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Introduction

Econometrics is elegant and powerful. Many departments of economics, politics, psychology,
and sociology require students to take a course in regression analysis or econometrics. So do
many business, law, and medical schools. These courses are traditionally preceded by an
introductory statistics course that adheres to the fire hose pedagogy: bombard students with
information and hope they do not drown. Encyclopedic statistics courses are a mile wide and
an inch deep, and many students remember little after the final exam. This textbook focuses
on what students really need to know and remember.

Essential Statistics, Regression, and Econometrics is written for an introductory statistics
course that helps students develop the statistical reasoning they need for regression analysis.
It can be used either for a statistics class that precedes a regression class or for a one-term
course that encompasses statistics and regression.

One reason for this book’s focused approach is that there is not enough time in a one-
term course to cover the material in more encyclopedic books. Another reason is that an
unfocused course overwhelms students with so much nonessential material that they have
trouble remembering what is essential.

This book does not cover the binomial distribution and related tests of a population
success probability. Also omitted are difference-in-means tests, chi-square tests, and ANOVA
tests. Instructors who cover these topics can use the supplementary material at the book’s
website.

The regression chapters at the end of the book set up the transition to a more advanced
regression or econometrics course and are also sufficient for students who take only one
statistics class but need to know how to use and understand basic regression analysis.

This textbook is intended to give students a deep understanding of the statistical
reasoning they need for regression analysis. It is innovative in its focus on this preparation
and in the extended emphasis on statistical reasoning, real data, pitfalls in data analysis,
modeling issues, and word problems. Too many people mistakenly believe that statistics
courses are too abstract, mathematical, and tedious to be useful or interesting. To demon-
strate the power, elegance, and even beauty of statistical reasoning, this book includes a large
number of compelling examples, and discusses not only the uses but also the abuses of
statistics. These examples show how statistical reasoning can be used to answer important
questions and also expose the errors—accidental or intentional—that people often make.

The goal is to help students develop the statistical reasoning they need for later courses
and for life after college.

I am indebted to the reviewers who helped make this a better book: Woody
Studenmund, The Laurence de Rycke Distinguished Professor of Economics, Occidental
College; Michael Murray, Bates College; Steffen Habermalz, Northwestern University; and
Manfred Keil, Claremont Mckenna College.

Most of all, I am indebted to the thousands of students who have taken statistics courses
from me—for their endless goodwill, contagious enthusiasm, and, especially, for teaching me
how to be a better teacher.
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You’re right, we did it. We’re very sorry. But thanks to you, we won’t do it again.

Ben Bernanke

The Great Depression was a global economic crisis that lasted from 1929 to 1939.

Millions of people lost their jobs, their homes, and their life savings. Yet, government

officials knew too little about the extent of the suffering, because they had no data

measuring output or unemployment.

They instead had anecdotes: “It is a recession when your neighbor is unemployed; it

is a depression when you lose your job.” Herbert Hoover was president of the United

States when the Great Depression began. He was very smart and well-intentioned, but he

Essential Statistics, Regression, and Econometrics. http://dx.doi.org/10.1016/B978-0-12-803459-0.00001-7 1
Copyright © 2015 Gary Smith. Published by Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-803459-0.00001-7


did not know that he was presiding over an economic meltdown because his information

came from his equally clueless advisors—none of whom had yet lost their jobs. He had

virtually no economic data and no models that predicted the future direction of the

economy.

In his December 3, 1929, State of the Union message, Hoover concluded that “The

problems with which we are confronted are the problems of growth and progress” [1]. In

March 1930, he predicted that business would be normal by May [2]. In early May,

Hoover declared that “we have now passed the worst” [3]. In June, he told a group that

had come to Washington to urge action, “Gentlemen, you have come 60 days too late.

The depression is over” [4].

A private organization, the National Bureau of Economic Research (NBER), began

estimating the nation’s output in the 1930s. There were no regular monthly unem-

ployment data until 1940. Before then, the only unemployment data were collected in

the census, once every 10 years. With hindsight, it is now estimated that between 1929

and 1933, national output fell by one-third, and the unemployment rate rose from

3 percent to 25 percent. The unemployment rate averaged 19 percent during the 1930s

and never fell below 14 percent. More than a third of the nation’s banks failed and

household wealth dropped by 30 percent.

Behind these aggregate numbers were millions of private tragedies. One hundred

thousand businesses failed and 12 million people lost their jobs, income, and self-

respect. Many lost their life savings in the stock market crash and the tidal wave of

bank failures. Without income or savings, people could not buy food, clothing, or proper

medical care. Those who could not pay their rent lost their shelter; those who could not

make mortgage payments lost their homes. Farm income fell by two-thirds and many

farms were lost to foreclosure. Desperate people moved into shanty settlements (called

Hoovervilles), slept under newspapers (Hoover blankets), and scavenged for food where

they could. Edmund Wilson [5] reported that:

There is not a garbage-dump in Chicago which is not haunted by the hungry. Last

summer in the hot weather when the smell was sickening and the flies were thick,

there were a hundred people a day coming to one of the dumps.

Measurements
Today, we have a vast array of statistical data that can help individuals, businesses, and

governments make informed decisions. Statistics can help us decide which foods are

healthy, which careers are lucrative, and which investments are risky. Businesses use

statistics to monitor operations, estimate demand, and design marketing strategies.

Government statisticians measure corn production, air pollution, unemployment, and

inflation.

The problem today is not a scarcity of data, but rather the sensible interpretation and

use of data. This is why statistics courses are taught in high schools, colleges, business
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schools, law schools, medical schools, and Ph.D. programs. Used correctly, statistical

reasoning can help us distinguish between informative data and useless noise, and help

us make informed decisions.

Flying Blind and Clueless

US government officials had so little understanding of economics during the Great

Depression that even when they finally realized the seriousness of the problem, their

policies were often counterproductive. In 1930, Congress raised taxes on imports to

record levels. Other countries retaliated by raising their taxes on goods imported from

the United States. Worldwide trade collapsed with US exports and imports falling by

more than 50 percent.

In 1931, Treasury Secretary Andrew Mellon advised Hoover to “liquidate labor,

liquidate stocks, liquidate the farmers, liquidate real estate” [6]. When Franklin Roosevelt

campaigned for president in 1932, he called Hoover’s federal budget “the most reckless

and extravagant that I have been able to discover in the statistical record of any

peacetime government anywhere, anytime” [7]. Roosevelt promised to balance the

budget by reducing government spending by 25 percent. One of the most respected

financial leaders, Bernard Baruch, advised Roosevelt to “Stop spending money we

haven’t got. Sacrifice for frugality and revenue. Cut government spending—cut it as

rations are cut in a siege. Tax–tax everybody for everything” [8]. Today—because we have

models and data—we know that cutting spending and raising taxes are exactly the wrong

policies for fighting an economic recession. The Great Depression did not end until

World War II, when there was a massive increase in government spending and millions

of people enlisted in the military.

The Federal Reserve (the “Fed”) is the government agency in charge of monetary

policy in the United States. During the Great Depression, a seemingly clueless Federal

Reserve allowed the money supply to fall by a third. In their monumental work, A

Monetary History of the United States, Milton Friedman and Anna Schwartz argued that

the Great Depression was largely due to monetary forces, and they sharply criticized the

Fed’s perverse policies. In a 2002 speech honoring Milton Friedman’s 90th birthday, Ben

Bernanke, who became Fed chairman in 2006, concluded his speech: “I would like to say

to Milton and Anna: Regarding the Great Depression. You’re right, we did it. We’re very

sorry. But thanks to you, we won’t do it again” [9].

During the economic crisis that began in the United States in 2007, the president,

Congress, and Federal Reserve did not repeat the errors of the 1930s. Faced with a credit

crisis that threatened to pull the economy into a second Great Depression, the gov-

ernment did the right thing by pumping billions of dollars into a deflating economy.

Instead of destroying the economy, they saved it.

Why do we now know that cutting spending, raising taxes, and reducing the money

supply are the wrong policies during economic recessions? Because we now have

reasonable economic models that have been tested with data.
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Testing Models
The great British economist John Maynard Keynes observed that the master economist

“must understand symbols and speak in words” [10]. We need words to explain our

reasoning, but we also need models so that our theories can be tested with data.

In the 1930s, Keynes hypothesized that household spending rises and falls with in-

come. This “consumption function” was the lynchpin of his explanation of business

cycles. If people spend less, others will earn less and spend less, too. This fundamental

interrelationship between spending and income explains how recessions can persist and

grow like a snowball rolling downhill.

If, on the other hand, people buy more coal from a depressed coal-mining area, the

owners and miners will then buy more and better food, farmers will buy new clothes,

and tailors will start going to the movies again. Not only do the coal miners gain; the

region’s entire economy prospers.

At the time, Keynes had no data to test his theory. It just seemed reasonable to him

that households will spend more when their income goes up and spend less when their

income goes down. Eventually, a variety of data were assembled that confirmed his

intuition. Table 1.1 shows estimates of US aggregate disposable income (income after

taxes) and spending for the years 1929 through 1940. When income fell, so did spending;

and when income rose, so did spending.

Table 1.2 shows a very different type of data based on a household survey during the

years 1935–1936. Families with more income tended to spend more.

Today, economists agree that Keynes’ hypothesis is correct—that spending does

depend on income—but that other factors also influence spending. These more complex

models can be tested with data, and we do so in later chapters.

Table 1.1 US Disposable Personal Income and
Consumer Spending, Billions of Dollars [11]

Income Spending

1929 83.4 77.4
1930 74.7 70.1
1931 64.3 60.7
1932 49.2 48.7
1933 46.1 45.9
1934 52.8 51.5
1935 59.3 55.9
1936 67.4 62.2
1937 72.2 66.8
1938 66.6 64.3
1939 71.4 67.2
1940 76.8 71.3
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The Political Business Cycle

There seems to be a political business cycle in the United States, in that the unem-

ployment rate typically increases after a presidential election and falls before the next

presidential election. The unemployment rate has increased in only three presidential

election years since the Great Depression. This is no doubt due to the efforts of

incumbent presidents to avoid the wrath of voters suffering through an economic

recession. Two exceptions were the reelection bids of Jimmy Carter in 1980 (the

unemployment rate went up 1.3 percentage points) and George H. W. Bush in 1992 (the

unemployment rate rose 0.7 percentage points). In each case, the incumbent was soon

unemployed, too. The third exception was in 2008, when George W. Bush was president;

the unemployment rate rose 1 percent and the Republicans lost the White House. In

later chapters, we test the political business cycle model.

Making Predictions
Models help us understand the world and are often used to make predictions; for

example, a consumption function can be used to predict household spending, and the

political business cycle model can be used to predict the outcome of a presidential

election. Here is another example.

Okun’s Law

The US unemployment rate was 6.6 percent when John F. Kennedy became president of

the United States in January 1961 and reached 7.1 percent in May 1961. Reducing the

unemployment rate was a top priority because of the economic and psychological

distress felt by the unemployed and because the nation’s aggregate output would be

higher if these people were working. Not only would the unemployed have more income

if they were working, but also they would create more food, clothing, and homes for

others to eat, wear, and live in.

Table 1.2 Family Income and Spending, 1935–1936 [12]

Income Range ($) Average Income ($) Average Spending ($)

<500 292 493
500–999 730 802
1000–1499 1176 1196
1500–1999 1636 1598
2000–2999 2292 2124
3000–3999 3243 2814
4000–4999 4207 3467
5000–10,000 6598 4950
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One of Kennedy’s advisors, Arthur Okun, estimated the relationship between gross

domestic product (GDP) and the unemployment rate. His estimate, known as Okun’s

law, was that output would be about 3 percent higher if the unemployment rate were 1

percentage point lower. Specifically, if the unemployment rate had been 6.1 percent,

instead of 7.1 percent, output would have been about 3 percent higher.

This prediction helped sell the idea to Congress and the public that there are both

private and public benefits from reducing the unemployment rate. Later in this book, we

estimate Okun’s law using more recent data.

Numerical and Categorical Data
Unemployment, inflation, and other data that have natural numerical values—5.1

percent unemployment, 3.2 percent inflation—are called numerical or quantitative data.

The income and spending in Tables 1.1 and 1.2 are quantitative data.

Some data, for example, whether a person is male or female, do not have natural

numerical values (a person cannot be 5.1 percent male). Such data are said to be cate-

gorical or qualitative data. With categorical data, we count the number of observations in

each category. The data can be described by frequencies (the number of observations)

or relative frequencies (the fraction of the total observations); for example, out of 1000

people surveyed, 510, or 51 percent, were female.

The Dow Jones Industrial Average, the most widely reported stock market index, is

based on the stock prices of 30 of the most prominent US companies. If we record

whether the Dow went up or down each day, these would be categorical data. If we

record the percentage change in the Dow each day, these would be numerical data.

From 1901 through 2007, the Dow went up on 13,862 days and went down on

12,727 days. The relative frequency of up days is 52.1 percent:

13; 862

13; 862þ 12; 727
¼ 0:521

For the numerical data on daily percentage changes, we might calculate a summary

statistic, such as the average percentage change (0.021 percent), or we might separate

the percentage changes into categories, such as the number of days when the per-

centage change in the Dow was between 1 and 2 percent, between 2 and 3 percent,

and so on.

Cross-Sectional Data
Cross-sectional data are observations made at the same point in time. These could be on

a single day, as in Table 1.3, which shows the price/earnings ratios for each of the Dow

Jones stocks on February 5, 2015. Cross-sectional data can also be for a single week,

month, or year; for example, the survey data on annual household income and spending

in Table 1.2 are cross-sectional data.
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The Hamburger Standard

The law of one price says that, in an efficient market, identical goods should have the

same price. Applied internationally, it implies that essentially identical goods should

cost about the same anywhere in the world, once we convert prices to the same cur-

rency. Suppose the exchange rate between US dollars and British pounds (£) is

1.50 dollars/pound. If a sweater sells for £20 in Britain, essentially identical sweaters

should sell for $30 in the United States. If the price of the American sweaters were more

than $30, Americans would import British sweaters instead of buying overpriced

American sweaters. If the price were less than $30, the English would import American

sweaters.

The law of one price works best for products (like wheat) that are relatively homo-

geneous and can be imported relatively inexpensively. The law of one price does not

work very well when consumers do not believe that products are similar (for example,

BMWs and Chevys) or when there are high transportation costs, taxes, and other trade

barriers. Wine can be relatively expensive in France if the French prohibit wine imports

or tax imports heavily. A haircut and round of golf in Japan can cost more than in the

United States, because it is impractical for the Japanese to have their hair cut in Iowa and

play golf in Georgia.

Since 1986, The Economist, an influential British magazine, has surveyed the prices

of Big Mac hamburgers around the world. Table 1.4 shows cross-sectional data on the

prices of Big Mac hamburgers in 20 countries. The law of one price does not apply to

Big Macs, because Americans will not travel to Hong Kong to buy a hamburger for

lunch.

Table 1.3 Price/Earnings Ratios for Dow Stocks, February 5, 2015

Company Price/Earnings Ratio Company Price/Earnings Ratio

Merck 32.3 Cisco Systems 18.4
Visa 30.4 Wal-Mart Stores 18.2
AT&T 29.0 Johnson & Johnson 18.0
Nike 27.8 United Technologies 17.6
Procter & Gamble 25.0 Microsoft 17.1
Home Depot 24.7 General Electric 16.2
Walt Disney 24.1 American Express 15.1
Pfizer 23.4 Intel 14.7
Coca-Cola 23.2 Caterpillar 14.2
3M 22.2 Exxon Mobil 11.6
Boeing 20.1 Goldman Sachs 10.6
Verizon 19.8 Chevron 10.1
McDonald’s 19.6 IBM 10.1
E I du Pont de Nemours 19.5 Travelers Companies 10.0
UnitedHealth Group 19.1 JPMorgan 9.9
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Time Series Data
Time series data are a sequence of observations at different points of time. The aggregate

income and spending in Table 1.1 are time series data.

Silencing Buzz Saws

During the Great Depression, the Federal Reserve was ineffectual because it had little

reliable data and did not understand how monetary policies affect the economy. Today,

the Fed has plenty of data and an understanding of the economy that has been informed

by testing models with these data. As a result, the Fed does not act perversely when the

economy threatens to sink into an unwanted recession. The Fed will, however, some-

times use tight-money policies to cool the economy and resist inflationary pressures.

As a cynic (I) once wrote, the Fed raises interest rates enough to cause a recession when

it feels it is in our best interest to lose our jobs.

The Federal Reserve’s tight-credit policies during the years 1979–1982 are a striking

example. In 1979, the rate of inflation was above 13 percent, and in October of that year,

the Fed decided that its top priority was to reduce the rate of inflation substantially. Over

the next 3 years, the Fed tightened credit severely and interest rates rose to unprece-

dented levels.

Table 1.4 The Hamburger Standard, January 2015 [13]

Big Mac Price

In Local Currency In US Dollars

United States $4.79 $4.79
Argentina Peso 28.00 $3.25
Australia A$5.30 $4.32
Brazil Real 13.50 $5.21
Britain £2.89 $4.37
China Tuan 17.20 $2.77
Egypt Pound 16.93 $2.30
Euro area V3.68 $4.26
Hong Kong HK$18.80 $2.43
Indonesia Rupiah 27,939 $2.24
Japan U370 $3.14
Mexico Peso 49 $3.35
Norway Kroner 48 $6.30
Pakistan Rupee 300 $2.98
Philippines Peso 163 $3.67
Russia Ruble 89 $1.36
Saudi Arabia Riyal 11.00 $2.93
South Africa Rand 25.50 $2.22
South Korea Won 4100 $3.78
Taiwan NT$79 $2.51
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When Paul Volcker, the Fed chairman, was asked in 1980 if the Fed’s stringent

monetary policies would cause an economic recession, he replied, “Yes, and the sooner

the better” [14]. In another 1980 conversation, Volcker remarked that he would not be

satisfied “until the last buzz saw is silenced” [15]. Interest rates reached 18 percent on

home mortgages and were even higher for most other bank loans. As interest rates rose,

households and businesses cut back on their borrowing and on their purchases of

automobiles, homes, and office buildings. Construction workers who lost their jobs were

soon spending less on food, clothing, and entertainment, sending ripples through the

economy. The unemployment rate rose from 5.8 percent in 1979 to above 10 percent in

September 1982, the highest level since the Great Depression. Table 1.5 shows that the

Fed achieved its single-minded objective, as the annual rate of inflation fell from

13.3 percent in 1979 to 3.8 percent in 1982.

In the fall of 1982, the Fed decided that the war on inflation had been won and that

there were ominous signs of a possible financial and economic collapse. The Fed

switched to easy money policies, supplying funds as needed to bring down interest rates,

encourage borrowing and spending, and fuel the economic expansion that lasted the

remainder of the decade. In later chapters, we see how interest rates, inflation, and

unemployment are interrelated.

Table 1.5 The Fed’s 1979–1982 War on Inflation

Inflation
10-Year
Interest Rate Unemployment

1970 5.6 7.3 4.9
1971 3.3 6.2 5.9
1972 3.4 6.2 5.6
1973 8.7 6.8 4.9
1974 12.3 7.6 5.6
1975 6.9 8.0 8.5
1976 4.9 7.6 7.7
1977 6.7 7.4 7.1
1978 9.0 8.4 6.1
1979 13.3 9.4 5.8
1980 12.5 10.8 7.1
1981 8.9 13.9 7.6
1982 3.8 13.0 9.7
1983 3.8 11.1 9.6
1984 3.9 12.4 7.5
1985 3.8 10.6 7.2
1986 1.1 7.7 7.0
1987 4.4 8.4 6.2
1988 4.4 8.8 5.5
1989 4.6 8.5 5.3
1990 6.1 8.6 5.6
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Longitudinal (or Panel) Data
Longitudinal data (or panel data) involve repeated observations of the same things at

different points in time. Table 1.6 shows data on the prices between 2003 and 2007 of

computer hard drives of various sizes. If we look at the prices of different hard drives in a

given year, such as 2004, these are cross-sectional data. If we instead look at the price of

a 200 GB hard drive in 2003, 2004, 2005, 2006, and 2007, these are time series data. If we

look at the prices of hard drives of four different sizes in those 5 years, these are longi-

tudinal data.

Index Numbers (Optional)
Some data, such as home prices, have natural values. Index numbers, on the other hand,

measure values relative to a base value, often set equal to 100. Suppose, for example, that

a house sold for $200,000 in 1980, $300,000 in 1990, and $400,000 in 2010. If we want to

express these data as index numbers, we can set the base value equal to 100 in 1980.

Because this house’s price was 50 percent higher in 1990 than in 1980, the 1990 index

value equals 150 (Table 1.7). Similarly, because the house price was 100 percent higher in

2010 than in 1980, the 2010 index value equals 200.

As in this example, the index values (100, 150, and 200) have no natural interpretation.

It is not $100, 100 square feet, or $100 per square foot. Instead, a comparison of index

values gives the percentage differences. A comparison of the 1980 and 1990 index values

shows that the price was 50 percent higher in 1990 than in 1980.

In practice, index numbers are not used for individual homes, but for averages or

aggregated data, such as average home prices in the United States, where the underlying

data are unwieldy and we are mostly interested in percentage changes.

Table 1.6 Prices of Hard Drives of Various Sizes [16]

Size (Gigabytes) 2003 2004 2005 2006 2007

80 $155 $115 $85 $80 $70
120 $245 $150 $115 $115 $80
160 $500 $200 $145 $120 $85
200 $749 $260 $159 $140 $100

Table 1.7 Index Numbers of House Prices

House Price Index

1980 $200,000 100
1990 $300,000 150
2010 $400,000 200
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The Consumer Price Index

The Consumer Price Index (CPI) measures changes in the cost of living by tracking

changes in the prices of goods and services that households buy. The CPI was created

during World War I to determine whether incomes were keeping up with prices, and it

is still used for this purpose. Employers and employees both look at the CPI during

wage negotiations. Social Security benefits are adjusted automatically for changes in

the CPI. The US Treasury issues Treasury Inflation-Protected Securities (TIPS) whose

payments rise or fall depending on changes in the CPI.

Because it is intended to measure changes in the cost of living, the CPI includes the

cost of such things as food, clothing, housing, utilities, and transportation. Every 10 years

or so, the Bureau of Labor Statistics (BLS) surveys thousands of households to learn the

details of their buying habits. Based on this survey, the BLS constructs a market basket of

thousands of goods and services and tracks their prices every month. These prices are

used to compute price indexes that measure the current cost of the market basket

relative to the cost in the base period:

P ¼ 100

�
current cost of market basket

cost of market basket in base period

�
(1.1)

The logic can be illustrated by the hypothetical data in Table 1.8 for a market basket

of three items. This basket cost $50.00 in 1990 and $64.00 in 2000, representing a

28 percent increase: ($64.00 � $50.00)/$50.00 ¼ 0.28. If we use 1990 as the base year,

Eqn (1.1) gives our price index values:

P1990 ¼ 100

�
$50:00

$50:00

�
¼ 100

P2000 ¼ 100

�
$64:00

$50:00

�
¼ 128

As intended, the price index shows a 28 percent increase in prices.

Table 1.8 A Price Index Calculation

1990 2000

Quantity Price of One Cost of Basket Price of One Cost of Basket

Loaf of bread 10 $2.00 $20.00 $2.50 $25.00
Pound of meat 6 $3.00 $18.00 $4.00 $24.00
Gallon of milk 3 $4.00 $12.00 $5.00 $15.00
Total $50.00 $64.00
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The Dow Jones Index

In 1880, Charles Dow and Edward Jones started a financial news service that they called

Dow-Jones. Today, the most visible offspring are The Wall Street Journal, one of the most

widely read newspapers in the world, and the Dow Jones Industrial Average (the Dow),

the most widely reported stock market index.

Since 1928, the Dow has been based on 30 stocks that are intended to be “substantial

companies—renowned for the quality and wide acceptance of their products or ser-

vices—with strong histories of successful growth” [17]. An Averages Committee peri-

odically alters the composition of the Dow either to meet the index’s objectives or to

accommodate mergers or reorganizations.

The Dow Jones Industrial Average is calculated by adding together the prices of the 30

Dow stocks and dividing by a divisor k, which is modified whenever one stock is

substituted for another or a stock splits (increasing the number of shares outstanding and

reducing the price of each share proportionately). Suppose, for instance, that the price of

each of the 30 stocks is $100 a share and the divisor is 30, giving a Dow average of 100:

DJIA ¼ 100þ 100þ/þ 100

30
¼ 30ð100Þ

30
¼ 100

Now one of these stocks is replaced by another stock, which has a price of $50. If the

divisor stays at 30, the value of the Dow drops by nearly 2 percent:

DJIA ¼ 100þ 100þ/þ 100þ 50

30
¼ 2950

30
¼ 98:33

indicating that the average stock price dropped by 2 percent, when, in fact, all that

happened was a higher-priced stock was replaced by a lower-priced stock.

The Dow allows for these cosmetic changes by adjusting the divisor. In our example,

we want a divisor k that keeps the average at 100:

DJIA ¼ 100þ 100þ/þ 100þ 50

k
¼ 2950

k
¼ 100

We can solve this equation for k ¼ 2950/100 ¼ 29.5, rather than 30. Thus the Dow

average would now be calculated by dividing the sum of the 30 prices by 29.5 rather

than 30.

The divisor is also adjusted every time a stock splits. The cumulative effect of these

adjustments has been to reduce the Dow divisor to 0.15571590501117 in February 2015.

(Yes, the divisor is calculated to 14 places!)

Deflated Data
A nation’s population generally increases over time and so do many of the things that

people do: marry, work, eat, and play. If we look at time series data for these human

activities without taking into account changes in the size of the population, we will not

be able to distinguish changes that are due merely to population growth from those that
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reflect changes in people’s behavior. To help make this distinction, we can use per capita

data, which have been adjusted for the size of the population.

For example, the number of cigarettes sold in the United States totaled 484.4 billion in

1960 and 525 billion in 1990, an increase of 8 percent. To put these numbers into

perspective, we need to take into account the fact that the population increased by

39 percent during this period, from 179.3 million to 248.7 million people. We can do so

by dividing each year’s cigarette sales by the population to obtain per capita data:

1960:
484:4 billion

179:3 million
¼ 2; 702

1990:
525 billion

248:7 million
¼ 2; 111

Total sales increased by 8 percent, but per capita cigarette consumption fell by

22 percent.

Nominal and Real Magnitudes

Economic and financial data that are expressed in a national currency (for example, US

dollars) are called nominal data. If you are paid $10 an hour, that is your nominal wage.

If you earn $20,000 a year, that is your nominal income.

However, we do not work solely for the pleasure of counting and recounting our

dollars—at least, I hope not! We work for dollars that we can use to buy things. We

therefore care about how much our dollars buy. Data that are denominated in dollars

(such as wages and income) need to be adjusted for the price level so that we canmeasure

their purchasing power. Data that have been adjusted in this way are called real data.

For instance, if you are working to buy loaves of bread, your real wage would be

calculated by dividing your nominal wage by the price of bread. If your nominal wage is

$10 an hour and bread is $2 a loaf, your real wage is five loaves an hour:

real wage ¼ nominal wage

price
¼ $10=hour

$2=loaf
¼ 5 loaves=hour

Similarly, if you earn $20,000 a year, your real income is 10,000 loaves a year:

real income ¼ nominal income

price
¼ $20; 000=year

$2=loaf
¼ 10; 000 loaves=year

The underlying economic principle behind the calculation of real data is that we care

about what our money can buy. When choosing between working and playing this

summer, students will not just think about nominal wages but also about how much the

wages would buy. Fifty years ago, when a dollar would buy a lot, most people would have

jumped at a chance to earn $10 an hour. Now, when a dollar buys little, many people

would rather go to the beach than work for $10 an hour.

People who think about nominal income, rather than real income, suffer from what

economists call money illusion. People who feel better off when their income goes up by

5 percent although prices have gone up by 10 percent are showing definite signs of

money illusion.
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Our illustrative calculation uses a single price, the price of a loaf of bread. However,

we do not live by bread alone, but also by meat, clothing, shelter, medical care, cell

phones, and on and on. The purchasing power of our dollars depends on the prices of a

vast array of goods and services. To get a representative measure of purchasing power,

we need to use a price index such as the CPI. Table 1.9 shows the CPI values for five

selected years using a base of 100 in 1967.

The CPI is only meaningful in comparison to its value in another period. Thus a

comparison of the 116.3 value in 1970 with the 246.8 value in 1980 shows that prices

more than doubled during this 10-year period.

We calculate real values by dividing the nominal value by the CPI. For instance, we

can use the data in Tables 1.9 and 1.10 to compute real wages in each year:

1970: real wage ¼ nominal wage

price
¼ $3:40

116:3
¼ 0:02923

1980: real wage ¼ nominal wage

price
¼ $6:85

246:8
¼ 0:02776

The price level is an index that has been arbitrarily scaled to equal 100 in the 1967

base period, so we cannot interpret these real wages as loaves of bread or anything else.

Like price indexes, 1970 and 1980 real wages are only meaningful in comparison to each

other. Real wages dropped by about 5 percent between 1970 and 1980:

1980 real wage� 1970 real wage

1970 real wage
¼ 0:02776� 0:02923

0:02923
¼ �0:0506

There is another way to get this answer. We can convert the $3.40 1970 wage into 1980

dollars by multiplying $3.40 by the 1980 price level relative to the 1970 price level:

1970 wage in 1980 dollars ¼ ð1970 wageÞ
�
1980 CPI

1970 CPI

�
¼ $3:40

�
246:8

116:3

�
¼ $7:215

Table 1.9 Consumer Price
Index (CPI ¼ 100 in 1967)

1970 116.3
1980 246.8
1990 391.4
2000 515.8
2010 653.2

Table 1.10 Average Hourly
Earnings

1970 $3.40
1980 $6.85
1990 $10.20
2000 $14.02
2010 $19.07
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This value, $7.215, is the amount of money needed in 1980 to buy what $3.40 bought

in 1970. Again, we see that real wages dropped by about 5 percent:

1980 wage� 1970 wage in 1980 dollars

1970 wage in 1980 dollars
¼ 6:85� 7:215

7:215
¼ �0:0506

There are multiple paths to the same conclusion. In each case, we use the CPI to

adjust wages for the change in prices—and find that wages did not keep up with prices

between 1970 and 1980.

The Real Cost of Mailing a Letter

In January 2014, the cost of mailing a first-class letter in the United States was increased

to 49¢. Table 1.11 shows that in 1885 the cost was 2¢. Was there an increase in the real

cost of mailing a first-class letter between 1885 and 2014, that is, an increase relative to

the prices of other goods and services? Using a base of 100 in 2014, the value of the CPI

Table 1.11 Cost of Mailing a US First-Class Letter

Date Introduced
First-Class
Postage Rates ($) CPI (2014[ 100)

7/1/1885 0.02 4.0
11/3/1917 0.03 5.3
7/1/1919 0.02 7.4
7/6/1932 0.03 5.8
8/1/1958 0.04 12.4
1/7/1963 0.05 13.0
1/7/1968 0.06 14.6
5/16/1971 0.08 17.2
3/2/1974 0.10 20.4
12/31/1975 0.13 23.7
5/29/1978 0.15 27.6
3/22/1981 0.18 37.8
11/1/1981 0.20 40.1
2/17/1985 0.22 45.3
4/3/1988 0.25 50.1
2/3/1991 0.29 57.6
1/1/1995 0.32 64.3
1/10/1999 0.33 70.2
1/7/2001 0.34 74.9
6/30/2002 0.37 76.9
1/8/2006 0.39 84.8
5/14/2007 0.41 88.9
5/12/2008 0.42 92.6
5/11/2009 0.44 91.4
1/22/2012 0.45 96.9
1/27/2013 0.46 98.4
1/26/2014 0.49 100.0
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was 4.0 in 1885. Since the CPI increased by a factor of 25 and 100 between 1885 and 2014,

2¢ bought as much in 1885 as 50¢ bought in 2014:

1885 postage in 2014 dollars ¼ ð1885 postageÞ
�
2014 CPI

1885 CPI

�
¼ $0:02

�
100

4:0

�
¼ $0:50

If the cost of mailing a first-class letter had increased as much as the CPI over this

129-year period, the cost in 2014 would have been 50¢ instead of 49¢.

Real Per Capita

Some data should be adjusted for both population growth and inflation, thereby giving

real per-capita data. The dollar value of a nation’s total aggregate income, for example, is

affected by the population and the price level, and unless we adjust for both, we will not

be able to tell whether there has been a change in living standards or just changes in the

population and price level.

Other kinds of data may require other adjustments. An analysis of the success of

domestic automakers against foreign competitors should not use just time series data on

sales of domestically produced automobiles, even if these data are adjusted for popu-

lation growth and inflation. More telling data might show the ratio of domestic sales to

total automobile sales.

Similarly, a study of motor vehicle accidents over time needs to take into account

changes in the number of people traveling in motor vehicles and how far they travel. In

2012, there were 33,500 motor vehicle deaths in the United States and it was estimated

that 2969 billion miles were driven that year. The number of deaths per mile driven was

(33,500)/(2969 billion) ¼ 0.000000011. Instead of working with so many zeros, we can

multiply this number by 100 million to obtain a simpler (and more intelligible) figure of

1.1 deaths per 100 million miles driven.

In every case, our intention is to let the data inform us by working with meaningful

numbers. In the next chapter, we begin seeing how to draw useful statistical inferences

from data.

Exercises
1.1 Which of these data are quantitative and which are qualitative?

a. The number of years a professor has been teaching.

b. The number of books a professor has written.

c. Whether a professor has a PhD.

d. The number of courses a professor is teaching.

1.2 Which of these data are categorical and which are numerical?

a. Whether a family owns or rents their home.

b. A house’s square footage.

c. The number of bedrooms in a house.

d. Whether a house has central air conditioning.
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1.3 Which of these data are categorical and which are numerical?

a. A cell phone’s brand.

b. A cell phone’s estimated battery life.

c. A cell phone’s screen size.

d. A cell phone’s carrier.

1.4 Identify the following data as cross-section, time series, or panel data:

a. Unemployment rates in Germany, Japan, and the United States in 2015.

b. Inflation rates in Germany, Japan, and the United States in 2009.

c. Unemployment rates in Germany in 2012, 2013, 2014, and 2015.

d. Unemployment rates in Germany and the United States in 2012, 2013, 2014,

and 2015.

1.5 Look up The Economist’s Big Mac Index on the Internet, and see if the most and

least expensive hamburgers (in US dollars) are the same now as in Table 1.4.

1.6 The Framingham Heart Study began in 1948 with 5209 adult subjects, who have

returned every 2 years for physical examinations and laboratory tests. The study

now includes the children and grandchildren of the original participants. Identify

the following data as cross-section, time series, or panel data:

a. The number of people who died each year from heart disease.

b. The number of men who smoked cigarettes in 1948, 1958, 1968, and 1978.

c. The ages of the women in 1948.

d. Changes in HDL cholesterol levels between 1948 and 1958 for each of the

females.

1.7 (continuation) Identify the following data as cross-section, time series, or panel

data:

a. Blood pressure of one woman every 2 years.

b. The average HDL cholesterol level of the men in 1948, 1958, and 1968.

c. The number of children each woman had in 1958.

d. The age at death of the 5209 subjects.

1.8 Table 1.12 lists the reading comprehension scores for nine students at a small

private school known for its academic excellence. Twenty students were admitted

to the kindergarten class, and the nine students in the table stayed at the school

through eighth grade. The scores are percentiles relative to students at suburban

public schools; for example, Student 1 scored in the 98th percentile in first grade

and in the 53rd percentile in second grade. Identify the following data as cross-

section, time series, or panel data:

a. Student 4’s scores in grades 1 through 8.

b. The nine students’ eighth grade scores.

c. The nine students’ scores in first grade and eighth grade.

d. The nine students’ scores in first grade through eighth grade.
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1.9 Table 1.13 shows index data on the overall CPI and three items included in the

CPI. Explain why you either agree or disagree with these statements:

a. Food cost more than housing in 2010.

b. Housing cost more than food in 2000 but cost less than food in 2010.

c. The cost of food went up more than the cost of housing between 2000 and 2010.

1.10 (continuation) Explain why you either agree or disagree with these statements:

a. Apparel cost less than food in 2000.

b. The cost of apparel went down between 2000 and 2010.

c. The cost of food went up more than the overall CPI between 2000 and 2010.

1.11 (continuation) Calculate the percentage change in the cost of food, apparel, and

housing between 2000 and 2010.

1.12 Table 1.14 shows data on four apparel price indexes that are used to compute the

CPI. Explain why you either agree or disagree with these statements:

a. Men’s apparel cost more than women’s apparel in 2000.

b. Men’s apparel cost more than women’s apparel in 2010.

c. Men’s apparel cost more in 2000 than in 2010.

Table 1.12 Exercise 1.8

Grade

Student

1 2 3 4 5 6 7 8 9

1 98 87 87 92 80 80 72 98 87
2 53 72 89 72 45 35 62 62 81
3 98 52 94 60 73 26 26 94 88
4 72 55 96 51 68 34 68 94 59
5 62 62 68 35 47 18 99 95 95
6 63 53 80 38 33 53 69 69 85
7 97 61 79 8 47 32 65 65 53
8 74 65 31 15 31 74 46 55 31

Table 1.13 Exercise 1.9

CPI Food Apparel Housing

2000 172.2 168.4 129.6 169.6
2010 218.1 219.6 119.5 216.3

Table 1.14 Exercise 1.12

Men Women Boys Girls

2000 133.1 121.9 116.2 119.7
2010 117.5 109.5 91.5 95.4
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1.13 (continuation) Explain why you either agree or disagree with these statements:

a. Men’s apparel is more expensive than women’s apparel, but boys’ apparel is

less expensive than girls’ apparel.

b. The cost of boys’ apparel went down between 2000 and 2010.

c. The cost of boys’ apparel went down more than did the cost of men’s apparel

between 2000 and 2010.

1.14 (continuation) Calculate the percentage change in the cost of each of these four

types of apparel between 2000 and 2010.

1.15 Why does it make no sense to deflate a country’s population by its price level in

order to obtain the “real population”?

1.16 It has been proposed that real wealth should be calculated by deflating a per-

son’s wealth by hourly wages rather than prices. Suppose that wealth is $100,000,

the price of a hamburger is $2, and the hourly wage is $10. What conceptual

difference is there between these two measures of real wealth?

1.17 Table 1.15 shows the prices of three items in 2000 and 2010.

a. Construct a price index that is equal to 100 in 2000. What is the value of your

index in 2010? What is the percentage change in your index between 2000 and

2010?

b. Construct a price index that is equal to 100 in 2010. What is the value of your

index in 2000? What is the percentage change in your index between 2000 and

2010?

1.18 Answer the questions in Exercise 1.17, this time assuming that the

quantities purchased are 12 loaves of bread, 6 pounds of meat, and 2 gallons

of milk.

1.19 The Dow Jones Industrial Average was 240.01 on October 1, 1928 (when the Dow

expanded to 30 stocks), and 16,804.71 on October 1, 2014. The CPI was 51.3 in

October 1928 and 712.3 in October 2014. Which had a larger percentage increase

over this period, the Dow or the CPI?

Table 1.15 Exercise 1.17

Quantity 2000 Price 2010 Price

Loaf of bread 10 $2.50 $3.00
Pound of meat 6 $4.00 $5.00
Gallon of milk 3 $5.00 $7.00
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1.20 On February 5, 2015, the value of the Dow Jones Industrial Average was

17,295.92, and the divisor was 0.15571590501117. Explain why you either agree or

disagree with these statements:

a. The average price of the 30 stocks in the Dow was 17,295.92.

b. The average price of the 30 stocks in the Dow was 17,295.92 divided by the divisor.

c. The average price of the 30 stocks in the Dow was 17,295.92 multiplied by the

divisor.

1.21 Look up the values of the CPI in December 1969 and December 1989 and the

Dow Jones Industrial Average on December 31, 1969 and December 31, 1989. Did

consumer prices or stock prices increase more over this 20-year period? Did the

real value of stocks increase or decline?

1.22 Look up the values of the CPI in December 1989 and December 2009 and the

Dow Jones Industrial Average on December 31, 1989 and on December 31, 2009.

Did consumer prices or stock prices increase more over this 20-year period? Did

the real value of stocks increase or decline?

1.23 Two professors calculated real stock prices (adjusted for changes in the CPI) back

to 1857 and concluded that [18]:

inflation-adjusted stock prices were approximately equal to nominal stock prices

in 1864–1865, were greater than nominal prices through 1918, tracked them

rather closely. following World War I and were nearly equal to them

throughout the World War II period. Since the end of World War II, however,

the nominal and real stock price series have begun to diverge, with the real

price moving further below the nominal price.

What does this conclusion, by itself, tell us about stock prices and consumer pri-

ces during these years?

1.24 The authors of the study cited in the preceding exercise go on to consider what

would have to happen for nominal stock prices to equal real stock prices again.

What is the correct answer?

1.25 Use the data in Tables 1.9 and 1.10 to determine the:

a. 1970 wage in 2010 dollars.

b. Percentage change in real wages between 1970 and 2010.

1.26 Use the data in Tables 1.9 and 1.10 to determine the:

a. 1980 wage in 2000 dollars.

b. Percentage change in real wages between 1980 and 2000.

1.27 Table 1.16 shows the official US poverty thresholds for families of four people.

Use the CPI data in Table 1.9 to calculate the real poverty thresholds in 1960

dollars in each of the years shown.
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1.28 Babe Ruth was paid $80,000 in 1931. When it was pointed out that this was more

than President Hoover made, he replied, “I had a better year than he did.” Using

a base 100 in 1967, the CPI was 45.6 in 1931 and 653.2 in 2010. What was the

value of Babe Ruth’s 1931 salary in 2010 dollars? Is this value higher or lower

than $3,297,828, the average Major League Baseball player’s salary in 2010?

1.29 The first professional football player was W. W. Pudge Heffelfinger, a former

All-American at Yale, who was working on a railroad in 1892 when he was paid

$500 to play one game for the Allegheny Athletic Association against the

Pittsburgh Athletic Club. (Pudge scored the game’s only touchdown, on a 25-yard

run.) Using a scale of 100 in 1967, the CPI was 27 in 1892 and 653.2 in 2010.

What was the value in 2010 dollars of Pudge’s one-game salary in 1892? Is this

value higher or lower than $68,750, the average National Football League player’s

salary per game in 2010?

1.30 A researcher wants to see if U.S. News & World Report rankings influence the

number of applications received by colleges and universities. He obtains the

unadjusted data shown in Table 1.17 on applications to one small liberal arts

college. To take into account the nationwide growth of college applications, this

researcher uses data from the Consortium on Financing Higher Education

(COFE) showing that, during this period, college applications increased by an

Table 1.16 Exercise 1.27

1960 $3022
1970 $3968
1980 $8414
1990 $13,359
2000 $17,604
2010 $22,050

Table 1.17 Exercise 1.30

Number of Applications

Unadjusted Adjusted

1987 3192 3069.2
1988 2945 2831.7
1989 3176 3053.8
1990 2869 2758.7
1991 2852 2742.3
1992 2883 2772.1
1993 3037 2920.2
1994 3293 3166.3
1995 3586 3448.1
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average of 4 percent per year. He consequently adjusted the number of applica-

tions to this college by dividing each value by 1.04. Identify his mistake and

explain how you would calculate the adjusted values correctly. Do not do the

actual calculations; just explain how you would do them.

1.31 When a child loses a baby tooth, an old US tradition is for the tooth to be put

under the child’s pillow, so that the tooth fairy will leave money for it. A survey

by a Northwestern University professor [19] estimated that the tooth fairy paid an

average of 12 cents for a tooth in 1900 and 1 dollar for a tooth in 1987. Using a

base of 100 in 1967, the CPI was 25 in 1900, 340.4 in 1987, and 653.2 in 2010. Did

the real value of tooth fairy payments rise or fall between 1900 and 1987? If tooth

fairy payments had kept up with inflation between 1900 and 2010, how large

should the 2010 payment have been?

1.32 The US Social Security Administration estimated that someone 22 years old who

earned $40,000 a year in 2008, works steadily for 45 years, and retires at age 67

in 2053, would begin receiving annual benefits of about $90,516 in 2054. This

calculation assumes a 3.5 percent annual rate of inflation between 2008 and 2054.

If so, how much will this $90,516 buy in terms of 2008 dollars, that is, how much

money would be needed in 2008 to buy as much as $90,516 will buy in 2054?

1.33 The US government reported that a total of 38.6 million pounds of toxic chem-

icals had been released into the air above New Jersey in 1982. A spokesman for

the New Jersey Department of Environmental Protection boasted that “It speaks

well of our enforcement,” since this was fewer chemicals than had been released

in 21 other states [20]. What problem do you see with his argument?

1.34 The Dow Jones Industrial Average was 838.92 on December 31, 1970, and

11,577.51 on December 31, 2010. The CPI was at 39.8 in December 1970 and

219.2 in December 2010 (using a base of 100 in 1982–1984). Did the Dow

increase by more or less than consumer prices over this 40-year period? If the

Dow had increased by just as much as consumer prices, what would the value of

the Dow have been on December 31, 2010?

1.35 During the 1922–1923 German hyperinflation, people reported receiving

more money for returning their empty beer bottles than they had originally

paid to buy full bottles. Could they have made a living buying beer, emptying

the bottles, and returning them?

1.36 Between August 1945 and July 1946, the number of Hungarian pengos (the unit

of Hungarian currency) in circulation increased by a factor of

12,000,000,000,000,000,000,000,000, while the price level increased by a factor of

4,000,000,000,000,000,000,000,000,000. Did the real value of the money supply

increase or decrease?
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1.37 Critically evaluate this economic commentary [21]:

When it comes to measuring inflation, the average consumer can do a far better

job than the economics experts. Over the years I have been using a system

which is infallible. The Phindex [short for the Phillips index] merely requires

you to divide the total dollar cost of a biweekly shopping trip by the number of

brown paper bags into which the purchases are crammed. You thus arrive at

the average cost per bagful.

When I started this system some 10 years ago, we would walk out of the store with

about six bags of groceries costing approximately $30—or an average of $5 per

bag. On our most recent shopping trip, we emerged with nine bagsful of stuff

and nonsense, totaling the staggering sum of $114. [T]he Phindex shows a rise

from the initial $5 to almost $13, a whopping 153 percent.

1.38 Use the data in Table 1.11 to determine the 1971 cost in 2008 dollars of mailing a

first-class letter. Is this value higher or lower than the actual $0.42 cost of mailing

a letter in 2008?

1.39 Use the data in Table 1.11 to determine the 1991 cost in 2008 dollars of mailing a

first-class letter. Is this value higher or lower than the actual $0.42 cost of mailing

a letter in 2008?

1.40 Use the data in Table 1.11 to determine the percentage increase in the CPI

between 2007 and 2008.

1.41 Use the data in Table 1.11 to determine the percentage increase in the CPI

between 1978 and 1981. (Do not calculate the annual rate of increase, just the

overall percentage increase.)

1.42 Table 1.11 shows the CPI with the index set equal to 100 in 2008. Suppose that

we redo the CPI so that the index equals 100 in 1958; if so, what is the value of

the CPI in 2008? What is the percentage increase in the CPI between 1958 and

2008 if we use the CPI with the index equal to 100 in 2008? If we use the CPI

with the index equal to 100 in 1958?

1.43 Table 1.11 shows the CPI with the index set equal to 100 in 2008. Suppose that

we redo the CPI so that the index equals 100 in 1985; if so, what is the value of

the CPI in 2008? What is the percentage increase in the CPI between 1985 and

2008 if we use the CPI with the index equal to 100 in 2008? If we use the CPI

with the index equal to 100 in 1985?

1.44 Instead of using the total population, we might deflate cigarette sales by the

number of people over the age of 18, since a person must be at least 18 years old

to buy cigarettes legally. There were 116 million people over the age of 18 in the

Chapter 1 • Data, Data, Data 23



United States in 1960 and 186 million in 1990. Use the data in the text to calcu-

late the percentage change between 1960 and 1990 in cigarette consumption per

person over the age of 18.

1.45 Mr. Bunker lives on beer and pretzels. In 2000, he bought 1000 six-packs of beer

for $2.00 per six-pack and 500 bags of pretzels for $1.00 per bag. In 2010,

Bunker’s beer cost $3.00 per six-pack and his pretzels cost $2.00 per bag. One

way to calculate Bunker’s rate of inflation is

100
C2010 � C2000

C2000

where C2010 ¼ cost of 1000 six-packs and 500 bags of pretzels in 2010 and

C2000 ¼ cost of 1000 six-packs and 500 bags of pretzels in 2000. What was the per-

centage increase in Bunker’s cost of living between 2000 and 2010? If we calculate a

Bunker Price Index (BPI) and scale this BPI to equal 100 in 2000, what is the 2010

value of the BPI?

1.46 (continuation) Another way to calculate Bunker’s rate of inflation is

ð% increase in price of beerÞ ðfraction of 2000 budget spent on beerÞ
þ ð% increase in price of pretzelsÞ ðfraction of 2000 budget spent on pretzelsÞ

What is Bunker’s rate of inflation using this approach?

1.47 Ms. Vigor lives on carrot juice and tofu. In 2000, she bought 1000 bottles of carrot

juice for $2.00 per bottle and 400 pounds of tofu for $3.00 per pound. In 2010,

Vigor’s carrot juice cost $2.50 per bottle and her tofu cost $5.00 per pound. One

way to calculate Vigor’s rate of inflation is

100
C2010 � C2000

C2000

where C2000 ¼ cost of 1000 bottles of carrot juice and 400 pounds of tofu in 2000 and

C2010 ¼ cost of 1000 bottles of carrot juice and 400 pounds of tofu in 2010. What was

the percentage increase in Vigor’s cost of living between 2000 and 2010? If we

calculate a Vigor Price Index (VPI) and scale this VPI to equal 100 in 2000, what is

the 2010 value of the VPI?

1.48 (continuation) Because of the large increase in the price of tofu, Ms. Vigor

changed her diet to 1200 bottles of carrot juice and 250 pounds of tofu in 2010.

Calculate Vigor’s rate of inflation using C2000 ¼ cost of 1200 bottles of carrot juice

and 250 pounds of tofu in 2000 and C2010 ¼ cost of 1200 bottles of carrot juice

and 250 pounds of tofu in 2010. What was the percentage increase in Vigor’s cost

of living between 2000 and 2010? Is the percentage increase in her cost of living

higher, lower, or the same when we use her 2010 purchases in place of her 2000

purchases? Explain why your answer makes sense intuitively.
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1.49 Explain the error in this interpretation of inflation data [22]:

In the 12-month period ending in December of 1980, consumer prices rose by

12.4 percent—after a 13.3 percent increase the year before. Similar measures of

inflation over the next three years were 8.9 percent, 3.9 percent, and 3.8

percent. We are certainly paying less for what we buy now than we were at

the end of 1980.

1.50 Answer this letter to Ann Landers [23]:

I’ve read your column for ages and almost always agree with you. One subject on

which we do not see eye-to-eye, however, is senior citizens driving. According to the

Memphis Commercial Appeal, recent statistics by the National Highway Traffic

Safety Administration indicate that drivers over 70 were involved in 4431 fatal

crashes in 1993. That is far fewer than any other age group. The 16- to 20-year-

olds were involved in 7711 fatal crashes. Elderly drivers also had the lowest

incidence of drunk driving accidents. Now, will you give seniors the praise they

deserve?
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A picture is worth a thousand words.

Anonymous

Data are the building blocks of statistics. It is often useful to use a graph to “see” the

data. Graphs can help us identify tendencies, patterns, trends, and relationships.

A picture can be worth not only a thousand words but a thousand numbers.

Bar Charts
Table 2.1 shows the percentage of families in 1960 and 2010 with no children under the

age of 18, one child under 18, and so on. In 1960, 43 percent of US families had no
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children and 9 percent had four or more children; in 2010, 55 percent had no children

and only 3 percent had four or more children.

These data can be displayed in a bar chart, where the heights of the bars are used to

show the number of observations (or the percentage of observations) in each category.

For example, Figure 2.1 shows the 2010 data with the bar heights showing the percentage

of families. If we instead used the number of families or the fraction of families, the bar

chart would look the same, but the units on the vertical axis would be different.

Because we instinctively gauge size by area rather than by height, each bar should be

the same width; otherwise the wider bars look disproportionately large. Suppose, for

example, that we have only two categories, 0–1 children or more than one child, and that

75 percent of the families have 0–1 children and 25 percent have more than one child.

The bar for 0–1 children should therefore be three times the height of the bar for more

than one child. Now suppose that we want to liven up our bar chart by replacing the

boring bars with cute pictures of a child. If we simply increase the height of the child’s

picture without changing the width, as in Figure 2.2, the stretched picture is distorted

and unprofessional.

Table 2.1 Percentage Distribution of US
Families by Number of Children under Age 18 [1]

1960 2010

No children 43 55
One child 19 19
Two children 18 16
Three children 11 6
Four or more children 9 3

none 1 2 3 4 or more
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FIGURE 2.1 Percentage of families with no, one, two, three, or four or more children, 2010.
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To keep the pictures from looking like fun house mirrors, we must triple both the

height and width of the bar for 0–1 children, as in Figure 2.3. But now the area of the first

bar is nine times the area of the second bar, which makes it seem that there are nine

times as many families with 0–1 children, when there are really only three times as many

families. The solution? Keep the bar widths the same—even if it means using simple bars

instead of eye-catching pictures. Remember, our objective is to convey information fairly

and accurately.

Bar charts can also be drawn with multiple data sets, as in Figure 2.4, which compares

family sizes in 1960 and 2010. This chart shows that, over this 50-year period, there was

an increase in the percentage of families with fewer than two children and a decrease in

the percentage with more than two children.
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FIGURE 2.2 Bar pictures are bizarre if the height is changed but the width is not.
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FIGURE 2.3 A bar chart with unequal widths.
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These simple bar charts are little more than a visual depiction of the data in Table 2.1.

Bar charts often do not reveal any insights beyond what could be seen by looking at a

table, though the visual images may be easier to remember than numbers in a table.

Bowlers’ Hot Hands

It is commonly thought that athletic performances are streaky, in that athletes sometimes

“get hot” and perform exceptionally well before falling back to their normal performance

level. A basketball player might make five shots in a row. A football quarterback might

complete five passes in a row. A baseball player might get hits in five consecutive games.

However, a careful statistical investigation [2] concluded that the common belief that

basketball players have hot streaks is erroneous, in that memorable performances

happen no more often than would be predicted by chance. For example, basketball

players making five shots in a row happens no more often than a coin lands heads five

times in a row. In addition, the players were no more likely (indeed, some were less likely)

to make a basket after having made a basket than after missing a basket.

Unfortunately, these basketball data have serious flaws. A player’s two successive

shots might be taken 30 s apart, 5 min apart, in different halves of a game, or even in

different games. Another problem is that the shots a player chooses to try may be

affected by his recent hits and misses. A player who makes several shots may take more

difficult shots than he would try after missing several shots. In addition, the opposing

team may guard a player differently when he is perceived to be hot or cold.

Bowling is a sport that does not have these complications. Every roll is made from the

same distance at regular intervals with intense concentration and no strategic consid-

erations. An analysis of Professional Bowler Association (PBA) data indicates that, for

many bowlers, the probability of rolling a strike is not independent of previous outcomes.

Table 2.2 summarizes data based on the frequencies with which bowlers rolled strikes

immediately after having rolled one to four consecutive strikes or one to four consecutive

none 1 2 3 4 or more
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FIGURE 2.4 Percentage of families with no,
one, two, three, or four or more children, 1960
and 2000.
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nonstrikes. All these data are from within games; we do not consider whether the first roll

of a game is influenced by the last roll of the previous game. For each category, we

consider only bowlers who had at least 10 observations in both situations. For example,

43 bowlers had at least 10 opportunities to bowl after rolling four consecutive strikes and

also had at least 10 opportunities to bowl after rolling four consecutive nonstrikes. Of

these 43 bowlers, 34 (79 percent) were more likely to roll a strike after four consecutive

strikes than after four consecutive nonstrikes.

Figure 2.5 shows these bowling data in a bar chart. Again, the main advantage of a bar

chart is that it paints a visual picture of the data.

Bar Charts with Interval Data

The data on family size and bowling involve discrete categories—two children, four

consecutive strikes. The bars are drawn with spaces between them to show that you

cannot have 2.5 children or 3.5 strikes. We can also use bar charts when numerical data

are divided into intervals.

For example, Table 1.3 in Chapter 1 shows the price/earnings (P/E) ratios for each of

the 30 Dow stocks on February 5, 2015. Table 2.3 separates the P/Es into intervals.

Table 2.2 Bowlers Who Rolled Strikes More Often after
Consecutive Strikes or Nonstrikes [3]

Bowlers Who Rolled
Strikes More Often

Number of Consecutive Strikes/Nonstrikes

1 2 3 4

After strikes 80 77 59 34
After nonstrikes 54 33 22 9
Total number of bowlers 134 110 81 43
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FIGURE 2.5 Percentage of bowlers who rolled
a strike more often after one, two, three, or
four consecutive strikes than after an equal
number of consecutive nonstrikes.
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Because the P/Es range from 9.9 to 32.3, we can specify six equally spaced intervals

ranging from 5 to 35, and count the number of P/Es in each interval.

Table 2.3 shows the results. One stock had a P/E in the interval 5 to 10, seven had P/Es

in the interval 10 to 15, and so on. If an observation is right on the border between

intervals (for example, a P/E of exactly 10), we need to adopt a rule. If the interval “5 to

10” means “5 to less than 10,” then a P/E of 10 goes into the interval 10 to 15. If there are

a large number of observations, the specific rule does not matter much; what is

important is that our rule is consistent.

Figure 2.6 is a bar chart showing the number of stocks in each interval. This is a

simple visual representation of the information in Table 2.3 but perhaps in a way that is

more easily processed. Unlike in a bar chart for categorical data, the bars touch because

they span numerical intervals.

Table 2.3 also shows the relative frequencies of observations in each interval:

relative frequency ¼ observations in interval

total observations

Table 2.3 Price/Earnings Ratios for Dow
Stocks, February 2015

Price/Earnings
Ratio

Number
of Stocks

Relative
Frequency

30 to 35 2 2/30 ¼ 0.067
25 to 30 2 2/30 ¼ 0.067
20 to 25 7 7/30 ¼ 0.233
15 to 20 11 11/30 ¼ 0.367
10 to 15 7 7/30 ¼ 0.233
5 to 10 1 1/30 ¼ 0.033
Total 30 1.000
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Number of stocksFIGURE 2.6 A bar chart showing the number of
observations.
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When there are lots of data, it may be hard to interpret the fact that an interval has,

say, 736 observations, but easy to interpret the fact that 15 percent of the observations

are in this interval.

Figure 2.7 is a bar chart of the data in Table 2.3, this time showing the relative fre-

quencies. Figures 2.6 and 2.7 look identical; the only difference is the different scales on

the vertical axis.

Histograms
Figures 2.6 and 2.7 use intervals that are equally wide, which is generally a good idea.

But sometimes there are persuasive reasons for using unequal intervals. If we are looking

at years of education, one interval might be 0–8 years and another interval might be

9–12 years. If we are looking at income, we might group the data by tax bracket. The 2014

federal income tax brackets for a married couple filing jointly are in Table 2.4. For

example, a married couple with a taxable income of $40,000 paid a federal income tax

0

0.1

0.2

0.3

0.4

0 5 10 15 20 25 30 35 40
Price-earnings ratio

Relative frequency FIGURE 2.7 A bar chart showing relative
frequencies.

Table 2.4 Federal Income Tax Brackets for a Married Couple
Filing Jointly, 2014 Income

Taxable Income Bracket Tax

Up to $18,150 10% of the amount over $0
$18,151 to $73,800 $1815 þ 15% of the amount over $18,150
$73,801 to $148,850 $10,162.50 þ 25% of the amount over $73,800
$148,851 to $226,850 $28,925 þ 28% of the amount over 148,850
$226,851 to $405,100 $50,765 þ 33% of the amount over $226,850
$405,101 to $457,600 $109,587.50 þ 35% of the amount over $405,100
$457,601 to no limit $127,962.50 þ 39.6% of the amount over $457,600
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of $1815.00 þ 0.15 ($40,000 � $18,150) ¼ $1815.00 þ $3277.50 ¼ $5092.50. Their average

tax rate was 12.7 percent:

$5092:50

$40;000:00
¼ 0:127

Their marginal tax rate is 15 percent in that they would pay an extra 15¢ in tax on

every extra dollar of taxable income (until their income exceeds $65,101 and they move

into the 25 percent tax bracket). Because different income tax brackets have different

marginal tax rates, it makes sense to use intervals that match the income tax brackets.

Bar graphs can be misleading when the intervals are not equally wide. Table 2.5

reproduces the data in Table 2.3, with the intervals 5 to 10 and 10 to 15 combined into a

single interval, 5 to 15.

Figure 2.8 shows the corresponding bar chart. Now, look back at Figure 2.7.

Figures 2.7 and 2.8 use the same data with the relative frequencies calculated correctly

and drawn correctly using the same scale on the vertical axis, yet the figures appear to be

Table 2.5 Price/Earnings Ratios for Dow
Stocks, February 2015, Unequal Intervals

Percent Price
Change

Number of
Stocks

Relative
Frequency

30 to 35 2 2/30 ¼ 0.067
25 to 30 2 2/30 ¼ 0.067
20 to 25 7 7/30 ¼ 0.233
15 to 20 11 11/30 ¼ 0.367
5 to 15 8 8/30 ¼ 0.267
Total 30 1.000
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Relative frequencyFIGURE 2.8 A bar chart with unequal intervals.
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quite different. The reason for this visual disparity is that our eyes gauge size by the areas

of the bars rather than their heights. The heights of the bars are correct, but the areas are

misleading. The interval 5 to 15 contains 26.7 percent of the observations and the height

of the bar is 0.267, but the double-wide bar in Figure 2.8 gives this interval as 42 percent

of the total area encompassed by the four bars. It seems that 42 percent of the stocks had

P/Es below 15, but only 26.7 percent did.

If the problem is that we look at areas instead of heights, the solution is to make the

areas equal to the relative frequencies. Remembering that the area of a bar is equal to its

width times its height, we want

relative frequency ¼ bar area ¼ ðbar widthÞ ðbar heightÞ
Therefore, the bar height must be set equal to the relative frequency divided by the

bar width:

bar height ¼ relative frequency

bar width

When the bar heights are adjusted in this way, so that the bar areas are equal to the

relative frequencies, the graph is called a histogram. Table 2.6 shows these calculations

for our Dow P/E data. For the four intervals, we divide by 5 because these interval widths

are all equal to 5. For the fifth interval (the double-wide interval 5–15), we divide by 10 to

get the histogram height.

Figure 2.9 shows a histogram using the calculations in Table 2.6. The area of the first

bar is equal to its relative frequency:

bar area ¼ ðbar widthÞ ðbar heightÞ ¼ 10 ð0:0267Þ ¼ 0:267

The fact that the area of this first bar is equal to 26.7 percent of the total area correctly

reflects the fact that 26.7 percent of the observations are in this interval. Because the area

of each bar is equal to a relative frequency, the total area of the bars is equal to 1.

The height of a bar in a histogram is called its density, because it measures the relative

frequency per unit of the variable we are analyzing. In Figure 2.9, the density is frequency

per unit of P/E. When the data are measured in dollars, the density is frequency per dollar.

Table 2.6 Histogram Heights for the Percentage
Changes in the Prices of Dow Stocks

Percent Price
Change

Number of
Stocks

Relative
Frequency

Histogram
Bar Height

3 to 4 2 2/30 ¼ 0.067 0.067/1 ¼ 0.067
2 to 3 0 0/30 ¼ 0.000 0.000/1 ¼ 0.000
1 to 2 5 5/30 ¼ 0.167 0.167/1 ¼ 0.167
0 to 1 12 12/30 ¼ 0.400 0.400/1 ¼ 0.400
�2 to 0 11 11/30 ¼ 0.367 0.367/2 ¼ 0.183
Total 30 1.000
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When the data are measured in years, the density is frequency per year. The general term

density covers all these cases. Because the term is unfamiliar to nonstatisticians and

histograms are standardized to have a total area equal to 1, histograms are often drawn

with no label on the vertical axis or no vertical axis at all!

Figure 2.10 shows a histogram of the P/E data, using equal intervals. If we compare

the two bars in Figure 2.10 for the intervals 5 to 10 and 10 to 15 with the single bar in

Figure 2.9 for the combined interval 5 to 15, we see that the single bar is just an average

of the two separate bars. The single bar loses some of the detail provided by two separate

bars but does not misrepresent how often the P/Es were less than 15.

Letting the Data Speak

Within reasonable bounds, the number of intervals used in a histogram is a matter of

taste. Here are a few guidelines. Histograms with fewer than four intervals usually convey
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DensityFIGURE 2.9 A histogram for the Dow P/Es.
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too little information to justify drawing a figure. If all we want to say is that 37 percent of

the P/Es were above 20, we can say this in words more easily than in graphs. At the other

extreme, if the number of intervals is too large, a histogram can turn into a jumble of

narrow spikes, with each spike representing only a few observations. Histograms usually

have five to 10 intervals, using more intervals when we have more data.

In choosing the width and location of the intervals, the simplest approach is equally

wide intervals that begin with round numbers, like 10 and 20, and cover all of the data.

Some intervals may be intrinsically interesting; for example, 0 is often an informative

place to end one interval and begin another.

If our data have an open-ended interval, such as “more than $100,000 income,” we

can omit this interval entirely. Alternatively, we can close the interval with an assumed

value and hope that it represents the data fairly; for instance, if we are working with

education data that have an interval “more than 16 years,” we might make this interval

16–20 years, and assume that this encompasses almost all of the data.

Understanding the Data

A histogram is intended to help us understand the data. One of the first things we notice

in a histogram is the center of the data, which is between 15 and 25 percent in

Figure 2.10. Figure 2.11 shows how a histogram might have multiple peaks.

Another consideration, as in Figure 2.12, is whether the data are bunched closely

around the center of the data or widely dispersed.

We also notice if the histogram is roughly symmetrical about the center. The two

histograms in Figure 2.12 are perfectly symmetrical, in that the bars to the right of center

are an exact mirror image of the bars to the left of center. Data are seldom perfectly

symmetrical but are often roughly so. On the other hand, histograms sometimes have an

asymmetrical shape that resembles a playground slide: steep on the side with the ladder

then declining more gradually on the side with the slide. The asymmetrical data in the
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FIGURE 2.11 A histogram with multiple peaks.
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top half of Figure 2.13 are positively skewed, or skewed to the right. The data in the

bottom half of Figure 2.13 are negatively skewed and run off to the left.

Histograms may also reveal outliers—values that are very different from the other

observations. If one value is very different from the rest, as in Figure 2.14, we should

check our data to see why. Sometimes an outlier is just a clerical error, the misplacement

of a decimal point. Sometimes, it reflects a unique situation—perhaps the year that a

natural disaster occurred—and can be discarded if we are not interested in such unusual

events. In other cases, the outlier may be a very informative observation that should be

investigated further. It might be very interesting to see how the stock market reacts to a

natural disaster, a presidential assassination, or the end of a war.

A dramatic example occurred in the 1980s, when scientists discovered that the

software analyzing satellite ozone readings over the South Pole had been automatically

omitting a substantial number of very low readings because these were outliers in

comparison to readings made in the 1970s. The computer program assumed that

readings this far from what had been normal in the 1970s must be mistakes. When
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FIGURE 2.12 Data may be bunched or dispersed.
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scientists reanalyzed the data, including the previously ignored outliers, they found that

an ominous hole in the ozone layer had been developing for several years, with Antarctic

ozone declining by 40 percent between 1979 and 1985. Susan Solomon, of the National

Oceanic and Atmospheric Administration’s Aeronomy Laboratory, said that, “this is a

change in the ozone that’s of absolutely unprecedented proportions. We’ve just never

seen anything like what we’re experiencing in the Antarctic” [4]. Outliers are sometimes

clerical errors, measurement errors, or flukes that, if not corrected or omitted, will distort

our analysis of the data; other times, as with the ozone readings, they are the most

interesting observations.
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FIGURE 2.13 Positively and negatively skewed data.
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Histograms are often roughly bell-shaped, with a single peak and the bars declining

symmetrically on either side of the peak—at first gradually, then more quickly, then

gradually again. The histogram in Figure 2.15 of daily stock returns for the 50-year period

1962–2012 has a very rough bell shape. This bell-shaped curve, known as the normal

distribution, is encountered frequently in later chapters.

Time Series Graphs
Time series graphs show data over time, with time on the horizontal axis and the data of

interest on the vertical axis. Time series graphs can be used to reveal several charac-

teristics of data:

1. Whether there is a long-run trend upward or downward.

2. Whether there are any unusual deviations from the long-run trend.
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FIGURE 2.14 An outlier.
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FIGURE 2.15 Daily stock returns, S&P 500, 1962–2012.
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3. Whether there has been a change in the trend.

4. Whether there are seasonal or other patterns in the data.

Figure 2.16 shows daily values of the Dow Jones Industrial Average between 1920 and

1940. Very clearly, we see a run up in the late 1920s, followed by a spectacular collapse.

After the 1929 crash, the Dow recovered to nearly 300 in the spring of 1930 but then began

a long, tortuous slide, punctuated by brief but inadequate rallies before finally touching

bottom at 41.22 on July 8, 1932—down 89 percent from the September 1929 peak of

381.17. It was not until 1956, 27 years later, that the stock market regained its 1929 peak.

Figure 2.17 shows daily values of the Dow from when it began in 1896 until December

31, 2014. Clearly, there has been a long-run upward trend, punctuated by sharp increases

and declines.

The 89 percent drop in 1929–1932 barely registers in Figure 2.17, but the 39 percent

decline in 2000–2002 and the 49 percent drop in 2007–2009 look enormous. This is

because the 89 percent drop in 1929–1932 was a 340-point fall, which was huge relative

to the 381 value of the Dow in 1929 but small relative to the value of the Dow in 2000 and

2007. In contrast, the 39 percent drop in 2000–2002 was 3900 points and the 49 percent

drop in 2007–2009 was 6900 points.

What matters more to investors, the number of points the market drops or the per-

centage by which it drops? If it is the percentage ups and downs that matter, then we can

graph the logarithm of prices, as in Figure 2.18. The slope of a logarithmic graph shows

the percentage change. Figure 2.18 puts the data in proper perspective if it is percentage

changes that matter. Figure 2.18 shows that, in percentage terms, the 1929–1932 stock

market crash was much worse than the 2000–2002 and 2007–2009 declines.

0

50

100

150

200

250

300

350

400

1920 1925 1930 1935 1940

D
ow

 J
on

es
 I

nd
us

tr
ia

l A
ve

ra
ge

FIGURE 2.16 The stock market crash during the Great Depression.
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FIGURE 2.18 The logarithm of the Dow Jones Industrial Average, 1896–2014.
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Unemployment during the Great Depression

In Chapter 1, we saw that government officials had very little economic data during the

Great Depression. Government analysts mostly drew inferences from what they heard

from friends or witnessed themselves. Researchers have subsequently pieced together

estimates of the unemployment rate for several years before, during, and after the Great

Depression. The federal government’s Bureau of Labor Statistics has compiled official

monthly estimates of the unemployment rate from household surveys since 1948.

Figure 2.19 is a time series graph of these after-the-fact estimates of the unemploy-

ment rate back to 1920—what government officials might have seen if unemployment

data had been collected at that time. Figure 2.19 shows the spike in unemployment

during the 1920–1921 recession, at the time the sharpest recession the United States had

ever experienced, and also shows the devastating increase in unemployment between

1929 and 1932. The unemployment rate declined after 1932 but still was at levels higher

than during the 1920–1921 crisis. The unemployment rate was above 14 percent for a full

decade, and plunged to tolerable levels only when the United States became involved in

World War II.

Cigarette Consumption

Time series data are often adjusted for size of the population or the price level to help us

distinguish between changes that happened because the population grew or prices

increased, and changes that happened because people changed their behavior.

In Chapter 1, we saw that total cigarette sales in the United States increased by 8

percent between 1960 and 1990, but that per capita sales fell by 22 percent. A time series

graph can give a more complete picture. Figure 2.20 shows total sales each year between
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FIGURE 2.19 Unemployment during the Great Depression [5].
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1900 and 2007 and total sales per adult. Total sales generally increased up until 1981, but

sales per capita peaked in the 1960s and declined steadily after the release of the 1964

Surgeon General’s Reportwarning of the health risks associated with smoking. Figure 2.20

convincingly demonstrates a long-term upward trend in sales per capita before the

Surgeon General’s Report and a downward trend afterward. By looking at sales per capita,

we can see the change in people’s behavior.

Scatterplots
Scatterplots depict the relationship between two variables. If there is thought to be a

causal relationship between these variables, with changes in the independent variable

causing changes in the dependent variable, then the independent variable is put on the

horizontal axis and the dependent variable is put on the vertical axis.

For example, Table 1.1, reproduced here as Table 2.7, shows the values of aggregate

US income and spending each year from 1929 through 1940. Spending seems to go up

and down with income, but it is not clear whether this is a close relationship and how we

would quantify this relationship. When income goes up by a dollar, how much does

consumption tend to increase?

A scatter diagram can help us answer these questions. Keynes’ theory was that

spending is positively related to income—so income should be on the horizontal axis

and spending should be on the vertical axis. Figure 2.21 shows a scatterplot of these data.

There does, indeed, appear to be a pretty tight relationship between income and

spending. In Chapter 8, we see how to fit a line to these data so that we can quantify the

relationship between income and spending. It turns out that, when income increases by

a dollar, spending tends to increase by about 84 cents.
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and sales per capita.
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Okun’s Law

Chapter 1 discussed Okun’s law, the idea that there is an inverse relationship between

changes in output and the unemployment rate. The causal direction is unclear here. It

could be argued that an increase in the unemployment rate reduces the number of people

working and the amount they produce. Or it could be argued that, when consumers,

businesses, and governments buy less, firms hire fewer workers and the unemployment

rate increases. We follow this latter line of reasoning and put the percentage change in

real GDP on the horizontal axis and the percentage-point change in the unemployment

Table 2.7 US Disposable Personal Income
and Consumer Spending, Billions of Dollars

Year Income Spending

1929 83.4 77.4
1930 74.7 70.1
1931 64.3 60.7
1932 49.2 48.7
1933 46.1 45.9
1934 52.8 51.5
1935 59.3 55.9
1936 67.4 62.2
1937 72.2 66.8
1938 66.6 64.3
1939 71.4 67.2
1940 76.8 71.3
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rate on the vertical axis. A scatterplot of annual data for the years 1947–2014 (Figure 2.22)

shows a clear inverse relationship. When GDP goes up, unemployment goes down; when

GDP goes down, unemployment goes up. In Chapter 8, we see how to quantify this inverse

relationship by estimating Okun’s law.

The Fed’s Stock Valuation Model

In a speech on December 5, 1996, Federal Reserve Board Chairman Alan Greenspan [6]

worried aloud about “irrational exuberance” in the stock market. The Fed subsequently

developed a stock valuation model in which the “fair-value price” P for the S&P 500 stock

index is equal to the ratio of the earnings E of the companies in the S&P 500 to the

interest rate R on 10-year Treasury bonds:

P ¼ E

R

Another way of expressing this model is that the fair-value earnings/price ratio is

equal to the interest rate on 10-year Treasury bonds:

E

P
¼ R (2.1)

We can think of the earnings/price ratio, the left-hand side of Eqn (2.1), as a rough

estimate of the anticipated return from buying stock. If you buy stock for $100 a share
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FIGURE 2.22 Output and unemployment, 1947–2014.
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and the company earns $10 a share, then your rate of return is evidently 10 percent. This

is not quite right because firms typically do not pay all of their earnings out to share-

holders. They pay out some of their earnings as dividends and reinvest the rest in the

firm. The shareholders’ returns depend on how profitable this reinvestment is. Still, the

earnings/price ratio is a rough estimate of the shareholders’ returns.

The right-hand side of Eqn (2.1) is the interest rate on 10-year Treasury bonds, which

is a reasonable estimate of an investor’s rate of return from buying these bonds. So,

Eqn (2.1) equates the anticipated rate of return from stocks to the rate of return from

bonds. It is unlikely that these are exactly equal to each other, but it is plausible that they

are positively related. If the interest rate on Treasury bonds goes up, the return on stocks

has to increase too; otherwise, investors flee from stocks to bonds.

Figure 2.23 shows that, overall, there is a remarkably close correspondence between R

and E/P. One big divergence was in the 1973–1974 stock market crash, when stock prices

fell dramatically and increased the earnings/price ratio substantially. Another divergence

was in 1987, shortly before the biggest one-day crash in US stock market history.

Ironically, there seems to be nothing unusual in December 1996, when Fed Chair Alan

Greenspan worried aloud about “irrational exuberance” in the stock market. After his

pronouncement, however, prices raced far ahead of earnings, driving the earnings/price

ratio to a record low, before the dot-com bubble burst.

In 2014, the earnings/price ratio seemed high—suggesting that stocks prices were, if

anything, low. Time will tell if this suggestion is correct.
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Using Categorical Data in Scatter Diagrams

Sometimes, we want to separate the data in a scatter diagram into two or more cate-

gories. We can do this by using different symbols or colors to identify the data in the

different categories.

Table 1.6 shows the prices of hard drives of various sizes in the years 2003 through

2007. Figure 2.24 shows the data for 2006 and 2007, separated into these two categories

by using asterisks for the 2006 data and dots for the 2007 data. We see that (1) in each

year, there is a positive relationship between size and price; and (2) prices fell between

2006 and 2007.

Graphs: Good, Bad, and Ugly
Graphs are supposed to help us understand data. They should display data accurately

and encourage the reader to think about the data rather than admire the artwork.

Unfortunately, graphs can be misleading if not done carefully and honestly.

Omitting the Origin

Sometimes, it is helpful to omit 0 from the vertical axis so that we can see the fine detail.

But, the resulting magnification of the ups and downs in the data can give a misleading

impression of how big the ups and downs are.
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For example, Figure 2.25 shows a graph of weekly data on the assets of money market

mutual funds similar to one that was used to illustrate a newspaper writer’s claim that,

“After peaking at $392 billion in March, money market fund assets have fallen sharply” [7].

This figure omits 0 from the vertical axis so that we can see clearly that money market

assets peaked on March 25 then declined. This decline is not only easier to see, but also

appears much bigger than it really was. The height of the line drops 30 percent, which

suggests that fund assets fell sharply; however, the actual numbers show that there was

only a 2 percent decline, from $392 billion to $384 billion.

Figure 2.26 shows the same data, but with 0 included on the vertical axis. Now, the

values (ranging from $373 billion to $392 billion) are so far from zero that any patterns in
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FIGURE 2.25 Money market fund assets fall sharply.
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the data have been ironed out of the graph, and we cannot tell when fund assets peaked.

On the other hand, the graph does tell us correctly that the dip was minor.

In general, the omission of 0 magnifies variations in the heights of bars in bar charts

and histograms and in the heights of lines in a time series graph, allowing us to detect

differences that might otherwise be ambiguous. However, once 0 has been omitted, we

can no longer gauge relative magnitudes by comparing the heights of the bars or lines.

Instead, we need to look at the actual numbers.

Figure 2.27 gives a famous example in which President Ronald Reagan showed the

American people how much a family with $20,000 income would pay in taxes under the

administration’s tax proposal, in comparison to a plan drafted by the House Ways and

Means Committee [8]. Because the vertical axis shows no numbers (just a dollar sign), we

have no basis for gauging the magnitude of the gap between the lines. The 1986 gap in

fact represented about a 9 percent tax reduction, from $2385 to $2168. The omission of

0 magnifies this 9 percent difference to 90 percent of the height of the line labeled “Their

bill,” and the omission of numbers from the vertical axis prevents the reader from

detecting this magnification. Afterward, in response to criticism that this figure distorted

the data, a White House spokesman told reporters, “We tried it with numbers and found

that it was very hard to read on television, so we took them off. We were trying to get a

point across” [8].

Changing the Units in Mid-Graph

For a graph to represent the data accurately, the units on each axis must be consistent.

One inch should not represent $1000 for part of the axis and $10,000 for the rest of the

axis. If the units change in mid-graph, the figure surely distorts the information

contained in the data. For example, a Washington Post graph like Figure 2.28 showed

a steady increase in doctor income between 1939 and 1976. Or does it? Look at the
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Your taxes
Average family income = $20,000
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FIGURE 2.27 How much would taxes be?
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horizontal axis. The equally spaced marks initially represent a difference of 8 years

between 1939 and 1947, then a difference of 4 years between 1947 and 1951 and 4 years

between 1951 and 1955. Later differences range from 1 year to 8 years. These puzzling

intervals may have been chosen so that the line is approximately straight. A straight line

may be visually appealing but misrepresents the data.

Figure 2.29 uses consistent intervals on the horizontal axis to show what really

happened to doctor income during this time period. Doctor income did not increase in a

straight line, and there may have been a significant change in 1964, when Medicare

began. To explore this more fully we should adjust doctor income for inflation; we could
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FIGURE 2.28 Doctor income marches steadily upward [9].
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also graph the logarithm of doctor income, as explained earlier, so that the slope of the

line shows the percentage change. No matter what data we use, each axis should use

consistent units.

In 1976, the National Science Foundation (NSF) used a graph like Figure 2.30 to show

a decline in the number of Nobel Prizes in science (chemistry, physics, and medicine)

awarded to US citizens. Again, look at the time axis. Each of the first seven observations

is for decades, but the eighth is for a 4-year period, 1971–1974. The NSF, which certainly

knows better, altered the time axis in mid-graph!

Because the number of prizes awarded during a 4-year period is fewer than during a

10-year period, the NSF was able to create an illusion of an alarming drop in the number

of science prizes awarded to Americans. Using data for the full decade, Figure 2.31 shows

that US citizens ended up winning even more prizes in the 1970s than in the 1960s.

(Of course, this trend could not continue forever, unless the Nobel Committee increased

the total number of prizes; in the 1970s, the United States won more than half of the

science Nobel Prizes.)

