lasted longer than 6 
months, is female, and is currently taking other antidepressant drugs. Then, 
for each treatment, the numbers of patients in the corresponding four rows 
of Table 3.5 are added to give the following:

Sum for A = 16 + 18 + 20 + 15 = 69

Sum for B = 15 + 16 + 22 + 14 = 67
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Minimisation requires the new patient to be allocated to the treatment 
with the smallest marginal total, in this case treatment A. If the sums for A 
and B are equal, then simple randomisation is used to allocate the patient.

The aim of minimisation is to balance the distribution of specific char-
acteristics within the treatment groups, but to do so efficiently. Although 
minimisation is a largely nonrandom method of treatment allocation, Scott 
et al. (2002) find evidence that it is highly effective and recommend its wider 
adoption in the conduct of clinical trials.

Minimisation randomisation using SAS can be applied as follows. Data 
on the prognostic factors and treatment assignments for the 60 patients as 
shown in Table 3.3 are in the SAS data set minimize. We first calculate the 
marginal totals used for the allocation:

libname db "c:\amdus2\data";
ods output OneWayFreqs(persist)=marginals;
proc freq data=db.minimize; tables treat; where agegrp=1; run;
proc freq data=db.minimize; tables treat; where Lepi=2;   run;
proc freq data=db.minimize; tables treat; where sex=2;    run;
proc freq data=db.minimize; tables treat; where onmed=1;  run;
ods output close;

The libname statement links the directory where the data set is stored to 
the libref db, which can then be used to identify the data set. The ods 
 output statement specifies that the OneWayFreqs ODS table is to be saved 
in the data set marginals. The persist option in parentheses keeps the 
data set open to accumulate the frequencies from multiple proc steps until 
explicitly closed by the ods output close statement. Without this option, 
only the output from the first proc freq step would be saved. Four proc 
freq steps are then used to calculate the numbers already allocated to the 
two treatments for those with the same values of the four prognostic factors 

TABLE 3.5

Treatment Assignments by Four Prognostic Factors for 60 Patients in a Trial for a 

New Treatment of Depression

Factor Variable Name Level Code A B

Age agegrp Less than 40 1 16 15

Greater than 40 2 14 15

Length of current episode Lepi Less than 6 months 1 12 14

Greater than 6 months 2 18 16

Sex sex Male 1 10 8

Female 2 20 22

Currently taking other 

antidepressants?

onmed Yes 1 15 14

No 2 15 16
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as the new patient. In each case, the where statement selects those with the 
appropriate value of a factor.

Having calculated the necessary marginal totals, we sum them and make 
the treatment allocation as follows:

proc means data=marginals sum;
 class treat;
 var frequency;
run;

The marginal totals for treatment A sum to 69 and those for B to 67, so the 
patient is allocated to treatment B. If the sums were the same, the allocation 
could be made with a coin toss or a short data step, such as

data _null_;
 rx=rand('bernoulli',.5);
 if rx=0 then put "allocation is to group A";
 else put "allocation is to group B";
run;

The newly allocated patient would then need to be added to the minimise 
data set ready for the next new patient, which could be done as follows:

data newpt;
 input id agegrp Lepi sex onmed treat $;
datalines;
61 1 2 2 1 B
;
data db.minimize;
 set db.minimize newpt;
run;

Blocking, stratified randomisation, and minimisation all have their part 
to play in allocating patients to treatments in some clinical trials. But as the 
sample size used in a trial increases to a respectable value (sample size esti-
mation will be considered in Section 3.3), it is unlikely that the investiga-
tor will need to consider any other randomisation scheme than complete 
randomisation. Once the overall sample size has reached around 200, most 
authorities advise that stratification, etc. becomes unnecessary, and simple 
randomisation will be sufficient to minimise chance biases (Pocock 1983). 
Simple randomisation, properly performed, has the added powerful advan-
tage of being impossible to predict. But whatever method of randomisation is 
used in a clinical trial, it needs to be reported in detail in any scientific paper 
that is generated by the study.

Sadly, however, there is evidence that this does not happen. A study by 
Ogundipe, Boardman, and Masterson (1999), for example, examined the ade-
quacy of the reporting of details of randomisation in clinical trials published 
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in the British Journal of Psychiatry (BJP) and the American Journal of Psychiatry 
(AJP) and found that of 183 such submissions (73 in the BJP and 110 in the 
AJP), only nine papers in the AJP and six in the BJP described the technique 
used to create the randomisation sequence employed in the trial. Only one 
paper in the AJP and five in the BJP described both the generation of the 
random numbers and the mechanism of allocating patients to treatment. 
Clearly, the reporting of randomisation details is very often inadequate and 
editors of medical journals need to be alert to the problem to ensure that the 
randomised clinical trial status of such papers is specifically established by 
the authors of papers.

3.3 How Many Participants Do I Need in My Trial?

One of the most frequent questions faced by a statistician dealing with inves-
tigators planning a clinical trial is ‘how many participants do I need to recruit 
to each treatment group?’ Answering the question requires consideration of 
a number of factors—for example, the amount of time available for the trial, 
the likely ease or difficulty in recruiting the type of patient required, and 
the possible financial constraints that may be involved. But the statistician 
may, initially at least, largely ignore these important aspects of the problem 
and apply a statistical procedure for calculating sample size that involves the 
following:

Specifying the appropriate statistical test to be used in the analysis 
of the chosen response

Setting the size of the type I error (i.e., the significance level)

Assessing the likely variance of the response variable

Agreeing with the investigators on the power they would like to 
achieve (For those readers who have forgotten—or perhaps never 
knew—the power of a statistical test is its probability of rejecting the 
null hypothesis when it is false.)

Obtaining from the investigators a size of treatment effect that is 
of clinical important (i.e., a treatment difference that the investiga-
tors would not like to miss being able to declare to be statistically 
significant)

Thus, the investigators need to specify the size of the treatment differ-
ence considered clinically relevant (i.e., important to detect) and with what 
degree of certainty (i.e., with what power) it should be detected. Given such 
information, the calculation of the corresponding sample size is often rel-
atively straightforward, although the details will depend on the type of 
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response variable and the type of test involved (see later discussion for an 
example). In general terms, the sample size will increase as the variability 
of the response variable increases and decrease as the chosen clinically 
relevant treatment effect increases. In addition, the sample size will need 
to be larger to achieve a greater power and/or a more stringent significance 
level.

As an example of the calculations involved in sample size determination, 
consider a trial involving the comparison of two treatments for anorexia ner-
vosa. Anorexic women are to be assigned randomly to each treatment and 
the gain in weight in kilograms after 3 months is to be used as the outcome 
measure. From previous experience gained in similar trials, it is known that 
the standard deviation (σ) of weight gain is likely to be about 4 kg. The inves-
tigator feels that a difference in weight gain of 1 kg (Δ) would be of clinical 
importance and wishes to have a power of 90% when the appropriate two-
sided test is used with significance level of 0.05 (α). The formula for calculat-
ing the number of women required in each treatment group (n) is

 n
Z Z2 |2

2 2

2

)(
=

+ σ
Δ

α β
 (3.1)

where β is 1 – power, and

Zα|2 is the value of the normal distribution that cuts off an upper tail 
probability of α|2. Thus, for α = 0.05, Zα|2 = 1.96.

Zβ is the value of the normal distribution that cuts off an upper tail 
probability of β. Thus, for a power of 0.90, β = 0.10 and Zβ = 1.28.

In SAS, we can use proc power to find the required sample sizes as 
follows:

proc power;
 twosamplemeans
 meandiff=1
 stddev=4
 power=.9
 npergroup=.;
run;

Proc power covers a range of common tests that a power calculation 
might be based on, including the one- and two-sample tests, one-way 
ANOVA ( analysis of variance), multiple regression, logistic regression, and 
comparison of two survival curves. Each of these scenarios is invoked by 
a corresponding statement (e.g., twosamplefreq, twosamplesurvival, 
onewayanova, logistic, multreg, and so on). The general principle is 
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that the quantity that is to be calculated is set to missing; most typically this 
is either the sample size or power, and the other aspects enumerated previ-
ously are specified or left at their default value. In the preceding example, 
npergroup is set to missing as that is the quantity that we wish to calculate. 
The power is set to 90%, the significance level is left at its default (5%), and 
the variance of the response is specified, as is the treatment effect. The result-
ing value for the number of subjects needed in each group is 338. Note that 
twosamplemeans is a single statement with multiple options, so there is a 
semicolon only at the end.

Equivalent information can be provided in a number of different ways. 
Each of the groups could have separate means, variances, or Ns specified, 
rather than the mean difference, common variance, and equal group sizes. 
For example, in a study of a welfare-to-work program, the potential health 
improvement associated with a return to work was thought to be around 2 
points on the SF-12 scale (a short health questionnaire), but an increase in 
variability was also expected so that the standard deviation might be 12 as 
opposed to 8 in the control group. In this case, the SAS code would be

proc power;
 twosamplemeans
 groupmeans=0 | 2
 groupstddevs=8 | 12
 test=diff_satt
 power=.8
 npergroup=.;
run;

The means for the two groups are separated by a vertical bar on the 
groupmeans option and likewise the standard deviations. For unequal vari-
ances, the Satterthwaite test (see Everitt 2011) is selected on the test option. 
The results suggest a sample size of 410 in each group.

An obvious danger with the sample size determination procedure 
mapped out on page 89 is that investigators (and, in some cases, even their 
statisticians) may  occasionally be led to specify an effect size that is unre-
alistically extreme (what Senn 1997 has described with his usual candour 
as ‘a cynically relevant difference’) so that the calculated sample size looks 
feasible in terms of possible pressing temporal and financial constraints. 
Such a possibility maybe what led Senn (1997) to describe power calcula-
tions as ‘a guess masquerading as mathematics’ and Pocock (1996) to com-
ment that they are ‘a game that can produce any number you wish with 
manipulative juggling of the parameter values’. Statisticians advising on 
clinical trials need to be active in estimating the degree of difference that 
can be realistically expected for a clinical trial based on previous studies of 
a particular disease or, when such information is lacking, perhaps based 
on subjective opinions of investigators and physicians not involved in the 
proposed trial.
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Getting the sample size right in a clinical trial is generally believed to be 
critical; indeed, according to Simon (1991),

An effective clinical trial must ask an important question and provide a 

reliable answer. A major determinant of the reliability of the answer is the 

sample size of the trial. Trials of inadequate size may cause contradictory 

and erroneous results and thereby lead to an inappropriate treatment of 

patients. They also divert limited resources from useful applications and 

cheat the patients who participated in what they thought was important 

clinical research. Sample size planning is, therefore, a key component of 

clinical trial methodology.

Certainly, many clinical trial investigators would (and have) argued that tri-
als with ‘inadequate’ sample size are, in a very real sense, unethical in that 
they require patients to accept the risks of treatment, however small, without 
any chance of benefit to them or future patients. Freiman, Chalmers, and Smith 
(1978), for example, reviewed 71 ‘negative’ randomised clinical trials (i.e., tri-
als in which the observed differences between the proposed and control treat-
ments were not large enough to satisfy a specified ‘significance’ level (the risk of 
a type I error) and the results were declared to be ‘not statistically significant’.

Analysis of these clinical studies indicated that the investigators often 
worked with numbers of enrolled patients too small to offer a reasonable 
chance of avoiding the opposing mistake—a type II error (accepting the null 
hypothesis when it is false). Fifty of the trials had a greater than 10% risk of 
missing a substantial difference (true treatment difference of 50%) in treat-
ment outcome. The reviewers warned that many treatments labelled as ‘not 
different from control’ had not received a critical test because the trials had 
insufficient power to do the job intended. Freiman and colleagues’ examples 
clearly illustrate the truth in that memorable phrase of Altman and Bland 
(1995): ‘absence of evidence is not evidence of absence’.

This concern about patient numbers in many clinical trials being too small 
is echoed by Pocock (1996), who sees the problem as ‘general phenomena 
whose full implications for restricting therapeutic progress are not widely 
appreciated’. In the same article Pocock continues:

The fact is that trials with truly modest treatment effects will achieve 

statistical significance only if random variation conveniently exagger-

ated these effects. The chances of publication and reader interest are 

much greater if the results of the trial are statistically significant. Hence, 

the current obsession with significance testing combined with the inad-

equate size of many trials means that publications on clinical trials for 

many treatments are likely to be biased towards an exaggeration of ther-

apeutic effect, even if the trials are unbiased in all other respects.

The primary purpose in making a trial as large as possible is to maxi-
mise the chance of detecting a treatment effect, particularly if that effect is 
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not very big, and to provide a precise estimate of the size of the treatment 
effect. A large trial may also allow a few sensible and predefined subgroup 
analyses to try to assess for whom the treatment works best (see later in 
this chapter). The case against trials with inadequate numbers of subjects 
appears strong, but as Senn (1997) points out, sometimes only a small trial is 
possible. And misinterpreting a nonsignificant effect as an indication that a 
treatment effect is not effective, rather than as a failure to prove that it is effec-
tive, suggests trying to improve medical education rather than totally aban-
doning small trials. In addition, with the growing use of systematic reviews 
and meta-analysis (topics to be discussed in Chapter 5), the results from small 
trials may prove valuable in contributing to an overview of the evidence of 
treatment effectiveness, a view neatly summarised by Senn in the phrase 
‘some evidence is better than none’. Perhaps with clinical trials, as with other 
things, size is not always everything.

3.4 Analysis of Data from Clinical Trials

A clinical trial generates data that must be analysed. Such analysis will 
involve the use of statistics—not always the most popular topic amongst cli-
nicians and applied medical researchers, although few, we hope, would go as 
far as Le Fanu (1999) in believing that ‘statistics are numbers to which com-
plex mathematical formulae can be applied to produce conclusions of dubi-
ous veracity and from which all wit and human life is ingenuously excluded’. 
In this section, we will examine a number of general statistical issues that 
we feel are of particular relevance in analysing data from clinical trials. In 
essence, analysis and design are two sides of the same coin, and if a poor 
design can make a clinical trial almost useless, the benefits of a good design 
can be undermined with a poorly planned (or executed) analysis.

3.4.1 p-Values and Confidence Intervals

The p-value is probably the most ubiquitous statistical index found in the 
applied sciences literature and is particularly widely used in  biomedical 
research. The p-value is defined as the probability of obtaining the observed 
data (or data that represent a more extreme departure from the null 
 hypothesis) if the null hypothesis is true; it was first proposed as part of 
a quasiformal method of inference by Fisher in his influential 1925 book, 
Statistical Methods for Research Workers. For Fisher, the p-value represented 
an attempt to provide a measure of evidence against the null hypothesis; 
however, he intended it to be used informally, with the smaller the p-value 
the greater the evidence against the null hypothesis, rather than providing a 
division of the results into ‘significant’ and ‘nonsignificant’.
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Unfortunately, it seems that despite the many caveats in the literature 
(see,  for example, Gardner and Altman 1986 and Oakes 1986), the accept/
reject philosophy of hypothesis testing remains seductive to many clinicians, 
who seem determined to continue to express joy on achieving a p-value of 
0.049 and despair on finding one of ‘only’ 0.051 (0.05 being the almost univer-
sally accepted threshold for labelling results, significant or nonsignificant). 
Many clinicians seem to internalise the difference between a p-value of 0.05 
and one of 0.06 as ‘right’ versus ‘wrong’, ‘creditable’ versus ‘embarrassing’, 
‘success’ versus ‘failure’, and, perhaps, the renewal of grants versus termi-
nation. Such practice was definitely not what Fisher had in mind as is evi-
denced by the following quotation from the 1925 edition of Statistical Methods 
for Research Workers:

A man who ‘rejects’ a hypothesis provisionally, as a matter of habitual 

practice, when the significance is 1% or higher, will certainly be mis-

taken in not more than 1% of such decision…However, the calculation 

is absurdly academic, for in fact no scientific worker has a fixed level 

of significance at which from year to year, and in all circumstances, he 

rejects hypotheses; he rather gives his mind to each particular case in the 

light of his evidence and his ideas.

The most common alternative to presenting results from a clinical trial in 
terms of p-values, in relation to a statistical null hypothesis, is to estimate the 
magnitude of the difference of a measured outcome between treatment groups, 
along with some interval that includes the population value of the difference 
with some specified probability. Such an approach is intuitively sensible since 
most clinical objectives translate into a need to estimate a particular quantity—
for example, a treatment effect—along with some idea of the precision of the 
estimate. The resulting interval is known, of course, as a confidence interval.

Confidence intervals can be found relatively simply for many quantities of 
interest (see Gardner and Altman 1986), and although the underlying logic of 
interval estimation is essentially similar to that of significance testing, they 
do not carry with them the pseudoscientific hypothesis testing language of 
such tests. Instead, they give a plausible range of values for the unknown 
difference. As Oakes (1986) rightly comments, ‘the significance test relates to 
what the population parameter is not; the confidence interval gives a plau-
sible range for what the parameter is’.

According to Gardner and Altman (1986),

Overemphasis on hypothesis testing—and the use of p-values to dichot-

omise significant or non-significant results—has distracted from more 

useful approaches to interpreting study results, such as estimation and 

confidence intervals…. The excessive use of hypothesis testing at the 

expense of other ways of assessing results has reached such a degree that 

levels of significance are often quoted alone in the main text and abstracts 

of papers, with no mention of actual concentration, proportions, etc., or 
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their differences. The implications of hypothesis testing—that there can 

always be a simple ‘yes’ or ‘no’ answer as the fundamental result from a 

medical study—[are] clearly false, and used in this way hypothesis test-

ing is of limited value.

Gardner and Altman’s comments are well illustrated by the following quo-
tation taken from a report of a clinical trial comparing olanzapine and halo-
peridol for treating the symptoms of schizophrenia: ‘Patients treated with 
olanzapine showed an average decrease of 10.9 points on the brief psychiatric 
rating scale; patients treated with haloperidol reported an average decrease 
of 7.9 points. This difference was statistically significant’. Note that neither a 
measure of the variation of the outcome measure nor an interval estimate of 
the treatment difference (i.e., a confidence interval) is given.

Perhaps partly as a result of Gardner and Altman’s paper, the use and 
reporting of confidence intervals have become more widespread in the medi-
cal literature in the past decade. Indeed, many journals now demand such 
intervals rather than simply p-values. In many medical journals, however, 
there appears to be a continuing commitment to p-values; certainly, there is 
no discernable move away from their use. There should be.

3.4.2  Some Examples of Analysis of Data from Clinical 
Trials Using Familiar Statistical Methods

Clinical trials may often generate data that require sophisticated statistical 
analyses; for example, as mentioned previously, clinical trials are often lon-
gitudinal with values of the outcome measure (or outcome measures) being 
taken on several different occasions. The analysis of such longitudinal data 
needs relatively complicated statistical techniques and will be the subject of 
Chapters 12, 13, and 14. But in this subsection, we will look at some ways of 
analysing relatively simple data arising from clinical trials using straight-
forward inferential methods familiar from introductory statistical courses 
and/or books.

The first example is adapted from Altman (1991). Twenty-two patients 
undergoing cardiac bypass surgery were randomised to one of three ventila-
tion groups:

In group I, patients received a 50% nitrous oxide and 50% oxygen mix-
ture continuously for 24 hours.

In group II, patients received a 50% nitrous oxide and 50% oxygen mix-
ture only during the operation.

In group III, patients received no nitrous oxide but received 35%–50% 
oxygen for 24 hours.

Table  3.6 shows red cell folate levels for the three groups after 24 hours’ 
ventilation.
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We would like to assess if there is any evidence that red folate level differs 
between the groups. As with the vast majority of data analysis exercises, the 
initial step should be to graph the data in some way. Here we will look at box 
plots of the data in each group. We begin with a data step to read the data in:

data folates;
 do group=1 to 3;
 input rfl 4. @;
 if rfl~=. then output;
 end;
datalines;
243 206 241
251 210 258
275 226 270
291 249 293
347 255 328
354 273
380 285
392 295
 309
;

An iterative do loop is used to read three values per line and assign them 
to the appropriate group. Formatted input is used because the data lines con-
tain blanks that need to be treated as missing values. The trailing @ on the 
input statement holds the data line so that all three values can be read from 
it. By default, the input statement would go to a new line each time it is 

TABLE 3.6

Red Folate Levelsa in Three Groups of 

Cardiac Bypass Patients Given Different 

Levels of Nitrous Oxide Ventilation

Group 1 
(n = 8)

Group 2 
(n = 9)

Group 3 
(n = 5)

243 206 241

251 210 258

275 226 270

291 249 293

347 255 328

354 273

380 285

392 295

309

Source: Amess, J. A. et al. 1978. Lancet ii: 339–342.
a Micrograms per litre.
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used. The output statement writes an observation to the folates data set 
for each iteration of the do loop:

proc sgplot data=folates;
  vbox rfl / category=group;
run;

The vbox plot statement within proc sgplot will produce box plots. The 
response variable is rfl and the category option is used to produce sepa-
rate plots for each group.

Examination of the box plots in Figure 3.1 suggests that the folate levels 
in group 1 are somewhat higher than those in groups 2 and 3. There is no 
evidence in the box plots of any potentially troublesome outliers and little 
evidence for skewness of the distribution of folate levels in any of the three 
groups which might have implications for the use of the statistical test that 
we shall use to assess folate levels in the three groups formally.

We shall compare red folate levels in each pair of groups by way of 
Student’s two independent samples t-test (see Altman 1991). This is not the opti-
mal analysis, which is a one-way analysis of variance, but we leave describing 
this approach until Chapter 6. We can apply the three t-tests for comparing 
each pair of groups using the following SAS code:

proc ttest data=folates;
 class group;
 var rfl;
where group in(1 2);
run;

200

1 2

Group

3

250

rfl 300

350

400

FIGURE 3.1
Box plots of data in Table 3.5.
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proc ttest data=folates;
 class group;
 var rfl;
where group in(1 3);
run;

proc ttest data=folates;
 class group;
 var rfl;
where group in(2 3);
run;

For the ttest procedure, the var statement specifies the variable to be 
analysed and the class statement specifies the variable that divides the 
sample into two groups. In this case, the variable group has three values, 
but the where statement selects two at a time for comparison using the in 
operator. The results are shown in Table 3.7.

The two-sample t-test is based on three assumptions:

The data are drawn from populations where red folate levels have a 
normal distribution.

The normal distributions describing red folate levels in each group 
have the same variance.

The samples in each group are independent of each other.

We can take the latter assumption as read because different subjects 
are used in each group. Informal support for the first two assumptions is 
given by the box plots and formal support for the second assumption is 
provided by the ‘folded F’—the ratio of the larger of the two variances to 
the smaller, which is a test of the equality of variance of the two groups; 
for each pair of groups in these data, there is no evidence of a difference 
in variance. Consequently, we can use the ‘pooled’ t-test results rather than 
the ‘Satterthwaite’, which is used in situations when the group variances are 
considered to be unequal; the test is described in Everitt (2011).

Examining the results in Table  3.6, we find that the means of the three 
groups are

Group 1: 316.6

Group 2: 256.4

Group 3: 278.0

For each pair of groups, we find the 95% confidence intervals to be

Groups 1–2: [10.0,110.3]

Groups 1–3: [–25.5,102.7]

Groups 2–3: [–65.3,22.2]
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TABLE 3.7

Independent Samples t-Tests for Red Folate Data

group N Mean Std Dev Std Err Minimum Maximum
1 8 316.6 58.7171 20.7596 243.0 392.0
2 9 256.4 37.1218 12.3739 206.0 309.0
Diff (1 – 2) 60.1806 48.4136 23.5248

group Method Mean 95% CL Mean Std Dev 95% CL Std Dev
1 316.6 267.5 365.7 58.7171 38.8222 119.5
2 256.4 227.9 285.0 37.1218 25.0742 71.1169
Diff (1 – 2) Pooled 60.1806 10.0387 110.3 48.4136 35.7633 74.9292
Diff (1 – 2) Satterthwaite 60.1806 7.3105 113.1

Method Variances DF t Value Pr > |t|
Pooled Equal 15 2.56 0.0218
Satterthwaite Unequal 11.579 2.49 0.0291

Equality of Variances

Method Num DF Den DF F Value Pr > F
Folded F 7 8 2.50 0.2223

group N Mean Std Dev Std Err Minimum Maximum
1 8 316.6 58.7171 20.7596 243.0 392.0
3 5 278.0 33.7565 15.0964 241.0 328.0
Diff (1 – 2) 38.6250 51.0720 29.1155

group Method Mean 95% CL Mean Std Dev 95% CL Std Dev
1 316.6 267.5 365.7 58.7171 38.8222 119.5
3 278.0 236.1 319.9 33.7565 20.2246 97.0011
Diff (1 – 2) Pooled 38.6250 –25.4579 102.7 51.0720 36.1792 86.7141
Diff (1 – 2) Satterthwaite 38.6250 –17.8799 95.1299

Method Variances DF t Value Pr > |t|
Pooled Equal 11 1.33 0.2115
Satterthwaite Unequal 10.985 1.50 0.1606
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There is evidence that group 1 differs in average folate level from group 3, 
but no evidence for any other group difference.

As our second example, we will look at some data described in Williams 
et al. (1989) and also given in Altman (1991). The data are given in Table 3.8 
and arise from a trial in which patients receiving chemotherapy as 
outpatients were randomised to receive either an active antiemetic treatment 
or placebo and asked to assess their nausea on a 100 mm linear analogue 
 self-assessment scale on which higher values indicated more severe nausea.

The SAS code for both applying the two-independent samples t-test and 
producing some informative graphics of the data is as follows:

data nausea;
 do treatment='A', 'B';
 input nausea @;

TABLE 3.7 (Continued)

Independent Samples t-Tests for Red Folate Data

Equality of Variances

Method Num DF Den DF F Value Pr > F
Folded F 7 4 3.03 0.3014

Group N Mean Std Dev Std Err Minimum Maximum
2 9 256.4 37.1218 12.3739 206.0 309.0
3 5 278.0 33.7565 15.0964 241.0 328.0
Diff (1 – 2) –21.5556 36.0350 20.0993

Group Method Mean 95% CL Mean Std Dev 95% CL Std Dev
2 256.4 227.9 285.0 37.1218 25.0742 71.1169
3 278.0 236.1 319.9 33.7565 20.2246 97.0011
Diff (1 – 2) Pooled –21.5556 –65.3483 22.2371 36.0350 25.8402 59.4842
Diff (1 – 2) Satterthwaite –21.5556 –65.6223 22.5112

Method Variances DF t Value Pr > |t|
Pooled Equal 12 –1.07 0.3046
Satterthwaite Unequal 9.1216 –1.10 0.2977

Equality of Variances

Method Num DF Den DF F Value Pr > F
Folded F 8 4 1.21 0.9126



100 Applied Medical Statistics Using SAS

 output;
 end;
datalines;
0 0
0 10
0 12
. . .
30 82
52 86
76 95
;

The data step is similar to the previous example, but here list input can 
be used as the groups have equal numbers. This example also shows that 
iterative do loops can have character values, but they need to be in quotes 
and separated by commas. The graphics in Figure 3.2 are produced from the 
default ODS graphics for proc ttest:

TABLE 3.8

Self-Assessments of Nausea for Patients Receiving 

Chemotherapy Randomised to Active and Placebo Groups

Treatment Group

Active (n = 20) Placebo (n = 20)

0 0

0 10

0 12

0 15

0 15

2 30

7 35

8 38

10 42

13 45

15 50

18 50

20 60

20 64

21 68

22 71

25 74

30 82

52 86

76 95

Source: Williams, C. J., Davies, C., Ravel, M., Middleton, J., Luken, J., 

and Stone, B. 1989. British Medical Journal, 298:430–431.
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ods graphics on;
proc ttest data=nausea;
 class treatment;
 var nausea;
run;

The results of the t-test are shown in Table 3.9, but, before looking at these, 
we need to look at the graphical material given in Figure 3.2. First in this fig-
ure are the histograms of the self-assessment scores in each treatment group 
enhanced by a fitted normal distribution and by a nonparametric estimate of 
the density function know as a kernel estimator (for details see, for example, 
Silverman 1986). In both groups, the plots give some evidence that the distri-
butions are not normal; in the treatment group, there is considerable skew-
ness and, in the placebo group, the appropriate distribution appears to be 
uniform rather than normal. The box plots given below the histograms also 
show the skewness of the observations in the active treatment group and the 
presence of an outlier in this group. The box plots are followed by normal 
probability plots of the data in each of the treatment groups. The deviation 
from linearity in the plot of the active treatment scores is apparent.

Looking now at the results from applying Student’s two-independent sam-
ples t-test, we see that there is strong evidence of a difference in the mean 
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FIGURE 3.2
Proc ttest summary panel for nausea data.
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self-assessment score for the active and placebo groups, with a 95% confi-
dence interval for the mean difference being [–45.4,–14.9]. It is clear that the 
antiemetic given reduces nausea, and this claim is probably valid even given 
the departures from the assumption of normality of distributions of self-
assessment scores indicated in Figure 3.2.

If we were concerned that the t-test is not appropriate for these data, we 
could apply the distribution-free equivalent of the two-independent samples 
t-test—namely, the Wilcoxon Mann–Whitney rank sum test, which is based 
on the joint ranking of the observations in the two groups (for details, see 
Altman 1991). Although it is not really necessary for this example as the 
evidence from what might be seen as a flawed t-test is so strong, we will 
demonstrate how to apply the distribution-free test. To do this, we use the 
npar1way procedure with the wilcoxon option:

proc npar1way data=nausea wilcoxon;
  class treatment;
  var nausea;
run;

TABLE 3.9

Results from Two-Independent Sample t-Tests on the Nausea Data

Variable: nausea

Treatment N Mean Std Dev Std Err Minimum Maximum
A 20 16.9500 19.0829 4.2671 0 76.0000
B 20 47.1000 27.7828 6.2124 0 95.0000

–30.1500 23.8332 7.5367

Treatment Method Mean 95% CL Mean
Std 
Dev 95% CL Std Dev

A 16.9500 8.0190 25.8810 19.0829 14.5123 27.8719
B 47.1000 34.0972 60.1028 27.7828 21.1286 40.5788

Pooled 23.8332 19.4776 30.7157
Satterthwaite

Method Variances DF t Value Pr > |t|
Pooled Equal 38 –4.00 0.0003
Satterthwaite Unequal 33.664 –4.00 0.0003

Equality of Variances

Method Num DF Den DF F Value Pr > F
Folded F 19 19 2.12 0.1101
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The results shown in Table 3.10 confirm the results from the t-test described 
previously.

As a final example in this subsection, we will look at some data from a ran-
domised controlled trial carried out on insulin-dependent diabetic patients 
with neuropathy (Hommel et al. 1986). The data in Table 3.11 show the sys-
tolic blood pressures of 16 patients before and after 1 week’s treatment with 
captopril or placebo.

For the formal analysis, we shall begin by looking at the before and after 
values of blood pressure in the captopril group. Here, of course, we cannot 
use the independent samples t-test because the before and after values are 
taken on the same nine patients and thus are correlated rather than inde-
pendent; we must use a paired t-test (see Altman 1996). This test assumes that 
the differences between the before and after blood pressures have a normal 
distribution; here there are very few (too few) observations on which to judge 
normality or otherwise, so we will simply proceed with using the paired 
t-test without trying to check assumptions.

TABLE 3.10

Results from Applying Wilcoxon Test to the Nausea Data in Table 3.8

treatment N
Sum of 
Scores

Expected
under H0

Std Dev
under H0

Mean 
Score

A 20 288.50 410.0 36.893819 14.4250
B 20 531.50 410.0 36.893819 26.5750

Average scores were used for ties.

Wilcoxon Two-Sample Test
Statistic 288.5000
Normal approximation
Z –3.2797
One-sided Pr < Z 0.0005
Two-sided Pr > |Z| 0.0010
t Approximation
One-sided Pr < Z 0.0011
Two-sided Pr > |Z| 0.0022

Z includes a continuity correction of 0.5.

Kruskal–Wallis Test
Chi-Square 10.8454
DF 1
Pr > Chi-Square 0.0010
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We begin with a data step that is similar to the one for the preceding 
folates data. The problem of different numbers of observations in each 
group is solved this time by adding missing values and using list input—but 
only outputting the observations with nonmissing ids. This data step also 
illustrates the use of an iterative do loop with character values.

data captopril;
 do treatment='Captopril', 'Placebo';
 input id basebp week1bp @;
 if id~=. then output;
 end;
datalines;
1 147 137 1 133 139
2 129 120 2 129 134
3 158 141 3 152 136
4 164 137 4 161 151
5 134 140 5 154 147
6 155 144 6 141 137
7 151 134 7 156 149
8 141 123 . . .
9 153 142 . . .
;

Now we can apply the paired t-test separately to the data in both groups, again 
using proc ttest. We could use two proc steps each with a where statement 
to select one of the groups, but instead we use a by statement. This requires that 
the data set first be sorted in order of by variable. The syntax for a paired t-test 
is largely self-explanatory, but note that the pair of variables needs to be joined 
with an asterisk. Several pairs of variables can be listed on the same statement.

TABLE 3.11

Blood Pressure Results from Trial Involving Dependent 

Diabetic Patients with Neuropathy

Captopril Placebo

Baseline After 1 week Baseline After 1 week

1 147 137 1 133 139

2 129 120 2 129 134

3 158 141 3 152 136

4 164 137 4 161 151

5 134 140 5 154 147

6 155 144 6 141 137

7 151 134 7 156 149

8 141 123

9 153 142

Source: Hommel, E., Parving, H., Mathiesen, E., Edsberg, B., Nielsen, 

M. D., and Giese, F. 1986. British Medical Journal, 293:467–470.
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proc sort data=captopril;
 by treatment;
run;
proc ttest data=captopril;
 paired basebp*week1bp;
 by treatment;
run;

The results are shown in Table 3.12. For the group treated with captopril, 
the paired t-test is highly significant, and the 95% confidence interval for 
the difference between baseline and week 1 means for blood pressure is 
[5.8,19.6]. In the placebo group, the paired t-test is not significant and the 95% 
CI for the difference, baseline to week 1, is [–2.6,12.0].

But before we use the results of the two separate paired t-tests to jump to 
the conclusion that captopril is more effective than placebo at  reducing blood 
pressure, we should stop and think. If we do, we should quickly come to 
the conclusion that the two paired t-tests do not tell us all we wish to know 
about what is happening in this trial. The reason is that they do not provide 

TABLE 3.12

Paired t-Test for Captopril Data

N Mean Std Dev Std Err Minimum Maximum
9 12.6667 8.9861 2.9954 –6.0000 27.0000

Mean 95% CL Mean Std Dev 95% CL Std Dev
12.6667 5.7593 19.5740 8.9861 6.0697 17.2153

DF t Value Pr > |t|
8 4.23 0.0029

N Mean Std Dev Std Err Minimum Maximum
7 4.7143 7.9102 2.9898 –6.0000 16.0000

Mean 95% CL Mean Std Dev 95% CL Std Dev
4.7143 –2.6014 12.0300 7.9102 5.0973 17.4188

DF t Value Pr > |t|
6 1.58 0.1659
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an answer to whether the change in blood pressure over 1 week is the same 
in both treatment groups; the answers given by the separate tests—change of 
BP significant in one group and nonsignificant in the other—do not answer 
this question. To address the question of most interest about these data prop-
erly, we can apply a two-sample t-test to the differences in blood pressures in 
each group using the following SAS code:

data captopril;
  set captopril;
  bpdiff=basebp-week1bp;
run;

proc ttest data=captopril;
  class treatment;
  var bpdiff;
run;

The results are given in Table 3.13. The two-sample test is not significant at 
the 5% level and the 95% CI for the difference in the baseline to week 1 dif-
ferences in blood pressure is [–1.3,17.20]. The trial produces no evidence that 

TABLE 3.13

Results of Two Independent Sample t-Tests Applied to BP Differences, Baseline 

to Week, in the Two Treatment Groups in the Captopril Data

Variable: bpdiff

treatment N Mean Std Dev Std Err Minimum Maximum
Captopril 9 12.6667 8.9861 2.9954 –6.0000 27.0000
Placebo 7 4.7143 7.9102 2.9898 –6.0000 16.0000
Diff (1 – 2) 7.9524 8.5416 4.3046

treatment Method Mean 95% CL Mean Std Dev 95% CL Std Dev
Captopril 12.6667 5.7593 19.5740 8.9861 6.0697 17.2153
Placebo 4.7143 –2.6014 12.0300 7.9102 5.0973 17.4188
Diff (1 – 2) Pooled 7.9524 –1.2800 17.1848 8.5416 6.2535 13.4710
Diff (1 – 2) Satterthwaite 7.9524 –1.1420 17.0467

Method Variances DF t Value Pr > |t|
Pooled Equal 14 1.85 0.0859
Satterthwaite Unequal 13.722 1.88 0.0816

Equality of Variances

Method Num DF Den DF F Value Pr > F
Folded F 8 6 1.29 0.7773
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the change in mean BP from baseline to 1 week differs for captopril and 
placebo. Of course, the number of patients in the trial is very small, so the 
tests performed are of rather low power.

Pocock et al. (2002) point out that clinical trial investigators often record a 
great deal of baseline data on each patient at randomisation. Such data can 
include, for example, details of previous disease events, current medication, 
age, sex, marital status, education, etc. In addition, it is very common to have 
one or more measurements of the main outcome variable(s) made before 
treatment begins, as in the example just discussed. How such baseline data 
can be incorporated into the analysis will be taken up in Chapter 6, where we 
shall also return to the captopril trial data.

3.5 Summary

No satisfactory alternative to the randomised controlled trial for evaluating 
competing therapies exists. ‘All things being equal, randomised controlled 
trials are more able to attribute effects to causes’ (Barton 2000) should be the 
motto etched on the hearts of all with treatments to compare.

But as Archie Cochrane once said, ‘The randomised controlled trial is a very 
beautiful technique of wide applicability, but as with everything else there are 
snags’ (Cochrane 1984). Clinical trials are certainly not perfect; for example, 
where they focus on narrow patient groups or exclude important segments 
of the population, there may be difficulties in generalising their results. Thus, 
although RCTs are often labelled as the ‘gold standard’ for research, Simon 
(2001) may be right that ‘silver standard’ might be more appropriate.

Nevertheless, clinical trials remain the essential methodology in the evalu-
ation of the effectiveness of treatments and are a major contributor to improve-
ments in health and well-being. This being so, the ethical issues associated 
with such studies (see Everitt and Wessely 2008) should not be allowed to 
cloud the judgement of potential participants in such trials. Clinicians and 
others need to work hard to convince an increasingly well-informed public 
that RCTs are necessary and valuable and that discarding this methodology 
will likely lead to confusion regarding the value of treatments and to the 
distinct possibility of worthless and even dangerous treatments becoming 
prevalent.

The discussion of clinical trials has of necessity been relatively brief, con-
centrating as it has on the use of SAS for such studies. For a full discussion of 
issues not covered here—for example, blinding, intention to treat, and sub-
group analyses—see Everitt and Wessely (2008).





109

4
Epidemiology

4.1 Introduction

Epidemiology is the study of disease (in the widest sense and including 
both noncommunicable and infectious diseases) and its risk factors. Epidemio-
logical studies are characterised by observation rather than intervention, which 
is the quintessential component of clinical trials. An early example of an epide-
miological study is that of John Snow in 1854, who investigated deaths due to 
cholera that occurred in the same area of London (see Chapter 2.) More recently, 
epidemiologists have been involved with investigations into the proximity of 
nuclear power stations to the homes of people diagnosed with leukaemia, the 
question of the existence or otherwise of the so-called ‘Gulf War Syndrome’ 
amongst soldiers who fought in the Gulf War in 1990 and 1991, and the out-
break of severe acute respiratory syndrome (SARS) in 2002 and 2003.

Epidemiological studies are rarely as convincing as clinical trials in attrib-
uting a causal mechanism. In a well designed and well performed clinical trial, 
a significant treatment effect can, with some confidence, be said to be caused 
by the different treatments patients received. With an epidemiological study, 
attributing causality is far more problematic and would normally be claimed 
only after a range of studies carried out in a variety of settings had all found, 
say, the same relationship between some risk factor of interest and some par-
ticular disease. Investigators tempted to ascribe causality on the basis of a 
single, perhaps relatively small epidemiological study should think again.

The three main types of epidemiological study are described in the follow-
ing section.

4.2 Types of Epidemiological Study

The three types of epidemiological study are

Cross sectional (surveys)

Case control

Cohort
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The diagram in Figure  4.1 shows a schematic comparison of these three 
types, each of which we will now describe in detail.

4.2.1 Surveys

Survey methods are based on the simple discovery that ‘asking questions 
is a remarkably efficient way to obtain information from and about people’ 
(Schuman and Kalton 1985, p. 635). Surveys involve an exchange of infor-
mation between researcher and respondent; the researcher identifies topics 
of interest, and the respondent provides knowledge or opinion about these 
topics. Depending upon the length and content of the survey, as well as the 
facilities available, this exchange can be accomplished via written question-
naires, in-person interviews, or telephone conversations; in the twenty-first 
century, surveys via the Internet are increasingly common.

Surveys conducted by clinicians are usually designed to elicit informa-
tion about the respondents’ disease states and levels of risk factors for 
these diseases. But they may also ask about a person’s lifestyle—even the 
most intimate parts of that lifestyle. One of the most famous surveys of 
the twentieth century, for example, was that conducted by Alfred Charles 
Kinsey, a student of human sexual behaviour in the 1940s and 1950s. The 
first Kinsey report, Sexual Behaviour in the Human Male, appeared in 1948 
(see Kinsey, Wardell, and Martin 1948), and the second, Sexual Behaviour 
in the Human Female, in 1953 (see Kinsey et al. 1953). It is no exaggeration 
to say that both reports caused a sensation, and the first quickly became a 
bestseller.

An example of cross-sectional data from a survey is given in Table 4.1. The 
data come from Senie et al. (1981), who report the results of asking women 
about how frequently they carried out breast self-examination.

Surveys are often a flexible and powerful approach to gathering infor-
mation of interest, but careful consideration needs to be given to several 
aspects of the survey if the information is to be accurate, particularly when 
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FIGURE 4.1
Schematic comparison of the three major study designs used in epidemiology. (Taken from 

Woodward, M. 2011. In Encyclopaedic Companion to Medical Statistics, 2nd ed., B. S. Everitt and 

C. Palmer, Eds., Chichester, England: Wiley. With permission.)
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dealing with a sensitive topic. Having a representative sample, having a large 
enough sample, minimising nonresponse, and ensuring that the questions 
asked elicit accurate responses are just a few of the issues that the researcher 
thinking of carrying out a survey needs to consider. Readers are referred to 
Sudman and Bradburn (1982) and Tourangeau, Rips, and Rasinski (2000) for 
a detailed account of survey methodology.

Surveys give a ‘snapshot’ and have limited use in investigating causality; 
for example, in a survey of where a particular chronic disease is found to be 
less common among those who smoke, the obvious conclusion that smoking 
tends to protect people against the disease is not the only explanation of the 
finding. An alternative is that smokers, having developed the disease, give 
up the habit, thus leading to a predominance of the disease among those not 
smoking at the time of the survey. (This example and account are taken from 
Woodward 2011.)

4.2.2 Case-Control Studies

In case-control studies, a group of people with the disease of interest (the 
cases) is compared with a group of people without the disease (the controls) 
in respect of past exposure to a risk factor for the disease. The primary aim 
of a case-control study is to explore the aetiology of a disease by searching 
for difference in the prior exposure of the cases and controls to a range of 
suspect agents or factors. A classic case-control study is that described in 
Doll and Hill (1950), who recruited 649 male lung cancer cases and 649 male 
controls during an 18-month period in London. They were able to show a 
clear increase in risk with daily cigarette consumption.

An example of data collected from a case-control study is shown in 
Table 4.2. The data come from Adelusi (1977), who describes a case-control 
study for investigating whether age at first sexual intercourse (before and 
after the age of 15) is associated with the subsequent development of cervical 
cancer. The cases were married Nigerian women with a histological diagno-
sis of invasive cancer of the cervix. The control group consisted of healthy 
married women of child-bearing age. A questionnaire was administered to 
47 cases and 173 controls; the subjects were asked about their sexual habits, 
in particular about their age at first intercourse.

TABLE 4.1

Data on Breast Self-Examination

Age Monthly Occasionally/Never Total

Younger than 45  91 141 232

45 or older 259 705 964

Total 350 846 1196

Source: Senie, R. T., Rosen, P. P., Lesser, M. L., and Kinne, D. W. 1981. American Journal 
of Public Health, 71:583–590. Please see back of this book for the complete table.
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The prime advantages of the case-control study are that it is relatively 
simple to carry out and consequently is also relatively quick and cheap. 
The case-control study is also valuable when the disease of interest is rare. 
However, there are a number of disadvantages with this type of study. 
Sackett (1979) identified as many as 35 possible biases that can occur with 
case-control studies, including selection of cases and controls, recall bias, 
and inaccuracy of retrospective data.

To overcome some of the problems with selecting cases and controls, 
matched case-control studies are increasingly popular. One or more controls 
are chosen for each case and matched as closely as possible to the case for 
various factors that are not of intrinsic interest to the study; common match-
ing factors are age and sex. One-to-one matching gives rise to a matched-
pairs study. To increase the statistical power of the study, more than one 
control can be chosen for each case, although Woodward (2011) suggests that 
studying more than four controls per case is rarely worthwhile as the effort 
spent in collecting the data on the extra controls tends to outweigh the mini-
mal increase in power.

An example of data from a matched case-control study is shown in 
Table  4.3. Here, the cases were 175 women of reproductive age (15–44) 
discharged alive from 43 hospitals in five cities after initial attacks of idio-
pathic thromboplebities, pulmonary embolism, or cerebral thrombosis or 
embolism. The controls were matched with their cases for hospital, resi-
dence, time of hospitalisation, race, age, marital status, and a number of 
other variables. The history of oral contraceptive use by the women was 
then determined. (Notice that it is counts of pairs that is important here, 
as we shall see when we come to the analysis of epidemiological data in 
Section 4.4.). For more details on case-control studies, see Schlesselman 
(1982) and Wacholder and Hartge (2005).

4.2.3 Cohort Studies

The cohort (or prospective) study is the design of choice for an epidemiologi-
cal investigation. A study population is identified before the occurrence of 
disease and then followed in time until the first occurrence of the disease 
or the end of the study, whichever comes first. (In what follows, we shall 
ignore the complicating factor that at the end of the study some subjects will 

TABLE 4.2

Data from a Case-Control Study of Sexual Habits Amongst Nigerian Women

Age at First Intercourse Cases Controls Total

Younger than 15 36  78 114

Older than 15 11  95 106

Total 47 173 220

Source: Adelusi, B. 1977. International Journal of Gynaecology and Obstetrics, 15:5–11.



113Epidemiology

not have contracted the disease but will do so later; their time to the event 
of interest—that is, getting the disease—is censored. We shall deal with the 
issue in Chapter 16.)

Typically, subjects are classified as exposed or not exposed to one or more 
putative risk factors at the beginning of the study—for example, smoker 
or nonsmoker—so that prevalence of disease amongst exposed and non-
exposed can be compared at the end of the study. After their case-control 
study mentioned in the previous subsection suggested an association 
between smoking and lung cancer, Doll and Hill undertook a large cohort 
study beginning with a simple questionnaire about smoking habits being 
sent to all doctors on a medical register and following up members of the 
cohort until their deaths. The study is described in Doll and Hill (1954, 1956) 
and the results provided compelling evidence that smoking was a cause of 
lung cancer. There were some however who remained unconvinced; accord-
ing to McMichael (2010) Fisher, used as he was to experimental studies of 
randomly assigned agricultural plots, argued that epidemiological stud-
ies without randomisation were not ‘scientific’. To underscore the point, he 
hypothesised the existence of an underlying gene that caused both smok-
ing behaviour and a disposition to lung cancer. He wrote abusive letters to 
Doll and suggested publicly that he be stripped of his Fellow of the Royal 
Society for having perpetrated poor science. (Fisher partly recanted in the 
1960s.)

Some hypothetical data from a cohort study that mirrors that of Doll and 
Hill are shown in Table  4.4. These data arise from a cohort of 1,000 peo-
ple (400 smokers and 600 nonsmokers) followed up for 20 years; 50 subjects 
developed lung cancer: 45 smokers and five nonsmokers.

The cohort study represents an improvement over the case-control 
study in that it is less suspect to a number of biases (see Prentice 2005), 
but there remain some difficulties, notably that they can take a very long 
time and thus may be very expensive. And for studying rare events, it 
would be necessary to follow a very large number of subjects to get an 
adequate number contracting the disease to make a meaningful compari-
son possible.

For a detailed account of cohort studies, see Breslow and Day (1987).

TABLE 4.3

Data from a Matched Case-Control Study after Oral 

Contraceptive Use in 175 Pairs of Married Women

Oral Contraceptive Use Number of Pairs

Used by both members of the pair 10

Used by the case only 57

Used by the control only 13

Used by neither the case nor the control 95
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4.3 Relative Risk and Odds Ratios

The data from many epidemiological studies can be arranged in a 2 × 2 
table, three examples of which were given in the previous section. We can 
imagine the population data arranged in a similar fashion as that shown in 
Table 4.5, where the terms represent the probabilities of the various events 
indexed by the rows and columns of the table. If the probabilities were 
known, then probability of having the disease for those individuals having 
the risk factor present would be p1/(p1 + p3) and for those individuals not 
having the risk factor present would be p2/(p2 + p4). The ratio of these two 
quantities,

 
p p p
p p p

1 2 4

2 1 3

/

/

+( )
+( )  (4.1)

is the population value of what is known as the relative risk. But, of course, 
we do not know the probabilities in Table 4.5, so we have to turn to sample 
data to estimate them.

The frequencies that result from sampling n values from the population 
can also be written in a 2 × 2 table, as shown in Table 4.6. Let’s now look 
at the data in this table to see the different ways in which they arise for 
a case-control and a cohort study. In the former, the investigation begins 
with a + c cases and a group of b + d controls. Then a count of the numbers 
exposed and not exposed to the risk factor is made and the 2 × 2 table 
completed.

With a cohort study, the investigation begins with a + b subjects who have 
been exposed to the risk factor and c + d who have not been exposed, and 
these are followed for an appropriate time period (which, for convenience, is 
assumed to be very long so that the problem of censored observations [see 
Chapter 16] does not arise), thus enabling the table to be completed with the 
numbers in each group contracting the disease.

In a cohort study, the relative risk and the two probabilities that make up 
the relative risk can be estimated directly from the proportion of individuals 

TABLE 4.4

Data from a Cohort Study Investigating the Possible Link 

between Smoking and Lung Cancer

Group Lung Cancer No Lung Cancer Total

Smokers 45 355 400

Nonsmokers  5 595 600

Total 50 950 1000
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in the sample who develop the disease in the follow-up period in the risk-
factor-present and risk-factor-absent groups. Thus, in a cohort study, the 
estimate for the probability of having the disease for those individuals 
having the risk factor is simply a/(a + b) and, for those individuals not hav-
ing the risk factor, it is c/(c + d), leading to an estimate for the relative risk of 
a(c + d)/c(a + b).

Now consider when the data in Table 4.6 arise from a case-control study. 
Here the proportion of cases in the study will not necessarily be compa-
rable to the proportion of diseased persons in the population, with the con-
sequence that the data cannot be used to estimate the relative risk directly, 
as is done in a cohort study. In this case, what can legitimately be estimated 
is the probability of the risk factor being present amongst people with the 
disease and similarly for the people without the disease. Therefore, for this 
type of study, we can estimate, for example, the conditional probability, Pr 
(having the risk factor | having the disease) but not the conditional probabil-
ity of most interest, Pr (having the disease | having the risk factor), which 
can only be estimated directly from a cohort study. But when the disease is 
relatively rare so that the probability of having the disease is small, then in 
Equation (4.1) p1 will be small compared to p3 and p2 will be small compared 

to p4 and the relative risk becomes, approximately, =p p
p p

p p
p p

/

/

1 2

3 4

1 4

2 3

.

This is known as the odds ratio (OR): the ratio of the probabilities of having 
and not having the disease and having the risk factor present, divided by 
the ratio of the corresponding probabilities when not having the risk factor 
present. This approximation to the relative risk is often simply labelled rela-
tive risk and it can be estimated from both case-control and cohort studies as 
long as in the former the cases are a random, unbiased sample of all cases of 

TABLE 4.5

Population Epidemiological Data

Risk Factor Disease Present Disease Absent

Present p1 p3 p1 + p3

Absent p2 p4 p1 + p4

p1 + p2 p3 + p4 1

TABLE 4.6

Sample Epidemiological Data

Risk Factor Disease Present Disease Absent

Present a b a + b
Absent c d c + d

a + c b + d



116 Applied Medical Statistics Using SAS

the disease and the controls are a similar sample from all people without the 
disease. In both cases, the estimate of the population odds ratio (generally 
represented by ψ) is given by

 ψ = ad
bc

ˆ  (4.2)

We shall return to consider more about the estimation of the relative 
risk and the odds ratio and about the analysis of epidemiological data in 
Section 4.5, but first we need to look at how to determine the sample sizes 
needed in observational studies.

4.4 Sample Size Estimation for Epidemiologic Studies

Consideration of sample size is as important for observational studies as it 
is for randomised clinical trials; the investigator needs to know whether his 
or her study will be large enough to answer the research question with suf-
ficient statistical power. Therefore, in this section we will describe how to 
use SAS to estimate sample sizes—first for case-control studies and then for 
cohort studies.

4.4.1 Sample Size Estimation for Case-Control Studies

Using the nomenclature introduced in the previous section, the probability 
of having the risk factor present for the cases is p1/(p1 + p2), which we shall 
denote as P1; the probability of having the risk factor present for the controls 
is p3/(p3 + p4), which we shall denote by P0. For an unmatched case-control 
study with one control per case, the sample size, n, required in each group 
(we are assuming equally sized groups and two-sided tests) to achieve a 
power, 1 – β, when testing with significance level α, is given by

 =
+ − + −

−
α βn

z PQ z P P P P
P P

( (2 ) ( (1 ) (1 ))

( )

/2 1 1 0 0
2

1 0
2

 (4.3)

where

= + = −P P P P( )/ 2 and Q (1 )1 0

This formula is obtained from a normal approximation to the test statistic 
for comparing two proportions—that is, the familiar chi-squared statistic 
with a single degree of freedom (examples of using the test will be given in 
the next section).
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For a study with k controls per case, the value of n is found from

 
( )( )
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where

 ′ = + + ′ = − ′ = − = −P P kP k P Q P Q P( )/(1 ), Q (1 ), 1 and 11 0 0 0 1 1

In Equations (4.3) and (4.4),

Zα|2 is the value of the normal distribution that cuts off an upper tail 
probability of α|2. Thus, for α = 0.05, Zα|2 = 1.96.

Zβ is the value of the normal distribution that cuts off an upper tail 
probability of β. Thus, for a power of 0.90, β = 0.10 and Zβ = 1.28.

In practice, the exposure rate among controls, P0, is usually obtained from 
previous studies and estimated from the general population. The odds ratio, 
which, as we have seen in the previous section, in a case-control study, acts 
as an approximation to the relative risk, is then specified under the alterna-
tive hypothesis in the calculation of sample size. (The corresponding null 
hypothesis is that the odds ratio is one implying that the risk factor and 
disease state are not related; see the next section.) When using the odds 
ratio in sample size estimation, the exposure rate among cases can be found 
as follows:

 
[ ]=

−
P

P
P

OR

1+ (OR 1)
1

0

0

 (4.5)

We will illustrate the sample size calculations using an example sug-
gested in Liu (2005) involving a case-control study of a potential association 
between congenital heart defects and oral contraceptives used before the 
time of conception. We have a prior estimate of the exposure rate amongst 
controls of 30% and will apply a two-sided test with α = 0.05 and β = 0.10, 
so that the power will be 0.90 and we will take one control per case. We can 
now calculate the required sample size in order to detect an OR = 2 using the 
following SAS code:

proc power;
 twosamplefreq

 oddsratio = 2
 refproportion = 0.3
 power = 0.9
 npergroup = .
 ;

run;
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This gives the required sample size in each group to be 188.
Now let us see what happens if we repeat the calculation using five cases 

per control. To do this, we specify that the total number is to be calculated 
with the ntotal option and use the groupweights option to specify the 
ratio of controls to cases:

proc power;
 twosamplefreq

 oddsratio = 2
 refproportion = 0.3
 power = 0.9
 groupweights=(5 1)
 ntotal = .
 ;

run;

This leads to the result that 111 cases and 555 controls are needed.

4.4.2 Sample Size Estimation for Cohort Studies

The sample size formula here is the same as that given in Equation (4.3) but 
with P1 now being the proportion of subjects who develop the disease in the 
risk-factor-present group and P0 the corresponding probability for the risk-
free group. As an example, we will consider a cohort study investigating a 
possible link between smoking cigarettes and suffering from lung cancer. We 
wish to detect a relative risk of 1.5 when the probability of the disease being 
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FIGURE 4.2
Power curve for fixed-size groups of 600 and 400.
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present in the risk-factor-absent group is 0.005 and with α = 0.05 and β = 0.10. 
The necessary sample size can be found from the following SAS code:

proc power;
 twosamplefreq

 relativerisk = 1.5
 refproportion = 0.005
 power = 0.9
 npergroup = .
 ;

run;

This gives the value 20,882! This demonstrates that, indeed, very large sam-
ples are needed to detect differences when the event of interest is rare.

Now let us look at how the power changes in this example as relative risk 
increases for fixed-size groups of 600 and 400. We can produce a power curve 
with the following SAS code:

proc power plotonly;
 twosamplefreq

 relativerisk = 2 to 10 by .5
 refproportion = 0.005
 power = .
 groupns =(600 400)
 ;
 plot x =effect;

run; 

The resulting plot is shown in Figure 4.2.

4.5 Simple Analyses for Data from Observational Studies

Having considered the estimation of sample size, we can return to how we 
formally assess the 2 × 2 tables of data that arise from many epidemiological 
studies and how we can estimate and find confidence intervals for the two 
quantities of interest met in Section 4.3—namely, the relative risk and the 
odds ratio. More sophisticated analyses of such data will be the subject of 
later chapters, particularly Chapter 10 on logistic regression. We begin with 
the significance test that is used on 2 × 2 tables of counts from whatever type 
of study from which they arise.

4.5.1 Chi-Squared Test for Association

To test for association between the row and column classifications for 2 × 2 
tables of frequencies, we apply the familiar chi-squared test given by
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 X
n ad bc

a b c d a c b d
2

2

= −
+ + + +

( )

( )( )( )( )
 (4.6)

Under the null hypothesis that the row and column variables are not 
related, the test statistic, X2, has a chi-squared distribution with a single 
degree of freedom.

4.5.2  Finding a Confidence Interval for the 
Relative Risk and the Odds Ratio

The chi-squared test tells us whether there is any evidence between the row 
and column variables. However, in most cases, we would like to know a little 
more and this ‘little more’ is, in general, estimates and confidence intervals 
for the relative risks or, more commonly, for the odds ratio, reflecting that 
the odds ratio is more important when we come to more sophisticated of 
epidemiological data using logistic regression (see Chapter 10). But here we 
begin with the population relative risk, r, which we can estimate from the 
four frequencies in a 2 × 2 table as

 
+
+

r
a a b
c c d

ˆ=
/( )

/( )
 (4.7)

The estimate of the variance of log( r̂ ) is given by

 = −
+

+ −
+

r
a a b c c d

vâr(log( ))
1 1 1 1

 (4.8)

This leads to a 95% confidence interval for the logarithm of the relative risk of

 ±r rlog(ˆ) 1.96 var(log(ˆ))  (4.9)

The required confidence interval for the population relative risk can now be 
found by exponentiating the upper and lower limits in (4.9).

Moving on to the odds ratio, as we have already seen, this can be estimated 
as ψ = ad bcˆ / . A confidence interval for the odds ratio is again most easily 
found by initially considering its log value because the variance of log(ψ̂) can 
be estimated very simply from

 ψ = + + +
a b c d

vâr(ln ˆ )
1 1 1 1

 (4.10)

This leads to the following 95% confidence interval for ln(ψ):

 ψ ± ψln( ˆ ) 1.96 x vâr[ln( ˆ )]  (4.11)
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The required confidence interval for ψ can now be found by exponentiating 
the upper and lower limits in (4.11).

4.5.3 Applying SAS to Analyse Examples of Epidemiological Data

In order to apply the chi-squared test to the data shown in Tables 4.1, 4.2, and 
4.4 and to find estimates of odds ratios and relative risks, we first create a 
SAS data set from each of them as follows. We have used character variables 
to represent the rows and columns, but as these are case sensitive, care is 
needed to ensure consistency. For example 'monthly' and 'Monthly' 
would be different values for frequency:

data self_exam;
input agegroup $ frequency $ num;
datalines;
Under45 Monthly 91
Under45 Rarely 141
Over45 Monthly 259
Over45 Rarely 705
;

data ca_cervix;
input debutage $ status $ num;
datalines;
 Under15 case 36
 Under15 control 78
 Over15 case 11
 Over15 control 95
;

data ca_lung;
input group $ lung_ca $ num;
datalines;
 Smoker Yes 45
 Smoker No 355
 Nonsmoker Yes 5
 Nonsmoker No 595
;

Having created SAS data sets with the cell counts in, we can analyse them 
with proc freq:

proc freq data=self_exam order=data;
tables agegroup*frequency /chisq;
weight num;

run;

proc freq data=ca_cervix order=data;
tables Debutage*status /chisq;
weight num;

run;
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proc freq data=ca_lung order=data;
tables Group*lung_ca /chisq;
weight num;

run;

Proc freq is used both to produce contingency tables and to analyse 
them. The tables statement defines the table to be produced and speci-
fies the analysis of it. The variables that form the rows and columns are 
joined with an asterisk. These may be numeric or character variables. 
One-way frequency distributions are produced where variables are not 
joined by asterisks. Several tables may be specified on a single tables 
statement.

The options after the '/' specify the type of analysis. The chisq option 
requests chi-squared tests of independence and measures of association 
based on chi-squared. The weight statement specifies a variable that 
contains weights for each observation. The default weight is 1, so the 
weight statement is not usually needed when the data set consists of 
observations on individuals. In these examples, the data are in the form of 
a contingency table and the weight statement is used to specify the cell 
counts.

The order=data option on the proc statement specifies that the rows and 
columns are to be laid out in the order that they occur in the data. The default 
would be alphabetical order. This is for purely cosmetic purposes so that the 
tables in the output (see Table 4.7) match Tables 4.1, 4.2, and 4.4.

Looking first at the statistics for the breast self-examination data, we find 
that the chi-squared statistic is highly significant, implying that there is 
strong evidence for an association between age and breast self-examination. 
Older women are more likely to make a monthly examination of their breasts 
than are younger women. (The other tests mentioned in the table are vari-
ants of the chi-squared test, which we will not discuss here because they all 
give very similar results to the chi-squared test.)

Looking next at the statistics for the data on the sexual habits of Nigerian 
women, we find again a very significant chi-squared value. There is a greater 
proportion of the cases—here, women with cancer of the cervix—than the 
controls, having first sexual intercourse before the age of 15 years.

Lastly, the statistics for the smoking and lung cancer data give very strong 
evidence of an association between smoking and subsequent development 
of lung cancer.

The chi-squared statistic leads to a p-value for the null hypothesis that 
there is no association between the row and column classifications in the 
2 × 2 table—that is, that the two variables forming the table are indepen-
dent or, equivalently, the population odds ratio is one. But in most studies, a 
p-value is not really of very great interest; far more interesting is an estimate 
and confidence interval for the odds ratio (and on occasions the relative risk, 
although the odds ratio is more commonly reported).
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TABLE 4.7

Analysis of Three Sets of Epidemiological Data

(a) Breast Self-Examination

Table of Agegroup by Frequency

agegroup Frequency

Frequency 
Percent
Row pct 
Col pct Monthly Rarely Total
Under 45 91 141 232

7.61 11.79 19.40
39.22 60.78
26.00 16.67

Over 45 259 705 964
21.66 58.95 80.60
26.87 73.13
74.00 83.33

Total 350 846 1196
29.26 70.74 100.00

Statistics for Table of Agegroup by Frequency

Statistic DF Value Prob
Chi-Squared 1 13.7936 0.0002
Likelihood Ratio Chi-Squared 1 13.2376 0.0003
Continuity Adj. Chi-Squared 1 13.2031 0.0003
Mantel–Haenszel Chi-Squared 1 13.7821 0.0002

 0.1074
 0.1068

Cramér’s V  0.1074

Sample size = 1196

(b) Sexual Habits Amongst Nigerian Women

Statistics for Table of Debutage by Status

Statistic DF Value Prob
Chi-Squared 1 14.6969 0.0001
Likelihood Ratio Chi-Squared 1 15.3913 <.0001
Continuity Adj. Chi-Squared 1 13.4620 0.0002
Mantel–Haenszel Chi-Squared 1 14.6301 0.0001

–0.2585
 0.2502

Cramér’s V –0.2585

(Continued)
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The relative risk and odds ratio and their confidence intervals are requested 
via the relrisk option in the tables statement. Thus, for the data on self-
examination, the tables statement would be tables agegroup*frequency 
/relrisk;. The rest of the proc step would remain as before. The relrisk 
option assumes that the groups to be compared form the rows of the table 
as they do in these examples. The relevant part of the output is shown in 
Table 4.8. For the data from the cross-sectional study concerned with breast 
self-examination, the 95% confidence interval for the odds ratio is [1.3,2.4]; 
the odds of an older women making monthly examinations of her breasts are 
between 1.3 and 2.4 times the odds for a younger woman doing so.

For the second data set on the sexual habits of Nigerian women, the cor-
responding confidence interval is [1.9,8.3]. The conclusion is that the odds of 
contracting cervical cancer in women who have first intercourse when they 
are relatively young are between about two and eight times the odds as those 
for women who have first intercourse when they are older than 15 years. 
(Note that as these data arise from a case-control study, the relative risk 
given is not an appropriate statistic to report.)

For the lung cancer and smoking data, which are the result of a cohort 

study, we can look at the relative risk; this is estimated as =45/400

5/600
13.5

with a 95% confidence interval of [5.4,33.7]. The evidence from the data is 
that the risk of somebody who smokes developing lung cancer is at least five 
times the risk for a nonsmoker and maybe nearly 34 times higher.

(It should always be remembered that although the odds ratio and relative 
risk are very important indices of the strength of an association between a 
risk factor and a disease, they say nothing about the probability that an indi-
vidual will contract that disease. This may explain why, despite their high 
relative risks of being killed in an airplane crash, airplane pilots can still 
sleep easy in their beds. They know that the absolute risk of their being the 
victim of a crash remains extremely small.)

TABLE 4.7 (Continued)

Analysis of Three Sets of Epidemiological Data

(c) Smoking And Lung Cancer

Statistics for Table of Group by Lung_ca

Statistic DF Value Prob
Chi-Squared 1 54.8246 <.0001
Likelihood Ratio Chi-Squared 1 57.8290 <.0001
Continuity Adj. Chi-Squared 1 52.6535 <.0001
Mantel–Haenszel Chi-Squared 1 54.7697 <.0001

 0.2341
 0.2280

Cramér’s V  0.2341
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4.5.4 Fisher’s Test

One of the requirements of the chi-squared test used in the preceding 
examples is that the expected values are not too small. Historically, this has 
been interpreted as requiring values greater than five for the test to be valid. 
Although there is some evidence that this recommendation is rather too con-
servative, very sparse contingency tables can be a problem for the usual chi-
squared test. For a 2 × 2 table, the usual alternative suggested is Fisher’s exact 
test. This test is based on the probability of any particular arrangement of 
the frequencies a, b, c, and d in a 2 × 2 contingency table, when the marginal 
totals are fixed and the two variables are independent; this probability, P, is 
given by

 
( ) ( ) ( )( )=
+ + + +

P
a b a c c d b d

a b c d N
! ! ! !

! ! ! ! !
 (4.12)

TABLE 4.8

Odds Ratios and Relative Risks for the Three Epidemiological Data Sets

(a) Breast Self-Examination

Statistics for Table of Agegroup by Frequency

Type of Study Value
Case-Control (Odds Ratio) 1.7568 1.3020 2.3703
Cohort (Col1 risk) 1.4599 1.2060 1.7673
Cohort (Col2 risk) 0.8310 0.7443 0.9279

(b) Sexual Habits of Nigerian Women

Statistics for Table of Debutage by Status

Type of Study Value
Case-Control (Odds Ratio) 3.9860 1.9043 8.3432
Cohort (Col1 risk) 3.0431 1.6349 5.6641
Cohort (Col2 risk) 0.7634 0.6633 0.8786

(c) Smoking and Lung Cancer

Statistics for Table of Group by Lung_ca

Type of Study Value
Case-Control (Odds Ratio) 15.0845 5.9324 38.3558
Cohort (Col1 risk) 13.5000 5.4057 33.7143
Cohort (Col2 risk)  0.8950 0.8636  0.9274
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This is known as the hypergeometric distribution (see Everitt and Skrondal 
2010). Fisher’s exact test employs this distribution to find the probability of 
the observed arrangement of frequencies and of every arrangement giving 
as much or more evidence of a departure from independence, when the mar-
ginal totals are fixed.

Fisher’s test can be illustrated on the data shown in Table 4.9 that come 
from a study comparing the health of juvenile delinquent boys with a non-
delinquent control group. They relate to the subset of the boys who failed a 
vision test and show the numbers who did and did not wear glasses. The 
question of interest is whether delinquents with poor eyesight are more or 
less likely to wear glasses than are nondelinquents with poor eyesight. (Note 
that Fisher’s test is computed by default when the chisq option is used with 
a 2 × 2 table, but the result was edited out of the output from the three previ-
ous data sets.)

data delinquency;
input specs$ delinquent$ n;

cards;
Y Y 1
Y N 5
N Y 8
N N 2
;

proc freq data=delinquency;
tables specs*delinquent / chisq;
weight n;

run;

The two-sided p-value obtained by applying Fisher’s exact test can be 
found in the SAS output (which we do not give here) to be 0.035. There is 
some evidence of a difference in spectacle wearing between juvenile delin-
quents and non-juvenile delinquents with poor eyesight. A lower proportion 
of the delinquents wear spectacles. (For interest, the chi-squared test in this 
case gives a p-value of 0.051.)

As a small digression from the main theme of this chapter, we can look 
at the application of Fisher’s test to tables larger than those 2 × 2 tables to 
which it has usually been applied when there is concern about small values 
in some cells of such tables. The last decade has seen a large amount of work 

TABLE 4.9

Spectacle Wearing and Delinquency

Spectacle 
Wearer?

Juvenile 
Delinquents Nondelinquents Total

Yes 1 5 6

No 8 2 10

Total 9 7 16
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on exact tests for contingency tables in which the counts are small (see, for 
example, Mehta and Patel 1986). To illustrate this use of Fisher’s exact test, we 
shall use the data shown in Table 4.10; these data give the distribution of the 
oral lesion site found in house-to-house surveys in three geographic regions 
of rural India. Application of Fisher’s test to the data requires the following 
SAS code:

data lesions;
length region $8.;
input site $ 1-16 n1 n2 n3;
region='Keral'; n=n1;  output;
region='Gujarat'; n=n2;  output;
region='Anhara'; n=n3;  output;
drop n1-n3;

cards;
Buccal Mucosa 8 1 8
Labial Mucosa 0 1 0
Commissure 0 1 0
Gingiva 0 1 0
Hard palate 0 1 0
Soft palate 0 1 0
Tongue 0 1 0
Floor of mouth 1 0 1
Alveolar ridge 1 0 1
;
run;

proc freq data=lesions order=data;
tables site*region/exact;
weight n;

run;

For tables larger than 2 × 2, exact tests are requested by using the exact 
option on the tables statement.

TABLE 4.10

Oral Lesions Data Set

Site of Lesion Kerala Gujarat Andhra

Buccal mucosa 8 1 8

Commisure 0 1 0

Gingiva 0 1 0

Hard palate 0 1 0

Soft palate 0 1 0

Tongue 0 1 0

Floor of mouth 1 0 1

Alveolar ridge 1 0 1



128 Applied Medical Statistics Using SAS

The resulting p-value of 0.01 taken from the SAS output indicates a strong 
association between site of lesion and geographic region. For comparison, 
the chi-squared statistic for these data takes the value 22.01, which with 
14 degrees of freedom has an associated p-value of 0.14, suggesting no 
association. Here, the contingency table is so sparse that the usual chi-
squared asymptotic distribution with 14 DF is unlikely to yield accurate 
p-values.

4.5.5 Matched Case-Control Data

When the data in a case-control study have been collected from matched 
pairs of cases and controls, the chi-squared test used previously is not valid; 
the appropriate test is now McNemar’s test for correlated proportions, which 
we shall now describe.

The frequencies in a matched case-control data set can be written as shown 
in Table 4.11. Under the hypothesis that the two populations do not differ in 
their probability of having the risk factor of interest present, the test statistic 
X2, which is based only on the discordant pairs b and c, is given by

 
( )=
−
+

X
b c
b c

2

2

 (4.13)

and has a chi-squared distribution with a single degree of freedom. For 
paired data, the odds ratio is again calculated from the discordant pair 
counts and is estimated as

 ψ = b
c

ˆ  (4.14)

An approximate confidence interval for ψ can be constructed from know-
ing that the variance of ln(ψ) can be estimated from

 var ln( ))=
1

ˆ ( ψ̂
b c
+ 1

 (4.15)

McNemar’s test can be applied to the contraceptive pill data in Table 4.3 
using the SAS code

TABLE 4.11

Frequencies in a Matched 

Case-Control Data Set

Controls

Present Absent

Cases Present a b
Absent c d
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data pill_use;
input caseused $ controlused $ num;

cards;
Y Y 10
Y N 57
N Y 13
N N 95
;
run;

proc freq data=pill_use order=data;
tables caseused*controlused / agree;
weight num;

run;

The agree option is used for the McNemar test as well as measures of 
agreement.

Here, the value of the test statistic is 27.66 and the associated p-value is 
very small. There is a statistically significant association between thrombo-
embolism and oral contraceptive use. The proportion of pairs in which only 
the case has used oral contraceptives is greater than the proportion in which 
only the control has used the pill. The estimated odds ratio is 4.38 with 95% 
CI of [2.40,8.01]. The odds of a case having used the contraceptive pill are 
between about 2.5 and 8 times the odds for a control.

4.5.6 Stratified 2 × 2 Tables

The interpretation of an estimated odds ratio is often made difficult because of 
the possibility that a confounding variable related either to the disease or to the 
risk factor has led to a spurious degree of association between the two. When a 
potential confounding variable is identified that is categorical, we can construct 
a series of 2 × 2 tables—one for each level of the confounder. The data could 
be collapsed over the categories of the confounder variable and then the chi-
squared test in Equation (4.6) applied to the resulting 2 × 2 table, but the dangers 
of such a procedure are well known and it can generate spurious associations 
as well as mask true relationships (see Everitt 1992 for examples). How then do 
we test for association and how do we estimate the odds ratio and its associated 
confidence interval? The appropriate way to assess association is the Mantel–
Haenszel test. For a series of k 2 × 2 contingency tables, the Mantel–Haenszel 
statistic for testing the hypothesis of no association is
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where ai, bi, ci, di represent the counts in the four cells of the ith table and Ni 
is the total number of observations in the ith table.

Under the null hypothesis, this statistic has a chi-squared distribution with 
a single degree of freedom. The test is only appropriate if the degree and 
direction of the association between the two variables are the same in each 
stratum. A possible test of this assumption is that due to Breslow and Day 
(see Agresti 1996).

We shall illustrate the use of this test on data collected to investigate the 
level of organic particulates in the air as a risk factor for bronchitis (shown 
in Table 4.12).

To apply the Mantel–Haenszel test to the data in Table  4.12, we use the 
following code:

data bronchitis;
input agegrp level $ bronch $ num;

cards;
1 H Y 62
1 H N 915
1 L Y 7
1 L N 442
2 H Y 20
2 H N 382
2 L Y 9
2 L N 214
3 H Y 10
3 H N 172
3 L Y 7
3 L N 120
4 H Y 12
4 H N 327
4 L Y 6

TABLE 4.12

Number of Cases of Bronchitis by Level of Organic Particulates in 

the Air and by Age

Age (years)
Organic Particulate 

Level

Bronchitis

TotalYes No

0–14 High 62 915 977

Low  7 442 449

15–24 High 20 382 402

Low  9 214 223

23–40 High 10 172 182

Low  7 120 127

40+ High 12 237 339

Low  6 183 189
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4 L N 183
;
proc freq data=bronchitis order=data;
  Tables agegrp*level*bronch / cmh noprint;
  weight num;
run;

The tables statement specifies a three-way tabulation with agegrp defin-
ing the strata. The cmh option requests the Cochran–Mantel–Haenszel statis-
tics and the noprint option suppresses the tables.

The results are shown in Table 4.13. Looking first at the result of the Breslow–
Day test for homogeneity of odds ratios, we see that it is significant: There is 
some evidence that the odds ratios in the four age groups are not the same. 
We can obtain the estimated odds ratios for each age group and their associ-
ated 95% confidence intervals using the relrisk option on the tables state-
ment. We find that the 95% confidence intervals for the four age groups are

age 0–14: [1.94,9.42]

age 15–24: [0.56,2.78]

age 23–40: [0.37,2.69]

age 40+: [0.41,3.03]

We see that the odds ratio for the younger age group is quite different 
from those for the other three age groups. Therefore, we will now apply the 
Mantel–Haenszel test to the three older age groups, by rerunning the previ-
ous step but including the statement where agegrp>1;.

Now the Breslow–Day test is nonsignificant (p = 0.943) and now it makes 
sense to look at the result from the Mantel–Haenszel test: the test statistic is 
0.22 with an associated p-value of 0.64.

TABLE 4.13

Mantel–Haenszel Results for the Data in Table 4.12

Cochran–Mantel–Haenszel Statistics Based on Table Scores
Statistic Alternative Hypothesis DF Value Prob

1 Nonzero correlation 1 9.5778 0.0020
2 Row mean scores differ 1 9.5778 0.0020
3 General association 1 9.5778 0.0020

Breslow–Day Test for 
Homogeneity of the Odds Ratios

Chi-Squared 8.2099
DF 3
Pr > ChiSq 0.0419
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Having shown that the three older age groups can be assumed to have the 
same odds ratio, how do we estimate this common value? One way is to take 
separate estimates of ln(ψ) and weight them by the reciprocal of their vari-
ance. The estimates are then combined by taking a weighted mean. An alter-
native method—one that has a number of advantages (see Emerson 1994)—is 
due to Mantel and Haenszel (1959). The common estimate for a series of 
2 × 2 tables using the previously specified nomenclature is
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where k is the number of categories of the confounding variable. The vari-
ance of ln ( )ψ̂ pooled  can be estimated as shown in Everitt (1994).

