Method
Engineering

IFIP - The International Federation for Information Processing

IFIP was founded in 1960 under the auspices of UNESCO, following the First World
Computer Congress held in Paris the previous year. An umbrella organization for societies
working in information processing, IFIP’s aim is two-fold: to support information processing
within its member countries and to encourage technology transfer to developing nations. As
its mission statement clearly states,

IFIP’s mission is to be the leading, truly international, apolitical organization which
encourages and assists in the development, exploitation and application of information
technology for the benefit of all people.

IFIP is a non-profitmaking organization, run almost solely by 2500 volunteers. It operates
through a number of technical committees, which organize events and publications. IFIP’s
events range from an international congress to local seminars, but the most important are:

« the IFIP World Computer Congress, held every second year;
* open conferences;
* working conferences.

The flagship event is the IFIP World Computer Congress, at which both invited and
contributed papers are presented. Contributed papers are rigorously refereed and the rejection
rate is high. _

As with the Congress, participation in the open conferences is open to all and papers may
be invited or submitted. Again, submitted papers are stringently refereed.

The working conferences are structured differently. They are usually run by a working
group and attendance is small and by invitation only. Their purpose is to create an atmosphere
conducive to innovation and development. Refereeing is less rigorous and papers are
subjected to extensive group discussion.

Publications arising from IFIP events vary. The papers presented at the IFIP World
Computer Congress and at open conferences are published as conference proceedings, while
the results of the working conferences are often published as collections of selected and
edited papers.

Any national society whose primary activity is in information may apply to become a full
member of IFIP, although full membership is restricted to one society per country. Full
members are entitled to vote at the annual General Assembly, National societies preferring a
less committed involvement may apply for associate or corresponding membership. Associate
members enjoy the same benefits as full members, but without voting rights. Corresponding
members are not represented in IFIP bodies. Affiliated membership is open to non-national
societies, and individual and honorary membership schemes are also offered.

Method
Engineering

Principles of
method construction
and tool support

Proceedings of the IFIP TC8, WG8.1/8.2
Working Conference on Method Engineering
26—28 August 1996, Atlanta, USA

Edited by
Sjaak Brinkkemper

University of Twente
The Netherlands

Kalle Lyytinen
University of Jyviskyld
Finland

and

Richard J. Welke

Georgia State University
Atlanta, USA

E_l SPRINGER-SCIENCE+BUSINESS MEDIA, B.V.

First edition 1996

© 1996 Springer Science+Business Media Dordrecht
Originally published by Chapman & Hall in 1996

ISBN 978-1-4757-5824-5 ISBN 978-0-387-35080-6 (¢Book)
DOI 10.1007/978-0-387-35080-6

Apart from any fair dealing for the purposes of research or private study, or criticism or review,
as permitted under the UK Copyright Designs and Patents Act, 1988, this publication may not
be reproduced, stored, or transmitted, in any form or by any means, without the prior
permission in writing of the publishers, or in the case of reprographic reproduction only in
accordance with the terms of the licences issued by the Copyright Licensing Agency in the
UK, or in accordance with the terms of licences issued by the appropriate Reproduction Rights
Organization outside the UK. Enquiries concerning reproduction outside the terms stated here
should be sent to the publishers at the London address printed on this page.

The publisher makes no representation, express or implied, with regard to the accuracy of the
information contained in this book and cannot accept any legal responsibility or liability for
any errors or omissions that may be made.

A catalogue record for this book is available from the British Library

Printed on permanent acid-free text paper, manufactured in accordance with
ANSI/NISO Z39.48-1992 and ANSUNISO Z39.48-1984 (Permanence of Paper).

CONTENTS

Editors’ Preface

Officers, Program Committee Members and Additional Referees

1

10

11

12

13

14

Keynote paper: a primer to method engineering
J.J. Odell

Structural artifacts in method engineering: the security imperative
R. Baskerville

Characterizing IS development projects
K. van Slooten and B. Hodes

Towards an integrated environment for method engineering
J.C. Grundy and J.R. Venable

A functional framework for evaluating method engineering environments:

the case of Maestro II/Decamerone and MetaEdit+
P. Marttiin, F. Harmsen and M. Rossi

Method rationale in method engineering and use
H. Oinas~-Kukkonen

How to compose an object-oriented business process model?
P. Kueng, P. Bichler, P. Kawalek and M. Schrefl

Human work as context for development of object-oriented modeling
techniques
J. Kaasbgll and O. Smerdal

Translating OMT* to SDL, coupling object-oriented analysis and design
with formal description techniques
K. Verschaeve, B. Wydaeghe, V. Jonckers and L. Cuypers

Lazy functional meta-CASE programming
S. Joosten

A practical strategy for the evaluation of software tools
A. Powell, A. Vickers, E. Williams and B. Cooke

Core objects required for a generic CASE repository
G. Manson, S. North and A. Alghamdi

A proposal for context-specific method engineering
C. Rolland and N. Prakash

Comparison of four method engineering languages
F. Harmsen and M. Saeki

vii

viii

29

45

63

87

94

126

142

165

186

191

209

vi

15

16

17

18

19

20

21

Contents

Method engineering: who’s the customer
L. Mathiassen, A. Munk-Madsen, P.A. Nielsen and J. Stage

Simulation-based method engineering in federated organizations
P. Peters, M. Mandelbaum and M. Jarke

Keynote paper: information systems development: a broader perspective
D. Avison

A classification of methodological framework for computerized
information systems support in organizations
J. Krogstie and A. Sglvberg

Method engineering: current research directions and implications for
future research
J.-P. Tolvanen, M. Rossi and H. Liu

Panel: reengineering method engineering?
Chair: K. Siau

Panel: method engineering: experiences in practice
Chair: G.J. Hidding

Index of contributors

Keyword index

232

246

263

278

296

318

319

321
323

Editors’ Preface

Research and development in the area of Method Engineering is concerned with the
design, construction and evaluation of methods, techniques, and support tools for
information systems development. Over the years, numerous development methods,
based on a variety of paradigms, have been proposed. Of these a substantial number
are currently applied in industry, with mixed success. Both generic and method-
specific specification techniques have been designed for use within various
development approaches. These methods are constantly adapted and extended to meet
the changing needs of the practice and to reflect new technological and organizational
insights. The advent of Computer Aided Software Engineering (CASE) tools has
increased the turbulence in the field by making the underlying methods and
techniques more apparent to their users, while, at the same time, reducing their ability
to adapt to changing needs. Recent methods based on new paradigms, such as object-
orientation, or new application types, as workflow management and client-server
architectures, reveal the trend towards modular methods with generic, interchangeable
components. The need for a new vision on methods and tools has manifested itself.

The conference organisers are very proud to be instrumental to producing the first
book in the area of Method Engincering. We gave this conference the subtitle:
Principles of Method Construction and Tool Support. The work in the area of Method
Engineering comprises many research topics, and is influenced by several reference
disciplines, such as organisation theory, software engineering, logic, and management
science. The proceedings of this first Method Engineering conference shows this
variety, as the following topics can be distinguished:

Method representation formalisms, Meta-modelling

Meta CASE, CASE adaptability and CAME tools

Repositories, Tool integration

Situational methods, Contingency approaches

Terminology and reference models, Ontologies

Organizational issues and impact

Usability and experience reports

Generation and evaluation of CASE tools

Method construction paradigms

Research methods and methodological frameworks

Method Engineering’96 would not have been possible without the assistance of many
people. We are indebted to the program committee members and additional reviewers
for preparing thorough reviews in a very tight schedule. The authors are thanked for
their efforts in making an excellent scientific contribution to this new and challenging
field. Finally, the organisers wish to thank all persons involved in making of the
Method Engineering’96 conference into a success.

May 1996

Sjaak Brinkkemper
Kalle Lyytinen
Richard J. Welke

Officers, Program Committee Members and
Additional Referees

General Conference Chair:

Kalle Lyytinen, University of Jyviskyl4, Finland

Program Committee Chair:

Sjaak Brinkkemper, University of Twente, the Netherlands

Organizing Chair:
Richard J. Welke, Georgia State University, USA

Program Committee:

David Avison, UK Janis Bubenko, Sweden

Sue Conger, USA Alan Davis, USA

Jurgen Ebert, Germany Gregor Engels, The Netherlands
Antony Finkelstein, UK Brian Henderson-Sellers, Australia
Alan Hevner, USA Gezinus Hidding, USA
Shuguang Hong, USA Juhani Iivari, Finland

Matthias Jarke, Germany Heinz Klein, USA

Peri Loucopoulos, UK Lars Mathiassen, Denmark
Leon Osterweil, USA Barbara Pernici, Italy

Naveen Prakash, India Colette Rolland, France
Motoshi Saeki, Japan Olivia Sheng, Hong Kong

Armne Sglvberg, Norway Paul Sorenson, Canada

John Venable, New Zealand Yair Wand, Canada

Tony Wasserman, USA Trevor Wood-Harper, UK

Stanislaw Wrycza, Poland

Program Assistance:

Rolf Engmann, University of Twente, the Netherlands
George Steenbekke, University of Twente, the Netherlands

Additional Referees:
C. Cauvet, France L.P.J. Groenewegen, the Netherlands
G. Grosz, France B.A. Farshchian, Norway
T.R. Henriksen, Norway J. Kajava, Norway
P. Kerola, Finland V. Plihon, France
J. Rekers, the Netherlands H. Render, USA
H. Rgnneberg, Norway 1. Tervonen, Finland
D. Turk, USA S. Volkov, USA
C. Wei, Hong Kong J.R.G. Wood, UK

E. van der Winden, the Netherlands A. Zamperoni, the Netherlands

A PRIMER TO
METHOD ENGINEERING

J. J. Odell

James Odell Associates

1315 Hutchins Avenue

Ann Arbor, MI 48103 USA

Tel: +1 313 994-0844

email: 71051.1733 @compuserve.com

INTRODUCTION

A methodology is a body of methods employed by a discipline.
A method is a procedure for attaining something.

Method engineering is the coordinated and systematic approach
to establishing work methods.

Traditional methodologies for information system (I1.S.) development are—by nature—general
purpose. As such, they contain an ideal set of methods, techniques, and guidelines that in
reality can never be followed literally. They must be tuned to the situation at hand. Steps are
sometimes omitted, added, or modified. Guidelines are often modified or ignored to fit special
circumstances, such as technology, development expertise, the application, and external
factors. [Harmsen, 1994]

To complicate things further, numerous methodologies exist for I.S. development—each
with its own set of tools and techniques. Comparing and selecting an approach from a
multitude of methodologies is confusing and difficult. To aid in this selection, various
comparison standards have been proposed for object-oriented methodologies, such as those
documented by the OMG [Hutt, 1994a; 1994b]. Some approaches attempt to harmonize
several methodologies—forming yet another rigid methodology [Coleman, 1994]. Other
methodologies provide a choice of options, or paths, that the user can select depending on the
circumstances. In short, an I.S. project can choose from three basic methodologies, as
depicted in Fig. 1.

2 Method Engineering

Flexibility Controlled Flexibility Control

 ad hoc development « uniform building blocks selected « one standard methodology

» few guidelines for project situation « rigid guidelines

+ no uniform terminology « guidance for each building block » uniform terminology

« project management and measurability et | o terminology = | projects comply to same measurable
difficult « uniform, measurable project management approach

« flexible resource allocation « flexible resource allocation « standard resource allocation

* no repository standards « integrated repository « integrated repository

Figure 1 Methodological approaches fall into three categories (adapted from Harmsen
[Harmsen, 1994]).

METHOD ENGINEERING

Flexibility without control can hardly be considered a methodology, since any systematic and
coordinated approach to establishing work methods is absent. For such an approach to be
systematic and coordinated requires method engineering.

Method engineering produces methodologies. For I.S., a methodology is a body of
methods employed to develop automated systems. In turn, a method defines the steps needed
to automate a system—along with the required techniques and tools and the anticipated
products. Adapting a methodology to the needs of a particular project is sometimes called
situational method engineering. For LS., situational method engineering designs, constructs,
and adapts LS. development methods.

Low High

Figure 2 Degrees of flexibility for LS. situational method engineering (adapted from
Harmsen [Harmsen, 1994]).

As indicated in Fig. 2, method engineering has various degrees of flexibility. These are
as follows:

* Use of a rigid methodology. At one extreme, using a rigid methodology permits virtually no
flexibility. Such methodologies are based on a single development philosophy and thus
adopt fixed standards, procedures, and techniques. Project managers are typically not
permitted to modify the methodology.

* Selection from rigid methodologies. Instead of permitting only one rigid approach, this
option allows each project to choose its methodology from one of several rigid
methodologies. This makes possible the selection of an approach that might be more
appropriate for the project. However, this is a bit like buying a suit without having it
altered. You make the best of what is available, despite the fact that the chosen methodology
will probably not fit the project perfectly. Furthermore, each methodology involves
additional purchase and training costs.

A primer to method engineering 3

* Selection of paths within a methodology. Many methodologies permit more flexibility by
providing a choice of predefined paths within the methodology. Typical development paths
include traditional and rapid application development. Some methodologies now include
paths that support development aspects, such as package selection, pilot projects,
client/server, realtime, knowledge-based systems, and object orientation. A common
disadvantage, however, is that it may not be possible to combine some options. For
instance, realtime, knowledge-based projects may not be supported.

Selection and tuning of a method outline. This option permits each project to both select
methods from different approaches and tune them to the project’s needs. Typically, this
involves selecting a global method process and data model. These models, then, are further
adapted and refined by the project. This option is best supported by an automated tool.
Modular method construction. One of the most flexible options is to generate a
methodology for a given project from predefined building blocks. Each building block is a
method fragment that is stored in a method base. Using rules, these building blocks are

assembled based on a project’s profile. The result is an effective, efficient, complete, and
consistent methodology for the project.

An automated tool is recommended for this option. Here, a project’s methodology can be
generated automatically and then adapted and further refined by the project manager.
Performing the entire activity manually would require much work and time. Such an option
is illustrated in Fig. 3.

Characterize Methods,
Project Tools,
Environment Techniques
Project <
Environment A dl\[/ll_el.hgds_
Description inistration
Generate
M E'g_i}eclt Method Base
ethodolo i
8y Repository
Proposed
Project
Methodology {/ Adepied
Project
Methodology
Deigli)tgzent P'roject Project
Project Deliverables Experience
Developed
System
/

Figure 3 An object-flow diagram specifying the process of modular method construction.

4 Method Engineering

COMPUTER-AIDED METHOD ENGINEERING

Computer-Aided Software Engineering (CASE) automates automation. In contrast, Computer-
Aided Method Engineering (CAME) automates the assembly of methods. A CAME tool should
support the following activities [Harmsen, 1994]:

* Definition and evaluation of contingency rules and factors. In order to choose the right
method fragments for a project, rules and factors for selecting the proper method fragments
must be defined. Method engineers are responsible for these definitions. Given the project
profile and method base, the CAME tool selects and assembles the appropriate methodology.

* Storage of method fragments. Selecting and assembling a methodology from method
fragments requires a method base. This method base is the repository from which method
engineers and the CAME tool can select various method fragments. As new methodologies
arise, they can also be incorporated into the method base.

* Retrieval and composition of method fragments. Certainly, for a CAME tool to generate a
methodology from a method base, retrieval operations must be available for method
fragments. However, total automation of methodology generation may never be completely
feasible. A more realistic scenario could involve both automatic generation and a method
engineer. The method engineer should be able to manipulate and modify method fragments
within a methodology.

* Validation and verification of the generated methodology. The CAME tool should not only
support selecting and assembling a methodology, it should also check the results. The tool,
therefore, should incorporate guidelines to ensure that the correct set of method fragments
has been selected. Furthermore, the tool should ensure that the fragments are assembled in a
consistent manner. In other words, the CAME tool should ensure, or assist in ensuring, the
quality of the generated methodology. (After all, generated methodologies must meet the
same standards as standards methodologies.)

* Adaptation of the generated methodology. The method base should also accumulate the
experience of previous projects and their methodologies. This experience should be used to
improve method fragments, along with their contingency rules and factors. (Also illustrated
in Fig. 4.) In other words, practical experience should be used to adapt future
methodologies.

* Integration with a meta-CASE tool. CAME and CASE tools should eventually be integrated.
‘When a methodology is generated for a particular project, the appropriate supporting tools
should also be integrated. Adapting a CASE tool in this fashion would require configuring
the CASE tool to support the resulting methodology. In other words, a meta-CASE tool
would be required so that techniques and diagrammatic representations can be defined based
on the methodology. Such a tool would be similar in nature to the CAME tool. Within this
meta-CASE tool, CASE fragments would have to be defined. Additionally, it would require
the ability to retrieve and compose new conceptual fragments.

» Interface with a method base. This method base is the repository for the various method
fragments from which method engineers and the CAME tool can select.

To support CAME, the LS. organization requires two additional roles—the method
engineer and the method administrator. The method administrator is responsible for the
contents of the method base. The method engineer is responsible for generating the right
methodology for each project. Both support and are supported by the CAME tool—and are part
of a larger framework called process management.

CAME tools are being developed by many organizations around the world. They are
currently available from companies such as, James Martin & Co and Emst & Young. While
still in their infancy, the CAME tools from these two companies support many of the properties
described above.

A primer to method engineering 5

PROCESS MANAGEMENT

To support applications systems, the repository must—of course—contain information about
the product of LS. development. This includes information regarding analysis results, such as
structural and behavioral models, business rules, and so on. For design and implementation,
the repository would include information such as design templates, application data structures,
programs, and interfaces. Additionally, the development repository must also contain process-
related information, such as intermediate results, human agents, tools involved, process plans,
design decisions, and steps taken to execute them.

Method Project
optimization guidance
(SEI level 5) (SEl level 3) .
Method models '
Guidance models 1
Process traces a2 N ,,
Analysis models Project " System
° Design specifications environment engineer
Method Implementations
engineer Leaminlg Collected
(SEl level 4) process traces
(SEI level 2)

Figure 4 An environment for process management.

SEI support

The Software Engineering Institute (SEI) has been influential in the movement toward high-
quality products. Its framework proposes five levels of process maturity: initial, repeatable,
defined, managed, and optimizing [Paulk, 1993]. This same framework can be applied to
process management.

Jarke recommends several kinds of SEI-related actions be performed that will ensure a
high-quality process management environment [Jarke, 1994]. These are illustrated in Fig. 4.
At the initial level, an organization does not provide a stable environment. Here, no repository
exists. At the repeatable level, policies for managing a project and procedures to implement
those policies are established. The planning and management of new projects is based on
experience with similar projects. This is aided by capturing process traces, as indicated in the
lower right of Fig. 4. At the defined level, an organization standardizes both its system
engineering and management processes. Such an organization exploits effective software-
engineering practices when standardizing its processes. Furthermore, an organization’s
process standards are tailored for each project to develop their own defined processes, as
indicated in the upper right of Fig. 4. Once this has been established, the organization can
introduce procedures for measuring the actual process execution. At this managed level, the
organization learns to predict trends in processes and product quality. This action is depicted in
the lower left of Fig. 4. Finally, at the optimizing level, the entire organization is focused on
continuous process improvement (upper left of Fig. 4).

CAME TOOLS

CAME tools are being developed by many organizations around the world. As discussed
above, CAME tools automate and control the application development processes, enabling the
method engineer to develop fast, fluid, and flexible processes. These tools should increase
planning, management, and development efficiency by providing tighter controls over each
development project as it evolves. Furthermore, CAME tools ensure that methods are designed

6 Method Engineering

to be reusable and can be continually revised and improved through integration of best practices

from previous projects.

A CAME tool is typically used for process management in four distinct modes—defining
the process, planning the project, delivering the project, and improving the process.

* Defining the process—method components are created based on specific enterprise needs
and characteristics. This ensures a successful foundation for a project. New method
components can also be added to the library. The focus is on reusability and the intent that
the processes will be used by project teams.

DObjectives:

[T] Create systems strataqy
[Tl Design and build a large syst
T) Design and build a small sps

[Tl Develop a stand-alone requir}
{T) Select and implement a pack}
(T) Understand the business

Figure 5 A screen that offers a choice of project objectives. Based on these objectives, the
CAME tool can generate an appropriate methodology (Architect, James Martin & Co.).

'Pro;Rlsk 14 4? RISKASSESSMENT OvereINSTRUCTIONS

ProjRisk 2.00 Number of application types. Calculate

ProjRisk 15.80 GENERAL PROJECT RISK The tisk score used to measure t
ProjRisk 4.00 Active Project Sponsor ill the pro;eci sponsor playahl
ProjRisk. 3.00 | j T

o »53

3| will the project sponsor play a highly active role in lhe project?
[commitment to project factor)

I ProjRisk g
Ri H Low Risk = I]1
ProjRisk : Cl_rh L
U
G
E
E|

making and will

will ¢
| R115! PrD]Rlsk direct the pmlecl manager.
R116. Prolesk

Monitor:
R117 }PFOJRISK

- Funding availability
- Equ|pmenl availability

o [stalfing) ilability
- - Speed of organizational and palitical issue resolution
- Access to key users and executives

WMPI’DJRISk. ;
ijRlsk ! .00 Full-time Project Team he projectteam asi'

Figure 6 A screen that maintains and reports on various project metrics, such as duration
and risk (Architect, James Martin & Co.).

A primer to method engineering 7

* Planning the project—project managers are assisted in planning by assembling the necessary
methodology for a particular project. Since the method base repository is constantly being
improved from many different projects, project managers always have the most successful
method components available to them. The methodology is tailored according to constraints
of the individual project. Currently, both Ernst & Young and James Martin & Co offer such
a tool. For example, Fig. 5 depicts a “process filter” screen from James Martin &
Company’s CAME tool called Architect. This screen helps Architect to select the appropriate
method segments based on the objectives selected in the right side of the window. Once the
methodology is generated, the project can be estimated and its risk assessed. Figure 6
depicts an Architect project metrics screen.

* Delivering the project—system development work assignments can be assigned to
individuals and to development tools. CAME tools can then guide the workflow of a project
by ensuring that the right task is being completed by the right person, using the right tools.

» Improving the process—continuous improvement is key to process management. Using
measurable quantitative feedback from each project, the method components used are re-
evaluated to determine what worked and what did not. Here, method components are
modified, added, or deleted to reflect the best practices and lessons from SDLC projects.

REFERENCES

Coleman, Derek, Patrick Arnold, Stephanie Bodoff, Chris Dollin, Helena Gilchrist, Fiona
Hayes, and Paul Jeremaes, Object-Oriented Development: The Fusion Method, Prentice
Hall, Englewood Cliffs, NJ, 1994,

Harmsen, Frank, Sjaak Brinkkember, and Han Oei, "Situational Method Engineering for
Information System Project Approaches," Methods and Associated Tools for the
Information Systems Life Cycle, A. A. Verrijn-Stuart and T. William Olle, eds., Elsevier,
Amsterdam, 1994, pp. 169-194.

Hutt, Andrew T. F., ed., Object-Oriented Analysis and Design: Comparison of Methods,
Wiley-QED, New York, 1994a.

Hutt, Andrew T. F., ed.,Object-Oriented Analysis and Design: Description of Methods, Wiley-
QED, New York, 1994b.

Jarke, Matthias, Klaus Pohl, Colette Roland, and Jean-Roch Schmitt, "Experience-Based
Method Evaluation and Improvement: A Process Modeling Approach,” Methods and
Associated Tools for the Information Systems Life Cycle, A. A. Verrijn-Stuart and T.
William Olle, eds., Elsevier, Amsterdam, 1994, pp. 1-27.

Martin, James, and James J. Odell, Object-Oriented Methods: Pragmatic Considerations,
Prentice Hall, Englewood Cliffs, NJ, 1996.

Paulk, Mark C., Bill Curtis, Mary Beth Chrissis, and Charles V. Webber, "Capability Maturity
Model, Version 2.1," IEEE Software, 10:4, 1993, pp. 18-27.

2

Structural Artifacts in Method
Engineering: The Security Imperative

Richard Baskerville

Copenhagen Business School and

Binghamton University

Binghamton, New York 13902 USA

Tel +1 607 777 2337 Fax +1 607 777 4422 Email baskerville@cbs.dk

Abstract

The organizational structure has to do with human relationships, and is distinguished from
the various artifacts (like information technology, systems development methods, and other
mechanical products) that reflect those relationships. Information technology represents a
first-level artifact and systems development methods represent a second-level artifact. This
paper explains and illustrates a theory in which method engineering introduces third-level
structural artifacts in organizations. A demonstration is included that uses security as one of
the system imperatives that must be captured by third-level structural artifacts such as method
engineering. This demonstration shows how method engineering may produce methods that
are more complete and more harmonized with the organizational situation.

Keywords
Information Systems Development, Systems Development Methods, Software Engineering,
Organizational Structure, Information Systems Security

1 INTRODUCTION

There are a large number of widely varied methods available for information systems
developers. These include structured approaches (e.g., Yourdon 1989), prototyping
approaches (e.g., Connell and Shafer 1989), information engineering (e.g. Finkelstein 1989),
soft systems (e.g., Checkland and Scholes 1990), sociotechnical (e.g., Mumford 1983),
object-oriented (e.g. Embley, Kurtz and Woodfield 1992), ezc. Many of these methods have
been comparatively analyzed in books (e.g, Olle ef al. 1988 or Avison and Fitzgerald), and
journal articles (e.g. Jackson and Keys 1984, Jayaratna 1988 or Hirschheim and Klein 1992).
Despite a fairly large body of work concerning the details of systems development methods,
there is still a very poor understanding of how such methods are actually used in practice
(Wynekoop and Russo 1993) or even whether these are ever used at all (Baskerville Travis
and Truex 1992).

Structural artifacts in method engineering 9

Method engineering (Kumar and Welke 1992) represents the effort to improve the
usefulness of systems development methods by creating an adaptation framework whereby
methods are created to match specific organizational situations. The goals of this adaptation
framework include at least two possible objectives. The first objective is the production of
contingency methods, that is, situation-specific methods for certain types of bounded
organizational settings. This objective represents method engineering as the creation of a
multiple choice setting. For example, in a systems consulting-firm situation, method
engineering might be used to create a number of alternative predetermined methods, and each
new client’s situation might be analyzed to select one of the methods which would be most
appropriate for use. The second objective is one in which method engineering is used to
produce methods "on-the-fly". Each systems development project begins with a method
definition phase where the development method is invented on the spot. In this second
objective, method engineering is a mechanism for coping with the uniqueness of each
development setting. Organizational change is involved because it contributes to this
uniqueness. The mechanism operates by lifting the systems structures to a higher (third) level
of abstraction, such that the actual development structures become "selectable” (or definable),
and importantly, the determination of these selections itself becomes more highly structured.

The purpose of this paper is to explain and illustrate a theory of method engineering which
is oriented toward these third-level structural artifacts in organizations. Third-level artifacts
represent to the imperatives of the method engineer. This purpose is addressed by four major
sections. In the remainder of this first section, we will define several key terms. The second
section will analyze the relationship between information systems and organizational structures
in terms of structural artifacts. The third section extends this analysis to the new artifacts
demanded by the new level of abstraction introduced by method engineering. Following this,
the fourth section illustrates the rather positive nature of these new artifacts using information
systems security as an example. The final section summarizes the demonstration and
discusses some research issues that are opened by the analysis.

It is not the purpose of this paper to directly propose method engineering techniques and
structures like tool selection heuristics, notation inventories or analytical techniques directed
toward the target organizational situation. The paper will not attempt to survey the various
imperatives to which method engineers must respond. Rather, an analysis is presented which
can frame a better understanding of how such proposals will interact with human
organizations, information systems, and system development methods. However, the analysis
is illustrated using an outline of possible security notation and criteria which would be
appropriate in method engineering.

For the purposes of this paper, the term information technology (IT) will suggest a broader
view than “just computers”, including telecommunications and office technologies like
photocopiers. Also IT is not bound to machinery, but includes conceptually-grouped
technologies (e.g., object-oriented or prototyping concepts). It is arguable whether definitions
of information systems and information technology may encompass each other. In this paper,
these are separate but closely related concepts, information systems (IS) refers to the
systematic development, operation and management of IT as well as the IT itself. We are
especially concerned with this "systematic development” component in IS, and we will use
the term information systems development (ISD) to refer to the analysis, design and
implementation components embedded in our definition of IS.

10 Method Engineering

Both Oxford and Webster’s dictionaries primarily define the term "method" as meaning
"the procedure for obtaining an object.” The secondary definitions fasten on such ideas as
"orderly," "systematic," "regularity," and "regimen." Method is clearly a concept of process
rather than representation. This paper will avoid the term methodology altogether, for in the
field of IS, the original meaning of this term (the study of method) has become confused, and
is either used as a simple synonym for method (c¢f. Olle et al. 1988, p. 1) or to create a
hierarchy of methods (¢f. Jayaratna 1993, Wynekoop and Russo 1993) which has been shown
to be rather strained when closely examined: It is a higher-order version of the same
construct: "a method of methods" (Oliga 1988, p. 90)

The concept of "artifact” is especially important in this work. An artifact is an object
made by people, usually with skill, for subsequent use. Its common archeological and
anthropological usage also implies that the object is from an earlier time or cultural stage.
This implies that an artifact has a physical persistence These connotations are important,
because these distinguish the making of the object from its use, imply that such objects are
cultural icons, and that their existence may endure through later periods of time and cultural
stages.

Information systems security is used to illustrate the points below regarding IS
organizational artifacts. For this paper, "security” is defined broadly to include not only
features that prevent intentional losses, such as fraud and vandalism, but also unintentional
losses such as natural disasters and errors. Thus security encompasses system integrity and
reliability. Security is presented as one "imperative" of systems development methods. Such
imperatives are fundamental goals of the systems development that motivate the inclusion of
certain absolutely-necessary features into a method’s design. For example, imperatives like
maintainability or reusability motivate features like encapsulation or inheritance in an object-
oriented method.

2. STRUCTURAL ARTIFACTS OF ORGANIZATIONS

The information system has an important relationship with organizational structure. The
development methods are also directly or indirectly elements of this relationship. This
implies that there is also a relationship between method engineering and organizational
structure.

There is a clear distinction between the structure in a human organization and the artifacts
which reflect that structure. It is possible for the human organization to conflict with its
structural artifacts. For example, in many organizations the CEO’s secretary wields real
power, like autonomously making decisions in assigning responsibilities further "down the
line". Every person in the organization will be aware of this line authority, yet it almost
never appears in the organizational chart or position descriptions. The human organization
differs in reality from the artifacts that supposedly define it.

This important distinction between the structure of the human organization and the artifacts
intended to reflect that structure requires a precise terminology. The terms "organization”,
"structure” and "system" will appear below as icons for fairly strict dictionary concepts.
"Organizations" is a term that regards people who are dividing their work together for some
common purpose. "Organized” is a term that regards something formed into a whole

Structural artifacts in method engineering 11

consisting of interdependent or coordinated parts especially for united action. Organization
is defined recursively: A group of persons or smaller organizations organized for some end
or work. This paper will use the term organizational structure to regard the persistent
relationships between the people (or smaller organizations) in organizations. "Persistent”
regards repeated instances of relationships that occur with regularity.!

2.1 IT And Other Structural Artifacts

There are widely varied viewpoints about the relationship between IT and organizational
structure. However, many of these seem to assume that the information technology is
somehow an elemental part of the organizational structure. (Five of these viewpoints are
surveyed in the appendix to illustrate how each relates to this assumption.) However,
organizational structure regards persistent relationships between people. While the IT might
enable or reflect this relationship, it does not embody the relationship itself. It is important
to carefully distinguish organizational structure (human relationships) from the IT artifacts
(mechanical products) that reflect those relationships. (In this point we are carefully
distinguishing between IT, which is artifactual in our definition, and IS which may be seen
as a "web" or "institution" that is inherently embedded in the social context which is using
the IT, and therefore may not be artifactual in our definition.)

Together with IT, there are many different artifacts that people create which reflect their
organizational structures. Table I lists some examples of these artifacts. These artifacts
reflect, or encode the organizational structure, but should not be construed to be the
organizational structure. These artifacts represent the different rules and protocols by which
the members of the organization may choose to behave. The accuracy of these
representations is, of course, variable. These rules and protocols have been likened to
grammars in languages (Wand and Weber 1995). The grammar metaphor is useful as an
analogy because linguistic grammars vary among communities, undergo change, naturally
conflict among versions and may be accurately or inaccurately represented by grammatical
texts. These organizational artifacts may vary among the organization’s communities, undergo
change, naturally conflict among themselves and may be accurately or inaccurately
represented by structural artifacts.

'To a specific degree, these concepts are based on the roots of the terms, the original
Latin and Greek ideas. Organization comes from the same Greek and Latin root as
organism and organic (an individual life form) but most commonly meant "tool" or
"device", and in this sense was also applied to "living" body organs. Our sense of the
term is a natural, living device with a purpose. Structure arises from the Latin word
Structure, meaning something put together, taken from the verb struere, to put together.
Structure implies the act of organizing, the assembling of the people, and the connections
made between the individuals in the organization.

12 Method Engineering

Table I. Examples of artifacts that people create which reflect their organizational
structures.
L |

1 Organization charts, which graphically depict organizational members and their
different kinds of relationships

2 Personnel policies, which define reporting lines (who is whose boss), job
descriptions, rewards structures and payroll policies

3 Union agreements, which reflect the relationships between union members and
others in the organization

4 Standard Operating Procedures (SOPs), which are typically detailed functional
policies that define important coordinated actions in the organization.

5 Resource access policies, such as travel justification, modes of travel (private jet or
tourist-class), company cars, cellular phones, etc.

6 Workspace division, which includes the size of an individual or group workarea and
the collocation of organizational members (whose office is next to whose).

7 Workarea attributes and resources, such as decoration and furniture quality, quantity
or size; privacy (e.g., corner-office or open-plan cubical); and dining facilities.

8 Information Systems which determine access to information resources such as
computer accounts, LAN membership, automatic channelling of inputs and outputs,
and screen and paper form designs.

9 Methods for developing information systems, which determine who sets the goals,
who participates in the design, what issues are considered and how the system
elements are represented.