Choosing the Time Period

One of the most bitter criticisms of statisticians is that, “Figures don’t lie, but liars

figure.” The complaint is that an unscrupulous statistician can prove anything by

carefully choosing favorable data and ignoring conflicting evidence. For example, a

clever selection of when to begin and end a time series graph can be used to show a

trend that would be absent in a more complete graph. Figure 2.32 illustrates this point
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FIGURE 2.30 A precipitous decline in US Nobel Prizes in science? [10].
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with daily data on the Dow Jones Industrial Average from January 2004 through

December 2008. If we were to show data for only October 2004 through October 2007, it

would appear that stock prices increase by 39 percent (more than 11 percent a year); if,

instead, we were to show data for only November 2007 through November 2008, it would

appear that stock prices fell by 46 percent a year. Which is correct? Both time periods are

too brief to describe meaningful trends in something so volatile. A much longer

perspective is needed for a more balanced view. Over the past 100 years, stock prices

have increased, on average, by about 4 percent a year.

Would anyone be so naive as to extrapolate stock prices on the basis of only a few

years of data? Investors do it all the time, over even shorter periods, hoping that the latest

zig is the prelude to many happy profits or fearing that a recent zag is the beginning of a

crash. In October 2007, a financial planner’s clients told her that they wanted to get a

home equity loan so that they could borrow more money and earn double-digit returns

in the stock market. A year later, these clients said they wanted to sell all their stocks

because they could not afford to lose another 50 percent in the stock market.

We should be suspicious whenever the data begin or end at peculiar points in time.

If someone publishes a graph in 2009 using data for October 2002 to January 2007, we

should be puzzled why this person did not use data for before October 2002 or after

January 2007, and why the data begin in October and end in January. A general rule is

that, if the beginning and ending points seem to be peculiar choices that one would

make only after scrutinizing the data, then they were probably chosen to distort the

historical record. There may be a perfectly logical explanation, but we should insist on

hearing this explanation.

A graph is essentially descriptive—a picture meant to tell a story. As with any story,

bumblers may mangle the punch line and dishonest people may tell lies. Those who are

conscientious and honest can use graphs to describe data in a simple and revealing way.

There is room for mistakes and chicanery, but there is also room for enlightenment.

The Dangers of Incautious Extrapolation

While time series graphs provide a simple and useful way of describing the past, we must

not forget that they are merely descriptive. Graphs may reveal patterns in the data, but

they do not explain why these patterns occur. We, the users, must provide these logical

explanations. Sometimes, explanations are easily found and provide good reasons for

predicting that patterns in past data will continue in the future. Because of the

Thanksgiving holiday, the consumption of turkey has shown a bulge in November for

decades and will probably continue to do so for years to come. Because of the cold

weather, construction activity declines in winter in the northern part of the United States

and will most likely continue doing so.

If we have no logical explanation for the patterns in the data and nonetheless assume

they will continue, then we have made an incautious extrapolation that may well turn

out to be embarrassingly incorrect. Extrapolations are riskier the further into the future
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we look, because the underlying causes have more time to weaken or evaporate. We can

be more certain of turkey sales next November than in the year 5000.

In his second State of the Union address, Abraham Lincoln predicted, based on an

extrapolation of data for the years 1790–1860, that the US population would be

251,689,914 in 1930 [11]. (In addition to the incautious extrapolation, note the unjustified

precision in this estimate of the population 70 years hence.) The actual US population

in 1930 turned out to be 123 million, less than half the size that Lincoln had predicted.

A 1938 presidential commission [12] erred in the other direction, predicting that the US

population would never exceed 140 million. Just 12 years later, in 1950, the US popu-

lation was 152 million. Fifty years after that, in 2000, the US population was 281 million.

Many ludicrous examples have been concocted to dramatize the error of incautious

extrapolation. One observer, with tongue firmly in cheek, extrapolated the observation

that automobile deaths declined after the maximum speed limit in the United States was

reduced to 55 miles per hour:

To which Prof. Thirdclass of the U. of Pillsbury stated that to reach zero death rate

on the highways, which was certainly a legitimate goal, we need only set a speed

limit of zero mph. His data showed that death rates increased linearly with

highway speed limits, and the line passing through the data points, if extended

backwards, passed through zero at zero mph. In fact, if he extrapolated even

further to negative auto speeds, he got negative auto deaths, and could only

conclude, from his data, that if automobiles went backwards rather than

forwards, lives would be created, not lost.

Unnecessary Decoration

Some well-meaning people add pictures, lines, blots, and splotches to graphs, apparently

intending to enliven the pictures, but too often creating what Edward Tufte [13] calls

chartjunk, as in Figure 2.33, unattractive graphs that distract the reader and strain the

eyes. Another way to create chartjunk is to use multiple colors, preferably bright and

clashing.

Computers also make possible textjunk, printed documents that look like a ransom

note made by pasting together characters in mismatched sizes, styles, and fonts. I once

received a two-page newsletter that used 32 fonts, not counting variations caused by

letters that were bold, italicized, or in different sizes. It was painful to read.

A consultant was hired to evaluate the location of several Native American gambling

casinos in Southern California based on driving distances for potential customers. This is

a complicated question because it should take into account where households live and

also their casino alternatives. The appeal of a casino 30 miles from potential customers is

diluted if another casino is only 10 miles from these customers.

This consultant developed a proprietary model for estimating “location values.” He

did not explain his model but he showed the results in Figure 2.33, which doesn’t say
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much, but is a good example of chartjunk. The purpose of a graph is to reveal infor-

mation that would not be as apparent or as easily remembered if presented in a table.

Figure 2.33 does neither.

The bars evidently show the location values for these 12 casinos; I say “evidently”

because the vertical axis is unlabeled. We are not told what these numbers mean or how

they were calculated. Are these dollars? Percents? Households? The 12 bars are arranged

to resemble a bell curve, but there is no reason why the first bar is the Chumash Casino

and the last bar is the Golden Acorn. The pattern in the bars—rising to a peak and then

falling like a bell curve—reveals no useful information. It would be more sensible to

arrange the bars from tallest to smallest.

There are no labels on the horizontal axis. Instead, we have to look back and forth

from the graph to the legend, and the similarity in the bar patterns makes it tedious and

difficult to do so. The bar patterns themselves are distracting and the three-dimensional

appearance is not helpful. Finally, even if we decipher the bars, it is not easy to line up

the bar heights with the numerical values on the vertical axis.

This bar chart is not an improvement over a simple table, such as Table 2.8.

Sometimes less is more.

The first full–time graph specialist at Time magazine was an art school graduate who

asserted that “the challenge is to present statistics as a visual idea rather than a tedious

parade of numbers.” Too often, graphs are drawn to be artistic, rather than informative.

Graphs are not mere decoration, to enliven numbers for the easily bored. They are

intended to summarize and display data to help our analysis and interpretation. A useful

graph displays data accurately and coherently and encourages the reader to understand

the data’s substance.
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Exercises
2.1 For each of the following studies, identify the type of graph (histogram, time

series graph, or scatter diagram) that would be the most appropriate. (You can

use more than one graph of each type, for example, two histograms.)

a. Are stock returns more volatile than bond returns?

b. Do interest rates affect home construction?

c. Is the rate of inflation higher or lower now than in the past?

d. Do cigarette sales depend on cigarette prices?

e. Is there more variation in the unemployment rate or the rate of inflation?

2.2 For each of the following studies, identify the type of graph (histogram, time

series graph, or scatter diagram) that would be the most appropriate. (You can

use more than one graph of each type, for example, two histograms.)

a. Has air pollution in Los Angeles generally risen or fallen during the past 20 years?

b. Do colleges that accept a large percentage of their students in early-decision

programs have higher yields (percentage of accepted students who enroll)?

c. Can college grade point averages be predicted from high school grade point

averages?

d. Do students who get more sleep get higher grades?

e. Is there more dispersion in the starting salaries of economics majors or

English majors?

2.3 For each of the following studies, identify the type of graph (histogram, time

series graph, or scatter diagram) that would be the most appropriate. (You can

use more than one graph of each type, for example, two histograms.)

a. Do countries with lots of smokers have lots of lung-cancer deaths?

b. Does the time between eruptions of the Old Faithful geyser depend on the

duration of the preceding eruption?

Table 2.8 Sometimes, a Simple Table is
Better than a Cluttered Graph [15]

Casino Location Value

Pechanga Casino 181
Morongo Casino Resort & Spa 162
Pala Casino 153
Sobobo Casino 145
Valley View Casino 118
Casino Pauma 115
Viejas Casino & Turf Club 94
Agua Caliente 91
Cahuilla Creek Casino 69
Augustin Casino 68
Golden Acorn 50
Chumash Casino 38
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c. Is there more variation in annual rainfall in Los Angeles or in New York?

d. Have temperatures in Los Angeles gone up or down over the past 100 years?

e. Could the states that Mitt Romney won and lost in 2012 have been predicted

from how well John McCain did in each state in 2008?

2.4 For each of the following studies, identify the type of graph (histogram, time

series graph, or scatter diagram) that would be the most appropriate. (You can

use more than one graph of each type, for example, two histograms.)

a. Has the average grade in statistics classes risen or fallen in the past 20 years?

b. Can final exam scores in statistics classes be predicted from homework scores?

c. Can grades in statistics classes be predicted from overall GPAs?

d. Is there more dispersion in homework scores or final exam scores?

e. Is there more dispersion in grades in statistics classes or history classes?

2.5 Use the data in Table 1.4 to make a histogram of the US dollar prices of a Big Mac

in these 20 countries. Use these intervals for the prices: 1–2, 2–3, 3–4, 4–5, 5–8.

2.6 Use the data in Table 1.4 to make a histogram of the US dollar prices of a Big

Mac in these 20 countries. Use these intervals for the prices: 1–3, 3–4, 4–5, 5–8.

2.7 Use the data in Table 1.4 for the 19 countries other than the United States to

make a histogram of the US dollar prices of a Big Mac. Use these intervals for the

prices: 1.41–2.41, 2.41–3.41, 3.41–4.41, 4.41–5.41, 5.41–8.41.

2.8 Draw a histogram using these household taxable income data (in thousands

of dollars) and intervals equal to the federal income tax brackets shown in

Table 2.4: 10, 20, 30, 40, 50, 60, 70, 80, 90, 100.

2.9 Draw a histogram using these household taxable income data (in thousands

of dollars) and intervals equal to the federal income tax brackets shown in

Table 2.4: 15, 23, 32, 37, 48, 48, 75, 80, 110, 130.

2.10 Draw a histogram using these household taxable income data (in thousands

of dollars) and intervals equal to the federal income tax brackets shown in

Table 2.4: 10, 15, 20, 20, 30, 35, 40, 40, 50, 55, 60, 60, 70, 75, 80, 80, 90, 95, 100, 100.

2.11 Draw a histogram using these household taxable income data (in thousands of

dollars) and intervals equal to the federal income tax brackets shown in Table 2.4:

12, 15, 23, 24, 32, 37, 37, 37, 48, 48, 52, 59, 75, 80, 80, 85, 110, 114, 130, 150.

2.12 Use the tax brackets in Table 2.4 to calculate the taxes and average tax rates for

each of these incomes (in thousands of dollars) for these 10 married couples

filing a joint tax return: 10, 20, 30, 40, 50, 60, 70, 80, 90, 100. Now display these

average tax rates in a histogram with these intervals: 0–5%, 5–10%, 10–15%,

15–20%, 20–25%.

2.13 Use the tax brackets in Table 2.4 to calculate the taxes and average tax rates for

each of these incomes (in thousands of dollars) for these 10 married couples
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filing a joint tax return: 15, 23, 32, 37, 48, 48, 75, 80, 110, 130. Now display these

average tax rates in a histogram with these intervals: 0–5%, 5–10%, 10–15%,

15–20%, 20–25%.

2.14 Do not collect any data, but use your general knowledge to draw a rough sketch

of a histogram of the ages of the students at your school. Be sure to label the

horizontal and vertical axes.

2.15 Do not collect any data, but use your general knowledge to draw a rough sketch

of a histogram of the first-year salaries of last year’s graduates from your school.

Be sure to label the horizontal and vertical axes.

2.16 Use the data in Tables 1.9 and 1.10 to make a time series graph of real average

hourly earnings.

2.17 Use the data in Table 1.11 to make a time series graph of the real cost of mailing

a letter.

2.18 Use the data in Table 1.2 to make a scatterplot of income and spending. Does

there seem to be a close positive relationship?

2.19 Explain why you think the following pairs of data are positively related, negatively

related, or essentially unrelated. If you think there is a causal relationship, which

is the explanatory variable?

a. The height of a father and the height of his oldest son.

b. The age of a mother and the age of her oldest child.

c. The number of scalp hairs and the age of a man between the ages of 30

and 40.

d. A woman’s pre-pregnancy weight and the weight of her baby.

e. A woman’s age and her cost of a 1-year life insurance policy.

2.20 Explain why you think the following pairs of data are positively related, negatively

related, or essentially unrelated. If you think that there is a relationship, which is

the explanatory variable?

a. The age (in days) and weight of male children less than 1 year old.

b. The age and chances of having breast cancer, for women between the ages of

40 and 80.

c. The age and height of people between the ages of 30 and 40.

d. The weight and gasoline mileage (miles per gallon) of 2015 cars.

e. The income and age of male lawyers aged 21 to 54.

2.21 Table 2.9 shows the percentage of the Jewish population of various ages in

Germany in 1928 and in 1959 and of a theoretical stationary population that is

neither growing nor contracting. Make three histograms, one for each population.

(Assume that the interval 60 and over is 60–79.) What conclusions can you draw

from these graphs?
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2.22 A survey of the prices of houses recently sold in Indianapolis obtained these data.

Display these data in a histogram.

Sale
Price ($)

Number
of Houses

75,000–100,000 10
100,000–150,000 30
150,000–200,000 20

2.23 A survey of the prices of houses recently sold in Boston obtained these data.

Display these data in a histogram.

Sale
Price ($)

Number
of Houses

100,000–200,000 10
200,000–500,000 60
500,000–1,000,000 30

2.24 Use the test scores in Exercise 1.8 two make two histograms, one using the first-

grade scores and the other the eighth-grade scores. In each case, use the intervals

0–9, 10–19, ., 90–99. Summarize the main differences between these two

histograms.

2.25 Use a histogram with intervals 0–9.99, 10–14.99, 15–19.99, and 20–34.99 to

summarize the data in Table 2.10 on annual inches of precipitation from 1961 to

1990 at the Los Angeles Civic Center. Be sure to show your work.

Table 2.9 Exercise 2.21 [16]

Age 1928 1959
Stationary
Model

0–19 25.9 14.2 33
20–39 31.3 19.8 30
40–59 27.7 28.2 25
60 and over 14.3 28.2 12

Table 2.10 Exercise 2.25

5.83 15.37 12.31 7.98 26.81 12.91 23.66 7.58 26.32 16.54
9.26 6.54 17.45 16.69 10.70 11.01 14.97 30.57 17.00 26.33
10.92 14.41 34.04 8.90 8.92 18.00 9.11 9.98 4.56 6.49
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2.26 From the 30 stocks in the Dow Jones Industrial Average, students identified the

10 stocks with the highest dividend/price (D/P) ratio and the 10 stocks with the

lowest D/P ratio. The percentage returns on each stock were then recorded over

the next year (Table 2.11). Display these returns in two histograms using the

same units on the horizontal axis. Do the data appear to have similar

distributions?

2.27 Plutonium has been produced in Hanford, Washington, since the 1940s,

and some radioactive waste has leaked into the Columbia River. A 1965 study of

cancer incidence in nearby communities [17] compared an exposure index and

the cancer mortality rate per 100,000 residents for nine Oregon counties:

Exposure Index 8.34 6.41 3.41 3.83 2.57 11.64 1.25 2.49 1.62
Cancer Mortality 210.3 177.9 129.9 162.3 130.1 207.5 113.5 147.1 137.5

Which variable is the explanatory variable and which is the dependent

variable? Make a scatter diagram and describe the relationship as either positive,

negative, or nonexistent.

2.28 The Soviet Antarctica Expeditions at Vostok analyzed an ice core that was 2083

meters long to estimate the atmospheric concentrations of carbon dioxide during

the past 160,000 years [18]. Table 2.12 shows some of their data, where D is the

depth of the ice core, in meters; A is the age of the trapped air, in years before

present; and C is the carbon dioxide concentration, in parts per million by

volume. Draw a time series graph of atmospheric carbon dioxide concentration

over the past 160,000 years. (Show the most recent period on the right-hand side

of the horizontal axis.) What patterns do you see?

2.29 Table 2.13 shows US federal government saving and GDP (in billions of dollars).

Government saving is government income minus government expenditures; a

Table 2.11 Exercise 2.26

High D/P Low D/P

39.77 �37.74
32.01 46.83
28.93 �5.81
32.30 48.04
31.28 20.91
12.17 20.24
40.68 1.05
14.33 �28.10
40.39 17.03
7.74 �1.55
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positive value represents a budget surplus, a negative value a budget deficit.

Calculate the government savings as a percentage of GDP each year and display your

data in a time series graph. Write a brief paragraph summarizing your graph.

2.30 Use the data in the preceding exercise to calculate the percentage change in

government saving and the percentage change in GDP each year from 1990 through

2010. When you calculate the percentage change from a negative base, divide by

the absolute value of the base. For example, the percentage change in saving from

1990 to 1991 is 100 * (�301.3 � (�251.8))/abs(�251.8) ¼ �19.6%. Make a scatterplot

of these percentage changes and write a brief paragraph summarizing this graph.

Table 2.13 Exercise 2.29

Year Saving GDP Year Saving GDP Year Saving GDP

1960 �1.0 526.4 1977 �46.0 2030.1 1994 �262.3 7085.2
1961 �8.0 544.8 1978 �31.9 2293.8 1995 �244.5 7414.7
1962 �8.3 585.7 1979 �26.7 2562.2 1996 �179.7 7838.5
1963 �4.1 617.8 1980 �75.7 2788.1 1997 �73.8 8332.4
1964 �7.9 663.6 1981 �73.5 3126.8 1998 27.0 8793.5
1965 �5.2 719.1 1982 �161.3 3253.2 1999 64.4 9353.5
1966 �8.0 787.7 1983 �201.8 3534.6 2000 146.6 9951.5
1967 �21.2 832.4 1984 �190.4 3930.9 2001 �65.1 10,286.2
1968 �12.1 909.8 1985 �215.5 4217.5 2002 �422.4 10,642.3
1969 1.4 984.4 1986 �238.5 4460.1 2003 �553.3 11,142.1
1970 �21.5 1038.3 1987 �208.4 4736.4 2004 �531.1 11,867.8
1971 �31.3 1126.8 1988 �186.7 5100.4 2005 �418.3 12,638.4
1972 �16.8 1237.9 1989 �181.7 5482.1 2006 �291.6 13,398.9
1973 �3.8 1382.3 1990 �251.8 5800.5 2007 �408.1 14,061.8
1974 �15.7 1499.5 1991 �301.3 5992.1 2008 �912.3 14,369.1
1975 �86.7 1637.7 1992 �373.1 6342.4 2009 �1592.7 14,119.0
1976 �62.5 1824.6 1993 �338.3 6667.4 2010 �1559.1 14,660.4

Table 2.12 Exercise 2.28

Depth D Age A Carbon C Depth D Age A Carbon C

126.4 1700 274.5 1225.7 80,900 222.5
302.6 9140 259.0 1349.0 90,630 226.0
375.6 12,930 245.0 1451.5 98,950 225.0
474.2 20,090 194.5 1575.2 110,510 233.5
602.3 30,910 223.0 1676.4 119,500 280.0
748.3 42,310 178.5 1825.7 130,460 275.0
852.5 50,150 201.0 1948.7 140,430 231.0
975.7 59,770 201.0 2025.7 150,700 200.5
1101.4 70,770 243.0 2077.5 159,690 195.5
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2.31 A study of the average sentence length of British public speakers produced the

data in Table 2.14. Plot these data using a horizontal axis from 1500 to 2200 and

a vertical axis from 0 to 80. Draw a freehand straight line that fits these data and

extend this line to obtain a rough prediction of the average number of words per

sentence in the year 2200.

2.32 In 1974, Congress tried to reduce US fuel usage by imposing a nationwide

55 miles per hour speed limit. As time passed, motorists increasingly disregarded

this speed limit; and in 1987, the speed limit on rural interstate highways was

increased to 65 miles per hour. Plot the data on US motor vehicle deaths per

100 million miles driven, shown in Table 2.15, and see if anything unusual seems

to have happened in 1974 and during the next several years.

2.33 In 1992, two UCLA professors compared the trends over time in male and female

world records in several running events. Their data (in minutes) for the mara-

thon, a race covering 42,195 meters, are in Table 2.16. Convert each of these

times to velocity, in meters per minute, by dividing 42,195 meters by the time.

Table 2.14 Exercise 2.31 [19]

Speaker Year
Words per
Sentence

Francis Bacon 1598 72.2
Oliver Cromwell 1654 48.6
John Tillotson 1694 57.2
William Pitt 1777 30.0
Benjamin Disraeli 1846 42.8
David Lloyd George 1909 22.6
Winston Churchill 1940 24.2

Table 2.15 Exercise 2.32

Year Deaths Year Deaths Year Deaths Year Deaths

1960 5.1 1969 4.9 1978 3.3 1987 2.4
1961 5.1 1970 4.7 1979 3.3 1988 2.3
1962 5.1 1971 4.5 1980 3.3 1989 2.2
1963 5.3 1972 4.3 1981 3.2 1990 2.1
1964 5.4 1973 4.1 1982 2.8 1991 1.9
1965 5.3 1974 3.5 1983 2.6 1992 1.8
1966 5.5 1975 3.4 1984 2.6 1993 1.8
1967 5.4 1976 3.3 1985 2.5 1994 1.7
1968 5.2 1977 3.3 1986 2.5
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Then plot the velocity data on a single time series graph, with the velocity axis

running from 0 to 400 and the time axis running from 1900 to 2000. (Plot each

point at the midpoint of the decade; for example, plot the 1910s data at 1915.)

The professors wrote that, “Despite the potential pitfalls, we could not resist

extrapolating these record progressions into the future.” Draw one freehand

straight line that fits the male data and another that fits the female data. Do

these lines cross before 2000? Extrapolating the female line backward, what was

the implied female world record in 1900?

2.34 What is misleading about Figure 2.34, which shows the distribution of family

income? Redraw the figure, correcting these errors. (Be sure to say how you

would define the middle class.)

2.35 What is wrong with the histogram in Figure 2.35?

2.36 What is wrong with the histogram in Figure 2.36?

2.37 What is wrong with the histogram in Figure 2.37?

2.38 What is wrong with the histogram in Figure 2.38?

2.39 What is wrong with the histogram in Figure 2.39 that was constructed from

annual rainfall data for the years 1901–2000? (Density is the rainfall for each year

divided by the total rainfall for all 100 years.)

Table 2.16 Exercise 2.33 [20]

1910s 1920s 1930s 1940s 1950s 1960s 1970s 1980s

Males 156.12 149.03 146.70 145.65 135.28 128.57 128.57 126.83
Females 217.12 187.43 147.55 141.10
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FIGURE 2.34 Exercise 2.34.
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2.40 An Internet company’s CEO gave her Board of Directors Figure 2.40, a graph

prepared by the company’s finance group that showed the company’s revenue

over the previous seven quarters. The Board grilled the CEO, asking her to

explain why revenue was down so much. How would you have responded?

2.41 What is misleading about Figure 2.41, showing the increase in the cost of mailing

a letter in the United States between 1971 and 2009?

2.42 Figure 2.42 is a rendition of a wall with blue stickers that appeared in a Prudential

Financial advertisement titled, “Let’s get ready for a longer retirement.” The ad

explained: “A typical American city. 400 people. And a fascinating experiment. We

asked everyday people to show us the age of the oldest person they know by

placing a sticker on our chart. Living proof that we are living longer. Which

means we need more money to live in retirement.” Why is this ad misleading?
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FIGURE 2.40 Exercise 2.40.
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2.43 What is wrong with Figure 2.43 of Table 2.17’s quarterly earnings per share data

for Gordon Jewelry, a leading retail jewelry shop? Redraw the graph correctly,

then describe any patterns you see.

2.44 Identify what is misleading about Figure 2.44, showing a precipitous decline in

2011 in the number of passengers carried by three major airlines [22].

2.45 What is misleading about Figure 2.45, illustrating the fact the purchasing power

of the US dollar fell by 50 percent between 1986 and 2010?

2.46 The figure below is an updated version of a New York Times graphic that accom-

panied an article by David Frum titled “Welcome, Nouveaux Riches.” The figure

shows a dramatic acceleration between 1980 and 1990 in the number of

FIGURE 2.42 Exercise 2.42 [21].
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FIGURE 2.43 Exercise 2.43.
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households earning more than $100,000 a year (Figure 2.46). Frum wrote that,

“Nothing like this immense crowd of wealthy people has been seen in the history

of the planet.” What problems do you see with this graph?

2.47 What is misleading about Figure 2.47, comparing the populations of three cities?

2.48 What is misleading about Figure 2.48, showing a leveling off of US federal tax

revenue?

Table 2.17 Exercise 2.43

1978 1979 1980 1981 1982

March 1–May 31 0.37 0.56 0.55 0.54 0.25
June 1–August 31 0.32 0.60 �0.40 �0.15 0.32
September 1–November 30 0.32 0.34 0.45 0.57 0.21
December 1–February 28 1.29 1.77 2.15 2.19 1.97
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2.49 Identify several problems that prevent Figure 2.49 from conveying useful

information.

2.50 What is misleading about Figure 2.50, which shows a large increase in a

company’s annual sales?

Poll shows little change in safety

1 = Very unsafe
2 = Pretty unsafe
3 = Okay
4 = Pretty safe
5 = Very safe

FIGURE 2.49 Exercise 2.49.
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And that’s the news from Lake Wobegon, where all the women are strong,
all the men are good-looking, and all the children are above average.

Garrison Keillor

Chapter 2 explained how graphs help us look at data and see typical values, outliers,

variations, trends, and correlations. For formal statistical inference, we need to work with

precise numerical measures. It is not enough to say “It looks like output and unem-

ployment are inversely related.” We want to measure the closeness of the relationship

and the size of the relationship: “There is a �0.85 correlation between the change in real

GDP and the change in the unemployment rate. When real GDP increases by 1 percent,

the unemployment rate tends to fall by about 0.4 percentage points.”

In this chapter, we look at several statistical measures that can be used to describe

data and draw statistical inferences.

Mean
The most well-known descriptive statistic is the mean, or average value, which is calcu-

lated by adding up the values of the data and dividing by the number of observations:

x ¼ x1 þ x2 þ.þ xn
n

¼
Xn
i�1

xi

(3.1)
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where the n observations are denoted as xi and the Greek letter
P

(pronounced “sigma”)

indicates that the values should be added up. The standard symbol for the mean, x, can

be pronounced “x-bar.”

For example, Table 1.3 (in Chapter 1) gives the price/earnings (P/E) ratios for the 30

Dow stocks on February 5, 2015. The average is calculated by adding up the 30 values

and dividing by 30:

x ¼ 32:3þ 30:4þ.þ 9:9

30

¼ 19:1

The average P/E was 19.1.

One interesting property of the mean is that, if we calculate how far each value is from

the mean, the average of these deviations is 0:Pn
i�1ðxi � xÞ

n
¼ 0

Table 3.1 gives three simple numerical examples. In the first example, the data are

symmetrical about the mean of 20. The first observation is 10 below the mean, the

second is equal to the mean, and the third is 10 above the mean. In the second example,

the increase in the value of the third observation from 30 to 90 pulls the mean up to 40.

Now, the first observation is 30 below the mean, the second is 20 below the mean, and

the third is 50 above the mean. In the third example, the increase in the third observation

to 270 pulls the mean up to 100. Now, the first observation is 90 below the mean, the

second is 80 below the mean, and the third is 170 above the mean. In every case, the

average deviation is 0.

Outliers pull the mean toward the outliers. A national magazine once reported [1] that

a group of Colorado teachers had failed a history test, with an average score of 67. It

turned out that only four teachers had taken the test and one received a score of 20. The

other three averaged 83. The one very low score pulled the mean down to 67 and misled

a magazine that interpreted the average score as the typical score.

The Joint Economic Committee of Congress once reported that the share of the na-

tion’s wealth owned by the richest 0.5 percent of US families had increased from

Table 3.1 The Average Deviation from the Mean Is 0

Symmetrical Data Data Skewed Right Big Outlier

xi xi L x xi xi L x xi xi Lx

10 �10 10 �30 10 �90
20 0 20 �20 20 �80
30 10 90 50 270 170

Sum 60 0 120 0 300 0
Average 20 0 40 0 100 0
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25 percent in 1963 to 35 percent in 1983 [2]. Politicians made speeches and newspapers

reported the story with “Rich Get Richer” headlines. Some skeptics in Washington

rechecked the calculations and discovered that the reported increase was due almost

entirely to the incorrect recording of one family’s wealth as $200,000,000 rather than

$2,000,000, an error that raised the average wealth of the rich people who had been

surveyed by nearly 50 percent. Someone typed two extra zeros and temporarily misled

the nation.

One way to make the mean less sensitive to outliers is to discard the extreme

observations. More than a 100 years ago, a renowned statistician, Francis Edgeworth,

argued that the mean is improved “when we have thrown overboard a certain portion of

our data—a sort of sacrifice which has often to be made by those who sail upon the

stormy seas of Probability” [3]. A trimmed mean is calculated by discarding a specified

percentage of the data at the two extremes and calculating the average of the remaining

data. For example, a 10-percent trimmed mean discards the highest 10 percent of the

observations and the lowest 10 percent, then calculates the average of the remaining 80

percent. Trimmed means are commonly used in many sports competitions (such as

figure skating) to protect the performers from judges who are excessively generous with

their favorites and harsh with their opponents.

Median
The median is the middle value when the data are arranged in numerical order. It does

not matter whether we count in from highest to lowest or lowest to highest. If, for

example, there are 11 observations, the median is the sixth observation; if there are 10

observations, the median is halfway between the fifth and sixth observations.

In general, at least half of the values are greater than or equal to the median and at

least half are smaller than or equal to the median. We have to use the qualifiers at least

and or equal to because more than one observation may be exactly equal to the median,

as with these data:

1 2 2 2 7

It is not true that half of the observations are greater than 2 and half are less than 2,

but it is true that at least half the observations are greater than or equal to 2 and at least

half are less than or equal to 2.

The Dow P/E data in Table 1.3 are arranged in numerical order. Because there are 30

stocks, the median is halfway between the 15th and 16th returns (Cisco 18.4 and

UnitedHealth 19.1):

median ¼ 18:4þ 19:1

2

¼ 18:75
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Earlier, we calculated the mean P/E to be 19.1. A histogram (Figure 2.10) of the Dow

P/Es shows that the data are roughly symmetrical, but a few large values pull the mean

somewhat above the median.

In comparison to the mean, the median is more robust or resistant to outliers.

Looking again at the data in Table 3.1, the median stays at 20 while the increase in the

value of the third observation from 30 to 90 to 270 pulls the mean upward.

For some questions, the mean is the most appropriate answer. Whether you balance

your budget over the course of a year depends on your average monthly income and

expenses. Farm production depends on the average yield per acre. The total amount of

cereal needed to fill a million boxes depends on the average net weight. For other

questions, the median might be more appropriate.

The US Census Bureau reports both the mean and median household income. The

mean income tells us how much each household would earn if the total income were

equally divided among households. Of course, income is not evenly divided. In 2013, the

mean household income in the United States was $72,000 while the median was $52,000.

The mean was pulled above the median by a relatively small number of households with

relatively high incomes.

Standard Deviation
An average does not tell us the underlying variation in the data. Sir Francis Galton

once commented that “It is difficult to understand why statisticians commonly limit

their enquiries to Averages, and do not revel in more comprehensive views. Their

souls seem as dull to the charm of variety as that of the native of one of our flat

English counties, whose retrospect of Switzerland was that, if its mountains could be

thrown into its lakes, two nuisances would be got rid of at once” [4]. Another

Englishman with a sense of humor, Lord Justice Matthews, once told a group of

lawyers: “When I was a young man practising at the bar, I lost a great many cases I

should have won. As I got along, I won a great many cases I ought to have lost; so on

the whole, justice was done” [5].

We might try to measure the variation in the data by calculating the average deviation

from the mean. But remember that, as in Table 3.1, the average deviation from the mean

is always 0, no matter what the data look like. Because the positive and negative de-

viations from the mean offset each other, giving an average deviation of 0, we learn

nothing at all about the sizes of the deviations. To eliminate this offsetting of positive and

negative deviations, we could take the absolute value of each deviation and then

calculate the average absolute deviation, which is the sum of the absolute values of the

deviations from the mean, divided by the number of observations.

The average absolute deviation is easy to calculate and interpret; however, there are

two reasons why it is seldom used. First, while it is easily calculated, a theoretical

analysis is very difficult. Second, there is an attractive alternative that plays a prominent

role in probability and statistics.
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Remember that we took absolute values of the deviations to keep the positive and

negative deviations from offsetting each other. Another technique that accomplishes this

same end is to square each deviation, since the squares of positive and negative de-

viations are both positive. The average of these squared deviations is the variance s2 and

the square root of the variance is the standard deviation s:

s2 ¼ ðx1 � xÞ2 þ ðx2 � xÞ2 þ.þ ðxn � xÞ2
n� 1

(3.2)

Notice that the variance of a set of data is calculated by dividing the sum of the

squared deviations by n � 1, rather than n. In later chapters, we look at data that are

randomly selected from a large population. It can be shown mathematically that, if the

variance in the randomly selected data is used to estimate the variance of the population

from which these data came, this estimate will, on average, be too low if we divide by n,

but will, on average, be correct if we divide by n � 1.

The variance and standard deviation are equivalent measures of the dispersion in

data, in that data that have a higher variance than another group of data also have a

higher standard deviation. However, because each deviation is squared, the variance has

a scale that is much larger than the underlying data. The standard deviation has the same

units and scale as the original data. If all the data values were doubled, the standard

deviation would double, too, while the variance would be quadrupled.

Boxplots
After the data are arranged in numerical order, from smallest to largest, the data can be

divided into four groups of equal size, known as quartiles:

First quartile Minimum value to 25th percentile
Second quartile 25th percentile to 50th percentile
Third quartile 50th percentile to 75th percentile
Fourth quartile 75th percentile to maximum value

These four subsets are called quartiles because each encompasses one-fourth of the

data. The 50th percentile is the median, and we have already seen that this is an

appealing measure of the center of the data. An appealing measure of the spread of the

data is the interquartile range, which is equal to the difference between the 25th and 75th

percentiles. The interquartile range includes the middle half of the data.

A boxplot (also called, more descriptively, a box-and-whisker diagram) uses five

statistics to summarize the center and spread of the data: the smallest observation, the

25th percentile, the 50th percentile, the 75th percentile, and the largest observation.

A boxplot may also identify any observations that are outliers.

Figure 3.1 shows a boxplot using the Dow P/E data in Table 1.3. The box connects the

25th and 75th percentiles and encompasses the middle half of the data. The median is
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denoted by the line inside the box. The ends of the two horizontal lines coming out of the

box (the “whiskers”) show the minimum and maximum values. A boxplot conveys a

considerable amount of information, but is less complicated than the histogram in

Figure 2.9. It is also relatively robust, in that the box (but not the whiskers) is resistant to

outliers.

In a modified boxplot, outliers that are farther than 1.5 times the interquartile range

from the box are shown as separate points, and the whiskers stop at the most extreme

points that are not outliers. Figure 3.2 is a modified boxplot for the inflation data in

Table 3.2, with the 1981 outlier identified.

A boxplot can be drawn either horizontally or vertically, and side-by-side boxplots

can be used to compare data sets. Figure 3.3 shows vertical side-by-side boxplots for the

0 40302010

minimum maximum

median25th percentile 75th percentile

Price-earnings ratio

FIGURE 3.1 A boxplot for the Dow price/earnings ratios, February 2015.

FIGURE 3.2 A boxplot for annual inflation, 1981–2014, with one outlier.
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Table 3.2 Annual Rate of Inflation,
December to December

1981 8.9 1998 1.6
1982 3.8 1999 2.7
1983 3.8 2000 3.4
1984 3.9 2001 1.6
1985 3.8 2002 2.4
1986 1.1 2003 1.9
1987 4.4 2004 3.3
1988 4.4 2005 3.4
1989 4.6 2006 2.5
1990 6.1 2007 4.1
1991 3.1 2008 0.1
1992 2.9 2009 2.7
1993 2.7 2010 1.5
1994 2.7 2011 3.0
1995 2.5 2012 1.7
1996 3.3 2013 1.5
1997 1.7 2014 0.8
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FIGURE 3.3 Side-by-side boxplots for hard drive prices.
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hard drive prices in Table 1.6. This figure clearly shows that, not only was there a decline

in prices between 2003 and 2007, but the dispersion in prices also declined each year.

In most cases, the standard deviation, the average absolute deviation, and the

interquartile range agree in their rankings of the amount of variation in different

data sets. Exceptions can occur when there are outliers because the squaring of

deviations can have a large effect on the standard deviation. Just as the median is

more resistant to outliers than is the mean, so the average absolute deviation and

the interquartile range are more resistant to outliers than is the standard deviation.

Nonetheless, the standard deviation is usually used to gauge the variation in a set of

data.

Growth Rates
Many data are more meaningful when expressed as percentages; for example, we can

readily interpret statements such as the CPI increased by 3 percent last year, the Dow

went down 2 percent yesterday, or it costs 20 percent more to rent a home than to buy

one.

Percentages can also put things in proper perspective. If the Dow falls by 340, is that a

lot or a little? When the Dow was at 18,000 in 2015, a 340-point drop was a 1.9 percent

decline—sickening but not catastrophic. When the Dow was at 381 in 1929, the

340-point drop that occurred between 1929 and 1932 was a catastrophic 89 percent

decline.

Get the Base Period Right

The percentage change is computed by dividing the difference between the new and old

values by the value before the change, then multiplying by 100 to convert a fraction to a

percentage:

percentage change ¼ 100

�
new � old

old

�
(3.3)

Percentage changes are sometimes calculated incorrectly by dividing the change

by the value after the change instead of dividing by the value before the change. For

example, Newsweek once reported that the salaries of some Chinese government of-

ficials had been reduced 300 percent [6]. Suppose that the salary before the reduction

were $60,000. If the salary were eliminated completely, that would be a 100 percent

reduction:

percentage change ¼ 100

�
new � old

old

�

¼ 100

�
$0� $60; 000

$60; 000

�

¼ �100
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To get a 300 percent reduction, the salary would have to be negative $120,000!

percentage change ¼ 100

�
new � old

old

�

¼ 100

��$120; 000� $60; 000

$60; 000

�

¼ �300

Since it is unlikely that anyone would pay $120,000 a year to work for the government,

Newsweek must have made a mistake when it calculated the percentage change. In fact,

it made several mistakes by calculating the percentage change this way:

Newsweek “percentage change” ¼ �100

�
old

new

�

¼ �100

�
$60; 000

$20; 000

�

¼ �300

The negative sign appears because the salary was reduced.

To calculate the percentage change correctly, we divide the change in the salary by

the old salary, as in Eqn (3.3). If a $60,000 salary is reduced to $20,000, this is not a 300

percent decrease, but rather a 66.67 percent decrease:

percentage change ¼ 100

�
new � old

old

�

¼ 100

�
$20; 000� $60; 000

$60; 000

�

¼ �66:67

For a percentage calculation to be informative, it should also use a reasonable base

period that is clearly identified. Someone who reports that “The price of orange juice

increased 50 percent” should tell us the base period. Did the price increase 50 percent in

a single day or over the past 100 years? Someone who does not specify the base period

(or gives a peculiar base period) may be trying to magnify or minimize the percentage

change to support a position, rather than present the facts honestly. To make the price

increase seem large, someone might compare it to a period when orange juice was

cheap. Someone else, who wants to report a small price increase, may choose a base

period when orange juice was expensive, perhaps after bad weather ruined most of the

crop. An honest statistician compares the price to a natural base period and identifies

that base period: “The price of orange juice has increased by 2 percent during the past

year, and by 35 percent over the past 10 years.” If orange juice prices fluctuate consid-

erably, we can use a time series graph, as explained in Chapter 2, to show these ups and

downs.

Because there usually is no room to specify the base period in a brief newspaper

headline, we sometimes see accurate, but seemingly contradictory, headlines on the very
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same day. For example, The New York Times once reported that “American Express Net

Climbs 16%” [7], while The Wall Street Journal reported the same day that “Net at

American Express Fell 16% in 4th Quarter” [8]. These were not typographical errors. Both

stories were accurate and each explained the base period that they used. The Times

compared American Express’s earnings in the fourth quarter to its earnings in the third

quarter; the Journal compared American Express’s earnings in the fourth quarter to its

earnings a year earlier.

Watch out for Small Bases

Because a percentage is calculated relative to a base, a very small base can give a

misleadingly large percentage. On your second birthday, your age increased by 100

percent. When you graduate from college, your income may increase by several 1000

percent. On July 25, 1946, the average hourly rainfall between 6 A.M. and noon in Palo

Alto, California, was 84,816 times the average hourly rainfall in July during the preceding

36 years, dating back to 1910, when the Palo Alto weather station first opened [9]. How

much rain fell on this incredibly wet July 25? Only 0.19 in. During the preceding 36 years,

there had been only one July day with measurable precipitation in Palo Alto, and on that

day the precipitation was 0.01 in.

One way to guard against the small-base problem is to give the level as well as the

percentage; for example, to note that the rainfall was 0.19 in on this unusually wet July

day in Palo Alto.

The Murder Capital of Massachusetts

Wellfleet is a small town on Cape Cod renowned for its oysters, artists, and tranquility.

There was considerable surprise when the Associated Press reported that Wellfleet had

the highest murder rate in Massachusetts in 1993, with 40 murders per 100,000 resi-

dents—more than double the murder rate in Boston, which had only 17 murders per

100,000 residents [10]. A puzzled newspaper reporter looked into this statistical murder

mystery. She found that there had in fact been no murders in Wellfleet in 1993 and that

no Wellfleet police officer, including one who had lived in Wellfleet for 48 years, could

remember a murder ever occurring in Wellfleet.

However, a man accused of murdering someone in Barnstable, which is 20 miles from

Wellfleet, had turned himself in at the Wellfleet police station in 1993 and the Associated

Press had erroneously interpreted this Wellfleet arrest as a Wellfleet murder. Because

Wellfleet had only 2491 permanent residents, this one misrecorded murder arrest

translated into 40 murders per 100,000 residents. Boston, in contrast, had 98 murders,

which works out to 17 murders per 100,000 residents.

The solution to this murder mystery shows how a statistical fluke can make a big

difference if the base is small. A misrecorded murder in Boston would not noticeably

affect its murder rate. In Wellfleet, a misrecorded murder changes the reported murder
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rate from 0 to 40. One way to deal with small bases is to average the data over several

years in order to get a bigger base. Wellfleet’s average murder rate over the past 50 years

is 1 with the misrecorded arrest and 0 without it—either way confirming that it is indeed

a peaceful town.

The Geometric Mean (Optional)

The arithmetic mean of n numbers is calculated by adding together the numbers and

dividing by n. The geometric mean is calculated by multiplying the numbers and taking

the nth root:

g ¼ ðx1x2.xnÞ1=n (3.4)

For example, the arithmetic mean of 5, 10, and 15 is 10:

x ¼ 5þ 10þ 15

3

¼ 10

while the geometric mean is 9.09:

g ¼ ð5� 10� 15Þ1=3
¼ 9:09

The geometric mean is not defined for negative values and is simply equal to 0 if one

of the observations is equal to 0. One interesting mathematical fact about the geometric

mean is that it is equal to the arithmetic mean if all of the numbers are the same;

otherwise, as in our numerical example, the geometric mean is less than the arithmetic

mean.

The geometric mean is often used for data that change over time because annual

rates of change are more meaningful than the overall percentage change. For example,

which of these statements (both of which are true) is more memorable and meaningful?

1. The CPI increased 172 percent between December 1980 and December 2014.

2. The CPI increased 3 percent a year between December 1980 and December 2014.

Statement 2 is based on a geometric mean calculation.

Table 3.2 shows the annual rate of inflation using December US CPI data; for

example, the CPI increased by 8.9 percent from December 1980 to December 1981 and

by 3.8 percent from December 1981 to December 1982. Since the level of the CPI is

arbitrary, we might set the CPI equal to 1 in December 1980. The CPI is then 1.089 in

December 1981 and (1.089)(1.038) ¼ 1.130 in December 1982. If we continue for all

34 years, the level of the CPI in December 2014 is:

ð1:089Þð1:038Þð1:038Þ.ð1:008Þ ¼ 2:72

The increase in the CPI from 1 in December 1980 to 2.72 in December 2014 is a 172

percent increase.
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The geometric mean tells us that the annual rate of increase over these 30 years was

3.0 percent:

ð1:089Þð1:038Þð1:038Þ.ð1:008Þ1=34 ¼ 1:030

The annual rate of increase was 3.0 percent in that if the CPI increased by 3.0 percent

every year, it would be 172 percent higher after 34 years:

ð1:030Þ34 ¼ 2:72

In general, if something grows at a rate ri in year i, then a geometric mean calculation

gives us the overall annual rate of growth r:

1þ r ¼ ½ð1þ r1Þð1þ r2Þ.ð1þ rnÞ�1=n (3.5)

Equation (3.5) also works for interest rates and other rates of return. If you invest $100

and earn a 5 percent return the first year, a 20 percent return the second year, and a 10

percent return the third year, your $100 grows to:

$100ð1þ 0:05Þð1þ 0:20Þð1þ 0:10Þ ¼ $138:60

Using Eqn (3.5), the geometric return is 11.5 percent:

1þ r ¼ ½ð1þ 0:05Þð1þ 0:20Þð1þ 0:10Þ�1=3
¼ 1:115

in that $100 invested for 3 years at 11.5 percent will grow to $138.60:

$100ð1:115Þ3 ¼ $138:60

Correlation
Often, we are interested in the relationships among variables. How is household

spending related to income? How is GDP related to the unemployment rate? How are the

outcomes of presidential elections related to the unemployment rate? How are interest

rates related to the rate of inflation?

Chapter 2 discusses the Federal Reserve’s stock-valuation model, which hypothesizes

that there is a relationship between the earnings/price ratio and the interest rate on

10-year Treasury bonds. A time series graph (Figure 2.23) suggests that these two vari-

ables do, indeed, move up and down together. Figure 3.4 shows a scatterplot of the

quarterly data used in Figure 2.23. This is another way of seeing that there appears to

be a positive relationship between these two variables.

The covariance sxy is a very simple measure of the relationship between two

variables:

sxy ¼
ðx1 � xÞðy1 � yÞ þ ðx2 � xÞðy2 � yÞ þ.þ ðxn � xÞ�yn � y

�
n� 1

(3.6)

The covariance is analogous to the variance, which is a measure of the dispersion in a

single variable. Comparing Eqns (3.2) and (3.6), we see that the variance adds up the
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squared deviations of a single variable from its mean, while the covariance adds up the

products of the deviations of two variables from their means.

Figure 3.5 repeats Figure 3.4, this time showing the mean values of the two variables,

so that we can see when each of these variables is above or below its mean. Clearly, when

the interest rate was above its mean, the earnings/price ratio tended to be above its

mean, and when the interest rate was below its mean, the earnings/price ratio tended to

be below its mean.

Now look again at the formula for the covariance. The product of the deviations of x

and y from their respective means is positive when both deviations are positive (the

northeast quadrant of Figure 3.5) or when both deviations are negative (the southwest

quadrant of Figure 3.5). The product of the deviations of x and y from their respective

means is negative when one deviation is positive and the other deviation is negative (the

northwest and southeast quadrants of Figure 3.5). In the case of the 10-year Treasury rate

and the S&P 500 earnings/price ratio, the data are overwhelmingly in the northeast and

southwest quadrants, and the products of the deviations are overwhelmingly positive.

So, the covariance is positive.

This reasoning shows us how to interpret a positive or negative covariance:

Positive covariance: When one variable is above (or below) its mean, the other

variable also tends to be above (or below) its mean.

Negative covariance: When one variable is above its mean, the other variable tends

to be below its mean, and vice versa.
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FIGURE 3.4 S&P 500 earnings/price ratio and 10-year Treasury interest rate, 1960–2014.

Chapter 3 • Descriptive Statistics 83



In our example, the covariance between the 10-year Treasury rate and the S&P 500

earnings/price ratio works out to be 5.19. Is 5.19 a large or small covariance? The

covariance depends on the scale of the deviations from the means. If the typical

deviation is 100, the covariance will be much higher than when the typical deviation is 1.

To put the covariance into perspective, we calculate the correlation R by dividing the

covariance by the standard deviation of x and the standard deviation of y:

r ¼ ðcovariance between x and yÞ
ðstandard deviation of xÞðstandard deviation of yÞ

¼ sxy
sxsy

(3.7)

Standard deviations are always positive. Therefore, the correlation coefficient has the

same sign as the covariance. A positive correlation means that when either variable is

above its mean, the other variable tends to be above its mean. A negative correlation

means that when either variable is above its mean, the other variable tends to be below

its mean.

It can be shown mathematically that the correlation coefficient cannot be larger than

1 or less than �1. The correlation is equal to 1 if the data lie on a straight line with a

positive slope and is equal to �1 if the data lie on a straight line with a negative slope. In

each of these extreme cases, if you know the value of one of the variables, you can be

certain of the value of the other variable. In less extreme cases, the data do not lie exactly
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FIGURE 3.5 S&P 500 earnings/price ratio and 10-year Treasury rate, relative to means.
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on a straight line drawn through the data. The correlation is equal to 0 when there is no

linear relationship between the two variables.

The value of the correlation coefficient does not depend on which variable is on the

vertical axis and which is on the horizontal axis. For this reason, the correlation coeffi-

cient is often used to give a quantitative measure of the direction and degree of asso-

ciation between two variables that are related statistically but not necessarily causally.

For instance, the historical correlation between midterm and final examination scores in

my introductory statistics classes is about 0.6. I do not believe that either test score has

any causal effect on the other test score but rather that both scores are influenced by

common factors (such as student aptitude and effort). The correlation coefficient is a

numerical measure of the degree to which these test scores are related statistically.

The correlation coefficient does not depend on the units in which the variables are

measured. For instance, the correlation between height and weight does not depend on

whether the heights are measured in inches or centimeters or the weights are measured

in pounds or kilograms.

The correlation between the 10-year Treasury rate and the S&P 500 earnings/price

ratio turns out to be 0.70, which shows (as suggested by Figures 3.4 and 3.5) that there is

a positive, but certainly not perfect, linear relationship between these two variables.

Figure 3.6 shows a scatterplot of annual data on the percent change in real GDP and

the change in the unemployment rate. This time, the correlation is �0.82, which shows

that there is a strong negative linear relationship between these two variables.
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FIGURE 3.6 Real GDP and unemployment, annual, 1948–2014.
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Figure 3.7 shows a scatterplot for two essentially unrelated variables, the rate of return

on the S&P 500 and per capita cigarette consumption. The correlation is 0.04, which

confirms our visual impression that there is no meaningful linear relation between these

two variables. If we tried to visualize a straight line fit to these data, we would not know

where to draw it.

A correlation of 0 does not mean that there is no relationship between x and y, only

that there is no linear relationship. Figure 3.8 shows how a zero correlation coefficient

does not rule out a perfect nonlinear relationship between two variables. In this figure, y

and x are exactly related by the equation y ¼ 10x � x2. Yet, because there is no linear

relationship between y and x, the correlation coefficient is 0. This is an example of why

we should look at a scatterplot of our data.

Exercises

3.1 Which of these data sets has a higher mean? Higher median? Higher standard de-

viation? (Do not do any calculations. Just look at the data.)

x 1 2 3 4 5
y 5 4 3 2 1
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FIGURE 3.7 S&P 500 annual rate of return and per capita cigarette consumption, 1950–2007.
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3.2 Which of these data sets has a higher mean? Higher median? Higher standard de-

viation? (Do not do any calculations. Just look at the data.)

x 1 2 3 4 5
y 1 2 3 4 6

3.3 Albert Michelson’s 1882 measurements of the speed of light in air (in kilometers

per second) were as follows [11]:

299,883 299,796 299,611 299,781 299,774 299,696
299,748 299,809 299,816 299,682 299,599 299,578
299,820 299,573 299,797 299,723 299,778 299,711
300,051 299,796 299,772 299,748 299,851

Calculate the mean, median, and 10-percent trimmed mean. Which is closest

to the value 299,710.5 that is now accepted as the speed of light?

3.4 In 1798, Henry Cavendish made 23 measurements of the density of the earth

relative to the density of water [12]:

5.10 5.27 5.29 5.29 5.30 5.34 5.34 5.36 5.39 5.42 5.44 5.46
5.47 5.53 5.57 5.58 5.62 5.63 5.65 5.68 5.75 5.79 5.85
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correlation = 0.00

FIGURE 3.8 A zero correlation does not rule out a nonlinear relationship.
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Calculate the mean, median, and 10-percent trimmed mean. Which is closest

to the value 5.517 that is now accepted as the density of the earth?

3.5 Twenty-four female college seniors were asked how many biological children

they expect to have during their lifetimes. Figure 3.9 is a histogram summarizing

their answers: Of these four numbers (0, 1.1, 2, 2.3), one is the mean, one is the

median, one is the standard deviation, and one is irrelevant. Identify which num-

ber is which.

a. Mean.

b. Median.

c. Standard deviation.

d. Irrelevant.

3.6 Thirty-five male college seniors were asked how many biological children they

expect to have during their lifetimes. Figure 3.10 is a histogram summarizing

their answers: Of these four numbers (0, 1.4, 2.4, 3.0), one is the mean, one is the

median, one is the standard deviation, and one is irrelevant. Identify which num-

ber is which.

a. Mean.

b. Median.

c. Standard deviation.

d. Irrelevant.

3.7 Suppose that you have 10 observations that have a mean of 7, a median of 6, and

a standard deviation of 3. If you add 5 to the value of each observation, what are

the new values of the:

a. Mean?

b. Median?

c. Standard deviation?

0 1 2 3 4

FIGURE 3.9 Exercise 3.5.

0 1 2 3 4

FIGURE 3.10 Exercise 3.6.
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3.8 Suppose that you have 10 observations that have a mean of 7, a median of 6, and

a standard deviation of 3. If you subtract 2 from the value of each observation,

what are the new values of the:

a. Mean?

b. Median?

c. Standard deviation?

3.9 Suppose that you have 10 observations that have a mean of 7, a median of 6, and

a standard deviation of 3. If you double the value of each observation, what are

the new values of the:

a. Mean?

b. Median?

c. Standard deviation?

3.10 Suppose that you have 10 observations that have a mean of 7, a median of 6, and

a standard deviation of 3. If you halve the value of each observation, what are the

new values of the:

a. Mean?

b. Median?

c. Standard deviation?

3.11 Identify the apparent statistical mistake in this commentary [13]:

The median cost of a house in [Duarte, California] is a whopping $4,276,462,

making it the most expensive housing market in the country. It ranks No. 1 on

Forbes’ annual ranking of America’s Most Expensive ZIP Codes.. [O]nly 12

homes are currently on the market. So a single high-priced listing (like the

mammoth nine-bedroom, built this year, that’s selling for $19.8 million) is

enough to skew the median price skyward.

3.12 Roll four six-sided dice 10 times, each time recording the sum of the four

numbers rolled. Calculate the mean and median of your 10 rolls. Repeat

this experiment 20 times. Which of these two measures seems to be the least

stable?

3.13 Use the test scores in Exercise 1.8 to calculate the average score for each grade

level and then make a time series graph using these average scores.

3.14 An old joke is that a certain economics professor left Yale to go to Harvard and

thereby improved the average quality of both departments. Is this possible?

3.15 Ann Landers, an advice columnist, once wrote “Nothing shocks me anymore,

especially when I know that 50 percent of the doctors who practice medicine

graduated in the bottom half of their class” [14]. Does this observation imply that

half of all doctors are incompetent?
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3.16 When is the standard deviation negative?

3.17 There was a players’ strike in the middle of the 1981 baseball season. Each

division determined its season winner by having a playoff between the winner of

the first part of the season, before the strike, and the winner of the second part of

the season. Is it possible for a team to have the best winning percentage for the

season as a whole, yet not win either half of the season and consequently not

have a chance of qualifying for the World Series? Use some hypothetical numbers

to illustrate your reasoning.

3.18 Use the test scores in Exercise 1.8 two make two boxplots, one using the

first-grade scores and the other the eighth-grade scores. Summarize the main

differences between these two boxplots.

3.19 Exercise 2.26 shows the percentage returns for the 10 Dow stocks with the

highest dividend/price (D/P) ratio and the 10 Dow stocks with the lowest D/P

ratio. Display these data in two side-by-side boxplots. Do the data appear to

have similar or dissimilar medians and dispersion?

3.20 Table 1.4 shows the US dollar prices of Big Mac hamburgers in 20 countries. Use

a boxplot to summarize these data.

3.21 Figure 3.11 shows two boxplots. Which data set has the higher median? The

higher standard deviation?

3.22 Figure 3.12 shows two boxplots. Which data set has the higher median? The

higher mean? The higher standard deviation?

3.23 Draw a freehand sketch of two side-by-side boxplots, one the boxplot shown in

Figure 3.13 and the other the same boxplot if 2 is added to the value of each

observation in that boxplot.
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FIGURE 3.11 Exercise 3.21.
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3.24 Draw a freehand sketch of two side-by-side boxplots, one the boxplot shown in

Figure 3.14 and the other the same boxplot if all the observations in that boxplot

are multiplied by 2.

3.25 Here are data on the number of US households (in millions) of different sizes in

2000:

Household size 1 2 3 4 5 6 7 or more
Number of households 31 39 19 16 7 3 1

a. Looking at the 116 million households, ordered by size, what is the size of the

median household?
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FIGURE 3.12 Exercise 3.22.
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FIGURE 3.13 Exercise 3.23.
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b. Looking at all 291 million individuals, ordered by the size of the household in

which they live, what is the size of the household that the median individual

lives in?

c. Pomona College reports its average class size as 14 students. However, a sur-

vey that asked Pomona College students the size of the classes they were

enrolled in found that the average class size was 38 students and that 70

percent of the respondents’ classes had more than 14 students. Use the in-

sights gained in the first two parts of this exercise to explain this disparity.

3.26 Joanna is starting work with an annual salary of $40,000. If her salary increases

by 5 percent a year, what will her salary be 40 years from now? If prices increase

by 3 percent a year, how much higher will prices be 40 years from now than they

are today? What will be the real value of the salary Joanna receives 40 years from

now in terms of current dollars?

3.27 Treasury zeros pay a fixed amount at maturity. For example, a Treasury zero

could be purchased on January 2, 2009, for $445.19 and might be worth $1000

when it matures 25 years later. What is the annual rate of return on this zero?

3.28 The price/earnings (P/E) ratio for the stock market as a whole is used by some

analysts as a measure of whether stocks are cheap or expensive, in comparison

with other historical periods. Table 3.3 shows some annual P/E ratios for the New

York Stock Exchange (NYSE). Calculate the mean and standard deviation. The

stock market reached a peak in August 1987, when the Dow Jones Industrial

Average topped 2700. The Dow slipped back to 2500 in October of 1987 and then

to 2250. Then, on a single day, October 19, 1987, the Dow fell by 508 points. At

its August 1987 peak, the market’s price/earnings ratio was 23. Was this P/E value

more than two standard deviations above the mean P/E for 1970–1986? Was it
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FIGURE 3.14 Exercise 3.24.
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more than 1.5 times the interquartile range above the median? Draw a box-and-

whiskers diagram using these 1970–1986 P/E data.

3.29 In the early 1970s, many investors were infatuated by the Nifty 50—a group of 50

growth stocks that were thought to be so appealing that they should be bought

and never sold, regardless of price. Table 3.4 shows the P/E ratio in December

1972 and the annualized stock return from December 31, 1972, through

December 31, 2001, for each of these 50 stocks. Calculate the mean and median

values of the returns. Explain why these are not equal.

3.30 Use the data in the preceding exercise to make side-by-side boxplots of the

returns for the 25 stocks with the highest P/Es and the 25 stocks with the lowest

P/Es. What differences do you observe in these boxplots?

3.31 Use the data in Exercise 3.29 to make a scatter diagram with the P/E ratio on the

horizontal axis and the return on the vertical axis. Does there appear to be a pos-

itive relationship, negative relationship, or essentially no relationship?

Table 3.3 Exercise 3.28

Year P/E Year P/E Year P/E

1970 15.5 1976 11.2 1982 8.6
1971 18.5 1977 9.3 1983 12.5
1972 18.2 1978 8.3 1984 10.0
1973 14.0 1979 7.4 1985 12.3
1974 8.6 1980 7.9 1986 16.4
1975 10.9 1981 8.4

Table 3.4 Exercise 3.29

P/E Return P/E Return P/E Return P/E Return

90.74 �14.68 50.47 2.45 40.77 9.78 29.34 15.55
85.67 10.50 50.37 13.19 39.00 10.30 28.97 16.99
83.26 �6.84 50.00 12.36 38.85 13.13 27.60 15.35
81.64 8.97 49.45 10.37 38.66 6.68 26.12 15.57
78.52 10.10 48.82 �1.64 38.32 3.19 26.07 12.40
75.75 5.66 48.77 0.89 37.36 9.68 25.93 17.68
65.43 6.04 48.17 1.72 36.89 7.62 25.86 14.12
62.11 �1.37 47.60 13.15 34.10 4.83 25.59 4.91
61.85 13.35 46.28 11.27 33.87 14.21 25.50 10.80
59.97 0.93 46.03 13.14 32.04 11.94 22.37 13.36
54.31 �1.07 45.94 14.27 31.90 13.55 16.28 9.99
53.12 �1.47 41.11 9.95 30.77 6.94
51.82 11.17 41.00 10.96 30.05 14.66
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3.32 Table 3.5 shows ringer percentages for Mary Ann Peninger at the 2000 Women’s

world horseshoe championships, when she threw first and when she threw sec-

ond. For example, in the second game, she threw 68.8 percent ringers when she

went first and 50.0 percent ringers when she went second. Draw two side-by-side

boxplots for her ringer percentages when she threw first and second. What differ-

ences do you notice?

3.33 Use the data in Table 3.2 to calculate the annual rate of increase in the CPI over

the 14-year period from December 2000 to December 2014.

3.34 Explain the error in the conclusion reached by a security analyst [16]:

The Dow Jones Industrial Average peaked at 381.17 during September 3, 1929. The

so-called Great Crash pushed this index down 48% by November 13. But, by April

17, 1930, the index rebounded 48% from the November bottom. In other words,

anyone who bought a diversified portfolio of stocks during September 1929

would have experienced no net change in the value of his portfolio by April of

1930.

3.35 Vincent Van Gogh sold only one painting during his lifetime, for about $30. In

1987, a sunflower still life he painted in 1888 sold for $39.85 million, more than

three times the highest price paid previously for any work of art. Observers attrib-

uted the record price in part to the fact that his other sunflower paintings are all

in museums and most likely will never be available for sale. If this painting had

been purchased for $30 in 1888 and sold in 1987 for $39.85 million, what would

have been the annual rate of return?

Table 3.5 Exercise 3.32 [15]

Game Threw First Threw Second

1 86.4 57.1
2 68.8 50.0
3 78.6 68.8
4 61.5 100.0
5 90.0 77.8
6 72.2 79.4
7 75.0 80.8
8 86.7 68.2
9 63.3 80.0
10 83.3 58.9
11 76.7 90.0
12 72.7 66.7
13 80.0 85.0
14 60.7 85.0
15 77.8 77.8
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3.36 In Little League baseball, the highest level is the majors and the next highest level

is the minors. In the 2013 season, Claremont Little League had enough players to

form six majors teams and six minors teams. Instead, they decided to have seven

majors teams and five minors teams. What effect do you think this had on the

average quality of the players in the majors? In the minors?

3.37 The Dow Jones Industrial Average was 240.01 on October 1, 1928 (when the Dow

expanded to 30 stocks), and 16,804.71 on October 1, 2014. The CPI was 17.2 in

1928 and 237.4 in 2007. What was the annual percentage increase in the real

value of the Dow over this 86-year period?

3.38 In the 52 years between 1956 and 2008, Warren Buffett’s net worth grew from

$100,000 to $62 billion. What was his annual rate of return?

3.39 In a computer game, the player is shown (in random order) a sequence of charac-

ters that are yellow, green, blue, red, or black. The characters are themselves:

(a) Neutral (OOOOO written in yellow); (b) Related (a word related to another color,

like GRASS written in yellow); or Color (a word naming another color (BLACK) writ-

ten in yellow). The player’s objective is to mouse-click as quickly as possible on the

word at the bottom of the screen that matches the color of the characters. Use side-

by-side boxplots to compare the reaction times (in seconds) shown in Table 3.6.

Table 3.6 Exercise 3.39

Neutral Related Color

1.37 0.72 1.50
1.08 0.98 1.37
1.33 1.15 1.68
0.95 0.60 1.35
1.32 1.98 1.33
1.00 0.95 1.97
1.28 1.02 1.43
1.38 1.18 1.68
0.97 1.03 1.83
1.45 0.53 1.33
0.78 1.18 1.02
0.98 1.25 1.35
1.12 1.35 1.72
1.15 1.57 1.52
0.95 1.18 1.52
0.83 1.42 1.05
2.18 2.07 0.65
1.52 1.27 2.22
0.70 1.45 1.30
1.10 1.92 1.38
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3.40 A study of the effect of college education on income used 1990 and 2010 US

Census data. The study looked at: (a) women in the 1990 Census who were be-

tween 28 and 32 years old and were also the first woman in their family to attend

college; and (b) women in the 2010 Census who were between 28 and 32 years

old and whose mother was the first woman in their family to attend college. The

average income was $45,000 for the women in group (a) and $40,000 for the

women in group (b), even though average income for the nation as a whole was

50% higher in 2010 than in 1990. Is it possible that every daughter had a higher

income than her mother, yet the average daughter income was lower than the

average mother income? Give a specific numerical example to illustrate your

argument.

3.41 Use the data in Table 3.2 to determine the percentage annual rate of increase in

the CPI between 1990 and 2014.

3.42 A 1989 radio commercial claimed: “If you have a LifeAlert security system, your

chances of becoming a victim of a serious crime are 3000 to 4000 percent less

than your neighbor’s.” Is this possible?

3.43 Twelve college women and men were asked to read a short article and, when

they were finished, estimate how long it took them to read the article. Table 3.7

shows the actual and estimated times (both in seconds) and the percentage dif-

ference between the two. Summarize the percentage error data with two side-by-

side boxplots, one for women and one for men.

3.44 Explain why this statement is incorrect: “When two assets have a þ1.00 correla-

tion, they move up and down at the same time, with the same magnitude.”

Table 3.7 Exercise 3.43

Women Men

Actual Estimated Error (%) Actual Estimated Error (%)

173 150 �13.3 99 155 56.6
125 165 32.0 143 205 43.4
240 360 50.0 94 120 27.7
115 150 30.4 111 420 278.4
150 180 20.0 119 634 432.8
146 330 126.0 143 96 �32.9
124 190 53.2 77 185 140.3
83 104 25.3 111 240 116.2
76 250 228.9 78 125 60.3
121 240 98.3 115 200 73.9
75 58 �22.7 73 120 64.4
83 120 44.6 133 285 114.3
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3.45 Calculate the correlation between the official US poverty thresholds for families

of four people and the CPI in Table 3.8.

3.46 After its staff ran more than 5000 miles in 30 different running shoes, Consumer

Reports rated the shoes for overall performance on a scale of 0–100. Calculate the

correlation between price and performance for female shoes and also for male

shoes shown in Table 3.9. Briefly summarize your results.

3.47 The data in Table 3.10 were used in the 1964 Surgeon General’s Report warning of

the health risks associated with smoking, where the first variable is annual per

capita cigarette consumption and the second variable is deaths from coronary

heart disease per 100,000 persons aged 35 to 64. Calculate the correlation. Does

the value of the correlation suggest that there is a positive relationship, negative

relationship, or essentially no relationship between cigarette consumption and

heart disease?

Table 3.8 Exercise 3.45

Poverty Threshold CPI

1960 $3022 88.7
1970 $3968 116.3
1980 $8414 246.8
1990 $13,359 391.4
2000 $17,604 515.8
2010 $22,050 653.2

Table 3.9 Exercise 3.46 [17]

Female Shoes Male Shoes

Price Rating Price Rating

124 82 83 85
70 80 70 85
72 78 70 84
70 77 75 82
65 75 70 78
90 73 82 72
60 71 70 72
80 70 125 70
55 70 82 68
70 69 45 68
67 67 70 65
45 64 120 64
55 62 110 64
75 57 133 62
85 46 100 50
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3.48 Identify the error in Table 3.11, showing consumer prices and the change in pri-

ces based on a price index equal to 100 in 2000.

3.49 If y ¼ 10 – 3x, then the correlation between x and y is:

a. 1.

b. 0.

c. �1.

d. Undefined.

3.50 Explain how the following two newspaper headlines that appeared on the same

day could both be accurate: “Orders for Machine Tools Increased 45.5% in

October” [19]; “October Orders for Machine Tools Decreased 29%” [20].

Table 3.10 Exercise 3.47 [18]

Cigarette
Use

Heart
Disease

Cigarette
Use

Heart
Disease

Australia 3220 238.1 Mexico 1680 31.9
Austria 1770 182.1 Netherlands 1810 124.7
Belgium 1700 118.1 New Zealand 3220 211.8
Canada 3350 211.6 Norway 1090 136.3
Denmark 1500 144.9 Spain 1200 43.9
Finland 2160 233.1 Sweden 1270 126.9
France 1410 144.9 Switzerland 2780 124.5
Greece 1800 41.2 United Kingdom 2790 194.1
Iceland 2290 110.5 United States 3900 259.9
Ireland 2770 187.3 West Germany 1890 150.3
Italy 1510 114.3

Table 3.11 Exercise 3.48

Year Price Index
Change from
Previous Year

Change
from 2000

2005 112.2 3.4% 112%
2006 115.9 3.2% 116%
2007 119.2 2.8% 119%
2008 123.7 3.8% 134%
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It is remarkable that a science which began with the consideration of games of
chance should become the most important object of human knowledge.. The most

important questions of life are, for the most part, really only problems of probability.

Pierre-Simon, marquis de Laplace

Historically, the first rigorous application of probability theory involved games of

chance. Today, casinos use probabilities when they set payoffs for roulette, craps, and

slot machines. Governments use probabilities when they set payoffs for state lotteries.

Mathematicians use probabilities to devise optimal strategies for blackjack, back-

gammon, Monopoly, poker, and many other games. Devoted players can learn these

probabilities firsthand from long and sometimes expensive experience.

Another early use of probabilities was in setting insurance rates. This is why life in-

surance premiums depend on whether a person is 18 or 98, is in good health or using an

artificial heart, or is a college professor or a soldier of fortune. Probabilities are used to

price medical insurance, car insurance, home insurance, business insurance, and even

insurance against a baseball strike or a singer getting laryngitis.

Colleges use probabilities when they decide how many students to admit, how many

professors to employ, how many classrooms to build, and how to invest their endow-

ment. Probabilities are involved when an army decides to attack or retreat, when a

business decides to expand or contract, and when you decide whether or not to wear a

raincoat. Uncertainties are all around us and so are probabilities.

Describing Uncertainty
The great French mathematician Pierre-Simon Laplace (1749–1827) observed that

probabilities are only “common sense reduced to calculation” [1]. Calculations have two

very big advantages over common sense. First, common sense is sometimes wrong.

Second, common sense can be misunderstood.

Suppose, for example, that during a routine physical examination, a doctor discovers

a suspicious lump on a women’s breast and orders an X-ray, which turns out positive,

indicating that the lump is a malignant tumor. When the patient asks if the lump is

malignant, the doctor cannot say yes with certainty because the test is imperfect, but

should tell the patient that the results are worrisome.

Words alone are inadequate because the doctor and patient may interpret words

differently. When 16 doctors were surveyed and asked to assign a numerical probability

corresponding to the diagnosis that a disease is “likely,” the probabilities ranged from

20 percent to 95 percent [2]. If, by likely, one doctor means 20 percent and another

means 95 percent, then it is better for the doctor to state the probability than to risk a

disastrous misinterpretation of ambiguous words.

Probabilities can be used not only for life-threatening diseases but for all the daily

uncertainties that make life interesting and challenging. We begin with games, because
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when viewed from a financially safe distance, these are an ideal vehicle for intro-

ducing probabilities.

Equally Likely

The equally likely approach was devised to handle games of chance—the roll of dice,

spin of a roulette wheel, and deal of cards. Each possible result is called an outcome and

an event is a collection of outcomes. If the outcomes are equally likely, then we deter-

mine probabilities by counting outcomes. For example, if an ordinary coin is flipped,

there are two possible outcomes: heads or tails. If heads and tails are equally likely, each

has a 1/2 probability of occurring.

Similarly, when a six-sided die is rolled, there are six possible outcomes. If each is

equally likely, each has a 1/6 probability of occurring. What about the probability that an

even number will be rolled? Because three of the six equally likely outcomes are even

numbers, the probability of an even number is 3/6 ¼ 1/2.

Some problems require a careful counting of the possible outcomes. When a coin is

flipped twice, there are three possible results: two heads, one head and one tail, or two

tails. It is tempting to assume that each of these three events has a 1/3 probability of

occurring. This was, in fact, the answer given by a prominent eighteenth-century

mathematician, Jean d’Alembert. But his answer is wrong!

There is only one way to obtain two heads and only one way to obtain two tails, but

there are two different ways to obtain one head and one tail—heads on the first flip and

tails on the second or tails on the first flip and heads on the second. To count the

possibilities correctly, it is sometimes helpful to draw a probability tree, which shows the

possible outcomes at each stage. The probability tree in Figure 4.1 (using H for heads

and T for tails) shows that there are two equally likely outcomes on the first flip, and that,

for each of these outcomes, there are two equally likely outcomes on the second flip.

There are four equally likely outcomes, with two involving one head and one tail.

Thus, the probability of one head and one tail is 2/4 ¼ 1/2, the probability of two heads is

1/4, and the probability of two tails is 1/4.

H

T

H

T

HH

HT

TH

TT

H

T

First flip Second flip Outcomes

FIGURE 4.1 Probability tree for two coin flips.
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What if, instead of flipping one coin twice, we flip two coins simultaneously? It does

not matter. These probabilities apply to one coin flipped twice, two coins flipped

separately, and two coins flipped simultaneously. A probability tree, in which the coin

flips are treated as happening in a sequence, is just a way of helping us count the number

of equally likely outcomes.

What about three coin flips? Figure 4.2 shows the probability tree. With three coin

flips, there are eight possible outcomes; the probabilities are shown in Table 4.1.

A Chimp Named Sarah

A flipped coin always has two sides. A rolled die always has six sides. In other cases, the

number of possible outcomes changes as we move through a probability tree.

Consider, for example, studies of a chimpanzee named Sarah. In one experiment,

Sarah was shown a series of plastic symbols of varying color, size, and shape that formed

a question. To answer the question correctly, Sarah had to arrange the appropriate

symbols in correct order. In a very simple version, Sarah might be given three symbols—

which we label A, B, and C—to arrange in correct order (for example, “bread in bowl”).

How many possible ways are there to arrange these three symbols?

First flip Second flip Third flip Outcomes

H

T

H

T

T

H

T HTT

H

T THT

H

T TTT

H TTH

H

T

HHH

HHT

HTH

THH

FIGURE 4.2 Probability tree for three coin flips.

Table 4.1 Probabilities for Three Coin Flips

Events Number of Ways Probability

Three heads 1 1/8
Two heads, one tail 3 3/8
One head, two tails 3 3/8
Three tails 1 1/8
Total 8 1
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As shown in Figure 4.3, the first symbol has three possibilities: A, B, or C. Given the

choice of the first symbol, there are only two possibilities for the second symbol. For

example, if A is selected as the first symbol, the second symbol must be either B or C.

Given the choice of the first two symbols, there is only one remaining possibility for the

third symbol. If A and B are the first two symbols, then C must be the third symbol.

Thus, the probability tree in Figure 4.3 has three initial branches, followed by two

branches and then one final branch. In all, there are 3(2)(1) ¼ 6 possible outcomes. The

probability that a random arrangement of three symbols will be in the correct order

is 1/6.

In more complicated problems, a probability tree would be very messy but, by

remembering how a probability tree is constructed, we can determine the number of

possible outcomes without actually drawing a tree. For instance, in one of Sarah’s

experiments, she had to choose four out of eight symbols and arrange these four symbols

in the correct order. Visualizing a probability tree, there are eight possible choices for the

first symbol and, for each of these choices, there are seven possible choices for the

second symbol. For any choice of the first two symbols, there remain six possibilities for

the third symbol and then five possibilities for the fourth symbol. Thus, the total number

of possible outcomes is 8(7)(6)(5) ¼ 1680. The probability that four randomly selected

and arranged symbols will be correct is 1/1680 ¼ 0.0006. Sarah’s ability to do this task

provided convincing evidence that she was making informed decisions and not just

choosing symbols randomly.

Long-Run Frequencies

One difficulty with the classical approach to probabilities is that the possible outcomes

may not be equally likely. A company selling a 1-year life insurance policy to a 20-year-

old woman should not assume that life and death are equally likely outcomes. To handle

such cases, we can think about what probabilities imply about long-run frequencies and

then use long-run frequencies to estimate probabilities. If a coin has a 1/2 probability of

A
B

C

C

BAC

BCA

CBA

First symbol

ABC

ACB

CAB

B

A

A

C

C

B

B

Second symbol Third symbol Outcomes

A

C

A

B

FIGURE 4.3 Probability tree for Sarah’s choices [3].
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landing heads, we expect that, in a large number of coin flips, heads will come up

approximately half the time. Reversing this reasoning, if, in a large number of cases, an

outcome occurs half the time, we might estimate its probability to be 1/2. The long-run

frequency approach to determining probabilities is to say that if something has occurred

m times in n identical situations (where n is a very large number), then its probability is

approximately m/n. (More advanced books show how to quantify approximately.)

An insurance company can estimate the probability that a healthy 20-year-old

woman will die within a year by looking at the recent experiences of millions of other

similar women. If they have data on 10 million 20-year-old women, of whom 12,000 died

within a year, they can estimate this probability as 12,000/10,000,000 ¼ 0.0012, or slightly

larger than one in thousand.

The equally likely method works well for games of chance or similar situations in

which coins, dice, cards, or other physical apparatus suggest that the possible out-

comes are equally likely. The long-run frequency method is better when we suspect

that the outcomes are not equally likely and we have data that can be used to estimate

probabilities.

A Scientific Study of Roulette

Outside the United States, roulette wheels usually have 37 slots, numbered 0 to 36.

Wheels used in the United States have an additional 00 slot, giving 38 slots in all. If the

wheel is perfectly balanced, clean, and fair, a spun ball is equally likely to land in any of

the slots. However, imperfections in a wheel can cause some numbers to win more often

than other numbers.

In the late 1800s, an English engineer, William Jaggers, took dramatic advantage of

these imperfections [4]. He paid six assistants to spend every day for an entire month

observing the roulette wheels at Monte Carlo and recording the winning numbers.

Jaggers found that certain numbers came up slightly more often than others. He then

bet heavily on these numbers and, in a few days, won nearly $325,000—more than

$6 million in today’s dollars—until the casino caught on and began switching wheels

nightly. More recently, in the 1960s, while their fellow students were studying or

protesting, a group of Berkeley students were reported to have pulled off a similar feat

in Las Vegas. Nowadays, casinos routinely rotate their roulette wheels to frustrate long-

run frequency bettors.

Experimental Coin Flips and Dice Rolls

Karl Pearson, a famous statistician, once flipped a coin 24,000 times and recorded 12,012

heads and 11,988 tails, indicating that heads and tails were indeed equally likely. (We do

not expect heads and tails to come up exactly half the time, just close to half the time.)

Pearson’s experiment is dwarfed by the efforts of a Swiss astronomer named Wolf, who

rolled dice over a 40-year period, from 1850 to 1893. In one set of experiments, Wolf
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tossed a pair of dice, one red and one white, 20,000 times. John Maynard Keynes

commented on the results [5]:

[T]he records of the relative frequency of each face show that the dice must have

been very irregular, the six face of the white die, for example, falling 38% more

often than the four face of the same die. This, then, is the sole conclusion of these

immensely laborious experiments—that Wolf’s dice were very ill made.

Subjective Probabilities

The long-run frequency approach allows us to estimate probabilities when the possible

outcomes are not equally likely. However, lots of repetitive data are needed to calculate

long-run frequencies, and we are often interested in virtually unique situations. Consider

a presidential election. Our decisions about choosing a career, buying stocks, expanding

a business, or enlisting in the military may well be affected by who we think is going to

be elected president.

The self-proclaimed Wizard of Odds once calculated presidential probabilities as

follows [6]:

Without considering the candidates, the odds would be 2 to 1 in favor of a

Republican because since 1861 when that party was founded, there have been 12

Republican Presidents and only 7 Democrats.

The outcome of a presidential election is uncertain and it would be useful to quantify

that uncertainty. We would like more than a shrug of the shoulders and a sheepish “Who

knows?” However, the equally likely and long-run frequency approaches are not

appropriate. The president is not determined by a coin flip every 4 years. The proba-

bilities change from election to election depending on the candidates and the mood of

the electorate.