The relevant section of the SAS output from the previous run is shown in 
Table 4.14. The estimate of the common odds ratio is 1.136 with a 95% confi-
dence interval of [0.669,1.927].

4.6 Summary

Observational studies are necessary when active intervention is either impos-
sible or unethical and thus there can be no question of using randomisation. 
Consequently, ascribing causality is far more problematic in such a study 
(although see the discussion of propensity scores in Chapter 10). Cohort stud-
ies are perhaps the ‘gold standard’ amongst observational studies, but they 
can take a long time to complete and are expensive; case-control studies have 
potentially more problems but can be carried out relatively speedily and 

TABLE 4.14

Estimation of the Common Odds Ratio for the Three Older Age Groups 

in Table 4.12

Type of Study Method Value
Case control Mantel–Haenszel 1.1355 0.6693 1.9266
Odds ratio Logit 1.1341 0.6678 1.9260
Cohort Mantel–Haenszel 1.1291 0.6808 1.8728
Col1 risk Logit 1.1272 0.6794 1.8704
Cohort Mantel–Haenszel 0.9945 0.9725 1.0170
Col2 risk Logit 0.9945 0.9729 1.0166
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cheaply. For both types of studies, the sample odds ratio acts as an approxi-
mate estimate of relative risk. In this chapter we have described simple meth-
ods for the analysis of data from observational studies. But such studies can 
often have complexities not covered in this chapter and will then require 
more sophisticated methods of analysis, as we shall see in later chapters, 
particularly in Chapter 10.
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5
Meta-Analysis

5.1 Introduction

Many individual clinical trials are not large enough to answer the questions 
we want to answer as reliably as we would want to answer them. (The same 
applies to epidemiological studies, but in this chapter we shall concentrate 
on clinical trials.) For example, trials are often too small for adequate conclu-
sions to be drawn about potentially small advantages of particular therapies. 
Advocacy of large trials is a natural response to this situation, but it is not 
always possible to launch very large trials before therapies become widely 
accepted or rejected prematurely.

In the past, the problem has been addressed by the classical narrative 
review of a set of clinical trials with an accompanying informal synthesis 
of evidence from the different studies. And given that it is rare indeed that 
any single trial ever gives the definitive answer to a clinical question, it is 
via reviews of several trials that we finally arrive at a conclusion about the 
effectiveness or not of an intervention. Thus, we might reasonably expect 
that reviews, which after all are far more widely read by practicing clini-
cians, who rarely have the time or the expertise to evaluate and synthesise 
each individual trial, should be as rigorous as and perhaps more rigorous 
than the individual trials that they involve. Sadly, until relatively recently, 
this expectation was rarely met.

In a pivotal paper, Mulrow (1987) showed that looking only at four of the 
best medical journals, 86% of review articles depended upon qualitative 
synthesis of the literature, and only a handful contained any description of 
the methodology or rules by which papers were selected and conclusions 
reached. Since then, numerous studies have showed again and again the defi-
ciencies of the single ‘narrative review’. There is evidence that such narrative 
reviews can sometimes tell us more about the background and orientation of 
the writer(s) than about the subject under review (Joyce, Rabe-Hesketh, and 
Wessely 1998).

It appears, then, that narrative, qualitative review articles may be very 
misleading as a result of both the possibly biased selection of evidence and 
the emphasis placed upon it by the reviewer to support his or her opinion. 
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An  alternative approach that has become increasingly popular in the last 
decade or so is the systematic review, which has essentially two components:

Qualitative: the description of the available trials, in terms of their 
relevance and methodological strengths and weaknesses

Quantitative: a means of mathematically combining results from dif-
ferent studies, even (possibly) when these studies have used differ-
ent measures to assess the dependent variable

The quantitative component of a systematic review is usually known as 
a meta-analysis, defined in the Cambridge Dictionary of Statistics in the Medical 
Sciences as follows:

A collection of techniques whereby the results of two or more inde-

pendent studies are statistically combined to yield an overall answer 

to a question of interest. The rationale behind this approach is to pro-

vide a test with more power than is provided by the separate studies 

themselves. 

It is now generally accepted that meta-analysis gives the systematic review 
an objectivity that is inevitably lacking in literature reviews and can also 
help the process to achieve greater precision and generalisability of find-
ings than any single study. Chalmers and Lau (1993) make the point that 
both the classical review article and a meta-analysis can be biased, but that 
at least the writer of a meta-analytic paper is required by the rudimentary 
standards of the discipline to give the data on which any conclusions are 
based and to defend the development of these conclusions by giving evi-
dence that all available data are included or the reasons for not including 
the data. Chalmers and Lau conclude that ‘it seems obvious that a discipline 
that requires all available data be revealed and included in an analysis has 
an advantage over one that has traditionally not presented analyses of all the 
data on which conclusions are based’.

The meta-analysis approach, first used as far as we are aware by a psy-
chologist (Glass 1976), has become increasingly popular in the last decade or 
so and it is probably fair to say that the majority of statisticians and clinicians 
are largely enthusiastic about the advantages of meta-analysis over the clas-
sical review. But the technique is not without its critics, particularly because 
of the difficulties of knowing which studies should be included and to which 
population final results actually apply. Those who remain sceptical do so 
because they feel that the conclusions from meta-analyses often go beyond 
what the technique and the data justify, a view nicely summarised in the 
 following quotation from Oakes (1993):

The term meta-analysis refers to the quantitative combination of data 

from independent trials. Where the result of such combination  is 
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a  descriptive summary of the weight of the available evidence, the 

exercise is of undoubted value. Attempts to apply inferential methods, 

however, are subject to considerable methodological and logical difficul-

ties. The selection and quality of trials included, population bias and the 

specification of the population to which inference may properly be made 

are problems to which no satisfactory solutions have been proposed.

Hans Eysenck, one of the earliest critics of meta-analysis, which he believed 
to be combining apples and oranges, was, as ever, more pungently critical, 
using the phrase ‘mega silliness’ to describe the procedure (Eysenck 1978).

Despite the concerns expressed by a small number of critics, the demand 
for systematic reviews of health care interventions has developed rapidly 
during the last decade, initiated by the widespread adoption of the princi-
ples of evidence-based medicine amongst both health care practitioners and 
policy makers. Such reviews are now increasingly used as a basis for both 
individual treatment decisions and the funding of health care and health 
care research worldwide. This growth in systematic reviews is reflected in 
the current state of the Cochrane Collaboration database, containing as it 
does more than 1,200 complete systematic reviews, with a further 1,000 due 
to be added soon.

Systematic reviews have a number of aims:

To review systematically the available evidence from a particular 
research area

To provide quantitative summaries of the results from each study

To combine the results across studies if appropriate—such combi-
nation of results leading to greater statistical power in estimating 
treatment effects

To assess the amount of variability between studies

To estimate the degree of benefit associated with a particular study 
treatment

To identify study characteristics associated with particularly effec-
tive treatments

Ideally, the trials selected by a systematic review and then subjected to a 
meta-analysis should be clinically homogeneous. For example, they might all 
study a similar type of patient for a similar duration with the same treatment 
in the two arms of each trial. In practice, of course, the trials included are far 
more likely to differ in some aspects, such as eligibility criterion, duration 
of treatment, length of follow-up, and how ancillary care is used. On occa-
sions, even treatment itself may not be identical in all the trials. According 
to Thompson (1998), this implies that, in most circumstances, the objective of 
a systematic review cannot be equated with that of a single large trial, even 
if that trial has wide eligibility. Whilst a single trial focuses on the effect of 
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a specific treatment in specific situations, a meta-analysis aims for a more 
generalisable conclusion about the effect of a generic treatment policy in a 
wider range of areas.

When the trials included in a systematic review do differ in some of their 
components, therapeutic effects may very well be different, but these dif-
ferences are likely to be in the size of the effects rather than their direction. It 
would, after all, be extraordinary if treatment effects were exactly the same 
when estimated from trials in different countries, in different populations, 
in different age groups, or under different treatment regimens. If the studies 
were big enough, it would be possible to measure these differences reliably, 
but in most cases this will not be possible. But meta-analysis allows the inves-
tigation of sources of possible heterogeneity in the results from different tri-
als, as we shall see later, and discourages the common, simplistic, and often 
misleading interpretation that the results of individual clinical trials are in 
conflict because some are labelled ‘positive’ (i.e., statistically significant) and 
others ‘negative’ (i.e., statistically nonsignificant). A systematic approach to 
synthesising information can often estimate the degree of benefit from a par-
ticular therapy and whether the benefit depends upon specific characteris-
tics of the studies.

5.2 Study Selection

The selection of the studies to be integrated in a systematic review will clearly 
have considerable bearing on the conclusions reached. Indeed, according to 
Pocock (1992), selection of studies is the greatest single concern in applying 
meta-analysis and he identifies three important components of the selection 
process: breadth, quality, and representativeness. Breadth relates to the decision 
as to whether to study a very specific narrow question (e.g., the same drug, 
disease, and setting for studies following a common protocol) or a more 
generic problem (e.g., a broad class of treatments for a range of conditions in 
a variety of settings). Pocock suggests that the broader the meta-analysis is, 
the more difficulty there is in interpreting the combined evidence as regards 
future policy. Consequently, the broader the meta-analysis is, the more it 
needs to be interpreted qualitatively rather than quantitatively.

The representativeness of the studies in a systematic review depends 
largely on having an acceptable search strategy. Once the researcher has 
 established the goals of the systematic review, an ambitious literature search 
needs to be undertaken, the literature obtained, and then summarised. 
Possible sources of material include the published literature, unpublished 
literature, uncompleted research reports, work in progress, conference/sym-
posia proceedings, dissertations, expert informants, granting agencies, trial 
registries, industry, and journal hand-searching.
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The search will probably begin by using computerised bibliographic data-
bases of published and unpublished research review articles, for example, 
MEDLINE. This is clearly a sensible strategy, although there are a number of 
papers illustrating the deficiencies of MEDLINE searches for randomised con-
trolled trials, see, for example, Gotzsche and Lange (1991) and Hopewell et al. 
(2002). The latter report a comparison of hand-searching versus MEDLINE 
searching to identify reports of randomised controlled trials. A total of 714 
reports of randomised trials (as defined by the Cochrane Collaboration) were 
found by using a combination of hand-searching and MEDLINE searching. 
Of these, 369 (52%) were identified only by hand-searching and 32 (4%) were 
identified only by MEDLINE searching. Of the reports identified only by 
hand-searching, 252 had no MEDLINE record, with 232 of these being meet-
ing abstracts or published in supplements. The remaining 117 papers found 
only by hand-searching were included in the MEDLINE database, but were 
missed in the electronic search because they did not have either of the pub-
lication type terms ‘randomised controlled trial’ or ‘controlled clinical trial’.

Not unreasonably, the authors conclude that ‘a combination of MEDLINE 
and hand-searching is required to identify adequately reports of randomised 
trials’. Fortunately, help is at hand, since the databases of the two Cochrane 
groups that specialise in mental health contain the results of extensive hand-
searching of a large range of journals, together with regularly updated ‘state 
of the art’ electronic searches of numerous databases, and can be readily 
searched. All trials identified are also located on the Cochrane Database of 
Clinical Trials.

Finally, the quality and reliability of a systematic review is dependent 
on the quality of the data in the included studies, although criticisms of 
meta-analyses for including original studies of questionable quality are 
typical examples of shooting the messenger who bears bad news. Aspects 
of  quality of the original articles that are pertinent to the reliability of the 
meta-analysis include valid randomisation process (we are assuming that, 
in meta-analysis of clinical trials, only randomised trials will be selected); 
minimisation of potential biases introduced by dropouts; acceptable meth-
ods of analysis, particularly in regard to dropouts; level of blinding; and 
recording of  adequate clinical details.

Several attempts have been made to make this aspect of meta-analysis 
more rigorous by using the results given by applying specially constructed 
quality assessments scales to assess the candidate trials for inclusion in the 
analysis. Moher et al. (1995), for example, present an annotated bibliography 
of 25 scales developed to assess quality, all of which the authors consider to 
have major weaknesses. Consequently, it is perhaps not too surprising that 
the use of such scales in meta-analysis has not been completely successful.

Juni et al. (1999), for example, used 25 different scales in a meta-analysis 
of 17 trials comparing low-molecular-weight heparin with standard heparin 
for prevention of postoperative thrombosis. They found that, for six scales, 
the trials rated as high quality corresponded to those showing no treatment 
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effect, whereas those rated as low quality indicated a significant treatment 
difference. For another seven scales, the reverse was the case. For the remain-
ing 12 scales, effect estimates were similar for those trials rated as high or 
low quality. In a regression analysis, summary quality scores were not sig-
nificantly associated with treatment effects. The authors finally concluded 
that the use of the scales to identify trials of high quality was problematic; 
instead, they recommended that relevant methodological aspects of the trials 
should be assessed individually and their influence on effect size explored.

As an example of how the selection process in a meta-analysis operates 
in practice, we shall use the description provided by Kirsch and Sapirstein 
(1998) in their study of antidepressant medication. Studies assessing the effi-
cacy of antidepressant medication were obtained through a number of previ-
ous reviews, supplemented by a computer search of PsycLit and MEDLINE 
databases from 1974 to 1995 using the search terms drug-therapy or phar-
macotherapy or psychotherapy or placebo and depression or affective dis-
orders. Approximately 1500 publications were identified by the literature 
search. Each of these was examined by one of the authors and those meeting 
the following criteria were included in the meta-analysis:

Sample was restricted to patients with a primary diagnosis of 
depression. Studies were excluded if participants were selected 
because of other criteria (eating disorders, substance abuse, physical 
disabilities, or chronic medical conditions) as were studies in which 
the description of the patient population was vague (e.g., ‘neurotic’).

Sufficient data were reported or obtainable to calculate within-
condition effect sizes. This resulted in the exclusion of studies for 
which neither pre- or poststatistical tests nor pretreatment means 
were available.

Data were reported from a placebo control group.

Participants were between the ages of 18 and 75.

Of the original 1,500 studies, only 20 met these criteria. Despite the appar-
ent thoroughness of Kirsch and Sapirstein’s selection procedure, critics of the 
paper suggested there were flaws and managed to uncover other relevant 
studies.

5.3 Publication Bias

Ensuring that a meta-analysis is truly representative can be problematic. It has 
long been known that journal articles are not a representative sample of work 
addressed to any particular area of research (see, for example, Sterlin 1959; 
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Greenwald 1975; Smith 1980). Research with statistically significant results is 
potentially more likely to be submitted and published than work with null, 
or nonsignificant, results, particularly if the studies are small (Easterbrook 
et al. 1991). The problem is made worse by the fact that many medical studies 
look at multiple outcomes, and there is a tendency for only those outcomes 
suggesting a significant effect to be mentioned when the study is written up. 
Outcomes that show no clear treatment effect are often ignored and will not 
be included in any later review of studies looking at those particular out-
comes. Publication bias is likely to lead to an over-representation of positive 
results.

Clearly, it becomes of some importance to assess the likelihood of publica-
tion bias in any meta-analysis reported in the literature. A well-known infor-
mal method of examining the possibility of publication bias is the so-called 
funnel plot—usually a plot of a measure of a study’s precision (for example, 
one over the standard error) against effect size. The most precise estimates 
(e.g., those from the largest studies) will be at the top of the plot and those 
from less precise or smaller studies at the bottom. The expectation of a ‘fun-
nel’ shape in the plot relies on two empirical observations:

The variances of studies in a meta-analysis are not identical, but are 
distributed in such a way that there are fewer precise studies and 
rather more imprecise ones.

At any fixed level of variances, studies are symmetrically distrib-
uted about the mean.

Evidence of publication bias is provided by an absence of studies on the 
left-hand side of the base of the funnel. The assumption is that, whether 
because of editorial policy or author inaction or another reason, these stud-
ies (which are not statistically significant) are the ones that might not be pub-
lished. Example funnel plots, based on those given in Duval and Tweedie 
(2000), are shown in Figure 5.1a and b. In the first of these plots, there is little 
evidence of publication bias; however, in the second, the lack of studies in 
the bottom left-hand corner of the plot suggests possible publication bias.

Other examples of funnel plots on real data will be given later in the 
chapter.

5.4 Statistics of Meta-Analysis

Two models that are frequently used in the meta-analysis of medical stud-
ies are the fixed-effects and random-effects models. The former assumes that 
each observed individual study result is estimating a common, unknown, 
overall pooled effect. The latter assumes that each individual observed result 
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is estimating its own unknown underlying effect, which in turn is estimat-
ing a common population mean. Thus, the random-effects model specifically 
allows for the existence of between-study heterogeneity as well as within-study 
variability.

Demets (1987) and Bailey (1987) discuss the strengths and weaknesses of 
the two competing models. Bailey suggests that when the research question 
involves extrapolation to the future—Will the treatment have an effect, on 
the average?—the random-effects model for the studies is the appropriate 
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FIGURE 5.1
Example funnel plots from simulated data. The asymmetry in the lower plot gives a hint that 

publication bias might be a problem.
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one. The research question implicitly assumes that there is a population of 
studies from which those studies analysed in the meta-analysis are sam-
pled and anticipates future studies being conducted or previously unknown 
studies being uncovered.

When the research question concerns whether treatment has produced 
an effect, on the average, in the set of studies being analysed, the fixed-effects 
model for the studies may be the appropriate one; here, there is no interest in 
generalising the results to other studies.

Many statisticians believe that random-effects models are more appropri-
ate than fixed-effects models for meta-analysis because between-study vari-
ation is an important source of uncertainty that should not be ignored.

5.4.1 Fixed-Effects Model

This model uses as its estimate of the common pooled effect (Y) a weighted 
average of the individual study effects, the weights being inversely propor-
tional to the within-study variances. Specifically,
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where
 K is the number of the studies in the meta-analysis
 Yi is the effect size estimated in the ith study (this might be a log odds 

ratio, relative risk, or difference in means, for example)
 W = 1/Vi, where Vi is the within-study estimate of variance for the ith 

study

The estimated variance of Y is given by
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From (5.1) and (5.2), a confidence interval for the pooled effect can be con-
structed in the usual way.

5.4.2 Random-Effects Model

The random-effects model has the following form:
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Unlike the fixed-effects model, the individual studies are not assumed to 
be estimating a true single effect size; rather, the true effects in each study, 
the μi, are assumed to have been sampled from a distribution of effects, 
assumed to be normal with mean μ and variance τ2. The estimate of μ is that 
given in (5.1), but in this case the weights are given by 

 ( )= + τW V1/ ˆi i
2 2  (5.4)

where τ̂2 is an estimate of the between-study variance. DerSimonian and 

Laird (1986) derive a suitable estimator for τ̂2, which is as follows:
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with W  and SW
2  being the mean and variance of the weights, Wi.

A test for homogeneity of studies is provided by the statistic Q given in 

(5.6). The hypothesis of a common effect size is rejected if Q exceeds χ −
2
k 1 at 

the chosen significance level. Allowing for this extra between-study vari-
ation has the effect of reducing the relative weighting given to the more 
precise studies. Hence, the random-effects model produces a more conser-
vative confidence interval for the pooled effect size. A Bayesian dimension 
can be added to the random-effects model by allowing the parameters of 
the model to have prior distributions. Some examples are given in Sutton 
et al. (2000).

5.5 An Example of the Application of Meta-Analysis

Cigarette smoking is the leading cause of preventable death in the United 
States and kills more Americans than AIDS, alcohol, illegal drug use, car 
accidents, fires, murders, and suicides combined. It has been estimated that 
430,000 Americans die from smoking every year. Fighting tobacco use is 
consequently one of the major public health goals of our time and there 
are now many programs available to help smokers quit. One of the major 
aids used in these programs is nicotine chewing gum, which acts as a 
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substitute oral activity and provides a source of nicotine that reduces the 
withdrawal symptoms experienced when smoking is stopped. But sepa-
rate randomised clinical trials of nicotine gum have been largely incon-
clusive, leading Silagy (2003) to consider combining the results from 26 
such studies found from an extensive literature search. The results of these 
trials in terms of numbers of people in the treatment arm and the control 
arm who stopped smoking for at least 6 months after treatment are given 
in Table 5.1.

The first step is to calculate an effect size and weight for each study. Here 
we will use the log of the odds ratio for each study as the corresponding 
effect size and the inverse of its variance as the weight (see Chapter 4):

TABLE 5.1

Meta-Analysis of Smoking Data on Nicotine Gum

Study qt tt qc tc

Blondal 1989 37 92 24 90

Campbell 1991 21 107 21 105

Fagerstrom 1982 30 50 23 50

Fee 1982 23 180 15 172

Garcia 1989 21 68 5 38

Garvey 2000 75 405 17 203

Gross 1995 37 131 6 46

Hall 1985 18 41 10 36

Hall 1987 30 71 14 68

Hall 1996 24 98 28 103

Hjalmarson 1984 31 106 16 100

Huber 1988 31 54 11 60

Jarvis 1982 22 58 9 58

Jensen 1991 90 211 28 82

Killen 1984 16 44 6 20

Killen 1990 129 600 112 617

Malcolm 1980 6 73 3 121

McGovern 1992 51 146 40 127

Nakamura 1990 13 30 5 30

Niaura 1994 5 84 4 89

Pirie 1992 75 206 50 211

Puska 1979 29 116 21 113

Schneider 1985 9 30 6 30

Tonnesen 1988 23 60 12 53

Villa 1999 11 21 10 26

Zelman 1992 23 58 18 58

Notes:  qt = number of quitters who have been treated; tt = 

total number of treated; qc = number of quitters in 

the control group; tc = total number of smokers in 

the control group.
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data quitting;
 set quitting;
 nqt=tt-qt;
 nqc=tc-qc;
 lor=log((qt/nqt)/(qc/nqc));
 selor=sqrt(1/qt+1/nqt+1/qc+1/nqc);
 wgt=1/selor**2;
 ss=tt+tc;
run;

The fixed-effects estimator of the pooled effect size given in Equation (5.1) 
is just a weighted mean and this can be calculated with proc means:

proc means data=quitting;
 var lor;
 weight wgt;
 output out=mout mean=mes sumwgt=sumwgt css=Q n=k;
run;

Output from proc means also includes the sum of the weights, the inverse 
of which estimates the variance of Y in Equation (5.2) and the corrected 
sums of squares—that is, Q of (5.6). We also save the number of studies, N, 
for later use.

To calculate U in (5.7), we also need the sum of squared weights. This can 
be obtained via a second proc means step with wgt as the analysis variable:

proc means data=quitting;
 var wgt;
 output out=mout2 uss=ssqwgt;
run;

We can then combine the results and calculate τ̂2:

data mout;
  merge mout mout2;
  u=(sumwgt-ssqwgt/sumwgt);
  tau2=max(0,(q-k+1)/u);
run;

Next, τ̂2 is added to the study data set and the DerSimonian and Laird (DSL) 
weight given in (5.4) is calculated. Then the random-effects estimator of the 
pooled effect size can be calculated using proc means with the DSL weight:

data quitting;
  set quitting;
  if _n_=1 then set mout(keep=tau2);
  DSL_wgt=1/(1/wgt + tau2);
run;
proc means data=quitting;
 var lor;
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 weight DSL_wgt;
 output out=mout3 mean=mes sumwgt=sumwgt;
run;

We can then calculate confidence intervals for the fixed- and random-
effects estimates along with their p-values and that for the chi-squared test 
for homogeneity:

data MA_summary;
  set mout(in=inf) mout3;
  if inf then type='Fixed';
         else type='Random';
  sem=sqrt(1/sumwgt);
  Z=mes/sem;
  cil=mes-1.96*sem;
  ciu=mes+1.96*sem;
  ProbZ = (1-probnorm(abs(z)))*2;
  ProbQ = 1-probchi(q,k-1);
run;
proc print noobs;
  var type mes sem cil ciu z probz q probq;
  format probz probq pvalue6.4;
run;

The fact that the preceding code might need to be used repeatedly, chang-
ing only the data set used and the effect size and weight variables, makes it 
a suitable candidate for turning into a SAS macro. We have done this so that 
the same results can be achieved by the following:

%inc "C:\AMSUS\macros\MA_summary.sas";
%MA_summary(data=quitting,es=lor,wgt=wgt)

The MA_summary macro takes three parameters: the data set containing 
the study summaries, the name of the effect size variable, and that of the 
study weights. The results are shown in Table 5.2. Both models give highly 
significant effect sizes. For the fixed-effects model, the log odds ratio is esti-
mated to be 0.502 with 95% confidence interval [0.371,0.632], leading to an 
estimated odds ratio of 1.652 with 95% confidence interval of [1.449,1.881]. For 
the random-effects model, the corresponding odds ratio estimate and confi-
dence interval are 1.751 [1.482,2.069].

The results from both models give clear evidence that nicotine gum 
increases the odds of quitting. The random-effects confidence interval is 
considerably wider than that from the fixed-effects model. In this example, 
the test of homogeneity of the effect size of the different studies is not sig-
nificant, apparently implying that we might use the results from the fixed-
effects model. But the homogeneity test is not particularly powerful and it is 
perhaps more sensible to assume a priori that heterogeneity is present and 
thus use the results from the random-effects model.
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Next we need investigate whether or not there is any evidence of publica-
tion bias by constructing a funnel plot of the studies:

proc sgplot data=quitting;
  scatter y=invvar x=lor;
  refline 0 /axis=x lineattrs=(pattern=dash);
  refline .56 /axis=x;
  xaxis label="log(OR)"values=(−1 to 2);
  yaxis label="1/Var(Log(OR))";
run;

The result is shown in Figure 5.2. There may be some slight evidence of pub-
lication bias here with some ‘missing’ studies is the left-hand corner, but here 
it is probably not of any real concern.

Next, we examine a forest plot showing the observed effect size for each 
study along with its 95% confidence interval. The programming to produce 
a suitable plot is somewhat involved, so we have written a macro, which is 
invoked as follows:

%inc "C:\AMSUS\macros\forest.sas";
%forest(data=quitting,es=lor,se=selor,type=random)

The macro has four parameters: the data set containing the study sum-
maries, the effect size variable, the standard error variable, and the type of 
summary required. The alternative value for this is fixed. The macro uses the 
summary values calculated by the MA_summary macro and hence assumes 
that it has been run. It also assumes that the data set contains a variable 
study, which can be used to identify the studies in the plot. The result is 
shown in Figure 5.3. The widths of the plotting symbols are proportional to 
the study weights.

TABLE 5.2

Results of Fixed- and Random-Effects Models for the Data in Table 5.1

Test for Homogeneity of effects

Q df ProbQ
34.8740 25 0.0905

Summary effect size

type Summary SE
Lower 

95% limit
Upper 

95% limit minimum maximum
Fixed 0.50171 0.066436 0.37149 0.63192 –0.14073 1.79242
Random 0.56042 0.084842 0.39413 0.72671 –0.14073 1.79242
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5.6 Meta-Analysis on Sparse Data

The data shown in Table 5.3 come from 18 clinical trials comparing the risk 
of catheter-related bloodstream infection (CRBSI) in patients with an anti- 
infective catheter and patients with a standard catheter. Very few patients 
given the anti-infective catheter get CRBSI and, in fact, in several trials there 
are no patients in this arm of the trial with the condition. This clearly raises 
problems for a meta-analysis using the log odds as the effect size because, 
where there are zeroes, the estimate and its standard error are not defined. 
The simplest way to deal with this problem is to use a continuity correction 
approach and add 0.5 to all four numbers in the 2 × 2 table of data for the study.

We apply both fixed- and random-effects models to the CRBSI data using 
the macro constructed earlier and after applying the continuity correction to 
the data:

data catheters;
  infile 'c:\amsus\data\catheters.dat';
  input study y1 n1 y0 n0;
  if y1=0 then do;
                  y1=.5;
                  n1=n1+.5;
                  end;
 if y0=0 then do;
                  y0=.5;
                  n0=n0+.5;
                  end;
 lor=log((y1/(n1-y1))/(y0/(n0-y0)));
 selor=sqrt(1/y1 + 1/(n1-y1) + 1/y0 + 1/(n0-y0));
 wgt=1/selor**2;
run;

%inc "C:\AMSUS\macros\MA_summary.sas";
%MA_summary(data=catheters,es=lor,wgt=wgt)

The results are shown in Table 5.4. Here, the results for both models are the 
same because the value of Q is less than 17 (the number of studies minus one). 
The estimated 95% confidence interval for the log odds ratio is [–1.39,–0.47]; 
the corresponding confidence interval for the odds ratio is [0.25,0.63]. The 
risk of CRBSI is reduced by between 75% and 40% using an anti-infective 
catheter compared to the use of the standard catheter.

Sweeting, Sutton, and Lambert (2004) consider several alternative con-
tinuity corrections, such as adding 0.1 or a number that depends on the 
extent of the imbalance between the group sizes. Stijnen, Hamza, and 
Ozdemir (2010) suggest an alternative procedure that uses the exact condi-
tional likelihood given the total number of events in the study and provide 
SAS code.



151Meta-Analysis

TABLE 5.3

Clinical Trials of Anti-Infective Catheters

Study

Anti-Infective Catheter Standard Catheter

No. of CRBSIs No. of Patients No. of CRBSIs No. of Patients

1 0 116 3 117

2 1 44 3 35

3 2 208 9 195

4 0 130 7 136

5 5 151 6 157

6 1 98 4 139

7 1 174 3 177

8 1 74 2 39

9 1 97 19 103

10 1 113 2 122

11 0 66 7 64

12 0 70 1 58

13 3 188 5 175

14 6 187 11 180

15 0 118 0 105

16 0 252 1 262

17 1 345 3 362

18 4 64 1 69

Source: Niel-Weise, B. S., Stijnen, T., and van den Broek, P. J. 2007. Intensive Care Medicine 

33:2058–2068.

TABLE 5.4

Meta-analysis Results for the Data in Table 5.3

Test for Homogeneity of effects

Q df ProbQ
15.5884 17 0.5532

Summary effect size

type Summary SE
Lower 

95% limit
Upper 

95% limit minimum maximum
Fixed –0.93089 0.23524 –1.39195 –0.46983 –3.07797 1.51146
Random –0.93089 0.23524 –1.39195 –0.46983 –3.07797 1.51146
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5.7 Meta-Regression

Bacille Calmette Guerin (BCG) is the most widely used vaccination in 
the world. Developed in the 1930s and made of a live, weakened strain of 
Mycobacterium bovis, the BCG is the only vaccination available against tuber-
culosis (TBC) today. Colditz et al. (1994) report data from 13 clinical trials of 
BCG vaccine, each investigating its efficacy in the treatment of tuberculosis. 
The number of subjects suffering from TB with or without BCG vaccination is 
given in Table 5.5. In addition, the table contains the values of two other vari-
ables for each study—namely, the geographic latitude of the place where the 
study was undertaken and the year of publication. These two variables will be 
used to investigate and perhaps explain any heterogeneity among the studies.

The examination of heterogeneity of the effect sizes from the studies in a 
meta-analysis begins with the formal test for its presence, although in most 
meta-analyses such heterogeneity can almost be assumed to be present. 
There will be many possible sources of such heterogeneity and estimating 
how these various factors affect the observed effect sizes in the studies cho-
sen is often of considerable interest and importance—indeed, usually more 
important than the relatively simplistic use of meta-analysis to determine 
a single summary estimate of overall effect size.

TABLE 5.5

Meta-analysis of BCG Vaccine Data

Study BCGTB BCGnoTB noBCGTB noBCGnoTB Latitude Year

1 4 119 11 128 44 1948

2 6 300 29 274 55 1949

3 3 228 11 209 42 1960

4 62 13536 248 12619 52 1977

5 33 5036 47 5761 13 1973

6 180 1361 372 1079 44 1953

7 8 2537 10 619 19 1973

8 505 87886 499 87892 13 1980

9 29 7470 45 7232 27 1968

10 17 1699 65 1600 42 1961

11 186 50448 141 27197 18 1974

12 5 2493 3 2338 33 1969

13 27 16886 29 17825 33 1976

Source: Colditz, G. A., Brewer, T. F., Berkey, C. S., Wilson, M. E., Burdick, E., Fineberg, 

H. V., and Mosteller, F. 1994. Journal of the American Medical Association, 

271:698–702.

Notes: BCGTB: the number of TBC cases after a vaccination with BCG = BCGTB; 

BCGnoTB: the number of people who received BCG but did not contract TB; 

noBCGTB: the number of TBC cases without vaccination; noBCGnoTB: the 

number of who did not receive BCG and did not contract TB.
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We can illustrate the process using the BCG vaccine data. We first find the 
estimate of the overall effect size from applying the fixed- and the random-
effects models described previously:

data bcg;
 infile ‘c:\AMSUS\data\bcg.dat’;
 input study BCGTB BCGnoTB noBCGTB noBCGnoTB Latitude Year;
 lor=log((BCGTB/BCGnoTB)/(noBCGTB/noBCGnoTB));
 se=sqrt(1/BCGTB+1/BCGnoTB+1/noBCGTB+1/noBCGnoTB);
 wgt=1/se**2;
run;

%MA_summary(data=bcg,es=lor,wgt=wgt)

The results appear in Table 5.6. Both the fixed- and random-effects models 
give highly significant effect sizes. However, here the test of heterogeneity 
is highly significant, so we will now investigate whether or not there is any 
evidence that heterogeneity is related to the year of the study or the latitude 
where the study took place.

To assess how the two covariates, latitude and year, relate to the observed 
effect sizes, we shall use multiple linear regression but will weight each 
observation by = σ + −W V( ˆ )i i

2 2 1  i = 1,13, where σ̂2 is the estimated between-
study variance and Vi

2 is the estimated variance from the ith study:

proc reg data=bcg;
 model lor=latitude year;
 weight dsl_wgt;
run;

The main results of the multiple regression are shown in Table 5.7. Clearly, 
years is not related to effect size, but there is some weak evidence that lati-
tude may be related.

To investigate the possible latitude effect in a little more detail, we will 
construct a scatter plot of effect size against latitude showing also the fitted 

TABLE 5.6

Results from the Fixed- and Random-Effects Models Fitted to the Data in Table 5.5

Test for Homogeneity of effects

Q df ProbQ
163.165 12 <.0001

Summary effect size

type Summary SE
Lower 

95% limit
Upper 

95% limit minimum maximum
Fixed –0.43614 0.04227 –0.51898 –0.35330 –1.66619 0.44663
Random –0.74739 0.19226 –1.12423 –0.37056 –1.66619 0.44663
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weighted regression of effect size on latitude. We will also indicate on the 
plot, by means of circles with different radii, the precision of each study:

proc sgplot data=bcg noautolegend;
   bubble y=lor x=latitude size=wgt;
   reg y=lor x=latitude /nomarkers weight=wgt;
   label lor="log(OR)";
run;

The resulting diagram is shown in Figure  5.4. There is some suggestion 
that the log odds ratio of a study becomes increasingly negative as latitude 
increases.
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FIGURE 5.4
Plot of observed effect size for the BCG vaccine data against latitude showing the weighted 

least squares regression fit.

TABLE 5.7

Results of Weighted Multiple Regression of Effect Size on Year and Latitude 

for the Data in Table 5.5

Parameter Estimates

Variable DF Parameter Estimate Standard Error t Value Pr >|t|
Intercept 1 –16.19912 37.60540 –0.43 0.6758
Latitude 1 –0.02581 0.01368 –1.89 0.0886
Year 1 0.00828 0.01897 0.44 0.6718



155Meta-Analysis

5.8 Summary

Meta-analysis has had a major impact on medical science in the last decade or 
so and has been central in the development of evidence-based medical prac-
tice. One of the principal reasons that meta-analysis has been so successful 
is the large number of clinical trials that are now conducted—approximately 
10,000 annually. Synthesising results from many studies can be difficult, 
confusing, and ultimately misleading without some systematic approach. 
Meta-analysis has the potential to demonstrate treatment effects with a high 
degree of precision, possibly revealing small, but clinically important effects 
that may not have been identified in the individual trials.
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6
Analysis of Variance and Covariance

6.1 Introduction

As we have seen in our discussion of diagnostic tests in Chapter 2, of clinical 
trials in Chapter 3, and of epidemiological studies in Chapter 4, many medi-
cal investigations involve the comparison of two groups of patients and 
subjects. That is, many but not all, and in this chapter we consider how to 
analyse data that arise when a continuous (quasicontinuous) outcome vari-
able is measured for subjects who fall into one of the levels of a categorical 
variable with more than two levels (usually known as the factor variable). 
The  appropriate statistical procedure is the analysis of variance (ANOVA), 
which we have already met briefly in Chapter 2. In some situations, the data 
collected may also contain values of some possible confounding (concomitant) 
variable (or variables) thought to be associated with the outcome variable 
and which, therefore, need to be taken into account in the analysis of this 
outcome. The relevant technique here is analysis of covariance, with which we 
shall also deal in this chapter.

6.2 A Simple Example of One-Way Analysis of Variance

The data shown in Table  6.1 are steady-state haemoglobin levels for 
patients with different types of sickle cell disease—namely, HB SS, 
HB S/-thalassaemia, and HB SC. One question of interest about these data 
is whether the steady-state haemoglobin levels differ significantly between 
patients with different types of disease; if so, the haemoglobin level of 
patients suspected of having a type of sickle cell disease might be able to 
be used as a diagnostic test (see Chapter 2).
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6.2.1 One-Way Analysis of Variance Model

The formal procedure for analysing the data in Table 6.1 is a one-way analysis of 
variance. If we let yij represent the jth observation in the ith group, the one-way 
analysis of variance model is

 yij = μ + αi + εij (6.1)

where
 μ is the overall mean
 αi is the group effect
 εij is a random error term, assumed to be distributed normally with mean 

zero and variance σ2

Because the model is overparameterised (more parameters than can be 
uniquely estimated from the data), the group effects need to be constrained 

in some way, most usually by requiring that ∑ α =
=

0i
i

k

1
, where k is the num-

ber of groups. The hypothesis of the equality of group means can be written 
in terms of the group effects as

 H0 : α1 = α2 = … = αk = 0 (6.2)

The total variation in the observations is partitioned into that due 
to differences in the group means and that due to differences among 

TABLE 6.1

Haemoglobin Levels for Patients with 

Different Types of Sickle Cell Disease

HB SS HB S/-Thalassaemia HB SC

7.2 8.1 10.7

7.7 9.2 11.3

8.0 10.0 11.5

8.1 10.4 11.6

8.3 10.6 11.7

8.4 10.9 11.8

8.1 11.1 12.0

8.5 11.9 12.1

8.6 12.0 12.3

8.7 12.1 12.6

9.1 12.6

9.1 13.3

9.1 13.3

9.8 13.8

10.1 13.9

10.3
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observations within groups. Under the hypothesis of the equality of group 
means, both the between-group variance and the within-group variance are 
estimates of σ2. Thus, an F-test of the equality of the two variances provides a 
test of H0. The necessary terms for calculating the required F-test are usually 
arranged in an analysis of variance table as shown in Table 6.2.

If H0 is true and the following assumptions are valid, then the MSR has 
an F-distribution with k – 1 and N – k degrees of freedom. The assumptions 
made in a one-way analysis of variance are as follows:

The observations in each group come from a normal distribution.

The population variances of each group are the same.

The observations are independent of one another.

6.2.2  Applying the One-Way Analysis of Variance 
Model to Sickle Cell Disease Data

In any data analysis, it is good practice to begin by looking at some hopefully 
informative graphic of the data, and here we choose to look at the three box 
plots of the haemoglobin observations available for the three types of sickle 
cell disease. The necessary SAS code to read in the data and construct the 
box plots is

data sickle;
  do type=1 to 3;
  input hglevel 5. @;
  if hglevel~=. then output;
  end;
datalines;
  7.2 8.1 10.7
  7.7 9.2 11.3
...

TABLE 6.2

One-Way Analysis of Variance Table

Source of 
Variation DF Sum of Squares Mean Square

Mean Square 
Ratio

Between groups k – 1 n y yi i
i

k

..
1

2∑ )( −
=

(1) = SS/(k – 1) (1)/(2)

Within groups N – k y yij i
j

n

i

k

.

2

11

i∑∑ )( −
==

(2) = SS/(N – k)

Total N – 1 y yij
j

n

i

k

..

2

11

i∑∑ )( −
==

Note: N = n1 + n2 + … + nk, where ni is the number of observations in the ith group. y.. is the 

mean of all observations and yi. is the mean of the observations in group i.
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  8.7 12.1 12.6
  9.1 12.6
  9.1 13.3
  9.1 13.3
  9.8 13.8
 10.1 13.9
 10.3
;

proc sort data=sickle;
  by type;
run;

proc boxplot data=sickle;
  plot hglevel*type  /  boxstyle=schematic;
run;

The data are read using formatted input. Each data value occupies five 
columns, including the spaces and the decimal point. The trailing @ holds 
the line for further data to be read from it. For proc boxplot, the data must 
be sorted in order of the x-axis variable. The resulting diagram is shown in 
Figure 6.1.

The box plots show clear evidence of increasing haemoglobin levels from 
type HB SS to HB SC, as well as some suggestion of skewness in the distribu-
tion of haemoglobin level in disease types 2 and 3. There is no indication of 
any ‘outliers’ in the data that may distort their analysis. We shall ignore the 
indication of some slight departure from the normality assumption given by 
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FIGURE 6.1
Box plots of haemoglobin levels for patients with different types of sickle cell disease: 1 = HB 

SS, 2 = HB S/-thalassaemia, 3 = HB SC.
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the box plots and apply a one-way analysis of variance to the data in Table 6.1 
using proc glm with the following SAS code:

ods graphics on;
proc glm data=sickle plots=diagnostics(unpack);
  class type;
  model hglevel=type;
run;
ods graphics off;

Proc glm can be used to fit the whole class of models that fall within the 
framework of the general linear model, including linear regression and analy-
sis of covariance as well as ANOVA. The class statement specifies cat-
egorical variables, or factors, which may be numeric or character variables. 
In this example, the model statement simply specifies the outcome vari-
able and the single categorical predictor. When ODS graphics are enabled a 
panel of diagnostic plots can be produced with the plots=diagnostics 
option. Detailed discussion of the panel as a whole is reserved for Chapter 8, 
but here we wish to check the distribution of the residuals, so we have 
‘unpacked’ the panel into its separate constituent plots and shown just the 
Q–Q plot (Figure 6.2).

The results are given in Table 6.3; concentrating on the analysis of variance 
table part of the results, we see that the p-value associated with the F-statistic 
for these data is very small, so there is clear evidence of a difference in the 
average haemoglobin level in the three disease types. (We shall say more 
about the type I and type III sums of squares that appear in Table 6.3 later in 
the chapter and the R-square statistic given in Table 6.2 will be explained in 
Chapter 8, where we deal with multiple linear regression.)

Q–Q Plot of Residuals for hglevel
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FIGURE 6.2
Q–Q plot of residuals for hglevel.
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6.3 Multiple Comparison Procedures

When the F-test in an analysis of variance produces evidence of a differ-
ence between the levels of a factor, the investigator usually needs to proceed 
further to determine the details of the differences and how large they are. 
There are two different approaches to this problem, both of which are now 
relatively briefly described.

6.3.1 Planned Comparisons

The first approach to investigating groups’ difference in more detail is the use 
of what are known as planned comparisons to test a set of specific hypotheses 
via specific contrasts of group means. In essence, this approach can be formu-
lated in terms of testing a hypothesis involving one (or sometimes more than 
one) linear combination(s) of the population group means—for example,

TABLE 6.3

One-Way Analysis of Variance of Haemoglobin Levels in Three Types of 

Sickle Cell Disease

Class-Level Information

Class Levels Values
type 3 1 2 3

Number of Observations Read 41
Number of Observations Used 41

Dependent Variable: hglevel

Source DF Sum of Squares Mean Square F Value Pr > F
Model 2 99.8893049 49.9446524 50.00 <.0001
Error 38 37.9585000 0.9989079
Corrected total 40 137.8478049

R-Square Coeff Var Root MSE hglevel Mean
0.724635 9.525245 0.999454 10.49268

Source DF Type I SS Mean Square F Value Pr > F
type 2 99.88930488 49.94465244 50.00 <.0001

Source DF Type III SS Mean Square F Value Pr > F
type 2 99.88930488 49.94465244 50.00 <.0001
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 H0 : c1μ1 + c2μ2 + … ckμk = 0 (6.3)

When the constants c1, … , ck sum to zero, this linear combination of the 
means is known as a contrast. An estimate of the contrast is obtained by 
replacing the population means, μ1, … , μk, with their sample estimates,
…y y, , k1. ., to give, say, …= + + +L c y c y c yk k1 1. 2 2. .. Two contrasts with defin-

ing coefficients c11,…, c1k and c21, c22,…, c2k are said to be orthogonal if c11c21 + 
c12c22 … + c1kc2k = 0. Such contrasts can be tested independently of each other. 
The sum of squares for a contrast L is given by
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 (6.4)

This has a single degree of freedom and the F-statistic to test the hypothesis 
in (6.3) is obtained by dividing this by the within-groups sum of squares 
from the analysis of variance table for the data.

To illustrate this approach, we shall assume that, in the sickle cell disease 
example, we want to compare the haemoglobin level of the HB SC group 
with the average haemoglobin level of the other two types and then to com-
pare types I and 2 with each other. The required contrast coefficients are 
–1, –1, 2 and 1, –1, 0, respectively. The two contrasts are orthogonal.

The sums of squares associated with each contrast can be found simply by 
rerunning the previous step, adding the following SAS statements:

  contrast '3 vs 1 & 2' type –1 –1 2;
  contrast '1 vs 2' type 1 –1 0;

The contrast statement comprises some text in quotes to identify the 
results in the output, the effect or variable to be used for the contrast, and 
the values of the contrast coefficients. There is no limit to the number of 
contrast statements that can be used, but they must follow the model state-
ment. For some procedures, it is possible to submit additional statements in 
this way, as long as the procedure is still running; this is shown in the title 
bar of the editor window. A procedure that is still running can be stopped by 
submitting a quit statement.

The results of applying these two contrasts are as follows:

Contrast DF Contrast SS Mean Square F Value Pr > F
3 vs 1 & 2 1 64.40692718 64.40692718 64.48 <.0001
1 vs 2 1 22.62650000 22.62650000 22.65 <.0001

Both contrasts are highly significant. The haemoglobin levels of disease 
types 1 and 2 are different and that of disease type 3 is different from the 
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average of types 1 and 2. In this case, of course, the strong evidence of a 
 difference for types 1 and 2 makes the latter test of little real interest.

6.3.2 Post Hoc Comparisons

When the investigator has no a priori planned comparisons in mind but 
would still like to investigate the reasons for a significant overall F-statistic, 
then it is possible to compare all pairs of groups. However, care is needed 
because this approach results in a large number of tests if the number of 
groups is large. Consequently, the probability of finding at least one pair-
wise difference when there are no true differences between the groups can 
become far larger than the nominal significance level being used.

Various safeguards against such false-positive findings are needed. The first 
is to carry out the pairwise tests only if the F-test of the ANOVA is significant. 
The second is to reduce the significance level of the individual pairwise com-
parisons in an effort to maintain the overall significance level at its intended 
value. There are many different ways of adjusting the significance levels, result-
ing in many different multiple comparison procedures. All of these procedures 
produce intervals or bounds for the difference in (usually) one pair of means 
of the form (estimate) ± (critical point) × (standard error of estimate). The criti-
cal point used depends on the specified multiple comparison method.

Multiple comparison tests aim to retain the nominal significance level at 
the required value when undertaking tests of mean differences. One of the 
most commonly used of these procedures is that due to Scheffé (1953); the 
t-statistic used is given by

 ( )
=

+
t

s n n

mean difference

1/ 1/1 2

1

2
 (6.5)

where s2 is the error mean square from the analysis of variance table and n1 
and n2 are the number of observations in the two groups being compared. 
Each test statistic is compared with the following critical value:

 ( ) ( )− α⎡⎣ ⎤⎦− −k F1 k N k1,

1

2  (6.6)

where Fk–1,N–k (α) is the F-value with k – 1, N – k degrees of freedom, correspond-
ing to a significance level α. (Full details are given in Maxwell and Delaney 
1990.) The confidence interval for two means is, in this case,

 ± × +⎛
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mean difference critical value
1 1

1 2

1

2

 (6.7)

where the critical value is as described before.
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The Scheffé procedure can be applied to the haemoglobin levels in Table 6.1 
by including a means statement with the scheffe option in the proc glm 
step as follows:

means type  /  scheffe;

The results are shown in Table 6.4 and indicate that, in this case, all the 
pairwise comparisons are significant. The haemoglobin levels of each group 
differ from those of the other two groups. The confidence intervals quantify 
the differences.

6.4 A Factorial Experiment

Maxwell and Delaney (1990) report a study designed to investigate the effects 
of three possible treatments on hypertension. The three treatments were as 
follows:

drug medication: drug X, drug Y, drug Z

biofeed: physiological feedback, present or absent

diet: present, absent

TABLE 6.4

Results from Applying Scheffé’s Multiple Comparison Test to the 

Sickle Cell Disease Data

Scheffé’s Test for hglevel

Alpha 0.05
Error Degrees of Freedom 38
Error mean square 0.998908
Critical value of F 3.24482

type 
Comparison

Difference 
Between Means

Simultaneous 95% 

3 – 2 1.6700 0.6306 2.7094 ***
3 – 1 3.5875 2.6724 4.5026 ***
2 – 3 –1.6700 –2.7094 –0.6306 ***
2 – 1 1.9175 0.8911 2.9439 ***
1 – 3 –3.5875 –4.5026 –2.6724 ***
1 – 2 –1.9175 –2.9439 –0.8911 ***
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All 12 combinations of treatments were included in the study, so here we 
are dealing with a 3 × 2 × 2 design. Six subjects were randomly allocated to 
each cell of the design, and the response variable measured was blood pres-
sure. The data, given in Table 6.5, can be read in as follows:

data hyper;
  input n1–n12;
  if _n_<4 then biofeed='P';

else biofeed='A';
  if _n_ in(1,4) then drug='X';
  if _n_ in(2,5) then drug='Y';
  if _n_ in(3,6) then drug='Z';
  array nall {12} n1–n12;
  do i=1 to 12;

if i>6 then diet='Y';
else diet='N';

bp=nall{i};
cell=drug||biofeed||diet;
output;

  end;
  drop i n1-n12;
cards;
170 175 165 180 160 158 161 173 157 152 181 190
186 194 201 215 219 209 164 166 159 182 187 174

TABLE 6.5

Blood Pressure Data from Maxwell and Delaney

Biofeedback No Biofeedback

Drug X Drug Y Drug Z Drug X Drug Y Drug Z

Diet absent
170 186 180 173 189 202
175 194 187 194 194 228
165 201 199 197 217 190
180 215 170 190 206 206
160 219 204 176 199 224
158 209 194 198 195 204

Diet present
161 164 162 164 171 205
173 166 184 190 173 199
157 159 183 169 196 170
152 182 156 164 199 160
181 187 180 176 180 179
190 174 173 175 203 179

Source: Data from Maxwell, S. E., and Delaney, H. D. 1990. Designing 
Experiments and Analysing Data. Belmont, CA: Wadsworth.



167Analysis of Variance and Covariance

180 187 199 170 204 194 162 184 183 156 180 173
173 194 197 190 176 198 164 190 169 164 176 175
189 194 217 206 199 195 171 173 196 199 180 203
202 228 190 206 224 204 205 199 170 160 179 179
;

The 12 blood pressure readings per row, or line, of data are read into vari-
ables n1 to n12 and used to create 12 separate observations. The row and 
column positions in the data are used to determine the values of the factors 
in the design: drug, biofeedback, and diet.

First, the input statement reads the 12 blood pressure values into vari-
ables n1 to n12. It uses list input which assumes the data values to be sepa-
rated by spaces.

The next group of statements uses the SAS automatic variable, _n_ , to 
determine which row of data is being processed and hence to set the values 
of drug and biofeed. Since six lines of data will be read, one line per itera-
tion of the data step, _n_ will increment from one to six, corresponding to 
the line of data read with the input statement.

The key elements in splitting the one line of data into separate observa-
tions are the array, the do loop, and the output statement.

The array statement defines an array by specifying the name of the array 
(nall here), the number of variables to be included in it in braces, and the list 
of variables to be included, n1 to n12 in this case.

In SAS, an array is a shorthand way of referring to a group of variables. In 
effect, it provides aliases for them so that each variable can be referred to by 
using the name of the array and its position within the array in braces. For 
example, in this data step, n12 could be referred to as nall{12} or, when the 
variable i has the value 12, as nall{i}. However, the array only lasts for the 
duration of the data step in which it is defined.

The main purpose of an iterative do loop, like the one used here, is to repeat 
the statements between the do and the end a fixed number of times, with an 
index variable changing at each repetition. When used to process each of the 
variables in an array, the do loop should start with the index variable equal 
to one and end when it equals the number of variables in the array.

Within the do loop, in this example, the index variable, i, is first used to 
set the appropriate values for diet. Then a variable for the blood pressure 
reading (bp) is assigned one of the 12 input values. A character variable, 
cell, is formed by concatenating the values of the drug, biofeed, and diet 
variables. The double bar operator (||) concatenates character values.

The output statement writes an observation to the output data set with 
the current value of all variables. An output statement is not normally nec-
essary, since without it an observation is automatically written out at the end 
of the data step. Putting an output statement within the do loop results in 
12 observations being written to the data set.

Finally, the drop statement excludes the index variable i and n1 to n12 
from the output data set as they are no longer needed.
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As with any relatively complex data manipulation, it is wise to check that 
the results are as they should be (e.g., by using proc print).

As always, before carrying out any formal analysis, it is worth examin-
ing the data graphically. One procedure that is often useful in highlighting 
whether the data should be transformed before analysis is to plot both cell 
standard deviations against cell means and cell variances against cell means. 
(The variance should be constant—that is, independent of the mean.) These 
plots can be constructed from the following SAS instructions:

proc means data=hyper noprint;
  class cell;
  var bp;
  output out=cellmeans mean= std= var=  /autoname;
run;

proc sgscatter data=cellmeans;
  plot (bp_stddev bp_var)*bp_mean ;
run;

Proc means is used to calculate the summary statistics and write them 
out, via the output statement, to a new data set, cellmeans. The autoname 
option on the output statement constructs variable names for the summary 
statistics and can be useful when summary statistics are being computed 
for several variables. Proc sgscatter then produces plots of the standard 
deviation and variance against the mean, side by side (see Figure 6.3).

There appears to be no obvious relationship between the means and the 
standard deviations or the means and variances that would indicate the 
need for a transformation.

A further useful graphic is shown in Figure 6.4; this is a multipanel plot 
with box plots of blood pressure for each of the levels of each treatment. The 
distributions appear to be relatively symmetric, and there is no suggestion 
of any outliers.

Box plots cannot be produced by proc sgscatter, so we have defined a cus-
tom graphics template to do it, as follows:

proc template;
  define statgraph gridtplt;
   begingraph;

layout gridded /columns=3 rows=1;
boxplot y=bp x=drug ;
boxplot y=bp x=diet ;
boxplot y=bp x=biofeed ;
endlayout;

   endgraph;
end;
run;

proc sgrender data=hyper template=gridtplt;
run;
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Plots of means against standard deviations and means against variances for the data in Table 6.5.
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The use of the graphics template language is beyond the scope of this book. 
Nonetheless, this example could be adapted to produce a bespoke grid of 
graphs simply by changing the numbers of rows and/or columns on the lay-
out statement, including the corresponding number of plot statements before 
the endlayout statement, and then referencing the appropriate data set on the 
proc sgrender statement.

6.4.1 Model for Three-Factor Design

A suitable model on which to base the analysis of these data is

 yijkl = μ + αi + βj + γk + δij + τik + ωjk + θijk + εijkl (6.8)

where
 yijkl is the lth observation in the ijkth cell of the design
 αi, βj, and γk represent main effects
 δij, τik, and ωjk represent first-order interactions
 θijk represents the second-order interaction
 εijkl are random error terms assumed to be distributed normally with 

zero mean and variance σ2

(Once again, the parameters have to be constrained in some way; for details, 
see Maxwell and Delaney 1990.)

The hypotheses of interest can be written in terms of the parameters of the 
model as
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where a, b, and c are the numbers of levels of the three factors. The analysis of 
variance table resulting from this model is given in Table 6.6.

As the design is balanced (same number of observations in each cell), we 
can use proc anova, although proc glm could, of course, be used again:



171Analysis of Variance and Covariance

proc anova data=hyper;
  class diet biofeed drug;
  model bp=diet|drug|biofeed;
run;

The vertical bar operator used on the model statement is a shorthand way of 
specifying an interaction and including all the lower order interactions and 
main effects implied by it. The results are shown in Table 6.7.

Several of the main effects are highly significant, but it is the significant 
second-order interaction term, drug × biofeed × diet, that first requires inter-
pretation. Perhaps the simplest approach to trying to understand the mean-
ing of this interaction is to examine some plots of the cell means. Since proc 
anova is still running, the cell means for this interaction can be generated and 
saved in the cellmeans2 data set by submitting the following statements:

  means diet*drug*biofeed;
ods output means=cellmeans2;
run;

The resulting means can be plotted stacked in a multipanel plot as follows:

proc sgpanel data=cellmeans2;
 panelby drug / columns=1;
 series y=mean_bp x=biofeed /group=diet;
run;

The resulting diagram is shown in Figure 6.5. For drug X, there is a large 
difference in means between biofeedback being present and absent when the 
diet is not given, but a far smaller difference when the diet is given. For drug 
Y, the reverse is the case, and for drug Z, the two differences are approxi-
mately equal.

TABLE 6.6

Analysis of Variance Table for a Three-Way Factorial Design

Source SS DF MS

A ASS a – 1 ASS/(a – 1)

B BSS b – 1 BSS/(b – 1)

C CSS c – 1 CSS/(c – 1)

A × B ABSS (a – 1) (b – 1) ABSS/(a – 1) (b – 1)

A × C ACSS (a – 1) (c – 1) ACSS/(a – 1) (c – 1)

B × C BBSS (b – 1) (c – 1) ABSS/(a – 1) (b – 1)

A × B × C ABCSS (a – 1) (b – 1) (c – 1) ABSS/(a – 1) (b – 1) (c – 1)

Within cell (error) WCSS abc(n – 1) WCSS/abc(n – 1)

Note: For each term in the table, the appropriate F-statistic for testing the hypothesis about 

the term is the ratio of the term’s mean square divided by the error mean square.
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The data might now be further analysed by splitting them by drug level 
and then applying two-way analyses of variance to the resulting tables.

6.5 Unbalanced Designs

The data shown in Table  6.8 are from a study reported in Rifland, Canale, 
and New (1976) concerned with antipyrine clearance of people suffering from 
β-thalassemia, a chronic type of anaemia. In this disease, abnormally thick red 

TABLE 6.7

Analysis of Variance Results for Blood Pressure Data in Table 6.5

Class-Level Information

Class Levels Values
diet 2 N Y
biofeed 2 A P
drug 3 X Y Z

Number of Observations Read 72
Number of Observations Used 72

Dependent Variable: bp

Source DF Sum of Squares Mean Square F Value Pr > F
Model 11 13194.00000 1199.45455 7.66 <.0001
Error 60 9400.00000 156.66667
Corrected total 71 22594.00000

R-Square Coeff Var Root MSE bp Mean
0.583960 6.784095 12.51666 184.5000

Source DF ANOVA SS Mean Square F Value Pr > F
diet 1 5202.000000 5202.000000 33.20 <.0001
drug 2 3675.000000 1837.500000 11.73 <.0001
diet*drug 2 903.000000 451.500000 2.88 0.0638
biofeed 1 2048.000000 2048.000000 13.07 0.0006
diet*biofeed 1 32.000000 32.000000 0.20 0.6529
biofeed*drug 2 259.000000 129.500000 0.83 0.4425
diet*biofeed*drug 2 1075.000000 537.500000 3.43 0.0388
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Plot of factor level means for data in Table 6.5.

TABLE 6.8

Antipyrine Clearance (Half-Life in Hours)

1 2 3

Males 7.4 5.6 3.7 10.9 11.3 13.3

6.6 6.0 12.2 10.0

Females 9.1 6.3 7.1 11.0 8.3

11.3 9.4 7.9 4.3
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blood cells are produced. The treatment of the disease has undesirable side 
effects, including liver damage. Antipyrine is a drug used to assess liver func-
tion with a high clearance rate, indicating satisfactory liver function. The main 
question of interest is whether there is any difference in clearance rate among 
the pubertal stages (1 = infant, 2 = adolescent, 3 = adult) or between the sexes.

The data in Table 6.8 involve two factors—sex and pubertal stage, but the 
unbalanced nature of the observations presents considerably more problems 
for analysis than would a balanced 2 × 3 design. The main difficulty is that 
when the data are unbalanced, there is no unique way of finding a ‘sum of 
squares’ corresponding to each main effect and its interaction, because these 
effects are no longer independent of one another. (When the data are bal-
anced, the among-cells sums of squares partition orthogonally into the three 
component sums of squares—namely, two main effects and an interaction.) 
Several methods have been suggested for dealing with this problem, each 
leading to a different type of sums of squares.

6.5.1 Type I Sums of Squares

These sums of squares represent the effect of adding a term to an existing 
model, in one particular order. For example, a set of type I sums of squares 
such as the following

Source Type I SS

A SSA

B SSB|A

AB SSAB|A,B

essentially represents a comparison of the following models:

SSAB|A,B: model including an interaction and main effects, with one 
including only main effects

SSB|A: model including both main effects, but no interaction, with one 
including only the main effect of factor A

SSA: model containing only the A main effect, with one containing 
only the overall mean

The use of these sums of squares in a series of tables in which the effects 
are considered in different orders (see later discussion) will often provide the 
most satisfactory way of answering the question as to which model is most 
appropriate for the observations.

6.5.2 Type II Sums of Squares

These provide sums of squares for a certain term, given all other terms in 
the model except terms of higher order involving the term being tested. For 
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example, a set of type II sums of squares for the example in the previous 
subsection would be

Source Type II SS

A SSA|B

B SSB|A

AB SSAB|A,B

6.5.3 Type III Sums of Squares

Type III sums of squares represent the contribution of each term to a model 
including all other possible terms. Thus, for a two-factor design, the sums of 
squares represent the following:

Source Type III SS

A SSA|B,AB

B SSB|A,AB

AB SSAB|A,B

(SAS also has a type IV sum of squares, which is the same as type III unless 
the design contains empty cells.)

In a balanced design, type I and type III sums of squares are equal, but 
for an unbalanced design they are not; there have been numerous discus-
sions over which type is more appropriate for the analysis of such designs. 
Authors such as Maxwell and Delaney (1990) and Howell (1992) strongly 
recommend the use of type III sums of squares, and these are the default 
in SAS. Nelder (1977) and Aitkin (1978), however, are strongly critical of ‘cor-
recting’ main effects sums of squares for an interaction term involving the 
corresponding main effect; their criticisms are based on both theoretical and 
pragmatic grounds. The arguments are relatively subtle but in essence go 
something like what follows.

When fitting models to data, the principle of parsimony is of critical impor-
tance. In choosing among possible models, we do not adopt complex models 
for which there is no empirical evidence. Therefore, if there is no convincing 
evidence of an AB interaction, we do not retain the term in the model. Thus, 
additivity of A and B is assumed unless there is convincing evidence to the 
contrary. The argument proceeds that type III sum of squares for A, in which 
it is adjusted for AB, makes no sense. First, if the interaction term is necessary 
in the model, then the experimenter will usually wish to consider simple 
effects of A at each level of B separately. A test of the hypothesis of no A main 
effect would not usually be carried out if the AB interaction is significant. If 
the AB interaction is not significant, then adjusting for it is of no interest, and 
causes a substantial loss of power in testing the A and B main effects.

The issue does not arise so clearly in the balanced case, for there the sum 
of squares for A, say, is independent of whether interaction is assumed 
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or not. Thus, in deciding on possible models for the data, the interaction 
term is not included unless it has been shown to be necessary. In such 
a case, tests on main effects involved in the interaction are not carried 
out or, if carried out, are not interpreted (see the biofeedback example in 
Section 6.4).

The arguments of Nelder and Aitkin against the use of type III sums of 
squares are powerful and persuasive. Their recommendation to use type I 
sums of squares (or type II sums of squares), considering effects in a num-
ber of orders, as the most suitable way in which to identify a suitable model 
for a data set is also convincing and strongly endorsed by the authors of 
this book.

6.5.4 Analysis of Antipyrine Data

We first read in the data and then apply proc glm using the following SAS 
code:

data antipyrine;
input sex$ stage hours;
cards;
M 1 7.4
M 1 5.6

...

F 2 11.0
F 3 8.3
F 3 4.3
;

proc glm data=antipyrine;
  class sex stage;
  model hours=sex|stage / ss1 ss2 ss3;
run;

The default for proc glm is to produce both type I and type III sums 
of squares. Here we specify type II sums of squares as well. The results 
are given in Table 6.9. We see that the interaction sum of squares is the 
same for type I, type II, and type III sums of squares. But the type III 
main effects sums of squares are different from those given by type I 
and type II. The type I and type II sex main effect sums of squares dif-
fer because the  latter is adjusted for stage whereas the former is not. 
Running the analysis specifying stage as the first variable would lead to 
the same type I sum of squares for sex as is given by the type II sum of 
squares in Table 6.9.

There is some evidence of a sex × stage interaction in the data; the p-value 
for the associated F-test is 0.049. A plot of the six means may be helpful in 
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TABLE 6.9

Analysis of Variance Results for Anitipyrine Data

Class-Level Information

Class Levels Values
Sex 2 F M
Stage 3 1 2 3

Number of Observations Read 19
Number of Observations Used 19

Dependent Variable: hours

Source DF Sum of Squares Mean Square F Value Pr > F
Model 5 56.6703947 11.3340789 1.88 0.1671
Error 13 78.5275000 6.0405769
Corrected 
Total

18 135.1978947

R-Square Coeff Var Root MSE hours Mean
0.419166 28.87904 2.457759 8.510526

Source DF Type I SS Mean Square F Value Pr > F
sex 1 0.75789474 0.75789474 0.13 0.7289
stage 2 9.59433511 4.79716755 0.79 0.4727
sex*stage 2 46.31816489 23.15908245 3.83 0.0491

Source DF Type II SS Mean Square F Value Pr > F
sex 1 0.43508511 0.43508511 0.07 0.7926
stage 2 9.59433511 4.79716755 0.79 0.4727
sex*stage 2 46.31816489 23.15908245 3.83 0.0491

Source DF Type III SS Mean Square F Value Pr > F
sex 1 4.13281250 4.13281250 0.68 0.4231
stage 2 6.00213652 3.00106826 0.50 0.6196
sex*stage 2 46.31816489 23.15908245 3.83 0.0491
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interpreting this interaction. Such a plot can be obtained using the following 
code:

  means sex*stage;
  ods output means=antmns;
run;
proc sgplot data=antmns;
  series y=mean_hours x=stage/ group=sex;
run;

The resulting plot is shown in Figure 6.6. Clearly, for males the clearance 
rate increases with age, but for females it decreases, at first gradually and 
then more dramatically between adolescence and adult stages.

6.6 Nonparametric Analysis of Variance

Although the F-tests used in the analysis of variance are reasonably robust 
against departures from normality, there may be occasions where the depar-
ture is thought to be so extreme that some alternative method of analysis 
may be required.

To illustrate, we shall use the data shown in Table 6.10. These data were 
collected by Kontula et al. (1980) in a study attempting to develop a more 
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FIGURE 6.6
Plot of mean clearance rate for the three stages and for males and females.
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accurate method for determining the number of glucocortical receptor (GR) 
sites per cell in patients suffering from leukaemia. The new methodology 
was used to count the number of GR sites for samples of leukocyte cells 
from normal subjects as well as patients with hairy-cell leukaemia, chronic 
lymphatic leukaemia, chronic myelocytic leukaemia, or acute leukaemia.

6.6.1  Kruskal–Wallis Distribution-Free Test for 
One-Way Analysis of Variance

Rather than use the analysis of variance procedure described in Subsection 6.2.1 
for these data, we shall use the Kruskal and Wallis distribution-free procedure 
for one-way designs. Again, we assume there are k populations to be compared 
and that a sample of nj observations is available from population j, j = 1, … , k. 
The hypothesis to be tested is that all the populations have the same proba-
bility distribution. To apply the Kruskal–Wallis test, the observations are first 
ranked without regard to group membership and then the sums of the ranks 
of the observations in each group are calculated. These sums will be denoted 
by R1, R2, … , Rk. If the null hypothesis is true, we would expect the Rjs to be 
more or less equal, apart from differences caused by the different sample sizes. 
A measure of the degree to which the Rjs differ from one another is given by
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TABLE 6.10

Number of Glucocorticoid Receptor (GR) Sites per Leukocyte Cell

Normal Subjects
Hairy-Cell 
Anaemia

Chronic Lymphatic 
Leukaemia

Chronic Myelocytic 
Leukaemia

Acute 
Leukaemia

3,500 5,710 2,390 6,320 3,230

3,500 6,110 3,330 6,860 3,880

3,500 8,060 3,580 11,400 7,640

4,000 8,080 3,880 14,000 7,890

4,000 11,400 4,280 8,280

4,000 5,120 16,200

4,300 18,250

4,500 29,900

4,500

4,900

5,200

6,000

6,750

8,000

Source: Kontula, K., Anderrson, L. C., Paavonen, T., Myllyla, G., Terrenharr, L., and Vuopio, P. 

1980. International Journal of Cancer, 26:177–183.
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where ∑= =
N nj

j

k

1

Under the null hypothesis, the statistic H has a chi-squared distribution 
with k – 1 degrees of freedom.

6.6.2 Applying the Kruskal–Wallis Test

The data are in a file, grsites.dat, with a letter indicating the group 
(N, H, C, M, A) and the number of sites. We read the data in and apply the 
Kruskal–Wallis procedure as follows:

data grsites;
  infile 'c:\amsus\data\grsites.dat';
  input group$ ngrs;
run;

proc npar1way data=grsites wilcoxon;
  class group;
  var ngrs;
run;

By default, proc npar1way produces analyses based on a number of dif-
ferent rank scoring methods. The wilcoxon option restricts it to Wilcoxon 
scores (i.e., rank sums) and the associated Kruskal–Wallis test. The results 
are shown in Table 6.11.

The p-value associated with the chi-squared test statistic is 0.0022, so there 
is strong evidence that the average number of GR sites in the leukocyte cells 
of the different types of subjects differs.

TABLE 6.11

Results of Applying the Kruskal–Wallis Test to the Data in Table 6.10

group N
Sum of 
Scores

Expected 
Under H0

Std Dev 
Under H0 Mean Score

N 14 202.00 266.0 31.911394 14.428571
H 5 133.50 95.0 22.494577 26.700000
C 6 50.50 114.0 24.253494 8.416667
M 4 114.50 76.0 20.431714 28.625000
A 8 202.50 152.0 27.087058 25.312500

Average scores were used for ties.

Kruskal–Wallis Test
Chi-Squared 16.6682
DF 4
Pr > Chi-Squared 0.0022
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6.7 Analysis of Covariance

Analysis of covariance is essentially analysis of variance in which differ-
ences between levels of a factor are tested after controlling for other variables, 
termed covariates. The response variable and the covariate are assumed to 
be related in some way, and from the estimated relationship, the subject’s 
response values are adjusted in an attempt to account for factor level dif-
ferences in the covariates. Following this adjustment, the usual analysis-of-
variance tests are applied to see whether there remains any difference in 
average response in the different factor levels.

For a single factor design and a single covariate, the appropriate model is

 ( )= μ + α + β − + εy x xij i ij ij  (6.11)

where β is the regression coefficient linking response variable and covariate 
and x  is the grand mean of the covariate values. The regression coefficient 
is assumed to be the same in each group. The means of the response vari-
able adjusted for the covariate are obtained simply as adjusted group mean = 
group mean ( )+β −x xˆ

i , where xi  is the mean of the ith group.
In ANCOVA, the covariate will most often be a baseline measurement of 

the outcome variable, although other covariates are also used on occasion. 
In Chapter 3 we alluded to the advantages of ANCOVA over a change score 
approach when baseline outcome measures were available, and we shall say 
no more about change scores here; Senn (2006) puts the final nail into the cof-
fin of change score analysis.

The benefits of analysis of covariance are usually said to be the following:

If one has an observational study in which the groups have differ-
ences in baseline values, ANCOVA can remove a potential bias from 
the results (but see later discussion).

If one has a randomised trial where, by virtue of randomisation, 
any real group differences in baseline values are unlikely, then 
ANCOVA reduces the amount of unexplained variation in the data. 
This reduces the error variance and makes the F-test of group dif-
ference on the final value of the outcome variable more sensitive; the 
power of the F-test is increased.

But the following comments of Brown (2005) about analysis of covari-
ance are useful for reminding potential users of the techniques of possible 
problems:

The covariates are assumed to be unaffected by treatment; they 
can be measured before the treatments are assigned, for example. 
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If the treatment does affect a covariate, then adjusting for differ-
ences in this variable may well ‘adjust away’ the actual treatment 
difference.

In a randomised trial, the covariate is used to increase the power of 
the F-test for the treatment difference. But when ANCOVA is used 
in an observational study where the covariate may differ consider-
ably in the naturally occurring groups, the investigator is essen-
tially looking for the answer the question, ‘What would the group 
difference on the outcome variable be if the groups had the same 
level of the covariate?’ But this may mean that the groups are com-
pared at a value of the covariate that is not typical of either group. 
Further, the statistical model will need to extrapolate beyond the 
region where there is most data for both groups and this makes 
an assumption that the model is correct in that region, for both 
groups.

The relationship between the outcome and the covariate must be 
the same in all groups. In other words, there must be no interac-
tion between the treatments and the covariate. If there is an inter-
action, it does not make sense to compare the groups at a single 
value of the covariate because any difference noted will not apply 
for other values of the covariate. This assumption is equivalent to 
saying that the relationship between the outcome and the covari-
ate should appear as parallel curves, one for each group. This rela-
tionship can be checked, as we shall demonstrate in the following 
examples.

Thus, application of ANCOVA requires careful consideration of its 
statistical assumptions about the relationship between outcome and covari-
ate as well as its more subtle aspects. Many reports of ANCOVA report a 
covariate as having been ‘adjusted for’ or ‘controlled’ without producing any 
convincing argument that the control or adjustment was appropriate.

As an illustration of analysis of covariance, the method will be applied 
to the data shown in Table  6.12. These data show plasma inorganic phos-
phate measurements obtained from 13 controls and 20 obese patients taken 
10 minutes (labelled 0 hours in Table 6.12) and 3 hours after an oral glucose 
challenge (data adapted from Zerbe 1979). Here, interest centres on whether 
there is a difference in average plasma inorganic phosphate level between 
control and obese patient population 3 hours after the challenge after con-
trolling for the difference after 10 minutes.

Before applying analysis of covariance, it will be helpful to examine the 
data graphically. Here we can plot a scattergram of 10-minute level against 
3-hour level, identifying control and obese patients and also showing the 
simple linear regression line for the two variables, calculated separately in 
each group. The required SAS code is
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data pip;
 input pip1 pip2;
 group='C';
 if _n_>13 then group='O';
cards;

TABLE 6.12

Plasma Inorganic Phosphate Levels from 

13 Control and 20 Obese Patients

Hours after Glucose Challenge

Group Patient 0 3

Control  1 4.3 2.5

 2 3.7 3.2

 3 4.0 3.1

 4 3.6 3.9

 5 4.1 3.4

 6 3.8 3.6

 7 3.8 3.4

 8 4.4 3.8

 9 5.0 3.6

10 3.7 2.3

11 3.7 2.2

12 4.4 4.3

13 4.7 4.2

Obese  1 4.3 2.5

 2 5.0 4.1

 3 4.6 4.2

 4 4.3 3.1

 5 3.1 1.9

 6 4.8 3.1

 7 3.7 3.6

 8 5.4 3.7

 9 3.0 26

10 4.9 4.1

11 4.8 3.7

12 4.4 3.4

13 4.9 4.1

14 5.1 4.2

15 4.8 4.0

16 4.2 3.1

17 6.6 3.8

18 3.6 2.4

19 4.5 2.3

20 4.6 3.6
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4.3 2.5
3.7 3.2

...

3.6 2.4
4.5 2.3
4.6 3.6
;

proc sgplot data=pip;
 reg y=pip2 x=pip1 / group=group;
run;

The data step reads in the two plasma inorganic phosphate measurements. 
We know that the first 13 observations belong to control subjects and the 
remainder to obese subjects, so we can use the automatic SAS variable_n_ 
to assign values to a group variable. The reg plot type within proc sgplot 
can be used for the plot and the result is shown in Figure 6.7.

Figure  6.6 gives little evidence that the regression lines of each group 
of patients differ in slope, which is reassuring because this is one of the 
 assumptions of the analysis of covariance.

3 6
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FIGURE 6.7
Plot of the data in Table 6.12.
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Analysis of covariance can be applied to the data using proc glm:

proc glm data=pip;
  class group;
  model pip2=pip1 group pip1*group;
run;

As the variable pip1 is not mentioned on the class statement, it is assumed 
to be continuous. The results are shown in Table 6.13.

Using the type I sums of squares in Table 6.13, we can conclude that the 
regression coefficient of the 3-hour phosphate measurement on the 10-minute 
measurement is significantly different from zero and that, after adjusting for 

TABLE 6.13

Analysis of Covariance Results for the Data in Table 6.12

Class-Level Information

Class Levels Values
Group 2 C O

Number of Observations Read 33
Number of Observations Used 33

Dependent Variable: pip2s

Source DF Sum of Squares Mean Square F Value Pr > F
Model 3 5.28062622 1.76020874 5.15 0.0056
Error 29 9.91573742 0.34192198
Corrected Total 32 15.19636364

R-Square Coeff Var Root MSE
0.347493 17.38419 0.584741 3.363636

Source DF Type I SS Mean Square F Value Pr > F
pip1 1 4.86961807 4.86961807 14.24 0.0007
group 1 0.39083650 0.39083650 1.14 0.2938
pip1*group 1 0.02017164 0.02017164 0.06 0.8098

Source DF Type III SS Mean Square F Value Pr > F
pip1 1 3.13693492 3.13693492 9.17 0.0051
group 1 0.00398906 0.00398906 0.01 0.9147
pip1*group 1 0.02017164 0.02017164 0.06 0.8098
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the 10-minute level, there is no difference between the control and obese 
patients. The p-value of the F-statistic for the interaction demonstrates that 
there is no evidence of a difference in the regression slopes of 3-hour value 
on 10-minute level in the two groups.