.
2.3 Conflicting Versions of Organizational Structure

The different structural artifacts overlap, and will sometimes encode the organization’s
structure in conflicting ways. For example, the payroll policies, personnel policies and
organization chart (Table I) may encode an individual without influence in organizational
strategy; yet the workspace division, attributes and information system may encode a structure
in which that same individual bears essential responsibility for shaping organizational strategy.
Neither artifact is the organizational structure, that structure is defined by the relationships
between the individuals, not by any particular set of organizational artifacts. When the
artifacts suggest conflicting versions of the structures, the reflection of the real structure is
blurred and the determination of its shape is made more difficult.

The organizational artifacts may tell different stories about the organizational structures.
Conflicts between these stories seem to arise most often when the organizational structure
differs in reality from an "official" version of the organization. These "official"
organizational artifacts reflect the version of the organizational structure story as told by a
particularly privileged class of organizational members: usually relatively senior management.
Similarly to the priest-class in a theocracy, this class of individuals is widely accepted to own
the authority to determine organizational structure. Accordingly, this class controls a large
set of overt organizational artifacts.

Structural artifacts in method engineering 13

However, when the structural story suggested by these "official” artifacts conflicts with
the structural story suggested by many other organizational artifacts, then the reality of
organizational structure is indistinct. Artifacts that may be beyond the influence of the
"priesthood" in management may include those that are too menial for official control, such
as workspace collocation; those that can be replaced by alternative artifacts (such as a lower-
authority policy taking effect even though it contradicts and countermands a higher-authority
policy); or those in which important functional artifacts ignore the specification artifacts, such
as when the real information flows violate operating policies.

2.4 Conflicting Realities of Organizational Structure

An important aspect of conflicting artifactual reflections of organizational structure is the
broad acceptance of "official" artifacts even when these conflict blatantly with the majority
of other artifactual representations. This aspect regards the important, almost priestly power
of the privileged organizational classes to interpret and pronounce organizational reality. As
a result, management itself and many organizational scientists will not look beyond such
privileged organizational artifacts, and sanction organizational structure to be, in reality, as
officially declared by a certain subset of organizational artifacts.

The process by which an imaginary belief becomes accepted as being real, is the well-
known thesis of Berger and Luckmann (1967) in the social construction of reality. Their
thesis, applied here, suggests that the structural reality of organizations arises from routine
relationships that become habitualized and explained in a symbolic universe. This symbolic
universe in organizations may be strongly influenced by a powerful set of managers (the
priestly class), and which can justify the relationships symbolically even when these become
unnecessary or harmful (e.g., government clerks following patently absurd bureaucratic rules
because these justify some other part of the bureaucracy).

2.5 Emergent organizations

Organizational artifacts may also temporally reflect multiple versions of the reality of
organizational structures. Each of these versions must be seen as being dynamic to a certain
degree. That is, the relationships between organizational members (being social) are
continuously changing. Emergent organizations are always seeking, but never quite achieving
a regular pattern of behavior (Truex and Klein 1991). The most recent changes are less
likely to be reflected in the organizational artifacts, and this means that such artifacts will be
more-or-less out of sync with the reality of organizational structure. If the pace of change
is fast in an organization, usually in response to fast-paced changes in its environment, then
one should expect less fidelity and more conflict in its organizational artifacts with regard to
its structure.

From this perspective, the issue runs deeper than merely conflicting versions of the reality
of organizational structures, or indeed multiple organizational realities, and develops the
possibility that no matter which artifacts one chooses to believe, that reflection of
organizational structure is inevitably out of sync with the realities. This suggests that ali
organizational artifacts should be viewed with a degree of suspicion, especially in a setting
with rapid change (a frequent characteristic in ISD). Each artifact tells a particular version

14 Method Engineering

of a particular set of organizational structures at a particular time. Indeed, such artifacts may
have been entirely invented to match a desired organizational structure that may, or may not,
have been realized at a later time. The relationship between these artifacts and current
organizational structures is always open to question. As a consequence, contingency theories
(e.g., Davis 1982) provide an overly confining framework for ISD (Baskerville, Travis and
Truex 1992).

3. THE CHALLENGE TO METHOD ENGINEERING

The problems of conflict between structural artifacts and emergent organizations is found at
two levels of abstraction within the IS literature. At the first level, the IS community must
deal with the potential conflict between the information technology, itself a structural artifact,
and the emergent organization. At this fundamental level, one discovers IT that is ineffective
in various ways, outdated, misplaced, or altogether unused because it conflicts with the
present organizational structure. This conflict is dealt with, although somewhat indirectly,
by the literature on IS failure, (e.g., Bostrom and Heinen 1977, Ginzberg 1981, Lyytinen
1988 or Lyytinen and Hirschheim 1987), end-user development (e.g., McLean 1979, Sumner
and Kleer 1987, Galletta and Heckman 1990, or Amoroso and Cheney 1992) and software
maintenance (e.g., Schneidewind 1987 or Schnebeger 1995).

At the second level of abstraction, the IS community must deal with the potential conflict
between the emergent organization and the development method (also itself a structural
artifact) used to determine the structural artifact of information technology. At this level, one
also discovers the IT development approaches are ineffective similarly to the IT itself,
outdated, misplaced or altogether unused. This conflict is dealt with, also a bit indirectly,
as a problem in need of solution by contingency approaches (e.g., Davis 1982), prototyping
approaches (e.g., Naumann and Jenkins 1982), participative approaches (e.g., Kyng 1991),
and object-oriented approaches (e.g., Coad and Yourdon, 1991). This conflict has been more
directly dealt with in research which has shown that methods may not be entirely succeeding
as a paradigm for the development of information technology (e.g., Baskerville, Travis and
Truex 1992, Wynekoop and Russo 1993, or Naur 1993).

Method engineering introduces a third level of abstraction, a method for creating methods.
Indeed, method engineering may be a reaction to the structural conflicts which have (perhaps
inevitably) accompanied the first two levels. The inability to discover suitable structural
artifacts at the first level leads the search for suitable structures at the second level. That is,
consistent failures at structuring IT as a match to organizations has demanded a search for
successful structures for the structuring process. This idea is related to Giddens’ (1984)
social structuration theory, and has been explored directly in the IT context (Orlikowski and
Robey 1991). Method engineering raises the problems of conflicts between structural artifacts
and organizations to a higher level. See Figure 1.

However, it may be possible that this third level of abstraction will enable IT researchers
to consider ever more essential structural artifacts regarding IT development and IT systems.
If the methodical (the predefined, repetitive process) is abandoned to the second level, what
structural artifacts remain for method engineering? Among the most prominent are notation
and criteria.

Structural artifacts in method engineering 15

Artifacts used to create Artifacts used to create
developmental IS artifacts, organizational IS artifacts,
like criteria and notation like methods and CASE
frameworks in method ‘
engineering "
F— ® '
3rd Level ‘J
S
2nd Level
_ L
o Artifacts that more-or-less
The human organization: ' reflect human relationships,
regular relationships I |ike organization charts and
among people. 1?%9!* computer networks

L d

i

Figure 1. Three levels of information systems abstraction above the regular relationships
in human organization.

The notation used in ISD methods varies widely: examples include data flow diagrams,
data dictionaries, rich pictures, root definitions, and entity-relationship diagrams. The
selection of the set of notation to be used in a system development project is among the most
critical, since this decision will determine what concepts can (and what concepts cannot) be
represented in the formal specification and design (Gause and Weinberg 1989). Conflicting
representational schemes have also been explored in comparative methods studies, such as the
work arising from the CRIS working conferences using the so-called IFIP case as its
benchmark (Olle er al. 1988). Indeed, the empirical work by Bansler and Bedker (1993)
suggests that the notation may be the only durable component of a systems development
method.

The criteria regards the underlying rationale of the method, the details of its major aims,
purposes and scope. The authors of the various methods are usually quite clear in explaining
their criteria, but only in the context of each element of their method. As a whole, these
criteria indicate what the method’s authors believed would characterize a successful ISD
project. But like philosophical assumptions, the discovery and general classification of these
abstract criteria are problematic because these are conflated with the features of the method
(¢f. Coad and Yourdon, 1991 with Checkland and Scholes, 1990). However, there are

16 Method Engineering

examples of comparative work that has focussed on the features of methods (e.g. Olle, ef al.
1983), and also work which has considered the underlying criteria (e.g. Olle et al. 1982).

At the third level of abstraction, namely method engineering, it will be necessary to
introduce new structural artifacts. These new artifacts are likely include elements for
selection of notation and criteria at the second level (ISD methods). Comparative studies of
both notation and criteria will be prominent in formulating these new, third-level structural
artifacts. However, the analysis should move beyond the description of the present structural
artifacts of ISD, and also consider the real human organization and the way ISD unfolds in
these organizations. Clearly, studying "methods" is not adequate for studying the reality of
"ISD" (c¢f. Parnas and Clements, 1986, Baskerville, Travis, & Truex, 1992, Bansler &
Badker, 1993, Naur, 1993, Wynekoop & Russo, 1993). In other words, before building new
artifacts that reflect the old ones on a new level of abstraction, one should question the old
artifacts. In what ways do the structural artifacts of ISD conflict with the real organization?

There are a number of ways to prescriptively approach this issue. At one level, one can
ask what criteria and notation might be available to capture conflicts between organizational
structural artifacts (e.g., when customer service policies and trouble-call operational
procedures disagree), or to capture conflicts organizational structural artifacts and the
organization itself (e.g., when customer service policies and the actual social behavior of the
service representatives disagree).

At another level (the method engineering level), one may ask what criteria and notation
might be available to capture ever-present change in requirements. These elements would
regard the need to follow an emergent organization through the course of an ISD project,
especially considering the limited accuracy of all structural artifacts that purport to represent
the organization in such settings.

4. NOTATION AND CRITERIA EXEMPLAR: SYSTEMS SECURITY

Systems security is an example of the problematic issues that arise from these challenges.
Despite widespread agreement about the importance of privacy, reliability and integrity in
information systems, explicit security constructs are extremely rare in ISD methods
(Baskerville 1993a). Perhaps this is not so surprising considering that security features will
typically conflict with the functionality of the system (Baskerville 1992). Also, security
features are designed to prevent unpredicted organizational behavior, and will typically
embody an uncomfortable constraint on emergent organizations (Baskerville 1993b). Finally,
security features have been shown to create recursively security problems on their own
(Baskerville 1995).

Not surprisingly, there are many examples of security problems in information systems
(Neumann 1995). Perhaps it is more surprising that, despite the lack of consideration by ISD
methods, the majority of information systems have security safeguards in place (albeit
minimum), such as data backup and simple password schemes (¢f. Hitchings 1995, Wood
1995). While this does not mean that existing security is entirely adequate for most
information systems, it does mean that security features are being constructed into systems
despite the lack of explicit structures in most ISD methods.

Structural artifacts in method engineering 17

There are two implications that arise in this commonplace design of security features
outside of explicit method artifacts. First, this design activity suggests that the structures of
current ISD methods do not represent the reality of this aspect of ISD design. Second, this
design activity might be better enabled if the structures of the ISD methods agreed more
explicitly with the behavior of ISD analysts and designers.

These two implications comprise the security imperative for method engineering. This
imperative regards the demand for explicit structures for developing system security in most
ISD methods. On the one hand, this demand is founded on the unstructured design activity
that is ignored by the criteria and the notation within IS design. On the other hand, this
demand is founded on the need to reduce the substantial damage encountered by many
organizations due to the lack of adequate security safeguards properly designed into their
information systems.

The security imperative would entail, at a minimum, the inclusion of explicit security
criteria and notation at the third level of abstraction. That is, method engineering should
have structural artifacts that prescribe various criteria for security design and development,
and alternative sets of notation for explicitly capturing security risks and protective features
in the system.

These criteria and notation do not to be entirely invented. A survey of various security
analysis and design notation is described by Baskerville (1993a), and book-length security
methods exist (e.g., Fisher 1984, Lane 1985). There are also surveys of criteria (e.g.
Neugent 1982), and the European initiative on criteria for security of information technology
is a "harmonization" of several national policies on such criteria (Commission of European
Communities 1990). However, these resources provide only contrasting descriptions of
second-order notation and criteria. These must be further analyzed in order to draw out
frameworks for comparing and choosing among competing notations and criteria.

4.1 Notation

As a basis for one third-level notation framework, for example, the following security
literature regarding methods for security safeguards specification was reviewed and analyzed
using a limited inductive classification approach (¢f. Sandman Klompus and Yarrison (1985).
The framework below provides one initial possible framework for structuring the selection
of security notation. The publications underlying this limited analysis are Browne (1979),
Krauss (1980), Fisher (1984), Lane (1985), Baskerville (1988), Hutt et al. (1988), Fitzgerald
and Fitzgerald (1990), Farquhar (1991), Ozier (1992), Forcht (1994) and Neumann (1995).
Because of the heterogeneous nature of this body of literature, many other competing
frameworks are possible. However, this example demonstrates the feasibility of such
frameworks. The framework consists of three types of notation that comprise security
features in ISD: Representation of security elements, security analysis and design, and
security maintenance and management. This framework is illustrated in Table II.

This framework of security notation exemplifies a third-level structural artifact for
organizational IS. Other related artifacts in method engineering might include heuristics for
selecting a complete notational set, perhaps matching characteristics of the IS setting
(captured in still another artifactual notation), or against the security criteria.

18 Method Engineering

Table II. Third-level security notation framework for method engineering.

Security element representation notation.

The three elements organized for analysis in security design methods are typically the risks
that threaten the system, the system assets requiring protection and the potential safeguards
that might be erected to protect the system assets. Representation tools must be capable of
representing inventories of these elements. Each of these inventories will need a classification
system and a notation framework to permit analysis if they are to be practical. Examples of
these classes and frameworks:

Risk
Categories: natural disasters, malfunctions, criminal acts, errors
Framework: probability, cost of damage, degrees of impact

Assets
Categories: computers, communications, storage, personnel
Framework: location, value, visibility, accessibility

Safeguard
Categories: operating integrity, backup, access control, error detection
Framework: implementation details, costs, second-order problems

Security Analysis and Design Notation
The notation must also capture the rationale leading to the implementation of safeguards. For
the purposes of both designing and maintaining the safeguards, the notation should capture the
risks against asset mapping process, and the safeguards selection process in the sense that one
should be able to implosively and explosively audit the design. For example, one should be
able to trace each safeguard to the risks it protects against and the assets it is protecting.
Likewise risks and assets should be mapped to the safeguards, or alternatively the notations
should demonstrate that the benefit of safeguards were trivial and unnecessary. Examples of
such notation:

Risk ranking notation

Asset ranking notation

Risk-asset-safeguard mapping

Safeguard ranking notation

Safeguard selection and design integration details

Security Maintenance and Management Notation
Under the assumption that organizations are emergent, and that system security is yet another
form of structural artifact in organizations, safeguards maintenance and maintenance of
security may imply additional necessary notation. Examples of such notation:
Security maintenance frameworks
Risks review and update process and routine
Safeguards validation process and routine
System maintenance security validation reviews

Disaster planning frameworks
Computer center loss plan
Communication loss plan

Cross-training plan
e — — — -

Structural artifacts in method engineering 19

4.2 Criteria

The security criteria is another third-level structural artifact that represents the security
characteristics which method engineering might instill in the ISD method. An example of
such third-level criteria was developed in a workshop sponsored by the INFOSEC Standards
and Initiatives group of the Communications Security Establishment for the purposes of
commenting on a federal guideline for risk management of computer information systems in
the Government of Canada. The working group that regarded managerial considerations was
particularly concerned with adopting a risk management method that was equally relevant in
large, complex installations (e.g., an air base), as well as small, simple installations (e.g.,
a small, remote police post).

Rather than seek a single method, dictated from the central government security
establishment, the working group concentrated on distributed security decision-making. That
is, instead of completely defining the risk assessment process to be universally applied
throughout the Government of Canada, the exact decision would be deferred to the localized
agencies responsible for the computing elements. This deferral takes on some characteristics
of third-level method engineering. The summary of the recommendations appear in Verrett
and Hysert (1993).

The approach recommended by the working group was oriented toward centralized criteria-
setting, rather than centralized control. The central authority would set the criteria for the
process of risk assessment, and defer the determination of the exact method to the local
agency. Even the specification of a range of techniques together with criteria for choosing
among these techniques was seen to exclude the use of ideal, unique approaches that might
occur to managers "on the scene”. Instead, the recommendations suggested the criteria by
which a highly qualified manager in the field might determine whether the risk management
process was successful. While examples of risk assessment techniques were suggested, it was
not mandatory to choose one of the examples. The local manager would be free to innovate
in situations where such innovation, in the judgement of that local manager, seemed to be
required. The criteria are described in Table III.

The criteria in Table III represent another third-level structural artifact, and illustrates one
alternative set of criteria. A more complete set of security criteria at this method-engineering
level might offer alternative sets of criteria, perhaps for different levels of security, or
different kinds of organizations, (government, manufacturing, retail, financial, etc.). The
chosen criteria might then be used as a measure of the performance of method engineering
in determining the security features (e.g. notation) of the second-level method.

4.3 Linking The Imperative Through The Levels

The imperative leads to the addition of notation and criteria to the method. The imperative
may take various forms or degrees. Contrast, for example, relatively stronger, highly
structured and inflexible security in military situations with relatively weaker, less structured
and more flexible security in consumer goods manufacturing situations. The third-level
artifacts must support the construction of second-level artifacts that respond to both of these
contrasting situations (as well as others). Third-level method engineering must be capable

20 Method Engineering

Table III. Criteria for risk management (adapted from Verrett and Hysert, 1993).
L]

The process should be goal-directed.

The security goals of the government agency must be established at the beginning of the
project, must meet applicable policies and standards, must involve the system owner from the
start, must define resource constraints up-front, and must be as non-obstructive as possible.
These goals should be *appropriate’ for the government group as judged by the managers in
charge. The system’s nature might take into account the criticality of failures (for example, a
police cruiser dispatch system is more critical than a campground firewood management
system), or the environment of the system (broad public access or highly restricted access to
the system). Examples of such goals include:

¢ "trouble free operations"
¢ "minimum events"
¢ "highly private"

There must be a reasonably exhaustive threat analysis.

The process of risk analysis must include a threat analysis that considers a ’reasonable’ range
of threats. For a highly critical system, such a ’reasonable’ range would necessarily be more
exhaustive than non-critical systems. This will typically mean that the process will involve
the use of an analytic model (e.g., the US National Institute of Standards and Technology
Model) and a reasonable tool or guideline (such as the CCIT Risk Analysis Methodology,
CRAMM, a software-based approach).

The process must be updatable and reusable.

The process of risk management must result in the establishment of a permanent maintenance
cycle for system security. This typically means that routine security reviews must be held
which consider changes in security needs as a result of continued operation of the system. In
many situations a security maintenance review plan will be needed that produces a periodic
report certifying that the security is still intact. The cognizant manager must know what
action is necessary if the report fails to materialize, or appears inadequate.

The process must achieve closure in both certification and accreditation.

The risk management process must conclude with an event of some type that embodies the
instance at which the initial risk management project is successfully concluded. That is, such
a risk management process must lead to a certifiable result.

The results must be repeatable.

The risk management process must be "logically" repeatable. This does not necessarily mean
that anyone actually expects to repeat the process and compare results. Rather, it means that
the process must be thoroughly understood as it occurred, and it must be carefully
documented. In this way the decision-making process can be reconstructed such that higher
management might be able to review whether the decisions about risks were made in a
reasonable fashion in a given situation.

Structural artifacts in method engineering 21

of constructing the second-level artifacts (the method) such that they are capable of producing
first-level artifacts (information systems) which respond to the human organization. The
nature of that response depends of the particular view of the relationship between the
information system as a structural artifact and the human organizational structure. Five such
views are discussed in the appendix. This illustrates how the ideal set of structural artifacts
of method engineering would reflect the intersection of several dimensions: the set of
possible imperatives, the forms and degrees of those imperatives, an open set of possible
second-level structural artifacts, the set of viewpoints on the relationship between IS artifacts
and the organization, and the strength of the harmony among the organization’s structural
artifacts and between those artifacts and the human organization.

This multi-dimensional nature of third-level structural artifacts introduces some complexity,
but this certainly is not imponderable. As an example of how this analysis can be applied to
the security imperative, assume the viewpoint (from the appendix) that IT can be used to
shape the organization, and strong security is the imperative. Under these conditions, then
the ISD method should be characterized by notation and criteria that will lead to prescriptive
structural artifacts. Such prescriptive security artifacts within the IS include enforced access
controls, which in turn require that the method’s notation be characterized by extensiveness
in the details in its safeguard categories, safeguard frameworks, design integration and
validation routines. In addition, the third-level criteria suggests the need for a detailed goal
set, more rigorous forms of threat analysis, such as one that includes automated threat
databases (e.g., CRAMM). The criteria under this imperative also indicate artifacts like a
formal security maintenance review cycle, initial certification and routine recertification, and
closely detailed documentation about the design decisions. Further, the assumed
organizational viewpoint pins the achievement of strong security on a fair amount of harmony
between the organization’s structural artifacts and the structure of the human organization.

As a second, contrasting example of how this analysis can be applied to the security
imperative, assume the emancipatory viewpoint (from the appendix), that IT involves ethical
decisions about structuring the workplace. This example will also assume the contrasting
position that security is fairly weak imperative. Under these conditions, then the ISD method
should be characterized by notation and criteria that will lead to the fewest and least
constraining, perhaps only implicit, structural artifacts. Such implicit security artifacts within
the IS might only include training, simple passwords and data backup routines. These in turn
imply that the method’s notation be loosely structured, perhaps only free text in a few brief,
suggested sections (e.g, risk, asset and threat rankings). In addition, the third-level criteria
suggests only a few broad security goals will be involved and an informal, participative threat
analysis. The certification and routine reviews will probably be internal, informal, and
participative. Further, the assumed organizational viewpoint pins the achievement of
reasonable security on a fair amount of highly-motivated participation within the organization
itself, and that the structural artifacts related to security must be ethical with regard to the
workplace.

22 Method Engineering

5. SUMMARY AND FUTURE RESEARCH

The above discussion demonstrates how method engineering introduces a new level of
structural artifact into human organizations. By selecting security as the example for the
demonstration, this discussion also highlights the potential for method engineering not only
to "situationalize” methods, but to correct general oversights in many of the existing
published methods. That is, structural artifacts at the third level may respond to a general
set of system imperatives which must be adapted to the development situation. This general
set of system imperatives may be more complete, and therefore lead to more complete ISD.

Method engineering represents a third level of abstraction in ISD. This higher level of
abstraction increases the need to understand the relationship between human organizations,
organizational structure, and structural artifacts. Structural artifacts include IT, ISD methods
and method engineering. The resolution of conflict between such artifacts and the
organization, and between the artifacts themselves, motivates the introduction of the third-
level artifacts of method engineering.

Further research is needed to understand the degree to which method engineering artifacts
might conflict with organizational structure, or with each other. The human organizations
in question not only include the target organization for the IT design, but also the
organizations involved in ISD and method engineering itself. Also the impact of this conflict
on the success of method engineering remains an open question until the application of
method engineering grows. Additional work is also needed to determine what other
imperatives should comprise the structural artifacts of method engineering. Examples might
include usability, availability, timeliness, efc. In addition, the security exemplar also reveals
the need for further research to determine the broad set of security criteria, notation, and
other third-level structural artifacts necessary to implement the security imperative in method
engineering.

APPENDIX A: VIEWPOINTS OF IT AND ORGANIZATION
STRUCTURE

At least five separate viewpoints of the relationship between IT and organizational structure
can be distinguished in the literature. Admittedly, each of these viewpoints is somewhat
abstract, like stereotypes or caricatures. These will not be found in pure form "in the wild"
of real organizational management. However, these theoretic viewpoints inhabit, and may
even dominate other theories, practical trends and models of IS and IT. The discussion of
each viewpoint will consider its central characteristic, the role of IT and IS under this
viewpoint and an example of recently published research that relates critically to this
viewpoint.

A.1 IT As A Medium for Organizational Communication
This viewpoint is characterized by the idea that information is a commodity in a similar sense

to electricity, water and gas. The function of IT and IS is similar to that of an information
utility providing an economical and sufficient supply of good quality information necessary

Structural artifacts in method engineering 23

to the organization. The IS parts of the organization act similarly to a sort of the utility
company that sets up the data repositories and flow lines as needed in the organization.

As an example of where this viewpoint currently holds a strong influence, consider
outsourcing. Practical and research publications on outsourcing often presume that the
information utility can be contracted out, like the telephone switchboard and housekeeping.
For example, Willcocks and Fitzgerald describe common problems discovered by
organizations in their attempts to contract out, in varying degrees, their information
technological support (Willcocks and Fitzgerald 1994).

A.2 Strategic Use of IT

This viewpoint is characterized by the assumption that information can be a central
organizational product, or an essential enabling factor in a central organizational product.
The role of IT and IS is tightly connected with the goals, strategies and purpose of the
organization itself. Under this viewpoint, the organization could not produce its products
competitively without IT.

The primary examples of this viewpoint include the American Airlines Sabre and American
Hospital Supply case studies. These are now also iconic representations of cases where a few
success stories dominate a management trend, followed by suspicions that a large number of
attempted emulations resulted in failure. Publication readership seems intensely interested
in the innovative successes and not in the emulation failures. For example, Kettinger et al.
(1991) survey the long-range impact of a number of strategic IT systems. For a further
example of this viewpoint, see Reich and Benbasat’s (1990) study of customer-oriented
strategic IT.

A.3 IT As A Mechanism for Shaping Organizations

Other parts of the IT and IS literature are characterized by the instrumental idea that the
organization itself can be restructured by restructuring its IT. That is, the shape of the
organization will follow the form of its IT. If one reorganizes the IT, one thereby
reorganizes the human behavior. The role of IT and IS is therefore one of directing the
organizational resources, both enabling and constraining the organizations purposeful work
to the paths determined by management.

This view is typified by some of the current writings in Business Process Reengineering.
The organization is moved into a new form by destroying the old IT (Hammer 1990), which
embodied the old economic-specialization Taylorism, and rationally building a new process-
centric organization that is effectively enabled by advanced IT (Davenport and Short 1990).
Here again one encounters a similar problem to that of strategic IS, in that the literature is
dominated by fairly limited set of success stories, while the practical community seems to be
encountering serious problems emulating these successes (Manganelli and Klein 1994).

24 Method Engineering

A.4 Matching IT To The Organization

This viewpoint is characterized by the assumption that the organizational structure is
determined independently of its IT, and that successful IT will be shaped to match and
support the structure of the organization. The role of IT is that of a tool that makes
organizational processes easier under its preexisting structural constraints. The organizational
processes must occur with or without IT, and if the IT does not help these processes, then
the IT will be irrelevant, become ignored and fall into disuse. Successful IS is determined
by its ability to shape itself to the needs of the organization.

This viewpoint is typical of the traditional IS development literature, with its focus on
requirements elicitation and specification. Such literature will typically argue that lengthy
systems analysis and data modelling is justified by the smooth conversion and enhanced
lifespan of the new system (cf. Lyytinen 1987).

A.5 IT For Emancipation

This viewpoint is characterized by its focus on the human and social implications of the use
of IT. It strongly shaped the socio-technical literature in systems development, with its
recognition that IT choices carried ethical determinations in structuring the human workplace.
IT could make wotker’s lives better, worse, or unnecessary. IS design and management was
both a social and a technical act.

This viewpoint is typical of the socio-technical literature in IS development, and the trade-
union influence in North European IS research. These assumptions dominated some systems
development methods, like ETHICS (Mumford 1983) and cooperative prototyping (Er 1987),
and is currently found in some of the work in systems development that focusses on the
worklife of the developer (¢f. Hirschheim and Klein 1994).

6. REFERENCES

Amoroso, D. and P. Cheney (1992) Quality end user developed applications: some essential
ingredients, Database 23 (1) (Winter) 1-12.

Avison, D. and G. Fitzgerald (1988) Information Systems Development: Methodologies,
Techniques and Tools. Oxford: Blackwell Scientific.

Bansler, J. and K. Bedker (1993) A reappraisal of structured analysis: Design in an
organizational context, ACM Transactions on Information Systems 11 (2) 165-193.

Baskerville, R. (1988) Designing Information Systems Security. Chichester: Wiley.

Baskerville, R. (1992) The developmental duality of information systems security, Journal
of Management Systems 4 (1) 1-12.

Baskerville, R. (1993a) Information systems security design methods: Implications for
information systems development, Computing Surveys 25, (4) December 375-414.

Baskerville, R. (1993b) Information systems security: Adapting to survive, Information
Systems Security 2 (1), 1993, 40-47. Reprinted, as New approaches to information
systems security in Umbaugh, Robert (Ed.) Handbook of IS Management 1994-95
Yearbook. New York: Auerbach, 1994, pp S257-S265.

Structural artifacts in method engineering 25

Baskerville, R. (1995) The second order security dilemma, in Orlikowski, W., Walsham, G.,
Jones, M., and DeGross, J. (Eds.) Information Technology and Changes in Organizational
Work. London: Chapman & Hall, pp. 239-249.

Baskerville, R., J. Travis, and D. Truex (1992) Systems without method in Kendall, K.
Lyytinen, K. and DeGross, J. (Eds.) IFIP Transactions on The Impact of Computer
Supported Technologies on Information Systems Development. Amsterdam:
North-Holland, pp. 241-270.

Berger, P. and T. Luckmann (1967) The Social Construction of Reality, A Treatise in the
Sociology of Knowledge, Penguin Books.

Bostrom, R. and S. Heinen (1977) MIS problems and failures: A socio-technical perspective,
Part I: The causes, MIS Quarterly, (September), 17-32, and MIS problems and failures:
A socio-technical perspective, Part II: The application of socio-technical theory, MIS
Quarterly, (December 1977), 11-28.

Browne, P. (1979) Security: Checklist For Computer Center Self-Audits. AFIPS, Arlington,
Va.

Checkland, P. and J. Scholes (1990) Soft Systems Methodology in Practice. Chichester: J.
Wiley.

Coad, P. and E. Yourdon (1991) Object-Oriented Analysis 2nd Ed.. Englewood Cliffs:
Yourdon.

Commission of European Communities (1990) Information Technology Security Evaluation
Criteria (ITSEC), Provisional Harmonized Criteria, Version 1.2. Brussels, Belgium:
Commission of European Communities, Directorate--General XIII (June).

Connell, J. and L. Shafer (1989) Structured Rapid Prototyping: An Evolutionary Approach
to Software Development. Englewood Cliffs: Yourdon Press.

Davenport, Thomas and James Short (1990) The new industrial engineering: Information
technology and business process redesign, Sloan Management Review (Summer) 11-27.

Davis, G. (1982) "Strategies for information requirements determination," IBM Systems
Journal 21 (1) 4-30.

Embley, D., B. Kurtz and S. Woodfield (1992) Object-Oriented Systems Analysis: A
Model-Driven Approach. Englewood Cliffs, N.J.: Yourdon Press.

Er, M. (1987) Prototyping, participative and phenomenological approaches to information
systems development, Journal of Systems Management (August) 12-15.

Farquhar, B. (1991) One approach to risk assessment, Computers & Security 10, 1, 21-23.

Finkelstein, C. (1989) An Introduction to Information Engineering: From Strategic Planning
to Information Systems. Sydney: Addison-Wesley.

Fisher, R. (1984) Information Systems Security. Englewood Cliffs: Prentice-Hall.

Fitzgerald, J. and A. F. Fitzgerald (1990) Designing Controls Into Computerized Systems.
Jerry Fitzgerald & Associates, Redwood City, Ca.

Forcht, K.A. (1994) Computer Security Management, Danvers, Massachusetts: Boyd &
Fraser.

Galletta, D. and R. Heckman (1990) A role theory perspective on end-user development,
Information Systems Research 1, (2) (June) 168-187.

Gause, D. and G. Weinberg (1989) Exploring Requirements: Quality Before Design New
York: Dorset House.

26 Method Engineering

Giddens, A. (1984) The Constitution of Society: Outline of the Theory of Structure.
Berkeley, Calif: Univ. of California Press.

Ginzberg, M. J. (1981) Early Diagnosis of MIS Implementation Failure: Promising Results
and Unanswered Questions, Management Science 27, (4).

Hammer, M. (1990) Reengineering work: Don’t automate, obliterate, Harvard Business
Review (July-August) 104-112.

Hirschheim, R. and H. K. Klein (1992) Paradigmatic influences on information systems
development methodologies: Evolution and conceptual advances. Advances in Computers
34, 294-381.

Hirschheim, R. and H. K. Klein, (1994) Realizing emancipatory principles in information
systems development: The case for ETHICS, MIS Quarterly 18 (March) 83-95.

Hitchings, J. (1995) Deficiencies of the traditional approach to information security and the
requirements for a new methodology. Computers & Security 14 (5), 377-383.

Hutt, A. E., S. Bosworth and D. B. Hoyt (eds.) (1988) Computer Security Handbook.
Macmillan Publishing Co., New York, NY.

Jackson, M. C. and P. Keys, (1984) Towards a system of systems methodologies. Journal
of The Operational Research Society 35, 473-486.

Jayaratna, N. (1988) Guide to methodology understanding in information systems practice.
International Journal of Information Management 8, 43-53.

Jayaratna, N. (1993) Methodology assistance in practice: A critical evaluation. Systemist 15,
(1) February, 5-16.

Kettinger, W., V. Grover, S. Guha, and A. Segars (1994) Strategic information systems
revisited: A study in sustainability and performance. MIS Quarterly 18 (1) (March) 31-
58.

Krauss, L. 1. (1980) SAFE: Security Audit And Field Evaluation For Computer Facilities And
Information. AMACOM, New York, NY.

Kumar, K. and R. Welke (1992) Methodology engineering: A proposal for situation-specific
methodology construction, in W. Cotterman, and J. Senn (Eds.) Challenges and Strategies
for Research in Systems Development. New York: John Wiley & Sons, pp. 257-268.

Kyng, M. (1991) Designing for cooperation: Cooperating in design, Communications of the
ACM 34 (12) (December) 65-73.

Lane, V.P. (1985) Security of Computer Based Information Systems. London: Macmillan.

Lyytinen, K. (1987) Different perspectives on information systems: Problems and solutions,
ACM Computing Surveys (1) (March) 5-42.

Lyytinen, K. (1988) Expectation failure concept and systems analysts view of information
system failures: Results of an exploratory study, Information & Management 14, 45-56.