Bayes’ Approach

In the eighteenth century, Reverend Thomas Bayes wrestled with an even more chal-

lenging problem—the probability that God exists. The equally likely and long-run fre-

quency approaches are useless, and yet this uncertainty is of great interest to many

people, including Reverend Bayes. Such a probability is necessarily subjective. The best

that anyone can do is weigh the available evidence and logical arguments and come up

with a personal probability of God’s existence. This idea of personal probabilities has

been extended and refined by other Bayesians, who argue that many uncertain situations

can be analyzed only by means of subjective probability assessments. Bayesians are

willing to assign probabilities to presidential elections, medical diagnoses, stock prices,

legal trials, military strategy, and God’s existence.
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A subjective probability is based on an intuitive blending of a variety of information

and therefore can vary from person to person. Nonetheless, subjective probabilities are

useful in that they allow us to communicate our beliefs to others and to make decisions

that are consistent with our beliefs.

Some Helpful Rules
So far, we have focused on probabilities that can be calculated by counting equally likely

outcomes, tabulating long-run frequencies, or engaging in subjective introspection.

Some probabilities can be calculated by applying standard rules.

We let A identify an event and let P[A] be the probability that A will occur. For

example, Amight be heads when a coin is flipped and P[A] ¼ 0.5. A probability cannot be

negative or larger than 1. If A is impossible, P[A] ¼ 0; if A is certain to occur, P[A] ¼ 1.

The Addition Rule

Our first rule, the addition rule, gives the probability that either of two events (or possibly

both) will occur. For example, if we flip two coins, what is the probability that one or the

other (or both) coins will land heads? It is tempting to add the 0.5 probability of heads on

the first coin to the 0.5 probability of heads on the second coin, but that would give a

probability of 0.5 þ 0.5 ¼ 1.0, which cannot be correct, since one or more heads is not

100 percent certain.

Simply adding together the probability of heads on the first coin and the probability

of heads on the second coin double counts the case of heads on both coins. Our earlier

probability tree showed that there are four possible, equally likely, outcomes, summa-

rized here in Figure 4.4.

HH and HT give heads on the first coin. HH and TH give heads on the second coin. If

we count all four of these cases, HH is counted twice. The correct probability, counting

HH only once, is 3/4.

One way to get the correct probability is to double count and then subtract the

outcomes that are double counted. This is the addition rule:

P½A or B� ¼ P½A� þ P½B� � P½A and B� (4.1)

With two coin flips, the probability of heads on the first coin is 1/2, the probability of

heads on the second coin is 1/2, and the probability of heads on both coins is 1/4.

HH

HT

TH

TT

Heads on first Heads on second

FIGURE 4.4 Double counting HH.
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Therefore, the probability of heads on either the first or second coin is 1/2 þ 1/2 �
1/4 ¼ 3/4.

Sometimes, A and B cannot both occur. If A and B are mutually exclusive, so that

P[A and B] ¼ 0, the addition rule simplifies to:

if mutually exclusive; P½A or B� ¼ P½A� þ P½B� (4.2)

For instance, if a standard six-sided die is rolled and A is the number 1 and B is the

number 2, then A and B are mutually exclusive since the die cannot be both a 1 and a 2.

There is no double-counting problem. The probability that a die will be either a 1 or a 2 is

1/6 þ 1/6 ¼ 1/3.

Many addition-rule questions are answered more easily by using the subtraction

rule, which is discussed later in this chapter. Nonetheless, the addition rule is

important because it helps us avoid the common mistake of simply adding together

probabilities. For instance, the novelist Len Deighton wrote that a World War II pilot

who has a 2 percent chance of being shot down on each mission is “mathematically

certain” to be shot down in 50 missions [7]. Deighton obtained this mathematical

certainty by adding 2 percent 50 times to get 100 percent. However, the addition rule

alerts us to the double-counting problem. (If Deighton’s procedure were correct, the

probability of being shot down in 51 missions would be a nonsensical 102 percent.)

Later in this chapter, when we get to the subtraction rule, we make the correct

calculation.

Conditional Probabilities

We began this chapter with the example of worrisome results from a mammogram

X-ray. One hundred doctors were asked this hypothetical question [8]:

In a routine examination, you find a lump in a female patient’s breast. In your

experience, only 1 out of 100 such lumps turns out to be malignant, but, to be

safe, you order a mammogram X-ray. If the lump is malignant, there is a 0.80

probability that the mammogram will identify it as malignant; if the lump is

benign, there is a 0.90 probability that the mammogram will identify it as

benign. In this particular case, the mammogram identifies the lump as

malignant. In light of these mammogram results, what is your estimate of the

probability that this lump is malignant?

Of the 100 doctors surveyed, 95 gave probabilities of around 75 percent. However, the

correct probability is only 7.5 percent!

To analyze the test results correctly, we can use a contingency table in which data are

classified in one way by the rows and in another way by the columns. (Because of this

two-way classification, a contingency table is sometimes called a two-way table.) In our

example, the lump has two possible conditions (malignant or benign), which we show as
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two rows in Table 4.2, and the test has two possible outcomes (positive or negative),

which we show as two columns.

The entries in Table 4.2 show the four possible combinations of conditions, for

example, having a malignant tumor and testing positive. To determine the entries in the

table, we assume an arbitrary value, say 1000, for the number of women being tested and

assume that the entries correspond to the given probabilities. Because the lumps are

malignant in 1 out of 100 cases, we have the entries shown in Table 4.3.

We fill in the rest of the numbers in Table 4.4 by noting that the test gives a positive

result in 80 percent of the malignant cases and a negative result in 90 percent of the

benign cases.

Looking at the first numerical row, for those patients with malignant tumors, the

test gives a positive result 80 percent of the time, 8/10 ¼ 0.80. Yet, looking at the first

numerical column, of the 107 patients with positive test results, only 7.5 percent actually

have malignant tumors: 8/107 ¼ 0.075. Even though 80 percent of the 10 malignant

tumors are correctly identified as malignant, these positive test results are far out-

numbered by the false positives—the 10 percent of 990 benign lumps that are identified

incorrectly. A small percentage of a large number is bigger than a large percentage of a

small number.

Table 4.2 Mammogram Contingency Table

Positive Negative Total

Malignant
Benign
Total

Table 4.3 Contingency Table for 1000 Women

Positive Negative Total

Malignant 10
Benign 990
Total 1000

Table 4.4 Contingency Table for Mammogram Test
Results

Positive Negative Total

Malignant 8 2 10
Benign 99 891 990
Total 107 893 1000
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It is very easy to misinterpret conditional probabilities, and these doctors evidently

misinterpreted them. According to the researcher who conducted this survey [8]:

The erring physicians usually report that they assumed that the probability of

cancer given that the patient has a positive X-ray. was approximately equal to

the probability of a positive X-ray in a patient with cancer. The latter

probability is the one measured in clinical research programs and is very

familiar, but it is the former probability that is needed for clinical decision

making. It seems that many if not most physicians confuse the two.

The solution is for doctors to become better informed about conditional probabilities.

We calculated the mammogram conditional probabilities by constructing a contin-

gency table and taking the ratio of the appropriate numbers. Conditional probabilities

can also be calculated by taking the ratio of two probabilities. The conditional proba-

bility that B will occur, given that A has occurred, is

P½B if A� ¼ P½A and B�
P½A� (4.3)

In our mammogram example,

P½malignant if positive� ¼ P½malignant and test positive�
P½test positive�

¼ 8=1000

107=1000

¼ 0:075

Independent Events and Winning Streaks

The probability expressions P[B] and P[B if A] answer different questions:

P[B]: Considering all possible outcomes, what is the probability that B will occur?

P[B if A]: Considering only those cases where A occurs, what is the probability that B

will also occur?

If the probability of B happening does not depend on whether or not A happens, then

it is natural to describe A and B as independent:

A and B are independent if P½B if A� ¼ P½B�
In fair games of chance involving coins, dice, roulette wheels, and other physical

objects, each outcome is independent of other outcomes, past, present, or future.

However, there are sometimes wining or losing streaks, just like heads sometimes comes

up three times in a row. Some gamblers mistakenly attach a great deal of significance to

coincidences. They apparently believe that luck is like a disease that a player catches

then takes a while to get over. For example, Clement McQuaid, who describes himself as
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a “keen student of gambling games, most of which he has played profitably,” offers this

advice [9]:

There is only one way to show a profit. Bet light on your losses and heavy on your

wins. Many good gamblers follow a specific procedure: a. Bet minimums when

you’re losing. b. Bet heavy when you’re winning.

Yes, it is good to win large bets and lose only small bets, but how do we know in advance

whether we are going to win or lose our next bet? If you are playing a dice game and have

won three times in a row, you remember the three wins and you are happy, but dice have

no memories or emotions. Dice do not remember what happened on the last roll and do

not care what happens on the next roll. The outcomes are independent and the prob-

abilities are constant, roll after roll. Games of chance are the classic example of inde-

pendent events.

The Fallacious Law of Averages

If a coin has 0.50 probability of landing heads, the law of large numbers says that it will

land heads close to 50 percent of the time in the long run. The incorrect law of averages

(or gambler’s fallacy) says that, in the long run, the number of heads and tails must be

exactly equal. Some people think that in 1000 coin flips there must be exactly 500 heads

and 500 tails; therefore, if tails comes up more often than heads in the first 10, 50, or 100

flips, heads must now come up more often than tails in order to “average” or “balance”

things out.

This belief is wrong but widespread. For example, one gambler wrote [10]:

Flip a coin 1000 times and it’ll come up heads 500 times, or mighty close to it.

However, during that 1000 flips of the coin there will be frequent periods when

heads will fail to show and other periods when you’ll flip nothing but heads.

Mathematical probability is going to give you roughly 500 heads in 1000 flips, so

that if you get ten tails in a row, there’s going to be a heavy preponderance of

heads somewhere along the line.

A coin is an inanimate object that is tossed in the air and examined by curious humans.

If the coin is unbent and fairly tossed, then heads and tails are equally likely to appear,

no matter what happened on the last flip or the last 999 flips.

The basis for the fallacious law of averages is the mistaken belief that heads and

tails must come up equally often; a run of tails must consequently be balanced by a

run of heads. The law of large numbers does not say that the number of heads must

equal the number of tails. The law of large numbers says nothing about the last 10 flips

or the last 10 million flips—which have already happened, cannot be changed, and

have no effect on future flips. The law of large numbers is concerned with future
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throws. It says, looking ahead to predict the next 1000 throws, the probability is high

that heads will come up close to half the time.

Heads can come up close to 50 percent of the time even if the number of heads and

tails is not equal. In fact, while we are almost certain that, in the long run, the fraction of

the flips that are heads will be very close to 0.5, we are also almost certain that the

number of heads will not equal the number of tails!

With two flips, the probability of one head and one tail is 0.5. With four flips, the

probability of two heads and two tails drops to 0.375. It can be shown that the prob-

ability that the number of heads will exactly equal the number of tails decreases as the

number of flips increases: 0.2462 for 10 flips, 0.0796 for 100 flips, 0.0252 for 1000 flips,

and 0.0080 for 10,000 flips.

While the probability is small that there will be exactly 50 percent heads in a large

number of flips, the probability is large that there will be close to 50 percent heads. The

probability that there will be between 49 percent and 51 percent heads increases as the

number of flips increases: 0.2356 for 100 flips, 0.4933 for 1000 flips, and 0.9556 for 10,000

flips.

This makes sense. With two flips, there is a 50 percent chance of one head and one

tail, and the only other possible outcomes are all heads or no heads. With 1000 flips,

there are lots of possible outcomes that are close to 50 percent heads: 499, 501, 498, 502,

497, 503, and so on. Each of these possibilities has approximately the same probability,

but these probabilities must be small—otherwise the sum of the probabilities would be

more than 1. Hence, there is a small probability of exactly 500 heads but a large prob-

ability that the number of heads will be close to 500.

Many gamblers believe in the fallacious law of averages, hoping to find a profitable

pattern in the chaos created by random chance. When a roulette wheel turns up a black

number several times in a row, there are always people eager to bet on red, counting on

the law of averages. Others will rush to bet on black, trying to catch a “hot streak.” The

casino cheerfully accepts wagers from both.

One of the most dramatic roulette runs occurred at Monte Carlo on August 18, 1913.

At one table, black came up again and again. After about 10 blacks in a row, the table was

surrounded by people betting on red and counting on the law of averages to reward

them. But black kept coming. After 15 straight blacks, there was near panic as people

tried to reach the table so that they could place even heavier bets on red. Still black came

up. By the 20th black, desperate bettors were wagering every chip they had left on red,

hoping to recover a fraction of their losses. When this memorable run ended, black had

come up 26 times in a row and the casino had won millions of francs.

In honest games, at Monte Carlo and elsewhere, betting strategies based on the law of

averages do not work. In fact, the few gambling systems that have paid off have been

based on the opposite principle—that physical defects in a roulette wheel or other

apparatus cause some events to occur more often than others. If the number 6 comes up

an unusually large number of times (not twice in a row, but maybe 30 times in 1000

spins—which is 11 percent more often than expected), then a mechanical irregularity
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may be responsible. Instead of betting against 6, expecting its success to be balanced

out, we might bet on 6, hoping that a physical imperfection will cause 6 to continue to

come up more often than it would if the wheel were perfect.

Sports are a fertile source of law-of-averages fallacies. When a baseball player goes

hitless in 12 times at bat, a commentator may announce that the player “has the law of

averages on his side” or that he “is due for a hit.” The probability of a base hit does not

increase just because a player has not had one lately. The 12 outs in a row may have been

bad luck, 12 line drives hit right at fielders. If so, this bad luck does not make the player

any more likely to have good luck his next time at bat. If it is not bad luck, then maybe a

physical problem is causing the player to do poorly. Psychology may also play a role

because, unlike coins, players have memories and emotions and care about wins and

losses.

The manager of a baseball player who is 0 for 12 should be concerned—not confident

that the player is due for a hit. Similarly, a player who had four hits in his last four at bats

should not be benched because he is “due for an out.” Yet that is exactly what happened

when a manager once had a pinch hitter bat for a player who already had four hits that

day, explaining that players seldom get five hits in a row. (They never will if they never

get the opportunity!)

I once watched a Penn State kicker miss three field goals and an extra point in an

early-season football game. The television commentator said that the Penn State coach

should be happy about those misses as he looked forward to some tough games in

coming weeks. The commentator explained that every kicker will miss some over the

course of the season and it is good to get these misses “out of the way” early in the year.

This unjustified optimism is the law-of-averages fallacy again. Those misses need not be

balanced by successes. If anything, the coach should be worried because this poor

performance suggests that his kicker is not very good.

The Multiplication Rule

Equation (4.3) tells us how to calculate a conditional probability. Often, we are inter-

ested in the reverse calculation: We know a conditional probability and want to

calculate P[A and B], the probability that both A and B will occur. We can make this

calculation by rearranging Eqn (4.3) to obtain the multiplication rule: The probability

that both A and B will occur is:

P½A and B� ¼ P½A� P½B if A� (4.4)

The probability of both A and B occurring is equal to the probability that A will

occur multiplied by the probability that B will occur given that A has occurred. The

multiplication rule can be extended indefinitely to handle more than two events. The

probability that A and B and C will occur is equal to the probability that A will occur,

multiplied by the probability that B will occur given that A has occurred, multiplied by

the probability that C will occur given that A and B have occurred: P[A and B and C] ¼
P[A] P[B if A] P[C if (A and B)].
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For example, what is the probability that four cards drawn from an ordinary deck of

playing cards will all be aces? Because there are four aces among the 52 cards, the

probability that the first card is an ace is 4/52. Given that the first card is an ace, there are

three aces among the 51 remaining cards and the probability that the second card will

also be an ace is 3/51. If the first two cards are aces, two aces are left among 50 cards and

the probability of a third ace is 2/50. The probability of a fourth ace, given that the first

three cards are aces, is 1/49. Multiplying these probabilities:

P½four aces� ¼ 4

52

3

51

2

50

1

49
¼ 0:0000037

We noted previously that, if two events are independent, then P[B if A] ¼ P[B]. If A and

B are independent, the multiplication rule simplifies to this:

if A and B are independent;P½A and B� ¼ P½A� P½B� (4.5)

If we roll two dice, for example, the results are independent and the probability of two

1s is simply the product of each die’s probability of rolling a 1:

P½double ones� ¼ 1

6

1

6
¼ 1

36
¼ 0:0278

Legal Misinterpretations of the Multiplication Rule

In the 1960s, a white woman with blond hair tied in a ponytail was seen fleeing a Los

Angeles robbery in a yellow car driven by a black man with a beard and a moustache.

Four days later, the police arrested Malcolm Collins, a black man with a beard,

moustache, and yellow Lincoln, and his common-law wife, a white woman with a

blond ponytail. A mathematics professor calculated the probability that two people

picked at random would have this combination of characteristics by estimating the

probability of each characteristic: P[black man with beard] ¼ 1/10, P[man with

moustache] ¼ 1/4, P[owning a yellow car] ¼ 1/10, P[interracial couple] ¼ 1/1000,

P[blond woman] ¼ 1/3, P[wearing a ponytail] ¼ 1/10. Using the multiplication rule:

P½all six characteristics� ¼ 1

10

1

4

1

10

1

1000

1

3

1

10
¼ 1

12; 000; 000

The small value of this probability helped convict Collins and his wife, the jurors

apparently believing, in the words of the California Supreme Court, that “there could be

but one chance in 12 million that the defendants were innocent and that another equally

distinctive couple committed the robbery” [11].

The professor’s calculation implicitly assumes independence, and the California

Supreme Court questioned the appropriateness of this assumption. The probability of

having a moustache is not independent of having a beard: While only 25 percent of all

men have moustaches, perhaps 75 percent of men with beards do. Similarly, being a

black man, a blond woman, and an interracial couple are not independent, nor perhaps

are ponytails and blond hair. The court also raised the possibility that the assumed
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characteristics might have been incorrect, for example, the man may have worn a false

beard as a disguise. The court decided that this was not proof beyond a reasonable doubt

and reversed the Collins’ conviction.

The Subtraction Rule

An event will either occur or not occur; therefore, P[A] þ P[not A] ¼ 1. From this, we

derive the subtraction rule: The probability that A will not occur is:

P½not A� ¼ 1� P½A� (4.6)

If the probability of rolling a 1 with a die is 1/6, then the probability of not rolling a 1

is 1 � 1/6 ¼ 5/6.

The subtraction rule is so obvious that it seems hardly worth mentioning. However, it

is a very useful rule because sometimes the easiest way to determine the probability that

something will happen is to calculate the probability that it will not happen. For

instance, what is the probability that, among four fairly flipped coins, there will be at

least one heads? The easiest approach is to calculate the probability of no heads and then

use the subtraction rule to determine the probability of at least one heads. The multi-

plication rule tells us that the probability of no heads (four tails) is (1/2)4; therefore, the

probability of at least one heads is 1 � (1/2)4 ¼ 0.9375.

We can use the subtraction rule whenever we want to calculate the probability that

something will happen “at least once.” For example, earlier in this chapter, we looked at

Len Deighton’s incorrect assertion that a pilot with a 2 percent chance of being shot

down on each mission is “mathematically certain” to be shot down in 50 missions. To

determine the correct probability, we use the subtraction rule to turn the question

around: What is the probability that a pilot will complete 50 missions without being shot

down? We can then subtract this value from 1 to determine the probability that a pilot

will not complete 50 missions successfully.

To calculate the probability that a pilot with a 2 percent chance of being shot down

on each mission will complete 50 missions successfully, we need to assume that the

mission outcomes are independent. This assumption is implicit in Deighton’s constant

2 percent probability, though it is not completely realistic, as pilots no doubt improve

with experience. (Probabilities also vary with the difficulty of individual missions; the

2 percent figure must be a simplifying average.) Assuming independence, the proba-

bility of not being shot down in 50 missions is equal to 98 percent multiplied by itself

50 times:

P½not shot down in 50 missions� ¼ 0:9850

The subtraction rule then tells us that the probability of being shot down is equal to 1

minus the probability of not being shot down:

P½shot down in 50 missions� ¼ 1� P½not shot down in 50 missions�
¼ 1� 0:9850

¼ 0:6358
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Instead of Deighton’s erroneous 100 percent, the correct probability is about

64 percent.

Bayes’ Rule

Reverend Thomas Bayes wanted to use information about the probability that the

world would be the way it is if God exists (P[world if God exists]) to make inferences

about the probability that God exists, given the way the world is (P[God exists if world]).

Bayes was unable to prove the existence of God, but his analysis of how to go from one

conditional probability to its reverse is the foundation for the modern Bayesian

approach to probability and statistics.

Although Bayes worked out some calculations for several games of chance, his few

published writings do not contain a general formula for reversing conditional probabili-

ties. It was Laplace who wrote down the general expression and called it Bayes’ theorem:

P½A if B� ¼ P½A�P½B if A�
P½A�P½B if A� þ P½not A�P½B if not A� (4.7)

You do not need to memorize Bayes’ theorem. In most cases, the simplest and most

intuitive procedure is to construct a contingency table for a hypothetical population.

For instance, we began this chapter with the example of worrisome results from a

mammogram test. If the lump is malignant, this test has a 0.8 probability of a positive

reading: P[test positive if malignant] ¼ 0.8. The doctor and patient are interested in the

reverse conditional probability—the probability that a patient who tests positive has a

malignant tumor. Table 4.4 shows that P[malignant if test positive] ¼ 8/107 ¼ 0.075.

Bayes’ theorem is commonly used in two ways, both of which are illustrated in

Table 4.4. The first use is to go from one conditional probability, P[A if B], to the reverse,

P[B if A]. Here, we went from P[test positive if malignant] ¼ 0.80 to P[malignant if test

positive] ¼ 0.075.

The second use of Bayes’ theorem is to revise a probability P[A] in light of additional

information B. Before the mammogram, the probability that a randomly selected lump is

malignant is P[A] ¼ 0.01. After the positive mammogram reading, the revised probability

that the lump is malignant is P[A if B] ¼ 0.075. The probability that the lump is malignant

increases from 1 percent to 7.5 percent, but is still far from certain.

A Bayesian Analysis of Drug Testing

An editorial in the Journal of the American Medical Association on mandatory urine drug

tests argued that “An era of chemical McCarthyism is at hand, and guilty until proven

innocent is the new slogan” [12]. The editorial noted that it would cost $8 billion to

$10 billion annually to test every employee in the United States once a year and that the

accuracy of these tests (measured in the fraction of the people who are diagnosed

correctly) ranged from 75 percent to 95 percent for some drugs and from 30 percent to

60 percent for others.
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If an employee is given a drug test, two kinds or errors can happen. A false-positive

result occurs when the test incorrectly indicates the presence of a drug; a false-negative

result occurs when the test fails to detect the presence of drugs. These mistakes can

occur for a variety of reasons, including the mislabeling of samples, the use of

contaminated laboratory equipment, and the technician’s misreading of subjective

criteria regarding chemical color, size, and location.

To illustrate the potential seriousness of the false-positive problem, consider a test

administered to 10,000 persons, of whom 500 (5 percent) use the drug that the test is

designed to detect and 9500 (95 percent) do not. Suppose further that the test is

95 percent accurate: 95 percent of the drug users will be identified as drug users and

95 percent of those who are drug free will be identified as drug free.

Table 4.5 shows that, of the 500 people who use this drug, 475 (95 percent) will have

a positive test result and 25 (5 percent) will not. Of the 9500 who do not use this drug, 475

(5 percent) will have a positive result and 9025 (95 percent) will not. Using these

numbers, we can calculate the fractions of the diagnoses that are incorrect:

P½drug user if negative reading� ¼ 25

9050
¼ 0:0028

P½drug free if positive reading� ¼ 475

950
¼ 0:50

Less than 1 percent of those who test negative are in fact drug users. However, an

astounding 50 percent of those who test positive do not use the drug. This is another

example of how important it is to interpret conditional probabilities correctly. In this

example, 95 percent of all drug users test positive, but only 50 percent of those who test

positive are drug users.

Probability Distributions
A random variable X is a variable whose numerical value is determined by chance, the

outcome of a random phenomenon.1 A discrete random variable has a countable

number of possible outcomes: A die can be 1, 2, 3, 4, 5, or 6. A continuous random

Table 4.5 A Contingency Table for Random Drug
Testing

Test Positive Test Negative Total

Drug user 475 25 500
Drug free 475 9025 9500
Total 950 9050 10,000

1We distinguish between a random variable, which can take on different values, and the actual values

that happen to occur by using upper-case letters, like X, for the former and lower-case letters, like x, for

the latter.
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variable, in contrast, has a continuum of possible values: In theory, distance or time can

be measured with infinite precision and the number of possible values cannot be

counted.2

Suppose that X is the number of heads when three coins are flipped. Table 4.1 shows

the probabilities for the four possible values of X: 0, 1, 2, or 3. A graph of the probabilities

for all possible values is called a probability distribution, as in Figure 4.5.

A probability distribution is similar to the histograms described in Chapter 2, in that

the total area is equal to 1, but these graphs are conceptually different. A probability

distribution shows the theoretical probabilities while a data histogram shows the actual

frequencies that occurred in a particular data set.

I flipped three coins 100 times and recorded how often I got no heads (12 times), one

head and two tails (35 times), two heads and one tail (40 times), and three heads

(13 times). Table 4.6 shows that the observed frequencies are close to, but not exactly

equal to, the theoretical probabilities. Figure 4.6 shows a histogram for these 100 coin

flips. Remember, a probability distribution shows theoretical probabilities while a his-

togram shows actual frequencies.
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FIGURE 4.5 Probability distribution for three coin flips.

Table 4.6 Probabilities and Frequencies for Three Coin
Flips

Number of Heads Probability Observed Frequency

0 0.125 0.120
1 0.375 0.350
2 0.375 0.400
3 0.125 0.130
Total 1.000 1.000

2A discrete random variable can have an infinite number of possible values, for example, the number of

times a coin is flipped before obtaining a heads. What matters is that the possible values can be counted.
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Expected Value and Standard Deviation

Sometimes, a few simple numbers can summarize effectively the important character-

istics of a probability distribution. The expected value (or mean) of a discrete random

variable X is a weighted average of all possible values of X, using the probability of each X

value as weights:

m ¼ E½X � ¼
X

XiP½Xi� (4.8)

The Greek symbol m is pronounced “mew,” and the notation E[X] denotes the

expected value of the random variable X. The summation sign S means that we add up

the products XiP[Xi].

Suppose, for example, that X is equal to the number of heads that occur when three

coins are flipped. The probabilities are given in Table 4.6. Equation (4.8) shows that the

expected value of X is an average of the possible outcomes weighted by their respective

probabilities:

m ¼ 0ð0:125Þ þ 1ð0:375Þ þ 2ð0:375Þ þ 3ð0:125Þ
¼ 1:5

The expected value is not necessarily the most likely value of X. You will never flip

1.5 heads! The expected value is the anticipated long-run average value of X if this

experiment is repeated a large number of times. If, as anticipated, no heads occurs

12.5 percent of the time, one heads occurs 37.5 percent of the time, two heads occurs

37.5 percent of the time, and three heads occurs 12.5 percent of the time, the average

value of X will be 1.5.

Suppose that your instructor offered to let you play a game where you flip three

coins and are paid $1 for every head that appears. The coins are fair and honest and so

is your professor. On any single play, you might receive nothing, $1, $2, or $3. If you

play a large number of times, you can expect to receive, on average, $1.50 per play. If

you have to pay $1 each time you play this game, you can expect to make an average
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FIGURE 4.6 Histogram for three coin flips.
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profit of $0.50 per play in the long run. If it costs you $2 to play this game, you can

expect to lose $0.50 per play in the long run.

The expected value m of a probability distribution is analogous to the mean x of

observed data. The expected value weights the possible outcomes by the probability they

will occur. The mean of observed data uses the frequencies with which outcomes

happen to occur.

In the same way, the variance s2 of a probability distribution is analogous to the

variance s2 of observed data, again using probabilities in place of observed frequencies.

The variance of a discrete random variable X is a weighted average of the squared

deviations of the possible values of X from the expected value of X, using the proba-

bilities as weights:

s2 ¼ E
h
ðX � mÞ2

i
¼

X
ðXi � mÞ2 P½Xi� (4.9)

The Greek symbol s is pronounced “sigma.” The square root of the variance is the

standard deviation s.

For our example of three coin flips, the variance works out to be s2 ¼ 0.75, so that the

standard deviation is s ¼ ffiffiffiffiffiffiffiffiffi
0:75

p ¼ 0:866:

s2 ¼ ð0� 1:5Þ2ð0:125Þ þ ð1� 1:5Þ2ð0:375Þ þ ð2� 1:5Þ2ð0:375Þ þ ð3� 1:5Þ2ð0:125Þ
¼ 0:75

The variance of a probability distribution and the variance of observed data both use

squared deviations from the mean to gauge dispersion. The first uses the expected value

and theoretical probabilities. The second uses the observed mean and frequencies.

The Normal Distribution

In Chapter 2, we saw that histograms are often shaped like a bell: a single peak with the

bars declining symmetrically on either side of the peak—gradually at first, then more

steeply, then gradually again. W. J. Youdon, a distinguished statistician, described this

familiar shape this way [13]:

The
normal

law of error
stands out in the

experience of mankind
as one of the broadest

generalizations of natural
philosophy. It serves as the

guiding instrument in researches
in the physical and social sciences and

 in medicine, agriculture, and engineering.
It is an indispensable tool for the analysis and the

interpretation of the basic data obtained by observation and experiment.
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This bell-shaped curve describes data on such disparate phenomena as the heights of

humans, the weights of tomatoes, the time it takes a popcorn kernel to pop, scores on the

SAT test, baseball batting averages, and the location of molecules.

Probability Density Curves

We noted earlier that a continuous random variable can have a continuum of possible

values. For example, Figure 4.7 shows a spinner for randomly selecting a point on a

circle. We can imagine that this is a clean, well-balanced device in which each point on

the circle is equally likely to be picked. How many possible outcomes are there? How

many points are there on the circle? In theory, there are an uncountable infinity of points

because between any two points on the circle, there are still more points.

Weight, height, and time are other examples of continuous variables. Even though we

might say that Rachel Smith is 19 years old, a person’s age can, in theory, be specified

with infinite precision. Instead of saying that she is 19 or 20, we could say that she is

19 years and 220 days, or 19 years, 220 days, and 10 h. With continuous variables, we can

specify finer and finer gradations within any interval.

How can we specify probabilities when there are an uncountable number of possible

outcomes? If we give each point a positive probability, the sum of this uncountable

number of probabilities will be infinity, not 1. Mathematicians handle this vexing situ-

ation by assigning probabilities to intervals of outcomes, rather than to individual

outcomes.

We display interval probabilities by using a probability density curve, as in Figure 4.8,

in which the probability that the outcome will be in a specified interval is given by the

area under the curve. The shaded area shows the probability that the random number

will be between 3 and 9. The area of this rectangle is (base) (height) ¼ (6) (1/12) ¼ 1/2.

What is the probability that the random number will be between 0 and 12? This prob-

ability is the entire area under the curve: (base) (height) ¼ (12) (1/12) ¼ 1. In fact, the

height of the probability density curve, 1/12, was derived from the requirement that the

total area must be 1.

A rectangular distribution, like Figure 4.8, is called the uniform distribution.

Continuous probability distributions can have all sorts of shapes, as long as the densities

are never negative and the total area under the curve is equal to 1.

12

39

6

FIGURE 4.7 A continuous random number.
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The smooth density curve for a continuous random variable is analogous to the

jagged probability distribution for a discrete random variable. The mean and the stan-

dard deviation consequently have the same interpretation. The population mean is the

anticipated long-run average value of the outcomes; the standard deviation measures

the extent to which the outcomes are likely to differ from the mean. The mean is at the

center of a symmetrical density function; in Figure 4.8, the mean is 6. Often, however, the

mean and standard deviation of a continuous random variable cannot be calculated

without using advanced mathematics.

Standardized Variables

The mean and standard deviation are two important tools for describing probability

distributions. One appealing way to standardize variables is to transform them so that

they have the same mean and the same standard deviation. This reshaping is easily done

in the statistical beauty parlor. The standardized value Z of a random variable X is

determined by subtracting the mean of the probability distribution and dividing by the

standard deviation:

Z ¼ X � m

s
(4.10)

Observed data can be similarly transformed by subtracting the mean of the data and

then dividing by the standard deviation:

z ¼ x � x

s
(4.11)

A standardized variable Z measures how many standard deviations X is above or

below its mean. If X is equal to its mean, Z is equal to 0. If X is one standard deviation

above its mean, Z is equal to 1. If X is two standard deviations below its mean, Z is

equal to �2.
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FIGURE 4.8 A continuous probability distribution.
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Suppose that the probability distribution of the heights of US women between the

ages of 25 and 34 has a mean of 66 in and a standard deviation of 2.5 in. If so, we can

translate heights from inches to standardized Z values, as illustrated in Table 4.7.

Instead of saying that a woman is 71 in tall (which is useful for some purposes, such

as clothing sizes), we can say that her height is two standard deviations above the mean

(which is useful for other purposes, such as comparing her height with the heights of

other women).

The Central Limit Theorem

Karl Gauss (1777–1855) collected a great deal of data measuring the shape of the earth

and the movements of planets and typically found that histograms of his data were

roughly bell shaped. Other researchers found that histograms of many other physical

and social data are often bell shaped. You can imagine the excitement they must have

felt when they first discovered this remarkable regularity. These researchers were

analyzing very different situations governed by unpredictable chance, and yet a regular

pattern emerged. No wonder Sir Francis Galton called this phenomenon a “wonderful

form of cosmic order” [14].

Even more remarkably, mathematicians were eventually able to prove a mathemat-

ical theorem that helps explain this recurring pattern in the data: The central limit

theorem states that if Z is the sum of n independent, identically distributed random

variables with a finite, nonzero standard deviation, then the probability distribution of Z

approaches the normal distribution as n increases.

For example, if we flip a coin n times, the number of heads is the sum of the results of

these n flips. Figure 4.3 shows the probability distribution for the number of heads when

n ¼ 3 coins are flipped. Figure 4.9 shows the probability distribution for n ¼ 10 and

Figure 4.10 shows the probability distribution for n ¼ 50. As n increases, the probability

distribution does indeed become more bell shaped.

Figure 4.11 shows the perfect normal distribution that emerges when n becomes

infinitely large.

Many random variables are the cumulative result of a sequence of random events. For

instance, a random variable giving the sum of the numbers when eight dice are rolled

Table 4.7 Standardized Heights

X Z[
XLm

s

61.0 �2
63.5 �1
66.0 0
68.5 þ1
71.0 þ2
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FIGURE 4.9 Probability distribution for 10 coin flips.
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FIGURE 4.10 Probability distribution for 50 coin flips.
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FIGURE 4.11 The standardized normal distribution.

Chapter 4 • Probability 123



can be viewed as the cumulative result of eight separate random events. The percentage

change in a stock’s price over a 6-month period is the cumulative result of a large

number of random events during that interval.

As remarkable as it is, the central limit theorem would be of little practical value if the

normal curve emerged only when n is extremely large. The normal distribution is

important because it so often appears even when n is quite small. If the underlying

distribution is reasonably smooth and symmetrical (as with dice rolls and coin flips), the

approach to a normal curve is very rapid and values of n larger than 20 or 30 are suf-

ficient for the normal distribution to provide an acceptable approximation.

Furthermore, the central limit theorem would be just a mathematical curiosity if the

assumption that the cumulated variables are independent and identically distributed

had to be satisfied strictly. This assumption is appropriate for dice rolls and other re-

petitive games of chance but in practical affairs is seldom exactly true. Probabilities vary

from one trial to the next as conditions change and, in many cases, because of the

outcomes of earlier trials. For example, height and weight depend on heredity and a

lifetime of diet and exercise—factors that are not independent and do not have identical

probability distributions. Yet, histograms of height and weight are bell shaped. A baseball

player’s chances of getting a base hit depend on the player’s health, the opposing

pitcher, the ballpark, and other factors. Yet, histograms for the total number of base hits

over a season are bell shaped. A person’s ability to answer a particular test question

depends on the question’s difficulty and the person’s knowledge and alertness, but

histograms of test scores are bell shaped.

This is why the normal distribution is so popular and the central limit theorem so

celebrated. However, do not be lulled into thinking that all probability distributions and

histograms are bell shaped. Many outcomes are approximately, but not perfectly,

normal; and many probability distributions are not normal at all. Figure 4.8 shows a

uniform distribution; the distribution of household income is skewed right. My purpose

is not to persuade you that there is only one probability distribution but to explain why

so many phenomena are well described by the normal distribution.

Finding Normal Probabilities

The density curve for the standardized normal distribution is graphed in Figure 4.11.

The probability that the value of Z will be in a specified interval is given by the corre-

sponding area under this curve. These areas can be determined by complex numerical

procedures, with the results collected in tables, such as Table A.1 in the Appendix of this

book. Such calculations are now standard in statistical software, too, and are especially

useful for Z values that are not shown in Table A.1.

The Normal Probability Table

Table A.1 shows the area in the right-hand tail of a standardized normal distribution.

The left-hand column of Table A.1 shows values of Z in 0.1 intervals, such as 1.1, 1.2,
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and 1.3. For finer gradations, the top row shows 0.01 intervals for Z. By matching the

row and column, we can, for instance, determine that the probability that Z is larger

than 1.25 is 0.1056.

Table A.1 gives all the information we need to determine the probability for any

specified interval. For example, to determine the probability that Z is less than �1.25, we

note that, because of symmetry, the area in a left-hand tail is equal to the corresponding

area in the right-hand tail:

P½Z < �1:25� ¼ P½Z > 1:25� ¼ 0:1056

For areas more complicated than the right-hand or left-hand tail, it is usually safest to

make a quick sketch, so that the probabilities that must be added or subtracted are

readily apparent. For example, Figure 4.12 shows that, to determine the probability that

Z is between 0 and 1.25, we use the fact that the total area in the right-hand tail is 0.5.

Nonstandardized Variables

So far, we calculated probabilities for a normally distributed variable Z that is stan-

dardized to have a mean of 0 and a standard deviation of 1. Nonstandardized variables

can have positive or negative means and standard deviations that are larger or smaller

than 1 (but not negative). The mean tells us where the center of the distribution is, and

the standard deviation gauges the spread of the distribution about its mean. Together,

the mean and standard deviation describe a normal distribution.

Figure 4.13 shows two distributions with different means and standard deviations.

Perhaps, these random variables are the annual percentage returns on two investments,

one with a 5 percent mean and 10 percent standard deviation and the other with a

10 percent mean and 5 percent standard deviation. The distribution with the higher mean

is centered to the right of the one with the lower mean. The distribution with the higher

standard deviation is more spread out than the one with the lower standard deviation.
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FIGURE 4.12 The probability that Z is between 0 and 1.25.
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It is natural to describe these two investments by saying that the one with the higher

expected return also has the more certain return. If offered a choice, most investors

would choose the second investment.

How do we determine probabilities for a normally distributed variable X if it does

not have a mean of 0 and standard deviation of 1? We determine the corresponding

standardized Z value and find the probability in Table A.1 (or with statistical software).

Suppose, for example, X is normally distributed with a mean of 5 and a standard

deviation of 10, for which we use the shorthand notation X w N [5, 9]. If we want to

determine the probability that the value of X is larger than 15, the corresponding Z

value is:

Z ¼ X � m

s

¼ 15� 5

10

¼ 1:0

The standardized variable Z is equal to 1 because, for a normally distributed variable

with a mean of 5 and a standard deviation of 10, the value X ¼ 15 is one standard

deviation above the mean. Table A.1 shows the probability to be 0.1587.

One, Two, Three Standard Deviations

The three rules of thumb in Table 4.8 can help us estimate probabilities for normally

distributed random variables without consulting Table A.1.

A normally distributed random variable has about a 68 percent (roughly two-thirds)

chance of being within one standard deviation of its mean, a 95 percent chance of

being within two standard deviations of its mean, and better than a 99.7 percent chance
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FIGURE 4.13 Two normal distributions.
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of being within three standard deviations. Turning these around, a normally distributed

random variable has a 32 percent chance of being more than one standard deviation

away from its mean, roughly a 5 percent chance of being more than two standard de-

viations from its mean, and less than a 0.3 percent chance of being more than three

standard deviations from its mean.

For example, a number of tests are designed to measure a person’s IQ (intelligence

quotient). The first IQ test consisted of 54 mental “stunts” that two psychologists, Alfred

Binet and Theodore Simon, devised in 1904 to identify students in the Paris school

system who needed special assistance. IQ tests today are designed to measure general

intelligence, including an accurate memory and the ability to reason logically and

clearly.

Because an individual’s score on an IQ test depends on a very large number of he-

reditary and environmental factors, the central limit theorem explains why the distri-

bution of IQ scores is approximately normal. One of the most widely used tests today is

the Wechsler Adult Intelligence Scale, which has a mean IQ of 100 and a standard de-

viation of 15. A score of 100 indicates that a person’s intelligence is average. About half

the people tested score above 100, while half score below 100.

1. The one-standard-deviation rule implies that about 32 percent of the population

have IQ scores more than 15 points away from 100: 16 percent above 115 and

16 percent below 85.

2. The two-standard-deviations rule implies that about 5 percent of the population

have IQ scores more than 30 points away from 100: 2.5 percent above 130 and

2.5 percent below 70.

3. The three-standard-deviations rule implies that about 0.27 percent of the popula-

tion have IQ scores more than 45 points away from 100: 0.135 percent above 145

and 0.135 percent below 55.

Exercises
4.1 A prominent French mathematician, Jean d’Alembert, argued that because there

are four possible outcomes when coins are flipped three times (no heads, a head

on the first flip, a head on the second flip, or a head on the third flip), the proba-

bility of no heads is 1/4. Explain why you either agree or disagree with his

reasoning.

Table 4.8 One, Two, Three Standard Deviations

The probability That a Normally Distributed Variable Will Be within:

One standard deviation of its mean is 0.6826
Two standard deviations of its mean is 0.9544
Three standard deviations of its mean is 0.9973
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4.2 A very successful football coach once explained why he preferred running the

ball to passing it: “When you pass, three things can happen [completion, incom-

pletion, or interception], and two of them are bad [15]. Can we infer that there is

a 2/3 probability that something bad will happen when a football team passes

the ball?

4.3 In the game odd-or-even, two players simultaneously reveal a hand showing

either one or two fingers. If each player is equally likely to show one or two fin-

gers and their choices are made independently, what is the probability that the

sum will be even?

4.4 The traditional Indian game Tong is similar to the odd-or-even game described

in the preceding exercise, except that each player can show one, two, or three

fingers. If each possibility is equally likely and the choices are made indepen-

dently, what is the probability that the sum will be an even number? If the loser

pays the winner $1, what is the expected value for a player who bets on even?

4.5 A television weather forecaster once said that there was a 50 percent chance of

rain on Saturday and a 50 percent chance of rain on Sunday, and therefore a

100 percent chance of rain that weekend. Explain the error in this reasoning. If

there is a 40 percent chance that it will rain on both Saturday and Sunday, what

is the probability that it will rain on at least one of these two days?

4.6 Jurors are not supposed to discuss a case with anyone until after all of the evi-

dence has been presented. They then retire to the jury room for deliberations,

which sometimes begin with a secret-ballot vote of the jurors. Suppose that we

have a case where each selection of a person for the jury has a 0.9 probability of

picking someone who, after hearing all of the evidence, would initially vote guilty

and a 0.1 probability of picking someone who would initially vote not guilty.

What is the probability that the initial vote will be unanimously guilty if there is a

12-person jury? A six-person jury?

4.7 Suppose that a computer user chooses six random characters (either letters or

digits) for a Website password. (For example, I just chose ZDQMF2.) Characters

can be used more than once (as with ZDZMF2) and no distinction is made be-

tween upper-case and lower-case letters. Suppose that a password attacker tries

to enter your account by trying passwords with six randomly chosen characters

but gets only three tries before the Website locks the account for 24 h. Because

the attack program uses randomly selected characters, it may try the same six

characters more than once. What is the probability that the three tries will be

enough to access your account?

4.8 What are the chances of winning the following game? Put two red marbles and

five blue marbles in a bag. The player puts his hand in the bag and pulls out

three marbles. He wins if none of these marbles is red.
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4.9 The ancient Enneagram (Figure 4.14) has nine personality types represented by

the numbers 1 through 9 drawn around a circle. Three equilateral triangles can

be drawn by connecting the points 9-3-6, 4-7-1, and 5-8-2. These three groupings

correspond to three emotional states identified by modern psychological theory:

attachment (9-3-6), frustration (4-7-1), and rejection (5-8-2).

If the numbers 1–9 were randomly separated into three groups of three

numbers, what is the probability that one group would contain the numbers 9, 3,

and 6 (not necessarily in that order), another group would contain the numbers

4, 7, and 1, and the third group would contain the numbers 5, 8, and 2?

4.10 Answer this letter to newspaper columnist Marilyn vos Savant [16]: “I have a

really confusing one for you. Let’s say my friend puts six playing cards face-down

on a table. He tells me that exactly two of them are aces. Then I get to pick up

two of the cards. Which of the following choices is more likely? (a) That I’ll get

one or both of the aces, or (b) That I’ll get no aces?”

4.11 A classic test lets a monkey choose M&Ms until the researcher identifies three

colors (say blue, red, and green) that the monkey seems to prefer about equally.

The monkey is then offered a choice between two M&Ms—say, blue and red. If

the monkey chooses blue, then the monkey is offered a choice between red and

green. Two-thirds of the time, the monkey chooses green, apparently confirming

the theory of choice rationalization: after we reject something, we devalue it.

Now suppose that the monkey is not perfectly indifferent between blue, red,

and green M&Ms, but in fact prefers blue to red. What is the probability that the

monkey also prefers green to red? (Assume that the monkey is randomly chosen

from a group of monkeys that are equally likely to prefer one color to another.)

4.12 A police department recorded the clothing colors worn by pedestrians who died af-

ter being struck by cars at night [17]. They found that four-fifths were wearing dark

clothes and concluded that it is safer to wear light clothes. Use some hypothetical

numbers to explain why these data do not necessarily justify this conclusion.

4.13 A book [18] calculated the probabilities of “being injured by various items

around your house” and concluded: “As the figures show, our homes are
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FIGURE 4.14 Exercise 4.9.
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veritable booby traps. Even your cocktail table is out to get you. These accounted

for almost 64,000 injuries, more than all ladders [62,000 injuries].” With

74,050,000 US households, they calculated the probability of being injured by a

cocktail table as 64,000/74,050,000 ¼ 0.00086 and the probability of being injured

by a ladder as 62,000/74,050,000 ¼ 0.00084. Explain why these data do not really

show that it is more dangerous to use a cocktail table than a ladder.

4.14 A Temple University mathematics professor used these data to show that most

Americans have an exaggerated fear of terrorists [19]:

Without some feel for probability, car accidents appear to be a relatively minor

problem of local travel while being killed by terrorists looms as a major risk of

international travel. While 28 million Americans traveled abroad in 1985, 39

Americans were killed by terrorists that year, a bad year—1 chance in 700,000.

Compare that with the annual rates for other modes of travel within the United

States—1 chance in 96,000 of dying in a bicycle crash, 1 chance in 37,000 of

drowning, and 1 chance in only 5300 of dying in an automobile accident.

How do you suppose the author calculated the probability of dying in a car acci-

dent? Do these calculations prove that it is more dangerous to drive to school

than to fly to Paris?

4.15 In an interview for a banking job, a student was asked to calculate the following:

A can contains 20 coins, 19 of which are ordinary coins and one of which has

heads on both sides. A coin is randomly selected from the can and flipped five

times. It lands heads all five times. What is the probability that it is the two-

headed coin?

4.16 In the United States, criminal defendants are presumed innocent until they are

proven guilty beyond a reasonable doubt, because it is thought better to let nine

guilty people go free than to send one innocent person to prison. Assume that

90 percent of all defendants are guilty, 90 percent of the guilty defendants are

convicted, and 90 percent of the innocent defendants are set free.

a. Of those people convicted, what percent are innocent?

b. Of those people set free, what percent are guilty?

4.17 Suppose that there are two kinds of households, the Careless and the Careful; 99

percent of households are Careful and 1 percent are Careless. In any given year, a

home inhabited by a Careless household has a 0.010 probability of being

destroyed by fire, and a home occupied by a Careful household has a 0.001

probability of being destroyed by fire. If a home is destroyed by fire, what is the

probability that it was occupied by a Careless household?

4.18 Use the information in Exercise 4.17 to answer this question. Suppose that every

home is worth $100,000 and that an insurance company sells 1-year policies to
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every household for $500 that will pay either $100,000 or nothing, depending on

whether the home is destroyed by fire.

a. Is the expected value of the amount the insurance company has to pay larger

or smaller than $500?

b. For a Careless household, is the expected value of the payoff larger or smaller

than $500?

c. For a Careful household, is the expected value of the payoff larger or smaller

than $500?

d. What potential problem do you see for this insurance company?

4.19 In three careful studies [20], lie detector experts examined several persons, some

known to be truthful and others known to be lying, to see if the experts could tell

which were which. Overall, 83 percent of the liars were pronounced “deceptive”

and 57 percent of the truthful people were judged “honest.” Using these data and

assuming that 80 percent of the people tested are truthful and 20 percent are

lying, what is the probability that a person pronounced “deceptive” is in fact

truthful? What is the probability that a person judged “honest” is in fact lying?

How would these two probabilities be altered if half of the people tested are

truthful and half are lying?

4.20 J. B. Rhine’s book New Frontiers of the Mind reported results from his ESP experi-

ments. The New York Times science editor was enthusiastic. He noted that some

people dismiss Rhine’s results by arguing that, just like in gambling, people can

have a run of luck. The writer rejected this suggestion: “The run-of-luck theory has

also been invoked with some disregard of the obvious fact that runs of bad luck

will cause runs of good luck in the course of 100,000 trials” [21]. Do you agree that

a run of bad luck will cause a run of good luck? Explain your reasoning.

4.21 The random walk model of stock prices states that stock market returns are inde-

pendent of the returns in other periods; for example, whether the stock market

does well or poorly in the coming month does not depend on whether it has

done well or poorly during the past month, the past 12 months, or the past

120 months. On average, the monthly return on US stocks has been positive

about 60 percent of the time and negative about 40 percent of the time. If

monthly stock returns are independent with a 0.6 probability of a positive return

and a 0.4 probability of a negative return, what is the probability of:

a. 12 consecutive positive returns?

b. 12 consecutive negative returns?

c. A positive return, if the return the preceding month was negative?

4.22 The Romeros are planning their family and want an equal number of boys

and girls. Mrs. Romero says that their chances are best if they plan to have

two children. Mr. Romero says that they have a better chance of having an equal

number of boys and girls if they plan to have 10 children. Assuming that boy and
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girl babies are equally likely and independent of previous births, which probability

do you think is higher? Explain your reasoning.

4.23 Answer this question that a reader asked Marilyn vos Savant, who is listed in the

Guinness Book of World Records Hall of Fame for “Highest IQ” [22]: “During the

last year, I’ve gone on a lot of job interviews, but I haven’t been able to get a

decent job. Doesn’t the law of averages work here?”

4.24 Answer this question that a reader asked Marilyn vos Savant [23]:

At a lecture on fire safety that I attended, the speaker said: “One in 10 Americans

will experience a destructive fire this year. Now, I know that some of you can say

you have lived in your homes for 25 years and never had any type of fire. To that I

would respond that you have been lucky. But it only means that you are moving

not farther away from a fire, but closer to one.”

Is this last statement correct? Why?

4.25 An investment advisor claims that 60 percent of the stocks she recommends beat

the market. To back up her claim, she recommends n stocks for the coming year.

In fact, each of her recommendations has a 50 percent probability of beating the

market and a 50 percent probability of doing worse than the market. Assuming

independence, is she more likely to have at least a 60 percent success rate if she

recommends 10 stocks or 100 stocks?

4.26 A woman wrote to Dear Abby, saying that she had been pregnant for 310 days

before giving birth [24]. Completed pregnancies are normally distributed with a

mean of 266 days and a standard deviation of 16 days. What is the probability

that a completed pregnancy lasts at least 310 days?

4.27 Explain why this is misleading:

In 70 percent of all traffic accidents, the driver is less than 10 miles from home.

These data show that drivers who are close to home feel safe and tend to relax

and pay less attention when they are, in fact, most likely to have an accident.

4.28 After Hurricane Katrina, Congress mandated that hurricane protection for New

Orleans be improved to a once-in-a-100-years standard, meaning that there is

only a 1/100 probability of failing in any given year. Suppose you take out a

30-year mortgage to buy a home in this area. If the probability of failing is 1/100,

and assuming independence, what is the probability of at least one failure in the

next 30 years?

4.29 Explaining why he was driving to a judicial conference in South Dakota, the chief

justice of the West Virginia State Supreme Court said “I’ve flown a lot in my life.

I’ve used my statistical miles. I don’t fly except when there is no viable
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alternative” [25]. What do you suppose the phrase used my statistical miles

means? Explain why you either agree or disagree with the judge’s reasoning.

4.30 Yahtzee is a family game played with five normal six-sided dice. In each turn, a

player rolls the five dice and can keep some of the numbers and roll the remain-

ing dice. After the second roll, the player can choose to keep more numbers and

roll the remaining dice a final time. At the end of a Yahtzee game recently, Smith

needed to roll at least one 5 to get a 35-point bonus and win the game. He rolled

all five dice once, twice, and then a third time and did not get any 5s. What are

the chances of this happening?

4.31 At the midpoint of the 1991 Cape Cod League baseball season, Chatham was in first

place with a record of 18 wins, 10 losses, and one tie [26]. (Ties are possible because

games are sometimes stopped due to darkness or fog.) The Brewster coach, whose

team had a record of 14 wins and 14 losses, said that his team was in a better posi-

tion than Chatham: “If you’re winning right now, you should be worried. Every

team goes through slumps and streaks. It’s good that we’re getting [our slump] out

of the way right now.” Explain why you either agree or disagree with his reasoning.

4.32 Answer this letter to Ask Marilyn [27]:

You’re at a party with 199 other guests when robbers break in and announce that

they are going to rob one of you. They put 199 blank pieces of paper in a hat, plus

one marked “you lose.” Each guest must draw, and the person who draws “you

lose” will get robbed. The robbers offer you the option of drawing first, last, or

at any time in between. When would you take your turn?

4.33 Limited Liability is considering insuring Howard Hardsell’s voice for $1,000,000.

They figure that there is only a 0.001 probability that they will have to pay off. If

they charge $2000 for this policy, will it have a positive expected value for them?

What is the expected value of the policy to Howard? If Howard’s expected value

is negative, why would he even consider buying such a policy?

4.34 Each student who is admitted to a certain college has a 0.6 probability of

attending that college and a 0.4 probability of going somewhere else. Each stu-

dent’s decision is independent of the decisions of other students. Compare a col-

lege that admits 1000 students with a larger college that admits 2500 students.

Which college has the higher probability that the percentage of students admitted

who decide to attend the college will be:

a. Exactly equal to 60 percent?

b. Between 50 percent and 70 percent?

c. More than 80 percent?

4.35 In the gambling game Chuck-A-Luck, a player can bet $1 on any number from 1

to 6. Three dice are thrown and the payoff depends on the number of times the
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selected number appears. For example, if you pick the number 2, your payoff is

$4 if all three dice have the number 2. What is the expected value of the payoff?

Number of dice with selected number 0 1 2 3

Payoff (dollars) 0 2 3 4

4.36 The annual returns on US corporate stock and US Treasury bonds over the next

12 months are uncertain. Suppose that these returns can be described by normal

distributions with US corporate stock having a mean of 15 percent and standard

deviation of 20 percent, and US Treasury bonds having a mean of 6 percent and

standard deviation of 9 percent. Which asset is more likely to have a negative

return? Explain your reasoning.

4.37 In his 1868 work, Carl Wunderlich concluded that temperatures above 100.4�

Fahrenheit should be considered feverish. In a 1992 study, Maryland researchers

suggested that 99.9� Fahrenheit was a more appropriate cutoff [28]. If the oral

temperatures of healthy humans are normally distributed with a mean of 98.23

and a standard deviation of 0.67 (values estimated by the Maryland researchers),

what fraction of these readings are above 100.4? Above 99.9?

4.38 The Australian Bureau of Meteorology uses the monthly air-pressure difference

between Tahiti and Darwin, Australia, to calculate the Southern Oscillation Index:

SOI ¼ 10(X � m)/s, where X is the air-pressure difference in the current month, m

is the average value of X for this month, and s is the standard deviation of X for

this month. Negative values of the SOI indicate an El Niño episode, which is

usually accompanied by less than usual rainfall over eastern and northern

Australia; positive values of the SOI indicate a La Niña episode, which is usually

accompanied by more than usual rainfall over eastern and northern Australia.

Suppose that X is normally distributed with a mean of m and a standard deviation

of s. Explain why you believe that the probability of an SOI reading as low as

�22.8, which occurred in 1994, is closer to 1.1 � 10�15, 0.011, or 0.110.

4.39 A routine examination discovers a lump in a female patient’s breast. Only 1 out

of 100 such lumps turns out to be malignant, but, to be safe, the doctor orders a

mammogram X-ray test. If the lump is malignant, there is a 0.80 probability that

the mammogram reading will be positive; if the lump is benign, there is a 0.90

probability that the reading will be negative. The test comes back positive and

the doctor orders a second test, which comes back negative. Assuming the test

results to be independent, what is your estimate of the probability that this lump

is malignant?

4.40 Galileo wrote a short note on the probability of obtaining a sum of 9, 10, 11, or

12 when three dice are rolled [29]. Someone else had concluded that these
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numbers are equally likely, because there are six ways to roll a 9 (1-4-4, 1-3-5,

1-2-6, 2-3-4, 2-2-5, or 3-3-3), six ways to roll a 10 (1-4-5, 1-3-6, 2-4-4, 2-3-5,

2-2-6, or 3-3-4), six ways to roll an 11 (1-5-5, 1-4-6, 2-4-5, 2-3-6, 3-4-4, or 3-3-5),

and six ways to roll a 12 (1-5-6, 2-4-6, 2-5-5, 3-4-5, 3-3-6, or 4-4-4). Yet Galileo

observed “from long observation, gamblers consider 10 and 11 to be more likely

than 9 or 12.” What are the correct probabilities?

4.41 You are going to do an experiment in which you roll several six-sided dice and

record the sum of the numbers on these dice. You will repeat this experiment

several times and make a histogram of the results. In which of these scenarios is

your histogram is more likely to be a very close approximation to a normal distri-

bution? Explain your reasoning.

a. 5 dice, 50,000 trials.

b. 50 dice, 5000 trials.

4.42 Mark believes that there is a 4/5 probability that it will snow in Boston on New

Year’s Eve 2015; Mindy believes that the probability is only 2/3. What bet could

they make that would give each a positive expected value? For example, Mark

pays Mindy $2 if it snows and Mindy pays Mark $5 if it does not.

4.43 Consider a multiple-choice question that has n possible answers. A person who

does not answer the question gets a score of 0. A person who answers the ques-

tion gets þ1 if the answer is correct and –X if the answer is incorrect. What value

of X would make the expected value of the score equal to 0 for someone who

randomly selects an answer?

4.44 On long automobile trips, Mrs. Jones drives and Mr. Jones gives directions.

When there is a fork in the road, his directions are right 30 percent of the

time and wrong 70 percent of the time. Having been misled many times,

Mrs. Jones follows Mr. Jones’s directions 30 percent of the time and does the

opposite 70 percent of the time. Assuming independence, how often do they

drive down the correct fork in the road? If Mrs. Jones wants to maximize the

probability of choosing the correct road, how often should she follow

Mr. Jones’s directions?

4.45 A carnival game has four boxes (Figure 4.15), into which the contestant

tosses four balls. Each box is deep enough to hold all four balls and the

contestant is allowed to toss each ball until it lands in a box. The contestant

wins the prize if each box has one ball. Assuming that balls are equally

likely to land in any box (this is a game of chance, not skill), what is the proba-

bility of winning the game? If it costs $1 to play this game and the winning

prize is $5, how much profit can the carnival expect to make, on average, per

play?
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4.46 Answer this question to Ask Marilyn [30]:

I recently returned from a trip to China, where the government is so concerned

about population growth that it has instituted strict laws about family size. In

the cities, a couple is permitted to have only one child. In the countryside,

where sons traditionally have been valued, if the first child is a son, the couple

may have no more children. But if the first child is a daughter, the couple may

have another child. Regardless of the sex of the second child, no more are

permitted. How will this policy affect the mix of males and females?

4.47 A standard die is painted green on four sides and red on two sides and will be

rolled six times. You can choose one of these three sequences and will win $25 if

the sequence you choose occurs. Which do you choose and why?

a. Red Green Red Red Red Either
b. Red Green Red Red Red Green
c. Green Red Red Red Red Red

4.48 A car was ticketed in Sweden for parking too long in a limited time zone after a

policeman recorded the positions of the two tire air valves on one side of the car

(in the one o’clock and eight o’clock positions) and returned hours later to find

the car in the same spot with the tire valves in the same positions [31]. The

driver claimed that he had driven away and returned later to park in the same

spot, and it was a coincidence that both tire valves stopped in the same positions

as before. The court accepted the driver’s argument, calculating the probability

that both valves would stop at their earlier positions as (1/12) (1/12) ¼ 1/144

and feeling that this was not a small enough probability to preclude reasonable

doubt. The court advised, however, that had the policeman noted the

position of all four tire valves and found these to be unchanged, the very slight

(1/12)4 ¼ 0.0005 probability of such a coincidence would be accepted as proof

that the car had not moved. As defense attorney for a four-valve client, how

might you challenge this calculation?

4.49 Smith will win a prize if he can win two consecutive squash games in a three-

game match against Andrabi and Ernst alternately, either Andrabi-Ernst-Andrabi

or Ernst-Andrabi-Ernst. Assume that Andrabi is a better player than Ernst and

that Smith’s chances of winning a game against either player are independent of

the order in which the games are played and the outcomes of other games.

Which sequence should Smith choose and why?

FIGURE 4.15 Exercise 4.45.
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4.50 Here is a probability variant of a three-card Monte game used by street hustlers.

You are shown three cards: one black on both sides, one white on both sides, and

one white on one side and black on the other. The three cards are dropped into

an empty bag and you slide one out; it happens to be black on the side that is

showing. The operator of the game says: “We know that this is not the double-

white card. We also know that it could be either black or white on the other side.

I will bet $5 against your $4 that it is, in fact, black on the other side.” Can the

operator make money from such bets without cheating?
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“Data! data! data!” he cried impatiently, “I can’t make bricks without clay.”

Sherlock Holmes

We use probabilities to describe how likely it is that something will happen. Data, in

contrast, are a record of things that actually have happened. Here are three examples:

A fairly flipped coin

Probability: There is a 50 percent chance of landing tails.

Data: A coin is flipped 10 times and lands heads three times.

A fairly rolled six-sided die

Probability: There is a 1/6 probability of rolling a 3.

Data: A die is rolled 20 times and 3 comes up five times.
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A stock’s price

Probability: There is a 0.51 probability that the price will be higher tomorrow

than today.

Data: The stock’s price has gone up 18 of the past 30 days.

Probabilities and data are closely related, because we use probabilities to anticipate

what the data might look like and we use data to estimate probabilities.

For example, life insurance companies use mortality data to estimate the probability

that a healthy 21-year-old woman will die within a year and use this estimated proba-

bility to price a 1-year life insurance policy for a healthy 21-year-old woman.

In this chapter, we look at some general principles for deciding whether empirical

data are likely to yield reliable information.

Populations and Samples
The starting point is to distinguish between a population and a sample. To illustrate, we

look at a study of the adult daughters of women who had immigrated to California from

another country [1]. The population consists of 1,111,533 immigrant women who gave

birth to daughters in California between 1982 and 2007. A sample might be 30 women

selected from this population. We often use samples because it is impractical (or

impossible) to look at the entire population. If we burn every lightbulb to see how long

bulbs last, we have a large electricity bill and a lot of burnt-out lightbulbs. Many studies

are not destructive but simply too expensive to apply to the entire population. Instead,

we sample. A lightbulb manufacturer tests a sample of its bulbs. The government tests

water samples. Medical researchers give drugs to a sample of patients. Here, a researcher

with limited time and resources might look at a sample of 30 women instead of trying to

analyze all 1,111,533.

Figure 5.1 illustrates how sample data come from a population. The key insight is

that, when we analyze data, we need to think about the population from which the data

came. Once we have that insight, we can go back another step in our reasoning. Before

we gather data, we should think about the population we are interested in studying, then

think about how we can obtain a sample that is representative of this target population.

In a lightbulb study, the population is the bulbs made by a certain manufacturer, and

the sample is the bulbs tested. In a medical study, the population is the people suffering

from a certain disease, and the sample is those who try the medication. In the study of

immigrant women, the population is 1,111,533 mothers; the sample is the 30 mothers

we choose to analyze.

The Power of Random Sampling
A convenience sample is a sample that we select because it is quick and easy, for example,

immigrant mothers we know personally. There are obviously problems that outweigh
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convenience. Our friends may be atypical (maybe they are unusually well educated) or

so similar that they do not reflect the diversity of women in the population (maybe they

are all Cuban).

Alternatively, we could try to select “typical” immigrant mothers, for example, by

standing in a mall and interviewing shoppers who seem likely to be immigrant mothers.

Handpicking strangers is probably better than choosing our friends but still has

problems. When we handpick people who seem typical, we exclude people who are

unusual; and we consequently end up with a sample that is less varied than the pop-

ulation. Even worse, our sample reflects our beliefs. If we think that immigrant women

are mostly from Mexico, our sample will confirm this preconceived idea. We have no

way of knowing if our beliefs are wrong.

This is like the story of the Chinese researcher who wanted to estimate the height of

the emperor but, by custom, was not allowed to look at the emperor. Instead, he

collected guesses from many other people, none of whom had ever seen the emperor.

His research did not tell us the height of the emperor but rather people’s beliefs about

the emperor’s height. It is similar here. If we select women we think are typical immi-

grant women, we will get a sample that does not tell us what immigrant women are like

but rather what we think immigrant women are like.

Random Samples

If we do not want our personal beliefs to influence our results, we need a sampling

procedure that does not depend on our personal beliefs. A random sample does that.

Think about how cards are dealt in a poker game. The dealer does not turn the cards face

up and pick out typical cards. Instead, the cards are turned face down, shuffled thor-

oughly, and dealt without trickery. The dealer’s beliefs have no effect on the cards that

are dealt.

Population:
1,111,533 immigrant mothers

Sample:
30 mothers

FIGURE 5.1 Sample data come from a population.
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A random sample is just like a fair deal in a card game. In a fairly dealt five-card hand,

each of the 52 cards is equally likely to be included in the hand and every possible five-

card hand is equally likely to be dealt. In a simple random sample, each member of the

population is equally likely to be included in the sample and every possible sample is

equally likely to be selected.1

Because a random sample is chosen by chance, the sample could turn out to be

unrepresentative of the population. A random sample of college students could turn out

to be all science majors. A random sample of voters could turn out to be all Republicans.

A random sample of immigrant women could turn out to be all from Canada. This slight

risk is needed to prevent the sample from being tainted by the researcher’s subjective

beliefs. Of course, the larger the sample, the less chance there is of obtaining a lopsided

sample.

Another advantage of random sampling is that the mathematical properties of

random samples are known. We will be able to make statements like this: “We are

95 percent confident that the sample mean will be within 3 percentage points of the

population mean.” If the researcher handpicks the sample, there is no basis for gauging

the reliability of the results.

Sampling Evidence in the Courtroom

The legal system used to be deeply skeptical of probability and statistics. Something

is either true or not; a 99 percent probability that something is true is not proof that it

is true. Therefore, it was argued that sample data can never prove anything about a

population.

A 1955 case involved a sales tax levied by the city of Inglewood, California, on pur-

chases made by Inglewood residents in Inglewood stores [2]. Sears Roebuck discovered

that, over an 850-day period, its Inglewood store had been paying the city a tax on all its

sales, including sales to people who did not live in Inglewood. Sears sued the city, asking

for a refund of the tax that it had mistakenly paid on sales to nonresidents. To estimate

the size of the refund, Sears took a sample of 33 days and calculated that 36.69 percent of

the sales had been to nonresidents. Applying this sample estimate to the entire 850-day

period, Sears estimated that it had overpaid Inglewood $28,250.

At the trial, the Inglewood attorney asked only one question: Did Sears know for a

fact that exactly 36.69 percent of its sales over the full 850-day period were to non-

residents? Because the answer was no, the judge ruled that Sears had to look at the

receipts for all 850 days. It took Sears employees more than 3000 h to look over nearly

1 million sales receipts and obtain a final tally of $27,527. The sample estimate based

on 33 days was within $750 (2.6 percent) of the result based on 850 days. In addition,

1A systematic random sample chooses one of the first k items in a population and then every kth item

thereafter. If the population is not randomly arranged, but is in some sort of systematic order (for

example, in alphabetical or chronological order), then each member of the population is equally likely to

be included in the sample, but every possible sample is not equally likely to be selected.
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surely mistakes were made during the mind-numbing scrutiny of 1 million sales re-

ceipts. Even after a complete tabulation, no one knew for a fact exactly how many sales

had been to nonresidents.

Over time, the legal system has come to accept sampling as reliable evidence. In

1975, the Illinois Department of Public Services used a sample of 353 Medicaid claims

that a doctor had filed to estimate that the doctor had been overpaid an average of

$14.215 per claim. As in the Sears case, the doctor’s lawyer argued that all the claims

should have been examined. Unlike the Sears case, the court rejected this argument,

noting that “the use of statistical samples has been recognized as a valid basis for

findings of fact” [2]. The court also noted that it would be impractical and inefficient

to examine all the claims.

Besides the additional expense, complete tabulations are seldom perfect. Think about

contested election results where the votes are counted and recounted and give a

different answer every time. Surely, you would make mistakes if you had to work hour

after hour grinding through thousands of virtually identical documents. In fact, studies

have shown that estimates based on sample data can be more accurate than tabulations

of population data.

Choosing a Random Sample

How, in practice, do we select a simple random sample? Think again of a fair deal from a

deck of cards. Every card has a unique identifier: two of spades, four of clubs, jack of

diamonds, and so on. The cards are turned face down and well shuffled, so that each

card has an equal chance of being the top card, or the second card, or the card on the

bottom of the deck. The cards are then dealt and revealed.

In the same way, consider the random selection of 10 students in your statistics

class. Each student in the class can be given a unique identifier, for example, a number.

The numbers can be written on cards which are shuffled, and 10 cards dealt. Each

person in the class has an equal chance of being included in the sample and all

possible 10-person samples have an equal chance of being selected. It is a simple

random sample.

In practice, cards are seldom used to select a random sample. The point is that the

procedure should be equivalent to using cards. In our study of immigrant women, the

population consisted of 1,111,533 immigrant women who gave birth to daughters in

California between 1982 and 2007. These data came from records compiled from

California birth certificates. A computer program was used to go through these records

and identify women who were born outside the United States and gave birth to a daughter

in California. A total of 1,111,533 women were found who met these requirements.

Information about these women was stored in a computer file and each mother was

assigned a number from 1 to 1,111,533. A random number generator was used to select 30

numbers between 1 and 1,111,533. These numbers are shown in Table 5.1. Thus, the

random sample consisted of mother number 389,912, mother number 681,931, and so on.
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Random Number Generators

Random numbers can be found in tables of random numbers constructed from a

physical process in which each digit from 0 to 9 has a one-tenth chance of being

selected. The most famous of these tables contains 1 million random digits obtained by

the RAND Corporation from an electronic roulette wheel using random frequency

pulses.

With modern computers, random numbers can be obtained from a computer algo-

rithm for generating a sequence of digits. One popular algorithm takes a starting number

(called the seed), multiplies the seed by a constant b, and adds another constant a. The

result is divided by a third constant c and the remainder is the random number. For

example, suppose a ¼ 5, b ¼ 7, c ¼ 32, and the seed is 12. We have 5 þ 7 � 12 ¼ 89, and

89/32 ¼ 2 with a remainder of 25. So, 25 is the first random number. The second random

number is obtained by repeating the process, using 25 in place of 12. This process

generates all 31 numbers from 1 to 31, and then repeats with the 32nd number being 25

again. A very long cycle can be obtained by choosing very large values for b and c. Other

algorithms use different procedures but are similar, in that they use mathematical

formulas to generate long strings of numbers.

Modern computers can make such calculations extremely quickly. Karl Pearson once

spent weeks flipping a coin 24,000 times. Now, with a computer program for generating

random numbers, 24,000 coin flips can be simulated in a fraction of a second.

Computerized random number generators produce what are called pseudo-random

numbers, in that the numbers are produced by a deterministic process that gives

exactly the same sequence of numbers every time. To randomize the process, we need

to select an unpredictable starting position (the seed); one popular procedure is to use

the computer’s internal clock to determine the seed, since there is virtually no chance

that two users taking samples from the same population will use the random number

generator at exactly the same time.

A Study of the Break-Even Effect
Our study of immigrant daughters has a well-defined population: 1,111,533 immigrant

women who gave birth to daughters between 1982 and 2007. In many studies, the

Table 5.1 Thirty Random Numbers

389,912 681,931 599,576 217,409 630,699 457,855
518,033 682,942 489,708 1,093,656 204,834 379,121
26,406 1024 95,013 647,767 165,253 753,295
791,140 653,993 348,917 82,528 593,648 356,526
841,279 768,383 688,497 317,824 680,126 904,444
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population is not so well defined, but we nonetheless use the concept of a population

in order to assess the implications of our sample data. The next study illustrates this.

We use an example from behavioral economics, which is concerned with how eco-

nomic decisions are influenced by various psychological and emotional factors, in

contrast to classical economic theory, which assumes dispassionate, rational decision

making. One example of the difference between behavioral and classical economic

theory relates to how people react to losing money in the stock market. Classical eco-

nomic theory says that we should ignore our losses, which are in the past and cannot be

undone. Behavioral economic theory says that people who have lost money may try to

“break even” by winning back what they have lost. Thus, Daniel Kahneman and Amos

Tversky, two behavioral economics pioneers, argued that a “person who has not made

peace with his losses is likely to accept gambles that would be unacceptable to him

otherwise.” As evidence, they observe that at racetracks, betting on long shots tends to

increase at the end of the day because people are looking for a cheap way to win back

what they lost earlier in the day.

Texas Hold ’Em

A formal study [3] of this break-even theory looked at how experienced poker players

reacted to losing $1000. Texas hold ’em poker uses a standard 52-card deck of playing

cards. Before the cards are dealt, the player on the dealer’s left puts a “small blind” into

the pot, and the player two seats to the left of the dealer puts in a “big blind.” In this

study, the small blind was $25 and the big blind was $50. Each player is dealt two cards

(which only the player sees) and must “call” by putting enough money into the pot to

make their bet equal to the highest bet (which is initially the big blind), raise the bet, or

fold. The bets go clockwise around the table until the highest bet has been called by all

remaining players or only one player remains.

If more than one player is still in, three cards (“the flop”) are dealt face up in the

middle of the table and are considered part of each player’s hand. Another round of

betting occurs, starting with the player to the left of the dealer. Then a fourth community

card is dealt face up and there is another round of betting; finally, a fifth community card

is dealt and there is a final round of betting. The player with the best five-card hand,

using the two private cards and five community cards, wins the pot. The dealer position

shifts clockwise around the table after each hand.

Texas hold ’em is a strategic game because there are several rounds of betting and the

five community cards are visible to all players. However, the outcome of each individual

hand depends on the luck of the draw; for example, a player who is dealt two aces may

lose to a player with two 3s if another 3 shows up in the community cards. A player’s

long-run success depends on making good betting decisions—“knowing when to hold

’em and when to fold ’em.” Experts generally play tight-aggressive in that they play

relatively few hands but make large bets when they do play a hand. The opposite strategy

is loose-passive: playing many hands but betting the smallest amount needed to stay in.
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High-stakes poker games are a good source of data because they avoid some prob-

lems with artificial experiments that are sometimes conducted in college classrooms.

For example, students may not understand the instructions or may not think about their

answers carefully because there is little or no reward for being careful.

A convenience sample might be people with whom we play poker or friends we know

who play poker. However, the people we play with may not be experienced high-stakes

players. Also, our friends may use similar strategies that do not reflect the variety of styles

used by the target population.

Alternatively, we could select “typical” players who we have seen on television or at a

local casino. As with the study of immigrant daughters, when we handpick people who

seem typical, we exclude people who are unusual and we consequently end up with a

sample that is less varied than the population. Even worse, our sample reflects our

beliefs. If we think typical poker players use a certain style of play, our sample confirms

this preconceived idea. We have no way of knowing if our beliefs are wrong.

In the poker study, the target population was experienced high-stakes Texas hold ’em

poker players (Figure 5.2). It is not possible to monitor private poker games played all

over the world, so the population was narrowed to people who play high-stakes Texas

hold ’em games on the Internet.

It is still not feasible to look at every player at every Internet site for eternity. So, a

sample is used. First, the researchers had to choose a time period; they selected January

2008 through May 2008, simply because that was when they did the study. The re-

searchers assumed that there is no reason why this particular time period should be

systematically different from other time periods. If there is reason to doubt this

assumption, then the study’s credibility is in doubt.

Next, they had to choose an Internet site. The researchers selected a well-known

online poker room that is reported to be the favorite site of professional poker players

and attracts many experienced high-stakes players.

Population:
All experienced, high-stakes
Texas hold ’em players

Sample:
203 players

FIGURE 5.2 Sample data come from a population.
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Finally, the players were selected. The researchers looked at people who played at

least 100 high-stakes hands because these were evidently serious, experienced players.

Imprecise Populations

The data for this poker study were not obtained by taking a random sample from an

explicit population. Instead, as in many empirical studies, a target population was

identified and data were collected from that population. A formal random sample could

not be selected because the members of the population could not be identified and

numbered in preparation for a random sample. When we analyze data as if it were a

random sample, we should think about whether the data might be biased in some way. Is

there anything special about the time period, January 2008 through May 2008? Does this

Internet site attract atypical players? Are there any potential problems with choosing

100 hands as a cutoff?

The study would certainly be suspect if it only used data for May 2, 2009 (Why this

particular day?), from an obscure Internet site where high school kids use play money

(They are neither experienced nor serious!), and used 83 hands as a cutoff (Why 83

hands?). There is a plausible explanation for the time period, Internet site, and number

of hands used by this study. If a different study using different data comes to different

conclusions, then we have to rethink the question of whether our data are biased.

In Chapter 6, we will use these poker data to characterize the strategies used by

experienced, high-stakes players.

Biased Samples
Ideally, we would like our data to be a random sample from the target population. In

practice, samples can be tainted by a variety of biases. If we are aware of these potential

biases, we may be able to obtain more reliable data and be alert to pitfalls in other

studies.

Selection Bias

Selection bias occurs when the results are distorted because the sample systematically

excludes or underrepresents some elements of the population. For example, an airline

once advertised that 84 percent of the frequent business travelers from New York to

Chicago preferred their airline to another airline [4]. The target population was

frequent business travelers from New York to Chicago. The puzzling thing about this ad

was that, in practice, only 8 percent of the people flying from New York to Chicago flew

on this airline. If 84 percent prefer this airline, why were only 8 percent flying on it?

The answer to this puzzle is that the sample had considerable selection bias in that

it was not randomly drawn from the target population but, instead, was a survey of

passengers on one of this airline’s flights from New York to Chicago. It is not surprising

that frequent business travelers who choose to fly this airline prefer it. It is surprising
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that 16 percent of the passengers prefer another airline. But, we can hardly expect this

airline to advertise “Sixteen percent of the people flying on our planes wish they

weren’t.”

This particular kind of selection bias is known as self-selection bias because people

choose to be in the sample. There is also self-selection bias when people choose to go to

college, marry, have children, or immigrate to another country. In each case, we should

be careful making comparisons to people who made different choices. For example,

college graduates may have higher incomes, in part, because they are more ambitious.

If so, it would be a mistake to attribute their higher income solely to college atten-

dance. For a fair comparison, we would have to do something like the following:

among all those who want to go to college, a random sample is allowed to go.

This was actually done in the early 1960s in Ypsilanti, Michigan, where children from

low socioeconomic households were selected or rejected for an experimental preschool

program based on the outcome of a coin flip. It turned out that those who attended the

preschool program were subsequently more likely to complete high school, less likely to

be arrested, and more likely to have jobs [5]. It may seem heartless to those who lost the

coin flip, but this experiment demonstrated the value of the preschool program.

Survivor Bias

In a prospective study, the researcher selects a sample and then monitors the sample

as time passes. For example, a researcher might select 1000 people and give them

medical checkups every year to identify the causes of health problems. Or, 1000 chil-

dren might be selected and interviewed each year to see whether playing competitive

sports affects their chances of going to college. Or, 1000 companies might be selected

from companies listed on the New York Stock Exchange (NYSE) in 1990 and followed

over the next 20 years to see whether there is a relationship between a company’s

executive compensation program and the performance of its stock.

In a retrospective study, in contrast, a sample is selected and the researcher looks back

at the history of the members of this sample. A researcher might examine the medical

histories of 1000 elderly women to identify the causes of health problems. Or, a

researcher might select 1000 college students and see how many played competitive

sports. Or, a researcher might select 1000 companies from companies listed on the NYSE

in 2010 and look back over the preceding 20 years to see whether there is a relationship

between the company’s executive compensation program and its stock performance.

Retrospective studies often have survivor bias in that, when we choose a sample from

a current population to draw inferences about a past population, we leave out members

of the past population who are not in the current population: We look at only the sur-

vivors. If we examine the medical records of the elderly, we overlook those who did not

live long enough to become elderly. If we look at college students, we exclude people

who did not go to college. If we look at companies on the NYSE in 2010, we exclude

companies that went bankrupt before 2010.
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Does Anger Trigger Heart Attacks?

The New York Times once reported that researchers had found that “People with heart

disease more than double their risk of heart attacks when they become angry, and the

danger lasts for two hours” [6]. This conclusion was based on interviews with 1623

people who had heart attacks. In these interviews, conducted a few days after the attacks,

36 people said they had been angry during the 2 h before the attack and nine people said

they were angry the day before the attack.

It is certainly a common perception that anger can trigger a heart attack; however, it

is also said to be healthier to express anger than to “keep it bottled up inside.” It would

be interesting to know which of these folk myths is closer to the truth. Unfortunately, the

data in this study tell us nothing at all about the relationship between anger and heart

attacks. More people were angry 2 h before the attack than were angry the day before;

however, 97 percent of these heart attack victims did not report being angry at all, either

on the day of the attack or the day before.