6.8 Summary

In this chapter we have described the application of both ANOVA and 
ANCOVA to a number of data sets and pointed out some features of the 
 latter that need careful thought and consideration when applying the method 
in practice. Both ANOVA and ANCOVA can be formulated in a regression 
 framework, as we shall illustrate in Chapter 8, and further subsumed within 
a more general approach known as generalised linear models, which we 
shall discuss in Chapter 10.
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7
Scatter Plots, Correlation, Simple 
Regression, and Smoothing

7.1 Introduction

In many medical investigations, measurements and observations are taken 
on two variables of interest for a sample of patients or subjects. In part, of 
course, this has been true of the data sets discussed in earlier chapters—
for example, the two categorical variables, ‘risk factor present’ or ‘risk factor 
absent’ and disease or illness present, ‘yes’ or ‘no’. But in this chapter, our 
interest will be in the situation where the two variables measured are con-
tinuous or quasicontinuous. For such bivariate data, answers to a number of 
questions may be of interest. For example, are the variables related in some 
way? Can one variable be predicted from the other and, if so, what form of 
mathematical equation is it best to use? The starting point for the investiga-
tion of bivariate data is almost always the humble scatter plot and it is this we 
discuss and illustrate in the next section.

7.2 Scatter Plot and Correlation Coefficient

According to Martin and Welsh (2005), the simplest and one of the most pow-
erful graphics for describing the relationship between two variables is the 
scatter plot, which represents each pair of data values using (x, y) coordinates 
in a Cartesian plan. The ‘shape’ of the scatter plot is used to describe the rela-
tionship between the two variables. Two elements of the shape of a scatter 
plot that are most useful in describing relationships between variables are 
measures of ‘location’ and ‘spread’. For example, location might be measured 
as a line or a curve that runs through the bulk of the data, while spread 
might be measured in terms of deviations of (x, y) points from the estimated 
location.
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The simple xy scatter plot has certainly been in use for a long time—at least 
from the eighteenth century, and it has many virtues, indeed, according to 
Tufte (1983):

The relational graphic—in its barest form the scatterplot and its 

 variants—is the greatest of all graphical designs. It links at least two 

variables encouraging and even imploring the viewer to assess the 

possible causal relationship between the plotted variables. It confronts 

causal theories that x causes y with empirical evidence as to the actual 

relationship between x and y.

Now let’s have a look at an example of a scatter plot. For this we will use the 
data shown in Table 7.1, which were collected in a study investigating the pos-
sible link between alcohol consumption and the death rate per 100,000 of the 
population from cirrhosis and alcoholism (data collected before West Germany 
ceased to exist as a separate country). A scatter plot of the data that includes 
appropriate labels for each bivariate observation can be constructed using 
the following SAS code, which also produces the value of Pearson’s correlation 
coefficient for the two variables (see later for the definition of this coefficient):

data drinking;
 input country $ 1-12 alcohol cirrhosis;
cards;
France 24.7 46.1
Italy 15.2 23.6
W.Germany 12.3 23.7
Austria 10.9 7.0
Belgium 10.8 12.3
USA 9.9 14.2
Canada 8.3 7.4
E&W 7.2 3.0
Sweden 6.6 7.2
Japan 5.8 10.6
Netherlands 5.7 3.7
Ireland 5.6 3.4
Norway 4.2 4.3
Finland 3.9 3.6
Israel 3.1 5.4
;

proc corr; run;

proc sgplot data=drinking;
  scatter y=cirrhosis x=alcohol /datalabel=country;
run;

Some of the country names are longer than the default of eight for charac-
ter variables, so column input is used to read them in. The values of the two 
numeric variables can then be read in with list input. This is an example of 
mixing different forms of input on one input statement. Proc corr produces 
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Pearson correlations by default. A var statement would normally be used as 
the default is to include all numeric variables.

The scatter plot produced by SAS is shown in Figure 7.1. The scatter plot 
indicates that there is a very strong relationship between death rate from cir-
rhosis and alcohol consumption, with cirrhosis deaths increasing with alco-
hol consumption. The relationship shown in Figure 7.1 can be summarised 
in the value of a correlation coefficient, here Pearson’s correlation coefficient, 
r (there are others; for example, Spearman’s rho and Kendall’s tau—see Bland 
2011) given for a sample of bivariate data (xi, yi), i = 1 … n by

 
∑

∑ ∑
=

− −

− −

=

= =

r
y y x x

y y x x

( )( )

( ) ( )

i i
i

n

i
i

n

i
i

n
1

2

1

2

1

 (7.1)

where n is the sample size and y xand  are the sample means of the y and 
x variables. The correlation coefficient is a measure of the linear relation-
ship between the two variables and measures how closely the points lie to 
a straight line. The correlation coefficient takes a value between –1 and 1, 
with the two extreme values being obtained for a perfect linear relationship 
between the variables in different directions. The linear part in the previous 
sentence needs to be emphasised; for nonlinear relationships, the correlation 
coefficient is not of any great use. That this is the case is demonstrated by the 
example in Figure 7.2, where the correlation is zero and in Figure 7.3, where 

TABLE 7.1

Average Alcohol Consumption and Death Rate

Country
Alcohol Consumption 

(litres/person/year)
Cirrhosis and Alcoholism 

(death rate/100,000)

France 24.7 46.1

Italy 15.2 23.6

W. Germany 12.3 23.7

Austria 10.9 7.0

Belgium 10.8 12.3

United States 9.9 14.2

Canada 8.3 7.4

England and Wales 7.2 3.0

Sweden 6.6 7.2

Japan 5.8 10.6

Netherlands 5.7 3.7

Ireland 5.6 3.4

Norway 4.2 4.3

Finland 3.9 3.6

Israel 3.1 5.4
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FIGURE 7.2
Bivariate data where the relationship between the two variables is exact but the correlation 

is zero.
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FIGURE 7.1
Scatter plot of cirrhosis death rates against alcohol consumption for a number of countries.
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it is 0.97, although in both cases the relationship between the two variables is 
exact, it is not linear.

Returning to the alcohol and cirrhosis data, we see from Table 7.2 that the 
value of Pearson’s correlation coefficient is 0.939, confirming the conclusion 
from Figure 7.1 that the relationship between the two variables is very strong. 
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FIGURE 7.3
Bivariate data where the relationship between the two variables is exact but the correlations 

are less than 1 (0.97).

TABLE 7.2

Correlation Coeffi cient for Cirrhosis Death Rate and Alcohol Data

Pearson Correlation Statistics (Fisher’s z Transformation)

Variable
With 
Variable N

Sample 
Correlation Fisher’s z

Bias 
Adjustment

Correlation 
Estimate

alcohol cirrhosis 15 0.93883 1.72809 0.03353 0.93473

Pearson Correlation Statistics (Fisher’s z Transformation)

Variable With Variable
p Value for 

alcohol cirrhosis 0.810597 0.978472 <.0001
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Also given in Table 7.2 is an associated p-value for the correlation coefficient 
of ‘<.0001’. This is simply the result of testing the hypothesis that the popula-

tion correlation coefficient is zero using the test statistic = −
−

t r
n

r
2

1 2
, which if 

the null hypotheses is true (and the data are sampled from a bivariate normal 
distribution—an assumption we shall not dwell upon here), has a Student’s 
t-distribution with n – 2 degrees of freedom. In the case of the alcohol/cirrho-
sis data, there is extremely strong evidence that the null hypothesis is incor-
rect. In medical papers, estimated values of correlations are almost always 
followed by a p-value resulting from testing for a zero population correla-
tion, whether or not this value is plausible or not. Usually, it would be more 
informative if Fisher’s z-transformation of the correlation coefficient—that is,
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were used to find a confidence interval for the population correlation by first 

finding a confidence interval for z from its known standard error of n1/ 3−
and then transforming back to the correlation scale. In SAS, this can be done 
using the following code:

proc corr data=drinking fisher;
 var alcohol cirrhosis;
run;

The results are shown in Table 7.2. The 95% confidence interval for the pop-
ulation correlation coefficient is [0.81,0.98]. (This approach is based on the 
assumption that both variables have normal distributions—a stronger assump-
tion than that required for the test that the population correlation is zero.)

Thus, for the alcohol/cirrhosis data, we have an estimated correlation of 
0.94 and 95% confidence interval of [0.81,0.98]; however, this needs to be 
interpreted in association with the scatter plot in Figure 7.1 (correlation coef-
ficients always need to be used along with the scatter plot). The scatter plot 
certainly indicates that the assumption of a linear relationship seems a rea-
sonable one, but it also indicates one possible problem—namely, the outlier 
that is France (only, of course, in the limited sense of this graph!). Correlation 
coefficients can often (but not always) be badly affected by outliers, so it 
might be sensible to recalculate the correlation after excluding France.

The necessary SAS code is

data drinking2;
 set drinking;
 if country~='France';
run;

proc corr; run;
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The new value of the correlation coefficient found from the resulting out-
put is 0.832, which, although lower than the previous value, is again highly 
significant.

7.3 Simple Linear Regression and Locally Weighted Regression

The correlation coefficient calculated for the alcohol consumption and death 
rate data in the previous section indicates the strength of the linear relation-
ship between a pair of variables. But there may be other questions of interest 
about bivariate data, and the one that will be of concern in this section is, 
‘How can one of the variables be best predicted from the other?’ One answer 
to this question is to fit a simple linear regression model to the data. We assume 
that there are n data pairs, (xi, yi), i = 1 … n, where the ys are the values of the 
variable to be predicted (the response variable) and the xs are the correspond-
ing values of the variable used for prediction (the explanatory variable). The 
simple linear regression model is

 yi = β0 + βixi + εi (7.3)

where β0 is the intercept and β1 is the slope of the linear relationship, and εi is 
an error or residual term accounting for the difference between the observed 
value of yi and the linear regression model. The residuals are assumed to 
be independent random variables having a normal distribution with mean 
zero and constant variance σ2. The regression coefficients β0 and β1 may be 

estimated as β̂0 and β̂1 using least squares. Here, the sum of squared differ-
ences between the observed values of the response variable yi and the values 

‘predicted’ by the regression equation ˆ ˆ ˆy xi i= +β β0 1  is minimised, leading to 
the estimates

 β = − βy xˆ ˆ
0 1  (7.4)
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 (7.5)

The model predicted values of the response variable are given by

 ˆ ˆ ˆy xi i= +β β0 1  (7.6)
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The variance σ2 is estimated as s2, given by

 ∑= − −
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i

n
2 2

1

 (7.7)

The estimated variance of the estimate of the slope parameter is
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The estimated variance of a predicted value ypred at a given value of x—say, 
x0—is
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 (7.9)

As our first example of applying the simple linear regression model, we 
will return to the data used in the previous section but leave out France 
because its inclusion could distort estimates of the parameters in the model 
for the bulk of the data. To fit the model, we use proc reg as follows:

ods graphics on;
proc reg data=drinking2 plot(only)=fitplot;
  model cirrhosis=alcohol;
run;

Basic use of proc reg need only involve the model statement. With ODS 
graphics on, a number of plots are produced by default. Here we have used 
the plot option on the proc statement to request only the fitplot, which is 
shown in Figure 7.4.

The tabular SAS output is shown in Table 7.3. The regression coefficient of 
cirrhosis death rate on alcohol consumption is highly significant. The value 
of R-squared (where R is the multiple correlation coefficient; see Chapter 8) 
indicates that 69% of the variation in death rates amongst the countries is due 
to variation in alcohol consumption.

Our second example (given in Daly et al. 1995) arises from the year 
1975, when the British government set up a Resources Allocation Working 
Party to ‘review the arrangement for distributing National Health Service 
(NHS)  capital and revenue’. It was decided to base regional resource 
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allocation on death rate within regions (or, more precisely, on a ‘stan-
dardised mortality rate’). But NHS resources need to reflect regional vari-
ations in ‘chronic  sickness’—long-standing health problems that require 
medical treatment. The question then, which was a controversial one at 
the time, was ‘Are death rates a good predictor of sickness rates?’ Data that 
can be used to address this question are shown in Table 7.4. These data 
show standardised mortality rates per 10,000 and standardised morbid-
ity rates per 1000 for 10 regions of England and Wales, for the 1972–1973 
period.

The data can be read in and linear regression applied using the following 
SAS code:

data SMRMorb;
input region $15 SMR Morbidity;
datalines;
North 132.7 228.2
Yorkshire 126.8 235.2
North West 132.8 218.6
East Midlands 119.2 222.0
West Midlands 124.8 210.5
East Anglia 108.2 205.0

Observations            14
Parameters                  2
Error DF                    12
MSE                    16.377
R-Square            0.6921
Adj R-Square     0.6665

Fit Plot for Cirrhosis
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FIGURE 7.4
Linear regression fit and confidence interval for cirrhosis death rate against alcohol 

consumption.
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Greater London 116.3 202.6
South East 109.5 189.6
South West 112.2 186.6
Wales 128.6 249.9
;

proc sgplot data=SMRMorb;
  scatter y=Morbidity x=SMR / datalabel=region;
run;

ods graphics on;
proc reg data=SMRMorb plot(only)=fitplot;
  model Morbidity=SMR;
run;

The scatter plot of morbidity against SMR is shown in Figure 7.5 and the 
 fitted regression and confidence intervals in Figure 7.6. The numerical results 
are shown in Table 7.5. The estimate of the slope parameter is 1.64, which is 
highly significant; there is strong evidence that death rates are predictive of 
sickness rates.

TABLE 7.3

Linear Regression Results for Cirrhosis and Alcohol Consumption Data

Model: MODEL1

Dependent Variable: cirrhosis

Number of Observations Read 14
Number of Observations Used 14

Analysis of Variance

Source DF Sum of Squares Mean Square F Value Pr > F
Model 1 441.84624 441.84624 26.98 0.0002
Error 12 196.52804 16.37734
Corrected Total 13 638.37429

Root MSE 4.04689 R-Square 0.6921
Dependent Mean 9.24286 Adj R-Sq 0.6665
Coeff Var 43.78400

Parameter Estimates

Variable DF Parameter Estimate Standard Error t Value Pr > | t |
Intercept 1 –3.61154 2.70081 –1.34 0.2060
alcohol 1 1.64348 0.31641 5.19 0.0002
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For our final example of simple linear regression, we shall use data from 
an experiment in kinesiology, a natural care system that uses gentle muscle 
testing to evaluate many functions of the body in the structural, chemical, 
neurological, and biological realms. A subject performed a standard exercise 
at a gradually increasing level. Two measurements were made: (1) oxygen 

TABLE 7.4

Standardised Mortality Rates and Morbidity Rate in the UK, 1972–1973

Region Mortality Rate (per 10,000) Morbidity Rate (per 1000)

North 132.7 228.2

Yorkshire 126.8 235.2

Northwest 132.8 218.6

East Midlands 119.2 222.0

West Midlands 124.8 210.5

East Anglia 108.2 205.0

Greater London 116.3 202.6

Southeast 109.5 189.6

Southwest 112.2 186.6

Wales 128.6 249.9

Source: Daly, D., Hand, D. J., Jones, M. C., Lunn, A. D., and McConway, K. J. 1995. 

Elements of Statistics. Reading, MA: Addison-Wesley.
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FIGURE 7.5
Scatter plot of SMR against morbidity for the data in Table 7.4.
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Observations            10
Parameters                  2
Error DF                      8
MSE                      186.9
R-Square            0.5832
Adj R-Square     0.5311

Fit Plot for Morbidity
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FIGURE 7.6
Fitted regression and confidence intervals for data in Table 7.4.

TABLE 7.5

Linear Regression Results for the Data in Table 7.4

Model: MODEL1

Dependent Variable: Morbidity

Number of Observations Read 10
Number of Observations Used 10

Analysis of Variance

Source DF Sum of Squares Mean Square F Value Pr > F
Model 1 2092.43857 2092.43857 11.20 0.0101
Error 8 1495.21743 186.90218
Corrected Total 9 3587.65600

Root MSE 13.67122 R-Square 0.5832
Dependent Mean 214.82000 Adj R-Sq 0.5311
Coeff Var 6.36403
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uptake and (2) expired ventilation, which is related to exchange of gases in 
the lungs. Part of the data is shown in Table 7.6 (there are 53 subjects in the 
full data set, which is given in Hand et al. 1994).

The required scatter plots and numerical results can be found from the 
following SAS code:

data anaerob;
 infile 'c:\amsus\data\anaerob.dat' expandtabs;
 input o2in exp @@;
run;

proc sgplot data=anaerob;
 scatter y=exp x=o2in;
run;

ods graphics on;
proc reg data=anaerob;
 model exp=o2in;
run;

The results are shown in Figures  7.7 and 7.8 and in Table  7.7 (the SAS 
 output also produces other plots, which we will discuss in the next chapter).

The estimated regression coefficient given in Table 7.7 is highly significant, 
but the plot in Figure 7.8 makes it very clear that the simple linear regression 
model in Equation (7.3) is not appropriate for these data; we need to consider 
a more complicated model. An obvious choice here is to consider a model 
that, in addition to the linear effect of oxygen uptake, includes a quadratic 
term in this variable—that is, the following model:

TABLE 7.6

Data on Oxygen Uptake and Expired Volume

Subject Oxygen Uptake (litres) Expired Ventilation (litres)

1 574 21.9

2 592 18.6

3 664 18.6

4 667 19.1

5 718 19.2

TABLE 7.5 (Continued)

Linear Regression Results for the Data in Table 7.4

Parameter Estimates

Variable DF Parameter Estimate Standard Error t Value Pr > |t|
Intercept 1 16.54783 59.41489 0.28 0.7877
SMR 1 1.63712 0.48929 3.35 0.0101
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FIGURE 7.7
Scatter plot of data in Table 7.6.

Observations            53
Parameters                  2
Error DF                    51
MSE                    142.99
R-Square              0.912
Adj R-Square     0.9103
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FIGURE 7.8
Fitted linear regression and confidence interval for the data in Table 7.6.
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 = β + β + β + εy x xi i i i0 1 2
2  (7.10)

This model can be fitted using the following SAS code:

data anaerob;
 set anaerob;
 o2sq=o2in*o2in;
run;

proc reg data=anaerob;
 model exp=o2in o2sq;
 output out=regout p=pr uclm=citop lclm=cibot;
run;

proc sort data=regout; by o2in; run;
proc sgplot data=regout;
 band upper=citop lower=cibot x=o2in;
 series y=pr x=o2in;
 scatter y=exp x=o2in;
run;

The results are shown in Table 7.8 and in Figure 7.9.
Clearly, the quadratic term in Equation (7.10) is needed, as shown by the 

very small p-value in Table 7.8 associated with this term. And the model pro-
vides a very good fit for the data, as is clearly seen in Figure 7.9.

TABLE 7.7

Linear Regression Results for the Data in Table 7.6

Number of Observations Read 53
Number of Observations Used 53

Analysis of Variance

Source DF Sum of Squares Mean Square F Value Pr > F
Model 1 75555 75555 528.40 <.0001
Error 51 7292.38118 142.98787
Corrected Total 52 82848

Root MSE 11.95775 R-Square 0.9120
Dependent Mean 60.70755 Adj R-Sq 0.9103
Coeff Var 19.69731

Parameter Estimates

Variable DF
Parameter 

Estimate
Standard  

Error t Value Pr > |t|
Intercept 1 –18.44873 3.81520 –4.84 <.0001
o2in 1 0.03114 0.00135 22.99 <.0001
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One point to note about the model in Equation (7.10) is that it remains a 
linear model despite the presence of the quadratic term because the ‘linear’ 
in linear models refers to the model’s parameters rather than to the explana-
tory variables. An example of a nonlinear model is

 yi = β1xi + exp(β2xi) + εi (7.11)

We shall not deal with such models in this book. It is worth mention-
ing here that including polynomial terms, for example, x and x2, in a lin-
ear regression model can sometimes lead to a problem known as collinearity, 
which will be discussed in Chapter 8. This can often be overcome by what 
is known as centring the explanatory variable—that is, using the original 
variable with its mean subtracted as the explanatory variable. Kleinbaum, 
Kupper, and Muller (1988) provide an example of the effectiveness of such an 
approach for correcting collinearity.

TABLE 7.8

Results for Regression Model Including a Quadratic Term Fitted to Data in 

Table 7.6

Model: MODEL1

Dependent Variable: exp

Number of Observations Read 53
Number of Observations Used 53

Analysis of Variance

Source DF Sum of Squares Mean Square F Value Pr > F
Model 2 82340 41170 4054.90 <.0001
Error 50 507.65646 10.15313
Corrected Total 52 82848

Root MSE 3.18640 R-Square 0.9939
Dependent Mean 60.70755 Adj R-Sq 0.9936
Coeff Var 5.24877

Parameter Estimates

Variable DF
Parameter 

Estimate
Standard 

Error t Value Pr > |t|
Intercept 1 24.27040 1.94023 12.51 <.0001
o2in 1 –0.01344 0.00176 –7.63 <.0001
o2sq 1 0.00000890 3.443676E-7 25.85 <.0001
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7.4 Locally Weighted Regression

The simple linear regression model in (7.3) is an example of a parametric model 
depending as it does on the values of two parameters, β0, the intercept, and 
β1, the slope, of the regression line. Parametric models are very useful but 
they are not adequate for all data sets. The patterns in many bivariate rela-
tionships are too complex to be described by a simple parametric family. An 
alternative approach to dealing with such data is to fit a curve to the observa-
tions locally so that, at any point, the curve at that point depends only on the 
observations at that point and some specified neighbouring points. Because 
such a fit produces an estimate of the response that is less variable than the 
originally observed response, the result is often called a smooth, and proce-
dures for producing such fits are called scatter plot smoothers. We assume we 
have observations on a response variable y and an explanatory variable x 
and we assume that observations on the two variables are related as follows:

 yi = g(xi) + εi (7.12)

where g is a ‘smooth’ function and the εi are random variables with mean 
zero and a constant scale.
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FIGURE 7.9
Fitted regression model including a quadratic term for data in Table 7.6.
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Fixed values are used to estimate the response yi at each xi by fitting poly-
nomials using weighted least squares with large weights for points close to 
xi and smaller weights otherwise. Two parameters need to be chosen to fit a 
lowess curve; the first is a smoothing parameter with larger values leading 
to smoother curves, and the second is the degree of certain polynomials that 
are fitted by the method.

A lowess curve can be fitted to the alcohol consumption and cirrhosis data 
in Table 7.1 and then plotted along with the simple refitted regression line on 
a scatter plot of the data as follows:

proc sgplot data=drinking2;
 reg y=cirrhosis x=alcohol;
 loess y=cirrhosis x=alcohol/nomarkers;
run;

The resulting plot is shown in Figure 7.10. There is some deviation of the 
locally weighted regression line from the simple linear regression fit, but 
with such a small number of observations, this is not convincing evidence 
that the relationship between death rate and alcohol consumption is not 
linear.
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FIGURE 7.10
Scatter plot of death rate against alcohol consumption showing both the fitted linear regression 

and the locally weighted regression fit.
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We shall have more to say about scatter plot smoothers and how they they 
can be used in more complex models in Chapter 11.

7.5 Aspect Ratio of a Scatter Plot

An important parameter of a scatter plot that can greatly influence our abil-
ity to recognise patterns is the aspect ratio—the physical length of the vertical 
axis divided by that of the horizontal axis. By default, SAS scales plots and 
other graphics to fill the available graphics area. This will typically result 
in an aspect ratio of 3:4, which may not be the most useful. To illustrate 
how changing this characteristic of a scatter plot can help understand what 
the data are trying to tell us, we shall use the example given by Cook and 
Weisberg (1982) involving the monthly US births, per thousand population, 
for the years 1940–1948. The data are given in Table 7.9 and a scatter plot of 
the birthrates against month with the default aspect ratio can be obtained 
using the following SAS instructions:

data USbirth;
 retain obs 0;
 do year=1940 to 1947;
 do month=1 to 12;
 input rate @@;
 obs=obs+1;
 datestr=('15'||put(month,z2.)||put(year,4.));
 obsdate=input(datestr,ddmmyy8.);
 output;
 end;
 end;
cards;
1890 1957 1925 1885 1896 1934 2036 2069 2060
1922 1854 1852 1952 2011 2015 1971 1883 2070
2221 2173 2105 1962 1951 1975 2092 2148 2114
2013 1986 2088 2218 2312 2462 2455 2357 2309
2398 2400 2331 2222 2156 2256 2352 2371 2356
2211 2108 2069 2123 2147 2050 1977 1993 2134
2275 2262 2194 2109 2114 2086 2089 2097 2036
1957 1953 2039 2116 2134 2142 2023 1972 1942
1931 1980 1977 1972 2017 2161 2468 2691 2890
2913 2940 2870 2911 2832 2774 2568 2574 2641
2691 2698 2701 2596 2503 2424
;

ods graphics / height=480 width=640;
proc sgplot data=usbirth;
 scatter y=rate x=obsdate;
 format obsdate year.;
run;
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The data are read in using two do loops to set values of year and month 
and each observation is, somewhat arbitrarily, given a date of the 15th of 
the month. Formatted values of this date variable can then be used to label 
the x-axis of the plots. We begin with the default aspect ratio of 480 by 640. 
We specify the unit in pixels, but inches (in) or centimetres (cm) could be 
used.

The resulting plot in Figure 7.11 shows that the US birthrate was increasing 
between 1940 and 1943, decreasing between 1943 and 1946, rapidly increas-
ing during 1946, and then decreasing again during 1947 and 1948. As Cook 
and Weisberg (1986) comment: ‘These trends seem to deliver an interesting 
history lesson since the U.S. involvement in World War II started in 1942 and 
troops began returning home during the part of 1945, about nine months 
before the rapid increase in the birth rate’.

Now let us see what happens when we alter the aspect ratio of the plot 
to 0.3.

ods graphics / height=300 width=1000;
proc sgplot data=usbirth;
 scatter y=rate x=obsdate;
 format obsdate year.;
run;

The resulting graph appears in Figure 7.12. The new plot displays many 
peaks and troughs and suggests perhaps some minor within-year trends 
in addition to the global trends apparent in Figure 7.11. A clearer picture is 
obtained by plotting only a part of the data; here we will plot the observa-
tions for the years 1940–1943 using the SAS code:

TABLE 7.9

US Monthly Birthrates between 1940 and 1943

1890 1957 1925 1885 1896 1934 2036 2069 2060

1922 1854 1852 1952 2011 2015 1971 1883 2070

2221 2173 2105 1962 1951 1975 2092 2148 2114

2013 1986 2088 2218 2312 2462 2455 2357 2309

2398 2400 2331 2222 2156 2256 2352 2371 2356

2211 2108 2069 2123 2147 2050 1977 1993 2134

2275 2262 2194 2109 2114 2086 2089 2097 2036

1957 1953 2039 2116 2134 2142 2023 1972 1942

1931 1980 1977 1972 2017 2161 2468 2691 2890

2913 2940 2870 2911 2832 2774 2568 2574 2641

2691 2698 2701 2596 2503 2424

Note: Read along rows for temporal sequence.
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proc sgplot data=usbirth;
 scatter y=rate x=obsdate;
 format obsdate monyy7.;
 where year<1943;
run;

This plot is shown in Figure 7.13. Now, a within-year cycle is clearly appar-
ent, with the lowest within-year birthrate at the beginning of the summer 
and the highest occurring in the autumn. This pattern can be made clearer 
by connecting adjacent points in the plot with a line; the necessary SAS 
instructions are

proc sgplot data=usbirth;
 series y=rate x=obsdate;
 format obsdate monyy7.;
 where year<1943;
run;

The new plot appears in Figure 7.14. By reducing the aspect ratio to 0.2, 
replotting all 96 observations, and again joining adjacent points with a line, 
both the within-year and global trends become clearly visible. The relevant 
SAS code is
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FIGURE 7.11
US birthrate against year with default aspect ratio.
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ods graphics / height=200 width=1000;
proc sgplot data=usbirth;
 series y=rate x=obsdate;
 format obsdate year.;
run;

The plot appears in Figure 7.15.
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FIGURE 7.13
US birthrate against year (1940–1943) with aspect ratio 0.3.
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US birthrate against year (1940–1943) with observations joined and aspect ratio 0.3.

3000

2800

2600

2400

2200

2000

1800

R
at
e

1940 1941 1942 1943 1944

Obsdate

1945 1946 1947 1948

FIGURE 7.12
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7.6 Estimating Bivariate Densities

Examination of scatter plots often centres on assessing density patterns such 
as clusters, gaps, or outliers. But humans are not particularly good at visually 
examining point density, and some type of density estimate added to the 
scatter plot will frequently be very helpful. There is now a vast literature on 
density estimation (see, for example, Silverman 1986) and here we give only 
a very brief summary.

We assume that we have n bivariate data points represented by X1, X2, … , Xn 
and we wish to estimate the underlying bivariate density of the data. The bivar-
iate kernel density estimator with kernel K and window width h is defined by

 f̂
nh

K
h

i

n

ix x X( ) = −( ){ }
=
∑1 1

2

1

 (7.13)

The kernel function K(x) is a function, defined for bivariate x, satisfying 

xK dx 1)(∫ = . Usually, K(x) will be a radially symmetric unimodal probabil-
ity density function—for example, the standard bivariate normal density 
function:

 K x x x( ) = − ′⎛
⎝⎜

⎞
⎠⎟

1

2

1

2π
exp  (7.14)

To illustrate how bivariate density estimation can be used to enhance a 
scatter plot, we shall use data on birth and death rates for 69 countries; the 
data for 10 countries are given in Table 7.10.

The SAS code for reading in the data and calculating the required bivariate 
density estimate is
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FIGURE 7.15
US birthrate against year with observations joined and aspect ratio 0.2.
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data fertility;
  infile 'c:\amsus\data\fertility.dat';
  input country$ birth death;
run;

ods graphics / reset=all;
proc kde data=fertility;
  bivar birth death / plots=contourscatter noprint;
run;

Proc kde produces univariate and bivariate density estimates using 
normal kernels. The bivar statement requests a bivariate density (univar 
for univariate density). With ODS graphics on, a number of plots are avail-
able. Here, we select a contour plot overlaid with a scatter plot. The ODS 
graphics statement restores the default aspect ratio. The resulting plot is 
shown in Figure 7.16.

As the default bandwidths tend to oversmooth the data, the bwm=option 
can be used to control the bandwidth separately for each variable. Values 
less than one produce a rougher estimate than the default and those greater 
than one produce a smoother estimate. To change the bandwidths and replot 
requires the SAS code that follows:

proc kde data=fertility;
  bivar birth death / bwm=.5 plots=contourscatter noprint;
run;

Figure 7.17, in particular, gives some evidence that there are two modes 
in the data, perhaps indicating the presence of two ‘clusters’ of countries, 
one of which largely corresponds to the ‘West’ and the other to the devel-
oping countries.

The density estimates can also be presented in the form of perspective 
plots, as shown in Figures 7.18 and 7.19, obtained using

TABLE 7.10

Birth and Death Rates for 10 Countries

Country Births Deaths

Algeria 36.4 14.6

Congo 37.3 8.0

Egypt 42.1 15.3

Ghana 55.8 25.6

Ict 56.1 33.1

Mag 41.8 15.8

Morocco 46.1 18.7

Tunisia 41.7 10.1

Cameroon 41.4 19.7

Cey 35.8 8.5
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FIGURE 7.16
Estimated bivariate density for birth and death rate data in Table 7.10.
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Estimated bivariate density for the birth and death rate data.
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FIGURE 7.18
Perspective plot of estimated bivariate density for birth and death rate data.
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Perspective plot of estimated bivariate density for birth and death rate data.
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proc kde data=fertility;
  bivar birth death / plots=surface(rotate=30 tilt=45) noprint;
run;

proc kde data=fertility;
  bivar birth death / bwm=.5 plots=surface(rotate=30 tilt=45) 
noprint;
run;

We have used the rotate and tilt options to give a better view of the 
plots. With the default values, too much detail was hidden behind the main 
peak. The rotate option turns the y-axis the specified number of degrees 
anticlockwise from the vertical. The tilt option tilts the graph away from 
you, starting from the viewpoint directly above.

7.7 Scatter Plot Matrices

The observations in Table 7.11 are part of a set of data reported in Begg and 
Hearns (1966) which were collected in an investigation of the relative con-
tributions of haematocrit (packed cell volume, PCV), fibrinogen, and other 
proteins (albutin and globulen) to the viscosity of blood; the complete data 
set contains observations on 32 patients. The four observed variables gener-
ate between them six possible scatter plots, and it is very important that the 
separate bivariate displays be presented in a way that aids in overall compre-
hension and understanding of the data. The scatter plot matrix is intended to 
accomplish exactly this objective.

A scatter plot matrix is defined as a square, symmetric grid of bivariate 
scatter plots. This grid has p rows and columns, each one corresponding to a 
different variable. Each of the grid’s cells shows a scatter plot of two  variables. 
Variable j is plotted against variable i in the ijth cell, and the same variables 
appear in cell ji with the x- and y-axes of the scatter plots interchanged. 

TABLE 7.11

Data on Blood Viscosity, Packed Cell Volume (PCV), Plasma Fibrinogen, 

and Other Proteins from Five Hospital Patients

Patient
Blood 

Viscosity (cP) PCV (100%)
Plasma Fibrinogen 

(mg/100 mL)
Plasma Protein 

(g/100 mL)

1 3.71 40 344 6.27

2 3.78 40 330 4.86

3 3.85 42.5 280 5.09

4 3.88 42 418 6.79

5 3.98 45 744 6.40

Source: Begg, T. B., and Hearns, J. B. 1966. Clinical Science 31:87–93.
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The  reason for including both the upper and lower triangles of the grid, 
despite the seeming redundancy, is that it enables a row and column to be 
scanned visually to see one variable against all others, with the scales of the 
one variable lined up along the horizontal axis or the vertical axis:

data blood;
  infile 'c:\amsus\data\blood_viscosity.dat' firstobs=2;
  input patid viscosity PCV fibrinogen protein;
run;
proc sgscatter data=blood;
  matrix viscosity -- protein / diagonal=(histogram kernel);
run;

The resulting scatter plot matrix is shown in Figure 7.20. Histograms and 
univariate density estimates of the distribution of each of the four variables 
are shown on the main diagonal.

The scatter plot matrix is a useful (and almost essential) graphic to be used 
when looking at the correlation matrix of a set of variables. Such a matrix 
can be found for the data in Table 7.11 using proc corr. A scatter plot matrix 
will also be produced by proc corr when ODS graphics is on:

proc corr data=blood;
 var viscosity--protein;
run;
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FIGURE 7.20
Scatter plot matrix of blood viscosity data.
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The resulting output is shown in Table 7.12 and indicates that there are sub-
stantial correlations between several pairs of variables—for example, fibrin-
ogen and viscosity.

When three or more variables are measured, as in Table 7.11, it is often 
of interest to calculate partial correlation coefficients. For three variables x, y, 
and z, with correlation coefficients for a sample of n observations of rxy, rxz, 
and ryz, the partial correlations are calculated as follows:
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TABLE 7.12

Correlation Matrix for the Data in Table 7.11

4 Variables: viscosity PCV protein

Simple Statistics

Variable N Mean Std Dev Sum Minimum Maximum
viscosity 32 4.64563 0.62088 148.66000 3.71000 5.90000
PCV 32 47.93750 4.45678 1534 40.00000 57.00000

32 465.96875 169.43292 14911 276.00000 1070
protein 32 5.89406 0.56861 188.61000 4.82000 6.89000

viscosity PCV protein
viscosity 1.00000 0.87882 0.46791 –0.10107

<.0001 0.0069 0.5820
PCV 0.87882 1.00000 0.42332 –0.15749

<.0001 0.0158 0.3893
0.46791 0.42332 1.00000 –0.05680
0.0069 0.0158 0.7575

protein –0.10107 –0.15749 –0.05680 1.00000
0.5820 0.3893 0.7575
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The test that a population partial correlation coefficient is zero can be 
applied using the appropriate sample partial correlation in the test statis-
tic used for the usual correlation correlation described earlier in this chap-
ter, except that there are now n – 3 degrees of freedom rather than n – 2. For 

example, to test the hypothesis ρxy|z = 0, the test statistic is 
−

−
r

n
r

3

1
xy z

xy z
|

|
2

 tested 

against a t-distribution with n – 3 degrees of freedom.
For the data in Table 7.11, it is of most interest to see if the association of 

blood viscosity and fibrinogen remains after allowing for the association 
with PCV. The SAS code needed to get the relevant coefficients is

proc corr data=blood nosimple;
 var viscosity fibrinogen protein;
 partial pcv;
run;

The output is shown in Table 7.13. Note that the partial correlation between 
viscosity and fibrinogen is now reduced to 0.222, which is not significantly 
different from zero. This suggests that the association between blood viscos-
ity and fibrinogen can be largely explained by variation in PCV.

7.8 Summary

The scatter plot is one of the basic tools for an initial investigation of bivari-
ate data. From it, the form of the relationship between two variables is often 
apparent, as are outliers that may interfere with later analyses. Using the 
scatter plot when interpreting the value of a correlation coefficient is essen-
tial; drawing conclusions about the relationship between two variables sim-
ply from the numerical value of a correlation coefficient is poor data analysis 

TABLE 7.13

Partial Correlation Coeffi cients for Data in Table 7.11

viscosity protein
viscosity 1.00000 0.22180 0.07922

0.2304 0.6718
0.22180 1.00000 0.01103

0.2304 0.9530
protein 0.07922 0.01103 1.00000

0.6718 0.9530
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practice and can lead to misjudgements and errors. A scatter plot enhanced 
with an estimate of the bivariate density of the two variables may suggest 
more complex structure in the data—for example, the presence of clusters of 
similar observations—and suggest that the application of cluster analysis (see 
Everitt et al. 2011) to the data might be useful.

Consideration of a locally weighted regression fit alongside the fitting of a 
simple linear regression model is often a useful exercise. Lastly, checking the 
assumptions of the model fitted is always essential. However, we will leave 
consideration of how to do this until the next chapter, in which we consider 
the extension of the simple linear model to the case where there is more than 
a single explanatory variable.
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8
Multiple Linear Regression

8.1 Introduction

Multiple linear regression represents a generalisation, to more than a single 
explanatory variable, of the simple linear regression procedure described 
in Chapter 7. It is now that the relationship between a response variable 
and several explanatory variables becomes of interest. (Note that in many 
accounts of multiple linear regression, what we term explanatory variables are 
called independent variables; however, this is a misleading term because the 
variables are only rarely independent of one another.) The adjective ‘mul-
tiple’ indicates that at least two explanatory variables are involved in the 
modelling exercise. At the onset, it is important to note that the explana-
tory variables are strictly assumed to be fixed and under the control of the 
investigator. That is, they are not considered to be random variables; only the 
response variable is considered to be a random variable.

In practice, of course, this assumption is unlikely to be true; in this case, the 
results from a multiple linear regression are interpreted as being conditional on 
the observed values of the explanatory variables, and the inherent variation 
in the explanatory variables is ignored. Because there are no distributional 
assumptions about the explanatory variables, they may be nominal, categorical 
with more than two categories (such variables need to be coded in an appro-
priate way), ordered categorical, or interval. The goals of a multiple regression 
may be to determine whether the response variable and one or more explana-
tory variables are associated in some systematic way or to predict values of the 
response variables from values of the explanatory variables, or both.

Details of the model, including the estimation of its parameters by least 
squares and the calculation of standard errors, are given in the next section.

8.2 Multiple Linear Regression Model

The multiple linear regression model relates a response variable to a set of 
explanatory variables. The relationship assumed is linear (in terms of the 
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parameters rather than in terms of the explanatory variables; see Chapter 7), 
and the parameters in the model (usually known as regression coefficients) 
are generally estimated by least squares. An inferential framework is added 
by making specific distributional assumptions about the error terms in the 
model. Details of the structure of the model, estimation and testing of its 
parameters, and assessing its fit are all described in this section.

We start by letting yi represents the value of the response variable on the ith 
individual, and xi1, xi2, … , xip represent the individual’s values on p explana-
tory variables, with i = 1,2 … n. As usual, n represents the sample size. The 
multiple linear regression model is given by

 yi = β0 + β1xi1 + … + βpxip + εi (8.1)

The residual or error terms εi, i = 1, … , n are assumed to be independent 
random variables having a normal distribution with mean zero and constant 
variance σ2.

Consequently, the distribution of the random response variable, y, is also 
normal with expected value

 E(y|x1,x2, … , xp) = β0 + β1x1 + … + βpxp (8.2)

and variance σ2.
The parameters of the model βk, k = 1, 2, … , p are known as regression coef-

ficients. They represent the expected change in the response variable associ-
ated with a unit change in the corresponding explanatory variable, when 
the remaining explanatory variables are held constant. As explained in 
Chapter 7, the ‘linear’ in multiple linear regression applies to the regression 
parameters—not to the response or explanatory variables. Consequently, 
models in which, for example, the logarithm of a response variable is mod-
elled in terms of quadratic functions of some of the explanatory variables 
would be included in this class of models.

The multiple regression model can be written most conveniently for all n 
individuals by using matrices and vectors as

 y = Xβ + ε (8.3)

where ′ = [ ] ′ = ⎡⎣ ⎤⎦ ′ =y y y yn p1 2 0 1 1 2, , , , , , , , , ,… …ββ εεβ β β ε ε …… , εn[ ] and

 X =

⎡

⎣
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1

1

1

11 12 1

21 22 2

1 2

x x x

x x x

x x x
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p

n n np
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�
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�
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⎤

⎦

⎥
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⎥

 (8.4)
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Each row in X (sometimes known as the design matrix) represents the val-
ues of the explanatory variables for one of the individuals in the sample, 
with the addition of unity, which takes care of the parameter, β0, needed in 
the model for each individual in the sample. Assuming that X′X is nonsin-
gular (i.e., can be inverted), then the least squares estimator of the parameter 
vector β is

 X X X yˆ 1ββ )(= ′ ′−
 (8.5)

This estimator β̂β has the following properties:

 E β̂β ββ)( =  (8.6)

and

 X Xcov ˆ 2 1ββ( ) ( )= σ ′ −
 (8.7)

The diagonal elements of the matrix cov β̂β( ) give the variances of the β̂ j, 

whereas the off-diagonal elements give the covariances between pairs ˆ , ˆ
j kβ β . 

The square roots of the diagonal elements of the matrix are thus the standard 

errors of the β̂ j. The fit of the regression model can be partially assessed, at least, 
by using the analysis of variance table shown in Table 8.1, which partitions the 
total sum of squares of the response variable into a part due to regression on 
the explanatory variables and in part due to the errors in the model. In this 
table, ŷi  is the predicted value of the response variable for the ith individual 

( )= β + β + + βy x xˆ ˆ ˆ
i ij p ip0 1 �  and y  is the mean value of the response variable.

The mean square ratio MSR/MSE provides an F-test of the null hypothesis 
that the regression coefficients of all p explanatory variables take the value 
zero—that is,

 H0 : β1 = β2 = ⋯ βp = 0

TABLE 8.1

Analysis of Variance Table for the Multiple Linear Regression Model

Source of Variation Sum of Squares (SS) Degrees of Freedom (DF) Mean Square

Regression ∑ ( )−
=

y yˆ
ii

n

1

2 p MSR = SS/DF

Residual ∑ ( )−
=

y ŷi ii

n

1

2 n – p – 1 MSE = SS/DF

Total ∑ ( )−
=

y yii

n

1

2 n – 1
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Under H0, the mean square ratio has an F-distribution with p, n – p – 1 degrees 
of freedom. (Testing this very general hypothesis is usually of limited interest, 
as we shall see later in the chapter.)

An estimate of σ2 is provided by s2, given by

 ∑( )=
− −

−
=

s
n p

y y
1

1
ˆ

i i
i

n
2 2

1

 (8.8)

The correlation between the observed values yi and the predicted values 

y Rˆ ,i , is known as the multiple correlation coefficient. The value of R2 gives the 

proportion of variance of the response variable accounted for by the explana-

tory variables. Individual regression coefficients can be assessed by using the 

ratio ˆ ˆβ j jSE β( ), although these ratios should only be used as rough guides to 

the ‘significance’ or otherwise of the coefficients for reasons discussed later 

in the chapter.

8.3  Some Examples of the Application of the Multiple 
Linear Regression Model

8.3.1  Effect of the Amount of Anaesthetic Agent Administered 
during an Operation

This example is described in full in Cullen and van Belle (1975). The main 
interest in the study was the degree of trauma on the immune system, as 
measured by the decreasing ability of lymphocytes to transform in the pres-
ence of mitogen (a substance that enhances cell division). The explanatory 
variables measured were the duration of anaesthesia (in hours) and the 
trauma factor rated on a five-point scale of increasing seriousness of the 
operation as follows:

 0 Diagnostic or therapeutic regional anaesthesia; examination under gen-
eral anaesthesia

 1 Joint manipulation; minor orthopaedic procedures; cystoscopy; dilation 
and curettage

 2 Extremity, genitourinary, rectal, and eye procedures; hernia repair; 
laparoscopy

 3 Laparotomy; craniotomy; laminectomy; peripheral vascular surgery

 4 Pelvic exterteration; jejuna interposition; total cystectomy
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(In what follows, we will assume that the last variable is a quasicontinuous 
rather than a categorical scale; if we had decided to consider the variable as 
categorical, it would need to be recast as a series of four dummy variables—see 
later in the chapter for a brief explanation.)

The response variable in this example is the percentage depression of lym-
phocyte transformation following anaesthesia. It is assumed that the amount 
of anaesthetic agent administered is directly proportional to the duration of 
anaesthesia. The data for the first 5 of the 35 patients in the data are shown 
in Table 8.2.

The multiple linear regression model can be fitted to the anaesthesia data 
using the following SAS code:

data anaesthetic;
  infile 'c:\AMSUS\data\anaesthetic.dat' expandtabs;
  input duration trauma dlt;
run;

proc reg data=anasthetic;
  model dlt=duration trauma;
run;

The output is shown in Table 8.3. Here, the F-test that the regression coef-
ficients β1 and β2 are both zero has an associated p-value of 0.055, and the 
t-statistics given by the ratios of the estimated regression coefficients to 
their estimated standard errors have associated p-values of 0.76 and 0.17. It 
appears that neither duration of anaesthesia nor degree of trauma is use-
ful for predicting the percentage depression of lymphocyte transforma-
tion following anaesthesia, although jointly they do approach significance 
at the 5% level. The R-squared value of just 0.17 underlines that the two 
explanatory variables have little predictive power for the response variable, 
accounting as they do for only 17% of the variance in the latter. The number 
of observations in this example is, however, rather small, so inferences are 
not particularly powerful.

TABLE 8.2

Depression of Lymphocyte Transformation 

during Operation

Duration Trauma Depression

4.0 3 36.7

6.0 3 51.3

1.5 2 40.8

4.0 2 58.3

2.5 2 42.2

Source: Cullen, B. F. and van Belle, G. 1975. 

Anaesthesiology, 43:577–583.
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8.3.2 Mortality and Water Hardness

The data shown in Table  8.4 were collected in an investigation of envi-
ronmental causes of disease. The data give the annual mortality rate per 
100,000 for males, averaged over the years 1958–1964, and the calcium con-
centration (in parts per million) in the drinking water supply for 61 large 
towns in England and Wales. (The higher the calcium concentration is, the 
harder is the water.) Towns at least as far north as Derby are identified in 
Table 8.4. The questions of interest for these data are whether water hard-
ness is predictive of mortality and whether there is a geographical factor in 
the relationship.

In this example, one of the explanatory variables is binary (north/south), 
making the multiple regression model equivalent to the analysis of cova-
riance model encountered in Chapter 6. The presence of the categorical 
variable raises no real problems because, in the multiple regression model, 
no distributional assumptions are made about the explanatory vari-
ables (strictly speaking, they are not considered to be random variables). 
However, proc reg expects all variables to be numeric, so the character 

TABLE 8.3

Results of Applying Multiple Linear Regression to the Data in Table 8.2

Model: MODEL1

Dependent Variable: dlt

Number of Observations Read 35

Number of Observations Used 35

Analysis of Variance

Source DF Sum of Squares Mean Square F Value Pr > F
Model  2 4163.43495 2081.71747 3.19 0.0547
Error 32 20901 653.17162
Corrected Total 34 25065

Root MSE  25.55722 R-Square 0.1661
Dependent Mean  25.54571 Adj R-Sq 0.1140
Coeff Var 100.04505

Parameter Estimates

Variable DF Parameter Estimate Standard Error t Value Pr > | t |
Intercept 1 –2.50201 12.34502 –0.20 0.8407
duration 1 1.11313 3.60534 0.31 0.7595
trauma 1 10.31859 7.42995 1.39 0.1745
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TABLE 8.4

Mortality and Water Hardness

Town Mortality per 100,000 Calcium (ppm)

S 1247 105

N 1668  17

S 1466  5

N 1800  14

N 1609  18

N 1558  10

N 1807  15

S 1299  78

N 1637  10

S 1359  84

S 1392  73

S 1519  21

N 1755  12

S 1307  78

S 1254  96

N 1491  20

N 1555  39

N 1428  39

S 1318 122

S 1260  21

N 1723  44

N 1379  94

N 1742  8

N 1574  9

N 1569  91

S 1096 138

N 1591  16

S 1402  n

N 1702  44

S 1581  14

S 1309  59

S 1259 133

N 1427  27

N 1724  6

S 1175 107

S 1486  5

S 1456  90

N 1696  6

S 1236 101

N 1711  13

(Continued)
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variable location is recoded into a 0/1 numeric variable region in the 
data step, as follows:

data water;
  infile 'c:\AMSUS\data\water.dat';
  input location$ mortality calcium;
  if location='N' then region=1;
     else region=0;
run;

proc sort data=water; by calcium; run;
proc reg data=water;
  model mortality= calcium region;
  output out=regout p=pred uclm=cihi lclm=cilo;
run;

The results of this analysis are shown in Table 8.5.
The global test that both regression coefficients in the model are zero has 

an associated p-value less than 0.0001. Clearly, at least one of the regression 
coefficients differs from zero. Examination of the t-statistics for the individ-
ual regression coefficients suggests that calcium concentration is of greatest 
importance in predicting mortality rate. The R2 value is 0.43 so, together, the 

TABLE 8.4 (Continued)

Mortality and Water Hardness

Town Mortality per 100,000 Calcium (ppm)

N 1444  14

N 1591  49

N 1987  8

N 1495  14

S 1369  68

S 1257  50

N 1587  75

N 1713  71

N 1557  13

N 1640  57

N 1709  71

S 1625  13

N 1625  20

S 1527  60

S 1627  53

S 1486 122

N 1772  15

N 1828  8

N 1704  26

S 1485  81

N 1378  71
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two explanatory variables account for over 40% of the variation in mortal-
ity rates. The estimated regression coefficient for calcium concentration sug-
gests that a 1 ppm increase in calcium concentration reduces mortality by 
about 3 per 100,000 conditional on region, with a 95% confidence interval of 
approximately [2,4] per 100,000.

With just two explanatory variables in this example, it becomes possible 
to show the fitted model graphically; this can be done using the following 
statements:

proc sgplot data=regout;
 band x=calcium upper=cihi lower=cilo /group=location;
 scatter y=mortality x=calcium / markerchar=location;
 series y=pred x=calcium /group=location;
run;

When combining the band plot with other plots, the band statement 
should usually come first. Otherwise, the bands will overwrite the line and 
the points that lie within them.

TABLE 8.5

Results from Applying Multiple Linear Regression to the Data in Table 8.4

Model: MODEL1

Dependent Variable: Mortality

Number of Observations Read 61

Number of Observations Used 61

Analysis of Variance

Source DF Sum of Squares Mean Square F Value Pr > F
Model 2 914803 457402 22.14 <.0001
Error 58 1198371  20662
Corrected Total 60 2113174

Root MSE    143.74130 R-Square 0.4329
Dependent Mean 1524.14754 Adj R-Sq 0.4133
Coeff Var     9.43093

Parameter Estimates

Variable DF Parameter Estimate Standard Error t Value Pr > |t|
Intercept 1 1660.82438 38.01682 43.69 <.0001
calcium 1 –3.19101 0.49016 –6.51 <.0001
region 1 24.18383 37.44636 0.65 0.5209
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The resulting diagram, shown in Figure  8.1, consists of a scatter plot of 
mortality and calcium concentration together with the fitted parallel regres-
sion lines (i.e., lines with equal slopes that are assumed in this model for the 
two regions).

A more complex model that might be considered for these data is one 
that allows for a possible interaction between location and hardness. Unlike 
proc glm, proc reg does not allow interactions to be specified on the model 
statement in the form region*calcium. Instead, a separate variable needs 
to be calculated to represent the interaction, as follows:

data water;
  set water;
  reg_calc=region*calcium;
run;

proc reg data=water;
  model mortality= calcium region reg_calc;
  output out=regout p=pred uclm=cihi lclm=cilo;
run;

The results are given in Table 8.6. Again, the overall F-test provides clear 
evidence of at least one nonzero regression coefficient. The individual t-tests 
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again suggest that only calcium concentration is predictive of mortality. In 
particular, it appears that the interaction term is not needed. This is con-
firmed by examining the R2 values for the two models: 0.43 for the first, with 
no interaction term, and 0.44 for the second, which includes the interaction 
term. The increase corresponding to the addition of the interaction term to 
the first model is very small.

The plot illustrating the second model is shown in Figure 8.2. In this case, 
the two regression lines are not assumed to be parallel. But it is clear from 
our previous discussion that the parallel lines model is adequate for these 
data; indeed, since there is no evidence that region is predictive of mortal-
ity, a simple fit of mortality on calcium concentration is probably all that is 
required for an adequate account of the data.

The shading in Figures 8.1 and 8.2 shows the boundaries of the confidence 
limits of the regression lines of mortality on calcium concentration for the 
two regions (see Chapter 7). (This is a convenient point to note that categori-
cal explanatory variables with more than two variables can also be used in 

TABLE 8.6

Multiple Linear Regression Model Including Region × Mortality Interaction

Model: MODEL1

Dependent Variable: mortality

Number of Observations Read 61

Number of Observations Used 61

Analysis of Variance

Source DF Sum of Squares Mean Square F Value Pr > F
Model 3 931321 310440 14.97 <.0001
Error 57 1181852 20734
Corrected Total 60 2113174

Root MSE 143.99392 R-Square 0.4407
Dependent Mean 1524.14754 Adj R-Sq 0.4113
Coeff Var 9.44751

Parameter Estimates

Variable DF Parameter Estimate Standard Error t Value Pr > |t|
Intercept 1 1681.96605 44.84877 37.50 <.0001
calcium 1 –3.59728 0.66954 –5.37 <.0001
region 1 –17.55734 59.95146 –0.29 0.7707
reg_calc 1 0.87905 0.98486 0.89 0.3758



230 Applied Medical Statistics Using SAS

multiple linear regression modelling as long as they are represented by a 
series of dummy variables. To ‘dummy-code’ a categorical variable with k 
categories, k – 1 binary dummy variables are created. Each of the dummy 
variables relates to a single category of the original variable and takes the 
value ‘1’ when the subject falls into the category and ‘0’ otherwise. The cat-
egory that is ignored in the dummy coding represents what is known as the 
reference category.)

8.3.3 Weight and Physical Measurements in Men

Larner (1996) measured the weight and various physical measurements for 
22 males aged 16–30. Subjects were randomly chosen volunteers and all were 
in reasonably good health. Subjects were requested to tense each muscle 
being measured slightly to ensure measurement consistency. The data are 
shown in Table 8.7. (These data are useful for illustrating various aspects of 
multiple regression, as we shall attempt to demonstrate in what follows. But 
in practice, one would probably be ill advised to fit multiple regression mod-
els to a data set with only 22 observations and 10 explanatory variables; in 
general, the number of observations should be at least 10 times the number 
of variables.)

The question of interest for these data is how weight can best be predicted 
from the other measurements. To begin, it is useful to examine the scatter 
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Graphical illustration of a multiple linear regression model including a region x mortality 

interaction fitted to water hardness data.
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plot matrix of the data (see Chapter 7). The following SAS code reads in the 
data and constructs the matrix of scatter plots, in this case including a histo-
gram for each variable on the main diagonal:

data PhysicalMeasures;
  infile 'c:\AMSUS\data\PhysicalMeasures.dat';
input Mass Fore Bicep Chest Neck Shoulder Waist Height Calf 
Thigh Headcards;
run;

proc sgscatter data=PhysicalMeasures;
 matrix mass--head /diagonal=(histogram kernel);
run;

TABLE 8.7

Weight and Physical Measurements in Men

Mass Fore Bicep Chest Neck Shoulder Waist Height Calf Thigh Head

77 28.5 33.5 100 38.5 114 85 178 37.5 53 58

85.5 29.5 36.5 107 39 119 90.5 187 40 52 59

63 25 31 94 36.5 102 80.5 175 33 49 57

80.5 28.5 34 104 39 114 91.5 183 38 50 60

79.5 28.5 36.5 107 39 114 92 174 40 53 59

94 30.5 38 112 39 121 101 180 39.5 57.5 59

66 26.5 29 93 35 105 76 177.5 38.5 50 58.5

69 27 31 95 37 108 84 182.5 36 49 60

65 26.5 29 93 35 112 74 178.5 34 47 55.5

58 26.5 31 96 35 103 76 168.5 35 46 58

69.5 28.5 37 109.5 39 118 80 170 38 50 58.5

73 27.5 33 102 38.5 113 86 180 36 49 59

74 29.5 36 101 38.5 115.5 82 186.5 38 49 60

68 25 30 98.5 37 108 82 188 37 49.5 57

80 29.5 36 103 40 117 95.5 173 37 52.5 58

66 26.5 32.5 89 35 104.5 81 171 38 48 56.5

54.5 24 30 92.5 35.5 102 76 169 32 42 57

64 25.5 28.5 87.5 35 109 84 181 35.5 42 58

84 30 34.5 99 40.5 119 88 188 39 50.5 56

73 28 34.5 97 37 104 82 173 38 49 58

89 29 35.5 106 39 118 96 179 39.5 51 58.5

94 31 33.5 106 39 120 99.5 184 42 55 57

Notes: Mass = weight in kilograms; fore = maximum circumference of forearm; bicep = maxi-

mum circumference of bicep; chest = distance around chest directly under the armpits; 

neck = distance around neck, approximately halfway up; waist = distance around waist, 

approximately at trouser line; thigh = circumference of thigh, measured halfway between 

the knee and the top of the leg; calf = maximum circumference of calf; height = height 

from top to toe; shoulders = distance around shoulders, measured around the peak of the 

shoulder blades. All measurements are in centimetres.
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The resulting diagram is shown in Figure 8.3.
The scatter plot matrix clearly highlights the very strong relationship 

between most pairs of variables in Table 8.7. Highly correlated explanatory 
variables may be an indication of approximate multicollinearity, a phenom-
enon that can cause several problems when applying the multiple regression 
model, including:

Severely limiting the size of the multiple correlation coefficient, R, 
because the explanatory variables are largely attempting to explain 
much of the same variability in the response variable (see Dizney 
and Gromen 1967 for an example)

Making the assessment of the importance of a given explanatory 
variable (see later discussion) difficult because the effects of explana-
tory variables are confounded due to their intercorrelations
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FIGURE 8.3
Scatter plot matrix of physical measurements of young men.
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Increasing the variances of the regression coefficients, thus making 
the model for prediction less stable for prediction—the parameter 
estimates become unreliable

Spotting multicollinearity amongst a set of explanatory variables may not 
be easy. The obvious course of action is simply to examine the correlations 
between these variables, but whilst this is often helpful, it is by no means 
foolproof because more subtle forms of multicollinearity may be missed. An 
alternative and generally far more useful approach is to examine what are 
known as the variance inflation factors of the explanatory variables. The vari-
ance inflation factor for the jth variable, VIFj, is given by

 =
−

VIF
R

1

1
j

j
2

 (8.9)

where Rj
2 is the square of the multiple correlation coefficient from the regres-

sion of the jth explanatory variable on the remaining explanatory variables.
The variance inflation factor of an explanatory variable indicates the 

strength of the linear relationship between the variable and the remaining 
explanatory variables. A rough rule of thumb is that variance inflation fac-
tors greater than 10 give some cause for concern.

How can multicollinearity be combated? One way is to combine in some 
way explanatory variables that are highly correlated. An alternative is simply 
to select one of the set of correlated variables. Two more complex possibilities 
are regression on principal components and ridge regression, both of which are 
described in Chatterjee and Price (2000).

We can look at the variance inflation factors for the data in Table 8.7 using 
the following SAS instructions:

proc reg data=PhysicalMeasures;
  model mass=fore--head /vif;
run;

The output is shown in Table 8.8.
Concentrating for the moment on the variance inflation factors, we see that 

some are quite large; for example, the factor for forearm is a little greater than 
10. It might be advisable to consider dropping this variable, but here we will 
retain it and interpret the results of the multiple regression as they are given 
in Table  8.8. The overall F-test indicates that not all the regression coeffi-
cients are zero and the R2 value of 0.98 shows that, jointly, the 10 explanatory 
variables account for 98% of the variation in the weight. For what they are 
worth here—with so many explanatory variables, some of which are highly 
correlated—the t-tests suggest that waist and height are the best predictors 
of mass.

But the problem is that the values of the t-statistics are conditional on which 
explanatory variables are included in the current model. The values of these 
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statistics will change, as will the values of the estimated regression coeffi-
cients and their standard errors as other variables are included and excluded 
from the model. Consequently, using these t-statistics to decide which of the 
explanatory variables are most predictive of the response and thus to decide 
on a more parsimonious model for the data (i.e., one with fewer explana-
tory variables but still adequate to describe the variation on the response) is 
rarely satisfactory. Other, more involved procedures are needed to search for 
the required more parsimonious model and a number of these are described 
in the next section.

TABLE 8.8

Variance Infl ation Factors for the Explanatory Variables in the Data in Table 8.7

Model: MODEL1

Dependent Variable: Mass

Number of Observations Read 22

Number of Observations Used 22

Analysis of Variance

Source DF Sum of Squares Mean Square F Value Pr > F
Model 10 2466.62407 246.66241 47.17 <.0001
Error 11 57.52366 5.22942
Corrected Total 21 2524.14773

Root MSE  2.28679 R-Square 0.9772
Dependent Mean 73.93182 Adj R-Sq 0.9565
Coeff Var  3.09311

Parameter Estimates

Variable DF
Parameter 

Estimate
Standard 

Error t Value Pr > |t|
Variance 

Intercept 1 –69.51714 29.03739 –2.39 0.0356 0
Fore 1 1.78182 0.85473 2.08 0.0612 10.80790
Bicep 1 0.15509 0.48530 0.32 0.7553 7.98620
Chest 1 0.18914 0.22583 0.84 0.4201 9.28524
Neck 1 –0.48184 0.72067 –0.67 0.5175 7.03335
Shoulder 1 –0.02931 0.23943 –0.12 0.9048 9.38106
Waist 1 0.66144 0.11648 5.68 0.0001 3.31098
Height 1 0.31785 0.13037 2.44 0.0329 2.62357
Calf 1 0.44589 0.41251 1.08 0.3029 3.99248
Thigh 1 0.29721 0.30510 0.97 0.3509 4.83034
Head 1 –0.91956 0.52009 –1.77 0.1047 1.71458
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8.4 Identifying a Parsimonious Model

A multiple regression analysis begins with a set of observations on a response 
variable and a number of explanatory variables. After an initial analysis has 
established that some, at least, of the explanatory variables are predictive of 
the response, the question arises as to whether a subset of the explanatory 
variables might provide a simpler model that is essentially as useful as the 
full model in predicting or explaining the response.

As pointed out at the end of the previous section, because the t-statistics 
associated with each regression coefficient provide only a partial answer 
to this question, we need to consider other possible approaches. The best 
approach is to build a model based on theory—for example, by first consid-
ering the most important predictors and confounders and then sequentially 
considering inclusion of further variables believed to be associated with the 
response variable.

Often, however, this approach is not possible and then the investigator 
may consider using one of the automatic procedures that are available. These 
rely on testing many different combinations of variables and therefore suffer 
from all of the problems of multiple testing; spurious results (false positives) 
are likely, and the analysis must be considered exploratory. Nevertheless, we 
shall briefly examine two automatic selection procedures.

8.4.1 All Possible Subsets Regression

Consider a p-parameter multiple regression model in which there is a param-
eter for the intercept and p – 1 explanatory variables; for such a model, there 
are 2p–1 – 1 possible regression models. Each variable can be in or out of the 
model, and the model containing no explanatory variables is excluded. In all 
possible subsets, regression of all these models is estimated and then com-
pared using some numerical criterion designed to indicate which models are 
the ‘best’. The most commonly used of the criteria that have been proposed 
is Mallows’ Cp statistic, which is defined as

 Cp = (RSSp / s2) − (n − 2p) (8.10)

where RSSp is the residual sum of squares from a regression model with a 
particular set of p – 1 of the explanatory variables, plus an intercept, and s2 is 
the estimate of σ2 from the model, including all explanatory variables under 
consideration. (Note that we are using p here for the number of variables in 
the putative model, not for the number of available explanatory variables, 
which we shall denote by t.)

It can be shown that Cp is an unbiased estimate of the mean square error, 

∑ ( )−⎡⎣ ⎤⎦E y E y nˆ /i i

2

, of the model’s fitted values as estimates of the true 
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expectations of the observations. ‘Low’ values of Cp are those that indicate 
the best models to consider. One way to use Cp is to plot its value against p. 
In such a plot, the subsets of variables worth considering in searching for a 
parsimonious model are those lying close to the line Cp = p; the model with 
the lowest Cp value approximately equal to p is considered to be the ‘best’ 
model for the data.

In this plot, the value of p is (roughly) the contribution to Cp from the vari-
ance of the estimated parameters, whereas the remaining Cp – p is (roughly) 
the contribution from the bias of the model. This feature makes the plot a 
useful device for a broad assessment of the Cp values of a range of models, 
although its use should not necessarily rule out choice of the model with the 
lowest value of Cp. (The Cp criterion is described in more detail in Mallows 
1973, 1995 and Burman 1996.)

All possible subsets’ regression using the Cp criterion can be performed 
using the selection=cp option on the model statement. For the purposes 
of illustration, we use the best= option to limit the output and plot to the 
best 20 models:

ods graphics on;
proc reg data=PhysicalMeasures plots(only)=cpplot;
  model mass=fore--head / selection=cp best=20;
run;

The output in Table 8.9 lists the resulting models in ascending order of Cp.
The plot of Cp values is shown in Figure 8.4. The continuous line is Cp = p 

(remember that p here is the number of parameters in the model—that is, the 
number of explanatory variables plus the intercept). Although the model that 
includes the explanatory variables forearm, waist, height, thigh, and head 
has the lowest value of Cp, the model including only forearm, waist, height, 
and thigh has a value only slightly larger and lies closer to the line. Both of 
these models are worth considering as parsimonious models that describe 
the data adequately. The noncontinuous line is Cp = 2p–t and arises from the 
suggestion made in Hocking (1976) that models for which Cp ≤ 2p–t are most 
suitable for estimation and extrapolation. Use of this approach would lead 
to choosing the model containing the seven explanatory variables: forearm, 
chest, waist, height, calf, thigh, and head, for which the Cp value is less than 
6 (i.e., 2 × 8 – 10).

8.4.2 Stepwise Methods

Perhaps the most common approach to selecting informative subsets of 
explanatory variables in a multiple regression is to use a method that relies 
on a significance test to select a particular explanatory variable for inclusion 
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in, or deletion from, the current regression model. There are three main 
possibilities:

Forward selection

Backward elimination

Stepwise regression

The forward selection approach begins with an initial model that contains 
only a constant term and successively adds explanatory variables to the model 
from the pool of candidate variables until a stage is reached where none 
of the candidate variables, if added to the current model, would contribute 

TABLE 8.9

Results from Applying Mallows’ Cp Statistic to the Data of Physical Measurements 

in Young Men

Model: MODEL1
Dependent Variable: Mass

Cp Selection Method

Number of Observations Read 22

Number of Observations Used 22

Model 
Index

Number 
in Model C(p) R-Square Variables in Model

1 5 4.1421 0.9707 Fore Waist Height Thigh Head
2 6 4.3765 0.9744 Fore Waist Height Calf Thigh Head
3 4 4.4405 0.9659 Fore Waist Height Thigh
4 6 4.8125 0.9735 Fore Chest Waist Height Calf Head
5 5 4.8188 0.9693 Fore Waist Height Calf Thigh
6 5 5.3519 0.9682 Fore Waist Height Calf Head
7 7 5.4685 0.9762 Fore Chest Waist Height Calf Thigh Head
8 6 5.4969 0.9720 Fore Chest Waist Height Thigh Head
9 6 5.9143 0.9712 Fore Bicep Waist Height Thigh Head

10 6 5.9904 0.9710 Fore Neck Waist Height Thigh Head
11 7 6.0719 0.9750 Fore Bicep Waist Height Calf Thigh Head
12 6 6.0811 0.9708 Fore Shoulder Waist Height Thigh Head
13 4 6.1028 0.9625 Fore Waist Height Calf
14 7 6.1184 0.9749 Fore Shoulder Waist Height Calf Thigh Head
15 5 6.1465 0.9665 Fore Neck Waist Height Thigh
16 5 6.1922 0.9665 Fore Chest Waist Height Head
17 5 6.2265 0.9664 Fore Shoulder Waist Height Thigh
18 6 6.2985 0.9704 Fore Shoulder Waist Height Calf Thigh
19 7 6.3277 0.9745 Fore Chest Neck Waist Height Calf Head
20 7 6.3757 0.9744 Fore Neck Waist Height Calf Thigh Head



238 Applied Medical Statistics Using SAS

information that is statistically important concerning the expected value of 
the response. The variable considered for inclusion at any step (say, variable 
i) is the one having the largest single degree of freedom F-ratio among those 
variables eligible for inclusion where

 =
−⎛

⎝
⎜

⎞

⎠
⎟

+

+

F
RSS RSS

s
maxi

p p i

p i
2

 (8.11)

where the subscript p + i refers to quantities computed when variable i is added 
to the current p-term model and RSS stands for residual sum of squares. The 
variable i is added to the model if Fi > Fin, with the quantity Fin being a thresh-
old value specified by the user; see Draper and Smith (1998) for details.

The backward elimination method begins with an initial model that con-
tains all explanatory variables and then identifies the single variable that 
contributes the least information concerning the expected value of the 
response. At any step, the variable (say, variable i) with the smallest F-ratio, 
as calculated from the current model, is eliminated if the value of this F-ratio 
does not exceed a specified threshold value (Fout), where now

 F
si

p i p

p

=
−⎛

⎝
⎜

⎞

⎠
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−
min

RSS RSS
2  (8.12)

4

5 6

Number of Parameters

Fit Criterion for Mass

7 8

5

6

M
al

lo
w

s’
 C

(p
)

7

8

Mallows Hocking Best model evaluated at number of parameters

FIGURE 8.4
Plot of number of variables in a model against the value of Mallows’ Cp criterion.
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where RSSp–i denotes the residual sum of squares obtained when variable 
i is deleted from the current p-term model. Successive iterations of the 
method result in a ‘final’ model from which no variables can be eliminated 
without adversely affecting, in a statistical sense, the predicted value of 
the expected response. (The threshold values Fin and Fout can be specified 
in terms of the equivalent p-values, which is what we use in the following 
example.)

The stepwise regression method combines elements of both forward selec-
tion and backward elimination. The initial model for stepwise regression 
is one that contains only a constant term. Variables are then considered 
for inclusion as for forward selection, but in each step, variables included 
previously are also considered for possible elimination as in the backward 
method; this will occur if they no longer make any contribution to predicting 
the expected response.

The three procedures described depend crucially on the thresholds set 
by the investigator, an obvious danger when seeking a convincing simpli-
fied model. A separate factor that influences the results of all such automatic 
methods in an unpredictable fashion is the underlying correlation of the 
data. It is highly unlikely, for example, that any of the procedures would 
produce a final model that included both of two highly correlated explana-
tory variables. This is, of course, appropriate because including both vari-
ables might lead to collinearity problems. It does, however, mask the fact that 
the variable not selected might, if selected, lead to a somewhat different, but 
equally acceptable, final model. Caution is needed in using any automatic 
technique for variable selection and users might take heed of the following 
warning from Agresti (1996):

Computerized variable selection procedures should be used with cau-

tion. When one considers a large number of terms for potential inclusion 

in a model, one or two of them that are not of real importance may look 

impressive simply due to chance. For instance, when all true effects are 

weak, the largest sample effect may substantially overestimate its true 

effect. In addition it often makes sense to include certain variables of 

special interest in a model and report their estimated effects even if they 

are not statistically significant at some level.

Bearing such warnings in mind, we will now investigate the use of all 
three selection procedures on the physical measurements data. The three 
methods can all be specified as values for the selection= option on the 
model statement, as follows:

proc reg data=PhysicalMeasures;
forward: model mass=fore--head / selection=f sle=.05;
backward: model mass=fore--head / selection=b sls=.05;
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stepwise: model mass=fore--head / selection=stepwise sle=.05 
sls=.05;
run;

This example also illustrates the fact that several models can be fit-
ted within a single proc reg step. To distinguish the output from each of 
them, it is useful to give each model a label. Note that the label must be the 
first word on the model statement and must end in a colon. The sle= and 
sls= options specify the significance levels for variables to enter and stay 
in the models, respectively. The output from forward selection is shown in 
Table 8.10 and from backward elimination in Table 8.11. The output stepwise 
regression is shown in Table 8.12. All three tables list the explanatory vari-
ables chosen by the corresponding selection method.