Lyytinen, K. and R. Hirschheim (1987) Information systems failures: A survey and
classification of the empirical literature, Oxford Surveys in Information Technology 4.

Manganelli, R. and M. Klein (1994) Should you start from scratch? Management Review 83
(7) (Jul) 45-47.

McLean, E. R. (1979) End users as application developers, MIS Quarterly 3 (4) (December)
37-46.

Mumford, E. (1983) Designing Human Systems For New Technology: The ETHICS Method.
Manchester: Manchester Business School.

Structural artifacts in method engineering 27

Naumann, J. and A. Jenkins (1982) Prototyping: The new paradigm for systems
development, MIS Quarterly (Sept) 29-44.

Naur, P. (1993) Understanding Turing’s universal machine: Personal style in program
description. The Computer Journal 36 (4) 351-372.

Neugent, W. (1982) Acceptance criteria for computer security, NCC Conference Proceedings.
Arlington, Va: AFIPS Press.

Neumann, Peter G. (1995) Computer Related Risks. New York: ACM Press.

Oliga, J. (1988) Methodological foundations of systems methodologies. System Practice, 1
(1) (March), 87-112.

Olle, A., J. Hagelstein, I. Macdonald, C. Rolland, H. Sol, F. Van Assche, and A.
Verrijn-Stuart (1988) Information Systems Methodologies: A Framework for
Understanding. Wokingham: Addison Wesley.

Olle, T. W., H. G. Sol and A. A. Verrijn-Stuart, (1982) (eds) Information Systems Design
Methodologies: A Comparative Review, Amsterdam: North Holland.

Olle, T. W., H. G. Sol and C. J. Tully, (1983) (eds), Information Systems Design
Methodologies: A Feature Analysis, Proceedings of the IFIP WG 8.1 Working Conference
on Feature Analysis of Information Systems Design Meeting, York, UK, 5-7 July, 1983,
Amsterdam: North-Holland.

Orlikowski, W. and D. Robey (1991) Information technology and the structuring of
organizations, Information Systems Research 2 (2) (June) 143-169.

Ozier, W. (1992) Risk Assessment and Management Data Security Management Report
85-01-20. New York: Auerbach.

Parnas, D. and P. Clements (1986) A rational design process: How and why to fake it.
IEEE Transactions on Software Engineering SE 12 (2), February, 251-257.

Reich, B. and I. Benbasat (1990) An empirical investigation of factors influencing the success
of customer-oriented strategic systems. Information Systems Research 1 (3) (September)
325-347.

Sandman, P., C. Klompus and B. Yarrison (1985) Scientific and Technical Writing. Ft.
Worth, Texas: Holt, Rhinehart and Winston.

Schnebeger, S. (1995) Distributed computer system complexity versus component simplicity.
Its effects on software maintenance. Georgia State University Manuscript, summarized in
J. DeGross, G. Ariav, C. Beath, R. Hoyer and C. Kemerer (eds.), Proceedings of the
Sixteenth International Conference on Information Systems. New York: ACM Publ. p.
351.

Schneidewind, N. (1987) The state of software maintenance. IEEE Transactions on Software
Engineering SE-13 (3) March 303-310.

Sumner, M. and R. Kleer (1987) Information systems strategy and end-user application
development, Data Base 18 (4) (Summer) 19-30.

Truex, D. and H. K. Klein (1991) A rejection of structure as a basis for information systems
development. In R. Stamper, R. Lee, P. Kerola and K. Lyytinen (Eds.), Collaborative
Work, Social Communications and Information Systems. Amsterdam: North-Holland, pp.
213-236.

Verrett, R. and R. Hysert (1993) Summary of findings, working group 2, managerial and
structural issues in the draft risk management framework. in Proceedings 5th International

28 Method Engineering

Computer Security Risk Management Workshop. Ottawa: National Institute of Standards
and Technology and Communications Security Establishment, 7-9.

Wand, Y., and Ron Weber (1995) On the deep structure of information systems, Information
Systems Journal 5 (3) (July) 203-223.

Willcocks, L. and G. Fitzgerald (1994) Toward the residual is organization? Research on
it outsourcing experiences in the united kingdom. in Baskerville ef al. (eds) Transforming
Organizations with Information Technology. Amsterdam: North-Holland, pp. 129-152.

Wood, C. C. (1995) Identity token usage at American commercial banks. Computer Fraud
and Security Bulletin (March) 14-16.

Wynekoop, J. and N. Russo (1993) System development methodologies: Unanswered
questions and the research-practice gap, inJ. Degross, R. Bostrom, and D. Robey (Eds.),
Proceedings of the 14th International Conference Information Systems. New York: ACM
Publ. pp. 181-190.

Yourdon, E. (1989) Modern Structured Analysis. Englewood Cliffs, NJ: Yourdon Press.

7 BIOGRAPHY

Richard Baskerville is an associate professor in the School of Management at Binghamton
University. His research focusses on security and methods in information systems, their
interaction with organizations and research methods. He is an associate editor of MIS
Quarterly and The Information Systems Journal. Baskerville’s practical and consulting
experience includes advanced information system designs for the U.S. Defense and Energy
Departments. He is vice chair of the IFIP Working Group 8.2, and a Chartered Engineer
under the British Engineering Council. Baskerville holds MSc and PhD degrees from the
London School of Economics.

3

Characterizing IS Development Projects

Kees van Slooten and Bert Hodes

School of Management Studies, University of Twente
P.O. Box 217, 7500 AE Enschede, The Netherlands
E-mail: cvs@sms.utwente.nl

Abstract

The relationship between project context and project situation is described by defining
a number of contingency factors and components of a project approach. The applied
contingency model is based on existing literature about situated method engineering.
Relationships between contingency factors and the components of the project approach
are analyzed for nine non-standard projects of the systems development department of
a bank organization. The conclusion is that the choices of project managers concerning
the project approach can be related to the project situation. The result of this research is
a starting point for a contingency approach of information systems development projects
in a bank.

Keywords
Systems development, situated methods, method engineering

1 INTRODUCTION

During a field-study, the organization of the information systems development process
of a major bank in the Netherlands was investigated. Up to now, centralization of
computer-based data processing was the main approach, including one standard approach
to information systems development. However, more specific requests from clients and
an increasing dynamic environment require more flexibility and variety from the applied
approaches to information systems development. New trends in technology like
client/server, relational database, fourth generation tools, end-user computing, object
orientation, office automation, groupware and multimedia will influence information
systems development. Consequently, one standard approach to information systems
development will not suffice and more situation-specific approaches will be necessary.
The need for situation-specific approaches has also been emphasized by: Kumar and
Welke (1992), Van Slooten and Brinkkemper (1993), Vessey and Glass (1994).

The concept of Methodology Engineering has been an attempt of Kumar and Welke
to define the next level of evolution of methodologies. They discuss the need to customize

30 Method Engineering

methodologies to meet the requirements of the development context. Van Slooten and
Brinkkemper prefer the term Method Engineering instead of Methodology Engineering.
Subsequently, we follow the terminology of Van Slooten and Brinkkemper, and especially
of Van Slooten (1995).

Method Engineering is performed by configuring a project approach or situated method
for systems development, utilizing existing method fragments to serve the project in
context. Figure 1 is a simplified representation of situated method engineering. Method
fragments are coherent components of existing methods. The project context includes the
existing systems development organization, the customer organization, the supplier
organization, the area of application, information and computerization policies, etc.
Contextual or contingency factors, derived from the project context, are important for
the entire method engineering process (arrow 1). However, it may sometimes be desirable
to change the project context as a result of the method engineering process (arrow 2).

The configuration process comprises characterizing the project and selecting or
constructing a situated method. The most important project contingency factors are
determined during project characterization as a result of interviewing, brain storming
sessions, questionnaires or other knowledge acquisition techniques. The prevalent
contingency factors are utilized for the selection or construction of a situated method
(arrow 5). This is supported by a method engineering information system, consisting of
formalized rules and a method base. The components of the method base are method
fragments and route maps. Route maps are plans associated with development strategies,
including the activities to be performed and the products to be delivered. The method
engineering information system can be considered as a knowledge-based information
system supporting the configuration process. It contains method fragments and route
maps for the construction of a situated method (arrow 6).

A systems development project is initially started, using the situated method determined
during the configuration process (arrow 3).

Project Context

2
1 Method Engineering Process
Configuration T 5 > Method
Process <« Engineering
6 Information
System
i 4
]
|
3 i
Project
Performance

Figure 1. Situated Method Engineering

Characterizing IS development projects 31

Unforeseen contingency factors may arise during project performance necessitating im
provements and/or clarifications of the project characterization and an adjustment of the
situated method (arrow 4). Evaluations during and after project performance may yield
new knowledge about situated systems development, which is stored by the method
engineering information system (included by arrow 4 and 5).

The bank organization is in the middle of a process of developing a new architecture
for information systems development in which the contingency approach takes a central
position. This means that various approaches must be available from which the best fitting
is chosen depending on the project context. Also Necco (1987) already said that
guidelines should be developed within the organization to provide direction for various
approaches, which the organization selects for its systems development process. However,
before formulating guidelines, it is necessary to know more about possible choice
alternatives, prevalent contingency factors, and the relationship between the contingency
factors (section 2) and the choice alternatives (section 3). The contingency model (section
2.1) is based on a situated method engineering approach (figure 1, after Van Slooten
1995). The choice alternatives have been made explicit after analyzing the existing
practice of information systems development projects within the bank organization. The
analysis of actual projects in practice also made some relationships between contingency
factors and project approaches available (section 4). Projects selected for this research,
are non-standard projects. We avoided standard projects, because standard approaches
are linked to standard projects, which will not reveal much information about the
relationship between contingency factors and choice alternatives. Furthermore, the
research was focused on choices that can be made by project managers, and not on
decision making by higher or lower levels of agents in the organization, which is outside
the scope of this research.

2 CONTINGENCIES AND CONSTRAINTS
2.1 The contingency model

The contingency model of this research is based on the situated method engineering
approach of figure 1. But the focus of this field study is on determining contingency
factors as components of the project context, eliciting route maps and method fragments
as components of possible project approaches, and relating contingency factors and project
approaches (figure 2). The components of approaches may consist of methods, techniques,
and tools for information systems development as well as for project management. This
means an extension of the definition of method fragments. Contingency factors are
variables from the project context with a certain value between Low (L) and High (H)
that affect the project approach. Constraints can be considered as a specific kind of
contingency factors causing limitations for the approach.

32

Method Engineering

PROJECT CONTEXT-- Configuration process -- COMPONENTS
-contingencies | - route map fragments
-constraints | - method fragments

PROJECT APPROACH
(Result of configuration process)

Figure 2 Contingency model

2.2 Contingency factors

The explicitation of contingency factors is based on the work of Van Der Hoef et al.
(1995). They composed a list of contingency factors and constraints, which is the product
of collecting and integrating existing lists from various sources. However, we removed
some inconsistencies from this list and selected the most important factors for the field
study according to experts of the bank. Some factors, which have the same value for each
project (e.g. the quality of information planning), are outside the scope of the field study.
Other factors are a generalization or a specialization of the factors of Van Der Hoef et
al. Finally, the list of contingency factors is:

Management commitment. To what extent management supports the project.
Importance. To what extent the project or information system is important for the
organization.

Impact. To what extent the information system will change business operation after
implementation.

Resistance and conflict. To what extent stakeholders have different or conflicting
interests.

Time pressure. To what extent the available time for the project is experienced as in-
sufficient.

Shortage of human resources. To what extent the number of people available for the
project is experienced as insufficient.

Shortage of means. To what extent the means available for the project are experienced
as insufficient.

Formality. To what extent there are lasting rules, procedures, and standards for the
business processes and supporting information.

Knowledge and experience. To what extent the users possess enough knowledge and
experience to develop the required information system.

Skills. To what extent the members of the project-team possess enough knowledge and
experience to develop the required information system.

Size. The number of people being a member of the project-team.

Relationships. To what extent there are relationships between the new information
system and other information systems.

Dependency. To what extent the project depends on activities and conditions outside
the project.

Clarity. To what extent the goals, needs, and desires of the users are clear and coherent
enabling a sound specification of the functional requirements.

Stability. To what extent the goals, needs, and desires of the users will not change over

Characterizing IS development projects 33

time enabling a stable specification of the functional requirements.

» Complexity. To what extent the functional components of the information system are
complex.

« Level of innovation. To what extent the applied technology and/or the applied methods,
techniques, and tools are new to the organization.

2.3 Constraints

Constraints are specific contingency factors without a relative value between Low (L) and
High (H), but they definitely affect the project approach. Constraints are specific
circumstances restricting the number of choice alternatives and affecting the relationships
between contingency factors and project approach. The influence of constraints on these
relationships is outside the scope of this field study. One may distinguish five kinds of
constraints: Contracts, Type of information system, Standards, Technical constraints, and
External factors. We do not want to go into detail, because it is not part of this research.

3 CHOICE ALTERNATIVES

3.1 Definitions

The situated method engineering approach contains two kinds of building blocks: route
maps and method fragments. To describe the situation of the bank more precisely, we
shall define the concepts route map fragment and method fragment as follows.

A route map fragment is a coherent part of the complete route map of a systems
development project. A route map fragment may refer to strategies, activities, and
products concerning systems development as well as project management.

A merhod fragment is a coherent part of a method(ology) for systems development or
project management. Method fragments may be linked to a route map, which may
establish a complete project approach or a situated method.

3.2 Route map fragments

Tracing and dividing

One of the first activities of a project manager is to determine the scope of the project in
co-operation with the users. We distinguish two possibilities for tracing the business
functions for the project: zight (T) and wide (W). Tight tracing means that the functionality
required will partly be realized outside the project. Wide tracing means that the
functionality required will be completely realized during the project. Related to tracing
the functionality is dividing the functionality into subsystems, which will be developed
separately. We distinguish: one system (o) and subsystems (s).

Delivery strategy
The delivery strategy is the way of delivering and introducing the information system in
the organization. We distinguish three options: at once (o), incremental (i), and

34 Method Engineering

evolutionary (e).

* (0). Delivery at once means that the entire system is delivered at once.

* (i). Incremental delivery means that the system is delivered by a serial delivery of
subsystems, each containing a part of the functionality.

* (e). Evolutionary delivery means that the system is delivered by successive versions
of the entire system partly containing the entire functionality. Functional requirements
may change between two versions.

The delivery strategy deals with subsystems and not with subprojects. The distinction

between subsystems and subprojects is important throughout this paper. Different stages

of developing one (sub)system may be realized by different subprojects.

Realization strategy

The realization strategy is the way of realizing the various subsystems with respect to

sequence and concurrence. We distinguish four options: at once (a), concurrent (c),

overlapping (0), and incremental (i).

* (a). Realization at once means that the entire information system is developed at once.

» (c). Concurrent realization means that all subsystems are concurrently developed.

* (0). Overlapping realization means that some subsystems are concurrently developed
and other subsystems consecutively.

* (i). Incremental realization means that all subsystems are developed one after another.

Establishing subprojects

There are several ways to divide information systems development into subprojects. We

distinguish four options: one project (0), process-oriented (p), system-oriented (s), and

hybrid (h).

¢ (0). One project means no division into subprojects.

* (p). Process-oriented means division into subprojects based on information system
development subprocesses.

¢ (s). System-oriented means division into subprojects based on subsystems.

» (h). Hybrid means division into subprojects partly based on subprocesses and partly
on subsystems.

Project organization

Of course, one needs a project organization to run the project. Decisions have to be taken
about who is involved and who is responsible for what takes place. A communication
structure is provided describing on which levels communication is necessary and its
frequency. The project manager may choose a standard (s) or an adapted (a) structure
for the project organization.

Project management products and activities

Other activities of project management are for example: estimating risks, determining the
required means, investigating the consequences of the project. These activities, plans and
reports concern the performance of the project. These project management products may
be standard (s) or adapted (a). In the first case the format and the contents are well
defined. In the second case we have to deal with more informal project control.

Characterizing IS development projects 35

Development strategy

The development strategy is a generic strategy for the sequence and the selection of

activities supporting the development of a system (that is) not further divided into

subsystems. Also based on Van Slooten and Schoonhoven (1994) we distinguish five

options: phase-wise (p), tile-wise (t), prototyping (g), iterative (i), outsourcing (o).

» (p). Phase-wise is strict linear development without prototyping.

« (t). Tile-wise is linear development with partly overlapping phases.

* (g). Prototyping is linear development including prototyping, so-called throwaway
prototyping. During functional design a prototype is built to improve the functional
requirements or to show the feasibility of a certain technology.

 (i). Iterative or keep-it prototyping. The cycle of analysis, design, implementation and
evaluation is reiterated several times. After each iteration the system may be adapted
until there are no additional requirements.

» (0). Outsourcing or software package selection means that the system is not developed
by the bank organization. Before outsourcing the functional requirements are
determined by the bank organization. Required modifications of a software package
are realized by the supplier.

System development products and activities

Project management determines which system development products must be delivered.
There is a standard list of products, but the project manager may construct his own list
if he has good reasons to do so. The products may describe different aspects of the
business system and/or the information system. System development activities must be
determined to develop the products. Possible options are standard (s) and adapted (a).
+ (s). Standard if the standard list is used.

¢ (a). Adapted if the standard list is not completely used.

3.3 Method fragments

Method fragments may come from methods, techniques, and tools for project management
as well as systems development. There is a standard way of working for project
management, which is described in a manual. The manual contains descriptions of
activities for project management and techniques and tools that should be applied. This
means that the project manager has two options: standard (s) and adapted (a).

» (s). Standard means that the project manager follows the manual to the letter.

¢ (a). Adapted means that he changes the standard.

Methods, techniques, and tools for systems development deal with the contents of the
information system that must be developed. The standard method for the bank
organization is Method/1 and a few other tools for specific tasks. This means that here
too there are two options: standard (s) and adapted (a).

36 Method Engineering

4 RESEARCH APPROACH AND RESULTS

4.1 Projects

The following nine projects, with deviations from the standard approach to systems
development within the bank organization, have been selected for this field study:

» Developing an information system establishing data administration to enter the
exchange market of shares for a major telecommunication organization in Holland.

* Realizing some changes in information systems supporting business in stocks, which
is necessary for maintaining a certain service-level and realizing some changes.

« Developing a new information system dealing with information supporting questions
and complaints concerning foreign promotion activities.

¢ Developing an information system for processing guaranteed means of payment such
as cheques, utilizing imaging technology.

« Enhancing a voice-response application with functionality for transactions by phone.

» Re-designing the back-office for business in stocks by developing an information
system based on a software package for storing stock transactions.

* Modifying a number of heavy applications to decrease the workload of the mainframe
computers. ‘

¢ Developing an information system that is capable of collecting, enriching, storing, and
distributing data from various central databases, supporting various accounting
information systems.

» Developing a pilot information system in a client/server environment, supporting the
communication between advisers and clients.

Table 1 represents the contingency factors related to the fragments of approaches to
systems development for the nine projects. Deviations from the standard approach are
printed in bold type. The contingency factors may have the following values: 1 (low), n
(normal), or h (high). These values are determined by interviewing the project managers
and by sending them a questionnaire to respond. Some contingency factors did not cause
a deviation from the standard, e.g. the factor 'resistance and conflict'. Sometimes, the
standard approach may allow more than one value of a contingency factor or approach
fragment. The standard approach is defined as follows: (Tracing =tight, Dividing =one
system, Delivery Strategy=at once, Realization Strategy=at once, Establishing
Subprojects =one project, Project Organization=standard, Project Management Products
and Activities=standard, Development Strategy =phase-wise, Systems development
Products and Activities =standard, Project Management Method Fragments =standard,
Systems Development Method Fragments =standard).

Characterizing IS development projects

Table 1 Contingency factors and approaches for the nine projects

Contingency factors 1 2 3 4 5 6 7 8 9
Management commitment h h n n n h n n h
Importance h h h h h h h h h
Impact n h h h n h n h n
Resistance and Conflict 1 n n n n n n n n
Time pressure h h n n n n h n h
Shortage of human resources h h 1 1 I 1 n n 1
Shortage of means I I n n n n n n 1
Formality h h h h h h h 1 1
Knowledge and experience h h h h h h h h h
Skills h h n n n 1 h n n
Size h h n n h n h h n
Relationships n h h h h h h h n
Dependency n h 1 1 h h n 1 1
Clarity h n h h h 1 h 1 1
Stability n 1 n 1 1 1 h 1 1
Complexity I h n n h h h h h
Level of innovation I I h h h h 1 h h
Approach

Tracing t t t w w w

(t=1right, w=wide)

Dividing S S s s S o

(0=one system, s=subsystems)

Delivery Strategy 0 e i o o ¢

(o=at once, i=incremental, e=evolutionary)

Realization Strategy c]] c c a

(a=at once, c=concurrent, o=overlapping, i=incr)}

Establishing Subprojects h h s o o p

(0=one project, p=process-oriented, s=system-oriented, h=hybrid)

Project Organization a a a s s a

(s=standard, a=adapted)

Project Management Products a s s s s a

and Activities (s =standard, a=adapted)

Development Strategy to t po po to [

(p=phase-wise, t=tile-wise, g=prototyping, i=iterative, 0= outsourcing)

Systems Development Products a s a s s a

and Activities (s=standard, a=adapted)

Project Management Method s s s s s a

Fragments (s =standard, a=adapted)

Systems Development Method s a s s 8 a

Fragments (s =standard, a=adapted)

38 Method Engineering

4.2 Discussion of relationships

Management commitment and importance

The factors management commitment and importance are considered as one factor,
because it was difficult to deal with these factors separately. The importance of the project
and commitment of management affect the project a lot. Cooperation and flexibility of
groups of specialists in the organization will increase considerably if one can rely upon
strong interest of management, implying a project of high priority. However, the influence
on the actual approach is limited, only the project organization was adapted for three
projects that were of great importance.

Project organization. A first consequence was to involve senior employees as a kind of
sponsor of the projects, which means decisions will be taken at a higher level. During
one project, a board of managers of various business units was available to take important
decisions. A second consequence, if we have to deal with high time pressure as well, was
including people from the department for computer and network facilities responsible
for the technical operation of systems.

Impact

The influence of developing an information system on the users organization depends on
to what extent business operation will change because of implementing the system.
Important aspects are the number of people for whom work will change and to what extent
the work itself will change. The impact of the information system hardly affects the
approach to the project. Five of the nine projects had to deal with high impact, one of
which had to change the delivery strategy.

Delivery strategy. The delivery strategy for standard projects is delivery of the whole
system at once. It was already mentioned that for only one project, impact of the
information system was a reason for choosing another delivery strategy, namely an
evolutionary strategy. Changing the users organization at once should not be acceptable.

Time pressure

We have to deal with projects that have a deadline. Time pressure increases if the
available time becomes much less than the time needed. The high time pressure for four
of the nine projects affected a number of approach fragments: tracing, realization strategy,
project organization, project management products and activities, development strategy,
and systems development products and activities.

Tracing. High time pressure was a reason to limit the functionality of the information
system for the time being. A small and simple application with limited functionality can
be realized in a shorter time.

Realization Strategy. For three projects, high time pressure was a reason for choosing
a concurrent or overlapping realization. Concurrent development of all subsystems should
occur as much as possible to decrease the time elapsed for the whole project. Sometimes,
a concurrent realization strategy was not possible because of a lack of human resources.
In that case, an overlapping realization strategy was chosen.

Project Organization. High time pressure affected the project organization in different
ways:

Characterizing IS development projects 39

« To tune activities, oral communication was emphasized instead of written documents
saving a lot of time.

» Utilizing external workers if nobody else is available. Generally, external workers lack
knowledge about the existing systems. Consequently, projects were organized enabling
cooperation between internal and external workers.

« Keeping people from specific departments like quality assurance, system management,
or computer and network facilities (production management) outside the project
organization, if their contribution can be missed.

+ Including people from the production management department (computer and network
facilities) into the project, if one may expect problems during the transfer of the
system, ready for actual operation, to the production management department.

Project Management Products and Activities. Due to time pressure it was decided for one

project to deliver only a limited number of project management products like plans for

quality assurance, risk management, approach to the project, documentation management,
etc.

Development Strategy. Due to time pressure the following development strategies were

selected:

 Atile-wise development strategy means that the next phase will start before the current
phase is finished. Formal approval of one or more phases was postponed, because this
takes time. Sometimes two or more phases were turned into one phase to save time.

» Because of time pressure or shortage of human resources an outsourcing strategy was
frequently chosen. The functional requirements were determined by the bank, after
which the remaining phases were established by an external organization. However,
accepting and introducing the system were again internal activities.

Systems Development Products and Activities. Because of time pressure sometimes only

systems development products and connected activities were selected which were

absolutely necessary. Sometimes other products were delivered instead of the products,
prescribed, if it speeded up the process. It is easier to obtain approval for delivering less
or other products if the importance of the project is high.

Shortage of human resources

In only two of the nine projects the shortage of human resources was high. This
contingency factor affected the project organization and the delivery strategy.

Project Organization. The shortage of human resources was resolved by hiring external
workers if the budget for the project was sufficient.

Delivery Strategy. In one project, shortage of resources was a reason for partly
outsourcing systems development. Because of time pressure it was not possible to
postpone systems development.

Formality

In seven out of nine projects the formality was high as in standard projects. This
contingency factor only affected the systems development products and activities.
Systems Development Products and Activities. In two projects with a high value for
formality less products were made, because some products to be made were similar to
already existing system documents, e.g. the data model, which means that in such cases
it was possible to use existing products.

40 Method Engineering

Size

The size of five projects was high (more than ten persons). The following approach
fragments were affected by the size of the project: tracing, dividing, realization strategy,
and establishing subprojects.

Tracing. Problems with the management of a project will arise if many people are
working for the project at the same time. Therefore, it was tried to trace the project as
tight as possible, which means postponing or deleting functionality, if not absolutely
necessary. Another way of limiting the size of a project is lengthening the time for the
project. However, this was not possible because of a fixed deadline.

Dividing. The size of the project was mentioned most often as the reason to divide the
system into subsystems. Therefore, the functionality was divided into coherent subsystems
enabling independent development of these subsystems.

Realization Strategy. In a number of projects was chosen for an overlapping strategy
instead of realization at once, because of the size of the project. Through realizing the
subsystems partly in sequence instead of all subsystems concurrently, it was possible to
limit the size of the project. Further decreasing the size of the project by using an
incremental realization strategy was often not possible because of high time pressure.
Establishing subprojects. Establishing subprojects was affected for some projects by the
size of the project. Generally, subprojects are established for recognized subsystems.
However, size was the reason for a number of projects to choose a hybrid approach for
establishing subprojects, which means that also for certain phases of the systems
development process different subprojects are established.

Dependency

Dependency was high for three projects, but the approach of these projects was hardly
affected, only dividing into subsystems.

Dividing. Dividing into subsystems was affected by the dependency of other activities in
only one project. There was a strong dependency of a system in the middle of a
development process. Therefore, it was decided to consider the functionality that was
dependent on another project as a separate subsystem. This subsystem was developed after
the other project had been finished.

Clarity and stability

The reason for joining clarity and stability of the functional requirements is that the
approach was only affected by instability of the functional requirements if, at the same
time, clarity of the functional requirements was low. There was also a relationship
between the formality of the business processes, and the clarity and stability of the
functional requirements. If the formality was low, then the clarity and stability of the
functional requirements were also low. Unclear functional requirements affected the
tracing of the functionality and the development strategy. Instability of the functional
requirements only affected the development strategy.

Tracing. Unclear requirements of users were the reason for one project to limit initially
the functionality of the system. A large number of interest groups put forward their own
specific and often conflicting ideas about the application. Consequently, functionality was
restricted to common requirements.

Development Strategy. An iterative development strategy was chosen for two projects

Characterizing IS development projects 41

instead of the usual phase-wise development strategy, because of unclear and unstable user
requirements. The requirements were determined and realized during a first development
cycle, after which the user could improve his requirements by using the application
developed. A precondition for choosing such a strategy is the availability of CASE-tools
that facilitate a rapid application development.

Complexity

For six projects complexity was high. The complexity of the functional components of
the system affected the way of tracing and dividing functionality, establishing subprojects,
project organization, the development strategy, and the systems development method
fragments.

Tracing. High complexity of the required functionality was for two projects the reason
for limiting functionality with consequently fewer problems during systems development.
Dividing. High complexity of the system was during one project one of the reasons for
dividing the functionality into subsystems. The functionality was divided into two
subsystems. Different kinds of expertise were required for developing these subsystems.
Establishing Subprojects. In a number of projects the complexity was a reason for
choosing a process-oriented or hybrid approach to establish subprojects for certain
processes or phases of systems development. In two cases it was decided to test the
application in a separate subproject. In another project with many modifications of
existing systems the analysis phase of these systems was established in a separate
subproject because of the complexity and the different kind of expertise that was needed
for the various systems. Finally, in one project complexity was the reason for realizing
a data model in a separate subproject, because specific knowledge was necessary, which
was not available in the project-team of the systems development department.

Project Organization. In one project, complexity was the reason for involving people with
specific expertise from various departments. One dealt with a technical migration project
including technical improvements of existing systems. Because of the complexity it was
decided to add experts in databases, hard systems software, etc. to the project-team.
Development Strategy. In one project the complexity was the reason for choosing a tile-
wise development strategy. A badly documented system had to be modified. It was
decided to start a functional and technical design as partly overlapping phases enabling
a clear specification of what should be modified. In another project complexity was the
reason for choosing an outsourcing strategy, because an existing software package was
more appropriate than internal development of a new application.

Systems Development Method Fragments. In two projects, high complexity was the reason
for applying other tools than standardly available. In one project monitoring tools
supporting the analysis of complex systems were necessary. In another project a tool for
testing programs was necessary, because of the complexity of the interaction of many
interacting subsystems.

Level of innovation

In principle, the applied technology is part of the approach in correspondence with
functionality. However, during the nine projects the technology was mostly supplied by
the users organization. Up to now the central mainframe was the standard platform for
running the applications, which means that other environments like LAN, WAN, or PC

42 Method Engineering

are new. The level of innovation was high in non-mainframe environments (six projects).
The level of innovation affected the division of the system, the project organization, the
development strategy, the systems development products and activities, and the systems
development method fragments.

Dividing. In three projects the level of innovation was a reason to divide the system into
subsystems. The functionality was divided into two subsystems. One was realized on the
mainframe (communication with central systems and processing of central data) and the
other on the decentralized environment (the actual application).

Project Organization. In two projects the level of innovation was the reason to involve
external workers in the project organization. They participated in project- and working
groups with the intention of knowledge transfer from the external workers to the workers
of the bank. In other projects of a high level of innovation outsourcing the innovative part
of the application was preferred (see also effect on the development strategy). Mutual
adjustment of the functional specifications was necessary in this case, enabling the co-
operation between the internal and external parts of the application.

Development Strategy. The high level of innovation did affect the development strategy
of various projects. It depends on the question whether the organization likes to acquire
more knowledge of the new technology or not. In two projects an innovative system was
developed in cooperation with an external supplier. For one of these systems, the high
level of innovation was the reason for choosing a prototyping strategy. A prototype was
constructed to estimate the feasibility of the new technology. An iterative development
strategy was used for the development of the prototype. The final specifications were
determined by evaluating and modifying the prototype. In the other project (pilot) the
prototype was experimental, which meant in this case that the desirability and feasibility
of a new kind of application was investigated. An iterative development strategy was
chosen again. In three other projects with no intention of transferring knowledge, an
outsourcing strategy was chosen for the development of the innovative part of the
application. Outsourcing of the development of a subsystem also affects the project
management products and activities. In this case, one has to deal with a contract with the
external supplier, but such activities are mostly the responsibility of the user's
organization with some assistance of a special department. The systems development
department is responsible for the control of the contents of the activities of the external
workers.

Systems Development Products and Activities. In one of the projects the high level of
innovation was the reason to perform other activities and deliver other products than
usual. The alternative environment and the tools available enabled another way of
developing information systems. The usual systems development products did not fit here,
because these usual products were based on the development of mainframe applications.
Systems Development Method Fragments. In one project the high level of innovation was
the reason for not applying the standard methodology Method/1. The systems development
activities and their sequence was determined by common sense. In two innovative projects
the presence of new technology was the reason for applying new tools like: fourth
generation environments, object-oriented programming languages, and tools for
developing graphical user interfaces. These kinds of tools have until now not been applied
in the mainframe environment of the bank, but only in client/server environments.

Characterizing IS development projects 43

5 CONCLUSIONS AND FURTHER RESEARCH

This research shows that the project approach is affected by the project context, in spite
of the present standards, procedures, and uniform way of working. Generally, a
contingency approach to systems development was not supported by the bank organiza-
tion. A project manager may construct a project approach by choosing various
components of an approach as described by this paper. There are several options available
for each component of an approach. In the former section it was described how the
choices were affected by the contingency factors of the project situation. Some
contingency factors did not affect the project approach at all (table 1). It was possible to
explain the choices made by the project manager using the current set of contingency
factors. However, this does not mean that the current set is the ultimate set of contingency
factors for this organization. It is a starting point for further research. We have already
seen that sometimes two contingency factors can be handled as one factor, e.g.
management commitment and importance, clarity and stability. Of course, this research
has some limitations:
» The projects have not been evaluated.
» Too few projects have been analyzed in order to support this research with quantitative
results.
This means that the found relationships between contingency factors and project approach
do not necessarily guarantee a 'best' approach. The relationships found are based on
choices made by senior project managers.

This research aims to contribute to the development of a contingency model for systems
development projects. Further research must be focused on the determination of successful
relationships between the project context and the project approach by evaluating chosen
project approaches depending on the situational factors, i.e. contingency factors including
constraints.

6 REFERENCES

Hoef, R. van der, et al. (1995), Situatie, Scenario en Succes (Dutch), Memoranda
Informatica, Internal Technical Report, University of Twente.

Kumar, K., R.J.Welke (1992), Methodology Engineering: A Proposal for Situation-
Specific Methodology Construction. In: Challenges and Strategies for Research in
Systems Development, Wiley and Sons Ltd.

Necco, C.R., et al. (1987), Systems Analysis and Design: Current Practices. In: MIS
Quarterly, 11, 4.