In addition, this is a retrospective study that involves two kinds of survivor bias. Those

who died of heart attacks and those who had no heart attacks are both excluded from the

study. To assess the effect of anger on heart attacks, we need two groups (people who

were angry and people who were not) and we need data on both possible outcomes

(having a heart attack and not having a heart attack). To exaggerate the point, suppose

that a complete picture of the data looks like Table 5.2.

In these hypothetical data, 2000 people were angry and 1578 were not angry. As in the

study, 45 of the 1623 people who suffered heart attacks reported being angry. These

hypothetical data show that 97 percent of the people who were angry did not have heart

attacks and 100 percent of those who were not angry had heart attacks. People who were

not angry had a much greater risk of heart attack—exactly the reverse of the conclusion

drawn by the researchers who examined only people who suffered heart attacks. A sci-

entific study would surely not yield data as one-sided as this caricature. It might even

show that angry people are more likely to experience heart attacks. The point is that the

survivor bias in the study does not allow us to determine whether or not anger increases

the risk of a heart attack.

Observational Data versus Experimental Data
In many scientific studies, researchers can collect experimental data in laboratories by

varying some factors (for example, temperature, velocity, or salinity) while holding other

Table 5.2 Anger and Heart Attacks

Heart Attack No Heart Attack Total

Angry 45 1955 2000
Not angry 1578 0 1578
Total 1623 1955 3578
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factors constant and seeing what happens. However, in economics, sociology, and other

behavioral sciences, researchers typically cannot do experiments involving human

subjects (for example, making some people lose their jobs, divorce their spouses, or have

four children) and see how they react. In these cases, researchers have to make do with

observational data, in which they observe people in different circumstances over which

the researcher has no control: people who have lost their jobs, divorced, or had four

children.

Both studies cited in this chapter (immigrant mothers and high-stakes poker players)

use observational data. Researchers who use observational data can learn from labora-

tory scientists about the kinds of data that yield useful, reliable conclusions and

recognize the limitations of data that are gathered in more natural settings.

Conquering Cholera

When it is not practical or ethical to do controlled laboratory experiments, researchers

must use observational data. For example, in the 1800s, London was periodically hit by

terrible cholera epidemics. John Snow, a distinguished doctor, suspected that cholera

might be caused by drinking water contaminated with sewage, but he could not ethically

do a controlled experiment in which some persons were forced to drink contaminated

water. Instead, he used observational data by comparing the cholera mortality rates in an

area of London where the water was supplied by two different companies: Southwark

and Vauxhall (which pumped water from a nearby section of the Thames river that was

contaminated with sewage) and Lambeth (which obtained its water far upstream, from a

section of the Thames that had not been contaminated by London sewage). During the

first 7 weeks of the 1854 cholera epidemic, there were 1263 cholera deaths in 40,046

houses supplied by Southwark and 98 deaths in 26,107 houses supplied by Lambeth [7].

These data provided convincing evidence of a relationship between drinking contami-

nated water and the incidence of cholera.

Confounding Factors

A well-known physics experiment involves attaching an object to a string, letting it swing

back and forth as a pendulum, and recording the time it takes to complete one cycle.

This experiment becomes more meaningful when there is some sort of comparison, for

example, seeing how the cycle time is related to the weight of the object. However, cycle

times are also affected by other factors (such as the length of the string and the angle

from which the object is dropped) that need to be taken into account. When confounding

factors are present, the effects we are interested in are mixed up with the effects of

extraneous factors.

To isolate the effects of the factors of interest, experiments can be done under

controlled conditions, holding constant the confounding factors. If all other relevant

factors are held constant, then the one factor that does vary is evidently causing the

observed differences in outcomes.
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In a properly done pendulum experiment, the objects might have different weights

but be attached to strings of the same length and dropped from the same angle. When all

confounding factors are held constant, the experiment demonstrates the remarkable fact

that the weight of the object has no effect on the cycle time.

When working with observational data, where we cannot control confounding factors,

we can look for data where the confounding factors happen to be constant. If we are

doing a study of the effect of smoking on health and we think gender might be a con-

founding factor, we can do one study of males and a separate study of females. If we are

doing a study of the effect of socioeconomic status on child bearing and we think age

and religious beliefs might be confounding factors, we can look at people of the same age

with similar religious beliefs. In his cholera study, Snow chose an area of London in

which adjacent houses were served by different water companies to reduce the con-

founding effects of socioeconomic factors.

Alternatively, we can use multiple regression (Chapter 10), a remarkable statistical

procedure that estimates what the effects of each factor would be if the other factors

were held constant. In our physics example, the researcher could record the cycle times

for a large number of experiments where weight, string length, and angle all vary, then

use multiple regression to estimate how cycle time would be affected by weight if string

length and angle had been held constant.

The important lesson is that researchers should always think about whether there are

possibly confounding factors, then either hold these factors constant or use a statistical

procedure that takes them into account. Of course, confounding factors are sometimes

overlooked initially and conclusions are sometimes modified when researchers even-

tually take these overlooked factors into account. For example, a 1971 study found that

people who drink lots of coffee get bladder cancermore often than do people who do not

drink coffee [8]. However, a confounding factor was that people who drink lots of coffee

were also more likely to smoke cigarettes. In 1993, a rigorous analysis of 35 studies

concluded that once this confounding factor was taken into account, there was no

evidence that drinking coffee increased the risk of bladder cancer [9].

Exercises
5.1 Identify an appropriate population for each of these samples:

a. A coin is flipped 100 times and lands heads 54 times.

b. A baseball player gets 86 base hits in 300 times at bat.

c. Two thousand people are asked who they intend to vote for in the next presi-

dential election.

5.2 Discover magazine once reported that 90 percent of the passengers who survived

airplane crashes had thought ahead of time about how they would exit the plane

if it crashed. The magazine recommended that all passengers do likewise. Why

do the data they cite not provide persuasive support for their recommendation?

Chapter 5 • Sampling 151



5.3 It has been reported that 30 percent of all couples who adopt a child because of

troubles conceiving a child eventually do conceive a child after the adoption, sug-

gesting that adoption makes conception more likely. Why are the data cited not

adequate for this conclusion?

5.4 A study in one state compared the traffic fatality rates (number of fatalities per

miles driven) on highways with 55, 65, and 75 miles per hour speed limits. They

found that highways with a 75 mph speed limit had the lowest fatality rate and

highways with a 55 mph speed limit had the highest fatality rate. Traffic fatalities

could evidently be reduced by raising speed limits, perhaps because people pay

more attention when they are driving fast. What is the biggest statistical problem

with this study?

5.5 How might a statistician challenge this argument that appeared The New York

Times [10] in January 2014?

Punishment and surveillance by itself causes people to withdraw from political

participation—acts of engagement like voting or political activism. In a large

survey of mostly marginal men in American cities, the probability of voting

declined by 8 percent for those who had been stopped and questioned by the

police; by 16 percent for those who had experienced arrest; by 18 percent for

those with a conviction; by 22 percent for those serving time in jail or prison.

5.6 The Atlantic [11] published a colorful figure displaying the data in Table 5.3, and

concluded that these demonstrate that “The economic value of college, mean-

while, is indisputable.” A blogger agreed: “The statistics are very clear: The more

education you have, the more money you will make and the less likely you will

be to be unemployed.” How might a statistician refute this claim?

5.7 In the 1920s, a vaccine called BCG was tested to see if it could reduce deaths

from tuberculosis [12]. A group of doctors gave the vaccine to children from

some tubercular families and not to others, apparently depending on whether

Table 5.3 Exercise 5.6

Unemployment
Rate in 2011

Median Weekly
Earnings in 2011

Doctoral degree 2.6% $1551
Professional degree 2.4% $1665
Master’s degree 3.6% $1263
Bachelor’s degree 4.9% $1053
Associate’s degree 6.8% $768
Some college, no degree 8.7% $719
High school diploma 9.4% $638
No high school diploma 14.1% $451
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parental consent could be obtained easily. Over the subsequent 6-year period,

3.3% of the unvaccinated children and 0.67% of the vaccinated children died

from tuberculosis. A second study was then conducted in which doctors vacci-

nated only half of the children who had parental consent, using the other half as

a control group. This time 1.42% of the unvaccinated children and 1.52% of the

vaccinated children died from tuberculosis. Provide a logical explanation for

these contradictory findings.

5.8 Shere Hite sent detailed questionnaires (which, according to Hite, took an

average of 4.4 h to fill out) to 100,000 women and received 4500 replies,

98 percent saying that they were unhappy in their relationships with men [13].

A Washington Post-ABC News poll telephoned 1505 men and women and found

that 93 percent of the women considered their relationships with men to be good

or excellent [14]. How would you explain this difference?

5.9 A study of the effects of youth soccer programs on self-esteem found that

children who played competitive soccer had more self-esteem than other

children. Identify the most important statistical bias in this sample and

describe a (hypothetical) controlled experiment that would get rid of this

problem.

5.10 A study found that, among youths between the ages of 8 and 18 who were play-

ing competitive soccer, those who had been playing for several years liked soccer

more than did those who had been playing for only a few years, suggesting that

“the more you play soccer, the more you like it.” Identify the most important sta-

tistical bias in this sample and describe a (hypothetical) controlled experiment

that would get rid of this problem.

5.11 A study looked at a random sample of 100 companies whose stocks were traded

on the NYSE. The companies were divided into quintiles (the 20 largest com-

panies, the 20 next largest, and so on) and the rates of return over the preceding

50 years were calculated for each quintile. This study found that the quintile with

the smallest companies (“small cap” stocks) had done better than the quintile

with the largest companies (“large cap” stocks). Identify the most important

statistical bias in this sample and explain how the study could be redone to get

rid of this problem.

5.12 A study of the 30 largest US companies found that their average growth rate over

the preceding 20 years had been well above the average growth rate for all com-

panies, suggesting that big companies grow faster than the average company.

Identify the most important statistical bias in this sample and explain how the

study could be redone to get rid of this problem.

5.13 A study of geographic mobility looked at how often adult daughters moved

outside the ZIP code in which they were born [15]. The study found that the
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daughters of immigrants to the United States were more likely to move than the

daughters of women born in the United States, suggesting that US women have

less geographic mobility than women in other countries. Identify the most

important statistical bias in this sample.

5.14 The daughters of women who immigrate to the United States have more upward

economic mobility than the daughters of women born in the United States, sug-

gesting that US women have less economic mobility than women in other coun-

tries. Identify the most important statistical bias in this sample.

5.15 Average grades are higher in senior-level college chemistry courses than in intro-

ductory chemistry courses, suggesting that students who get bad grades in an

introductory chemistry course should not give up taking chemistry courses.

Identify the most important statistical bias in this sample and describe a (hypo-

thetical) controlled experiment that would get rid of this problem.

5.16 In 1993, a member of a presidential task force on food assistance stated: “If you

think that blacks as a group are undernourished, look around at the black

athletes on television—they’re a pretty hefty bunch” [16]. Identify the most

important statistical problem with this conclusion.

5.17 The data in Table 5.4 show the fraction of all divorces based on the month in

which the marriage ceremony was performed [17]. For example, 6.4 percent of all

divorces involve couples who were married in January. Do these data show that

persons who marry in June are more likely to get divorced than people who

marry in January?

5.18 A doctor notices that more than half of her teenage patients are male, while more

than half of her elderly patients are female. Does this mean that males are less

healthy than females when young, but healthier when elderly?

5.19 Explain any possible flaws in this conclusion [18]:

A drinker consumes more than twice as much beer if it comes in a pitcher than in

a glass or bottle, and banning pitchers in bars could make a dent in the drunken

Table 5.4 Exercise 5.17

Month Married Fraction of Divorces Month Married Fraction of Divorces

January 0.064 July 0.087
February 0.068 August 0.103
March 0.067 September 0.090
April 0.073 October 0.078
May 0.080 November 0.079
June 0.117 December 0.087
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driving problem, a researcher said yesterday. Scott Geller, a psychology professor

at Virginia Polytechnic Institute and State University in Blacksburg, Va., studied

drinking in three bars near campus. [O]n average, bar patrons drank 35

ounces of beer per person when it came from a pitcher, but only 15 ounces from

a bottle and 12 ounces from a glass.

5.20 Red Lion Hotels ran full-page advertisements claiming “For every 50 business

travelers who try Red Lion, a certain number don’t come back. But 49 of 50 do.”

The basis for this claim was a survey of people staying at Red Lion, 98 percent of

whom said “they would usually stay in a Red Lion Hotel when they travel.” Use a

numerical example to help explain why the survey results do not prove the

advertising claim.

5.21 A medical insurance survey found that more than 90 percent of the plan’s mem-

bers are satisfied. Identify two kinds of survivor bias that may affect these results.

Is the reported satisfaction rate biased upward or downward?

5.22 A survey found that the average employee at the WD Company had worked for

the company for 20 years, suggesting that the average person who takes a job

with WD works for the company for 20 years. Explain why the survey data might

be consistent with a situation in which the average person who takes a job with

WD works for the company for:

a. Fewer than 20 years.

b. More than 20 years.

5.23 A study of students at a very selective liberal arts college found that varsity ath-

letes had, on average, higher grades than nonathletes. The researcher concluded

that the college could increase the grades of nonathletes by requiring them to

participate in sports. What problems do you see with this study?

5.24 A New York Times article argued that one reason many students do not graduate

from college within 6 years of enrolling is that they choose to “not attend the

best college they could have” [19]. For example, many students with a 3.5 high

school grade point average could have gone to the University of Michigan Ann

Arbor, which has an 88% graduation rate, but chose instead to go to Eastern

Michigan, which has only a 39% graduation rate.

a. What flaws do you see in the implication that these students would have a

better chance of graduating if they went to the University of Michigan instead

of Eastern Michigan?

b. What kind of data would we need to draw a valid conclusion?

5.25 A major California newspaper [20] asked its readers the following question: “Do

you think the English-only law should be enforced in California?” Of the 2674

persons who mailed in responses, 94 percent said yes. Why might this newspa-

per’s readers be a biased sample of the opinions of California residents?
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5.26 A doctor told a meeting of the Pediatric Academic Societies that a US govern-

ment survey of 4600 high school students found that both boys and girls were

much more likely to have smoked cigarettes, used alcohol and marijuana, had

sex, and skipped school if they had body piercings [21]. Does his study demon-

strate that we could reduce these activities by making body piercings illegal?

5.27 Explain why these data are not convincing evidence that the way to seize more

illegal drugs is to conduct fewer searches: “In 2000, [the US Customs service]

conducted 61 percent fewer searches than in 1999, but seizures of cocaine, heroin

and ecstasy all increased” [22].

5.28 Reuters Health [23] reported that:

In a study of more than 2100 secondary school students, researchers found that

boys who used computers to do homework, surf the Internet and communicate

with others were more socially and physically active than boys who did not use

computers at all.

On the other hand, boys who used computers to play games tended to exercise less,

engage in fewer recreational activities, and have less social support than their

peers.

The findings, published in the October issue of the Journal of Adolescent Health,

suggest that parents should monitor how their sons use their computers—and

not just how much time they spend in front of the screen.

What statistical problem do you see with this conclusion?

5.29 A study of college seniors found that economics majors had above-average scores

on a test of mathematical ability, suggesting that the study of economics im-

proves mathematical ability. Identify the most important statistical bias in this

sample and describe a (hypothetical) controlled experiment that would get rid of

this problem.

5.30 A study of college graduates found that economics majors had higher average

starting salaries than art history majors, suggesting that the study of economics

increases your chances of getting a good job. Identify the most important statisti-

cal bias in this sample and describe a (hypothetical) controlled experiment that

would get rid of this problem.

5.31 A study found that college students who take more than one course from a pro-

fessor give the professor higher course evaluations than do students who take

only one course from the professor, suggesting that taking multiple courses from

a professor causes students to appreciate the professor more. Identify the most

important statistical bias in this sample and describe a (hypothetical) controlled

experiment that would get rid of this problem.
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5.32 A study found that professors tend to give higher grades to students who take

more than one course from the professor than to students who take only one

course from the professor, suggesting that professors reward students who come

back for more. Identify the most important statistical bias in this sample and

describe a (hypothetical) controlled experiment that would get rid of this

problem.

5.33 A Volvo advertisement said that the average American drives for 50 years and

buys a new car, on average, every 31/4 years—a total of 15.4 cars in 50 years.

Since Volvos last an average of 11 years in Sweden, Volvo owners need to buy

only 4.5 cars in 50 years. Carefully explain why these data are very misleading.

5.34 A study looked at the 50 states in the United States and compared educational

spending per student in each state with the average score on college entrance ex-

amination tests (the SAT and ACT). There is a positive correlation across states in

spending per student and in the percentage of students taking college entrance

examination tests.

a. Explain why high school seniors who take the SAT (or ACT) are not a random

sample of all high school seniors.

b. Do you think that the average test score in a state would tend to increase or

decrease if a larger percentage of the state’s students took college entrance ex-

amination tests?

c. Suppose that your answer to (b) is correct and, also, that educational

spending has no effect at all on test scores. Explain why we would observe

either a positive or negative statistical relationship between spending and

average test scores.

5.35 Studies have shown that people who marry and divorce have, on average, fewer

children than do people who stay married, suggesting that having more children

makes divorce less likely.

a. Explain why there might be sampling bias in this study.

b. Suppose that the chances of getting divorced are not affected by the number

of children you have. Explain how it could still be the case that people who

marry and divorce have, on average, fewer children than do people who stay

married.

c. What would have to be done to have a controlled experiment?

5.36 Studies have shown that students who go to highly selective colleges have, on

average, higher lifetime incomes than do students who go to less selective

colleges.

a. Explain why there might be sampling bias in this study.

b. Suppose that the college you go to has no effect on your lifetime income, but

that highly selective colleges are more attractive because they have much

better dormitories, food, and extracurricular activities. Explain how it could
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still be the case that students who go to highly selective colleges have, on

average, higher lifetime incomes than do students who go to less selective

colleges.

c. What would have to be done for a controlled experiment?

5.37 A 1950s study found that married men were in better health than men of the

same age who never married or were divorced, suggesting that the healthiest

path is for a man to marry and never divorce [24].

a. Explain why there might be sampling bias in this study.

b. Suppose that marriage is generally bad for a man’s health. Explain how it could

still be the case that men who marry and stay married are in better health than

(1) men who never marry and (2) men who marry and then divorce.

c. What would have to be done for a controlled experiment?

5.38 A discrimination case compared the 1976 salaries of Georgia Power Company

black and white employees who had been hired by the company in 1970 to

similar entry-level positions [25].

a. Explain why there is survivor bias in this comparison.

b. Suppose that there are two types of employees, productive and unproductive,

and that Georgia Power hired 100 black employees and 100 white employees

in 1970 at the exact same salary, with half the new hires productive and half

unproductive, regardless of race. Each year, every unproductive employee got

a 2 percent annual raise and every productive employee got a 7 percent

annual raise. Explain how it could still turn out that the average salary of

white employees in 1976 was higher than the average salary of black

employees.

5.39 “The most dangerous place to be is in bed, since more people die in bed than

anywhere else. From now on, I’m sleeping on the floor.” What problems do you

see with this conclusion?

5.40 A study found that the grade point averages (GPAs) of women at all-women col-

leges tend to be higher than the GPAs of women at coeducational colleges, and

concluded that women do better when they attend all-women colleges.

a. Explain why there might be sampling bias in this study.

b. Suppose that every woman’s GPA does not depend on the college she attends.

Explain how it still might be true that women at all-women colleges tend to

have higher GPAs than do women at coeducational colleges.

c. What would have to be done to have a controlled experiment?

5.41 During World War II, 408,000 US American military personnel died while on duty

and 375,000 civilian Americans died because of accidents in the United States.

Should we conclude that fighting a war is only slightly more dangerous than

living in the United States?
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5.42 To obtain a sample of college students, the Educational Testing Service divided

all schools into groups, including large public universities, small private colleges,

and so on. Then they asked the dean at a representative school in each group to

recommend some students to participate in a study [26]. Identify three distinct

reasons why this sample might not be representative of the college student

population.

5.43 Newspaper columnist Ann Landers once asked her readers, “If you had it to do

over again, would you have children?” [27]. Ten thousand people responded, of

which 70 percent said no.

a. Explain why there might be sampling bias in this study.

b. Suppose that 90 percent of all parents would answer yes to this question.

Explain how the Ann Landers survey might get 70 percent no answers.

5.44 A study looked at the annual number of days of restricted activity (for example,

missing work or staying in bed for more than half a day because of injury or

illness) for men with different cigarette-smoking histories [28]:

Never smoked 14.8 days
Currently smoking 22.5 days
Quit smoking 23.5 days

These data suggest that it is best never to smoke, but once you start smoking,

it is better not to stop.

a. Explain why there might be sampling bias in this study.

b. Suppose that smoking is bad for your health. Explain how it could still be the case

that people who quit smoking are in worst health than people who keep smoking.

c. What would have to be done to have a controlled experiment?

5.45 A “study” asked people to identify their favorite game and then calculated the

mortality rate (deaths per 1000 people that year) for each game category [29]. For

example, of those people whose favorite game is bingo, 41.3 of 1000 people died

that year. The mortality rates were 27.2 for bridge, 0.05 for poker, and 0.04 for the

video game Mortal Kombat. The study concluded that:

The numbers reveal an alarming truth: bingo may not be as safe as some people

have assumed. “This is the first evidence we have seen that violent video games

actually reduce the death rate,” says PlayGear CEO Pete Elor. “It comes as a

blow to the head for people who advocate less violent forms of entertainment.”

Lawyer Gerald Hill thinks the church and community need to take action:

“When you look at the numbers, there’s just no way you can get around it.

Bingo is claiming lives right and left.” We can only hope that this study will

cause people to think twice before engaging in such risky behavior.
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a. Explain why there might be sampling bias in this study.

b. Suppose that all four of these games are completely safe in that playing the

game has no effect at all on one’s health. Explain how it could still be the case

that the mortality rate is much higher for bingo players than for Mortal

Kombat players.

c. What would have to be done to have a controlled experiment?

5.46 A television commercial said that 70 percent of the cars made by one automaker

during the past 12 years were still in use. Does this mean that 70 percent of this

company’s cars last 12 years?

5.47 A study found that Harvard freshmen who had not taken SAT preparation cour-

ses scored an average of 63 points higher on the SAT than did Harvard freshmen

who had taken such courses. Harvard’s admissions director said that this study

suggested that SAT preparation courses are ineffective [30].

a. Explain why there might be sampling bias in this study.

b. Suppose that SAT preparation courses increase SAT scores by 25 points.

Explain how it could still be the case that students who do not take such cour-

ses score higher, on average, than students who do take these courses.

c. What would have to be done to have a controlled experiment?

5.48 A survey conducted by American Express and the French Tourist Office found

that most visitors to France do not think that the French are unfriendly [31]. The

sample consisted of “1000 Americans who have visited France more than once

for pleasure over the past two years.”

a. Explain why there might be sampling bias in this study.

b. Suppose that 90 percent of all people who visit France think that the French

are very unfriendly. Explain how it could still be the case that most of the

people in this survey do not think the French are unfriendly.

c. Who should have been surveyed in order to obtain more useful results?

5.49 Some universities with budget problems have offered generous payments to any

tenured professor who agrees to leave the university.

a. How does this plan help the university’s budget?

b. Explain why the professors who accept this offer are not a random sample of

the university’s professors.

c. Explain why this plan could lower the average quality of the university’s

professors.

5.50 Congressmen Gerry Studds (a Massachusetts Democrat) and Daniel Crane (an

Illinois Republican) were both censured by the House of Representatives for

having had sex with teenage pages. A questionnaire in the Cape Cod Times asked

readers whether Studds should “resign immediately,” “serve out his present term,

and not run for reelection,” or “serve out his present term, run for reelection” [32].
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Out of a Sunday circulation of 51,000 people, 2770 returned this

questionnaire:

Resign immediately 1259 (45.5%)
Serve out term, and not run for reelection 211 (7.5%)
Serve out term, run for reelection 1273 (46.0%)
Undecided 27 (1.0%)

a. Explain why there might be sampling bias in this study.

b. If a true random sample had been conducted, which of these four percentages

would you expect to be higher than in this newspaper survey?
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While the individual man is an insolvable puzzle, in the aggregate he becomes a
mathematical certainty. You can, for example, never foretell what any one man will

do, but you can say with precision what an average number will be up to.

Sherlock Holmes

Businesses use data to estimate the reliability of their products and predict demand.

Doctors use data to evaluate a patient’s condition and predict whether a treatment will

be effective. Governments use data to estimate the unemployment rate and predict the

effects of government policies on the economy.

Chapter 5 explains why a random sample is often the best way to collect data. But

how can we gauge its reliability? If the data are randomly selected, then pretty much

anything can happen, right? Surprisingly, the fact that the data come from a random

sample is what allows us to gauge reliability!

If a fair die is rolled once, we can get any number from 1 to 6. But if a fair die is rolled

1000 times, we can be confident that the average number will be close to 3.5. In fact, it
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can be shown that there is a 95 percent chance that the average will turn out to be

between 3.3 and 3.7. We can make this probability calculation because dice rolls are a

random sample. It is the randomness in a random sample that allows us to make

probability statements about the outcomes.

Estimating the Population Mean
The starting point for any estimation procedure is to specify what we are trying to

estimate. Returning to the poker example in Chapter 5, the researchers wanted a

numerical measure of each person’s style of play so that they could see if the players

change their style of play after a big win or loss. One generally accepted measure of a

player’s style is looseness: the percentage of hands in which a player voluntarily puts

money into the pot. At the six-player tables used in this study, people are typically

considered to be very tight players if their looseness is below 20 percent and to be

extremely loose players if their looseness is above 50 percent.

The target population is experienced high-stakes poker players. Different players have

different styles, so we can use a probability distribution for looseness to describe the

fraction of the players in the population whose looseness is between 0 and 10, 10 and 20,

and so on. If, say, 15 percent of the players have a looseness that is between 10 and 20,

then there is a 0.15 probability that a randomly selected player from this population will

have a looseness in this range.

The mean of this probability distribution, m, is a parameter because it is a given

characteristic of the population. It does not change with the sample. It is the sample that

varies based on the players who are analyzed. The sample used in this study consisted

of 203 players. They played an average of 1972 hands during a 4-month period. Half of

the players won or lost more than $36,000; 10 percent won or lost more than $355,000.

We assume that these players are effectively a random sample from the population of all

the people who play lots of high-stakes Texas hold ’em games on the Internet.

Looseness statistics were calculated for each of these 203 players and the sample

mean worked out to be 25.53. This is a reasonable number since professional poker

players have a reputation for relatively tight play.

But, remember, a sample mean is not necessarily equal to the population mean. This

sample mean came from one sample of 203 players. If we were to take another sample,

we would almost certainly get a somewhat different mean—maybe a little higher, maybe

a little lower, but almost certainly not the same. So, how seriously can we take the results

of one particular sample? It turns out that we can actually use the sample itself to

estimate how much confidence we have in our sample mean.

Sampling Error
The difference between the sample mean and the population mean is called sampling

error. Sampling error is not due to mistakes made by the researcher, such as recording
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data incorrectly. Sampling error is the inevitable variation from sample to sample caused

by the luck of the draw in choosing a random sample. Sampling error is positive in some

samples and negative in other samples. If many samples are taken, the average sampling

error will be close to 0 and the average value of the sample mean will be close to the

population mean.

In contrast, if there is a systematic error, the average value of the sample mean will

not equal the population mean. In our poker example, a software program was written to

calculate the looseness coefficient (the percentage of hands in which the player makes a

voluntary bet). Suppose that there is a programming error and the blind bets (which are

involuntary) are counted as voluntary bets. Each player’s calculated looseness coefficient

will be too high and so is the average value of the sample mean. This is a systematic error

that can be detected and corrected. We can fix the programming error. Sampling error, in

contrast, cannot be corrected, because no one made a mistake.

The important point about sampling error is to be aware of it. When we take a

random sample and calculate the sample mean, we recognize that this sample is one of

many samples that might have been selected, and this sample mean is one of many

sample means that might have been obtained.

We can never know whether a sample mean is above or below the population mean,

because we do not know the population mean. However, we can estimate the probability

that a sample mean will be close to the population mean. For example, we might be able

to say that there is 0.95 probability that a sample mean will be within 7 percentage points

of the population mean.

Here is how we do it. We can think of the looseness coefficient as a random variable X,

not because the players play randomly, but becausewe randomly choose a player to study.

There is a probability distribution for X for our population of players. Suppose that this

probability distribution is as depicted in Figure 6.1. We do not know the probability dis-

tribution, but we pretend that we do so that we can see why our procedure makes sense.
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FIGURE 6.1 The population distribution of the
looseness coefficient X.
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The probability distribution in Figure 6.1 shows, when we select a player randomly,

the probability that the player’s looseness coefficient is in a specified interval. For this

particular distribution, there is a 30 percent chance that we will select a person with a

looseness coefficient X that is less than 20, a 65 percent chance that X will be between 20

and 40, and a 5 percent chance that X will be larger than 40. The probability distribution

is skewed right. The average value of the looseness coefficient is m ¼ 25, but the peak of

the density function is at 20 and the median is 23.4. The standard deviation of s ¼ 10.

The Sampling Distribution of the Sample Mean
Figure 6.1 applies when just one person is selected. What can we say about the sample

mean when, say, 10 people are selected? We do not know what the sample mean will

turn out to be, but we do know that some values of the sample mean are more likely

than others.

Look again at Figure 6.1. If we choose 10 people randomly from this distribution, it is

very unlikely that the sample mean will be below 10 or above 50. It could happen, but it

would take an extremely improbable run of luck to choose 10 people so far above or

below the population mean. It is much more likely that some people will be above the

population mean and some below and that these observations offset each other, giving

us a sample mean that is not far from the population mean.

There is, in fact, a probability distribution for the sample mean, just as there is a

probability distribution for individual players. The probability distribution for the

sample mean is called the sampling distribution for the sample mean. It tells us the

probability that the sample mean will turn out to be in a specified interval, for example,

the probability that the sample mean will be between 25 and 30.

The Shape of the Distribution

What can we say about the shape and location of the sampling distribution? First, for

reasonably sized samples, the shape of the sampling distribution is approximately

normal. Here is why. Each observation in a random sample is an independent draw from

the same population. The sample mean is the sum of these n outcomes, divided by n.

Except for the unimportant division by n, these are the same assumptions used in the

central limit theorem. Therefore, the sampling distribution for the mean of a random

sample from any population approaches a normal distribution as n increases.

The central limit theorem explains why histograms for many different measurements,

such as human heights, are often bell shaped. Even more importantly, the central limit

theorem tells us that the sampling distribution for the mean of a reasonably sized

random sample is bell shaped. This is very important because it means that we do not

need to make any assumptions about the probability distribution for the population

from which the random sample is taken. Here, the distribution of individual looseness

coefficients could be normal, skewed, rectangular, or U shaped. It does not matter. The

sampling distribution for the sample mean is still normal.
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The only caution is that the sample should be large enough for the central limit

theorem to work its magic. If the underlying population is itself approximately normal, a

sample of 10 observations is large enough. If the underlying distribution is not normal

but roughly symmetrical, a sample of size 20 or 30 is generally sufficient. If the underlying

distribution is very asymmetrical, then 50, 100, or more observations may be needed.

Figure 6.2 shows a population distribution for a random variable X that is very

asymmetrical, with a large chance of values close to 0, and smaller and smaller proba-

bilities for large values of X. This figure also shows the sampling distribution for the
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sample mean for samples of size 2 and 30. Even though the probability that a single value

will be close to 0 is very large, the average of two values is unlikely to be close to 0. As the

sample size increases to 30, there is virtually no chance that the average value will be

close to 0. Not only that, for a sample of size 30, the damping effects of averaging many

draws gives the sampling distribution a symmetrical bell shape.

This example shows the important distinction between the probability distribution for

a random variable X and the sampling distribution for the sample mean X . The proba-

bility distribution for a single value of X shows which individual values of X are likely and

unlikely. This distribution can have a wide variety of shapes. The sampling distribution

for the sample mean shows which sample means are likely and unlikely. For reasonably

sized samples, it has only one possible shape—the bell-shaped normal distribution.

Unbiased Estimators

Suppose that we were to calculate the sample means for a very large number of random

samples from a probability distribution. What do you suppose will be the average value

of these sample means? The average of, say, a one million means of samples of size 25 is

equal to the average of all 25 million observations. The average of 25 million observa-

tions will almost certainly be very, very close to the population mean m. If we took one

billion samples, we could be even more certain. The probability distribution for the

sample mean assumes that we take an infinite number of samples, and, no surprise, the

mean of this sampling distribution is equal to the population mean m. In Figure 6.2,

the mean of the sampling distribution of X is equal to 1, which is the mean of the

probability distribution of X.

A sample statistic is an unbiased estimator of a population parameter if the mean of

the statistic’s sampling distribution is equal to the value of the population parameter. In

our example, the sample mean is an unbiased estimator of m, since the mean of the

sampling distribution of X is m.

Other things being equal, it is better to use an unbiased estimator than one that gives

estimates that are systematically too high or too low. A statistician who uses unbiased

estimators can anticipate sampling errors that, over a lifetime, average close to 0. Of

course, average performance is not the only thing that matters. A humorous statistician

might say, “Half of my estimates were much too high and half were far too low; on

average, my estimates were great.” A serious statistician thinks about how good the

estimates are on average and also thinks about how accurate they are in individual cases.

Sampling Variance

The standard deviation of the sampling distribution of X gauges whether the value of the

estimator is likely to vary greatly from sample to sample. An estimator that is very likely

to be either much too high or far too low has a large standard deviation. In contrast, an

estimator that is unbiased and has a small standard deviation is very likely to yield

estimates that are consistently close to the population mean.
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It can be shown mathematically that the standard deviation of the sample mean is

equal to s (the standard deviation of X) divided by the square root of the sample size, n:

standard deviation of X ¼ sffiffiffi
n

p (6.1)

The standard deviation of X declines as the sample size n increases. This makes sense.

There is much less uncertainty about what the sample mean will turn out to be if the

sample size is 100 instead of 10. At the limit, if the sample size were infinitely large, there

would be no uncertainty at all about the value of the sample mean. It would equal m, the

population mean.

Putting It All Together

We can summarize the sampling distribution of the sample mean as follows:

XwN

�
m;

sffiffiffi
n

p
�

(6.2)

The sample mean has a sampling distribution that is (approximately) normal with a

mean equal to the population mean for X and a standard deviation equal to a standard

deviation of X divided by the square root of the sample size.

We can apply Eqn (6.2) to our poker example. The probability distribution for X in

Figure 6.1 has a mean of 25 and a standard deviation of 10:

mean of X : m ¼ 25

standard deviation of X: s ¼ 10

If we are going to select a random sample of 10 players, the probability distribution

for the sample mean X is (approximately) normal with a mean of 25 and a standard

deviation of 3.16:

mean of X : m ¼ 25

standard deviation of X:
sffiffiffi
n

p ¼ 10ffiffiffiffiffiffi
10

p ¼ 3:16

Figure 6.3 shows this probability distribution. It is an approximately bell-shaped

normal curve, centered at the population mean m ¼ 25.

In accordwith the two standard deviations rule of thumb for normal distributions, there

is a 0.95 probability that the value of the sample mean will turn out to be within (approx-

imately) two standarddeviations of itsmean. The exact number is 1.96 standard deviations;

so, there is a 0.95 probability that the sample mean will happen to be in this interval:

m� 1:96
sffiffiffi
n

p to mþ 1:96
sffiffiffi
n

p

In our example, plugging in the values of m, s, and n, there is a 0.95 probability that

the sample mean will be in the interval:

25� 6:19 to 25þ 6:19

Figure 6.4 shows this interval.
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If we use a larger sample, we can be even more confident that the sample mean will

be close to m. Figure 6.5 shows how the sampling distribution for the sample mean

narrows as the size of the sample increases. If we base our estimate of the population

mean on a sample of 10 poker players, there is a 0.95 probability that our estimate will be

within 6.19 of m. With a random sample of 40 players, there is a 0.95 probability that the

sample mean will be within 3.10 of m.

Confidence Intervals

If the sample mean is within 1.96 standard deviations of the population mean, then

the sample mean plus or minus 1.96 standard deviations includes the value of the
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FIGURE 6.3 The population distribution of X, for samples of size 10.
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FIGURE 6.4 There is a 0.95 probability that the sample mean X will be within 6.19 of the population mean m ¼ 25.
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population mean. Therefore, there is a 0.95 probability that the sample mean, plus or

minus 1.96 standard deviations, will include m:

X � 1:96
sffiffiffi
n

p to X þ 1:96
sffiffiffi
n

p

This is called a confidence interval and the 0.95 probability is the interval’s confidence

level. The shorthand formula for a 95 percent confidence interval for the population

mean is:

95% confidence interval for m: X � 1:96
sffiffiffi
n

p (6.3)

Remember that the sample mean varies from sample to sample, but the population

mean is fixed. A 95 percent confidence interval is interpreted as follows: “There is a 0.95

probability that the sample mean will be sufficiently close to m that my confidence

interval includes m.” A clever analogy is to a game of horseshoes. The population mean is

the target stake and the confidence interval is a horseshoe thrown at the stake. There is a

0.95 probability that we will throw a ringer, not a 0.95 probability that the stake will jump

in front of our horseshoe.

The t Distribution
Equation (6.1) shows that the standard deviation of the sample mean depends on s, the

standard deviation of X. So far, we have assumed that we know the value of s. In practice,

we seldom know the value of s, but we can estimate it from our random sample, since

the standard deviation of the observed values of X is a reasonable estimate of the

standard deviation of the probability distribution for X.
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FIGURE 6.5 The distribution of X for different sample sizes n.
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The formula for the sample variance s2 is given in Eqn (3.2) in Chapter 3 and repeated

here:

s2 ¼ ðx1 � xÞ2 þ ðx2 � xÞ2 þ.þ ðxn � xÞ2
n� 1

(6.4)

The standard deviation s is the square root of the variance.

When we calculate a confidence interval using Eqn (6.3), we can replace the popu-

lation standard deviation s (which is unknown) with the sample standard deviation s.

However, we need to adjust our confidence interval because the sample standard

deviation is a random variable that depends on the sample that happens to be selected.

Sometimes, the confidence interval will miss m, not because the sample mean is off target

but because our estimate of the standard deviation is too low and our confidence interval

is too narrow. To compensate for the fact that our estimate of the standard deviation

sometimes might be too low, we need to widen our confidence interval.

In 1908, W. S. Gosset figured out the correct width for confidence intervals when the

population distribution of X is normal [1]. Gosset was a statistician who worked for the

Irish brewery Guinness to improve its barley cultivation and brewing. Because of an

earlier incident in which confidential trade secrets had been revealed, Guinness did not

allow its employees to publish papers. Gosset got around this restriction by publishing

his work using the pseudonym Student and the probability distribution he derived

became known as Student’s t distribution.

When a random sample is taken from a normal distribution and the sample mean is

standardized by subtracting the mean m and dividing by the standard deviation of the

sample mean, the resulting Z statistic,

Z ¼ X � m

s
� ffiffiffi

n
p

has a normal distribution with a mean of 0 and a standard deviation of 1.

Gosset figured out the sampling distribution of the variable that is created when the

unknown standard deviation s is replaced by sample standard deviation S:

t ¼ X � m

S
� ffiffiffi

n
p (6.5)

The exact distribution of t depends on the sample size, because the larger the sample,

the more confident we are that the sample standard deviation is a good estimate of the

population standard deviation. Figure 6.6 compares the t distribution for a sample of size

10 with the normal distribution. The t distribution has a somewhat smaller probability of

being close to 0 and a somewhat larger probability of being in the tails.

With smaller samples, the t distribution is more dispersed. With very large samples,

the t distribution is indistinguishable from the normal distribution. The probabilities for

various t distributions are shown in Table A.2 in the Appendix. Instead of identifying

each t distribution by the size of the sample, these are identified by the number of

degrees of freedom, which equals the number of observations minus the number of
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parameters that must be estimated beforehand.1 Here, we calculated the standard de-

viation using n observations and one estimated parameter (the sample mean); therefore,

there are n � 1 degrees of freedom. In Figure 6.6, there are 10 � 1 ¼ 9 degrees of

freedom.

Confidence Intervals Using the t Distribution
The interpretation of a confidence interval is not affected by our use of an estimated

standard deviation. There is a slight adjustment in the actual calculation, in that we

replace the unknown value of s with its estimate S, and we replace the Z value with a

somewhat larger t value.

Statisticians call the estimated standard deviation of the sample mean the standard

error:

true standard deviation of X ¼ sffiffiffi
n

p

standard error of X ¼ Sffiffiffi
n

p

In comparison with Eqn (6.3), our confidence interval now uses the estimate S in

place of s and a t value t* that depends on the sample size:

95% confidence interval for m: X � t�
Sffiffiffi
n

p (6.6)
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FIGURE 6.6 The normal distribution and t
distribution with nine degrees of freedom.

1Another way to think about degrees of freedom is more closely related to the name itself. We calculate

s from n deviations about the sample mean. We know from Chapter 3 that the sum of the deviations about

the sample mean is always 0. Therefore, if we know the values of n � 1 of these deviations, we know the

value of the last deviation, too. Only n � 1 deviations are freely determined by the sample.
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In our poker example, here are the relevant statistics:

Sample size 203
Sample mean 25.5258
Sample standard deviation 8.5306
t value with 203 � 1 ¼ 202
degrees of freedom

1.9716

Using Eqn (6.6), a 95 percent confidence interval is:

x � t�
sffiffiffi
n

p ¼ 25:5258� 1:9718

�
8:5306ffiffiffiffiffiffiffiffi

203
p

�
¼ 25:53� 1:18

The calculations use four decimals places, but we round off the final answer to two

decimal places.

It is spurious precision to report a large number of decimal places, far beyond the

precision of the data; for example, to report that the average income in a state is

$40,326.88523612. A rounded-off value of $40,327 is more realistic. Spurious precision is

especially problematic when making predictions. Remember Abraham Lincoln’s pre-

diction that the US population in 1930 would be 251,669,914? The exact population at

any point in time is never known with certainty and it is surely unreasonable to think

that anyone can predict the exact population 70 years into the future.

Are you surprised by how narrow the 95 percent confidence interval is? From a study

of 203 players, our estimate of the average looseness of the population is 25.53 � 1.18.

We are confident that the experienced high-stakes poker players in the population that

yielded our sample have, on average, a tight playing style.

It is also interesting that the 1.9718 t value is so close to the 1.96 value that we would

use if we knew the standard deviation. Table 6.1 shows that, for a wide range of

reasonably sized samples, the t value is pretty close to 1.96. Nonetheless, Gosset’s t

distribution is enormously valuable because it gives us a credible way to calculate

Table 6.1 How the Sample Size Affects
the t-Value

Sample Size n
Degrees of
Freedom nL 1 t-Value t*

2 1 12.71
10 9 2.66
20 19 2.09
30 29 2.05
50 49 2.01
100 99 1.98
Infinite Infinite 1.96
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confidence intervals. Before the t distribution was derived, statisticians simply used 1.96

and made the awkward assumption that the standard deviation is known with certainty.

Gosset derived the t distribution by assuming that the sample data are taken from a

normal distribution. Subsequent research has shown that, because of the power of the

central limit theorem, confidence intervals based on the t distribution are remarkably

accurate, even if the underlying data are not normally distributed, as long as we have at

least 15 observations from a roughly symmetrical distribution or at least 30 observations

from a clearly asymmetrical distribution. Researchers armed with the t distribution

can proceed confidently even when they do not know the probability distribution of X.

Do Not Forget the Square Root of the Sample Size

An easy mistake is to forget to divide s by the square root of n when calculating the

standard error, because we already divided by n � 1 when s was calculated. Remember

that s is the standard deviation of the individual observations. Our confidence interval

depends on the standard error of the sample mean, which we calculate by dividing s by

the square root of the sample size.

Researchers at a pharmaceutical company once tested a new enzyme that they hoped

would increase the yield from a manufacturing process. The data were calculated as the

ratio of the yield with the new enzyme to the yield with the old process. An observed

value of 110.2 meant that the yield was 10.2 percent higher with the enzyme than with

the old process. If the enzyme had no effect on the yield, the measured yields would

average about 100.

As it turned out, a sample of 41 observations found an average yield of 125.2 with a

standard deviation of 20.1. A member of the company’s research department was

unimpressed:

[I]n the 41 batches studied, the standard deviation was 20.1. In my opinion, 20

points represents a large fraction of the difference between 125 and 100. There is

no real evidence that the enzyme increases yield [2].

This researcher forgot to divide the standard deviation by the square root of the sample

size. If the standard deviation of the individual observations X is 20.1, then the standard

error of the sample mean is only 3.14:

standard error of X ¼ sffiffiffi
n

p

¼ 20:1ffiffiffiffiffiffi
41

p

¼ 3:14

A 95 percent confidence interval for m is far from 100:

x � t�
sffiffiffi
n

p ¼ 125:2� 2:021

�
20:1ffiffiffiffiffiffi
41

p
�

¼ 125:2� 6:3
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Choosing a Confidence Level

Ninety-five percent confidence levels are standard, but there is no compelling reason

why we cannot use others. If we want to be more confident—for example, 99 percent

certain—that our interval will contain m, then we use a wider interval. If we are satisfied

with a 50 percent chance of encompassing m, a narrower interval will do.

To illustrate, go back to our poker example. Table 6.2 shows 50 percent, 95 percent,

and 99 percent confidence intervals. A 50 percent confidence interval is relatively narrow

because we require only a 50 percent chance that it will include the population mean. If

we want to be 95 or 99 percent confident that our interval will encompass the population

mean, we make the interval progressively wider.

Choosing a Sample Size

We used a random sample of 203 high-stakes Internet poker players to determine this 95

percent confidence interval for the average looseness coefficient in the population:

x � t�
sffiffiffi
n

p ¼ 25:5258� 1:9718

�
8:5306ffiffiffiffiffiffiffiffi

203
p

�
¼ 25:53� 1:18

How could we obtain a more precise estimate, that is, one with a smaller margin for

sampling error? The sample standard deviation s is what it is; there is no way of knowing

whether a different sample would yield a larger or smaller value. The t value t* depends

on the sample size, but Table 6.1 shows that it changes little once we get past 20 or 30

observations. The only factor that is important and that we can control is the sample

size. Because a confidence interval involves the square root of the sample size, Table 6.3

shows that a quadrupling of the sample size halves the width of a confidence interval.2

(The effect is slightly larger for smaller samples, since the t value decreases a bit.)

We can use trial calculations like those shown in Table 6.3 to decide in advance how

large a random sample we want. If we are happy with �1.70, then 100 observations are

sufficient; if we want �0.42, then 1600 observations are needed. The benefit of a larger

sample is a more precise estimate; the cost is the expense involved in obtaining a larger

sample.

Table 6.2 A Comparison of 50, 95, and 99
Percent Confidence Intervals

Confidence
Level t-Value

Confidence
Interval

50 0.6757 25.53 � 0.40
95 1.9718 25.53 � 1.18
99 2.6004 25.53 � 1.56

2The sample standard deviation is held constant in Table 6.3 so that we can focus on the sample size.
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Sampling from Finite Populations

One interesting characteristic of a confidence interval is that it does not depend on the

size of the population. Many people think that a sample of size 200 is less credible if it is

from a population of one billion than from a population of one million. After all, 200 out

of a billion is only one out of every five million. How can we obtain a reliable estimate

if we look at such a small fraction of the population?

The solution to this puzzle is that the variation in sample means from one sample to

the next depends on how much variation there is among the data, not the size of the

population. In fact, the formula for a confidence interval implicitly assumes that the

population is infinitely large, so that the probability distribution for X does not change as

the random sample is selected.

The sample has to be fairly large relative to the population (say, more than 10

percent) for sampling to affect the probability distribution significantly. Furthermore, if

the random sample does include a significant fraction of the population, our estimates

are more reliable than implied by Eqn (6.6), because there is then less chance of

obtaining an unlucky sample of observations that are consistently above or below the

population mean. By assuming an infinite population, the confidence interval in

Eqn (6.6) actually understates the reliability of our estimates.

Exercises
6.1 Identify each of the following errors in a public opinion survey as either sampling

error or systematic error:

a. The survey misses many people who work during the day.

b. The survey interviews only randomly selected people.

c. The survey is conducted at McDonald’s.

d. The survey is conducted in a large apartment building.

6.2 Identify each of the following errors as either sampling error or systematic error:

a. A study of income misses people whose income is not reported to the

government.

b. People tend to overreport their income in surveys.

Table 6.3 Quadrupling the Sample Halves the
Width of a Confidence Interval, Using s ¼ 8.53

Sample Size Confidence Interval

25 25.53 � 3.52
100 25.53 � 1.70
400 25.53 � 0.84
1600 25.53 � 0.42
3200 25.53 � 0.21

Chapter 6 • Estimation 177



c. A study of after-tax income looks at take-home pay without considering tax

refunds.

d. A random sample might not select the person with the highest income.

6.3 Explain why the following procedure is likely to produce either biased or unbi-

ased estimates of the amount of money people spend at restaurants each year.

A random number between 1 and 7 is selected; this turns out to be 6. The survey

then begins on January 6 and is conducted every 7 days for a full year: January 6,

January 13, January 20, and so on.

6.4 There were 562,157 live births in California in 2006; information about each of

these births was arranged in alphabetical order using the mother’s name. State

whether each of the following sampling procedures is likely to produced biased

estimates of the average age of these mothers.

a. A random number generator was used to select 100 numbers between 1 and

562,157.

b. A random number generator was used to select 200 numbers between 1 and

562,157; every other number was then discarded, leaving 100 numbers.

c. A random number generator was used to select 200 numbers between 1 and

562,157; among the 200 mothers selected, the 50 youngest mothers and the 50

oldest mothers were discarded.

6.5 There were 233,467 deaths in California in 2007; the names of these decedents

were arranged in alphabetical order. A random number generator was used to

select 100 numbers between 1 and 233,467. State whether each of the following

sampling procedures is likely to produced biased estimates of the average age at

which these people died.

a. The research assistant wrote down only the first 50 random numbers.

b. The research assistant put the random numbers in numerical order; for

example, the numbers 7, 3, 9 were changed to 3, 7, 9.

c. The research assistant put the ages of the 100 randomly selected people in

numerical order; for example, the people with ages 85, 72, 91 were put in this

order: 72, 85, 91.

6.6 Two random samples will be used to estimate the average age of a woman giving

birth in the United States in 2010. One sample has 100 observations and the

other has 200.

a. Which sampling distribution has the higher mean?

b. Which sampling distribution has the higher standard deviation?

6.7 Do you think that the probability distribution of household income in the United

States is skewed left, skewed right, or symmetrical? If a random sample of 100

households is taken, do you think that the sampling distribution of the sample

mean is skewed left, skewed right, or symmetrical?
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6.8 A statistics class with 500 students obtained a database of the annual salaries of

every government employee in the state of California. Each student took a

random sample of 50 employees and calculated the average salary of these 50

people. Do you think that a histogram of these 500 average salaries is likely to be

skewed left, skewed right, or symmetrical?

6.9 Which of these histograms do you think will look more like a normal distribu-

tion? Explain your reasoning.

a. One six-sided die is rolled one billion times and these one billion numbers are

used to make a histogram.

b. Five six-sided dice are rolled and the average number is calculated. This

experiment is repeated one million times and these one million averages are

used to make a histogram.

6.10 Which of these experiments do you think has the higher average? Explain your

reasoning.

a. One coin is flipped one billion times and the average number of heads is

calculated (total number of heads divided by one billion).

b. Ten coins are flipped and the average number of heads is calculated (total

number of heads divided by 10). This experiment is repeated one billion times

and the average of the averages is calculated.

6.11 Each of the following three experiments will be repeated one million times and

the standard deviation of the one million results will be calculated. Which of

these experiments do you think will have the largest variance? The smallest

variance? Explain your reasoning.

a. A six-sided die is rolled and the outcome is recorded.

b. Ten six-sided dice are rolled and the sum of the 10 numbers is recorded.

c. Ten six-sided dice are rolled and the average (the sum of the numbers, divided

by 10) is recorded.

6.12 Suppose that the damage award favored by individual potential jurors in a

particular personal injury case can be described by a normal distribution with a

mean of $5,000,000 and a standard deviation of $2,000,000. (This probability

distribution is across randomly selected jurors.) Assume that a jury is a random

sample from this distribution and that the jury’s damage award is the average

of the awards favored by the individual jurors. Carefully explain the differences

in the awards that can be anticipated with a 6-person jury versus a 12-person

jury.

6.13 One grade of Washington navel oranges has a weight that is normally distributed

with a mean of 12 ounces and a standard deviation of 2 ounces.

a. What is the probability that a randomly selected orange will weigh less than

10 ounces?
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b. What is the probability that a bag containing 25 randomly selected oranges

will have a net weight of less than 250 ounces?

6.14 The average life of a Rolling Rock tire is normally distributed with a mean of

40,000 miles and a standard deviation of 5000 miles. Think about the four

probabilities that follow. You do not have to calculate these probabilities. Instead,

simply rank these four probabilities from largest to smallest; for example, if you

think that (a) has the highest probability, (b) the next highest, (c) the next

highest, and (d) the smallest probability, your answer would be a, b, c, d.

a. A tire will last more than 40,000 miles.

b. A tire will last more than 50,000 miles.

c. The average life of a random sample of four tires will be more than 40,000

miles.

d. The average life of a random sample of four tires will be more than 50,000 miles.

6.15 An investor believes that the returns on each of two investments over the next

year can be described by a normal distribution with a mean of 10 percent and a

standard deviation of 20 percent. This investor also believes that the returns on

these two investments are independent. Investment Strategy A is to invest

$100,000 in one of these investments, selected at random; Strategy B is to invest

$50,000 in each investment. Explain your reasoning when you answer each of the

following questions:

a. Which strategy has a larger probability of a return greater than 10 percent?

b. Which strategy has a larger probability of a return greater than 20 percent?

c. Which strategy has a larger probability of a negative return?

6.16 An economics professor told his students that, instead of spending hundreds of

dollars for a very accurate watch, they should wear 20 cheap watches and calcu-

late the average time shown on these 20 watches. Suppose that the reported time

on each cheap watch is normally distributed with a mean equal to the actual

time and a standard deviation of 10 seconds and the errors in the reported times

on all the cheap watches are independent of each other. What are the mean and

standard deviation of the average time on these 20 watches?

6.17 In a lawsuit concerning the discharge of industrial wastes into Lake Superior, the

judge observed that a court-appointed witness had found the fiber concentration

to be “0.0626 fibers per cc, with a 95 percent confidence interval of from 0.0350

to 0.900 fibers per cc” [3]. Explain the apparent statistical or typographical error

in this statement.

6.18 An outside consultant for a small suburban private school with a reputation for

academic excellence analyzed the test scores in Table 6.4 for 13 students (of the

20 students initially admitted) who stayed at the school from first grade through

eighth grade. The scores are percentiles relative to students at suburban public
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schools. For example, on the first-grade reading comprehension test, Student A’s

score was higher than the scores of 79 percent of the students at suburban public

schools. Calculate the difference X between the eighth-grade and first-grade

reading comprehension scores for these 13 students. Assuming these are a random

sample from a hypothetical population of students attending this school over the

years, calculate a 95 percent confidence interval for a population mean of X.

6.19 Redo Exercise 6.18, this time using the mathematics scores.

6.20 Let us now think of the database of 203 high-stakes poker players as a popula-

tion, from which a random sample of nine players is selected with these

looseness coefficients:

25.75 15.14 22.88 31.62 26.56 17.71 47.89 23.52 23.32

Calculate a 95 percent confidence interval for the population mean. Does

your confidence interval include the actual value of the population mean,

m ¼ 25.53?

6.21 Continuing the preceding exercise, a random sample of 16 players is selected.

Does a 95 percent confidence interval using these 16 observations include the

actual value of the population mean, m ¼ 25.53?

20.60 51.13 27.89 18.39 28.42 21.44 20.59 22.24
28.38 21.61 24.51 17.64 24.42 21.26 21.73 28.36

Table 6.4 Exercise 6.18

Student

Reading Comprehension Mathematics

First Grade Eighth Grade First Grade Eighth Grade

A 79 33 81 57
B 91 38 93 51
C 98 92 97 98
D 99 75 99 74
E 94 4 96 34
F 98 75 96 91
G 99 68 98 95
H 97 33 93 78
I 99 68 98 90
J 99 99 96 67
K 99 9 97 53
L 97 86 97 67
M 91 86 96 83
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6.22 Data were obtained for 16,405 women who immigrated to the United States

and their adult daughters at matching times of their lives [4]. The median

income in the mothers’ and daughters’ ZIP codes was used to measure

economic status. Consider this database to be a population, from which a

random sample of 25 mothers was selected with the ZIP-code incomes shown

below. Calculate a 95 percent confidence interval for the population mean.

Does your confidence interval include the actual value of the population mean,

m ¼ 37,408?

32,644 39,225 33,445 45,267 36,769 26,505 29,872 24,207 28,651
33,656 26,505 22,091 47,806 30,174 41,621 46,342 23,498 39,906
49,686 39,747 22,151 36,566 39,225 46,468 53,881

6.23 The following data are the ZIP-code incomes of the daughters of the random

sample of 25 mothers in the preceding exercise. Calculate a 95 percent confi-

dence interval for the population mean. Does your confidence interval include

the actual value of the population mean, m ¼ 40,064?

40,018 32,496 25,860 55,123 36,769 26,505 50,543 61,800 30,375
33,656 25,593 20,275 35,846 46,012 39,225 46,175 23,538 23,841
46,892 39,747 38,010 56,416 64,947 40,057 20,034

6.24 Using the data in Exercises 6.22 and 6.23, the following data are the differences

between each daughter’s ZIP-code income and her mother’s ZIP-code income.

Calculate a 95 percent confidence interval for the population mean of these dif-

ferences. Does your confidence interval include zero?

7374 �6729 �7585 9856 0 0 20,671 37,593 1724
0 �912 �1816 �11,960 15,838 �2396 �167 40 �16,065
�2794 0 15,859 19,850 25,722 �6411 �33,847

6.25 A histogram of ZIP-code income is skewed right. Why do you suppose this is? If

ZIP-code income is skewed right, can it also be normally distributed? If ZIP-code

income is not normally distributed, is this an important problem for the calcula-

tions made in Exercises 6.22 and 6.23?

6.26 Does the width of a confidence interval depend on the size of the sample, the

size of the population, or the ratio of the sample size to the population size?

Explain your reasoning to a non-statistician.

6.27 The first American to win the Nobel Prize in physics was Albert Michelson

(1852–1931), who was given the award in 1907 for developing and using optical
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precision instruments. Between October 12, 1882, and November 14, 1882, he

made 23 measurements [5] of the speed of light (in kilometers per second):

299,883 299,796 299,611 299,781 299,774 299,696
299,748 299,809 299,816 299,682 299,599 299,578
299,820 299,573 299,797 299,723 299,778 299,711
300,051 299,796 299,772 299,748 299,851

Assuming that these measurements are a random sample, does a 99 percent

confidence interval include the value 299,710.50 that is now accepted as the

speed of light?

6.28 The population of Spain is approximately four times the population of Portugal.

Suppose that a random sample is taken of 1500 Spaniards and 1500 Portuguese.

Explain why you believe that the standard error of the sample mean is: (a) four

times larger for the Spanish poll; (b) four times larger for the Portuguese poll;

(c) twice as large for the Spanish poll; (d) twice as large for the Portuguese poll;

or (e) the same for both polls.

6.29 Exercise 3.43 shows the percentage errors when 24 college students were asked

to estimate how long it took them to read an article. Use these data to estimate a

95 percent confidence interval for the population mean.

6.30 In 1868, a German physician, Carl Wunderlich, reported his analysis of over one

million temperature readings from 25,000 patients [6]. He concluded that 98.6�

Fahrenheit (which is 37.0� Celsius) is the average temperature of healthy adults.

Wunderlich used the armpit for measuring body temperatures and the thermom-

eters he used required 15–20 min to give a stable reading. In 1992, three

researchers at the University of Maryland School of Medicine reported the

results of 700 readings of 148 healthy persons using modern thermometers [7].

A random sample of their data follows. Use these data to calculate a 95 percent

confidence interval for the population mean. Is 98.6� in this interval?

98.2 98.8 98.4 98.7 98.2 97.7 97.4 98.6 97.2 97.6
98.0 99.2 99.4 98.8 98.8 97.1 98.0 98.5 98.2 97.5
96.9 98.8 98.4 97.7 98.0 98.4 98.2 99.9 98.6 99.5
98.7 98.6 98.3 98.3 98.2 97.0 98.4 98.6 97.4 98.8
97.8 98.3 98.8 98.8 97.9 97.5 98.2 98.9 97.0 97.5

6.31 Explain why you either agree or disagree with each of these interpretations of the

confidence interval calculated in the preceding exercise.

a. 95 percent of healthy adults have temperatures in this interval.

b. Healthy adults have temperatures in this interval 95 percent of the time.

c. If your temperature is in this interval, there is a 95 percent chance you are healthy.
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6.32 An advertising agency is looking for magazines in which to advertise inexpensive

imitations of designer clothing. Their target audience is households earning less

than $30,000 a year. A study estimates that a 95 percent confidence interval for

the average household income of readers of one magazine is $32,000 � $1200. Is

the agency correct in concluding that the people in their target audience do not

read this magazine?

6.33 A Wall Street Journal poll asked 35 economic forecasters to predict the interest

rate on 3-month Treasury bills 12 months later [8]. These 35 forecasts had a

mean of 6.19 and a variance of 0.47. Assuming these to be a random sample,

give a 95 percent confidence interval for the mean prediction of all economic

forecasters and explain why each of these interpretations is or is not correct:

a. There is a 0.95 probability that the actual Treasury bill rate is in this interval.

b. Approximately 95 percent of the predictions of all economic forecasters are in

this interval.

6.34 Based on 11 separate studies, the Environmental Protection Agency (EPA)

estimated that nonsmoking women who live with smokers have, on average, a 19

percent higher risk of lung cancer than similar women living in a smoke-free

home. The EPA reported a 90 percent confidence interval for this estimate as 4

percent to 34 percent. After lawyers for tobacco companies argued that the EPA

should have used a standard 95 percent confidence interval, a Wall Street

Journal article reported, “Although such a calculation wasn’t made, it might

show, for instance, that passive smokers’ risk of lung cancer ranges from, say,

15% lower to 160% higher than the risk run by those in a smoke-free environ-

ment” [9].

a. Explain why, even without consulting a probability table, we know that a

standard 95 percent confidence interval for this estimate does not range from

�15 percent to þ160 percent.

b. In calculating a 90 percent confidence interval, the EPA used a t distribution

with 10 degrees of freedom. Use this same distribution to calculate a 95

percent confidence interval.

6.35 A statistics textbook [10] gives this example:

Suppose a downtown department store questions forty-nine downtown shoppers

concerning their age.. The sample mean and standard deviation are found to be

40.1 and 8.6, respectively. The store could then estimate m, the mean age of all

downtown shoppers, via a 95% confidence interval as follows:

x � 1:96
sffiffiffi
n

p ¼ 40:1� 1:96

�
8:6ffiffiffiffiffiffi
49

p
�

¼ 40:1� 2:4

Thus the department store should gear its sales to the segment of consumers with

average age between 37.7 and 42.5.
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Explain why you either agree or disagree with this interpretation: 95 percent of

downtown shoppers are between the age of 37.7 and 42.5.

6.36 Statisticians sometimes report 50 percent confidence intervals, with the margin

for sampling error called the probable error. For example, an estimate X of the

average useful life of a television is said to have a probable error of 3 years if

there is a 0.50 probability that the interval X � 3 will include the value of the

population mean. Calculate the probable error if a random sample of 25 televi-

sions has an average useful life of 8.2 years with a standard deviation of

2.5 years.

6.37 An article about computer forecasting software explained how to gauge the

uncertainty in a prediction: “[Calculate] the standard deviation and mean

(average) of the data. As a good first guess, your predicted value . is the mean

value, plus or minus one standard deviation—in other words, the uncertainty is

about one standard deviation” [11]. What did they overlook?

6.38 To investigate how infants first comprehend and produce words, six British

children were observed in their homes every 2 weeks from age 6–18 months [12].

Among the data collected were the age (in days) at which each child first under-

stood spoken English and first spoke a word of English, shown in Table 6.5.

Assuming these six children to be a random sample of all British children,

determine a 95 percent confidence interval for the average difference (in days)

between when a child first understands and speaks English. Does your estimate

seem fairly precise? Why is it not more precise? Why might this be a biased

sample?

6.39 The American Coinage Act of 1792 specified that a gold $10 eagle coin contain

247.5 grains of pure gold. In 1837, Congress passed a law stating that there

would be an annual test of one coin and 1000 coins, with the Mint failing the

test if the weight of the single coin was more than 0.25 grains from 247.5, either

above or below, or if the average weight of 1000 eagle coins weighed as a group

was more than 0.048 grains from 247.5, either above or below. If the weight of a

single coin is normally distributed with a mean of 247.5 grains and a standard

Table 6.5 Exercise 6.38

Age (days)

Understood Spoke Difference

Andrew 253 368 115
Ben 238 252 14
George 257 408 151
Katherine 220 327 107
Katy 249 268 19
Sebastian 254 326 72
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deviation s, is the Mint more likely to fail the test of a single coin or the test of

the average weight of 1000 coins?

6.40 Explain why you either agree or disagree with this excerpt from a statistics term

paper: “If I were to do this study again, I would collect enough responses to

account for at least 10% of the population.”

6.41 Other things being equal, explain why you think each of the following changes

would increase, decrease, or have no effect on the width of a 95 percent confi-

dence interval for the population mean:

a. The sample mean is smaller.

b. The population mean is smaller.

c. The sample standard deviation is smaller.

d. The sample size is smaller.

6.42 Explain why you either agree or disagree with this reasoning: “[T]he household

[unemployment] survey is hardly flawless. Its 60,000 families constitute less than

0.1 percent of the work force” [13].

6.43 Newsweek once wrote [14] that the width of a confidence interval is inversely

related to the sample size; for example, if a sample of 500 gives a confidence

interval of plus or minus 5, then a sample of 2500 would give a confidence

interval of plus or minus 1. Explain the error in this argument.

6.44 Your assignment is to estimate the average number of hours a day that people

spend doing e-mail. You think the standard deviation is probably around 2 h.

If so, how large a sample do you need for a 95 percent confidence interval to be

approximately �10 min?

6.45 One researcher took a random sample of size 10 and estimated a 95 percent

confidence interval for the average home price in an area to be

$180,000 � $40,000; another researcher took a random sample of size 20 and

obtained a 95 percent confidence interval of $200,000 � $30,000.

a. How would you use both of these studies to obtain a 95 percent confidence

interval a � b? (You do not need to do any calculations; simply explain how

you would proceed.)

b. Explain why you think that the value of a is larger than, smaller than, or equal

to $190,000.

c. Explain why you think that the value of b is larger than, smaller than, or equal

to $30,000.

6.46 You believe that household income in a country has a mean of around $40,000

with a standard deviation of about $30,000. How large a sample should you take

if you want the width of a 95 percent confidence interval for the mean to be

approximately $2000?
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6.47 Which of the three density functions shown in Figure 6.5 has the largest area

under the curve? The smallest area?

6.48 The text reports a 95 percent confidence interval for the looseness coefficient for

high-stakes Internet poker players to be 25.53 � 1.18. Explain why you either

agree or disagree with these interpretations of that number:

a. 95 percent of the players in this population have looseness coefficients in this

interval.

b. If a poker player is randomly selected from this population, there is a 0.95

probability that his or her looseness coefficient is in this interval.

c. 95 percent of the confidence intervals estimated in this way include the

average looseness coefficient of the players in the population.

6.49 A researcher calculated a 95 percent confidence interval using a random sample

of size 10. When a colleague suggested that the sample was pretty small, the

researcher doubled the size of the sample by assuming that he had an additional

10 observations identical to his first 10 observations. What do you think

happened to his sample mean? The width of his confidence interval? If the width

of his confidence interval decreased, would this be a good argument for

following his procedure?

6.50 Here is part of a 2013 discussion of insider trading [15]:

“Say I’m trying to estimate McDonald’s sales,” says Source B. “I could go find 20

representative stores,” he says. He could send a researcher to talk to store

managers at each. “You could interpolate sales with some reasonable degree of

accuracy,” he continues. “I’m seeing this trend; it’s confirming my thesis; I think

that’s a go.” For a national chain with 32,000 stores, such information can’t

possibly be material..

Suppose, then, that an analyst speaks to a franchisee who runs 200 Wendy’s

restaurants? Is that still protected by the mosaic theory, or is this “tile” of

information too big and revealing? No one knows. Some compliance officers use

5% of revenues as a rule-of-thumb cutoff. Under that rule, the hypothetical

Wendy’s franchisee would probably be fair game, since Wendy’s now has more

than 6600 locations. But how many additional franchisees can the analyst

approach? A few dozen, say, with aggregate insight into 60% of sales? No one knows.

a. Suppose that a random sample of 200 stores finds that the average percentage

increase in sales is 6% with a standard deviation of 20%. Give a 95 percent

confidence interval for the average percentage increase for all 6600 stores.

b. Do you need to assume that the percentage increase in sales at individual

stores is normally distributed?

c. How would your answer change if the company had 32,000 stores?

d. What do you think of a 5% rule-of-thumb?
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A friend of mine once remarked to me that if some people asserted that the earth
rotated from east to west and others that it rotated from west to east, there would

always be a few well-meaning citizens to suggest that perhaps there was something to
be said for both sides, and that maybe it did a little of one and a little of the other; or
that the truth probably lay between the extremes and perhaps it did not rotate at all.

Maurice G. Kendall

In Chapter 6, we saw how sample data can be used to estimate the value of a population

mean and calculate a confidence interval that gauges the precision of this estimate. In

this chapter, we see how sample data can be used to support or refute theories about the

population mean, for example, whether experienced poker players tend to change their

style of play after a big loss and whether, on average, the daughters of immigrant
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mothers are upwardly mobile. We use these principles in this chapter and later chapters

to test other theories, including whether the average temperature of healthy adults is

98.6� Fahrenheit, the average student gains 15 pounds during the first year at college,

interest rates affect stock prices, and unemployment affects presidential elections.

You will see how to do these statistical tests and interpret the results. You will learn

not only how to do tests correctly, but also how to recognize tests that are misleading.

Proof by Statistical Contradiction
Statistical tests are based on empirical data—ideally a random sample. These tests can

never be as definitive as a mathematical or logical proof because a random sample is,

well, random and therefore subject to sampling error. One random sample will yield one

set of data and another sample will yield different data. There is always a chance,

however small, that a new sample reverses a conclusion based on an earlier sample. We

cannot be absolutely certain of the average looseness coefficient of all players unless we

look at all players.

Most theories are vulnerable to reassessment because there never is a final tabulation

of all possible data. New experiments and fresh observations continually provide new

evidence—data that generally reaffirm previous studies but sometimes create doubt or

even reverse conclusions that were once thought firmly established.

Theories are especially fragile in the humanities and social sciences because it is

difficult to control for extraneous influences. In the 1930s, JohnMaynard Keynes theorized

that there was a very simple relationship between household income and consumer

spending. This theory was seemingly confirmed by data for the 1930s and early 1940s but

found too simplistic when data for the 1950s became available. In the 1960s, economists

believed that there was a simple inverse relationship between a nation’s unemployment

rate and its rate of inflation: When unemployment goes up, inflation goes down. In the

1970s, unemployment and inflation both went up, and economists decided that they had

overlooked other important influences, including inflation expectations.

Even in the physical sciences, theories are vulnerable to reassessment. For centuries

before Copernicus, people were certain that the sun revolved around the earth. Until

Galileo’s experiments, the conventional wisdom was that heavy objects fall faster than

lighter ones. Before Einstein, Newtonian physics was supreme. When scientists think of

new ways to test old theories or fresh ways to interpret old data, the weakness of

accepted theories may become exposed.

If we can never be absolutely sure that a theory is true or false, the next best thing

would be to make probability statements, such as, “Based on the available data, there is

a 0.90 probability that this theory is true.” Bayesians are willing to make such subjective

assessments, but other statisticians insist that a theory is either true or it is not. A theory

is not true 90 percent of the time, with its truth or falsity determined by a playful

Nature’s random number generator.
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Hypothesis tests have followed another route. Instead of estimating the probability that

a theory is true, based on observed data, statisticians calculate the reverse probability—

the probability that we would observe such data if the theory were true. An appreciation

of the difference between these two probability statements is crucial to an understanding

of the meaning and limitations of hypothesis tests.

Hypothesis tests are a proof by statistical contradiction. We calculate the probability

that the sample data would look the way they do if the theory were true. If this proba-

bility is small, then the data are not consistent with the theory and we reject the theory,

what Thomas Huxley called “the great tragedy of science—the slaying of a beautiful

hypothesis by an ugly fact.” This is proof by statistical contradiction: Our data would be

unlikely to occur if the theory were true, and we consequently reject the theory. Of

course, we can never be 100 percent certain, because unlikely events sometimes happen.

Even though our theory is correct, an unlucky random sample might yield improbable

data.

Our decision rule is to reject a theory if the data are not consistent with the theory and

not to reject a theory if the data are consistent with the theory. Not rejecting a theory

does not prove that the theory is true, only that the data are consistent with the theory.

This is a relatively weak conclusion because the data may be consistent with many other

theories. For example, a 95 percent confidence interval for the population mean of

25.53 � 1.18 is consistent with the theory that the population mean is 25 and is also

consistent with the theory that the population mean is 26.

The Null Hypothesis
A specific example can make these general ideas more concrete. A substantial body of

evidence indicates that decisions are shaped by a variety of cognitive biases. We will use

the poker data described in Chapter 6 to investigate whether experienced poker players

change their style of play after winning or losing a big pot.

For consistency, we look at six-player tables with blinds of $25/$50, which are

considered high-stakes tables and attract experienced poker players. We consider a hand

where a player wins or loses $1000 to be a big win or loss. After a big win or loss, we

monitor the player’s behavior during the next 12 hands—two cycles around a six-player

table. We follow two cycles because experienced players often make no voluntary bets,

and 12 hands are reasonably close to the big win or loss. We restrict our attention to

individuals who had enough big wins and losses to have played at least 50 hands in the

12-hand windows following big wins and at least 50 hands in the 12-hand windows

following big losses.

The generally accepted measure of looseness is the percentage of hands in which a

player voluntarily puts money into the pot. After a hand is dealt, everyone other than the

player who put in the big blind must either bet or fold before they see the three-card flop.

Tight players fold when the two cards they hold are not strong; loose players stay in,

hoping that a lucky flop will strengthen their hand. At six-player tables, people are
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considered to be very tight players if their looseness is below 20 percent and to be

extremely loose players if their looseness is above 50 percent.

We look at two research questions:

1. Do these players tend to have a loose or tight style of play?

2. Is their style of play different after a big loss than after a big win?

To answer the first research question, we make an assumption, called the null

hypothesis (or H0), about the population from which the sample is drawn. Typically, the

null hypothesis is a “straw assumption” that we anticipate rejecting. To demonstrate that

a medicine is beneficial, we see whether the sample data reject the hypothesis that there

is no (null) effect.

For our poker study, the null hypothesis might be that the average looseness coeffi-

cient is 35, which is halfway between 20 (tight) and 50 (loose). Although we expect

experienced high-stakes players to have a relatively tight style of play, the way to

demonstrate this by statistical contradiction is to see if the evidence rejects the straw

hypothesis that the average looseness coefficient is 35.

The alternative hypothesis (usually written as H1) describes the population if the null

hypothesis is not true. Here, the natural alternative hypothesis is that the population

mean is not equal to 35:

H0: m ¼ 35

H1: ms35

The alternative hypothesis is usually two sided because, even though we might have a

hunch about how the study will turn out, we are reluctant to rule out beforehand the

possibility that the populationmeanmay be either lower or higher than the value specified

by thenull hypothesis. If, before seeing thedata,wecould rule out oneof thesepossibilities,

the alternative hypothesis would be one sided. If, for example, we were convinced

beforehand that the average looseness coefficient of experienced players cannot possibly

be higher than 35, the one-sided alternative hypothesis would be H1: m < 35.

P Values
Once we have specified the null and alternative hypotheses, we analyze our sample data.

Because we want to test a null hypothesis about the population mean, we naturally look

at the sample mean, which is what we use to estimate the population mean. The

estimator used to test the null hypothesis is called the test statistic.

For our sample:

Sample size 203
Sample mean 25.53
Sample standard deviation 8.53
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This sample is large enough to justify our assumption that the sampling distribution

for the sample mean is normal. Equations (6.2), repeated here, gives the distribution of

the sample mean:

XwN

�
m;

sffiffiffi
n

p
�

(7.1)

We initially assume that the population standard deviation is known to be 8.53. If so,

what values of the sample mean are likely if the null hypothesis is true? If the population

mean is 35, the sampling distribution for the sample mean is:

XwN

�
35;

8:53ffiffiffiffiffiffiffiffi
203

p
�

wN ½35; 0:60�
Our two-standard-deviations rule of thumb tells us that there is approximately a 0.95

probability that the sample mean will turn out to be within two standard deviations

(or, more precisely, 1.96 standard deviations) of the mean. Here, that interval is

35 � 1.96(0.60) ¼ 35 � 1.2, or between 33.8 and 36.2.

Figure 7.1 shows a 0.025 probability that the sample mean will be less than 33.8, a

0.025 probability that the sample mean will be larger than 36.2, and a 0.95 probability

that the sample mean will be between these two values.

The fact that our sample mean turns out to be 25.53 certainly casts doubt on the null

hypothesis. If the population mean is 35, what are the chances that a random sample of

203 players would yield a sample mean as low as 25.53?

To calculate this probability, we convert to a standardized Z value:

Z ¼ X � m

s
� ffiffiffi

n
p (7.2)
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FIGURE 7.1 The sampling distribution of X, if the null hypothesis is true.
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For our data, with a population mean of 35, sample mean of 25.53, standard deviation

of 8.53, and sample size of 203, the Z value is �15.82:

Z ¼ 25:53� 35

8:53
� ffiffiffiffiffiffiffiffi

203
p

¼ �15:82

The sample mean is 15.82 standard deviations from 35.

We do not calculate the probability that Z would be exactly equal to �15.82. The

probability that a normally distributed variable will equal any single number is 0.

Instead, we calculate the P value, which is the probability that the test statistic will be so

far from the null hypothesis. Here, the P value is the probability that Z will be �15.82, or

even lower:

P½Z � �15:82� ¼ 1:13� 10�56

In calculating the P value, we must take into account whether the alternative

hypothesis is one sided or two sided. For a one-sided alternative hypothesis, the P value

is the probability that the test statistic would be so far to one side of the null hypothesis.

For a two-sided alternative hypothesis, the P value is the probability that the test statistic

would be so far, in either direction, from the null hypothesis. In our poker example, we

report the probability that a sample mean would be 15.82 standard deviations or more,

in either direction, from the null hypothesis. Because the normal distribution is sym-

metrical, we double the 1.13 � 10�56 probability just calculated and report the two-sided

P value as 2(1.13 � 10�56) ¼ 2.26 � 10�56.

Because this probability is minuscule, sampling error is an unconvincing explanation

for why the average looseness coefficient in our sample is so far from 35. If the sample

mean had been 34.5 or 35.5, we could have reasonably attributed this difference to the

inevitable variation in random samples. However, a Z value of �15.82 is too improbable

to be explained by the luck of the draw. We have shown, by statistical contradiction, that

the average looseness coefficient in the population is not 35.

We can summarize our general procedure as follows. First, specify the null and

alternative hypotheses:

H0: m ¼ 35

H1: ms35

Then, use the sample data to calculate the sample mean (25.53), which is our estimate

of the value of m. Use Eqn (7.2) to calculate the Z value (�15.82), which measures how

many standard deviations the estimate is from the null hypothesis. The P value

(1.13 � 10�56) is the probability, if the null hypothesis is true, that the sample mean

would be this many standard deviations from the value of m specified by the null

hypothesis. If the alternative hypothesis is two sided, we double this probability to obtain

the two-sided P value (2.26 � 10�56).
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Using an Estimated Standard Deviation

Our initial calculations assumed that the population standard deviation is known to be

8.53. However, this is an estimate based on sample data. The preceding chapter explains

how the t distribution can be used in place of the normal distribution when the sample

standard deviation S is used in place of the population standard deviation s. Here,

instead of the Z statistic in Eqn (7.2), we use the t statistic:

t ¼ X � m

S
� ffiffiffi

n
p (7.3)

The calculated t value is identical to the Z value we calculated previously:

t ¼ 25:53� 35

8:53
� ffiffiffiffiffiffiffiffi

203
p

¼ �15:82

The difference is that, instead of using the normal distribution to calculate the P

value, we use the t distribution with n � 1 ¼ 203 � 1 ¼ 202 degrees of freedom. The

probability works out to be:

P½t � �15:82� ¼ 3:23� 10�37

so that the two-sided P value is 2(3.23 � 10�37) ¼ 6.46 � 10�37.

A P value calculated from the t distribution is exactly correct if the data come from a

normal distribution and, because of the power of the central limit theorem, is an

excellent approximation if we have at least 15 observations from a generally symmetrical

distribution or at least 30 observations from a very asymmetrical distribution. In our

poker example, the P value is minuscule and is strong evidence against the null

hypothesis that the population mean is 35.

Significance Levels

A P value of 6.46 � 10�37 provides persuasive evidence against the null hypothesis. What

about a P value of 0.01, or 0.10, or 0.25? Where do we draw a line and say that this P value

is persuasive, but that one is not? In the 1920s, the great British statistician R. A. Fisher

endorsed a 5 percent cutoff:

It is convenient to draw the line at about the level at which we can say: “Either there

is something in this treatment, or a coincidence has occurred such as does not occur

more than once in twenty trials..”