TABLE 8.10

Results from Forward Selection

Model: forward

Dependent Variable: Mass

Forward Selection: Step 1

Variable Parameter Estimate Standard Error Type II SS F Value Pr > F
Intercept –36.19109 10.89480 226.49185 11.03 0.0034
Waist 1.28696 0.12682 2113.64322 102.98 <.0001

Model: forward

Dependent Variable: Mass

Forward Selection: Step 2

Variable Parameter Estimate Standard Error Type II SS F value Pr > F
Intercept –68.71836 9.19914 471.48633 55.80 <.0001
Fore 2.75462 0.50644 249.96884 29.58 <.0001
Waist 0.77303 0.12469 324.72983 38.43 <.0001

Model: forward

Dependent Variable: Mass

Forward Selection: Step 3

Variable Parameter Estimate Standard Error Type II SS F Value Pr > F
Intercept –107.48776 15.99818 281.25379 45.14 <.0001
Fore 2.57923 0.43942 214.65503 34.45 <.0001
Waist 0.73194 0.10809 285.70246 45.86 <.0001
Height 0.26422 0.09481 48.38708 7.77 0.0122
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TABLE 8.10 (Continued)

Results from Forward Selection

Model: forward

Dependent Variable: Mass

Forward Selection: Step 4

Variable Parameter Estimate Standard Error Type II SS F Value Pr > F
Intercept –113.31204 14.63911 302.99990 59.91 <.0001
Fore 2.03558 0.46243 97.99698 19.38 0.0004
Waist 0.64688 0.10431 194.49518 38.46 <.0001
Height 0.27175 0.08548 51.10714 10.11 0.0055
Thigh 0.54008 0.23740 26.17429 5.18 0.0361

Model: forward

Dependent Variable: Mass

Summary of Forward Selection

Step
Variable 
Entered

Number 
Vars In

Partial 
R-Square

Model 
R-Square C(p) F Value Pr > F

1 Waist 1 0.8374 0.8374 60.4990 102.98 <.0001
2 Fore 2 0.0990 0.9364 14.6985 29.58 <.0001
3 Height 3 0.0192 0.9556 7.4457 7.77 0.0122
4 Thigh 4 0.0104 0.9659 4.4405 5.18 0.0361

TABLE 8.11

Results from Backward Elimination

Model: backward

Dependent Variable: Mass

Backward Elimination: Step 0

Variable Parameter Estimate Standard Error Type II SS F Value Pr > F
Intercept –69.51714 29.03739 29.97245 5.73 0.0356
Fore 1.78182 0.85473 22.72597 4.35 0.0612
Bicep 0.15509 0.48530 0.53409 0.10 0.7553
Chest 0.18914 0.22583 3.66801 0.70 0.4201
Neck –0.48184 0.72067 2.33767 0.45 0.5175
Shoulder –0.02931 0.23943 0.07838 0.01 0.9048
Waist 0.66144 0.11648 168.62682 32.25 0.0001
Height 0.31785 0.13037 31.08457 5.94 0.0329
Calf 0.44589 0.41251 6.10990 1.17 0.3029
Thigh 0.29721 0.30510 4.96258 0.95 0.3509
Head –0.91956 0.52009 16.34775 3.13 0.1047

(Continued)
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TABLE 8.11 (Continued)

Results from Backward Elimination

Model: backward

Dependent Variable: Mass

Backward Elimination: Step 1

Variable Parameter Estimate Standard Error Type II SS F Value Pr > F
Intercept –70.53857 26.64703 33.63662 7.01 0.0213
Fore 1.71790 0.64838 33.69700 7.02 0.0212
Bicep 0.16155 0.46220 0.58643 0.12 0.7328
Chest 0.17286 0.17491 4.68850 0.98 0.3425
Neck –0.48458 0.69012 2.36669 0.49 0.4960
Waist 0.65846 0.10913 174.76132 36.41 <.0001
Height 0.31082 0.11216 36.86259 7.68 0.0169
Calf 0.45289 0.39141 6.42642 1.34 0.2698
Thigh 0.31225 0.26756 6.53796 1.36 0.2659
Head –0.89324 0.45370 18.60586 3.88 0.0725

Model: backward

Dependent Variable: Mass

Backward Elimination: Step 2

Variable Parameter Estimate Standard Error Type II SS F Value Pr > F
Intercept –71.95027 25.43433 35.81935 8.00 0.0142
Fore 1.79678 0.58696 41.94304 9.37 0.0091
Chest 0.19282 0.15965 6.52939 1.46 0.2486
Neck –0.37432 0.59271 1.78520 0.40 0.5386
Waist 0.65393 0.10463 174.82730 39.06 <.0001
Height 0.28849 0.08902 47.01218 10.50 0.0064
Calf 0.47487 0.37305 7.25297 1.62 0.2253
Thigh 0.30508 0.25761 6.27806 1.40 0.2575
Head –0.85259 0.42348 18.14303 4.05 0.0653

Model: backward

Dependent Variable: Mass

Backward Elimination: Step 3

Variable Parameter Estimate Standard Error Type II SS F Value Pr > F
Intercept –76.05013 24.05809 42.80654 9.99 0.0069
Fore 1.62588 0.50955 43.61405 10.18 0.0065
Chest 0.13796 0.13103 4.74838 1.11 0.3103
Waist 0.63648 0.09873 178.03754 41.56 <.0001
Height 0.26875 0.08154 46.53822 10.86 0.0053
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TABLE 8.11 (Continued)

Results from Backward Elimination

Model: backward

Dependent Variable: Mass

Backward Elimination: Step 3

Variable Parameter Estimate Standard Error Type II SS F Value Pr > F
Calf 0.54684 0.34751 10.60732 2.48 0.1379
Thigh 0.32121 0.25077 7.02813 1.64 0.2211
Head –0.82210 0.41159 17.09086 3.99 0.0656

Model: backward

Dependent Variable: Mass

Backward Elimination: Step 4

Variable Parameter Estimate Standard Error Type II SS F Value Pr > F
Intercept –79.72624 23.88925 48.05720 11.14 0.0045
Fore 1.79485 0.48536 59.00469 13.67 0.0021
Waist 0.65671 0.09719 196.98777 45.65 <.0001
Height 0.25388 0.08059 42.81545 9.92 0.0066
Calf 0.50718 0.34671 9.23324 2.14 0.1641
Thigh 0.43298 0.22801 15.55932 3.61 0.0770
Head –0.65722 0.38200 12.77197 2.96 0.1059

Model: backward

Dependent Variable: Mass

Backward Elimination: Step 5

Variable Parameter Estimate Standard Error Type II SS F Value Pr > F
Intercept –80.45330 24.72024 48.95889 10.59 0.0050
Fore 2.12319 0.44541 105.02769 22.72 0.0002
Waist 0.66561 0.10040 203.16460 43.95 <.0001
Height 0.27704 0.08179 53.03117 11.47 0.0038
Thigh 0.52317 0.22720 24.50837 5.30 0.0351
Head –0.63714 0.39512 12.01901 2.60 0.1264

Model: backward

Dependent Variable: Mass

Backward Elimination: Step 6

Variable Parameter Estimate Standard Error Type II SS F Value Pr > F
Intercept –113.31204 14.63911 302.99990 59.91 <.0001
Fore 2.03558 0.46243 97.99698 19.38 0.0004

(Continued)
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TABLE 8.12

Results from Stepwise Selection

Model: stepwise

Dependent Variable: Mass

Stepwise Selection: Step 1

Variable Parameter Estimate Standard Error Type II SS F Value Pr > F
Intercept –36.19109 10.89480 226.49185 11.03 0.0034
Waist 1.28696 0.12682 2113.64322 102.98 <.0001

Model: stepwise

Dependent Variable: mass

Stepwise selection: Step 2

Variable Parameter Estimate Standard Error Type II SS F Value Pr > F
Intercept –68.71836 9.19914 471.48633 55.80 <.0001
Fore 2.75462 0.50644 249.96884 29.58 <.0001
Waist 0.77303 0.12469 324.72983 38.43 <.0001

TABLE 8.11 (Continued)

Results from Backward Elimination

Model: backward

Dependent Variable: Mass

Backward Elimination: Step 6

Variable Parameter Estimate Standard Error Type II SS F Value Pr > F
Waist 0.64688 0.10431 194.49518 38.46 <.0001
Height 0.27175 0.08548 51.10714 10.11 0.0055
Thigh 0.54008 0.23740 26.17429 5.18 0.0361

Model: backward

Dependent Variable: Mass

Summary of Backward Elimination

Step
Variable 
Removed

Number 
Vars in

Partial 
R-Square

Model 
R-Square C(p) F Value Pr > F

1 Shoulder 9 0.0000 0.9772 9.0150 0.01 0.9048
2 Bicep 8 0.0002 0.9769 7.1271 0.12 0.7328
3 Neck 7 0.0007 0.9762 5.4685 0.40 0.5386
4 Chest 6 0.0019 0.9744 4.3765 1.11 0.3103
5 Calf 5 0.0037 0.9707 4.1421 2.14 0.1641
6 Head 4 0.0048 0.9659 4.4405 2.60 0.1264
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8.5  Checking Model Assumptions: 
Residuals and Other Regression Diagnostics

A regression analysis should not end without an attempt to check assump-
tions such as those of constant variance and normality of the error terms. 
Violation of these assumptions may invalidate conclusions based on the 

TABLE 8.12 (Continued)

Results from Stepwise Selection

Model: stepwise

Dependent Variable: mass

Stepwise selection: Step 3

Variable Parameter Estimate Standard Error Type II SS F Value Pr > F
Intercept –107.48776 15.99818 281.25379 45.14 <.0001
Fore   2.57923  0.43942 214.65503 34.45 <.0001
Waist   0.73194  0.10809 285.70246 45.86 <.0001
Height   0.26422  0.09481  48.38708  7.77 0.0122

Model: stepwise

Dependent Variable: Mass

Stepwise Selection: Step 4

Variable Parameter Estimate Standard Error Type II SS F Value Pr > F
Intercept –113.31204 14.63911 302.99990 59.91 <.0001
Fore 2.03558 0.46243 97.99698 19.38 0.0004
Waist 0.64688 0.10431 194.49518 38.46 <.0001
Height 0.27175 0.08548 51.10714 10.11 0.0055
Thigh 0.54008 0.23740 26.17429 5.18 0.0361

Model: stepwise

Dependent Variable: Mass

Summary of Stepwise Selection

Step
Variable 
Entered

Variable 
Removed

Number 
Vars In

Partial 
R-Square

Model 
R-Square C(p) F Value Pr > F

1 Waist 1 0.8374 0.8374 60.4990 102.98 <.0001
2 Fore 2 0.0990 0.9364 14.6985 29.58 <.0001
3 Height 3 0.0192 0.9556 7.4457 7.77 0.0122
4 Thigh 4 0.0104 0.9659 4.4405 5.18 0.0361
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regression analysis. The estimated residuals = −r y ŷi i i  play an essential role 
in diagnosing a fitted model, although because these do not have the same 
variance (the precision of ŷi  depends upon xi), they are sometimes stan-
dardised before use. There are two possibilities: the standardised residual and 
the Studentised residual, which are defined as follows:

Standardised residual:

 =
−
−

r
y y

s h

ˆ

1

i i

i
sta  (8.13)

Studentised residual:

 =
−
−−

r
y y

s h

ˆ

1

i i

i i
stu

( )
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where hi is the ith diagonal element of the so-called ‘hat matrix’, H, given 

by H = X(X′X)–1X, and s i( )−
2  is the estimated residual variance from fitting 

the model after the exclusion of the ith observation. See Cook and Weisberg 
(1982) for full details.

The following diagnostic plots using one or other of the residual terms are 
generally helpful when assessing model assumptions:

Residuals versus fitted values: if the fitted model is appropriate, the 
plotted points should lie in an approximately horizontal band across 
the plot. Departures from this appearance may indicate that the 
functional form of the assumed model is incorrect or, alternatively, 
that there is nonconstant variance.

Residuals versus explanatory variables: systematic patterns in these 
plots can indicate violations of the constant variance assumption or 
an inappropriate model form.

Normal probability plot of the residuals: the plot checks the normal 
distribution assumptions on which all statistical inference proce-
dures are based.

Figure 8.5 shows some idealised plots that indicate particular points about 
models. Figure 8.5(a) is what is looked for to confirm that the fitted model 
meets the assumptions of the regression model. Figure 8.5(b) suggests that 
the assumption of constant variance is not justified, so a transformation of 
the response variable before fitting might be a sensible option to consider. 
Figure 8.5(c) implies that the model requires a quadratic term in the explana-
tory variables used in the plot.
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A further diagnostic that is often very useful is an index plot of the Cook’s 
distances for each observation.  This statistic is defined as follows:

 D
p s

y yk i k i

i

n

=
+( ) −⎡⎣ ⎤⎦( )

=
∑1

1 2

1

2

ˆ ˆ  (8.15)

where ŷi k( )  is the fitted value of the ith observation when the kth  observation 
is omitted from the model. The values of Dk assess the impact of the kth 
observation on the estimated regression coefficients. Values of Dk greater 
than one are suggestive that the corresponding observation has undue influ-
ence on the estimated regression coefficients (see Cook and Weisberg 1982).

We can obtain all the required plots for the residuals from the ‘final model’ 
selected for the physical measurements data (i.e., the one that has the four 
explanatory variables: fore, waist, height, and thigh) by default simply by 
switching ODS graphics on, as shown in Table 8.12.
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Idealized residual plots.
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In this example, all three selection methods arrive at the same final model, 
which contains the explanatory variables: forearm, waist, height, and thigh. 
This is the third best model as judged by the size of the Mallows’ Cp criterion, 
but one for which the corresponding Cp value is close to p. We will consider 
this model further in the next section and leave interpretation until then.

ods graphics on;
proc reg data=PhysicalMeasures;
  model mass=fore waist height thigh;
run;

The plots are shown in two panels in Figure 8.6. The first panel contains 
the following eight plots:

Raw residuals versus predicted values

Studentised residuals (RSTUDENT) versus predicted values

Studentised residuals versus the leverage

Q–Q plot of the residuals

Observed values versus the predicted values

Cook’s D versus observation number

Histogram of the residuals

Side-by-side quantile plots of the centred fit and the residuals

The second panel gives the plots of residuals against each explanatory 
variable. With so few data points, it is difficult to draw very firm conclu-
sions from these plots except to reflect that, overall, they give little cause for 
concern that the fitted model is suspect in any obvious way. There may be 
some slight indication of non-normality in Figure 8.6 and observation 11 has 
a rather high value of Cook’s distance, but not above the generally recom-
mended ‘cause for concern’ value of one.

As the residual plots are generally satisfactory we can move on to interpret 
the parameters in the fitted mode:

Forearm: the estimated increase in weight for a 1 cm increase in fore-
arm is 2.04 kg conditional on the other three explanatory variables, 
with an approximate 95% confidence interval of [1,3] kg.

Waist: the estimated increase in weight for a 1 cm increase in waist is 
0.65 kg conditional on the other three explanatory variables with an 
approximate 95% confidence interval of [0.45,0.85] kg.

Height: the estimated increase in weight for a 1 cm increase in height 
is 0.27 kg conditional on the other three explanatory variables with 
an approximate 95% confidence interval of [0.09,0.45] kg.

Thigh: the estimated increase in weight for a 1 cm increase in thigh is 
0.54 kg conditional on the other three explanatory variables with an 
approximate 95% confidence interval of [0.06,1.00] kg.
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(It should perhaps be pointed out that the ‘conditional’ part of these interpre-
tations is somewhat suspect here because of the high correlations between 
the explanatory variables.)

8.6 General Linear Model

We have so far discussed ANOVA, ANCOVA, and linear regression as though 
they were separate models. In fact, all of these models are equivalent and can 
be viewed as special cases of a general linear model in which the residuals 
have a normal distribution with constant variance, σ2. The only difference 
between ANOVA, ANCOVA, and linear regression models as described in 
this and previous chapters is that ANOVA uses categorical explanatory vari-
ables, linear regression uses continuous (or binary) explanatory variables, 

4

2

0

–2

–4

60 70

Predicted Value

R
es
id
u
al

80 90

2

3

1

0

–1

–2

60 70

Predicted Value

Fit Diagnostics for Mass

R
es
id
u
al

80 90

2

3

1

0

–1

–2

0.1 0.30.2

Leverage

R
S
tu
d
en
t

0.4 0.5

4

2

0

–2

–4

–2 0–1

Quantile

R
es
id
u
al

1 2

40

30

20

10

0

–7 –1 1–5–3

Residual

P
er
ce
n
t

3 5 7

20

Fit-Mean Residual

10

0

–10

–20

0.0 0.4 0.8 0.0 0.4 0.8

Proportion Less

90

80

70

60

60 70

Predicted Value

M
as
s

80 90

0.20

0.25

0.15

0.10

0.05

0.00

0 105

Observation

Observations

Parameters

Error DF

MSE

R-Square

Adj R-Square

22

5

17

5.0573

0.9659

0.9579

C
o
o
k
’s

 D
15 20

FIGURE 8.6
Some plots of residuals from the final model chosen for the physical measurements data.



250 Applied Medical Statistics Using SAS

and ANCOVA uses a mixture of the two. But such apparent differences can 
easily be  accommodated by a general formulation in which a continuous 
response variable is modelled as a linear function of explanatory variables. 
We will illustrate this equivalence using the small set of data for a 2 × 2 facto-
rial design shown in Table 8.13.

The usual ANOVA model for such a design is

 yijk = μ + αi + βj + γij + εijk (8.16)

where
yijk represents the kth observation in the ijth cell of the design
αi represents the effect of the ith level of factor A
βj represents the effect of the jth level of factor B
γij represents the interaction of A and B
as always, εijk represents random error terms with the usual distributional 

assumptions of normality with zero mean and constant variance, σ2.

The usual constraints on the parameters of the model to deal with overpa-
rameterisation in this case are
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These constraints imply that the parameters in the model are such that α1 = 
−α2, β1 = –β2, γ1j = –γ2j, γi1 = –γi2, with the last two of these equations imply-
ing that γ12 = –γ11, γ21 = –γ11, and γ22 = γ11—showing that there is only a single 
parameter describing the interaction between factors A and B. The model for 
the expected values of the observations in each of the four cells of the design 
can now be written explicitly as follows:

A1 A2

B1 μ + α1 + β1 + γ11 μ – α1 + β1 – γ11

B2 μ + α1 – β1 – γ11 μ – α1 – β1 + γ11

TABLE 8.13

Balanced 2 × 2 Data Set

A1 A2

B1 23 22

25 23

27 21

29 21

B2 26 37

32 38

30 40

31 35
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Now we define two variables as follows:

x1 = 1 if first level of A, x1 = −1 if second level of A

x2 = 1 if first level of B, x2 = −1 if second level of B

The original ANOVA model for the design can now be written as

 yijk = μ + α1x1 + β1x2 + γ11x3 + εijk where x3 = x1 × x2 (8.17)

We can now recognise this as a multiple linear regression model with 
three explanatory variables, and we can fit it in the usual way. Note that all 
observations in cell A1, B1 have x1 = 1 and x2 = 1; all observations in cell A1, 
B2 have x1 = 1, x2 = −1, and so on for the remaining observations in Table 8.13. 
To begin, we will fit the model with the single explanatory variable x1 using 
the SAS code:

data factorial;
do a=1 to 2;
input resp @;
b=1;
if _n_>4 then b=2;
output;
end;
cards;
23 22
25 23
27 21
29 21
26 37
32 38
30 40
31 35
;

data factorial;
  set factorial;
  if a=1 then x1=1;
         else x1=-1;
  if b=1 then x2=1;
         else x2=-1;
  x3=x1*x2;
run;

proc reg data=factorial;
x1: model resp=x1;
x12: model resp=x1 x2;
x123: model resp=x1-x3;
run; quit;
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The results are shown in Table 8.14.
The regression sum of squares 12.25 is what would be the between levels of 

A sum of squares in an ANOVA table. Now fit the regression with x1 and x2 as 
explanatory variables using the code to give the results shown in Table 8.15.

The difference between the regression sums of squares for the two-variable 
and one-variable models gives the sum of squares for factor B that would be 
obtained in an ANOVA. Note that the corresponding parameter estimates in 

TABLE 8.14

Multiple Regression Results for Data in Table 8.13

Model: x1

Dependent Variable: resp

Analysis of Variance

Source DF Sum of Squares Mean Square F Value Pr > F
Model 1 12.25000 12.25000 0.30 0.5954
Error 14 580.75000 41.48214
Corrected Total 15 593.00000

Parameter Estimates

Variable DF Parameter Estimate Standard Error t Value Pr > |t|
Intercept 1 28.75000 1.61017 17.86 <.0001
x1 1 –0.87500 1.61017 –0.54 0.5954

TABLE 8.15

More Multiple Regression Results for Data in Table 8.13

Model: x12

Dependent Variable: resp

Analysis of Variance

Source DF Sum of Squares Mean Square F Value Pr > F
Model 2 392.50000 196.25000 12.72 0.0009
Error 13 200.50000 15.42308
Corrected Total 15 593.00000

Parameter Estimates

Variable DF Parameter Estimate Standard Error t Value Pr > |t|
Intercept 1 28.75000 0.98181 29.28 <.0001
x1 1 –0.87500 0.98181 –0.89 0.3890
x2 1 –4.87500 0.98181 –4.97 0.0003
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both models fitted remain the same. Now we can add in the interaction term 
to get Table 8.16.

The difference between the regression sums of squares for the three-variable 
and two-variable models gives the sum of squares for the A × B interac-
tion that would be obtained in an analysis of variance. The residual sum of 
squares in the final step corresponds to the error sum of squares in the usual 
ANOVA table. (Readers might like to confirm the results in Table 8.16 by run-
ning an analysis of variance on the data.)

Note that, unlike the estimated regression coefficients in the examples 
considered earlier in this chapter, the estimated regression coefficients for 
the balanced 2 × 2 design do not change as extra explanatory variables are 
introduced into the regression model. The factors in a balanced design are 
independent; a more technical term is that they are orthogonal. When the 
explanatory variables are orthogonal, adding variables to the regression 
model in any order will alter nothing; the corresponding sums of squares 
and regression coefficient estimates will be the same. (Readers are encour-
aged to repeat this exercise using a small unbalanced data set.)

8.7 Summary

Multiple regression is one of the most used (one is tempted to say ‘overused’) 
statistical techniques. It can be helpful for assessing the relationship between 
a response variable and a number of explanatory variables, but researchers 

TABLE 8.16

Further Multiple Regression Results for Data in Table 8.13

Model: x123

Dependent Variable: resp

Analysis of Variance

Source DF Sum of Squares Mean Square F Value Pr > F
Model 3 536.50000 178.83333 37.98 <.0001
Error 12 56.50000 4.70833
Corrected Total 15 593.00000

Parameter Estimates

Variable DF Parameter Estimate Standard Error t Value Pr > |t|
Intercept 1 28.75000 0.54247 53.00 <.0001
x1 1 –0.87500 0.54247 –1.61 0.1327
x2 1 –4.87500 0.54247 –8.99 <.0001
x3 1 3.00000 0.54247 5.53 0.0001
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using the technique should take care to check assumptions using a variety 
of regression diagnostics, and they should not accept blindly the results of 
the automatic techniques for selecting subsets of explanatory variables. The 
multiple regression model and the ANOVA and ANCOVA models described 
in previous chapters are all essentially the same model—one that can be 
further subsumed into an even more general setting of generalised linear 
models, as we shall see in the next two chapters.
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9
Logistic Regression

9.1 Introduction

The multiple regression model as described in the previous chapter assumes 
that the response variable, y, is continuous and, given the values of the 
explanatory variables, has a normal distribution with a mean that is a linear 
function of the explanatory variables and variance, σ2. But in many studies 
in medicine, the response variable is binary—for example, improved or not 
improved, diseased or not diseased, or even dead or alive. Many of the data 
sets considered in Chapter 4 were of this type. In this chapter, we examine 
a suitable technique, logistic regression, for exploring the effects of explana-
tory variables on a binary response variable. (Logistic regression can also 
be applied to categorical responses with more than two categories; see, for 
example, Hosmer and Lemeshow 2000.)

9.2 Logistic Regression

In any regression problem, the key quantity is the mean or expected value of 
the response variable, given the values of the explanatory variables. In linear 
regression, the expected value of a response variable, y, is modelled as a lin-
ear function of the explanatory variables x1, x2, … , xp, that is,

 E (y|x1, ... , xp) = β0 + β1x1 ... + βp xp (9.1)

For a dichotomous response variable coded 0 and 1, this expected value is 
simply the probability, π, that the response variable takes the value one. This 
could be modelled directly as before, but there are two clear problems:

The predicted value of the probability, π, must satisfy 0 ≤ π < 1, 
whereas a linear predictor can yield values from minus infinity to 
plus infinity.
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The observed values of y conditional on the values of the explana-
tory variables will not now follow a normal distribution with mean 
π, but rather a Bernoulli distribution, as we shall explain later.

Having stated the two problems in modelling data where the response is a 
binary variable, we can now discuss how to solve these problems by develop-
ing some of the theory behind logistic regression. Our data now consist of a 
binary response variable, y, and a set of explanatory variables x1, x2, … , xp. The 
expected value of y is simply 1 × Pr(y = 1) + 0 × Pr(y = 0) = Pr(y = 1) = π. (We 
will assume that the value one is used to code the occurrence of some event 
of interest and zero is used to code its nonoccurrence). The probability that 
the event of interest happens, π, should not be modelled directly as a linear 
function of the explanatory variables since this will not constrain predicted 
values of π to be in the interval [0,1]. Instead, a suitable transformation of π 
is modelled. The transformation most often used is the logit function of the 
probability given by logπ/(1 – π). This leads to the logistic regression model 
given by

 
( )π = π

− π
= β + β + βx xlog it log

1
p p0 1 1 �  (9.2)

The logit transformation is chosen because, from a mathematical point of 
view, it is extremely flexible and, from a practical point of view, it leads to 
meaningful and convenient interpretation, as we explain later. The logit of a 
probability is nothing more than the log of the odds of the event of interest 
(see Chapter 4), and since its values can range from –∞ to +∞, the first prob-
lem of modelling π directly is overcome. The logistic regression model can be 
expressed directly in terms of π as
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In a logistic regression model, the parameter βi associated with explanatory 
variable xi represents the expected change in the logit when xi is increased by 
one unit, conditional on the other explanatory variables remaining the same. 
Interpretation becomes simpler if we look at exp(βi), which corresponds to 
an odds ratio (see Chapter 4). A confidence interval for the latter is obtained 
by exponentiation of the upper and lower limits of the corresponding confi-
dence interval of the regression coefficient in the logit model. Examples will 
be given later in the chapter.

In linear regression, the observed value of the outcome variable is expressed 
as its expected value, given the explanatory variables plus an error term. The 
error terms are assumed to have a normal distribution with mean zero and 
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a variance that is constant across levels of the explanatory variables. With a 
binary response, we can express an observed value in the same way as

 y = π + ε (9.4)

However, here the error term, ε, can only assume one of two possible val-
ues. If y = 1, then ε = 1 – π with probability π; if y = 0, then ε = –π with prob-
ability 1 – π. Consequently, ε has a distribution with mean zero and variance 
equal to π(1 – π). Thus, the conditional distribution of the response variable, 
y, follows what is known as a Bernoulli distribution (which is simply a bino-
mial distribution for a single trial) with probability that it takes the value 
one given by the mean π, which because it is conditional on the explanatory 
variables, we shall now denote as π(x), where x′ = [x1, x2, … , xp].

In linear regression (both simple and multiple), the method used most 
often to estimate the unknown parameters is least squares. Under the usual 
assumptions for the linear regression models (see Chapters 7 and 8), the least 
squares method yields estimators with a number of desirable statistical prop-
erties. Unfortunately, when this method is applied to a model with a dichoto-
mous response, the estimators no longer have these properties. Consequently, 
the method of maximum likelihood is used to estimate the parameters in the 
logistic regression model. The log-likelihood function, l, is given by

 l y yy x xlog
,

1 log 1
,

i i i i

i

n

1

∑ββ ββ ββ{ }( ) ( )( ) ( ); = π⎡⎣ ⎤⎦ + − − π⎡⎣ ⎤⎦
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where
xi′ = [xi1, xi2, … , xip]
y′ = [y1, y2, … , yn]
β′ = [β0, β1, … , βp]

The estimates of the parameters are found by maximising the log likelihood 
using an iterative algorithm described in Collett (2003a). Logistic regression 
can also be used when the response is observed as a proportion rather than 
directly as a binary variable; an example is the proportion of headache-free 
days on a number of subjects. The appropriate distribution in this case is the 
binomial distribution with the correct denominator (in the suggested exam-
ple, the number of days over which headache status has been recorded).

The lack of fit of a logistic regression model can be measured by a term 
known as the deviance, which is essentially the ratio of the likelihoods of 
the model of interest to the saturated model that fits the data perfectly (see 
Collett 2003a for a full explanation). Explicitly, the deviance is defined as
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where ŷi  is the predicted number of events of interest under the current 

model—that is, = πy nˆ ˆi i i . D compares the observed values yi with their fitted 
values, ŷi, under the current model. Differences in deviance can be used to 
compare alternative nested logistic regression models. For example,

 
( )

( )

π = β + β

π = β + β + β + β

x

x x x

Model 1 (Deviance D ) : log it

Model 2 (Deviance D ) : log it

1 0 1 1

2 0 1 1 2 2 3 3

The difference in deviance D1 – D2 reflects the combined effect of explana-
tory variables x2 and x3 and under the hypothesis that these variables have 
no effect (i.e., β2 and β3 are both zero). The difference has an approximate 
chi-squared distribution with degrees of freedom generally equal to the dif-
ference in the number of parameters in the two models—in this case, two. 
The deviance (or likelihood ratio) can be used to test that all regression coef-
ficients in a model are zero.

Two other test statistics are available for the same purpose: the score statis-
tic and Wald’s test. Both are described in Collett (2003a). The three tests are 
asymptotically equivalent but differ in finite samples. The likelihood ratio 
test is generally considered the most appropriate.

9.3 Two Examples of the Application of Logistic Regression

In this section, we shall look at two examples of the use of logistic regression 
in medicine beginning with one from psychiatry.

9.3.1 Psychiatric ‘Caseness’

Goldberg (1972) describes a psychiatric screening questionnaire, the General 
Health Questionnaire (GHQ), designed to identify people who may be suffer-
ing from a psychiatric illness. In Table 9.1 some results from applying this 
instrument are given; here, what is of interest is how the probability of being 
classified as a potential psychiatric ‘case’ by a psychiatrist is related to an 
individual’s score on the GHQ and the individual’s gender.

To begin, we can read in the data and plot the estimated probability of 
being a case against GHQ score, identifying males and females on the plot:

data ghq;
  input ghq sex $ cases noncases;
  total=cases+noncases;
  prcase=cases/total;
cards;
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0 F 4 80
1 F 4 29
2 F 8 15

. . .

8 M 3 1
9 M 2 0
10 M 2 0
;

proc sgplot data=ghq;
  series y=prcase x=ghq / group=sex;
  scatter y=prcase x=ghq / group=sex;
run;

The resulting diagram is shown in Figure 9.1. Clearly, the probability of 
being considered a case increases with increasing GHQ value, but the rela-
tionship is not linear and appears to differ for men and women.

TABLE 9.1

Psychiatric Caseness Data

GHQ score Sex Number of Cases Number of Noncases
0 F 4 80
1 F 4 29
2 F 8 15
3 F 6  3
4 F 4  2
5 F 6  1
6 F 3  1
7 F 2  0
8 F 3  0
9 F 2  0
10 F 1  0
0 M 1 36
1 M 2 25
2 M 2  8
3 M 1  4
4 M 3  1
5 M 3  1
6 M 2  1
7 M 4  2
8 M 3  1
9 M 2  0
10 M 2  0
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To begin, we shall ignore gender and compare the fit of both a linear 
regression and a logistic regression to the probability of being a case with 
GHQ score as the single explanatory variable; first, linear regression:

proc reg data=ghq;
   model prcase=ghq;
   output out=rout p=rpred;
run;

The output statement creates an output data set that contains all the 
original variables plus those created by options. The p=rpred option speci-
fies that the predicted values are included in a variable named rpred. The 
out=rout option specifies the name of the data set to be created.

We then calculate the predicted values from a logistic regression, using 
proc logistic, in the same way:

proc logistic data=ghq;
   model cases/total=ghq;
   output out=lout p=lpred;
run;

There are two forms of model statement within proc logistic. This 
example shows the events/trials syntax, where two variables are specified 
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FIGURE 9.1
Plot of probability of being a case against GHQ score identifying males and females.
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separated by a slash. The alternative is to specify a single binary response vari-
able before the equal sign.

The two output data sets are combined in a short data step and then plot-
ted together:

data lrout;
  set rout;
  set lout;
run;

proc sort data=lrout;
  by ghq;
run;

proc sgplot data=lrout;
   series y=lpred x=ghq / legendlabel='logistic' 
lineatts=(pattern=dash);

  series y=rpred x=ghq / legendlabel='linear';
  scatter y=prcase x=ghq;
run;

The resulting diagram is shown in Figure 9.2.
The problems of using the unsuitable linear regression model become 

apparent on studying Figure 9.2. Using this model, two of the predicted val-
ues are greater than one, but the response is a probability constrained to 
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FIGURE 9.2
Probability of caseness versus GHQ score showing the fitted linear and logistic regressions.
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be in the interval [0,1]. For an individual with a GHQ score of 10, the linear 
model predicts that the probability of an individual being judged a case is 
1.117. Additionally, the model provides a very poor fit for the observed data. 
Using the logistic model, on the other hand, leads to predicted values that 
are satisfactory in that they all lie between 0 and 1, and the model clearly 
provides a better description of the observed data.

The fitted logistic regression model is

 log[Pr(case)/Pr(not case)] = –2.71 + 0.74 × GHQ score

The equation can be rearranged to give the predicted probabilities from 
the fitted logistic regression model as

 Pr(case) = exp(–2.71 + 0.74 × GHQ score)/[1 + exp ( – 2.71 + 0.74 × GHQ score)]

For an individual with a GHQ score of 10, this model predicts the prob-
ability that the individual is judged a case as 0.99.

The estimated odds ratio for this model is exp(0.736) = 2.10 with  95% 
 confidence interval of [exp(0.736 – 1.96 × 0.0946), exp(0.736 + 1.96 × 0.0946)] = 
[1.734,2.513].

The increase in the odds of being judged a case associated with a one-unit 
increase in GHQ score is estimated to be between about 73% and 150%.

All three tests of the hypothesis that the regression coefficient of GHQ 
score is zero given in Table  9.2 have very low associated p-values; clearly, 
GHQ score is a very strong predictor of the probability of being judged a case.

TABLE 9.2

Results from Fitting a Logistic Regression Model Including Only GHQ to the 

Psychiatric Caseness Data

Test Chi-Square DF Pr > ChiSq
Likelihood Ratio 114.0691 1 <.0001
Score 117.1843 1 <.0001
Wald  60.5684 1 <.0001

Analysis of Maximum Likelihood Estimates

Parameter DF Estimate Standard Error Wald Chi-Square Pr > ChiSq
Intercept 1 –2.7107 0.2724 98.9940 <.0001
ghq 1  0.7360 0.0946 60.5684 <.0001

Odds Ratio Estimates

Effect Point Estimate
95% Wald

ghq 2.088 1.734 2.513
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Now let us consider a logistic regression model that uses only gender as an 
explanatory variable:

proc logistic data=ghq;
  class sex /param=ref ref=first;
  model cases/total=sex ;
run;

The class statement specifies classification variables, or factors, which 
may be numeric or character variables. The options, following the slash, 
allow a choice of coding; param=ref specifies reference cell coding, which 
is equivalent to dummy variable coding and ref=first specifies that the 
first category is the reference category. The results are given in Table  9.3. 
The estimated regression coefficient is –0.037, but before attempting an inter-
pretation, let us have a look at the 2 × 2 cross classification that results from 
collapsing the data over the GHQ score:

data ghq2;
 set ghq;
 num=cases; case=1; output;
 num=noncases; case=0; output;
run;

proc freq data=ghq2;
 tables sex*case / relrisk nopercent norow nocol;
 weight num;
run;

The resulting table of counts is given in Table  9.4 (associated output has 
been deleted).

The odds ratio for the data in Table 9.4 calculated as shown in Chapter 4 
is (25 × 131)/(43 × 79) = 0.9641. The estimated variance of the log(odds ratio) is 

TABLE 9.3

Results from Fitting a Logistic Model Including Only Sex to the Psychiatric 

Caseness Data

Analysis of Maximum Likelihood Estimates

Parameter DF Estimate Standard Error Wald Chi-Square Pr > ChiSq
Intercept 1 –1.1139 0.1758 40.1728 <.0001
Sex M 1 –0.0365 0.2890  0.0159 0.8995

Odds Ratio Estimates

Effect Point Estimate
95% Wald

Sex M vs F 0.964 0.547 1.699
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again given in Chapter 4 and is 1/43 + 1/131 + 1/25 + 1/29 = 0.0835, leading 
to a 95% confidence interval for the population log(odds ratio) of [log(0.964) – 

1.96 × 0.084 , log(0.963) + 1.96 × 0.084 ]—that is, [–0.603,0.530]—so the con-
fidence interval for the population odds ratio itself is [exp(–0.603), exp(0.530)], 
giving [0.547,1.699]. When we compare this with the results from the logistic 
regression with gender as the single explanatory variable shown in Table 9.3, 
we find that they are identical.

Now let us consider a logistic regression model that uses GHQ score, 
gender, and their interaction (GHQ × gender) as explanatory variables:

ods graphics on;
proc logistic data=ghq plots=effect(showobs=yes);
  class sex /param=ref ref=first;
  model cases/total=sex ghq sex*ghq / selection=b details;
run;

ODS graphics has been enabled and a plots option added to the proc 
statement to generate an effect plot for the model that is a plot of the pre-
dicted probabilities. By default, individual observed values are not shown, 
but are requested here with the showobs=yes plot option. The plot could 
also have been generated with an effectplot statement.

The model statement now includes sex, ghq and their interaction. Within 
proc logistic, effects are specified in the same way as for proc glm, so the 
specification of this model could have been abbreviated to sex|ghq. This exam-
ple illustrates some features of automatic model selection in proc logistic, 
via backward elimination in this case. (The criterion used to judge whether 
or not to eliminate variables is the change in the likelihoods of the two com-
peting models.) Other possibilities are forward, stepwise, and best  subsets—
specified with selection= f, s, and score, respectively. The details option 
provides effect estimates for each step of the model selection process.

The output is shown in Table 9.5. At the first step (step 0), all three effects are 
entered into the model. From the analysis of effects, neither sex nor its inter-
action with ghq would appear to be significant. A naive approach to model 
selection might drop sex from the next step, since it is the least significant 

TABLE 9.4

Table of Counts after Collapsing the 

Psychiatric Caseness Data over GHQ Score

Table of Sex by Case

sex Case

Frequency  0  1 Total

F 131 43 174
M  79 25 104

Total 210 68 278
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TABLE 9.5

Logistic Regression Results Fitted to Psychiatric Caseness Data with 

Gender, GHQ Score, and Their Interaction in the Model

Model Information
Data Set WORK.GHQ
Response Variable (Events) Cases
Response Variable (Trials) Total
Model binary logit
Optimization Technique Fisher’s scoring

Number of Observations Read  22
Number of Observations Used  22
Sum of Frequencies Read 278
Sum of Frequencies Used 278

Ordered Value Binary Outcome Total Frequency
1 Event 68
2 Nonevent 210

Backward Elimination Procedure

Class Level Information

Class Value Design Variables
sex F 0

M 1

Step 0. The following effects were entered: Intercept sex ghq ghq*sex.

Model Convergence Status

Model Fit Statistics

Criterion Intercept Only Intercept and Covariates
AIC 311.319 195.780
SC 314.947 210.291
–2 Log L 309.319 187.780

(Continued)
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TABLE 9.5 (Continued)

Logistic Regression Results Fitted to Psychiatric Caseness Data with 

Gender, GHQ Score, and Their Interaction in the Model

Test Chi-Square DF Pr > ChiSq
Likelihood ratio 121.5390 3 <.0001
Score 121.6891 3 <.0001
Wald 63.3620 3 <.0001

Type 3 Analysis of Effects

Effect DF
Wald

Chi-Square Pr > ChiSq
sex 1 0.1367 0.7116
ghq 1 36.0029 <.0001
ghq*sex 1 2.3023 0.1292

Analysis of Maximum Likelihood Estimates

Parameter DF Estimate Standard Error Wald Chi-Square Pr > ChiSq
Intercept 1 –2.7732 0.3586 59.7885 <.0001
sex M 1 –0.2253 0.6093  0.1367 0.7116
ghq 1  0.9412 0.1569 36.0029 <.0001
ghq*sex M 1 –0.3020 0.1990  2.3023 0.1292

Association of Predicted Probabilities and Observed Responses
Percent Concordant 86.4 Somers’ D 0.779
Percent Discordant 8.6 Gamma 0.820
Percent Tied 5.0 Tau-a 0.289
Pairs 14280 c 0.889

Analysis of Effects Eligible for Removal

Effect DF Wald Chi-Square Pr > ChiSq
ghq*sex 1 2.3023 0.1292

Step 1. Effect ghq*sex is removed.

Model Convergence Status
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TABLE 9.5 (Continued)

Logistic Regression Results Fitted to Psychiatric Caseness Data with Gender, GHQ 

Score, and Their Interaction in the Model

Model Fit Statistics

Criterion Intercept Only Intercept and Covariates
AIC 311.319 196.126
SC 314.947 207.009
–2 Log L 309.319 190.126

Test Chi-Square DF Pr > ChiSq
Likelihood Ratio 119.1929 2 <.0001
Score 120.1327 2 <.0001
Wald  61.9555 2 <.0001

Type 3 Analysis of Effects

Effect DF Wald Chi-Square Pr > ChiSq
sex 1 4.6446 0.0312
ghq 1 61.8891 <.0001

Analysis of Maximum Likelihood Estimates

Parameter DF Estimate Standard Error Wald Chi-Square Pr > ChiSq
Intercept  1 –2.4935 0.2816 78.3872 <.0001
sex M 1 –0.9361 0.4343  4.6446 0.0312
ghq 1  0.7791 0.0990 61.8891 <.0001

Odds Ratio Estimates

Effect Point Estimate
sex M vs F 0.392 0.167 0.919

ghq 2.180 1.795 2.646

Association of Predicted Probabilities and Observed Responses
Percent Concordant 85.8 Somers’ D 0.766
Percent Discordant 9.2 Gamma 0.806
Percent Tied 5.0 Tau-a 0.284
Pairs 14280 c 0.883

(Continued)
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effect. However, by default, proc logistic preserves the hierarchy of effects 
whereby main effects must be included in a model if the interaction between 
them is included. More generally, higher-order effects will only be retained 
(or entered) if the lower-order effects which they contain are also present in 
the model. Hence, in this example, the sex*ghq interaction term is removed 
from the model in the second step. Fitting the reduced model yields signifi-
cant main effects for both sex and ghq and the model selection ends there.

The final model is shown graphically in Figure 9.3.
In the model that includes gender and GHQ score, we see that for a given 

gender the confidence interval of the odds ratio for an increase of one in GHQ 
score is almost the same as in the model containing only GHQ score. For a given 
GHQ score, the estimated 95% confidence interval odds ratio for caseness, men 
against women, is [0.167,0.919]. In the model fitted previously containing only 
gender, we found that the corresponding confidence interval contained the 
value one. We might ask, ‘Why the difference?’ The reason is that the overall 
odds ratio is dominated by the large number of cases for the lower GHQ scores.

9.3.2 Birth Weight of Babies

For our second example of the application of logistic regression, we will use 
part of the data set given in Hosmer and Lemeshow (2000) collected during 
a study to identify risk factors associated with giving birth to a low birth 
weight baby, defined as weighing less than 2500 g. The risk factors  considered 

TABLE 9.5 (Continued)

Logistic Regression Results Fitted to Psychiatric Caseness Data with Gender, GHQ 

Score, and Their Interaction in the Model

Residual Chi-Square Test

Chi-Square DF Pr > ChiSq
2.3930 1 0.1219

Analysis of Effects Eligible for Removal

Effect DF Wald Chi-Square Pr > ChiSq
sex 1  4.6446 0.0312
ghq 1 61.8891 <.0001

Note:
for removal from the model.

Summary of Backward Elimination

Step Effect Removed DF Number In Wald Chi-Square Pr > ChiSq
1 ghq*sex 1 2 2.3023 0.1292
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were age of the mother, weight of the mother at her last menstrual period, 
race of the mother, and number of physician visits during the first trimester 
of the pregnancy. Part of the data used is shown in Table 9.6.

The SAS code reading in the data and then fitting the logistic regression 
model is

data lobwgt;
  input id low age lwt race ftv;
cards;
 85 0 19 182 2 0
 86 0 33 155 3 3

. . . .

 82 1 23 94 3 0
 83 1 17 142 2 0
 84 1 21 130 1 3
;

proc logistic data=lobwgt desc;
  class race / param=ref ref=first;
  model low= age lwt race ftv;
run;
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FIGURE 9.3
Plot of predicted probability of caseness from logistic regression model with gender and GHQ 

score as explanatory variables and observed probabilities labelled by gender.
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Where a binary response variable is used on the model statement, as 
opposed to the events/trials used for the GHQ data, SAS models the lower of 
the two response categories as the ‘event’. However, it is common practice for 
a binary response variable to be coded 0,1, with 1 indicating a response, or 
event, and 0 indicating no response, or a nonevent. In this case, the seemingly 
perverse default in SAS will be to model the probability of a nonevent. The 
desc (descending) option on the proc statement reverses this behaviour.

The specification of explanatory effects on the model statement is the 
same as for proc glm, with main effects specified by variable names and 
interactions by joining variable names with asterisks. The bar operator may 
also be used as an abbreviated way of entering interactions if these are to 
be included in the model. The class statement specifies reference (dummy 
variable) coding for race with the first category as the reference category. 
The results are shown in Table 9.7.

Examining first the three tests that all the regression coefficients in the model 
are zero, we see that both the likelihood ratio and score tests have associated 
p-values less than 0.05, but that for Wald’s test is a little greater than 0.05. Perhaps 
the most sensible conclusion to draw is that there is some evidence that at least 
one of the regression coefficients differs from zero, but that this evidence is not 
particularly strong. Looking now at the regression coefficients associated with 
each of the five explanatory variables (remember that race has been recoded 

TABLE 9.6

Data on Infant Low Birth Weight

ID LOW AGE LWT RACE FTV

85 0 19 182 2 0

86 0 33 155 3 3

87 0 20 105 1 1

. . .

224 0 19 120 1 0

225 0 24 116 1 1

226 0 45 123 1 1

4 1 28 120 3 0

10 1 29 130 1 2

11 1 34 187 2 0

. . .

82 1 23 94 3 0

83 1 17 142 2 0

84 1 21 130 1 3

Source: Hosmer, D. W. and Lemeshow, S. 2002. Applied Logistic 
Regression, 2nd ed. New York: Wiley.

Note: LOW: 0 = weight of baby > 2500 g; 1 = weight of baby ≤ 2500 g. 

AGE: age of mother in years. LWT: weight of mother at last 

menstrual period. RACE: 1 = white; 2 = black; 3 = other. FTV: 

number of physician visits in the first trimester.
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TABLE 9.7

Results from Fitting Logistic Regression Model to Birth Weight Data

Model Information
Data Set WORK.LOBWGT
Response Variable Low
Number of Response Levels 2
Model binary logit
Optimization Technique Fisher’s scoring

Number of Observations Read 189
Number of Observations Used 189

Ordered Value low Total Frequency
1 1  59
2 0 130

Probability modelled is low = 1.

Class Level Information

Class Value Design Variables
race 1 0 0

2 1 0
3 0 1

Model Convergence Status

Model Fit Statistics

Criterion Intercept Only Intercept and Covariates
AIC 236.672 234.573
SC 239.914 254.023
–2 Log L 234.672 222.573

Test Chi-Square DF Pr > ChiSq
Likelihood Ratio 12.0991 5 0.0335
Score 11.3876 5 0.0442
Wald 10.6964 5 0.0577

(Continued)
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in terms of two dummy variables) suggests that weight of mother at her last 
menstrual period (lwt) and the first of the dummy variables for race may be 
the most important predictors of low infant birth weight. For lwt the estimated 
odds ratio is 0.986 with 95% confidence interval [0.973,0.999]; the interval just 
excludes the value one at its upper end. Thus, we can conclude that the odds 
of having a low birth weight baby for mothers with weight (lwt + 1) pounds 
is between about 97.3% and 99.9% of the odds for mothers with weight lwt 
pounds, conditional on the other variables being unchanged.

Interpretation in terms of a 1-pound weight difference may not be particu-
larly helpful here and it is relatively simple to find the results corresponding to a 

TABLE 9.7 (Continued)

Results from Fitting Logistic Regression Model to Birth Weight Data

Type 3 Analysis of Effects

Effect DF Wald Chi-Square Pr > ChiSq
age 1 0.4988 0.4800
lwt 1 4.7428 0.0294
race 2 4.4108 0.1102
ftv 1 0.0869 0.7681

Analysis of Maximum Likelihood Estimates

Parameter DF Estimate Standard Error Wald Chi-Square Pr > ChiSq
intercept 1  1.2953 1.0714 1.4616 0.2267
age 1 –0.0238 0.0337 0.4988 0.4800
lwt 1 –0.0142  0.00654 4.7428 0.0294
race 2 1  1.0039 0.4979 4.0660 0.0438
race 3 1  0.4331 0.3622 1.4296 0.2318
ftv 1 –0.0493 0.1672 0.0869 0.7681

Odds Ratio Estimates

Effect Point Estimate
age 0.976 0.914 1.043
lwt 0.986 0.973 0.999
race 2 vs 1 2.729 1.029 7.240
race 3 vs 1 1.542 0.758 3.136
ftv 0.952 0.686 1.321

Association of Predicted Probabilities and Observed Responses
Percent Concordant 65.1 Somers’ D 0.308
Percent Discordant 34.3 Gamma 0.310
Percent Tied 0.6 Tau-a 0.133
Pairs 7670 c 0.654
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more meaningful weight difference. Suppose, for example, we want to look at a 
10-pound difference. The estimated regression coefficient for such a  difference 
is simply 10 times the original regression  coefficient—that is, 10 ×  (–0.0142), 
a value of –0.142. The associated standard error of this value is 10 × 0.00654, 
giving 0.0654. This leads to an estimated value of  exp (–0.142) for the odds ratio 
and a 95% confidence interval for the odds ratio of [exp(–0.142 + 1.96 × 0.0654), 
exp(–0.142 – 1.96 × 0.0654)]. Therefore, for a 10-pound weight difference, the 
odds of the heavier mothers giving birth to a low-birth-weight baby are 
between 76% and 99%; the odds of the lighter mothers are again conditional 
on the other variables.

For race, the significant dummy variable is that coding the difference 
between white and black mothers. For the latter, the odds of a low birth weight 
child are estimated to be 2.729 times the corresponding odds for the former, 
conditional on the other covariates. But this apparently large effect needs to be 
considered in terms of the associated 95% confidence interval of [1.029,7.240], 
which is very wide, with the lower limit being only a little above one.

We can apply backward elimination in an effort to select a more parsimo-
nious model with the following SAS code:

proc logistic data=lowbwt desc;
  class race / param=ref ref=first;
  model low=age lwt race ftv / selection=b;
run;

The results are shown in Table 9.8. The three explanatory variables, ftv, 
age,  and race, are all eliminated, leaving only lwt. The 95% confidence 

TABLE 9.8

Results from Backward Elimination Logistic Regression on the Data 

on Low Birth Weight

Summary of Backward Elimination

Step Effect Removed DF Number In Wald Chi-Square Pr > ChiSq
1 Ftv 1 3 0.0869 0.7681
2 Age 1 2 0.5892 0.4427
3 Race 2 1 5.4024 0.0671

Analysis of Maximum Likelihood Estimates

Parameter DF Estimate Standard Error Wald Chi-Square Pr > ChiSq
Intercept 1  0.9983 0.7853 1.6161 0.2036
lwt 1 –0.0141  0.00617 5.1921 0.0227

Odds Ratio Estimates

Effect Point Estimate
lwt 0.986 0.974 0.998
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interval for lwt is very similar to that when a model with all four explana-
tory variables is fitted (see Table 9.7).

9.4 Diagnosing a Logistic Regression Model

As with the multiple regression model considered in the previous chapter, 
fitting a logistic regression model is not complete without checking on model 
assumptions by examining the properties of some suitably defined ‘residu-
als’ or other diagnostics. There are a number of ways in which a fitted logis-
tic model may be inadequate:

The linear function of the explanatory variables may be inadequate; 
for example, one or more of the explanatory variables may need to 
be transformed.

The logistic transformation of the response probability may not 
be entirely appropriate—for example, the complementary log–log 
transformation (see Collett 2003a).

The data may contain outliers that are not well fitted by the model, 
or observations with undue impact on the conclusions drawn from 
the analysis (i.e., influential values).

The assumption of a binomial distribution may not be correct. For 
example, with grouped data, the observations yi can only be assumed 
to have a binomial distribution when the ni individual observations 
on which they are based are independent.

An extremely comprehensive account of residuals and other diagnos-
tics appropriate for checking each of those assumptions is given in Collett 
(2003a). Here we will describe only the basic residuals and their use. The 
raw residual for the types of observations modelled by logistic regression is 
simply −y ŷi i, where = πy nˆ i i i. But for reasons discussed in Collett, these raw 
residuals are difficult to interpret. Consequently, the following residuals are 
more often used:

(1) Pearson residuals:
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where sign ( )−y ŷi i  is the function that makes di positive when ≥y ŷi i 
and negative when <y ŷi i . There are various ways of plotting the residu-
als that give different insights into the possible model inadequacies. Three 
 possibilities are

An index plot is a plot of residuals against observation number. It is 
often useful for detecting outliers.

In a plot of residuals against the linear predictor, the occurrence of 
a systematic pattern in the plot suggests that the model is incorrect 
in some way.

A plot of residuals against explanatory variables may help to iden-
tify whether a variable needs to be transformed.

We will illustrate the use of some of the diagnostic plots just described 
on the logistic regression model arrived at by backward elimination for the 
birth weight data; the only explanatory variable in this model is lwt. The fol-
lowing code gives plots of deviance residuals plotted against the observation 
number, the fitted probabilities and the single explanatory variable lwt:

proc logistic data=lowbwt desc;
  class race / param=ref ref=first;
  model low=lwt;
  output out=lout p=pred resdev=dres;
run;

proc sgscatter data=lout;
  plot dres*(id pred lwt);
run;

The output statement saves the predicted probabilities and deviance resid-
uals in the lout data set. The deviance residuals are then plotted against the 
predicted probabilities and the three continuous predictors. All the plots are 
shown in Figure 9.4. The plots of deviance residuals against the linear predic-
tor and each of three of the explanatory variables show no obvious patterns 
that might suggest the need for, say, a quadratic term in any of the variables 
to be considered, and there are no obvious outliers in the index plot of the 
residuals. (The distinct separation of points in these plots is entirely due to 
the binary nature of the data and does not necessarily reflect any problems 
with the fitted model, although it does make interpretation more difficult.)

9.5 Logistic Regression for 1:1 Matched Studies

As mentioned in Chapter 4, a frequently used design in medical studies is the 
matched case-control study in which each patient suffering from a particular 
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condition of interest included in the study is matched to one or more people 
without the condition. The most commonly used matching variables are age, 
ethnic group, mental status, etc. A design with m controls per case is known 
as a 1:m matched study. In many cases, m will be one, and it is the 1:1 matched 
study that we shall concentrate on here.

Table 9.9 shows the results from a 1:1 matched case-control study. In this 
study, cases of endometrial cancer were matched on age, race, date of admis-
sion, and hospital of admission to a suitable control not suffering from can-
cer, and past exposure to conjugated estrogens of both case and control was 
determined.

The form of the logistic model used for these data involves the probability, 
ϕ, that in matched pair i, for a given value of the explanatory variable x past 
exposure to conjugated estrogens (yes or no), the member of the pair is a 
case. Specifically, the model is

 ( )φ = α + βxlog it i  (9.9)
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FIGURE 9.4
Diagnostic plots for the logistic regression model fitted to low birth weight data.
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The odds that a subject with past exposure (x = 1) is a cancer case equal exp(β) 
times the odds that a subject without past exposure (x = 0) is a cancer case.

The model generalises to the situation where there are p explanatory vari-
ables as

 φ = α + β + + ⋅⋅ ⋅βx xlog it( ) i p p1 1  (9.10)

Typically, one xi is an explanatory variable of real interest, such as past 
exposure in the preceding example, with the others being used as a form of 
statistical control in addition to the variables already controlled by virtue of 
using them to form matched pairs.

The problem with the preceding model is that the number of param-
eters increases at the same rate as the sample size, with the consequence 
that maximum likelihood estimation is no longer viable. We can overcome 
this problem if we regard the parameters αi as of little interest and thus are 
willing to forgo their estimation. If we do, we can then create a conditional 
likelihood function that will yield maximum likelihood estimators of the coef-
ficients β1 … βp that are consistent and asymptotically normally distributed. 
The mathematics behind this are described in Collett (2003a), who shows 
that this conditional logistic regression model can be applied using standard 
logistic regression software as follows:

Set the sample size to the number of matched pairs.

Use as the explanatory variables the differences between corre-
sponding covariate values for each case and control.

Set the value of the response variable to one for all observations.

Exclude the constant term from the model.

To illustrate this approach, we shall apply it to the cancer data in Table 9.8. 
Exposure to the risk factor, conjugated estrogens, is coded as one and nonex-
posure by zero. We will first need to set all observed response values to one. 
Then, corresponding to seven of these observations, the single explanatory 

TABLE 9.9

1:1 Matched Case-Control Study

Controls

Cases 1 0 Total

1 12 43 55

0 7 121 128

Total 19 164 183

Notes: 1 = exposed; 0 = not exposed.
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variable will take the value –1 (case-control difference in the binary variable 
denoting exposure); for 43, it will take the value +1; and for (12 + 121), it will 
take the value 0. The necessary SAS code is

data endoca1;
  input est num;
  resp=1;
cards;
-1 7
 1 43
 0 133
;

proc logistic data=endoca1;
  model resp=est /noint;
  freq num;
run;

The noint option excludes the intercept term from the model, a feature 
that is needed for a conditional logistic regression, and the freq statement 
identifies the number of individuals that each observation represents. The 
results are shown in Table 9.10. The odds that, in a matched pair, past expo-
sure to conjugated estrogens has been suffered by the case are estimated to 
be between 2.8 and 13.7 times the odds that the control has been exposed. 
Since there is only one response level, measures of association between the 
observed and predicted values were not calculated.

The same results can be found directly from Table 9.9 using the informa-
tion about the estimation of odd ratios for a matched case-control study given 
in Chapter 4. From this table, the odds ratio is estimated as 43/7 = 6.143. The 
variance of ln(odds) is found from 1/7 + 1/43 = 0.166. Therefore, a 95% con-

fidence interval for the ln(odds ratio) is [ln(6.143) – 1.96 × 0.166 , ln(6.143) + 

1.96 × 0.166 ]—that is, [1.016,2.614], leading to the confidence interval for the 
odds ratio of [exp(1.016), exp(2.614)] — that is, [2.8,13.7].

Now let us look at a more complicated example, again involving the birth 
weight of babies but now in the context of a matched example. The data arise 
from looking first at 59 babies who were low weight. The matched data were 
obtained by randomly selecting, for each woman who gave birth to a low 
birth weight baby, a mother of the same age who did not give birth to a low 
birth weight baby. Three of the low birth weight mothers were too young to 
find a match, so the data consist of 56 matched case-control pairs. The com-
plete data are given in Hosmer and Lemeshow (2000) and data for the first 
five matched pairs are given here in Table 9.11. Variables selected for inves-
tigation were prior preterm delivery (ptd; 1 = yes, 0 = no), smoking status of 
the mother during pregnancy (smoke; 1 = yes, 0 = no), history of hyperten-
sion (ht; 1 = yes, 0 = no), presence of uterine irritability (ui; 1 = yes, 0 = no), 
and the weight of the mother at the last menstrual period (lwt; pounds).
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TABLE 9.10

Results from Fitting a Conditional Logistic Regression Model to the 

Data in Table 9.9

Model Information
Data Set WORK.ENDOCA1
Response Variable resp
Number of Response Levels 1
Frequency Variable num
Model binary logit
Optimisation Technique Fisher’s scoring

Number of Observations Read 3
Number of Observations Used 3
Sum of Frequencies Read 183
Sum of Frequencies Used 183

Ordered 
Value resp

Total 
Frequency

1 1 183

Probability modelled is resp = 1.

Model Convergence Status

Model Fit Statistics

Criterion
Without

Covariates With Covariates
AIC 253.692 226.873
SC 253.692 230.083
–2 Log L 253.692 224.873

Test Chi-Square DF Pr > ChiSq
Likelihood Ratio 28.8184 1 <.0001
Score 25.9200 1 <.0001
Wald 19.8376 1 <.0001

(Continued)
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The necessary SAS code to fit the logistic model is

data lowbwt11;
  infile 'c:\amsus2\data\lowbwt11.dat';
  input pair LoW Age LWT Smoke PTD HT UI;
run;

proc logistic data=lowbwt11 desc;
 strata pair;
 model low=LWT Smoke PTD HT UI;
run;

TABLE 9.11

Part of the Data from the Matched Case-Control Study of 

Babies’ Birth Weight

Pair LoW Age LWT Smoke PTD HT UI

1 0 14 135 0 0 0 0

1 1 14 101 1 1 0 0

2 0 15 98 0 0 0 0

2 1 15 115 0 0 0 1

3 0 16 95 0 0 0 0

3 1 16 130 0 0 0 0

4 0 17 103 0 0 0 0

4 1 17 130 1 1 0 1

5 0 17 122 1 0 0 0

5 1 17 110 1 0 0 0

Notes:  LOW: low birth weight; AGE: age of mother; LWT: weight 

of mother at last menstrual period; SMOKE: smoking status 

during pregnancy; PTD: history of premature labour; HT: 

history of hypertension; UI: presence of uterine irritability.

TABLE 9.10 (Continued)

Results from Fitting a Conditional Logistic Regression Model to the 

Data in Table 9.9

Analysis of Maximum Likelihood Estimates

Parameter DF Estimate
Standard

Error
Wald

Chi-Square Pr > ChiSq
est 1 1.8153 0.4076 19.8376 <.0001

Odds Ratio Estimates

Effect
Point

Estimate
95% Wald

est 6.143 2.763 13.655
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The strata statement is used to specify the variable that identifies the 
pair to which each observation belongs. Apart from restructuring the data, 
this is the only change that is needed to perform a conditional analysis of 
matched pairs. The results are shown in Table 9.12.

The odds ratios in Table 9.12 indicate that smoking during pregnancy, 
prior preterm deliveries, and presence of hypertension are important risk 
factors for delivering of a low birth weight baby. The confidence inter-
val estimates in Table  9.10 are very wide for the dichotomous explana-
tory variables, which is the result of having only relatively few discordant 
pairs. Hosmer and Lemeshow (2005) point out that the gain in preci-
sion obtained from matching and using conditional logistic regression 
may be offset by a loss owing to a few discordant pairs for dichotomous 
covariates.

9.6 Propensity Scores

Traditional matching of cases and controls in an observational study is 
often limited because only a relatively small number of matching factors 
(or  covariates) can be accommodated; consequently, differences that may 
exist on other covariates not used for matching could lead to biased esti-
mates. One approach to overcoming this potential problem is the use of pro-
pensity scores where the propensity score of an individual is defined as the 
conditional probability of being a case, given the individual’s values on a 
(possibly large) number of covariates. In this way, the propensity score pro-
vides a scalar summary of all the available covariate information and, if we 
can match cases to controls with similar propensity scores, we can behave as 
if the subjects had been randomly assigned to the two groups. Alternatively, 
we use regression to adjust for propensity score. When there are no miss-
ing values amongst the set of observed covariates, the required propensity 
scores can be estimated from logistic regression.

An example of where propensity scores have been used is described in Ye 
and Kaskutas (2009); in this study, a prospective cohort design was used to 
investigate the effect of Alcoholics Anonymous (AA) meeting attendance on 
alcohol abstinence. The relationship between the ‘treatment’ AA attendance 
and the outcome abstinence in such an observational study is potentially 
subject to confounding, in that there may be a number of observable pre-
treatment variables—for example, alcohol problem severity, self-motivation, 
and coercion by others—that affect study participants’ decisions to go to 
AA meetings and independently contribute to their becoming abstinent. 
Propensity scores were used to adjust the AA effect estimate for selection 
bias due to observed confounders.
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TABLE 9.12

Conditional Logistic Regression Results for the Paired Low Birth Weight Data

Conditional Analysis

Model Information
Data Set WORK.LOWBWT11
Response Variable LoW
Number of Response Levels 2
Number of Strata 56
Model binary logit
Optimization Technique Newton–Raphson ridge

Number of Observations Read 112
Number of Observations Used 112

Ordered
Value LoW

Total
Frequency

1 0 56
2 1 56

Probability modelled is LoW = 1.

Strata Summary

Response
Pattern

LoW
Number of

Strata Frequency0 1
1 1 1 56 112

Newton–Raphson Ridge Optimisation without Parameter Scaling

Model Fit Statistics

Criterion
Without

Covariates
With

Covariates
AIC 77.632 62.474
SC 77.632 76.066
–2 Log L 77.632 52.474
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9.7 Summary

The logistic regression model can be used to assess the effects of explana-
tory variables on a binary response variable. The estimated parameters can 
be interpreted in terms of odds and odds ratios. The model can also be used 
for the analysis of matched case-control data. As we shall see in the next 
chapter, the logistic regression mode—along with multiple linear regression, 
analysis of variance, and analysis of covariance—is a member of the family 
of  generalised linear models.

TABLE 9.12 (Continued)

Conditional Logistic Regression Results for the Paired 

Low Birth Weight Data

Test Chi-Square DF Pr > ChiSq
Likelihood Ratio 25.1587 5 0.0001
Score 19.7845 5 0.0014
Wald 12.5938 5 0.0275

Analysis of Maximum Likelihood Estimates

Parameter DF Estimate
Standard

Error
Wald

Chi-Square Pr > ChiSq
LWT 1 –0.0151 0.00815 3.4281 0.0641
Smoke 1 1.4796 0.5620 6.9305 0.0085
PTD 1 1.6706 0.7468 5.0041 0.0253
HT 1 2.3294 1.0025 5.3984 0.0202
UI 1 1.3449 0.6938 3.7571 0.0526

Odds Ratio Estimates

Effect
Point

Estimate
95% Wald

LWT 0.985 0.969 1.001

Smoke 4.391 1.459 13.212

PTD 5.315 1.230 22.973

HT 10.271 1.440 73.283

UI 3.838 0.985 14.951
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10
Generalised Linear Model

10.1 Introduction

The term ‘generalised linear model’ (GLM) was first introduced in a land-
mark paper by Nelder and Wedderburn (1972) in which a wide range of 
seemingly disparate problems of statistical modelling and inference 
were set in an elegant unifying framework of great power and flexibility. 
Generalised linear models include all the modelling techniques described 
in earlier chapters—that is, analysis of variance, analysis of covariance, 
multiple linear regression, and logistic regression—and open up the pos-
sibility of other models (e.g., Poisson regression) that we shall describe in 
this chapter. A comprehensive account of GLMs is given in McCullagh and 
Nelder (1989) and a more concise and less technical description in Dobson 
and Barnett (2008). In the next section, we review the main features of such 
models.

10.2 Generalised Linear Models

The multiple linear regression model described in Chapter 8 has the following 
form:

 y = β0 + β1x1 … + βpxp + ε (10.1)

The error term, ε, is assumed to have a normal distribution with zero mean 
and variance σ2. An equivalent way of writing the model is as y ∼ N(μ,σ2), 
where μ = β0 + β1x1 + … + βpxp. This makes it clear that this model is only suit-
able for continuous response variables with—conditional on the values of the 
explanatory variables—a normal distribution with constant variance. The 
generalisation of such a model made in GLMs consists of allowing each of 
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the following three assumptions associated with the multiple linear regres-
sion model to be modified:

The response variable is normally distributed with a mean deter-
mined by the model.

The mean can be modelled as a linear function of (possibly nonlinear 
transformations) the explanatory variables (i.e., the effects of the 
explanatory variables on the mean are additive).

The variance of the response variable, given the (predicted) mean, 
is constant.

In a GLM some transformation of the mean is modelled by a linear function 
of the explanatory variables, and the distribution of the response variable 
around its mean (often referred to as the error distribution) is usually gener-
alised in a way that fits naturally with a particular transformation. The result 
is a very wide class of regression models that includes many other models 
as special cases, including analysis of variance, multiple linear regression, 
and logistic regression. The three essential components of a GLM are the 
following:

(a) A linear predictor, η, formed from the explanatory variables:

 η = β0 + β1x1 + β2x2 … + βpxp = β′x (10.2)

(b) A transformation of the mean, μ, of the response variable called the link 
function, g(μ). In a GLM, it is g(μ) that is modelled by the linear predictor

 g(μ) = η (10.3)

In multiple linear regression and analysis of variance, the link function 
is the identity function. Other link functions that are used include the log, 
logit, probit, inverse, and power transformations, although the log and logit 
are most commonly met in practice. The logit link, for example, is the basis 
of logistic regression.
(c) The distribution of the response variable, given its mean μ, is assumed to 
be a distribution from the exponential family; this has the form of

 f(y;θ,ϕ) = exp {(yθ − b(θ)) / a(ϕ) + c(y,ϕ)} (10.4)

for some specific functions a, b, and c and parameters θ and ϕ. For example, 
in linear regression, a normal distribution is assumed with mean μ and 
constant variance σ2. This can be expressed via the exponential family as 
follows:



287Generalised Linear Model

 

{ }
{ }

( )
( )

( ) ( )

( ) ( )θ φ =
πσ

− − μ σ

= μ − μ σ − σ + πσ

f y y

y y

; ,
1

2
exp / 2

exp / 2 /
1

2
/ log 2

2

2 2

2 2 2 2 2

 (10.5)

so that θ = μ,b(θ) = θ2 / 2, ϕ = σ2 and a(ϕ) = ϕ.
Other distributions in the exponential family include the binomial, Poisson, 

gamma, inverse Gaussian, and exponential distributions. Particular link func-
tions in GLMs are generally associated with particular error distributions—
for example, the identity link with the Gaussian distribution, the logit with 
the binomial, and the log with the Poisson. The choice of probability distribu-
tion determines the relationships between the variance of the response vari-
able (conditional on the explanatory variables) and its mean. This relationship 
is known as the variance function, denoted V(μ). For the Gaussian distribution, 
V(μ) = σ2; here, the variance is not a function of the mean and thus can be 
estimated freely. For the Poisson distribution, however, the variance equals 
the mean, V(μ) = μ, so that the variance is constrained and cannot be estimated 
freely. More will be said about the variance function later in the chapter.

The parameters in GLMs are estimated by maximising the joint likelihood 
of the observed responses given the parameters of the model and the explan-
atory variables. This generally requires iterative numerical algorithms; see 
McCullagh and Nelder (1989) for details.

10.3 Applying the Generalised Linear Model

Multiple linear regression (and analysis of variance and analysis of covari-
ance, which, as mentioned in Chapter 6, are essentially equivalent to mul-
tiple regression) can be applied via the GLM approach using an identity link 
function and a normal error distribution. Logistic regression is applied in 
the GLM framework by using a logit link function and specifying binomial 
errors. Proc genmod is the main SAS procedure for fitting generalised linear 
models. Its syntax is broadly similar to that of proc glm, with the additional 
options needed to generalise the linear model. The distribution and the link 
function are specified on the model statement. If the canonical link function 
is to be used, it is only necessary to specify the distribution. For example, the 
multiple linear regression of the physical measurements data described in 
Chapter 8 could be applied using proc genmod as follows:

proc genmod data=PhysicalMeasures;
  model mass=fore waist height thigh / dist=normal link=id;
run;
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The results will be the same as those given in Chapter 8. And the logistic 
regression model for low birth weight babies described in Chapter 9 would 
be applied with proc genmod as

proc genmod data=lowbwt desc;
  class race ;
  model low=race age lwt ftv / dist=b link=logit;
run;

In the following two subsections we will look at using GLMs with some 
less commonly applied link functions and error distributions than those used 
in the preceding examples. We begin with an account of Poisson regression.

10.3.1 Poisson Regression

The Poisson regression model is useful for a response variable, y, that is a 
count or frequency and for which it is reasonable to assume an underlying 
Poisson distribution—that is,

 ( ) = μ =
−μ

y
e

y
yPr

!
0,1, 2

y

…  (10.6)

Our first example of the use of Poisson regression involves the data shown 
in Table 10.1, taken from Seeber (1989). The data arise from 31 male patients 
treated for superficial bladder cancer and give the number of recurrent 
tumours during a particular time period after removal of the primary tumour, 
and the size of the primary tumour (whether smaller or larger than 3 cm).

Before coming to the analysis of the data in Table 10.2, we need to introduce 
the idea of a Poisson process, in which the waiting times between successive 
events of interest (the tumours in this case) are independent and exponen-
tially distributed with common mean, 1/λ (say). Then the number of events 
that occurs up to time t has a Poisson distribution with mean μ = λt. Here the 
parameter of real interest is the rate at which events occur, λ, and for a single 
explanatory variable, x, we can adopt a Poisson regression approach using 
the model

 λ = μ = β + β
t

xlog log 0 1  (10.7)

to examine the dependence of λ on x. Rearranging this model, we obtain

 log μ = β0 + β1x + log t (10.8)

In this form, the model can be fitted within the GLM framework. In this 
model, log t is a variable in the model whose regression coefficient is fixed at 
unity and is usually known as an offset.
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TABLE 10.1

Bladder Cancer Data

Time x n

2 0 1

3 0 1

6 0 1

8 0 1

9 0 1

10 0 1

11 0 1

13 0 1

14 0 1

16 0 1

21 0 1

22 0 1

24 0 1

26 0 1

27 0 1

7 0 2

13 0 2

15 0 2

18 0 2

23 0 2

20 0 3

24 0 4

1 1 1

5 1 1

17 1 1

18 1 1

25 1 1

18 1 2

25 1 2

4 1 3

19 1 4

Source: Seeber, G. U. H. 1989. Statistics in Medicine 

8:1363–1369. With permission of the publishers, 

John Wiley & Sons Ltd.

Notes: x = 0 tumour < 3 cm; x = 1 tumour ≥ 3 cm.
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TABLE 10.2

Results from Fitting a Poisson Regression Model to the Data in Table 10.1

Model Information
Data Set WORK.BLADDER
Distribution Poisson
Link Function Log
Dependent Variable n
Offset Variable logtime

Number of Observations Read 31
Number of Observations Used 31

Criteria for Assessing Goodness of Fit

Criterion DF Value Value/DF
Deviance 29 25.4189 0.8765
Scaled Deviance 29 25.4189 0.8765
Pearson Chi-Square 29 38.5938 1.3308
Scaled Pearson X2 29 38.5938 1.3308
Log Likelihood –33.3234
Full Log Likelihood –48.1150
AIC (smaller is better) 100.2301
AICC (smaller is better) 100.6586
BIC (smaller is better) 103.0980

Algorithm converged.

Analysis of Maximum Likelihood Parameter Estimates

Parameter DF Estimate
Standard 

Error
Wald 95% Wald Chi- 

Square
Pr > 

ChiSq
Intercept 1 –2.3394 0.1768 –2.6859 –1.9929 175.13 <.0001
x 1 0.2292 0.3062 –0.3709 0.8293 0.56 0.4541
Scale 0 1.0000 0.0000 1.0000 1.0000

Note:
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To read in the data and apply the Poisson regression model here requires 
the following SAS code:

data bladder;
  input time x n;
  logtime=log(time);
cards;
2 0 1
3 0 1
...
25 1 2
4 1 3
19 1 4
;

proc genmod data=bladder;
  model n=x / offset=logtime dist=p;
run;

The data step reads in the data and calculates the log of the waiting time 
to be used as the offset in the analysis. The offset is specified on the model 
statement. The results are shown in Table 10.2.

The estimated model is

 log λ = −2.339 + 0.229x (10.9)

Therefore, for smaller tumours (x = 0), the estimated (baseline) rate  is 
 exp(–2.339) = 0.096; for larger tumours (x = 1), the estimated rate is exp(–2.339 +  
0.229) = 0.12. The rate for larger tumours is estimated as 0.12/0.096 = 1.25 times 
the rate for smaller tumours. In terms of waiting times between recurrences, 
the means are 1/0.096 = 10.42 months for smaller tumours and 1/0.12 = 8.33 
months for larger tumours. But the regression coefficient for the dummy vari-
able coding tumour size is seen from Table 10.2 to be nonsignificant, so the 
data give no evidence that rates or waiting times for large and small tumours 
are different. This becomes apparent if we construct a confidence interval for 
the rate for larger tumours from the confidence limits given in Table 10.2 as 
[exp(–2.339 – 0.371), exp(–2.339 + 0.829)]—that is, [0.067,0.221]. This interval con-
tains the rate for smaller tumours. There is no evidence that size of primary 
tumour is associated with number of recurrent tumours.

As a second example of the application of Poisson regression, we shall apply 
it to the data shown in Table 10.3. These data arise from a prospective study 
of potential risk factors for coronary heart disease (CHD) (Rosenman et al. 
1975). The study looked at 3,154 men aged 40–50 for an average of 8 years and 
recorded the incidence of cases of CHD. The potential risk factors included 
smoking, blood pressure, and personality/behaviour type. The  data are 
given in Fitzmaurice, Laird, and Ware (2004) and it is the analysis given in 
the latter that we follow here.
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Let yi be the number of cases of CHD and Ti be the person years of follow-up 
(this is defined as the total duration of observed follow-up, from entry into 
the study until either disease detection or end of follow-up), where i indexes 
the risk group and takes values 1 to 16. We will begin by looking at a model 
with a single risk factor—namely, smoking. We shall assume that the values 
of this variable are quantitative, although this is not strictly the case and an 
alternative would be to use three dummy variables to code the four categories 
of smoking. We will use the same model as in the previous example—that is,

 log(μi / Ti) = β0 + β1smokingi (10.10)

where μi = E(yi). Remembering that log(Ti) has to be included as an offset, we 
can fit this model using the following code:

data CHDrisk;
 input pyears smoking BP TypeA Ncases;
 lpyears=log(pyears);
datalines;
5268.2 0 0 0 20
2542.0 10 0 0 16
. . .

TABLE 10.3

Data on Incidence of CHD and Associated Risk Factors

Person-Years Smoking Blood Pressure Behaviour n of CHD Cases

5268.2 0 0 0 20

2542.0 10 0 0 16

1140.7 20 0 0 13

614.6 30 0 0 3

4451.1 0 0 1 41

2243.5 10 0 1 24

1153.6 20 0 1 27

925.0 30 0 1 17

1366.8 0 1 0 8

497.0 10 1 0 9

238.1 20 1 0 3

146.3 30 1 0 7

1251.9 0 1 1 29

640.0 10 1 1 21

374.5 20 1 1 7

338.2 30 1 1 12

Notes: Smoking: 0 = nonsmoker; 10 = 1–10 cigarettes a day; 20 = 11–20 cigarettes a day; 30 = 

30+ cigarettes a day. Blood pressure: 0 = <140; 1 = ≥140. Behaviour: 0 = type B person-

ality; 1 = type A personality. (Type A is characterised by impatience, competitiveness, 

aggressiveness, a sense of time urgency, and tenseness. Type B is characterised as 

easy-going, relaxed about time, not competitive, and not easily angered or agitated.)
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374.5 20 1 1 7
338.2 30 1 1 12
;

proc genmod data=CHDrisk;
 model ncases=smoking / offset=lpyears dist=p;
run;

The results are shown in Table 10.4. The regression coefficient for smoking 
is highly significant and smoking is clearly an important risk factor for CHD.

Because risk factors for CHD are likely to be correlated (and they clearly are 
from even a superficial examination of the data in Table 10.3), we next estimate 
the effect of smoking on CHD rates after adjusting for the potential confound-
ing effects of blood pressure and personality type. The model we need to fit is

 log(μi / Ti) = β0 + β1smokingi + β2BPi + β3Typei (10.11)

The required code is

proc genmod data=CHDrisk;
  model ncases= smoking BP TypeA/ offset=lpyears dist=p;
run;

The results are shown in Table 10.5. Smoking remains a highly significant 
risk factor even after conditioning on blood pressure and personality type.

As our final example of Poisson regression, we shall apply the method to 
the data shown in Table  10.6 taken from Piantadosi (1997). The data arise 
from a study of familial adenomatous polyposis (FAP), an auotsomal domi-
nant genetic defect that predisposes those affected to develop large numbers 
of polyps in the colon, which, if untreated, may develop into colon cancer. 
Patients with FAP were randomly assigned to receive an active drug treat-
ment or a placebo. The response variable was the number of colonic polyps 
at 3 months after starting treatment. Additional covariates of interest were 
number of polyps before starting treatment, gender, and age.

TABLE 10.4

Results from Fitting a Poisson Regression Model Including Only Smoking to the 

Data in Table 10.3

Analysis of Maximum Likelihood Parameter Estimates

Parameter DF Estimate
Standard 

Error

Wald 95% 

Limits
Wald Chi- 

Square Pr > ChiSq
Intercept 1 –4.7993 0.0885 –4.9728 –4.6258 2939.54 <.0001
smoking 1 0.0318 0.0056 0.0207 0.0428 31.88 <.0001
Scale 0 1.0000 0.0000 1.0000 1.0000
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TABLE 10.6

FAP Data

Sex Treatment
Baseline Count 

of Polyps Age
No. of Polyps 
at 3 Months

0 1 7 17 6

0 0 77 20 67

1 1 7 16 4

0 0 5 18 5

1 1 23 22 16

0 0 35 13 31

0 1 11 23 6

1 0 12 34 20

1 0 7 50 7

1 0 318 19 347

1 1 160 17 142

0 1 8 23 1

1 0 20 22 16

1 0 11 30 20

1 0 24 27 26

1 1 34 23 27

0 0 54 22 45

1 1 16 13 10

1 0 30 34 30

0 1 10 23 6

0 1 20 22 5

1 1 12 42 8

Source: Piatados, S. 1997. Clinical Trials: A Methodologic Perspective. 
New York: Wiley.

Notes: Sex: 0 = female; 1 = male. Treatment: 0 = placebo; 1 = active.

TABLE 10.5

Results from Fitting a Poisson Regression Model Including Smoking, Blood 

Pressure, and Personality Type to the Data in Table 10.3

Analysis of Maximum Likelihood Parameter Estimates

Parameter DF Estimate
Standard 

Error

Wald 95% 

Limits
Wald Chi- 

Square Pr > ChiSq
Intercept 1 –5.4202 0.1308 –5.6765 –5.1638 1716.79 <.0001
smoking 1 0.0273 0.0056 0.0163 0.0383 23.72 <.0001
BP 1 0.7534 0.1292 0.5001 1.0067 33.98 <.0001
TypeA 1 0.7526 0.1362 0.4856 1.0195 30.53 <.0001
Scale 0 1.0000 0.0000 1.0000 1.0000
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These data can be read in and a Poisson regression model fitted using the 
following SAS code:

data fap;
  input male treat base_n age r_n;
cards;
0 1 7 17 6
0 0 77 20 67
....
0 1 10 23 6
0 1 20 22 5
1 1 12 42 8
;

proc genmod data=fap;
  model r_n=male treat base_n age / dist=p;
run;

The results are shown in Table  10.7. The regression coefficients become 
easier to interpret if they (and the confidence limits) are exponentiated. 