Slooten, C. van, S. Brinkkemper (1993), A Method Engineering Approach to Information
Systems Development. In: Information Systems Development Process, Proceedings IFIP
WG 8.1, Elsevier Science Publishers (North-Holland).

Slooten, C. van (1995), Situated Methods for Systems Development, Thesis, University
of Twente.

Slooten, C. van, B. Schoonhoven (1994), Towards Contingent Information Systems
Development Approaches, In: Methods and Tools, Theory and Practice, Proceedings
of ISD’%4, Bled.

44 Method Engineering

Vessey, I., R.L. Glass (1994), Application-Based Methodologies: Development by
Application Domain. In: Information Systems Management, Fall 1994.

4

Towards an integrated environment
for method engineering

John C. Grundy and John R. Venable

Department of Computer Science, University of Waikato
Private Bag 3105, Hamilton, New Zealand

email: jgrundy @ cs.waikato.ac.nz or jvenable @ cs.waikato.ac.nz

Abstract

In order to facilitate better Information Systems Development (ISD), Method Engineering
technqiues and tools are needed that support flexible creation, modification, and reuse of ISD
methods and tools for use on specific problem domains. A metamodelling notation is needed for
specifying and integrating different design notations. MetaCASE support is required for
building, reusing and evolving tools for these design notations. Process modelling tools for
both the coordination of these design notation tools and the evolution of software processes are
also needed. We describe our work on developing an integrated environment which supports
metamodelling, metaCASE and flexible software process modelling, and illustrate its use for
supporting Method Engineering.

Keywords
Method engineering, metamodelling, metaCASE, software process modelling

1 INTRODUCTION

Information Systems Development (ISD) methodologies are generally assumed to be situation-
independent. However, there are a multitude of different development methods and techniques
that each have various advantages and disadvantages, some of which relate to the problem
domain or the development context. A stream of research has developed investigating the
possibility to choose, tailor, or engineer the development method accordingly. Kumar and
Welke (Kumar, 1992) coined the term methodology engineering and postulated this new field,
i.e. engineering a new ISD methodology by composing it from various techniques in order to
address problems in a particular domain. Vessey and Glass (Vessey, 1994) noted that, in any
case, system developers adapt and modify the methods that they use to the situation and their
preferences. Recently, Harmsen and Brinkkemper (1995) found that due to the increasing
complexity of Information Systems, development teams often require methods tailored to a
particular system development situation, which they term Situational Method Engineering.

46 Method Engineering

Developers may need to create a new method from scratch, modify (e.g. incrementally improve
or tailor) an existing method, or reuse parts of various methods and techniques and recombine
them into a new method, or any combination of the above. Developers may even need to
modify and adapt the development method while the development process is ongoing. Our goal
is to support this flexible sort of situational method engineering. In order to facilitate this,
developers need flexible support for:

* Design notation metamodelling and notation integration. This allows developers to specify
data models for the design notations they wish to use for development of a system, and in
the case of multiple design notations, to specify common information that will be shared
between the notations. Developers should be able to reuse all or parts of existing notations,
and be able to integrate different notations when one notation best supports modelling part
of the problem domain, and another notation is better suited to another.

¢ Tool construction facilities. These are used to build or modify CASE tools to support the
various design notations to be used. This includes the ability to keep information shared by
different design notations consistent i.e. to keep different notation repository information
consistent under change. Developers also need to specify the editors and rendering of
notation data models they desire.

¢ Software process modelling and work coordination. Process modelling specifies which
notations and tools will be used for different aspects of the system under development.
Work coordination support is needed to coordinate tool usage. Evolution and reuse of
process models allows developers to improve their development processes from one
project to another. Modelling the Method Engineering process itself provides a meta-
process level which helps to improve Method Engineering on subsequent projects.

Ideally a Method Engineering environment should support all of these activities in an integrated
fashion. Developers should be able to define and/or reuse software processes either for
developing a new system or for modifying an existing system and its existing descriptions.
They should be able to tailor existing design notations in either case. CASE tools supporting the
required notations should be built using the notation metamodels as repository specifications,
and common information in different tool repositories should be kept consistent. Developers
should be able to flexibly define and revise software processes during system development, and
be able to reuse these models on new projects.

Our approach is to combine techniques and tools from three distinct, yet related, areas of our
recent research. We have developed the CoCoA meta-modelling notation (Venable 1993,
Venable 1995) and have used this for design notation metamodelling and integration (Grundy,
1995a, Grundy, 1995b, Venable, 1995). We have developed the MViews framework for
constructing CASE tools and integrated Information Systems Engineering Environments
(ISEEs) (Grundy, 1993, Grundy, 1995a) and used this to develop ISEEs which support
multiple design notations [Grundy95a, Grundy95b]. Recently we have been developing a tool
for the coordination of work in CSCW systems (Grundy, 1995c), which also supports flexible
software process modelling. This paper describes our current work developing an integrated
environment for the definition, construction and coordination of ISEEs using these techniques.

2 RELATED RESEARCH

Current approaches to notation integration, CASE and metaCASE, and method engineering
support tools, go some way to addressing the Method Engineering aims from Section 1, but do
not completely satisfy them. Some work has been done on the static integration of notations.
Venable (1993) has performed detailed analyses and integrations of both data flow models and
conceptual data models. Campbell and Halpin (1994) have analysed levels of abstraction for
conceptual schemas. Falkenberg and Oei (1994) have proposed a metamodel hierarchy.

Integrated environment for method engineering 47

Wieringa (1995) has compared JSD, ER modelling and DFD modelling. Data modelling has
been used to compare different notations (Nuseibeh, 1992) and support methodology
engineering (Heym, 1992). Process-modelling has also been applied to compare and integrate
notations (Song, 1992).

Integrated ISEEs (or Integrated CASE tools and programming environments) allow designers
to analyse, design, and implement Information Systems from within one environment,
providing a consistent user interace and consistent repository (data dictionary). They help to
minimise inconsistencies that can arise when using several separate tools for information
systems development (Wasserman, 1987, Reiss, 1990). These ICASE environments allow
developers to analyse and design software using a variety of different notations, with limited
inter-notation consistency. Such tools do not generally support complex mappings between the
design notations, such as propagating an ER relationship addition to a corresponding OOA/D or
NIAM diagram. As an example, Software thru Pictures™ (Wasserman, 1987) uses a single
metamodel repository for all notation diagrams, although it only supports basic forms of
internotation consistency. The implementation of these environments is generally not sufficient
to allow different design notations to be effectively integrated, and consistency between design
and implementation code is often not maintained (Meyers, 1991). For example, MethodMaker
from Mark V Systems (Mark, 1995a) allows new notations and methods to be built, but
provides very limited inter-notation consistency management facilities. FIELD (Reiss, 1990)
and Dora (Ratcliffe, 1992) provide abstractions for keeping multiple tools and textual and
graphical views consistent under change. They do not, however, provide any mechanism for
propagating changes between views which can not be directly applied by the environment, such
as ER relationship changes to NIAM or OOA/D relationship changes. Thus changes which can
not be automatically translated to another notation are not supported.

Process-centred environments utilise information about software processes to enforce or
guide development. Examples include Marvel (Barghouti, 1992), CPCE (Lonchamp, 1995),
and ConversationBuilder (Kaplan, 1992). These environments usually provide low-level text-
based descriptions of work rationale, and often do not effectively handle restructuring of
development processes while in use (Swenson, 1993). ProcessMaker (Mark, 1995b) supports
the definition and use of multiple process diagrams, but only supports limited integration and no
event handling for I-CASE tools. Computer-Aided Method Engineering (CAME) tools, such as
Decamerone (Harmsen, 1995) and Method Base (Saeki, 1993), provide support for configuring
development processes and tools to a particular application, but often utilise complex textual
specifications, and don’t facilitate coordination of different notation tools during development.

3 THE COCOA META-MODELLING LANGUAGE

3.1 CoCoA

We have been using the CoCoA conceptual data modeling language (Venable, 1993) as a meta-
model for modelling Information System Modelling Languages (ISMLs). CoCoA is designed to
support modelling of complex problem domains and extends existing Entity Relationship (ER)
models. Figure 1 depicts the seven main CoCoA abstractions. Entities are the things in a
problem domain and attributes describe and/or identify them (Figure 1 (a)). Named
relationships have the semantics of ER relationships, and are composed of named roles, played
by entities. Cardinality constraints are indicated with each role (Figure 1 (b)). CoCoA supports
generalization and specialization, and where specialization is based on a partitioning attribute,
that attribute is shown (Figure 1 (c)). CoCoA extends other ER models by the implicit use of
categories, allowing the entity planing a role in a named elationship to be one of one or more
enity types, shown by connecting more than one entity (type) to the same role (Figure 1 (d)).
CoCoA derives its name from a fifth data modelling concept, that of Complex Covering

48 Method Engineering

Aggregation. Covering aggregation distinguishes the aggregation of entities into composite
entities from the aggregation of attributes into entities. Complex covering aggregation is
distinguished from simple covering aggregation in that aggregation of named relationships into
the composite entity is allowed (Figure 1 (e)). CoCoA supports aliases, which are useful for
model integration, showing old local names together with standardized names for synonyms
(Figure 1 (f)). Derived concepts (attributes, entities, named relationships, or covering
aggregation relationships) are annotated with a “*’ (Figure 1 (g)).

D,
Adaress
[(Air Venicte] [Land Vehicle] [‘Water Vehicle]
{a) Entity and Attributes (b) Named Relationship and Roles (c) Generalisation/specialisation
{[Cinked Uist J.

(d) Implled Category

(©)
() Alias (g) Derived Goncept (aggregation of entities and named relationships)

Figure 1 The CoCoA model notation.

3.2 MetaModelling with CoCoA

Relationship
o

D
Figure 2 Metamodel of core ER concepts.

We have used CoCoA to derive conceptual data models for the ER, NIAM, DFD, STD and
OOA/D design notations. As an example, the data model describing the fundamental
abstractions of ER models is shown in Figure 2. Enities are named and have zero or more
named attributes. Relationships are named and have two or more named roles. Roles link
entities and relationships and may include a maximum cardinality. Extensions to this basic ER
schema include provision for entity subtyping, optional and mandatory roles, and distinguished
key attributes of entities (Venable, 1993).

Integrated environment for method engineering 49

Figure 3 shows NIAM’s main abstractions. A NIAM entity is named and may have a reference,
made by one or more named labels. Fact types are named and have one or more roles. The
“derived” attribute of the fact type entity is marked as derived (by the asterisk) because its value
is true if it is related to a derivation rule. Roles link entities to facts, and are named. Nested fact
types are both entities and facts, i.e. they have roles but also behave as entities, being linked to
zero or more facts via further roles. A CoCoA model of other NIAM constraints is omitted for
brevity, but can be found in (Venable, 1993). NIAM derivation rules are not specified further
because they are not fully specified by Nijssen and Halpin (1989). Other notation meta-models
can be found in (Venable, 1993, Grundy, 1995a).

NIAM Model

referrer
an

reference
an

Uses to refer

G=

Figure 3 Metamodel of core NIAM concepts.

3.3 Notation MetaModel Integration with CoCoA

=
Data
Modet Coma

Figure 4 An integrated conceptual data model.

50 Method Engineering

We have developed integrated data models which capture the overlaps between ER, EER,
OMT’s object model, and NIAM. Figure 4 shows a partial metamodel integrating the entity and
attribute data modelling aspects of ER, EER, NIAM, and OMT. The ER and OMT models
differentiate between entities and attributes, whereas NIAM integrates these concepts into a
general entity type. The main difference between the OMT and ER conceptual data models is
OMT’s support for class methods. The overlaps between the notations are indicated by covering
aggregation showing the composition of each data model from the integrated data model entities
and relationships. Further discussion of these and of relationship type classifications is in
(Venable, 1993).

4 THE MVIEWS FRAMEWORK

4.1 MViews

Our design notation environments are implemented as a collection of Snart classes, specialised
from the MViews framework (Grundy, 1993). MViews supports the construction of new
ISEEs by providing a general model for defining software system data structures and tool
views, with a flexible mechanism for propagating changes between software components,
views and distinct software development tools. Figure 5 shows an example of the structure of
SPE, an ISEE for object-oriented software development. ISEE data is described as components
with attributes, linked by a variety of relationships. Multiple views are supported by
representing each view as a graph linked to the base software system graph structure. Each
view is rendered and edited in either a graphical or textual form. Distinct environment tools can
be interfaced at the view level (as editors), via external view translators, or multiple base layers
may be connected via inter-view relationships, as described in (Grundy, 1994).

When a software or view component is updated, a change description is generated. This is of
the form UpdateKind(UpdatedComponent, ...UpdateKind-specific Values...). For example, an attribute
update on Compl of attribute Name is represented as: update(Compl, Name, OldValue, NewValue).
All basic graph editing operations generate change descriptions and pass them to the
propagation system. Change descriptions are propagated to all related components that are
dependent upon the updated component’s state. Dependents interpret these change descriptions
and possibly modify their own state, producing further change descriptions. This change
description mechanism supports a diverse range of software development environment
facilities, including semantic attribute recalculation, multiple views of a component, flexible, bi-
directional textual and graphical view consistency management, a generic undo/redo
mechanism, and component “modification history” information (Grundy, 1995d). New
environments are constructed by reusing abstractions provided by an object-oriented
framework, and ISEE developers specialise MViews classes to define software components,
views and editing tools. A persistent object store is used to store component and view data.

MViews environments support version control and collaborative facilities via the C-MViews
extensions to MViews (Grundy, 1995d). Version revision, alternates and merging are
supported by having change descriptions cached in a number of version records for components
and views. Merging of alternate versions is carried out by sucessively reapplying one alternate’s
change descriptions to the other alternate component. Any merge conflicts (structural or
semantic) are presented to the merging user. Semi-synchronous and synchronous editors are
provided for views by propagating change descriptions on a view to other users’ environments
as they occur. With semi-synchronous editing, these change descriptions are presented to
collaborating users, who may then choose to incorporate them into their own view alternatives.
For synchronous editing, a central server “owns” the shared view, and all edits must be sent to
this server for actioning and propagation to other users. Fine-grained view component locking

Integrated environment for method engineering 51

is maintained by the server to ensure no simultaneous component update is permitted by
multiple users.

window-ro0f slasy

DO
1
I External
Fi H Tool .
3 7 Display/
B il Ve Efternal
| e Layers
;3 External Interface
o {Data/Event interchange)
s A "
S j i
s / % {
4 / !
\ / ?é’ View

Layers

:f i
drawindywindow ¥ 4
window
less _icon

Vd
@. / Other Developors’
.\ { Base Layers
e
5

drawing_window \ ==

Fonoralisations
Base

Layer

window

Figure § The MViews Architecture.

4.2 Notation Integration with MViews

In addition to SPE, we have developed several other ISEEs using MViews. MViewsER
provides integrated Entity-Relationship diagrams and textual relational schema. MViewsER has
been integrated with SPE to produce OOEER, an integrated environment for OOA/D and EER
modelling (Grundy, 1995a). MViewsNIAM provides NIAM modelling views, and has been
inegrated with MViewsER to produce NIAMER (Venable, 1995). MViewsDP provides a
graphical drag-and-drop interface builder for dialog boxes, with the dialog interface and
validation rules being defined in textual views (Grundy, 1995d). EPE is an environment for
constructing EXPRESS specifications and corresponding EXPRESS-G diagrams (Amor,
1995a). C-SPE and C-MViews provide collaborative, integrated software development support
via synchronous, semi-synchronous and asynchronous editing {(Grundy, 1995e).

Figure 6 shows a screen dump from OOEER. The OOA/D views are kept consistent with all
changes to the EER views, and vice-versa, even when a direct translation is not possible by the
environment. The dialog shown holds change descriptions (the “modification history”) for the
customer QOA class. The change descriptions highlighted by ‘—’ were actually made to the EER
view (diagram) and automatically translated into OOA/D view updates (where possible) by
OOEER. Unhighlighted items were made by the designer to the OOA view to fully implement
“indirect” translations that could only partially by implemented by OOEER.

52 Method Engineering

customer-root entity

\ 2
&%
s

= ®

inveice(0,N) sceount(1,1)

1L inv-ace

. rename class to customer (5] |E== customer-root class =
. rename feature name to cname

. add attribute credit : money

change attribute credit type to float

. EER Update: Make exclusive subtype of person

. generalise to person

. EER Update: Add relationship invoice-of to invoice

. add association invoice-of to invoice

. association invoice-of to invoice : change kind to aggregation
. EER Update: change invoice-of arity to 1:N

. aggregate to invoice : change supplier type to list(invoice)

. EER Update: add attribute prefered

. add attribute prefered : unknown

. change attribute prefered type to boolean

Rl el

T T 1113
Er ==

|view updete)) (Rdd Update) (Delete Update) (History Update) (Cancel)

Figure 6 Integrated OOA/D and EER views in OOEER with bi-directional consistency.

The OOEER integration was achieved by adding an additional data dictionary graph level
below the data dictionaries of the SPE and MViewsER tools. This layer is responsible for
translating, where possible, between the different notations and notifying tools where automatic
translations are not possible. Neither SPE nor MViewsER required any significant change to
achieve this integration. Figure 7 shows an example of the structure of OOEER. Figure 7
illustrates this integration process. When an SPE view is edited (1), the modification is
translated into SPE repository updates (2), generating change descriptions. The inter-repository
relationships are sent change descriptions, and respond to these by updating the integrated
repository (3). When the integrated repository components change, the inter-repository
relationships to MViewsER’s repository components translate the integrated repository
components change descriptions into updates on MViewsER repository components (4).
Indirect mapping changes are defaulted where possible and change descriptions displayed in
views. Both SPE and MViewsER keep their multiple views consistent (5 and 6).

5 THE SERENDIPITY PROCESS MODELLING TOOL

ISEEs should support the coordination of cooperative work activities that is inherent within ISD
(Krant, 1995). Therefore, CSCW features are needed in ISEEs. An ISEE should support users
in collaboratively planning and executing work activities, as well as in being informed about

Integrated environment for method engineering 53

and maintaining their awareness of relevant work by others, the contexts in which those other
users’ work is carried out, and the rationale for the decisions they have made. In particular,
support is needed for defining activities to be done (plans), coordinating the planning activity
itself (meta-plans), and restructuring the history of work done to more effectively convey intent
(“rewriting history”). Unfortunately most existing workflow systems are inadequate for real-
world applications due to many exceptions to the workflows and their inability to adapt to
changing work processes (Swenson, 1993). Similarly, must existing process modelling tools
utilise either complex, textual specifications which are inaccessible to many end-users, or do not
support facilities for integration and event handling with existing tools.

We have developed Serendipity, a process modelling, enactment and work planning
environment, which also supports flexible event handling mechanisms, group communication,
and group awareness facilities (Grundy, 1996). Fig. 8 shows a Serendipity process model for
updating a software system (“m1l:modify system-process”). The notation is an adaptation and
extension of Swenson’s Visual Planning Language (Swenson, 1993), which does not support
artefact, tool or role modelling, nor arbitrary event handling mechanisms.

1 Rendering
na Editors

Separate
Data
Dictionaries

i - : Integrated

Figure 7 Integrating SPE and MViewsER using an integrated data model.

Stages describe steps in the process of modifying a software system, with each stage containing
a unique id, the role which will carry out the stage, and the name of the stage. Enactment event
flows link stages. If labelled, the label is the finishing state of the stage the flow is from (e.g.
“finished design”). The shadowing of the “m1.2:implement changes” stage indicates that
multiple implementers can work on this stage (i.e. the stage has multiple subprocess
enactments). Other items include start stages, finish stages, AND stages, and OR stages (empty
round circle). Underlined stage IDs/roles mark presence of a subprocess model, for example
“ml.1:plan changes-subprocess” is a subprocess for “ml.1:design changes”. The italicised
“check out design” stages in this subprocess model indicate stages reused from a template
process model.

54 Method Engineering

mi:modify system-process

m1i.1:plan changes-subprocess

plon changes:

design error

#l, 1 4 designes

2l 1.5 designes
chack out design

£inish design

coding erxor

N ini checked out cheched out
i £inished coding

Tnplement chonges }

ml.1.7:designer

tested correct design changes

f£inished coding
£inished changes fized design
(ARD)

tested correct

changed dasign

ml_4:project menvger

spprove changes

approved
}_ checked in
EO==——=——=—= m|.3:done testing T 11

ml.3:tester

T Einish design
B m1:modell-roles

w T
Lo [[Finistad cerving] wes 0 ©
A " Y designer
= g Seaeds oy h
- IR todeller modifies (04)! ’
= » : - !
- edits - H i
= . can be concurrent (=] talks with
_ ' changes list i
B [e 2o =] : :
IR design
‘:' T
uses (A) ¢
(Fority hh) stage
hd -
“role
YormBuilder

Figure 8 Software process model views and dialogs in Serendipity.

Serendipity supports artefact, tool and role modelling for processes, as in “m1:modell-roles”,
which shows a different perspective of “m1:modell-process”. Usage connections indicate how
stages, artefacts, tools and roles are used. Optional annotations indicate: whether data is created
(C), accessed (A), updated (U), or deleted (D); whether a stage must use only the tools,
artefacts or roles defined (\/); and whether a stage cannot use a particular tool, artefact or role
(). If a stage is linked to another stage by a usage flow, “\ specifies the stage may be enacted

Integrated environment for method engineering 55

when the other stage is enacted, while “~” specifies the stages can not be enacted at the same
time.

In addition to specifying the static usages and enactment event flows between process model
stages, Serendipity supports filters and actions, which process arbitrary enactment and work
artefact modification events. View “m1.3:done testing” shows an example of enactment event
filtering. The filters “Made Current” and “finished testing” determine if “m1.3:check changes”
has been made the current enacted stage or has been finished. If so, then if the “m1.2:implement
changes” process has not completed (determined by filter “Not Complete™), the role associated
with this stage is notified of testing being started or completed.

Stages are enacted for a project, highlighted by colour and shading, as shown in Figure 8.
The shaded stage with a bold border (“m1.1.8:fix design”) is the current enacted stage for the
user i.e. their current work context. As a stage completes in a given finishing state, event flows
with this state name (or no name) activate to enact linked stages. Enactments of stages are
recorded, as are process model changes, and all enacted stages for a user can be shown in a “to-
do” list dialog.

6 AN INTEGRATED METHOD ENGINEERING APPROACH

1. Metamodel notations
with CoCoA

S
% individual
meta-
a

models

existing meta-model.

4. Refine generated classes

to include editor functionality,

extra intemotation consistency
management, etc.

2, Define Integrated Models
and/or internotation links

integrated
meta-model

[[existing tools

3. Generate MViews Repository
& view class speciatisations
for new environments

= prep—— .

- classes]
tools PV V4 ‘E
== =
5. Build up Serendipity process 6. Refine process modets,
specifications & plans for refine Method Engineering
using integrated notations for process models over
specific project under development sequent developments
processes,
templates
ﬁ and tools
Figure 9 The method engineering process with our integrated tools.

We are currently building an MViews-based environment for CoCoA modelling, which will
form the basis of an integrated environment for Method Engineering with our tools. Figure 9
shows how this tool will be used to generate MViews framework classes for specifying new or

56 Method Engineering

modified tool repositories and views. Developers will augment these specifications with
appropriate editor configurations and notation renderings, and any additional consistency
management techniques not generated from the CoCoA metamodels. As our Serendipity work
coordination tool can be used with any MViews environments, developers will then be able to
specify appropriate plans (i.e. process models) for different systems under construction. This
may include enabling usage of certain tools and artefacts for certain parts of the new system
development or to particular groups of developers. Once these plans have been created,
developers can later abstract these plans to form policies and reuse their policy process models
for subsequent systems, and thus incrementally refine these process models. CoCoA models
and MViews environments and tools can also be created and/or modified from one project to the
next to build up appropriate tools for each system development.

5.1 CoCoA Metamodelling of Notations

The first step (#1 in Figure 9) is to build up CoCoA metamodels of the desired design notations
to be used on a new system development. This might include the reuse of previous CoCoA
models, the combination of parts of one metamodel with another, or the development of new
metamodels which are problem-specific. In previous metamodelling with CoCoA, we have
used a drawing editor to produce these metamodels (Grundy, 1995a, Venable, 1995). We are
currently implementing an MViews tool for CoCoA modelling which will be used to construct
new CoCoA models, and will include multiple views of CoCoA models and libraries of views
and models to assist in model reuse.

As an example, we have recently integrated our NJAMER (supporting NIAM and ER views)
and OOEER (supporting OOA and EER views) environments with the MViewsDP form/report
designer by hand. Using our CoCoA modelling tool instead, integration of these tools would
initially begin using our integrated CoCoA/MViews environment to metamodel each notation
that is to be used on a development project.

5.2 Conceptual Notation Integration with CoCoA

Integrating different design notations with CoCoA involves either the definition of integrated
models or specifying links between components of one model and related components in
another model (Grundy, 1995a, Venable, 1995). In addition, dynamic mappings must be
specified between these notation components i.e. what happens to related components when a
component instance is changed. For example, in OOEER, if an ER relationship is added
between two entities, a default association relationship is added between the corresponding two
object/classes in the OOA model (Grundy, 1995a). Our MViews editor for CoCoA will support
both the static integration and/or linking of notation components, and the specification of
dynamic mappings between notation components. Static integration is a straightforward view
integration, supported by aspects of the CoCoA data modelling language. We are currently
adapting a view mapping language (Amor, 1995b) which will allow us to declaratively specify
the dynamic notation mappings in this tool. In previous notation integration we have informally
specified these dynamic mappings using English and informal diagrams, but this is not
sufficient to generate internotation relationships for MViews tool integration.

In our integrated ISEE, integration of OOEER, NIAMER, and MViewsDP was implemented
by adding inter-repository relationships between repositories, in addition to the hierarchial
repository relationships used in NIJAMER and OOEER. Appropriate links were specified
between the components of the CoCoA metamodels for each notation and then dynamic
mappings were defined between related components. In future environment integration, this
will all be carried our within our CoCoA modelling tool.

Integrated environment for method engineering 57

5.3 MViews Tool Generation from CoCoA Models

CoCoA models have been used as the specifications for MViews tool repositories in our
previous notation integration work (Grundy, 1995a, Grundy, 1995b, Venable, 1995).
However, MViews repository and view information has been hand-generated from these
models. We are extending our CoCoA modelling tool to generate class interfaces and method
code directly from different notation and integrated notation metamodels. Quite a large amount
of MViews framework code can be generated in this way: previous development of MViews
environments has shown over 60% of the code relates to defining class structures which
represent repository and view data, and method code to link these data items in appropriate
ways. All of this code can be generated from CoCoA metamodels by our modelling
environment. Internotation relationships and a large amount of consistency management code
can also be generated in this way, from the static integration and the specification of dynamic
mappings in our CoCoA editor, even in some cases the user interface.

For example, if two constructs in two notations are represented by the same entity type in the
integrated CoCoA model, a change to one of them in one view results in the same change in the
second view/notation. In this case, the user of the second view need only be notified of the
change and the repositories updated. Similarly, if the construct changed in one view is a
subtype of a construct in another view, changing an instance of the first construct will require
the same change on the supertype construct (as long as it has the required attributes). In either
of these cases, code for handling the propagation of these changes (including the receiving
view’s user interface) can be generated automatically. However, the reverse is not true (i.e. we
cannot generate the code for propagation of a change to a construct that is the supertype of a
construct in another view which needs to be updated).

5.4 MViews Tool Refinement and Integration

While repository and view structures (and some semantic values) can be generated directly from
CoCoA metamodels, extra code needs to be written by developers to appropriately configure
editors and specify some consistency management code which can not be automaticlly
generated. We are allowing developers to further specialise classes generated from our CoCoA
modelling tool to define edltlng mechanisms and internotation consistency management code
which can not be specified in a declarative way. For example, developers will specify default
techniques for keeping data in different notations consistent declaratively, but may then want to
define complex consistency management techniques operationally (i.e. using MViews code).
An example from NIAMER is when a NIAM entity is added. Since, in the integrated CoCoA
model, a NIAM entity is a supertype of both the EER attribute and entity, it could be mapped to
either. NIAMER defaults the automatic translation to adding an entity and allows users of the
integrated environment to modify the ER entity to an attribute if desired. This default code could
also be generated, but might be incorrect if the default should have been to add an attribute
instead. In that case, a developer would need to rewrite a small amount of MViews code.
Alternatively, other user interfaces might be desired, such as preseting the user with a menu to
add either an entity or an attribute to the EER view, adding reconciliation of the change to a to-
do list, or simply suggesting a change. We are currently looking at ways to declaratively specify
the desired behaviour with annotations to the CoCoA models. Our approach allowing
developers to make these alterations by further specialising the generated classes, which avoids
the problem of when the CoCoA models are modified and classes regenerated. The further
specialised classes are not lost when this regeneration occurs.

Of course, we also need to code the rendering of the notation on the user’s screen. This is
currently done by hand, but within the MViews library framework. We are looking at how this
might be done declaratively with annotations to the CoCoA metamodel, then generating the
rendering code.

58 Method Engineering

5.5 Process Model Specification

After building appropriately integrated tools, developers can then specify how these tools are to
be used on the particular system under construction. Serendipity allows developers to specify
which tools and work artefacts are used for different plan stages and hence which tools/artefacts
can be used for a particular software process. Serendipity process models can guide developers
i.e. suggest which tools are appropriate for different development tasks. They can also be used
to suggest or to enforce the use of specific tools, so, for example, a project manager may
specify one development group uses OOA/D modelling while another uses ER/DFD modelling.
As these tools have integrated repositories (via OOEER), the designs produced by each group
are still integrated and kept consistent.

In a collaborative, integrated ISEE, users must be informed of changes to work and plan
artefacts that are relevant to them and they are currently interested in (Grundy, 1995¢). Some
changes a developer makes are directly relevant to their collaborators, such as renaming or
deleting entities and attributes, and collaborators should be informed of these immediately.
Other changes, such as the addition of new entities, relationships, attributes or forms and
reports can be sent for later perusal, as they have more limited effects on collaborators’ work.
Low-level changes, such as the implementation of procedures, forms or reports not affecting a
collaborator’s work need not be presented. Collaborators can see from plan histories and
various active stages the kinds of activities another developer is doing, and may choose to view
these changes or modified artefacts on-demand, using any of the informing mechanisms
described above.

In most CSCW environments, only artefact-level information about changes is presented to
collaborators, either directly updating their work artefact views or using version control
facilities to indicate changes made by other users. Serendipity provides collaborating users not
only with change descriptions describing actual work (or plan) artefact changes, but also with
extra information about the work context in which the changes were carried out. Examples of
this work coordination can be found in (Grundy, 1995c, Grundy, 1996).

5.6 Tool/Process Refinement and Reuse

Serendipity views assist in Situational Method Engineering (Harmsen, 1994) by allowing
developers to incrementally refine their development methodology, processes and work plans.
As process stages record information about the tools to use, artefacts to modify/produce,
subsequent stages, and also may be exploded into more detailed plans, they facilitate the
engineering of software processes in a manner similar to Method Engineering tools. Our
approach has some advantages over comparable notations, such as MEL (Harmsen, 1995), in
that its visual nature is more accessible to developers for visualising and modifying plans than
the textual notations of other approaches. As Serendipity models were designed for general
work process modelling, its high-level nature allows developers to more readily understand and
modify process descriptions than text-based process-centred environments or method-
engineering tools. It also allows users to modify their process and work plans while a model is
in use. Finally, Serendipity allows users to restructure copies of processes and plan histories
after completion so that new, improved process model templates can be developed for later
reuse.

Our integrated, collaborative ISEE supports collaborative planning via collaborative editors for
Serendipity views, and allowing other Serendipity views to act as meta-process views.
Collaborating developers share software process views and can collaborate on modifying these
models. The use of these shared models for work context capture and presentation, and
specifying interest in changes, allows Serendipity to be used for work coordination,
collaborative planning, recording development histories, and method engineering. Figure 10
shows an example of process improvement with Serendipity. The process model is extended to

EiL]

include a “m1.5:check design” stage, to be carried out before coding starts. Coder “john’’s

Integrated environment for method engineering 59

work plan is also extended by adding ‘m1.2.11:modify branch table’. This handles an
exception to the work plan due to the addition of the “address” table. Such changes could be
made before, during or after the model and plan are used.

mimadell-process]

- T
.o tix oheoes
=B ° CEXET
= inieted sl =B (o sevore]
sign exror T2 A
3dded address
@ denion exer a5 added sddress
@ (s teseer | B seture ervor
chechad ducign ‘ 1
coding error [N foxmireport errox ml.2.7:j0hn
:EM . ey st e rmuerr
ml.2:coders £inish eoding / finished £inished wodify s fcust

tested correct

£inish HV

()

@l 4:project mnager

opproved

changes spproved

Figure 10 Process and plan improvement example.

Our integrated ISEE allows different tools to be used on the same problem domain, with tool
data being kept consistent under change and the tools sharing a consistent user interface.
Serendipity allows software processes to be reconfigured during development to better suit a
particular development project. Software process models thus evolved can be reused in
subsequent development by saving them as reusable templates. The specification of artefacts,
roles, CASE tools and interest obligations for plan stages gives our integrated environment
similar method engineering capabilities to method engineering tools. In addition, it supports
work coordination. Our CoCoA/MViews environment can itself make use of Serendipity views
to model, plan and coordinate the Method Engineering process itself. This allows the Method
Engineering process to be refined over several projects, in addition to the refinement of the
integrated design notation tools.

7 SUMMARY AND FUTURE RESEARCH

We have described our recent work on developing a metamodelling language, CoCoA, notation
integration using CoCoA, the construction of integrated Information Systems Engineering
Environments based on CoCoA metamodels using MViews, and the development of a work
coordination and software process modelling tool, using an extended form of the Visual
Planning Language. Used in conjunction, these tools allow system developers to model and
integrated different design notations and to construct integrated tools and environments
supporting these notations. Developers can plan and coordinate the use of different tools within
this environment using our Serendipity tool.

60 Method Engineering

We are currently implementing an MViews environment for CoCoA which will support
notation metamodelling and notation integration. MViews classes to implement an integrated
environment will be generated from these metamodels, together with internotation relationships
and consistency management support. Serendipity will be used to coordinate the use of these
integrated environments for different system developments, and will be used by the
CoCoA/MViews environment itself to plan, coordinate and refine the Method Engineering
process itself. We are also engaged in further research to enhance and add to the CSCW
features of our environments and to consider ways to ufilise declarative annotations to the
CoCoA models to further improve the CoCoA/MViews environment’s code generation
capabilities.