If one in twenty does not seem high enough odds, we may, if we prefer, draw the line

at one in fifty (the 2 percent point), or one in a hundred (the 1 percent point).

Personally, the writer prefers to set a low standard of significance at the 5 percent

point, and ignore entirely all results which fail to reach that level [1].
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Researchers today often report that their results either are or are not statistically sig-

nificant at a specified level, such as 5 percent or 1 percent. What this cryptic phrase

means is that the P value is less than this specified significance level. For example,

because the P value of 6.46 � 10�37 is less than 0.05, we can report that we “found a

statistically significant difference at the 5 percent level between the average looseness

of a sample of experienced high-stakes poker players and 35.” The reader is thereby

told that there is less than a 0.05 probability of observing such a large difference

between the sample mean and the value of the population mean given by the null

hypothesis.

Fisher’s endorsement of a 5 percent rule is so ingrained that some researchers simply

say that their results are “statistically significant,” with readers understanding that the P

value is less than 0.05. Some say “statistically significant” if the P value is less than 0.05

and “highly significant” if the P value is less than 0.01. Simple rules are convenient and

provide a common vocabulary, but we must not be blind to the fact that there is a

continuum of P values. There is little difference between P values of 0.049 and 0.051.

There is a big difference between P values of 0.049 and 6.46 � 10�37. The most reason-

able course is to report the P value and let readers judge for themselves whether the

results are statistically persuasive. They will remember Fisher’s rule of thumb, but they

will also recognize that a P value of 0.051 is not quite significant at the 5 percent level,

that 0.049 is barely significant, and that 6.46 � 10�37 is off the charts.

The reader’s reaction may well be tempered by what is being tested, with some situa-

tions calling for more persuasive proof than others. The Food and Drug Administration

may demand very strong evidence when testing a drug with modest benefits and poten-

tially dangerous side effects. Also, in cases where the conventional wisdom is very strong,

evidence to the contrary has to be very powerful to be convincing.

Confidence Intervals
Confidence intervals can be used for a statistical test when the alternative hypothesis is

two sided. Specifically, if the two-sided P value is less than 0.05, then a 95 percent

confidence interval does not include the value of the population mean specified by the

null hypothesis. (If the two-sided P value is less than 0.01, a 99 percent confidence

interval does not include the null hypothesis.)

Consider our poker example. A test of the null hypothesis m ¼ 35 has a P value less

than 0.05 if the sample mean is more than (approximately) two standard errors from 35.

A 95 percent confidence interval for m includes all values that are within two standard

errors of the sample mean. Thus, if the sample mean is more than two standard errors

from 35, the two-sided P value is less than 0.05 and a 95 percent confidence interval does

not include 35. Therefore, a hypothesis test can be conducted by seeing whether a

confidence interval includes the null hypothesis.

The nice thing about a confidence interval is that it can give us a sense of the

practical importance of the difference between the sample mean and the null hypothesis.
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If we just report that the P value is 6.46 � 10�37 or that we “found a statistically signif-

icant difference at the 5 percent level,” readers do not know the actual value of the

estimator.

For our poker example, a 95 percent confidence interval was calculated in Chapter 6:

x � t�
sffiffiffi
n

p ¼ 25:53� 1:97

�
8:53ffiffiffiffiffiffiffiffi
203

p
�

¼ 25:53� 1:18

We see that 35 is not inside this interval and that, as a practical matter, 25.53 � 1.18 is

far from 35.

The fact that confidence intervals can be used for hypothesis tests illustrates why not

rejecting a null hypothesis is a relatively weak conclusion. When the data do not reject a

null hypothesis, we have not proven that the null hypothesis is true. Every value inside a

95 percent confidence interval is consistent with the data. Therefore, we say “the data do

not reject the null hypothesis,” instead of “the data prove that the null hypothesis is

true.”

Two economists studied the effects of inflation on election outcomes [2]. They

estimated that the inflation issue increased the Republican vote in one election by 7

percentage points, plus or minus 10 percentage points. Because 0 is inside this interval,

they concluded that “in fact, and contrary to widely held views, inflation has no impact

on voting behavior.” That is not at all what their data show. The fact that they cannot rule

out 0 does not prove that 0 is the correct value. Their 95 percent confidence interval does

include 0, but it also includes everything from �3 percent to þ17 percent. Their best

estimate is 7 percent, plus or minus 10 percent, and 7 percent is more than enough to

swing most elections one way or another.

Here is another poker example. Our second research question is whether experienced

poker players tend to play differently after big losses than they do after big wins. To

answer this research question, we can compare each player’s looseness coefficient in the

12 hands following big losses with his or her looseness coefficient in the 12 hands

following big wins. This difference measures whether this person plays less cautiously

after a big loss than after a big win. The natural null hypothesis is that the population

mean is 0, H0: m ¼ 0. For our sample of 203 players, the mean is 2.0996 and the standard

deviation is 5.5000. Using Eqn (7.3), the t value is 5.439:

t ¼ x � m

s
� ffiffiffi

n
p

¼ 2:0996� 0

5:5000
� ffiffiffiffiffiffiffiffi

203
p

¼ 5:439

With 203 � 1 ¼ 202 degrees of freedom, the two-sided P value is 0.0000002.

Using Eqn (6.6), a 95 percent confidence interval for the population mean is:

x � t�
sffiffiffi
n

p ¼ 2:0996� 1:9716

�
5:5000ffiffiffiffiffiffiffiffi

203
p

�
¼ 2:10� 0:76
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Poker players tend to play looser (less cautiously) after large losses, evidently

attempting to recoup their losses.

Matched-Pair Data
It is sometimes thought that women pay more than men for comparable items—like

simple haircuts, T-shirts, and jeans. To test this theory, data were gathered from 20

stores that do men’s and women’s haircuts. In each case, the adult had short hair and

asked for the least expensive haircut. The prices are shown in Table 7.1.

One way to analyze such data is to consider the men’s and women’s data to be two

independent samples and apply a difference-in-means test, which is covered in more

encyclopedic textbooks. However, these data are not independent samples and we can

use a more powerful test. These data are matched pairs, in that each pair of men’s and

women’s prices is obtained from a single store.

If the data had been independent random samples, a statistical test would have had

to take into account the possibility that, by the luck of the draw, the women went to

stores that were, on average, more expensive (or less expensive) than the stores that the

men visited. Therefore, the women’s prices might have been higher, on average, not

Table 7.1 Prices of Inexpensive Haircuts in 20 Stores,
in Dollars

Women Men Difference (x)

30 20 10
15 15 0
35 25 10
45 45 0
10 6 4
25 20 5
9 7 2

55 40 15
30 25 5
15 12 3
25 20 5
50 45 5
15 15 0
30 20 10
35 25 10
15 15 0
15 12 3
45 40 5
30 30 0
35 25 10

Mean 28.20 23.10 5.10
Standard deviation 13.575 11.756 4.40
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because women are charged more than men but because the women in this sample

happened to go to more expensive stores.

Matched-pair data take care of that possibility in a simple but powerful way, by

having the men and women go to the same stores. For a matched-pair test, we look at

the difference between the matched prices, as given in the last column in Table 7.1.

The natural null hypothesis is that the population mean is 0:

H0 : m ¼ 0

For the data in Table 7.1, the t value is 5.184:

t ¼ x � m

s
� ffiffiffi

n
p

¼ 5:10� 0

4:400
� ffiffiffiffiffiffi

20
p

¼ 5:184

The observed average price difference of $5.10 is more than five standard deviations

from 0 and the two-sided P value is 0.00006, which is overwhelming statistical evidence

against the null hypothesis. This observed difference is also substantial in that the average

women’s price is 22 percent higher than the average men’s price ($5.10/$23.10 ¼ 0.22).

Our poker study also used matched-pair data in that we compared each player’s

looseness coefficient after a big win and after a big loss. We will apply these principles to

several other examples, which illustrate not only the practice of hypothesis testing but

also the value of matched-pair data.

Immigrant Mothers and Their Adult Daughters

A study compared the economic status of 4121 women who had immigrated to

California from another country with the economic status of their adult daughters at

comparable periods of their lives [3]. Economic status was measured by the median

income in the ZIP codes in which the mothers and adult daughters lived, with ZIP-code

income converted to percentiles to account for changes over time in income levels and

in the number of ZIP codes. Thus, if the mother lived in a ZIP code that was in the 30th

percentile and her adult daughter lived in a ZIP code that was in the 35th percentile, this

was characterized as an increase in economic status.

These are matched-pair data because each daughter is matched with her mother

and we calculate the difference between the daughter’s ZIP-code percentile and her

mother’s ZIP-code percentile. This difference had a mean of 3.3378 and a standard

deviation of 25.8856. The t value for testing the null hypothesis that the population

mean is 0 is:

t ¼ 3:3378� 0

25:8856
� ffiffiffiffiffiffiffiffiffiffiffi

4121
p

¼ 8:2775
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and the two-sided P value is 1.68 � 10�16. This observed difference is statistically persuasive

and also substantial, representing a 3.34 percentage-point increase in economic status.

Fortune’s Most Admired Companies

Each year, Fortune magazine compiles a list of America’s most admired companies, with

the 10 most admired companies singled out for special praise. Do the stocks of these Top

10 companies do better than the average stock? To answer this question, a stock portfolio

consisting of the Top 10 companies was compared to the overall US stock market [4].

Each year, after the publication of the Top 10 list, the Fortune portfolio was adjusted to

have an equal investment in each of the Top 10 stocks for that year.

There were 5547 daily observations for the Fortune portfolio and for the S&P 500.

These are matched-pair data in that each daily percentage return for the Fortune

portfolio is matched with that day’s percentage return on the market portfolio. We can

consequently use the 5547 differences between the daily returns to test the null

hypothesis that the expected value of the difference is equal to 0.

The difference between the average daily percentage return on the Fortune portfolio

and the market portfolio had a mean of 0.0213 and a standard deviation of 0.5832. The t

value for testing the null hypothesis that the population mean is 0 is:

t ¼ 0:0213

0:5832
� ffiffiffiffiffiffiffiffiffiffiffi

5547
p

¼ 2:71

and the two-sided P value is 0.0067. This observed difference is substantial. The average

daily return for the Fortune portfolio was 0.0651 and the average daily return for the

market portfolio was 0.0439. Over 250 trading days each year, these daily returns imply

respective annual returns of 17.7 and 13.0.

Fateful Initials?

It has been claimed that people whose names have positive initials (such as ACE or VIP)

live much longer than people with negative initials (such as PIG or DIE). This theory was

tested using California mortality data [5]. The deceased were grouped by birth year, and

for each birth year, the researchers calculated the difference between the average age at

death for people with positive initials and people with negative initials. For males, there

were 91 birth years and the 91 differences had a mean of �0.8254 with a standard

deviation of 4.2874. The t value is �1.8365 and the two-sided P value is 0.0696:

t ¼ �0:8254� 0

4:2874
� ffiffiffiffiffiffi

91
p

¼ �1:84

On average, males with positive initials did not live quite as long as those with

negative initials, though the observed difference is not statistically significant at the 5
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percent level. For females, the sign is reversed but the observed differences are again not

statistically significant.

Practical Importance versus Statistical Significance
It is easy to be confused by the distinction between statistical significance and practical

importance. A statistically significant result may be of little practical importance.

Conversely, a potentially important result may not be statistically significant. To illus-

trate what may seem paradoxical, consider our poker example and a test of the null

hypothesis that the population mean of the looseness coefficient is 35.

Suppose the sample data look like this:

Sample size 10,000
Sample mean 35.05
Sample standard deviation 1.00

The t value is 5.0:

t ¼ x � m

s
� ffiffiffi

n
p

¼ 35:05� 35

1:0
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

10; 000
p

¼ 5:0

The two-sided P value is 0.0000006. Because of the small sample standard deviation

and the large sample size, the sample mean of 35.05 is five standard deviations from 35.

The evidence is overwhelming that the population mean is not exactly equal to 35, but

the practical difference between 35 and 35.05 is inconsequential.

Now suppose the sample data look like this:

Sample size 9
Sample mean 17.50
Sample standard deviation 30.00

The t value is only �1.75:

t ¼ x � m

s
� ffiffiffi

n
p

¼ 17:5� 35

30
� ffiffiffi

9
p

¼ �1:75

The two-sided P value is 0.12. Because of the large sample standard deviation and the

small sample size, these data are not statistically persuasive evidence against the null

Chapter 7 • Hypothesis Testing 201



hypothesis, even though the sample mean is far from the null hypothesis. These results

do not prove that the population mean is equal to 35. Instead, they suggest that the

average looseness coefficient is much lower than that. We should collect additional data

to see if this result holds up with a larger sample.

These examples are deliberate caricatures that are intended to demonstrate that P

values measure only statistical significance, not practical importance. In the first case,

there was statistical significance but no practical importance. In the second case, there

was practical importance but no statistical significance. When you do research, you

should report the P value and use common sense to judge the practical importance of

your conclusions.

Data Grubbing
Academic journals are filled with statistical tests. The most useful and controversial tests

find their way into the popular press. To be intelligent consumers or producers of such

tests, so that we can separate useful information from misleading rubbish, we need to be

able to recognize ways in which hypothesis tests can be misleading. Chapter 5 already

alerted us to some of the pitfalls in collecting sample data, and “garbage in, garbage out”

is a shorthand reminder of the fact that a beautifully executed statistical test can be

ruined by biased data.

A selective reporting of results is also a serious misuse of hypothesis tests. Back when

calculations were done by hand, researchers tended to think carefully about their the-

ories before they did a statistical test. Today, with mountains of data, powerful com-

puters, and incredible pressure to produce statistically significant results, untold

numbers of worthless theories get tested. The harried researcher tries hundreds of

theories, writes up the result with the lowest P value, and forgets about the rest. Or

hundreds of ambitious graduate students test different theories; some get statistically

significant results, theses, and research grants. The problem for science and society is

that we see only the tip of this statistical iceberg. We see the results that are statistically

significant but not the hundreds of other tests that did not work out. If we knew that the

published results were among hundreds of tests that were conducted, we would be much

less impressed.

Three psychiatrists once set out to identify observed characteristics that distinguish

schizophrenic persons from the nonschizophrenic [6]. They considered 77 characteris-

tics, and 2 of their 77 tests turned up statistically significant differences at the 5 percent

level. They emphasized the statistical significance of these two characteristics, over-

looking the sobering thought that, by chance alone, about 4 out of every 77 independent

tests should be statistically significant at the 5 percent level.

Not finding a statistically significant result can sometimes be as interesting as finding

one. In 1887, Albert Michelson and Edward Morley conducted a famous experiment in

which they measured the speed of light both parallel and perpendicular to the earth’s

motion, expecting to find a difference that would confirm a theory that was popular at
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that time. They did not find a statistically significant difference. Instead of throwing their

study in the trash and looking elsewhere for something statistically significant, they

reported their not statistically significant result. Their research laid the groundwork for

Einstein’s special theory of relativity and the development of quantum mechanics by

others. Their “failed” study revolutionized physics.

In general, it is worth knowing that a well-designed study did not find a statistically

significant result. However, a study [7] of psychology journals found that, of 294 articles

using statistical tests, only 8 (3 percent) reported results that were not statistically

significant at the 5 percent level [7]. Surely, far more than 3 percent of the statistical tests

that were done had P values larger than 0.05. But researchers and editors generally

believe that a test is not worth reporting if the P value is not less than 0.05.

This belief that only statistically significant results are worth publishing leads

researchers to test many theories until the desired significance level is attained—a

process known as data grubbing (or fishing expeditions). The eager researcher takes a

body of data, tests countless theories, and reports the one with the lowest P value. The

end result—the discovery of a test with a low P value—shows little more than the

researcher’s energy. We know beforehand that, even if only worthless theories are

examined, a researcher will eventually stumble on a worthless theory with a low P value.

On average, 1 out of every 20 tests of worthless theories will have a P value less than 0.05.

We cannot tell whether a data grubbing expedition demonstrates the veracity of a useful

theory or the perseverance of a determined researcher.

The Sherlock Holmes Inference

Hypothesis tests assume that the researcher puts forward a theory, gathers data to test

this theory, and reports the results—whether statistically significant or not. However,

some people work in the other direction: They study the data until they stumble upon a

theory that is statistically significant. This is the Sherlock Holmes approach: examine the

data and use inductive reasoning to identify theories that explain the data. As Sherlock

Holmes put it: “It is a capital mistake to theorize before you have all the evidence” [8].

The Sherlock Holmes method can be very useful for solving crimes. Many important

scientific theories, including Mendel’s genetic theory, have been discovered by identi-

fying theories that explain data. But the Sherlock Holmes approach has also been the

source of thousands of quack theories.

How do we tell the difference between a good theory and quackery? There are two

effective antidotes to unrestrained data grubbing: common sense and fresh data.

Unfortunately, there are limited supplies of both. The first thing that we should think

about when confronted with statistical evidence in support of a theory is, “Does it make

sense?” If it is a ridiculous theory, we should not be persuaded by anything less than

mountains of evidence, and even then be skeptical.

Many situations are not clear-cut, but we should still exercise common sense in

evaluating statistical evidence.Unfortunately, commonsense is anuncommoncommodity,
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and many silly theories have been seriously tested by honest researchers. I include in this

category the idea that people whose names have positive initials live years longer than

people with negative initials. I will show you some other examples shortly.

The second antidote is fresh data. It is not a fair test of a theory to use the very data

that were ransacked to discover the theory. For an impartial test, we should specify the

theory before we see the data used to test the theory. If data have been used to concoct a

theory, then look for fresh data that have not been contaminated by data grubbing to

either confirm or contradict a suspect theory.

In chemistry, physics, and the other natural sciences, this is standard procedure.

Whenever someone announces an important new theory, a dozen people rush to their

laboratories to see if they can replicate the results. Unfortunately, most social scientists

cannot use experiments to produce fresh data. Instead, they must record data as events

occur. If they have a theory about presidential elections, the economy, or world peace,

they may have to wait years or even decades to accumulate enough fresh data to test

their theories (thus, the joke that, for some social scientists, data is the plural of

anecdote).

When further testing is done with fresh data, the results are often disappointing, in

that the original theory does not explain the new data nearly as well as it explained the

data that were the inspiration for the theory. The usual excuse is that important changes

necessitate modification of the original model. By mining the fresh data for a new theory,

a provocative first paper can turn into a career. An alternative explanation of the

disappointing results with fresh data is that, when a theory is uncovered by data grub-

bing, statistical tests based on these data typically exaggerate the success of the model.

In the remainder of this chapter, we look at some theories that are statistically significant

but unpersuasive.

The Super Bowl and the Stock Market

On Super Bowl Sunday in January 1983, both the business and sports sections of the Los

Angeles Times carried articles on the Super Bowl Indicator [9]. The theory is that the

stock market goes up if the National Football Conference (NFC) or a former NFL team

now in the American Football Conference (AFC) wins the Super Bowl; the market goes

down if the AFC wins. This theory had been correct for 15 out of 16 Super Bowls, and a

stockbroker said: “Market observers will be glued to their TV screens.it will be hard to

ignore an S&P indicator with an accuracy quotient that’s greater than 94%.” And, indeed,

it was. An NFC team won, the market went up, and the Super Bowl system was back in

news the next year, stronger than ever.

The accuracy of the Super Bowl Indicator is obviously just an amusing coincidence,

since the stock market has nothing to do with the outcome of a football game. The

Indicator exploits the fact that the stock market generally goes up and the NFC usually

wins the Super Bowl. The correlation is made more impressive by the gimmick of

including the Pittsburgh Steelers, an AFC team, in with the NFL. The excuse is that
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Pittsburgh once was in the NFL; the real reason is that Pittsburgh won the Super Bowl

four times in years when the stock market went up.

The performance of the Super Bowl Indicator has been mediocre since its discovery—

since there was nothing behind it but coincidence. What is genuinely surprising is that

some people do not get the joke. The man who originated the Super Bowl Indicator

intended it to be a humorous way of demonstrating that correlation does not imply

causation [10]. He was flabbergasted when people started taking it seriously!

I once had a similar experience. Technical analysts try to predict whether stock prices

are going up or down by looking for patterns in time series graphs of stock prices. I sent

fake stock-price charts created from coin flips to a technical analyst at a large investment

firm and asked him if he could find any patterns. My intention was to convince him that

there are coincidental patterns even in random coin flips. Sure enough, he identified

some “stocks” he wanted to buy. When I revealed that these were not real stocks, his

response was that he had demonstrated that technical analysis could be used to predict

coin flips!

What these examples really demonstrate is that some people have a hard time

understanding that data grubbing will inevitably uncover statistical relationships that are

nothing more than coincidence.

Extrasensory Perception

Professor J. B. Rhine and his associates at Duke University produced an enormous

amount of evidence concerning extrasensory perception (ESP), including several

million observations involving persons attempting to identify cards viewed by another

person.

Even if ESP does not exist, about 1 out of every 20 people tested will make enough

correct guesses to be statistically significant at the 5 percent level. With millions of tests,

some incredible results are inevitable. This is a form of data grubbing—generate a large

number of samples and report only the most remarkable results. Something with a one

in 1000 chance of occurring is not really so remarkable if 1000 tests were conducted.

Our first antidote to data grubbing is common sense. Many people believe in ESP, but

others do not. Perhaps the safest thing to say is that if ESP does exist, it does not seem to

be of much practical importance. There is no public evidence that people can have long

distance conversations without a telephone or win consistently in Las Vegas.

The second antidote to data grubbing is fresh data. People who score well should be

retested to see whether their success was due to ESP or data grubbing. However, even if

high scores are just luck, if enough people are tested and retested, some are bound to get

lucky on more than one test—though most will not. Rhine in fact observed that high

scorers who are retested almost always do worse than they did initially. His explanation

is that “This fatigue is understandable.in view of the loss of original curiosity and initial

enthusiasm” [11]. An alternative explanation is that the high scores in the early rounds

were just lucky guesses.
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The large number of persons tested is not the only difficulty in assessing the statistical

significance of Rhine’s results. He also looked for parts of a test where a subject did well,

which is again data grubbing. A remarkable performance by 1 of 20 subjects or by one

subject on 1/20th of a test is not really surprising. Rhine also looked for either “forward

displacement” or “backward displacement,” where a person’s choices did not match the

contemporaneous cards, but did match the next card, the previous card, two cards

hence, or two cards previous. This multiplicity of potential matches increases the

chances of finding coincidental matches. Rhine also considered it remarkable when a

person got an unusually low score (“negative ESP”). He noted that a person

may begin his run on one side of the mean and swing to the other side just as far by

the time he ends a run; or he may go below in the middle of the run and above it at

both ends. The two trends of deviations may cancel each other out and the series as a

whole average close to “chance” [12].

With so many subjects and so many possibilities, it should be easy to find patterns, even

in random guesses.

ESP research is interesting and provocative. But the understandable enthusiasm of

the researchers can lead to a variety of forms of data grubbing that undermine their tests.

They would be less controversial and more convincing—one way or the other—if there

were more uses and fewer abuses of statistical tests.

Scared to Death

In Japanese, Mandarin, and Cantonese, the pronunciation of “four” and “death” are very

similar. Not surprisingly, many Japanese and Chinese consider 4 to be an unlucky

number. Surprisingly, a study [13] claiming that this fear of 4 is so strong that Japanese

and Chinese Americans are susceptible to heart attacks on the fourth day of every month

was published in one of the world’s top medical journals.

The study was called “The Hound of the Baskervilles Effect,” referring to Sir Arthur

Conan Doyle’s story in which Charles Baskerville is pursued by a vicious dog and dies of

a heart attack:

The dog, incited by its master, sprang over the wicket-gate and pursued the

unfortunate baronet, who fled screaming down the yew alley. In that gloomy

tunnel it must indeed have been a dreadful sight to see that huge black creature,

with its flaming jaws and blazing eyes, bounding after its victim. He fell dead at

the end of the alley from heart disease and terror.

We see the number 4 every day—in times, addresses, phone numbers, page numbers,

prices, and car odometers. Are Asian Americans really so superstitious and fearful that

the fourth day of the month—which, after all, happens every month—is as terrifying as

being chased down a dark alley by a ferocious dog?
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The Baskervilles study examined data for Japanese and Chinese Americans who died

of coronary disease. A natural test would be a comparison of the number of coronary

deaths on the third, fourth, and fifth days of the month. In their data, 33.9 percent of the

coronary deaths on these three days occurred on the fourth day of the month, which

does not differ substantially or statistically from the expected 33.3 percent. If days 3, 4,

and 5 are equally likely days for coronary deaths, we can expect a difference this large

more often than not.

So, how did the Baskervilles study come to the opposite conclusion? In the

International Classification of Diseases, coronary deaths are divided into several cate-

gories. In some categories, more than one-third of the deaths occurred on day 4. In other

categories, fewer deaths occurred. The Baskervilles study reported results only for the

former. They discarded data that did not support their theory.

When we suspect that a researcher made choices after looking at the data, this

suspicion can be tested by trying to replicate the results with fresh data. The

Baskervilles study used data for the years 1989–1998. When 1969–1988 and 1999–2001

data were used to retest the heart disease categories reported in the Baskervilles study

[14], the results were neither substantial or statistically significant. In the 1969–1988

data, there were more deaths on day 5 than on day 4; in the 1999–2001 data, there were

more deaths on day 3. It is also revealing that the authors could have used the

1969–1988 data (and did so in other studies), but chose not to do so in the Baskervilles

study. We can guess why.

How (Not) to Win the Lottery

Multimillion dollar Lotto jackpots offer people a chance to change their lives

completely—and the popularity of Lotto games indicates that many are eager to do so.

The only catch is that the chances of winning are minuscule. This chasm between

dreams and reality gives entrepreneurs an opportunity to sell gimmicks that purport-

edly enhance one’s chances of winning. One mail-order company sold a Millionaire

Maker for $19.95 using this pitch: “Lotto players face a dilemma each time they buy a

ticket. What numbers to pick? Studies have shown that most Lotto winners don’t use

any sort of special system to select their numbers. Instead, they tap the power of

random selection” [15]. Their $19.95 product is a battery-powered sphere filled with

numbered balls that “mixes the balls thoroughly” and chooses a “perfectly random set

of numbers.”

Gail Howard sold a very different system, a report on how to handicap lottery

numbers, just like handicapping horses [16]. She reportedly appeared on the Good

Morning America television show, wrote an article in Family Circle magazine, and

published a monthly report (Lottery Buster). She says: “You don’t have to worry about the

state lottery games being crooked or rigged.the winning numbers are selected through

a completely random process.” Nonetheless, she offered several tips for “greatly

improving your chances of winning.” For instance, do not bet on six consecutive
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numbers or six numbers that have won before, because these are highly unlikely to win.

Well, yes, any six numbers are unlikely to win.

There is no evidence that Gail Howard ever won a lottery. Howard was, in fact, a

creation of Ben Buxton, who operated a variety of dodgy mail-order businesses peddling

lottery advice, astrological predictions, and good-luck pieces using dozens of names,

including Gail Howard, Astrology Society of America, Brother Rudy, Madame Daudet,

Rothchild Depository, and Lourdes Water Cross.

The US attorney in Newark asked a federal district court to enjoin Buxton from

“continuing to defraud hundreds of thousands of consumers through false andmisleading

promotions of horoscopes, lottery-winning systems, religious trinkets, andother products,

all guaranteed to bring unwitting consumers wealth, good luck and prosperity.” The US

Postal Service also got involved and, working with the US attorney, secured a court order

permanently stoppingBuxton’s various businesses, allowing thePostal Service to intercept

tens of thousands of checks mailed to Buxton, and ordering Buxton to pay $300,000 in

restitution to former customers.

Just as a careful study can uncover worthless patterns in coin flips or dice rolls, so

tedious scrutiny can discern worthless patterns in lottery numbers. The most persuasive

reason for skepticism about lottery systems is that anyone who really had a system that

worked would become rich buying lottery tickets rather than peddling books and

battery-powered gadgets.

Exercises
7.1 What would be a natural null hypothesis for the research question of whether or

not the average US passenger car gets more than 30 miles per gallon? What alter-

native hypothesis would you use?

7.2 What would be a natural null hypothesis for the research question of whether or

not average home prices fell last year? What alternative hypothesis would you

use?

7.3 Researchers used a random sample to test the null hypothesis that the average

age of people visiting an Internet site is 25. Which of the following results has

the higher t value for a test of this null hypothesis? Do not do any calculations;

just explain your reasoning.

a. x ¼ 26:43; s ¼ 7:17; n ¼ 50

b. x ¼ 32:14; s ¼ 7:17; n ¼ 50

7.4 Which of the following results has the higher t value for a test of the null hypoth-

esis that the average speed on a 40 miles-per-hour street is 40 miles per hour?

Do not do any calculations; just explain your reasoning.

a. x ¼ 43:71; s ¼ 14:88; n ¼ 60

b. x ¼ 43:71; s ¼ 8:06; n ¼ 60
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7.5 Which of the following results has the higher t value for a test of the null hypoth-

esis that the average US passenger car gets 30 miles per gallon? Do not do any

calculations; just explain your reasoning.

a. x ¼ 31:52; s ¼ 8:33; n ¼ 30

b. x ¼ 31:52; s ¼ 8:33; n ¼ 50

7.6 Exercise 6.30 shows 50 body temperature readings for healthy persons using

modern thermometers. Use these data to calculate the two-sided P value for a

test of the null hypothesis that the population mean is 98.6� Fahrenheit.

7.7 Which of the following assumptions were used in calculating the P value in the

preceding exercise?

a. Temperatures for healthy adults are normally distributed.

b. These 50 observations are a random sample.

c. The mean temperature for unhealthy adults is higher than the mean tempera-

ture for healthy adults.

d. On average, healthy adults have a temperature of 98.6� Fahrenheit.

7.8 Explain why you either agree or disagree with this reasoning: “I used a random

sample to test the null hypothesis that the average body temperature of healthy

adults is 98.6. I calculated a one-sided P value because the sample mean was less

than 98.6.”

7.9 Use the reading comprehension data in Exercise 6.18 to test the null hypothesis

that the population mean of X is 0.

a. What is the two-sided P value?

b. Does the average value of X seem substantially different from 0?

7.10 Redo the preceding exercise, this time using the mathematics scores.

7.11 The data for deceased Major League Baseball (MLB) players in Table 7.2 were

used [17] to investigate the research hypothesis that players with positive initials

(like ACE) live longer, on average, than players with neutral initials (like GHR).

For each birth year, the average age at death (AAD) was calculated for players

with positive initials and for players with neutral initials (the control group).

Table 7.2 Exercise 7.11

Birth Year Positive AAD Control AAD

1853 75.00 65.09
1876 77.00 62.12
1884 55.00 68.09
1885 73.00 69.39
1897 80.50 70.95
1903 80.00 71.60
1913 93.00 73.68
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Calculate the difference between the positive and control AADs for each birth

year and use these seven differences to test the null hypothesis that this popula-

tion mean difference is equal to 0. (We implicitly assume that these data are a

random sample.)

a. What is the two-sided P value?

b. Does the average value of the difference seem substantially different from 0?

7.12 Analogous to the preceding exercise, the data in Table 7.3 for deceased MLB

players were used to investigate the research hypothesis that players with nega-

tive initials (like PIG) do not live as long, on average, as players with neutral

initials (like GHR). Calculate the difference between the negative and control

AADs for each birth year and use these eight differences to test the null hypothe-

sis that the population mean difference is equal to zero.

a. What is the two-sided P value?

b. Does the average value of the difference seem substantially different from 0?

7.13 Critically evaluate this news article [18]:

BRIDGEPORT, Conn.—Christina and Timothy Heald beat “incredible” odds

yesterday by having their third Independence Day baby.

Mrs. Heald, 31, of Milford delivered a healthy 8-pound 3-ounce boy at 11:09 a.m.

in Park City Hospital where her first two children, Jennifer and Brian, were born

on Independence Day in 1978 and 1980, respectively.

Mrs. Heald’s mother, Eva Cassidy of Trumbull, said a neighbor who is an

accountant figures the odds are 1-in-484 million against one couple having

three children born on the same date in three different years.

7.14 A 1981 retrospective study published in the prestigious New England Journal of

Medicine looked at the use of cigars, pipes, cigarettes, alcohol, tea, and coffee

by patients with pancreatic cancer and concluded that there was “a strong

Table 7.3 Exercise 7.12

Birth Year Negative AAD Control AAD

1858 57.00 62.94
1864 70.00 61.38
1874 85.00 65.28
1881 93.00 67.28
1886 57.00 70.61
1893 57.50 68.36
1916 41.00 72.53
1918 85.00 72.21
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association between coffee consumption and pancreatic cancer” [19]. This study

was immediately criticized on several grounds, including the conduct of a fishing

expedition in which multiple tests were conducted and the most statistically

significant result reported. Subsequent studies failed to confirm an association

between coffee drinking and pancreatic cancer [20]. Suppose that six indepen-

dent tests are conducted, in each case involving a product that is, in fact,

unrelated to pancreatic cancer. What is the probability that at least one of

these tests will find an association that is statistically significant at the 5

percent level?

7.15 Researchers once reported that 1969–1990 California mortality data show that

Chinese-Americans are particularly vulnerable to four diseases that Chinese

astrology and traditional Chinese medicine associate with their birth years [21].

The two-sided P values were 0.022, 0.052, 0.090, and 0.010. However, a subse-

quent study [22] using data for 1960–1968 and 1991–2002 found the two-sided

P values to be 0.573, 0.870, 0.235, and 0.981. How would you explain this

discrepancy?

7.16 A researcher asked 100 college students, “How many hours did you sleep during

the past 24 h?” Identify several errors in this description of the statistical test:

“The following equation is the basis for the Z value I obtained:

Z ¼ x � m

s

The P value is the area under the curve outside of two standard deviations of the

mean.”

7.17 A study reported that Major League Baseball (MLB) players who were born

between 1875 and 1930 and whose first names began with the letter D died an

average of 1.7 years younger than MLB players whose first names began with the

letters E through Z, suggesting that “Ds die young” [23]. What statistical reasons

make you skeptical?

7.18 A subsequent study of the “Ds die young” claim mentioned in the previous exer-

cise calculated the paired difference in the average age at death for each birth

year [24]. For example, for MLB players born in 1900, the average age at death

was 63.78 years for those with D first initials and 71.04 years for those with E–Z

first initials, a difference of X ¼ �7.26 years. This follow-up study looked at all

MLB players, not just players born between 1875 and 1930. Overall, there were

51 birth years with at least five MLB players in each category and the 51 values

of X had a mean of �0.57 and a standard deviation of 6.36. Calculate the two-

sided P value for a test of the null hypothesis that the population mean is 0.

How would you explain the fact that the two-sided P value was lower in the

original study than in the subsequent study?
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7.19 The follow-up study described in the previous exercise also looked at MLB

players whose first or last initial was D. For MLB players born between 1875 and

1930, there were 53 birth years with the values of X having a mean of �0.81 and

a standard deviation of 4.87. For all players, there were 73 birth years with the

values of X having a mean of �0.26 and a standard deviation of 5.42. For each of

these two data sets, calculate the two-sided P value for a test of the null hypoth-

esis that the population mean is 0.

7.20 Medical researchers compared the measured calories in eight locally prepared

health and diet foods purchased in Manhattan, New York, with the calories listed

on the label [25]. The data in Table 7.4 are the percentage differences between

the actual and labeled calories (a positive value means that the measured calo-

ries exceeded the amount shown on the product label). Determine the two-sided

P value for a test of the null hypothesis that the population mean is 0.

7.21 The researchers in the previous exercise also compared the actual and listed cal-

ories in 20 nationally advertised health and diet foods purchased in Manhattan

(see Table 7.5). Determine the two-sided P value for a test of the null hypothesis

that the population mean is 0.

7.22 Use the data in Exercise 6.24 to determine the two-sided P value for a test of the

null hypothesis that the population mean of the differences between the daugh-

ter’s income and her mother’s income is equal to 0. Does the average difference

seem substantial?

7.23 In a letter to the prestigious New England Journal of Medicine, a doctor reported

that 20 of his male patients with creases in their earlobes had many of the risk

Table 7.4 Exercise 7.20

Chinese chicken 15 Florentine manicotti 6
Gyoza 60 Egg foo young 80
Jelly diet candy—red 250 Hummus with salad 95
Jelly diet candy—fruit 145 Baba ghanoush with salad 3

Table 7.5 Exercise 7.21

Noodles Alfredo 2 Imperial chicken �4
Cheese curls �28 Vegetable soup �18
Green beans �6 Cheese 10
Mixed fruits 8 Chocolate pudding 5
Cereal 6 Sausage biscuit 3
Fig bars �1 Lasagna �7
Oatmeal raisin cookie 10 Spread cheese 3
Crumb cake 13 Lentil soup �0.5
Crackers 15 Pasta with shrimp �10
Blue cheese dressing �4 Chocolate mousse 6
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factors (such as high cholesterol levels, high blood pressure, and heavy cigarette

usage) associated with heart disease [26]. For instance, the average cholesterol

level for his patients with noticeable earlobe creases was 257 (mg per 100 mL),

compared to an average of 215 with a standard deviation of 10 for healthy

middle-aged men. If these 20 patients were a random sample from a population

with a mean of 215 and a standard deviation of 10, what is the probability their

average cholesterol level would be 257 or higher? Explain why these 20 patients

may not be a random sample.

7.24 A researcher collected data on the number of people admitted to a mental health

clinic’s emergency room on 12 days when the moon was full [27]:

5 13 14 12 6 9 13 16 25 13 14 20

a. Calculate the two-sided P value for a test of the null hypothesis that these

data are a random sample from a normal distribution with a population

mean equal to 11.2, the average number of admissions on other days.

b. Explain why you either agree or disagree with this reasoning: “Because the

sample mean was larger than 11.2, I calculated a one-sided P value.”

7.25 The study of immigrant women and their adult daughters mentioned in the text

also separated the data into 580 mother–daughter pairs where the adult daughter

lived in the same ZIP code she was born in and 3541 pairs where the daughters

moved to a different ZIP code. For the 580 daughters who stayed, the difference

in ZIP-code percentile had a mean of �2.5775 and a standard deviation of

8.1158. For the 3541 daughters who moved, the difference in ZIP-code percentile

had a mean of 4.3066 and a standard deviation of 27.6117. For each of these two

data sets, calculate the two-sided P value for testing the null hypothesis that the

mean is 0. Compare your results.

7.26 A builder contracted for the delivery of 4 million pounds of loam. The supplier

delivered the loam in 1000 truckloads that he claims average 4000 pounds of loam.

The builder weighed a random sample of 16 truckloads and obtained these data:

3820 3900 4000 3820 3780 3880 3700 3620
4380 3560 3840 3980 4040 4140 3780 3780

Using a one-tailed test, do these data reject the supplier’s claim at the 5 percent

level?

7.27 Chapter 6 discussed a test of a new enzyme in which a sample of 41 observa-

tions found an average yield of 125.2 with a standard deviation of 20.1. A mem-

ber of the research department was unimpressed because the standard deviation
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of 20.1 was large relative to the difference between 125.2 and 100 (which would

be the yield if the new process was ineffective). Use these data to test the null

hypothesis that average yield is m ¼ 100.

7.28 Use the data in Exercise 6.21 to calculate the two-sided P value for a test of the

null hypothesis that the population mean is 25.53.

7.29 Use the data in Exercise 6.22 to calculate the two-sided P value for a test of the

null hypothesis that the population mean is 37,408.

7.30 Use the data in Exercise 6.23 to calculate the two-sided P value for a test of the

null hypothesis that the population mean is 40,064—which is, in fact, the actual

value of the population mean. If this experiment were to be repeated a large

number of times, what percentage of the time would you expect the two-sided

P value to be less than 0.05?

7.31 Use the data in Exercise 6.27 to calculate the two-sided P value for a test of the

null hypothesis that the population mean is 299,710.50.

7.32 While playing bridge recently, Ira Rate picked up his 13-card hand and found

that it contained no spades. He promptly threw his cards down and declared

that the deal had not been random. He read in a statistics textbook that (a) the

probability of being dealt a hand with no spades is less than 5 percent and (b)

this low a probability is sufficient evidence to show that the deal was not fair.

Point out a flaw or two in his reasoning.

7.33 The following letter to the editor was printed in Sports Illustrated [28]:

In regard to the observation made by Sports Illustrated correspondent Ted O’Leary

concerning this year’s bowl games (Scorecard, January 16), I believe I can offer an

even greater constant. On Jan. 2 the team that won in all five games started the

game going right-to-left on the television screen. I should know, I lost a total of

10 bets to my parents because I had left-to-right in our family wagers this year.

If right to left makes no difference, the chances of losing all five bets is 0.0312.

Are you convinced, then, that right to left does matter? What other explanation

can you provide?

7.34 “As January goes, so goes the year” is an old stock market adage. The idea is that

if the market goes up from January 1 to January 31, then it will go up for the

entire year, January 1 to December 31. If the market drops in January, then it

will be a bad year. Newsweek cited this theory and reported that “this rule of

thumb has proved correct in 20 of the past 24 years” [29]. Explain why you are

skeptical about this evidence.

7.35 In 1987, a brokerage firm observed that “since 1965, the Dow Jones Industrial

Average declined 16 out of 21 times during the month of May. As of this writing,

it appears as if another down May is in the offing. We offer no rational
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explanation for this “May phenomenon.” We only observe that it often sets up

attractive trading opportunities” [30]. Does this evidence persuade you that peo-

ple should sell their stocks next April? Why or why not?

7.36 When she was in junior high school, Elizabeth Likens started listening to

classical music after she was told that “studies show that students who listen to

classical music get better grades.” What would you advise?

7.37 A scientist visited the homes of Denver children who had died of cancer and

found that many lived near power lines. A Swedish study analyzed data on can-

cer deaths and exposure to electro-magnetic fields (EMFs) from power lines.

They did nearly 800 statistical tests and found that children diagnosed with

leukemia had above-average exposure to EMFs [31]. What statistical problems do

you see with these two studies? Be specific.

7.38 Two Dutch researchers found that nondrinkers “are 50% more likely to get hurt

on the [ski] slopes than skiers who imbibe heavily, and that people who sleep

long and deeply are more prone to injury than those who are late-to-bed and

early-to-rise” [32]. Provide an explanation other than that the route to safer

skiing is to drink lots and sleep little?

7.39 Explain why you either agree or disagree with each of the following statements:

a. A test that is significant at the 1% level is also significant at the 5% level.

b. If the t value is 0, the P value is 0.

c. If the null hypothesis is m ¼ 0, you can use a one-sided P value once you

know whether your estimate is positive or negative.

7.40 A random sample of 800 first-year students at a large university included 558

students who had attended public high schools and 242 who had attended pri-

vate schools. The average grade point average (GPA) was 3.52 for students

from public schools and 3.26 for students from private schools. Does the

observed difference seem substantial? The author calculated the P value to be

0.10 and concluded that although “this study proved the null hypothesis to be

true,.the sample size is minuscule in comparison to the population.” Did she

prove the null hypothesis to be true? Are her results invalidated by the small

sample size?

7.41 A test of the null hypothesis that the average college student gains 15 pounds

during the first year at college surveyed a random sample of 100 students and

obtained a sample mean of 4.82 pounds with a standard deviation of

5.96 pounds. Explain why you either agree or disagree with each of these

conclusions:

a. “We assumed that the standard deviation of our sample equaled the popula-

tion standard deviation.”

b. “We calculated the t value to be �17.08. The two-sided P value is

2.82 � 10�31. According to Fisher’s rule of thumb, our data are not statistically
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significant because our P value is considerably less than 0.05. This indicates

that the probability of observing a large difference between the sample mean

and the null hypothesis is greater than 0.05.”

c. “Our data strongly indicate that the Freshman 15 is just a myth. However, it

must be recognized that we only took one sample of 100 students. Perhaps, if

we took other samples, our results would be different.”

7.42 Before 1996, the Environmental Protection Agency (EPA) concluded that second-

hand smoke poses a cancer risk if a 95 percent confidence interval for the differ-

ence in the incidence of cancer in control and treatment groups excluded 0. In

1996, the EPA changed this rule to a 90 percent confidence interval [33]. If, in fact,

secondhand smoke does not pose a cancer risk, does a switch from a 95 percent to

a 90 percent confidence interval make it more or less likely that the EPA will

conclude that secondhand smoke poses a cancer risk? Explain your reasoning.

7.43 A treatment group was given a cold vaccine, while the control group was given a

placebo. Doctors then recorded the fraction of each group that caught a cold

and calculated the two-sided P value to be 0.08. Explain why you either agree or

disagree with each of these interpretations of these results:

a. “There is an 8 percent probability that this cold vaccine works.”

b. “If a randomly selected person takes this vaccine, the chances of getting sick

fall by about 8 percent.”

c. “These data do not show a statistically significant effect at the 5 percent level;

therefore, we are 95 percent certain that this vaccine does not work.”

7.44 A study of the relationship between socioeconomic status and juvenile de-

linquency tested 756 possible relationships and found 33 statistically significant

at the 5 percent level [34]. What statistical reason is there for caution here?

7.45 In 1989, The New York Times reported that, if the Dow Jones Industrial Average

increases between the end of November and the time of the Super Bowl, the

football team whose city comes second alphabetically usually wins the Super

Bowl [35]. How would you explain the success of this theory? Why did they

choose the end of November for their starting date?

7.46 The results of hypothesis tests are often misinterpreted in the popular press. For

instance, explain how this Business Week summary of a Data Resources

Incorporated (DRI) study of insider trading in the stock market is misleading:

DRI also compared the action of a sample of takeover stocks in the month before

the announcement with the action of those same stocks in other, less significant

one-month intervals. The conclusion: There was only 1 chance in 20 that the

strength of the takeover stocks was a fluke. In short, the odds are overwhelming

that inside information is what made these stocks move [36].
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7.47 A Wall Street Journal editorial stated:

We wrote recently about a proposed Environmental Protection Agency ban on

daminozide, a chemical used to improve the growth and shelf life of apples.

EPA’s independent scientific advisory panel last week ruled against the

proposed prohibition. “None of the present studies are considered suitable” to

warrant banning daminozide, the panel said. It also criticized the “technical

soundness of the agency’s quantitative risk assessments” for the chemical. EPA

can still reject the panel’s advice, but we see some evidence that the agency is

taking such evaluations seriously. There is no better way to do that than to

keep a firm grip on the scientific method, demanding plausible evidence when

useful substances are claimed to be a danger to mankind [37].

Does the Journal’s interpretation of the scientific method implicitly take the null

hypothesis to be that daminozide is safe or that it is dangerous?

7.48 Researchers used a random sample to test the null hypothesis that the average

change between 2000 and 2010 in the real hourly wages of construction workers

was equal to 0. Their decision rule was to reject the null hypothesis if the two-

sided P value is less than a. Use a rough sketch to answer the following ques-

tions. If the population mean is, in fact, equal to �$0.75,

a. are they more likely to reject the null hypothesis if a ¼ 0.05 or if a ¼ 0.01?

b. are they more likely not to reject the null hypothesis if a ¼ 0.05 or if a ¼ 0.01?

7.49 Researchers used a random sample of size 100 to test the null hypothesis that

the average difference between the household income of immigrant women and

their adult daughters is equal to 0. Their decision rule was to reject the null

hypothesis if the two-sided P value is less than a. Suppose that the population

mean is, in fact, $500 and the standard deviation is known to be $5000. Calculate

the probability that they will

a. reject the null hypothesis if a ¼ 0.05. If a ¼ 0.01.

b. not reject the null hypothesis if a ¼ 0.05. If a ¼ 0.01.

7.50 In a 1982 racial discrimination lawsuit, the court accepted the defendant’s argu-

ment that racial differences in hiring and promotion should be separated into

eight job categories [38]. In hiring, it turned out that blacks were underrepre-

sented by statistically significant amounts (at the 5 percent level) in four of the

eight job categories. In the other four categories, whites were underrepresented

in two cases and blacks were underrepresented in two cases, though the differ-

ences were not statistically significant at the 5 percent level. The court

concluded that four of eight categories was not sufficient to establish a prima

facie case of racial discrimination. Assume that the data for these eight job cate-

gories are independent random samples.
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a. What is the null hypothesis?

b. Explain why data that are divided into eight job categories might not show

statistical significance in any of these job categories, even though there is sta-

tistical significance when the data are aggregated.

c. Explain why data that are divided into eight job categories might show statis-

tical significance in each of the eight categories, even though there is no

statistical significance when the data are aggregated.
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“The cause of lightning,” Alice said very decidedly, for she felt quite sure about this,
“is the thunder—no, no!” she hastily corrected herself. “I meant it the other way.”

“It’s too late to correct it,” said the Red Queen. “When you’ve once said a thing,
that fixes it, and you must take the consequences.”

—Lewis Carroll, Alice in Wonderland

Regression models are used in the humanities, social sciences, and natural sciences

to explain complex phenomena. Linguistic models use aptitude and motivation to

explain language proficiency. Economic models use income and price to explain

demand. Political models use incumbency and the state of the economy to explain

presidential elections. Agricultural models use weather and soil nutrients to explain crop

yields.

In this chapter, we analyze the simplest regression model, which has only one

explanatory variable. We look at the assumptions that underlie this model and see how

to estimate and use the model. Chapter 10 looks at more complex models that have more

than one explanatory variable.
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The Regression Model
In Chapter 1, we noted that one of the main components of Keynes’ explanation of

business cycles was a “consumption function” that relates household spending to

income. When people lose their jobs and income, they cut back on spending—which

jeopardizes other people’s jobs. Figure 8.1 is a scatterplot of the annual US household

income and spending data in Table 1.1.

There appears to be a positive statistical relationship, just as Keynes hypothesized.

(Remember, he stated his theory before there were any data to test his theory.) To estimate

this relationship, we need an explicit model. The linear (or straight-line) model is:

Y ¼ aþ bX

where Y is the dependent variable (spending), X is the explanatory variable (income), and

a and b are two parameters. This model is shown in Figure 8.2.

The parameter a is the value of Y when X ¼ 0. The parameter b is the slope of the line:

the change in Y when X increases by 1. For instance, b ¼ 0.8 means that when household

income increases by $1.00, spending tends to increase by $0.80.

Regression models are often intended to depict a causal relationship, in that the

researcher believes that changes in the explanatory variable cause changes in the

dependent variable. The sign of the parameter b tells us whether this effect is positive or

negative. In our example, a positive value for b means that an increase in income causes

an increase in spending.
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1929–1940.
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Sometimes, we use a regression model to investigate the statistical relationship

between two variables without making any assumptions about causality. For example,

we might look at the statistical relationship between midterm and final examination

scores. We do not think that midterm scores “cause” final examination scores. Instead,

we believe that both scores are related to a student’s knowledge of the subject, and we

want to see how closely these test scores are correlated.

The data in Figure 8.1 do not lie exactly on a straight line, because household

spending is affected by other things besides income (perhaps stock prices, interest rates,

and inflation). In recognition of these other factors, the simple linear regression model

includes an error term ε that encompasses the effects on Y of factors other than X:

Y ¼ aþ bX þ ε (8.1)

Some of these other factors are intentionally left out of the model because we do not

think they are important; some may be omitted because we do not have data for them

(like Keynes’ “animal spirits” in the stock market).

To reinforce the fact that the variables Y, X, and ε take on different values, while a and

b are fixed parameters, the regression model can be written with i subscripts:

Yi ¼ aþ bXi þ εi

For notational simplicity, we typically omit these subscripts.

The omitted influences encompassed by the error term ε imply that, for any given

value of X, the value of Ymay be somewhat above or below the line a þ bX, depending on

whether the value of ε is positive or negative. Because the error term represents the

X

Y
Y = α + βX

1

α

β

FIGURE 8.2 The linear model.
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cumulative influence of a variety of omitted factors, the central limit theorem suggests

that the values of the error term can be described by a normal distribution. In addition,

we assume:

1. The population mean of the error term is 0.

2. The standard deviation of the error term is constant.

3. The values of the error term are independent of each other.

4. The values of the error term are independent of X.

The first assumption is innocuous, since the value of the intercept is set so that the

population mean of ε is 0. Because the expected value of the error term is 0, we can write

the expected value of Y as:

E½Y � ¼ aþ bX

The second assumption is often reasonable, but sometimes violated, for example, if

the size of the omitted influences depends on the size of the population. One way to

guard against such effects is to scale our data, for example, by using per capita values.

The third assumption states that the values of the error term are independent of each

other, in our consumption example, that the value of the error term in 1939 does not

depend on the value of the error term in 1938. However, the error term involves omitted

variables whose values may not be independent. The error term in a consumption

function may include the rate of inflation, and 1939 inflation may not be independent of

1938 inflation. Advanced courses show how correlations among errors can be detected

and how our statistical procedures can be modified to take this additional information

into account. Violations of the second and third assumptions do not bias our estimates

of a and b; however, the standard deviations of the estimates are unnecessarily large

and underestimated, leading us to overestimate the statistical significance of our

results.

The fourth assumption is probably the most crucial. It states that the error term is

independent of X. Suppose that spending depends on both income and stock prices and

that stock prices are positively correlated with income. If income is the explanatory

variable and stock prices are part of the error term, then X and ε are correlated and the

fourth assumption is violated. Here is why this is a problem. When income rises, stock

prices tend to rise, too, and both factors increase spending. If we compare spending and

income, with stock prices in the error term, we overestimate the effect of income on

spending because we do not take into account the role of stock prices. The best way to

deal with this problem is to use a multiple regression model with both income and stock

prices as explanatory variables. In this chapter, we use the simple model to introduce the

principles of regression analysis, and we assume that all four assumptions are correct.

The effects of the error term on the observed values of Y are depicted in Figure 8.3.

For any value of X, the expected value of Y is given by the line a þ bX. If the value of ε

happens to be positive, the observed value of Y is above the line; if the value of ε happens

to be negative, the observed value of Y is below the line. In Figure 8.3, y1 and y3 are below

222 ESSENTIAL STATISTICS, REGRESSION, AND ECONOMETRICS



the line, and y2 is above the line. Of course, we have no way of knowing which values of ε

are positive and which are negative. All we see are the observed values of X and Y, as in

Figure 8.4, and we use these observed values to estimate the slope and intercept of the

unseen line. The next section does this.

�

�

�

X
x1 x2 x3

y1

y2

y3

Y FIGURE 8.3 The error term causes Y to be
above or below the line E[Y] ¼ a þ bX.
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•

•

X

Y

x1 x2 x3

y1

y2

y3

FIGURE 8.4 We see X and Y, but not the error
term.
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Least Squares Estimation
In 1765, J. H. Lambert, a Swiss-German mathematician and scientist, used scatter dia-

grams to show relationships between variables, for example, the relationship between

the temperature of water and how rapidly it evaporates. He fitted a line to these points

simply by drawing a line that seemed to fit the points best: “It must therefore be drawn

in such a way that it comes as near as possible to its true position and goes, as it were,

through the middle of the given points” [1].

Two hundred years later, in the 1970s, the chief economic forecaster at one of the

largest US banks fitted lines to scatter diagrams with a pencil and transparent ruler.

Fitting lines by hand is hopelessly amateurish. It is often hard to know exactly where to

draw the lines and even harder to identify the intercepts and calculate the slopes. In

addition, we cannot fit lines by hand to multiple regression models with several

explanatory variables. So, this bank forecaster had to work with models that had only one

explanatory variable.

It is much better to have an explicit mathematical rule for determining the line that

best fits the data. To do so, we need to specify what we mean by best fit. If our regression

model will be used to predict Y, then it makes sense to find the line that makes the most

accurate predictions. The fitted line will have an intercept a and a slope b, and the

predicted value of Y for an observed value of X is:

by ¼ aþ bx (8.2)

We use the symbols a and b for the fitted line to distinguish these estimates of the

slope and intercept from the unknown parameters a and b.

For a given value of X, the prediction error is equal to the difference between

the actual value of the dependent variable and the predicted value, y � by . If we have n

observations, then we might be tempted to calculate the sum of the prediction errors:

Xn
i¼1

�
yi � byi

�
The problem is that positive and negative errors offset each other. If one prediction is

one million too high and another prediction is one million too low, the sum of the

prediction errors is 0, even though we are not making accurate predictions. To keep

positive and negative errors from offsetting each other, we can square the prediction

errors: Xn
i¼1

�
yi � byi

�2
It does not matter whether a prediction error is positive or negative, only how large it

is. It is reasonable to say that the line that has the smallest sum of squared prediction

errors is the line that best fits the data.
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The equations for the slope b and intercept a of the line that minimizes the sum of

squared prediction errors are the least squares estimates of a and b. The formula for the

least squares estimator of b is:

b ¼
Pn

i¼1ðxi � xÞ�yi � y
�Pn

i¼1 ðxi � xÞ2 (8.3)

The denominator is the sum of squared deviations of X about its mean and is always

positive. The numerator is the sum of the products of the deviation of X from its mean

times the deviation of Y from its mean. If Y tends to be above its mean when X is above

its mean and Y tends to be below its mean when X is below its mean, then b is positive

and there is a positive statistical relationship between X and Y. If, on the other hand, Y

tends to be below its mean when X is above its mean and Y tends to be above its mean

when X is below its mean, then there is a negative statistical relationship between X

and Y.

After the slope has been calculated, the intercept is easily computed from the

mathematical fact that the least squares line runs through the mean values: y ¼ aþ bx.

Rearranging,

a ¼ y � bx (8.4)

We do not need to do these calculations by hand. After we enter the values of X and Y

in a statistical software program, the program almost immediately displays the least

squares estimates, along with a wealth of other information. Figure 8.5 shows the least
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FIGURE 8.5 The least squares line for
household income and spending, 1929–1940.
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squares line for the scatterplot of data on household income and spending graphed in

Figure 8.1. No other line has a smaller sum of squared prediction errors. The least

squares estimate of the slope is 0.84 and the least squares estimate of the intercept is

7.12. In the next two sections, confidence intervals and hypothesis tests are used to

gauge the precision of these estimates and make inferences about a and b.

Confidence Intervals
When we use a sample mean to estimate a population mean, we recognize that the

sample is but one of many samples that might have been selected, and we use a con-

fidence interval to gauge the uncertainty in our estimate. We can do the same with a

regression model.

Look back at Figure 8.3, which shows how the observed values of Y depend on the

values of ε. As drawn, a line fitted to these three points is fairly close to the true

relationship. However, if the error term for the first observation happened to be positive

instead of negative, y1 would be above the true line, rather than below it, and the least

squares line would be flatter than the true relationship, giving an estimated slope that is

too low and an estimated intercept that is too high. On the other hand, if the error term

for the third observation happened to be positive, y3 would be above the true line and the

least squares line would be steeper than the true relationship, giving an estimate of the

slope that is too high and an estimate of the intercept that is too low.

Because we see only the observed values of X and Y and not the error term, we do not

know whether our estimates of a and b are too high or too low, just as we do not know

whether a sample mean is higher or lower than the population mean. However, we can

gauge the reliability of our estimates by calculating standard errors and confidence

intervals. If the error term is normally distributed and conforms to the four assumptions

stated earlier, then our estimators are normally distributed with population means equal

to the values of the parameters they are estimating:

awN ½a; standard deviation of a�
bwN ½b; standard deviation of b�

Figure 8.6 shows the probability distribution for our least squares estimator b.

Both a and b are unbiased estimators, in that the population means are equal to a and

b. The formulas for the standard deviations are too complicated to present here, but we

do not need the formulas since the calculations will be done by statistical software.

There are four intuitively reasonable properties that are worth noting:

1. The standard deviations of the estimators are smaller if the standard deviation of

the error term is small. If the values of ε are small, then the fitted line will be very

close to the true relationship.

2. The standard deviations of the estimators are smaller if there are a large number of

observations. With lots of data, the observations above and below the true
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relationship are more likely to balance each other out, giving accurate estimates of

both the slope and intercept.

3. The standard deviations of the estimators are smaller if there is a large amount of vari-

ation in X. If Xmoves around a lot, we can get a good idea of how changes in X affect Y.

4. The standard deviation of our estimate of the intercept is larger if the values of X

are far from 0. We will know little about the value of Y when X is equal to 0 if we

do not observe X near 0.

The standard error of estimate (SEE) is our estimate of the standard deviation of the

error term:

SEE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

�
yi � byi

�
2

n� 2

s
(8.5)

The SEE is the square root of the average prediction error (but we divide by n � 2

rather than n, because the estimation of a and b uses up two degrees of freedom). As in

earlier chapters, the term standard error is used to distinguish a sample estimate from

the population value. So, the estimated standard deviations of a and b are called

standard errors.

The standard errors of a and b can be used to calculate confidence intervals for the

slope and intercept. After choosing a confidence level, such as 95 percent, we use the t

distribution with n � 2 degrees of freedom to determine the value t* that corresponds to

this probability.

The confidence intervals are equal to our estimates, plus or minus the appropriate

number of standard errors:

a� t�ðStandard error of aÞ
b� t�ðStandard error of bÞ

0.0
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FIGURE 8.6 The sampling distribution
of b.
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For our consumption function, statistical software tells us that the standard errors

are:

Standard error of a ¼ 1:3396

Standard error of b ¼ 0:0202

With 12 observations, we have 12 � 2 ¼ 10 degrees of freedom. Table A.2 gives

t* ¼ 2.228 for a 95 percent confidence interval with 10 degrees of freedom, so that a 95

percent confidence interval for the intercept is:

95% confidence interval for a ¼ 7:12� 2:228ð1:3396Þ
¼ 7:12� 2:98

and a 95 percent confidence interval for the slope is:

95% confidence interval for b ¼ 0:84� 2:228ð0:0202Þ
¼ 0:84� 0:05

We are usually keenly interested in the slope because this tells us how changes in

X affect Y. The intercept is typically less interesting, unless we are planning to predict

the value of Y when X equals 0.

Hypothesis Tests

It is one short step from confidence intervals to hypothesis tests. The most common null

hypothesis is that the value of the slope is 0:

H0: b ¼ 0

H1: bs0

If the slope is 0, there is no systematic linear relationship between X and Y.

Of course, we chose our model because we think that Y is related to X. The null

hypothesis b ¼ 0 is a straw hypothesis that we hope to reject. The alternative

hypothesis is two sided unless we can rule out positive or negative values for b before

we look at the data.

The null hypothesis is tested with a t statistic that measures how many standard

errors the estimate of b is from the value of b under the null hypothesis:

t ¼ estimated value of b� null hypothesis value of b

standard error of the estimate of b
(8.6)

If the null hypothesis value of b is 0, then the t statistic is simply the ratio of the

estimated slope to its standard error:

t ¼ b

standard error of b

With a reasonable number of observations, the P value will be less than 0.05 if the

absolute value of t is larger than 2. If the estimate is more than twice the size of the

standard error, then the estimate of b is more than two standard errors from 0.
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In our consumption example, the estimate is b ¼ 0.84 and the standard error of b is

0.02, giving a t value of:

t ¼ 0:84

0:02

¼ 41:42

The estimated slope is 41.42 standard errors from 0, and rejects the null hypothesis

decisively. Statistical software shows the two-sided P value to be 8.0 � 10�13.

Some researchers report their estimated coefficients along with the standard errors:

Using annual US household income and spending data for 1929–1940, a least squares

regression yields this estimated consumption function:by ¼ 7:12þ 0:84x
ð1:34Þ ð41:4Þ

( ): standard errors

Most readers look at the ratio of the estimated slope to its standard error (here, 0.84/

0.02) to see whether this ratio is larger than 2. This is such an ingrained habit that re-

searchers often report t values along with their parameter estimates, to save readers the

trouble of doing the arithmetic. Because they have little interest in the intercept, some do

not bother to report its t value:

Using annual US household income and spending data for 1929–1940, a least squares

regression yields this estimated consumption function:

by ¼ 7:12þ 0:84x
½41:4�

[ ]: t value

Another reporting format is to show the two-sided P value.

The reported t value and P value are for the null hypothesis b ¼ 0, since our foremost

concern is generally whether there is a statistically significant linear relationship

between the explanatory variable and the dependent variable. Sometimes, we are

interested in a different null hypothesis. An automaker may want to know not only

whether a 1 percent increase in prices will reduce the number of cars sold, but whether

it will reduce sales by more than 1 percent. To test hypotheses other than b ¼ 0, we

substitute the desired value into Eqn (8.6).

In addition to considering whether the estimated relationship between X and Y is

statistically significant, we should consider if the estimated relationship has the correct

sign. Here, we anticipated that an increase in income would have a positive effect on

spending and the estimated slope is indeed positive. If the estimate had turned out to

be negative and statistically significant, the most likely explanation would be that an

important variable had been omitted from our analysis and played havoc with our

estimates. For example, it might have coincidentally turned out that the stock market

fell in those years when income increased. A scatter diagram of spending and income

would then suggest that higher income reduces spending, when in fact the positive

effects of higher income were overwhelmed by falling stock prices. If we are able, on
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reflection, to identify such a confounding variable, then we can use the multiple

regression techniques discussed in Chapter 10.

In addition to the correct sign, we should consider whether the estimated slope is

substantial and plausible. We cannot determine this merely by saying whether the slope

is a big number or a small number. We have to provide some context by considering the

magnitudes of the variables X and Y. The slope tells us the effect on Y of a one unit

increase in X. (We say “one unit” because X might be measured in hundredths of an inch

or trillions of dollars.) Here, X and Y are income and spending, each in billions of dollars.

The 0.84 slope means that a $1 billion increase in income is predicted to increase

spending by $0.84 billion. This is a substantial and plausible number.

R2

One measure of the success of a regression model is whether the estimated slope has a

plausible magnitude and is statistically significant. Another is the size of the prediction

errors—how close the data are to the least squares line. Large prediction errors suggest

that the model is of little use and may be fundamentally flawed. Small prediction errors

indicate that the model may embody important insights. However, we need a scale to

put things into perspective. An error of $1000 in predicting the value of a million-dollar

variable may be more impressive than a $1 error in predicting a $2 variable. We should

also consider whether Y fluctuates a lot or is essentially constant; it is easy to predict the

value of Y if Y does not change much.

An appealing benchmark that takes these considerations into account is the coeffi-

cient of determination, R2, which compares the model’s sum of the squared prediction

errors to the sum of the squared deviations of Y about its mean:

R2 ¼
Pn

i¼1

�
yi � by�2Pn

i¼1

�
yi � y

�2 (8.7)

The numerator is the model’s sum of squared prediction errors; the denominator is

the sum of squared prediction errors if we ignore X and simply use the average value of Y

to predict Y.

The value of R2 cannot be less than 0 nor greater than 1. An R2 close to 1 indicates that

the model’s prediction errors are very small in relation to the variation in Y about its

mean. An R2 close to 0 indicates that the regression model is not an improvement over

ignoring X and simply using the average value of Y to predict Y.

Mathematically, the sum of the squared deviations of Y about its mean can be

separated into the sum of the squared deviations of the model’s predictions about the

mean and the sum of the squared prediction errors:Xn
i¼1

�
yi � y

�2 ¼
Xn
i¼1

�byi � y
�2 þ

Xn
i¼1

�
yi � byi

�2
total

sum of squares
¼ explained

sum of squares
þ unexplained

sum of squares
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The variation in the predictions about the mean is the “explained” sum of squares,

because this is the variation in Y attributed to the model. The prediction errors are

the unexplained sum of squares. Dividing through by the total sum of squares,

we have:

1 ¼ explained

total
þ unexplained

total

Because R2 is equal to 1 minus the ratio of the sum of squared prediction errors to the

sum of squared deviations about the mean, we have:

R2 ¼ 1� unexplained

total

¼ explained

total

Thus R2 can be interpreted as the fraction of the variation in the dependent variable

that is explained by the regression model. The consumption function in Figure 8.5 has an

R2 of 0.994, showing that 99.4 percent of the variation in consumption during this period

can be explained by the observed changes in income.

The correlation coefficient is equal to the square root of R2 and can also be calculated

directly from this formula (Eqn (3.7) in Chapter 3):

r ¼ ðcovariance between x and yÞ
ðstandard deviation of xÞðstandard deviation of yÞ

¼ sxy
sxsy

(8.8)

The correlation coefficient is positive if the least squares line has a positive slope and

negative if the least squares line has a negative slope. The correlation coefficient equals

1 or �1 if all of the points lie on a straight line and equals 0 if a scatter diagram shows no

linear relationship between X and Y.

Figure 8.7 gives four examples, with correlation coefficients of 0.90, �0.75, 0.50,

and 0.00.

Figure 8.8 shows how a zero correlation coefficient does not rule out a perfect

nonlinear relationship between two variables. In Figure 8.8, Y and X are exactly related

by the equation Y ¼ 20X � X2. But the least squares line has a slope of 0 and a correlation

coefficient of 0. Despite a perfect (nonlinear) relationship between X and Y, there is no

linear relationship, in that the best linear predictor of Y is to ignore the value of X and

use the average value of Y. This example also demonstrates the value of looking at a

scatterplot of the data.

Unlike the slope and intercept of a least squares line, the value of the correlation

coefficient does not depend on which variable is on the vertical axis and which is on the

horizontal axis, or on the units in which the variables are measured. For instance, the

correlation between height and weight does not depend on whether heights are in

inches or centimeters, weights are in pounds or kilograms, or which variable is on the

vertical axis.

Chapter 8 • Simple Regression 231



Because the correlation does not depend on which variable is considered the

dependent variable, correlation coefficients are often used to give a quantitative measure

of the direction and degree of association between two variables that are related sta-

tistically but not necessarily causally. For instance, Exercise 8.47 concerns the correlation

between the IQ scores of 34 identical twins who were raised apart. We do not believe that

either twin causes the other to have a high or low IQ score but rather that both scores are

influenced by common hereditary factors; and we want a statistical measure of the

degree to which their scores are related statistically. The correlation coefficient does that.

A statistical test of the null hypothesis that the population correlation coefficient is

0 is computationally equivalent to a t test of the null hypothesis that b ¼ 0. Back when

calculations were done by hand, Eqn (8.8) provided a simple, direct way to calculate the

correlation coefficient. Nowadays, it is easy to use statistical software to estimate a

regression equation and thereby calculate the correlation coefficient, along with the t

value and the P value for a statistical test of the equivalent null hypotheses that the slope

and correlation are equal to 0.
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232 ESSENTIAL STATISTICS, REGRESSION, AND ECONOMETRICS



Using Regression Analysis
So far, we have used a Keynesian consumption function to illustrate the mechanics of

regression analysis. We now apply these lessons to three other examples.

Okun’s Law Revisited

In Chapter 1, we noted that Arthur Okun, one of John F. Kennedy’s economic advisors,

estimated the relationship between the percent change in real gross domestic product

(GDP) and the change in the unemployment rate. Using data for 1948–1960, his estimate,

now known as Okun’s law, was that real output would be about 3 percent higher if the

unemployment rate were 1 percentage point lower [2]. We can see if this relationship still

holds using data through 2014.

Figure 8.9 shows a simple scatterplot. The line drawn through these points is the least

squares line: bU ¼ 1:220� 0:375Y ; R2 ¼ 0:67
½9:53� ½11:58�

where U is the change in the unemployment rate, Y is the percent change in real GDP,

and the t values are in brackets. The relationship is highly statistically significant, with

the 11.58 t value implying a two-sided P value of 1.2 � 10�17. The slope is negative as

expected. If a 1 percent change in real GDP is predicted to reduce the unemployment
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FIGURE 8.8 A zero correlation coefficient does not mean that X and Y are unrelated.
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rate by 0.375 percentage points, then a 1 percentage-point change in the unemployment

rate implies a 2.67 percent change in real GDP:

1

0:375
¼ 2:67

Despite all the changes in the US economy over the past 50 years, Okun’s law is a

remarkably robust statistical relationship.

The Fair Value of Stocks

Chapter 2 introduced the Federal Reserve’s stock valuation model, in which the “fair

value” of stock prices is such that the earnings/price ratio (E/P) for the S&P 500 is equal

to the interest rate R10 on 10-year Treasury bonds:

E

P
¼ R10 (8.9)

Figure 2.23 is a time-series graph showing that E/P and R10 do tend to move up and

down together.

Now, we are ready to examine the statistical relationship between these variables.

Figure 8.10 is a scatter diagram using quarterly data. The line drawn through this

scatterplot is the least squares line:bE
P
¼ 2:013þ 0:692R10; R2 ¼ 0:48

½5:93� ½14:25�
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The t values are in brackets.

We noted in Chapter 2’s discussion of the Fed’s “fair value” model that we do not

expect the earnings/price ratio to exactly equal the interest rate on 10-year Treasury

bonds, though we might expect them to be positively correlated. The estimated equation

confirms this. The 14.25 t value means that the two-sided P value for a test of the null

hypothesis that E/P and R10 are uncorrelated is 2.2 � 10�33. The 0.48 R2 means that there

is a 0.69 correlation (
ffiffiffiffiffiffiffi
:48

p ¼ 0:69) between E/P and R10 and that 48 percent of the

variation in the earnings/price ratio can be explained by changes in the 10-year interest

rate. For something as volatile and notoriously hard to predict as the stock market, that is

very impressive.

The Nifty 50

In the early 1970s, many investors were infatuated by the Nifty 50, which were 50 growth

stocks considered so appealing that they should be bought and never sold, regardless of

price. Among these select few were Avon, Disney, McDonald’s, Polaroid, and Xerox. Each

was a leader in its field with a strong balance sheet, high profit rates, and double-digit

growth rates.

Is such a company’s stock worth any price, no matter how high? In late 1972, Xerox

traded for 49 times earnings, Avon for 65 times earnings, and Polaroid for 91 times

earnings. Then the stock market crashed. From their 1972–1973 highs to their 1974 lows,

Xerox fell 71 percent, Avon 86 percent, and Polaroid 91 percent.
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How well did these stocks do in the long run? And, is there any relationship between

their 1972 price/earnings (P/E) ratio and subsequent performance? Figure 8.11 is a

scatterplot of the price/earnings ratios of the Nifty 50 stocks in December 1972 and their

annualized rates of return (RR) from December 31, 1972, through December 31, 2001.

The horizontal line is the 12.01 percent annual return for the S&P 500 over this period.

The least squares line is:

cRR ¼ 17:735� 0:2036
P

E
; R2 ¼ 0:31

with the standard errors in parentheses. The t value for testing the null hypothesis that

the slope equals 0 is �4.64:

t ¼ b� 0

standard error of b

¼ �0:2036� 0

0:0439

¼ �4:64

There are 50 observations and 50 � 2 ¼ 48 degrees of freedom. The two-sided P value

is 0.000026, decisively rejecting the null hypothesis.

With 48 degrees of freedom, the t value for a 95 percent confidence interval is

t* ¼ 2.011 and a 95 percent confidence interval for the slope is:

b� t�standard error of b ¼ �0:204� 2:011ð0:0439Þ
¼ �0:204� 0:088

It is estimated that a 1-point increase in the P/E, say from 50 to 51, reduces the annual

rate of return by about 0.204 percent. A 10-point increase in the P/E, say from 50 to 60, is

predicted to reduce the annual rate of return by about 2.04 percent, which is a lot.
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Sunny Upside

People tend to be happier on sunny days than on cloudy days. Might these mood swings

affect the stock market? Rational investors surely focus on corporate profits, interest rates,

and other things that really matter, but what about real investors? Two economists [3]

looked at hourly observations of the total sky cover on a scale from 0 (clear) to 8 (overcast)

near 26 stock exchanges during the years 1982–1997, and reported least squares estimates

of the equation:

R ¼ aþ bC þ ε

where R is the daily stock market return and C is the seasonally adjusted average sky

cover during the hours each exchange was open. They found that daily stock returns

were generally negatively correlated with cloudiness, though the results were often not

statistically significant at the 5 percent level.

The primary inadequacy of this study is that it only considered a 16-year period,

1982–1997. A follow-up study [4] applied their approach to New York City data for 1948

through 2013, a period that incorporates 34 years before and 16 years after the period

they studied.

Table 8.1 shows the estimates of the regression model for the years 1948–2013 as a

whole and broken into the years before, during, and after the original study. There is a

strong, statistically persuasive, inverse relationship between cloudiness and market

returns for the period as a whole and for the early subperiod 1948–1981. The relationship

is weaker for the years 1982–1997 covered by the original study and has essentially

vanished since then, perhaps because stock traders have become more geographically

dispersed.

The values of R2 are consistently small because most of the variation in daily stock

returns is due to factors that are not related to the weather. This study found that the

observed weather patterns could not be exploited. Even though the market does better

on sunny days, the average return is still positive on cloudy days. So, getting out (or

staying out) of the market on cloudy mornings is not a profitable strategy. Nonetheless,

the findings are provocative and suggestive.

Table 8.1 The Relationship between Cloud Cover and
Daily Stock Returns

1948–2013 1948–1981 1982–1997 1998–2013

Observations 16,605 8539 4042 4024
Beta �0.0075 �0.0086 �0.0085 �0.0030
P value 0.0054 0.0038 0.1318 0.6924
R2 0.0005 0.0010 0.0006 0.0000
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If stock prices can be swayed by something as meaningless as whether the sun is

shining, they may also be buffeted by fads, fancies, greed, and gloom—what Keynes

called animal spirits.

Prediction Intervals (Optional)
Regression models are usually intended for predictions; for example, we might use a

consumption function to predict what spending will be next year.

The predicted value of the dependent variable Y depends on our estimates of a and

b, which depend on the values of the error term that happen to occur in the data used to

estimate a and b. If different values of ε had occurred, we would have obtained

somewhat different parameter estimates and therefore make somewhat different

predictions.

All is not hopeless, however, because we can use an interval to quantify the precision

of our prediction. For a selected value of the explanatory variable, X*, the predicted value

of Y is given by our least squares equation:

by ¼ aþ bx� (8.10)

After selecting a confidence level, such as 95 percent, we use a t distribution with

n � 2 degrees of freedom to determine the appropriate value t* and set our prediction

interval for Y equal to the predicted value plus or minus the requisite number of stan-

dard errors of the prediction error:

by � t�
�
standard error of Y � bY �

(8.11)

The interpretation of a prediction interval is analogous to a confidence interval—for a

95 percent prediction interval, there is a 0.95 probability that the interval will encompass

the actual value of Y.

We can also predict the expected value of Y:

dE½Y � ¼ aþ bx� (8.12)

and calculate a confidence interval for our estimate:

by � t�ðstandard error of aþ bx�Þ (8.13)

Our prediction of Y in Eqn (8.10) and our estimate of E[Y] in Eqn (8.12) are identical.

However, the expected value of Y is more certain than any single value of Y, thus

a confidence interval for E[Y] is narrower than a prediction interval for a single

value of Y.

The formulas for the standard errors used in Eqns (8.11) and (8.13) are very

complicated, and we should let statistical software do the calculations for us.

Unfortunately, some software packages show only prediction intervals for the observed
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values of X. If we want prediction intervals for other values, we must do the calculations

ourselves using these formulas:

standard error of Y � bY ¼ SEE

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

n
þ ðx� � xÞ2

�
standard error of b

SEE

�2
s

standard error of aþ bx� ¼ SEE

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
þ ðx� � xÞ2

�
standard error of b

SEE

�2
s

For our consumption example, we will calculate a 95 percent prediction interval and

confidence interval when X is equal to the sample mean, 65.35. The predicted value of Y

is equal to 61.83: by ¼ aþ bx
¼ 7:12þ 0:83ð65:35Þ
¼ 61:63

Table A.2 gives t* ¼ 2.228 for a 95 percent interval with 12 � 2 ¼ 10 degrees of

freedom. Statistical software gives the values of the standard errors:

standard error of Y � bY ¼ 0:80394
standard error of aþ bx� ¼ 0:22297

Therefore,

95 percent prediction interval for Y : 61:83� 2:228ð0:80394Þ ¼ 61:83� 1:79

95 percent confidence interval for E½y� : 61:83� 2:228ð0:22297Þ ¼ 61:83� 0:50

As stated before, the error term makes the value of Y less certain than the expected

value of Y. Figure 8.12 shows how the prediction interval widens as we move

away from the middle of our data, showing that we can be more confident of pre-

dictions near the center of the data and should be more cautious on the fringes of

the data.

Exercises
8.1 For each of the following pairs, explain why you believe that they are positively

related, negatively related, or essentially unrelated. If they are related, identify the

dependent variable.

a. The cost of constructing a house and its market price.

b. The winter price of corn and the number of acres of corn planted by Iowa

farmers the following spring.

c. The price of steak and the amount purchased by a college dining hall.

d. The price of gasoline and sales of large cars.

e. The number of wins by the New York Yankees and the price of tea in China.
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8.2 Figure 8.13 is a scatter diagram of the annual rates of return on Apple and

Microsoft stock during the years 1998–2008:

a. What was the highest annual return for Apple?

b. What was the lowest annual return for Microsoft?

c. Was the average annual return higher for Apple or for Microsoft?

d. Was there a greater dispersion in Apple or Microsoft returns?

e. Were Apple and Microsoft stock returns positively related, negatively related, or

unrelated?

8.3 Use the data in Table 1.2 to calculate least squares estimates of the relationship

between income and spending. What is the estimated slope?

8.4 Use the data in Table 1.6 to estimate a simple linear regression model where

the dependent variable is 2003 prices and the explanatory variable is the hard

drive size.

8.5 Use the data in Table 1.6 to estimate a simple linear regression model where

the dependent variable is 2007 prices and the explanatory variable is the hard

drive size.

8.6 Use the data in Table 1.6 to estimate a simple linear regression model where:

a. The dependent variable is the price of an 80-GB hard drive and the explanatory

variable is the year.
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b. The dependent variable is the natural logarithm of the price of an 80-GB hard

drive and the explanatory variable is the year.

Which of these equations seems to describe the data better? Explain your

reasoning.

8.7 Use the data in Table 1.6 to estimate a simple linear regression model where:

a. The dependent variable is the price of a 200-GB hard drive and the explanatory

variable is the year.

b. The dependent variable is the natural logarithm of the price of a 200-GB hard

drive and the explanatory variable is the year.

Which of these equations seems to describe the data better? Explain your

reasoning.