TABLE 10.7

Results of Fitting a Poisson Regression Model to the FAP Data in Table 10.6

Model Information
Data Set WORK.FAP
Distribution Poisson
Link Function Log
Dependent Variable r_n

Number of Observations Read 22
Number of Observations Used 22

Criteria for Assessing Goodness of Fit

Criterion DF Value Value/DF
Deviance 17 186.7304 10.9841
Scaled Deviance 17 186.7304 10.9841
Pearson Chi-Square 17 186.0802 10.9459
Scaled Pearson X2 17 186.0802 10.9459
Log Likelihood 2946.0059
Full Log Likelihood –143.8490
AIC (smaller is better) 297.6980
AICC (smaller is better) 301.4480
BIC (smaller is better) 303.1533

Algorithm converged.

(Continued)
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For example, the exponentiated confidence interval for the gender regres-
sion coefficient is [1.07,1.65]. Men are estimated to have somewhere between 
7% and 65% more polyps at 3 months than women, conditional on the 
other covariates being the same. For treatment, the corresponding interval 
is [0.60,0.88]. Consequently, patients receiving the active treatment are esti-
mated to have between 60% and 88% the number of polyps at 3 months than 
those receiving the placebo—again, conditional on the other covariates being 
equal. One aspect of the fitted model for these data—namely, the value of the 
deviance divided by degrees of freedom—has implications for the appropri-
ateness of the model, which we shall take up in Section 10.5.

10.3.2 Regression with Gamma Errors

Some of the counts in the polyp data in Table 10.6 are extremely large, indi-
cating that the distribution of counts is very skewed. Consequently, the data 
might be better modelled by allowing for this with the use of a gamma dis-
tribution (the distribution is defined in Everitt 2002). Since gamma variables 
are positive, a log link function will again be used and the SAS code to fit the 
model is now

proc genmod data=fap;
  model r_n=male treat base_n age / dist=g link=log;
run;

In this example, we specify both the link function and the error distribu-
tion on the model statement, as the log link is not the canonical link for the 
gamma distribution.

The results are shown in Table 10.8. The gender regression coefficient is 
now no longer significant at the 5% level, but the p-values associated with the 
other regression coefficients are largely unchanged.

TABLE 10.7 (Continued )

Results of Fitting a Poisson Regression Model to the FAP Data in Table 10.6

Analysis of Maximum Likelihood Parameter Estimates

Parameter DF Estimate
Standard 

Error

Wald 95% 

Limits
Wald Chi- 

Square Pr > ChiSq
Intercept 1 3.3610 0.1882 2.9922 3.7298 319.09 <.0001
male 1 0.2814 0.1111 0.0637 0.4991 6.42 0.0113
treat 1 –0.3183 0.0984 –0.5112 –0.1254 10.46 0.0012
base_n 1 0.0089 0.0004 0.0081 0.0097 479.32 <.0001
age 1 –0.0264 0.0073 –0.0408 –0.0120 12.95 0.0003
Scale 0 1.0000 0.0000 1.0000 1.0000

Note:
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TABLE 10.8

Results from Fitting a Model with Gamma Errors to the FAP Data

Model Information
Data Set WORK.FAP
Distribution Gamma
Link Function Log
Dependent Variable r_n

Number of Observations Read 22
Number of Observations Used 22

Criteria for Assessing Goodness of Fit

Criterion DF Value Value/DF
Deviance 17 7.5870 0.4463
Scaled Deviance 17 23.1875 1.3640
Pearson Chi-Square 17 5.6485 0.3323
Scaled Pearson X2 17 17.2629 1.0155
Log Likelihood –80.1699
Full Log Likelihood –80.1699
AIC (smaller is better) 172.3398
AICC (smaller is better) 177.9398
BIC (smaller is better) 178.8861

Algorithm converged.

Analysis of Maximum Likelihood Parameter Estimates

Parameter DF Estimate
Standard 

Error

Wald 95% 

Limits
Wald Chi- 

Square Pr > ChiSq
Intercept 1 3.0155 0.5048 2.0260 4.0049 35.68 <.0001
male 1 0.5093 0.2940 –0.0668 1.0854 3.00 0.0832
treat 1 –0.8358 0.2591 –1.3437 — 10.40 0.0013
base_n 1 0.0132 0.0027 0.0079 0.0186 23.46 <.0001
age 1 –0.0223 0.0186 –0.0588 0.0142 1.44 0.2306
Scale 1 3.0562 0.8759 1.7428 5.3595

Note: The scale parameter was estimated by maximum likelihood.
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10.4 Residuals for GLMs

As with multiple regression and logistic regression, it is important when 
fitting GLMs to look at suitable residuals to assess assumptions. Two 
residuals useful in assessing fitted GLMs are described next; in essence, 
they are equivalent to those described in the previous chapter on logistic 
regression.

The deviance residuals are defined as

 ( )= − μr y dsign ˆi
D

i i i  (10.12)

where di is the contribution of the ith subject to the deviance, with total devi-

ance given by ∑ )(=D ri
D

i

2

.
The Pearson residuals are defined as the contribution of the ith subject to the 

Pearson X2 statistic
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( )
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ˆ

ˆ
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P i i

i

 (10.13)

so that ∑( )=X ry
P2 2

.

Both the Pearson and deviance statistics can be used for detecting obser-

vations not well fitted by the model. The deviance residuals are more com-

monly used because their distribution tends to be closer to normal than that 

of the Pearson residuals.
To illustrate the use of residuals for assessing GLMs, we shall calculate 

the Pearson residuals for both the Poisson regression model and the gamma 
errors model fitted to the FAP data. A probability plot will be used in each 
case to display the residuals. To do this, we rerun the two models, add-
ing an output statement to save the Pearson (chi) residuals and then use 
proc univariate for the probability plot, suppressing the printed output 
with the noprint option. The options on the probplot statement specify a 
normal probability plot. Estimating the mean and standard deviation from 
the data (i.e., the residuals in this case) enables an appropriate reference line 
to be drawn:

proc genmod data=fap;
  model r_n=male treat base_n age / dist=p;
  output out=pout reschi=rs;
run;
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proc univariate data=pout noprint;
  var rs;
  probplot rs / normal(mu=est sigma=est);
run;

proc genmod data=fap;
  model r_n=male treat base_n age / dist=g link=log;
  output out=gout reschi=rs;
run;

proc univariate data=gout noprint;
  var rs;
  probplot rs / normal(mu=est sigma=est);
run;

The probability plots are shown in Figures 10.1 and 10.2. The plot asso-
ciated with the Poisson regression shows a clear departure from linearity, 
with several very large residuals. The plot associated with the gamma errors 
model appears to be far more satisfactory. The possible problem with the 
Poisson model is taken up in the next section.
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FIGURE 10.1
Normal probability plot of Pearson residuals from the Poisson regression model for the 
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10.5 Overdispersion

An important aspect of generalised linear models that thus far we have 
largely ignored is the variance function, V(μ), that captures how the variance 
of a response variable depends upon its mean. The general form of the rela-
tionship is var(response) = ϕV(μ) where ϕ is a constant and V(μ) specifies how 
the variance depends on the mean μ. For the error distributions considered 
previously, this general form becomes

Normal:  V(μ) = 1, ϕ = σ2; here, the variance does not depend 
on the mean.

Binomial: V(μ) = μ(1 – μ), ϕ = 1.

Poisson: V(μ) = μ, ϕ = 1.

In the case of a Poisson variable, we see that the mean and variance are 
equal, and in the case of a binomial variable, where the mean is the probability 
of the occurrence of the event of interest, p, the variance is p(1 – p).

Both the Poisson and binomial distributions have variance functions that 
are completely determined by the mean. There is no free parameter for the 
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variance since, in applications of the generalised linear model with binomial 
or Poisson error distributions, the dispersion parameter, ϕ, is defined to be 
one (see previous results for logistic and Poisson regression). But in some 
applications, this becomes too restrictive to account fully for the empirical 
variance in the data; in such cases, it is common to describe the phenomenon 
as overdispersion.

For example, if the response variable is the proportion of family mem-
bers who have been ill in the past year, observed in a large number of fami-
lies, then the individual binary observations that make up the observed 
proportions are likely to be correlated rather than independent. This non-
independence can lead to a variance that is greater (less) than that on the 
assumption of binomial variability. Also, observed counts often exhibit 
larger variance than would be expected from the Poisson assumption, a fact 
noted by Greenwood and Yule over 80 years ago (Greenwood and Yule 1920). 
Greenwood and Yule’s suggested solution to the problem was a model in 
which μ was a random variable with a gamma distribution leading to a nega-
tive binomial distribution for the count.

There are a number of strategies for accommodating overdispersion, but 
here we concentrate on a relatively simple approach that retains the use 
of the binomial or Poisson error distributions as appropriate, but allows 
estimation of a value of ϕ from the data rather than defining it to be unity 
for these distributions. The estimate is usually the residual deviance divided 
by its degrees of freedom—exactly the method used with Gaussian mod-
els. Parameter estimates remain the same, but parameter standard errors are 
increased by multiplying them by the square root of the estimated dispersion 
parameter. This process can be carried out manually, or almost equivalently 
the overdispersed model can be formally fitted using a procedure known 
as quasilikelihood; this allows estimation of model parameters without fully 
knowing the error distribution of the response variable (see McCullagh and 
Nelder 1989 for full technical details of the approach).

When fitting generalised linear models with binomial or Poisson error 
distributions, overdispersion can often be spotted by comparing the resid-
ual deviance with its degrees of freedom. For a well-fitting model, the two 
quantities should be approximately equal. If the deviance is far greater than 
the degrees of freedom, overdispersion may be indicated. In Table 10.7, for 
example, we see that the ratio of deviance to degrees of freedom is nearly 
11, clearly indicating an overdispersion problem. Consequently, we will 
now refit the Poisson model with the scale=d option, which uses the 
square root of the deviance divided by its degrees of freedom as the scale 
parameter:

proc genmod data=fap;
  model r_n=male treat base_n age / dist=p scale=d;
  output out=pout reschi=rs;
run;
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The results are shown in Table 10.9. Comparing these with the results in 
Table 10.7, we see that the estimated regression coefficients are the same, but 
their standard errors are now much greater, with the consequence that only 
the coefficient of baseline polyp count remains significant. Gender, treat-
ment, and age are no longer found to be significant predictors of 3-month 
polyp count.

10.6 Summary

Generalised linear models provide a very powerful and flexible framework 
for the application of regression models to medical data. Some familiarity 
with the basis of such models might allow medical researchers to consider 
more realistic models for their data rather than to rely solely on linear and 
logistic regression.

TABLE 10.9

Results of Fitting Overdispersed Model Poisson Model to FAP Data

Analysis of Maximum Likelihood Parameter Estimates

Parameter DF Estimate
Standard 

Error

Wald 95% 

Limits
Wald Chi- 

Square Pr > ChiSq
Intercept 1 3.3610 0.6236 2.1388 4.5832 29.05 <.0001
Male 1 0.2814 0.3681 –0.4400 1.0028 0.58 0.4445
Treat 1 –0.3183 0.3261 –0.9575 0.3209 0.95 0.3291
base_n 1 0.0089 0.0013 0.0063 0.0115 43.64 <.0001
Age 1 –0.0264 0.0243 –0.0741 0.0213 1.18 0.2776
Scale 0 3.3142 0.0000 3.3142 3.3142

Note: The scale parameter was estimated by the square root of DEVIANCE/DOF.
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11
Generalised Additive Models

11.1 Introduction

The multiple regression model described in Chapter 8 and the generalised 
linear model featured in Chapter 10 can accommodate nonlinear functions 
of the explanatory variables—for example, quadratic or cubic terms—if 
these are thought to be necessary to provide an adequate fit. In this chapter, 
however, we consider some alternative and generally more flexible  statistical 
methods for modelling nonlinear relationships between a response vari-
able and one or more explanatory variables. The main component of these 
methods, known as generalised additive models (GAMs), is the fitting of a 
‘smooth’ relationship between the response and each explanatory variable 
by means of a scatter plot smoother (see Chapter 7 and Section 11.2). GAMs 
are useful when

The relationship between the variables is expected to be of complex 
form not easily fitted by standard linear or nonlinear models.

There is no a priori reason for using a particular model.

We would like the data themselves to suggest the appropriate func-
tional form for the relationship between an explanatory variable and 
the response.

Such models should be regarded as philosophically closer to the concepts 
of exploratory data analysis, in which the form of any functional relationship 
emerges from a set of data, rather than arising from a theoretical construct. 
In the health sciences, this can be especially useful because it reflects the 
uncertainty of knowledge regarding the mechanisms that determine disease 
and its prognosis.

Since the building blocks of the GAM approach are scatter plot smoothers, 
these are described in the next section.
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11.2 Scatter Plot Smoothers

The scatter plot is an excellent first exploratory graph to study the  dependence 
of two variables. An important second exploratory graph adds a curve to the 
scatter plot to help us better perceive the pattern of dependence. Most readers 
will be familiar with adding a parametric curve, such as a simple linear or 
polynomial regression fit; however, there are nonparametric alternatives that 
are perhaps less familiar, but can often be more useful, since many bivari-
ate data sets are too complex to be described by a simple  parametric fam-
ily. Perhaps the simplest of these alternatives is a locally weighted regression 
or loess fit, first suggested by Cleveland (1979) and introduced in Chapter 7. 
In essence, this approach assumes that the variables x and y are related by 
the equation

 yi = g ( xi ) + εi (11.1)

where g is a ‘smooth’ function and the εi are random variables with mean 
zero and constant scale.

Values ŷi, used to ‘estimate’ the yi at each xi, are found by fitting  polynomials 
using weighted least squares with large weights for points near to xi and 
small weights otherwise. Thus, smoothing takes place essentially by local 
averaging of the y-values of observations having predictor values close to a 
target value.

Two parameters control the shape of a loess curve; the first is a smoothing 
parameter, α, with larger values leading to smoother curves (typical values 
are 0.25 to 1). The second parameter, λ, is the degree of certain polynomials 
that are fitted by the method; λ can take values 1 or 2. In any specific appli-
cation, the choice of the two parameters must be based on a combination of 
judgement and trial and error. Residual plots may be helpful, however, in 
judging a particular combination of values.

We shall illustrate the use of locally weighted regression on data collected 
on the oxygen uptake and the expired ventilation of 53 subjects  performing a 
standard exercise task. The data for the first five subjects are given in Table 11.1. 

TABLE 11.1

Oxygen Uptake and Expired Ventilation Observations 

for First 5 of the 53 Subjects in the Data Set

Subject Oxygen Uptake Expired Ventilation

1 574 21.9

2 592 18.6

3 664 18.6

4 667 19.1

5 718 19.2
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Within SAS, locally weighted regression can be performed with proc loess or 
proc gam. Although proc loess has more options for choosing the parameters 
of the locally weighted regression, proc gam fits a wider range of generalised 
additive models and thus is used here. (The use of proc loess was illustrated 
in Chapter 7.)

data oxygen;
infile 'c:\amsus\data\oxygen.dat';
input id o2uptake expired;

run;

proc gam data=oxygen;
model expired=loess(o2uptake) / method=gcv;
output out=gamout pred;

run;

proc sgplot data=gamout;
 scatter y=expired x=o2uptake;
 series y=p_expired x=o2uptake;

run;

The first point to notice about the syntax of proc gam is that the speci-
fication of predictors on the model statement is different from proce-
dures covered in previous chapters. The name of the predictor variable is 
enclosed in parentheses and prefixed with a keyword indicating the type 
of smoother to be employed. The keyword param is used for variables that 
are not to be smoothed, but entered as parametric linear predictors; loess 
is used for a locally weighted regression, spline for a cubic smoothing 
spline (described later in the chapter), and spline2 for a thin plate smooth-
ing spline, which is a multivariate version of the cubic spline (again, see later 
in the chapter).

Parametric effects must be specified before smoothed effects and must 
be included in the same set of parentheses, where there are more than one. 
Parametric effects can be categorical but, in that case, must also be named 
on a class statement. For smoothed effects, the degree of smoothing can 
be specified for each in terms of its effective number of parameters (analo-
gous to the number of parameters in a parametric fit; see later) or degrees of 
freedom—for example,

model expired = loess(o2uptake,df=6);

Alternatively, the method = gcv option on the model statement can 
be  used to select a degree of smoothing using generalised cross valida-
tion. The dist= option on the model statement specifies the distribution. 
Gaussian is the default, and other possibilities are binomial, binary, 
gamma,  igaussian (inverse Gaussian), or poisson.

The output statement creates the gamout data set, which contains the 
variables used in the model plus predicted values, specified using the 
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keyword pred. (The id statement can be used to copy additional variables 
to the output data set.) There are predicted values for each smoothed effect 
and overall predicted values. These are automatically named by prefixing 
the original variable name with p_, so the gamout data set contains both 
p_expired and p_o2uptake.

A plot of the data and the overall predicted values is shown in Figure 11.1.
We can compare this result to results from fitting parametric regressions 

that include various polynomial functions:

proc sgplot data=oxygen;
  scatter y=expired x=o2uptake / legendlabel='observed';
  reg y=expired x=o2uptake /degree=2 nomarkers    
  lineattrs=(pattern=dot) legendlabel='quadratic';
  reg y=expired x=o2uptake /degree=3 nomarkers    
  lineattrs=(pattern=dash) legendlabel='cubic';
  reg y=expired x=o2uptake /degree=4 nomarkers    
  lineattrs=(pattern=solid) legendlabel='quartic';
run;

Quadratic and cubic functions can be overlaid on a scatter plot using the 
reg plot statement with different degree options. To distinguish the curves, 
we give them different line types and appropriate labels for the legend. The 
resulting plot is shown in Figure 11.2. Here the locally weighted regression 
and the polynomial give very similar fits.
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FIGURE 11.1
Plot of oxygen uptake data showing fitted locally weighted regression curve.
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A more difficult challenge for the locally weighted regression approach 
is provided by the data shown in Table 11.2; these are monthly deaths from 
bronchitis, emphysema, and asthma in the UK from 1974 to 1979 for both 
men and women.

First, we read these data in as follows:

data respdeaths;
infile cards missover;
 retain obs 0;
 input year @;
 do month=1 to 12;
 input deaths @;
 output;
 obs=obs+1;
 end;
cards;
1974 3035 2552 2704 2554 2014 1655 1721 1524 1596 2074 2199 2512
1975 2933 2889 2938 2497 1870 1726 1607 1545 1396 1787 2076 2837
1976 2787 3891 3179 2011 1636 1580 1489 1300 1356 1653 2013 2823
1977 2996 2523 2540 2520 1994 1964 1691 1479 1596 1877 2032 2484
1978 2899 2990 2890 2379 1933 1734 1617 1495 1440 1777 1970 2745
1979 2841 3535 3010 2091 1667 1589 1518 1348 1392 1619 1954 2633
run;
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FIGURE 11.2
Plot of oxygen uptake data showing quadratic, cubic, and quartic polynomial fits.
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The retain statement specifies a variable whose values are to be kept 
from the previous iteration of the data step and sets its initial value to zero. 
Then the year is read in with the trailing @ holding the line for further data 
to be read. The do loop then reads the number of deaths for each month and 
writes out an observation. With a single trailing @, the data line is released at 
the end of the data step iteration.

Now we fit a model using locally weighted regressions with two 
components—one for year and one for month:

proc gam data=respdeaths;
  model deaths=loess(year) loess(month) / method=gcv;
  id obs;
  output out=respout all;
run;

proc sgplot data=respout;
  scatter y=deaths x=obs ;
  series y=p_deaths x=obs;
run;

This code is very similar to that given earlier. The obs variable is needed 
for the subsequent plot, so the id statement is used to add it to the respout 
data set. The output statement also uses the all keyword to request all 
available statistics.

The plot of the observed data and the fitted locally weighted regression are 
shown in Figure 11.3. The characteristic cyclic nature of the data has been 
modelled reasonably accurately by the fitted curve.

When the model contains more than one smoothed effect, separate plots 
of the additive fit of each are useful in assessing their functional form. The 
plots, referred to in SAS as component plots, are produced by default when 
ODS graphics are on. Here, we explicitly request the plots in order to specify 
the additional options of confidence limits (clm) and common axes for the 
two plots. The result is shown in Figure 11.4.

TABLE 11.2

Monthly Deaths from Bronchitis, Emphysema, and Asthma for UK Men 

and Women, 1974–1979

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1974 3035 2552 2704 2554 2014 1655 1721 1524 1596 2074 2199 2512

1975 2933 2889 2938 2497 1870 1726 1607 1545 1396 1787 2076 2837

1976 2787 3891 3179 2011 1636 1580 1489 1300 1356 1653 2013 2823

1977 2996 2523 2540 2520 1994 1964 1691 1479 1596 1877 2032 2484

1978 2899 2990 2890 2379 1933 1734 1617 1495 1440 1777 1970 2745

1979 2841 3535 3010 2091 1667 1589 1518 1348 1392 1619 1954 2633
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FIGURE 11.3
Plot of monthly deaths from bronchitis showing fitted locally weighted regression.
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ods graphics on;
proc gam data=respdeaths plots=components(clm commonaxes);
  model deaths=loess(year) loess(month)/ method=gcv;
run;

In the right-hand panel, we see more clearly the pattern of win-
ter excess of respiratory deaths, whereas there is little evidence of a 
year-to-year change. In fact, a formal test of the two components shows 
that the effect of year is nonsignificant. (Such tests will be described later 
in the chapter.)

An alternative smoother that can often usefully be applied to bivariate 
data is some form of spline function. (A spline is a term for a flexible strip of 
metal or rubber used by a draftsman to draw curves.) Spline functions are 
polynomials within intervals of the x-variable that are connected across dif-
ferent values of x. Figure 11.5, for example, shows a linear spline function 
(i.e., a piecewise linear function) of the form

 f (x) = β0 + β1X + β2 (X − a)+ + β3 (X − b)+ + β4 (X − c)+ (11.2)
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FIGURE 11.5
A linear spline function with knots at a = 1, b = 3, c = 5. (Taken from Harrell, F. E. 2001. Regression 
Modeling Strategies. With permission of New York: Springer.)
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The interval endpoints, a, b, and c are called knots. The number of knots can 
vary according to the amount of data available for fitting the function.

The linear spline is simple and can approximate some relationships, but 
it is not smooth, so it will not fit highly curved functions well. The problem 
is overcome by using piecewise polynomials—in particular, cubics, which 
have been found to have nice properties with good ability to fit a variety of 
complex relationships. The result is a cubic spline, which is a smooth curve 
ƒ(x) that summarises the dependence of a response variable, y, on an explan-
atory variable, x, and fitted by minimising

 ∫∑ ( ) ( )−⎡⎣ ⎤⎦ + λ ′′
=

y f x f x dxi i

i

n
2 2

1

 (11.3)

where ƒ″(x) is the second derivative of ƒ(x) with respect to x. The first term 
represents the sum of squares criterion used in least squares. The integral 
in the second term, ∫ƒ″(x)2 dx, measures the departure from linearity of ƒ 
(for linear ƒ, the term is zero) and λ is a nonnegative smoothing parameter. 
It governs the trade-off between the goodness of fit to the data and the degree 
of smoothness of ƒ. Larger values of λ force ƒ to be smoother.

For any value of λ, the solution to (11.3) is a cubic spline—a piecewise 
cubic polynomial with pieces joined at the unique observed values xi of the 
explanatory variable. The ‘effective number of parameters’ (analogous to the 
number of parameters in a parametric fit) or degrees of freedom of a cubic 
spline smoother is generally used to specify its smoothness rather than λ 
directly. A numerical search is then used to determine the value of λ cor-
responding to the required degrees of freedom. Roughly, the complexity of 
a cubic spline is about the same as a polynomial of degree one less than the 
degrees of freedom. But the cubic spline smoother ‘spreads out’ its param-
eters in a more even way and, hence, is much more flexible than is polyno-
mial regression. (The preceding account follows that given in Hastie and 
Tibshirani 1990.)

As mentioned earlier, proc gam can also fit spline smoothers and very 
similar results to those shown above for the two-component locally weighted 
regression fit for the bronchitis data can be obtained by changing the model 
statement to

model deaths=spline(year) spline(month)/ method=gcv;

For exploratory analysis of bivariate data, spline and loess smoothers are 
also available as plot types within proc sgplot (see Figure 11.6):

proc sgplot data=respdeaths;
  pbspline y=deaths x=obs;
  loess y=deaths x=obs;
run;



312 Applied Medical Statistics Using SAS

11.3 Additive and Generalised Additive Models

In a linear regression model, there is a dependent variable, y, and a set of 
explanatory variables, x1, … ,xp; the model assumed is

 ∑=β + β + ε
=

y xj j

j

p

0

1

 (11.4)

Additive models replace the linear function βjxj by a smooth nonparamet-
ric function to give

 ∑ )(= β + + ε
=

y g xj j

j

p

0

1

 (11.5)

where gi can be one of the scatter plot smoothers described in the  previous 
section or, if the investigator chooses, a linear function for particular xj. 
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Spline and loess smoothers fitted to the bronchitis data.
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Models can therefore include a mixture of linear and smooth functions if 
necessary.

A generalised additive model arises from Equation (11.5) in the same way 
as a generalised linear model arises from a multiple regression model—
namely, that some function of the expectation of the response variable is 
now modelled by a sum of nonparametric functions. For example, the logis-
tic additive model is

 log Prit y g xj j

j

p

=( )⎡⎣ ⎤⎦ = + ( )
=
∑1 0

1

β  (11.6)

Fitting a generalised additive model involves what is known as a back-
fitting algorithm. The smooth functions gi are fitted one at a time by taking 
the residual

 ∑ ( )−
≠

y g xk k

k j

 (11.7)

Then they are fitted against xj using one of the scatter plot smoothers 
described in Section 11.2. The process is repeated until it converges. Linear 
terms in the model are fitted by least squares. Full details are given in 
Chambers and Hastie (1993).

Various tests are available to assess the nonlinear contributions of the fit-
ted smoothers, and generalised additive models can be compared with, say, 
linear models fitted to the same data by means of likelihood ratio tests often 
set out in an analysis of deviance table (see Chapter 10). In this process, the 
fitted smooth curve is assigned an estimated equivalent number of degrees 
of freedom. For full details, again, see Chambers and Hastie (1993).

11.4 Examples of the Application of GAMs

Our first example will involve applying a generalised additive model to data 
given in Hastie and Tibshirani (1990) that come from a study of the factors 
affecting patterns of insulin-dependent diabetes mellitus in children (Socket 
et al. 1987). The objective was to investigate the dependence of the level of 
serum C-peptide on various other factors in order to understand the pat-
terns of residual insulin secretion. The response measure to be used is the 
logarithm of C-peptide concentration at diagnosis, and the two explanatory 
variables are age and base deficit, a measure of acidity. The data set contains 
observations on 43 children; Table 11.3 shows the observations for the first 
5 children.
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We begin by reading in the data and examining scatter plots of log  (peptide) 
against age and against base:

data diabetes;
  infile 'c:\amsus\data\diabetes.dat';
  input id age base peptide;
  logpeptide=log10(peptide);
run;

proc sgscatter data=diabetes;
   plot logpeptide*(age base)/reg pbspline;
run;

We use log10 of the peptide value following Hastie and Tibshirani (1990). 
Log peptide is then plotted against age and base, superimposing on each 
the associated linear regression and a spline smooth. The results are shown 
in Figure 11.7. In both plots, there appears to be at least some evidence of a 
departure from linearity, although this is stronger for age than base deficit.

To begin, we fit a generalised additive model to these data, using locally 
weighted regression fits for both age and base:

ods graphics on;
proc gam data=diabetes plots(clm commonaxes);
  model logpeptide=loess(age) loess(base) / method=gcv;
run;

In this example, we use ods graphics to generate the component plots. 
The plots are automatically generated when ODS graphics are on, but the 
plots option on the proc statement is used to specify confidence bands and 
common vertical axes for the plots. The plots are shown in Figure 11.8 and 
the procedure output in Table 11.4.

The results shown in Table 11.4 confirm the need for a nonlinear function 
for age, but it appears there is not a strong case for fitting a nonlinear term for 
base. The plot of the fitted functions in Figure 11.8 shows the wide standard 
error limits for the base curve.

TABLE 11.3

Insulin-Dependent Diabetes in Five Children

Subject Age Base Deficit Peptide

1  5.2  –8.1 4.8

2  8.8 –16.1 4.1

3 10.5  –0.9 5.2

4 10.6  –7.8 5.5

5 10.4 –29.0 5.0

Source: Hastie, T. J. and Tibshirani, R. J. 1990. 

Generalized Additive Models, London: CRC/

Chapman and Hall.
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TABLE 11.4

Results from Fitting a GAM with Spline Functions for Both Age 

and Base to the Insulin Dependence Data in Table 11.3

Dependent Variable: Logpeptide
Smoothing Model Component(s): Loess(age) Loess(base)

Summary of Input Data Set
Number of Observations 43
Number of Missing Observations 0
Distribution Gaussian
Link Function Identity

Iteration Summary and Fit Statistics
4

2.3603574E-9
Deviance of the Final Estimate 0.0912805666

Regression Model Analysis Parameter Estimates

Parameter
Parameter 

Estimate
Standard 

Error t Value Pr > |t|
Intercept 0.64112 0.02255 28.43 <.0001
Linear(age) 0.00658 0.00193 3.41 0.0015
Linear(base) 0.00360 0.00109 3.31 0.0020

Smoothing Model Analysis: Fit Summary for Smoothing Components

Component
Smoothing 
Parameter DF GCV

Num 
Unique 

Obs
Loess(age) 0.686047 1.282008 0.000059665 43
Loess(base) 1.000000 0.464229 0.000056241 43

Smoothing Model Analysis: Analysis of Deviance

Source DF
Sum of 

Squares Chi-Square Pr > ChiSq
Loess(age) 1.28201 0.027463 11.5091 0.0011
Loess(base) 0.46423 0.008214  3.4424 .
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We now fit a model which includes a locally weighted regression fit for age 
but a linear term for base; the results are given in Table 11.5. A comparison 
of this model with the one described before shows that allowing for possible 
nonlinearity of base contributes very little to the model.

Finally, we can compare the fit of the model with a locally weighted regres-
sion term for age and a linear term for base, with a multiple regression model 
which includes linear effects for both explanatory variables only. This leads 
to the results for the comparison in the following:

Terms Resid. DF RSS Test DF SS F Pr(F)
Model 1 Age + base 40 0.1261  

Model 2 Lo(age) + base 39.14 0.1016 1v2 0.86 0.0245 10.97 0.003

Allowing for nonlinearity in age contributes significantly to the model. We 
could, of course, allow for this nonlinearity in the classical way (by includ-
ing, say, a quadratic term for age), but it is the fitting of the GAM models that 
has identified the need for such a term.

The next data set we shall consider relates to air pollution in 41 US cities. For 
each city, a binary variable is recorded to indicate whether the annual mean 
concentration of sulphur dioxide is below 30 μg per cubic metre or equal to 
or above this value. Also recorded are six other variables, two of which relate 
to human ecology and four to climate. (The data are taken from Sokal and 
Rohlf 1981.) The observations for the first five cities are given in Table 11.6.

We will use this example to illustrate how GAM models may uncover a 
relationship that could easily be overlooked, if the data were analysed using 
logistic regression. A naïve approach using logistic regression might con-
clude that none of the six predictor variables is related to sulphur dioxide 
concentrati on. However, some exploratory plots suggest the possibility of 
nonlinear relationships. We concentrate on two of the six variables: popula-
tion size and average rainfall.

data usair;
  infile 'c:\amsus\data\usair.dat';
  input city $16. hiso2 temperature factories population 
windspeed rain rainydays;
run;

We begin with some box plots with the datalabel option to identify any 
outliers by name:

proc sgplot data=usair;
  vbox population / category=hiso2 datalabel=city;
run;
proc sgplot data=usair;
  vbox rain / category=hiso2 datalabel=city;
run;
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TABLE 11.5

Results from Fitting a GAM with Spline Function for Age and a Linear 

Term for Base to the Insulin Dependence Data in Table 11.3

Dependent Variable: Logpeptide
Regression Model Component(s): Base
Smoothing Model Component(s): Loess(age)

Summary of Input Data Set
Number of Observations 43
Number of Missing Observations 0
Distribution Gaussian
Link Function Identity

Iteration Summary and Fit Statistics
4

2.919605E-11
Deviance of the Final Estimate 0.1016127205

Regression Model Analysis Parameter Estimates

Parameter
Parameter 

Estimate Standard Error t Value Pr > |t|
Intercept 0.64090 0.02353 27.24 <.0001
base 0.00363 0.00113 3.20 0.0027
Linear(age) 0.00663 0.00201 3.30 0.0021

Smoothing Model Analysis
Fit Summary for Smoothing Components

Component
Smoothing 
Parameter DF GCV

Num Unique 
Obs

Loess(age) 0.779070 0.857962 0.000064786 43

Smoothing Model Analysis
 Analysis of Deviance

Source DF
Sum of 

Squares Chi-Square Pr > ChiSq
Loess(age) 0.85796 0.024478 9.4292 0.0016
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The results shown in Figure 11.9 show that Chicago is an outlier in popula-
tion size, so it is dropped from the analysis:

data usair;
  set usair;
  if city=:'Chicago' then delete;
run;

The spline smoothing plot introduced earlier can also be useful with 
binary data:

proc sgscatter data=usair;
  plot hiso2*(population rain)/pbspline;
run;

Figure  11.10 shows the resulting plots, both of which suggest nonlinear 
relationships. We now fit a logistic model with a spline smooth of average 
rainfall:

ods graphics on;
proc gam data=usair;
 model hiso2=spline(rain,df=2)/dist=binary;
 output out=gamout p;
run;
ods graphics off;

The dist = option on the model statement specifies that the outcome  is 
binary. The degree of smoothing for spline smooth of rain is set to two degrees 
of freedom. In the case of a spline smooth, one of these degrees of freedom 
is allocated to the linear component. ODS graphics are used to generate the 
component plot, which is shown in Figure 11.11. The output statement with 
the p option saves the predicted values in the  gamout data set. The output 
is shown in Table 11.7. There we see that the linear component is not signifi-
cant but that the nonlinear smooth is. The predicted  values (p_hiso2) in the 

TABLE 11.6

Air Pollution Data for First 5 of 41 Cities

City Hiso2 Temperature Factories Population
Wind 
Speed Rain

Rainy 
Days

Phoenix 0 70.3 213 582 6.0  7.05 36

Little Rock 0 61.0  91 132 8.2 48.52 100

San Francisco 0 56.7 453 716 8.7 20.66 67

Denver 0 51.9 454 515 9.0 12.95 86

Hartford 1 49.1 412 158 9.0 43.37 127

Source:  Sokal, R. R., and Rohlf, R. J. 1981. Biometry, 2nd ed. San Francisco: W. H. Freeman.
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output data set are the log odds of a high SO2 value. The predicted probabili-
ties can be calculated and plotted as follows:

data gamout;
  set gamout;
  odds=exp(P_hiso2);
  pred=odds/(1+odds);
run;

proc sort data=gamout; by rain; run;
proc sgplot data=gamout;
 series y=pred x=rain;
run;

The resulting plot is shown in Figure 11.12.
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Box plots for average rainfall and population size for the air pollution data.
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TABLE 11.7

Results from Fitting a GAM to the Air Pollution Data in Table 11.6

Dependent Variable: Hiso2
Smoothing Model Component(s): Spline(rain)

Summary of Input Data Set
Number of Observations 40
Number of Missing Observations 0
Distribution Binomial
Link Function Logit

Ordered 
Value

Total 
Frequency

1 0 27
2 1 13

Note: PROC GAM is modelling the prob-

ability that hiso2 = 1. One way to 

change this in order to model the 

probability that hiso2 = 0 is to spec-

ify the response variable option 

EVENT=‘0’.

Iteration Summary and Fit Statistics
Number of Local Scoring Iterations 17
Local Scoring Convergence Criterion 8.619436E-10

1
6.0285409E-9

Deviance of the Final Estimate 40.425572908

The local scoring algorithm converged.

Regression Model Analysis Parameter Estimates

Parameter
Parameter 

Estimate
Standard 

Error t Value Pr > |t|
Intercept –0.85734 2.05467 –0.42 0.6789
Linear(rain)  0.00886 0.05190  0.17 0.8654
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Predicted values for average rainfall for the US air pollution data.

TABLE 11.7 (Continued)

Results from Fitting a GAM to the Air Pollution Data in Table 11.6

Smoothing Model Analysis
Fit Summary for Smoothing Components

Component
Smoothing 
Parameter DF GCV

Num 
Unique 

Obs
Spline(rain) 0.999899 1.000000 29.622066 40

Smoothing Model Analysis
 Analysis of Deviance

Source DF
Sum of 

Squares Chi-Square Pr > ChiSq
Spline(rain) 1.00000 9.312978 9.3130 0.0023
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11.5 Summary

Generalised additive models provide a useful addition to the tools  available 
for exploring the relationship between a response variable and a set of 
explanatory variables. Such models allow possible nonlinear terms in the lat-
ter to be uncovered and, perhaps, then to be modelled in terms of more famil-
iar low-degree polynomials. The GAM model can deal with  nonlinearity in 
covariates that are not the main interest in a study and ‘adjust’ for those 
effects appropriately.
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12
Analysis of Longitudinal Data I

12.1 Introduction

Longitudinal data arise when participants in a study are measured on the 
same variable (or variables) on several different occasions. Such data arise 
frequently in medical investigations, particularly from clinical trials. An 
example (taken from Davis 2002) is shown in Table 12.1. Here, 40 male sub-
jects were randomly assigned to one of two treatment groups; each patient 
had been rated on the brief psychiatric rating scale (BPRS)  measured before 
treatment (week 0) and at weekly intervals for 8 weeks. The BPRS assesses 
the level of 18 symptom  constructs such as hostility, suspiciousness, hallu-
cination, and grandiosity; each is rated from 1 (not  present) to 7 (extremely 
severe). The scale is used to evaluate patients suspected of having schizo-
phrenia. Longitudinal data can be analysed in a variety of ways ranging 
from the simple to the relatively complex. In this chapter, we concentrate on 
the former, leaving the latter until Chapters 13 and 14.

12.2 Graphical Displays of Longitudinal Data

Graphical displays of data are almost always useful for exposing patterns 
in the data, particularly when these are unexpected; this might be of great 
help in suggesting which class of models might be most sensibly applied in 
the later, more formal analysis. According to Diggle, Liang, and Zeger (2002), 
there is no single prescription for making effective graphical displays of lon-
gitudinal data, although they do offer the following simple guidelines:

Show as much of the relevant raw data as possible rather than only 
data summaries.

Highlight aggregate patterns of potential scientific interest.

Identify both cross-sectional and longitudinal patterns.
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TABLE 12.1

BPRS Measurements from 40 Subjects

Week

Subject 0 1 2 3 4 5 6 7 8

Treatment 1 1 42 36 36 43 41 40 38 47 51

2 58 68 61 55 43 34 28 28 28

3 54 55 41 38 43 28 29 25 24

4 55 77 49 54 56 50 47 42 46

5 72 75 72 65 50 39 32 38 32

6 48 43 41 38 36 29 33 27 25

7 71 61 47 30 27 40 30 31 31

8 30 36 38 38 31 26 26 25 24

9 41 43 39 35 28 22 20 23 21

10 57 51 51 55 53 43 43 39 32

11 30 34 34 41 36 36 38 36 36

12 55 52 49 54 48 43 37 36 31

13 36 32 36 31 25 25 21 19 22

14 38 35 36 34 25 27 25 26 26

15 66 68 65 49 36 32 27 30 37

16 41 35 45 42 31 31 29 26 30

17 45 38 46 38 40 33 27 31 27

18 39 35 27 25 29 28 21 25 20

19 24 28 31 28 29 21 22 23 22

20 38 34 27 25 25 27 21 19 21

Treatment 2 1 52 73 42 41 39 38 43 62 50

2 30 23 32 24 20 20 19 18 20

3 65 31 33 28 22 25 24 31 32

4 37 31 27 31 31 26 24 26 23

5 59 67 58 61 49 38 37 36 35

6 30 33 37 33 28 26 27 23 21

7 69 52 41 33 34 37 37 38 35

8 62 54 49 39 55 51 55 59 66

9 38 40 38 27 31 24 22 21 21

10 65 44 31 34 39 34 41 42 39

11 78 95 75 76 66 64 64 60 75

12 38 41 36 27 29 27 21 22 23

13 63 65 60 53 52 32 37 52 28

14 40 37 31 38 35 30 33 30 27

15 40 36 55 55 42 30 26 30 37

16 54 45 35 27 25 22 22 22 22

17 33 41 30 32 46 43 43 43 43

18 28 30 29 33 30 26 36 33 30
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Try to make the identification of unusual individuals or unusual 
observations simple.

A number of graphical displays which can be useful in the preliminary 
assessment of longitudinal data from clinical trials will now be illustrated 
using the data shown in Table 12.1. But before this, we need a small digression 
to explain how data sets for longitudinal and repeated-measures data can be 
structured in two ways. In the first form, there is one observation per subject 
(typically per person) and the repeated measurements are held in separate 
variables. We shall refer to this form as the ‘wide’ form. Alternatively, there 
may be a separate observation for each measurement occasion, with vari-
ables indicating which subject and occasion it belongs to. This is the ‘long’ 
form of the data set. Usually, both forms will be needed. The wide form is 
useful for calculating summary measures, whereas the long form is needed 
for plots and the types of analyses covered in the next chapter.

Returning to the example involving the BPRS scores, we begin by reading 
in the data in the ‘wide’ format:

data bprs;
  input id x0-x8;
  group=1;
  if _n_>20 then group=2;
  id=100*group+id;
cards;
 1 42 36 36 43 41 40 38 47 51
 2 58 68 61 55 43 34 28 28 28
...
 20 38 34 27 25 25 27 21 19 21
 1 52 73 42 41 39 38 43 62 50
 2 30 23 32 24 20 20 19 18 20
...
 20 47 36 32 29 25 23 23 23 23
;

The subjects are numbered consecutively within treatment groups. The 
SAS automatic variable _n_ is used to assign them to groups and a unique 
id variable is calculated. We then reformat the data set to the long form:

TABLE 12.1 (Continued)

BPRS Measurements from 40 Subjects

Week

Subject 0 1 2 3 4 5 6 7 8

19 52 43 26 27 24 32 21 21 21

20 47 36 32 29 25 23 23 23 23

Source: Davis, C. S. 2002. Statistical Methods for the Analysis of Repeated Measurements. New York: 

Springer.



328 Applied Medical Statistics Using SAS

data bprsl;
  set bprs;
  array xs {*} x0-x8;
  do week=0 to 8;
   bprs=xs{week+1};
   output;
  end;
  keep id group week weekgroup bprs;
run;
proc print data=bprsl(obs=45) noobs;
run;

The key elements of the data step needed to do this are the array statement, 
the iterative do group, and the output statement. These were introduced in 
Chapter 2, in which we dealt with the equivalent situation where each line 
of raw data contained values for several subjects. To recap briefly, the array 
statement declares a shorthand alias, xs, for the variables x0 to x8. The itera-
tive do statement repeats the following statements, up to the correspond-
ing end statement, a number of times with the index variable changing at 
each repetition. In this instance, there are nine repetitions with the index 
variable—week—taking values 0, 1, 2, … , 8. The elements of an array are 
always numbered from 1, so we need to add one to week. The output state-
ment writes out an observation to the data set being created with the current 
values of all variables. As this is between the do statement and the end state-
ment, nine observations are created for every one read in.

The resulting long form of the data for the first five subjects in Table 12.1 is 
given in Table 12.2.

Having reformatted the data, we can plot the BPRS values for all 40 men, 
differentiating between the treatment groups into which the men have been 
randomised:

proc sgpanel data=bprsl;
  panelby group / spacing=10;
  series y=bprs x=week /group=id;
run;

The resulting diagram is shown in Figure 12.1. This simple graph makes a num-
ber of features of the data readily apparent. First, the BPRS factor of almost all 
the men is decreasing over the 8 weeks of the study. Second, the men who have 
higher BPRS values at the beginning tend to have higher values  throughout the 
study. This phenomenon is generally referred to as tracking. Third, there are sub-
stantial individual differences and variability appears to decrease with time.

The tracking phenomenon can be seen more clearly in a plot of the stan-
dardised values of each observation—that is, the values obtained by sub-
tracting the relevant occasion mean from the original observation and then 
dividing by the corresponding visit standard deviation. The following code 
produces Figure 12.2:
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TABLE 12.2

Long Form of the Data for the First Five 

Subjects in Table 12.1

Id Group Week bprs
101 1 0 42
101 1 1 36
101 1 2 36
101 1 3 43
101 1 4 41
101 1 5 40
101 1 6 38
101 1 7 47
101 1 8 51
102 1 0 58
102 1 1 68
102 1 2 61
102 1 3 55
102 1 4 43
102 1 5 34
102 1 6 28
102 1 7 28
102 1 8 28
103 1 0 54
103 1 1 55
103 1 2 41
103 1 3 38
103 1 4 43
103 1 5 28
103 1 6 29
103 1 7 25
103 1 8 24
104 1 0 55
104 1 1 77
104 1 2 49
104 1 3 54
104 1 4 56
104 1 5 50
104 1 6 47
104 1 7 42
104 1 8 46
105 1 0 72
105 1 1 75
105 1 2 72
105 1 3 65

(Continued)
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proc sort data=bprsl;
 by week;
run;
proc stdize data=bprsl out=bprslz method=std;
  var bprs;
  by week;
run;
proc sgpanel data=bprslz;
  panelby group / spacing=10;
  series y=bprs x=week /group=id;
run;
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FIGURE 12.1
Individual response profiles by treatment group for the BPRS data.

TABLE 12.2 (Continued)

Long Form of the Data for the First Five 

Subjects in Table 12.1

Id Group Week bprs
105 1 4 50
105 1 5 39
105 1 6 32
105 1 7 38
105 1 8 32
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The data are first sorted by week. Proc stdize, with the method=std 
option and the by week statement, then standardises within each measure-
ment occasion. The var bprs statement specifies the variable to be stan-
dardised; the default is for all numeric variables to be. The standardised 
values are saved in the data set bprslz.

With large numbers of observations, graphical displays of individual 
response profiles are of little use and investigators then commonly produce 
graphs showing average profiles for each treatment group along with some 
indication of the variation of the observations at each time point. Such a 
graph can be constructed by using a vline plot within proc sgplot:

proc sgplot data=bprsl;
   vline week / response=bprs stat=mean group=group 
limitstat=stderr;

run;

The result is shown in Figure 12.3. There is considerable overlap in the mean 
profiles of the two treatment groups, suggesting perhaps that there is little 
difference between the two groups with respect to the mean BPRS values.

A possible alternative to plotting the mean profiles as in Figure 12.3 is to 
graph side-by-side box plots of the observations at each time point:

proc sgplot data=bprsl;
  vbox bprs / category=week group=group nomean nocaps;
run;
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FIGURE 12.2
Individual response profiles for BPRS data after standardization.
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The resulting plot is shown in Figure 12.4. The plot suggests the presence of 
some possible ‘outliers’ at a number of time points and indicates again the 
general decline in BPRS values over the 8 weeks of the study in both treat-
ment groups.

Another graphic for longitudinal data that is often helpful in making 
informed decisions about models that might be appropriate for the data is 
the scatter plot matrix (see Chapter 8). But we shall leave consideration of this 
type of plot until the next chapter, when we begin to discuss possible models 
for longitudinal data.

12.3 Summary Measure Analysis of Longitudinal Data

According to Matthews (2005), ‘the use of summary measures is one of 
the most important and straightforward methods for the analysis of lon-
gitudinal data’. The approach is certainly straightforward, but as to ‘most 
important’—we think not. The models to be described in the next two chap-
ters are of far greater importance for dealing appropriately with longitudinal 
data. Nevertheless, we will describe the summary measure method (often 
also called the response feature method) here because it may be helpful in some 
cases for a ‘quick-and-dirty’ assessment of longitudinal data.

The summary measure method operates by transforming the T repeated 

measurements made on the ith individual in the study, [ ]′ = x xx i i iT1… , into a 
single value that captures some essential feature of the patient’s response 
over time (see later discussion). Analysis then proceeds by applying stan-
dard univariate methods to the summary measures from the sample of 
patients (see later examples). The approach has been in use for many years 
and is described in Oldham (1962), Yates (1982), and Matthews et al. (1990).

12.3.1 Choosing Summary Measures

The key step to a successful summary measure analysis of longitudinal data 
is the choice of a relevant summary measure. The chosen measure needs to be 
relevant to the particular questions of interest in the study and in the broader 
scientific context in which the study takes place. In some longitudinal studies, 
more than a single summary measure might be deemed relevant or necessary, 
in which case the problem of combined inference may need to be addressed. 
More often in practice, however, it is likely that the different measures will 
deal with substantially different questions so that each will have a notional 
interpretation in its own right. In most investigations, the decision over what 
summary measure to use needs to be made before the data are collected.

A wide range of possible summary measures have been proposed. Those 
given in Table 12.3, for example, were suggested by Matthews et al. (1990). 
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Frison and Pocock (1992) argue that the average response to treatment over 
time is often likely to be the most relevant summary statistic in treatment 
trials. In some cases, the response on a particular visit may be chosen as the 
summary statistic of most interest, but this must be distinguished from the 
generally flawed approach, which separately analyses the observations at 
each and every time point.

12.3.2 Applying the Summary Measure Approach

As our first example of the summary measure approach, it will be applied to 
the post-treatment values of the BPRS in Table 12.1. The mean of weeks 1 to 8 
will be the chosen summary measure. We first calculate this measure and 
then look at box plots of the measure for each treatment group:

data bprs;
 set bprs;
 mnbprs=mean(of x1−x8);
run;
proc sgplot data=bprs;
  vbox mnbprs / category=group;
run;

When a variable list is to be used with the mean function it must be pre-
ceded by of.

The resulting plot is shown in Figure 12.5. The diagram indicates that the 
mean summary measure is more variable in the second treatment group and 

TABLE 12.3

Possible Summary Measures

Type of Data Question of Interest Summary Measure

Peaked Is overall value of outcome 

variable the same in different 

groups?

Overall mean (equal time intervals) 

or area under curve (unequal 

intervals)

Peaked Is maximum (minimum) 

response different between 

groups?

Maximum (minimum) value

Peaked Is time to maximum (minimum) 

response different between 

groups?

Time to maximum (minimum) 

response

Growth Is rate of change of outcome 

different between groups?

Regression coefficient

Growth Is eventual value of outcome 

different between groups?

Final value of outcome or difference 

between last and first values or 

percentage change between first 

and last values

Growth Is response in one group delayed 

relative to the other?

Time to reach a particular value 

(e.g., a fixed percentage of 

baseline)
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its distribution in this group is somewhat skewed. There is little evidence 
of a difference in location of the summary measure distributions in each 
group.

Although all the informal graphical material presented up to now has 
indicated a lack of difference in the two treatment groups, most investiga-
tors would still require a formal test for a difference. Consequently, we shall 
now apply a t-test to assess any difference between the treatment groups and 
also calculate a confidence interval for this difference:

proc ttest data=bprs;
  class group;
  var mnbprs;
run;

The results are shown in Table 12.4. The t-test confirms the lack of any evi-
dence for a group difference.

12.3.3  Incorporating Pretreatment Outcome Values 
into the Summary Measure Approach

Baseline measurements of the outcome variable in a longitudinal study 
are often correlated with the chosen summary measure, and using such 
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FIGURE 12.5
Box plots of mean summary measures for the two treatment groups in the BPRS data.
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measures in the analysis can often lead to substantial gains in precision when 
used appropriately as a covariate in an analysis of covariance (see Everitt and 
Pickles 2004). We can illustrate the analysis on the data in Table 12.1 using the 
BPRS value corresponding to time zero taken prior to the start of treatment 
as the baseline covariate. The SAS code needed for the analysis of covariance 
of the mean summary measure with treatment group and week 0 value as 
covariates is

proc glm data=bprs;
  class group;
  model mnbprs=x0 group ;
run;

The results are shown in Table 12.5. We see that the baseline BPRS is strongly 
related to the BPRS values taken after treatment has begun, but there is 
still no evidence of a treatment difference even after conditioning on the 
baseline value.

TABLE 12.4

Results from an Independent Sample t-Test on the Mean Summary Measure 

for the BPRS Data in Table 12.1

Variable: mnbprs

group N Mean Std Dev Std Err Minimum Maximum
1 20 36.1688 8.3691 1.8714 24.8750 52.6250
2 20 36.5625 12.2090 2.7300 22.0000 71.8750
Diff (1– 2) –0.3937 10.4667 3.3098

group Method Mean 95% CL Mean Std Dev
95% CL Std

Dev
1 36.1688 32.2519 40.0856 8.3691 6.3646 12.2236
2 36.5625 30.8485 42.2765 12.2090 9.2848 17.8321
Diff (1– 2) Pooled –0.3937 –7.0942 6.3067 10.4667 8.5538 13.4892
Diff (1– 2) Satterthwaite –0.3937 –7.1229 6.3354

Method Variances DF t Value Pr > |t|
Pooled Equal 38 –0.12 0.9059
Satterthwaite Unequal 33.626 –0.12 0.9060

Equality of Variances

Method Num DF Den DF F Value Pr > F
Folded F 19 19 2.13 0.1083
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12.3.4  Dealing with Missing Values When Using 
the Summary Measure Approach

One of the problems that often occurs in the collection of longitudinal data is 
that a patient may not have values of the outcome measure recorded on all 
the occasions intended. This problem will be considered in detail in the next 
chapter, but as an example of where it has arisen, we can examine the data 
shown in Table 12.6 (taken from Davis 2002). The data come from a clinical 
trial comparing two treatments for maternal pain relief during labour. In this 
study, 83 women in labour were randomised to receive an experimental pain 

TABLE 12.5

Results from an Analysis of Covariance of the BPRS Data with Baseline 

BPRS and Group as Covariates

Class–Level Information

Class Levels Values
group 2 1 2

Number of Observations Read 40
Number of Observations Used 40

Dependent Variable: mnbprs

Source DF
Sum of

Squares Mean Square F Value Pr > F
Model 2 1871.515626 935.757813 15.10 <.0001
Error 37 2292.965234 61.972033
Corrected Total 39 4164.480859

R-Square Coeff Var Root MSE mnbprs Mean
0.449400 21.64745 7.872232 36.36563

Source DF Type I SS Mean Square F Value Pr > F
x0 1 1868.066649 1868.066649 30.14 <.0001
group 1 3.448977 3.448977 0.06 0.8148

Source DF Type III SS Mean Square F Value Pr > F
x0 1 1869.965235 1869.965235 30.17 <.0001
group 1 3.448977 3.448977 0.06 0.8148
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TABLE 12.6

Pain Scores from 83 Women in Labour: First 20 Subjects in Each Group

Self-Reported Pain Scores at 30-Minute Intervals

Patient 0 30 60 90 120 150 180

Group 1 1 0.0 0.0 0.0 0.0

2 0.0 0.0 0.0 0.0 2.5 2.3 14.0

3 38.0 5.0 1.0 1.0 0.0 5.0

4 6.0 48.0 85.0 0.0 0.0

5 19.0 5.0

6 7.0 0.0 0.0 0.0

7 44.0 42.0 42.0 45.0

8 1.0 0.0 0.0 0.0 0.0 6.0 24.0

9 24.5 35.0 13.0

10 1.0 30.5 81.5 67.5 98.5 97.0

11 35.5 44.5 55.0 69.0 72.5 39.5 26.0

12 0.0 0.0 0.0 0.0 0.0 0.0 0.0

13 8.0 30.5 26.0 24.0 29.0 45.0 91.0

14 7.0 6.5 7.0 4.0 10.0

15 6.0 8.5 19.5 16.5 42.5 45.5 48.5

16 32.5 9.5 7.5 5.5 4.5 0.0 7.0

17 10.5 10.0 18.0 32.5 0.0 0.0 0.0

18 11.5 20.5 32.5 37.0 39.0

19 72.0 91.5 4.5 32.0 10.5 10.5 10.5

20 0.0 0.0 0.0 0.0 13.54 7.0

Group 2 1 4.0 9.0 30.0 75.0 49.0 97.0

2 0.0 0.0 1.0 27.5 95.0 100.0

3 9.0 6.0 25.0

4 52.5 18.0 12.5

5 90.5 99.0 100.0 100.0 100.0 100.0 100.0

6 74.0 70.0 81.5 94.5 97.0

7 0.0 0.0 0.0 1.5 0.0 18.0 71.0

8 0.0 51.5 56.0

9 6.5 7.0 7.0 9.0 25.0 36.0 20.0

10 19.0 31.0 41.0 58.0

11 6.0 23.0 45.0 67.0 90.5

12 42.0 64.0 6.0

13 86.5 53.0 88.0 100.0 100.0

14 50.0 100.0 100.0 100.0 100.0

15 27.5 36.5 74.0 97.0 100.0 100.0 95.0

16 0.0 0.0 6.0 6.0

17 62.0 79.0 80.5 85.0 90.0 97.5 97.0

18 17.5 27.5 21.0 60.0 80.0 97.0

19 6.5 5.5 18.5 20.0 36.5 63.5 81.5

20 8.0 9.0 35.5 39.0 70.0 92.0 98.0
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medication (43 subjects) or placebo (40 subjects). Treatment was initiated when 
the cervical dilation was 8 cm. At 30-minute intervals, the amount of pain 
was self-reported by placing a mark on a 100 mm line (0 = no pain, 100 = very 
much pain). Table 12.6 gives the data for the first 20 subjects in each group.

If we use the mean as a summary measure for these data, we can deal 
with the missing values simply by calculating, for each subject, the mean 
of her available values. For example, for subject 1, this would be the mean 
of four values and, for subject 2, the mean of three values. This is clearly 
very straightforward, but Matthews (1993) points out a number of possible 
problems:

If the summary measures are based on observations that have 
widely differing structures, then, even within apparently homoge-
neous groups, they will not share a common distribution, contrary 
to the assumptions of most of the methods of analysis that are likely 
to be applied.

The reason that observations are missing needs to be considered. 
(This problem is discussed in the next chapter.)

Here, we shall ignore these possible difficulties and carry out the sum-
mary measure analysis using the following SAS code:

data labour;
  infile cards missover;
  input id x0−x6;
  group=1;
  if _n_>20 then group=2;
  mnpain=mean(of x0−x6);
cards;
 1 0.0 0.0 0.0 0.0   
 2 0.0 0.0 0.0 0.0 2.5 2.3 14.0
 3 38.0 5.0 1.0 1.0 0.0 5.0 
....
 19 6.5 5.5 18.5 20.0 36.5 63.5 81.5
 20 8.0 9.0 35.5 39.0 70.0 92.0 98.0
;

proc ttest data=labour;
  class group;
  var mnpain;
run;

The infile statement is not usually needed when the data are instream—
that is, included at the end of the data step after a cards or datalines state-
ment. Including it allows options to be used to modify the way the data are 
read. In this case, the missover option prevents SAS from going to a new 
line when there are fewer data values than variables. Instead, the remain-
ing variables are set to missing values. The results are shown in Table 12.7. 
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There is strong evidence of a treatment difference for these data. The 95% 
confidence interval for the difference is [–44.03, –13.18]. The experimental 
treatment appears to have lowered the average pain score by between 13 and 
44 points on the visual analogue scale.

12.4 Summary Measure Approach for Binary Responses

Table 12.8 shows part of the data collected in a clinical trial comparing two 
treatments for a respiratory illness (Davis 1991). In each of the two centres, 
eligible patients were randomly assigned to active treatment or placebo. 
During treatment, the respiratory status (categorised as 0 = poor, 1 = good) 
was determined at four visits. There were 111 patients (54 active, 57 placebo) 
with no missing data for responses or covariates. Data for the first five 
patients are shown in Table 12.8.

TABLE 12.7

Results from an Independent Sample t-Test for the Mean Summary Measure Used 

on the Data in Table 12.6

Variable: mnpain

group N Mean Std Dev Std Err Minimum Maximum
1 20 19.5002 18.2679 4.0848 0 62.6667
2 20 48.1040 28.7643 6.4319 3.0000 98.5000
Diff (1– 2) –28.6038 24.0946 7.6194

group Method Mean 95% CL Mean Std Dev
95% CL Std

Dev
1 19.5002 10.9506 28.0499 18.2679 13.8926 26.6816
2 48.1040 34.6420 61.5661 28.7643 21.8749 42.0123
Diff (1– 2) Pooled –28.6038 –44.0285 –13.1792 24.0946 19.6912 31.0526
Diff (1– 2) Satterthwaite –28.6038 –44.1206 –13.0871

Method Variances DF t Value Pr > |t|
Pooled Equal 38 –3.75 0.0006
Satterthwaite Unequal 32.182 –3.75 0.0007

Equality of Variances

Method Num DF Den DF F Value Pr > F
Folded F 19 19 2.48 0.0547
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Here we shall consider how the response feature approach can be applied 
to this binary response, with the initial analysis ignoring all covariates except 
treatment group. We might, of course, simply ignore the binary nature of the 
response variable and compare the ‘mean’ responses over time in the two 
treatment groups by a t-test. Since the mean in this case is the proportion 
(p) of visits at which a patient’s respiratory status was good, we could con-
sider performing the test after taking some appropriate transformation, for 

example, arcsin (p) or arcsin ( p ):

data resptrial;
 input id centre treat sex age bl v1−v4;
 ngood=sum(of v1−v4);
 visits=4;
 mnstatus=mean(of v1−v4);
 arcsin=arsin(mnstatus);
 arcroot=arsin(sqrt(mnstatus));
cards;
1 1 1 1 46 0 0 0 0 0
2 1 1 1 28 0 0 0 0 0
3 1 2 1 23 1 1 1 1 1
....
110 2 2 2 63 1 1 1 1 1
111 2 2 1 31 1 1 1 1 1
;

proc ttest data=resptrial;
  class treat;
  var mnstatus arcsin arcroot;
run;

The results are shown in Table 12.9. There is clear evidence of a treatment 
difference, whether the untransformed or transformed summary measure is 
analysed. On average, there is a higher proportion of ‘good’ responses in the 
active treatment group.

TABLE 12.8

Respiratory Disorder Data for First 5 of 111 Patients

Patient Centre Treatment Sex Age BL V1 V2 V3 V4

1 1 1 1 46 0 0 0 0 0

2 1 1 1 28 0 0 0 0 0

3 1 2 1 23 1 1 1 1 1

4 1 1 1 44 1 1 1 1 0

5 1 1 2 13 1 1 1 1 1

Notes: Treatment: 1 = placebo; 2 = active. Sex: 1 = male; 2 = female.
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TABLE 12.9

Results from Summary Measure Analysis Applied to the Respiratory Data in 

Table 12.8

Variable: mnstatus

treat N Mean Std Dev Std Err Minimum Maximum
1 57 0.4430 0.3981 0.0527 0 1.0000
2 54 0.6852 0.3704 0.0504 0 1.0000
Diff (1– 2) –0.2422 0.3849 0.0731

treat Method Mean 95% CL Mean Std Dev
95% CL Std

Dev
1 0.4430 0.3373 0.5486 0.3981 0.3361 0.4884
2 0.6852 0.5841 0.7863 0.3704 0.3114 0.4573
Diff (1– 2) Pooled –0.2422 –0.3871 –0.0973 0.3849 0.3399 0.4438
Diff (1– 2) Satterthwaite –0.2422 –0.3868 –0.0976

Method Variances DF t Value Pr > |t|
Pooled Equal 109 –3.31 0.0013
Satterthwaite Unequal 108.97 –3.32 0.0012

Equality of Variances

Method Num DF Den DF F Value Pr > F
Folded F 56 53 1.16 0.5984

Variable: arcsin

treat N Mean Std dev Std Err Minimum Maximum
1 57 0.5907 0.6082 0.0806 0 1.5708
2 54 0.9715 0.6169 0.0840 0 1.5708
Diff (1– 2) –0.3809 0.6124 0.1163

treat Method Mean 95% CL Mean Std Dev
95% CL Std

Dev
1 0.5907 0.4293 0.7520 0.6082 0.5134 0.7460
2 0.9715 0.8031 1.1399 0.6169 0.5186 0.7616
Diff (1– 2) Pooled –0.3809 –0.6114 –0.1503 0.6124 0.5408 0.7061
Diff (1– 2) Satterthwaite –0.3809 –0.6115 –0.1502

Method Variances DF t Value Pr > |t|
Pooled Equal 109 –3.27 0.0014
Satterthwaite Unequal 108.48 –3.27 0.0014
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A linear regression of the arcsin-transformed proportion of positive 
responses over the four postbaseline measurement occasions might be used 
to assess the effects of the baseline measurement, age, sex, and centre:

proc glm data=resptrial;
  class centre treat sex;
  model arcroot=centre age sex bl treat;
run;

The results are shown in Table 12.10. Here, we should use the type III sums of 
squares because these give a test of each covariate conditional on all the other 
covariates in the model. The regression coefficient for centre is marginally 

TABLE 12.9 (Continued)

Results from Summary Measure Analysis Applied to the Respiratory Data in 

Table 12.8

Equality of Variances

Method Num DF Den DF F Value Pr > F
Folded F 53 56 1.03 0.9141

Variable: arcroot

treat N Mean Std Dev Std Err Minimum Maximum
1 57 0.6981 0.6046 0.0801 0 1.5708
2 54 1.0666 0.5614 0.0764 0 1.5708
Diff (1– 2) –0.3685 0.5840 0.1109

treat Method Mean 95% CL Mean Std Dev
95% CL Std

Dev
1 0.6981 0.5377 0.8586 0.6046 0.5104 0.7417
2 1.0666 0.9134 1.2198 0.5614 0.4719 0.6930
Diff (1– 2) Pooled –0.3685 –0.5883 –0.1487 0.5840 0.5157 0.6733
Diff (1– 2) Satterthwaite –0.3685 –0.5878 –0.1491

Method Variances DF t Value Pr > |t|
Pooled Equal 109 –3.32 0.0012
Satterthwaite Unequal 108.96 –3.33 0.0012

Equality of Variances

Method Num DF Den DF F Value Pr > F
Folded F 56 53 1.16 0.5881
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TABLE 12.10

Results from the Linear Regression on the Arcsin-Transformed Proportion of 

Positive Responses for the Respiratory Data in Table 12.8

Class–Level Information

Class Levels Values
centre 2 1 2
treat 2 1 2
sex 2 1 2

Number of Observations Read 111
Number of Observations Used 111

Dependent Variable: arcroot

Source DF
Sum of

Squares Mean Square F Value Pr > F
Model 5 16.51257785 3.30251557 14.20 <.0001
Error 105 24.42553350 0.23262413
Corrected Total 110 40.93811135

R-Square Coeff Var Root MSE arcroot Mean
0.403355 54.97165 0.482311 0.877382

Source DF Type I SS Mean Square F Value Pr > F
centre 1 3.14379291 3.14379291 13.51 0.0004
age 1 1.00083354 1.00083354 4.30 0.0405
sex 1 0.40002818 0.40002818 1.72 0.1926
bl 1 8.27903368 8.27903368 35.59 <.0001
treat 1 3.68888954 3.68888954 15.86 0.0001

Source DF Type III SS Mean Square F Value Pr > F
centre 1 0.97656959 0.97656959 4.20 0.0430
age 1 0.43858914 0.43858914 1.89 0.1726
sex 1 0.01684248 0.01684248 0.07 0.7884
bl 1 8.74201567 8.74201567 37.58 <.0001
treat 1 3.68888954 3.68888954 15.86 0.0001
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TABLE 12.11

Results from an Overdispersed Logistic Model Fitted to the Proportion of 

Positive Responses in the Respiratory Data in Table 12.8

Ordered
Value

Binary
Outcome

Total
Frequency

1 Event 249
2 Nonevent 195

Class–Level Information

Class Value
Design

Variables
centre 1 0

2 1
treat 1 0

2 1
sex 1 0

2 1

Model Convergence Status

Deviance and Pearson Goodness-of-Fit Statistics

Criterion Value DF Value/DF Pr > ChiSq
Deviance 259.2222 105 2.4688 <.0001
Pearson 222.9025 105 2.1229 <.0001

Number of events/trials observations: 111
Note: The covariance matrix has been multiplied by the heterogeneity 

 factor ( deviance/DF) 2.46878.

Model Fit Statistics

Criterion
Intercept

Only

Intercept
and

Covariates

AIC 248.652 207.731
SC 252.748 232.306
–2 Log L 246.652 195.731

(Continued)



346 Applied Medical Statistics Using SAS

significant at the 5% level, but both the baseline response and treatment 
group are highly significant.

A more satisfactory analysis of the respiratory data can be achieved by 
using the generalised linear modelling approach described in Chapter 10. 
A standard logistic regression model might be applied, but since the number 

TABLE 12.11 (Continued)

Results from an Overdispersed Logistic Model Fitted to the Proportion of Positive 

Responses in the Respiratory Data in Table 12.8

Test Chi-Square DF Pr > ChiSq
Likelihood Ratio 50.9209 5 <.0001
Score 46.0339 5 <.0001
Wald 37.0374 5 <.0001

Type 3 Analysis of Effects

Effect DF
Wald

Chi-Square Pr > ChiSq
centre 1 3.1834 0.0744
age 1 1.7011 0.1921
sex 1 0.0663 0.7968
bl 1 24.6428 <.0001
treat 1 12.1889 0.0005

Analysis of Maximum Likelihood Estimates

Parameter DF Estimate
Standard 

Error
Wald

Chi-Square Pr > ChiSq
Intercept 1 –0.9002 0.5305 2.8789 0.0897
centre 2 1 0.6716 0.3764 3.1834 0.0744
age 1 –0.0182 0.0139 1.7011 0.1921
sex 2 1 0.1192 0.4630 0.0663 0.7968
bl 1 1.8820 0.3791 24.6428 <.0001
treat 2 1 1.2992 0.3721 12.1889 0.0005

Odds Ratio Estimates

Effect
Point

Estimate
95% Wald

centre 2 vs 1 1.957 0.936 4.093
age 0.982 0.956 1.009
sex 2 vs 1 1.127 0.455 2.792
bl 6.567 3.124 13.806
treat 2 vs 1 3.666 1.768 7.603
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of occasions on which infection was present out of the four visits made by 
each participant is unlikely to be binomially distributed (the observations 
are likely to be correlated rather than independent), we need to allow for pos-
sible overdispersion. Fitting a model with logistic link and with treatment, 
sex, age, and baseline respiratory status as the main effects gives

proc logistic data=resptrial;
  class centre treat sex /param=ref ref=first;
  model ngood/visits=centre age sex bl treat /scale=d;
run;

The events/trials syntax is used on the model statement and scale=d sets 
the dispersion parameter to be the deviance divided by its degrees of free-
dom. The results are shown in Table 12.11. The estimated value of the scale 
parameter, 2.47, is substantially above 1, confirming the presence of overdis-
persion. The estimated odds ratio for the effect of treatment is 3.67 with a 95% 
confidence interval of [1.77,7.60]. The active treatment considerably increases 
the odds of a ‘good’ respiratory status. The p-values from the linear regres-
sion in Table 12.10 and the logistic regression in Table 12.11 are comparable, 
but the estimates from the logit model are on a more natural scale. There is 
no relatively straightforward interpretation of the estimates from the model 
fitted to the arcsin-transformed responses, although calculation of an odds 
ratio at the mean value of the sample covariates could be attempted.

12.5 Summary

The methods described in this chapter are most (only) suitable for an initial 
exploration and analysis of longitudinal data (often collected in the course of 
a clinical trial). The graphical methods can provide insights into both poten-
tially interesting patterns of response over time and the structure of any 
treatment differences. In addition, they can indicate possible outlying obser-
vations that may need special attention. The response feature approach to 
analysis has the distinct advantage that it is straightforward, can be tailored 
to consider aspects of the data thought to be particularly relevant, and pro-
duces results which are relatively simple to understand. Depending on the 
chosen summary measure, the approach can often accommodate data con-
taining missing values without difficulty, although it might be misleading if 
the observations are anything other than missing completely at random (see 
Chapter 13).

But, although simple to apply, the summary measure approach has 
a number of distinct drawbacks; one is that it forces the investigator to 
focus on only a single aspect of the repeated measurements over time. It 
seems intuitively clear that when T repeated measures are replaced by 
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a single number summary, there must necessarily be some loss of informa-
tion. And it is possible for individuals with quite different response profiles 
to have the same or similar values for the chosen summary measure. Finally, 
the simplicity of the summary measure method is lost when there are miss-
ing data or the repeated measures are irregularly spaced, as is the methods 
efficiency; the methods to be described in the next two chapters are more 
efficient than a summary measure analysis and can also handle missing data 
with minimal difficulty.
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13
Analysis of Longitudinal Data II: 
Linear Mixed-Effects Models for 
Normal Response Variables

13.1 Introduction

The summary measure approach to the analysis of longitudinal data 
described in the previous chapter sometimes provides a useful first step in 
making inferences about the data, but it is really only ever a first step; a 
more complete and a more appropriate analysis will involve fitting a suitable 
model to the data and estimating parameters that link the explanatory vari-
ables of interest to the repeated measures of the response variable. The main 
objective in longitudinal studies is to characterise change in the repeated 
values of the response variable and to determine the explanatory variables 
most associated with any change.

But because several observations of the response variable are made on 
the same individual, it is likely that the measurements will be correlated 
rather than independent, even after conditioning on the explanatory vari-
ables. A consequence of this is that suitable models for longitudinal data 
need to include parameters analogous to the regression coefficients in the 
usual multiple regression model (see Chapter 8) that relate the explanatory 
variables to the repeated measurements, and, in addition, parameters that 
account adequately for the correlational structure of the repeated measure-
ments of the response variable.

It is the regression coefficients that are generally of most interest, with the 
correlational structure parameters often being regarded as nuisance param-
eters. But providing an adequate model for the correlational structure of the 
repeated measures is necessary to avoid misleading inferences about those 
parameters that are of most importance to the researcher, as is made clear in 
Fitzmaurice, Laird, and Ware (2004). These authors emphasise that, although 
the estimation of the correlational structure of the repeated measurements is 
usually regarded as a secondary aspect of any analysis (relative to the mean 
response over time), the estimated correlational structure must describe 
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the actual correlational structure present in the data relatively accurately to 
avoid making misleading inferences on the substantive parameters.

Over the last decade, methodology for the analysis of repeated measures 
data has been the subject of much research and development and there are 
now a variety of powerful techniques available. A comprehensive account of 
these methods is given in Diggle, Liang, and Zeger (2002) and Davis (2002). 
In this chapter, we will concentrate on a single class of methods, linear mixed-
effects models, suitable for responses that can be assumed to be approximately 
normally distributed after conditioning on the explanatory variables. Non-
normal responses will be the subject of Chapter 14.

13.2 Linear Mixed-Effects Models for Repeated Measures Data

Linear mixed-effects models for repeated measures data formalise the sen-
sible idea that an individual’s pattern of responses is likely to depend on 
many characteristics of that individual, including some that are unobserved. 
These unobserved variables are then included in the model as random 
variables—that is, random effects. The essential feature of the model is that 
the (usually positive) correlation amongst the repeated measurements on the 
same individual arises from shared, unobserved variables. Fitzmaurice et al. 
(2004) suggest several possible sources of correlation in longitudinal data, 
including:

Between-individual heterogeneity reflecting natural variation in 
individuals’ propensity to respond: some consistently respond higher 
than the average and others consistently lower. The result is a  positive 
correlation between the repeated measurements of the response.

Within-individual biological variation: the notion here is that some 
underlying biological process or processes that change through time 
in a relatively smooth and continuous fashion lead to random devia-
tions from an individual’s underlying response trajectory and are 
more similar when measurements are obtained very closely together 
in time. Consequently, measurements taken closely together will 
typically be more highly correlated than measurements that are 
 further separated in time.

Conditional on the values of the random effects, the repeated measure-
ments are assumed to be independent—the so-called local independence 
assumption.

Two examples of linear mixed-effects models—namely, the random intercept 
model and the random intercept and slope model—are introduced and described 
in the next subsection.
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13.2.1 Random Intercept and Random Intercept and Slope Models

Consider a simple set of longitudinal data in which a number of individuals 
have values of a response variable of interest recorded at times t1, t2,…,  tr. 
(In this account of the models, we assume the same set of time points for each 
individual but this is for convenience only; data sets where individuals are 
measured at different time points can also be easily dealt with.) Let yij rep-
resent the value of the response for individual i at time tj. A possible model 
for the yij might be

 yij = β0 + β1tj + ui + εij (13.1)

Here, the total residual that would be present in the usual linear regres-
sion model has been partitioned into a subject-specific random component 
ui, which is constant over time plus a residual εij, which varies randomly over 
time. The ui terms are assumed to be normally distributed with zero mean 
and variance σu

2 . Similarly, the residual (or error) terms, εij, are assumed nor-
mally distributed with zero mean and variance σ2. The ui effects and the εij 
effects are assumed to be independent of each other and of the tj.

The model in (13.1) is known as a random intercept model, the ui being the 
random intercepts. The repeated measurements for an individual vary about 
that individual’s own regression line, which can differ in intercept but not 
in slope from the regression lines of other individuals. The random-effects 
model possible heterogeneity in the intercepts of the individuals. In the 
model in Equation (13.1), time has a fixed effect.

The random intercept model implies that the total variance of each repeated 
measurement is given by

 ( )+ ε = σ + σuVar i ij u
2 2

 (13.2)

Due to this decomposition of the total residual variance into a between-
subject component, σu

2, and a within-subject component, σ2, the model is 
sometimes referred to as a variance component model.

The covariance between the total residuals at two time points tj and tj′ in 
the same individual i is

 ( )+ ε + ε = σ′u uCov ,i ij i ij u
2  (13.3)

Note that these covariances are induced by the shared random intercept. For 
individuals with ui > 0, the total residuals will tend to be greater than the mean; 
for individuals with ui < 0, they will tend to be less than the mean. It  follows 
from Equations (13.2) and (13.3) that the residual correlations are given by

 ( )+ ε + ε = σ
σ + σ′u uCor ,i ij i ij

u

u

2

2 2
 (13.4)
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This is an intraclass correlation (see Chapter 2) interpreted as the proportion 
of the total residual variance that is due to residual variability between sub-
jects. A random intercept model constrains the variance of each repeated mea-
sure to be the same and the covariance between any pair of measurements 
to be equal. This is usually called the compound symmetry structure. These 
constraints are often not realistic for longitudinal data, where it is commonly 
the case that measurements taken more closely to each other in time will be 
more highly correlated than those taken further apart. In addition, the vari-
ances of the later repeated measures are often greater than those taken ear-
lier. Consequently, for many such data sets, the random intercept model will 
not do justice to the observed pattern of covariances between the repeated 
measures.