REFERENCES

Amor, R., Augenbroe, G., Hosking, J.G., Rombouts, W., and Grundy, J.C. (1995)
Directions in modelling environments, Automation in Construction, 4, 173-187.

Amor, R'W. and Hosking, J.G. (1995) Mappings: the glue in an integrated system, in /st
European Conference on product and process modelling in the building
industryindustry, A.A. Balkema Publishers, Rotterdam, The Netherlands.

Barghouti, N.S. (1992) Supporting Cooperation in the Marvel Process—Centred SDE, in
Proceedings of the 1992 ACM Symposium on Software Development Environments,
ACM Press, pp. 21-31.

Campbell, L. and Halpin, T. (1994) Abstraction Techniques for Conceptual Schemas, in
Proceedings of the 5th Australasian Database Conference, Global Publications Services,
Christchurch, New Zealand, 17-18 January 1994, pp. 374-388.

Falkenberg, E.D. and Oei, J.L.H. (1994) Meta Model Hierarchies from an Object—Role
Modelling Perspective, in First International Conference on Object—Role Modelling (ed.
Halpin, T. and Meersman, R.), Key Centre for Software Technology, The University
of Queensland, Brisbane, Australia, 4-6 July 1994, pp. 310-323.

Grundy, J.C. and Hosking, J.G. (1993) A framework for building visusal programming
environments, in Proceedings of the 1993 IEEE Symposium on Visual Languages,
IEEE Computer Society Press, pp. 220-224.

Grundy, J.C. and Hosking (1994) J.G., Constructing Integrated Software Development
Environments with Dependency Graphs, Working Paper, Department of Computer
Science, University of Waikato.

Grundy, J.C. and Venable, J.R. (1995a) Providing Integrated Support for Multiple
Development Notations, in Proceedings of CAiSE'95, Finland, June 1995, Lecture
Notes in Computer Science 932, Springer—Verlag, pp. 255-268.

Grundy, J.C., and Venable, J.R. (1995b) Developing CASE tools that support integrated
design notations, in Proceedings of the 6th European Workshop on Next Generation of
CASE Tools, pp. 109-116.

Grundy, J.C., Mugridge, W.B., Hosking, J.G., and Apperley, M.D. (1995¢) Coordinating,
capturing and presenting work contexts in CSCW systems, in Proceedings of
OZCHI'95, Wollongong, Australia, Nov 28-30 1995, pp. 146-151.

Grundy, J.C., Hosking, J.G., and Mugridge, W.B. (1995d) Supporting flexible consistency
management via discrete change description propagation, to appear in Software —
Practice and Experience.

Grundy, J.C., Mugridge, W.B., Hosking, J.G., and Amor, R. (1995¢) Support for
Collaborative, Integrated Software Development, in Proceeding of the 7th Conference
on Software Engineering Environments, IEEE CS Press, Netherlands, April 5-7 1995,
pp. 84-94.

Integrated environment for method engineering 61

Grundy, J.C. (1996) Serendipity: integrated environment support for process modelling,
enactment and improvement, Working Paper, Department of Computer Science,
University of Waikato.

Harmsen, F., Brinkkemper, S., and Oei, H. (1994) Situational Method Engineering for
Information System Projects, in Proceedings of the IFIP WG8.1 Working Conference
CRIS'94 (ed. Olle, T.W. and Verrijn, A.A.E.), Maastricht, 1994, North—Holland,
Amsterdam, pp. 169-194.

Harmsen, F., and Brinkkemper, S. (1995) Design and Implementation of a Method Base
Management System for a Situational CASE Environment, in Proceedings of the 2nd
Asia—Pacific Software Engineering Conference (APSEC'95), IEEE CS Press,
Brisbane, December 1995, pp. 430-438.

Heym, M. and Osterle, H. (1992) A Semantic Data Model for Methodology Engineering, in
Proceedings of the Fifth International Workshop on Computer—Aided Software
Engineering, IEEE Computer Society Press, Washington, D.C., pp. 142-155.

Kaplan, S.M., Tolone, W.J., Carroll, A.M., Bogia, D.P., and Bignoli, C. (1992) Supporting
Collaborative Software Development with ConversationBuilder, in Proceedings of the
1992 ACM Symposium on Software Development Environments, ACM Press, pp. 11—
20.

Krant, R.E. and Streeter, L.A. (1995) Coordination in Software Development, CACM, 38 (3),
69-81.

Kumar, K. and Welke, R.J. (1992) A proposal for situation—specific methodology
construction, Challenges and Strategies for Research in Systems Development. Wiley,
New York. ‘

Lonchamp, J. (1995) CPCE: A Kernel for Building Flexible Collaborative Process—Centred
Environments, in Proceedings of the 7th Conference on Software Engineering
Environments, IEEE CS Press, Netherlands, April 5-7 1995, pp. 95-105.

Mark V Systems Ltd (1995)MethodMaker, 16400 Ventura Boulevard, Encino, California
91436.

Mark V Systems Ltd (1995) ProcessMaker, 16400 Ventura Boulevard, Encino, California
91436.

Meyers, S. (1991) Difficulties in Integrating Multiview Editing Environments, IEEE Software,
8 (1), 49-57.

Nijssen, G.M. and Halpin, T.A. (1989) Conceptual Schema and Relational Database Design:
A Fact Oriented Approach. Prentice-Hall, Englewood Cliffs, NJ.

Nuseibeh, B. and Finkelstein, A. (1992) ViewPoints: A Vehicle for Method and Tool
Integration, in Proceedings of the Fifth International Workshop on Computer—Aided
Software Engineering, IEEE Computer Society Press, Washington, D.C., pp. 50-61.

Ratcliffe, M., Wang, C., Gautier, R.J., and Whittle, B.R. (1992) Dora — a structure oriented
environment generator, IEE Software Engineering Journal, 7 (3), 184-190.

Reiss, S.P. (1990) Connecting Tools Using Message Passing in the Field Environment, IEEE
Software, 7 (1), 57-66.

Saeki, M., Iguchi, K., and Wen-yin, K. (1993) A Meta—model for representing software
specification and design methods, in Proceedings of the IFIP WGS8.1 Conference on
Information Systems Development (ed. Prakash, N., Rolland, C., and Pernici, B.),
Como, Italy.

Song, X. and Osterweil, L.J. (1992) A Process—Modeling Based Approach to Comparing and
Integrating Software Design Methodologies, in Proceedings of the Fifth International
Workshop on Computer—Aided Software Engineering, IEEE Computer Society Press,
Washingon, D.C., pp. 225-229.

Swenson, K.D. (1993) A Visual Language to Describe Collaborative Work, in Proceedings of
the 1993 IEEE Symposium on Visual Languages, IEEE CS Press, Bergen, Norway,
pp. 298-303.

62 Method Engineering

Venable, J.R. (1993) CoCoA: A Conceptual Data Modelling Approach for Complex Problem
Domains, Ph.D. dissertation, Thomas J. Watson School of Engineering and Applied
Science, State University of New York at Binghampton, 1993.

Venable, J.R. and Grundy, J.C. (1995) Integrating and Supporting Entity Relationship and
Object Role Models, in Proceedings of the 14th Object—Oriented and Entity
Relationship Modelling Conferece (OO-ER'95), , Gold Coast, Australia, Dec 13-16
1995, Lecture Notes in Computer Science 1021, Springer—Verlag.

Vessey, I. and Glass, R.L. (1994) Applications—based Methodologies, Information Systems
Management, 5357, Fall 1994.

Wasserman, A.l. and Pircher, P.A. (1987) A Graphical, Extensible, Integrated Environment
for Software Development, SIGPLAN Notices, vol. 22, no. 1, 131-142.

Wieringa, R.J. (1995) Combining static and dynamic modelling methods: a comparison of four
methods, to appear in Computer Journal.

BIOGRAPHY

Dr John Grundy has been a Lecturer in Computer Science in the Department of Computer
Science, University of Waikato since 1993. He holds the BSc(Hons), MSc and PhD degrees,
all in Computer Science from the University of Auckland, New Zealand. His research interests
include software engineering environments, software process technology, software engineering
methodologies, visual programming, and object-oriented systems. He is currently developing
the Serendipity process modelling and enactment environment, and using Serendipity to provide
a process modelling and work coordination tool for large CSCW systems, such as collaborative
software engineering environments.

Dr John Venable has been a Lecturer in Information Systems in the Department of Computer
Science, University of Waikato, Hamilton, New Zealand since 1994. He obtained his PhD in
Computer Science and Information Systems in 1994 from Binghamton University in
Binghamton, New York, USA. He has lectured since 1983 at Binghamton University, Central
Connecticut State

University, and Aalborg University, Denmark. Dr Venable's main interests are in information
systems development, particularly in its practice, methods, and appropriate tool-based support.
Currently, he is researching the incorporation of CSCW features into CASE tools to better
support and improve the systems development process.

5

A Functional Framework for Evaluating
Method Engineering Environments:

the case of Maestro II/ Decamerone and
MetaEdit+

P. Marttiin @, F. Harmsen? , M. Rossi

@ Department of Computer Science and Information Systems,
University of Jyvdskyld, P.O.Box 35, 40351 Jyvdskyld, Finland
E-mail: {ptma, mor}@jyu.fi

b Department of Computer Science, University of Twente,
P.O.Box 216, 7500 AE Enschede, The Netherlands,

E-mail: harmsen@cs.utwente.nl

Abstract

CASE environments with method customisation capabilities and Computer Aided Method
Engineering (CAME) environments have emerged during the last few years. While many
research papers discuss the principles of method engineering and suggest requirements for new
environments, we do not have critical evaluations of CAME environmeénts using a wider
method engineering framework. The aims of this study are twofold: 1) to build a preliminary
framework for comparative studies of CAME environments, and 2) to increase the knowledge
of the ‘state of the art’ in CAME by evaluating two CAME environments. We adapt a
functional framework — originally built for CASE technology — to examine the following two
research questions: How well can a method be defined in a CAME environment?, and How
well is the defined method supported in a customisable CASE environment? The environments
chosen for evaluation are Maestro Il /Decamerone, and MetaEdit+. As an outcome, we will
describe what framework aspects these environments support, and discuss the aspects not
supported.

Keywords
CASE evaluation, metaCASE, method engineering, systems development, co-ordination

64 Method Engineering

1 BACKGROUND AND MOTIVATION

Despite extensive comparative research on information system development methods! during
the 1980’s (Olle et al., 1982, 1983, 1986), research interest in assessing methods is still strong.
According to Norman and Chen (1992), methods have evolved in parallel with changing
application domains and to the need to improve method support through tools. Recently, the
object-oriented paradigm has yielded numerous new methods and new contexts for applying
methods (e.g., business engineering) have emerged. These have given rise to the continuing
method evolution. Furthermore, we believe improved mechanisms for method customisation in
CASE environments will increase organizations’ willingness to adjust and to improve their
method practices.

To obtain a better understanding of the study domain and the environments compared, we
need first to discuss some basic concepts. Because various definitions and views of CASE
abound (e.g., Henderson and Cooprider, 1994), we do not try to suggest clear and exact
definitions for CASE and CASE environment. We consider CASE to be a design aid
technology for ISs, and a CASE environment a collection of design aid tools for ISs. While
traditional CASE environments — based on the fixed repository structure, and containing
editors and other tools only for a fixed method — support a few popular methods, a
customisable CASE environment — having a flexible repository structure and technique specific
editors and tools — is capable to support any method specified into it. We can define a
customisable CASE environment more precisely:

Definition 1. A customisable CASE environment is a CASE environment having
mechanisms to support any method specified into it.

Brinkkemper (1995) has defined method engineering as ‘a discipline to design, construct and
adapt methods, techniques and tools for the development of information systems’. If the
method engineering process is supported by specific computer aided tools, we call the
engineering discipline Computer Aided Method Engineering (CAME), and the supporting tools
CAME 1ools. According to Harmsen et al. (1994), we define a CAME environment as follows:

Definition 2. A CAME environment is a collection of CAME tools for 1) specifying
methods to be used in CASE environments, 2) comparing, analysing, and selecting
methods, andlor 3) storing the accumulated knowledge of methods and situation
factors.

Bubenko (1988) introduced a term CASE shell to denote a tool including mechanisms to
define CASE support for an arbitrary method, thus, corresponding to the first part of CAME
tool definition. The most common term metaCASE environment is used to denote either a
CASE shell, or an integrated CASE shell and a customisable CASE environment (Marttiin et

1 ‘Wynekoop and Russo (1993) define a method as ‘a systematic approach to conduct at least one complete
phase (e.g. design, testing) of IS production, consisting a set of guidelines, activities, techniques and tools,
based on a particular philosophy of system development and the target system’.

Evaluating method engineering environments 65

al., 1993). To avoid misunderstandings, we have selected the terms ‘a customisable CASE
environment’ and ‘a CAME environment’ to be used later in this study.

Historically, in the late 1970’s and in the 1980’s, metaCASE environments were studied
and designed mainly in academic research laboratories. Such environments include SEM
(ISDOS, 1981), RAMATIC (Bergsten et al., 1989), MetaPlex (Chen and Nunamaker, 1989),
MetaEdit (Smolander et al., 1991), MetaView (Sorenson, 1988), and ConceptBase (Hahn at
al., 1991). During the early 1990’s commercial metaCASE environments have appeared in the
market. Current metaCASE products include e.g. Graphical Designer by ASTI (Advanced
Software Technologies, Toolbuilder by Lincoln Software/IPSYS, Paradigm Plus by Protosoft,
ObjectMaker by Mark V Systems, Maestro II by Softlab, and MetaEdit+ by MetaCase
Consulting.

Each metaCASE environment takes a different view on methods, and they employ
different mechanisms for defining the supported method. Furthermore, the supported method
aspects vary considerably (see Marttiin et al., 1993; Vessey et al., 1992; Verhoef and ter
Hofstede 1995). For example, some environments define integration just for techniques,
whereas others tie techniques to the IS development process. This divergence of tools requires
analysis and evaluation of metaCASE using a wider method engineering framework.

To construct a framework for new research areas (we can consider method engineering as
such one), we need to look at available research and research directions. Brinkkemper (1995)
presents some research questions for method engineering: meta modelling techniques, tool
coverage and interoperability, situational methods, and comparative review of methods and
tools. We now discuss these questions closely.

1.1 Meta-modelling techniques

Meta-modelling techniques deal with issues related to both meta-modelling language and
process.

A meta-modelling language is a language for specifying techniques (e.g., OPRR
[Smolander, 1992]), interrelations of techniques (e.g., PSM [Ter Hofstede and van der Weide,
1993]), consistency rules and transformations (e.g., ETL [Boloix et al., 1991]), development
tasks (e.g., Task Structures [Wijers, 1991]), decisions (Jarke et al., 1994), and tools (Sorenson
et al., 1988), as examples. Comprehensive criteria to evaluate meta-modelling languages, such
as those proposed to conceptual modelling languages (see Venable, 1993), are lacking. The
open research issues include, e.g., the richness, simplicity, or granularity of a meta-modelling
language to define various aspects of a method, which are discussed by Verhoef and Ter
Hofstede (1995).

Second, meta-modelling process deals with the steps and actors needed in modelling
method (i.e. method engineering steps). The important questions include how to manage
method evolution, how to use the method knowledge, and who are participating the method
engineering process. Different scenarios on meta-modelling process are discussed in (Harmsen
et al., 1994).

1.2 Tool coverage and interoperability
To provide support for various method aspects, a customisable CASE environment needs to

operate with a large set of tools. The art of integrating all the tools — tools for CASE, software
engineering, and project management - is called inferoperability of tools (Brinkkemper, 1995).

66 Method Engineering

Another issue is the coverage of the design aid support for specific purposes. For example,
matrix techniques require matrix tools, graphical techniques require graphic tools, and some
techniques such as Petri nets are hardly useful without formal analysis or simulation
mechanisms. Moreover, how do we manage techniques that do not focus on modelling, but
rather on idea generation, communication or reasoning? The question of tool coverage can be
formulated as: What design tasks need to be supported by specific design aid tools, and what
tasks can be managed by general purpose tools (such as text editors and electronic mail), or
without any tool support?

1.3 Situational methods

Methods are always of a generic nature and dependent on the contextual situations — calling
for situational methods. For example, Wijers and van Dort (1990) observed that tools built
around fixed handbook techniques and process models hindered projects to use their own
dialects. Moreover, finding the best or appropriate method for a specific system may currently
put a development project into a trial. For these reasons, approaches for situational method
engineering have been introduced (Kumar and Welke, 1992; Harmsen and Brinkkemper, 1995)
and related supporting CAME environments designed such as Decamerone (Harmsen and
Brinkkemper, 1995), and Method Base (Saeki et al., 1993).

1.4 Comparative review of methods and tools

Several frameworks for methods have been constructed (e.g., Essink, 1986, Olle et al., 1991).
Also, a number of frameworks and models for CASE and method support are available
(Lyytinen et al., 1989; Wijers, 1991; Heym and Osterle, 1992; Henderson and Cooprider,
1994). However, only few studies tackle issues related to CAME. Comparisons (Vessey, 1992;
Crozier et al., 1989) have been made by focusing on CASE tool capabilities. The comparison
of three metaCASE environments (Marttiin et al., 1993) examined the functionality to specify a
new technique. Also, Verhoef and Ter Hofstede (1995) evaluated the feasibility of the
conceptual basis of metaCASE environments. Notable is the lack of empirical evaluation of
CAME tools: we found only Cronholm and Goldkuhl (1994), which describes five cases of
method modification.

This research issue (1.4.) motivated us to evaluate two environments, while the others guided
us to focus on prominent method engineering aspects in the CAME framework. Aims of this
study are to build a framework to study How well can a method be defined in a CAME
environment?, and to increase knowledge of the ‘state of the art’ in CAME by evaluating two
CAME environments. A cornerstone in CAME is its meta-modelling language, which raises
another research question: How well is the defined method supported in a customisable CASE
environment? The environments in comparison are: Maestro II (Merbeth, 1991) with
Decamerone (Harmsen and Brinkkemper, 1995) and MetaEdit+ (Kelly et al., 1996). Analysis
and comparison of these environments are carried out and reported based on the two questions
above and a detailed framework presented in Section 2.

The study is structured as follows. In Section 2 we introduce the framework and adapt it
into CAME. Section 3 introduces the basic architecture and tools of the environments. Section
4 evaluates the CAME part of these environments, and Section S discusses shortly customised

Evaluating method engineering environments 67

CASE by applying the framework. Finally, in Section 6 we draw conclusions and discuss our
future work.

2 FRAMEWORK FOR CUSTOMISABLE CASE AND CAME

A number of CASE technology frameworks have been proposed (Lyytinen et al., 1989; Misra,
1990; Crozier et al., 1989; Wijers, 1991; Heym and Osterle, 1992; Fuggetta, 1993; Henderson
and Cooprider, 1994). We selected the ‘functional model’ for CASE (Henderson and
Cooprider, 1994) to be applied for CAME technology. The selection is based on the following
reasons: First, the framework takes a comprehensive view of CASE technology. Second, it can
be easily adapted to any design aid domain including CAME. The rationale for adapting the
framework as such into CAME is found in (Auraméki et al., 1988; Nijssen, 1989). According
to their architectural principles, CAME technology - a design aid technology for methods and
CASE tools — can be similarly treated with CASE technology. Third, the model is based on
empirical studies and contains several strictly formulated questions for CASE. This is the main
limitation of other framework candidates. Furthermore, our earlier comparison (Matrttiin et al.,
1993) based on the framework of Lyytinen et al. (1989) did not focus extensively on CAME
aspects, and it concentrated on issues not relevant for this study (e.g. portability to use various

operating systems, and DBMSs).
Design aid
environment

Organisational

Production T
tec hnology gzc;]rr?;?:;?n
technology

Repres en- Analysis Transor- / Control Cooperative

tation mation functionality

Support Infrastructure

Figure1 A functional model of CASE technology (Henderson and Cooprider, 1994).

Henderson and Cooprider (1994) conceptualise design aid technology as a combination of
production, co-ordination, and organisational technology (Figure 1). Each of these main
functions divides into sub-functions. In the following we present the main issues of each sub-
function, discuss shortly the functions for customisable CASE, and try to capture the basic
functions a future CAME environment need to supply.

68 Method Engineering

2.1 Production technology

Production technology (as an individual’s point of view to analyse, design and generate
products) is divided into components of representation, analysis and transformation (see
Figure 1). Representation focuses on abstraction and conceptualisation of phenomena into
models. Analysis reflects the problem solving and decision making aspects of development.
Transformation calls for rules and mechanisms to transform models into another form.

Customisable CASE

Representation in customisable CASE calls for the possibility to model ISs using various
techniques, and to support modelling using various notations (textual, diagram, matrix, tabular)
by corresponding editors (Chen and Nunamaker, 1989). As a modelling support,
representation function deals with issues on creating, editing, composing, integrating,
retrieving, and viewing IS models and components of them.

Analysis requires verification, validation and simulation support for IS models. Verification
deals with issues such as consistency checking, rules, equivalencies and redundancies in IS
models, change analysis, and querying IS models (Henderson and Cooprider, 1994). Validation
can be achieved by using metrics, decision aids, requirements tracing, or supporting versions of
models. Simulation is used for testing the completeness and performance of IS model by
running it.

Transformation considers, for instance, how to transform a logical model into a physical
one. The other issues include reverse engineering, change propagation, generation of reports,
documentation, and code, and the generation of screen mock-ups and executable code for

prototyping.
CAME

While the representation function for customisable CASE focuses on how to model ISs, the
representation function for CAME focuses on how to specify methods, and how to manage
their use in CASE. This is related to meta-modelling techniques discussed in Section 1.1. We
consider here meta-modelling languages, abstraction mechanisms and notations used in
modelling methods.

e According to earlier studies (Brinkkemper, 1990; Heym and Osterle, 1992; Jarke et al,,
1994, Marttiin et al., 1995), the suggested method fragments (i.e. a method specification or
part of it) contain some features of all the CASE framework functions. Thus, in practice the
primary focus has been on the production: defining a method for representing, analysing,
and transforming IS models. As noted in our earlier comparison (Marttiin et al., 1993), we
need a richer meta-modelling language to be able to capture more details of any method
aspect. This will lead to consider both the feasibility and the p0551b1e granularity of any
supported method aspect (Verhoef and Ter Hofstede, 1995).

e In some cases the method fragments are produced from ‘scratch’, but the need to store
them into a method base, and reuse and recompose them requires the use of abstraction
principles. Basic abstraction principles used in conceptual modelling (Brodie, 1984):
generalisation — specialisation and aggregation — decomposition are suitable for method
fragments. Further, the research on meta-modelling hierarchies (Oei and Falkenberg, 1994)
introduces also restriction and degeneration principles when discussing changes in the
meta-modelling language and its effects on the power of a modelling language.

Evaluating method engineering environments 69

CAME representation deals with editing and viewing method fragments in various
notations: structured text, forms, matrices and graphics, as examples. CAME tools have
basically supported textual notations (see Marttiin et al., 1993), although graphics are used
in MetaEdit (Smolander et al., 1991), and GraphicalDesigner.

Analysis covers verification, validation and simulation of method fragments.

Verification for methods is mostly situation independent, and thus it can be better
formalised and implemented than validation. Verification includes consistency requirements
for methods including precedence, input/output, and granularity consistency or the checking
of duplicate concepts and uncompleted relationships in methods.

Kumar and Welke (1992) pointed out that method engineering follows the incremental
learning strategy: every time a project starts the experience and ‘wisdom’ from earlier
successful and unsuccessful projects are accumulated and included into the method
fragments. Validation of the method fragments can be done by comparing them with a
number of project factors such as available domain knowledge, the technology used, the
organisational size, and the amount of resources available (Slooten and Brinkkemper,
1993). Some references (e.g., Euromethod, 1994; Harmsen et al.,, 1995) give high-level
heuristics to match situations with suitable method fragments.

A specific simulation can be accomplished when following the ‘method engineering by
example’ strategy, where method components are modelled in the same form as they will
appear in CASE as in ‘query-by example’.

Transformations in method base can be divided into generations between various levels of
method fragments, implementation transformations and document generation.

Transformations between method fragments can be used to partly automate the production
of situational methods or to transform a method fragment from the coarse-featured form
into the detailed one. Situational methods may require a possibility to combine a set of rules
for selecting elementary method fragments and composing them into a rough ‘method
template’.

Implementation transformation occurs when we transform a method fragment into an
executable form for a customisable CASE environment, or into a form required by another
CAME environment. An example of the former is the transformation from Decamerone to
the Prolan language used in Maestro II (Harmsen and Brinkkemper, 1995). The bridge
between MetaEdit and RAMATIC (Rossi et al., 1992) serves as an example of the latter
case. Transformations between CAME and CASE have mostly been uni-directional.
However, to manage IS model updates when changing a method may require more seamless
solutions to integrate the two levels.

Creation of method documentation belongs to CAME representation. However, its
generation into a CASE tools’ help is a specific transformation issue.

2.2 Co-ordination technology

Co-ordination technology includes functions of control and co-operation. Henderson and
Cooprider discuss control in terms of resource management and access control. Resource

70 Method Engineering

management enables managers to utilise project resources consistently with project goals.
Access control implies, e.g., ways to manage access rights to user groups that participate in the
development. It is closely related to database technology and its mechanisms.

Alternatively, co-operation enables to exchange information between developers (co-
operative modelling) and users (user involvement) for the purpose of influencing the ISD
process, or product. Design aid tools and methods themselves can be used for co-operative
purposes: the use of graphical models in co-operation is a case in point. On the other hand,
using a specific functionality can increase co-operative support for the design aid: both for
CASE and CAME.

Customisable CASE

To establish control mechanisms for the customisable CASE environment, we need to deal
with, for instance, the concepts of process, project and user roles (Curtis et al., 1992).
Development process is both project and method dependent. A process model constructs
development tasks into precedence order, integrates techniques and tasks, and allocates users
to participate in the tasks. Process models in customisable CASE are discussed in, among
others, (Jarke et al., 1994; Marttiin, 1994). The characterisation of project and user roles is
discussed in (Hahn et al., 1991, Curtis et al., 1992, Marttiin et al., 1995). Other control issues
relate to project management such as schedules, deadlines, project complexity metrics, and
quality assurance.

Co-operation for customisable CASE calls for possibility to use co-operative tools, which
support messages, notes, anonymous feedback, announcement of changes, and design rationale
concerning models or development tasks. We can divide the support into asynchronous
communication (electronic mail as an example) and synchronous modelling (several developers
editing the same model simultaneously). Other more advanced group interaction mechanisms
include brainstorming and other group development techniques that are currently managed
using separate tools. The possibility to integrate these into CASE is a challenging future task.

CAME
Method engineering requires the co-ordination and organisational functions, though these do
not have such a prominent position as in the production function. The current CAME literature
does not tackle the co-ordination issues involving multiple method engineers or stakeholders.
We can discuss, however, control and co-operation aspects of method engineering.
Controlling method evolution is critical, in particular when the changes to a method take place
during the IS development and create effects on CASE and IS models. Such effects arise for
example when one deletes a concept in a technique or an attribute of a concept. Co-operation
in CAME can be seen as an exchange of method engineering experiences and a use of the
collected expertise (Kumar and Welke, 1992). As a note to user involvement aspects, method
users may include system designers, software engineers, and project managers.

2.3 Support and Infrastructure

All production and co-ordination functions can be supported by using organisational
technology: the infrastructure catching standard operating procedures and quality standards,
and the support functionality dealing with organisational guidelines, on-line helps, learning aid,
‘user friendliness’ and ‘easiness’, which can assist users to understand and use design aid
effectively.

Evaluating method engineering environments 71

Table 1 A functional framework of customisable CASE and CAME

Function Customisable CASE CAME
Representation | e Modelling of ISs using various e Modelling of methods using a meta-
methods: concepts, notations, and modelling language: concepts,
abstraction mechanisms to notations and abstraction
represent 1S models mechanisms to represent methods
Analysis e Verification of IS models: e Verification of methods: consistency
consistency checking for IS checking for methods
models o Validation of methods: situational
o Validation of IS models: methods, analysis on earlier
traceability to requirements, methods, the use of method base,
design rationale of IS models design rationale of methods
e Simulation of IS models o Simulation of methods: ‘method
engineering by example’
Transformation | e Transformations between IS o Transformation from situation
models factors into methods
o Code and report generation from | ¢ Generation of methods into CASE:
IS models generation of method documentation
o Generation of screen mock ups e Generation of CASE tools &
and executable code for management of repository mappings
__prototyping
Control ¢ Resource management: resource | ® Resource management: resource

capacities, organisational goals,
deadlines, priorities, managerial
control for CASE

e Access and change control for IS
models

e ISD process models:
management of ISD tasks and
deliverables, automation of
CASE

capacities, organisational goals,
deadlines, priorities, managerial
control for CAME

o Access and change control for
methods: change effects into CASE

e Method engineering process models:
management of ME tasks and
deliverables, automation of CAME

Co-operation

e CASE as co-operative aid: notes,
design rationale support for IS
models

e Technical support for co-
operative CASE: group
interaction mechanisms,
asynchronous! synchronous
CASE

o CAME as co-operative aid: notes,
design rationale support for methods

e Technical support for co-operative
CAME: group interaction
mechanisms, asynchronous/
synchronous CAME

Support &
infrastructure

¢ Help, learning aid and
organisational policies for the
areas of customisable CASE
representation, analysis,
transformation, control, and co-
operation

¢ Help, learning aid and organisational
policies for the areas of CAME
representation, analysis,
transformation, control, and co-
operation

72 Method Engineering

Customisable CASE and CAME

Organisational support for CASE involves help, learning aid and organisational policies for any
CASE framework functions: representation, analysis, transformation, control, and co-
operation. As we discussed earlier, method guidance can be modelled during the method
engineering process and generated into customisable CASE. In this manner the maintenance of
method guidance will be easier when methods evolve.

Similarly to customisable CASE, organisational support for CAME means help, learning
aid and organisational policies for the areas of CAME representation, analysis, transformation,
control, and co-operation.

The main issues (a bullet for each) and some illustrative examples (italics after colon)
discussed in this Section are summarised into Table 1.

3 OVERVIEW OF THE ANALYSED ENVIRONMENTS: MAESTRO II/
DECAMERONE AND METAEDIT+

In this section we take an overview to the architecture and tools of Maestro II/ Decamerone
and MetaEdit+ environments.

3.1 Maestro II and Decamerone

The analysis in respect to the tools and functions of environment is based on Maestro 11
product (Merbeth, 1991) and the design of Decamerone (Harmsen and Brinkkemper, 1995).
Maestro II is a metaCASE environment offering experienced developers all possibilities to
develop diagram editors, repository structures, process enactment mechanisms, etc. It is a
multi-user environment based on a client/server architecture. It includes the following tools:

e Repository tools: Object Management System (OMS),

e Model editing tools: Text Developers System and Graphics Editor

e Project and process management system: Project and Configuration Management System
(PCMS)

e Method management tools: Data Model Declaration Table (DMDT), Tool Customisation
Interface (TCI) including Symbol Editor

Figure 2 depicts the architecture of Decamerone, which is implemented in Maestro II, and
consists of a CAME and a CASE component.

The CAME component is built upon a method base management system (MBMS), and
provides facilities for specifying, storing, and selecting method fragments, and for assembling
method fragments into a situation method. The selected method fragments are stored in a
Selected Method Fragments Repository (SMFR), from which they are retrieved by the
assembly functions. '

CASE component uses the situational method as a definition for its repository structure,
its editors and report generators, and its process engine. Method fragments are specified and
manipulated both by entering specifications and issuing commands in a textual method
engineering language called MEL, and by a tool called MEL editor. Both of these translate
commands to a MEL interpreter, which makes use of the MBMS facilities. Decamerone offers

Evaluating method engineering environments 73

also graphic tools. The Concept Structure Diagram (CSD} editor acts as a graphical user
interface to the Maestro II's Data Model Declaration Table. The Process Structure Diagram
(PSD) editor enables definition of task classes, deliverable classes and their relationships,
yielding a task structure that is input to the Maestro II's PCMS. The CSD/PSD/MEL editors
are currently being implemented.

Method Engi ing User Interface
MEL Systems
MEL editor Ciodégfo Command 3;“3'3&71:22
Line Interface

o Admi

q

Repr ation

CASE functions and
Process Manager

I

MEL interpreter

T L)
calls returns
h 4 |
Repository
Method Base Management System (MBMS) and Process
Engine
Generator

Repr

I P uliDn’ o . ;
|
[]]
Method Base O SMFR

Figure 2 Architecture of Decamerone.

- CASE tool
repository

CASE part

Situational
Method

CAME part

B

3.2 MetaEdit+

The analysis is based on MetaEdit+ product (MetaEdit+, 1995; Kelly et al., 1996), and two
prototypes: hypertext sub-system (Oinas-Kukkonen, 1995a, 1995b), and process sub-system
(Marttiin, 1994; Koskinen, 1996).

MetaEdit+ is a multi-user and multi-tool environment developed in the MetaPHOR-
project. It consists of tools for both CAME and CASE. MetaEdit+ can run either as a single-
user workstation or simultaneously on many workstation clients connected by a network to a
server. Each client contains a running instance of MetaEdit+, including MeraEngine and a set
of tools. MetaEngine manages all operations on the underlying conceptual data model. Tools
communicate with each other only through the MetaEngine, and thereby through the shared
data in the repository. MetaEdit+ includes the following tools:

¢ Environment management tools: tools for managing features of the environment, its main
components, and for launching it.

e Model editing tools: tools for creating, modifying, viewing and deleting models or their
parts, and deriving new information from existing design information including Diagram
Editor, Matrix Editor, and Table Editor.

74 Method Engineering

e Model retrieval tools: tools for retrieving design objects and their instances from the
repository for reuse and review including Repository Browsers, Report Tool, and Query
Editor.

e Method management tools: a set of form based tools for defining methods and their
components (see Figure 3).

e Hypertext subsystem, which gives, for instance, the ability to link design objects for
traceability, annotating model instances, and maintain conversations about design issues
(Debate Browser).

e Process subsystem containing a set of form based tools for defining a process modelling
language and Process Editor for modelling ISD process and using it for guidance and co-
ordination purposes.