8.8 Table 8.2 shows average monthly US housing starts (in thousands). Estimate

a simple linear regression model where the dependent variable is the number of

housing starts and the explanatory variable is time, with t ¼ 0 in 1960, t ¼ 1 in

1961, and so on.

a. Interpret the value of the estimated slope.

b. Does the estimated slope have a two-sided P value less than 0.05?

c. State the null hypothesis in words, not symbols.

8.9 A least squares regression was used to estimate the relationship between the dol-

lar price P of 45 used 2001 Audi A4 2.8L sedans with manual transmission and the

number of miles M the car had been driven:bP ¼ 16; 958� 0:0677M ; R2 ¼ 0:70
ð2; 553Þ ð0:0233Þ
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The standard errors are in parentheses.

a. Does the value 16,958 seem reasonable?

b. Does the value �0.0677 seem reasonable?

c. Does the value 0.70 seem reasonable?

d. Is the estimated relationship between M and P statistically significant at the 5

percent level?

e. Should the variables be reversed, with M on the left-hand side and P on the

right-hand side? Why or why not?

8.10 This regression equation was estimated using data for 481 California Census

blocks that were more than 95% Hispanic in 2008 where Y ¼ percentage of the

two-party vote received by Barack Obama in the 2008 Presidential election,

X ¼ median household income of Hispanics, $1000s of dollars, and the t values

are in brackets. Identify the logical error in this conclusion: “Income is not

statistically significant; the p value is 0.27, meaning that there’s a 27% chance

we accept the null hypothesis that income has no effect on the Hispanic

vote.”

by ¼ 0:843þ 0:00023x; R2 ¼ 0:0025
½97:12� ½1:18�

8.11 Plutonium has been produced in Hanford, Washington, since the 1940s, and

some radioactive waste has leaked into the Columbia River, possibly contami-

nating the water supplies of Oregon residents living near the river. A 1965 study

[5] of the statistical relationship between proximity to the Columbia River and

cancer mortality compared an exposure index and the annual cancer mortality

rate per 100,000 residents for nine Oregon counties near the Columbia River

(Table 8.3).

a. Which variable would be the dependent variable in a simple linear regression

model?

b. Does the estimated slope have a two-sided P value less than 0.05?

Table 8.2 Exercise 8.8

1960 104.34 1970 118.47 1980 107.68 1990 98.38 2000 130.72
1961 109.42 1971 171.02 1981 90.34 1991 84.50 2001 133.58
1962 121.90 1972 196.38 1982 88.52 1992 98.97 2002 142.08
1963 133.59 1973 170.43 1983 141.92 1993 107.31 2003 153.98
1964 127.41 1974 111.48 1984 145.78 1994 121.42 2004 162.97
1965 122.74 1975 96.70 1985 145.14 1995 112.85 2005 172.34
1966 97.08 1976 128.11 1986 150.45 1996 123.08 2006 150.08
1967 107.63 1977 165.59 1987 135.05 1997 122.83 2007 112.92
1968 125.62 1978 168.36 1988 124.00 1998 134.75 2008 75.42
1969 122.23 1979 145.42 1989 114.68 1999 136.77 2009 46.17
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c. State the null hypothesis in words, not symbols.

d. What is the value of R2?

8.12 Use the Vostok data in Exercise 2.28 to estimate the regression models

C ¼ a1 þ b1A þ ε1 and A ¼ a2 þ b2D þ ε2. Write a brief essay summarizing your

findings.

8.13 Many investors look at the beta coefficients provided by investment advisors

based on least squares estimates of the model Ri ¼ a þ bRM þ ε, where Ri is the

rate of return on a stock and RM is the return on a market average, such as

the S&P 500. Historical plots of the annual rates of return on two stocks and the

market as a whole over a 10-year period are shown in Figure 8.14. During this

period, which of these two stock returns had the higher:

a. Mean?

b. Standard deviation?

c. Beta coefficient?

d. R2?

8.14 Many investors look at the beta coefficients provided by investment advisors

based on least squares estimates of the model Ri ¼ a þ bRM þ ε, where Ri is the

rate of return on a stock and RM is the return on a market average, such as the

S&P 500. Explain why you either agree or disagree with this advice:

a. “A stock with a low beta is safer than a high-beta stock, because the lower the

beta is, the less the stock’s price fluctuates.”

Table 8.3 Exercise 8.11

Exposure index 11.64 8.34 6.41 3.83 3.41 2.57 2.49 1.62 1.25
Cancer mortality 207.5 210.3 177.9 162.3 129.9 130.1 147.1 137.5 113.5
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b. “If the market was expected to rise, an investor might increase the R2 of the

portfolio. If the market was expected to decline, a portfolio with a low R2

would be appropriate.”

8.15 Least squares regression minimizes which of the following sums? Explain your

reasoning.

a.
P ðyi � xiÞ2

b.
P ðyi � yÞ2

c.
P ðxi � xÞ2

d.
P ðyi � a� bxiÞ2

8.16 The Australian Bureau of Meteorology calculates the Southern Oscillation Index

(SOI) from the monthly air pressure difference between Tahiti and Darwin,

Australia. Negative values of the SOI indicate an El Niño episode; positive

values indicate a La Niña episode. Since1989, Australia’s National Climate

Center has used the SOI to predict rainfall 3 months in advance. A model was

estimated [6] by least squares using 43 years of annual data on the wheat yield

relative to the long-run upward trend (positive values indicate unusually high

yields, negative readings unusually low yields) and the average SOI reading for

June, July, and August (Australia’s winter). In these data, the average wheat

yield is 0.000 and the average SOI reading is 0.267. The standard errors are in

parentheses.

by ¼ �0:0032þ 0:0123x; R2 ¼ 0:22
ð0:0296Þ ð0:0036Þ

a. Which variable do you think is the dependent variable? Explain your

reasoning.

b. Is the estimated slope statistically significant at the 5 percent level?

c. Are El Niño or La Niña episodes most often associated with high wheat

yields?

8.17 Table 8.4 shows decade averages of annual precipitation (mm) in the contiguous

United States. Letting Y be precipitation and X be the decade midpoints, 1905,

1915, and so on, draw a scatter diagram and use least squares to estimate the

equation Y ¼ a þ bX þ ε. Is there statistically persuasive evidence of a trend in

precipitation?

Table 8.4 Exercise 8.17

1900s 1910s 1920s 1930s 1940s 1950s 1960s 1970s 1980s

747.50 714.80 731.77 685.08 754.84 711.62 717.67 761.53 753.79
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8.18 The effective delivery and care of newborn babies can be aided by accurate

estimates of birth weight. A study [7] attempted to predict the birth weight of

babies for 11 women with abnormal pregnancies by using echo-planar imaging

(EPI) up to 1 week before delivery to estimate each baby’s fetal volume. Draw a

scatter diagram and use least squares estimates of the regression model to see if

there is a statistically significant relationship at the 1 percent level between the

child’s estimated fetal volume X (decimeters cubed) and the birth weight Y

(kilograms), both of which are in Table 8.5. Summarize your findings, and be

sure to interpret the estimated slope of your fitted line.

8.19 How do you suppose that least squares coefficient estimates, standard errors, t

values, and R2 would be affected by a doubling of the number of observations,

with the new data exactly replicating the original data? Use the data in Exercise

8.18 test your theory.

8.20 Table 8.6 shows the prepregnancy weights of 25 mothers and the birth weights

of their children, both in kilograms [8].

a. Which would you use as the dependent variable and which as the explanatory

variable in the regression model Y ¼ a þ bX þ ε?

b. Draw a scatter diagram.

c. Use least squares to see if there is a positive or negative relationship.

d. Interpret your estimates of a and b.

8.21 The following regression equation was estimated using data on college appli-

cants who were admitted both to Pomona College and to other colleges ranked

among the top 20 small liberal arts colleges by U.S. News & World Report:by ¼ 0:2935þ 0:0293x; R2 ¼ 0:56
ð0:0781Þ ð0:0065Þ

Table 8.5 Exercise 8.18

X 3.11 1.54 2.88 2.15 1.61 2.71 3.35 2.22 3.42 2.31 3.22
Y 3.30 1.72 3.29 2.30 1.62 3.00 3.54 2.64 3.52 2.40 3.40

Table 8.6 Exercise 8.20

Mother Child Mother Child Mother Child Mother Child Mother Child

49.4 3.52 70.3 4.07 73.5 3.23 65.8 3.35 63.5 4.15
63.5 3.74 50.8 3.37 59.0 3.57 61.2 3.71 59.0 2.98
68.0 3.63 73.9 4.12 61.2 3.06 55.8 2.99 49.9 2.76
52.2 2.68 65.8 3.57 52.2 3.37 61.2 4.03 65.8 2.92
54.4 3.01 54.4 3.36 63.1 2.72 56.7 2.92 43.1 2.69
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where:

( ) ¼ standard errors.

Y ¼ fraction of students who were admitted to both this college and Pomona

College who enrolled at Pomona, average value ¼ 0.602.

X ¼ U.S. News & World Report ranking of this college.

a. Redraw Figure 8.15 and add the estimated regression line.

b. Use your graph to explain how the estimates 0.2935 and 0.0293 were obtained.

(Do not show the formulas; explain in words the basis for the formulas.)

c. Explain why you are not surprised that the R2 for this equation is not 1.0.

8.22 Use the estimated equation reported in the preceding exercise to answer these

questions:

a. Does the estimated coefficient of X have a plausible value?

b. Is the estimated coefficient of X statistically significant at the 5 percent level?

c. What is the null hypothesis in question b?

d. What is the predicted value of Y for X ¼ 30?

e. Why should we not take the prediction in question d seriously?

8.23 A Denver study looked at the relationship between climate and the age at which

infants begin crawling [9]. (It was suspected that crawling is delayed when

infants wear heavy clothing.) Table 8.7 shows the average age (in weeks) when

children born in different months began crawling and the average Denver tem-

perature for the sixth month after birth.

a. Draw a scatter diagram and the least squares line.

b. What is your dependent variable? Explain your reasoning.

c. Is the estimated slope statistically significant at the 5 percent level?

d. Is the sign of the estimated slope consistent with the researchers’ theory?

e. Is the value of the estimated slope plausible?
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8.24 A student used least squares to estimate the relationship between the number of

games won by a football team (Y) and the number of serious injuries suffered by

the players (X). He concluded that “Using a t distribution with 13 degrees of

freedom, a t value of 1.58 is not sufficient to reject the null hypothesis b ¼ 0 at a

95 percent confidence interval. Therefore, we can conclude that the number of

injuries that a team suffers does affect its chances of winning games.” Explain

the error in his interpretation of his results.

8.25 In American college football, Rivals.com constructs a widely followed index for

rating colleges based on the high school players they recruit and Jeff Sagarin

constructs a highly regarded system for rating college football teams based on

their performance. Table 8.8 shows the average 2005–2008 performance and

recruiting ratings for the 20 colleges with the highest recruiting averages. Use

these data to estimate a simple linear regression model with performance as the

dependent variable and recruiting as the explanatory variable.

a. Draw a scatter diagram and the least squares line.

b. Is the relationship statistically significant at the 5 percent level?

c. Is the size of the estimated relationship substantial?

d. Which team overperformed the most, in that its performance was much

higher than predicted by your estimated equation?

e. Which team underperformed the most, in that its performance was much

lower than predicted by your estimated equation?

8.26 A study [10] of 173,524 births in Sweden between 1983 and 1987 used the data in

Table 8.9 on late fetal deaths (stillbirth at a gestation of 28 weeks or longer) and

early neonatal deaths (during the first 6 days of life). Convert the late fetal death

data to rates per 1000 births by dividing the total number of late fetal deaths by

the number of births and multiplying the result by 1000.

a. Draw a scatter diagram using your calculated death rates and the maternal-

age midpoint (22.5, 27.5, 32.5, 37.5, and 46.5). Which is your dependent

variable?

b. Use least squares to estimate the regression model Y ¼ a þ bX þ ε.

Table 8.7 Exercise 8.23

Crawling Age Temperature Crawling Age Temperature

January 29.84 66 July 33.64 33
February 30.52 73 August 32.82 30
March 29.70 72 September 33.83 33
April 31.84 63 October 33.35 37
May 28.58 52 November 33.38 48
June 31.44 39 December 32.32 57
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c. What is the two-sided P value for the slope?

d. What is a 95 percent confidence interval for the slope?

e. Explain why the estimated value of the slope does or does not seem

substantial.

8.27 Answer the questions in Exercise 8.26, this time using early neonatal death rates

per 1000 births.

8.28 Table 8.10 shows the systolic and diastolic blood pressure readings (both in

mmHg) for 26 healthy young adults [11]. Ignoring gender, use all 26 observations

Table 8.8 Exercise 8.25

Recruiting Performance

Alabama 2044.00 81.538
Auburn 1773.00 81.918
California 1444.00 83.048
Clemson 1710.00 80.545
Florida 2481.75 91.615
Florida State 2232.50 80.308
Georgia 2116.50 85.590
LSU 2100.50 89.480
Miami–FL 1920.00 76.290
Michigan 1984.75 80.435
Nebraska 1625.75 78.618
Notre Dame 1881.50 77.013
Ohio State 1928.00 90.390
Oklahoma 2186.75 88.978
Penn State 1349.50 86.678
South Carolina 1514.50 78.425
Southern California 2680.50 95.073
Tennessee 1850.25 79.040
Texas 2043.25 92.398
UCLA 1355.75 77.525

Table 8.9 Exercise 8.26

Maternal Age Births Late Fetal Deaths Early Neonatal Deaths

20–24 70,557 251 212
25–29 68,846 253 177
30–34 26,241 125 78
35–39 6811 34 33
40–52 1069 7 5

248 ESSENTIAL STATISTICS, REGRESSION, AND ECONOMETRICS



to estimate a linear regression model with systolic blood pressure as the depen-

dent variable and diastolic blood pressure as the explanatory variable.

a. Is the estimated relationship statistically significant at the 5 percent level?

b. What is the correlation between systolic and diastolic blood pressure?

8.29 Table 8.11 shows cricket chirps per minute and temperature in degrees

Fahrenheit for the striped ground cricket [12]. Which is the dependent variable?

Draw a scatter diagram with the cricket chirps axis running from 0 to 20, and

the temperature axis running from 60 to 100. Does the relationship seem linear?

Estimate the equation Y ¼ a þ bX þ ε by least squares and draw this fitted line

in your scatter diagram. In ordinary English, interpret your estimate of the

slope.

8.30 A student estimated a regression model that used the number of pages in best-

selling hardcover books to predict the book’s price. Explain why this conclusion

Table 8.10 Exercise 8.28

Systolic Diastolic Gender Systolic Diastolic Gender

108 62 Female 96 64 Female
134 74 Male 114 74 Male
100 64 Female 108 68 Male
108 68 Female 128 86 Male
112 72 Male 114 68 Male
112 64 Female 112 64 Male
112 68 Female 124 70 Female
122 70 Male 90 60 Female
116 70 Male 102 64 Female
116 70 Male 106 70 Male
120 72 Male 124 74 Male
108 70 Female 130 72 Male
108 70 Female 116 70 Female

Table 8.11 Exercise 8.29

Chirps Temperature Chirps Temperature Chirps Temperature

20.0 88.6 15.5 75.2 17.2 82.6
16.0 71.6 14.7 69.7 16.0 80.6
19.8 93.3 15.4 69.4 17.0 83.5
18.4 84.3 16.2 83.3 17.1 82.0
17.1 80.6 15.0 79.6 14.4 76.3
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is wrong: “The 0.75 R2 is pretty large, when you consider that the price of a book

is $20; that is, $15 of the price is explained by the number of pages.”

8.31 Table 8.12 shows the age and bone density of 25 women between the ages of 15

and 45 who died between 1729 and 1852 [13]. For a sample of modern-day

British women of similar ages, the relationship between bone density and age is

statistically significant at the 1 percent level, with an estimated slope of �0.658.

Draw a scatter diagram and estimate the model Y ¼ a þ bX þ ε by least squares.

a. Which variable did you use as the dependent variable? Explain your

reasoning.

b. Is the estimated slope statistically significant at the 1 percent level?

c. Compare your results to those reported for modern-day British women.

8.32 Soccer enthusiasts have long debated how to decide tournament games in which

the score is a tie but a winner must be determined. If the game is allowed to

continue until one team scores a deciding goal, this team may be too tired to

play well in the next round; yet other criteria (such as a succession of penalty

kicks) seem arbitrary. Some have argued that a team’s dominance can be

measured by the number of corner kicks. To test this theory, a student estimated

this equation using data from 17 games played by a college men’s soccer team.

Write a paragraph summarizing his results.

by ¼ 0:376þ 0:200x; R2 ¼ 0:15
ð0:594Þ ð0:125Þ

Y is equal to the number of goals by this team minus the number of goals by the

opposing team (average value 0.59), X is equal to the number of corner kicks by

this team minus the number of corner kicks by the opposing team (average

value ¼ 1.06), and the standard errors are in parentheses.

Table 8.12 Exercise 8.31

Age Bone Density Age Bone Density Age Bone Density

15 104.66 28 88.92 38 111.49
17 90.68 29 108.49 39 88.82
17 105.28 30 84.06 41 93.89
19 98.55 34 85.30 43 128.99
23 100.52 35 101.66 44 111.39
26 126.60 35 91.41 45 114.60
27 82.09 35 91.30 45 100.10
27 114.29 36 75.78
28 95.24 37 110.46
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8.33 A researcher specified this time-series model Y ¼ a þ bX þ ε, where Y is the

annual percentage change in household spending and X is the annual percent-

age change in the S&P 500 index of stock prices. He reported these results:

estimate of a ¼ 0:21

estimate of b ¼ 0:48

estimate of ε ¼ 1:13

t ¼ 2:43 for test of H0: X ¼ 0

What errors do you see in these reported results?

8.34 Explain why you either agree or disagree with these statements regarding least

squares estimation of the equation Y ¼ a þ bX þ ε:

a. R2 is equal to the correlation coefficient squared.

b. If R2 ¼ 0, then X does not have a statistically significant effect on Y.

c. If R2 ¼ 1, then Y ¼ X.

8.35 The equation Y ¼ a þ bX þ ε was estimated by least squares using monthly 2014

data, entering the months in a computer program in order: January, February,

March, and so on. How would the estimates be affected if we enter the data

backwards: December, November, October, and so on?

8.36 In the 1960s, the data in Table 8.13 were collected for 21 countries on deaths

from coronary heart disease per 100,000 persons of age 35–64, and annual per

capita cigarette consumption [14]. Draw a scatter diagram and estimate a regres-

sion equation to see if there is a statistical relationship between these variables.

a. Which variable did you use as the dependent variable? Explain your

reasoning.

b. Is the estimated slope statistically significant at the 5 percent level?

c. Does the estimated value of the slope seem plausible?

Table 8.13 Exercise 8.36

Cigarettes Deaths Cigarettes Deaths

United States 3900 259.9 Greece 1800 41.2
Canada 3350 211.6 Austria 1770 182.1
Australia 3220 238.1 Belgium 1700 118.1
New Zealand 3220 211.8 Mexico 1680 31.9
United Kingdom 2790 194.1 Italy 1510 114.3
Switzerland 2780 124.5 Denmark 1500 144.9
Ireland 2770 187.3 France 1410 144.9
Iceland 2290 110.5 Sweden 1270 126.9
Finland 2160 233.1 Spain 1200 43.9
West Germany 1890 150.3 Norway 1090 136.3
Netherlands 1810 124.7
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8.37 To investigate whether economic events influence presidential elections, draw a

scatter diagram and estimate the equation Y ¼ a þ bX þ ε using the Table 8.14

data on X, the change in the unemployment rate during a presidential election

year, and Y, the percentage of the vote for major party presidential candidates

received by the incumbent party.

a. Does the estimated coefficient of X have a plausible sign and magnitude?

b. Test at the 5 percent level the null hypothesis that b ¼ 0.

c. Does the intercept have a plausible magnitude?

d. Test at the 5 percent level the null hypothesis that a ¼ 50.

e. How close is the predicted value of Y in 2008, when X ¼ 1.2, to the actual

value, Y ¼ 46.3?

8.38 Data were collected on eruptions of the Old Faithful geyser [15]. A least squares

regression using 99 observations on the time between eruptions Y (in minutes)

and the duration X (in seconds) of the preceding eruption yielded this estimated

equation: by ¼ 34:549þ 0:2084x. The value of R2 is 0.87, and the estimated coeffi-

cient of X has a standard error of 0.0076 and a t value of 27.26.

a. Interpret the estimated coefficient of X.

b. Calculate a 95 percent confidence interval for the coefficient of X.

c. Is the relationship statistically significant at the 5 percent level?

d. What percentage of the variation in the time interval between Old Faithful’s

eruptions can be explained by the duration of the preceding eruption?

8.39 A least squares regression using 99 observations on the height Y (in feet) of Old

Faithful eruptions and the duration X (in seconds) of an eruption yielded these

results (R2 ¼ 0.02 and the standard errors are in parentheses):by ¼ 141:51� 0:0213x
ð3:15Þ ð0:0149Þ

a. Interpret the estimated coefficient of X.

b. Calculate a 95 percent confidence interval for the coefficient of X.

Table 8.14 Exercise 8.37

X Y X Y X Y

1900 �1.5 53.2 1936 �3.2 62.5 1972 �0.3 61.8
1904 1.5 60.0 1940 �2.6 55.0 1976 �0.8 48.9
1908 5.2 54.5 1944 �0.7 53.8 1980 1.3 44.7
1912 �2.1 54.7 1948 �0.1 52.4 1984 �2.1 59.2
1916 �3.4 51.7 1952 �0.3 44.6 1988 �0.7 53.9
1920 3.8 36.1 1956 �0.3 57.8 1992 0.7 37.7
1924 2.6 54.4 1960 0.0 49.9 1996 �0.2 54.7
1928 0.9 58.8 1964 �0.5 61.3 2000 �0.3 50.3
1932 7.7 40.9 1968 �0.2 49.6 2004 �0.5 51.2
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c. Is the relationship statistically significant at the 5 percent level?

d. What percentage of the variation in the height of Old Faithful’s eruptions can

be explained by the duration of an eruption?

8.40 In a 1993 election in the second senatorial district in Philadelphia, which would

determine which party controlled the Pennsylvania State Senate, the Republican

candidate won based on the votes cast on Election Day, 19,691 to 19,127.

However, the Democrat won the absentee ballots, 1391 to 366, thereby winning

the election by 461 votes, and Republicans charged that many absentee ballots

had been illegally solicited or cast. A federal judge ruled that the Democrats had

engaged in a “civil conspiracy” to win the election and declared the Republican

the winner [16]. Among the evidence presented were the data in Figure 8.16 for

22 state senatorial elections in Philadelphia during the period 1982–1993. On the

horizontal axis is the difference between the number of votes for the Democratic

and Republican candidates cast on Election Day and recorded by voting ma-

chines; on the vertical axis is the difference between the number of votes for the

Democratic and Republican candidates cast by absentee ballot.

a. What criterion do you think was used to draw a line through the points?

b. Explain why this line’s positive or negative slope is either plausible or

counterintuitive.

c. Was this evidence cited by the Republican or the Democrat? Explain your

reasoning.

8.41 (Continuation) Table 8.15 shows the data (Democrat minus Republican) for the

21 elections preceding the disputed 1993 election. Estimate the regression model

Y ¼ a þ bX þ ε, where the dependent variable is the absentee ballots and the

explanatory variable is the Election Day ballots. In the disputed 1993 election,
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FIGURE 8.16 Exercise 8.40.
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the difference in the Election Day ballots was �564. Find a 95 percent prediction

interval for the absentee ballots in 1993. Is 1025, the actual value for the absen-

tee ballots, inside this prediction interval?

8.42 Table 8.16 shows the average weight (in pounds) for 18- to 24-year-old US men

and women of different heights (measured in inches above 5 ft). Use least

squares to estimate the relationship between height (X) and weight (Y) for each

gender.

a. Interpret the estimated coefficients of X.

b. Calculate 95 percent confidence intervals for the coefficient of X.

c. Is the relationship statistically significant at the 5 percent level?

d. The American Heart Association says that the ideal male weight is 110 þ 5.0X.

How does your fitted line compare to this guideline?

e. The American Heart Association says that the ideal female weight is

100 þ 5.0X. How does your fitted line compare to this guideline?

f. Are the predicted values of Y for X ¼ �60 sensible? If not, should we discard

our results as implausible?

Table 8.15 Exercise 8.41

Election Day Absentee Election Day Absentee

26,427 346 65,862 378
15,904 282 �13,194 �829
42,448 223 56,100 394
19,444 593 700 151
71,797 572 11,529 �349
�1017 �229 26,047 160
63,406 671 44,425 1329
15,671 293 45,512 368
36,276 360 �5700 �434
36,710 306 51,206 391
21,848 401

Table 8.16 Exercise 8.42

Males

Height 2 3 4 5 6 7 8 9 10 11 12 13 14
Weight 130 135 139 143 148 152 157 162 166 171 175 180 185

Females

Height �3 �2 �1 0 1 2 3 4 5 6 7 8
Weight 111 114 118 121 124 128 131 134 137 141 144 147
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8.43 A computer game involves a baseball moving at various speeds toward home

plate. The user clicks the mouse to swing a bat at the moving ball, trying to hit

the ball as it crosses the front of home plate. The computer program records the

vertical distances (in inches) of the center of the ball from the front of home

plate when the bat is swung. Positive values mean the ball was past the front;

negative values mean the ball had not yet reached the front. Table 8.17 shows 20

consecutive observations for one player.

a. Do these data show a statistically persuasive tendency to swing too early or

too late?

b. Does a late swing tend to be followed by another late swing, or by an early

swing?

8.44 Chapter 8 includes a discussion of a study comparing the economic status of

4121 women who immigrated to California from another county with the eco-

nomic status of their adult daughters. Economic status was measured by

ZIP-code income percentile. For example, if the mother lived in a ZIP code

with a 30th-percentile median income and her adult daughter lived in a ZIP

code with a 35th-percentile median income, this was characterized as an in-

crease in economic status. The equation Y ¼ a þ bX þ ε was estimated using

the natural logarithms of ZIP-code percentiles for each mother–daughter pair.

The coefficient b is the elasticity of Y with respect to X; for example, if

b ¼ 0.5, then a 1 percent increase in X is predicted to give a 0.5 percent in-

crease in Y. A similar equation was estimated for 6498 California-born

mothers and their adult daughters. Here are the results (the standard errors

are in parentheses):

foreign� born : by ¼ 6:593þ 0:376x
ð0:141Þ ð0:013Þ

California� born : by ¼ 5:987þ 0:436x
ð0:116Þ ð0:010Þ

a. Is the dependent variable the logarithm of the mother’s income percentile or

the daughter’s income percentile? Explain your reasoning.

b. Does the sign of the estimated slope make sense to you?

c. Are the estimated slopes statistically significant at the 5 percent level?

d. The estimated elasticity is used to measure intergenerational economic

mobility. Does a larger elasticity indicate more or less mobility? Explain your

reasoning.

Table 8.17 Exercise 8.43

0.167 0.028 0.347 0.097 0.097 0.375 –0.069 –0.097 0.347 0.014
–0.042 –0.042 –0.042 –0.222 0.056 0.375 0.264 –0.208 0.292 0.208
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e. Do these results suggest that there is more economic mobility for the

daughters of foreign-born mothers or the daughters of California-born

mothers?

8.45 The procedure used in Exercise 8.44 was also applied to mother–daughter pairs

where the adult daughter lived in the same ZIP code she was born in and to

mother–daughter pairs where the daughter moved to a different ZIP code. Write

a paragraph identifying the most interesting findings.

For daughters who move:

foreign� born : by ¼ 7:409þ 0:300x
ð0:153Þ ð0:015Þ

California � born : by ¼ 6:863þ 0:353x
ð0:130Þ ð0:012Þ

For daughters who stay:

foreign� born : by ¼ 0:105þ 0:985x
ð0:179Þ ð0:017Þ

California� born : by ¼ 0:300þ 0:969x
ð0:119Þ ð0:011Þ

8.46 A zero-coupon bond (a “zero”) pays a specified amount of money when it

matures and nothing before the bond’s maturity. Financial theory teaches that

the volatility of the price of a zero is proportional to its maturity. Use the data in

Table 8.18 to estimate a least squares regression equation.

a. Which variable did you use for the dependent variable? Explain your

reasoning.

b. Is the sign of the estimated slope consistent with financial theory?

c. What is the P value for a two-tailed test of the null hypothesis that the value

of the slope is equal to 0?

d. What is the P value for a two-tailed test of the null hypothesis that the value

of the slope is equal to 1?

e. Give a 95 percent confidence interval for the slope.

8.47 A classic study [17] of the IQ scores of 34 identical twins who were raised apart

used the intelligence scores in Table 8.19. Draw a scatter diagram and calculate

the R2 for a regression of the intelligence score of the second-born on the intelli-

gence score of the first-born. (This R2 was used to measure the influence of

genes on intelligence, with 1 � R2 measuring the influence of environment.) If

100 were added to all the first-born IQ scores or all the second-born IQ scores,

Table 8.18 Exercise 8.46

Maturity (years) 5 10 15 20
Standard deviation of price (percent) 10.8 20.7 28.8 38.1
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how do you think R2 would be affected? Check your expectations by adding 100

to all the IQs and recalculating R2.

8.48 Southern California casinos were given “location values” based on how close

they are to households of various income levels and the location of competing

casinos. A casino has a higher location value if potential customers with money

to spend are nearby and there are fewer competing casinos. Data were also

collected on the number of gaming devices (primarily slot machines) installed at

each casino. These data are in Table 8.20.

a. Which variable would you consider to be the dependent variable?

b. Do you expect the relationship between these two variables to be positive,

negative, or 0?

c. Estimate the linear relationship between these two variables,

Y ¼ a1 þ b1X þ ε1.

d. Estimate the log-linear relationship between the natural logarithms of these

two variables, ln[Y] ¼ a2 þ b2ln[X] þ ε2.

e. Which of these two estimated relationships seems to fit these data better?

8.49 The data in Table 8.21 are for 16 three-digit ZIP codes within 4 h driving time of

a Southern California casino. The driving time to the casino is in hours and the

Table 8.19 Exercise 8.47

First Second First Second First Second First Second First Second

22 12 30 26 30 34 6 10 41 41
36 34 29 35 27 24 23 21 19 9
13 10 26 20 32 18 38 27 40 38
30 25 28 22 27 28 33 26 12 9
32 28 21 27 22 23 16 28 13 22
26 17 13 4 15 9 27 25 29 30
20 24 32 33 24 33 4 2

Table 8.20 Exercise 8.48

Gaming Devices Location Value Gaming Devices Location Value Gaming Devices Location Value

1996 120.75 1956 71.91 349 0.07
2000 110.28 2045 158.13 2000 404.02
2268 128.99 751 60.07 230 0.01
1049 70.89 2000 79.66 302 25.24
1261 92.62 961 54.80 2000 132.10
1599 75.28 1039 58.27 2139 169.47
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gambling activity is the total dollars lost at the casino by residents of the ZIP

code divided by the median income, in thousands of dollars, in that ZIP code.

a. Which variable would you consider to be the dependent variable?

b. Do you expect the relationship between these two variables to be positive,

negative, or 0?

c. Estimate the linear relationship between these two variables,

Y ¼ a1 þ b1X þ ε1.

d. Estimate the log-linear relationship between the natural logarithms of these

two variables, ln[Y] ¼ a2 þ b2ln[X] þ ε2.

e. Which of these two estimated relationships seems to fit these data better?

8.50 The high desert area of Southern California is 80–90 miles from Newport

Beach, Disneyland, and the Staples Center, and perhaps more significantly,

35–45 miles from jobs in the San Bernardino area. A study of the high desert

housing market looked at the annual data in Table 8.22 on building permits

Table 8.21 Exercise 8.49

Driving
Time

Gambling
Activity

Driving
Time

Gambling
Activity

Driving
Time

Gambling
Activity

Driving
Time

Gambling
Activity

0.35 1.2897 1.35 0.0650 1.52 0.0462 1.67 0.0104
0.67 0.3783 1.35 0.0405 1.53 0.0026 1.90 0.0094
0.82 0.2332 1.35 0.0033 1.57 0.0340 2.00 0.0031
0.98 0.1299 1.37 0.0943 1.58 0.0173 2.35 0.0182
1.07 0.1198 1.38 0.0213 1.58 0.0153 2.55 0.0048
1.22 0.0318 1.43 0.0277 1.58 0.0130 2.78 0.0001
1.22 0.0503 1.47 0.0233 1.63 0.0059 3.02 0.0010
1.27 0.0075 1.52 0.0351 1.63 0.0379 3.65 0.0020

Table 8.22 Exercise 8.50

Year Price Ratio Building Permits

1997 0.844 152
1998 0.833 200
1999 0.741 315
2000 0.791 419
2001 0.690 655
2002 0.645 986
2003 0.519 2102
2004 0.635 2699
2005 0.649 2258
2006 0.548 3078
2007 0.625 1090
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for single-family homes and the ratio of the median home price in the high

desert to the median home price in San Bernardino.

a. Which variable is the dependent variable?

b. Do you expect the relationship between these two variables to be positive,

negative, or 0?

c. Estimate the linear relationship between these two variables,

Y ¼ a1 þ b1X þ ε1.

d. Estimate the log-linear relationship between the natural logarithms of these

two variables, ln[Y] ¼ a2 þ b2ln[X] þ ε2.

e. Which of these two estimated relationships seems to fit these data better?
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There are few statistical facts more interesting than regression to the mean for two
reasons. First, people encounter it almost every day of their lives. Second, almost

nobody understands it.

Anonymous journal referee

Regression models are estimated by using software to calculate the least squares esti-

mates, t values, P values, and R2. But there is more to good regression analysis than

entering data in a software program. The art of regression analysis involves:

1. Specifying a plausible model.

2. Obtaining reliable and appropriate data.

3. Interpreting the output.

Throughout this book we have emphasized the importance of beginning with a

believable research hypothesis, for example, that income affects spending or that interest

rates affect stock prices. The first theme of this chapter is that problems can arise when

there is no solid research hypothesis—when there are data without theory. A second

theme is the importance of good data. As is often said: garbage in, garbage out. What that

means in this context is that poor data yield unreliable estimates. This chapter’s third

theme is that it is not enough to specify a reasonable model, obtain good data, and plug

the numbers into a software package. We should scrutinize the output for clues of

possible errors and omissions.
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Regression Pitfalls
Although regression is very elegant and powerful, it can also be misused and mis-

interpreted. We consider several pitfalls to be avoided.

Significant Is Not Necessarily Substantial

It is easy to confuse statistical significance with practical importance. The estimated

linear relationship between two variables is statistically significant at the 5 percent level

if the estimated slope is more than (approximately) two standard deviations from 0.

Equivalently, a 95 percent confidence interval does not include 0.

This does not mean that the estimated slope is necessarily large enough to be of

practical importance. Suppose that we use 100 observations to estimate the relationship

between consumption C and household wealth W, each in billions of dollars:

bc ¼ 15:20þ 0:000022w
ð2:43Þ ð0:000010Þ

The standard errors are in parentheses. The t value for testing the null hypothesis that

the slope is 0 is 2.2:

t ¼ b� 0

standard error of b

¼ 0:000022

0:000010

¼ 2:2

which gives a two-sided P value less than 0.05.

With 100 � 2 ¼ 98 degrees of freedom, t* ¼ 1.9846 and a 95 percent confidence

interval excludes 0:

b� t�SE½b� ¼ 0:000022� 1:9846ð0:000010Þ
¼ 0:000022� 0:000020

There is a statistically significant relationship between wealth and spending.

Is this relationship substantial? The estimated slope is 0.000022, which means that a

$1 billion increase in wealth is predicted to increase spending by $0.000022 billion,

which is $22,000. Is this of any practical importance? Probably not. Practical importance

is admittedly subjective. The point is that it is not the same as statistical significance.

It can also turn out that the estimated slope is large but not statistically significant, as

in this example: bc ¼ 15:20þ 0:22w
ð2:43Þ ð0:12Þ

Now the estimated slope is 0.22, which means that a $1 billion increase in wealth is

predicted to increase spending by $0.22 billion, which is a substantial amount.
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However, the t value is less than 2:

t ¼ b� 0

standard error of b

¼ 0:22

0:12

¼ 1:8

and a 95 percent confidence interval includes 0:

b� t�SE½b� ¼ 0:22� 1:9846ð0:12Þ
¼ 0:22� 0:24

In this second example, the estimated effect of an increase in wealth on spending is

large but not statistically significant at the 5 percent level. That is the point. Statistical

significance and practical importance are separate questions that need to be answered

separately.

Correlation Is Not Causation

Regression models are sometimes used simply to quantify empirical relationships. We

look at average life expectancies over time, not because we think that the mere passage

of time causes life expectancies to change, but because we want to see if there has been a

long-run trend in life expectancies. We look at the statistical relationship between

midterm and final examination scores, not because we believe that midterm scores

cause final scores, but because we want to see how well one test score predicts the other.

In these cases, we say that the variables are correlated statistically, without suggesting a

causal relationship.

In other cases, we use a regression model to quantify and test our belief that

changes in the explanatory variable cause changes in the dependent variable. Keynes’

consumption function was motivated by his belief that household spending is

affected by income. The Fed’s fair-value stock model was motivated by the belief that

stock prices are affected by interest rates. If we attach a causal interpretation to our

regression results, we should have this causal theory in mind before we estimate a

regression model.

Researchers sometimes stumble upon an unexpected correlation then search for a

plausible explanation. This is what Ed Leamer calls “Sherlock Holmes inference,” since

Sherlock Holmes was famous for “reasoning backwards” by constructing theories that fit

the data. In statistics, reasoning backward sometimes leads to a new and useful model

but often leads to useless models. Unfortunately, there are innumerable examples of

statistical correlations without causation. Two safeguards are: (1) use common sense to

judge a model’s plausibility; and (2) retest the model using fresh data.

There are three reasons why a causal interpretation of an empirical correlation may

be misleading: simple chance, reverse causation, and omitted factors. The first expla-

nation, simple chance, refers to the fact that unrelated data may be coincidentally
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correlated. In the model Y ¼ a þ bX þ ε, X has a statistically significant effect on Y at the

5 percent level if there is less than a 5 percent chance that the estimate of b would be so

far from 0 if b really is 0. What we must recognize is that, even if b really is 0, there is a 5

percent chance that the data will indicate a statistically significant relationship. Suppose,

for example, that we use a random number generator to create 200 numbers and call the

first 100 numbers X and the remaining 100 numbers Y. Even though the values of X and Y

are randomly generated, if we run a least squares regression of Y on X, there is a 5

percent chance that the empirical relationship will be statistically significant at the 5

percent level. A hapless researcher who spends his entire life looking at unrelated vari-

ables will find statistical significance on about 1 out of every 20 tries. We can hope that

no one is so misguided as to study only unrelated variables, but we should also recognize

that statistical correlation without a plausible explanation may be a coincidence—

particularly if the researcher estimates dozens (or hundreds) of equations and reports

only those with the lowest P values.

To illustrate the dangers of data grubbing, an economist once ran a large number of

regressions and found an astounding correlation between the stock market and the

number of strikeouts by a professional baseball team [1]. British researchers found a very

high correlation between the annual rate of inflation and the number of dysentery cases

in Scotland the previous year [2]. We should not be impressed with a high, or even

spectacular, correlation unless there is a logical explanation, and we should be partic-

ularly skeptical when there has been data grubbing.

The second reason why an observed correlation may be misleading is that perhaps Y

determines X rather than the other way around. Okun’s law originated with Arthur

Okun’s observation that when demand increases, firms meet this demand by hiring

more workers, which reduces the unemployment rate. In Chapter 8, we estimated this

equation: bU ¼ 1:220� 0:375Y ; R2 ¼ 0:67
½9:53� ½11:58�

where U is the change in the unemployment rate and Y is the percent change in real

gross domestic product (GDP). By this reasoning, the increase in demand causes firms to

employ more workers, thereby reducing the unemployment rate.

The empirical relationship can also be expressed the other way around. If firms hire

more workers, perhaps because they are willing to work for lower wages, unemployment

will fall and output will increase. If we reverse the dependent variable and explanatory

variable, our least squares estimated equation is:bY ¼ 3:223� 1:796U ; R2 ¼ 0:67
½19:17� ½11:58�

The value of R2 and the t value for the slope are not affected by the reversal of the

dependent variable and explanatory variable. The estimated slope does change. In the

first case, the estimated coefficients minimize the sum of squared errors in predicting
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unemployment and, in the second case, the estimated coefficients minimize the sum of

squared errors in predicting output. These are different criteria and the results are

seldom identical.

Here, the first equation predicts that a 1 percent increase in real GDP will reduce the

unemployment rate by 0.375 percentage points. If so, a 1 percentage-point increase in

the unemployment rate implies a 2.67 percent decrease in real GDP:

1

0:375
¼ 2:67

In contrast, the second equation predicts that a 1 percentage-point increase in the

unemployment rate will reduce real GDP by 1.796 percent.

As stated earlier, the R2 and the t value for the slope are not affected by the reversal of

the dependent variable and the explanatory variable. Either way, these statistics tell us

that there is a highly significant correlation between output and unemployment. What

they cannot tell us is which variable is causing changes in the other. For that, we need

logical reasoning, not t values. Sometimes, the causal direction is clear-cut. If we are

looking at the relationship between exposure to radioactive waste and cancer mortality,

it is obvious that exposure to radioactive waste may increase cancer mortality, but

cancer mortality does not cause exposure to radioactive waste.

Other cases can be more subtle. Data from six large medical studies found that people

with low cholesterol levels were more likely to die of colon cancer [3]; however, a later

study indicated that the low cholesterol levels may have been caused by colon cancer

that was in its early stages and therefore undetected [4]. For centuries, residents of New

Hebrides believed that body lice made a person healthy. This folk wisdom was based on

the observation that healthy people often had lice and unhealthy people usually did not.

However, it was not the absence of lice that made people unhealthy, but the fact that

unhealthy people often had fevers, which drove the lice away.

The third reason why impressive empirical correlations may be misleading is that

an omitted factor may affect both X and Y. In the regression model Y ¼ a þ bX þ ε,

we assume that the omitted factors collected in the error term ε are uncorrelated

with the explanatory variable X. If they are correlated, we may underestimate or

overestimate the effect of X on Y, or even identify an effect when there is none.

Many Arizona residents die from bronchitis, emphysema, asthma, and other lung

diseases, but this does not mean that Arizona’s climate is especially hazardous to

one’s lungs. On the contrary, doctors recommend that patients with lung problems

move to Arizona for its beneficial climate. Many do move to Arizona and benefit

from the dry, clean air. Although many eventually die of lung disease in Arizona, it

is not because of Arizona’s climate.

A less morbid example involves a reported positive correlation between stork nests and

human births in northwestern Europe. Few believe that storks bring babies. A more logical

explanation is that storks like to build their nests onbuildings.Where there aremore people,

there are usually more human births as well as more buildings for storks to build nests.
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A particularly common source of coincidental correlations is that many variables are

related to the size of the population and tend to increase over time as the population

grows. If we pick two such variables at random, they may appear to be highly correlated,

when in fact they are both affected by a common omitted factor—the growth of the

population. With only a small amount of data grubbing, I uncovered the simple example

in Table 9.1 using annual data on the number of US golfers and the total number of

missed workdays due to reported injury or illness (both in thousands).

A least squares regression gives:bD ¼ 304:525þ 12:63G; R2 ¼ 0:91
½14:19� ½6:37�

with the t values in brackets. This relationship is highly statistically significant and very

substantial—every additional golfer leads to another 12.6 missed days of work. It is semi-

plausible that people may call in sick to play golf (or that playing golf may cause in-

juries). But, in fact, most workers are not golfers and most missed days are not spent

playing golf or recovering from golf. The number of golfers and the number of missed

days both increased over time, not because one was causing the other, but because both

were growing with the population.

A simple way to correct for the coincidental correlation caused by a growing popu-

lation is to deflate both sets of data by the size of the population, P, giving us per capita

data. Table 9.2 shows per capita data on golfers and missed days.

Table 9.1 Golf Addiction

Golfers (G) Missed Days (D)

1960 4400 370,000
1965 7750 400,000
1970 9700 417,000
1975 12,036 433,000
1980 13,000 485,000
1985 14,700 500,000

Table 9.2 Golf per Capita

Golfers per Capita (G/P) Missed Days per Capita (D/P)

1960 0.02435 2.0479
1965 0.03989 2.0586
1970 0.04731 2.0336
1975 0.05472 1.9684
1980 0.05708 2.1295
1985 0.06144 2.0896
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There was a large increase in the number of golfers per capita, while missed days per

capita has no discernible trend. A least squares regression gives:bD
P

¼ 2:01þ 0:76
G

P
; R2 ¼ 0:04

½21:05� ½0:39�
Once we take into account the growing population by converting our data to per

capita values, the coincidental correlation disappears and we find that there is virtually

no statistical relationship between the number of golfers and the number of missed

workdays.

Detrending Time Series Data

This kind of spurious correlation is especially likely to occur with time series data, where

both X and Y trend upward over time because of long-run increases in population, in-

come, prices, or other factors. When this happens, X and Y may appear to be closely

related to each other when, in fact, both are growing independently of each other.

In Chapter 8 we estimated Keynes’ consumption function using time series data for

the years 1929–1940. Are these estimates tainted by the fact that income and spending

both trend upward over time? Table 1.1, repeated here as Table 9.3, shows the time

series data used to estimate this consumption function. Because of the Great

Depression, income and spending were actually somewhat lower in 1940 than in 1929.

It is probably not the case that our earlier estimates are tainted by common trends, but

we will check.

There are a variety of ways to adjust time series data for trends. The simplest way is to

work with changes or percentage changes. For each year, we calculate the percentage

Table 9.3 US Disposable Personal Income and
Consumer Spending, Billions of Dollars

Income Spending

1929 83.4 77.4
1930 74.7 70.1
1931 64.3 60.7
1932 49.2 48.7
1933 46.1 45.9
1934 52.8 51.5
1935 59.3 55.9
1936 67.4 62.2
1937 72.2 66.8
1938 66.6 64.3
1939 71.4 67.2
1940 76.8 71.3
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change in income and spending from the preceding year. For example, the percentage

change in income in 1930 was:

percentage change ¼ 100

�
new � old

old

�
¼ 100

�
74:7� 83:4

83:4

�
¼ �10:43

Table 9.4 shows the percentage changes in income and spending for each year. We

then estimate the simple regression model using the percentage changes in spending

and income instead of the levels of spending and income. Figure 9.1 shows the data and

the least squares line.

Another way to detrend time series data is to fit a variable to a trend line and calculate

the deviations from this trend line. For example, Figure 9.2 shows income along with the

trend line obtained by estimating a linear regression model with income as the

dependent variable and year as the explanatory variable.1 Detrended income in each

year is equal to the difference between observed income and trend income.

Consumption can be detrended in the same way. We then estimate a regression

model using the deviations of spending and income from their trends. Figure 9.3 shows

the data and the least squares line.

Table 9.5 summarizes the results of estimating a Keynesian consumption function

using the levels of spending and income, percentage changes in spending and income,

and the deviations of spending and income from their trend values. The results are not

perfectly comparable since the variables are not identical. Nonetheless, it is clear that

detrending the data has little effect on our earlier conclusion that there is a substantial

and highly statistically significant relationship between income and spending. Our initial

Table 9.4 Percentage Changes in Income and Spending

Income Spending

1930 �10.43 �9.43
1931 �13.92 �13.41
1932 �23.48 �19.77
1933 �6.3 �5.75
1934 14.53 12.2
1935 12.31 8.54
1936 13.66 11.27
1937 7.12 7.4
1938 �7.76 �3.74
1939 7.21 4.51
1940 7.56 6.1

1If the percentage growth rate is more relevant, the trend lines can also be estimated from a regression

model with the logarithm of the variable as the dependent variable.
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estimates of Keynes’ consumption function were evidently not tainted by the use of time

series data. Exercises 9.37 and 9.38 show a very different example, using hypothetical

income and spending data where detrending has a very large effect on the results.

Incautious Extrapolation

When we use a regression model to make a prediction, it is a good idea to calculate a 95

percent or 99 percent prediction interval to gauge how much uncertainty there is in our
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prediction. Prediction intervals are narrowest at the average value of the explanatory

variable and get wider as we move farther away from the mean, warning us that there is

more uncertainty about predictions on the fringes of the data.

Even a very wide prediction interval may understate how much uncertainty there is

about predictions far from the sample mean because the relationship between the two

variables may not always be linear. Linear models are very convenient, and often very

successful. However, a linear model assumes that, for all values of X, the effect on Y of a

one-unit change in X is a constant, b. It is often the case that, as X increases, the effect of

X on Y eventually either becomes stronger or weaker, which means that the relationship

is no longer linear. Fertilizer increases crop yields, but eventually the effect gets smaller

and then turns negative because too much fertilizer damages crops. College graduates,

who go to school for 16 years, generally earn substantially higher incomes than do high

school graduates. However, incomes do not keep increasing by a constant amount if a

person goes to school for 20, 24, 28, or 32 years.
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Table 9.5 Consumption Function Estimates

Data Slope t Value R2

Levels 0.837 41.42 0.994
Percent changes 0.831 23.72 0.984
Deviations from trend 0.837 41.42 0.994
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Figure 9.4 shows a consumption function that is a linear approximation to a hypo-

thetical true relationship between income and spending. The linear approximation

works fine for values of income between, say, 10 and 25, but fails miserably for values of

income far outside this range. Before using a model to make predictions far from the

data used to estimate the model, think about whether it is reasonable to assume that the

effect of a change in X on Y is constant.

Sometimes, extrapolations fail because a major event disrupts a historical pattern or

relationship. Figure 9.5 shows US cigarette sales per capita increasing steadily between

1900 and 1963. A regression line fitted to these data has an R2 of 0.95, a t value of 34.47,

and a two-sided P value of 6.7 � 10�43. Surely, we can use this regression equation to

project cigarette sales reliably for many years to come.

Not so fast! In 1964, the US Surgeon General released a widely publicized report

warning of the health risks associated with smoking. Figure 9.6 shows that US cigarette

sales per capita declined steadily after the publication of this report.

Regression Toward the Mean

Suppose that a college student named Cory takes a test of his soccer knowledge. We can

think of Cory’s ability as the expected value of his score—his average score on a large

number of tests. Some students have an ability of 90, some 80, and so on. Cory’s ability is

80, but his score on any single test depends on the questions asked. Imagine a test pool

consisting of a very large number of possible questions, from which 100 questions are
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selected. Although Cory knows the correct answers to 80 percent of all questions, it can

be shown that there is only about a 10 percent chance that he will know the answers to

exactly 80 out of 100 randomly selected questions. There is a 17 percent chance that his

score will be below 75 or above 85. He will average 80 percent correct on a large number

of tests, but his scores vary substantially from test to test. His scores can be also affected

by his health and the environment in which the test is given.

The challenge for researchers is that we observe Cory’s test score, not his ability, and

we do not know whether his score is above or below his ability. There is a clue with

important implications. A student whose test score is high relative to other students

probably scored above his own ability. For example, a student who scores in the 90th

percentile is more likely to be someone of somewhat more modest ability who did

unusually well than to be someone of higher ability who did poorly, because there are

more people with abilities below 90 than above 90. When he takes another test—the

next day, the next week, or 3 years later—he will probably not do as well. Students and

teachers should anticipate this drop off and not blame themselves if it occurs.

Similarly, students who score far below average are more likely to have had bad luck

than good luck and can anticipate scoring somewhat higher on later tests. Their sub-

sequently higher scores may be a more accurate reflection of their ability rather than

an improvement in their ability.

This tendency of people who score far from the mean to score closer to the mean on a

second test is an example of a statistical phenomenon known as regression to the mean.

There is well-established evidence that most people (even statisticians) are largely

unaware of regression to the mean. For example, a study reported that students who

were placed in a remedial group and given special tutoring because of their low test

scores generally scored higher after the tutoring. A skeptic noted that, because of

regression to the mean, their scores could be expected to improve on a second test even

if the instructor “had no more than passed his hand over the students’ heads before he

retested them” [5].

Many data regress toward the mean. Sir Francis Galton (1822–1911) observed

regression to the mean in his study of the relationship between the heights of parents

and their adult children [6]. Because the average male height is about 8 percent larger

than the average female height, he multiplied the female heights by 1.08 to make them

comparable to the male heights. The heights of each set of parents were then averaged to

give a “mid-parent height.” The mid-parent heights were divided into nine categories

and he calculated the median height of the children of parents in each category.

Figure 9.7 shows a least squares line fitted to his data.

The slope of the least squares line is 0.69, which means that every inch that the

parents’ height is above the mean, the child’s height is only 0.69 inches above the mean.

And every inch that the parents’ height is below the mean, the child’s height is only 0.69

inches below the mean. This is regression to the mean.

An incorrect interpretation of this statistical phenomenon is that everyone will soon

be the same height. That is analogous to saying that everyone will soon get the same
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score on a test of soccer knowledge. That is not what regression to the mean implies.

Regression to the mean says that, because test scores are an imperfect measure of ability,

those who score highest on any single test probably scored above their ability and will

not do as well on a second test. Not that they will score below average, but that they will

score closer to the mean. There will still be high scorers on a second test, including

students who are above average in ability and happen to score above their ability. The

observation that high scorers probably scored above their ability does not imply that

abilities are converging.

Similarly, athletic performances are an imperfect measure of skills and consequently

regress. Among Major League Baseball players who have batting averages of 0.300 or

higher in any season, 80 percent do worse the following season [7]. Of those MLB teams

that win more than 100 out of 162 baseball games in a season, 90 percent do not do as

well the next season. The regression toward the mean fallacy is to conclude that the skills

of good players and teams deteriorate. The correct conclusion is that those with the best

performance in any particular season usually are not as skillful as their lofty record

suggests. Most have had more good luck than bad, so that this season’s record is better

than the season before or the season after.

An economic example is a book with the provocative title The Triumph of Mediocrity

in Business [8], which was written by a statistics professor. This professor found that

businesses with exceptional profits in any given year tend to have smaller profits the

following year, while firms that do poorly usually do better the next year. From this

evidence, he concluded that strong companies were getting weaker, and weak com-

panies stronger, so that soon all will be mediocre. The president of the American

Statistical Association wrote an enthusiastic review of this book, but another statisti-

cian pointed out that the author had been fooled by regression to the mean. In any

given year, companies with very high (or low) profits probably experienced good
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(or bad) luck. While their subsequent performance will usually be closer to the mean,

their places at the extremes will be taken by other companies experiencing fortune or

misfortune.

An investments textbook written by a Nobel Prize winner makes this same error [9].

The author discusses a model of stock prices that assumes, “ultimately, economic

forces will force the convergence of the profitability and growth rates of different

firms.” To support this assumption, he looked at the 20 percent of firms with the

highest profit rates in 1966 and the 20 percent with the lowest profit rates. Fourteen

years later, in 1980, the profit rates of both groups are more nearly average: “conver-

gence toward an overall mean is apparent.the phenomenon is undoubtedly real.” Part

(maybe all) of the phenomenon is regression toward the mean, which is statistical, not

economic.

The Real Dogs of the Dow

The Dow Jones Industrial Average contains 30 blue chip stocks that represent the na-

tion’s most prominent companies. When companies falter, they are replaced by more

successful companies. Regression to the mean suggests that companies taken out of the

Dow may not be as bad as their current predicament indicates and the companies that

replace themmay not be as terrific as their current performance suggests. If investors are

insufficiently aware of this statistical phenomenon, stock prices may be too low for the

former and too high for the latter—mistakes that will be corrected when these com-

panies regress to the mean. Thus, stocks taken out of the Dow may outperform the

stocks that replace them. This hypothesis was tested [10] with the 50 substitutions made

since the Dow expanded to 30 stocks in 1928.

Two portfolios were followed, one consisting of stocks that were deleted from the

Dow and the other stocks that were added. Whenever a Dow substitution was made,

the deleted stock was added to the deletion portfolio and the replacement stock was

added to the addition portfolio. The 20,367 daily differences between the percentage

returns on the deletion portfolio and the addition portfolio are matched-pair data

that can be used to test the null hypothesis that the expected value of the difference is

equal to 0.

These differences had a mean of 0.0155 percent and a standard deviation of

0.8344 percent. The t value for testing the null hypothesis that the population mean

is 0 is:

t ¼ 0:0155

0:8344
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

20; 367
p

¼ 2:65

The two-sided P value is 0.0080. This observed difference is substantial. The deletion

portfolio had an annual return of 14.5 percent, the addition portfolio only 10.1 percent.

Compounded over nearly 80 years, the deletion portfolio grew to 21 times the size of the

addition portfolio.
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Regression Diagnostics (Optional)
Regression analysis assumes that the model is correctly specified, for example, that the

error term ε has a constant standard deviation and the values of the error term are in-

dependent of each other. Violations of these two assumptions do not bias the estimates

of the slope and intercept, but their standard deviations are unnecessarily large and

underestimated, causing us to overestimate the statistical significance of our results.

Nobel laureate Paul Samuelson advised econometricians to “always study your re-

siduals.” A study of a regression model’s residuals (the deviations of the scatter points

from the fitted line) can reveal outliers—perhaps an atypical observation or a clerical

error—or violations of the assumptions that the error term has a constant standard

deviation and independent values. It is generally a good idea to use a scatter diagram to

look at the residuals and the underlying data.

Looking for Outliers

In the early 1990s, researchers collected data for nine cigarette brands on each brand’s

percentage of total cigarette advertising and percentage of total cigarettes smoked by

persons 12–18 years of age [11]. A least squares regression yielded a positive relationship

with a t value of 5.83 and a two-sided P value of 0.001, leading to nationwide newspaper

stories about the relationship between cigarette advertising and teen smoking. However

the scatter diagram in Figure 9.8 shows that these results are due entirely to the Marlboro

outlier. For the eight other brands, there is a negative relationship between advertising

and smoking, although it is not statistically significant at the 5 percent level. (The two-

sided P value is 0.15.)

The reader must decide whether Marlboro is decisive evidence or a misleading

outlier. If we had not looked at a scatter diagram, we would not have known that this is

the real issue.
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Checking the Standard Deviation

Suppose that we are investigating the variation among cities in annual spending at

restaurants. Believing that spending depends primarily on a city’s aggregate income, we

use the following data for 10 cities:

Income X (millions) 620 340 7400 3000 1050 2100 4300 660 2300 1200
Spending Y (millions) 96 46 1044 420 131 261 522 95 283 156

Least squares estimation of the simple regression model yields:by ¼ �10:99þ 0:138x; R2 ¼ 0:992

½0:8� ½31:0�
[ ]: t values

The results seem satisfactory. The relationship between income and restaurant

spending is, as expected, positive and, as hoped, statistically significant. The value of R2

is nearly 1.

Following Samuelson’s advice, the prediction errors are plotted in Figure 9.9 with

income on the horizontal axis. The residuals appear to be larger for high-income cities.

On reflection, it is plausible that the errors in predicting restaurant spending in large

cities tend to be larger than the errors in predicting spending in small cities, violating our

assumption that the standard deviation of the error term is constant.

A variety of formal statistical procedures for testing this assumption are described in

more advanced courses. Here, we discuss one possible solution. The error term en-

compasses the effects of omitted variables. With cross-section data, the scale of the

omitted variables may be larger for some observations (like large cities); with time series

data, the scale of the omitted variables may increase over time. One solution is to
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respecify the model, rescaling the variables so that the error term has a constant stan-

dard deviation. In our restaurant spending example, the problem is apparently caused by

the fact that some cities are much larger than others. To give the data a comparable

scale, we can respecify our model in terms of per capita income and per capita spending,

using the following data on population P, in thousands:

P 40 20 400 150 50 100 200 30 100 50
X/P 15,500 17,000 18,500 20,000 21,000 21,000 21,500 22,000 23,000 24,000
Y/P 2410 2310 2610 2800 2620 2610 2610 3160 2830 3120

Least squares estimation of a regression equation using per capita data yieldsby
p
¼ �1; 020þ 0:083

x

p
; R2 ¼ 0:641

½2:3� ½3:8�
[ ]: t values

The plot of the residuals in Figure 9.10 is a big improvement. Evidently, the problem

was caused by the use of aggregate data for cities of very different sizes and solved by a

rescaling to per capita data.

Notice that this rescaling caused a substantial change in the estimated slope of the

relationship. Our initial regression implies that a $1 increase in income increases

restaurant spending by $0.138. The rescaled regression gives an estimate that is 40

percent lower: A $1 increase in per capita income increases per capita spending by

$0.083. If our rescaled estimates are an improvement, then our initial estimates were

misleading.
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FIGURE 9.10 Per capita sales-income
residuals.
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A possible concern is that the rescaling caused a substantial decline in the t value and

R2, suggesting that the rescaled model is not an improvement. However, we cannot

compare these statistical measures directly because the variables are different. The first

R2 measures the accuracy in predicting aggregate spending; the second R2 measures the

accuracy in predicting per capita spending. If, as here, aggregate spending varies more

than per capita spending, the per capita model could be more accurate and yet have the

lower R2.

To compare the predictive accuracy of these two models, we need to focus on a single

variable—either aggregate spending or per capita spending. For the unscaled model,

predicted aggregate spending is given by the regression equation:by ¼ �10:99þ 0:138x

For the per capita model, aggregate spending can be predicted by multiplying the

city’s population times predicted per capita spending:

by ¼ p

0@by
p

1A ¼ p

�
�1020þ 0:083

x

p

�
Table 9.6 shows these predictions. The per capita model generally has smaller pre-

diction errors, often substantially so. The standard error of estimate (the square root of

the sum of the squared prediction errors, divided by n � 2) is 29.0 for the aggregate

model and 18.8 for the per capita model. Despite its lower t value and R2, the per capita

model fits the data better than the aggregate model!

This example illustrates not only a strategy for solving the problem of unequal

standard deviations, but also the danger of overrelying on t values and R2 to judge a

model’s success. A successful model should have plausible estimates, and residuals that

are consistent with the model’s assumptions.

Table 9.6 Aggregate Predictions of the Unscaled and per Capita Models

Actual Spending

Unscaled Model Per Capita Model

Predicted ðbyÞ Error Predicted pðdy=pÞ Error

96 74.4 22.0 92.2 4.2
46 35.8 10.4 48.6 �2.4
1044 1008.0 36.0 1021.8 22.2
420 402.1 17.9 401.8 18.2
131 133.6 �2.6 138.1 �7.1
261 278.2 �17.2 276.2 �15.2
522 581.1 �59.1 560.6 �38.6
95 79.9 14.9 85.3 9.5
283 305.7 �22.7 292.7 �9.7
156 154.3 1.7 150.5 5.5
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Independent Error Terms

Sometimes, a scatter diagram of the residuals reveals that the residuals are not inde-

pendent of each other. Figure 9.11 shows some consumption function residuals that

have a definite pattern: negative residuals for low values of income, then positive, then

negative again. This systematic pattern indicates that the residuals are not independent.

Figure 9.12 shows why the residuals have this particular pattern: There is a nonlinear

relationship between income and spending. When a linear equation is fitted to these

nonlinear data, the residuals are negative for low values of income, positive for middle

values, and negative for high values. The solution is to fit a nonlinear equation to these

nonlinear data.

Figure 9.13 shows an example of nonindependent residuals using time series data.

These data are from the Fed’s stock valuation model in Figure 8.10. The residuals are

plotted in Figure 9.13, not against the explanatory variable, but against time, to show the

sequence in which the residuals appear. These residuals are positively correlated in that

positive values tend to be followed by positive values and negative values by negative

values. In this case, the cause might be a pattern in an omitted variable that is part of the

error term. For example, Keynes wrote that investors’ “animal spirits” sometimes cause

stock prices to wander away from fundamental values for extended periods of time. If so,

the Fed’s fundamental value model might have positive residuals for several months (or

even years) and negative residuals for other time periods.

Negatively correlated residuals, in contrast, zigzag back and forth, alternating be-

tween positive and negative values. These are relatively rare; an example might be

monthly spending for a household that sticks to an annual budget: If it spends too much
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FIGURE 9.11 Suspicious residuals.
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one month, it cuts back the following month. More advanced courses discuss a number

of tests and possible cures for both positively and negatively correlated residuals.

Exercises
9.1 Explain why you either agree or disagree with this interpretation of the results

from estimating a regression model: “This study concludes that the data are statis-

tically substantial because there are more than 5 degrees of freedom, and statisti-

cally significant because the P value is not below 0.05.”

9.2 A study of 16,405 adult daughters of women who immigrated to California from

other countries measured the economic status of the daughters by the median

household income Y for the ZIP code they lived in [12]. A least squares regression

used a variable D that equals 1 if the daughter was her mother’s first-born child

and 0 otherwise: by ¼ 38:976þ 1513D

½208:10� ½6:85�
The t values are in brackets. Is the estimated relationship between birth order and

income:

a. Statistically significant at the 5 percent level?

b. Substantial?

9.3 The study described in the preceding exercise also looked at 11,794 first-born

daughters at the time they gave birth to their first child. A least squares regression

was used to examine the relationship between income Y and the daughter’s age A

(in years) at the time she gave birth:by ¼ �0:309þ 0:212x

½30:07� ½12:17�
The t values are in brackets. Is the estimated relationship between age and income:

a. Statistically significant at the 5 percent level?

b. Substantial?

9.4 Table 9.7 shows the SAT scores (600–2400) and college GPAs (four-point scale) for

24 second-year college students at a highly selective college. Use a simple regres-

sion model to estimate the relationship between these variables. Explain your an-

swers to these questions:

a. Which variable did you use as the dependent variable?

b. Is the relationship statistically significant at the 5 percent level?

c. Is the estimated relationship of any practical importance?

d. Do you think that your least squares equation can be used to make reliable

GPA predictions for a student with a 1200 SAT score?
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9.5 The Boston Snow (B.S.) indicator uses the presence or absence of snow in Boston

on Christmas Eve to predict the stock market the following year: “the average gain

following snow on the ground was about 80 percent greater than for years in

which there was no snow” [13]. How would you explain the success of the B.S.

indicator?

9.6 Explain the following observation, including the use of the word sadly: “There

have always been a considerable number of pathetic people who busy them-

selves examining the last thousand numbers which have appeared on a roulette

wheel, in search of some repeating pattern. Sadly enough, they have usually

found it” [14].

9.7 Two psychologists found a strong positive correlation between family tension and

the number of hours spent watching television [15]. Give a logical explanation

other than television shows increase family tension.

9.8 Give a logical statistical explanation for the Cy Young jinx:

Of 71 winners of the Cy Young Award [for the best pitcher] since it was instituted in

1956, only three followed with better years and 30 had comparable years. But in 37

cases,.the next season was worse [16].

9.9 Sir Francis Galton planted seeds with seven different diameters (in hundredths of

an inch) and computed the average diameter of 100 seeds of their offspring [17]:

Parent 15 16 17 18 19 20 21
Offspring 15.3 16.0 15.6 16.3 16.0 17.3 17.5

After deciding which is the dependent variable, use least squares to estimate the

regression equation Y ¼ a þ bX þ ε. Is there a statistically significant relationship at

the 1 percent level? Plot these data in a scatter diagram with each axis going from

0 to 25 and draw in the least squares line. What would the line look like if the

diameters did not regress toward the mean?

Table 9.7 Exercise 9.4

SAT GPA SAT GPA SAT GPA SAT GPA

1900 3.60 2060 3.00 2200 3.80 2260 3.30
1950 3.27 2080 3.80 2210 3.40 2280 3.60
1990 2.40 2090 3.00 2240 3.80 2300 3.80
2010 3.40 2100 3.73 2250 3.83 2300 3.80
2020 3.70 2100 3.60 2260 3.75 2340 3.83
2050 3.80 2190 3.50 2260 3.92 2350 3.75
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9.10 Use the data in Exercise 9.9 to estimate the equation

Parent ¼ a1 þ b1 Offspring þ ε1 and to estimate the equation

Offspring ¼ a2 þ b2Parent þ ε2 by ordinary least squares. Let b1 be your estimate

of b1 and b2 be your estimate of b2.

a. Does b1 ¼ 1/b2?

b. If both equations are estimated by least squares, why doesn’t b1 always equal

1/b2?

9.11 Explain why you either agree or disagree with this explanation of regression to

the mean by Barry B. Bannister, Trust Investment Officer, AmSouthBank,

Birmingham Alabama:

Key financial ratios of companies tend, over time, to revert to the mean for the

market as a whole. The thesis is easily defended. High returns eventually invite

new entrants, driving down profitability, while poor returns cause the exit of

competitors, leaving a more profitable industry for the survivors.

9.12 Data were collected for 25 new cars on the cars’ weights (X) and estimated high-

way miles per gallon (Y). The model Y ¼ a þ bX þ ε was estimated by least

squares in three ways: the data were arranged alphabetically by car name, the

data were arranged numerically from the lightest car to the heaviest, and the

data were arranged numerically from the lowest miles per gallon to the highest.

Which procedure yielded the smallest estimate of the intercept? Which yielded

the highest estimate?

9.13 A California college student wanted to see if there is a relationship between the

weather and the color of clothes students wear. He collected data for 13 days in

April on these two variables:

X: Weather, ranging from 1 (precipitation) to 6 (bright sunny day).

Y: Clothing brightness, ranging from 1 (black) to 6 (white).

Each value of X was recorded right before the start of a philosophy class; Y was the

average brightness value for the approximately 20 students who attended the class.

He then used least squares to estimate the following equation: by ¼ 2:270þ 0:423x.

The standard error of the estimated slope was 0.092 and the value of R2 was 0.657.

a. Explain why you either agree or disagree with this student’s decision to let X

be weather and Y be clothing, rather than the other way around.

b. Do his regression results indicate that students tend to wear brighter or

darker clothing on sunny days?

c. Is the relationship statistically significant at the 5 percent level? How can you

tell?

d. What problems do you see with this study?

9.14 Suppose that you meet a 25-year-old man who is 6 feet, 4 inches tall and he tells

you that he has two brothers, one 23 years old and the other 27 years old. If you
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had to guess whether he is the shortest, tallest, or inbetween of these three

brothers, which would you select? Explain your reasoning.

9.15 A study used the data in Table 9.8 to investigate the effect of driving speed on

traffic fatalities, Y ¼ a þ bX þ ε, where Y ¼ deaths per million miles driven and

X ¼ average speed, miles per hour.

a. The researcher argued that “supporters of lower speed limits would expect b

to be close to 1, reflecting a strong, direct effect of X on Y.” What is wrong

with this argument?

b. Do you think that the least squares estimate of b using these data is positive

or negative?

c. Why are you suspicious of these data?

9.16 The model Y ¼ a þ bX þ ε was estimated using annual data for 1991 through

2000. If X ¼ 100 and Y ¼ 100 in 1991 and X ¼ 200 and Y ¼ 200 in 2000, can the

least squares estimate of b be negative? Explain your reasoning.

9.17 A statistician recommended a strategy for betting on professional football

games based on the logic of regression to the mean [18]. Do you think that he

recommended betting for or against teams that had been doing poorly? Explain

clearly and concretely how the logic of regression to the mean applies to foot-

ball games.

9.18 Professional baseball players who are batting 0.400 at the halfway point in the

season almost always find that their batting average declines during the second

half of the season. This slump has been blamed on fatigue, pressure, and too

much media attention. Provide a purely statistical explanation. If you were a ma-

jor league manager, would you take a 0.400 hitter out of the lineup in order to

play someone who was batting only 0.200?

9.19 Howard Wainer, a statistician with the Educational Testing Service, recounted

the following [19]:

My phone rang just before Thanksgiving. On the other end was Leona Thurstone;

she is involved in program evaluation and planning for the Akebono School

(a private school) in Honolulu. Ms. Thurstone explained that the school was

being criticized by one of the trustees because the school’s first graders who

Table 9.8 Exercise 9.15

Year X Y

1980 57.0 1.6
1984 58.2 1.4
1985 58.5 1.3
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finish at or beyond the 90th percentile nationally in reading slip to the 70th

percentile by 4th grade. This was viewed as a failure in their education..I

suggested that it might be informative to examine the heights of the tallest

first graders when they reached fourth grade. She politely responded that I

wasn’t being helpful.

Explain his suggestion.

9.20 Some child-development researchers tabulated the amount of crying by 38

babies when they were 4–7 days old, and then measured each baby’s IQ at

3 years of age [20]. Plot the data in Table 9.9 on a scatter diagram and use least

squares to estimate the regression line Y ¼ a þ bX þ ε, where Y is IQ and X is cry

count. Is the relationship statistically significant at the 5 percent level? If there is

a positive, statistically significant relationship, does this mean that you should

make your baby cry?

9.21 Studies have found that people who have taken driver training courses tend to

have more traffic accidents than people who have not taken such courses. How

might you dispute the implication that driver training courses make people

worse drivers?

9.22 The Pizza Principle says that in New York City since the 1960s, the cost of a sub-

way ride has been roughly equal to the cost of a slice of pizza. How, as a statisti-

cian, would you explain this relationship?

9.23 Table 9.10 shows data on the age (in months) at which 21 children said their

first word and their score on a later test of mental aptitude [21]. Use a regression

equation to see if there is a statistical relationship.

a. Which variable did you use as the dependent variable? Explain your

reasoning.

b. What is the two-sided P value for the slope?

Table 9.9 Exercise 9.20

Cry Count IQ Cry Count IQ Cry Count IQ Cry Count IQ

9 103 13 162 17 94 22 135
9 119 14 106 17 141 22 157
10 87 15 112 18 109 23 103
10 109 15 114 18 109 23 113
12 94 15 133 18 112 27 108
12 97 16 100 19 103 30 155
12 103 16 106 19 120 31 135
12 119 16 118 20 90 33 159
12 120 16 124 20 132
13 104 16 136 21 114

286 ESSENTIAL STATISTICS, REGRESSION, AND ECONOMETRICS



c. Plot the residuals for your regression equation with X on the horizontal axis

and draw a horizontal line at zero on the vertical axis. What pattern or other

peculiarity do you see in the residuals?

9.24 A researcher wanted to investigate the theory that better baseball players tend

to come from warmer climates, where they can play baseball 12 months of

the year. He gathered data for 16 MLB teams on the number of players who

were from warm climates (the Dominican Republic, Mexico, Puerto Rico,

and 10 sunbelt states of the United States). A least squares regression of the

number of games won on the number of warm-climate players gave these

results:

by ¼ 54:462þ 2:120x; R2 ¼ 0:41

½5:79� ½3:08�
[ ]: t values

a. The researcher observed that “Both t values are significant; so there is a real

relationship between the number of southern players on a baseball team and

the number of wins.” Explain what he means by “significant.” Explain why

both t values either do or do not matter to his conclusion.

b. Use a two-standard-deviations rule of thumb to calculate a 95 percent confi-

dence interval for the predicted effect of another warm-climate player on the

number of wins by a team.

c. The researcher calculated the predicted number of wins for a team in which

all 25 players on the roster are from warmer climates. What is the predicted

value? Why should it be used with caution?

d. Carefully explain why, even if it is true that better baseball players come from

warmer climates, there may be no relationship whatsoever between the num-

ber of warm-climate players on a team’s roster and the number of games it

wins.

9.25 A regression [22] of cricket chirps per minute for one cricket species on tempera-

ture in degrees Fahrenheit gave this estimated equation: by ¼ �0:309þ 0:212x.

Which is the dependent and which the independent variable? What is the pre-

dicted value of Y when X ¼ 0? When X ¼ 300? Do these predictions seem plau-

sible? Can we judge the reasonableness of this model by the plausibility of these

predictions?

Table 9.10 Exercise 9.23

Age Test Age Test Age Test Age Test Age Test Age Test Age Test

15 95 9 91 18 93 20 94 10 83 10 100 17 121
26 71 15 102 11 100 7 113 11 84 12 105 11 86
10 83 20 87 8 104 9 96 11 102 42 57 10 100
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9.26 A researcher obtained the combined math and reading SAT scores (X) (scale

400–1600) and GPAs (Y) of 396 college students and reported these regression

results: by ¼ 1; 146:0þ 1:4312x; R2 ¼ 0:01
½5:86� ½0:02�

[ ]: t values

a. There is an error in these results. What is it?

b. The researcher said: “Therefore I reject the null hypothesis and conclude that

SAT scores and grades are not related.” What is the statistical basis for this

conclusion and why is it wrong?

c. What other important explanatory variables do you think affect GPAs?

9.27 A 1957 Sports Illustrated cover had a picture of the Oklahoma football team,

which had not lost in 47 games, with the caption “Why Oklahoma Is

Unbeatable.” The Saturday after this issue appeared, Oklahoma lost to Notre

Dame, starting the legend of the Sports Illustrated cover jinx—that the perfor-

mance of an individual or team usually declines after they are pictured on the

cover of Sports Illustrated. Explain how regression toward the mean might be

used to explain the Sports Illustrated cover jinx.

9.28 A random sample of 30 second-semester college sophomores was asked to report

their GPA (on a four-point scale) and the average number of hours per week

spent on organized extracurricular activities, such as work, sports teams, clubs,

committee meetings, and volunteer activities. These data were used to estimate

the following equation by least squares:

by ¼ 3:270þ 0:00817x; R2 ¼ 0:07
ð0:139Þ ð0:00823Þ

( ): standard errors

a. Is the relationship statistically significant at the 5 percent level?

b. Is the relationship substantial?

c. What is the null hypothesis?

d. What does R2 measure and how would you interpret the R2 value here?

e. The average value of the number of hours a week spent on extracurricular ac-

tivities was 15.15; what was the average GPA?

f. If the statistical relationship were positive, substantial, and highly statistically

significant, why would we still be cautious about concluding that the way to

raise your grades is to spend more time on extracurricular activities?

9.29 Table 9.11 shows annual US beer production (X), in millions of barrels, and the

number of married people (Y), in millions. Draw a scatter diagram and estimate

the equation Y ¼ a þ bX þ ε by least squares to see if there is a statistically signif-

icant relationship at the 5 percent level. If so, do you think that beer drinking

leads to marriage, marriage leads to drinking, or what?
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9.30 Estimate the parameters in the linear equation Y ¼ a þ bX þ ε using the data in

Table 9.12. Now plot these data and draw in your fitted line. Explain why you

either do or do not think that the fitted line gives an accurate description of the

relationship between X and Y.

9.31 Table 9.13 shows [23] the percent neonatal mortality rate in the United States in

1980, for babies grouped by birth weight (grams).

a. Estimate a linear regression model.

b. Which variable is your dependent variable?

c. Is the relationship statistically significant at the 5 percent level?

d. Plot your residuals as a function of birth weight. What least squares assump-

tion seems to be violated?

e. How would you explain the problem identified in question d? How would you

correct it?

9.32 What pattern do you see in Figure 9.14, a plot of the residuals from a least

squares regression?

9.33 What pattern do you see in Figure 9.15, a plot of the residuals from a least

squares regression? What do you think might have caused this pattern?

9.34 Based on the Figure 9.16 plot of least squares residuals, what assumption about

the regression model’s error term seems to be violated?

Table 9.11 Exercise 9.29

1960 1965 1970 1975 1980 1985

X 95 108 135 158 193 200
Y 84.4 89.2 95.0 99.7 104.6 107.5

Table 9.12 Exercise 9.30

X Y

1.0 0.8
2.0 1.9
3.0 3.0
4.0 4.1
5.0 5.2
30.0 3.0

Table 9.13 Exercise 9.31

Birth weight 250 750 1250 1750 2250 2750 3250 3750 4250
Mortality 100 64.76 18.65 5.39 1.6 0.4 0.19 0.14 0.15
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9.35 Based on the Figure 9.17 plot of least squares residuals, what assumption about

the regression model’s error term seems to be violated?

9.36 What is puzzling about Figure 9.18, a plot of the residuals from a least squares

regression?

9.37 Consider the hypothetical income and spending data in Table 9.14.

a. Identify any important differences in the patterns in these data compared to

the data in Table 9.3.

b. Estimate the simple regression model with spending as the dependent vari-

able and income as the explanatory variable.
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c. Calculate the annual percentage changes in income and spending and esti-

mate the simple regression model with the percentage change in spending as

the dependent variable and the percentage change in income as the explana-

tory variable.

d. Identify any important differences between your answers to questions b and c.

9.38 Use the data in Exercise 9.37 to answer these questions:

a. Estimate the simple regression model with spending as the dependent vari-

able and income as the explanatory variable.

b. Estimate the equation Y ¼ a þ bX þ ε, where Y is income and X is the year.

Use your estimates to calculate the predicted value of income each year,by ¼ aþ bx. The residuals y � by are the detrended values of income.

c. Repeat the procedure in question b using spending as the dependent variable.

d. Estimate a consumption function where the dependent variable is detrended

spending and the explanatory variable is detrended income.

e. Identify any important differences between your answers to questions a and d.

9.39 Table 9.15 shows US data for C ¼ real per capita consumption and Y ¼ real per

capita disposable personal income.

a. Draw a scatter diagram.

b. Estimate the consumption function C ¼ a þ bY þ ε.

c. Calculate the residuals e ¼ c � (a þ by) for each year and make a scatter dia-

gram with e on the vertical axis and the year on the horizontal axis.

d. Do you see anything in this residuals plot that suggests that the least squares

assumptions might be violated?

9.40 Use the data in the Exercise 9.39 to calculate the annual change in income and

consumption, for example, in 1961 Y � Y�1 ¼ 11.05 � 10.86 ¼ 0.19.

Table 9.14 Exercise 9.37

Hypothetical Income Hypothetical Spending

1929 100 90
1930 110 99
1931 121 107
1932 129 118
1933 132 115
1934 140 126
1935 148 135
1936 162 142
1937 173 151
1938 179 163
1939 194 169
1940 200 182
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a. Draw a scatter diagram using these annual changes.

b. Estimate the consumption function (C � C�1) ¼ a þ b(Y � Y�1) þ ε.

c. Calculate the residuals e ¼ (c � c�1) – (a þ b(y � y�1)) for each year and make

a scatter diagram with e on the vertical axis and the year on the horizontal

axis.

d. Do you see anything in this residuals plot that suggests that the least squares

assumptions might be violated?