A model that allows a more realistic structure for the covariances is one 
that allows heterogeneity in both slopes and intercepts: the random slope and 
intercept model. In this model, there are two types of random effects—the first 
modelling heterogeneity in intercepts, ui1, and the second modelling hetero-
geneity in slopes, ui2. Explicitly, the model is

 y t u u tij j i i j ij0 1 1 2= β +β + + + ε  (13.5)

where the parameters are not, of course, the same as in Equation (13.1).
Now the two random effects, ui1 and ui2, are assumed to have a bivariate 

normal distribution with zero means for both variables, variances σ σ,u u
2 2

1 2
, 

and covariance u u1 2σ . With this model, the total residual is u u ti i j ij1 2+ + ε  with 
variance

 )( + + ε = σ + σ + σ + σu u x t xVar 2i i j ij u u u j u j
2 2 2 2

1 2 1 1 2 2
 (13.6)

which is no longer constant for different values of tj. Similarly, the covariance 
between two total residuals of the same individual

 ) )( (+ + ε + + ε = σ + σ + + σ′ ′ ′ ′u u t u u t t t t tCov ,i i j ij i i j ij u u u j j u j j
2 2

1 2 1 2 1 1 2 2  (13.7)

is not constrained to be the same for all pairs j and j′.
Linear mixed-effects models can be estimated by maximum likelihood; 

details are given in Fitzmaurice et al. (2004). However, maximum likelihood 
tends to produce biased estimates of the variance components; consequently, 
a modified version of maximum likelihood, known as restricted maximum 
likelihood (REML), is often recommended. This method provides consistent 
estimates of the variance components. Details are given in Diggle et al. (2003) 
and Fitzmaurice et al. (2004). Often, the two estimation methods will give 
very similar results.

Competing linear mixed-effects models can be compared using a likeli-
hood ratio test. If, however, the models have been estimated by restricted 
maximum likelihood, this test can be used only if both models have the 
same set of fixed effects (see Longford 1993). (It should also be noted that 
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reestimating the model after adding or subtracting a constant from each tj—
for example, the mean of the time values—will lead to different estimates 
of the variances and covariances of the random effects, but will not affect 
fixed effects. Centring time in this way is often helpful when the times of 
recording the response variable do not include zero to avoid the intercept 
representing measurement at time zero.)

13.2.2  Applying the Random Intercept and Random 
Intercept and Slope Models

We will use the data in Table 13.1, reported in Zerbe (1979) and also given 
in Davis (2003), to illustrate the application of linear mixed-effects models, 
in particular the two models described in Section 13.2.1. These data consist 
of plasma inorganic phosphate measurements obtained from 13 control and 
20 obese patients 0, 0.5, 1, 1.5, 2, and 3 hours after an oral glucose challenge. 
The data are read in as follows:

data pip;
 infile 'c:\amsus\data\pip.dat';
 input id x1-x8;
 if id>13 then group=2;
 else group=1;
run;

data pipl;
  set pip;
  array xs {*} x1-x8;
  array t{8} t1-t8 (0 .5 1 1.5 2 3 4 5);
  do i=1 to 8;
    time=t{i};
    pip=xs{i};
    output;
  end;
  label time='hours after glucose';
  keep id time group pip;
run;

proc format;
  value group 1='Control' 2='Obese';
run;

proc print data=pipl;
  where id in(1 13 14 33);
run;

Both wide and long forms of the data set are created as described in the 
previous chapter. One difference in this example arises because the mea-
surement times are not evenly spaced, so the index to the array cannot be 
used as the ‘time’ variable. Instead, a separate array of measurement times is 
set up. We also create a format for later labelling of the two groups. The fact 
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that the format bears the same name, group, as the variable to which it is 
to be applied is not a problem. Indeed, it can be useful when formats are 
defined for a large number of variables. Selected cases are then printed from 
the long version of the data set to check that the reorganisation is correct. 
The results are shown in Table 13.2.

TABLE 13.1

Plasma Inorganic Phosphate Levels from 33 Subjects

Hours after Glucose Challenge

Group ID 0 0.5 1 1.5 2 3 4 5

Control  1 4.3 3.3 3.0 2.6 2.2 2.5 3.4 4.4

 2 3.7 2.6 2.6 1.9 2.9 3.2 3.1 3.9

 3 4.0 4.1 3.1 2.3 2.9 3.1 3.9 4.0

 4 3.6 3.0 2.2 2.8 2.9 3.9 3.8 4.0

 5 4.1 3.8 2.1 3.0 3.6 3.4 3.6 3.7

 6 3.8 2.2 2.0 2.6 3.8 3.6 3.0 3.5

 7 3.8 3.0 2.4 2.5 3.1 3.4 3.5 3.7

 8 4.4 3.9 2.8 2.1 3.6 3.8 4.0 3.9

 9 5.0 4.0 3.4 3.4 3.3 3.6 4.0 4.3

10 3.7 3.1 2.9 2.2 1.5 2.3 2.7 2.8

11 3.7 2.6 2.6 2.3 2.9 2.2 3.1 3.9

12 4.4 3.7 3.1 3.2 3.7 4.3 3.9 4.8

13 4.7 3.1 3.2 3.3 3.2 4.2 3.7 4.3

Obese 14 4.3 3.3 3.0 2.6 2.2 2.5 2.4 3.4

15 5.0 4.9 4.1 3.7 3.7 4.1 4.7 4.9

16 4.6 4.4 3.9 3.9 3.7 4.2 4.8 5.0

17 4.3 3.9 3.1 3.1 3.1 3.1 3.6 4.0

18 3.1 3.1 3.3 2.6 2.6 1.9 2.3 2.7

19 4.8 5.0 2.9 2.8 2.2 3.1 3.5 3.6

20 3.7 3.1 3.3 2.8 2.9 3.6 4.3 4.4

21 5.4 4.7 3.9 4.1 2.8 3.7 3.5 3.7

22 3.0 2.5 2.3 2.2 2.1 2.6 3.2 3.5

23 4.9 5.0 4.1 3.7 3.7 4.1 4.7 4.9

24 4.8 4.3 4.7 4.6 4.7 3.7 3.6 3.9

25 4.4 4.2 4.2 3.4 3.5 3.4 3.8 4.0

26 4.9 4.3 4.0 4.0 3.3 4.1 4.2 4.3

27 5.1 4.1 4.6 4.1 3.4 4.2 4.4 4.9

28 4.8 4.6 4.6 4.4 4.1 4.0 3.8 3.8

29 4.2 3.5 3.8 3.6 3.3 3.1 3.5 3.9

30 6.6 6.1 5.2 4.1 4.3 3.8 4.2 4.8

31 3.6 3.4 3.1 2.8 2.1 2.4 2.5 3.5

32 4.5 4.0 3.7 3.3 2.4 2.3 3.1 3.3

33 4.6 4.4 3.8 3.8 3.8 3.6 3.8 3.8

Source: Zerbe, G. O. 1979. Journal of the American Statistical Association, 74:215–221.
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Here we will begin by plotting the data to gain some idea of what form of 
linear mixed-effects model might be appropriate. First, we plot the raw data 
separately for the control and the obese groups:

proc sgpanel data=pipl noautolegend;
  panelby group /columns=2 spacing=10 novarname;
  series y=pip x=time /group=id;
  format group group.;
run;

TABLE 13.2

Part of Glucose Challenge Data in ‘Long’ Form

Obs id group time pip
1  1 Control 0.0 4.3
2  1 Control 0.5 3.3
3  1 Control 1.0 3.0
4  1 Control 1.5 2.6
5  1 Control 2.0 2.2
6  1 Control 3.0 2.5
7  1 Control 4.0 3.4
8  1 Control 5.0 4.4

97 13 Control 0.0 4.7
98 13 Control 0.5 3.1
99 13 Control 1.0 3.2

100 13 Control 1.5 3.3
101 13 Control 2.0 3.2
102 13 Control 3.0 4.2
103 13 Control 4.0 3.7
104 13 Control 5.0 4.3
105 14 Obese 0.0 4.3
106 14 Obese 0.5 3.3
107 14 Obese 1.0 3.0
108 14 Obese 1.5 2.6
109 14 Obese 2.0 2.2
110 14 Obese 3.0 2.5
111 14 Obese 4.0 2.4
112 14 Obese 5.0 3.4
257 33 Obese 0.0 4.6
258 33 Obese 0.5 4.4
259 33 Obese 1.0 3.8
260 33 Obese 1.5 3.8
261 33 Obese 2.0 3.8
262 33 Obese 3.0 3.6
263 33 Obese 4.0 3.8
264 33 Obese 5.0 3.8
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To do this, we use proc sgpanel with the long format of the data set. 
This allows us to produce separate line plots for each person using the group 
option on the series statement with the person identifier, id. The panelby 
statement specifies separate plots for each group. Adding 10 pixels of spacing 
between plots and removing the variable name from the heading enhance 
the appearance of the plots, especially when used with a format. The result-
ing plot is shown in Figure 13.1.

The profiles in both groups show some curvature, suggesting that a qua-
dratic effect of time may be needed in any model. There also appears to be 
some suspicion of a difference in the shape of the curves in the two groups, 
suggesting perhaps the need to consider a group × time interaction.

Next, we plot the scatter plot matrices of the repeated measurements for 
the two groups using the following:

proc sgscatter data=pip;
  matrix x1-x8;
  by group notsorted;
  format group group.;
run;

The wide version of the data set is used with proc sgscatter and the 
matrix statement. The by statement can be used to produce separate plots 
even though the data set has not been sorted (with proc sort), provided 
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FIGURE 13.1
Glucose challenge data for control and obese groups.
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that notsorted is specified. The plots are shown in Figures 13.2 and 13.3. 
Both plots indicate that the correlations of pairs of measurements made at 
different times differ, so the compound symmetry structure for these cor-
relations (see Section 13.2.1) is unlikely to be appropriate.

On the basis of the plots in Figure 13.1 to 13.3, it is clear that a suitable 
model for the glucose challenge data will need to include a quadratic effect 
for time and allow the correlations structure to depart from the compound 
symmetry assumption outlined in Section 13.2.1. We will begin by   fitting 
the  following random intercept and slope model, in which group is a dummy 
variable identifying the two groups of patients and linear time has a random 
effect with quadratic time having a fixed effect:

 = β + β + β + β + + + εy u ugroup time time timeij i i ij0 1 2 3
2

1 2  (13.8)

We can fit this model using proc mixed as follows (note that time is 
centred by subtracting mean time from each recording time):
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FIGURE 13.2
Scatter plot matrix for control group in Table 13.1.
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proc stdize data=pipl out=pipl method=mean;
   var time;
run;

proc sort data=pipl; by id time; run;

proc mixed data=pipl covtest noclprint;
  class group id;
  model pip=group time|time /s ddfm=bw;
  random int time /subject=id type=un;
run;

Proc mixed is the SAS procedure for linear mixed models with normal 
responses. Its syntax is similar to that of proc glm with additional state-
ments and options to deal with the random effects. The first point to note 
is that it takes as input the long form of the data set. With large data sets, 
it is advisable to sort the data by subject and measurement occasion within 
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Scatter plot matrix for obese group in Table 13.1.
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subject. The class statement performs its usual function of identifying cat-
egorical variables. If the subject identifier is not a numeric variable or the 
data have not been sorted, it should be included on the class statement. The 
noclprint option on the proc statement stops the levels of the categorical 
variables being listed in the output, which is useful when the data contain 
observations on a large number of subjects. In that case, noclprint=n could 
be used to suppress the class level listing for variables with more than n levels.

The model statement specifies the fixed effects in the model in the same 
way as for proc glm. Here we use the bar operator (|) as the shorthand for 
time time*time and, as this implies, interactions and polynomial terms can 
be specified with the asterisk. The s (solution) option requests that the fixed-
effects parameter estimates are included in the output. In mixed models, the 
denominator degrees of freedom for the F- and t-tests of the fixed effects need 
to be estimated from the data. Proc mixed offers five methods of estimation. 
In general, these will lead to different results, but for longitudinal analyses 
with reasonably sized samples, any method is likely to yield degrees of free-
dom large enough to lead to very similar p-values. We have selected the bw 
(betweenwithin) method as suitable for longitudinal  analysis, although the 
Satterthwaite or Kenward–Roger methods could also have been chosen.

The random statement specifies the random effects and their related options. 
A random intercept is not included in the model by default and needs to be 
specified as int or intercept on the random statement. Including time 
as a random effect specifies random slopes in time (i.e., the ui2 time term in 
the model). The subject= option specifies the subject identifier. The type= 
option specifies the covariance structure of the random effects. In the termi-
nology adopted by SAS, the random parameters are referred to as ‘covariance 
parameters’ and are represented in the model as a covariance matrix, which has 
a structure specified by the type option. Type=vc (variance components) is 
the default and estimates the variance for each random effect whilst constrain-
ing any covariance between them to zero. Type=un (unstructured) allows the 
random intercepts and slopes to covary and estimates the covariance between 
them. The covtest option on the proc mixed statement produces asymp-
totic standard errors and Wald tests for the covariance parameters.

The results are shown in Table 13.3. The regression coefficients for linear 
and quadratic time are both highly significant. The group effect just fails to 
reach significance at the 5% level. When an unstructured covariance matrix 
is specified for the random effects, their estimates are labelled in the output 
with the row and column number of the matrix. UN(1,1) is the variance of 
the random intercept term ui1 and is estimated to be 0.28. UN(2,2) is the vari-
ance of the random slopes in time, ui2, estimated as 0.016, and UN(2,1) is the 
intercept-slope covariance term estimated as –0.01.

Here, to demonstrate what happens if we make a very misleading assump-
tion about the correlational structure of the repeated measurements, we 
will compare the results in Table 13.3 with those obtained if we assume 
that the repeated measurements are independent and fit the corresponding 
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TABLE 13.3

Results from Random Slope and Intercept Model with Fixed Quadratic 

Time Effect Fitted to the Glucose Challenge Data

Model Information
Data Set WORK.PIPL
Dependent Variable Pip
Covariance Structure Unstructured
Subject Effect Id
Estimation Method REML
Residual Variance Method
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Between-Within

Class–Level Information

Class Levels Values
group 2 1 2
id 33 Not printed

Dimensions
Covariance Parameters 4
Columns in X 5
Columns in Z Per Subject 2
Subjects 33
Max Obs Per Subject 8

Number of Observations
Number of Observations Read 264
Number of Observations Used 264
Number of Observations Not Used 0

Iteration History

Iteration Evaluations Criterion
0 1 570.33709221
1 2 424.01656924 0.00000368
2 1 424.01647003 0.00000000

Convergence criteria met.
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TABLE 13.3 (Continued)

Results from Random Slope and Intercept Model with Fixed Quadratic 

Time Effect Fitted to the Glucose Challenge Data

Covariance Parameter Estimates

Cov Parm Subject Estimate
Standard

Error
Z

Value Pr Z
UN(1,1) id 0.2760 0.07612 3.63 0.0001
UN(2,1) id –0.01093 0.01768 –0.62 0.5366
UN(2,2) id 0.01592 0.006092 2.61 0.0045
Residual 0.1757 0.01770 9.92 <.0001

Fit Statistics

–2 Res Log Likelihood 424.0
AIC (smaller is better) 432.0
AICC (smaller is better) 432.2
BIC (smaller is better) 438.0

Null Model Likelihood Ratio
Test

DF Chi-Square Pr > ChiSq
3 146.32 <.0001

Solution for Fixed Effects

Effect group Estimate
Standard

Error DF t Value Pr > |t|
Intercept 3.3098 0.1253 31 26.41 <.0001
group 1 –0.3826 0.1928 31 –1.98 0.0562
group 2 0
time –0.1358 0.02825 229 –4.81 <.0001
time*time 0.1636 0.01125 229 14.55 <.0001

Type 3 Tests of Fixed Effects

Effect
Num

DF
Den
DF F Value Pr > F

group 1 31 3.94 0.0562
time 1 229 23.11 <.0001
time*time 1 229 211.56 <.0001
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model to that in Equation (13.8), but without the random effects (i.e., the 
model):

 = β + β + β + β + εy group time timeij ij0 1 2 3
2  (13.9)

We have used the same terms to refer to the various regression coeffi-
cients in the preceding model as in the model defined by Equation (13.7), but 
remember that this is for convenience—the terms are, of course, not the same 
in the two models.

The independence model can be fitted in the usual way using proc glm 
as follows:

proc glm data=pipl;
 class group;
 model pip=group time|time /solution;
run;

The results are shown in Table 13.4. We see that, under the independence 
assumption, the standard error for the group effect is about one-half of that 
given in Table 13.3 and, if it were used, would lead to the claim of strong 
 evidence of a difference between control and obese patients. For between- 
subject effects (here, group), the independence model estimated standard 
error will almost always be lower than for a nonindependence model unless, 
of course, the repeated measurements are actually independent of one 
another. For the time regression coefficient, however, the estimated stan-
dard errors for the two models are very similar; Pickles (2005) makes the 
point that, for within-subject effects (here, the time trend), the independence 
model may lead to standard error estimates that are too large.

To assess informally how well the fitted linear mixed-effects model defined 
in Equation (13.8) describes the glucose challenge data, we will now plot the 
predicted values from the model separately for each group. To do this, we 
use the same proc mixed step as before, changing the model statement to

model pip=group time|time /s ddfm=bw outp=mixout;

The outp=mixout option saves the predicted values to the mixout data 
set. Proc mixed has two types of predicted values and residuals, referred to 

TABLE 13.4

Results from Independence Model Fitted to Glucose Challenge Data

Parameter Estimate 
Standard

Error t Value Pr > |t|
Intercept 3.339104980 B 0.07391650 45.17 <.0001
group 1 –0.457019231 B 0.08723374 –5.24 <.0001
group 2 0.000000000 B
time –0.135803943 0.02934081 –4.63 <.0001
time*time 0.163609832 0.01858531 8.80 <.0001
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as ‘marginal’ and ‘conditional’. Marginal values do not include the random 
effects in the predicted values, whereas conditional predicted values do. 
The marginal predicted values are saved with the outpm= option. Here, the 
conditional predicted values are saved and then plotted in the same way as 
the observed values were for Figure 13.1. The result is shown in Figure 13.4. 
We can see that the model has captured the profiles of the control group rela-
tively well but not, perhaps, those of the obese group. We need to consider 
a further model that contains a group × time interaction by amending the 
model statement to

model pip=group time|time group*time/s ddfm=bw outp=mixout;

The results for this model are given in Table 13.5. The interaction effect is 
highly significant. The fitted values from this model are plotted in Figure 13.5 
(the code is very similar to that given for producing Figure 13.4). The plot 
shows that the new model has produced predicted values that more accu-
rately reflect the raw data plotted in Figure 13.1. The predicted profiles for the 
obese group are ‘flatter’, as required.

The random effects are not estimated as part of the model. However, hav-
ing estimated the model, we can predict the values of the random effects. In 
general, the problem of predicting a random variable can be shown to be 
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Fitted values from random intercept and slope model with fixed quadratic effect for glucose 

challenge data.
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TABLE 13.5

Results from Random Intercept and Slope Model with Fixed Quadratic 

Time Effect and Group × Time Interaction Fitted to the Glucose 

Challenge Data

Model Information
Data Set WORK.PIPL
Dependent Variable Pip
Covariance Structure Unstructured
Subject Effect id
Estimation Method REML
Residual Variance Method
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Between-Within

Dimensions
Covariance Parameters 4
Columns in X 7
Columns in Z Per Subject 2
Subjects 33
Max Obs Per Subject 8

Number of Observations
Number of Observations Read 264
Number of Observations Used 264
Number of Observations Not Used 0

Iteration History

Iteration Evaluations Criterion
0 1 564.72900461
1 1 417.95581545 0.00000000

Convergence criteria met.

Covariance Parameter Estimates

Cov Parm Subject Estimate
Standard

Error
Z

Value Pr Z
UN(1,1) id 0.2774 0.07539 3.64 0.0001
UN(2,1) id –0.00817 0.01323 –0.62 0.5367
UN(2,2) id  0.009834 0.004660 2.11 0.0174
Residual 0.1757 0.01770 9.92 <.0001
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that of predicting its conditional mean, given the available data. Thus, the 
best predictor of a random effect is its conditional mean, given the vector of 
responses and the estimated regression coefficients in the model. Having a 
prediction of the random effects allows prediction of a subject’s response 
profile. Full details of predicting random effect in linear mixed models are 
given in Fitzmaurice et al. (2004).

Using the estimated random effects, we now check the assump-
tions of the final model fitted to the glucose challenge data (i.e., that the 

TABLE 13.5 (Continued)

Results from Random Intercept and Slope Model with Fixed Quadratic Time 

Effect and Group × Time Interaction Fitted to the Glucose Challenge Data

Fit Statistics
–2 Res Log Likelihood 418.0
AIC (smaller is better) 426.0
AICC (smaller is better) 426.1
BIC (smaller is better) 431.9

Null Model Likelihood Ratio
Test

DF Chi-Square Pr > ChiSq
3 146.77 <.0001

Solution for Fixed Effects

Effect group Estimate
Standard

Error DF t Value Pr > |t|
Intercept 3.3391 0.1255 31 26.62 <.0001
group 1 –0.4570 0.1941 31 –2.36 0.0250
group 2 0
time –0.2006 0.03113 228 –6.44 <.0001
time*time 0.1636 0.01125 228 14.55 <.0001

time*group 1 0.1644 0.04787 228 3.43 0.0007

time*group 2 0

Type 3 Tests of Fixed Effects

Effect
Num

DF
Den
DF F Value Pr > F

group 1  31  5.55 0.0250
time 1 228  21.92 <.0001
time*time 1 228 211.56 <.0001
time*group 1 228  11.79 <.0007
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random-effect terms and residuals are normally distributed). The residu-
als are in the same data set as the predicted values, created with the outp 
option on the model statement shown earlier. They are produced and 
saved as follows:

proc mixed data=pipl covtest noclprint;
  class group id;
  model pip=group time|time group*time/s ddfm=bw outp=mixout;
  random int time /subject=id type=un s;
  ods output solutionr=reffs;
  ods listing exclude solutionr;
run;

Three elements have been added to the proc mixed step. The s (solu-
tion) option has been added to the random statement. This requests that the 
random effects be calculated and, by default, they are printed in the output. 
The ods output statement is used to store them in a data set. Solutionr 
is the ODS table name and reffs is the name we have chosen for the data 
set being created. Finally, the ods listing statement excludes the random-
effects table from the output listing. With a large number of subjects, the 
random-effects table will run to several pages of output, so it is useful to be 
able to suppress it when it is not required.
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Fitted values from random intercept and slope model with fixed quadratic effect and group × 

time interaction for glucose challenge data.
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Proc univariate is used to produce normal probability plots:

proc sort data=reffs; by effect; run;
proc univariate data=reffs noprint;
  var estimate;
  probplot estimate /normal(mu=est sigma=est);
  by effect;
run;
proc univariate data=mixout noprint;
  var resid;
  probplot resid /normal(mu=est sigma=est);
run;

The resulting plots are shown in Figures 13.6 through 13.8. The plots of the 
residuals are each essentially linear as required, although there is some 
slight deviation from linearity for each of the predicted random effects. 
A further plot that can be helpful is a scatter plot of the residuals against 
predicted values. In a correctly specified model, the scatter plot should not 
display any systematic pattern; the fitting of a loess curve (see Chapter 7) 
can often help in assessing the scatter plot. Similarly, scatter plots of the 
residuals against selected covariates from the model for the mean response 
can be examined for systematic trends, which, if present, may indicate the 
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omission of a quadratic term or the need for transformation of a covariate. 
We can construct the residual against predicted and residual against time 
scatter plots for the final model fitted to the glucose challenge data using 
the code

proc sgscatter data=mixout;
   plot resid *(pred time)/group=group loess=(clm);
run;

The plots are shown in Figure 13.9. There are no clear patterns in either plot 
that may cause concern about the validity of the fitted model.

For interest, the corresponding plots for a model that includes the group × 
time interaction, but only a linear effect for time, are shown in Figure 13.10 
(the code is very similar to that used directly before). Here, the plot of residu-
als against time shows a clear pattern indicating that a quadratic effect is 
needed in the model.

There are some problems with using the raw residuals because they are 
correlated and do not necessarily have constant variance; Fitzmaurice et al. 
(2004) show how to produce transformed residuals, which may, in some 
cases, give a clearer indication of departures from the assumptions of the 
modelling process.
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13.3 Dropouts in Longitudinal Data

A problem that frequently occurs when collecting longitudinal data is that 
some of the intended measurements are, for one reason or another, not made. 
In clinical trials, for example, some patients may miss one or more protocol 
scheduled visits after treatment has begun and thus fail to have the required 
outcome measure taken. There will be other patients who do not complete 
the intended follow-up for some reason and drop out of the study before the 
end date specified in the protocol. Both situations result in missing values of 
the outcome measure; in the first case, these are intermittent, but dropping 
out of the study implies that, once an observation at a particular time point 
is missing, so are all the remaining planned observations. Many studies will 
contain missing values of both types, although in practice it is dropouts that 
cause most problems when turning to analysing the resulting data set.

An example of a set of longitudinal data in which a number of patients have 
dropped out is given in Table 13.6; data for only five patients are given in the 
table but the data to be analysed here have 100 patients and are a subset of the 
data collected in a clinical trial that is described in detail in Proudfoot et al. 
(2003). The trial was designed to assess the effectiveness of an interactive 
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 program using multimedia techniques for the delivery of cognitive behav-
ioural therapy for depressed patients and is known as Beating the Blues 
(BtB). In a randomised controlled trial of the program, patients with depres-
sion recruited in primary care were randomised either to the BtB program 
or to treatment as usual (TAU). The outcome measure used in the trial was 
the Beck Depression Inventory II (Beck, Steer, and Brown 1996), with higher 
values indicating more depression.

Measurements of this variable were made on five occasions, one prior to 
the start of treatment and at two monthly intervals after treatment began. In 
addition, whether or not a participant in the trial was already taking antide-
pressant medication was noted along with the length of time he or she had 
been depressed, divided into greater than 6 months or less than or equal to 
6 months; ‘NA’ denotes ‘not available’ (i.e., a missing value).

We can read the data in creating both the wide and long formats in the 
same data step:

data btb (keep=sub--treatment BDIpre--BDI8m)
   btbl (keep=sub--treatment bdi time);
infile ‘c:\amsus\data\btb.dat’ missover;
 array bdis {*} BDIpre BDI2m BDI3m BDI5m BDI8m;
 array t {*} t1-t5 (0 2 3 5 8);
 input sub drug$ Duration$ Treatment$ @;
 do i = 1 to 5;
   input bdi @;
   bdis{i}=bdi;
   time=t{i};
   output btbl;
 end;
 output btb;
run;

We have already seen how to use the array, iterative do, and output 
statements to restructure a data set. This example shows the use of two 
output statements, each naming the data set that the observation is to be 
written to. The data statement also names two data sets and the keep option 
specifies the variables they are to contain.

TABLE 13.6

Data for Five Patients from the Original BtB Clinical Trial

Sub DRUG Duration Treatment BDIpre BDI2m BDI3m BDI5m BDI8m

1 N >6 m TAU 29  2  2 NA NA

2 Y >6 m BtB 32 16 24 17 20

3 Y <6 m TAU 25 20 NA NA NA

4 N >6 m BtB 21 17 16 10  9

5 Y >6 m BtB 26 23 NA NA NA
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To begin, we shall graph the data by plotting the box plots of each of the 
five repeated measures separately for each treatment group:

proc sgpanel data=btbl;
  panelby treatment /spacing=10 novarname;
  vbox bdi/category=time;
run;

The resulting diagram is shown in Figure 13.11.
Figure 13.11 shows that there is decline in BDI values in both groups with 

perhaps the values in the BtB group lower at each postrandomisation visit. 
We shall fit both random intercept and random intercept and slope models to 
the data, including the pre-BDI values, treatment group, drugs, and duration 
as fixed-effect covariates.

The data contain a number of missing values and, in applying proc mixed to 
the long form of the data set, these will be dropped from the analysis. But notice 
that only the missing values are removed, not participants that have at least one 
recorded value. All the available data are used in the model fitting process.

We begin by fitting the random intercept and slope model:

proc mixed data=btbl covtest noclprint=3;
 class drug duration treatment sub;
 model bdi=drug duration treatment time /s cl ddfm=bw;
 random int time /subject=sub type=un;
run;
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Box plots for the repeated measures by treatment group for the BtB data.
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The random effects (covariance parameters) estimates and associated Wald 
tests for this model are

Covariance Parameter Estimates

Cov Parm Subject Estimate
Standard

Error
Z

Value Pr Z
UN(1,1) sub 78.8941 15.1932  5.19 <.0001
UN(2,1) sub  0.08138  1.9103  0.04 0.9660
UN(2,2) sub  0.2573  0.2823  0.91 0.1811
Residual 38.1343  3.6849 10.35 <.0001

Clearly, a simpler model with only a random intercept is adequate for these 
data. This model can be fitted by amending the random statement to

random int /subject=sub;

The results from fitting this model are given in Table 13.7. The treatment 
and time effects are significant but those for drugs and duration are not. 

TABLE 13.7

Results from the Random Intercept Model Fitted to the BtB Data

Solution for Fixed Effects

Effect drug Duration Treatment Estimate
Standard

Error DF t Value Pr > |t|
Intercept 26.4177 2.3184  96 11.39 <.0001
drug n –2.0513 2.0474  96 –1.00 0.3189
drug y 0
Duration <6 m –3.4439 1.9473  96 –1.77 0.0801
Duration >6 m 0
Treatment BtB –4.2928 2.0172  96 –2.13 0.0359
Treatment TAU 0
time –1.3882 0.1354 279 –10.26 <.0001

Solution for Fixed Effects

Effect drug Duration Treatment Alpha Lower Upper
Intercept 0.05 21.8157 31.0197
drug n 0.05 –6.1153 2.0127
drug y
Duration <6 m 0.05 –7.3092 0.4215
Duration >6 m
Treatment BtB 0.05 –8.2969 –0.2888
Treatment TAU
time 0.05 –1.6547 –1.1218
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Conditional residuals from fitting random intercept model to BtB data.
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The confidence interval for the treatment effect implies that treatment with 
BtB reduces the depression score on average by about one fifth of a point to 
eight points, conditional on the values of the other covariates. Clearly, the 
lower end of the interval would not represent a decrease that was of any clin-
ical use, but the value at the upper end represents a considerable decrease in 
a patient’s depression.

Various plots of the conditional residuals from fitting the random intercept 
model are shown in Figure 13.12. Some residuals are a little extreme, but on 
the whole they are well behaved and no obvious problems with the model 
are suggested.

How the dropouts may affect the analyses reported previously will be 
taken up in Chapter 18.

13.4 Summary

Linear mixed-effects models are extremely useful for modelling longitudinal 
data in particular and repeated measures data more generally. The models 
allow the correlations between the repeated measurements to be accounted 
for so that correct inferences can be drawn about the effects of covariates of 
interest on the repeated response values. In this chapter, we have concen-
trated on responses that are continuous and conditional on the explanatory 
variables, and random effects have a normal distribution. Models with ran-
dom effects can also be applied to non-normal responses, as we shall see in 
the next chapter.
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14
Analysis of Longitudinal Data III: 
Non-Normal Responses

14.1 Introduction

In many longitudinal studies carried out in medicine, it will be clear that 
the assumption of normality for the response variable is simply not justi-
fied. Two examples are shown in Tables 14.1 and 14.2. The one in Table 14.1 
results from a clinical trial comparing two treatments for a respiratory illness 
(Davis 1991). In each of two centres, eligible patients were randomly assigned 
to active treatment or placebo. During treatment, the respiratory status (cat-
egorised as 0 = poor, 1 = good) was determined at each of four monthly visits. 
A total of 111 patients were entered into the trial, 54 into the active group 
and 57 into the placebo group. The sex and age of each participant were also 
recorded and a baseline respiratory status. Here the response variable is 
binary, making the models described in the previous chapter inappropriate 
for these data. (These data were used previously in Chapter 12.) The observa-
tions for the first five patients in the data set are shown in Table 14.1.

The data in Table 14.2 also arise from a clinical trial reported in Thall and 
Vail (1990). Here, 59 patients with epilepsy were randomised to receive either 
the antiepileptic drug progabide or a placebo in addition to standard che-
motherapy. The number of seizures was counted over four 2-week periods. 
In addition, a baseline seizure rate was recorded for each patient, based on 
the 8-week prerandomisation seizure count. Finally, the age of each patient 
was recorded. Data for the first five patients are given in Table 14.2. In this 
example, the observations are counts which can take only positive values 
and thus again make the normality assumption needed for the linear mixed-
effects models of Chapter 13 difficult to justify.

In the models for Gaussian responses described in Chapter 13, estimation 
of the regression parameters linking explanatory variables to the response 
variable and their standard errors needed to take account of the correla-
tional structure of the data, but their interpretation could be undertaken 
independently of this structure. When modelling non-normal responses, this 
independence of estimation and interpretation no longer holds; different 
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assumptions about the source of the within-subject correlation (the term cor-
relation is not entirely satisfactory here, particularly for a repeated binary 
response, as we shall see later) can lead to regression coefficients with quite 
distinct interpretations (for the reasons why, see Fitzmaurice, Laird, and 
Ware 2004). The essential difference is between marginal models (also known 
as population-average models) and conditional models (also known as subject-
specific models). There is no automatic way of choosing between these two 
types of models for the analysis of non-normal longitudinal data; instead, 
the choice has to be made on subject-matter considerations, knowing that the 
different model types have different inferential targets and address often 
subtly different scientific questions, as we shall attempt to make clear in the 
following section.

14.2 Marginal Models and Conditional Models

14.2.1 Marginal Models

Marginal models are essentially an extension of generalised linear models 
(GLMs) to longitudinal data. The ‘marginal’ term is used in this context to 
describe that the mean response depends only on the covariates of interest 
and not on any random effects. This is in contrast to the linear mixed-effects 

TABLE 14.2

Data for Five Patients from a Clinical Trial of Patients Suffering from Epilepsy

Subject ID Period 1 Period 2 Period 3 Period 4 Treatment Baseline Age

1 5 3 3 3 0 11 31

2 3 5 3 3 0 11 30

3 2 4 0 5 0 6 25

4 4 4 1 4 0 8 36

5 7 18 9 21 0 66 22

Source: Thall, P. F. and Vail, S. C. 1990. Biometrics, 46:657–671.

TABLE 14.1

Respiratory Disorder Data for First Five Patients

Patient Centre Treatment Sex Age BL V1 V2 V3 V4

1 1 1 1 46 0 0 0 0 0

2 1 1 1 28 0 0 0 0 0

3 1 2 1 23 1 1 1 1 1

4 1 1 1 44 1 1 1 1 0

5 1 1 2 13 1 1 1 1 1

Notes: Treatment: 1 = placebo; 2 = active. Sex: 1 = male; 2 = female.
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models of the previous chapter, where the mean response depends not 
only on the covariates but also on a number of random effects. In essence, 
longitudinal data can be considered as a series of cross sections, and mar-
ginal models for such data use the generalised linear model to fit each cross 
section.

In such models, the relationship of the marginal mean response to the 
covariates is modelled separately from the within-subject correlation 
among the repeated responses and the goal when fitting these models is to 
make inferences about population means; the within-subject correlation is 
regarded as a ‘nuisance’ characteristic of the data that nevertheless has to 
be accounted for properly to make correct inferences about changes in the 
population mean response. The marginal regression coefficients have the 
same interpretation as coefficients from a cross-sectional analysis, and mar-
ginal models are natural analogues for correlated data of generalised linear 
models for independent data.

A marginal model for longitudinal data can be specified in terms of the 
following three components:

The expectation or mean of each response is conditional on the 
covariates, which is assumed to depend on these covariates through 
a known link function.

As in conventional generalised linear models, the variances of 
the responses given the covariates are assumed to be of the form 
V(y) = ϕV(μ), where the variance function is determined by the choice 
of distribution family (see Chapter 10). The dispersion or scale 
parameter ϕ may be known or may have to be estimated. Because 
overdispersion is common in longitudinal data, estimation of ϕ is 
often needed even if the distribution requires ϕ = 1.

The conditional within-subject correlation among the repeated 
responses, given the covariates, is assumed to be a function of an 
additional set of association parameters.

The third component is needed to take care of the characteristic lack of 
independence of the repeated measurements of the response variable in lon-
gitudinal data. It should be noted that, for a binary response, the correlation 
is not the most useful measure of departure from independence because its 
values for such responses are restricted to ranges determined by the means 
of the response (i.e., the probability of a ‘success’). The odds ratio (or log 
odds ratio) is a much more preferable measure of association among pairs of 
binary responses. (For more details, see Fitzmaurice et al. 2004.)

The problem with applying a direct analogue of the generalised linear 
model to longitudinal data with non-normal responses is that there is usu-
ally no suitable likelihood function with the required combination of the 
appropriate link function, error distribution, and correlation structure to 
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allow maximum likelihood to be used. To overcome this problem, Liang 
and Zeger (1986) introduced a general method for incorporating within-
subject association in GLMs, which is essentially an extension of the quasi-
likelihood approach mentioned briefly in Chapter 10. The feature of this 
approach that differs from the usual generalised linear model is that, given 
the covariates, different responses on the same individual are allowed to 
depart from independence with a relatively small number of parameters 
defining a relatively simple pairwise correlation structure for the repeated 
measurements.

The covariance matrix of the repeated measurements implied by the 
assumed correlation structure is known as a ‘working’ covariance matrix 
for the repeated measures, with the implication that it may not accurately 
represent the variances and within-subject associations of the repeated mea-
sures. The estimated regression coefficients; are ‘robust’ in the sense that 
any misspecification of the model for the covariance has very little impact 
on the estimates of the regression coefficients; in particular they remain both 
unbiased and consistent assuming that the mean structure is correctly speci-
fied. However, misspecification of the covariance leads to incorrect values for 
the estimated standard errors of the estimates of the regression coefficients 
and can lead to misleading inferences about the regression coefficients with 
confidence intervals which are too narrow (or in some cases too wide) and 
p-values that are too small (or sometimes too large).

Where there is some doubt about the model used for the covariance struc-
ture of the repeated measurements, valid estimates of the standard errors can 
be obtained using the so-called sandwich estimator; standard error estimates 
obtained in this way are robust to misspecification of the covariance model. 
Details of the sandwich estimator are given, for example, in Fitzmaurice 
et al. (2004). Given that the sandwich estimator of the standard errors is avail-
able, an obvious questions arises, ‘Why not use the estimator in all cases and 
thus avoid the effort to model the within-subject association?’ For example, 
why not simply assume that the repeated measurements of the response are 
independent and then use the sandwich estimators of the standard errors of 
the estimated regression coefficients? Fitzmaurice et al. give two main rea-
sons for modelling the covariance structure:

In general, the more closely the ‘working’ covariance matrix approx-
imates the true underlying covariance matrix, the greater is the 
efficiency or precision with which the regression coefficients can be 
estimated.

The robustness property of the sandwich estimator is a large sample 
(or asymptotic) property, so the use of the estimator is best suited 
to balanced longitudinal data where the number of subjects is rela-
tively large and the number of repeated measures relatively small. 
Reliance on the sandwich estimator is not to be recommended when 
the number of subjects is modest or the design is unbalanced.
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Therefore, in general, modelling the correlation structure of the repeated 
measurements will be worthwhile and the following four possibilities are 
commonly used:

An identity matrix leads to the independence working model in 
which the generalised estimating equation reduces to the univariate 
estimating equation given in Chapter 10, obtained by assuming that 
the repeated measurements are independent

An exchangeable correlation matrix with a single parameter similar 
to that described in Chapter 13; here, the correlation between each 
pair of repeated measurements is assumed to be the same—that is, 
corr(Yij,Yik) = α, where Yij is the jth repeated measurement for the ith 
individual

An AR-1 autoregressive correlation matrix, also with a single parame-
ter, but in which corr(Yij,Yik) = α|k–j|, j ≠ k; this can allow the correlations 
of measurements taken further apart to be less than those taken 
closer to one another

An unstructured correlation matrix with T(T – 1)/2 parameters in 
which (Yij,Yik) = αjk

For binary responses it is usually preferable to specify the lack of indepen-
dence part of a marginal model in terms of the log odds ratios, as we shall 
see in a later example.

For given values of the regression parameters β1,…, βp, the α-parameters of 
the working correlation matrix can be estimated along with the dispersion 
parameter ϕ (see Zeger and Liang 1986 for details). These estimates can then 
be used in the so-called generalised estimating equations (GEEs) to obtain esti-
mates of the regression parameters. The GEE algorithm proceeds by iterating 
between estimation of (1) the regression parameters using the correlation 
and dispersion parameters from the previous iteration and (2) the correlation 
and dispersion parameters using the regression parameters from the previ-
ous iteration. (For more details, see Fitmaurice et al. 2004.)

The regression parameters in a marginal model describe features of the 
mean response in the population and how these features relate to the covari-
ates. This interpretation is not altered by the assumptions made about the 
nature or the magnitude of the lack of within-subject independence.

14.2.2 Conditional Models

In Chapter 13 we saw how the incorporation of random effects for individu-
als introduces correlations among the repeated measurements at the pop-
ulation level. In this section, we describe briefly how a generalised linear 
modelling approach can be applied to longitudinal data with a non-normal 
response by allowing some of the regression coefficients in a model to vary 
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randomly from one individual to another. Such generalised linear mixed-effects 
models, however, can be difficult to estimate because the likelihood involves 
integrals over the random-effects distribution that generally do not have 
closed forms; the integrals have to be evaluated numerically, which in some 
cases may involve substantial computational effort. A consequence is that it 
is often only possible to fit relatively simple models.

As an illustration of a generalised linear mixed-effects model, we will look 
at a logistic regression model for longitudinal data with a binary response. 
Therefore, we consider a set of longitudinal data in which Yij is the value of a 
binary response for individual i at, say, time tj. The logistic regression model 
(see Chapter 9) for the response is now written as

 ( )=⎡⎣ ⎤⎦ = β + β +Y u t ulogit Pr 1|ij i j i0 1  (14.1)

where ui is a random effect assumed to be normally distributed with zero 

mean and variance σu
2.

The model is a simple logistic regression model with randomly varying 
intercepts and can be considered as a discrete data analogue of the random 
intercept model described in the previous chapter. The model allows for 
natural heterogeneity in individuals’ propensity to respond positively, a pro-
pensity that persists in all the repeated binary responses for an individual. In 
this model, the regression parameter β1 represents the change in the log odds 
per unit change in time, as in the usual logistic regression model, but now it 
is conditional on the random effect ui. In other words, β1 represents the change 
in the log odds per unit change in time for any given individual having an 
unobservable underlying propensity to respond positively, ui. The regression 
parameter represents the influence of the covariate on a specific subject’s mean 
response. We can illustrate the conditional nature of the model graphically 
by simulating the model in (14.1); the result is shown in Figure 14.1.

In Figure 14.1, thin curves represent subject-specific relationships between 
the probability that the response equals one and a covariate x for model (14.1). 
The horizontal shifts are due to different values of the random intercept. The 
thick curve represents the population averaged relationship, formed by averag-
ing the thin curves for each value of x. It is, in effect, the thick curve that would 
be estimated in a marginal model. The population averaged regression param-
eters tend to be attenuated (closer to zero) relative to the subject-specific regres-
sion parameters. A marginal regression model does not address questions 
concerning heterogeneity between individuals. Estimating the parameters in 
a generalised linear mixed-effects model is undertaken by some form of maxi-
mum likelihood, but for details readers are referred to Fitzmaurice et al. (2004).

The important point to reiterate here is that, in conditional models, esti-
mated regression coefficients have to be interpreted conditional on the ran-
dom effects. The regression parameters in the model are said to be subject 
specific and such effects will differ from the marginal or population averaged 
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effects estimated using GEE, except when using an identity link function 
and a normal error distribution.

14.3 Analysis of the Respiratory Data

In this section we shall apply both the generalised estimating equations 
approach and the generalised linear mixed-effects approach to the respira-
tory data in Table 14.1. This will enable us to compare the population aver-
aged and subject-specific regression estimates. We begin by fitting two 
marginal models to the data.

14.3.1 Marginal Models

First, we will fit a marginal model that includes only the covariate age. As we 
are dealing with a binary response, we shall assume that the probability of a 
good respiratory response is related to age by a logit link function and thus 
the logistic regression model will be
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where Yij = 1 if the ith individual has good respiratory status on visit Vj and 
Yij = 0 if respiratory status is poor.
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FIGURE 14.1
Simulation of random effects logistic regression model.
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To compare with later results, we will begin by fitting a model that assumes 
that the pairwise repeated measurements are independent. As explained in 
the previous chapter, we need to work with the ‘long’ form of the data and 
can produce this from their ‘wide’ form as follows:

data respw;
  infile 'c:\amsus\data\resp.dat';
  input id centre treat sex age bl v1-v4;
run;

data respl;
  set respw;
  array vs {4} v1-v4;
  do time=1 to 4;
  status=vs{time};
  output;
  end;
run;

We can now apply the required logistic regression model using proc 
genmod as follows:

proc sort data=respl;
  by id time;
run;
proc genmod data=respl desc;
 class id;
 model status=age / d=b;
repeated subject=id / type=ind modelse;
run;

The use of proc genmod to fit generalised linear models was described 
in Chapter 10. Extending the procedure to cover GEE models is done by 
including the repeated statement and specifying the variable which iden-
tifies the subjects, id in this case. This variable must be named on a class 
statement. The structure of the working correlation matrix is specified with 
type= option. Other structures commonly used for longitudinal data are 
autoregressive (ar) and unstructured (un). The order in which the repeated 
measurements were made could be specified with the withinsubject 
(within=) option and, if so, the variable must also be named on a class 
statement. Even when the data are in the correct order, as they are here, this 
option might still be important if subjects had measurements missing in the 
middle of a sequence. For GEE models, proc genmod gives the sandwich 
estimators by default (although it refers to them as ‘empirical standard error 
estimates’). The model-based standard errors can be requested in addition 
by using the modelse option on the repeated statement.

The results giving both the sandwich estimators of the standard errors and 
the model-based standard errors are shown in Table 14.3. For age, the estimated 
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regression coefficient is –0.0120, but of more interest are the two estimates of 
the standard error of this parameter estimate; the sandwich estimate is 0.0117 
and the model-based estimate is 0.0071. Here, we know the independence 
model is unrealistic and the standard error estimate based on the unrealistic 
model is too optimistic about the precision of the parameter estimate.

The two fit criteria, QIC and QICu, are described in Pan (2001). The former 
is a modification of the Akaike information criterion developed for models 
that have been fitted using GEE. The QIC is appropriate for selecting mod-
els and working correlations, whereas the QICu is only of use for selecting 
regression models (see Pan for more details). Models can be compared using 
the QIC; the preferred model is the one with the lower QIC.

The assumption of independence is usually unrealistic for repeated mea-
sures data and we need to consider a marginal model that allows for depar-
tures from independence. As we are dealing here with a binary response, we 
will specify lack of independence amongst the repeated measurements in 
terms of pairwise log odds ratios—specifically that

 log OR(Yij,Yik ) = αjk (14.3)

TABLE 14.3

Results from Fitting a Logistic Regression Model to the Respiratory Data with 

Age as the Only Covariate and Assuming Independence between 

the Repeated Measurements

GEE Fit Criteria
QIC 616.7298
QICu 610.0202

Analysis of GEE Parameter Estimates

Empirical Standard Error Estimates

Parameter Estimate
Standard 

Error

95%

Limits Z Pr > |Z|

Intercept 0.6458 0.3957 –0.1297 1.4213 1.63 0.1027
age –0.0120 0.0117 –0.0350 0.0110 –1.02 0.3059

Analysis of GEE Parameter Estimates

Model-Based Standard Error Estimates

Parameter Estimate
Standard 

Error

95%

Limits Z Pr > |Z|

Intercept 0.6458 0.2553 0.1454 1.1461 2.53 0.0114
age –0.0120 0.0071 –0.0259 0.0018 –1.70 0.0888
scale 1.0000
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where

 =
= = = =
= = = =

Y Y
Y Y Y Y
Y Y Y Y

OR ( , )
Pr( 1, 1) Pr( 0, 0)

Pr( 1, 0) Pr( 0, 1)
ij ik

ij ik ij ik

ij ik ij ik
 (14.4)

To begin, we will again fit this new model to the data with the single 
covariate, age. To fit this model, we use the following SAS code:

proc genmod data=respl desc;
 class id;
 model status=age / d=b;
repeated subject=id / logor=fullclust modelse;
run;

The results are shown in Table 14.4.
Comparing the values of the empirical and model-based estimates of 

the standard error of the age regression coefficient in this model, we find 
that they are very similar (0.0116 and 0.0113) and also very similar to the 
empirical estimate in the previous ‘independence’ model (0.0117). The esti-
mates of the parameters defining the covariance structure are of little real 
interest, although they are all highly significant and indicate the positive 
relationships between the pairs of repeated measurements.

Now we will fit a marginal model again with the association structure 
shown in (14.3) but with treatment, time, sex, age, centre, and baseline respi-
ratory status as covariates. Using an obvious nomenclature to label the 
covariate values for the ith individual and where timej takes the value j for 
j = 1, 2, 3, 4, the logistic regression model we shall fit is
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The SAS code required to fit this model is as follows:

proc genmod data=respl desc;
class id;
 model status=centre treat sex age time bl / d=b;
repeated subject=id / logor=fullclust modelse;
run;

The results are shown in Table 14.5.
First, we might compare the empirical estimates of the standard errors 

and those derived from the fitted model. If we do this, we find that the 
two sets of standard error estimates are very similar, suggesting that the 
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TABLE 14.4

Results from Fitting a Logistic Regression Model to the Respiratory Data with a 

Single Covariate, Age, and the Dependence Structure Specifi ed in Equation (14.3)

Log Odds Ratio Parameter Information

Parameter Group
Alpha1 (1, 2)
Alpha2 (1, 3)
Alpha3 (1, 4)
Alpha4 (2, 3)
Alpha5 (2, 4)
Alpha6 (3, 4)

GEE Fit

Criteria
QIC 616.6598
QICu 610.0499

Analysis of GEE Parameter Estimates

Empirical Standard Error Estimates

Parameter Estimate
Standard 

Error

95%

Limits Z Pr > |Z|
Intercept 0.6338 0.3948 –0.1400 1.4076 1.61 0.1084
age –0.0113 0.0116 –0.0341 0.0116 –0.97 0.3334
Alpha1 2.2440 0.4441 1.3737 3.1143 5.05 <.0001
Alpha2 1.9214 0.4294 1.0798 2.7630 4.47 <.0001
Alpha3 2.3449 0.4492 1.4645 3.2252 5.22 <.0001
Alpha4 2.6370 0.4695 1.7169 3.5571 5.62 <.0001
Alpha5 2.4557 0.4554 1.5632 3.3482 5.39 <.0001
Alpha6 2.7506 0.4769 1.8159 3.6852 5.77 <.0001

Analysis of GEE Parameter Estimates

Model-Based Standard Error Estimates

Parameter Estimate
Standard 

Error

95%

Limits Z Pr > |Z|
Intercept 0.6338 0.4097 –0.1692 1.4368 1.55 0.1219
age –0.0113 0.0113 –0.0335 0.0110 –0.99 0.3205
Alpha1 2.2440

(Continued)
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chosen nonindependence structure adequately describes the departures from 
independence in the data. The covariate of most interest in this study is, of 
course, treatment, and the estimated regression coefficient for this covariate is 
1.297 with a 95% confidence interval [0.635, 1.960] (using the model standard 
errors). Exponentiating the limits of the confidence interval leads to the conclu-
sion that the odds in favour of a good respiratory response in the active treat-
ment group are between about two and seven times the corresponding odds 
in the placebo group. (It is of some interest to note that this confidence interval 
is very similar to the confidence interval arrived at from the simpler summary 
measure overdispersed model fitted to the respiratory data in Chapter 12.)

The values of the fit criteria in Table 14.5 are much lower than the corre-
sponding values in Tables 14.4 and 14.3, demonstrating that the model speci-
fied in (14.5) is, not surprisingly, far better than the model defined by (14.2). 
(Other correlation structures could be considered but this will be left as an 
exercise for the reader.)

14.3.2 Generalised Linear Mixed-Effects Models

In this section, we will fit the following conditional model to the respiratory 
data:
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where ui is a random effect assumed to be normally distributed with zero 

mean and variance σu
2 .

TABLE 14.4 (Continued)

Results from Fitting a Logistic Regression Model to the Respiratory Data with a 

Single Covariate, Age, and the Dependence Structure Specifi ed in Equation (14.3)

Analysis of GEE Parameter Estimates

Model-Based Standard Error Estimates

Parameter Estimate
Standard 

Error

95%

Limits Z Pr > |Z|
Alpha2 1.9214
Alpha3 2.3449
Alpha4 2.6370
Alpha5 2.4557
Alpha6 2.7506
Scale 1.0000
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TABLE 14.5

Results from Fitting Logistic Regression Model Specifi ed in Equation (14.5) to the 

Respiratory Data Using the Dependence Structure Specifi ed in Equation (14.3)

Log Odds Ratio Parameter Information

Parameter Group
Alpha1 (1, 2)
Alpha2 (1, 3)
Alpha3 (1, 4)
Alpha4 (2, 3)
Alpha5 (2, 4)
Alpha6 (3, 4)

GEE Fit Criteria
QIC 508.6969
QICu 496.9675

Analysis of GEE Parameter Estimates

Empirical Standard Error Estimates

Parameter Estimate
Standard

Error

95%

Limits Z Pr > |Z|
Intercept –2.8383 0.8955 –4.5934 –1.0832 –3.17 0.0015
Centre 0.6472 0.3524 –0.0435 1.3378 1.84 0.0663
Treat 1.2974 0.3446 0.6221 1.9727 3.77 0.0002
Sex 0.0869 0.4396 –0.7746 0.9484 0.20 0.8433
Age –0.0154 0.0126 –0.0401 0.0093 –1.22 0.2219
Time –0.0710 0.0801 –0.2279 0.0860 –0.89 0.3755
Bl 1.9386 0.3446 1.2631 2.6141 5.63 <.0001
Alpha1 1.6208 0.4930 0.6545 2.5871 3.29 0.0010
Alpha2 1.0557 0.4879 0.0995 2.0119 2.16 0.0305
Alpha3 1.6813 0.4874 0.7260 2.6366 3.45 0.0006
Alpha4 2.0995 0.5038 1.1122 3.0869 4.17 <.0001
Alpha5 1.9482 0.4761 1.0151 2.8812 4.09 <.0001
Alpha6 2.2137 0.5040 1.2258 3.2015 4.39 <.0001

Analysis of GEE Parameter Estimates

Model-Based Standard Error Estimates

Parameter Estimate
Standard 

Error

95%

Limits Z Pr > |Z|
Intercept –2.8383 0.9266 –4.6544 –1.0222 –3.06 0.0022
centre 0.6472 0.3458 –0.0306 1.3249 1.87 0.0613

(Continued)
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To fit this model, we use the following SAS code:

proc glimmix data=respl noclprint;
 class id;
  model status(desc)=centre treat sex age time bl / d=binary s 
ddfm=bw;

 random int / subject=id;
run;

Proc glimmix has a similar syntax to proc mixed with additional options 
to cover distributions other than the normal distribution. The distribution is 
specified with the d= option on the model statement. The solution (s) option 
gives the parameter estimates for the fixed effects and ddfm=bw specifies 
the between–within method of calculating the denominator degrees of free-
dom, which is suitable for longitudinal data. For binary responses, the desc 
option can be specified in parentheses after the response variable to reverse 
the default ordering. The noclprint option on the proc statement is used to 
suppress the listing of the patient ids.

The results are shown in Table 14.6. The estimated regression coefficients 
and their estimated standard errors are not too different from the correspond-
ing coefficients and standard errors derived from the marginal model fitted 
to the data and given in Table  14.5. Concentrating on the estimated treat-
ment effect from the random-effects model—namely, 1.535, with estimated 

TABLE 14.5 (Continued)

Results from Fitting Logistic Regression Model Specifi ed in Equation (14.5) to the 

Respiratory Data Using the Dependence Structure Specifi ed in Equation (14.3)

Analysis of GEE Parameter Estimates

Model-Based Standard Error Estimates

Parameter Estimate
Standard 

Error

95%

Limits Z Pr > |Z|
Treat 1.2974 0.3382 0.6345 1.9602 3.84 0.0001
Sex 0.0869 0.4267 –0.7494 0.9232 0.20 0.8386
Age –0.0154 0.0128 –0.0404 0.0096 –1.21 0.2277
Time –0.0710 0.0815 –0.2307 0.0887 –0.87 0.3838

Bl 1.9386 0.3451 1.2622 2.6150 5.62 <.0001
Alpha1 1.6208
Alpha2 1.0557
Alpha3 1.6813
Alpha4 2.0995
Alpha5 1.9482
Alpha6 2.2137
Scale 1.0000
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standard error 0.391—leads to a 95% confidence interval for the odds ratio 
of approximately [2, 10]. In this model, the treatment effect describes the 
effect of treatment on a specific patient’s probability of a positive respiratory 
response. The variance of the random effects in the model is estimated to be 
2.04 with a standard error of 0.53.

14.4 Analysis of Epilepsy Data

Here we will begin by constructing a useful graphic of the data—namely, 
box plots of the number of epileptic seizures before and after treatment sepa-
rately for the two treatment groups (the before count is the 2-week  average). 
The necessary code is

data epiw;
  infile 'c:\AMSUS\data\epi.dat';
  input id p1-p4 treat bl age;

TABLE 14.6

Results from Fitting the Logistic Regression Model Specifi ed 

in Equation (14.7) to the Respiratory Data

Fit Statistics
–2 Res Log Pseudo-Likelihood 2108.37
Generalised Chi-Square 281.75
Generalised Chi-Square/DF 0.64

Covariance Parameter Estimates

Cov Parm Subject Estimate
Standard 

Error
Intercept id 2.0433 0.5305

Solutions for Fixed Effects

Effect Estimate
Standard 

Error DF t Value Pr > |t|
Intercept –3.3772 1.0369 105 –3.26 0.0015
Centre 0.7563 0.4110 105 1.84 0.0686
Treat 1.5350 0.3911 105 3.92 0.0002
Sex 0.1426 0.5127 105 0.28 0.7814
Age –0.01891 0.01513 105 –1.25 0.2142
Time –0.08012 0.1018 332 –0.79 0.4317
Bl 2.1967 0.4003 105 5.49 <.0001
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run;
data epil;
  set epiw;
  bl=bl/4;
  lbl=log(bl);
  array ps {*} bl p1-p4;
  do time=1 to 5;
  nsz=ps{time};
  output;
  end;
run;

proc format;
   value visits 1='Baseline' 2='Week 2' 3='Week 4' 4='Week 6' 
5='Week 8';

run;
proc sgpanel data=epil;
  panelby treat / columns=2 spacing=10;
  vbox nsz / category=time datalabel=id labelfar;
  format time visits.;
run;

The resulting graph is shown in Figure 14.2. There is little evidence for a 
convincing treatment effect from this graph, but there is evidence that some 
of the patients have some very large seizure rates, particularly patient 49. 
This patient, who could have an unreasonably large influence on any analy-
sis of the data, should perhaps be considered for removal prior to any such 
analysis. Here, however, we shall model all the data, including the observa-
tions with very high seizure rates. Readers are encouraged to repeat the 
analysis with at least observation number 49 removed and then compare the 
results with the ones that follow.

It is also useful to look at the means and variances of seizure rates at baseline 
and at the post-treatment times; these can be found using the following code:

proc means data=epil mean var;
  class time;
  var nsz;
run;

The results are given in Table 14.7. The variances are far larger than the cor-
responding means—a point we will return to in the next subsection.

Now we shall move on to fit a number of marginal models to these data.

14.4.1 Marginal Models

Count data are usually modelled as Poisson random variables using a log 
link function and that is what we shall do here. Using all available covari-
ates, the model for the mean response is therefore
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 ⎡⎣ ⎤⎦ = β + β + β + βE Nlog ( ) time log(baseline ) treatmentij j i i0 1 2 3
 (14.7)

where Nij is the observed number of seizures for individual i in time period 
timej and timej = j, j = 1, 2, 3, 4.

We use log(baseline) rather than baseline itself so that the exponentiated 
regression coefficient for the covariate represents the effect of the num-
ber of baseline seizures on subsequent seizure rates. We shall assume an 
exchangeable correlational structure—namely, that
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FIGURE 14.2
Box plots of seizure counts at each time point for each treatment group.

TABLE 14.7

Means and Variances of Seizure Rates at 

Baseline and for the Post-treatment Times

Analysis Variable: nsz

Time N obs. Mean Variance

1 59 7.8050847 45.1488530

2 59 8.9491525 220.0835769

3 59 8.3559322 103.7849211

4 59 8.4406780 200.1817650

5 59 7.3050847 93.1122151
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 Corr(Yij,Yik) = α (14.8)

The descriptive statistics given in Table 14.7 show that the variances are 
substantially greater than the corresponding means. As a result, the Poisson 
assumption that the means and variances are the same is not appropriate for 
these data; this overdispersion will be accounted for by allowing for the scale 
parameter to be estimated and not fixed at one. The model is fitted using the 
following code:

data epil;
  set epil;
  if time>1;
run;

proc genmod data=epil;
class id;
 model nsz= treat age time lbl / d=p;
 repeated subject=id / type=exch modelse;
run;

The results are shown in Table 14.8.
The model-based standard errors and the corresponding empirical val-

ues are very similar. There is no evidence of a treatment effect. Clearly, the 
baseline seizure rate influences the subsequent seizure rates and age also 
has an effect just significant at the 5% level. The exponentiated confidence 
interval limits for the age effect given in Table 14.8 indicate that the seizure 
rate for an increase in age of 1 year is about 1.008 to 1.04 times that of the 
younger age. Here, it might be more useful to give the corresponding confi-
dence interval for a 10-year age difference; this can be calculated simply as 
[exp(10 × 0.02 – 1.96 × 0.008), exp(10 × 0.02 + 1.96 × 0.008)]—that is, [1.04,1.43].

The scale parameter is estimated to be 2.2, indicating the overdispersion, 
relative to that predicted by Poisson variability, in these data.

14.4.2 Generalised Linear Mixed-Effects Models

We begin by fitting a random intercept model, namely,

 ⎡⎣ ⎤⎦ = β + β + β + β +E N u ulog ( | ) time log(baseline ) treatmentij i j i i i0 1 2 3  (14.9)

where ui is a random effect assumed to be normally distributed with zero 

mean and variance σu
2 . To fit the model, we use the following code:

proc glimmix data=epil noclprint method=mspl;
 class id;
 model nsz= treat age time lbl / s ddfm=bw d=p;
 random int / subject=id;
run;
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The results are shown in Table 14.9.
Of most interest here is that the treatment effect is marginally significant 

at the 5% level. An approximate 95% confidence interval for the effect of 
treatment on seizure count is given by [exp(–0.3172 – 2*0.1542), exp(–0.3172 + 
2*0.1542)—that is, [0.53,0.99]. The seizure count with progabide is estimated 
to be between just over 50% and 99% of the seizure rate on the placebo; 
this describes the effect of treatment on a specific patient’s seizure count. 
The treatment effect in the marginal model fitted to these data in the previ-
ous section describes the effect of treatment in the population of patients 
assigned to placebo versus progabide. The random effects in the model are 
estimated to have variance 0.285.

TABLE 14.8

Results from Fitting the Model Specifi ed by Equation (14.8) to the Epilepsy 

Data Using the Dependence Structure in Equation (14.9)

GEE Fit

Criteria
QIC –1195.7698
QICu –1214.9370

Analysis of GEE Parameter Estimates

Empirical Standard Error Estimates

Parameter Estimate
Standard 

Error Z Pr > |Z|
Intercept –0.8166 0.4722 –1.7420 0.1089 –1.73 0.0837
Treat –0.0242 0.1911 –0.3987 0.3503 –0.13 0.8992
Age 0.0200 0.0098 0.0008 0.0392 2.04 0.0412
Time –0.0587 0.0350 –0.1273 0.0099 –1.68 0.0934
Lbl 1.2247 0.1557 0.9196 1.5298 7.87 <.0001

Analysis of GEE Parameter Estimates

Model-Based Standard Error Estimates

Parameter Estimate
Standard 

Error Z Pr > |Z|
Intercept –0.8166 0.5358 –1.8668 0.2336 –1.52 0.1275
Treat –0.0242 0.1553 –0.3286 0.2802 –0.16 0.8761
Age 0.0200 0.0125 –0.0045 0.0445 1.60 0.1098
Time –0.0587 0.0346 –0.1265 0.0091 –1.70 0.0896
Lbl 1.2247 0.1055 1.0178 1.4316 11.60 <.0001
Scale 2.1959
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Now we will fit a model that includes random effects for intercept and 
slope:

 
log ( | ) (E N uij i ju⎡⎣ ⎤⎦ = + +β β β0 1 2 2+ )time log(baselline

treatment

i

i iu

)

+ +β3 1

 (14.10)

where u′ = [ui1,ui2] and the random effects are assumed to have a bivariate 
normal distribution with zero mean and a covariance matrix ∑u given by

 ∑ =
⎛
⎝⎜

⎞
⎠⎟

u

σ σ
σ σ

u u u

u u u

1 1 2

1 2 2

 (14.11)

Here, the model is a log-linear regression model with randomly varying 
intercept and slopes used to describe the heterogeneity among individuals 
in both their baseline seizure level and in the expected number of seizures 
over time.

When initially fitting the previous random intercept model, a procedure 
called residual pseudolikelihood was used; this is the default estimation pro-
cedure in SAS. But using this method to fit the more complex model with 

TABLE 14.9

Results from Fitting Model in Equation (14.8) to Epilepsy Data

Fit Statistics
–2 Log Pseudo-Likelihood 568.24
Generalised Chi-Square 411.39
Generalised Chi-Square/DF 1.74

Covariance Parameter Estimates

Cov Parm Subject Estimate
Standard 

Error
Intercept id 0.2606 0.05921

Solutions for Fixed Effects

Effect Estimate
Standard 

Error DF t Value Pr > |t|
Intercept –0.06650 0.4365 55 –0.15 0.8795
treat –0.3135 0.1485 55 –2.11 0.0393
age 0.01063 0.01202 55 0.88 0.3804
time –0.05872 0.02028 176 –2.90 0.0043
lbl 1.0104 0.09998 55 10.11 <.0001
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random intercepts and slopes resulted in problems of convergence, so an 
alternative estimation procedure, maximum pseudolikelihood, was used. The 
required SAS code to fit the new model becomes

proc glimmix data=epil noclprint method=mspl;
 class id;
 model nsz= treat age time lbl / s ddfm=bw d=p;
 random int time / subject=id type=un;
run;

The results are shown in Table 14.10. The parameter estimates in this table 
are very similar to those in Table 14.9. If we compare the log likelihood val-
ues for the two models, we see that the decrease when fitting the random 
intercept and random slope effects is 20.38 for the addition of two param-
eters: the variance of the slope random effect and the covariance of the two 
random effects. Testing the decrease as a chi-squared variable with two 
degrees of freedom suggests that the more complicated model gives a far 
better fit here.

TABLE 14.10

Results from Fitting Model Specifi ed in Equations (14.10) and 

(14.11) to Epilepsy Data

Fit Statistics
–2 Log Pseudo-Likelihood 547.86
Generalised Chi-Square 360.04
Generalised Chi-Square/DF 1.53

Covariance Parameter Estimates

Cov 
Parm Subject Estimate

Standard 
Error

UN(1,1) Id 0.5322 0.1755
UN(2,1) Id –0.07580 0.03635
UN(2,2) Id 0.02088 0.008960

Solutions for Fixed Effects

Effect Estimate
Standard 

Error DF t Value Pr > |t|
Intercept –0.07339 0.4425 55 –0.17 0.8689
treat –0.3095 0.1478 55 –2.09 0.0409
age 0.009909 0.01197 55 0.83 0.4113
time –0.05130 0.03106 176 –1.65 0.1004
lbl 1.0077 0.09952 55 10.13 <.0001
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The random effects for the intercept have estimated variance of 0.53 and, 
for the slope random effects, the corresponding value is 0.021; the covariance 
of the two types of random effects is –0.076.

14.5 Summary

In this chapter, the generalised linear model has been extended to deal with 
longitudinal data in two different ways: marginal models and conditional 
or generalised linear mixed-effects models. Marginal models are used to 
make inferences about population means on some transformed scale—for 
example, the logit or log scale—by modelling the mean conditional on the 
covariates but not on unobserved random effects. The model for the mean 
and the model to account for lack of pairwise independence in the repeated 
measurements are specified separately.

In generalised linear mixed-effects models, by contrast, random effects are 
used to model heterogeneity in some of the regression coefficients (e.g., slopes 
and intercepts); however, conditional on these random effects, the repeated 
measurements for an individual are independent. The regression coefficients 
in these models have subject-specific effects that describe changes in an indi-
vidual’s mean response and how these changes are related to covariates. 
Conditional models are of most use when the aim of the investigator is to 
make inferences about individuals rather than the study population.

It should perhaps be said that fitting generalised linear mixed-effects mod-
els in SAS requires some care as convergence and other problems can occur. 
More details are given in Fitzmaurice et al. (2004), who also give an excellent 
and more detailed account of marginal and conditional models for longi-
tudinal data than that given in this chapter, which is of necessity relatively 
brief.
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15
Survival Analysis

15.1 Introduction

In many medical studies, the main outcome variable is the time to the occur-
rence of a particular event. In a randomised controlled trial of treatment for 
cancer, for example, surgery, radiation, and chemotherapy might be com-
pared with respect to time from randomisation and the start of therapy until 
death. In this case, the event of interest is the death of a patient, but in other 
situations, it might be remission from a disease, relief from symptoms, or the 
recurrence of a particular condition. Such observations are generally referred 
to by the generic term survival data, even when the endpoint or event being 
considered is not death but something else. Such data generally  require 
 special techniques for their analysis for two main reasons:

Survival data are generally not symmetrically distributed; such data 
are often positively skewed, with a few individuals surviving a very 
long time compared to the majority. Consequently, basing the analy-
sis of survival data on, say, the assumption that they have a normal 
distribution would not be sensible.

At the completion of the study, some individuals may not have 
reached the endpoint of interest (death, relapse, etc.) so, for these 
individuals, their exact survival times will not be known, although 
they will be greater than the times the individuals have been in 
the study. The survival times of these individuals are said to be 
censored. More precisely, the survival times are right censored: The 
right-censored survival time is less than the actual, but unknown, 
survival time. (Other forms of censoring are possible—for example, 
left censoring and interval censoring; see Collett 2003b. However, we 
shall not be concerned with either of these in this chapter.)

An important assumption made by the methods for the analysis of survival 
times to be described later in this chapter is that the actual survival time of an 
individual, t, is independent of any mechanism that causes that individual’s 
survival time to be censored at time c, where c < t. For example, in a treatment 
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trial, where the survival time of an individual may be censored because treat-
ment is withdrawn as a result of deterioration in the individual’s health, actual 
survival time is not independent of the mechanism that has caused the cen-
soring; here we have what is known as informative censoring. This type of cen-
soring makes the survival analysis methods described later largely invalid.

15.2 Survivor Function and the Hazard Function

The first step in the analysis of a set of survival times is the calculation of numer-
ical summaries and the construction of hopefully informative graphics. Central 
to this first step are two functions used to describe the distribution of survival 
times—namely, the survivor (or survival) function and the hazard function.

15.2.1 Survivor Function

The survivor function, S(t), is defined as the probability that the survival 
time, T, is greater than or equal to t—that is,

 S(t) = Pr(T > t) (15.1)

We will first examine what the survivor function looks like for two distri-
butions often used to model survival time data: the exponential distribution 
and the Weibull distribution. First, the exponential with probability density 
function is

 f(t) = λe−λt, 0 ≤ t < ∞ (15.2)

for which the survivor function is given by

 ∫= λ =−λ
∞

−λS t e du e( ) u

t

t  (15.3)

Plots of the survivor functions of the exponential distribution for different 
values of λ are shown in Figure 15.1.

The Weibull probability density function is given by

 f(t) = λγt γ−1exp( −λtγ), 0 ≤ t < ∞ (15.4)

The survivor function of the Weibull is given by

 ∫= λγ −λ = −λγ− γ γ
∞

S t u u du t( ) exp( ) exp( )
t

1
 (15.5)
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Plots of the survivor function of the Weibull distribution for different val-
ues of the scale parameter, λ, and the shape parameter, γ, are shown in 
Figure 15.2.

When we have a sample of survival times, a plot of an estimate of S(t) 
against t is often a useful way of describing the survival experience of the 
individuals in the sample. When there are no censored observations in a 
sample of n survival times, a nonparametric estimate (i.e., does not require spe-
cific assumptions about the distribution of the survival times) of the survivor 
function is given by

 ( ) = ≥
S t

tˆ number of individuals with survival times

number of individuals in the data set
 (15.6)

with the convention that =S tˆ( ) 1 for t less than the smallest observed sur-
vival time. Because this is simply a proportion, confidence intervals can be 
obtained for each time t by using the variance estimate

 ( )( ) ( )−S t S t nˆ 1 ˆ /  (15.7)
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FIGURE 15.1
Survival functions for a number of exponential distributions.
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The estimated survivor function, S tˆ( ), is assumed to be constant between 

two adjacent death times, with the consequence that a plot of t against S tˆ( ) is a 
step function which decreases immediately after each observed survival time.

This simple method cannot be used to estimate the survivor function 
when the data contain censored observations, and such observations are 
the quintessential feature of survival data. In the presence of censoring, the 
survivor function is generally estimated using the Kaplan–Meier estimator 
(also known as the product-limit estimator), which again is nonparametric. 
This estimator is based on the calculation and use of conditional probabili-
ties and incorporates information from all the observations available, both 
censored and uncensored, by considering survival to any point in time as a 
series of ‘steps’, which are intervals defined by a rank ordering of the survival 
times. Therefore, we denote by t1 < t2... the times when ‘deaths’ occurred and 
by dj the number of individuals who die at time tj. Then, the Kaplan–Meier 
 estimator for the survivor function is given by

 ∏= −
⎛

⎝⎜
⎞

⎠⎟≤

S t
d
r

ˆ( ) 1
j

jt tj

 (15.8)
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where rj is the number of individuals at risk (i.e., alive and not censored) just 
prior to time tj. If there are no censored observations, the estimator in (15.8) 
reduces to that in (15.6). The estimated variance of the Kaplan–Meier estima-
tor is given by

 ∑⎡
⎣

⎤
⎦ = −

≤

V S t S t
d

r r d
ˆ( ) [ ˆ( )]

( )

j

j j jt t

2

j

 (15.9)

When there is no censoring, this reduces to the variance estimator given 
in (15.7). A 100(1 – α)% confidence interval for S(t) for a given value of t is 

given by the interval ± ⎡
⎣

⎤
⎦αS t z V S tˆ( ) ˆ( )/2  where zα/2 is the upper α/2 value of 

the standard normal distribution. These intervals can be superimposed on a 
graph of the estimated survivor function, as we shall see later.

Collett (2003b) points out a potential problem with this procedure that 
arises from the fact that the confidence intervals are symmetric and, when 
the survivor function is close to zero or unity, symmetric intervals are inap-
propriate because they can lead to confidence intervals for the survivor func-
tion that lie outside the interval (0,1). Collett offers as a pragmatic solution 
replacing any limit that is greater than unity by 1.0 and any limit that is less 
than zero by 0.0. He also describes some alternative approaches to construct-
ing confidence intervals for the survivor function.

To illustrate the use of the Kaplan–Meier estimator, we shall use the small 
data set shown in Table  15.1, which gives survival times in weeks for 20 
patients with stage 3 and 4 melanoma. We can find and plot the estimated 
survivor function and its 95% confidence interval for these data using the 
following SAS code:

data melanoma34;
 infile 'c:\AMSUS\data\melanoma34.dat';
 input weeks status$;
 if status='alive' then censor=1;
 else censor=0;
run;

ods graphics on;
proc lifetest data=melanoma34 plots=(survival(cl));
 time weeks*censor(1);
run;

Proc lifetest is used to estimate and plot the survivor function as well 
as to test differences in survival between groups. A range of plots are avail-
able with the plots= option; here, we request the survivor function plot 
with confidence limits. The time statement is used to specify survival time 
and censoring. The variable containing the survival times comes first and 
then an asterisk and the censoring variable with a value, or list of values, 
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indicating censored observations in parentheses. The censoring variable 
needs to be numeric, so a new variable is computed for the purpose in the 
preceding data step. The resulting plot is shown in Figure 15.3.

As the distribution of survival times tends to be skewed positively, the 
median is the preferred summary measure of the location of the distribu-
tion. Once the survivor function has been estimated, it is simple to find the 
required estimate of the median survival time. The median survival time is 
the time beyond which 50% of the individuals in the population of interest 
are expected to survive and is given by the value t50% for which S(t50%) = 0.5. 
As the estimated survivor function is a step function, it will generally not 
be possible to find an estimated survival time that makes the estimated sur-
vivor function exactly equal to 0.5. Instead, the estimated median survival 
time, t̂50%, is defined to be the smallest observed survival time for which 
the estimated survivor function is less than 0.5. Confidence intervals for 
the median survival time can be found using the variance estimator given 
in (15.5).

On occasion, the estimated survivor function is greater than 0.5 for all val-
ues of t; in these cases, the data can be summarised by estimated survival 

TABLE 15.1

Survival Times for Patients with Stage 3 

and Stage 4 Melanoma and Status of the 

Patient at the End of the Study

Survival Time (weeks) Status

12.8 Dead

15.6 Dead

24.0 Alive

26.4 Dead

29.2 Dead

30.8 Alive

39.2 Dead

42.0 Dead

58.4 Alive

72.0 Alive

77.2 Dead

82.4 Dead

87.2 Alive

94.4 Alive

97.2 Alive

106.0 Alive

114.8 Alive

117.2 Alive

140.0 Alive

168.0 Alive
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probabilities at particular time points. For the data in Table 15.1, we cannot 
estimate the median survival time because more than half the observations 
are censored.