MetaEdit+
CASE tool
tailored for
the method
Report MetaEdit+
Generators| Ielp Concept | 4o CAME
generator definers genorator
toolset
A Metamodel SDzanllgd and Process Constistency | Metrics &
ssembly | cditors editor% subsystem | Checking Statictics

Figure 3 Method management tools in MetaEdit+.

Assembly in Figure 3 includes a set of editors for defining method fragments (method’s
conceptual structure including basic consistency rules, and method’s process structure),
method symbols, dialogues, and helps, and tools for producing method specific reports and
code. These editors contain mechanisms to generate a method to be automatically used in
CASE.

Evaluating method engineering environments 75

The MetaEdit+ server forms the repository holding all the data contained in models, and
also in the method fragments. The MetaEdit+ repository includes object specification base
containing all the method fragments; symbol base containing all symbols needed to represent
method concepts; and report specification base containing all report and other output
specifications. The repository holds also tool related information including spatial co-ordinates
in a diagram, and user information including passwords, access rights, and current locks.

4 DEFINING A METHOD BY USING THE CAME ENVIRONMENTS

In this section we analyse the CAME functions in both of the environments. Table 2 presents
the supported CAME functions.

Table 2 Supported CAME functions

CAME support in Maestro Il/Decamerone in MetaEdit+
Representation e CSD/PSD editor ¢ Form based meta-modelling tools:
e MEL editor Graph tool, Object tool, Property

tool, Relationship tool, Role tool,
Binding tool, Symbol Editor

e Other meta-modelling tools:
Table Editor, Matrix Editor and
Diagram Editor

¢ Form based process meta-
modelling tools & Process Editor

Analysis ® MEL editor: consistency checking | ¢ Meta-modelling tools: consistency
checking
® Process Editor: task precedence

Transformation ¢ Transformations from CSD/PSD | ¢ Form based meta-modelling tools:

to MEL, and from MEL to method generation into
MBMS customisable CASE, method help
® Repository generator generation
® Process engine generator ® Report Generator, Process Editor
Control ° ® Access control for methods
Co-operation ¢ The use of various notations of e The use of various notations of
method fragments method fragments
e Co-operative information in MEL
Support & . ¢ Help for meta-modelling language

infrastructure and tools

76 Method Engineering

4.1 Representation

We evaluate here the meta-modelling language, abstraction mechanisms and notations used in
CAME.

Meta-modelling language

Decamerone uses MEL (see Harmsen and Saeki, 1996) as a meta-modelling language. MEL is
based on the basic type method fragment, the instances of which varies by attaching pre-
defined or user-definable property types and property values. MEL allows for an integrated
view on both the conceptual view of a method by providing process fragments and product
fragments and the technical view (CASE tool part) by allowing to define technical method
fragments. Process fragments can denote iteration, parallelism, non-determinism and decisions,
whereas product fragments describe both ‘high-level’ method products (such as Functional
Specification) and diagrams, concepts, and associations. Further, MEL offers facilities to
anchor method descriptions in an ontology, and contains operations to administrate method
fragments in the method base, to query them, and to assemble method fragments into a
situational method.

MetaEdit+ uses GOPRR (Kelly et al., 1996) as a meta-modelling language. GOPRR
contains a set of elementary types (object, role, and relationship), a concept for collecting the
elementary types into model (graph), and mechanisms to decompose and structure elementary
concepts (binding). GOPRR focuses on the modelling of the conceptual structure of
techniques and various relations between these (explosions, polymorphic modelling concepts).
A process modelling language can be defined using an extended GOPRR model called
GOPRR-p (see Koskinen, 1996). The extensions contain information about the behavioural
aspects of a process, €.g., states, precedence and parallelism of process elements. Moreover,
related product (models or reports) and tool information can be attached to process elements.

Abstraction mechanisms

Decamerone supports aggregation and decomposition mechanisms: method fragments defined
by MEL can be decomposed to detailed granularity level, and the detailed method fragments
can be composed into various method fragments in general granularity level. Specialisation is
supported by the IS_A keyword in MEL.

MetaEdit+ supports aggregation and decomposition of methods by collecting reusable
elementary method types using the concept Graph. Further, a set of graphs is collected into a
project. Instances of each GOPRR element are modelled using specialisation hierarchies.
Therefore, MetaEdit+ supports different ways of technique development: creation from
scratch, where all the parts of the technique are defined as new concepts, component oriented,
where techniques are constructed by using prefabricated parts, and reuse oriented, where the
goal of technique development is to allow maximal generality of the concepts and then to
specialise these general components for different techniques.

Evaluating method engineering environments 77

Notations

Decamerone provides two ways to represent method fragments: graphically, by using the
CSD/PSD editor, and textually, by using the MEL editor. The graphical representation format
is intended for initial and global specification, whereas the MEL specification contains all
details of the method fragment. Process Structure Diagrams support the notions of process,
trigger, and product, of which the latter provides the link with the Concept Structure Diagram
editor.

In MetaEdit+ product the primary support for technique component definition and
retrieval is available as a set of form based tools, where the attributes of the component are
filled and checked for their internal validity. Also, tabular, graphics and matrix support have
been designed. Process structure is defined graphically.

4.2 Analysis

Validation and simulation of method fragments are not currently supported in either of the
CAME environments. Therefore, we only consider the verification capabilities.

The design of Decamerone currently does not include a verification component. However,
MEL is designed to attach information for checking consistency into its property types. Also,
formalised consistency rules are available, and can be transferred to Prolan rules (Hoef and
Harmsen, 1995).

The method consistency is ensured in MetaEdit+ by implementing a GOPRR technique,
which prevents the definition of syntactically incorrect methods. MetaEdit+ approach aims to
give the method engineers a maximum degree of freedom, so the tools do not try to do any
semantic checking for the models. Anything that can be defined with the meta-modelling tools,
is a valid technique specification in this approach. Nevertheless, a number of checks and quality
reports have been defined to inform the method engineer about the possible problems in his
model. Analysis according to development process, e.g. task precedence, will be supported by
using a process model.

4.3 Transformation

In the following we discuss both transformations between various forms of method fragments,
and transformations into CASE including documentation generation.

Transformations between method fragments
In Decamerone graphics (CSD/PSD) are used to define method fragments in earlier phases of
CAME. These forms are transferred into MEL specifications, in the form of which the detailed
method fragment is constructed.

MetaEdit+ can use table, matrix and graphics notation in the CAME process. Yet, form
based meta-modelling tools can only attach symbols into method concepts and generate a
method into CASE.

Transformations into CASE

MEL specifications in Decamerone are transformed into MBMS calls in Maestro I, enabling
storage in the database. The finest granularity product fragments (concepts, their properties
and associations) in the situational method are input to the repository generator. The process
fragments in the situational method, along with the coarser granularity product fragments (e.g.,

78 Method Engineering

a functional specification report) are transferred to the process engine generator, which creates
an instance of Maestro II's PCMS.

Diagram editors are specified in Maestro II. The method data model and the
representational aspects of the technique to be supported are specified separately. The method
data model and conceptual definitions of all diagram editors are specified in a Data Model
Declaration Table (DMDT). The notational elements are specified by using the Tool
Customising Interface (TCI). The DMDT defines the repository structure managed by the
Object Management System (OMS).

MetaEdit+ directly translates the method fragments into parts of its design object
repository. Thus, when the user has defined the techniques: concepts and their representations,
the method can be tested immediately. The form based tools have a two-way connection to the
repository, but the tools using other representation form can only define components, but not
retrieve them from the repository. MetaEdit+ will test the use of pre-defined process templates
to be copied and specified for projects’ use.

Document creation

In MetaEdit+, method specific helps can be generated as a by-product of a method, and
method specific reports can be created by using a Report Generator. Learning material and
examples of MetaEdit+ are separated, but implementable as external documents using
hypertext subsystem.

4.4 Co-ordination: control and co-operation

The CAME environments in comparison are focused on production. However, some support
for control and co-operation is found.

Control mechanism of MetaEdit+ multi-user environment is designed also for CAME
level. Co-operative aid is supported by the use of various representations of a method in each
CAME environment. Also, Decamerone’s MEL language is designed to attach situation
information not generated into CASE, but usable in co-ordination of method fragments.
Anyway, specific CSCW tools are not integrated.

4.5 Support

MetaEdit+ contains on-line help including descriptions of GOPRR concepts and guidelines
how to use them. Since the environments are still at the early stages, the ways of supporting
will improve.

5 SUPPORTING A METHOD BY USING THE CUSTOMISABLE CASE
ENVIRONMENTS

In this section we shortly discuss the differences of the customisable CASE environments in
their method support. Table 3 represents the functions and tools (italics) of the customisable
CASE environments.

Evaluating method engineering environments 79

5.1 Representation

In contrast to drawing tools, both Maestro II and MetaEdit+ are concept-oriented
environments. Concepts are implemented as classes, which store information into their
properties. In Maestro 11 the integration between techniques is achieved by using the DMDT,
which contains references to object classes, relationships and attributes. Attributes can be
shared by referring to the defining template. The following integration mechanisms are used in
MetaEdit+: concept reuse between models, property sharing between concepts (e.g., object
appears as a relationship in another technique), and explosions from an element to a model of
different type.

Both CASE environments separate the conceptual and representational (notations)
information. Representation forms for MetaEdit+ are structured graphics, matrices and tables
and for Maestro II structured graphics and text. Both of the CASE environments handle the
basic graphical semantics. However, they are limited to deal with, for instance, layered
complex models in the same diagram, and specific graphical rules and constraints.

Table 3 Supported CASE functions

CASE support in Maestro 11 in MetaEdit+
Representation o Tool Customisation Interface | ® Model editing tools: Diagram
(TCI) including Diagram Editor, Matrix Editor, Table
Editor Editor
o OMS Interface ® Repository Browser
Analysis o Prolan language: user defined | ¢ Model editing tools:
rules consistency checking
e Query mechanism ® Report Editor: reports for
checking

e Query Editor
e Linking Ability: requirement

tracing
Transformation e Report generation e Report Editor: generation of
e Code generation reports and code
e Links to other CASE tools
Control ® Project Configuration and ® Project tool
Management System (PCMS) | e Process Editor
e Function Point Analysis -tool
Co-operation e PCMS o Hypertext tools: Linking
o E-mail facilities Ability, Debate Browser
® Process Editor
Support & e On-line help e Hypertext tools: Debate
infrastructure Browser

e Tool guidance
¢ Context specific method
guidance

80 Method Engineering

5.2 Analysis

Maestro II allows to define a wide spectrum of method specific rules by using a Prolan rule
language. In MetaEdit+ GOPRR manages a set of general rules (cardinality, connectivity and
composition rules) and offers possibilities to define checking reports.

Validation of IS models in MeraEdit+ means traceability to requirement documents. This
functionality is provided by the Linking Ability. Maestro II offers no support for validation.

Simulation is not used in conceptual modelling domains, but essential, if we want to
support process and behaviour modelling by using, for instance, State Transition Diagrams or
Petri nets. Both environments do not offer simulation mechanisms.

5.3 Transformation

Maestro II provides transformation facilities such as advanced report generation, code
generation, screen mock-ups, and reverse engineering. It has facilities to generate reports of
the database (OMS) and project (PCMS) contents. Besides, there exist tools that provide links
with other CASE tools such as Knowledgeware’s ADW (Bosua and Brinkkemper, 1995).

MetaEdit+ contains a Report Tool to define report models and programming language
structures. Therefore, transformations from a higher level model to a detailed one or a data
structure of programming language can be specified.

5.4 Control

As noted before, Maestro II contains a Project Configuration and Management System
(PCMS), which guides the user in applying a method by offering references to required tasks
and deliverables. In addition, the state automaton of PCMS defines the dynamics of a project
by keeping track of the various states of deliverables as well as their state transitions. Freeze
and unfreeze of artefacts, and configuration and version management can be achieved. A
project manager can keep track of the current state of all the activities performed by project
members and compare their activities with the project plan by using the project scheduling tool
incorporated in the PCMS. For estimating, a Function Point Analysis tool is developed as an
extension to PCMS.

MetaEdit+’s repository is an object base, which stores the objects as such. Repository
provides the locking mechanism to avoid simultaneous editing of the same diagram. However,
current implementation does not provide versioning of models. GOPRR provides the
automatical change propagation between the model elements that share properties. Further, the
Process Editor for the guidance and co-ordination of the project specific development process
is currently being implemented.

5.5 Co-operation

The CASE environments contain minor differences in their co-operative .support. Both are
multi-user environments having locking mechanisms for asynchronous development (one
developer at a time). Maestro II supports communication by its e-mail facility. MetaEdit+ co-
operative functionality is found in its hypertext subsystem containing, e.g., annotations and
debates attached to either modelling concepts or their representations. Moreover, by using a
DebateBrowser, structured conversations can be managed. Still, specific group interaction

Evaluating method engineering environments 81

mechanisms and functionality for synchronous modelling are lacking in these CASE
environments.

5.6 Support

Dependent on the method or the tool used, Maestro II provides on-line help screens in various
levels of detail. Help screens are laid out as hypertexts, enabling the user to cross-reference
other topics.

MetaEdit+ offers on-line help to its general CASE tool functions. Context specific aid,
descriptions of concepts, techniques and tasks, are generated as a by-product of their creation
in method engineering tools. Explanations and discussions according to project tasks, models,
model elements, model versions can be attached by using the hypertext support discussed
above. Furthermore, the joint menus and functions of various CASE tools are designed
similarly.

6 CONCLUSIONS AND FUTURE WORK

In this study we developed a framework for evaluating CAME and customisable CASE
properties of current ‘state of the art’ environments. We selected the framework for CASE
functionality presented by Henderson and Cooprider (1994) and tailored it for customisable
CASE and CAME. We used the comparison framework to evaluate the properties of two
environments Maestro II with Decamerone, and MetaEdit+.

The aim of this study was to answer the questions: How well can a method be defined in a
CAME environment?, and How well is a defined method supported in a customisable CASE
environment? As a result we presented the functionality and tools that are available in two
environments, and functionality required after the framework.

If we consider the framework used, we can conclude that current CAME technology
focuses on production, but does not deal adequately with co-ordination and support. Further,
in production technology there exists several issues that have not been sufficiently examined,
such as specifying the methods in detailed granularity, reuse of method fragments, and change
propagation to customisable CASE.

If we look at the second question, we can conclude that in the evaluated environments
method support can be achieved by representing and storing models and by checking their
consistency. Also, the development process is either supported or under construction.
Validation support is limited and behavioural semantics of modelling elements for, e.g.,
simulation of Petri-net diagrams is not available. Moreover, both environments are limited in
their integration of tools for specific tasks, including co-operation, project management, and
learning issues.

The main purpose of the environments examined is to improve IS development support by
tailoring a method specific CASE for project needs. The quality of such a tailorable
environment means the support for the methods required by customers, the methods without
any hard-coded CASE support, and the freedom to modify methods. Further, this study
explained the framework functions supported. It did not focus on usability or integrity of the
tools supporting these functions. Therefore, one should not draw a straightforward conclusion
that an environment supporting all framework aspects is a good one.

82 Method Engineering

In the future we would need to use a more comprehensive approach to evaluate these
environments. First, we will generate a set of exact questions for each CAME function.
Second, we will select an example method to be modelled for the CASE environments. By
using this comprehensive approach for evaluating the environments we will obtain a detailed
view of the environments. The evaluation of other environments should also be performed.

7 ACKNOWLEDGEMENTS

We would like to thank the other members of the projects MetaPHOR (University of
Jyviskyld) and Method Engineering Group (University of Twente), and in particular Sjaak
Brinkkemper for his assistance and co-operation, and Steven Kelly, Kalle Lyytinen, and Tuuli
Rossi for the improvements on this paper.

8 REFERENCES

Auramiki, E., Leppdnen, M. and Savolainen, V. (1988) Universal framework for information
systems. Data base, 19, 1, pp. 11-20.

Bergsten, P., Bubenko, J., Dahl, R., Gustafsson, M. and Johansson, L.-A. (1989) RAMATIC -
a CASE shell for implementation of specific CASE tools. TEMPORA T6.1 report, SISU,
Stockholm, Sweden.

Boloix, G., Sorenson, P.G. and Tremblay, J.P. (1991) On Transformations Using A
Metasystem Approach To Software Development. Technical report, The University of
Alberta, Edmonton, Alberta, Canada.

Bosua, R. and Brinkkemper, S. (1995) Realisation of an Integrated Software Engineering
Environment through Heterogeneous CASE-Tool Integration. Software Engineering
Environments (Ed. M.S. Verrall), IEEE Computer Science Press, pp. 152-159.

Brinkkemper, S. (1990) Formalisation of Information Systems Modelling. Ph.D. Dissertation,
University of Nijmegen, Thesis Publishers, Amsterdam.

Brinkkemper, S. (1995) Method engineering: engineering of information systems development
methods and tools. Information and Software Technology, 37, 11, pp. 1-6.

Brodie, M. (1984) On the developments of data models. Perspectives from Artificial
Intelligence, Databases and Programming Languages (Eds. M. Brodie, J. Mylopoulos and
J. Schmidt), Springer-Verlag, pp. 19-47.

Bubenko, J.A. jr. (1988) Selecting a strategy for computer-aided software engineering
(CASE). SYSLAB Report No 59, SYSLAB, University of Stockholm, Sweden.

Chen, M., Nunamaker, J.F. jr. (1989) MetaPlex: an integrated environment for organization
and information systems development. Proceedings of the 10th ICIS (Eds. J.I. DeGross,
J.C. Henderson and B.R. Konsynski), ACM Press, New York, NY, pp. 141-151.

Cronholm, S. and Goldkuhl, G. (1994) Meanings and Motives of Method Customizations in
CASE Environments. 5th Workshop on Next Generation of CASE Tools, June 6-7.
Utrecht, The Netherlands.

Crozier, M., Glass, D., Hughes, J., Johnston, W. and McChesney, I. (1989) Critical analysis of
tools for computer-aided software engineering. Information and Software Technology. 31,
9, pp. 486-496.

Evaluating method engineering environments 83

Curtis, B., Kellner, M.I. and Over, J. (1992) Process modeling. Communications of the ACM,
35, 9, pp. 75-90.

Essink, L. (1986) A modelling approach to information system development. Information
Systems Design Methodologies: Improving the practise (Eds. T.W. Olle, H.G. Sol and A.A.
Verrijn-Stuart), North-Holland, Amsterdam, pp. 55-86.

Euromethod (1994) Euromethod Architecture. Euromethod project deliverable Work Package
3,1994.

Fuggetta, A. (1993) A classification of CASE Technology. IEEE Computer, 26, 12, pp. 25-38.

Hahn, U., Jarke, M. and Rose, T. (1991) Teamwork Support in a Knowledge-Based
Information Systems Environment. IEEE Transactions on Software Engineering, 17, May,
pp. 467-481.

Harmsen, F. and Brinkkemper S. (1995) Design and Implementation of a Method Base
Management System for a Situational CASE Environment. Proceedings of the 2nd Asian-
Pacific Software Engineering Conference (APSEC’95), IEEE Computer Society Press, Los
Alamitos, CA, pp. 430-438.

Harmsen, F., Brinkkemper S. and Oei H. (1994) Situational Method Engineering for
Information System Projects. Proceedings of the IFIP WGS8.1 Working Conference
CRIS’94 (Eds. T.W. Olle and A.A. Verrijn-Stuart), North-Holland Publishers, Amsterdam,
pp. 169-194.

Harmsen, F., Lubbers I. and Wijers G. (1995) Success-driven selection of Fragments for
Situational Methods - The S cube model. Proceedings REFSQ'95 Workshop (Eds. P. Peters
and K. Pohl), Aachener Berichte zur Informatik, pp. 104-115.

Harmsen, F., and Saeki, M. (1996) Comparison of Four Method Engineering Languages.
Proceedings IFIP WG8.1/8.2 Working Conference on Principles of Method Construction
and Tool Support (ME’96), Atlanta, Georgia, USA.

Henderson, J.C. and Cooprider, J.G. (1994) Dimensions of IS Planning and Design Aids: A
Functional Model of CASE Technology. IT and the Corporation of the 1990’s: Research
studies (Eds. T. Allen and M. Scott-Morton), Oxford University Press, pp. 221-248.

Heym, M. and Osterle, H. (1992) A reference model of information systems development. The
Impact of Computer Supported Technologies on Information Systems Development (Eds.
K.E. Kendall, K. Lyytinen and J.I. DeGross), Amsterdam, North-Holland, pp. 215-240.

Hoef, R. van de and Harmsen F. (1995) Quality requirements for situational methods.
Proceedings of the NGCT'95 Workshop, Jyviaskyla, Finland.

ISDOS (1981) An introdution to the System Encyclopedia Manager, ISDOS Ref #81 SEM-
0338-1, ISDOS Project, Department of Industrial and Operations Engineering, The
University of Michigan, Ann Arbor, Michigan.

Jarke, M., Pohl, K., Rolland, C. and Schmitt, J.-R. (1994) Experience-Based Method
Evaluation and Improvement: A process modeling approach. Proceedings of the IFIP
WGS8.1 Working Conference CRIS’94 (Eds. T.'W. Olle and A.A. Verrijn-Stuart), North-
Holland Publishers, Amsterdam, pp. 1-27.

Kelly S., Lyytinen, K. and Rossi, M. (1996) MetaEdit+ A Fully Configurable Multi-User and
multi-Tool CASE and CAME Environment. Proceedings of the CAIiSE’96 conference, 20-
24 May, Heraklion, Crete, Greece.

Koskinen, M. (1996) Designing Multiple Process Modelling Languages for Flexible, Enactable
Process Models in a MetaCASE Environment, Proceedings of the 7th European Workshop
on Next Generation CASE Tools (NGCT’ 96), Heraklion, Crete, Greece.

84 Method Engineering

Kumar, K. and Welke, R.J. (1992) Methodology Engineering: A proposal for Situation-
specific Methodology Engineering. Challenges and Strategies for Research in Systems
Development (Eds. W.W. Cotterman and J.A Senn), John Wiley and Sons Ltd., pp. 257-
269.

Lyytinen, K., Smolander, K. and Tahvanainen, V.-P. (1989) Modelling CASE Environments in
Systems Work. CASE’ 89 conference papers, Kista, Sweden.

Marttiin, P. (1994) Towards Flexible Process Support with a CASE Shell. Advanced
Information Systems Engineering (Eds. G. Wijers, S. Brinkkemper and T. Wasserman),
LNCS#811, Springer-Verlag, pp. 14-27.

Marttiin, P., Lyytinen, K., Rossi, M., Tahvanainen, V.-P., Smolander, K. and Tolvanen, J.-P.
(1995) Modeling Requirements for Future CASE: modeling issues and architectural
considerations. Information Resource Management Journal, 8, 1, pp. 15-25.

Marttiin, P., Rossi, M., Tahvanainen, V.-P. and Lyytinen, K. (1993) A Comparative Review of
CASE Shells: a preliminary framework and research outcomes. Information and
Management, 25, pp. 11-31.

Merbeth, G. (1991) Maestro II - das integrierte CASE-System von Softlab. CASE Systeme und
Werkzeuge (Ed. H. Balzert), BI Wissenschaftsverlag, pp. 319-336.

MetaEdit+ (1995) MetaEdit+: Method Workbench User's Guide (version 2.0). MetaCase
Consulting, MicroWorks Finland. .

Misra, S.K. (1990) Analysing CASE system characteristics: evaluative framework.
Information and Software Technology, 32, 6, pp. 415-422.

Nijssen, G.M. (1989) An Axiom and Architecture for Information Systems. Information
System as an In-Depth Analysis (Ed. E.D. Falkenberg), Elsevier Science Publishers B.V.
(North-Holland), IFIP, pp. 157-175.

Norman, R.J. and Chen, M. (1992) Working together to integrated CASE. IEEE Software,
March, pp. 13-16.

Oei, J.L.H. and E.D. Falkenberg (1994) Harmonisation of Information System Modelling and
Specification Techniques. Proceedings of the IFIP WG8.1 Working Conference CRIS’94
(Eds. T.W. Olle and A.A. Verrijn-Stuart), North-Holland Publishers, Amsterdam, pp. 151-
168.

Oinas-Kukkonen, H. (1995a) Linking Ability - a Model Linking Tool for MetaEdit+
Environment. Working paper series B39, Department of Information Processing Science,
University of Oulu, Finland.

Oinas-Kukkonen, H. (1995b) Debate Browser - a Design Rationale Tool for MetaEdit+
Environment. Working paper series B40, Department of Information Processing Science,
University of Oulu, Finland.

Olle, T.W., Hagelstein, J., MacDonald, 1.G., Rolland, C., Sol, H.G., Van Assche, F.J.M. and
Verrijn-Stuart, A.A (1991) Information Systems Methodologies: A framework for
understanding. Addison-Wesley Publishing Company, Wokingham, England.

Olle, TW., Sol, HG. and Tully, CJ. (Eds.) (1983) Information Systems Design
Methodologies: A Feature Analysis. Elsevier Science Publishers, North-Holland,
Amsterdam.

Olle, T.W., Sol, H.G. and Verrjin-Stuart, A.A. (Eds.) (1982) Information Systems Design
Methodologies: A comparative review. Elsevier Science Publishers, North-Holland,
Amsterdam.

Evaluating method engineering environments 85

Olle, T.W., Sol, H.G. and Verrijn-Stuart, A.A. (Eds.) (1986) Information Systems Design
Methodologies: Improving the practise. Elsevier Science Publishers, North-Holland,
Amsterdam. .

Rossi, M., Gustafsson, M., Smolander, K., Johansson, L.-A. and Lyytinen, K. (1992)
Metamodeling Editor as a Front End Tool for a CASE Shell. Advanced Information
Systems Engineering (Ed. P. Loucopoulos), LNCS#593, Springer-Verlag, Berlin, Germany,
pp- 546-567.

Saeki, M., Iguchi, K., Wen-yin, K. and Shinohara, M. (1993) A meta-model for representing
software specification & design methods. Proceedings of the IFIP WG8.1 Conference on
Information Systems Development Process (Eds. N. Prakash, C. Rolland and P. Pernici),
Como, pp. 149-166.

Slooten, K. van, and Brinkkemper S. (1993) A Method Engineering Approach to Information
Systems Development. Proceedings of the IFIP WG8.1 Conference on Information Systems
Development Process (Eds. N. Prakash, C. Rolland and P. Pernici), Como, pp. 167-186.

Smolander, K., Lyytinen, K., Tahvanainen, V.-P. and Marttiin P. (1991) MetaEdit - A flexible
graphical environment for methodology modelling. Advanced Information Systems
Engineering, (Eds. R. Andersen, J. Bubenko and A. Selvberg), LNCS #498, Springer-
Verlag, pp. 168-193.

Smolander, K. (1992) OPRR - A Model for Methodology Modeling. Next Generation of
CASE Tools (Eds. K. Lyytinen and V.-P. Tahvanainen), Studies in Computer and
Communication Systems, IOS press, pp. 224-239.

Sorenson, P.G., Tremblay, J-P. and McAllister, A.J. (1988) The Metaview system for many
specification environments. JEEE Software, 30, 3, March, pp. 30-38.

Ter Hofstede, A. H. M. and Weide, Th. P. van der (1993) Expressiveness in data modeling.
Data & Knowledge Engineering, 10, pp. 65-100.

Venable, J. (1993) CoCoA: A Conceptual Data Modelling Approach for Complex Problem
Domains. Ph.D. dissertation, State University of New York, Binghampton.

Verhoef, T.F. and Ter Hofstede, A.H.M. (1995) Feasibility of Flexible Information Modelling
Support. Advanced Information Systems Engineering (Eds. J. livari, K. Lyytinen and M.
Rossi), LNCS #932, Springer-Verlag, pp. 168-185.

Vessey, 1., Jarvenpaa, S. and Tractinsky, N., Evaluation of Vendor Product: CASE Tools as
Methodology Companions. Communications of the ACM, 38, 4, pp. 90-105.

Wijers, G. and Dort, H. van (1990) Experiences with the use of CASE tools in the
Netherlands. Advanced Information Systems Engineering (Eds. B. Steinholz, A. Sglvberg
and L. Bergman), LNCS#436, Springer-Verlag, pp. 5-20.

Wijers, G. (1991) Modelling Support in Information Systems Development. Ph.D. dissertation,
Thesis publishers, Amsterdam.

Wynekoop, J.D. and Russo, N.L. (1993) System development methodologies: unanswered
questions and the research-practice gap. Proceedings of 14th ICIS (Eds. J.I DeGross, R.P
Bostrom and D. Robey), Orlando, USA, pp. 181-190.

86 Method Engineering

9 BIOGRAPHY

Pentti Marttiin is a researcher in the MetaPHOR project funded by the Academy of Finland. He
received his M.Sc. (1991) and Econ.Lic. (1994) at the Department of Computer Science and
Information Systems, University of Jyviskyld, Finland. He has written articles on method
engineering and metaCASE environments published in Information and Management,
Information Resource Management Journal, and several conferences. He has participated
ICIS’92 doctoral consortium, served as a program committee member in CAiSE’95, and
involved in the development of metaCASE tools for Meta Case Conculting. His current
research interest focuses on process and agent modelling aspects in metaCASE.

Frank Harmsen is a researcher in the Information Systems Design Methodology Research
Group at the Computer Science Department of the University of Twente in the Netherlands.
He holds a B.Sc and M.Sc in Mathematics and Computer Science from the University of
Nijmegen. His research interests are information system methodology, meta-modelling, method
engineering, and CASE tools, about which he has published several papers. Current research
activities focus on defining formalisms and tools for representation and assembly of method
fragments for Situational Method Engineering. He was co-editor of the 1993 edition of the
Workshop on Next Generation of CASE Tools (NGCT), and served on the organisation
committee of CAiSE’94 (Conference on Advanced Information Systems Engineering). He is a
member of the Netherlands Society for Informatics.

Matti Rossi is a researcher in the MetaPHOR project funded by the Academy of Finland. He
received his M.Sc. (1994) and Econ.Lic. (1996) at the Department of Computer Science and
Information Systems, University of Jyviskyld, Finland. He has published in Information and
Management, Information Systems, and Information Resource Management Journal, and
participated CAiSE, ECOOP, WITS and SERF conferences. He has served on the Workshop,
Poster and Exhibition Chair of the CAISE’95 conference. He is also a member of the board in
Meta Case Conculting, and has involved in implementing the report generation facility of
MetaEdit and CAME tools of MetaEdit+. His research interests include database management,
object-oriented data representation, metamodelling, transformations in metamodelling, and the
applications of the previous items to software engineering.

6

Method rationale in method engineering
and use

H. Oinas-Kukkonen

Department of Information Processing Science
P.O. Box 400, FIN-90571 Oulu, Finland

Tel. (358) 81 553 1900, Fax. (358) 81 553 1890
Email: hok@rieska.oulu.fi

Abstract
While the major aspect in method engineering is method assembly, a second aspect is the
argumentation behind the methods. This paper introduces the concept of method
rationale in method engineering and use as a communication vehicle between method and
software engineers, and describes tools that support the capture and management of
method rationale in a computer-aided method engineering environment.

Keywords
Information systems development, method engineering, CASE, metaCASE, CAME,
design rationale, method rationale, hypertext

1 INTRODUCTION

The emergence of metaCASE and Computer-Aided Method Engineering (CAME)
technology has provided the field information system development (ISD) with new
promises. One of them is the utilization of the same computerized environment to
develop both ISD methods and target information systems. Still, even when methods can
be assembled in a CAME environment, part of the important method-related knowledge
normally remains implicit, e.g. experience accumulated about the methods in use (Jarke
et al, 1994). Computerized support for capturing this kind of semi-structured
information is also needed.

A simple means for modelling experience information in conjunction with metaCASE
is to maintain a textual note for each method (Heym and Osterle 1993). The solution in
this paper, however, provides a method and metamodelling independent, and a more

88 Method Engineering

sophisticated and effective means for recording semi-structured information. This paper
considers information systems development and method engineering as a special case of
design, and bases its solution on the concept of design rationale (Fischer et al., 1991,
Ramesh and Dhar, 1992). Design rationale means basically the understanding of why an
artifact has been designed the way it has, which may include information on e.g.
requirements, assumptions, decisions, and alternative solutions. The benefits of design
rationale capture include the achievement of increased rigor and clarity of thinking,
augmentation of the designer’s memory, better communication among team members
and stakeholders, and improved meetings (Conklin and Yakemovic, 1991). The concept
of design rationale in conjunction with method engineering and ISD (i.e. method use) is
leveraged here in the following manner. Method rationale means method design and
usage rationales and their linkages to design artifacts across various phases of
method engineering and use.

This paper introduces tools which can be utilized to support method rationale in a
full-blown CAME environment, and describes an approach by which method rationale
can be used as a communication vehicle between the stakeholders in this kind of
environment.

2 RESEARCH ENVIRONMENT

MetaEdit+ is a fully configurable multiuser, multitool Computer-Aided Software and
Method Engineering environment (Kelly et al., 1996). In addition to basic model editing
and retrieval tools, MetaEdit+ also includes tools which enable the creation, modification
and deletion of annotations and navigational hyperlinks between models or their parts.
The model annotation and linking tools (Debate Browser and Linking Ability) are
seamlessly integrated with the model editing tools (Diagram Editor, Matrix Editor and
Table Editor), and they are used for commenting model instances, maintaining
conversations about design issues, linking design objects for traceability and as a
reminder, or finding specific locations in the design space.

Debate Browser

The Debate Browser is a hypertext-based toolset for supporting the capture and use
of design rationale knowledge. It utilizes an argumentation method similar to IBIS
(Conklin and Begeman, 1988), known as QAR (Question-Answer-aRgument). QAR has
been abstracted from various design rationale methods for our purposes in MetaEdit+
environment, simplifying the explicit rhetorical structure of design rationale (Oinas-
Kukkonen, 1996). The discussion is expressed using three kinds of nodes, questions,
answers, and arguments. There is also a particular way of registering that a question has
been resolved by agreement upon some answer by selecting and presenting one of the
suggested answers as a decision. A node always belongs to a hyperdocument, a
collection of discussions, consisting of nodes and links between the nodes. There can be
various design rationale hyperdocuments for debates on different kinds of subjects, for
example different organizational, research, product and other problem domains, as well
as within a project for analysis, design, implementation and review concerns.