9.41 Use the data in Exercise 9.39 to calculate the annual percentage change in in-

come and consumption, for example, in 1961:

%Y ¼ 100

�
Y � Y�1

Y�1

�
¼ 100

�
11:05� 10:86

10:86

�
¼ 1:75

a. Draw a scatter diagram using these annual percentage changes.

b. Estimate the consumption function (%C) ¼ a þ b(%Y) þ ε.

c. Calculate the residuals e ¼ (%c) – (a þ b(%y)) for each year and make a scatter

diagram with e on the vertical axis and the year on the horizontal axis.

d. Do you see anything in this residuals plot that suggests that the least squares

assumptions might be violated?

9.42 Explain why you either agree or disagree with this reasoning: “You can always

identify an outlier in a regression model by looking at the residuals because an

outlier has a large residual.” Draw a scatterplot to illustrate your argument.

Table 9.15 Exercise 9.39

Y C Y C Y C

1960 10.86 9.87 1977 18.02 16.05 1994 24.52 22.47
1961 11.05 9.91 1978 18.67 16.58 1995 24.95 22.80
1962 11.41 10.24 1979 18.90 16.79 1996 25.47 23.33
1963 11.67 10.51 1980 18.86 16.54 1997 26.06 23.90
1964 12.34 10.99 1981 19.17 16.62 1998 27.30 24.86
1965 12.94 11.54 1982 19.41 16.69 1999 27.80 25.92
1966 13.47 12.05 1983 19.87 17.49 2000 28.90 26.94
1967 13.90 12.28 1984 21.11 18.26 2001 29.30 27.39
1968 14.39 12.86 1985 21.57 19.04 2002 29.98 27.85
1969 14.71 13.21 1986 22.08 19.63 2003 30.45 28.37
1970 15.16 13.36 1987 22.25 20.06 2004 31.21 29.09
1971 15.64 13.70 1988 23.00 20.67 2005 31.34 29.79
1972 16.23 14.38 1989 23.38 21.06 2006 32.30 30.36
1973 17.17 14.95 1990 23.57 21.25 2007 32.68 30.87
1974 16.88 14.69 1991 23.45 21.00 2008 32.55 30.51
1975 17.09 14.88 1992 23.96 21.43
1976 17.60 15.56 1993 24.04 21.90
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9.43 A stock portfolio consisting of the 10 companies identified by Fortune magazine

each year as America’s most admired companies was compared to the overall US

stock market [24]. A least squares regression was used to analyze the relationship

between the risk-adjusted daily percentage return on the Fortune portfolio RF

with the risk-adjusted daily return on the market as a whole RM:bRF ¼ 0:0270þ 0:9421RM ; R2 ¼ 0:809
ð0:0075Þ ð0:0110Þ

There were 5547 observations. The standard errors are in parentheses.

a. The average value of RM is 0.0522 percent (this is not 5 percent, but about

1/20 of 1 percent). What is the average value of RF?

b. Is the difference between the average value of RF and RM substantial? Explain

your reasoning.

c. Test the null hypothesis that the slope is equal to 1.

d. Test the null hypothesis that the intercept is equal to 0.

9.44 Two portfolios were followed: one portfolio consisting of stocks that were deleted

from the Dow Jones Industrial Average, the other portfolio consisting of stocks

that replaced them [25]. Whenever a Dow substitution was made, the deleted

stock was added to the deletion portfolio and the replacement stock was added

to the addition portfolio. Using 20,367 daily observations, the difference between

the daily percentage return on the addition portfolio RA and the daily percentage

return on the deletion portfolio RD was regressed on the daily percentage return

for the stock market as a whole: dRA � RD

!
¼ �0:0163þ 0:0185RM ; R2 ¼ 0:0005

½2:78� ½3:29�
There were 20,367 observations. The t values are in brackets.

a. Explain why regression to the mean suggests that stocks removed from the

Dow may outperform the stocks that replace them.

b. The average value of RM is 0.0396 percent (this is not 4 percent, but 4/100 of

1 percent). What is the average value of RA � RD?

c. Is the average value of RA � RD large or small? Explain your reasoning.

d. Test the null hypothesis that the slope is equal to 0.

e. Test the null hypothesis that the intercept is equal to 0.

9.45 Answer this question that was given to graduate students in psychology, which

described the professor’s experience when he advised the Israeli air force:

The instructors in a flight school adopted a policy of consistent positive

reinforcement recommended by psychologists. They verbally reinforced each

successful execution of a flight maneuver. After some experience with this training

approach, the instructors claimed that contrary to psychological doctrine, high
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praise for good execution of complex maneuvers typically results in a decrement of

performance on the next try. What should the psychologist say in response? [26]

9.46 Use these data on the average weight in pounds of US men who are 68 inches

tall to estimate the equation Y ¼ a þ bX þ ε. Plot the residuals and identify a

pattern.

Age (X) 20 30 40 50 60 70
Weight (Y) 157 168 174 176 174 169

9.47 Eighteen plots of land in Indiana were given different applications of nitrogen. In

each case, the previous crop had been soybeans and all other factors were roughly

comparable. Use the 18 observations in Table 9.16 to estimate the equation

Y ¼ a þ bX þ ε, where Y is the corn yield (bushels per acre) and X is nitrogen

(pounds per acre). Is the relationship substantial and statistically significant at the

1 percent level? Now make a scatter diagram with the residuals on the vertical axis

and X on the horizontal axis and a horizontal line drawn at 0. What pattern do

you see and how do you explain it? Does this pattern make logical sense?

9.48 In educational testing, a student’s ability is defined as this student’s average

score on a large number of tests that are similar with respect to subject matter

and difficulty. A student’s score on a particular test is equally likely to be above

or below the student’s ability. Suppose a group of 100 students takes two similar

tests and the scores on both tests have a mean of 65 with a standard deviation of

14. If a student’s score on the second test is 52, would you predict that this stu-

dent’s score on the first test was (a) below 52, (b) 52, (c) between 52 and 65, (d)

65, or (e) above 65? Explain your reasoning.

9.49 To examine the relationship between the death penalty and murder rates, the

following equation was estimated by least squares using US cross-sectional data

for 50 states:

by ¼ 4:929þ 1:755x; R2 ¼ 0:063

ð0:826Þ ð0:973Þ

Table 9.16 Exercise 9.47

Nitrogen Yield Nitrogen Yield Nitrogen Yield

50 91 90 129 170 160
130 155 250 175 250 183
90 138 210 185 170 177
170 172 130 170 90 124
130 155 250 166 50 95
210 183 50 84 210 171
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where Y ¼murder rate (murders per 100,000 residents), X ¼ 1 if the state has a

death penalty or 0 if it does not, and the standard errors are in parentheses.

a. What does R2 mean and how is it measured?

b. Is the relationship statistically significant at the 5 percent level?

c. The researcher added the District of Columbia to the data and obtained these

results:

by ¼ 7:013� 0:330x; R2 ¼ 0:001
ð1:366Þ ð1:626Þ

The murder rate in DC is 36.2; the state with the next highest murder rate is

Michigan, with a murder rate of 12.2. Explain how a comparison of the two esti-

mated equations persuades you that DC either does or does not have a death

penalty.

d. Explain the error in this interpretation of the results including DC: “Those of

us who oppose the death penalty can breathe a sigh of relief, now armed with

statistically significant evidence that the death penalty is only cruel and not

effective.”

9.50 A psychologist once suggested this possible relationship between the IQs of chil-

dren and their parents [27]:

ðchild IQ� 100Þ ¼ 0:50ðadult IQ� 100Þ
What statistical phenomenon would explain this psychologist’s use of the coeffi-

cient 0.5, rather than 1.0? A few years later another researcher used the data in

Table 9.17, relating the mean IQ scores of children and their fathers, grouped

according to the father’s occupation, to estimate the regression equation

Y ¼ a þ bX þ ε. Draw a scatter diagram and estimate this equation by least squares.

a. Which variable did you use as the dependent variable? Explain your

reasoning.

b. Is your estimated equation consistent with the theory that (child IQ � 100) ¼
0.50(adult IQ � 100)?

c. What is suspicious about your estimated equation?

9.51 Provide a purely statistical explanation for this observation: “Highly intelligent

women tend to marry men who are less intelligent than they are.”

Table 9.17 Exercise 9.50

Fathers Children

Higher professional 139.7 120.8
Lower professional 130.6 114.7
Clerical 115.9 107.8
Skilled 108.2 104.6
Semi-skilled 97.8 98.9
Unskilled 84.9 92.6

296 ESSENTIAL STATISTICS, REGRESSION, AND ECONOMETRICS



9.52 Data on the profits (return on assets) of 100 firms were grouped into quar-

tiles based on their 1930 profits: the top 25, second 25, third 25, and bottom

25. The average profits in 1930 and 1920 were then calculated for the firms

in these 1930 quartiles. How would you explain the results shown in

Figure 9.19?

9.53 A researcher wanted to investigate burnout in competitive mountain biking.

He looked at every California U23 (ages 19–22) mountain biker in 2012, and

calculated the total number of sanctioned events they had competed in while

in U23 and while they were in Junior racing (ages 17–18). The least squares

regression was by ¼ 1:45þ 1:11x, with t ¼ 7.91 for the slope estimate and

R2 ¼ 0.5.

a. What are the most important problem(s) with these data?

b. Which variable in the regression equation should be the dependent variable?

c. Is the P value for the estimated slope less than 0.05?

d. Explain why you either agree or disagree with this interpretation of the

regression results: “This shows that racers generally raced close to the same

number of times as a junior and as a U23.”

9.54 One of the nation’s largest mining companies applied for a permit to build a

rock quarry in Riverside County. Nearby residents were concerned about prop-

erty values, but a company consultant argued that historically there had been a

“direct positive correlation” between mine production and property values, indi-

cating that increased mine production actually increases property values. As a

statistician, how might you challenge this argument?

9.55 A researcher wrote that “It remains apparent that the model needs to be manip-

ulated and tweaked. As researchers, the next step in our study’s progress is to

attempt to obtain statistically significant results.” Why is this bad advice?

0
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20

30

40

50
Profit, percent

1920 1930

FIGURE 9.19 Exercise 9.52.
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9.56 How would you explain the broadcaster jinx?

Sports fans never like it when broadcasters bring up a lengthy positive streak

belonging to their favorite team. Why jinx a free-throw shooter who’s made 28

straight? A field goal kicker who hasn’t missed from inside 40 the last three

seasons? “There’s no reason to tempt fate!” we yell from our couches and dens.

Considering that, fans of the Cleveland Browns had to cringe on Sunday when

CBS put up a graphic noting their team hadn’t turned the ball over in 99 trips

to the red zone. They had to mutter when the broadcasting team of Andrew

Catalon and Steve Beuerlein praised the Browns for their error-free ways. And

they definitely had to be cursing as running back Isaiah Crowell immediately

coughed up the ball just seconds later.

Couldn’t you have left well enough alone, asked Cleveland?[28]

9.57 How would you explain the fact that abnormal parents (as measured, for

example, by height or intelligence) generally have less abnormal children, and

vice versa?

9.58 What is wrong with this report of the results of estimating the equation

Y ¼ aþ bX þ ε: by ¼ �12:2þ 4:5X þ 2:3

9.59 Some people choose to live in a Southern California high-desert community that

is at least a 1-hour drive from where they work because homes are less expen-

sive. Table 9.18 shows annual data on the ratio of the median single-family

home price in this desert community to the median home price in the city they

work in, and the number of single-family home building permits issued each

Table 9.18 Exercise 9.59

Desert/Central Prices (X) Permits (Y)

1997 0.8439 152
1998 0.8333 200
1999 0.7407 315
2000 0.7905 419
2001 0.6897 655
2002 0.6452 986
2003 0.5195 2102
2004 0.6349 2699
2005 0.6494 2258
2006 0.5479 3078
2007 0.6250 1090
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year in this desert community. Calculate the natural logarithm of permits and

estimate the model ln½Y � ¼ aþ bX þ ε. Does the slope have the sign you

expected? Is the P value for your slope estimate less than 0.05?

9.60 Use the data in Exercise 9.59 to estimate the model Y ¼ aþ bX þ ε. Does the

slope have the sign you expected? Is the P value for your slope estimate less than

0.05? Compare the sum of squared prediction errors for Y for the model you esti-

mated in this exercise and the model you estimated in Exercise 9.59.
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The idea is there, locked inside. All you have to do is remove the excess stone.

Michelangelo

Experiments can sometimes be used to isolate the effect of one variable on another. For

instance, an agricultural researcher can do an experiment in which similar plants are

given varying amounts of nitrogen, but the same amounts of light, water, and nutrients

other than nitrogen. Because the other important factors are held constant, the

researcher can attribute the observed differences in plant growth to the differing

applications of nitrogen.

Outside the natural sciences, weusually have to settle for observational data—“nature’s

experiments”—and use statistical methods to unravel the effects of one variable on

another when many variables are changing simultaneously. In this chapter, we learn how

to do this statistical magic.

We begin with a description of a regression model with multiple explanatory variables.

Then we see how the model’s parameters can be estimated and used for statistical tests.
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The Multiple Regression Model
In earlier chapters we looked at Keynes’ simple consumption function:

C ¼ aþ bY þ ε

where C is spending and Y is household income. Spending is likely also to be affected by

wealth—households spend more when the stock market or the real estate market is

booming and cut back on their spending when these markets crash.

If we could do a controlled experiment, like the agricultural researcher, we would

hold wealth constant while we manipulate income, and then hold income constant while

we manipulate wealth. Since we obviously cannot do that, we have to make do with

observational data and rely on statistical methods to separate the effects of income and

wealth.

If we analyze a simple regression model relating consumption to income, our results

might be very misleading. In the simple regression model:

C ¼ aþ bY þ ε

wealth is an omitted variable that is part of the error term ε.

Because we believe that an increase in income increases spending, we expect b to be

positive. But, what if, during the historical period for which we have observational data,

income happens to be rising (which increases consumption) but the stock market

crashes (which reduces consumption) and the wealth effect is more powerful than the

income effect, so that consumption declines? If we ignore wealth and look only at the

increase in income and fall in spending, our least squares estimate of b will be negative—

indicating that an increase in income reduces spending.

If, instead, it turns out that during the historical period we are studying, wealth and

income both increase, our least squares estimate of b has the right sign (positive) but is

too large, because we incorrectly attribute all of the increase in spending to the rise in

income, when it is partly due to the rise in wealth.

A simple regression model that includes income but excludes wealth is misleading

unless the observed changes in wealth have little effect on spending or happen to be

uncorrelated with income. If, however, changes in wealth have a substantial effect on

spending and are correlated (positively or negatively) with income, then the simple

regression model yields biased estimates. To avoid these biases, we include both income

and wealth in our model.

The General Model

The multiple regression model is:

Y ¼ aþ b1X1 þ b2X2 þ.þ bkXk þ ε (10.1)

where the dependent variable Y depends on k explanatory variables and an error term ε

that encompasses the effects of omitted variables on Y. The order in which the

explanatory variables are listed does not matter. What does matter is which variables are
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included in the model and which are left out. A large part of the art of regression analysis

is choosing explanatory variables that are important and ignoring those that are

unimportant.

Each parameter b is the effect of one explanatory variable on Y, holding the other

explanatory variables constant. Each b measures the same thing that controlled labo-

ratory experiments seek—the effect on Y of an isolated change in one explanatory

variable. But, while a controlled experiment estimates each effect, one at a time, by

holding the other variables constant, multiple regression models estimate all the bs

simultaneously, using data in which none of the explanatory variables are held constant.

Maybe it should be called miracle regression analysis!

A multiple regression model with both income and wealth as explanatory variables

could be written as:

C ¼ aþ b1Y þ b2W þ ε

where C is consumption, Y is income, W is wealth, and all variables are measured in

billions of dollars. Econometricians often use longer variable names to help them

remember each variable, for example:

CONS ¼ aþ b1INCþ b2WLTHþ ε

The coefficient b1 is the effect on consumption of a $1 billion increase in income,

holding wealth constant. The coefficient b2 is the effect on consumption of a $1 billion

increase in wealth, holding income constant. We believe that both parameters are

positive.

The multiple regression model can also handle categorical variables.

Dummy Variables

Many explanatory variables are categorical—male or female, white or nonwhite,

Republican or Democrat. We can handle categorical variables by using 0–1 dummy

variables, variables whose values are 0 or 1, depending on whether or not a certain

characteristic is true.

Consider, for instance, a court case involving alleged discrimination against women.

To support this claim, the plaintiff might produce data showing that, on average, female

employees are paid less than male employees. In response, the company might argue

that its salaries are based solely on experience, and female employees happen, on

average, to be less experienced than male employees. It might even argue that, ironically,

the current wage disparity is due to its recent successful efforts to hire more women—

who are paid less because they are less experienced. How might a jury evaluate such

claims? With a multiple regression model, of course.

A multiple regression model using salary as the dependent variable and experience

and gender as explanatory variables can be used to evaluate the firm’s claim that its

wages depend on experience but not gender:

Y ¼ aþ b1Dþ b2X þ ε
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where Y is the annual salary, X is the number of years of experience, and D is a dummy

variable that equals 1 if the employee is male and 0 if the employee is female. The

model’s parameters can be interpreted by considering the two possible values of the

dummy variable:

Men ðD ¼ 1Þ: Y ¼ ðaþ b1Þ þ b2X þ ε

Women ðD ¼ 0Þ: Y ¼ aþ b2X þ ε

The parameter b1 measures the effect on salary, at any experience level, of being

male. The employer’s claim is that b1 ¼ 0, which can be tested statistically using the

methods explained in the next section. Here, we focus on interpreting the coefficients.

Suppose that our estimated equation turns out to be:

by ¼ 25; 000þ 5000Dþ 1000x

These estimates indicate that, neglecting the error term, the starting salary for a

female employee (D ¼ 0) with no experience (X ¼ 0) is $25,000, while the starting salary

for males with no experience is $30,000. Male and female salaries both increase by $1000

with each additional year of experience. If statistically significant, the $5000 coefficient of

D is evidence against the employer’s claim. Figure 10.1 shows the implied structure of

male and female salaries. By using a dummy variable, we have in effect estimated two

separate equations with different intercepts and the same slope:

Men ðD ¼ 1Þ: by ¼ 30; 000þ 1000x

Women ðD ¼ 0Þ: by ¼ 25; 000þ 1000x
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FIGURE 10.1 Men’s and women’s salaries with a dummy variable for the intercept.
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If we want to consider the possibility that gender affects both the intercept and the

slope of the salary equation, we can use this multiple regression model:

Y ¼ aþ b1Dþ b2X þ b3DX þ ε

The additional term, DX, is D multiplied by X.

Again, we can interpret the parameters by considering the possible values of the

dummy variable:

Men ðD ¼ 1Þ: Y ¼ ðaþ b1Þ þ ðb2 þ b3Þx þ ε

Women ðD ¼ 0Þ: Y ¼ aþ b2x þ ε

A positive value for b1 indicates that, independent of experience, men earn an

additional amount b1. A positive value for b3 indicates that, for every additional year of

experience, men earn an amount b3 more than women. For instance, the estimated

equation:

by ¼ 25; 000þ 5000Dþ 1000x þ 1000DX (10.2)

implies these female and male equations:

Men ðD ¼ 1Þ: by ¼ 30; 000þ 1500x

Women ðD ¼ 0Þ: by ¼ 25; 000þ 1000x
(10.3)

The starting salary for someone with no experience is $25,000 for a female and

$30,000 for a male, and each additional year of experience increases salaries by $1000 for

women and by $1500 for men. Figure 10.2 shows that this model allows the implied male

and female equations to have different intercepts and slopes.
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FIGURE 10.2 Men’s and women’s salaries with a dummy variable for the intercept and slope.
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If we were to estimate two separate equations, one for males and one for females, as

in Eqn (10.3), the estimated coefficients would be exactly the same as implied by the

single Eqn (10.2). However, the estimation of the single equation has a huge advantage

over the estimation of two separate equations. In Eqn (10.3), we can see that the male

intercept is $5000 higher than the female intercept and that the male slope is $500 higher

than the female slope, but we cannot tell if these differences are statistically persuasive.

With the single equation, 10.2, we can. We just look at the P values for the coefficients of

D and DX. The single equation is much more informative than the two separate

equations.

Another issue is that in these examples, the dummy variable equals 1 if the employee

is male and 0 if female. Would it have made any difference if we had done it the other

way around? No. If the dummy variable D equals 1 if the employee is female and 0 if

male, the estimated equation is:

by ¼ 30; 000� 5000Dþ 1500x � 500Dx

These coefficients indicate that the starting salary for a male employee with no

experience is $30,000; men’s salaries increase by $1500 with each additional year of

experience; women’s starting salaries are $5000 lower and increase by $500 less for each

year of experience:

Men ðD ¼ 0Þ: by ¼ 30; 000þ 1500x

Women ðD ¼ 1Þ: by ¼ 25; 000þ 1000x

This is the same conclusion we reached before. If we are careful in our interpretation,

it does not matter whether the dummy variable is 1 for male and 0 for female, or the

other way around.

If there are more than two categories, we can use multiple dummies. The general rule

is that k categories require k � 1 dummy variables. With two categories, male or female,

one dummy is enough.

If we were investigating how the four seasons affect the relationship between home

sales Y and the mortgage rate X, we would use four dummies; for example, D1 ¼ 1 if

spring, 0 otherwise; D2 ¼ 1 if summer, 0 otherwise; and D3 ¼ 1 if fall, 0 otherwise:

Y ¼ aþ b1D1 þ b2D2 þ b3D3 þ b4X þ b5D1X þ b6D2X þ b7D3X þ ε

Since the omitted season is winter, the three dummies Di show how each season

affects the intercept relative to winter. The products DiX show how the seasons affect the

slope of the relationship between the mortgage rate and home sales, again relative to

winter. To confirm this, the implied equations for the four seasons are:

winter ðD1 ¼ 0;D2 ¼ 0;D3 ¼ 0Þ: Y ¼ aþ b4X þ ε

spring ðD1 ¼ 1;D2 ¼ 0;D3 ¼ 0Þ: Y ¼ ðaþ b1Þ þ ðb4 þ b5ÞX þ ε

summer ðD1 ¼ 0;D2 ¼ 1;D3 ¼ 0Þ: Y ¼ ðaþ b2Þ þ ðb4 þ b6ÞX þ ε

fall ðD1 ¼ 0;D2 ¼ 0;D3 ¼ 1Þ: Y ¼ ðaþ b3Þ þ ðb4 þ b7ÞX þ ε
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The coefficient b1 is the difference between the spring and winter intercepts; b5 is the

difference between the spring and winter slopes. The interpretation is similar for

summer and fall.

As with gender, it does not matter which category is omitted, as long as we are careful

in our interpretation of the results.

With 7 days of the week, we would use six dummies; with 12 months, 11 dummies.

Least Squares Estimation
Multiple regression statistical analysis is a straightforward extension of least squares

estimation for the simple regression model. Therefore, much of our discussion is

familiar. The numerical calculations are more complex, but these are done by statistical

software and we can focus on the statistical logic without getting bogged down in

computational details.

We want to use n observations to estimate the parameters in the Eqn (10.1) in order to

predict the dependent variable:

by ¼ aþ b1x1 þ b2x2 þ.þ bkxk (10.4)

To estimate these k þ 1 parameters, there must be at least k þ 1 observations. The

least squares procedure identifies the parameter estimates that minimize the sum of

squared prediction errors
P ðy � byÞ2.

To illustrate, we use the US consumption (C), income (Y), and wealth (W) data in

Table 10.1. Our model is:

C ¼ aþ b1Y þ b2W þ ε

Because spending, income, and wealth all tend to increase over time, it might be

better to use changes in the variables or detrended data, as explained in Chapter 9. We

use unadjusted data here to focus on how multiple regression works, but two chapter

exercises use changes and detrended data.

Statistical software is used to calculate the parameter estimates that minimize the

sum of squared prediction errors:

bc ¼ �110:126þ 0:798y þ 0:026w

Holding wealth constant, a $1 billion increase in income is predicted to increase

consumption by $0.798 billion. Holding income constant, a $1 billion increase in wealth

is predicted to increase consumption by $0.026 billion.

The coefficient of wealth may seem small (a $1 billion change in wealth is predicted

to change consumption by $26 million), but observed changes in wealth are often quite

large. In 2008, US household wealth dropped by more than $1 trillion, which our model

predicts would reduce consumer spending by about $26 billion. For comparison,

disposable income increased by about $50 billion in 2008, which our model predicts

would increase consumption by about $40 billion.
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It is interesting to compare our multiple regression model to estimates of simple

regression models that omit one of the explanatory variables:

bc ¼ �258:213þ 0:957ybc ¼ 753:767þ 0:152w

The effects of income and wealth are positive in each model, but the magnitudes are

smaller in the multiple regression model than in the simple regression models. How is

this possible?

Suppose that our reasoning is correct, that changes in income and wealth both have

positive effects on consumption. Now, what if income and wealth happen to be posi-

tively correlated because a strong economy increases both income and stock prices? If

so, the omission of either variable from our model tends to bias upward the estimated

coefficient of the variable that is included. If we look at the simple relationship between

consumption and income, income appears to have an exaggerated effect on consump-

tion, because we do not take wealth into account. If we look at the simple relationship

between consumption and wealth, wealth appears to have an exaggerated effect because

Table 10.1 United States Consumption, Income, and Wealth

C Y W C Y W

1960 1784.4 1963.9 9835.3 1985 4540.4 5144.8 22,175.0
1961 1821.2 2030.8 10,011.5 1986 4724.5 5315.0 23,930.9
1962 1911.2 2129.6 10,749.0 1987 4870.3 5402.4 25,742.4
1963 1989.9 2209.5 10,905.2 1988 5066.6 5635.6 26,443.0
1964 2108.4 2368.7 11,325.6 1989 5209.9 5785.1 27,714.8
1965 2241.8 2514.7 12,033.1 1990 5316.2 5896.3 29,028.3
1966 2369.0 2647.3 12,789.7 1991 5324.2 5945.9 28,212.3
1967 2440.0 2763.5 12,838.0 1992 5505.7 6155.3 29,348.1
1968 2580.7 2889.2 13,941.0 1993 5701.2 6258.2 29,810.6
1969 2677.4 2981.4 15,055.6 1994 5918.9 6459.0 30,928.2
1970 2740.2 3108.8 14,513.2 1995 6079.0 6651.6 31,279.4
1971 2844.6 3249.1 14,535.9 1996 6291.2 6870.9 33,974.1
1972 3019.5 3406.6 15,430.6 1997 6523.4 7113.5 35,725.2
1973 3169.1 3638.2 17,046.7 1998 6865.5 7538.8 39,271.9
1974 3142.8 3610.2 16,806.5 1999 7240.9 7766.7 43,615.4
1975 3214.1 3691.3 15,353.7 2000 7608.1 8161.5 48,781.8
1976 3393.1 3838.3 16,119.8 2001 7813.9 8360.1 47,286.3
1977 3535.9 3970.7 17,201.8 2002 8021.9 8637.1 46,023.0
1978 3691.8 4156.5 17,674.5 2003 8247.6 8853.9 44,130.5
1979 3779.5 4253.8 18,659.4 2004 8532.7 9155.1 49,567.5
1980 3766.2 4295.6 19,763.8 2005 8819.0 9277.3 54,063.0
1981 3823.3 4410.0 20,495.4 2006 9073.5 9650.7 58,823.3
1982 3876.7 4506.5 20,302.6 2007 9313.9 9860.6 61,642.3
1983 4098.3 4655.7 20,626.9 2008 9290.9 9911.3 60,577.8
1984 4315.6 4989.1 21,328.5

Note: Consumption is personal consumption expenditures; income is disposable personal income (after taxes);

wealth is household net worth, measured at the beginning of each year. All data are in billions of 2005 dollars.
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we do not take income into account. And that is, in fact, what happens here. The

correlation between income and wealth is 0.98, and the estimated coefficients in simple

regression models are biased upward.

This is the core argument for using multiple regression instead of simple regression.

The inclusion of additional explanatory variables may improve the model’s predictive

accuracy and give us unbiased estimates of the effects of a change in an explanatory

variable, holding other factors constant.

Confidence Intervals for the Coefficients

If the error term is normally distributed and satisfies the four assumptions detailed in the

simple regression chapter, the estimators are normally distributed with expected values

equal to the parameters they estimate:

awN ½a; standard deviation of a�
biwN ½bi standard deviation of bi�

To compute the standard errors (the estimated standard deviations) of these

estimators, we need to use the standard error of estimate (SEE) to estimate the standard

deviation of the error term:

SEE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP�
y � by�2

n� ðk þ 1Þ

vuuut
(10.5)

Because n observations are used to estimate k þ 1 parameters, we have n � (k þ 1)

degrees of freedom. After choosing a confidence level, such as 95 percent, we use the t

distribution with n � (k þ 1) degrees of freedom to determine the value t* that corre-

sponds to this probability. The confidence interval for each coefficient is equal to the

estimate plus or minus the requisite number of standard errors:

a� t�ðstandard error of aÞ
bi � t�ðstandard error of biÞ

(10.6)

For our consumption function, statistical software calculates SEE ¼ 59.193 and these

standard errors:

standard error of a ¼ 27:327

standard error of b1 ¼ 0:019

standard error of b2 ¼ 0:003

With 49 observations and two explanatory variables, we have 49 � (2 þ 1) ¼ 46

degrees of freedom. Table A.2 gives t* ¼ 2.013 for a 95 percent confidence interval, so

that 95 percent confidence intervals are:

a: a� t�ðstandard error of aÞ ¼ �110:126� 2:013ð27:327Þ ¼ �110:126� 55:010

b1: b1 � t�ðstandard error of b1Þ ¼ 0:798� 2:013ð0:019Þ ¼ 0:798� 0:039

b2: b2 � t�ðstandard error of b2Þ ¼ 0:026� 2:013ð0:003Þ ¼ 0:026� 0:006
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Hypothesis Tests

The test statistic for a specified null hypothesis about bi is:

t ¼ estimated value of bi � null hypothesis value of bi

standard error of the estimate of bi

(10.7)

The most interesting null hypotheses are typically that the coefficients equal 0. For

the null hypothesis bi ¼ 0, the t statistic simplifies to the ratio of the coefficient estimate

to its standard error:

t ¼ bi

standard error of bi

(10.8)

The null hypothesis is rejected if the t value is larger than the appropriate cutoff, using

a t distribution with n � (k þ 1) degrees of freedom; with a large number of observations,

the cutoff for a test at the 5 percent level is approximately 2. Instead of using a fixed

cutoff, we can report the P values—the probability that a parameter estimate would be so

far from the null hypothesis, if the null hypothesis were true.

In our consumption example, we have 46 degrees of freedom, and Table A.2 shows the

cutoff for a test at the 5 percent level to be a t value larger than 2.013. Using the estimates

and standard errors given previously, we have these t values and two-sided P values:

b1: t ¼
0:798

0:019
¼ 41:48; two-sided P value ¼ 6:6� 10�11

b2: t ¼
0:026

0:003
¼ 8:45; two-sided P value ¼ 0:0011

Both explanatory variables are highly statistically significant.

The Coefficient of Determination, R2

As with the simple regression model, the model’s predictive accuracy can be gauged by

the coefficient of determination, R2, which compares the sum of squared prediction

errors to the sum of squared deviations of Y about its mean:

R2 ¼
Pn

i¼1 ðyi � byÞ2Pn
i¼1

�
yi � y

�2 (10.9)

In our consumption model, R2 ¼ 0.999, indicating that our multiple regression model

explains an impressive 99.9 percent of the variation in the annual consumption. The

multiple correlation coefficient R is the square root of R2.

Prediction Intervals for Y (Optional)

This model can be used to predict the value of consumption spending. Suppose, for

instance, that we anticipate disposable income being 10,000 and wealth 60,000. By

substituting these values into our model, we obtain a predicted value for consumption:

bc ¼ �110:126þ 0:798ð10;000Þ þ 0:026ð60;000Þ
¼ 9427:81
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To gauge the precision of this prediction, we can use statistical software to determine

a 95 percent prediction interval for the dependent variable and the expected value of the

dependent variable:

95 percent prediction interval for C ¼ 9427:81� 128:15

95 percent confidence interval for E½C� ¼ 9427:81� 47:19

Because of the error term, a prediction interval for consumption is wider than a

confidence interval for the expected value of consumption.

The Fortune Portfolio

In Chapter 7, we saw that a stock portfolio of Fortune’s 10 most admired American

companies beat the S&P 500 by a substantial and statistically persuasive margin. Maybe

the Fortune portfolio’s superior performance was because it was risky and earned some

kind of risk premium. To test this research hypothesis, a multiple regression model was

estimated using daily data. The dependent variable is:

R � R0 ¼ return on Fortune portfolio minus return on Treasury bills. This is the

Fortune portfolio’s return relative to a risk-free investment.

The explanatory variables are three factors that Fama and French [1] found explain

differences among stock returns:

RM � R0 ¼ stock market return minus return on Treasury bills. A stock price may go

up simply because macroeconomic factors, such as a decline in unemployment,

cause the overall stock market to go up.

RS � RL ¼ size factor, return on small stocks minus return on large stocks. Small

stocks tend to outperform large stocks.

RV � RG ¼ value factor, return on value stocks minus return on growth stocks.

Value stocks tend to outperform growth stocks.

The regression model is:

R� R0 ¼ aþ b1ðRM � R0Þ þ b2ðRS � RLÞ þ b3ðRV � RGÞ þ ε

The intercept a measures the extent to which the Fortune portfolio has an extra (or

excess) return over Treasury bills that cannot be explained by the three Fama-French

factors.

The estimated equation is:

dR� R0 ¼ 0:023þ 0:94ðRM � R0Þ � 0:94ðRS � RLÞ � 0:42ðRV � RGÞ; R2 ¼ 0:81

½3:02� ½85:22� ½24:94� ½21:06�
where the t values are in brackets. The substantial and statistically significant a value

shows that these three factors do not fully explain the strong performance of the

Fortune portfolio. (The annualized value of a 0.023 percent daily excess return is

6 percent.)
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The Real Dogs of the Dow Revisited

In Chapter 9, we saw that stocks deleted from the Dow Jones Industrial Average have

outperformed the stocks that replaced them. We can use the Fama-French three-factor

model described in the preceding section to see whether the deletion portfolio’s superior

performance can be fully explained by these factors. Because the daily factor data go

back to only 1963, we use monthly returns.

The estimated multiple regression equation is:

dR� R0 ¼ 0:195þ 1:04ðRM � R0Þ þ 0:194ðRS � RLÞ þ 0:452ðRV � RGÞ; R2 ¼ 0:85

½2:11� ½58:23� ½6:81� ½17:53�
where R is the monthly return on the deletion portfolio and the other variables are

defined earlier.

The substantial and statistically significant a value shows that these three factors do

not fully explain the strong performance of the deletion portfolio. (The annualized value

of a 0.195 percent monthly excess return is 2.4 percent.)

Would a Stock by Any Other Ticker Smell as Sweet?

Stocks are identified by ticker symbols (so called because trading used to be

reported on ticker tape machines). Stocks traded on the New York Stock Exchange

have one to three letters plus additional characters that can be used to identify the

type of security; for example, Citigroup (C), General Electric (GE), and Berkshire

class A (BRK.A). As in these examples, ticker symbols are usually abbreviations of a

company’s name, and companies sometimes become known by these abbreviations:

GE, IBM, 3M.

In recent years, several companies have shunned the traditional name-abbreviation

convention and chosen ticker symbols that are related to what the company does.

Some are memorable for their cheeky cleverness; for example, Southwest Airlines’

choice of LUV as a ticker symbol is related to its efforts to brand itself as an airline

“built on love.” Southwest is based at Love Field in Dallas and has an open-seating

policy that reportedly can lead to romance between strangers who sit next to each

other. Its on-board snacks were originally called “love bites” and its drinks “love

potions.” Other notable examples are MOO (United Stockyards), and GEEK (Internet

America).

The efficient market hypothesis assumes that a stock’s market price incorporates all

publicly available information and implies that investors who beat the market are lucky,

not skillful. A stock’s ticker symbol is no secret and it would be surprising if a stock’s

performance were related to its ticker symbol. Surely, savvy investors focus on a

company’s profits, not its ticker symbol.

A study compared the daily returns from a portfolio of clever-ticker stocks to the

overall stock market [2]. Once again, we estimate a multiple regression equation using
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the three Fama-French factors identified in the preceding examples (with the t values in

brackets):

dR� R0 ¼ 0:045þ 0:80ðRM � R0Þ þ 0:63ðRS � RLÞ þ 0:28ðRV � RGÞ; R2 ¼ 0:29

½3:17� ½39:30� ½22:62� ½7:43�
The estimated value of a implies an annual excess return of about 12 percent.

These clever tickers might be a useful signal of the company’s creativity, a memorable

marker that appeals to investors, or a warning that the company feels it must resort to

gimmicks to attract investors. Surprisingly, a portfolio of clever-ticker stocks beat the

market by a substantial and statistically significant margin, contradicting the efficient

market hypothesis.

The Effect of Air Pollution on Life Expectancy

Many scientists believe that air pollution is hazardous to human health, but they cannot

run laboratory experiments on humans to confirm this belief. Instead, they use obser-

vational data—noting, for example, that life expectancies are lower and the incidence of

respiratory disease is higher for people living in cities with lots of air pollution. However,

these grim statistics might be explained by other factors, for example, that city people

tend to be older and live more stressful lives. Multiple regression can be used in place of

laboratory experiments to control for other factors. One study used biweekly data from

117 metropolitan areas to estimate the following equation [3]:

by ¼ 19:61þ 0:041x1 þ 0:071x2 þ 0:001x3 þ 0:41x4 þ 6:87x5

½2:5� ½3:2� ½1:7� ½5:8� ½18:9�
where:

Y ¼ annual mortality rate, per 10,000 population (average ¼ 91.4).

X1 ¼ average suspended particulate reading (average ¼ 118.1).

X2 ¼minimum sulfate reading (average ¼ 4.7).

X3 ¼ population density per square mile (average ¼ 756.2).

X4 ¼ percentage of population that is nonwhite (average ¼ 12.5).

X5 ¼ percentage of population that is 65 or older (average ¼ 8.4).

[ ] ¼ t value.

The first two explanatory variables are measures of air pollution. The last three

explanatory variables are intended to accomplish the same objectives as a laboratory

experiment in which these factors are held constant to isolate the effects of air pollution

on mortality.

With thousands of observations, the cutoff for statistical significance at the 5 percent

level is a t value of approximately 1.96. The two pollution measures have substantial and

statistically significant effects on the mortality rate. For a hypothetical city with the

average values of the five explanatory variables, a 10 percent increase in the average
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suspended particulate reading, from 118.1 to 129.9, increases the mortality rate by

0.041(11.8) ¼ 0.48, representing an additional 48 deaths annually in a city of 1,000,000.

A 10 percent increase in the minimum sulfate reading, from 4.7 to 5.17, increases the

mortality rate by 0.71(0.47) ¼ 0.34 (representing an additional 34 deaths annually in a

city of 1,000,000).

Multicollinearity
Each coefficient in a multiple regression model tells us the effect on the dependent

variable of a change in that explanatory variable, holding the other explanatory variables

constant. To obtain reliable estimates, we need a reasonable number of observations and

substantial variation in each explanatory variable. We cannot estimate the effect of a

change in income on consumption if income never changes. We will also have trouble if

some explanatory variables are perfectly correlated with each other. If income and

wealth always move in unison, we cannot tell which is responsible for the observed

changes in consumption.

The good news is that few variables move in perfect unison. The bad news is that

many variables are highly correlated and move in close unison. The consequence is that,

while our model may have a gratifyingly high R2, some parameter estimates may have

disappointingly large standard errors and small t values. This malaise is known as the

multicollinearity problem: High correlations among the explanatory variables prevent

precise estimates of the individual coefficients.

If some explanatory variables are perfectly correlated, it is usually because the

researcher has inadvertently included explanatory variables that are related by defini-

tion. For example, a model in which consumption depends on current income, last

year’s income, and the change in income:

C ¼ aþ b1Y þ b2Y ð � 1Þ þ b3½Y � Y ð � 1Þ� þ ε

sounds plausible until we realize that the third explanatory variable is exactly equal to

the first explanatory variable minus the second explanatory variable. Any attempt to

estimate this equation results in a software error message. This makes sense, because we

cannot change any one of these explanatory variables while holding the other two

constant. In this situation, where explanatory variables are related by their very defini-

tion, the solution is simple: Omit one of the redundant variables. In our example, we can

simplify the model to:

C ¼ aþ b1Y þ b2Y ð � 1Þ þ ε

The situation is more difficult when the explanatory variables are not related by

definition but happen to be correlated in our data. This kind of multicollinearity problem

can be diagnosed by regressing each explanatory variable on the other explanatory

variables to see if the R2 values reveal high intercorrelations among the explanatory

variables. While this diagnosis can explain the model’s high standard errors and low
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t values, there is no statistical cure. A builder cannot make solid bricks without good clay,

and a statistician cannot make precise estimates without informative data. The solution

to the multicollinearity problem is additional data that are not so highly intercorrelated.

There is no firm rule for deciding when the correlations among the explanatory

variables are large enough to constitute a “problem.” Multicollinearity does not bias any

of the estimates. It is more of an explanation for why the estimates are not more precise.

In our consumption function example, the estimated equation seems fine (the t values

are in brackets):

bc ¼ �110:126þ 0:798y þ 0:026w; R2 ¼ 0:999

½4:03� ½41:88� ½8:45�
The coefficients have the expected positive signs, plausible magnitudes, and solid t

values. The R2 is impressive. Yet, the correlation between the two explanatory variables is

0.98. Income and wealth are strongly positively correlated. As explained earlier, this is a

persuasive reason for not omitting either of these important variables. If either variable

were omitted, its estimated coefficient would be biased. A helpful refrain is, “When in

doubt, don’t leave it out.” Income and wealth were both included because we believe

that both should be included in the model. If these variables were less correlated, the

estimates would be more precise. But they are what they are, and that is fine.

The Coleman Report

In response to the 1964 Civil Rights Act, the US government sponsored the 1966 Coleman

Report [4], which was an ambitious effort to estimate the degree to which academic

achievement is affected by student backgrounds and school resources. One of the more

provocative findings involved a multiple regression equation that was used to explain

student performance. Some explanatory variables measured student background

(including family income, occupation, and education) and others measured school

resources (including annual budgets, number of books in the school library, and science

facilities).

The researchers first estimated their equation using only the student background

variables. They then reestimated the equation using the student background variables

and the school resources variables. Because the inclusion of the resources variables had

little effect on R2, they concluded that school resources “show very little relation to

achievement.” The problem with this two-step procedure is that school resources in the

1950s and early 1960s depended heavily on the local tax base and parental interest in a

high-quality education for their children. The student background variables were posi-

tively correlated with the school resources variables, and this multicollinearity problem

undermines the Coleman Report’s conclusions.

Multicollinearity explains why the addition of the school resources variables had little

effect on R2. It also suggests that, if they had estimated the equation with the school

resources variables first and then added the student background variables, they again
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would have found little change in R2, suggesting that it is student backgrounds, not

school resources, that “show very little relation to achievement.” More generally, this

example shows why we should not add variables in stages but, instead, estimate a single

equation using all the explanatory variables.

Exercises
10.1 The manager of a fleet of identical trucks used monthly data to estimate this

model:

by ¼ 0:0þ 0:20x1 þ 1000:0x2

where Y is gallons of fuel consumed (average value 71,000); X1 is miles traveled

(average value 80,000); and X2 is average speed (average value 55 miles per hour).

a. In plain English, interpret the 0.20 coefficient of X1.

b. In plain English, interpret the 1000.0 coefficient of X2.

c. Can we conclude from the fact that the coefficient of X2 is much larger than

the coefficient of X1 that average speed is more important than the number of

miles traveled in determining fuel consumption?

10.2 Data collected by a county agricultural agency were used to estimate this model:

by ¼ �80þ 0:10x1 þ 5:33x2

where Y is corn yield (bushels per acre, average value 90); X1 is fertilizer (pounds

per acre, average value 100); and X2 is rainfall (inches, average value 30).

a. In plain English, interpret the value 0.10.

b. In plain English, interpret the value 5.33.

c. What does �80 measure and why does it not equal 0?

10.3 The following equation was used to predict the first-year grade point average

(GPA) for students enrolling at a highly selective liberal arts college:

by ¼ 0:437þ 0:361x1 þ 0:0014x2 þ 0:0007x3

where Y is the student’s first-year college GPA (average 3.0); X1 is the student’s high

school GPA (average 3.7); X2 is the reading SAT score (average 591); and X3 is the

math SAT score (average 629).

a. What is the predicted first-year college GPA for a student with a 3.7 high

school GPA, 591 reading SAT score, and 629 math SAT score?

b. What is the predicted first-year college GPA for a student with a 4.0 high

school GPA, 800 reading SAT score, and 800 math SAT score?

c. Why should we be cautious in using this equation to predict the first-year col-

lege GPA for a student with a 1.0 high school GPA, 200 reading SAT, and 200

math SAT?

d. Using ordinary English, compare the coefficients of X2 and X3.
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10.4 A study found that with simple regression equations, the increase in a human baby’s

length during the first 3 months of life is negatively correlated with the baby’s length

at birth and negatively correlated with the baby’s weight at birth; however, a multi-

ple regression equation showed the length gain to be related negatively to birth

length and positively to birth weight. Explain these seemingly contradictory findings.

10.5 An economist believes that housing construction depends (positively) on house-

hold income and (negatively) on interest rates. Having read only the chapter on

simple regression, he regresses housing construction on income, ignoring

interest rates, and obtains a negative estimate of b, indicating that an increase in

household income decreases housing construction. How might his omission of

interest rates explain this incorrect sign? Be specific.

His sister, a chemist, proposes a controlled experiment, in which interest

rates are held constant, while incomes are varied: “In this way, you will be able

to see the effects of income changes on construction.” Why does the economist

resist this sisterly advice?

10.6 An economist believes that the percentage of the popular vote received by the

incumbent party’s candidate for president depends (negatively) on the unem-

ployment rate and (negatively) on the rate of inflation. Having read only the

chapter on simple regression, he estimates an equation with voting percent as

the dependent variable and unemployment rate as the explanatory variable and

ignores the rate of inflation. He obtains a positive estimate of b, indicating that

an increase in the unemployment rate increases the vote received by the incum-

bent party. How might the omission of the rate of inflation explain this wrong

sign? Be specific.

10.7 An auto dealer claims that the resale value P of a 2005 Toyota Camry LE sedan

depends on the number of miles M that it has been driven and whether it has an

automatic or five-speed manual transmission. Market prices are used to estimate

this equation, using the variable D ¼ 0 if manual, D ¼ 1 if automatic:

P ¼ aþ b1Dþ b2M þ b3DM þ ε

Interpret each of the parameters a, b1, b2, and b3. What advantages does a

regression model have over a simple comparison of the average resale values of

manual and automatic Camrys?

10.8 Use Table 10.2’s 2009 prices of 2005 Camry LE sedans in excellent condition to

estimate the equation P ¼ a þ b1D þ b2M þ b3DM þ ε, where P ¼ price,

M ¼mileage, and D ¼ 0 if the car has a five-speed manual transmission, D ¼ 1 if

it has an automatic transmission.

a. Which of the estimated coefficients are statistically significant at the 5 percent

level?

b. Are the signs and magnitudes of all the estimated coefficients plausible and

substantial?
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10.9 A study [5] of the housing market in Fishers, Indiana, looked at 15 matched pairs

of houses that were sold or rented in 2005. Table 10.3 shows the sale price for

each house, the size of the house (square feet), and the monthly rent for the

house that is a matched pair.

a. Estimate a simple regression equation using price as the dependent variable

and size as the explanatory variable.

b. Estimate a simple regression equation using price as the dependent variable

and rent as the explanatory variable.

c. Estimate a multiple regression equation using price as the dependent variable

and size and rent as explanatory variables.

d. Explain any differences between your multiple regression equation (c) and the

two simple regression equations (a and b).

10.10 A study [5] of the housing market in Mission Viejo, California, looked at 15

matched pairs of houses that were sold or rented in 2005. Table 10.4 shows the

sale price for each house, the size of the house (square feet), and the monthly

rent for the house that is a matched pair.

a. Estimate a simple regression equation using price as the dependent variable

and size as the explanatory variable.

b. Estimate a simple regression equation using price as the dependent variable

and rent as the explanatory variable.

Table 10.2 Exercise 10.8

Price ($) Miles Transmission Price ($) Miles Transmission

11,500 10,000 Automatic 10,200 47,000 Manual
9000 68,000 Automatic 9000 100,000 Automatic
11,000 18,000 Manual 12,200 14,000 Manual
7500 110,000 Automatic 9990 72,000 Manual
7000 125,000 Manual 13,500 12,000 Automatic
7200 120,000 Manual 11,400 56,000 Automatic

Table 10.3 Exercise 10.9

Price ($) Size Rent ($) Price ($) Size Rent ($)

137,000 1300 1100 143,000 2213 1250
208,000 2146 1200 127,500 1122 1000
123,000 1390 875 134,000 1917 1250
167,500 2008 1250 315,000 3014 2150
181,400 2160 1500 164,900 2008 1550
344,950 2931 2100 136,000 1696 1150
132,500 1316 1150 200,000 2301 2800
130,000 1352 1100
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c. Estimate a multiple regression equation using price as the dependent

variable and size and rent as explanatory variables.

d. Explain any differences between your multiple regression equation (c) and

the two simple regression equations (a and b).

10.11 Here are two regressions, one using annual data for 1980–1989, the other for

1970–1989. Make an educated guess about which is which and explain your

reasoning.

bc ¼ �134:292þ 0:671y þ 0:045p; SEE ¼ 24:2

½2:1� ½21:1� ½1:0�bc ¼ �100:073þ 0:649y þ 0:076p; SEE ¼ 19:7

½9:1� ½101:1� ½4:7�
where C ¼ consumption spending, Y ¼ gross domestic product, P ¼ Dow Jones

Industrial Average, and the t values are in brackets.

10.12 Fill in the missing numbers in this computer output:

by ¼ 134:292þ 0:671x1 þ 0:045x2; SEE ¼ 24:2

Explan. Var. Coefficient Std. Error t Value

Constant 65.641
X1 0.032
X2 1.04

a. Is the estimated coefficient of X1 statistically significant at the 5 percent

level?

b. What is the predicted value of Y when X1 ¼ 4000 and X2 ¼ 2000?

10.13 Use these numbers to fill in the blanks in this computer output: 0.01, 0.03, 0.14,

0.26, 1.95, and 2.69.

Table 10.4 Exercise 10.10

Price ($) Size Rent ($) Price ($) Size Rent ($)

608,000 1325 2000 590,000 1200 2100
667,500 2145 2350 688,000 1549 2000
650,000 1561 2300 599,900 1109 1900
660,000 1200 1900 715,000 2000 2800
865,000 2300 2750 630,000 1560 2325
652,900 1472 2195 915,000 3418 3000
725,000 2026 2500 600,000 1471 2200
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Explan. Var. Coefficient Std. Error t Value P Value

Constant 5.80 20.48 0.28 0.39
X1 0.51
X2 0.38
Degrees of freedom ¼ 26 R2 ¼ 0.42

10.14 A linear regression looked at the relationship between the dollar prices P of 45

used 2001 Audi A4 2.8L sedans with manual transmission and the number of

miles M the cars have been driven. A least squares regression yields:

bp ¼ 16:958� 0:0677m; R2 ¼ 0:29

ð2533Þ ð0:0233Þ
with the standard errors in parentheses. Suppose that the true relationship is

P ¼ a � b1M þ b2C þ ε, where C is the condition of the car and a, b1, and b2 are

all positive. If M and C are negatively correlated, does the omission of C from

the estimated equation bias the estimate of b1 upward or downward?

10.15 In American college football, Rivals.com constructs a widely followed index for

rating colleges based on the high school players they recruit and Jeff Sagarin

constructs a highly regarded system for rating college football teams based on

their performance. Table 10.5 shows the 2008 performance ratings and the

2004–2008 recruiting ratings for the 20 colleges with the highest recruiting aver-

ages over this 5-year period. (Five years of recruiting data are used because

players often “red shirt” their first year by practicing with the team but not

playing, thereby maintaining their 4 years of college eligibility.) Use these data

to estimate a multiple regression model with performance the dependent vari-

able and the five recruiting scores the explanatory variables.

a. Do all of the recruiting coefficients have plausible signs?

b. Which, if any, of the recruiting coefficients are statistically significant at the

5 percent level?

c. Which team overperformed the most, in that its performance was much

higher than predicted by your estimated equation?

d. Which team underperformed the most, in that its performance was much

lower than predicted by your estimated equation?

10.16 US stock prices nearly doubled between 1980 and 1986. Was this a speculative

bubble, based on nothing more than greed and wishful dreams, or can these

higher prices be explained by changes in the US economy during this period?

While the fortunes of individual companies are buffeted by factors specific to

their industry and the firm, the overall level of stock prices depends primarily

on national economic activity and interest rates. When the economy is boom-

ing, corporations make large profits and stock prices should increase. For any

given level of economic activity, an increase in interest rates makes bonds more

320 ESSENTIAL STATISTICS, REGRESSION, AND ECONOMETRICS

http://Rivals.com


attractive, putting downward pressure on stock prices. Table 10.6 shows the

value of the S&P 500 index of stock prices, the percent unemployment rate, and

the percent interest rate on long-term Treasury bonds.

a. Estimate a simple regression model with the S&P 500 the dependent variable

and the unemployment rate the explanatory variable.

b. Estimate a simple regression model with the S&P 500 the dependent variable

and the interest rate the explanatory variable.

c. Estimate a multiple regression model with the S&P 500 the dependent vari-

able and the unemployment rate and interest rate the explanatory variables.

d. Are the unemployment rate and interest rate positively or negatively corre-

lated during this period? How does this correlation explain the differences in

the estimated coefficients in questions a, b, and c?

10.17 (continuation) We will use the model you estimated in question c of the pre-

ceding exercise to explain the sharp increase in stock prices in 1985 and 1986.

a. Stock prices increased by 42.78 in 1985. In your estimated model, what is the

predicted effect on stock prices of the 0.3 drop in the unemployment rate

that occurred? Of the 1.61 drop in the interest rate that occurred? According

to your estimated model, was the increase in stock prices in 1985 mostly due

to falling unemployment or falling interest rates?

Table 10.5 Exercise 10.15

Performance

Recruiting

2008 2007 2006 2005 2004

Alabama 89.48 2836 1789 2127 1424 1366
Auburn 71.69 1335 2013 2148 1596 954
California 83.58 1070 1378 1512 1816 935
Clemson 78.87 2113 1555 1741 1431 364
Florida 98.74 2600 2959 2901 1467 2065
Florida State 83.18 2251 1394 2703 2582 2377
Georgia 84.81 2321 1895 2436 1814 2074
LSU 81.96 2134 2695 2238 1335 2492
Miami–FL 77.42 2467 1452 1785 1976 2329
Michigan 64.28 2220 1750 1974 1995 2116
Nebraska 80.70 1159 1734 1432 2178 866
Notre Dame 73.75 2744 1932 2189 661 820
Ohio State 84.83 2481 1577 2000 1654 1913
Oklahoma 94.15 2422 1704 2180 2441 2055
Penn State 88.26 700 1305 2241 1152 1430
South Carolina 77.06 1322 2190 1236 1310 799
Southern Cal 94.85 2312 2761 3018 2631 2908
Tennessee 71.95 1027 2726 1245 2403 1748
Texas 93.50 1919 2562 2283 1409 1864
Texas A&M 65.14 1482 795 1165 1839 1501
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b. In 1986 the interest rate fell by 1.95 and the unemployment rate was con-

stant. Using the approach in question a, was the 42.52 increase in stock

prices in 1986 mostly due to changes in unemployment or interest rates?

10.18 When OPEC’s manipulation of oil supplies in the 1970s created an energy crisis,

US speed limits were reduced in an effort to reduce fuel consumption. Use the

data in Table 10.7 to estimate this model of US motor vehicle fuel usage,

G ¼ a þ b1M þ b2H þ b3S þ ε, where G is gallons of fuel used per vehicle, M is

miles traveled per vehicle, H is average horsepower, and S is average speed

traveled (miles per hour). Which of the estimated coefficients have plausible

signs and are statistically significant at the 5 percent level?

10.19 A random sample of 30 college students yielded data on Y ¼ grade in an intro-

ductory college chemistry course (four-point scale), X1 ¼ high school GPA

(four-point scale), and X2 ¼ SAT score (2400 maximum). The standard errors are

in parentheses, the t values are in brackets, and R2 ¼ 0.22.

by ¼ �4:20 þ 2:79x1 þ 0:0027x2

ð5:88Þ ð1:05Þ ð0:0033Þ
½0:72� ½2:64� ½0:83�

Table 10.6 Exercise 10.16

S&P 500 Unemployment Interest Rate

1980 133.48 7.2 11.89
1981 123.79 8.6 12.88
1982 139.37 10.7 10.33
1983 164.36 8.2 11.44
1984 164.48 7.2 11.21
1985 207.26 6.9 9.60
1986 249.78 6.9 7.65

Table 10.7 Exercise 10.18

G M H S

1970 851.5 10,341 178.3 63.8
1971 863.4 10,496 183.5 64.7
1972 884.7 10,673 183.0 64.9
1973 879.1 10,414 183.2 65.0
1974 818.3 9900 178.8 57.6
1975 820.2 10,008 178.7 57.6
1976 835.4 10,195 175.7 58.2
1977 839.9 10,372 175.7 58.8
1978 843.0 10,431 174.5 58.8
1979 804.3 10,072 175.3 58.3
1980 738.1 9763 175.6 57.5
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a. Explain why you either agree or disagree with this interpretation: “The

primary implication of these results is that high school GPA and SAT

scores are poor predictors of a student’s success in this chemistry

course.”

b. Suppose that an important omitted variable is X3 ¼ 1 if the student has

taken a high school chemistry course, 0 otherwise; the true coefficients of

X1, X2, and X3 are positive; and X3 is negatively correlated with X1 and

uncorrelated with X2. If so, is the estimated coefficient of X1 in the preced-

ing equation biased upward or downward? Be sure to explain your

reasoning.

10.20 A study of a microfinance program in South India estimated the following least

squares regression:

by ¼ 1; 711:40 þ 11:27x1 þ 0:0316x2

ð265:86Þ ð43:01Þ ð0:0168Þ
½6:44� ½0:26� ½1:88�

where Y ¼monthly family income, X1 ¼ years in the microfinance loan program,

and X2 ¼ total amount loaned. The standard errors are in parentheses,

the t values are in brackets, and R2 ¼ 0.05.

a. Is the coefficient of X2 substantial?

b. How was the t value for the coefficient of X2 calculated?

c. How would you decide whether to calculate a one-sided or two-sided

P value for the coefficient of X2?

d. Explain why you either agree or disagree with this interpretation of the

results: “The one-sided P value for the total amount loaned is 0.032, which is

not quite high enough to show that the amount loaned is statistically signifi-

cant at the 5 percent level.”

10.21 A dean claims that the salaries of humanities professors Y are determined solely

by the number of years of teaching experience X. To see if there is a statistically

significant difference in the salaries of male and female professors, the equation

Y ¼ a þ b1D þ b2X þ b3DX þ ε was estimated, using the variable D ¼ 0 if male,

1 if female.

a. Interpret each of the parameters a, b1, b2, and b3.

b. What advantages does a regression model have over a simple comparison of

the average men’s and women’s salaries?

c. Describe a specific situation in which a comparison of men’s and women’s

average salaries shows discrimination against women while a regression

equation does not.

d. Describe a specific situation in which a comparison of men’s and women’s

average salaries shows no discrimination while a regression equation

indicates discrimination against women.
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10.22 In March 1973, the world’s industrialized nations switched from fixed to

floating exchange rates. To investigate the effects on international trade, a mul-

tiple regression equation was estimated using annual data on world trade and

gross domestic product (GDP) for the 10 years preceding this change and for

the 10 years following the change:

bt ¼ 28:85 � 314:91D þ 0:57y þ 5:04Dy; R2 ¼ 0:977

ð27:02Þ ð51:38Þ ð0:48Þ ð0:71Þ
where T ¼ world trade index (1985 ¼ 200); Y ¼ world GDP index (1985 ¼ 100);D ¼ 0

in 1963–1972 and D ¼ 1 in 1974–1983; and the standard errors are in parentheses.

a. Which of these four coefficients are statistically significant at the 5 percent

level?

b. Interpret each of these estimated coefficients: 28.85, �314.91, 0.57, 5.04.

c. What happened to the relationship between world GDP and world trade

after 1973?

10.23 On average, men are taller than women and therefore take longer strides. One

way to adjust for this height difference in comparing men’s and women’s track

records is to divide the distance run by the runner’s height, giving a proxy for

the number of strides it would take this runner to cover the distance. The

division of this figure by the runner’s time gives an estimate of the runner’s

strides per second. For instance, Leroy Burrell is a former world record holder

for the 100 meters. Dividing 100 meters by his height (1.828 meters) gives 54.70,

indicating that 100 meters takes 54.70 strides for him. For his world record time

of 9.85 s, this converts to 54.70/9.85 ¼ 5.55 strides per second. A study of the

top three runners in several events over a 7-year period yielded the data in

Table 10.8 on strides per second. Use these data to estimate a multiple regres-

sion model S ¼ a þ b1D þ b2X þ b3DX þ ε, where S ¼ strides per second,

X ¼ natural logarithm of distance, and D ¼ 1 if a woman, 0 if a man. Are the

estimated values of b1, b2, and b3 statistically significant at the 5 percent level?

Are their estimated signs plausible?

Table 10.8 Exercise 10.23

Distance (meters) Men Women

100 5.52 5.38
200 5.49 5.30
400 4.90 4.68
800 4.24 4.11
1500 4.04 3.77
5000 3.71 3.33
10,000 3.57 3.26
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10.24 Positively correlated residuals often occur when models are estimated using

economic time series data. The residuals for the consumption function

estimated in this chapter turn out to be positively correlated, in that positive

prediction errors tend to be followed by positive prediction errors and negative

prediction errors tend to be followed by negative prediction errors. This prob-

lem can often be solved by working with changes in the values of the variables

rather than the levels:

½C � Cð � 1Þ� ¼ aþ b1½Y � Y ð � 1Þ� þ b2½W �W ð � 1Þ� þ ε

Use the data in Table 10.1 to calculate the changes in C, Y, and W; for example,

the value of C � C(�1) in 1961 is 1821.2 � 1784.4 ¼ 36.8.

a. Estimate this simple regression model: [C � C(�1)] ¼ a þ b[Y � Y(�)] þ ε.

b. Estimate this simple regression model: [C � C(�1)] ¼ a þ b[W � W(�1)] þ ε.

c. Estimate this multiple regression model: [C � C(�1)] ¼ a þ b1[Y � Y(�1)] þ
b2[W �W(�1)] þ ε.

d. How do the estimated coefficients of the changes in income and wealth in

the multiple regression model c compare with the estimated coefficients in

the simple regression models a and b? How would you explain the fact that

they are larger or smaller?

e. How do the estimated coefficients of the changes in income and wealth in

the multiple regression model c compare with the equation estimated in the

chapter: bc ¼ �110:126þ 0:798y þ 0:026w?

10.25 Use the data in Table 10.1 to answer these questions:

a. Estimate the equation C ¼ a þ bX þ ε, where C is spending and X is the year.

Use your estimates to calculate predicted spending each year, bc ¼ aþ bx.

The residuals c � bc are the detrended values of spending.

b. Repeat the procedure in question a using income as the dependent variable.

c. Repeat the procedure in question a using wealth as the dependent variable.

d. Estimate a multiple regression model where the dependent variable is

detrended spending and the explanatory variables are detrended income and

detrended wealth.

e. How do the estimated coefficients in question d compare with the equation

estimated in the chapter: bc ¼ �110:126þ 0:798y þ 0:026w?

10.26 Use the hard drive data for 2006 and 2007 in Table 1.6 to estimate the model

Y ¼ a þ b1D þ b2X þ b3DX þ ε, where Y ¼ price, X ¼ size, D ¼ 0 in 2006, and

D ¼ 1 in 2007.

a. Interpret your estimates of the coefficient b1, b2, and b3.

b. Calculate a 95 percent confidence interval for b3.

10.27 A researcher used data on these three variables for 60 universities randomly

selected from the 229 national universities in U.S. News & World Report’s

rankings of US colleges and universities: Y ¼ graduation rate (mean 59.65),
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X1 ¼ student body’s median math plus reading SAT score (mean 1030.5), and

X2 ¼ percent of student body with GPAs among the top 10 percent at their high

school (mean ¼ 46.6). He found a statistically significant positive relationship

between SAT scores and graduation rate:

by ¼ �33:39 þ 0:090x1; R2 ¼ 0:71

ð14:30Þ ð0:014Þ
½2:34� ½6:58�

The standard errors are in parentheses and the t values are in brackets. He also

found a statistically significant positive relationship between GPA and graduation

rate:

by ¼ 42:20 þ 0:375x2; R2 ¼ 0:52

ð4:73Þ ð0:084Þ
½8:93� ½4:46�

But when he included both SAT scores and GPAs in a multiple regression

model, the estimated effect of GPAs on graduation rates was very small and

not statistically significant at the 5 percent level:

by ¼ �26:20 þ 0:081x1 þ 0:056x2; R2 ¼ 0:71

ð21:08Þ ð0:025Þ ð0:118Þ
½1:24� ½3:30� ½0:47�

a. He suspected that there was an error in his multiple regression results. Is it

possible for a variable to be statistically significant in a simple regression but

not significant in a multiple regression?

b. Do you think that X1 and X2 are positively correlated, negatively correlated,

or uncorrelated?

c. If your reasoning in b is correct, how would this explain the fact that the

coefficients of X1 and X2 are lower in the multiple regression than in the

simple regression equations?

10.28 Sales data for single-family houses in a Dallas suburb were used to estimate the

following regression equation:

bp ¼ 60; 076 þ 75:1s þ 36:4g � 3; 295a þ 4; 473b � 14; 632t; R2 ¼ 0:84

ð14:4Þ ð19:7Þ ð12:1Þ ð1078Þ ð1708Þ ð3531Þ

where P ¼ sale price, S ¼ square feet of living area, G ¼ garage square feet, A ¼ age

of house in years, B ¼ number of baths, and T ¼ 1 if two-story, 0 if not. The

standard errors are in parentheses.

a. What is the predicted sale price of a two-story, 10-year-old house with 2000

square feet of living space, three baths, and a 300-square-foot garage? Does

this predicted sale price seem reasonable to you?

b. Which of the estimated coefficients in the regression equation are statisti-

cally significant at the 5 percent level? How can you tell?
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c. Does the sign and size of each coefficient seem reasonable? In each case,

explain your reasoning.

d. Do you think that the parameters of housing regression equations change

over time? Why or why not? Be specific.

10.29 A survey of 100 English professors obtained data on their salaries and four

explanatory variables: S ¼ salary (thousands of dollars); B ¼ number of

published books; A ¼ number of articles published in the last 2 years;

E ¼ number of years since degree; and J ¼ 1 if they have received a

recent job offer, 0 otherwise. The estimated equation (with t values in

brackets) is:

bs ¼ 87:65 þ 0:42b þ 2:10a þ 1:21e þ 1:36j; R2 ¼ 0:68

½12:58� ½1:77� ½4:60� ½2:97� ½3:45�

a. Which of the explanatory variables are dummy variables?

b. Which, if any, of the estimated signs do you find surprising, perhaps

implausible?

c. Which of the estimated coefficients are statistically significant at the 5

percent level?

d. Give a 95 percent confidence interval for the effect on a professor’s annual

salary of having an article published. Does your answer seem like a lot of

money or a little?

e. According to the estimated equation, will a professor’s salary be increased

more by writing an article or a book?

10.30 Table 10.9 shows data on state educational spending per pupil (E), percentage

of high school seniors taking the SAT (S), and mean reading SAT score (R).

a. Estimate the equation R ¼ a þ bE þ ε.

b. Is the estimate of b positive or negative?

c. Is the estimate of b statistically significant at the 1 percent level?

d. Now estimate the equation R ¼ a þ b1E þ b2S þ ε.

e. Is the estimate of b1 positive or negative?

f. Is the estimate of b1 statistically significant at the 1 percent level?

g. Explain any noteworthy differences between your estimates of b in a and b1
in d.

10.31 A researcher was interested in how a movie’s box office revenue is affected by

the audience suitability rating assigned by the Motion Picture Association of

America (MPAA) and the quality of the film as judged by Entertainment

Weekly’s survey of 10 prominent film critics. Data for 105 films were used to

estimate the following equation by least squares:

br ¼ 6; 800; 024 � 25; 232; 790s þ 6; 453; 431q; R2 ¼ 0:214

½0:61� ½4:36� ½3:74�
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where R ¼ domestic revenue, in dollars; S ¼MPAA suitability rating (0 if rated G,

PG, or PG-13, 1 if rated R); Q ¼ Entertainment Weekly quality rating (12 ¼ A,

11 ¼ A�, 10 ¼ Bþ, .); and the t values are in brackets. Explain the errors in

each of these critiques of the results:

a. “The R2 value of 0.214 is close enough to 0 that it can be assumed that the

null hypothesis can be rejected.”

b. “The coefficient of S has the wrong sign and is also much too large.”

c. “The estimated coefficient of Q is biased downward because S and Q are

negatively correlated.”

10.32 Use the data in Exercise 8.28 to estimate a multiple regression model with

systolic blood pressure as the dependent variable and diastolic blood pressure

the explanatory variable, allowing the slope and intercept to depend on whether

the person is male or female. Does gender have a statistically significant effect

on the slope or intercept at the 5 percent level?

10.33 Data from a random sample of 100 college students were used to estimate the

following multiple regression equation:

by ¼ 4:589 � 4:608x1 þ 0:405x2 þ 0:568x3; R2 ¼ 0:74

ð0:402Þ ð0:080Þ ð0:079Þ
where Y is the student’s height (inches), X1 is a dummy variable equal to 1 if the

student is female and 0 if male, X2 is the biological mother’s height (inches), X3 is

the biological father’s height (inches), and the standard errors are in parentheses.

a. Which (if any) of the coefficients other than the intercept are statistically sig-

nificant at the 5 percent level?

Table 10.9 Exercise 10.30

State E S R State E S R State E S R

AK 7877 42 443 KY 4390 10 477 NY 8500 69 419
AL 3648 8 482 LA 4012 9 473 OH 5639 23 451
AR 3334 7 471 MA 6351 72 432 OK 3742 8 479
AZ 4231 23 452 MD 6184 60 434 OR 5291 63 443
CA 4826 44 422 ME 5894 59 431 PA 6534 63 423
CO 4809 29 458 MI 5257 12 458 RI 6989 63 429
CT 7914 75 435 MN 5260 15 477 SC 4327 55 399
DC 8210 67 407 MO 4415 13 471 SD 3730 6 498
DE 6016 60 435 MS 3322 4 472 TN 3707 12 486
FL 5154 47 419 MT 5184 20 469 TX 4238 43 415
GA 4860 59 402 NC 4802 57 397 UT 2993 5 499
HI 5008 52 406 ND 3685 5 500 VA 5360 59 430
IA 4839 5 512 NE 4381 10 487 VT 5740 63 435
ID 3200 17 465 NH 5504 66 477 WA 5045 39 448
IL 5062 17 462 NJ 9159 67 423 WI 5946 12 477
IN 5051 55 412 NM 4446 11 483 WV 5046 15 448
KS 5009 10 495 NV 4564 23 439 WY 5255 14 462
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b. Interpret each of the coefficients other than the intercept. Does the magni-

tude of each seem plausible or implausible?

c. Interpret the value of R2.

d. Explain why this conclusion is misleading: “The student’s gender is impor-

tant in determining height. In these data, females are taller than males,

which is shown in the t value for the coefficient of X1.”

10.34 Least squares were used to estimate the relationship between miles per gallon

M, engine size S (liters), and the weights W (pounds) of 436 automobiles:

cm ¼ 36:6765 � 2:1414s � 0:0022w; R2 ¼ 0:65

½13:30� ½8:62�
The t values are in brackets.

a. Does the value �2.1414 seem reasonable?

b. Does the value �0.0022 seem reasonable?

c. Does the value 0.65 seem reasonable?

d. Is the coefficient of S statistically significant at the 5 percent level?

e. Is the coefficient of W statistically significant at the 5 percent level?

10.35 A study of CO2 emissions estimated this model using 2010 data for 161 countries:

by ¼ �807; 815þ 14; 370x1 þ 3655x2 þ 9134x3

where Y ¼ CO2 emissions (kilotons), X1 ¼ industrial percentage of GDP,

X2 ¼ agricultural percentage of GDP, and X3 ¼ services percentage of GDP,

with X1 þ X2 þ X3 ¼ 100. The author reported that:

The standard errors were quite large: 16,418,125 for Y, 163,877 for X1, 164,871 for

X2, and 164,305 for X3. The t value for Y was 0.0492, and its P value was 0.4804.

X1 had a t value of 0.0877 and a P value of 0.4652 while X2 had a t value of

0.0222 and a P value of 0.4912 and, finally, X3 had a t value of 0.0556 and a

P value of 0.4779.

a. What problems do you see with this model specification?

b. How would you respecify the model?

c. What problems do you see with the reported results?

10.36 A survey of 47 sophomores investigated the effect of studying and extracurric-

ular activities on grades:

cm ¼ 2:936 þ 0:023x � 0:028D;

ð0:113Þ ð0:006Þ ð0:096Þ
where Y ¼ grade point average on a four-point scale; X ¼ average hours per week

spent studying; D ¼ 1 if the person spends at least 10 h a week on an

extracurricular activity, such as work or sports, and 0 otherwise; and the standard

errors are in parentheses. The researcher concluded: “The effect of extracurricular

activity is not significant and does not lend support to the commonly held
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notion that extracurricular activity negatively affects grades because

it reduces available study time.” Carefully explain why the coefficient of

D does not measure the extent to which extracurricular activity affects grades

by reducing available study time.

10.37 A study collected data on the 15 best-selling fiction and 15 best-selling nonfic-

tion hardcover books (according to The New York Times bestseller list):

Y ¼ price, X1 ¼ number of pages, and X2 ¼ category (0 if fiction, 1 if nonfiction).

The standard errors are in parentheses and the t values are in brackets.

by ¼ 15:89 þ 0:022x1 þ 0:290x2; R2 ¼ 0:59

ð1:27Þ ð0:0035Þ ð0:071Þ
½12:73� ½6:20� ½0:41�

This equation was then estimated, where X3 ¼ X1X2:

by ¼ 18:49 þ 0:0144x1 � 3:90x2 þ 0:0119x3; R2 ¼ 0:63

ð2:00Þ ð0:0053Þ ð2:52Þ ð0:0069Þ
½9:25� ½2:71� ½1:55� ½1:73�

Explain the conceptual difference between these two models, using the

parameter estimates to illustrate your reasoning.

10.38 A random sample of 30 new hardcover textbooks at a college bookstore was

used to estimate the following multiple regression equation:

by ¼ 16:65 þ 0:04x þ 22:12D1 þ 0:43D2; R2 ¼ 0:70

ð5:11Þ ð0:01Þ ð5:60Þ ð5:31Þ
where Y is the book’s price (in dollars), X is the number of pages in the book,D1 is a

dummy variable that equals 1 if it is a natural sciences book and 0 if it is a

social sciences or humanities book, and D2 is a dummy variable that equals 1 if it

is a social sciences book and 0 if it is a natural sciences or humanities book; the

standard errors are in parentheses.

a. Which (if any) of the coefficients other than the intercept are statistically

significant at the 5 percent level? What does statistically significant at the

5 percent level mean?

b. Interpret each of the coefficients other than the intercept. Does the magni-

tude of each seem plausible or implausible?

c. Interpret the value of R2.

10.39 A researcher commented on this estimated equation: “Multicollinearity could

be a factor as indicated by the very high standard error and the small t value.”

by ¼ 1146:0 þ 1:4312x; R2 ¼ 0:0

ð195:6Þ ð71:6Þ
½5:86� ½0:02�
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( ): standard errors

[ ]: t values

a. In general, how does multicollinearity affect the standard errors and t values?

b.Why is it clear that multicollinearity is not a problem here?

10.40 A researcher estimated a model of airline prices based on trip distances:

bp ¼ 138:97þ 0:0624m� 47:83aaþ 0:0213m� aa

where P is the ticket price, M is the miles the flight traveled, AA ¼ 1 if it is an

American Airlines flight, and ¼ 0 if it is a Delta Airlines flight.

She also estimated a separate equation for American Airlines:

bp ¼ 91:14þ 0:0837m

and e-mailed her professor this question:

You also mentioned after class that the values should be the same as when I did a

simple regression of each airline separately, but I didn’t get any of the same

values. I’m not sure if I misheard you or I did something wrong in my analysis?

How would you have responded?

10.41 Exercises 8.41 and 8.42 give height and weight data for 18- to 24-year-old US

men and women. Use these data to estimate the equation:

Y ¼ aþ b1Dþ b2X þ b3DX þ ε

where Y ¼ weight, X ¼ height, and D ¼ 0 if male, 1 if female.

a. Interpret the coefficients.

b. Is there a statistically significant difference at the 5 percent level between the

effect of height on weight for men and women?

c. Explain why you either agree or disagree with this reasoning: “A person with

zero height has zero weight. Therefore, a regression of weight on height

must predict zero weight for zero height.”

10.42 Exercise 8.44 shows the results of separate regressions for foreign-born and

California-born mother–daughter pairs. Predict the estimated coefficients if this

regression is run, using all 10,619 observations:

Y ¼ aþ b1Dþ b2X þ b3DX þ ε

where D ¼ 0 if the mother is California born and D ¼ 1 if the mother is foreign

born. What advantage is there to running a single regression instead of

two separate regressions?

10.43 What difference would it make in Exercise 10.42 if we set D ¼ 0 if the mother is

foreign born and D ¼ 1 if the mother is California born? How would you choose

between these two specifications?
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10.44 Data for the top 100 money winners on the Professional Golf Association (PGA)

tour were used to estimate the following equation:

by ¼ �8; 023; 111 þ 15; 992d þ 12; 003a þ 27; 084g þ 91; 306p þ 11; 357s

ð1; 103; 837Þ ð3547Þ ð6571Þ ð10; 078Þ ð19; 649Þ ð3705Þ
½7:26� ½4:51� ½1:83� ½2:69� ½4:65� ½3:07�

where Y ¼ dollars won on the PGA tour; D ¼ average length of drives from the tee,

yards; A ¼ driving accuracy (percent of drives landing in fairway); G ¼ percent

of greens that were reached in par minus two strokes; P ¼ percent of those

greens reached in par minus two that required only one put; S ¼ percent of times

player made par after hitting into sand; the standard errors are in parentheses;

the t values are in brackets; and R2 ¼ 0.468.

a. Which, if any, of the estimated coefficients of the five explanatory variables

are statistically significant at the 5 percent level?

b. Which, if any, of the estimated coefficients of the five explanatory variables

have plausible signs?

c. Does the fact that the estimated coefficient of P is larger than the estimated

coefficient of D imply that, other things being equal, a player who is a good

putter wins more money than a person who hits long drives?

d. Does the fact that the t value for S is larger than the t value for G imply

that, other things being equal, a golfer who plays well out of the sand wins

more money than a player who does well reaching the green in par

minus 2?

10.45 Is the multicollinearity problem a characteristic of the population or the sam-

ple? For example, if you are trying to estimate the effect of the unemployment

rate and interest rates on stock prices, do you have a multicollinearity problem

if the unemployment rate and interest rates tend to be correlated in general or

if they happen to be correlated in the particular data you have?

10.46 In an IBM antitrust case, an economist, Franklin Fisher, estimated multiple

regression equations predicting computer prices based on memory, speed, and

other characteristics:

Despite the fact that t-statistics on the order of 20 were obtained for all of the

regression coefficients, Alan K. McAdams, appearing as an expert for the

government, testified that collinearity made it impossible reliably to separate

the effects of the different independent variables and hence that little reliance

could be placed on the results [6].

Explain why you either agree or disagree with McAdams’s logic.
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10.47 College dining halls use attendance data to predict the number of diners at

each meal. Daily weekday lunch data for 11 weeks were used to estimate the

following regression equation:

by ¼ 220:58 � 29:13x1 þ 6:71x2 � 37:49x3 þ 7:69x4 � 2:25x5
ð10:6Þ ð10:3Þ ð9:6Þ ð21:2Þ ð6:4Þ ð1:2Þ

where Y ¼ number of diners; X1 ¼ 1 if Tuesday, 0 otherwise; X2 ¼ 1 if Wednesday,

0 otherwise; X3 ¼ 1 if Thursday, 0 otherwise; X4 ¼ 1 if Friday, 0 otherwise;

X5 ¼ week of semester (X5 ¼ 1 during first week, X5 ¼ 2 during second week, etc.);

and the standard errors are in parentheses.

a. What is predicted attendance on Wednesday during the tenth week of the

semester?

b. Interpret the estimated coefficient of X3.

c. Which of the explanatory variables have statistically significant effects at the

5 percent level?

10.48 Table 10.10 shows hypothetical abilities and test scores. These 20 students have

abilities ranging from 75 to 95, which we assume to be constant between third

and fourth grade. For the four students at each ability level, two score five

points above their ability and two score five points below their ability. Whether

they score above or below their ability on the fourth grade test is independent

Table 10.10 Exercise 10.48

Ability Third Grade Scores Fourth Grade Scores

75 70 70
75 70 80
75 80 70
75 80 80
80 75 75
80 75 85
80 85 75
80 85 85
85 80 80
85 80 90
85 90 80
85 90 90
90 85 85
90 85 95
90 95 85
90 95 95
95 90 90
95 90 100
95 100 90
95 100 100
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of whether they scored above or below their ability on the third grade test. The

uniform distribution of abilities and error scores is unrealistic, as are the

severely limited values. This stark simplicity is intended to clarify the argument.

a. Estimate the simple linear regression model where third grade score is the

dependent variable and ability is the explanatory variable.

b. Estimate the simple linear regression model where ability is the dependent

variable and third grade score is the explanatory variable.

c. Explain how the difference between your answers to questions a and b

reflect regression to the mean.