15.2.2 Hazard Function

In the analysis of survival data, it is often of interest to assess which periods 
have high or low chances of death (or whatever the event of interest may 
be) among those still active at the time. A suitable approach to characterise 
such risks is the hazard function, h(t). This is defined as the probability that 
an individual experiences the event in a small time interval s, given that the 
individual has survived up to the beginning of the interval, when the size of 
the time interval approaches zero; mathematically this is written as

 
)()( =

≤ ≤ + ≥
→

h t
t T t s T t

s
lim

Pr |

s 0
 (15.10)

where T is the individual’s survival time. The conditioning feature of this 
definition is very important. For example, the probability of dying at age 100 
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FIGURE 15.3
Estimated survivor function and 95% confidence limits for the melanoma survival times in 

Table 15.1.
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is very small because most people die before that age; in contrast, the prob-
ability of a person who has reached age 100 dying at that age is much greater.

The hazard function is a measure of how likely an individual is to experi-
ence an event as a function of the age of the individual; it is often known as 
the instantaneous death rate. Collett (2004) shows that the hazard function can 
be given in terms of a probability density function and the corresponding 
survivor function as

 =h t
f t
S t

( )
( )

( )
 (15.11)

It follows from (15.11) that

 { }= −h t
d
dt

S t( ) log ( )  (15.12)

so

 S(t) = exp{−H(t)} (15.13)

where

 ∫=H t h u du( ) ( )

t

0

 (15.14)

The function H(t) is called the integrated or cumulative hazard.
Applying (15.11) first to the exponential distribution, we obtain its hazard 

function:

 = λ = λ
−λ

−λh t
e

e
( )

t

t  (15.15)

Here, the hazard function is a constant; the hazard of death at any time after 
the time origin of the study remains the same no matter how much time has 
elapsed.

Next, we can apply (15.11) to the Weibull distribution to obtain its hazard 
function:

 =
λγ −λ

−λ
= λγ

γ− γ

γ
γ −h t

t t
t

t( )
exp( )

exp( )

1
1  (15.16)

By plotting this hazard function for different values of λ and γ (see 
Figure  15.4), we see that the Weibull distribution can accommodate 
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increasing, decreasing, and constant hazard functions. In practice, con-
stant hazard  functions are uncommon, making the exponential distribu-
tion less useful than the Weibull distribution for modelling survival times. 
However, even the Weibull distribution may not be flexible enough for 
many examples of survival data, as we can see from the hazard function for 
death in human beings given in Figure 15.5, which has a ‘bathtub’ shape: 
It is relatively high immediately after birth, declines rapidly in the early 
years, and then remains relatively constant before beginning its inexorable 
rise in the later years. Why we should be concerned about the shape of 
hazard functions when dealing with survival data will become clear in the 
next chapter.

The hazard function can be estimated from sample data as the proportion 
of individuals experiencing the event of interest in an interval per unit time, 
given that they have survived to the beginning of the interval—that is,

=h t
t

t
ˆ( )

number of individuals 'dying' in the interval beginning at time

(number of individuals alive at time )(interval width)
 (15.17)

The sampling variation in the estimate of the hazard function within each 
interval is usually considerable and a ‘smoothed’ version is produced by 
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default when ODS graphics are on so that the following code produces the 
result shown in Figure 15.6:

ods graphics on;
proc lifetest data=melanoma34 plots=(h(cl));
 time weeks*censor(1);
run;
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Estimated hazard function for data in Table 15.1.
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Plots of the cumulative hazard function, obtained by summing the inter-
val estimates over time, are often easier to interpret. The result is shown in 
Figure 15.7. For the data in Table 15.1, the cumulative hazard function can 
be plotted as follows:

proc lifetest data=melanoma34 outsurv=ltout method=lt 
 intervals=1 to 170 noprint;
 time weeks*censor(1);
run;
data ltout;
 set ltout;
 cumhaz+hazard;
run;
proc sgplot data=ltout;
  series y=cumhaz x=weeks;
run;

Hazard functions become of more importance when we come to discuss 
regression models for survival data in the next chapter.
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Estimated cumulative hazard function for data in Table 15.1.
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15.3 Comparing Groups of Survival Times

Although the survivor function of a single group of patients is a useful 
description of their survival times, it is often the comparison of the sur-
vivor functions of different groups of patients that is of greater interest. 
For example, a clinician may wish to compare the survival times of males 
and females suffering from some particular condition. Again, a researcher 
may need to compare the retinopathy-free time of two groups of diabetic 
patients, and, in a clinical trial, the survival times of patients given an 
active treatment may need to be compared with those of patients receiving 
a placebo.

A very useful initial step in comparing the survival times of two groups 
of individuals is to plot the two estimated survivor functions on the same 
axes—perhaps along with their respective confidence intervals, although 
this sometimes makes the plot less rather than more useful. We will use the 
data in Table 15.2 to illustrate this type of plot. These data are the results of 
an investigation reported in Leathem and Brooks (1987) designed to evaluate 
a histochemical marker which discriminates between primary breast cancer 
that has metastasized and that which has not. The marker was a lectin from 
the albumin gland of the Roman snail, Helix pomatia, known as Helix pomatia 
agglutinin, or HPA. The marker binds to those breast cancer cells associ-
ated with metastasis to local lymph nodes and the HPA stained cells can be 
identified by microscopic examination. What the investigator wants to know 
from the data in Table 15.2 is whether or not there is any compelling evidence 

TABLE 15.2

Survival Times (Weeks) of Women Who Received 

Surgical Treatment for Breast Cancer Grouped by 

the Result of HPA Staining of Their Tumours

Negative Staining Positive Staining

23 5 48 143

47 8 50 154a

69 10 59 162a

70a 13 68 188a

100a 18 71 212a

101a 24 76a

148 26 105a

181 26 107a

198a 31 109a

208a 35 113

212a 40 116a

224a 41 118

a Observations are censored.



411Survival Analysis

that women with negative HPA staining tend to live longer after surgery 
than those with positive staining.

We can construct and plot the survivor functions of the women with nega-
tive HPA staining and those with positive HPA staining and the appropriate 
confidence intervals using the following SAS code:

data HPA;
 infile 'c:\AMSUS\data\hpa.dat';
 input staining weeks censor;
run;

ods graphics on;
proc lifetest data=HPA plots=(s(cl));
 time weeks*censor(1);
 strata staining;
run;

The resulting plot is shown in Figure 15.8.
Plotting the survivor functions of the two groups of women gives an infor-

mal (but useful) comparison of the survival experiences of the two groups, 
and the two survivor functions plotted in Figure 15.8 give a strong indication 
that women with negative staining survive longer than those with positive 
staining. But in most cases, this informal appraisal of the survivor functions 
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would need to be followed up by a more formal test of the null hypothesis 
that the two population survivor functions are the same—that is, a test of

 H0 : S1 = S2

A variety of tests have been suggested to assess this hypothesis, but here we 
shall describe only one: the log-rank test.

15.3.1 Log-Rank Test

We begin by supposing that there are r distinct death times in the two groups 
and the ordered death times are represented as t(1) < t(2) < ⋯ < t(r). A 2 × 2 table 
is constructed for each of these r death times giving the number of individu-
als dying and the number remaining alive and at risk. The resulting table for 
the jth death time is shown in Table 15.3.

Unless two or more individuals have the same recorded death time, the 
values of d1j and d2j will be either zero or unity. Assuming that there is no dif-
ference in the survival experience of the two groups or, in other words, that 
the probability of death at time t(j) is the same in the two groups, the expected 
number of individuals who die at time t(j) can be calculated from the appro-
priate row and column marginal totals as when testing for independence in 
a 2 × 2 table. That is, the expected number of deaths in group 1 is e2j = n2jdj/nj 

and, in group 2, is e1j = n1jdj/nj. The observed and expected number of deaths 
for each group, at each time point, are then summed to give values O1, O2, 
E1, and E2, which form the basis of the test for assessing the null hypothesis 
that the survivor functions of the two groups are the same; the test statistic is

 = − + −
X

O E
E

O E
E

( ) ( )2 1 1
2

1

2 2
2

2

 (15.18)

If the null hypothesis is true, this has a chi-squared distribution with a single 
degree of freedom.

Alternatives to the log-rank test include the Wilcoxon test and the like-
lihood ratio test (described in Collett 2003b). All three are produced by 
default when the strata statement is used and thus result from the preceding 
code used to generate the survival plot. The various test statistics and their 
p- values are shown in Table 15.4.

TABLE 15.3

Number of Deaths and Number Surviving at the jth Death Time

Group
Number of 

Deaths at t(j)

Number Surviving 
Beyond t(j)

Number at Risk 
Just Before t(j)

1 d1j n1j – d1j ni1

2 d2j n2j – d2j ni2

Total dj nj – dj nj
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In any statistical analysis in which more than one significance test is 
available, we need to make a decision about which test to use and to report. 
In the analysis of the HPA breast cancer data, there is not really a great prob-
lem because all the tests give rather similar results, although the likelihood 
ratio test is just significant at the 5% level whereas the other two tests are 
not. A reasonable conclusion here is that there is no convincing evidence of a 
 difference in the survival experience of the two groups.

But for other data sets, the tests might give more conflicting results and we 
then have to decide between the tests in some way. It is known that the log-
rank test is the most suitable test when the alternative to the equality of sur-
vivor functions null hypothesis is that the hazard of death at any given time 
for an individual in one group is proportional to the hazard at that time for 
a similar individual in the other group. This is the assumption of proportional 
hazards, which is the basis of a number of methods of analysing survival data 
and about which we will have much more to say in the next chapter. If the 
hazard functions are proportional, it implies that the survivor functions of 
the two groups do not cross one another (see Collett 2003b for details).

Consequently, an informal assessment of whether or not the data satisfy 
the proportional hazards assumption can be made from a plot of the two 
estimated survivor functions; if these do not cross, then the assumption is 
likely to be reasonable, making the log-rank test the test of choice. In the case 
of the breast cancer survivor function in Figure 15.8, we see that the one for 
the negatively stained women always lies above the one for the positively 
stained women. This suggests that proportional hazards hold and that we 
should therefore use the results from the log-rank test when assessing the 
null hypothesis that the survivor functions of the two groups are the same.

It should be noted that when the survivor functions of two groups cross 
(e.g., when they have the same median and cross each other at that value), 
but one group has more favourable survival experience at early times and 
the other group at later times, then none of the tests are of much use because 
they are unable to detect this type of difference.

The log-rank tests (and the other tests mentioned before) can be extended 
to deal with testing the equality of the survivor functions of more than 
two groups. Details are given in Collett (2003b). Here, we will simply give 

TABLE 15.4

Tests for the Equality of the Survival 

Function of the Two Groups in Table 15.2

Test of Equality over Strata

Test Chi-Square DF
Pr > 

Chi-Square
Log-Rank 2.9722 1 0.0847
Wilcoxon 3.5737 1 0.0587
–2Log(LR) 3.9361 1 0.0473
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an example using the data shown in Table  15.5; these data are initial 
 remission times in days for individuals suffering from leukaemia who had 
been randomly allocated to three different treatments. We wish to test the 
hypothesis that the survivor functions of the three treatments are the same.

With a small data set like that in Table 15.5, it would be easy to reformat 
with a text editor (e.g., the SAS editor) so that it can be read relatively simply. 
Here, however, we read the data directly as it appears in Table 15.5 for illus-
trative purposes:

data leukemia;
 infile cards dsd missover;
 treatment=_n_;
 do until(days=.);
 input number$ @;
 censor=0;
 if indexc(number,'+') then censor=1;
 number=compress(number,'+');
 days=input(number,3.);
 if days~=. then output;
 end;
cards;
4, 5, 9, 10, ... 74, 100, 139, 200+, 258+, 269+
8, 10, 10, ... 195, 220, 161+, 199+, 217+, 245
8, 10, 11, ... 12+, 159+, 190+, 196+, 197+, 205+, 219+
;

proc lifetest data=leukemia plots=(s);
 time days*censor(1);
 strata treatment / test=(all);
run;

Using proc lifetest to compare the survival functions of different 
groups is achieved by including the strata statement and specifying the 
variable(s) that define the subgroups on it. The test=(all) option gives all 
the available nonparametric tests. The results are shown in Table 15.6.

The conclusions from all the tests are the same; there is no evidence of 
a difference in the survivor functions of the three treatments. With such 
small sample sizes, the power of all the tests will, of course, be rather low.

TABLE 15.5

Initial Remission Times (Days) for Leukaemia Patients

Treatment 1: 

4, 5, 9, 10, 11, 12, 13, 23, 28, 28, 28, 29, 31, 32, 37, 41, 41, 57, 62, 74, 100, 139, 200+, 258+, 269+

Treatment 2: 

8, 10, 10, 12, 14, 20, 48, 70, 75, 99, 103, 162, 169, 195, 220, 161+, 199+, 217+, 245

Treatment 3: 

8, 10, 11, 23, 25, 25, 28, 28, 31, 31, 40, 48, 89, 124, 143, 12+, 159+, 190+, 196+, 197+, 205+, 219+

Note: + indicates right censoring.
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15.3.2 Stratified Tests

In a multicentre clinical trial comparing survival times for two treatments for 
cancer, individual log-rank tests can be calculated for the data from each cen-
tre. However, a more sensitive test for a treatment difference might be possible 
if the information from each centre could be combined in some way. Such data 
are said to be stratified by clinic. Other examples of stratification might involve 
age group, sex, etc.; an example in a different context is given in Chapter 4.

A stratified version of the log-rank test can be applied to such data; the 
relevant test statistic is
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where r is the number of groups that are being compared and l is the num-
ber of strata. Under the null hypothesis that the survival experience of the r 
groups is the same, the test statistic has a chi-squared distribution with r – 1 
degrees of freedom.

An example of a stratified set of survival data is shown in Table 15.7 (the 
data are given in Lee, 1992, and Collett 2003b). The data arise from a study 
in which two immunotherapy treatments were compared for their ability 
to prolong the life of patients suffering from melanoma. For each patient, 
the tumour was surgically removed before allocation to Bacillus Calmette–
Guerin (BCG) vaccine or to a vaccine based on the bacterium Corynebacterium 
parvum (C. parvum). The survival times of the patients (in months) in each 
treatment group were also classified according to the age of the patient 
(grouped into 21–40, 41–60, and 61–).

TABLE 15.6

Tests of the Equality of the Survival Functions 

of the Three Groups in Table 15.5

Test of Equality over Strata

Test Chi-Square DF
Pr >

Chi-Square
Log-Rank 2.2797 2 0.3199
Wilcoxon 3.0028 2 0.2228
Tarone 3.1466 2 0.2074
Peto 2.8168 2 0.2445

2.8666 2 0.2385
Fleming(1) 2.7208 2 0.2566
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To apply the relevant test, we can use the following SAS code:

data melanoma;
 infile 'c:\AMSUS\data\melanoma.dat';
 input agegrp treatment censor survtime;
run;

proc lifetest data=melanoma plots=(s);
  time survtime*censor(1);
  strata treatment agegrp;
run;

The result is shown in Table 15.8. The three tests give quite different p-values 
in this case, but all tests indicate that there is no difference in the survival 
experience of the two treatment groups.

TABLE 15.7

Survival Times of Melanoma Patients in Two Treatment 

Groups Stratified by Age Group

21–40 41–60 61–

BCG C. parvum BCG C. parvum BCG C. parvum

19 27a 34a 8 10 25a

24a 21a 4 11a 5 8

8 18a 17a 23a 11a

17a 16a 12a

17a 7a 15a

34a 12a 8a

24 8a

8

8a

Source: Lee, E. T. 1992. Statistical Methods for Survival Data 
Analysis. New York: Wiley.

a Observations are censored.

TABLE 15.8

Tests of the Equality of the Survival Experience 

of the Two Treatment Groups in Table 15.7

Test of Equality over Strata

Test Chi-Square DF
Pr > 

Chi-Square
Log-Rank 9.5298 5 0.0897
Wilcoxon 8.3444 5 0.1383
–2Log(LR) 4.8785 5 0.4309
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15.4 Sample Size Estimation

As with the other types of studies described in earlier chapters, an impor-
tant part of a study involving survival data is the determination of the 
sample size needed to achieve a particular power. Sample sizes in survival 
analysis can be calculated in a variety of ways (see, for example, Collett 
2003b). Here, we shall illustrate a method due to Lakatos (1988), which can 
be applied to find the required sample sizes for a given power when apply-
ing the log-rank test; survival curves that would be expected under very 
general conditions are modelled by using a stochastic process. The asymp-
totic expectation and variance of the log-rank statistic applied to these 
curves are then used to calculate sample size (for full technical details, see 
Lakatos’s original paper).

We can assume that the study of interest is a comparison of two treat-
ments: one the standard and the other one new. (Schoenfeld 1983 shows 
that the expression for calculating the required number of deaths is the 
same whether or not account is taken of covariates other than treatment 
group.)

To calculate the actual number of individuals needed in the study, we first 
need to specify the length of the accrual period during which individuals are 
recruited into the study and the length of the follow-up period after recruit-
ment is complete. Thereafter, we can specify the expected survival of the 
two groups in a number of ways. Perhaps the simplest of these is to give the 
median survival times, as follows:

proc power;
 twosamplesurvival
 power=.8
 accrualtime = 12
 followuptime = 24
 groupmedsurvtimes=15 | 20 22 24
 npergroup = .;
run;

The default test for twosamplesurvival is the log-rank test. The 
median survival times for the two groups are separated by a bar (|). In this 
example, we expect that the median survival for the control group would 
be 15 months and wish to calculate sample sizes needed if the treatment 
group median survival time is 20, 22, or 24 months. The results are shown 
in Table 15.9. The example demonstrates that relatively large sample sizes 
are needed to detect even quite substantial differences in median survival 
times.
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It can be informative to display the relationship between an effect size and 
sample size in the form of a plot. The following example shows the sample 
sizes corresponding to a range of hazard ratios:

proc power plotonly;
  twosamplesurvival
      power=.8
      accrualtime = 12
      followuptime = 24
      curve('md12')=12:.5
      curve('md15')=15:.5
      curve('md18')=18:.5
      refsurv='md12' 'md15' 'md18'
      hazardratio=.4 to .8 by .1
      npergroup = .;
  plot x=effect;
run;

The groupmedsurvtimes option cannot be used to specify the median 
survival time of just one of the two groups. Instead, this is done with one 

TABLE 15.9

An Example of Sample Size Estimation in Survival Analysis

Log-Rank Test for Two Survival Curves

Fixed Scenario Elements
Method Lakatos normal approximation
Form of Survival Curve 1 Exponential
Form of Survival Curve 2 Exponential
Accrual Time 12
Follow-up Time 24
Group 1 Median Survival Time 15
Nominal Power 0.8
Number of Sides 2
Number of Time Sub-intervals 12
Group 1 Loss Exponential Hazard 0
Group 2 Loss Exponential Hazard 0
Alpha 0.05

Computed N per group

Index

Med
Surv
Time Actual

Power
N Per

Group
1 20 0.801 273
2 22 0.800 158
3 24 0.802 108
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or more curve options and a refsurv option. The curve option defines a 
curve in terms of pairs of points separated by a colon. The first value is the 
survival time and the second the proportion surviving to that point. For an 
exponential survival curve, only one point is required. Thus, the three curves 
defined above correspond to median survival times of 12, 15, and 18 months. 
A range of hazard ratios is specified and a plot statement is included. The 
resulting plot is shown in Figure 15.9.

15.5 Summary

Survival analysis is the study of times to some terminating event, death, 
relapse, etc. A distinguishing feature of survival data is the presence of cen-
sored observations for which the only information on the time to the event 
of interest is that it is greater than some value. In this chapter, methods 
for describing a sample of survival times have been described along with 
methods of comparing survival times of a number of distinct groups—for 
example, males and females. In the next chapter, we shall consider models 
that allow the dependence of survival times on a number of explanatory 
variables (covariates) to be investigated.
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16
Cox’s Proportional Hazards Models 
for Survival Data

16.1 Introduction

The methods described in the previous chapter are useful in the analysis of 
a single sample of survival times or when there are survival times for the 
categories of a categorical variable that the investigator wishes to compare. 
But in most survival investigations in medicine, there will be many other 
explanatory variables (covariates) that have been recorded and whose effects 
on survival time will be of interest. We need a suitable model that links the 
survival times to the covariates, but because of the special features of such 
data, something different from the multiple regression model described in 
Chapter 8 is necessary. In this chapter, we describe the most widely used 
approach to modelling survival data: Cox’s proportional hazards models.

16.2 Modelling the Hazard Function: Cox’s Regression

In considering models for survival data, the first question that needs to be 
addressed and satisfactorily answered is ‘What are we going to model?’ More 
specifically, what is going to play the role of the systematic component in a 
regression model? According to Hosmer and Lemeshow (2000), it is the inher-
ent aging process that is present when individuals are followed over time that 
distinguishes survival times from other response (dependent) variables, and 
it is the hazard function that most directly captures the essence of this aging 
process. Consequently, it is natural to consider regression models for the haz-
ard function in the analysis of survival time data. And the most common of 
these models are proportional hazards models, a term encountered briefly 
in the previous chapter but one which we shall now consider in more detail.

To begin, we will suppose that survival data have been collected on n 
individuals in the context of a clinical trial and that there is only a single 
covariate of interest and that is treatment group coded 0 for the standard 
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treatment group and 1 for the new treatment group. Suppose that h0(t) and 
h1(t) are the corresponding hazard functions for the two groups; then, the 
proportional hazards assumption implies that

 h t h t( ) ( )1 0= ψ  (16.1)

where ψ is a constant giving the ratio of the hazards of death at any time 
for an individual on the new treatment relative to one on the standard treat-
ment; ψ is known as the relative hazard or the hazard ratio. If ψ < 1, the haz-
ard of death at t is smaller for an individual on the new treatment, relative 
to an individual on the standard treatment; if ψ > 1, the reverse is the case. 
Taking logarithms of both sides of (16.1) produces the following equation:

 h t h tlog[ ( )] log( ) log[ ( )]1 0= ψ +  (16.2)

The proportional hazards function means that if graphs were drawn 
of  log[h1(t)] and log[h0(t)], then regardless of how complex (or, indeed, how 
simple) the baseline hazard function was, the vertical distance between the 
two curves at any point in time will be log(ψ). An implication of the propor-
tional hazards assumption is that the population survivor functions for the two 
groups do not cross as mentioned in the previous chapter. (Proportionality of 
hazards is an assumption that needs to be checked; suitable methods will be 
described later.)

As ψ cannot be negative, we can write it as exp(β), where the parameter β 
is the log of the hazard ratio. Note that with the coding used for treatment 
group, positive values of β are obtained when ψ is greater than one—that 
is, when the new treatment is inferior to the standard. By introducing an 
explanatory variable, xi, for treatment group for the ith individual and with 
values one and zero for new and standard treatment, respectively, the hazard 
function for this individual, hi(t), can be written as

 h t e h t( ) ( )i
x

0
i= β  (16.3)

This model can be extended to the situation where there are p covariates mea-
sured at the start of the study (we shall deal with so-called time-varying covari-
ates later), which for the ith individual take the values ′ =x i i i ipx x x[ , , , ]1 2 … ; these 
covariates are allowed to be a mixture of continuous and binary variables (and 
also categorical variables with more than two categories if suitably coded as a 
series of dummy variables). The model is now

 h t e h ti
x x xi i p ip( ) ( )= + + +⎡⎣ ⎤⎦β β β1 1 2 2

0
…

 (16.4)

In this model, the regression coefficient, exp(βj), gives the relative hazard 
for two individuals differing by one unit on the jth covariate, with all other 
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covariates being the same for the two individuals. Now, h0(t) is known as the 
baseline hazard function and is the hazard function for an individual with 
zero values for all covariates or, if the covariates are reexpressed as differ-
ences from their mean values, the hazard function of an individual with the 
mean value of each covariate. The model in (16.4) can be written in the form of

 log
( )

( )

h t
h t

x x xi
i i p ip

0
1 1 2 2

⎡
⎣
⎢

⎤
⎦
⎥ = + + +β β β…  (16.5)

Thus, the proportional hazards function may be regarded as a linear model 
for the logarithm of the hazard ratio.

Before the model can be of any use in the analysis of survival data, we will, 
of course, need to estimate its parameters, β′ = [β1, β2, … , βp]. If we are willing 
to assume that the observed survival times are taken from a population with 
a particular distribution, then we can use maximum likelihood estimation. 
For example, if we assume that the survival times arise from a Weibull dis-
tribution for which the hazard function is λγtγ–1 (see previous chapter), then 
the hazard function for the ith individual will be

 h t e ti
x x xi i p ip( ) = + + +⎡⎣ ⎤⎦ −β β β γλγ1 1 2 2 1…

 (16.6)

Maximum likelihood estimation can now be applied to find estimates of 
the regression coefficients, β, and the parameters, λ and γ; see, for example, 
Collett (2003b). But there are two problems with this approach:

Small or even moderate-sized samples of survival times often give 
little evidence about the form that it is reasonable to assume for their 
distribution.

Hazard functions met in practice are unlikely always to be of the 
simple increasing or decreasing types implied by the Weibull 
assumption. They may often be more complex (see, for example, the 
‘bathtub’ hazard function in the previous chapter).

For these reasons, Sir David Cox in his classic 1972 paper developed an 
approach, now generally called simply Cox’s regression, in which the regres-
sion coefficients in (16.6) can be estimated without making any assumptions 
about the form of the baseline hazard. Therefore, inferences about the effects 
of the covariates on the relative hazard can be made without the need for an 
estimate of h0(t). (If required, an estimate of h0(t) can be constructed using the 
estimated regression coefficients, as we shall see later.)

Cox’s regression is a semiparametric model: It makes a parametric assump-
tion concerning the effect of the predictors on the hazard function, but makes 
no assumption regarding the nature of the hazard function itself. In many 
situations, the form of the true hazard function is unknown or it is complex 
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and most interest centres on the effects of the covariates rather than the exact 
nature of the hazard function. Cox’s regression allows the shape of the haz-
ard  function to be ignored when making inferences about the regression 
 coefficients in the model.

Estimation for Cox’s regression involves a procedure known as partial 
likelihood; the essence of this approach is that the partial likelihood func-
tion depends only on the vector of regression coefficients, β—not on the 
 baseline hazard. Details are given in Kalbfeisch and Prentice (1980) and 
Collett (2003b). Here, we shall content ourselves with describing some exam-
ples of the application of Cox’s regression.

16.2.1 Examples of Cox’s Regression

We begin by returning to the data on HPA staining and breast cancer 
described in Chapter 15. We can use proc phreg to apply Cox’s regression 
to these data with the single covariate, staining or no staining, as follows:

proc phreg data=HPA;
  model weeks*censor(1)=staining / rl;
run;

As with proc lifetest in the previous chapter, the model statement 
has the survival time variable followed by an asterisk and then the censor-
ing variable with the value, or values, indicating censored observations in 
 parentheses. The rl (risklimits) option requests confidence limits for the 
hazard ratios. The results are shown in Table 16.1. There is no evidence for 
a difference in the survival experiences of members of the two groups. The 
confidence interval for the hazard ratio contains the value one.

Our second example of Cox’s regression will use data that arise from a 
randomised clinical trial investigating the effects of hormonal treatment 

TABLE 16.1

Results from Applying Cox’s Regression to the HPA Staining Data

Analysis of Maximum Likelihood Estimates

Parameter DF
Parameter

Estimate
Standard 

Error Chi-Square Pr > ChiSq
staining 1 0.84032 0.50167 2.8058 0.0939

Analysis of Maximum Likelihood
Estimates

Parameter
Hazard

Ratio

95% Hazard
Ratio

Limits
staining 2.317 0.867 6.194
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with Tamoxifen in women suffering from node-positive breast cancer 
(Schumacher et al. 1994). Data from randomised patients from this trial and 
additional nonrandomised patients from the German Breast Cancer Study 
group 2 (GBSG2) make up the 686 women in the data set. Seven covariates are 
available for each of the women in the study (Sauerbrei and Royston 1999): 
age at the start of the study, menopausal status, tumour size, tumour grade, 
number of positive lymph nodes, progesterone receptor, and estrogen recep-
tor and whether or not the patient received hormonal therapy. A small subset 
of the data is given in Table 16.2.

To fit a Cox’s regression model to the data, we use the following SAS 
code:

data GBSG2;
 infile 'c:\amsus\data\GBSG2.dat' expandtabs;
  input id onhorm $ age menstat $ tsize tgrade $ pnodes progrec 
estrec time status;

TABLE 16.2

Subset of the German Breast Cancer Data

Id Horm Age Menstat Tsize Tgrade Pnodes Progrec Estrec Time Cens
1 No 70 Post 21 II  3  48  66 1814 1
2 Yes 56 Post 12 II  7  61  77 2018 1
3 Yes 58 Post 35 II  9  52 271  712 1
4 Yes 59 Post 17 II  4  60  29 1807 1
5 No 73 Post 35 II  1  26  65  772 1
6 No 32 Pre 57 III 24  0  13  448 1
7 Yes 59 Post  8 II  2 181  0 2172 0
8 No 65 Post 16 II  1 192  25 2161 0
9 No 80 Post 39 II 30  0  59  471 1
10 No 66 Post 18 II  7  0  3 2014 0
11 Yes 68 Post 40 II  9  16  20  577 1
12 Yes 71 Post 21 II  9  0  0  184 1
13 Yes 59 Post 58 II  1 154 101 1840 0
14 No 50 Post 27 III  1  16  12 1842 0
15 Yes 70 Post 22 II  3 113 139 1821 0
16 No 54 Post 30 II  1 135  6 1371 1
17 No 39 Pre 35 I  4  79  28  707 1
18 Yes 66 Post 23 II  1 112 225 1743 0
19 Yes 69 Post 25 I  1 131 196 1781 0
20 No 55 Post 65 I  4 312  76  865 1

Notes: The variables are horm: dichotomous variable indicating whether hormonal ther-
apy was applied, 0 = no, 1 = yes; age: age in years; menstat: menopausal status, 
post or pre; tsize: tumour size; tgrade: tumour grade; pnodes: number of positive 
lymph nodes; progrec: progesterone receptor; estrec: estrogen receptor; time: 
 survival time in days; status: whether alive (0) or dead (1) at end of study.



426 Applied Medical Statistics Using SAS

 horm=onhorm='yes';
 mnths=time/30.5;
run;

proc phreg data=GBSG2;
  class menstat tgrade;
   model mnths*status(0)=horm age menstat tsize tgrade pnodes 
estrec / rl;

run;

The default coding for categorical variables listed on the class statement 
is reference (dummy variable) coding with the last value as the reference 
category, so the three categories of tumour grade are coded by two dummy 
variables with tumour grade III being the reference category (see later for 
more details). The results are shown in Table 16.3.

The results show that the hazard of death for patients having the 
hormonal therapy is estimated to be 0.705 times the hazard of death 
for patients not having the treatment with a 95% confidence interval of 
[0.55,0.91]. And having a tumour of grade I implies a hazard of death of 
between 0.22 and 0.63 of the hazard for a patient with a tumour of grade 
III. But, as in multiple regression, interpreting coefficients in this way in 
the search for explanatory variables that we can remove from the model is 
problematic because of the probable lack of independence of the explana-
tory variables; dropping one particular explanatory variable, for example, 
and then reestimating the model will likely lead to different coefficient 
estimates and different standard errors. Instead, we should try to find a 
parsimonious model for the data by comparing models including differ-
ent subsets of the explanatory variables. Again, as in multiple regression, 
there are automatic procedures for doing this. Here we look at a backward 
elimination process (see Chapter 8) using the results from Wald’s test to 
decide which variables to eliminate. Wald’s test is essentially equivalent 
to using the ratio of the estimated  regression parameter to its estimated 
standard error.

To apply the backward elimination procedure, we can use the following 
SAS code:

proc phreg data=GBSG2;
  class menstat tgrade;
   model mnths*status(0)=horm age menstat tsize tgrade pnodes 
estrec / rl selection=b;

run;

The results are shown in Table 16.4.
The variables estrec, age, menstat, and tsize are found not to contrib-

ute to predicting the hazard of death. The interpretation of the hormone ther-
apy variable and tumour grade variables is much the same as that given for 
the full model. The other variable included in the reduced model is number of 
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TABLE 16.3

Results from Fitting Cox’s Regression Model to the German Breast Cancer Data

Type 3 Tests

Effect DF
Wald Chi-

Square Pr > ChiSq
horm 1  7.3140 0.0068
age 1  1.2468 0.2642
menstat 1  3.3569 0.0669
tsize 1  3.2901 0.0697
tgrade 2 14.0360 0.0009
pnodes 1 45.2587 <.0001
estrec 1  1.2200 0.2694

Analysis of Maximum Likelihood Estimates

Parameter DF
Parameter

Estimate
Standard

Error Chi-Square Pr > ChiSq
horm 1 –0.34886 0.12900  7.3140 0.0068
age 1 –0.01031 0.00923  1.2468 0.2642
menstat Post 1 0.33176 0.18107  3.3569 0.0669
tsize 1 0.00706 0.00389  3.2901 0.0697
tgrade I 1 –0.98144 0.26325 13.8987 0.0002
tgrade II 1 –0.23162 0.13432  2.9734 0.0846
pnodes 1 0.04999 0.00743 45.2587 <.0001
estrec 1 –0.0005088 0.0004607  1.2200 0.2694

Analysis of Maximum Likelihood Estimates

Parameter
Hazard

Ratio

95% Hazard
Ratio

Limits Label
horm 0.705 0.548 0.908
age 0.990 0.972 1.008
menstat Post 1.393 0.977 1.987 menstat Post
tsize 1.007 0.999 1.015
tgrade I 0.375 0.224 0.628 tgrade I
tgrade II 0.793 0.610 1.032 tgrade II
pnodes 1.051 1.036 1.067
estrec 0.999 0.999 1.000
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positive lymph nodes; an increase of one in this variable produces an increase 
in the hazard of death of between 4% and 7%.

16.2.2 Estimating the Baseline Hazard Function

The estimated hazard function for the ith individual with vector of covari-
ates xi is given by

 = ββ′h t e h tˆ ( ) ˆ ( )i
xˆ

0
i  (16.7)

where β̂β  is the vector of estimated regression coefficients from fitting a Cox’s 

regression model and h tˆ ( )0  is the estimated baseline function.

TABLE 16.4

Results of Backwards Elimination Applied to the Cox’s Model Fitted to the German 

Breast Cancer Data

Type 3 Tests

Effect DF
Wald Chi-

Square Pr > ChiSq
horm 1  7.2227 0.0072
tgrade 2 15.5575 0.0004
pnodes 1 66.4346 <.0001

Analysis of Maximum Likelihood Estimates

Parameter DF
Parameter

Estimate
Standard

Error Chi-Square Pr > ChiSq
horm 1 –0.33739 0.12554  7.2227 0.0072
tgrade I 1 –1.02709 0.26243 15.3180 <.0001
tgrade II 1 –0.25250 0.13348  3.5786 0.0585
pnodes 1  0.05531 0.00679 66.4346 <.0001

Analysis of Maximum Likelihood Estimates

Parameter
Hazard

Ratio

95% Hazard
Ratio

Limits Label
horm 0.714 0.558 0.913
tgrade I 0.358 0.214 0.599 tgrade I
tgrade II 0.777 0.598 1.009 tgrade II
pnodes 1.057 1.043 1.071
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But how do we find an estimate of the baseline hazard function? Kalbfleisch 
and Prentice (1973) show that the baseline hazard function can be estimated 
using a maximum likelihood approach. In the particular case when there are 
no tied survival times, the baseline hazard function at ordered survival time 
t(i) is estimated as

 = − ξh tˆ ( ) 1 ˆ
i i0 ( )  (16.8)

where
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 (16.9)

where x(i) is the vector of explanatory variables for the individual who dies 
at time t(i) and R(t(i)) is the set of individuals at risk at time t(i). Collett (2003b) 
shows that if we assume that the hazard of death of death is constant between 
adjacent death times, then can be regarded as an estimate of the probability 
that an individual survives through the interval from t(i) to t(i+1). The baseline 
survivor function can then be estimated by

 ∏= ξ
=

S tˆ ( ) ˆ
i

i

k

0

1

 (16.10)

for t(k) ≤ t < t(k+1), k = 1,2 … r – 1. Note that the estimate is a step function.
The relationships between the hazard, cumulative hazard, and the survi-

vor function demonstrated in Chapter 15 can now be used to give estimates 
of, in particular, the survivor functions for the individuals in the sample. For 
example, the estimated survivor function for the ith individual is

 [ ] ββ′
s t s tˆ( )= ˆ ( )

x
0

exp( ˆ )i
 (16.11)

for t(k) ≤ t < t(k+1), k = 1, 2 … r – 1. (See Collett 2003b for full details.)
For the German breast cancer data, the selected Cox model contained the 

explanatory variables hormonal therapy, tumour grade, and number of posi-
tive lymph nodes. Tumour grade was coded in the form of two dummy vari-
ables (D1 and D2) as follows:

Tumour Grade

I II III

D1 1 0 0

D2 0 1 0
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The model for the hazard function was found to be

 ( )= − − − +h t h tˆ ( ) exp 0.34horm 1.03D1 0.25D2 0.06pnodes ˆ ( )i 0  (16.12)

Consequently, the estimated baseline function is the estimated hazard of 
death at time t for an individual who is not on hormonal therapy, has a grade 
III tumour, and has no positive lymph nodes. We can find the baseline haz-
ard, the baseline survivor function, and the cumulative hazard using the 
following SAS code:

data covs;
  retain horm 0 tgrade 'III' pnodes 0;
run;
proc phreg data=GBSG2;
  class tgrade;
  model mnths*status(0)=horm tgrade pnodes / rl ;
   baseline covariates=covs out=phout survival=surv 
cumhaz=cumhaz;

run;
data phout;
 set phout;
 lch=lag(cumhaz);
 hazd=cumhaz-lch;
run;
proc print noobs;
 var mnths hazd surv cumhaz ;
 format mnths 4.1 hazd surv cumhaz 4.3;
run;

The baseline statement creates a data set with baseline function esti-
mates. By default, these are calculated at the mean values of continuous 
covariates and reference categories of categorical predictors. To have the cal-
culations made for other values of the predictors, a data set needs to be cre-
ated with the required values and then referenced with the covariates= 
option on the baseline statement. A short data step calculates the hazard 
from the cumulative hazard.

The results are shown in Table 16.5. We see that the estimated baseline haz-
ard stays relatively constant for a long period and then gradually increases. 
The estimates only apply at the death times of the patients in the study. From 
Table 16.5, we can estimate the median survival time, which is the small-
est observed survival time for which the estimated survivor function is less 
than or equal to 0.5. From Table 16.5, we find that the estimated median sur-
vival time for patients who are not on hormonal therapy, have a grade III 
tumour, and have no positive lymph nodes is 66.7 months.

By raising the estimate of the baseline survivor function to a suitable 
power, we can find the estimated survivor function for patients with other 
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TABLE 16.5

Estimates of the Baseline Hazard, the Baseline 

Survivor Function, and the Cumulative Hazard for 

the Breast Cancer Data

Mnths Hazd Surv Cumhaz
0.0 . 1.00 .000
2.4 .001 .999 .001
3.2 .001 .998 .002
3.7 .001 .997 .003
3.9 .001 .996 .004
5.2 .001 .995 .005
5.5 .001 .994 .006
5.6 .001 .993 .007
5.7 .001 .991 .009
5.7 .001 .990 .010
5.8 .002 .988 .012
5.9 .001 .987 .013
5.9 .001 .986 .014
6.0 .001 .985 .015
6.3 .001 .984 .016
6.4 .001 .983 .017
6.7 .001 .982 .018
7.3 .001 .981 .020
7.4 .001 .980 .021
7.6 .001 .978 .022
7.8 .001 .977 .023
7.9 .001 .976 .024
7.9 .001 .975 .025
8.1 .001 .974 .026
8.2 .001 .973 .027
8.2 .001 .972 .029
8.9 .002 .970 .031
9.0 .001 .969 .032
9.2 .002 .966 .034
9.3 .002 .964 .037
9.4 .001 .963 .038
9.4 .001 .962 .039
9.6 .001 .961 .040
10.0 .001 .960 .041
10.1 .001 .959 .042
10.1 .002 .956 .045
10.4 .001 .955 .046
10.8 .001 .954 .047

(Continued)
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TABLE 16.5 (Continued)

Estimates of the Baseline Hazard, the Baseline 

Survivor Function, and the Cumulative Hazard for 

the Breast Cancer Data

Mnths Hazd Surv Cumhaz
11.0 .001 .953 .048
11.1 .004 .950 .052
11.2 .001 .948 .053
11.3 .001 .947 .054
11.4 .001 .946 .055
11.5 .001 .945 .057
11.6 .001 .944 .058
11.7 .001 .943 .059
11.7 .001 .942 .060
11.8 .002 .939 .063
11.8 .001 .938 .064
12.1 .001 .937 .065
12.1 .002 .935 .067
12.2 .001 .934 .069
12.2 .001 .933 .070
12.3 .001 .931 .071
12.3 .001 .930 .072
12.4 .001 .929 .074
12.4 .001 .928 .075
12.6 .001 .927 .076
12.9 .001 .926 .077
12.9 .001 .924 .079
13.2 .001 .923 .080
13.4 .001 .922 .081
13.6 .001 .921 .082
13.7 .001 .920 .084
13.8 .003 .918 .086
14.0 .003 .915 .089
14.3 .001 .914 .090
14.4 .001 .913 .091
14.6 .001 .912 .092
14.7 .001 .911 .094
14.7 .001 .909 .095
14.9 .001 .908 .096
15.0 .001 .907 .098
15.1 .001 .906 .099
15.2 .001 .905 .100
15.4 .001 .903 .102
15.5 .001 .902 .103
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TABLE 16.5 (Continued)

Estimates of the Baseline Hazard, the Baseline 

Survivor Function, and the Cumulative Hazard for 

the Breast Cancer Data

Mnths Hazd Surv Cumhaz
15.6 .001 .901 .104
15.6 .003 .899 .107
15.8 .001 .897 .108
15.9 .001 .896 .110
16.1 .001 .895 .111
16.1 .004 .891 .115
16.2 .001 .890 .116
16.3 .001 .889 .118
16.4 .001 .888 .119
16.5 .001 .887 .120
16.5 .001 .885 .122
16.5 .001 .884 .123
16.9 .001 .883 .124
17.0 .001 .882 .126
17.2 .001 .881 .127
17.3 .001 .879 .129
17.4 .001 .878 .130
17.5 .001 .877 .131
17.5 .001 .876 .133
17.6 .001 .874 .134
17.6 .001 .873 .136
17.7 .001 .872 .137
17.8 .001 .871 .138
17.8 .003 .868 .141
17.9 .001 .867 .143
17.9 .001 .866 .144
18.0 .004 .862 .148
18.0 .003 .860 .151
18.1 .003 .857 .154
18.2 .003 .855 .157
18.3 .001 .853 .159
18.3 .001 .852 .160
18.5 .001 .851 .162
18.5 .001 .850 .163
18.7 .001 .848 .164
18.8 .001 .847 .166
18.9 .001 .846 .167
18.9 .001 .845 .169
19.0 .001 .843 .170

(Continued)
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TABLE 16.5 (Continued)

Estimates of the Baseline Hazard, the Baseline 

Survivor Function, and the Cumulative Hazard for 

the Breast Cancer Data

Mnths Hazd Surv Cumhaz
19.0 .001 .842 .172
19.2 .002 .841 .173
19.5 .003 .838 .176
19.5 .002 .837 .178
19.6 .002 .836 .180
19.7 .002 .834 .181
20.1 .002 .833 .183
20.4 .002 .832 .184
20.5 .003 .829 .187
20.6 .002 .828 .189
20.7 .002 .827 .190
20.9 .002 .825 .192
21.2 .002 .824 .194
21.2 .002 .823 .195
21.3 .002 .821 .197
21.7 .002 .820 .198
22.0 .002 .819 .200
22.1 .002 .817 .202
22.3 .002 .816 .203
22.5 .002 .815 .205
22.9 .002 .813 .207
23.2 .002 .812 .208
23.3 .002 .811 .210
23.4 .002 .809 .212
23.7 .002 .808 .213
23.8 .002 .806 .215
23.9 .002 .805 .217
23.9 .002 .804 .219
24.0 .002 .802 .220
24.0 .002 .801 .222
24.3 .002 .800 .224
24.4 .002 .798 .225
24.5 .002 .797 .227
24.5 .002 .795 .229
24.7 .002 .794 .231
24.8 .002 .793 .232
25.0 .002 .791 .234
25.2 .002 .790 .236
25.3 .002 .788 .238



435Cox’s Proportional Hazards Models for Survival Data

TABLE 16.5 (Continued)

Estimates of the Baseline Hazard, the Baseline 

Survivor Function, and the Cumulative Hazard for 

the Breast Cancer Data

Mnths Hazd Surv Cumhaz
25.4 .002 .787 .240
25.7 .002 .785 .242
25.9 .002 .784 .244
26.1 .002 .782 .246
26.1 .004 .779 .249
26.2 .002 .778 .251
26.3 .002 .776 .253
26.4 .002 .775 .255
26.9 .002 .773 .257
27.1 .002 .772 .259
27.4 .002 .770 .261
27.5 .002 .769 .263
27.6 .002 .767 .265
28.0 .004 .764 .269
28.1 .002 .763 .271
28.2 .004 .759 .275
28.2 .002 .758 .277
28.4 .002 .756 .279
28.4 .002 .755 .281
28.4 .002 .753 .283
28.7 .002 .752 .286
29.0 .002 .750 .288
29.1 .002 .748 .290
29.2 .002 .747 .292
29.2 .002 .745 .294
29.3 .002 .744 .296
30.1 .002 .742 .298
31.0 .002 .740 .300
31.3 .004 .737 .305
31.4 .002 .736 .307
31.5 .002 .734 .309
31.6 .002 .732 .312
32.2 .002 .730 .314
32.2 .002 .729 .316
32.2 .002 .727 .319
32.5 .002 .725 .321
32.9 .002 .724 .324
34.0 .002 .722 .326
34.2 .002 .720 .328

(Continued)
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TABLE 16.5 (Continued)

Estimates of the Baseline Hazard, the Baseline 

Survivor Function, and the Cumulative Hazard for 

the Breast Cancer Data

Mnths Hazd Surv Cumhaz
34.7 .002 .718 .331
35.4 .002 .717 .333
35.7 .002 .715 .336
35.8 .003 .713 .338
35.9 .003 .711 .341
36.2 .005 .708 .346
36.3 .003 .706 .349
36.7 .003 .704 .351
37.4 .003 .702 .354
37.6 .003 .700 .357
37.7 .003 .698 .359
37.9 .003 .696 .362
38.1 .003 .694 .365
38.2 .003 .692 .368
38.4 .003 .691 .370
38.5 .003 .689 .373
38.8 .003 .687 .376
39.1 .003 .685 .379
39.1 .003 .683 .382
39.6 .003 .681 .385
39.9 .003 .679 .388
40.0 .003 .677 .391
40.2 .003 .675 .394
40.9 .003 .673 .397
41.1 .003 .670 .400
41.9 .003 .668 .403
42.0 .006 .664 .409
42.5 .003 .662 .413
42.8 .003 .660 .416
43.6 .003 .658 .419
43.8 .003 .656 .422
44.0 .003 .653 .426
44.3 .003 .651 .429
44.7 .004 .649 .433
44.8 .004 .646 .436
45.0 .004 .644 .440
45.5 .004 .642 .443
45.5 .004 .639 .447
46.6 .004 .637 .451
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TABLE 16.5 (Continued)

Estimates of the Baseline Hazard, the Baseline 

Survivor Function, and the Cumulative Hazard for 

the Breast Cancer Data

Mnths Hazd Surv Cumhaz
47.5 .004 .635 .455
47.8 .004 .632 .458
47.9 .004 .630 .462
48.0 .004 .627 .466
48.6 .004 .625 .470
49.0 .004 .622 .474
49.2 .004 .620 .478
49.9 .004 .617 .483
50.0 .004 .614 .487
50.1 .004 .612 .491
52.0 .004 .609 .496
52.1 .005 .606 .500
52.5 .005 .604 .505
53.8 .005 .601 .510
54.9 .005 .598 .515
55.0 .005 .595 .520
55.2 .005 .592 .525
55.8 .005 .588 .530
56.7 .006 .585 .536
57.5 .006 .581 .543
57.8 .006 .577 .549
59.2 .007 .574 .556
59.2 .007 .570 .563
59.5 .014 .562 .577
62.9 .010 .556 .587
64.8 .011 .550 .598
64.8 .011 .544 .609
65.2 .012 .537 .621
65.2 .012 .531 .633
66.1 .014 .524 .647
66.2 .014 .516 .661
66.6 .015 .509 .675
66.7 .015 .501 .690
66.9 .015 .494 .706
68.6 .019 .485 .725
75.0 .042 .465 .767
77.8 .056 .439 .823
80.5 .106 .395 .929
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values of the covariates using (16.11). The estimated survivor function for 
individual i is

 = ⎡⎣
⎤
⎦

( )− − − +
S t S tˆ ( ) ˆ ( )i 0

exp 0.34horm 1.03D1 0.25D2 0.06pnodesi i i i

 (16.13)

Thus, for an individual with a grade III tumour and no positive lymph 
nodes and on hormonal therapy, the estimated survivor function for the indi-

vidual is ⎡⎣
⎤
⎦

( )−
S tˆ ( )0

exp 0.34

; for example, the estimated survivor function for such 

an individual at the median survival for a baseline individual is (0.5)exp(–0.34), 
giving the value 0.61. Therefore, it is estimated that 61% of individuals with 
grade III tumour and no positive lymph nodes but having the hormonal 
treatment will survive nearly 67 months as opposed to the 50% estimated to 
survive amongst those individuals with the same tumour grade and number 
of positive lymph nodes but not having hormonal therapy. (Note that, as the 
value of the baseline survivor function is always between zero and one, it 
follows that if exp(β′xi) > 1, then <S t S tˆ ( ) ˆ ( )i 0 and, conversely, exp(β′xi) < 1 if, 
then >S t S tˆ ( ) ˆ ( )i 0 .)

We can plot the estimated baseline survivor function and the survivor 
function for individuals with grade III tumour and no positive lymph nodes 
but on hormonal therapy by adding a second observation to the covs data 
set for those on hormone therapy and repeating the proc step with ODS 
graphics on and plots(overlay)= s on the proc statement:

data covs;
  retain tgrade 'III' pnodes 0;
  horm=1; output;
  horm=0; output;
run;

ods graphics on;
proc phreg data=GBSG2 plots(overlay)=s;
  class tgrade;
  model mnths*status(0)=horm tgrade pnodes / rl ;
  baseline covariates=covs ;
run;

The result graph is shown in Figure 16.1. The survivor function for the indi-
viduals on hormonal therapy is always greater than for the corresponding 
function of those not on hormonal therapy.

16.2.3 Checking Assumptions in Cox’s Regression

After any statistical model has been fitted to a data set and the parameters 
of the model estimated, the adequacy of the model needs to be assessed to 
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ensure that inferences drawn are defendable and valid. A thorough exam-
ination of how well the assumptions made by a model are met is just as 
important as systematic development of a model. When modelling sur-
vival data, similarly to dealing with the multiple linear regression model 
(see Chapter 8), assessment of model adequacy is based on the use of residu-
als. But the residuals for survival data are not nearly as obvious as those 
used in multiple regression, and the absence of an obvious residual has led 
to several having been proposed; we shall look at three of these.
Cox–Snell residual (Cox and Snell 1968):

 ββ )(= ′r H txexp ˆ ( )i
CS

i i
( )

0  (16.14)

H twhere ˆ ( )i0  is the integrated hazard function at time ti, the observed sur-
vival time of the ith subject. If the correct model has been fitted, the Cox–Snell 
residuals for the n individuals will be n observations from a unit exponential 
distribution. (In fact, if an observed survival time is right censored, then 
the corresponding residual is also right censored and the residuals will be a 
 censored sample from the exponential distribution.)
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FIGURE 16.1
Estimated survivor functions for the breast cancer data; the continuous line is for grade III 

tumour, no positive lymph nodes, and receiving hormonal therapy; the dashed line is for 

grade III tumour, no positive lymph nodes, and not receiving hormonal therapy.
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Deviance residual (Therneau, Grambsch, and Fleming 1990):
This type of residual is defined as follows:

 { }( ) ( )= − + δ δ −⎛
⎝⎜

⎞
⎠⎟r r r rsign 2 logi

D
i

M
i

M
i i i

M( ) ( ) ( ) ( )  (16.15)

where
sign is the sign function taking the value +1 if its argument is positive and 

–1 if it is negative

= δ −r ri
M

i i
CS( ) ( )  is known as a Martingale residual (see Fleming and 

Harrington 1991)
δi is a censoring indicator that takes the value 0 if the observed survival 

time of the ith individual is censored and 1 if it is uncensored

Such residuals are used to assess whether any particular individuals are 
poorly fitted by the model where a large negative or positive value of the 
residual indicates a lack of fit. Deviance residuals can also be plotted against 
the corresponding values of a continuous covariate to investigate the appro-
priate functional form of the variable in the model.
Score residual (Schoenfeld residual) (Schoenfeld 1982):

 r x
x x

x

exp

exp( )
ij

S
i ij

kj k
k R t

k
k R t

( ) ( )

( )

i

i

∑
∑

ββ

ββ

( )
= δ −

′

′

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

∈

∈

 (16.16)

where R(ti) is the set of all individuals at risk at time ti.
These residuals are based on the individual contributions to the deriva-

tive of the logarithm of the partial likelihood function; see Hosmer and 
Lemeshow (1999) for details. In essence, the residuals compare the vector of 
covariate values for the ith subject with its estimated expected value among 
all those subjects at risk. The score residual is the covariate value for the 
person who actually died at time ti minus the estimated expected value of 
the covariate for the risk set at ti, so there are separate residuals for each 
individual for each covariate; these residuals are not defined for censored 
individuals. Plots of these residuals against survival time, or a rank order of 
the survival times, for each covariate should show a random scatter of points, 
centred on zero, if the fitted model is adequate. Substantial trends in such 
data indicate that the proportional hazards assumption is suspect.

We will now demonstrate briefly how these various residuals can be 
used by finding their values and constructing a number of plots for the 
model selected by backward elimination for the German breast cancer data 
(see Equation 16.12).

First, we will consider the Cox–Snell residuals and assess whether or not 
they have a unit exponential distribution. Collett (2004) shows that if the 
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Kaplan–Meier estimate of the survivor function of the residuals is computed 
(denoted by S rˆ( )i

CS( ) ; residuals from censored observations are themselves 
regarded as censored) and the values of log{–log S rˆ( )i

CS( ) } are plotted against 
the values of log ri

(CS), then a straight line plot with unit slope and zero inter-
cept will indicate that the fitted model is correct. Systematic departures from 
this straight line or a straight line that does not have unit slope or zero inter-
cept suggests that the model needs to be modified in some way. The required 
plot can be constructed from the following SAS code:

proc phreg data=GBSG2;
  class tgrade;
  model mnths*status(0)=horm tgrade pnodes ;
  output out=phout logsurv=ls;
run;
data phout;
  set phout;
  rcs=ls*–1;
run;
proc phreg data=phout noprint;
  class tgrade;
  model rcs*status(0)=horm tgrade pnodes;
  output out=phout2 survival=srcs / method=pl;
run;
data phout2;
  set phout2;
  llsrcs=log(−1*log(srcs));
  lrcs=log(rcs);
run;
proc sgplot data=phout2;
 reg y=llsrcs x=lrcs;
 refline 0 ;
 refline 0 / axis=x;
run;

The resulting plot is shown in Figure 16.2. The plot gives no concerns about 
the fitted model.

Next, we will use the output statement to calculate the deviance and 
Schoenfeld residuals. We begin by plotting the deviance residuals against 
the values of each of the covariates in the model:

proc phreg data=GBSG2;
  class tgrade;
  model mnths*status(0)=horm tgrade pnodes / rl ;
  output out=phout logsurv=ls resdev=dres resch=sres;
run;

proc sgscatter data=phout;
  plot dres*(pnodes horm tgrade)/ columns=2;
run;
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The plot is shown in Figure 16.3. The plot for the number of positive lymph 
nodes shows no discernible pattern and there are no residuals that stand 
out from the rest. The residuals for the two treatment groups appear to 
have very similar distributions, as do those for the three tumour grades. 
Overall, the deviance residual plots suggest that the fitted model is 
satisfactory.

The Schoenfeld residuals can be plotted in the same way and are shown 
in Figure 16.4. The plots for treatment and tumour grade show the type of 
pattern that is typical in plots of this type of residual for categorical variables 
(see Collett 2003b). The plot for the number of positive lymph nodes shows no 
pattern that would give cause for concern for the fitted model.

16.2.4 Stratified Cox’s Regression

For some sets of survival data, a suspected lack of proportionality among 
hazard functions may be the result of the baseline hazard function differ-
ing among the levels of some categorical variable. In such a case, a simple 
approach to the analysis of the data is to apply Cox’s regression within 
each category or strata of this variable. A more efficient procedure is to fit a 
model in which each stratum has a different baseline hazard function, but 
all the other covariates satisfy the proportional hazards function within each 
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FIGURE 16.2
Plot of Cox–Snell residuals for the breast cancer data.
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stratum. This leads to the following stratified proportional hazards model 
(stratified Cox’s regression):

 ββ= ′h t h t x( ) ( )exp( )ij j ij0  (16.17)

where
hij(t) is the hazard function of the ith individual in the jth stratum where 

i = 1, 2 … , nj and j = 1, 2 … , s
h0j(t) is the baseline hazards function in the jth stratum
xij is the vector of covariate values for the ith individual in the jth stratum
β is the vector of regression coefficients assumed to be the same in each 

stratum

To begin, we need to check the validity of the proportional hazards model. 
For this, we can use a method suggested in Lin, Wei, and Ying (1993). This 
involves the use of the Martingale residuals and is invoked via the assess 
statement, which can also be used to check the appropriate functional form 
of covariates. In this case, we reran the previous proc phreg step, adding

assess ph / resample;
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in place of the output statement. The resample option requests Kolmogorov 
supremum tests based by default on 1000 simulations but which can be con-
trolled with resample =n. Using ph on the assess statement tests the propor-
tional hazards assumption for all variables in the model. With ODS graphics 
on, plots are produced for each of the tests. The plot for tgrade I is shown in 
Figure 16.5 and the table of test results in Table 16.6. To test the linearity of one 
or more variables var=(<variable list>) could be used—for example,

assess ph var=(pnodes) / resample;

Now we will apply the stratified Cox’s regression model stratifying on 
tgrade:

proc phreg data=GBSG2;
  class tgrade ;
  model mnths*status(0)=horm pnodes / rl ;
  strata tgrade;
run;

The results are shown in Table 16.7 and are very similar to those for the non-
stratified analysis described earlier in this chapter.
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16.3 Time-Varying Covariates

In previous sections, we have implicitly assumed that the values of all 
covariates were determined at the time at which follow-up began on each 
subject and that these values remain constant over the period that the 
study takes place. But in many survival studies, individuals are monitored 
over the course of the study and the values of some potentially prognostic 
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FIGURE 16.5
Testing the assumption of proportional hazards for tgrade in the breast cancer data.

TABLE 16.6

Results of Testing the Proportional Hazards Assumption in the Breast 

Cancer Data

Supremum Test for Proportionals Hazards Assumption

Variable

Maximum 
Absolute

Value Replications Seed
Pr >

MaxAbsVal
Horm 0.7028 1000 899906001 0.6350

tgradei 1.4745 1000 899906001 0.0360

tgradeii 1.2835 1000 899906001 0.0790

Pnodes 0.6263 1000 899906001 0.3560
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variables will change with time—for example, laboratory measurements 
made repeatedly on the individual. If there are time-varying covariates, 
then the observations for the ith individual at time tj can be represented as 
the vector ′ =x i j i j i j ip jt x t x t x t( ) [ ( ), ( ), , ( )]1 2 … . This notation can accommodate 
non-time-varying covariates if, for such covariates, we set xik(tj) = xik(t = 0) = 
xik. The generalisation of Cox’s regression to include both time-varying and 
non-time-varying covariates is now

 ββ[ ]= ′h t h t tx( ) ( )exp ( )i i0  (16.18)

An important assumption in this model is that the effect of any time-varying 
coefficient given by the appropriate regression coefficients does not depend 
on time; models with time-varying coefficients are more complex and read-
ers are referred to Hosmer and Lemeshow (1999) for details. It is also impor-
tant to note that, in the model given in (16.18), the values of at least some of 
the covariates depend on time, so the relative hazard is also time dependent. 
Consequently, the hazard of death at time t is now not proportional to the 
baseline hazard and the model is now not a proportional hazards model.

The parameters in (16.18) are again estimated using the partial likelihood 
approach; details are given in Collett (2003b). But for the time-varying covari-
ates, the survival period of each patient has to be divided up into a sequence 
of shorter survival spells, each characterised by an entry time and an exit 
time and within which the covariate value remains fixed. Thus, the data for 
each patient on a time-varying covariate are represented by a number of 
shorter censored spells and possibly one spell ending in the event of inter-
est (for example, death). To illustrate the necessary arrangement, we can use 
the small data set shown in Table 16.8. In Table 16.9, the data in Table 16.8 are 

TABLE 16.7

Results from Stratifi ed Cox Regression on Breast Cancer Data

Analysis of Maximum Likelihood Estimates

Parameter DF
Parameter

Estimate
Standard

Error Chi-Square Pr > ChiSq
Horm 1 –0.33922 0.12558  7.2970 0.0069
Pnodes 1  0.05439 0.00686 62.8613 <.0001

Analysis of Maximum Likelihood Estimates

Parameter
Hazard

Ratio

95% Hazard
Ratio

Limits
horm 0.712 0.557 0.911
pnodes 1.056 1.042 1.070
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rearranged in the manner described earlier in this paragraph. The survival 
time for each interval is calculated as t2 – t1.

It may be thought that the observations in Table 16.9 that arise from the 
same individual are ‘correlated’ and thus not suitable for Cox’s regression as 
described in the previous chapter. Fortunately, this is not an issue, since the 
partial likelihood on which estimation is based has a term for each unique 
death or event time and involves sums over those observations that are avail-
able or at risk at the actual event date. Since the intervals for a particular 
individual do not overlap, the likelihood will involve, at most, only one of the 
observations for the individual, and thus will still be based on independent 
observations. The values of the covariates between event times do not enter 
the partial likelihood. Thus, applying Cox’s model to survival data with 
time-varying covariates is little more complex than for time-fixed covariates.

One circumstance where the use of time-varying covariates may be help-
ful is where the timing of the delivery of one or both treatments is not under 
complete experimental control. Such circumstances frequently arise in 
organ and tissue transplantation, where, at the time of randomisation, no 
suitably well-matched donors may be available for all patients. Two compari-
sons then become of interest. The first essentially defines the treatment as 
that given (i.e., a waiting time of unknown duration followed by transplanta-
tion) and compares survival over both waiting and post-transplant survival 

TABLE 16.8

Hypothetical Survival Data with a Time-Varying Covariate

Laboratory Measurement (day)

Survival Time StatusIndividual 0 60 120

1 0.5 0.7 0.8 130 1

2 0.2 0.6 0.3 190 1

3 0.2 0.4 — 70 0

Notes: Status: 1 = dead; 2 = censored.

TABLE 16.9

Rearranged Data from Table 16.8

Individual Interval (T1, T2) Lab Measurement Status

1 0, 60 0.5 0

1 61, 120 0.7 0

1 121, 130 0.8 1

2 0, 60 0.2 0

2 61, 120 0.6 0

2 121, 130 0.3 1

3 0, 60 0.2 0

3 61, 170 0.4 1
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periods combined. The second defines the treatment as transplantation, for 
which only the post-transplant survival is relevant. These correspond to 
the two rather different clinical circumstances of considering the treatment 
alternatives of a patient for whom a well-matched donor is already available 
(the second case) and a patient for whom one is yet to be found (the first case).

Without a very rigorous protocol, it is often unreasonable to assume that 
the waiting time to find a well-matched donor is independent of transplant 
survival, since matching criteria are likely to be relaxed as the waiting time 
increases and transplantation may only be possible if the patient is fit enough to 
survive surgery. Despite this potential difficulty, we shall now illustrate the use 
of Cox’s regression with time-varying covariates with an example of this type, 
using the well-known set of survival times of potential heart transplant recipi-
ents from their date of acceptance into the Stanford heart transplant program.

Part of the data is shown in Table 16.10 in the form described previously. 
For example, patient 3 waited a single day for a transplant and then died after 
15 days. In these data, patients change treatment status during the course of 
the study. Specifically, a patient is part of the control group until a suitable 
donor is located and transplantation takes place, at which time he joins the 
treatment group. Thus, treatment is a time-dependent covariate. The other 
covariates to be considered are age (in years minus 48), whether the patient 
had had previous heart surgery, and waiting time for acceptance into the 
program (years since October 1, 1967).

The necessary SAS code to read in the data and apply a series of Cox’s 
regression model—the first with a single covariate, transplant, the second 

TABLE 16.10

A Subset of the Heart Transplant Data

ID Start Stop Event Age Year Surgery Transplant

1 0.0 50.0 1 –17.155 0.123 0 0

2 0.0 6.0 1 3.836 0.255 0 0

3 0.0 1.0 0 6.297 0.266 0 0

3 1.0 16.0 1 6.297 0.266 0 1

4 0.0 36.0 0 –7.737 0.490 0 0

4 36.0 39.0 1 –7.737 0.490 0 1

5 0.0 18.0 1 –27.214 0.608 0 0

6 0.0 3.0 1 6.5955 0.701 0 0

7 0.0 51.0 0 2.8693 0.780 0 0

7 51.0 675.0 1 2.8693 0.780 0 1

8 0.0 40.0 1 –2.650 0.835 0 0

9 0.0 85.0 1 –0.838 0.857 0 0

10 0.0 12.0 0 –5.498 0.862 0 0

10 12.0 58.0 1 –5.498 0.862 0 1

Notes: Surgery: 0 = no previous surgery, 1 = previous surgery; transplant: 0 = no 

transplant, 1 = transplant; event: 0 = censored, 1 = died.
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with all four covariates, and the third with an interaction between year and 
transplant—is as follows:

data SHTD;
infile 'c:\AMSUS\data\shtd.dat';
input ID Start Stop Event Age Year Surgery Transplant;
duration=stop-start;
run;

proc phreg data=SHTD;
  model (start,stop)*event(0)=Transplant / rl;
run;

proc phreg data=SHTD;
  model (start,stop)*event(0)=Age Year Surgery Transplant / rl;
run;

proc phreg data=SHTD;
   model (start,stop)*event(0)=Age Year Surgery Transplant 
year*transplant / rl;

run;

Proc phreg has an alternative version of the model statement designed 
for data in this format, which SAS refers to as the ‘counting process style of 
input’. Instead of a single variable for the survival time, two variables are 
named (in parentheses) which define the beginning and end of a period dur-
ing which the subject is at risk.

Selected output from these three models is shown in Table 16.11. In the first 
model, there is no evidence that transplantation affects the hazard function. In 
the second model, the regression coefficients for both age and year are signifi-
cant, implying that each is associated with survival. The results from the last 

TABLE 16.11

Results from Fitting Three Cox Regression Models to the Heart Transplant Data

Analysis of Maximum Likelihood Estimates

Parameter DF
Parameter

Estimate
Standard

Error Chi-Square Pr > ChiSq
Transplant 1 0.12567 0.30108 0.1742 0.6764
Age 1 0.02715 0.01372 3.9158 0.0478
Year 1 –0.14611 0.07047 4.2994 0.0381
Surgery 1 –0.63582 0.36721 2.9980 0.0834
Transplant 1 –0.01189 0.31364 0.0014 0.9698
Age 1 0.02988 0.01374 4.7307 0.0296
Year 1 –0.25211 0.10482 5.7848 0.0162
Surgery 1 –0.66270 0.36811 3.2410 0.0718
Transplant 1 –0.62153 0.53092 1.3704 0.2417
Year*transplant 1 0.19697 0.13944 1.9953 0.1578
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model appear to imply that survival time depends on the time of  acceptance 
into the study; as this increases, the hazard function for the death of a patient 
decreases. But this claim become less clear-cut if we examine the  transplant × 
time of acceptance interaction, which approaches significance, with an effect that 
is in the opposite direction. According to Kalbfleisch and Prentice (1980), taken 
together these results imply that the overall quality of patients being admitted 
to the study may be improving with time (possibly due to the  relaxation of 
admission requirements or to improving patient management);  however, the 
survival time of the transplanted patients is not improving at the same rate.

A further model which might be considered is one that allows separate 
baseline hazards for the after-transplanted and before- or not transplanted 
patients but common coefficients in each group. To fit this model, we can use 
the following code:

proc phreg data=SHTD plots(cl)=s;
  model (start,stop)*event(0)=Age Year Surgery / rl;
  strata transplant;
run;

The results are shown in Table 16.12.
We can plot the graph of the predicted survival curves in each stra-

tum, with all covariates equal to their mean values, using the following code:

ods graphics on;
proc phreg data=SHTD plots(cl overlay=row)=s;

The resulting plot appears in Figure 16.6 and demonstrates the longer sur-
vival experience of patients who have a transplant.

As this example illustrates, time-varying covariates can be introduced 
into a Cox model for survival data very simply. But this apparent simplicity 
should not disguise the potential problems. The main one is that the inclu-
sion of such covariates runs the risk of biasing the estimated treatment effect 
if they themselves reflect the development of the disease process and thus 
may be partly influenced by treatment. Biochemical or physical measures of 
disease are obvious examples.

This is well illustrated in an example given by Altman and DeStavola (1994). 
High levels of bilirubin and low levels of albumin reflect advanced biliary 
cirrhosis and are highly prognostic. A treatment that leads to an improve-
ment in the cirrhosis will tend to reduce bilirubin levels and increase those 
of albumin. Altman and DeStavola showed how much of the significant 
and substantial estimate of treatment effect could be removed by the inclu-
sion into the model of updated values of either of these variables. From the 
point of view of treatment effect estimation, updating these variables is most 
unwise, casting unnecessary doubt on treatment differences. From the point 
of view of a scientific investigation of the development of the process and for 
constructing prognostic indices, their inclusion will be of more interest.
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Thus, it is important that internal or endogenous variables should be dis-
tinguished from external or exogenous variables. External variables are 
either predetermined (e.g., a patient’s age) or vary independently of survival 
(e.g., the weather). However, for many time-varying variables, their status as 
internal or external is uncertain, which explains our caution. It is perhaps 
most helpful to think of internal variables as being those that are ‘causally 
downstream’ of treatment, but the link between treatment and the internal 
variable does not have to be a direct one. Thus, if the poor health of those 
on the worse or placebo treatment results in their choosing to move to a 
more pleasant and health-promoting climate, then not even the weather is 
external!

TABLE 16.12

Results from Stratifi ed Cox Regression for the Heart Transplant Data

Summary of the Number of Event and Censored Values

Stratum Transplant Total Event Censored
Percent

Censored
1 0 103 30 73 70.87
2 1  69 45 24 34.78

Total 172 75 97 56.40

Analysis of Maximum Likelihood Estimates

Parameter DF
Parameter

Estimate
Standard 

Error Chi-Square Pr > ChiSq
Age 1  0.02931 0.01391 4.4370 0.0352
Year 1 –0.15201 0.07099 4.5849 0.0323
Surgery 1 –0.61681 0.37067 2.7690 0.0961

Analysis of Maximum Likelihood Estimates

Parameter
Hazard

Ratio

95% Hazard
Ratio

Limits
Age 1.030 1.002 1.058
Year 0.859 0.747 0.987
Surgery 0.540 0.261 1.116

Reference Set of Covariates for Plotting

Age Year Surgery
–2.484017 3.453285 0.168605
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16.4 Random-Effects Models for Survival Data

Cox’s proportional hazards model, as described in the previous chapter, has 
become the workhorse of regression analysis for censored time-to-event 
data. But one of the implicit assumptions of the method—namely, that the 
survival times observed are independent of one another—is not necessar-
ily valid in all situations in which survival times are collected. Some types 
of studies generate correlated survival times, and a suitable  model must 
account for the correlations; some examples of such studies are

Survival times of individuals that have been formed into matched 
groups similar on a set of prognostically relevant variables

Survival times of individuals related, for example, by family mem-
bership, marriage, exposure to some agent, etc.

Recurrent or repeated events, where the same event, for example, 
myocardial infarction, can happen several times for an individual

The most common way of dealing with correlated survival time data is to 
use the counterpart of the random-effects models described in Chapter 11. The 
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random effects are again used to generate the dependence between the obser-
vations and, conditional on the random effects, the observations are assumed 
independent. But correlated survival times can also be dealt with by using 
sandwich estimators of the standard errors of the estimated regression coef-
ficients in a fitted Cox’s model to the data, ignoring the lack of dependence of 
the survival times; both approaches will be used in the example that follows.

As an example of dealing with correlated time-to-event data, we shall use 
the data consisting of recurrence times to infection at point of insertion of 
the catheter for kidney patients using portable dialysis equipment; part of the 
data is shown in Table 16.13. For each patient, two such recurrence times are 
given. The covariates of interest are age, gender, and the presence/absence of 
disease types GN, ANN, and PKD. We first fit a Cox regression model to the 
data, ignoring the possible correlation between the recurrence times of an 
individual and using the sandwich estimators of the standard errors of the 
estimated regression coefficients.

The code for fitting the Cox regression to the data and requesting the sand-
wich estimators of the standard errors is as follows:

data catheters;
  infile 'c:\amsus\data\CatheterInfection.dat';
  input Subject Time Status Age Sex Disease;
run;

proc phreg data=catheters covs(aggregate);
 class disease sex /ref=first;
 model time*status(0)=age sex disease / rl;
 id subject;
run;

TABLE 16.13

Recurrence Times for Catheter Infection in Five 

Kidney Patients

Subject Time Status Age Sex Disease

1 8 1 28 1 3

1 16 1 28 1 3

2 23 1 48 2 0

2 13 0 48 2 0

3 22 1 32 1 3

3 28 1 32 1 3

4 447 1 31 2 3

4 318 1 32 2 3

5 30 1 10 1 3

5 12 1 10 1 3

Notes: Time: recurrence time in days; status: 1 = infection 

occurs, 0 = censored; disease: 0 = GN, 1 = AN, 2 = PKD, 

3 = other; sex: 1 = male, 2 = female; age: age in years.
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The covs (or covsandwich) option on the proc statement invokes sand-
wich estimators and (aggregate) specifies that these are for the clus-
ters defined by the variable on the id statement. The results are shown in 
Table 16.14. The standard errors in the table are the sandwich estimates and 
the column headed ‘Std error ratio’ is the ratio of the sandwich estimator 
of an estimated regression coefficient to the corresponding model-based 
estimate. For some covariates, the sandwich estimators are smaller than the 
model-based estimates; for others, the reverse is the case. The only signifi-
cant regression coefficient is that for sex. The hazard for women is between 
10% and about 50% of that for males.

Analogous to the random-effects models for longitudinal data described in 
Chapter 13, random effects can be introduced into the Cox model to account 
for the likely dependence between time-to-event measures made on the same 
patient; again, conditional on the random effects, the observations are consid-
ered independent. For survival data, the random effects are usually known 
as frailties—a term first introduced by Vaupel, Manton, and Stallard (1993). 
Frailty models can be fitted to survival or other time-to-event data by what is 
known as a penalized partial likelihood approach, details of which are given in 
Therneau and Grambsch (2000) and Wienke (2010). Here, we content ourselves 
with an example of such models using the kidney patient data in Table 16.13.

The model that we shall fit to these data is as follows:

 = + β + β + β + β + β +h t h t ulog[ ( )] log[ ( )] Age Sex D D Dij i0 1 2 3 1 4 2 5 3  (16.19)

where
hij(t) is the hazard function of the jth recurrence time for the ith individual
D1, D2, and D3 are the three dummy variables used to code the four catego-

ries of disease
ui is the random effect or frailty associated with the ith individual

The random effects are assumed to have a normal distribution with zero 
mean and a variance that has to be estimated.

The random-effects model specified in (16.19) is applied using the follow-
ing SAS code:

proc phreg data=catheters ;
 class subject disease sex /ref=first;
 model time*status(0)=age sex disease / rl;
 random subject;
run;

The results are shown in Table 16.15. Some of the estimated standard errors 
of the estimated regression coefficients differ considerably from the sand-
wich estimates in Table  16.14, but the conclusion from the random-effects 
model is much the same—namely, that the hazard for women is between 
about 7% and 43% of that for men.
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TABLE 16.14

Results from a Cox’s Regression Fitted to Kidney Patient Data in Table 16.13, 

Ignoring the Repeated Measures Aspect of the Data

Test Chi-Square DF Pr > ChiSq
Likelihood Ratio 18.6342 5 0.0022
Score (Model Based) 21.2696 5 0.0007
Score (Sandwich) 10.9436 5 0.0525
Wald (Model Based) 20.9917 5 0.0008
Wald (Sandwich) 17.3897 5 0.0038

Type 3 Tests

Effect DF
Wald Chi-

Square Pr > ChiSq
Age 1  0.0787 0.7791
Sex 1 13.6093 0.0002
Disease 3  5.4722 0.1403

Analysis of Maximum Likelihood Estimates

Parameter DF
Parameter 

Estimate
Standard

Error
Std Error

Ratio Chi-Square Pr > ChiSq
Age 1  0.00199 0.00710 0.632  0.0787 0.7791
Sex 2 1 –1.51940 0.41186 1.142 13.6093 0.0002
Disease 1 1  0.28361 0.34419 0.909  0.6790 0.4099
Disease 2 1 –1.55571 0.90654 1.553  2.9450 0.0861
Disease 3 1 –0.15666 0.29053 0.705  0.2908 0.5897

Analysis of Maximum Likelihood Estimates

Parameter
Hazard

Ratio

95% Hazard
Ratio

Limits Label
Age 1.002 0.988 1.016
Sex 2 0.219 0.098 0.491 Sex 2
Disease 1 1.328 0.676 2.607 Disease 1
Disease 2 0.211 0.036 1.247 Disease 2
Disease 3 0.855 0.484 1.511 Disease 3
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TABLE 16.15

Results from Fitting Random-Effects Model to the Kidney Patient Data in Table 16.13

Covariance Parameter Estimates

Cov
Parm

REML
Estimate

Standard
Error

Subject 0.5923 0.3441

Type 3 Tests

Effect
Wald

Chi-Square DF Pr > ChiSq
Adjusted

DF
Adjusted

Pr > ChiSq
Age 0.0446 1 0.8328  0.4939 0.5710
Sex 13.8088 1 0.0002  0.5804 <.0001
Disease  4.3461 3 0.2264  1.6465 0.0821
Subject 20.2901 13.1557 0.0929

Analysis of Maximum Likelihood Estimates

Parameter DF
Parameter

Estimate
Standard

Error Chi-Square Pr > ChiSq
Age 1 0.00328 0.01554 0.0446 0.8328
Sex 2 1 –1.78528 0.48043 13.8088 0.0002
Disease 1 1 0.24241 0.53347 0.2065 0.6495
Disease 2 1 –1.32714 0.79317 2.7996 0.0943
Disease 3 1 –0.29545 0.56628 0.2722 0.6019

Analysis of Maximum Likelihood Estimates

Parameter
Hazard

Ratio

95% Hazard
Ratio

Limits Label
Age 1.003 0.973 1.034
Sex 2 0.168 0.065 0.430 Sex 2
Disease 1 1.274 0.448 3.625 Disease 1
Disease 2 0.265 0.056 1.255 Disease 2
Disease 3 0.744 0.245 2.258 Disease 3
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16.5 Summary

Survival analysis is the study of the distribution of times to some  terminating 
event (death, relapse, etc.). A distinguishing feature of survival data is the 
presence of censored observations, and this has led to the development of a 
wide range of methodologies for analysing survival times. Of the available 
methods, Cox’s regression, which allows the investigation of the effects of 
multiple covariates on the hazard function, is the most commonly applied. 
The model has been almost universally adopted by statisticians and applied 
researchers, primarily because it allows inferences about the regression 
coefficients without making any assumptions about the  baseline  hazard. 
Departures from the proportional hazards assumption that is  central 
to the model can often be accommodated by careful use of strata and by 
the inclusion of suitable time-varying covariates. Repeated measurement 
 time-to-event data can be dealt with by including random effects (frailties) 
in the Cox model.
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17
Bayesian Methods

17.1 Introduction

According to Everitt and Pickles (2004), Bayesian statistics were, until rela-
tively recently, little more than an intellectual curiosity, rich in conceptual 
insight but of little practical value when it came to actual data analysis. But 
in the first decade of the twenty-first century, Bayesian methods and appli-
cations have become an area of intense activity. The obvious question that 
arises is ‘why?’ But before we try to answer this, we need to get clear just 
what Bayesian methods are. In short, a Bayesian approach has been described 
in Spiegelhalter, Abrams, and Myles (2004) as ‘the explicit quantitative use 
of external evidence in the design, monitoring, analysis, interpretation and 
reporting of a health-care evaluation’.