Method rationale in method engineering and use 89

Should the ‘exit’

Should we split the link menu?

What are the hasic hypertext link types
Project funding?

Created: hok, 20 March 1935, 9:02:16 am

Miller's golden rule

j:;:‘:;szm,x -
p

Fige 1 Graphlcal and textual views in Debate Browser toolset.

Debate Browser enables the investigation of design rationale hyperdocuments and
their nodes and links with two browsers, a document browser and a graph browser. (See
Figure 1.) The document browser gives text lists of all the question nodes of a
hyperdocument, the answer nodes of an activated question, and the argument nodes of
an activated answer, with the active node always visible at the bottom of the browser.
The graph browser presents a graphical web view of the design rationale hyperdocument,
supporting the investigation of a full hyperdocument as well as a single question and its
associated answers and arguments. The zoom capability enables the investigation of the
hyperdocument through map views (see lower left corner in Figure 1). The investigation
of questions and their relationships is enabled from different perspectives in all views, i.e.
as a plain collection of questions or from generalization-specialization, replacement-
replacer, or parent-child perspectives. Nodes which have not yet been investigated by an
individual reader can be highlighted, node marking is enabled, and summary reports of
the design rationale hyperdocuments can be given among other features.

Linking Ability

Design rationale has to be integrated with construction environment to contextualize the
rationale, and with the issues to concentrate more on design than merely philosophical
discussions (Fischer et al.,, 1991). This can be achieved via attaching associative

90 Method Engineering

hyperlinks to design diagrams and design rationale nodes (which are different from the
responds, supports etc. links within design rationale hyperdocuments) through the
Linking Ability tool. All hyperlinks are created by hand at will, and they can lead to any
other design rationale node or diagram. More semantics can be stored into a link through
link attributes, e.g. type information or keywords. The hyperlink attribute query facility
helps to find specific linkages. Other sophisticated hypertext browsing features include an
interaction history, filtering mechanism, and landmark and bookmark lists. This kind of
hypermedia functionality also gives good modelling transparency (Brinkkemper, 1993).

The basic debate components are expressed using
three kinds of nodes, weis, and
aruments. QAR me! the articulation of
the key questions in the design problem. Each
question can have many answers. An answer is a | Subject |7+2

‘. statement or assertion that resolves the question. | m .
| Often answers will be mutually exclusive, but that is Creator | ho Date 20 March 19,95"'

: 3
| not required. Each answer may have one or more e, This answer Responds-To Question: { ba.f,\“‘“’,
| § b
e

arguments that either support that answer or object to B o How many commands should be selectabl
| it. Thus each separate question is the root of a lisr?

Ses also the discussion of other conjtive aspects and |41

Annatation
Definition DehateNog

Question Answer

Figure 2 Linkages between a diagram, a design rationale node and an annotation.

Linking Ability also enables the attachment of annotations to diagrams or design
rationale nodes. (See Figure 2.) There are two hyperlinks in an object-oriented diagram,
represented by graphical symbols. The traversal of the hyperlinks takes the reader to
corresponding nodes. The ‘Definition” hyperlink leads to an annotation node ‘Definition’
commenting on the relationships between design rationale nodes. The annotation node
includes three hyperlinks to other annotations. The ‘Number of choices’ hyperlink leads
to a design rationale node (answer) ‘7+-2’, which has been selected as a decision for a
certain question. The design rationale node includes hyperlinks to another node and a
diagram as well. Relationship representation and navigation and requirements tracing can
be supported through this kind of linking capability.

Method rationale in method engineering and use 91

3 APPLICATION OF THE MODEL ANNOTATION AND
LINKING TOOLS

Let us now imagine a software project, consisting of a group of software designers and a
smaller group of method engineers. Methods for business processes, information system
planning, analysis and design, e.g. value chain, work flow models, and OMT (all adapted
to the situation at hand), have been defined by method engineers using the
metamodelling language and its rationale. Both the method-specific and general design
rationale behind this method assembly has been captured using the Debate Browser.
Figure 3 describes the role of method rationale in ISD and ME activities (it is modified
from the software process support of Jarke et al. (1994)).

method method
assembly usage
(repository)
_metalanguage

metam. rationale
method .-

I - evaluates
method rationale| - . Software engineer
| sw descriptions N uses
L design rationae] creates “.‘ t
method I software
improvement development

Figure 3 Method rationale in ISD and ME activities.

The methods and their design rationale guide software designers in their work. When
software engineers use the methods to develop software artifacts they parallelly evaluate
the methods in a realistic context and capture debates on them into the corresponding
hyperdocuments. Software engineers are also encouraged to record software design
rationale. All this takes place through the Debate Browser. When design problems or
method evaluation are not mature enough for explicating debates, software engineers can
attach annotations to design diagrams instead of structured discussions. Software
engineers may also represent dependencies between artifacts and rationale through
hyperlinks in Linking Ability, in which they may also attach specific keywords, e.g.
‘method’ to represent its perceived potential for method improvement.

Method engineers are interested in investigating the debates, annotations and
linkages, which relate to methods and have been recorded by software engineers during
their normal working process. First, they investigate the method evaluation documents,
consisting of debates between software engineers regarding various aspects of method
usage. Second, method engineers investigate method-related annotations through
Linking Ability. Third, they are able to find and traverse the dependencies between

92 Method Engineering

argumentation and the design artifacts. Method engineers especially benefit from link
attribute queries, such as obtaining all hyperlinks, where keyword ‘method’ is attached,
then backtracking or traversing to either of the link end-points.

To summarize, the model annotation and linking tools can be utilized in method
engineering and use in the following ways.

e Method engineers use Debate Browser to capture the design rationale behind the
method assembly, which then guides software engineers in their work. Later, during
development projects software engineers and reviewers capture debates behind software
design, relating this kind of project performance either directly or indirectly to methods
used.

e Software engineers use Linking Ability to represent the dependencies between
models, rationale, and annotations through hyperlinks. A descriptive traceability process
model or process trace (Jarke et al., 1994) is established among the design diagrams
through linkages. When the design problems are not mature enough for explicit design
rationale, software engineers can built annotations instead. This helps in avoiding
premature segmentation of knowledge.

In the MetaEdit+ environment the process models and meta-models help to specify
the occasions and events when method and design rationale is to be captured, e.g.
phases, steps, decisions, milestones or reviews (Marttiin, 1994). Overall, the captured
method rationale can be applied to method evaluation and improvement, to raise the level
of consciousness and communication among the stakeholders, and to provide a help or
learning system. Method rationale may play an especially important role in very large
projects or in method engineering which takes place over time.

4 DISCUSSION AND CONCLUSIONS

This paper has described tools and principles for collecting and sharing experience and
other information on the applicability of methods used. The proposed solution consists of
capturing the method rationale in a CAME environment. Method rationale means
method design and usage rationales and their linkages to design artifacts across various
phases of method engineering and use. The tools described in this paper already exist in
the MetaEdit+ environment, and even if they have been used so far to capture only
software design rationale, we believe that they can be utilized in a similar manner to
capture and share knowledge about methods.

The computerized method rationale capture takes place as an active and integral part
of the ISD and ME processes, lessening the need for e.g. after-project interviews or
other manual tasks. In this manner method rationale and its support tools help to achieve
an advanced CAME environment. Capturing method rationale also provides a means for
analysing and comparing different methods through their existing or non-existing
features, e.g. requirements and assumptions. The original design rationale concept also
becomes especially interesting when it is enlargened to method, process, project and
business knowledge, supporting the creation and use of organizational memory.

Method rationale embeds a new conceptual structure and description language to a
CAME environment, and it can be utilized on any level of abstraction or in any phase of

Method rationale in method engineering and use 93

the ISD or ME activities. In general, model annotation and linking tools in computer-
aided design environments may enhance both target system quality and the quality of the
process through which they are developed. One of the most important steps in future
research is the development of principles for utilizing method rationale for method
refinements, e.g. defining the connection between software process models and method
rationale capture.

5 ACKOWLEDGEMENTS

I want to express my thanks to the other members of the MetaPHOR project, in
particular Juha-Pekka Tolvanen, Steven Kelly, and Pentti Marttiin for our discussions on
method engineering.

6 REFERENCES

Brinkkemper, S. (1993) Integrating Diagrams in CASE Tools Through Modelling
Transparency. Information and Software Technology, 35, 2, 101-105.

Conklin, J. and Begeman, M.L. (1988) gIBIS: A Hypertext Tool for Exploratory Policy
Discussion. ACM Transactions on Office Information Systems, 6, 4, 303-331.

Conklin, E.J. and Yakemovic, KC Burgess (1991) A Process-Oriented Approach to
Design Rationale. Human-Computer Interaction, 6, 3&4, 357-319.

Fischer, G., Lemke, A.G., McCall, R. and Morch, A1 (1991) Making Argumentation
Serve Design. Human-Computer Interaction, 6, 3&4, 393-419.

Heym, M. and Osterle, H. (1993) Computer-Aided Methodology Engineering.
Information & Software Technology, 35, 6&7, 345-354.

Jarke, M., Pohl, K., Rolland, C. and Schmitt, J.-R. (1994) Experience-Based Method
Evaluation and Improvement: A Process Modeling Approach, in Methods and
Associated Tools for the Information Systems Life Cycle (eds. A.A. Verrijn-Stuart
and T.W. Olle), IFIP Transactions A-55, North-Holland, Amsterdam, 1-27.

Kelly, S., Lyytinen, K., and Rossi, M. (1996) MetaEdit+: A Fully Configurable Multiuser
and Multitool CASE Environment, in Proceedings of the Eigth International
Conference on Advanced Information Systems Engineering (CAISE '96), Crete,
Greece, May 1996.

Marttiin, P. (1994) Towards Flexible Process Support with a CASE Shell, in Advanced
Information Systems Engineering (eds. G. Wijers, S. Brinkkemper and T.
Wasserman), LGNS#811, Springer-Verlag, 1994, 14-27.

Oinas-Kukkonen, H. (1996) Debate Browser - An Argumentation Tool for MetaEdit+
Environment, in Proceedings of the Seventh European Workshop on Next Generation
of CASE Tools (NGCT ’96), Crete, Greece, May 1996.

Ramesh, B. and Dhar, V. (1992) Supporting Systems Development by Capturing
Deliberations During Requirements Engineering. IEEE Transactions on Software
Engineering, 18, 6, June, 498-510.

7

How to compose an Object-Oriented
Business Process Model?

P. Kueng!, P. Bichler?, P. Kawalek! and M. Schrefi?

I IPG, Computer Science Department, University of Manchester,
Oxford Road, Manchester M13 9PL, UK. Tel: +44 161 275 6183
Fax: +44 161 275 6236 Email: {kueng, kawalek}@cs.man.ac.uk

2 DKE, Department of Information Systems, University of Linz,
Austria. Tel: +43 732 2468 9479 Fax +43 732 2468 9471 Email:
{bichler, schrefl}@uni-linz.ac.at

Abstract

Faced with the intensive business process reengineering activities in many companies, it is not
surprising that the issue of process modelling has become a central concern. This paper shows
that object-oriented system development methods can be applied to the field of business
process modelling, but that certain steps are needed in advance. For example, it is necessary to
compose a goal-means hierarchy, to establish necessary activities and roles, and to determine
the input and output for each activity. In this paper, we examine step by step how business
processes can be modelled, which data are needed for each step and which result would be
produced during each step.

Keywords

Business process modelling, goal-means hierarchy, object-orientation

1 INTRODUCTION

Today, many organizations undertake fundamental change programmes with the aim of
improving their market competitiveness. Typically, the main challenges they confront are the
reduction of cycle time, decreasing overall costs, and the improvement of customer satis-
faction. In pursuit of such benefits the organization may seek to adapt or design processes with
the aim of simplification, better control or the ready availability of information relating to the
state of extant business cases. These changes are often accompanied by increased dependency
on complex and heterogeneous software systems. Against this background it is not surprising

Object-oriented business process model 95

that more and more enterprises establish new workflow systems for which they aim to prove
coherent support of their business processes. Whilst the demand concerning business process
related software and development methodologies has already reached a notable level, commer-
cially available workflow management systems are only now evolving beyond a rather overly
simple, Taylorist, production-line metaphor. Furthermore empirically proven methodologies
for modelling and implementing business processes do not exist, cf. [Swenson/Irwin 95].

The rest of the paper is concerned with the presentation of a modelling approach. It focuses
upon the notion of a goal. The hypothesis is that the modelling of behaviour (e.g. a business
process) is best understood as purposeful, and can be described through goals. This work has
been developed at the University of Linz and shall be progressed in collaboration with the
University of Manchester. The paper is organized as follows: Section 2 gives an overview to
today’s business process modelling approaches. Section 3 gives a short introduction to a
business process, showing how a system development life cycle could look like and how our
goal-based modelling process is embedded. Section 4 shows how both enterprise-wide and
business process-related goals can be modelled. In section 5, we use a case study to transfer
goals into activities and explain how logical dependencies between activities can be visualised.
Section 6 presents and applies the concept of roles. In section 7, our example will be trans-
formed into an object-oriented model. Section 8 concludes with a summary and an outlook on
additional issues to be addressed in our research. Overall, we believe the contribution to be the
innovation of a methodological framework rather than the creation of new notations.

The case study considers an insurance company with offices throughout Europe. The inves-
tigators spoke to commercial underwriters and administrators in the London headquarters and
local office. Compared to other insurance sectors (e.g. motor policies, home insurance), the
commercial sector is low volume and highly labour intensive. Underwriters receive submis-
sions from brokers which describe major risk proposals (e.g. all the factories of a multi-
national manufacturer). To process a single submission can be time-consuming. It is likely to
involve many interactions with the broker and within the insurance company itself (e.g.
between underwriters and administrators). The case study took place with the company in a
phase of expansion.

2 THE STATE OF THE ART

To date several methodologies have been proposed. They can be grouped into four broad
categories:

Activity-oriented approaches: As the name implies, activity-oriented approaches focus
primarily upon activities (sometimes referred to as tasks). The flow of information, the
involved organizational units, and data are either not considered or are understood in the
context of the description of activities. Activity-oriented approaches are well suited to high
level process description. At a lower level they are used for simulation, e.g. estimating of cycle
time. There are many activity-oriented approaches, e.g. Information Control Nets [Ellis/Nutt
80], Trigger Modelling [Joosten 94], Event-driven Process Chains [Scheer 94]. Taking into
account that the mentioned methods differ from each other, criticism can be only fragmentary:

* Activity-oriented approaches generally offer good support to the process of refinement.
However this may encourage too much attention to be paid to the detailed process structure
and too little to the main structure of the business process.

* Activity-oriented approaches tend to define a business process as a specific ordering of
activities. This mechanistic view may fail to represent the true complexity of work, and may
lead to the failure of the implementation of a new business process.

96 Method Engineering

Object-oriented approaches: The principles which we associate with object orientation, for
example encapsulation and specialization, may in various ways be a part of other approaches
(e.g. activity-oriented approaches, role-oriented approaches). The well known object-oriented
methods (e.g. [Booch 94], [Embley et al. 92]) are widely used for designing and implementing
software systems. It seems obvious that the principles of object orientation be applied to
business process modelling. Are the techniques, in their current form, adequate for business
process modelling? Not fully, because:

¢ If the focus is only upon objects — describing structures and methods — the objectives of the
business process may not be considered. Starting with our hypothesis about the value of
understanding business through purpose, it can be implied that whilst object orientation
offers well understood benefits, it does not follow that a business needs to be considered as
a set of objects at all levels of abstraction. An alternative is to recognise other semantic
concepts such as purpose and to map them to an object structure at an appropriate level. In
this way the approach differs from some others which also give a high level view of the
business, e.g. [Graham 95].

* Business processes are not designed by information systems specialists but primarily by
process owners or their team members. Empirical evidence of case studies suggests that if
you ask these people how a certain business process operates, they will give a description of
activities, e.g. [Kawalek 95]. In other words: process owners and team members describe
their work through activities rather than objects.

* Most object-oriented methodologies apply object interaction diagrams. In these diagrams
we can identify the concept of roles. The weakness of this approach is that the assignment
of roles is done normally as a minor matter. If roles are important to us then we need to give
more attention to their assignment.

Role-oriented approaches: Probably the best known role-oriented technique is the Role
Activity Diagram (often called just RADs) [Ould 95]. The origin of the technique lies with the
modelling of coordination by [Holt et al. 83]. The concept of ‘role’ is obviously central and yet
is rather loosely defined. Ould suggests that a role “... involves a set of activities which, taken
together, carry out a particular responsibility or responsibilities” [Ould 95, p. 29]. To Hal€ a
role is “The position played in a process by an individual, team or unit” [Halé 95, p. 237].
Given these broad definitions we can describe many things as roles, whether they be whole job
descriptions (e.g. administrator), parts of work activity (e.g. make expense claim) or sub-parts
of that activity (e.g. calculate expenses). It follows that roles are conceptually similar to
modules. They allow a grouping of primitive activities which can then be assigned to a
particular person or agent. [Kawalek 95] argues that the strengths of RADs lie with their ability
to express this modularity of work through roles and the synchronisation between these roles.
Essentially this means that through a role-oriented approach we are able to describe process
behaviour at different levels. We can describe the co-ordination between roles and demarcate
this from our concern for the co-ordination within roles. RADs are increasingly popular,
especially within the UK. They seem to have many strengths but also some weaknesses, for
example:

* RADs are not very suitable if it is important to express an intricate sequencing logic. For
example, it can be difficult to express behaviours where two activities can be carried out
alternatively. It is still more difficult a behaviour where the sequence of two or more activ-
ities is undefined except for the fact that they cannot be carried out concurrently.

Object-oriented business process model 97

Speech-act oriented approaches: Speech act theory was mainly created by Austin and his
student Searle, cf. [Winograd/Flores 86, p. 58]. Further development, under the label
“Language/Action Perspective” were made by Winograd, Flores and Medina-Mora, cf.
[Medina-Mora et al. 92]. The underlying concept behind Language/Action Perspective is the
so called “ActionWorkflow Loop”: In each communication process (workflow) we can distin-
guish between a customer and a performer. The communication process itself consists of a
four-phased loop: proposal, agreement, performance, and satisfaction. The speech-act
approach is novel, interesting and potentially very significant. From various sources (e.g.
[Agostini et al. 94]) empirical examples of its use are being assembled. What are the current
limitations of speech-act oriented approaches?

» Carrying out business cases is always seen as a communication between a customer and a
performer. The model doesn’t take into account several parties. Furthermore it is not always
obvious which part is customer and which is performer. In different business cases they can
have a different behaviour.

» It is not clear whether speech-act oriented approaches are primarily dedicated for analysing
existing processes or for creating new processes. In the former case, a speech-act oriented
approach could help to analyse communication flow between process participants. In the
case of creating new processes, this approach doesn’t provide much help: neither does it
help to find adequate roles nor does it help to identify activities for supporting given goals.

As a broad conclusion concerning the aforementioned approaches, it seems that today’s
business process modelling approaches are still immature. There could well be a viable
synthesis of approaches in the future. Such a synthesis would have to address three things:
First, it would have to look broadly at business processes and appreciate the relationship
between the operational behaviour and managerial co-ordination, control, development and
policy [Beer 79]. Secondly, it would need to describe the process of modelling. Thirdly, devel-
oping the previous point, they need to describe what kind of information has to be input to a
methodology and is output from its application. In this way we would be able to select methods
in an contingent way according to the circumstances of our modelling project.

3 KEY ELEMENTS CONCERNING BUSINESS PROCESS MODELLING

Generally speaking, a model highlights certain aspects of the real world and omits others.
What does this mean with regard to the subject of business processes? According to
[Davenport 93] and [Hammer/Champy 93] a business process can be characterised by five
elements: (1) a business process has customers; (2) a business process consists of activities; (3)
these activities create value for the customer; (4) activities within a business process are
carried out by humans or machines; (5) business processes often involve several organizational
units; that means more than one organizational units are responsible for a whole business
process.

How are these aspects interrelated? As a core element of a business process model we have
business cases, which are instances of a business process. Business cases have to be carried
out. That means fulfilling business goals and satisfying stakeholders. Business cases are
composed of activities (sometimes referred to as functions or working steps or tasks) which
can be further decomposed into subactivities. Activities within an office environment need
information as input. That input has to be provided by an information producer. Activities also
produce an output which will be delivered to the customer, probably the most important player
within a business process. Activities have to be carried out by roles.

98 Method Engineering

Creating and implementing new business processes is a highly complex task. There are still
few empirically established examples. Furthermore it is difficult to appreciate the most
important requirements at the beginning of a project. It is effectively impossible to estimate if
the proposed process model would lead to the desired state.

I Enterprise-wide Strategy —l

Busii Pr Modelling |~<&—

Y

Goal Modelling

Activity Modelling

Role Modelling

Object Modelling

l Project
l Prototyping / Programming | > management

| Verification and Validation —I

L Implemintation I /
L Operation j—.—J

Figure 1 The system development life cycle.

In order to reduce these problems we propose to apply a cyclic stage model. Figure 1, which
includes ideas from [Floyd et al. 89] and [Hammer/Champy 93], shows that the development
and implementation of a business process is made up of several activities: First of all, an enter-
prise-wide strategy — which describes the enterprise-wide as well as the future product and

Object-oriented business process model 99

service portfolio — has to be developed. After that, the business process(es) have to be
modelled; an activity we describe in detail later. Subsequently the modelled business process
has to be verified and validated. Whereas verification is usually done by formal methods,
validation may efficiently be carried out by prototypes. Prototyping allows potential users to
judge if the system is adequate or not. After several iterations the business process model has
to be transformed into an executable system. This might be done using either a workflow
management system or in a traditional way, e.g. coding a C++ application. If an executable
program has been created it has to be implemented in a designated environment. Generally
speaking, implementation means developing a plan that addresses the organization of change.
On the organizational side this may include transformations concerning hierarchy of
management, incentives, performance measurement, job description, job changes, skills, and
training. After successful implementation the system goes into the operation. After an
unknown duration in operation, process goals are likely to change and this eventually leads to
a new development cycle. Furthermore customer needs, overall policies or profitability of
certain activities may also change — and as a result, business processes or part of them may be
outsourced.

Figure 1 shows that the mentioned steps of a system development life cycle are surrounded
by project management. It is a ongoing activity and defines some key elements which affects
the success of a project much more than technical aspects. Project management includes, but is
not limited to the following aspects: organizational structure of the project team, staff (quantity
and qualification), maximum project duration, maximum project cost, methods and standards
concerning each development step, monitoring and measurement of progress and risks, facil-
ities and technical equipment.

Before proceeding, three preliminary remarks have to be made: (1) During the modelling
process (analysis and design), we do not look at a possible implementation strategy. That
means, the subsequently modelled business processes would be technology-independent. (2)
Business processes discussed in this paper concern the area of office systems, e.g. informa-
tional processes. In other words, at present, manufacturing processes which have the objective
to produce physical materials (tables, printers, cars, ...) are beyond our discussion. (3) We do
not take into account existing IT components. In contrast to the fountain life cycle model (cf.
[Graham 95, p. 350]), aspects of reuse are beyond the scope of this paper.

4 MODELLING OF GOALS

In traditional system development life cycles, the first step is typically described as “require-
ments analysis”. Experience of several projects has showed that the process of eliciting
requirements cannot be seen as an isolated step, cf. [Floyd et al. 89]. Furthermore, traditional
requirements analysis may produce lists with a vast number of items. For this reason, we
propose to model not traditional requirements, but the more abstract notion of goals which
have to be fulfilled. Goal modelling can be applied on an enterprise-wide level as well as on
business process level. After starting the first business process modelling project, we have to
create a model on the enterprise-wide level. That means, the goals on the top-level has to be
captured and subsequently broken down into subgoals until they can be assigned to business
processes.

Our work leads us to believe, that the following approach would be fruitful. To achieve a
clear structure of our goal model, we divide goals into the following three categories:

100 Method Engineering

* Business process-related goals: If business processes have to be modified — and this should
happen in every process modelling project — this kind of goals are of primary importance. In
the case study that follows, business process-related goals include: “making profit by
selling insurances” and “increasing turnover”, cf. figure 2. How should process-related
goals be modelled? The objective is to reduce or decompose process-related goals until they
can be transformed into activities which have to be carried out within a business process. If
a certain activity is a component of several business processes, this activity has to be placed
— for reduction of redundancy — as part of a support process. It should be noted, that goals
may not only be defined in the positive sense of “ensure that something happens” but also in
the negative sense of “ensure that something does not happen”.

e Information system-related goals: This kind of goals are sometimes referred to as require-
ments concerning the product. The product would be, in our area of application, an infor-
mation system, such as a workflow system. IS-related goals are usually not very process-
specific and for this reason it would not be efficient to define them for each project. For the
purpose of reuse, we can distinguish between enterprise-internal and enterprise-external IS-
related goals; furthermore we can divide the two categories into enterprise-specific and
process-specific goals. This means that IS-related goals can be defined for the whole
company and then just have to be specialized (by refinement or extension) for a certain
business process. Furthermore, IS-related goals cannot often be translated into business
process activities during the first stages of process modelling. Nevertheless, it is important
to make clear at the beginning of a project, which IS-related goals have to be considered
whilst a new business process is being created and probably implemented in several infor-
mation system components. Examples of IS-related goals are availability, conformity with
user expectations, confidentiality, consistency, controlability, error tolerance, modifiability,
reliability, response time, self-descriptiviness, and suitability for learning.

* Project management-related goals: These goals deal with the process of “information
system development”. As we can infer from figure 1, these goals cannot be addressed to a
certain development step. In other words, it is not possible to generally define on which
modelling step what type of project management-related goal has to be used. What do we
mean by project management-related goals? Some examples may make it clearer: standards
and guidelines concerning modelling methods and implementation aspects, organizational
structure of the project team, project duration, costs, monitoring and measurements of
progress and risks, quantity and qualification of project staff, facilities and technical
equipment.

5 MODELLING OF ACTIVITIES

As mentioned in section 2, many modelling approaches are activity-based. That means the first

step would normally be “defining activities which have to be carried out whilst a business case

progresses”. These approaches raise the question “How can we identify the appropriate activ-

ities?”. This question is very important but until now relatively little attention has been paid on

it. How do we identify activities of a business process? There are four sources:

* Goals and subgoals: As [Hammer/Champy 93] mention, business processes should only
include such activities which create value for the customer. In other words, activities have
to make a contribution to the business process goals. Referring to our example, figure 2
shows that the subgoal “minimum of losses” leads to the activity “refuse risky submis-
sions”.

Object-oriented business process model 101

* Measurement of goal achievement. As we have seen above, activities should make a
contribution to the fulfilment of goals. This raises the question “How can we measure the
extent to which a business goal is fulfilled?”. The degree of fulfilment of goals has to be
measured by activities. In other words, for each business process goal we not only have to
define the criteria by which the achievement can be measured, we additionally have to
define activities for measuring the degree of fulfilment. This is shown in the example.
Figure 2 shows for example that the goal “making profit” leads to the activity “record cost
and return for each business case”.

* Restrictions: The definition of business processes is not a fully boundless task. It is to be
expected that we have to take into consideration certain restrictions. They may come from
the enterprise itself or from third parties. Restrictions can be divided into three categories:
legal restrictions, technical restrictions, and social restrictions. For example, in the case
study we only consider commercial insurance, because it is perceived to be technically
different from other kinds of insurance (e.g. life insurance, motor insurance).

* Input delivery: Business processes may subsume activities, which do not produce value for
the customer, which are not used for measuring goal fulfilment, and which are not derived
from restrictions. What are they good for? Activities need — if they have to be carried out —
input. This input has to be delivered by an activity which is either located within or outside
of the business process. As we will see in table 1, concerning our example, we have several
activities whose “goal” is to deliver input for already identified (possibly value generating)
activities. For example, the activity “record customer request” delivers the input for the
subsequent activities.

goal: making profit goal: increasing turnover \
criteria: costs < 0.8 . return —- criteria: 18% annual increase
")
. minimum of customer accept i informed potential ©
high return losses high premium happy ciients customers §,
/ \ / \ S
]
= 5z
<
y &
Q
. high quality i easy readable i 3
debtor controlling in advice short cycle time poIiZy documents low premium 8
an up-to-date check complete-
database ness early low costs J
; Y Y { N
record cost refuse risky make initial deliver well send information
and return submissions review structured policies packages to cust. @
2
vy y >3
Y 3
<
push ahead out- update customer i
record payment standing payments | | database gﬁm:m?:rease
/s

Figure 2 Goal/Activity Model for the business process “Insure customer objects”.

102 Method Engineering

As we have seen above, in order to identify necessary activities of a business process, we
have to define not only business goals, business restrictions, and general requirements, but also
the input and output for each activity. It should be mentioned that we use input and output not
only for identifying activities but also for describing the activities more precisely. In other
words, we have to define what data must be available for activities to be carried out. Similarly
we have to describe which data (output) has to be delivered to the process customer, to a third
party, or to another business activity.

With reference to the definition of Input/Output Models (cf. table 1), it is useful to note that
activities are regarded as isolated modules. For this reason any input, which is needed for
carrying out an activity has to be listed. In other words, an activity cannot make any reference
to a data pool, even certain data has been defined as input for another activity. The advantage
of this concept is threefold: (1) activities may be placed freely, because we do not take into
account the dataflow between activities; (2) if we analyse the inputs concerning their
frequency and volume, we get some indications of which data are candidates for an efficient
management, €.g. by database management systems; (3) the concept of isolated modules does
not pre-determine any technical realisation.

‘What level of abstraction would be appropriate to define Input/Output Models? We take a
very pragmatic position on this issue and raise the question “What kind of information can we
get from people who are participating in the modelling project™? If they are thinking in
categories of attributes, we would use them. If they prefer to speak about types of documents,
we would record them. Much more important than the level of abstraction is the consistency.
We have to guarantee that each data item (attribute or document) which is used as an input of
an activity, is produced by another activity. In other words, Input/Output Models may
“generate” new activities. If we compare figure 2 with table 1, we may discern that the activity
“record customer request” in table 1 does not take feature in figure 2. This is because this
activity has not been derived from the goal hierarchy, but for carrying out the activity “make
initial review” we would use the customer request as input. Another example shows that the
input of certain activity must not be produced in the discussed business process: the activity
“assess risk” needs a “risk/usage matrix” as input, but as we can recognize, this “risk/usage
matrix” would not be produced within our business process.

Table 1 Input/Output Model for the business process “Insure customer objects”.

Activity

Input

Output

record customer request

customer request (i.e. customer
name, uninsured objects and their
usage)

recorded customer request (i.e. a
new business case)

make initial review

a) recorded customer request; b)
different information about custom-
er and his objects

submission

assess risk

a) submission; b) risk/usage matrix

risk score for the submission

accept submission

a) submission; b) risk score for the
submission

acceptance letter at the customer

refuse submission

a) submission; b) risk score for the
submission

refusal letter at the customer

update database

a) submission; b) risk score for the
submission

updated database

compose policy document

a) submission; b) risk score for the
submission; c) terms&condition list

policy document

send policy document to customer

policy document

policy document at the customer

Object-oriented business process model 103

Furthermore, looking at figure 2, it can be seen that there are some activities which are not
taken into account; for example “record cost and return”, or “send information packages to
customer”. Why is this the case? In order to achieve a compact business process model, activ-
ities which are either components of several business processes, or activities which are of a
support character should be part of support processes. Furthermore, during the defining of the
essential activities it is sometimes useful to break up an activity into two or more activities. An
example is the activity “deliver well structured policy documents” which has been broken
down into “compose policy document” and “send policy document to customer”. To
summarize, the Input/Output Models helps to find the essential activities.

record customer
request

Q

make initial
review

Q

assess risk

o

accept refuse
submission submission

submission
refused

mpose
policy document

update customer

database
send policy doc.
to customer

customer
object is
insured

Figure 3 Dynamic Activity Model for the business process “Insure customer objects”.

104 Method Engineering

Although the essential activities are defined (cf. figure 2 and table 1), we have not yet
defined the logical dependencies between activities. In other words it is not yet clear which
activities can be carried out sequentially, alternatively, or concurrently. To consider this aspect
we apply Petri-nets; and within this category we use condition/event nets, cf. [Jensen 92].
Condition/event nets possess three strengths: (1) they facilitate a compact and precise
description of the dynamic process aspects; (2) they support the concept of specialization, cf.
[Kueng/Schrefl 95]; (3) they support process simulation as well.

Figure 3 shows the Dynamic Activity Model for the business process “Insure customer
objects”. It should be recognized that the usage of symbols in condition/event nets may vary.
In these diagrams, states are shown as circles, transitions as rectangles. To make the net more
compact, states are shown as very small circles and a textual description is omitted.
Furthermore, transitions which have only support character (e.g. AND forks) are drawn as
small rectangles. We can see that the activities “record customer request” and “make initial
review” proceed sequentially whereas the activities “accept submission” and “refuse
submission” are carried out alternatively. The activities “update customer database” on one
side, and “compose policy document” and “send policy document to customer” on the other
hand are carried out concurrently.

6 MODELLING OF ROLES

‘What do we mean by the term role? The Workflow Management Coalition [WfMC 94] distin-
guish between two kind of roles: Process Roles and Organizational Roles. The first term refers
to a collection of activities. The second one refers to the functional requirements of an organi-
zational or technical unit. Following Ellis and Wainer we use the term role in the following
way: “A role is named a designator for an actor, or grouping of actors which conveniently acts
as the basis for the partitioning of work skills, access control, execution control, and authority/
responsibility. (...) A role may be associated with a group of actors rather than a single actor.
(...) An actor is a person, program, or entity than can fulfil roles to execute, to be responsible
for, or to be associated in some way with activities and procedures” [Ellis/Wainer 94, pp. 78].

The strengths of the role-concept is twofold: (1) during the modelling stage we do not have
to discuss skills, functionalities, competences, and responsibilities for each activity within our
business process; (2) during the operational stage people and machines (programs) with the
same role are potentially interchangeable.