10.49 Use the data in Exercise 10.48:

a. Estimate the simple linear regression model where ability is the dependent

variable and third grade score is the explanatory variable.

b. Estimate the simple linear regression model where fourth grade score is the

dependent variable and third grade score is the explanatory variable.

c. Explain how your answers to questions a and b reflect regression to the mean.

10.50 Use the data in Exercise 10.48:

a. Estimate the simple linear regression model where ability is the dependent

variable and third grade score is the explanatory variable.

b. Use the equation you estimated in question a to calculate the predicted

ability y
_

of each student.

c. Estimate the simple linear regression model where fourth grade score is the

dependent variable and predicted ability y
_

is the explanatory variable.

d. Explain how your answers to questions a, b, and c reflect regression to the

mean.

10.51 Identify the most serious statistical problem with this model of household

income:

Y ¼ aþ b1Dþ b2E þ b3Aþ ε

where:

Y ¼ average household income in state.

D ¼ state dummy variable, ¼ 1 for Alabama, 2 for Alaska, 3 for Arizona, etc.

E ¼ average education in state.

A ¼ average age in state.

10.52 This regression equation was estimated using data for 481 California Census

blocks that were more than 95% Hispanic in 2008:

bp ¼ 0:843 þ 0:00023y � 0:00417a; R2 ¼ 0:0025

½97:12� ½1:18� ½8:24�
where P ¼ percentage of the two-party vote received by Barack Obama in the 2008

presidential election; Y ¼ median household income of Hispanics, $1000s
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of dollars; A is the percentage of the population over the age of 65; and the t values

are in brackets. Identify the logical error in each of these two conclusions:

a. Income is not statistically significant; the P value is 0.27, meaning that there

is a 27% chance we accept the null hypothesis that income has no effect on

the Hispanic vote.

b. The effect of A on P is substantial because the t value is 8.42.

10.53 Data from a random sample of 30 first-year college students who lived in single

rooms and 30 who lived in doubles were used to estimate this equation:

by ¼ 2:31 � 0:027g þ 0:144h þ 0:045r; R2 ¼ 0:243

½0:439� ½3:036� ½0:716�
where Y ¼ grade point average (four-point scale); G ¼ 1 if male, 0 if

female; H ¼ happiness (six-point scale), R ¼ 1 if have roommate, 0 if not, and the

t values are in brackets. Explain the error in this interpretation of the results:

“I expected that students who did not have roommates would score low on the

happiness scale and consequently have low GPAs. However, the coefficient of the

roommate dummy variable is not close to being statistically significant.”

10.54 This model was estimated by ordinary least squares using 2011 data for

individuals:

Y ¼ aþ b1Aþ b2E þ b3F þ b4M þ b5U þ ε

where:

Y ¼ logarithm of income.

A ¼ age.

E ¼ education, years.

F ¼ female; 1 if female, 0 if male.

M ¼married; 1 if married, 0 if unmarried.

U ¼ unmarried; 0 if unmarried, 1 if married.

What statistical problem do you see?

10.55 In a 1980 court case, a federal judge described how regression estimates of

male and female salary equations could be used to determine if an employer

discriminates against females.

males : Y ¼ aM þ bMS þ gME

females : Y ¼ aF þ bFS þ gFE

where Y ¼ annual earnings; S ¼ number of years of schooling; E ¼ number of

years of relevant job experience. The judge also noted that in place of two

separate equations, one for males and one for females, the following

single equation could be estimated:

Y ¼ aþ b1S þ b2E þ b3D
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a. In what ways is this single equation less general than the two separate

equations?

b. What single equation could the judge have specified that is as general as the

two separate equations?

10.56 In a computer game, the player is shown (in random order) a sequence of char-

acters that are yellow, green, blue, red, or black. The characters are themselves:

(a) Neutral (OOOOO written in yellow); (b) Related (a word related to another

color, like GRASS written in yellow); or Color (a word naming another color

(BLACK written in yellow). The player’s objective is to mouse-click as quickly as

possible on the word at the bottom of the screen that matches the color of the

characters. How would you analyze the reaction times (in seconds) shown in

Table 10.11 to determine whether there was a statistically persuasive difference

in the response times?

10.57 A researcher used 2011 data for 30 developing countries to estimate a model of

real per capita GDP in US dollars. The education variables are the percent of

people of the appropriate age enrolled in school; for example, the total number

of females enrolled in primary schools divided by the number of females of

primary school age. The adolescent fertility rate is births per 1000 women ages

15–19. The results are shown in Table 10.12.

The researcher initially estimated Model 1. After noting the high multi-

collinearity among the explanatory variables, the researcher estimated Model 2.

The author concluded that “The R-squared value decreased from 0.804 to

0.684. However, this model provides more precise estimates of the coefficients

of the explanatory variables. The standard errors fall by almost half and the

t-values for almost all variables, specifically secondary education for both

genders, are statistically significant, unlike in the previous model.” What do

you think?

Table 10.11 Exercise 10.56

Neutral Related Color

1.37 0.78 0.72 1.18 1.50 1.02
1.08 0.98 0.98 1.25 1.37 1.35
1.33 1.12 1.15 1.35 1.68 1.72
0.95 1.15 0.60 1.57 1.35 1.52
1.32 0.95 1.98 1.18 1.33 1.52
1.00 0.83 0.95 1.42 1.97 1.05
1.28 2.18 1.02 2.07 1.43 0.65
1.38 1.52 1.18 1.27 1.68 2.22
0.97 0.70 1.03 1.45 1.83 1.30
1.45 1.10 0.53 1.92 1.33 1.38
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10.58 A student described his estimated equation: “As for b2, not very much can be

said for its statistical significance, there is approximately a 77% chance that the

null hypothesis is true with these results.” Explain why you either agree or

disagree.

by ¼ 0:4991 � 0:0039x1 � 0:0005x2; R2 ¼ 0:08

½1:84� ½0:30�
[ ]: t values

10.59 Explain your skepticism about this report: “The multicollinearity between the

oil price variable and interest rate variables reduced the significance of oil price

variable in the regression. Once the interest rate variable is excluded, the oil

price variable was estimated with high confidence.”

10.60 Data for five NBA seasons (2008–2012) were used to estimate this equation:

by ¼ 2:16þ 0:62x þ 10:36D

where Y ¼ the team’s winning percentage, X ¼ team’s average annual player

salaries (dollars), and D ¼ 1 if the team has won more than half of its games in its

entire existence. The two-sided p values were 0.0158 for the coefficient of X

and 0.0042 for the coefficient of D. The R2 was 0.515. Critically evaluate: “The

results suggest that teams that pay higher salaries win more games, but are

not completely persuasive because franchises with all-time winning records

may also have proportionately larger team salaries.”

Table 10.12 Exercise 10.57

Model 1 Model 2

Coefficient t Value Coefficient t Value

Intercept 92,229 1.17 16,380 0.72
Female primary education 1154 0.64 726 1.53
Male primary education �2219 0.96 �899 1.68
Female secondary education �1771 1.57 �1081 2.21
Male secondary education 1901 1.80 1113 2.16
Female tertiary education 265 0.47 263 0.71
Male tertiary education �84 0.10 192 0.37
Volume of exports 429 0.11
Unemployment rate �290 0.17
Adolescent fertility rate �89 0.43
R2 0.804 0.684
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Econometricians, like artists, tend to fall in love with their models.

Edward Leamer

Explicit models clarify our beliefs in ways that mere words do not. They can also be

estimated, tested, and used to make specific predictions. Part of the art of modeling is

choosing persuasive variables. Another part, discussed in this chapter, is choosing an

appealing functional form.

Causality
A model should have a theoretical underpinning. Before we write down an equation that

says spending depends on income, we should have a persuasive reason for believing this.

The same with a model that says elections are affected by the economy or that stock

prices depend on corporate earnings. When we say that one variable depends on another,

we are saying that there is a causal relationship—not a coincidental correlation. We

believe that spending depends on income because it makes sense.
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When we have a causal relationship, we typically have an expectation about the sign

of the relationship. We expect that an increase in household income will cause spending

to increase. We then use data to test our theory and to estimate the size of the effect.

Sometimes, there are competing theoretical arguments and we are agnostic about

which effect is stronger. When hourly wages increase, people might choose to work more

because they will be paid more, or they might work less because they need not work as

many hours to pay their bills. In cases like this, where there are competing arguments,

the data may tell us which effect is stronger. The important point is that we have good

reasons for believing there is a relationship, even if we are unsure of the sign. We should

not use a model that relates stock prices to football scores, because we have no good

reason for believing that stock prices are influenced by football games.

Linear Models
The most convenient model is linear. For example, we might assume that aggregate

consumer spending C is a linear function of income Y, each in trillions of dollars:

C ¼ aþ bY (11.1)

In mathematics, the symbols Y and X are used repeatedly to show relationships

among variables; for example, Y ¼ 2 þ 3X. In applied fields like economics, chemistry,

and physics, variables represent real things (like income, hydrogen, or velocity) and a

variety of symbols are used to help us remember what the variables represent. In eco-

nomics, C is typically consumer spending and Y is usually income, and this is why these

symbols are used in Eqn (11.1).

A graph of Eqn (11.1), as in Figure 11.1, is a straight line with an intercept a and a

slope b that describes the constant effect on spending of an increase in income.

If b ¼ 0.50, then every $1 trillion increase in income causes a $0.50 trillion increase in

spending.

It is unlikely that the real world is exactly linear, but we can often use a linearmodel as a

useful approximation. For example, Figure 11.2 shows a hypothetical true relationship and

Y

C 1

Intercept α

Slope β

C = α + βY

FIGURE 11.1 A linear relationship between consumer spending C and income Y.
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a linear approximation. The slope of the true relationship falls as income increases because

an increase in income has a smaller effect on spending when income is high than when

income is low. The linear approximation assumes that the slope is constant.

The linear approximation in Figure 11.2 is acceptable as long as we confine our

attention to realistic and relatively modest variations in income, say, between 12 and 20.

It is incautious extrapolation to use our linear approximation for extreme values of

income (such as 0 or 100).

Because our model is a linear approximation, the Y intercept should not be used to

predict spending when income is 0. No one knows what spending would be in such a

catastrophic situation. Our model is not intended for and should not be applied to

catastrophes. The intercept is simply used to place the line so that our linear approxi-

mation works for realistic values of Y, say, between 12 and 20.

Similarly, we should be wary of using a linear model of the relationship between

hours spent studying and test scores to predict the test score of someone who studies

168 h a week or using a model of the relationship between rainfall and corn yield to

predict corn yield when fields are flooded 2 feet deep. Linear approximations are often

useful as long as we do not try to extrapolate them to drastically different situations.

Polynomial Models
One alternative to a linear model is a polynomial function:

Y ¼ aþ b1X þ b2X
2 þ/þ bnX

n (11.2)
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Linear approximation
C = α + βY
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FIGURE 11.2 A linear approximation to a nonlinear relationship.
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Some specific examples are:

linear: Y ¼ aþ b1X

quadratic: Y ¼ aþ b1X þ b2X
2

cubic: Y ¼ aþ b1X þ b2X
2 þ b3X

3

The true relationship between spending and income graphed in Figure 11.2 is, in fact,

this quadratic equation:

C ¼ 0:0þ 1:3Y � 0:025Y 2 (11.3)

Polynomial equations are a reasonably simple way to model nonlinear relationships.

However, they, too, can be susceptible to incautious extrapolation. Figure 11.3 shows

that, as income increases past 26, Eqn (11.3) predicts an implausible decline in spending.

Interpreting Quadratic Models

The general formula for a quadratic consumption function is:

C ¼ aþ b1Y þ b2Y
2 (11.4)

Figure 11.4 shows a specific example to help us interpret the coefficients. The

parameter a is the value of spending when income equals 0. This is where the con-

sumption function intercepts the vertical axis; if a ¼ 0, the consumption function

intersects the vertical axis at C ¼ 0. The parameter b1 is the slope of the equation when

income equals 0; if b1 ¼ 1.3, the slope at the origin is 1.3. The parameter b2 determines

whether the slope of the equation increases or decreases as income increases. Here, b2 is

negative (�0.025), so the slope decreases as income increases. If b2 were positive, the

slope would increase as income increases.
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C = 0.0 + 1.3Y − 0.025Y 2

FIGURE 11.3 Quadratic models can have incautious extrapolation, too.
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Power Functions
The equation:

Y ¼ AXb (11.5)

is called a power function, because X is raised to the power b. The parameter A is a

scaling factor. The parameter b is called the elasticity, because it is (approximately) equal

to the percentage change in Y resulting from a 1 percent increase in X.

Figure 11.5 shows three power functions, for values of b equal to 1.2, 1.0, and 0.8.

When b equals 1, the equation is a straight line with a constant slope. When b is larger
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The slope at Y = 0 is β1= 1.3

The equation intersects the vertical axis at α = 0.0

The slope decreases as income increases
because β2 = −0.025 is negative

C = α + β1Y + β2Y 2

= 0.0 + 1.3Y − 0.025Y 2

FIGURE 11.4 The parameters of a quadratic model.
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FIGURE 11.5 Three power functions.
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than 1, the slope continuously increases as X increases. When b is less than 1, the reverse

is true: the slope continuously declines as X increases.

Power functions with positive parameters A and b have several appealing features:

1. The Y intercept is at the origin; when X equals 0, Y equals 0.

2. Unlike a linear model, where changes in the level of X have a constant effect on

the level of Y, in a power function, percentage changes in X have a constant

percentage effect on Y.

3. Unlike quadratic functions, the slope is always positive, so that an increase in X

always increases the value of Y. In Figure 11.5, the curve never bends backward for

b ¼ 1.2 and the slope never turns negative for b ¼ 0.8.

Figure 11.6 compares three consumption equations:

linear: C ¼ aþ bY

quadratic: C ¼ aþ b1Y þ b2Y
2

power: C ¼ AY b:

all scaled to be reasonably similar for values of income between 12 and 20. Over this

limited range, it matters little which equation we use, and the linear approximation is

fine. However, over wider ranges of income, the three equations diverge and the power

function has some clear advantages over the other formulations.

In the linear and quadratic models, we cannot set spending equal to 0 when income

is 0 unless we set the parameter a equal to 0, and this may well hinder our attempts to

obtain a good approximation. (Imagine what would happen in Figure 11.6 if we set the

linear intercept equal to 0.) Also, in the linear model, a $1 increase in income increases
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spending by b, no matter what the level of income. In the quadratic model, we can force

the slope to decline as income increases by making the parameter b2 negative, but the

slope eventually turns negative, which implies than an increase in income leads to a

decline in spending.

In the power function model, a 1 percent increase in income increases spending by

b percent, no matter what the level of income, and the slope never turns negative.

Negative Elasticities

The parameter b in a power function can be negative; for example, if b ¼ �1, then:

Y ¼ AX�1

¼ A
1

X

Figure 11.7 shows the decline in the prices of 200-gigabyte (GB) hard drives between

2003 and 2007. A simple linear model does not fit these data very well and, in addition,

has the implausible prediction that the price will be negative after 2007. Will hard drive

manufacturers pay us to take their hard drives?

Figure 11.8 shows that a power function with a negative parameter b does a much

better job modeling the path of hard drive prices and, in addition, never predicts a

negative price.

Similarly, Figure 11.9 shows a linear demand function. The slope is negative because

the quantity demanded falls as the price increases. (Economists traditionally put

demand on the horizontal axis and price on the vertical axis; but we do the opposite,

because demand is the dependent variable and, in statistics, the dependent variable is

put on the vertical axis.)
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FIGURE 11.7 A linear model does not fit the data very well.
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A linear demand function may be a reasonable approximation for small price

changes. However, it is implausible in other situations. Does a $1 price increase have the

same effect on demand when the price is $1 and when the price is $10? A linear demand

function assumes the effect is the same. Not only that, a linear demand function implies

that, when the price goes to 0, demand hits a maximum. It is more plausible that if

something were free, demand would be virtually unlimited. A linear demand function

also assumes that there is a maximum price where demand equals 0. Beyond that price,

demand is either undefined or (nonsensically) negative.

In contrast, a power function assumes that the percentage increase in price is what

matters. A $1 price increase is a 100 percent increase when the price is $1, but only a
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FIGURE 11.8 A power function does better.
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10 percent increase when the price is $10. A 100 percent price increase should affect

demand more than does a 10 percent price increase. Also, Figure 11.10 shows that, with a

power function, demand increases indefinitely as the price approaches 0 and demand

approaches 0 as the price becomes very large.

The Cobb–Douglas Production Function

Equation (11.2) shows that a polynomial equation is the sum of power functions. We can

also use a model based on the product of power functions.

A production function shows how the output Q produced by a firm, an industry, or

the entire economy is related to the amount of capital K, labor L, and other inputs used

in production. For simplicity, we assume here that there are only two inputs: capital

(including buildings, machines, and equipment) and labor (measured in the number of

hours worked). More complex models distinguish different types of capital and labor and

add other inputs, such as raw materials.

The marginal product of labor is equal to the change in output resulting from a

1-hour increase in labor, holding capital constant. The elasticity of output with respect to

labor is equal to the percentage change in output resulting from a 1 percent increase in

labor, holding capital constant. The marginal product of capital and the elasticity of

output with respect to capital are defined analogously.

A linear production function is:

Q ¼ aþ b1K þ b2L
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FIGURE 11.10 A power function demand equation.
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The marginal product of labor is b2 and is constant no matter how much labor is

already employed. This is generally thought to be an implausible assumption; the law of

diminishing marginal returns states that the marginal product declines as the input

increases. Imagine a factory with a fixed work area and a fixed number of machines

(remember, we are holding capital constant). As the amount of labor increases, workers

increasingly get in each other’s way and must share machines.

One way to allow for diminishing marginal returns is to use a quadratic production

function:

Q ¼ aþ b1K þ b2K
2 þ b3Lþ b4L

2

For any value of K, a positive value for b3 and a negative value for b4 imply a positive

marginal product for small values of L and a diminishing marginal product for all values

of L. Figure 11.11 shows an example using this particular function, holding capital

constant at K ¼ 50:

Q ¼ 65K � 0:3K 2 þ 78L� 0:2L2

This specification might be a useful approximation for many values of L but has the

unfortunate property that, for values of L larger than 195, output declines as labor

increases. It would seem that the worst possible scenario is additional workers are told

to stay home—which does not increase output, but does not decrease it either.

The Cobb–Douglas production function uses the following equation to describe how

output Q depends on the amount of capital K and labor L used in production:

Q ¼ AK b1Lb2 (11.6)
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where A, b1, and b2 are positive parameters. Figure 11.12 shows how labor affects output

using the parameter values A ¼ 100, b1 ¼ 0.3, and b2 ¼ 0.7, and holding capital K constant

at 50. Similarly, Figure 11.13 shows how capital affects output, holding labor L constant

at 100.

The Cobb–Douglas function has several appealing properties:

1. Output equals 0 when either input equals 0.

2. The slope is always positive, so that output always increases when an input

increases.
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FIGURE 11.12 A Cobb–Douglas production function, holding capital constant.
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3. If b1 and b2 are less than 1, then an increase in either input has less effect on

output when the input is large than when the input is small (the law of diminish-

ing returns).

4. The elasticities are constant. The elasticity of output with respect to capital is b1
and the elasticity of output with respect to labor is b2. For example, if b1 ¼ 0.3,

then a 1 percent increase in capital increases output by 0.3 percent.

The Cobb–Douglas model is not restricted to production functions. A Cobb–Douglas

model can be used, for example, to describe money demand, labor supply, or spending.

In general, it can be used for any situation where its properties are appropriate.

Logarithmic Models
The general form for a power function is given by Eqn (11.5): Y ¼ AXb. If we take loga-

rithms of both sides of this equation, we obtain:

ln½Y � ¼ ln½A� þ b ln½X �
or:

U ¼ aþ bV

where U ¼ ln[Y], a ¼ ln[A], and V ¼ ln[X]. So, if Y and X are related to each other by a

power function, then the logarithm of Y is a linear function of the logarithm of X, and

there is said to be a log-linear relationship between Y and X.

For the Cobb–Douglas function, there is a log–linear relation between output, labor,

and capital:

Q ¼ AK b1Lb2

ln½Q� ¼ ln½A� þ b1 ln½K � þ b2 ln½L�
This equation can be estimated by multiple regression procedures with the logarithm

of output the dependent variable and the logarithms of capital and labor the explanatory

variables.

Growth Models
Many variables (such as income, prices, or population) change over time, and a useful

model should take time into account. We can do so by using a variable t, which marks

the passage of time. If time is measured in years, we might set t ¼ 0 in 2000, t ¼ 1 in 2001,

and so on. If we want to measure time in months, then we might set t ¼ 0 in January 1980

and t ¼ 1 in February 1980.

The variable t can be used as a subscript to show the value of a variable at different

points in time. For example, if we denote income by Y and time is measured in years,

then Yt is equal to the value of income in year t. If t ¼ 0 in 2000, then Y0 is the value of

income in 2000 and Y1 is the value of income in 2001.
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So far, so good, but we do not have a model yet, just labels. A very simple model is

that Y grows at a constant rate g. Starting with t ¼ 0, the relationship between Y1 and Y0 is:

Y1 ¼ Y0ð1þ gÞ
For example, g ¼ 0.03 means that income increases by 3 percent in a year’s time,

perhaps from Y0 ¼ 100 to Y1 ¼ 103:

Y1 ¼ Y0ð1þ gÞ
¼ 100ð1þ 0:03Þ
¼ 103

If Y increases at the same rate g between t ¼ 1 and t ¼ 2, then:

Y2 ¼ Y1ð1þ gÞ
¼ Y0ð1þ gÞ2

Continuing in this fashion, we can write our growth model as:

Y1 ¼ Y0ð1þ gÞt (11.7)

This model can be applied to many phenomena. If a country’s population is growing

at a rate g, then Eqn (11.7) shows the population in year t. If prices are increasing at a rate

g, Eqn (11.7) shows the price level in year t. If the value of an investment is increasing at a

rate g, Eqn (11.7) shows the value in year t.

In the growth model in Eqn (11.7), the logarithm of Y is linearly related to time:

ln½Yt � ¼ ln½Y0� þ t ln½1þ g � (11.8)

or:

Ut ¼ aþ bt

where Ut ¼ ln[Yt], a ¼ ln[Y0], and b ¼ ln[1 þ g]. This equation can be estimated by simple

regression procedures with the logarithm of Y the dependent variable and time the

explanatory variable.

Figure 11.14 shows Y and the logarithm of Y for g ¼ 0.03 (a 3 percent growth rate). The

line for Y is curved upward with a slope that increases as Y increases; the line for the

logarithm of Y is a straight line with slope b ¼ ln[1 þ g]. For small values of g, the slope b

is approximately equal to g. Therefore, when the natural logarithm of a variable is plotted

in a time series graph, the slope is (approximately) equal to the variable’s growth rate.

The Miracle of Compounding

When Albert Einstein was asked the most important concept he had learned during his

life, he immediately said “compounding.” Not statistical mechanics. Not quantum

theory. Not relativity. Compounding.

Suppose that you invest $1000 at a 10 percent annual interest rate. The first year, you

earn $100 interest on your $1000 investment. Every year after that, you earn 10 percent

interest on your $1000 and also earn interest on your interest, which is what makes
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compounding so powerful, bordering on the miraculous. Equation (11.7) shows that

after 50 years of compound interest, your $1000 grows to $117,391:

Yt ¼ ð1þ gÞtY0

¼ ð1þ 0:10Þ50$1000
¼ $117; 391

A seemingly modest rate of return, compounded many times, turns a small invest-

ment into a fortune. The miracle of compounding applies to anything growing at a

compound rate: population, income, prices.

Equation (11.7) can also be used to solve for the growth rate if we know the values of

Y0 and Yt. For example, a very concerned citizen wrote a letter to his local newspaper

complaining that houses that sold for tens of thousands of dollars decades ago were now

selling for hundreds of thousands of dollars: “That house can’t be worth $400,000; my

grandfather bought it for $40,000!” Suppose that a house sold for $40,000 in 1950 and for

$400,000 in 2000. Equation (11.7) shows that this is a 4.7 percent annual rate of increase:

Yt ¼ ð1þ gÞtY0

¼ ð1þ 0:047Þ50$40; 000
¼ $400; 000

If the letter writer had been told that home prices had increased by 4.7 percent a year,

would he have been so flabbergasted?

Frequent Compounding

In the 1960s, banks and other financial institutions began using compound interest to

relieve some of the pressures they felt during credit crunches. At the time, the maximum

interest rates that banks could pay their depositors were set by the Federal Reserve
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FIGURE 11.14 The growth model using logarithms.
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Board under Regulation Q. In the 1980s, Regulation Q was phased out at the urging of

consumer groups (who felt that rate wars are good for depositors) and banks (who were

losing depositors to other investments that did not have interest rate ceilings).

In the 1960s, whenevermarket interest rates jumped the above deposit rates allowed by

Regulation Q, banks lost deposits and could do little more than offer toasters and electric

blankets to their customers and pressure the Fed to raise ceiling rates. Then someone

somewherenoticed thatRegulationQwasphrased in termsof annual rates,whichcouldbe

turned into higher effective rates by compounding more often than once a year.

Suppose that the quoted annual rate is 12 percent (more than banks were paying, but

a number easily divisible in the arithmetic to come). If there is no compounding during

the year, then $1 grows to $1.12 by year’s end. With semiannual compounding, the

deposit is credited with 12/2 ¼ 6 percent interest halfway through the year, and then, at

the end of the year, with another 6 percent interest on the initial deposit and on the first

6 months’ interest, giving an effective rate of return S for the year of 12.36 percent:

1þ S ¼ ð1:06Þð1:06Þ ¼ 1:1236

This is a 12.36 percent effective rate of return in the sense that 12 percent com-

pounded semiannually pays as much as 12.36 percent compounded annually.

With quarterly compounding, 12/4 ¼ 3 percent interest is credited every 3 months,

raising the effective rate to 12.55 percent:

1þ S ¼ ð1:03Þð1:03Þð1:03Þð1:03Þ ¼ 1:1255

Monthly compounding, paying 12/12 ¼ 1 percent each month, pushes the effective

return up to 12.68 percent and daily compounding increases the effective annual return

to 12.7468 percent. In general, $1 invested at an annual rate of return R, compounded

m times a year, grows to (1 þ R/m)m after 1 year and to (1 þ R/m)mn after n years:

1þ S ¼
�
1þ R

m

�mn

(11.9)

Continuous Compounding

As the examples have shown, more frequent compounding increases the effective

return. Theoretically, we can even have continuous compounding, taking the limit of

(1 þ R/m)m as the frequency of compounding becomes infinitely large (and the time

between compounding infinitesimally small):

1þ S ¼ lim
m/N

�
1þ R

m

�mn

¼ eRn (11.10)

where e ¼ 2.718. is the base of natural logarithms. In our example, with R ¼ 12 percent,

continuous compounding pushes the effective annual rate up to 12.7497 percent.

Although advertisements trumpeting “continuous compounding” convey the feeling that

the bank is doing something marvelous for you and your money, the improvement over

daily compounding is slight.
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On the other hand, continuous compounding is very useful for modeling growth

because it simplifies many computations. If the continuously compounded rate of

growth of X is 3 percent and the continuously compounded rate of growth of Y is

2 percent, then the continuously compounded rate of growth of the product XY

is 3 þ 2 ¼ 5 percent, and the continuously compounded rate of growth of the ratio X/Y

is 3 � 2 ¼ 1 percent. It is as simple as that.

In Chapter 1, we looked at the distinction between nominal data (denominated in

dollars, euros, or another currency) and real data (adjusted for changes in the cost of

living). Using continuous compounding, if nominal income Y is increasing by 5 percent

and prices P are increasing by 3 percent, how fast is real income Y/P increasing? By

5 � 3 ¼ 2 percent. If real income Z is increasing by 2 percent and prices P are increasing

by 1 percent, how fast is nominal income ZP increasing? By 2 þ 1 ¼ 3 percent.

Continuously compounded models are written like this:

Yt ¼ Y0e
gt (11.11)

where Yt is the value of Y at time t and g is the continuously compounded growth rate.

Suppose, for example, that Y is nominal income and that Y initially equals 3000 and

grows at a continuously compounded rate of 5 percent:

Yt ¼ 3000e0:05t

We let the price level P initially equal 1 and grow at a continuously compounded rate

of 3 percent:

Pt ¼ 1:0e0:03t

Real income initially equals 3000 and grows at 2 percent:

Y

Pt

¼ 3:000e0:05t

1:0e0:03t

¼ 3000e0:02t

Figure 11.15 shows a graph of the growth of nominal income and real income over

time.

The continuously compounded growth rate can be estimated by taking the logarithm

of both sides of Eqn (11.11):

ln½Yt � ¼ ln½Y0� þ gt

and using simple regression procedures with the logarithm of Y the dependent variable

and time the explanatory variable.

Autoregressive Models
Another way to introduce time into a model is with a first-order autoregressive equation

in which the value of a variable is influenced by its value in the immediately preceding

period:

Yt ¼ aþ bYt�1 (11.12)
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The subscripts t and t � 1 indicate the values of Y in period t and the previous period,

t � 1. A period of time might be a day, week, month, or year.

In the special case where b ¼ 1, the change in Y is simply equal to a:

Yt ¼ aþ Yt�1

Yt � Yt�1 ¼ a

If b does not equal 1, there is a dynamic equilibrium value Y e where Y is constant.

The equilibrium value of Y can be determined by substituting Yt ¼ Yt�1 ¼ Y e into

Eqn (11.12):

Y e ¼ aþ bY e

Y e � bY e ¼ a

Rearranging:

Y e ¼ a

1� b
(11.13)

The actual value of Y may or may not converge to this equilibrium value, depending

on whether the absolute value of b is less than 1 or larger than 1. For example, if a ¼ 8

and b ¼ 0.9, the equilibrium is at Y ¼ 80:

Y e ¼ a

1� b

¼ 8

1� 0:9

¼ 80

Figure 11.16 shows that Y gets closer and closer to 80 each period. In this case, the

model is monotonically stable because Y converges directly to its equilibrium value.
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In contrast, if a ¼ �4 and b ¼ 1.05, the equilibrium is again at Y ¼ 80:

Y e ¼ a

1� b

¼ �4

1� 1:05

¼ 80

but Figure 11.17 shows that Y gets further from equilibrium each period. This model is

monotonically unstable because Y diverges directly from its equilibrium value.
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FIGURE 11.16 A monotonically stable autoregressive model.
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If b is negative, the autoregressive model is cyclical, in that Y cycles alternately above

and below its equilibrium value, in some cases getting closer to equilibrium each period

and in other cases getting further from equilibrium. For example, if a ¼ 152 and

b ¼ �0.9, the equilibrium is at Y ¼ 80 and Figure 11.18 shows that Y gets closer and

closer to 80 each period. This model is cyclically stable because Y cycles but still

converges to its equilibrium value.

On the other hand, if a ¼ 164 and b ¼ �1.05, the equilibrium is at Y ¼ 80 but

Figure 11.19 shows that Y gets further from equilibrium each period. In this case, the

model is said to be cyclically unstable.
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FIGURE 11.18 A cyclically stable autoregressive model.
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In general, autoregressive models have two main characteristics: whether the model

is stable and whether the model is cyclical. The crucial parameter is b. The model is

stable if the absolute value of b is less than 1 and unstable if the absolute value of b is

larger than 1. The model is cyclical if b is negative and monotonic if b is positive.

Table 11.1 summarizes the various cases (for simplicity, the special cases b ¼ �1, b ¼ 0,

and b ¼ 1 are not shown).

Autoregressive models may be an appropriate way to describe a variety of situations.

This year’s government spending depends on government spending last year. This

month’s unemployment rate depends on the unemployment rate last month. Today’s

value of the Dow Jones Industrial Average depends on its value yesterday.

Autoregressive models can include other explanatory variables. If we believe that

Y depends on its value the previous period and also depends on two other variables, X

and Z, we can expand Eqn (11.8) to:

Yt ¼ aþ b1Yt�1 þ b2Xt þ b3Zt (11.14)

For example, the unemployment rate might depend on its value the previous period

and also the current level of GDP. Equation (11.14) can be directly estimated by multiple

regression procedures.

Exercises
11.1 Okun’s law says that changes in the unemployment rate are related to the per-

centage change in output. Suppose that this relationship is described by the

equation U ¼ 1.3 � 0.4Y, where U is the change in the unemployment rate and Y

is the percentage change in real GDP.

a. What is the change in the unemployment rate when real GDP is constant?

b. How much does the unemployment rate increase when there is a 1 percent

increase in real GDP?

11.2 The Fed’s stock valuation model says that the earnings/price ratio E/P is related

to the interest rate R on 10-year Treasury bonds. Suppose that this relationship

is described by the equation E=P ¼ 1:2þ 0:8R.

a. What is the earnings/price ratio when the interest rate is 0?

b. How much does the earnings/price ratio increase when the interest rate

increases by 1?

Table 11.1 The Crucial Parameter b

Value of b Model

b < �1 Y is cyclically unstable
�1 < b < 0 Y is cyclically stable
0 < b < 1 Y is monotonically stable
b > 1 Y is monotonically unstable
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11.3 Suppose that Okun’s law in Exercise 11.1 is the quadratic equation

U ¼ 1.4 � 0.6Y þ 0.02Y2.

a. What is the change in the unemployment rate when real GDP is constant?

b. What is the slope of the line at Y ¼ 0?

c. Does the slope of the line increase or decrease as Y increases?

11.4 Suppose that the stock valuation model in Exercise 11.2 is a quadratic equation

E=P ¼ 1:5þ 0:7Rþ 0:005R2:

a. What is the earnings/price ratio when the interest rate is 0?

b. What is the slope of the line at R ¼ 0?

c. Does the slope of the line increase or decrease as R increases?

11.5 You want to write down a simple linear model relating college grade point

average (GPA) to SAT scores.

a. Which variable is the dependent variable?

b. Do you expect the slope to be positive, negative, or 0?

c. How do you determine the value of the Y intercept?

11.6 You want to write down a simple linear model relating miles per gallon (MPG) to

car weight.

a. Which variable is the dependent variable?

b. Do you expect the slope to be positive, negative, or 0?

c. How do you determine the value of the Y intercept?

11.7 You want to write down a simple linear model relating used car prices to the

number of miles the car has been driven.

a. Which variable is the dependent variable?

b. Do you expect the slope to be positive, negative, or 0?

c. How do you determine the value of the Y intercept?

11.8 Suppose that cigarette sales in the United States between 1910 and 2010 are

described by the equation S ¼ 800 þ 164t � 1.4t2, where S is per capita sales and

t ¼ 0 in 1910, t ¼ 1 in 1911, and so on.

a. Are per capita sales increasing or decreasing in 1910?

b. Does the annual increase in per capita cigarette sales rise or fall as time

passes?

11.9 Suppose that cigarette sales in the United States between 1910 and 2010

are described by the equation S ¼ 130 þ 18t � 0.12t2, where S is total sales

(in billions) and t ¼ 0 in 1910, t ¼ 1 in 1911, and so on.

a. Are sales increasing or decreasing in 1910?

b. Does the annual increase in sales rise or fall as time passes?
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11.10 Suppose consumption C is related to income Y by the equation

C ¼ 10 þ 0.9Y � 0.02Y2.

a. Where does this equation intersect the vertical axis?

b. What is the slope of the line at Y ¼ 0?

c. Does the slope of the line increase or decrease as income increases?

11.11 Suppose that labor supply L is related to wages W by the equation

L ¼ 1.2 þ 3.5W þ 0.01W2.

a. Where does the equation intersect the vertical axis?

b. What is the slope of the line at W ¼ 0?

c. Does the slope of the line increase or decrease as wages increase?

11.12 In the quadratic model Y ¼ a þ b1X þ b2X
2, which parameter determines:

a. The slope of the equation at X ¼ 0?

b. Whether the slope of the equation increases or decreases as X increases?

11.13 A firm has this cubic cost function:

C ¼ 200Q� 20Q2 þQ3

where Q is output (the number of items produced) and C is the total cost of

producing these items. The marginal cost MC is a quadratic function:

MC ¼ 200� 40Qþ 3Q2

a. What is the marginal cost at Q ¼ 0?

b. At Q ¼ 0, is the slope of the marginal cost function positive or negative?

c. Does the slope of the marginal cost function increase or decrease as Q

increases?

11.14 A firm has this cost function:

C ¼ 1200Q� 45Q2 þ 0:6Q3

where Q is output (the number of items produced) and C is the total cost of

producing these items. The marginal cost MC is:

MC ¼ 1200� 90Qþ 1:8Q2

a. What is the marginal cost at Q ¼ 0?

b. At Q ¼ 0, is the slope of the marginal cost function positive or negative?

c. Does the slope of the marginal cost function increase or decrease as Q

increases?

11.15 Use the equations in Exercise 11.13 to make rough sketches of cost and

marginal cost as functions of output Q.

11.16 Use the equations in Exercise 11.14 to make rough sketches of cost and

marginal cost as functions of output Q.
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11.17 Suppose that the relationship between hard drive prices P and size G (in

gigabytes) is P ¼ 490 þ 0.46G in 2006 and P ¼ 505 þ 0.24G in 2007.

a. Which equation intersects the vertical axis at a higher value?

b. Which equation has a higher slope?

c. Is the price of a 100-gigabyte drive higher in 2006 or 2007?

11.18 You are considering using a linear equation to model how egg demand D is

related to the price P: D ¼ a þ bP.

a. Do you expect the value of the parameter b to be positive, negative, or 0?

Explain.

b. Do you expect the value of the parameter a to be positive, negative, or 0?

Explain.

11.19 You are considering using a linear equation to model how home prices P are

related to home construction costs C: P ¼ a þ bC.

a. Do you expect the value of the parameter b to be positive, negative, or 0?

Explain.

b. Do you expect the value of the parameter a to be positive, negative, or 0?

Explain.

11.20 You are considering using a quadratic equation to model how the supply of

wheat S is related to the price P: S ¼ a þ b1P þ b2P
2.

a. Do you expect the value of the parameter b1 to be positive, negative, or 0?

Explain.

b. Do you expect the value of the parameter b2 to be positive, negative, or 0?

Explain.

11.21 You are considering using a quadratic equation to model how the number of

hours a week spent studying S is related to the dollar value of a prize P given to

students with 4.0 grade point averages: S ¼ a þ b1P þ b2P
2.

a. Do you expect the value of the parameter b1 to be positive, negative, or 0?

Explain.

b. Do you expect the value of the parameter b2 to be positive, negative, or 0?

Explain.

11.22 You are considering using a quadratic equation to model how cost C of raising a

family is related to the number of children in the family N: C ¼ a þ b1N þ b2N
2.

a. Do you expect the value of the parameter b1 to be positive, negative, or 0?

Explain.

b. Do you expect the value of the parameter b2 to be positive, negative, or 0?

Explain.

11.23 Consider this Cobb–Douglas production function: Q ¼ 100K0.3Y0.7. What is the

value of Q if K ¼ 50 and L ¼ 100? What is the (approximate) percentage increase

in Q if both K and L increase by 10 percent, to K ¼ 55 and L ¼ 110?
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11.24 Consider the Cobb–Douglas production function: Q ¼ 100K0.4L0.6. What is the

value of Q if K ¼ 100 and L ¼ 50? What is the (approximate) percentage increase

in Q if both K and L increase by 10 percent, to K ¼ 110 and L ¼ 55?

11.25 Consider this equation for the demand for money: M ¼ 250R�0.5L0.8, where M is

the amount of money demanded, R is an interest rate, and Y is income. What is

the elasticity of money demand with respect to income? With respect to the

interest rate?

11.26 Consider this equation for the demand for orange juice: D ¼ 100Y 0.7P�0.8, where

D is demand, Y is income, and P is the price of orange juice. What is the

elasticity of demand with respect to income? With respect to price?

11.27 Suppose that real income Y and the price level P are described by these expo-

nential growth equations:

Y ¼ 160e0:02t

P ¼ 100e0:03t

a. What is the continuously compounded rate of growth of real income Y?

b. What is the continuously compounded rate of growth of the price level P?

c. What is the continuously compounded rate of growth of nominal income

Z ¼ YP?

11.28 Suppose that nominal income Y and the price level P are described by these

exponential growth equations:

Y ¼ 16; 000e0:05t

P ¼ 100e0:03t

a. What is the continuously compounded rate of growth of nominal income Y?

b. What is the continuously compounded rate of growth of the price level P?

c. What is the continuously compounded rate of growth of real income Y/P?

11.29 Suppose that income Y and population P are described by these exponential

growth equations:

Y ¼ 16; 000e0:05t

P ¼ 400e0:02t

a. What is the continuously compounded rate of growth of income Y?

b. What is the continuously compounded rate of growth of the population P?

c. What is the continuously compounded rate of growth of per capita income Y/P?

11.30 Suppose that productivity q and labor L are described by these exponential

growth equations:

q ¼ 1:5e0:03t

L ¼ 170e0:02t
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a. What is the continuously compounded rate of growth of productivity q?

b. What is the continuously compounded rate of growth of labor L?

c. What is the continuously compounded rate of growth of output qL?

11.31 In 1870, real per capita GDP was $1800 in England and $1400 in the United

States (30 percent higher in England). In 1970, real per capita GDP was $7000 in

England and $11,000 in the United States (60 percent higher in the United

States). What were the respective annual growth rates over this 100-year period?

11.32 US real GDP was $1643.2 billion in 1948 and $11,652.8 billion in 2008. The US

population was 146.6 million in 1948 and 304.5 million in 2008.

a. What was the annual growth rate of real GDP over this period?

b. What was the annual growth rate of real per capita GDP over this period?

11.33 The cubic square feet of marketable timber from a certain species of pine tree

is related to the age of the tree by this equation:

F ¼ 200t � t2

where F is the cubic footage and t is the tree’s age, in years. What is the value of

F when the tree is planted (t ¼ 0)? When t ¼ 50? When t ¼ 100? When t ¼ 150?

Draw a rough sketch of the relationship between F and t. Are there any values of

t for which F seems implausible? If there are values of t for which F is

implausible, is this equation useless?

11.34 Using data for 1901 through 1999, annual batting averages (BAs) were tabulated

for all Major League Baseball (MLB) players for each season in which the player

had at least 50 times at bat. For each season, each player’s BA was converted to

a standardized Z value by subtracting the average BA for all players that year

and dividing by the standard deviation of BAs that year [1]. The annual Z values

were grouped according to whether it was the player’s first year in the major

leagues, second year, and so on. The average Z value was then calculated for

each career year. For example, looking at each player’s first year in the major

leagues, the average Z value is �0.337.

a. Use the data in Table 11.2 to estimate the multiple regression equation

Z ¼ a þ b1t þ b2t
2.

b. Are the coefficients of t and t2 statistically significant at the 5 percent level?

Table 11.2 Exercise 11.34

Year t Mean Z Year t Mean Z Year t Mean Z Year t Mean Z

1 �0.337 6 0.151 11 0.112 16 0.125
2 �0.180 7 0.095 12 0.079 17 0.131
3 �0.019 8 0.125 13 0.122 18 0.009
4 0.067 9 0.146 14 0.127 19 0.280
5 0.098 10 0.193 15 0.154 20 �0.079
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c. What do the signs of t and t2 tell you about the shape of the fitted line?

d. Explain why a comparison of the predicted Z value for t ¼ 1 and t ¼ 2 does

not tell us the predicted change in the Z value if all first-year players were to

play a second year in the majors.

11.35 Using data for 1901 through 1999, annual earned run averages (ERAs) were

tabulated for all Major League Baseball (MLB) pitchers for each season in which

the player pitched at least 25 innings. For each season, each player’s ERA was

converted to a standardized Z value by subtracting the average ERA for all

players that year and dividing by the standard deviation of ERAs that year [1].

The annual Z values were grouped according to whether it was the player’s first

year in the major leagues, second year, and so on. The average Z value was

then calculated for each career year. For example, looking at each player’s first

year in the major leagues, the average Z value is �0.176.

a. Use the data in Table 11.3 to estimate the multiple regression equation

Z ¼ a þ b1t þ b2t
2.

b. Are the coefficients of t and t2 statistically significant at the 5 percent level?

c. What do the signs of t and t2 tell you about the shape of the fitted line?

d. What worrisome pattern do you see in the residuals about the fitted line?

11.36 A firm’s production is characterized by this Cobb–Douglas production function:

Q ¼ 12K 0.4L0.6.

a. If capital K increases by 5 percent, what is the approximate percentage

change in output Q?

b. If capital K increases by 3 percent and labor L increases by 4 percent, what

is the approximate percentage change in the capital/labor ratio K/L?

c. If price P increases by 5 percent and output Q falls by 4 percent, what is the

approximate percentage change in revenue PQ?

d. If capital K and labor L both increase by 5 percent, what is the approximate

percentage increase in output Q?

11.37 The following variables might appear in a macroeconomic growth model:

Y ¼ real GDP; M ¼money supply; P ¼ price level; and L ¼ labor supply. Suppose

that the continuously compounded rates of growth are 2 percent for Y, 4 percent

Table 11.3 Exercise 11.35

Year t Mean Z Year t Mean Z Year t Mean Z Year t Mean Z

1 �0.176 6 0.084 11 0.138 16 0.048
2 �0.109 7 0.067 12 0.206 17 0.266
3 �0.050 8 0.129 13 0.128 18 0.162
4 0.008 9 0.096 14 0.087 19 0.205
5 0.044 10 0.138 15 0.253 20 �0.002
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for M, 3 percent for P, and 1 percent for L. What are the continuously com-

pounded growth rates of:

a. Nominal GDP?

b. The real money supply?

c. Real per capita GDP?

d. Nominal per capita GDP?

11.38 Consider a firm whose assets and earnings at time t are described by these

equations:

At ¼ 32e0:05t

Et ¼ 0:2At

a. What is the value of assets at time t ¼ 0?

b. What is the percentage rate of growth of assets?

c. What is the percentage rate of growth of earnings?

d. What is the percentage rate of growth of the ratio of earnings to assets Et=At?

11.39 When you graduate from college, your annual salary will be Y0.

a. Write down an equation for determining your annual salary t years after

graduation if your salary grows at a continuously compounded rate of

5 percent.

b. If you spend 90 percent of your salary every year, what is the continuously

compounded rate of growth of your spending?

c. If you save 10 percent of your salary every year, what is the continuously

compounded rate of growth of your saving?

11.40 In the cobweb model of farm output, the demand D for a crop depends on the

current price P, but the supply S depends on the price the previous period

because crops must be planted before they can be harvested:

Dt ¼ a1 � b1Pt

St ¼ a2 � b2Pt�1

where b1 and b2 are positive parameters. If demand is equal to supply, what must

be true of b1 and b2 for prices to converge to an equilibrium value? If the model is

stable, will it be monotonically stable or cyclically stable?

11.41 In an inflation-augmented Phillips curve, the rate of inflation P depends on the

unemployment rate U and the anticipated rate of inflation A, which in turn

depends on the rate of inflation the previous period:

Pt ¼ a1 � b1Ut þ b2At

At ¼ a2 � b3Pt�1

where b1, b2, and b3 are positive parameters. If the unemployment rate is constant,

what must be true of b1, b2, and b3 for inflation to converge to an equilibrium

value? If the model is stable, is it monotonically stable or cyclically stable?
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11.42 Consider the following model of wage adjustment in the labor market:

Wt �Wt�1 ¼ ð1� lÞðW e �Wt�1Þ
Wt ¼ ð1� lÞW e þ lWt�1

where W e is the equilibrium wage rate, and l is a positive parameter. If l ¼ 0.6, is

the model monotonically stable, cyclically stable, monotonically unstable, or

cyclically unstable? Explain why your answer makes sense logically.

11.43 Redo the preceding exercise, this time assuming that l ¼ �0.2.

11.44 Consider this income-expenditure model:

Yt ¼ Et

Et ¼ 100þ 0:5Yt þ 0:2Yt�1

where Y is aggregate income and E is aggregate spending. Is this model mono-

tonically stable, cyclically stable, monotonically unstable, or cyclically unstable?

11.45 Redo Exercise 11.44, this time assuming Et ¼ 100 þ 1.5Yt þ 0.2Yt�1.

11.46 Redo Exercise 11.44, this time assuming Et ¼ 100 þ 0.8Yt þ 0.5Yt�1.

11.47 Consider this dynamic income-expenditure model:

Yt ¼ Et

Et ¼ 100þ 1:2ð1� CÞYt�1

where Y is national income, E is spending, and c is the tax rate on income

(0 < c < 1). Is this model more likely to be dynamically stable if c is large or small?

Derive your answer mathematically and also explain the economic logic without

using mathematical symbols.

11.48 The data in Exercise 9.39 were used to calculate the annual percentage change

in real per capita disposable personal income, gt ¼ 100(Yt � Yt�1)/Yt�1

(Table 11.4).

a. Use least squares to estimate the relationship between this year’s growth

rate and the previous year’s growth rate: gt ¼ a þ bgt�1 þ ε.

b. Based on your estimates of a and b, what is the dynamic equilibrium value of g?

c. Based on your estimates of a and b, is the growth rate monotonically stable,

cyclically stable, monotonically unstable, or cyclically unstable?

d. Why do you think that the model gt ¼ a þ bgt�1 is not an adequate guide to

whether g converges to a dynamic equilibrium value?

11.49 Consider this model of government fiscal policy:

G ¼ G0e
at

H ¼ qY

Z ¼ G �H

Y ¼ Y0e
bt
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where G is government spending, H is taxes, Z is the government deficit, Y is

national income, and t is time (t ¼ 0 in the current year). All the variables G, H, Z,

and Y are in real terms; G0, Y0, a, b, and q are constant parameters.

a. Interpret the parameter G0.

b. Interpret the parameter a.

c. Find the equation for determining Z/Y, the ratio of the deficit to national

income.

d. If Z is currently positive, determine the conditions under which Z/Y falls

over time.

e. State the conclusion in question d in plain English, using no mathematical

symbols.

11.50 Consider this model in which national income Y depends on the previous pe-

riod’s income and the current and previous period’s money supply M:

Yt ¼ aþ b1Yt�1 þ b2Mt þ b3Mt�1

where the parameters a, b1, b2, and b3 are positive.

a. If the money supply is held constant, show the conditions under which the

model is stable.

b. If the money supply is adjusted in each period to hold income constant,

show the conditions under which the model is stable.

Table 11.4 Exercise 11.48

gt gtL1 gt gtL1 gt gtL1

1962 3.26 1.75 1978 3.61 2.39 1994 2.00 0.33
1963 2.28 3.26 1979 1.23 3.61 1995 1.75 2.00
1964 5.74 2.28 1980 �0.21 1.23 1996 2.08 1.75
1965 4.86 5.74 1981 1.64 �0.21 1997 2.32 2.08
1966 4.10 4.86 1982 1.25 1.64 1998 4.76 2.32
1967 3.19 4.10 1983 2.37 1.25 1999 1.83 4.76
1968 3.53 3.19 1984 6.24 2.37 2000 3.96 1.83
1969 2.22 3.53 1985 2.18 6.24 2001 1.38 3.96
1970 3.06 2.22 1986 2.36 2.18 2002 2.32 1.38
1971 3.17 3.06 1987 0.77 2.36 2003 1.57 2.32
1972 3.77 3.17 1988 3.37 0.77 2004 2.50 1.57
1973 5.79 3.77 1989 1.65 3.37 2005 0.42 2.50
1974 �1.69 5.79 1990 0.81 1.65 2006 3.06 0.42
1975 1.24 �1.69 1991 �0.51 0.81 2007 1.18 3.06
1976 2.98 1.24 1992 2.17 �0.51 2008 �0.40 1.18
1977 2.39 2.98 1993 0.33 2.17
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Appendix
Table A.1 Standardized Normal Distribution

cutoff
z

P[z > cutoff]
For instance, P[z > 1.96] = .025

0

Cutoff 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.5000 0.4960 0.4920 0.4880 0.4840 0.4801 0.4761 0.4721 0.4681 0.4641
0.1 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0.4247
0.2 0.4207 0.4168 0.4129 0.4090 0.4052 0.4013 0.3974 0.3936 0.3897 0.3859
0.3 0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 0.3520 0.3483
0.4 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3228 0.3192 0.3156 0.3121
0.5 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843 0.2810 0.2776
0.6 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514 0.2483 0.2451
0.7 0.2420 0.2389 0.2358 0.2327 0.2296 0.2266 0.2236 0.2206 0.2177 0.2148
0.8 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.1894 0.1867
0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 0.1611
1.0 0.1587 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379
1.1 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.1190 0.1170
1.2 0.1151 0.1131 0.1112 0.1093 0.1075 0.1056 0.1038 0.1020 0.1003 0.0985
1.3 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823
1.4 0.0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0722 0.0708 0.0694 0.0681
1.5 0.0668 0.0655 0.0643 0.0630 0.0618 0.0606 0.0594 0.0582 0.0571 0.0559
1.6 0.0548 0.0537 0.0526 0.0516 0.0505 0.0495 0.0485 0.0475 0.0465 0.0455
1.7 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384 0.0375 0.0367
1.8 0.0359 0.0352 0.0344 0.0336 0.0329 0.0322 0.0314 0.0307 0.0301 0.0294
1.9 0.0287 0.0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.0233
2.0 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183
2.1 0.0179 0.0174 0.0170 0.0166 0.0162 0.0158 0.0154 0.0150 0.0146 0.0143
2.2 0.0139 0.0136 0.0132 0.0129 0.0125 0.0122 0.0119 0.0116 0.0113 0.0110
2.3 0.0107 0.0104 0.0102 0.0099 0.0096 0.0094 0.0091 0.0089 0.0087 0.0084
2.4 0.0082 0.0080 0.0078 0.0075 0.0073 0.0071 0.0069 0.0068 0.0066 0.0064
2.5 0.0062 0.0060 0.0059 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049 0.0048
2.6 0.0047 0.0045 0.0044 0.0043 0.0041 0.0040 0.0039 0.0038 0.0037 0.0036
2.7 0.0035 0.0034 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0026
2.8 0.0026 0.0025 0.0024 0.0023 0.0023 0.0022 0.0021 0.0021 0.0020 0.0019
2.9 0.0019 0.0018 0.0017 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014
3.0 0.0013 0.0013 0.0013 0.0012 0.0012 0.0011 0.0011 0.0011 0.0010 0.0010
4.0 0.0000317
5.0 0.000000287
6.0 0.000000000987
7.0 0.00000000000128
8.0 0.000000000001



Table A.2 Student’s t Distribution

cutoff
t

P[t > cutoff]
For instance, with 10 degrees of
freedom, P[t > 1.812] = .05

0

Degrees of Freedom

Probability of a t Value Larger Than the Indicated Cutoff

0.10 0.05 0.025 0.01 0.005

1 3.078 6.314 12.706 31.821 63.657
2 1.886 2.920 4.303 6.965 9.925
3 1.638 2.353 3.182 4.541 5.841
4 1.533 2.132 2.776 3.747 4.604
5 1.476 2.015 2.571 3.365 4.032
6 1.440 1.943 2.447 3.143 3.707
7 1.415 1.895 2.365 2.998 3.499
8 1.397 1.860 2.306 2.896 3.355
9 1.383 1.833 2.262 2.821 3.250
10 1.372 1.812 2.228 2.764 3.169
11 1.363 1.796 2.201 2.718 3.106
12 1.356 1.782 2.179 2.681 3.055
13 1.350 1.771 2.160 2.650 3.012
14 1.345 1.761 2.145 2.624 2.977
15 1.341 1.753 2.131 2.602 2.947
16 1.337 1.746 2.120 2.583 2.921
17 1.333 1.740 2.110 2.567 2.898
18 1.330 1.734 2.101 2.552 2.878
19 1.328 1.729 2.093 2.539 2.861
20 1.325 1.725 2.086 2.528 2.845
21 1.323 1.721 2.080 2.518 2.831
22 1.321 1.717 2.074 2.508 2.819
23 1.319 1.714 2.069 2.500 2.807
24 1.318 1.711 2.064 2.492 2.797
25 1.316 1.708 2.060 2.485 2.787
26 1.315 1.706 2.056 2.479 2.779
27 1.314 1.703 2.052 2.473 2.771
28 1.313 1.701 2.048 2.467 2.763
29 1.311 1.699 2.045 2.462 2.756
30 1.310 1.697 2.042 2.457 2.750
40 1.303 1.684 2.021 2.423 2.704
60 1.296 1.671 2.000 2.390 2.660
120 1.289 1.661 1.984 2.358 2.626
N 1.282 1.645 1.960 2.326 2.576
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[1] Laplace Pierre-Simon. Théorie analytique des probabilités. 1820 [introduction].

[2] Bryant Geoffrey D, Norman Geoffrey R. Expressions of probability: words and numbers. Lett New
England J Med February 14, 1980:411. Also see George A. Diamond, James S. Forrester.
Metadiagnosis. American Journal of Medicine, July 1983:129–137.

[3] Premack David, Premack Ann James. The mind of an ape. New York: Norton; 1983.

[4] The great expectations of a royal reporter. Daily Mail April 20, 1994:50.

[5] Keynes John Maynard. A treatise on probability. London: Macmillan; 1921. p. 362–63.

[6] Gould Leo. You bet your life. Hollywood (CA): Marcel Rodd; 1946.

[7] Deighton Len. Bomber. New York: Harper; 1970.

[8] Eddy David. Probabilistic reasoning in clinical medicine: problems and opportunities. In:
Kahneman Daniel, Slovak Paul, Tversky Amos, editors. Judgment under uncertainty: heuristics and
biases. Cambridge (England): Cambridge University Press; 1982. p. 249–67.

[9] McQuaid Clement, editor. Gambler’s digest. Northfield (IL): Digest Books; 1971. p. 24–5.

[10] Quoted in. In: McQuaid Clement, editor. Gambler’s digest. Northfield (IL): Digest Books; 1971.
p. 287.

References 373



[11] Supreme Court of California. People v. Collins. See also William B. Fairly, Frederick Mosteller. A
conversation about Collins. In: Fairly and Mosteller, Statistics and public policy. Reading (MA):
Addison-Wesley; 1977, p. 355–79.

[12] Leopold George D. Mandatory unindicated urine drug screening: still chemical McCarthyism. J Am
Med Assoc 1986;256(21):3003–5.

[13] Youdon WJ (1956), from Stigler Stephen M. Statistics on the table. Cambridge (MA): Harvard
University Press; 1999. p. 415.

[14] Newman James Roy. The world of mathematics. New York: Simon and Schuster; 1956.

[15] Royal Darrell, quoted in Royal is chosen coach of year. N Y Times January 9, 1964.

[16] vos Savant Marilyn. Ask Marilyn. Parade; September 25, 1994.

[17] Huff Darrell. How to take a chance. New York: Norton; 1959. p. 110.

[18] Scammon Richard. Odds on virtually everything. New York: Putnam; 1980. p. 135.

[19] Paulos John Allen. Orders of magnitude. Newsweek November 24, 1986.

[20] Lykken David. Polygraph interrogation. Nature February 23, 1984:681–4. Another careful study
of six polygraph experts found that 18 of 50 innocent people were classified as liars, while 12
of 50 confessed thieves were judged truthful: Benjamin Kleinmuntz, Julian J. Szucko. A field
study of the fallibility of polygraph lie detection. Nature, March 29, 1984:449–450.

[21] Kaempffert Waldemar. The Duke experiments in extra-sensory perception. N Y Times October 10,
1937:102.

[22] vos Savant Marilyn. Ask Marilyn. Parade; July 1, 1990.

[23] vos Savant Marilyn. Ask Marilyn. Parade; July 12, 1992.

[24] Jacobs Harold. Mathematics: a human endeavor. San Francisco: W. H. Freeman; 1982. p. 570.

[25] Charlotte. West Virginia. Gazette July 29, 1987.

[26] Molloy Tim. Gatemen, Athletics Cape League picks. Cape Cod Times July 19, 1991.

[27] vos Savant Marilyn. Ask Marilyn. Parade; January 3, 1999.

[28] Mackowiak PA, Wasserman SS, Levine MM. A critical appraisal of 98.6� F, the upper limit of the
normal body temperature, and other legacies of Carl Reinhold August Wunderlich. J Am Med Assoc
September 23–30, 1992:1578–80.

[29] Galilei Galileo. Sopra le Scoperte Dei Dadi. Opere Firenze, Barbera 1898;8:591–4.

[30] vos Savant Marilyn. Ask Marilyn. Parade; October 29, 2000.

[31] Zeisel Hans. Dr. Spock and the case of the vanishing women jurors. University of Chicago Law
Review Autumn 1969;37:12.

Chapter 5 Sampling
[1] Smith Gary. Margaret Hwang Smith, Like Mother, Like Daughter?: An Economic Comparison of

Immigrant Mothers and Their Daughters. International Migration 2013;51:181–90.

[2] Sprowls R Clay. The admissibility of sample data into a court of law: a case history. UCLA Law Rev
1957;1:222–32.

[3] Smith Gary, Levere Michael, Kurtzman Robert. Poker player behavior after big wins and big losses.
Manag Sci 2009;55:1547–55.

[4] Barnett Arnold. How numbers can trick you. Technol Rev October 1994:40.

[5] Berrueta-Clement JR, Schweinhart L, Barnett WW, Epstien W, Weikart D. Changed lives: the effects of
the Perry Preschool Program on youths through age 19. Monographs of the High/Scope Educational
Research Foundation, Number 8. Ypsilanti (MI): High/Scope Educational Research Foundation; 1984.

374 References



[6] Associated Press. Anger doubles risk of attack for heart disease victims. N Y Times March 19,
1994.

[7] Snow John. On the mode of communication of cholera. 2nd ed. London: John Churchill; 1855.

[8] Cole Philip. Coffee-drinking and cancer of the lower urinary tract. Lancet June 26, 1971;7713:
1335–7.

[9] Viscoli Catherine M, Lachs Mark S, Horowitz Ralph I. Bladder cancer and coffee drinking: a summary
of case-control research. Lancet June 5, 1993;8858:1432–7.

[10] Stanley Jason, Waever Vesla. Is the United States a ‘Racial Democracy’?. Online N Y Times January
12, 2014.

[11] Allan Nicole, Thompson Derek. The myth of the student-loan crisis. Atl March 2013. Michael,
DegreeCouncil.org, April 18, 2014, http://degreecouncil.org/2014/is-more-education-better/.

[12] Wallis W Allen, Roberts Harry V. Statistics: a new approach. New York: Free Press; 1956. p.
479–480.

[13] Hite Shere. The Hite report: a national study of female sexuality. New York: Macmillan; 1976.

[14] Zimbardo Philip. Discovering psychology with Philip Zimbardo (Episode 2: Understanding
research), video program.

[15] Smith Gary. Margaret Hwang Smith, Like Mother, Like Daughter?: An Economic Comparison of
Immigrant Mothers and Their Daughters. International Migration 2013;51:181–90.

[16] Big changes made in hunger report. San Franc Chron September 6, 1994.

[17] National vital statistics reports. U.S. National Center for Health statistics.

[18] Cape Cod Times, August 28, 1984. The study was published in Geller ES, Russ Nason W,
Altomari Mark G. Naturalistic observations of beer drinking among college students. J Appl Behav
Analysis 1986;19:391–6.

[19] Leonhardt David. Colleges are failing in graduation rates. N Y Times September 9, 2009.

[20] Sun March 4, 1996.

[21] Doctors follow the nose (ring) to learn more about youth risks. University of Rochester Medical
Center Newsroom; June 18, 2003.

[22] Cole David, Lamberth John. The fallacy of racial profiling. N Y Times May 13, 2001.

[23] Engler Natalie. Boys who use computers may be more active: Study. Reuters Health; October 22,
2001. This report was based on M. Y. Ho and T. M. C. Lee. Computer usage and its relations with
adolescent lifestyle in Hong Kong. Journal of Adolescent Health, 2001;29:258–266.

[24] Chic Dly News April 8, 1955.

[25] Boykin v. Georgia Power 706 F.2d 1384, 32 FEP Cases 25. (5th Cir. 1983).

[26] Bairds LL. The graduates. Princeton (NJ): Educational Testing Service; 1973.

[27] Landers Ann. Ask Ann Landers. November 3, 1975. See also Ann Landers, If you had it to do over
again, would you have children? Good Housekeeping, June 1976;182:100–101.

[28] U.S. Department of Commerce. Statistical abstract of the United States. Washington (DC): U.S.
Government Printing Office; 1981. Table 202, p. 123.

[29] Available at: http://stufs.wlu.edu/whodgsona/bingodeaths.html.

[30] SAT coaching disparaged. Section II N Y Times February 10, 1988:8.

[31] Crossen Cynthia. Studies galore support products and positions, but are they reliable? Wall Str J
November 14, 1991.

[32] Cape Cod Times July 17, 1983.

References 375

http://degreecouncil.org/2014/is-more-education-better/
http://stufs.wlu.edu/%7Ehodgsona/bingodeaths.html
http://stufs.wlu.edu/%7Ehodgsona/bingodeaths.html


Chapter 6 Estimation
[1] Lord Justice. Matthews, quoted in Michael J Saks, Reid Hastie. Social psychology in court. New York:

Van Nostrand Reinhold; 1978. p. 100.

[2] Student, The probable error of a mean. Biometrika 1908;6:1–25.

[3] This example is from Wallis W Allen, Roberts Harry V. Statistics: a new approach. New York: Free
Press; 1956. p. 471.

[4] Reserve Mining Co v. EPA (1975), cited in David W. Barnes. Statistics as proof. Boston: Little, Brown,
1983, p. 244.

[5] Smith Gary. Margaret Hwang Smith, Like Mother, Like Daughter?: An Economic Comparison of
Immigrant Mothers and Their Daughters. International Migration 2013;51:181–90.

[6] Stigler SM. Do robust estimators work with real data? Ann Statistics 1977:1055–78.

[7] Wunderlich C. Das Verhalten der Eiaenwarme in Krankenheiten. Leipzig (Germany): Otto Wigard;
1868.

[8] Mackowiak PA, Wasserman SS, Levine MM. A critical appraisal of 98.6� F, the upper limit of the
normal body temperature, and other legacies of Carl Reinhold August Wunderlich. J Am Med Assoc
September 23–30, 1992;1578–1580 [I am grateful to Steven Wasserman for sharing the data with me].

[9] Wall Str J July 6, 1987.

[10] Bishop JE. Statisticians occupy front lines in battle over passive smoking. Wall Str J July 28, 1993.

[11] McClave James T, Benson P George. Statistics for business and economics. 2nd ed. San Francisco:
Dellen; 1982. p. 279.

[12] Seiter Charles. Forecasting the future. MacWorld September 1993:187.

[13] Harris Margaret, Yeeles Caroline, Chasin Joan, Oakley Yvonne. Symmetries and asymmetries in
early lexical comprehension and production. J Child Lang February 1995:1–18.

[14] Samuelson Robert J. The strange case of the missing jobs. Los Angel Times October 27, 1983.

[15] The science of polling. Newsweek September 28, 1992:38–9.

[16] Parloff Roger. The gray art of not quite insider trading. Fortune September 2, 2013;168(4):60.

Chapter 7 Hypothesis Testing
[1] Fisher RA. The arrangement of field experiments. J Ministry Agric G B 1926;8:504.

[2] Arcelus F, Meltzer AH. The effect of aggregate economic variables on congressional elections. Am
Political Sci Rev 1975;69:1232–9.

[3] Smith Gary, Smith Margaret Hwang. Like mother, like daughter? an economic comparison of
immigrant mothers and their daughters. Int Migr 2013;51:181–90.

[4] Anderson Jeff, Smith Gary. A great company can be a great investment. Financial Analysts J 2006;62:
86–93.

[5] Morrison Stilian, Smith Gary. Monogrammic determinism? Psychosom Med 2005;67:820–4.

[6] Feller William. Are life scientists overawed by statistics? Sci Res February 3, 1969:24–9.

[7] Sterling TD. Publication decisions and their possible effects on inferences drawn from tests of
significance—or vice versa. J Am Stat Assoc 1959;54:30–4.

[8] Sir Arthur Conan Doyle. A study in scarlet. London: Ward Lock & Co; 1887. Part 1, p. 27.

[9] Avery Sue. Market investors will be high on redskins today; and Morning briefing: Wall Street
‘skinnish’ on big game. Los Angel Times January 22, 1983.

376 References



[10] Zweig Jason. Super Bowl Indicator: the secret history. Wall Str J January 28, 2011.

[11] Gardner Martin. Fads and fallacies in the name of science. New York: Dover; 1957. p. 303.

[12] Gardner M. Fads and fallacies in the name of science. New York: Dover; 1957. p. 305.

[13] Phillips David P, Liu George C, Kwok Kennon, Jarvinen Jason R, Zhang Wei, Abramson Ian S. The
Hound of the Baskervilles effect: natural experiment on the influence of psychological stress on
timing of death. Br Med J 2001;323:1443–6.

[14] Smith Gary. Scared to death? Br Med J 2002;325:1442–3.

[15] Howard Gail. State lotteries: how to get in it.and how to win it!. 5th ed. Fort Lee (New Jersey): Ben
Buxton; 1986.

[16] Sporting Edge. 1988.

[17] Smith Gary. Another look at baseball player initials and longevity. Percept Mot Ski 2011;112:
211–6.

[18] News briefs. Cape Cod Times July 5, 1984.

[19] Feinstein AR, Horwitz AR, Spitzer WO, Batista RN. Coffee and pancreatic cancer. J Am Med Assoc
1981;256:957–61.

[20] Macmahon B, Yen S, Trichopoulos D, Warren K, Nardi G. Coffee and cancer of the pancreas. N. Engl
J Med 1981;304:630–3.

[21] Phillips DP, Ruth TE, Wagner LM. Psychology and survival. Lancet 1993;342:1142–5.

[22] Smith Gary. The five elements and Chinese-American mortality. Health Psychol 2006;25:124–9.

[23] Abel Ernest L, Kruger Michael L. Athletes, doctors, and lawyers with first names beginning with “D”
die sooner. Death Stud 2010;34:71–81.

[24] Smith Gary. Do people whose names begin with “D” really die young? Death Stud 2012;36:182–9.

[25] Allison David B, Heshka Stanley, Sepulveda Dennis, Heymsfield Steven B. Counting calories—
caveat emptor. J Am Med Assoc 1993;270:1454–6.

[26] Frank Sanders. Aural sign of coronary-artery disease. N. Engl J Med August 1973;289:327–8.
However, see T. M. Davis, M. Balme, D. Jackson, G. Stuccio, and D. G. Bruce. The diagonal ear lobe
crease (Frank’s sign) is not associated with coronary artery disease or retinopathy in type 2 diabetes:
The Fremantle Diabetes Study. Australian and New Zealand Journal of Medicine, October 2000;30:
573–577.

[27] Blackman Sheldon, Catalina Don. The moon and the emergency room. Percept Mot Ski 1973;37:
624–6.

[28] Letter to the Editor. Sports Illus January 30, 1984.

[29] Newsweek February 4, 1974.

[30] Kidder, Peabody & Co. Portfolio Consulting. Service May 20, 1987.

[31] Wertheimer Nancy, Leeper Ed. Electrical wiring configurations and childhood cancer. Am J
Epidemiol 1979;109:273–84. Feychting, Maria, & Ahlbom, Anders. (1994). Magnetic fields, leukemia,
and central nervous system tumors in Swedish adults residing near high-voltage power lines,
Epidemiology, 1994;5:501–509.

[32] Sullivan Robert. Scorecard. Sports Illus February 24, 1986:7.

[33] Milloy Steven J. The EPA’s Houdini Act. Wall Str J August 8, 1996.

[34] Nye Francis Iven. Family relationships and delinquent behavior. New York: John Wiley & Sons;
1958. p. 29.

[35] Norris Floyd. Predicting victory in Super Bowl. N Y Times January 17, 1989.

References 377



[36] Laderman Jeffrey. Insider trading. Bus Week April 29, 1985:78–92.

[37] Science at the EPA. Wall Str J October 2, 1985.

[38] Allen v. Prince George’s County, MD 1982;538 F(Supp. 833). affirmed 737 F.2d 1299 (4th Cir.
1984).

Chapter 8 Simple Regression
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data

nominal and real magnitudes, 13–15

real cost of mailing letter, 15–16, 15t

real per capita, 16

Degrees of freedom, 172–173

Density, 35–36

Descriptive statistics

boxplots, 75–78

correlation, 82–86

exercises, 86–98

growth rates, 78–82

mean, 71–73

median, 73–74

standard deviation, 74–75

Detrending time series data, 267–269

Dice rolls, 104–105

Discrete random variable, 116–117

Displaying data. See also Data

bar charts, 27–33

exercises, 57–70

graphs, 48–56

histograms, 33–40

scatterplots, 44–48

time series graphs, 40–44

Dow Jones index, 12

DRI study. See Data Resources

Incorporated study

Dummy variables, 303–307

E
Earnings/price ratio (E/P ratio), 234

Elasticity, 343

Electro-magnetic field (EMF), 215

Environmental Protection Agency (EPA),

184, 216

Equally likely approach, 101–102

ESP. See Extrasensory perception

Event, 101

Expected value, 118–119

Explanatory variables constant, 303

Extrasensory perception (ESP), 205–206

F
Fair value of stocks, 234–235

Fallacious law of averages, 110–112

Fed’s stock valuation model, 46–47

Federal Reserve’s stock-valuation model, 3,

82

Fishing expeditions. See Data grubbing

Fortune portfolio, 200, 311

Frequent compounding, 352–353

G
GB. See Gigabyte

GDP. See Gross domestic product

General Electric (GE), 312
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Geometric mean, 81–82. See also Mean

Gigabyte (GB), 345

Grade point average (GPA), 215

Graphs, 27, 48–56. See also Scatterplots;

Time series graphs

changing units in mid-graph, 50–52

choosing time period, 52–54

dangers of incautious extrapolation, 54–55

omitting origin, 48–50

unnecessary decoration, 55–56

Gross domestic product (GDP), 6, 264

Growth

models, 350

continuous compounding, 353–354

frequent compounding, 352–353

miracle of compounding, 351–352

rates, 78–82

base period, 78–80

geometric mean, 81–82

murder capital of Massachusetts,

80–81

watch out for small bases, 80

H
Hamburger Standard, 7, 8t

Histograms, 33–40

bar chart with unequal intervals, 34f

bunched or dispersed data, 38f

daily stock returns, 40f

with equal intervals, 36f

federal income tax brackets, 33t

heights for percentage changes, 35t

with multiple peaks, 37f

P/E ratios for Dow Stocks, 34t, 36f

positively and negatively skewed data, 39f

understanding data, 37–40

Hoovervilles, 2

“Hound of Baskervilles Effect, The”, 206

Hypothesis testing, 228–230, 310

confidence intervals, 196–198

data grubbing, 202–208

exercises, 208–218

matched-pair data, 198–201

null hypothesis, 191–192

P values, 192–196

practical importance vs. statistical

significance, 201–202

proof by statistical contradiction, 190–191

I
Imprecise populations, 147

Incautious extrapolation, 341–342

dangers of, 54–55

Independent events, 109–110

Index numbers, 10–12

CPI, 11

Dow Jones index, 12

Intelligence quotient (IQ), 127

Interpreting quadratic models, 342

Interquartile range, 75

IQ. See Intelligence quotient

Irrational exuberance, 46–47

K
Keynes’ theory, 44

L
Law of diminishing marginal returns, 348

Least squares estimation, 224–226, 307–314

air pollution effect on life expectancy,

313–314

coefficient of determination, 310

confidence intervals for coefficients, 309

Fortune portfolio, 311

hypothesis tests, 310

prediction intervals, 310–311

real dogs of Dow revisiting, 312

stocks, 312–313

United States consumption, income, and

wealth, 308t

Linear models, 220, 340–341

Linear production function, 347

Logarithmic models, 350

Long-run frequencies, 103–105

Longitudinal data, 10

“Love bites”, 312

M
Major League Baseball (MLB), 211

Mammogram contingency table, 108t
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Matched-pair data, 198

Fortune’s companies, 200

immigrant mothers and adult daughters,

199–200

Mean, 71–73, 72t

Median, 73–74

“Mid-parent heights”, 273

Miracle regression analysis, 303

MLB. See Major League Baseball

Modeling

autoregressive models, 354–358

causality, 339–340

Cobb–Douglas production function,

347–350

crucial parameter, 358t

exercises, 358–367

growth models, 350–354

linear models, 340–341

logarithmic models, 350

polynomial models, 341–342

power functions, 343–350

Multicollinearity, 314–316

Multiple regression, 151. See also Simple

regression model

model, 302–303

dummy variables, 303–307

exercises, 316–337

least squares estimation,

307–314

multicollinearity, 314–316

statistical analysis, 307

Multiplication rule, 112–113. See also

Addition rule; Subtraction rule

legal misinterpretations,

113–114

Mutually exclusive, 107

N
National Bureau of Economic Research

(NBER), 2

National Football Conference (NFC), 204

National Science Foundation (NSF), 52

NBER. See National Bureau of Economic

Research

Negative covariance, 83

Negative elasticities, 345–347

New York Stock Exchange (NYSE), 148

NFC. See National Football Conference

Nifty 50, 235–236

Nominal magnitudes, 13–15

Nonstandardized variables, 125–126.

See also Standardized variables

Normal distribution, 40, 119–120

Normal probabilities, 124

table, 124–125

NSF. See National Science Foundation

Null hypothesis (H0), 191–192, 310

Numerical data, 6. See also Time series data

NYSE. See New York Stock Exchange

O
Observational data, 301, 313

experimental data vs., 149–151

Okun’s law, 5–6, 45–46, 233–234, 264

Omitting origin, 48–50

Outcome, 101

Outliers, 38, 40f

P
P/E ratios. See Price/earnings ratios

Panel data. See Longitudinal data

PBA. See Professional Bowler Association

Political business cycle, 5

Polynomial

function, 341

models, 341–342

Population(s), 140

mean estimation, 164

Positive covariance, 83

Power functions, 343–350

Prediction intervals, 238–239, 310–311

Price/earnings ratios (P/E ratios), 31–32,

34t, 72, 236

Probability, 100

density curves, 120–121

distributions, 116–127, 117f, 117t

exercises, 127–137

helpful rules, 106–116

tree, 101, 101f–102f, 102t

uncertainty, 100–106
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Probable error, 185

Professional Bowler Association (PBA), 30

Prospective study, 148

Pseudo-random numbers, 144

Q
Qualitative data. See Categorical data

Quantitative data. See Numerical data

Quartiles, 75

R
Random number generators, 144

Random sampling, power of, 140–144

choosing random sample, 143

random number generators, 144

random samples, 141–142

sampling evidence in courtroom, 142–143

Random variable, 116–117

Real magnitudes, 13–15

Real per capita, 16

Regression

analysis, 233, 261

exercises, 282–299

fair value of stocks, 234–235

Nifty 50, 235–236

Okun’s law, 233–234

regression diagnostics, 276–281

regression pitfalls, 262–275

sunny upside, 237–238

diagnostics, 276

checking standard deviation,

277–279

independent error terms, 280–281

looking for outliers, 276

model, 220–223

pitfalls, 262

correlation, 263–267

detrending time series data, 267–269

incautious extrapolation, 269–271

real dogs of Dow, 275

regression toward mean, 271–275

significance, 262–263

toward mean, 271–275

Retrospective study, 148

Roulette, scientific study of, 104

S
Samples, 140

Sampling

biased samples, 147–149

break-even effect, study of, 144–147

distribution of sample mean, 166, 169–170

confidence intervals, 170–171

sampling variance, 168–169

shape of distribution, 166–168

unbiased estimators, 168

error, 164–166, 194

exercises, 151–161, 177–187

observational data vs. experimental data,

149–151

populations and samples, 140

random sampling, power of, 140–144

variance, 168–169

Scatterplots, 44–48

using categorical data in scatter diagrams,

48

Fed’s stock valuation model, 46–47

Okun’s law, 45–46

price and storage capacity, 48f

time series relationship, 45f

US disposable personal income and

consumer spending, 45t

SEE. See Standard error of estimate

Selection bias, 147–148

Self-selection bias, 148

“Sherlock Holmes inference”, 263

Significance levels, 195–196

Silencing Buzz Saws, 8–9

Simple random sample, 142

Simple regression model, 219

confidence intervals, 226–230

exercises, 239–259

least squares estimation, 224–226

prediction intervals, 238–239

using regression analysis, 233–238

regression model, 220–223

Spurious correlation, 267

Standard deviation, 74–75, 118–119,

126–127, 195, 277–279

Standard error, 173

Standard error of estimate (SEE), 227, 309
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Standardized normal distribution, 123f

Standardized variables, 121–122. See also

Nonstandardized variables

Statistical significance, practical importance

vs., 201–202

Statistics, 2

Straight-line model. See Linear model

Student’s t distribution, 172

Subtraction rule, 114–115. See also Addition

rule; Multiplication rule

Surgeon General’s Report, 43–44

Survivor bias, 148

Systematic random sample, 142–143

T
t distribution, 171–173

confidence intervals using, 173

choosing confidence level, 176

choosing sample size, 176

sample size affecting t-value, 174t

sampling from finite populations, 177

square root of sample size, 175

Test statistic, 192

Testing models, 4–5

Texas hold ’em, 145–147

Textjunk, 55

Time series data, 8–9

Time series graphs, 40–44

cigarette consumption, 43–44, 44f

Dow Jones Industrial Average, 42f

stock market crash, 41f

unemployment during great depression,

43, 43f

Treasury Inflation-Protected Securities

(TIPS), 11

Trimmed mean, 73

Two-way table. See Contingency table

U
Unbiased estimators, 168

Uncertainty, 100–106

Bayes’ approach, 105–106

coin flips and dice rolls, 104–105

equally likely approach, 101–102

long-run frequencies, 103–104

Roulette, scientific study of, 104

studies of chimpanzee, 102–103

subjective probabilities, 105

Under controlled conditions, 150

Uniform distribution, 120

V
Variance, 75, 119

W
Winning streaks, 109–110

“Wonderful form of cosmic order”, 122

386 Index