To delve a little deeper into what this means, we must first return to consider 
the traditional frequentist analysis, which essentially treats each study (a clini-
cal trial, say) as if it were entirely novel; the trial usually is considered as being 
individually potentially decisive. Scientific progress may occur outside the nar-
row focus of this particular trial, but the numerical procedures themselves are 
not formulated to reflect the process of progressive learning or one in which 
the process itself involves costs and potential beliefs. By contrast, the focus of 
the Bayesian approach is one of progressive refinement of opinion as data from 
trials and other sources accumulate. This approach is illustrated in Figure 17.1.

Knowledge prior to a trial is synthesised and formally represented as a 
distribution over the parameter space of the problem (the prior distribution). 
The trial is undertaken. The data from the trial are then combined with the 
prior distribution to form a posterior distribution over the same parameter 
space, one that is hopefully more concentrated than the prior. The data col-
lected in the trial are used to update prior beliefs, as defined by parameter or 
effect distributions. If the prior distribution is diffuse and relatively uninfor-
mative, then it is likely that the Bayesian approach will lead to conclusions 
that are the same as or very similar to those given by the use of the routine 
procedures of the frequentist statistician.

But differences do occur and the advocates of Bayesian methods claim, 
with some justification, that their approach is often more flexible than 
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traditional methods as it can adapt to each unique situation. They may fur-
ther claim that the Bayesian process is more efficient in that it uses all the 
available evidence thought to be relevant. Finally, the Bayesian will say that 
his or her methodology is more useful in providing predictions and inputs 
for making decisions about individual patients and summarising evidence 
as direct probability statements that are clinically relevant.

17.2 Bayesian Estimation

Fundamental in both frequentist and Bayesian approaches to statistical 
inference and estimation is the likelihood function. For the frequentist, the 
likelihood summarises, for a given value of the unknown parameter(s), how 
plausible the observed data are. The Bayesian uses the likelihood function 
to obtain the probability distribution for the unknown parameter(s) condi-
tional on both the data and any background information summarised in the 
prior distribution. From a Bayesian perspective, both the observed data and 
the parameters of the model of interest are considered as random quanti-
ties. Letting D denote the observed data and Θ the model parameters, a joint 

Bayes’

Theorem

Prior Distribution

Data

Posterior Distribution

Decisions

Mean

Difference

Treatment

Difference

0

0

0

FIGURE 17.1
Conceptual framework for Bayesian analysis.
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probability distribution or full probability model P(D,Θ) is considered. This is 
decomposed into a prior distribution, P(Θ), for the parameters and a likeli-
hood, P(D|Θ), for which

 P(D,Θ) = P(D|Θ) P(Θ) (17.1)

Given data from a study (for example, a trial), the posterior distribution 
of the parameters, given the data P(D|Θ), is obtained by applying Bayes’s 
theorem as follows:

 P D
P P D

P P D
( | )

( ) ( | )

( ) ( | )∫
Θ = Θ Θ

Θ Θ
 (17.2)

Quantities calculated from this posterior distribution of the parameters 
form the basis of inference. Point estimates of parameters might be found by 
calculating the mean, median, or mode of a parameter posterior distribution, 
with parameter precision being estimated by the standard deviation or some 
suitable interquantile range, for example, from quantiles at p and 1 – p for a 
100(1 – 2p)% credible interval for a parameter. In general, such quantities, ƒ(Θ), 
will be estimated by their posterior expectation, given by

 E f D
f P P D d

P P D d
[ ( )| ]

( ) ( ) ( | )

( ) ( | )

∫
∫

Θ =
Θ Θ Θ Θ

Θ Θ Θ
 (17.3)

(When there is more than a single parameter, the integration in this equation 
will be, of course, a multiple integration.)

As a simple illustration of how Bayesian inference works, we will consider 
a sequence of Bernoulli trials where the single parameter, θ, is the probability 
of a ‘success’. We will assume that we can characterise any prior knowledge 
we have as to the likely value of θ in a particular type of prior distribution—
namely, a beta distribution with density function

 P( )
( ) (1 )

( ) ( )
, 0 1

1 1

θ = Γ α + β θ − θ
Γ α Γ β

≤ θ ≤
α− β−

 (17.4)

This density function has mean α/(α + β) and variance αβ/[(α + β)2(α + β + 1)]. 
Figure  17.2 shows four beta distributions. Symmetrical unimodal distri-
butions are obtained for α = β > 1, narrowing as their value increases and 
becoming asymmetrical when α does not equal β. The beta distribution is 
what is known as the conjugate prior for the Bernoulli parameter, which sim-
ply means that the posterior distribution is also a beta distribution, as we 
shall now demonstrate.
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In a sequence of n Bernoulli trials in which we observe r successes, the like-
lihood is proportional to θr(1 – θ)n–r. The posterior distribution is obtained by 
multiplying the prior distribution by the likelihood and standardising so 
that the result is an acceptable density function that integrates to one. The 
selection of a conjugate prior makes this straightforward and we obtain

 P(θ|r, n) ∝ θα+r+1 (1−θ) β+n−r−1 (17.5)

This is another beta distribution with parameters α* = α + r and β* = β + n – r.
The mean of the posterior distribution is (α + r)/(α + β + n); as α and β 

approach zero, corresponding to a prior distribution with the greatest pos-
sible variance, so too does the posterior mean approach r/n, the value that 
would be expected under maximum likelihood. As r and n increase rela-
tive to α and β, so too does the variance of the distribution approach the 
familiar (r/n)(1 – r/n)/n. Figure 17.2 shows a beta distribution with α = β = 6.5, 
the posterior distribution that would occur following the observation of six 
successes in 12 trials with the use of the reasonably uninformative prior in 
which α = β = 0.5 (which is also shown in Figure 17.2).

In this hypothetical example, the particular choice of likelihood and prior 
distribution allowed the required posterior mean to be calculated very sim-
ply. With examples encountered in practice, however, this is rarely possible 
and some other way is needed to tackle the numerical problems posed by 
the evaluation of the often high-dimensional integrals in (17.3). Much of 
Bayesian statistics over the last three decades has been concerned with either 
parameterising models such that the integrals simplify or with the use of 
approximate methods (Bernado and Smith 1994). Nowadays, the numerical 

α = 6.5

β = 6.5
α = 1/2

β = 1/2

α = 1

β = 1

f (p)

0 1
p

β = 4
α = 2

α = 8

β = 2

FIGURE 17.2
Four beta distributions.
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problems have largely been overcome by the use of Markov chain Monte Carlo 
(MCMC) methods.

17.3 Markov Chain Monte Carlo

The most direct way of using (17.3) to evaluate the posterior mean would be 
to carry out the necessary integrations. But this is usually very difficult to do 
either analytically or numerically. MCMC methods effectively allow genera-
tion of samples from the posterior distribution without requiring the distri-
bution explicitly. By simulating a large enough sample, the mean, variance of 
any other characteristic of the posterior distribution can be calculated to any 
degree of accuracy. For example, for a sample of m values of Θ from the pos-
terior distribution, we would estimate the expected value in (17.3) by simply 
taking the average—that is,

 E f D
m

f Dˆ[ ( )| ]
1

( | )i

i

m

1

∑Θ = Θ
=

 (17.6)

By simply increasing m, the precision of the estimation can be made accu-
rate as required. All that remains is to consider how the required samples are 
generated and the MCMC approach involves a cleverly constructed Markov 
chain (a sequence of random variables {θ(1),θ(2),…} such that θ(i) only depends 
on θ(i–1) and not on the rest of the random variables), the stationary distribu-
tion of which is precisely the required posterior distribution. The construc-
tion of a Markov chain with a stationary distribution that is the posterior 
distribution of interest is relatively straightforward and was initially pro-
posed by Metropolis et al. (1953) and generalised by Hastings (1970) and is 
now referred to as the Metropolis–Hastings algorithm.

One of the features of the MCMC method is that (in theory at least), 
regardless of where it is started, in the long run it tends to converge to 
the required stationary distribution. Application of the method involves 
what is known as a ‘burn-in’ period during which it is hoped that the sta-
tionary distribution is reached, followed by a period of monitoring during 
which sample values of the quantities of interest are recorded and tests of 
convergence are undertaken. Testing for convergence is no formality when 
using MCMC methods, as some of the material in Gilks, Richardson, and 
Spiegelhalter (1996) demonstrates. Questions that need to be addressed 
include

How long do we need to run the MCMC process to reach the poste-
rior distribution adequately?
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How can we tell if the MCMC process is ‘mixing’ well where a good 
chain will have rapid mixing if the stationary distribution is reached 
quickly from an arbitrary starting point?

An advantage of MCMC estimation is that the parameterisation Θ over 
which the Markov chain is defined does not constrain the list of quantities, 
ƒ(Θ), for which posterior distributions are monitored. Thus, Θ can be chosen 
for its statistical and estimation properties, while the ƒ(Θ) can be chosen for 
their scientific and clinical interest. The additional burden of adding a vari-
ety of functions of the parameters into the MCMC sampling cycle is rarely 
great. As an example, consider a study involving three drug treatments—A, 
B, and C—and a control treatment; a standard parameterisation would be a 
mean contrast for the effects of each drug relative to the control group.

We might, however, be more interested in the probability that the pair of 
drugs that perform best in some small trial actually contains the ‘best’ drug. 
This kind of information is extremely valuable in drug development but is 
not readily calculated from knowledge of the point estimates and covariance 
matrix of the standard parameters. It is, however, an extremely simple task to 
monitor the ranks of the effects of each treatment from each MCMC sample 
and then to obtain and estimate of their distribution, confidence intervals, etc.

We shall not give any of the technical details of MCMC here; for these, 
readers are referred to Gelman (1996), Roberts (1996), and Gilks et al. (1996).

17.4 Prior Distributions

The Bayesian approach just outlined gives a framework for updating beliefs or 
evidence. There are several possible types of prior distributions. The reference 
prior, for example, represents minimal prior information and is the least subjec-
tive; analyses based on this type of prior act as a useful baseline against which 
to compare analyses using other priors. An example would be the use of a uni-
form prior on the interval (0,1) for a binomial proportion. (Such priors are also 
termed uninformative: They have minimal impact on the posterior distribution.)

The clinical prior is intended to represent the current state of knowledge. 
Where possible, it should be based on good evidence, such as a meta-analysis 
of relevant randomised controlled trials. Where this is not possible, evidence 
from nonrandomised studies may be needed. Alternatively, subjective clini-
cal opinion may form the basis of a prior distribution. Elicitation of opinion 
can be carried out using techniques such as interviews or questionnaires (see, 
for example, Chaloner and Verdinelli 1995 and Chaloner 1996). Such a prior is 
often referred to as informative; an informative prior dominates the likelihood.

Next, the skeptical prior formalises the belief that large treatment differ-
ences are unlikely. This can be set up, for example, as having a mean of no 
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treatment effect and only a small probability of the effect achieving a clini-
cally relevant value. By contrast, the enthusiastic prior can be specified, for 
example, with a mean equivalent to a clinically relevant effect and only a 
small probability of no effect, or worse.

17.5 Model Selection When Using a Bayesian Approach

In applying Bayesian statistics to data, so-called Bayes factors are often used 
to choose between competing models. These factors provide a summary of 
the evidence given by the data D in favour of a model, M1, relative to another 
model, M0. Bayes factors are the ratio of the posterior to prior odds—that is,

 =B
P D M
P D M

( | )

( | )
10

1

0

 (17.7)

Twice the logarithm of B10 is on the same scale as the deviance and the 
likelihood ratio test statistic. The following is often helpful for interpreting 
values of Bayes factors:

2lnB10 Evidence for M1

<0 Negative (supports M0)

0–2.2 Not worth more than a bare mention

2.2–6 Positive

6–10 Strong

>10 Very strong

A further measure of fit when using a Bayesian approach to fit models is the 
deviance information criterion (DIC) suggested in Spiegelhalter et al. (2002). 
Lower values of the DIC indicate models that provide a better fit for the data.

In the next section, we will give some examples of the use of MCMC sam-
pling in applying the Bayesian approach.

17.6 Some Examples of the Application of Bayesian Statistics

17.6.1 Psychiatric ‘Caseness’

As our first example of the application of Bayesian statistics, we shall return 
to the example involving psychiatric caseness considered in Chapter 9. The 
logistic model we will consider is the following:

 Logit(Pr (being a case)|gender and GHQ score) = β0 + β1Sex + β2GHQ
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where the dummy variable, sex, takes the value one for men and zero for 
women.

In this model, β0 represents the logit of the probability of being a case 
for a woman with GHQ score of zero; if we assume an N(0,1) prior for β0, it 
implies that we expect about 95% of its values to lie approximately between 
exp(0 – 2 × 1)/[1 + exp(0 – 2 × 1)] = 0.12 and exp(0 + 2 × 1)/[1 + exp(0 + 2 × 1)] 
=  0.88, which seems reasonable. For β1 and β2, we will assume N(0,0.25) 
 priors. This implies that in both cases we expect most of the odd ratio val-

ues to be approximately between exp(0 – 2 × 0.25) = 0.37 and exp(0 + 2 × 

0.25 ) = 2.72.
Having decided on the priors, we can use proc genmod to apply a Bayesian 

analysis using MCMC for estimation. We begin by creating a small data set 
containing the information on the priors to be used. The data set has a vari-
able for each regression coefficient plus a variable, _type_ , to identify the 
type of prior being specified whose values can be ‘mean’, ‘var’ (variance), 
‘precision’ (inverse of the variance), and ‘cov’ (covariance):

data priors;
 input _type_ $ intercept female ghq;
datalines;
Mean 0 0 0
Var 1 .25 .25
;
ods graphics on;
proc genmod data=ghq;
  model cases/total=female ghq /dist=b link=logit;
  bayes seed=12345 cprior=normal(input=priors);
run;
ods graphics off;

The use of proc genmod for fitting generalised linear models was intro-
duced in Chapter 10. A Bayesian analysis is invoked with the bayes state-
ment and controlled with its options. Here we specify a seed for the random 
number generator used in the simulation and normal priors for the regres-
sion coefficients with values input from the data set just created. Enabling 
ODS graphics produces diagnostic plots for the MCMC sampling process.

The output is shown in Table 17.1. The default ‘burn-in’ of 2000 iterations 
followed by 10,000 MCMC iterations has been used. The results from using 
maximum likelihood to estimate the parameters are shown first; this dupli-
cates the results given in Chapter 9. The output provides the mean, standard 
deviation, and quartiles of the sampled values for each parameter in the 
model. In addition, the output gives the highest posterior density (HPD) inter-
val for each parameter (in this example, we have selected the 95% interval). 
This interval is such that 95% of the highest area of the posterior density is 
contained in the interval; in essence, the HPD is the Bayesian equivalent of 
the frequentist’s confidence interval.
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TABLE 17.1

Results from Bayesian Analysis of Data on Psychiatric Caseness

Bayesian Analysis

Model Information
Data Set WORK.GHQ
Burn-in Size 2000
MC Sample Size 10,000
Thinning 1
Sampling Algorithm ARMS
Distribution Binomial
Link Function Logit
Response Variable (Events) cases
Response Variable (Trials) total

Number of Observations Read 22

Number of Observations Used 22

Number of Events 68

Number of Trials 278

Ordered
Value

Binary
Outcome

Total
Frequency

1 Event 68
2 Nonevent 210

Algorithm converged.

Analysis of Maximum Likelihood Parameter Estimates

Parameter DF Estimate
Standard

Error

Wald 95%

Limits
Intercept 1 –3.4296 0.4627 –4.3365 –2.5227
female 1 0.9361 0.4343 0.0848 1.7874
ghq 1 0.7791 0.0990 0.5850 0.9732
Scale 0 1.0000 0.0000 1.0000 1.0000

Note:

(Continued)
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TABLE 17.1 (Continued)

Results from Bayesian Analysis of Data on Psychiatric Caseness

Bayesian Analysis

Independent Normal Prior

Parameter Mean Precision
Intercept 0 1
female 0 4
Ghq 0 4

Algorithm converged.

Initial Values of the Chain

Chain Seed Intercept female ghq
1 12345 –2.71835 0.339082 0.677575

Fit Statistics
DIC (smaller is better) 54.648
pD (effective number of parameters) 2.502

Bayesian Analysis

Posterior Summaries

Parameter N Mean
Standard 
Deviation

Percentiles

50% 75%
Intercept 10,000 –2.7568 0.3213 –2.9677 –2.7550 –2.5353
female 10,000 0.3380 0.2963 0.1380 0.3344 0.5367
ghq 10,000 0.6926 0.0857 0.6336 0.6909 0.7496

Posterior Intervals

Parameter Alpha
Equal-Tail

Interval HPD Interval
Intercept 0.050 –3.3993 –2.1461 –3.3749 –2.1262
female 0.050 –0.2472 0.9134 –0.2272 0.9252
ghq 0.050 0.5323 0.8654 0.5247 0.8567

Posterior Correlation Matrix

Parameter Intercept female ghq
Intercept 1.000 –0.647 –0.597
Female –0.647 1.000 0.101
Ghq –0.597 0.101 1.000
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TABLE 17.1 (Continued)

Results from Bayesian Analysis of Data on Psychiatric Caseness

Bayesian Analysis

Posterior Autocorrelations

Parameter Lag 1 Lag 5 Lag 10 Lag 50
Intercept 0.1116 0.0082 –0.0019 –0.0002
Female 0.0584 –0.0143 –0.0022 0.0089
Ghq 0.6859 0.1679 0.0526 –0.0268

Geweke Diagnostics

Parameter z Pr > | z |
Intercept 0.2823 0.7777
female –0.6851 0.4933
ghq –0.3550 0.7226

Effective Sample Sizes

Parameter ESS
Autocorrelation

Time
Intercept 6464.8 1.5468 0.6465
female 9277.2 1.0779 0.9277
ghq 1671.1 5.9842 0.1671
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For the regression coefficient of GHQ, the 95% confidence interval from 
maximum likelihood estimation, (0.58,0.97), is very similar to the HPD from 
the Bayesian analysis, (0.52,0.86), but the corresponding intervals for the 
regression coefficient for sex, (0.08,1.79) and (–0.227,0.93), are quite differ-
ent. In particular, the first suggests a significant effect for sex, with women 
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having an increased risk of being a case, as explained in Chapter 9. However, 
the HPD interval indicates that there is no evidence of a sex effect. For GHQ, 
the likelihood is ‘stronger’ than the prior, but for sex it is not.

Much of the remaining output in Table 17.1 provides diagnostics relat-
ing to the MCMC sampling process. For example, the autocorrelations and 
the effective sample size tell us something about the dependence structure 
of the sampling; if this is too strong, the effective sample size will be far 
lower than the nominal sample size set by the investigator. In this exam-
ple, the latter is 10,000 and the effective sample sizes for the parameters 
in the model range from 1,671 for GHQ to 9,277 for sex. The former gives 
perhaps some cause for concern and suggests that a larger sample size 
might be needed for satisfactory sampling for the corresponding param-
eter (we leave this to the reader as an exercise). The effective sample sizes 
reflect the posterior autocorrelations, which are larger for GHQ. The cause 
of autocorrelation is that the parameters in the model may be highly cor-
related, so the MCMC process will be slow to explore the entire posterior 
distribution.

The plots of iterations against sampled value of each variable are gener-
ally known as trace plots. Any apparent trends in these plots are a clear sign 
of nonconvergence and suggest that the MCMC process is not working as it 
should. In Table 17.1, the three trace plots give no cause for concern.

Geweke (1992) proposed a convergence diagnostic for MCMC sampling 
based on a test of the equality of the means of the first and last part of the 
Markov chain (by default, the first 10% and the last 50% are used). The 
Geweke diagnostics in Table 17.1 all have associated p-values much greater 
than 0.05 and again provide evidence that the MCMC procedure has con-
verged satisfactorily in this example.

To investigate how changing the prior distributions in the caseness exam-
ple alters the parameter estimates, we will now rerun the Bayesian analysis, 
in this case using N(0,0.50) priors β1 and β2. This now implies that in both 
cases we expect most of the odd ratio values to be approximately between 

exp(0 – 2 × 0.50 ) = 0.24 and exp(0 + 2 × 0.50) = 4.11. (We will again assume 
an N(0,1) prior for β0.) The required SAS code is

data priors;
 input_type_$ intercept female ghq;
datalines;
Mean 0 0 0
Var 1 .5 .5
;
ods graphics on;
proc genmod data=ghq;
  model cases/total=female ghq /dist=b link=logit;
  bayes seed=12345 cprior=normal(input=priors);
run;
ods graphics off;
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The edited output is shown in Table 17.2. We see that the HPD intervals in 
this table are similar to those in Table  17.1. Amongst the diagnostics, the 
Geweke statistic for GHQ is now significant and perhaps underlines the 
need to investigate the convergence of the MCMC process for this parameter 
in a little more detail (again, we leave this as an exercise for the reader).

TABLE 17.2

Edited Results from Second Bayesian Analysis of Caseness Data

Bayesian Analysis

Posterior Summaries

Parameter N Mean
Standard 
Deviation

Percentiles

50% 75%
Intercept 10,000 –2.8303 0.3395 –3.0528 –2.8235 –2.5975
female 10,000 0.4199 0.3275 0.1946 0.4183 0.6483
ghq 10,000 0.7027 0.0867 0.6427 0.7010 0.7593

Posterior Intervals

Parameter Alpha
Equal-Tail

Interval HPD Interval
Intercept 0.050 –3.5076 –2.1820 –3.5078 –2.1830
female 0.050 –0.2167 1.0602 –0.2395 1.0336
ghq 0.050 0.5403 0.8809 0.5263 0.8626

Bayesian Analysis

Posterior Autocorrelations

Parameter Lag 1 Lag 5 Lag 10 Lag 50
Intercept 0.1262 –0.0030 –0.0114 0.0008
female 0.0780 –0.0230 –0.0070 –0.0041
ghq 0.6868 0.1340 –0.0123 –0.0180

Geweke Diagnostics

Parameter z Pr > |z|
Intercept –1.9130 0.0557
female –0.0936 0.9254
Ghq 2.0280 0.0426 

Effective Sample Sizes

Parameter ESS
Autocorrelation

Time
Intercept 6902.8 1.4487 0.6903
female 8650.6 1.1560 0.8651
ghq 2098.7 4.7649 0.2099
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17.6.2 Cardiac Surgery in Babies

Our second example of the application of Bayesian statistics involves an 
example taken from Spiegelhalter et al. (1996). The data in this case are the 
number of cardiac surgery operations in babies performed in 12 UK hospi-
tals and the number of operations in each hospital that resulted in the death 
of the baby. The data are shown in Table 17.3. (These data are comprehen-
sively analysed in Spiegelhalter et al. 1996 using WinBUGS; here we replicate 
two of the WinBUGS analyses described there, using SAS.)

The data can be read in as follows:

data paeds;
input hospital $ operations deaths;
id=_n_;
datalines;
A  47  0
B 148 18
C 119  8
D 810 46
E 211  8
F 196 13
G 148  9
H 215 31
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I 207 14
J  97  8
K 256 29
L 360 24
;

For a small data set like this, we can use instream data and separate the 
values with spaces so that list input can be used. We will need a numeric 
identifier later, so this is created using the automatic SAS variable _n_.

We will fit two Bayesian models to the data: one fixed effects and one 
involving random effects. In the fixed-effects model, we assume that the 
number of deaths in a particular hospital, ri, has a binomial distribution with 
parameters (ni,pi) and that pi has a beta distribution with α = β = 1 as its prior. 
The required SAS code to fit the fixed-effects model is

proc mcmc data=paeds seed=123 nbi=1000 nmc=10000 
stats(percent=2.5 97.5);
 array pr[12];
 parms pr1-pr12;
 prior pr1-pr12 ~ beta(1,1);
 model deaths~binomial(operations,pr[id]);
ods output postsummaries=fixsum geweke=fgew;
run;

Proc mcmc is a general purpose procedure for fitting Bayesian models 
via MCMC simulation. In version 9.3 of SAS, relatively few procedures 
have  Bayesian capabilities. For models not covered by these proc mcmc 
may be used.

The proc statement used here, in addition to specifying the data set and 
the random seed, illustrates some of the most important options. The nbi 
option specifies the number of burn-in iterations and nmc the number of 
main iterations. The default for each of these is 1000. We increased the main 
iterations to 10,000 following the WinBUGS analysis. The stats option spec-
ifies the statistics to be calculated from the posterior samples (the mean is 
included by default).

TABLE 17.3

Cardiac Operations in 12 Hospitals

Hospital A B C D E F G H I J K L

No. of 

operations

47 148 119 810 211 196 148 215 207 97 256 360

No. of 

deaths

0 18 8 46 8 13 9 31 14 8 29 24

Source: Gilks, W. R., Richardson, S., and Spiegelhalter, D. J. (Eds.). 1996. Markov Chain Monte 
Carlo in Practice. London: Chapman and Hall.
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A typical proc mcmc step will consist of one or more parms statements, 
prior statements, a model statement, and some programming  statements. 
The parms statement declares the parameters to be estimated and, 
optionally, gives them starting values. The prior statement declares the 
prior distributions of the parameters and the model statement specifies the 
conditional distribution of the data given the parameters (i.e., the likelihood 
function). In this case, we also have an array statement, which is similar to 
the data step array statement. The form here is equivalent to array pr[12] 
pr1-pr12;.

In this model, we wish to estimate, for each of the 12 hospitals, the prob-
ability that an operation will result in death and the variables pr1-pr12 are 
for the 12 probabilities. As they are to be estimated by the procedure, they 
are declared on the parms statement. Starting values could also be given 
on the parms statement, although this is usually not necessary. The prior 
statement declares them to have a beta distribution with both parameters 
of the distribution being one. On the prior statement, the tilde character 
(~) separates the list of parameters from their distribution. The model state-
ment declares that the outcome (the numbers of deaths) follows a binomial 
distribution dependent on the number of operations and the hospital-specific 
probability of death. Using the pr array with the hospital id as the subscript 
ensures that separate probabilities are estimated. The ods output state-
ment saves the posterior summaries and Geweke statistics to data sets for 
later use.

To begin, we will look at the Geweke tests that assess the convergence 
of the MCMC process; these are given in Table 17.4. A number of these are 

TABLE 17.4

Geweke Statistics for the Fixed-Effects Model 

Fitted to the Data on Cardiac Surgery in 

Babies

Geweke Diagnostics

Parameter z Pr >| z |
pr1 1.2268 0.2199
pr2 1.6058 0.1083
pr3 –0.5262 0.5988
pr4 –1.6383 0.1014
pr5 –2.5808 0.0099
pr6 –0.1475 0.8828
pr7 –0.0189 0.9849
pr8 –2.6682 0.0076
pr9 1.8439 0.0652
pr10 5.6501 <.0001
pr11 1.2075 0.2272
pr12 0.3037 0.7613
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significant at the 5% level, indicating that the number of iterations allowed 
has not resulted in convergence.

We will now run the model again with 2000 burn-in iterations and then 
20,000 main iterations. But before looking at the results, we will describe how 
to fit the random-effects model; here, we assume that the logits of the prob-
ability of death for the hospitals follow a normal distribution with a popula-
tion mean and variance to be estimated. However, we want to have the results 
on the original scale, so we back-transform them within the proc mcmc step 
with some programming statements. The appropriate code is

 proc mcmc data=paeds seed=123 nbi=2000 nmc=20000 monitor=(pr) 
stats(percent=2.5 97.5);
  array pr[12];
  parms mu sigma;
  prior mu ~normal(0,v=100000);
  prior sigma~gamma(.001,is=.001);
  random bi ~ normal(mu,sd=sigma) subject=id;
  pi=logistic(bi);
  model deaths~binomial(operations,p=pi);
  pr[id] = pi;
ods output postsummaries=randsum geweke=rgew;
run;

The first difference to note from the previous example is the use of the 
monitor= option on the proc statement. This lists the variables for which 
we want output to be generated. The default output includes the parameters 
estimated by the model, but only those and not, for instance, any additional 
variables calculated. The monitor option can be used to extend or restrict 
the output generated. Here we do both. We would like the back-transformed 
estimates, so the array that will contain these is listed in parentheses. The 
population mean, mu, and standard deviation, sigma, of the random effects 
are parameters to be estimated and thus are mentioned in the parms and 
prior statements. They would normally be included in the output, but as 
they are not mentioned in the monitor option, they are excluded.

The random statement specifies that random effects are to be estimated—
one for each hospital (subject=id)—and that these are normally distributed 
with mean mu and standard deviation sigma. This generates 12 variables, 
bi1-bi12; to include these in the output, the random statement has its 
own monitor option. The following statement relates the probabilities to 
their logits (i.e., by the logistic function) and, after the model statement, the 
 hospital-specific probability is stored in the appropriate element of the array.

To make comparison of the results for the two models simple, these results 
are combined into a single table as follows:

data results;
  set fixsum(in=in1) randsum;
  set fgew rgew;
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 if in1 then Model='Fixed ';
    else Model='Random';
  mn=mean;
run;

proc tabulate data=results order=data f=8.3;
  class parameter model;
  var mn p25 p975 zscore pvalue;
  table parameter,
  model*((mn p25 p975 zscore )*sum='' 

pvalue*sum=''*f=pvalue6.3);
  label pvalue='p';
run;

For the four output data sets to be combined easily, they are all limited to 
the 12 probabilities, as ensured by the monitor option in the previous mcmc 
step. The mean is renamed to avoid confusion with the mean keyword in 
proc tabulate.

The results are shown in Table 17.5. Now the z-values of the Geweke sta-
tistics are all nonsignificant, indicating satisfactory convergence. The results 
from the fixed-effects and random-effects models can be compared graphi-
cally using the diagram shown in Figure 17.3.

To produce Figure 17.3, the summary statistics from the fixed- and random-
effects models are combined as separate variables in a single observation per 
hospital, rather than as separate observations, as was done for the summary 
table. We also need the hospital identifier, so the original data file is com-
bined with the summary statistics. This is done in a short data step with 
three set statements, although a single merge statement would have been 
equivalent. Where data sets are combined in this way without a common 
key, it is important to be sure that they are in the correct order and to check 
the results. The rename data set option is used to rename the summary 
variables.

The resulting data set is then sorted in order of the fixed-effect estimate. 
The sorted order is used for the y-value of the fixed effects and the ran-
dom effects are to be plotted just below. The x0 variable is for plotting the 
hospital identifiers. In the proc sgplot step, separate scatter plot state-
ments are used for the fixed and random estimates (means) and highlow 
plot statements to plot the intervals. The xerrorlower and xerrorupper 
options could have been used on the scatter statements, but the highlow 
plots produce a neater result. A third scatter statement is used to plot the 
hospital identifiers on the left. Finally, a reference line is added and the axes 
labelled:

data sumstats;
 set fixsum (rename=(mean=fmean p2_5=fp2_5 p97_5=fp97_5));
 set randsum(rename=(mean=rmean p2_5=rp2_5 p97_5=rp97_5));
 set paeds;
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run;
proc sort data=sumstats out=sumstats;
  by fmean;
run;
data sumstats;
  set sumstats;
  fy=_n_;
  ry=fy-.3;
  x0=-.01;
run;
proc sgplot data=sumstats noautolegend;
  scatter x=fmean y=fy / markerattrs=(symbol=circlefilled);
  scatter x=rmean y=ry / markerattrs=(symbol=circle);
   highlow y = fy high=fp97_5 low = fp2_5 / lineattrs =(pattern = 
solid);

  highlow y=ry high=rp97_5 low=rp2_5;
  scatter x=x0 y=fy / markerchar=hospital;
  refline .073 / axis=x;
  yaxis display=(noticks novalues) label='Hospital';
  xaxis label='Proportion of deaths';
run;
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FIGURE 17.3
Comparison of estimates from fixed- and random-effects models (fixed effects are filled 

 circles). (From Maxwell, S. E. and Delaney, H. D. 1990. Designing Experiments and Analysing 
Data. Belmont, CA: Wadsworth.)
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The main point to note in Figure  17.3 is that the random effects tend 
to be closer to their overall mean than the fixed effects, particularly the 
more  extreme ones. This ‘shrinkage’ effect is typical of random-effects 
models.

17.7 Summary

Hard-line opponents of Bayesian inference (the few that are left) reject the 
method because of the use of subjective prior distributions which, these 
opponents feel, have no place in scientific investigations in general and med-
ical investigations in particular. And there are Bayesians who think that the 
only defence of using non-Bayesian methods is incompetence. But a more 
sensible, pragmatic view for the applied statistician is to avoid the extremes 
of both the hard-line frequentist and the overly enthusiastic Bayesian and 
focus on scientific modelling where there are pros and cons for both schools 
of thought.

Amongst the pros for the Bayesian approach are that it can incorporate 
prior knowledge (a con, of course, from the frequentist perspective), it can 
estimate much more complex models than can a frequentist approach, HPD 
intervals are more intuitive than CIs, and it has fewer problems when deal-
ing with data containing missing data. Some of the cons are that Bayesian 
methods are perceived as more difficult to understand, it is computationally 
intensive, demonstrating the proper convergence of the MCMC sampling 
process is not always easy, and, lastly, the use of chosen prior distributions 
often needs to be defended. But in the twenty-first century, the use of Bayesian 
statistics has become widespread and even routine (almost); a conservative 
and (rightly) cautious body such as the US Food and Drug Administration 
(FDA) now welcomes Bayesian analysis of clinical trials. (Food and Drug 
Administration 2010) and is reported to have said that ‘Bayesian statistical 
methods could trim costs and boost efficiency’.

In this chapter we have been able only to give a brief account of a large and 
growing area; readers are referred to Carlin and Louis (2008) and Hoff (2009) 
for a full account of Bayesian methods.
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18
Missing Values

18.1 Introduction

Any well-designed study in medicine aims to draw a representative sample 
from the study population by following a sampling plan and a detailed pro-
tocol. But even the best laid plans can go a little wrong and, at the end of 
the study, some of the data that should have been collected are missing. In a 
sample survey, for example, some individuals may have refused to respond 
or have not been contactable, or some of the participants may have failed 
to answer particular items in a questionnaire. As we have already seen in 
Chapter 13, in longitudinal studies, data are often missing because subjects 
drop out prior to the end of the study.

Missing data can sometimes arise by design. For example, suppose one 
objective in a study of obesity is to estimate the distribution of a measure 
Y1 of body fat in the population and correlate it with other factors. As Y1 is 
expensive to measure, it can only be obtained for a limited sample, but a 
crude proxy measure, Y2 (for example, body mass index), can be obtained 
for a much larger sample. A useful design is to measure Y2 and a number of 
covariates for a large sample and Y1, Y2, and the same covariates for a smaller 
subsample. The subsample allows predictions of the missing values of Y1 to 
be generated for the larger sample using one or other of the methods we shall 
discuss later in the chapter, thus yielding more efficient estimates than are 
possible from the subsample alone (this example is taken from Little 2005).

Ignoring the situation when missing data are deliberate by design, the most 
important approach to the potential problems that missing data can cause is 
for the investigator to do his or her very best to avoid missing values in the first 
case. But despite the very best efforts of the investigator, some of the intended 
data will often be missing after data collection. In any research study, the 
intent of any analysis is to make valid inferences regarding a population of 
interest. Missing data threaten this goal if they are missing in a manner which 
makes the sample different from the population from which it was drawn—
that is, if the missing data create a biased sample. Therefore, it is important 
to respond to a missing data problem in a manner which, as far as possible, 
avoids this problem. It needs to be understood that, once data are missing, 
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it is impossible not to treat them because any subsequent procedure applied to 
the data set represents a response in some form to the missing data problem.

In this chapter, a number of ways of dealing with missing values will be 
discussed; however, as pointed out by Little (2005), a basic (but often hidden) 
assumption with all these methods is that ‘missingness’ of a particular value 
hides a ‘true’ underlying value that is meaningful for analysis. This appar-
ently obvious point is not always the case, however. For example, consider a 
longitudinal analysis of CD4 counts in a clinical trial with patients suffering 
from AIDS. For patients who leave the study because they move to a differ-
ent location, it makes sense to consider the CD4 counts that would have been 
recorded had they remained in the study. For subjects who die during the 
course of the study, it is less clear whether it is reasonable to consider CD4 
counts after time of death as missing values. In such a case, it may be prefer-
able to treat death as a primary outcome and restrict analysis of CD4 counts 
to patients who are alive.

18.2 Patterns of Missing Data

It is useful at the outset to distinguish different patterns of missing data. The 
simplest way to do this is first to introduce an nxp matrix Y without missing 

values, the ith row of which, ′yi = [yi1,yi2, …, yip], contains the values of all p 
variables for the ith subject and n is the number of subjects in the study. With 
missing values, the pattern is defined by the missing-data indicator matrix, 
M, which is also nxp and is such that mij = 1 if yij is missing and mij = 0 if yij is 
present. (The matrix M is sometimes called the shadow matrix; see Cook and 
Swayne 2007.)

One type of pattern is univariate nonresponse, in which missingness is 
confined to a single variable. Another type of pattern is monotone missing 
data, where the variables can be arranged so that yij + 1,yij + 2, … yip are miss-
ing for all  subjects where yij is missing for all j = 1,2, … p – 1. This pattern 
arises commonly in longitudinal data subject to attrition where, once a sub-
ject drops, out no more data are observed for the subject. Some methods 
for handling missing data apply to any pattern, whereas others assume a 
special pattern.

18.3 Missing Data Mechanisms

The missing-data mechanism concerns the reasons why values are missing, 
in particular whether these reasons relate to recorded (nonmissing) values 
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for a subject. A useful classification of mechanisms was first introduced by 
Rubin (1976). The type of mechanism involved has implications for which 
approaches to analysis are suitable and which are not. Rubin’s suggested 
classification involves three types of missing-data mechanism: missing com-
pletely at random, missing at random, and nonignorable.

Missing completely at random (MCAR). The missing-data mechanism when 
missingness does not depend on the values of the data values in Y, missing 
or observed (i.e., ƒ(M|Y,ϕ) = ƒ(M|ϕ), where ƒ(M|Y,ϕ) is the conditional distri-
bution of M given Y and ϕ is a vector of unknown parameters. Note that this 
assumption does not mean that the pattern itself is random, but only that 
missingness does not depend on either observed or unobserved data val-
ues. Consequently, the observed (nonmissing) values effectively constitute a 
simple random sample of the values for all subjects.

The classification of missing values as MCAR implies that Pr(missing
|observed,unobserved) = Pr(missing). Possible examples include missing 
laboratory measurements because of a dropped test tube (if it was not 
dropped because of the knowledge of any measurement), the accidental 
death of a participant in a study, or a participant moving to another area. 
Intermittent missing values in a longitudinal data set, whereby a patient 
misses a clinic visit for transitory reasons (‘went shopping instead’ or 
the like) can reasonably be assumed to be MCAR. When data are MCAR, 
missing values are no different from nonmissing values in terms of the 
analysis to be performed, and the only real penalty in failing to account 
for the missing data is loss of power. But MCAR is a strong assumption 
because missing does usually depend on at least the observed/recorded 
values.

Missing at random (MAR). The missing at random missing-value mecha-
nism occurs when the missingness depends only on observed values, Yobs, 
and not on values that are missing, Ymiss. That is, ƒ(M|Y,ϕ) = ƒ(M|Yobs,ϕ), for 
all Ymiss,ϕ. Here, missingness depends only on the observed data; the distri-
bution of future values for a subject who drops out at a particular time is 
the same as the distribution of the future values of a subject who remains 
in at that time, if they have the same covariates and the same past history 
of outcome up to and including the specific time point. In classifying miss-
ing values as MAR, we imply that Pr(missing|observed,unobserved) = 
Pr(missing|observed). This type of missing value is also called ignorable 
because conclusions based on likelihood methods are not affected by 
MAR data.

Murray and Findlay (1988) provide an example of this type of missing 
value from a study of hypertensive drugs in which the outcome measure 
was diastolic blood pressure. The protocol of the study specified that 
a participant was to be removed from the study when his or her blood 
pressure got too high. Here, blood pressure at the time of dropout was 
observed before the participant dropped out, so although the missing-
data  mechanism is not MCAR because it depends on the values of blood 
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pressure, it is MAR, because missingness depends only on the observed 
part of the data.

A further example of a MAR mechanism provided by Heitjan (1997) 
involves a study in which the response measure is body mass index (BMI). 
Suppose that the measure is missing because subjects who had high body 
mass index values at earlier visits avoided being measured at later visits out 
of embarrassment, regardless of whether they had gained or lost weight in 
the intervening period. The missing values here are MAR but not MCAR; 
consequently, methods applied to the data that assumed the latter might give 
misleading results (see later discussion). In this case, missing data depend on 
known values and thus are described fully by variables observed in the data 
set. Accounting for the values which ‘cause’ the missing data will produce 
unbiased results in an analysis.

Nonignorable (sometimes referred to as informative). The final type of drop-
out mechanism is one where the missingness depends on the unrecorded 
missing values. Observations are likely to be missing when the outcome 
values that would have been observed had the patient not dropped out are 
systematically higher or lower than usual (corresponding perhaps to the 
patient’s condition becoming worse or improving). An example is a partici-
pant dropping out of a longitudinal study when his or her blood pressure 
became very high and this value was not observed, or when pain becomes 
intolerable and the associated pain value is not recorded. And in the BMI 
example, if subjects were more likely to avoid being measured if they had 
put on extra weight since the last visit, then the data are nonignorably 
missing.

Dealing with data containing missing values that result from this type 
of missing-data mechanism is difficult. The correct analyses for such data 
must estimate the dependence of the missingness probability on the miss-
ing values. Models and software that attempt this are available (see, for 
example, Diggle and Kenward 1994) but their use is not routine. In addi-
tion, it must be remembered that the associated parameter estimates can be 
unreliable.

18.4 Exploring Missingness

Before considering how to deal with the missing value problem, it is usually 
helpful to explore the distribution of missing values and to try to determine 
whether they appear to occur randomly or whether there is any indication 
that there is some relationship between the occurrence of missing values on 
one variable and the recorded values for some other variable or variables. In 
this section, we shall illustrate some possible approaches to exploring miss-
ingness using the data shown in Table 18.1. These data, which relate to air 
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TABLE 18.1

Air Pollution in 41 US Cities

City SO2 Temp Manu Pop Wind Precip Days

Phoenix 10 70.3 213 582 6 7.05 36

Little Rock 13 61.0 91 132 48.52

San Francisco 56.7 453 716 8.7 20.66 67

Denver 17 51.9 454 515 9 12.95 86

Hartford 56 49.1 412 158 43.37 127

Wilmington 36 54.0 80 40.25 114

Washington 29 57.3 434 757 9.3 38.89 111

Jacksonville 14 68.4 136 529 8.8 54.47 116

Miami 10 75.5 207 335 9.0 59.8 128

Atlanta 24 61.5 368 497 9.1 48.34 115

Chicago 110 50.6 3344 3369 10.4 34.44 122

Indianapolis 28 52.3 361 746 9.7 38.74 121

Des Moines 49 104 201 30.85

Wichita 56.6 277 12.7 30.58 82

Louisville 30 55.6 291 593 8.3 43.11 123

New Orleans 9 68.3 204 361 8.4 56.77 113

Baltimore 47 55 625 905 9.6 41.31 111

Detroit 35 49.9 1064 1513 10.1 30.96 129

Minneapolis 29 43.5 699 744 10.6 25.94 137

Kansas 381 507 10 37 99

St. Louis 56 55.9 775 622 9.5 35.89 105

Omaha 14 51.5 181 347 10.9 30.18

Albuquerque 11 56.8 46 244 8.9 7.77

Albany 46 47.6 44 116 33.36

Buffalo 11 47.1 463 12.4 36.11 166

Cincinnati 54 462 453 7.1 39.04 132

Cleveland 65 49.7 1007 751 10.9 34.99 155

Columbus 26 51.5 266 540 8.6 37.01 134

Philadelphia 69 54.6 1692 1950 9.6 39.93 115

Pittsburgh 61 50.4 347 520 9.4 36.22 147

Providence 50 343 179 . 42.75 125

Memphis 10 61.6 337 624 9.2 49.1 105

Nashville 18 59.4 275 448 7.9 46 119

Dallas 9 66.2 641 844 10.9 35.94 78

Houston 10 68.9 721 1233 10.8 48.19 103

Salt Lake City 28 51 137 176 15.17 89

Norfolk 31 59.3 96 308 10.6 44.68 116

Richmond 26 57.8 197 299 7.6 42.59 115

Seattle 29 51.1 379 531 9.4 38.79 164

(Continued)
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pollution in 41 US cities, are based on the complete data set given in Sokal 
and Rohlf (1981) and in Hand et al. (1994); a number of the observed values 
have been set to missing.

We begin by constructing the shadow matrix for the data using the 
following SAS code:

data usair;
  infile 'c:\amsus\data\usairmiss.dat' expandtabs;
  input city $16. so2 Temp Manu Pop Wind Precip Days;
run;

data usair;
  set usair;
  array xs {*} So2 Temp Manu Pop Wind Precip Days;
   array mx {*} m_so2 m_Temp m_Manu m_Pop m_Wind m_Precip 
m_Days;

  do i=1 to 7;
   if xs{i}=. then mx{i}=1;
              else mx{i}=0;
  end;
  nmvars=nmiss(of so2--days);
run;
proc print data=usair noobs;
 var city m_so2--m_days;
run;

The data are initially read in using list input, but with the format modified 
for city, as some of the city names are longer than the default of eight charac-
ters and can contain spaces. A second data step creates a set of seven indicator 
variables corresponding to the seven measured variables, which are assigned 
the value one if the measured variable is missing and zero if it is not. This is 
done with two arrays and an iterative do loop. The second array statement has 
the effect of creating the named variables. The nmiss function is also used to 
determine how many of the seven measured variables are missing for each city.

The resulting shadow matrix is shown in Table 18.2. In this binary matrix, 
one represents a missing value and zero a recorded value. It is easier to see 

TABLE 18.1 (Continued)

Air Pollution in 41 US Cities

City SO2 Temp Manu Pop Wind Precip Days

Charleston 31 55.2 35 71 40.75

Milwaukee 16 45.7 569 717 11.8 29.07 123

Notes: SO2: sulphur dioxide of air in micrograms per cubic metre; temp: average annual tem-

perature in Fahrenheit; manu: number of manufacturing enterprises employing 20 or 

more workers; pop: population size in thousands; wind: average annual wind speed in 

miles per hour; precip: average annual precipitation in inches; days: average number of 

days with precipitation per year.
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TABLE 18.2

Shadow Matrix for Air Pollution Data

City m_Temp m_Manu m_Pop m_Wind m_Precip m_Days
Phoenix 0 0 0 0 0 0 0
Little Rock 0 0 0 0 1 0 1
San Francisco 1 0 0 0 0 0 0
Denver 0 0 0 0 0 0 0
Hartford 0 0 0 0 1 0 0
Wilmington 0 0 1 0 1 0 0
Washington 0 0 0 0 0 0 0
Jacksonville 0 0 0 0 0 0 0
Miami 0 0 0 0 0 0 0
Atlanta 0 0 0 0 0 0 0
Chicago 0 0 0 0 0 0 0
Indianapolis 0 0 0 0 0 0 0
Des Moines 1 0 0 0 1 0 1
Wichita 1 0 1 0 0 0 0
Louisville 0 0 0 0 0 0 0
New Orleans 0 0 0 0 0 0 0
Baltimore 0 0 0 0 0 0 0
Detroit 0 0 0 0 0 0 0
Minneapolis 0 0 0 0 0 0 0
Kansas 1 1 0 0 0 0 0
St. Louis 0 0 0 0 0 0 0
Omaha 0 0 0 0 0 0 1
Albuquerque 0 0 0 0 0 0 1
Albany 0 0 0 0 1 0 1
Buffalo 0 0 1 0 0 0 0
Cincinnati 1 0 0 0 0 0 0
Cleveland 0 0 0 0 0 0 0
Columbus 0 0 0 0 0 0 0
Philadelphia 0 0 0 0 0 0 0
Pittsburgh 0 0 0 0 0 0 0
Providence 1 0 0 0 1 0 0
Memphis 0 0 0 0 0 0 0
Nashville 0 0 0 0 0 0 0
Dallas 0 0 0 0 0 0 0
Houston 0 0 0 0 0 0 0
Salt Lake City 0 0 0 0 1 0 0
Norfolk 0 0 0 0 0 0 0
Richmond 0 0 0 0 0 0 0
Seattle 0 0 0 0 0 0 0
Charleston 0 0 0 0 1 0 1
Milwaukee 0 0 0 0 0 0 0
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the positions of the missing values in this table and to consider their distri-
bution apart from the data values.

In addition to the means of the observed values of each variable and the 
number of observations on which each mean is based, proc means can give 
the number of missing values. When specific statistics are requested on 
the proc means statement, only those will be output so that even the sta-
tistics which would otherwise be produced need to be specified explicitly, 
if required. We also use the maxdec option to limit the number of decimal 
places for the output:

proc means data=usair n nmiss mean std min max maxdec=2;
 var so2 -- Days;
run;

The resulting means, etc. are shown in Table 18.3. We shall return to these 
values later.

A variation on the shadow matrix can be produced directly from proc mi 
as follows:

proc mi data=usair nimpute=0;
var so2 -- Days;
run;

The resulting table is shown in Table  18.4. Here the frequencies of each 
pattern of missing values are given; for example, there are 26 cities with no 
missing value, 2 cities where days is missing, etc.

In longitudinal data where dropout occurs, Carpenter, Pocock, and 
Lamm (2002) suggest a relatively simple plot for assessing whether drop-
out is not completely at random. Values of the response variable for the 
subjects in each treatment group are plotted at each time point (includ-
ing prerandomisation), differentiating those who do and those who do 
not attend their next scheduled visit on the plot between two categories 

TABLE 18.3

Means of the Observed Values of the Data in Table 18.1

Variable N
N

Miss Mean Std Dev Minimum Maximum
SO2 35 6 30.40 22.13 9.00 110.00
Temp 40 1 55.80 7.32 43.50 75.50
Manu 38 3 483.97 579.31 35.00 3344.00
Pop 41 0 608.61 579.11 71.00 3369.00
Wind 33 8 9.55 1.43 6.00 12.70
Precip 41 0 36.77 11.77 7.05 59.80
Days 35 6 115.09 25.87 36.00 166.00
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of subject. Any clear difference between the distributions of values for 
‘attenders’ and ‘nonattenders’ indicates that the missingness in the data is 
not MCAR. This type of plot can be illustrated on the ‘Beat the Blues’ data 
given in Chapter 13 (see Table 13.6). The following SAS code constructs the 
required plot:

data btb  (keep=sub--treatment BDIpre--BDI8m)
     btbl (keep=sub--treatment bdi time);
 infile 'c:\amsus\data\btb.dat' missover;
  array bdis {*} BDIpre BDI2m BDI3m BDI5m BDI8m;
  array t {*} t1-t5 (0 2 3 5 8);
  input sub drug$ Duration$ Treatment$ @;
 do i=1 to 5;
   input bdi @;
   bdis{i}=bdi;
   time=t{i}; * three lines added below;
   if time<8 and bdis{i+1}~=. then next=1;
   else next=0;
   nexttime=time-.1+next*.2;
   if bdi~=. then output btbl;
 end;
 output btb;
run;
proc sgpanel data=btbl;
   panelby treatment / rows=2 spacing=10;
   scatter y=bdi x=nexttime / group=next;
   colaxis label='time';
   where time<8;
run;

TABLE 18.4

Missing Data Patterns

Group SO Temp Manu Pop Wind Precip Days Freq Percent
1 X X X X X X X 26 63.41
2 X X X X X X 2 4.88
3 X X X X X X 2 4.88
4 X X X X X 3 7.32
5 X X X X X X 1 2.44
6 X X X X X 1 2.44
7 X X X X X X 2 4.88
8 X X X X X 1 2.44
9 X X X X 1 2.44

10 X X X X X 1 2.44
11 X X X X X 1 2.44
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The data are read in as described in Chapter 13, with three lines added 
to calculate two new variables: next with values 1 or 0 to indicate whether 
the patient did or did not attend the following time point and nexttime to 
allow the depression scores to be plotted separately.

The resulting plot is shown in Figure 18.1. Comparing the distribution of 
BDI values for patients who do (circles) and do not (pluses) attend the next 
scheduled visit, there is no apparent difference. Thus, it is probably reason-
able to assume dropout is completely random, which has implications for 
which types of analyses are appropriate for these data.
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FIGURE 18.1
Distribution of BDI values for patients who do (circles) and do not (pluses) attend the next 

scheduled visit.
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18.5 Dealing with Missing Values

There are three major approaches to dealing with missing values:

Discard incomplete cases and analyse the remainder.

Impute or fill in missing values and then analyse the filled-in data.

Analyse the incomplete data by a method that does not require a 
complete (that is, rectangular) data set. This is the approach used 
when using maximum likelihood to estimate parameters in longi-
tudinal data models as described in Chapter 14; this leads to valid 
inferences on the parameters in the model being applied when the 
missing-data mechanism is MAR.

In this chapter, the emphasis will be on imputation, but before describing 
the methods available, we need to say a little about the first approach in the 
preceding list.

A common approach to dealing with missing data in a study is 
 complete-case  analysis, where incomplete cases (cases with any miss-
ing value) are discarded and standard analysis methods applied to the 
remaining complete cases. In many statistical packages, this is the default 
approach. When the missing data are MCAR, the complete cases are a 
 random  subsample of the original sample and complete-case analysis 
 provides valid inferences, but when there is a substantial proportion of 
incomplete cases, the method can be very inefficient and lead to a reduction 
of statistical power. If the missing data are not MCAR, then the complete 
cases are a biased sample and complete-case analysis can be misleading 
to a degree depending on the amount of missing data and the size of the 
departure from MCAR.

A simple alternative to complete-case analysis that is often used is 
available-case analysis. This is a method that uses all the cases available for 
estimating each quantity of interest. For example, all the cases that have 
recorded value for a pair of variables would be used to estimate the correla-
tion between the variables. Clearly, available-case analysis makes more use 
of the available information in the data than the complete-case approach. 
But the method is not problem free; in our example, the sample base changes 
from correlation to correlation, and there is no guarantee that the result-
ing correlation matrix is positive definite. In addition, the available-case 
approach creates potential problems when the missing-data mechanism is 
not MCAR.

The possible serious drawbacks of using listwise deletion or complete case 
analysis are discussed in Schafer and Graham (2002).
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18.6 Imputing Missing Values

An ancient (almost) and still often used technique for handling missing 
data is to impute (i.e., fill in) some value for each missing data point. This 
results in a complete data set so that standard methods of analysis can be 
applied. Perhaps the most frequently used method for obtaining the ‘fill-in 
value’ is to use the relevant sample mean obtained from the observed data. 
This is easy to apply but is poor because it is well known to lead, in general, 
to biased inferences. In addition, because the same value is being substi-
tuted for each missing observation, this approach artificially reduces the 
variance of the variable in question and also diminishes relationships with 
other variables.

An improvement is conditional mean imputation, in which each missing 
value is replaced by an estimate of its conditional mean given the values 
of the nonmissing values in the data, found via the prediction equation 
that results from the regression on the recorded values of a variable on 
the recorded values of the other variables in the data set. Although condi-
tional mean imputation yields best predictions of the missing values in the 
sense of mean squared error, it leads to distorted estimates of quantities 
that are not linear in the data—for example, percentiles, variances, and 
correlations.

Other improved methods are available, but single imputation (i.e., imput-
ing one value for each missing datum by whatever method) fails to satisfy 
statistical objectives concerning the validity of resulting inferences based on 
the filled-in data. Because a single imputed value cannot reflect any of the 
uncertainty about the true underlying value, analyses that treat imputed val-
ues just like observed values systematically underestimate uncertainty (see 
Barnard, Rubin, and Schenker 2005). Consequently, imputing a single value 
for each missing datum and then analysing the filled-in data using standard 
techniques for complete data will result in standard error estimates that are 
too small, confidence intervals that fail to attain their nominal coverage, and 
p-values that are too significant.

The problems of single imputation are largely overcome by the use of mul-
tiple imputation, which is an approach to the missing values problem that 
allows the investigator to obtain valid assessments of uncertainty. The basic 
idea of multiple imputation is to impute two or more times for the missing 
data using independent draws of the missing values from a distribution that 
is appropriate under assumptions made about the data and the missing-data 
mechanism. The resulting multiple data sets are then each analysed using 
the standard method appropriate for answering the questions of interest 
about the data. The analyses are then combined in a simple way that reflects 
the extra uncertainty due to having imputed rather than all the planned data 
being recorded. Multiple imputations can be created under a number of dif-
ferent models and details are given in Rubin and Schenker (1991). But the 
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theoretical motivation for multiple imputation is Bayesian and the following 
brief account follows Barnard et al. (2005).

We begin by letting Q be the population quantity of interest. If all the data 
have been observed, then estimates of and inferences for Q would have been 
based on the complete-data posterior density p(Q|Yobs,Ymiss). But because Ymiss 
is not observed, inferences, etc. have to be based on the actual posterior den-
sity, p(Q|Yobs), which can be written as

 ∫=p Q p Q p dY Y Y Y Y Y( | ) ( | , ) ( | )obs obs miss miss obs miss  (18.1)

The preceding equation shows that the actual posterior density of Q can 
be obtained by averaging the complete posterior density over the poste-
rior predictive distribution of Ymiss. In principle, multiple imputations are 
repeated independent draws from p(Q|Ymiss,Yobs). Thus, multiple imputation 
allows approximating (18.1) by separately analysing each data set completed 
by imputation and then combining the results of the separate analyses. 
Schafer (1997, Chapter 30) has developed algorithms that use the MCMC 
approach and allow multiple imputation when there are arbitrary patterns 
of missing data and the missing data mechanism is ignorable (i.e., MCAR 
or MAR).

The question of how many imputations (m) is an obvious one that needs 
to be considered. In most cases, a value for m between 3 and 10 is suggested. 
Intuitively, this seems rather small, but Rubin (1987) shows that the efficiency 

of an estimate based on m imputations is approximately + γ⎛
⎝⎜

⎞
⎠⎟
−

m
1

1

, where γ 

is the rate of missing information for the quantity being estimated. The effi-
ciencies achieved for various values of m and rates of missing information 
are shown here:

γ
m 0.1 0.3 0.5 0.7 0.9
3 97 91 86 81 77

5 98 94 91 88 85

10 99 97 95 93 92

20 100 99 98 97 96

Unless the rate of missing information is very high, there is, in most cases, 
little advantage to producing and analysing more than a few imputed data 
sets. White, Royston, and Wood (2011) give a conservative rule of thumb that 
m should be set equal to the percentage of incomplete cases based on the 
argument that repeat analyses yield the same result.
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18.7 Analysing Multiply Imputed Data

From the analysis of each data set, we need to look at the estimates of the 

quantity of interest and the standard errors of the estimates. We let Q̂i be  
the estimate from the ith data set and Si its corresponding standard error. 
The combined estimate of the quantity of interest is

 ∑=
=

Q
m

Q
1 ˆ

i

i

m

1

 (18.2)

To find the combined standard error involves first calculating the within-
imputation variance, S

 ∑=
=
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i

i

m

1

 (18.3)

followed by the between-imputation variance, B

 ∑=
−

−
=

B
m

Q Q
1

1
( ˆ )i

i

m

1

2  (18.4)

The required total variance can now be found from

 T S
m

B= + +⎛
⎝⎜

⎞
⎠⎟1

1
 (18.5)

This total variance is made up of two components; the first, which pre-
serves the natural variability, S, is simply the average of the variance esti-
mates for each imputed data set and is analogous to the variance that would 
be suitable if we did not need to account for missing data. The second com-
ponent, B, estimates uncertainty caused by missing data by measuring how 
the point estimates vary from data set to data set.

The overall standard error is simply the square root of T. Significance test 
for Q and confidence intervals are found in the usual way from a Student’s 
t-distribution with degrees of freedom given by

 df m
mS

m B
= − +

+
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( )
1 1

11

2

 (18.6)

See Schafer (1997) for more details.
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18.8 Some Examples of the Application of Multiple Imputation

There are a number of variations of multiple imputation available in SAS; the 
method of choice largely depends on the type of missing data patterns. For 
example, for monotone missing data, a parametric regression method that 
assumes multivariate normality is used. But in the examples in this section, 
we shall use the MCMC approach as it can be applied to data with an arbi-
trary pattern of missing values.

18.8.1 Air Pollution in US Cities

As a simple example of the application of multiple imputation, we shall deter-
mine the average sulphur dioxide level for the data in Table 18.1. We shall use 
10 imputations. The required SAS code to generate the required imputations, 
find the estimate of the mean, and the variance of this estimate as given in 
(18.4) is as follows:

proc mi data=usair out=usimp nimpute=10 minimum=0 seed=123 
noprint;
 var so2 -- Days;
 mcmc;
run;
proc means data=usimp;
 var so2;
 by _imputation_;
 output out=mimpout mean=so2 stderr=sso2;
run;
proc mianalyze data=mimpout edf=40;
   modeleffects so2;
   stderr sso2;
run;

In addition to describing the pattern of missing data, as we saw previously, 
proc mi creates multiply imputed data sets. This example illustrates some 
of the most commonly used options. The out option names the data set that 
contains the imputed data. This data set also contains the variable _impu-
tation_, which identifies the separate imputations. The nimpute option 
specifies the number of imputations to be made. With nimpute=0, proc mi 
can be used simply to describe the pattern of missing values in the data, as 
in the earlier example. The minimum option sets a minimum for the imputed 
values. In the case of the air pollution data, negative values for any of the 
variables would not be possible, so we have set a minimum value of zero for 
all of them. If we wished to set a different minimum for each variable, we 
would list these on the minimum option in the same order as the correspond-
ing variables are listed on the var statement.
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To impose minima for some variables and not others, a dot is included in 
the list for variables that are not to be restricted. Maximum values could also 
be imposed on the imputations in the same way with the maximum option. 
The seed option to set the random number seed is useful if we want the 
results to be reproducible. As we are now only interested in the imputed data, 
the noprint option is used to suppress the output. The MCMC method for 
arbitrary missing data patterns is invoked by including the mcmc statement.

The proc means step calculates the mean so2 value and its standard 
error for each imputation and outputs these to a data set, mimpout. Then, 
proc mianalyze is used to apply Rubin’s rules in order to combine the results 
from the separate imputations. The edf option is used to specify the degrees of 
freedom (N – 1 in this case). The effects to be summarised are specified with the 
modeleffects statement, which is the mean so2 value, also named so2, and 
the stderr statement specifies the variable that  contains its standard error.

The means of sulphur dioxide concentration for each of the 10 imputed 
data sets are shown in Table 18.5 and the relevant variances, etc. are given in 
Table 18.6. Here the mean from the observed values, 30.40, is quite similar to 
the mean from using multiple imputation, 31.13. The relative increase in vari-
ance is simply the proportion of the total variance in the imputed data that is 
due to the between-imputation variance—namely, in this example, .44/11.6, 
about 4%; this is the proportion of the uncertainty due to the missing data.

The main interest in the air pollution data is using multiple regression to 
find which of the six explanatory variables are predictive of sulphur diox-
ide concentration. The SAS code for using multiple regression with multiple 
imputation of the missing values is as follows:

proc reg data=usimp outest=rout covout noprint;
  model so2=Temp -- Days;
  by _imputation_;
run;

proc mianalyze data=rout edf=34;
 modeleffects intercept Temp Manu Pop Wind Precip Days;
run;

Proc reg is used to analyse the imputed data set. The outest option 
saves the parameter estimates to the rout data set and the covout option 
includes the covariance matrix of the parameter estimates in the same data set. 
The printed output is not needed, so the noprint option is included. The by 
statement ensures that each imputation is analysed separately.
Proc mianalyze reads the parameter estimates and their covariance matrix 

from the rout data set, applies Rubin’s rules, and outputs the results for those 
effects listed on the modeleffects statement. If any of the effects were cat-
egorical, they would also need to be listed on a class statement. In this case, 
the edf option on the proc statement specifies the degrees of freedom as 34—
that is, N = 41 minus the seven effects. The results are shown in Table 18.7.
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TABLE 18.5

Mean Sulphur Dioxide Values for 10 Imputed Samples

Analysis Variable: SO

Imputation
Number

N
obs Mean Minimum Maximum

1 41 31.69 9.00 110.00
2 41 32.31 9.00 110.00
3 41 31.30 9.00 110.00
4 41 30.40 9.00 110.00
5 41 30.47 9.00 110.00
6 41 30.74 9.00 110.00
7 41 30.43 3.13 110.00
8 41 31.69 9.00 110.00
9 41 30.76 9.00 110.00

10 41 31.55 9.00 110.00

TABLE 18.6

Variance Information for Mean Sulphur Dioxide Concentration Calculated from 

10 Imputed Samples

The MIANALYZE Procedure
Model Information

Data Set WORK.MIMPOUT
Number of Imputations 10

Variance Information

Parameter

Variance

DFBetween Within Total
SO2 0.440735 11.120135 11.604944 36.289

Variance Information

Parameter

Relative
Increase

in Variance

Fraction
Missing

Information
Relative 

SO2 0.043597 0.042147 0.995803

Parameter Estimates
Parameter Estimate Std Error DF
SO2 31.134246 3.406603 24.22724 38.04125 36.289

Parameter Estimates

Parameter Minimum Maximum Theta0
t for H0:

Pr > |t|
SO2 30.404072 32.310421 0 9.14 <.0001
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TABLE 18.7

Results of a Multiple Regression Analysis of the Air Pollution Data Using Multiple 

Imputation to Deal with the Missing Values

The MIANALYZE Procedure
Model Information

Data Set WORK.ROUT
Number of Imputations 10

Variance Information
Variance

Parameter Between Within Total DF
Intercept 611.408115 1250.572511 1923.121438 16.286
Temp 0.079461 0.224372 0.311779 19.254
Manu 0.000028009 0.000135 0.000166 23.78
Pop 0.000032980 0.000123 0.000159 21.722
Wind 0.941273 1.993658 3.029058 16.605
Precip 0.031276 0.077970 0.112374 18.107
Days 0.010854 0.015956 0.027895 13.385

Variance Information
Parameter Relative

Increase
in Variance

Fraction
Missing

Information

Relative 

Intercept 0.537793 0.366699 0.964627
Temp 0.389565 0.292599 0.971572
Manu 0.228697 0.192324 0.981131
Pop 0.295110 0.236623 0.976885
Wind 0.519347 0.358271 0.965412
Precip 0.441241 0.320167 0.968977
Days 0.748252 0.449945 0.956943

Parameter Estimates
Parameter Estimate Std Error DF
Intercept 123.791333 43.853409 30.95871 216.6240 16.286
Temp –1.252874 0.558372 –2.42052 –0.0852 19.254
Manu 0.057770 0.012866 0.03120 0.0843 23.78
Pop –0.032227 0.012618 –0.05841 –0.0060 21.722
Wind –4.214070 1.740419 –7.89270 –0.5354 16.605
Precip 0.395652 0.335222 –0.30832 1.0996 18.107
Days –0.038813 0.167019 –0.39858 0.3210 13.385

Parameter Estimates
Parameter Minimum Maximum Theta0 t for H0: Pr > |t|

Intercept 91.238007 178.146640 0 2.82 0.0121
Temp –1.839059 –0.820414 0 –2.24 0.0368
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We can compare the results given in Table 18.7 with the results of applying 
multiple regression to the air pollution data using only complete cases (of 
which there are 26). The necessary SAS code is

proc reg data=usair;
  model so2=Temp -- Days;
run;

The results are shown in Table 18.8.
And in this example we can also get the multiple regression results from 

the available complete data set as given in Hand et al. (1994) using the follow-
ing SAS code:

data usairfull;
  infile 'c:\amsus\data\usairfull.dat' expandtabs;
  input city $16. so2 Temp Manu Pop Wind Precip Days;
run;
proc reg data=usairfull;
  model so2=Temp -- Days;
run;

TABLE 18.7 (Continued)

Results of a Multiple Regression Analysis of the Air Pollution Data Using 

Multiple Imputation to Deal with the Missing Values

Parameter Estimates

Parameter Minimum Maximum Theta0
t for H0:

Pr > |t|
Manu 0.049078 0.067748 0 4.49 0.0002
Pop –0.042961 –0.022748 0 –2.55 0.0182
Wind –6.206237 –2.905838 0 –2.42 0.0272
Precip 0.090262 0.691643 0 1.18 0.2532
Days –0.256193 0.061823 0 –0.23 0.8198

TABLE 18.8

Results from a Multiple Regression Analysis of the Air 

Pollution Data Using Only the 26 Complete Cases

Parameter Estimates

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t|
Intercept 1 82.02175 54.57459 1.50 0.1493
Temp 1 –0.79096 0.66185 –1.20 0.2468
Manu 1 0.05135 0.01550 3.31 0.0037
Pop 1 –0.02363 0.01563 –1.51 0.1470
Wind 1 –4.30652 2.41199 –1.79 0.0902
Precip 1 0.20202 0.40875 0.49 0.6268
Days 1 0.13226 0.20452 0.65 0.5256
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The results are shown in Table 18.9.
Comparing the three different sets of parameter estimates, etc., we see that 

there are interesting differences. With the complete case analysis, only the 
number of manufacturing enterprises is found to be significantly predictive 
of sulphur dioxide concentration. Using multiple imputation, temperature, 
manufacturing, population size, and wind speed are found to be significant 
predictors of SO2 concentration using the simple t-tests (see Chapter 8 for 
warnings about using these tests for selecting variables). The analysis of the 
complete data set finds temperature, manufacturing, and population size 
to be significant. In general terms, the results from multiple imputation are 
more similar to those from the complete data set than are the results from 
the complete-case analysis. (Wood, White, and Royston 2008 describe some 
methods that can be used for variable selection with multiply imputed data.)

18.8.2 Growth of Danish Boys

In this section, we will look at a 10% random sample from a set of data used 
to construct the 1997 Dutch growth references for boys. In Table 18.10, the 
recorded observations for 10 boys are given; in the complete data set, there 
are observations on 373 boys, aged 9–18.

To begin, we can count the number of missing values for each variable in 
the data using the following code:

data boys;
  infile 'c:\amsus\data\boysgrowth.dat';
  input id age height weight bmi tanner phair tv;
  ageyrs=int(age);
run;

proc means data=boys n nmiss mean min max maxdec=2;
 var height weight bmi tanner phair tv;
run;

TABLE 18.9

Results from Applying Multiple Regression Analysis to the 

Complete Air Pollution Data

Parameter Estimates

Variable DF
Parameter

Estimate
Standard

 Error t Value Pr > |t|
Intercept 1 111.72848 47.31810 2.36 0.0241
Temp 1 –1.26794 0.62118 –2.04 0.0491
Manu 1 0.06492 0.01575 4.12 0.0002
Pop 1 –0.03928 0.01513 –2.60 0.0138
Wind 1 –3.18137 1.81502 –1.75 0.0887
Precip 1 0.51236 0.36276 1.41 0.1669
Days 1 –0.05205 0.16201 –0.32 0.7500
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The results are shown in Table 18.11. There are a large number of missing 
values for some variables; for example, 153 values of the Tanner variable are 
missing.

For more detail about the number of missing values for the Tanner puber-
tal stage variable, we can count the number of missing values at each year of 
age; the necessary code is

proc means data=boys n nmiss mean min max maxdec=2;
 var tanner;
 class ageyrs;
run;

The results are shown in Table 18.12. The majority of missing values for the 
Tanner variable occur for the older boys.

TABLE 18.10

Growth Observations on 10 Boys

ID Age Height Weight BMI Tanner Phair TV

3323 9.004 151.2 48.2 21.08 2 1 2

3327 9.021 141.4 29.4 14.7 1 1 2

3329 9.021 132.7 30 17.03

3334 9.034 139.6 33.8 17.34

3357 9.119 140 28 14.28 1 1 2

3388 9.201 125.8 22 13.9 1 1 3

3398 9.234 139.8 35.6 18.21 2 1 2

3409 9.27 140.4 32 16.23 2 1 1

3416 9.303 142.2 31.6 15.62 1 1 3

3422 9.316 147.4 31.4 14.45 1 1 2

Notes: Age in years; height in centimetres; weight in kilograms; BMI: body 

mass index; Tanner stage 1–5; phair = pubic hair (1–6); Tv = testicular 

volume (millilitres). For more details about the data, see Fredriks, 

A. M. et al. 2000. Archives of Disease in Childhood 82:107–112.

TABLE 18.11

The Number of Missing Values for Each Variable in the 

Danish Boys’ Growth Data

Variable N
N

Miss Mean Minimum Maximum
Height 372 1 167.07 125.80 196.70
Weight 372 1 54.43 22.00 113.00
BMI 372 1 19.01 13.69 31.34
Tanner 220 153 3.00 1.00 5.00
Phair 220 153 3.21 1.00 6.00
Tv 203 170 11.16 1.00 25.00
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Let us now look at the distributions of the observed Tanner scores at each 
age graphically, using proc sgpanel:

proc sgpanel data=boys;
 panelby ageyrs / columns=2 rows=5;
 histogram tanner;
run;

The resulting histograms are shown in Figure 18.2. As we would expect, the 
distributions differ at the different ages.

Now we will impute the missing values for all the variables in the data, 
although our particular interest here will be the imputed values on the 
Tanner variable to compare their distributions for differently aged boys with 
the corresponding distributions of observed values shown in Figure 18.2. But 
the imputation model must include all the variables that are going to be in 
any model fitted to the data, so even age, which does not have missing data, 
should be included, in case missing values are dependent on age, as is likely.

We can impute the missing values for all the variables as follows:

proc mi data=boys nimpute=20 out=impboys seed=123
              min=. . 1 1 0 .
              max=. . 5 6 . .
            round=. . 1 1 . . ;
 var height weight tanner phair tv age;
 mcmc;
run;

TABLE 18.12

Number of Missing Values According to Age for the Tanner 

Pubertal Stage in the Danish Boys’ Growth Data

Analysis Variable : tanner

Age
N

obs N
N

Miss Mean Minimum Maximum
9 16 14 2 1.21 1.00 2.00

10 28 21 7 1.43 1.00 2.00
11 30 23 7 1.26 1.00 2.00
12 28 21 7 1.52 1.00 3.00
13 38 24 14 2.46 1.00 4.00
14 48 25 23 3.20 2.00 5.00
15 56 28 28 4.25 3.00 5.00
16 50 31 19 4.42 2.00 5.00
17 32 14 18 4.71 4.00 5.00
18 29 11 18 4.91 4.00 5.00
19 18 8 10 4.75 4.00 5.00
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As the Tanner score is limited to values one to five and the pubic hair 
rating to one to six, we specify corresponding minima and maxima and 
round the values to integers via the min, max, and round options. For each 
option, the values apply to the variable in the corresponding position on the 
var statement. Values represented by periods do not have their imputed 
values constrained. (We should say here that constraining the imputed 
v alues as we have done in this example for two of the variables is not uni-
versally recommended. For some statisticians, ‘impossible’ imputed values 
are not a problem because they argue that those values are being imputed 
to satisfy the overall distribution; consequently, particular imputed values 

80

60

40

20

0

1 2 3 4 5

Tanner

ageyrs = 17 ageyrs = 18

ageyrs = 15

P
er
ce
n
t

ageyrs = 16

ageyrs = 13 ageyrs = 14

ageyrs = 9 ageyrs = 10

2 3 4 5

80

60

40

20

0

ageyrs = 11 ageyrs = 12

80

60

40

20

0

80

60

40

20

0

80

60

40

20

0
1

FIGURE 18.2
Distributions of observed Tanner score by age.
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are unimportant and it is only the aggregated estimates that are of any 
concern.)

We can now examine the distribution of the imputed values for the Tanner 
variable by age as before:

proc sgpanel data=impboys;
 panelby ageyrs / rows=5;
 histogram tanner;
run;

The result is Figure 18.3.
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Comparing these results with those in Figure  18.2, we can see that the 
shapes of the distributions match closely, despite relatively large proportions 
of missing data having been imputed at the older ages.

After the imputation, a variety of complete-data analyses might be applied 
to the data depending on the aims of most interest. See van Buuren (2007) for 
examples of what might be done.

18.9 Summary

Missing values are an ever present possibility in medical studies, although 
everything possible should be done to avoid them. But when data contain 
missing values, multiple imputation can be used to provide valid inferences 
for parameter estimates form the incomplete data. If carefully handled, mul-
tiple imputation can cope with missing data in all types of variables. In this 
chapter, we have given only a brief account of dealing with missing values; 
a detailed account is available in the issue of Statistical Methods in Medical 
Research entitled ‘Multiple Imputation: Current Perspectives’ (Volume 16, 
Number 3, 2007).
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