In some traditional approaches (e.g. Porter’s value chain), activities have sometimes been
misinterpreted as functions — in an organizational sense. “Experience from development and
analyzes in the Norwegian TOPP study in mechanical and electrotechnical industries shows
that activities are easily interpreted as functions. Misinterpretation of the term activities as
functions will bring you back to the outdated organizational structure model” [Rolstadas 95, p.
153]. Without careful role assignment we may unintentionally develop hierarchical depart-
mentalized structures and have a negative impact on the motivation of the staff. This in turn
may lengthen cycle time and may decrease customer satisfaction. In other words, the
assignment of activities to roles is important and has to be done very carefully — and separately
from activity modelling.

Before activities can be allocated to roles it is necessary to decide which activities should be
carried out by humans and which by machines. According to [Bailey 89, pp. 189] we can
distinguish between five allocation strategies:

Object-oriented business process model 105

* comparison allocation: each activity has to be analysed and then compared with established
human and machine performance criteria;

* leftover allocation: as many activities as possible are allocated to a machine and the activ-
ities left over are done by humans. Bailey remarks, that this strategy would probably be the
most popular;

* economic strategy: the decision, man versus machine, based completely on financial
assessment;

* humanized task approach: the main goal of this approach is to design meaningful human
jobs/ human roles;

* flexible allocation: humans allocate activities in the system based on their values, needs,
and interests.

Due to space limitation we resist a further discussion of these allocation strategies. Never-
theless, it seems reasonable to propose that the humanized task approach and the flexible
allocation would be the two most appropriate strategies.

How should activities be assigned to roles? Although this question has been considered by
many researchers, it has not been answered properly. Here we make just a general remark:
instead of many particular specialized workplaces we should create “self-contained units”. We
achieve this by adherence to the principles of decoupling and cohesion which govern good
modular design. This helps to reduce the need for coordination and scheduling work.
Furthermore, it would possibly improve lateral relations crossing the divisions’ borders, cf.
[Rolstadas 95, p. 156].

After this short theoretical background we turn to the roles in our case study. We show how
we graphically assign them to activities. The roles we are dealing with are the following:
“administrator”, “assistant”, “customer” (policy holder), and “underwriter”, cf. figure 4. In our
small example, every activity is assigned to humans. Of course, this does not always happen,
but during modelling on a relatively high level this is the normal case. In other words: although
we do not have any assignments to machines this doesn’t imply humans wouldn’t be supported
by machines; it indicates that activities have to be split up into subactivities for their further
assignment to machines.

customer
wish to
insure
object

record customer N
request | Assistant

Q

make initial
review

Y

assess risk Underwriter

S

Figure 4 Role Activity Model (partly) for the business process “Insure customer objects”.

Administrator

i

106 Method Engineering

7 OBJECT MODELLING

In the previous part of the paper we showed how to model business processes on a conceptual

level. This section explains how a conceptual model can be transformed into a pre-implemen-

tation, object-oriented model. Object-oriented models are constructed out of — as the name

makes clear — objects. The two core elements of objects are: (1) they have a structure, and (2)

they have a behaviour. While the structure is normally described by attributes and relationships

to other objects, the behaviour of objects is defined by the methods objects can carry out. In
other words, objects can be described by Object Relationship Models and Object Behaviour

Models. Furthermore, in our universe of discourse, we have to take into account that certain

objects can interact (in a certain state) with other objects. To depict this information, we need a

third type of model: an Object Interaction Model.

In the phase Object Modelling (cf. figure 1) we have to answer the question “Which object
classes should our model subsume and how do these objects interact?”. To answer this we
distinguish three object classes:

* Business case classes: Objects of these class describe and control the sequence of events.
Their attributes describe the actual states of the running business cases, and they define the
relationships between a certain business case and the associated input-output classes. In
other words, business case classes define the characteristics of business proc:essc:s.1 How do
we identify business case classes? It is simple: each business process has one business case
class. The name of this business case class would be identical to the name of the business
process itself. In our case study, the business class would be called “Insuring objects”, cf.
figure 5. As instances we have business cases, €.g. “business case 29”.

* Input/output classes: Objects of these classes are passive, i.e. they can not initiate an action
or a communication to other objects. Objects of input/output classes are identified by
looking at the Input/Output Model, cf. table 1. It gives relevant information concerning data
(objects) which has to be available for carrying out activities within the business process.
Furthermore, the Input/Output Model shows which data has to be produced — for the
process customer or a subsequent activity. In our case study, we can identify as input/output
classes e.g. “Customer”, “Customer Request”, “Customer Objects”, and “Submission”, cf.
figure 5. An instance of the class “Submission” could be “submission 84371”.

* Role classes: Objects of these classes are roles (cf. figure 4) — which carry out activities.
These objects can send messages to every other object (to passive objects as wcll as to
active objects). Therefore objects of role classes are referred to as active objects.? In our
example, we have four role classes: “Customer”, “Administrator”, “Assistant”, and “Under-
writer”. For having a compact example of an Object Relationship Model (figure 5) we
consider only the first two mentioned roles. An instance of the role-class “Administrator” is
e.g. “Mrs. Smithfield”.

To show the interaction between the captured objects (figure S5) we use Object Interaction
Models, cf. figure 6. Reading this diagram, in natural language, we would say: if a customer
places a request for insuring his objects at the insurance company, the request has to be

—

. It has to be remarked, that the main characteristics of a business process could also be defined — as attributes
and methods — in the “normal” classes. The advantage of creating a separate object class is twofold: (1) the
structure of a business process would be easier to understand, and (2) the concept of inheritance would be
applicable in a more extensive way, cf. [Miiller-Luschnat et al. 93].

2. The concept of roles — in the context of Office Systems — has been introduced by [Lyngbaek/McLeod 84].

Object-oriented business process model 107

recorded. As an object-oriented expression, we would say: the object Customer sends a
message to the object Customer Request.

for deals with
Customer gg;‘e'g‘g Administrator
& e
[
is based on are included in
- . - Customer
g::m?' Submission Objects

Figure 5 Object Relationship Model (partly); notation according to [Embley et al. 92].

Customer e -
What happens Customer Request Submission Administrator
If customer places a request
THEN DO

record request ipsertRequest)

>
if request is recorded
THEN DO
make initial review
create submission

get|Request)

_—

y

If submission is accepted
THEN DO o
inform customer - inform()

Figure 6 Object Interaction Model (partly); notation following to [Jacobson et al. 94].

It would be possible to develop this model further. For this example we have refrained from

doing so as the reader will, in any case, be able to reference the huge volume of literature about
object-oriented systems development.

8 SUMMARY AND FUTURE WORK

In an influential paper [Curtis et al. 92] suggested there are four important perspectives to
process models. These are the functional, the behavioural, the organizational, and the informa-
tional perspective. They provide a useful framework for considering the coverage of the
approach presented in this paper. The functional perspective of a business process is given by
Object Interaction Models, cf. figure 6. The behavioural perspective of a business process (e.g.
activity sequencing) is represented on two levels: at the pre-object-oriented level it is repre-
sented by Dynamic Activity Models (Petri-nets, cf. figure 3) whilst at the object-oriented level

108 Method Engineering

it is represented by Object Behaviour Diagrams. The organizational perspective of a business
process (which shows by whom are activities carried out) is represented by Role Activity
Models, cf. figure 4. The informational perspective of a business process (e.g. the entities
produced) is represented by Object Relationship Models, cf. figure 5.

What are the strengths of the goal-based modelling approach which is presented here?

¢ The methods of the objects (activities) are derived from business goals. In other words, if
business goals change, we can easily establish which methods have to be updated.

* Activities are used as modules because all of them have their own input-output interfaces.
The advantage of this is twofold. First, we can arrange our activities (at least in the first
development cycle) within a business process in a way that is relatively free from
restriction. Secondly, for every activity we can decide to perform it in-house or to buy it
from a third party.

Where are the limits of our approach?
* The goal-oriented approach does not provide any help for appraising design alternatives.

* In order to realise successful business processes, we not only have to have a mature
business process model, we also have to implement it successfully. In other words,
following the proposed steps cannot guarantee efficient business processes.

This paper has given an overview of an approach to modelling business processes. We have
showed which steps would be needed to create an object-oriented business process model, how
these steps can be carried out, and how the main ideas are applied in a case study. Some
answers have been given, others need further research investigation.

A prominent issue is the development of the goal model. It is intended to extend the goal
model in order to support the description of richer goal structures. It is intended to do this with
more enhanced features, such as conjunctive, disjunctive, and conflicting subgoals. These will
not only allow to identify the activities needed to achieve them, but will also allow to infer
restrictions on their logical order. For example, if a goal is decomposed into two conjunctive
subgoals, the activities associated with these subgoals must be either executed in sequence or
in parallel, but may not be executed alternatively.

To conclude, it is useful to list other questions which need further research. These include
the following: What organizational and technical means do we have to depict individual/
social/personal/organizational goals? How could user participation, during business process
modelling, be augmented? How can we support the process of finding the appropriate activ-
ities? How can we establish the appropriate role for each activity? How would business
process modelling be influenced by implementation aspects (WFMS versus conventional
programming)? How can we measure the quality of a business process model in each
modelling step?

Acknowledgement
The work of Peter Kueng has been supported by the Swiss National Science Foundation.

Object-oriented business process model 109

9 BIBLIOGRAPHY

[Agostini et al. 94] Agostini, A.; De Michelis, G.; Grasso, M.; Patriarca, S.: Re-engineering a business
process with an innovative workflow management system — a case study. In: Collaborative
Computing, Vol. 1, No. 3 (September 1994), pp. 163-190.

[Bailey 89] Bailey, Robert: Human Performance Engineering — Using Human Factors/Ergonomics to
Achieve Computer System Usabiliy. Prentice-Hall, 2nd ed., London 1989.

[Beer 79] Beer, Stafford: The Heart of Enterprise. John Wiley & Sons, Chichester 1979.

[Booch 94] Booch, Grady: Object-Oriented Analysis and Design with Applications. Benjamin/
Cummings, 2nd ed., Redwood City CA 1994.

[Curtis et al. 92] Curtis, Bill; Kellner, Marc; Over, Jim: Process Modelling. In: Communication of the
ACM, Vol. 35, No. 9 (September 1992), pp. 75-90.

[Davenport 93] Davenport, Thomas: Process Innovation — Reengineering Work through Information
Technology. Harvard Business School Press, Boston 1993.

[Ellis/Nutt 80} Ellis, Clarence; Nutt, Gary: Office Information Systems and Computer Science. In:
ACM Computing Surveys, Vol. 12, No. 1 (March 1980), pp. 27-60.

[Ellis/Wainer 94} Ellis, Clarence; Wainer, Jacques: Goal-based models of collaboration. In:
Collaborative Computing, Vol. 1, No. 1 (March 1994), pp. 61-86.

[Embley et al. 92] Embley, Davis; Kurtz, Barry; Woodfield, Scott: Object-Oriented Analysis — A
Model-Driven Approach. Yourdon Press, Prentice Hall, Englewood Cliffs 1992.

[Floyd et al. 89] Floyd, Christiane; Reisin, Fanny; Schmidt, Gerhard: STEPS to Software Development
with Users. In: Ghezzi, C.; McDermid, J. (Eds.): Proceedings, 2nd European Software
Engineering Conference, ESEC *89. LNCS 387, Springer-Verlag, Berlin 1989, pp. 48-64.

[Graham 95] Graham, Ian: Migrating to Object Technology. Addison-Wesley, Wokingham, England
1995.

[Halé 95] Halé, Jacques: From Concepts to Capabilities — Understanding and Exploiting Change as a
Competitive Advantage. John Wiley & Sons, Chichester 1995.

[Hammer/Champy 93] Hammer, Michael; Champy, James: Reengineering the Corporation — A
Manifesto for Business Revolution. Harper Business, New York 1993.

[Holt et al. 83] Holt, Anatol; Ramsey, Rudy; Grimes, Jack: Coordinating System Technology as the
Basis for a Programming Environment. In: Electrical Communication, Vol. 57, No. 4 (1983), pp.
307-314.

[Jacobson et al. 94] Jacobson, Ivar; Christerson, Magnus; Constantine, Larry: The OOSE Method — A
Use-Case-Driven Approach. In: Carmichael, Andy (Ed.): Object Development Methods. SIGS
Books, New York 1994, pp. 247-270.

[Jensen 92] Jensen, Kurt: Coloured Petri Nets — Basic Concepts, Analysis Methods and Practical Use;
Volume 1. Springer-Verlag, Berlin 1992.

[Joosten 94] Joosten, Stef: Trigger Modelling for Workflow Analysis. In: Chroust, Gerhard; Benczur,
Andras (Eds.): Workflow Management — Challenges, Paradigms and Products; Conference
Proceedings of CONnectivity *94, Linz, Oct. 19-21. Oldenburg Verlag, Miinchen 1994, pp. 236-
247.

[Kawalek 95] Kawalek, Peter: An introduction to a process engineering approach and a case study
illustration if its utility. In: Browne, J.; O’Sullivan, D. (Eds.): Re-engineering the Enterprise;
Proceedings of the IFIP TC5/WGS5.7 Working Conference, Galway, April 1995. Chapman &
Hall, London 1995, pp. 248-272.

110 Method Engineering

[Kueng/Schrefl 95] Kueng, Peter; Schrefl, Michael: Spezialisierung von Geschéftsprozessen am
Beispiel der Bearbeitung von Kreditantrigen. In: HMD - Theoric und Praxis der
Wirtschaftsinformatik, Jg. 32, Heft 185 (September 1995), S. 78-94.

[Lyngback/McLeod 84] Lyngback, P.; McLeod, D.: Object Management in Distributed Office
Information Systems. In: ACM Transactions on Office Information Systems, Vol. 2, No. 2
(1984), pp. 96-122.

[Medina-Mora et al. 92] Medina-Mora, Raul; Winograd, Terry; Flores, Rodrigo; Flores, Femando: The
Action Workflow Approach to Workflow Management Technology. In: Proceedings of the
Conference on Computer-Supported Cooperative Work, CSCW ’92, Toronto, Oct. 31-Nov. 4, pp.
281-288.

[Miiller-Luschnat et al. 93] Miiller-Luschnat, Giinther; Hesse, Wolfgang; Heydenreich, Normman:
Objektorientierte Analyse und Geschiftsvorfallsmodellierung. In: Mayr, H.; Wagner, R. (Hrsg.):
Objektorientierte Methoden fiir Informationssysteme; Proceedings der der GI-Fachgruppe
EMISA, Klagenfurt, 7.-9. Juni 1993. Springer-Verlag, Berlin 1993, S. 78-94.

[Ould 95] Ould, Martyn: Business Processes — Modelling and Analysis for Re-engineering and
Improvement. John Wiley & Sons, Chichester 1995.

[Rolstadas 95] Rolstadas, Asbjorn (Ed.): Performance Management — A business process
benchmarking approach. Chapman & Hall, London 1995.

[Scheer 94] Scheer, August: Business Process Engineering: Reference Models for Industrial
Enterprises. Springer-Verlag, 2nd ed., Berlin 1994,

[Swenson/Irwin 95] Swenson, Keith; Irwin, Kent: Workflow Technology — Tradeoffs for Business
Process Re-engineering. In: Conference on Organizational Computing Systems, COOCS ’95,
Aug. 13-16, Milpitas, USA. ACM Press, New York 1995, pp. 22-29.

[WIMC 94] Glossary: A Workflow Management Coalition Specification. Authored by Workflow
Management Coalition Members, Brussels 1994. (Updated information may be found on http://
www.aiai.ed.ac.uk/WfMC/).

[Winograd/Flores 86] Winograd, Terry; Flores, Fernando: Understandig Computers and Cognition — A
New Foundation for Design. Addison-Wesley, Readings 1986.

10 BIOGRAPHY

Peter Bichler received his Dipl.-Ing. degree in computer science from Johannes Kepler University of
Linz, Austria, in 1993, where he currently works on his PhD thesis. His research interests are authori-
zation in workflow systems and active object-oriented database systems.

Peter Kawalek is a Research Associate of the University of Manchester. His research considers the use
of process models as integrating frameworks. He also works as a consultant for Manchester Informatics
Limited and has undertaken many process modelling projects with industrial collaborators.

Peter Kueng received his Doctorate from Fribourg University, Switzerland, in 1994. After finishing his
studies in business-oriented computer science he worked at Fribourg University as well as for IBM
Berne in the field of database systems. In 1995 he worked as Visiting Researcher within the Data &
Knowledge Engineering research group at Linz University. Currently, he is Visiting Researcher at
Manchester University.

Michael Schrefl received his Dipl.-Ing. degree and his Doctorate from Vienna University of
Technology, Vienna, Austria, in 1983 and 1988 respectively. Presently, he is Professor of Information
Systems at Johannes Kepler University, Linz, Austria. His research interests are in the ficlds of object-
oriented systems and workflow management.

8

Human work as context for
development of object oriented
modelling techniques

J. J. Kaasbgll and O. Smgrdal

Department of informatics, University of Oslo
P.O. Box 1080, Blindern, N-0316 OSLO, Norway
Phone: + 47 22 85 24 29, Fax: + 47 22 85 24 01
E-mail: {Jens.Kaasboll, Ole.Smordal} @ifi.uio.no

Abstract

Computer systems are increasingly being used for communication and coordination of work,
while object-oriented modelling techniques aim at modelling the problem domain of the
computer system. Current techniques have been developed with respect to easy implementation,
while we argue that further development of the modelling techniques should also be based on
knowledge about human work in organisations.

We outline a learning cycle of modelling technique and point to where such knowledge
should be included.

We have carried out two alternative approaches to development of object oriented
techniques based on these ideas, and we outline these development processes. One approach is
based on semiotic concepts, the other is based on activity theory.

Keywords

Research Method, Method Engineering, Learning Cycle, Activity Theory, Semiotics,
Evaluation

1 INTRODUCTION

Object oriented modelling techniques should be developed according to knowledge about
human work within organisations. This paper argues why and points to ways to change current
development practice.

The basic ingredients of object-oriented techniques for modelling are the mechanisms
provided by object-oriented programming languages. In short, these mechanisms consist of
encapsulated objects with properties and behaviour, and specialisation of classes by means of
inheritance. It is often claimed that object-oriented modelling of the domain of an information
system is easy, because object-orientation corresponds to our natural conception of the world.

112 Method Engineering

Considering that the core concepts of object-oriented techniques consist of implementation
restrictions, we doubt the correctness of this claim.

Object oriented techniques are used within application areas that include human work
within some organisation. Lately, the techniques have also been used to capture aspects beyond
the domain of work, e.g., aspects relating to actors, communication, coordination of work, task
flow, and work procedures. This is due to a shift of perspectives regarding the role of the
computer in work settings; from a focus on the computer as means of control and administration
of a problem domain, to a focus that also include the computer as a mediator in the work
setting, e.g., as in CSCW applications. Carstensen et al (1995) point to inadequacies of object-
oriented modelling in these respects. Others have reported problems related to modelling of
different roles of actors (Richardson and Schwarz, 1991; Coad, 1992). These findings
underpin our disbelief in the claim of the easiness of modelling. Research on the difficulties of
learning object-oriented modelling (Vessey and Conger, 1994) also indicate that the claim is
incorrect.

We interpret these observations as symptoms of an underlying problem: that the
development of object-oriented techniques for modelling has been too restrained by
implementation considerations. The inadequacies that have been detected have been explained
within the frame of the mechanisms of object-oriented programming languages, the theoretical
contributions have been restricted to formal arguments within this frame and, consequently, the
suggestions for improvements of the techniques have not extended these mechanisms. This
paper aims at arguing that the way of developing techniques should open for a wider range of
explanations, theories, and suggestions. In particular, we will show how we have included
knowledge concerning actors in the process of developing object-oriented techniques for
modelling.

1.1 Suggestions in the literature

A way to improve methods called “method engineering” has been defined as “the disciplined
process of building, improving or modifying a method by means of specifying the method’s
components and their relations” (Heym and Osterle, 1993; Rossi and Brinkkemper, 1995). The
concept is used to capture the development of a method and the adaptation of a method in a
specific situation (Kumar and Welke, 1992; Harmsen et al, 1994), and method engineering is
compared with the development and modification of an information system in an organisation.

Since the problems referred above concern object-oriented techniques for modelling in
general, method engineering, which only deals with individual methods and compilation of
methods from techniques, will fall short with respect to the generality of the problem. In
addition, method engineering does not enrich the concepts and mechanisms for modelling, such
that actors, roles, task flow, etc., are more easily modelled.

1.2 Seamlessness in modelling

An argument for object-oriented development is the seamlessness from analysis to design and
implementation: the same concepts are used in all phases, such that no magic transition is
needed. When arguing for richer concepts for modelling, we may put the seamlessness
principle in danger.

To be precise in the further discussion, we first define areas that can be modelled during
system development, based on similar concepts in Mathiassen et al (1993).

Development of object-oriented modeling techniques 113

The problem domain of a computer system is what the computer system is about; the part of
the world that the computer system is supposed to handle, control or monitor. Examples
(with basic components): a flight booking system (flights, seats, reservations, customers),
a banking system (customers, transactions, accounts, loans, interests).

The application domain of a computer system consist of the users, the organisational
context, and the work in which the computer system is used, e.g., a travel agency, a bank.
Elements of the application domain are employees, the coordination of work,
communication, power structures, ad-hoc organised work, interruptions in work, etc,

The computer system including its application program, data/object base, user interface
module, and communication modules.

When analysing functionality requirements of a system, one could make a model of the
application domain. Since it is assumed that the problem domain is more stable than the
functional requirement, making an object-oriented model of the application domain is often not
considered worthwhile.

Many object-oriented methods suggest that one should model the problem domain, because
this is what the computer system shall represent. The model is supposed to describe how the
system developers and users conceive the problem domain. For now we regard this model as
based on consensus among users and developers. An advantage of a model of the problem
domain is that the model is independent of the technology for implementing the system. The
model can be used as a part of a specification, such that computer systems conforming to the
specification can be implemented on several platforms or with different languages.

A model of the future computer system will often be an extension of a model of the
problem domain in order to include software modules and objects needed for implementation.
Because the same concepts are used in all models and in the implementation, the model of the
future computer system can be aligned with the model of the problem domain. This is referred
to as the seamlessness of object-oriented system development.

However, iterations are carried out during development, and implemented systems are
changed during long periods of further development. Experience shows that changes are often
carried out directly on the code, without updating the models. To keep the seamlessness, it must
be possible to keep the models in alignment with the code. If other concepts are introduced in
the model of the problem domain, more effort may be required to keep the models updated.

We want to include in our models issues of work organisation, and this suggests an
extension of the problem domain to include aspects of the application domain. The domain
definitions given above represent useful distinctions. Hence we want to introduce an another
concept, the model domain, which denotes the area of concern when modelling. As we identify
in the next section, the most usual model domain for object-oriented modelling techniques is the
problem domain, but we also identifies some approaches that have the future computer system
as the model domain.

In our work we define the modelling domain to be the problem domain plus the aspects
of the application domain that is mediated by the computer system. We discuss the domain for
object oriented modelling techniques in Section 2.3.

1.3 Overview of the paper
The paper is organised as follows: Section 2.2 presents a learning cycle for development of

object-oriented techniques, based on the interplay between modelling in practice and theoretical
contributions. We identify contributions from some current object-oriented techniques in respect

114 Method Engineering

to 1) their notions and concepts, 2) their embedded theory, and 3) the reported technique
development.

We conclude that most techniques have had a technology driven development. In
Section 2.3 an extension of the domain of object-oriented techniques is suggested, also
including issues of work organisation, roles, and communication between the users.
Section 2.4 and 2.5 presents two development cycles that address this extended domain, one
using semiotic concepts, the other using activity theory.

2 THE DEVELOPMENT OF TECHNIQUES

In order to discuss different approaches to development of techniques for modelling, we outline
a learning cycle for identifying the stages and components of the development.

Gaining new scientific knowledge can be regarded as a continuous cycle of formulation of
hypotheses, evaluation in practice, explanation of results, contributions to theories,
reformulation of hypotheses, etc. The learning cycle of development of techniques consists of
four phases and transformations from one phase to the next, see Figure 1.

i
1
Construction of refined | Modelling in practice

techniques X
I
]

:test

derive
____hypothesis| N\]
find breakdows
and anomalies
search for
explainations |
1
1
Theoretical : Evaluation and
contributions X problem detection

i
!
1

Figure 1 A model of technique development.

Modelling in practice is the area we learn from, and also the area we want to improve.

Evaluation and problem detection is triggered by experiences when modelling is not
straightforward. The main concern in this phase is to identify problems that stem from the
use of this technique in a practical system development context. The problems may be
identified due to 1) breakdown in the use of a technique, e.g., some property of the
application domain could not be captured in the model, or the appearance of inconsistencies
in the model, or 2) anomalies in the model or in the use of a technique, e.g. the resulting
model seems strange compared to the application domain.

Development of object-oriented modeling techniques 115

Theoretical contributions. When explaining problems in a scientific way and considering
ways to avoid them, one has to consult other scientific results and theories. One may try to
explain the problems within the frame of the research or search for other theories.

Construction of refined techniques. When the appropriate theoretical considerations have
been made, one may have to adjust the technique and possibly include new mechanisms,
metaphors and notation. Hypotheses concerning the techniques and the approach to
evaluate the hypotheses are worked out.

Modelling in practice. The cycle restarts with using the technique in modelling. Any kind of
practice which contributes to learning about the technique and its place in system
development is feasible.

Galliers (1992) separates research goals into theory building, theory testing, and theory

extension. He argues that case study, survey, forecasting, simulation, argumentation,

interpretation, and action research are possible research approaches for theory building.

According to his categorisation, these research methods are appropriate in the phases of

evaluation and theoretical contribution. The theories are tested in the phases construction of

refined techniques and modelling in practice. Theorem proof, laboratory experiment and field
experiment are suited for theory testing, according to Galliers. In our learning cycle, theorem
proving may take place in the theoretical contribution and during construction of techniques.

Braa and Vidgen (1995) outline three types of knowledge interests in system development
research: intervention, science, and interpretation. Intervention aims at change in the
organisations where computer systems are used and developed, science aims at general
knowledge that is useful for prediction, and interpretation aims at explaining and understanding
information systems development in organisations from different viewpoints. Inspired by
these three types of knowledge interests, we construct a taxonomy of three ways of developing
techniques for modelling. We will use this taxonomy to discuss how the phases of the learning
cycle are covered in the way techniques are developed.

The consultant approach. A consultant is involved in development of systems, and gathers
experience of her/his ways of working, and expresses this experience in general terms as
techniques and methods. In this approach, the evaluation is carried out in an unscientific
manner, and theoretical explanations and contributions are not included. The main goal of
this approach is improvement of system development practice.

Method engineering. Scientists measure use of methods in system development. After
identifying problems, they calculate improved principles, formalise vague parts of the
methods, and improve tools to support implementation. In this approach, all aspects of the
cycle are included, but the theoretical considerations are limited to formal theories. The
main goal of methods engineering is improved predictability of system development when
it is carried out according to the method.

System development research. Scientists study system development and the role of
methods in practical projects. Problematic areas are identified. Relevant theories are called
upon to understand and explain the problems. Improved knowledge of system development
constitutes the basis for possibly suggesting improved guidelines and techniques. The main
goal of the research is improved knowledge of system development from different
viewpoints, and the role of techniques therein.

Method engineering addresses methods and techniques in particular. System development
research has a wider scope, and improvements of techniques is one of many possible outcomes.
We nevertheless argue that development of methods and techniques should also be carried out

116 Method Engineering

in the perspective of system development research, because it opens for a richer variety of
research methods and theories. When problems that lend themselves to formal methods are
encountered, there is nothing that prevents an engineering approach to deal with these
problems. However, if working within a method engineering perspective as outlined here, the
perspective does not open for alternative interpretations or research methods.

Main differences between method engineering and system development research are found
in the theoretical and the constructive phases of the learning cycle. They are summarised in
Table 1.

Table 1 Differences between Method engineering and System development research

Method engineering System development research
Viewpoint Unified Diverse
Explanation Within the frame of object- Within any scientific frame
orientation
Theoretical contribution Formal Any kind
Suggestions for Constrained by straightforward May require extensive
improvements of implementation in object- implementation efforts or
techniques oriented language changes in the object-oriented
languages

In the following, we will see that development of object-oriented techniques for modelling
so far has been mainly carried out according to the methods engineering approach.

2.1 Explanations

In order to illustrate how problems in modelling often are explained, we consider modelling of
actors.

When an actor can have roles that change over time, one encounters a problem in object-
oriented modelling. The problem has been explained within the common concepts of object-
orientation to be that the actor object has to change its class (e.g., Richardson and Schwartz,
1991; Nerson, 1992; Gottlob et al, 1996). The suggestions for solutions have been minor
extensions of the object concept along with guidelines for implementation.

Coad (1992) refers to another discipline when diagnosing problems in object-oriented
modelling. Inspired by the concept ‘pattern’ in architecture, he explains that some of the
problems in modelling appear because the basic object-oriented concepts are too fine-grained to
capture some frequently occurring structures in domains. This explanation is grounded outside
the area of object-orientation, and Coad therefore transcends the method engineering approach.
The conclusion he draws is to suggest patterns of objects connected by well-known relations.
This suggestion is well inside current object oriented concepts.

2.2 Theoretical contributions

Essink and Erhart (1991) have suggested a theoretical framework for conceptual modelling
during analysis. Their framework departs from an ontology that is close to the core of object-
orientation. The only extension is that they claim that “objects are bound by (natural) laws”
(p-91), and this claim does not penetrate the formalistic assumption of object-orientation.

Development of object-oriented modeling techniques 117

From their framework, they generate four kinds of abstraction relations: specialisation,
containment (aggregation with parts depending on the whole), assembly (aggregation with
independent parts), and grouping (set inclusion). These four relation types are specialised
according to whether they are permanent or temporary, e.g., “roletype” is a temporary
specialisation that may meet the need for modelling roles, which is an important aspect of actor
concepts. The suggestions of Essink and Erhart have neither been used in recent methods for
modelling (Henderson-Sellers and Edwards, 1994; Reenskaug et al, 1996) nor been quoted in
the solution presented in (Gottlob et al, 1996), even if their roletype relation is similar to the
solution that is elaborated by Gottlob et al. One reason may be that it may be hard to decide
when and how to use the different types of relations suggested, based on the brief discussion in
the conference paper.

van de Weg and Engmann (1992) suggest another framework where they distinguish
between interobject and intraobject structures, and static and dynamic properties. They also
suggest a “role-of” relationship. Their framework does not support their suggestion of this
relationship, instead they refer to an earlier suggestion by Pernici (1990), while ignoring Essink
and Erhart (1991). van de Weg and Engmann’s role-of relation is also ignored in recent
methods (Henderson-Sellers and Edwards, 1994; Reenskaug et al, 1996), even though roles
are considered in these methods and other research is cited.

The ignorance of these research suggestions shows that they have not succeeded in adding
new issues to the core of object-orientation. In addition, the suggestions have been limited to
formal theories.

We have not been able to collect much information about development of modelling
techniques from the literature, and we have not carried out a survey on our own. Nevertheless,
the available information from the method designers support the observation that the theoretical
contributions have not entered the methods properly.

Rumbaugh tells how he collects knowledge for updating his Object Modelling Technique
(OMT):

Any method must grow or die, so I have used three drivers in guiding the
evolutions of OMT: user experience and feedback, good ideas from other
authors, and new insights of my own. (Rumbaugh, 1995, p.21)

While his reference to user experience indicates a consultant approach, he also gets good ideas
from others. The material he outlines includes research discussions, e.g., concerning
constraints, so he is carrying out method engineering. His considerations do not go beyond the
formal and implementation issues, however. E.g., a discussion about objects that are part of
several aggregates does not go beyond defining relations.

Other authors of modelling methods may draw upon a richer background of literature.
However, since they to a limited extent refer to the research of formal or implementation
character, it seems unlikely that they have brought wider focused theories into their
considerations.

The OOram method (Reenskaug et al, 1996) is one exception, in which Weber’s
bureaucratic theory is used as a template for how to provide structure to a system. This structure
concerns design of the relations between objects and roles in the computer system, and it is not
indicated that Weber’s theory can be effective in modelling of the problem.

118 Method Engineering

2.3 Suggestions for change of techniques

Based on a literature survey of object-orientation, Bjornestad (1994) summarises the core of
object-orientation to consist of the following:

® encapsulated objects with properties and behaviour,

® classes of objects, and

® inheritance of general properties and behaviour to specialised classes.

Monarchi and Puhr (1992) have surveyed object-oriented methods, and the methods seem to
conform to the general core of object-orientation, with one exception: communication between
objects is found in a majority of the methods in the survey. Somewhat surprisingly is
aggregation only found in 5 of 19 methods, and 7 of the methods include constraints on
structure, e.g., cardinalities.

Recently, the methods have adapted a larger number of concepts for modelling (e.g.,
Embley et al, 1992; Martin and Odell, 1992; Henderson-Sellers and Edwards, 1994), and
aggregation and constraints are included. However, no standard definition of aggregation has
emerged (Motschnig-Pitrik, 1994), so even this minor extension of object-orientation has not
yet succeeded, nearly twenty years after it was suggested in data modelling (Smith and Smith,
1977).

It is commonly assumed that the object-oriented model should represent the domain to be
modelled. A step towards a more radical extension is found in the methods by Wirfs-Brock et
al (1990), Jacobson et al (1992) and Reenskaug et al (1996). These methods suggest that the
interaction between the user and the computer system should be the starting point for selection
of objects rather than first achieving a model of the problem domain. Designing a system
according to a desired human-computer interaction opens for modelling domains from different
user viewpoints. However, the methods go for a unified model that is supposed to serve all
interests, without separating between different viewpoints in the model.

2.4 Current trend: Method engineering

Conclusively, we have seen some explanations of modelling problems that extend object-
oriented theories. However, neither these nor other theoretical contributions have extended the
basis for deriving concepts for modelling. Consequently, the suggestions for improvements of
techniques have been constrained by the implementation considerations. In addition, neither the
theoretical considerations nor the techniques captures multiple perspectives on domains in the
models. Taken together with Rumbaugh’s story, this indicates that the way second generation
object-oriented methods are developed conforms to method engineering rather than the system
development research approach.

3 THE DOMAIN OF TECHNIQUES

As we mentioned in the introduction, we have noticed a shift in the perspective in respec<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>