
Method
Engineering

IFIP - The International Federation for Information Processing

IFIP was founded in 1960 under the auspices of UNESCO, following the First World
Computer Congress held in Paris the previous year. An umbrella organization for societies
working in information processing, IFIP's aim is two-fold: to support information processing
within its member countries and to encourage technology transfer to developing nations. As
its mission statement clearly states,

IFIP's mission is to be the leading, truly international, apolitical organization which
encourages and assists in the development, exploitation and application of information
technology for the benefit of all people.

IFIP is a non-profitrnaking organization, run almost solely by 2500 volunteers. It operates
through a number of technical committees, which organize events and publications. IFIP's
events range from an international congress to local seminars, but the most important are:

• the IFIP World Computer Congress, held every second year;
• open conferences;
• working conferences.

The flagship event is the IFIP World Computer Congress, at which both invited and
contributed papers are presented. Contributed papers are rigorously refereed and the rejection
rate is high.

As with the Congress, participation in the open conferences is open to all and papers may
be invited or submitted. Again, submitted papers are stringently refereed.

The working conferences are structured differently. They are usually run by a working
group and attendance is small and by invitation only. Their purpose is to create an atmosphere
conducive to innovation and development. Refereeing is less rigorous and papers are
subjected to extensive group discussion.

Publications arising from IFIP events vary. The papers presented at the IFIP World
Computer Congress and at open conferences are published as conference proceedings, while
the results of the working conferences are often published as collections of selected and
edited papers.

Any national society whose primary activity is in information may apply to become a full
member of IFIP, although full membership is restricted to one society per country. Full
members are entitled to vote at the annual General Assembly, National societies preferring a
less committed involvement may apply for associate or corresponding membership. Associate
members enjoy the same benefits as full members, but without voting rights. Corresponding
members are not represented in IFIP bodies. Affiliated membership is open to non-national
societies, and individual and honorary membership schemes are also offered.

Method
Engineering

Principles of
method construction
and tool support

Proceedings of the IFIP TCS, WGS.1/S.2
Working Conference on Method Engineering
26-2S August 1996, Atlanta, USA

Edited by

Sjaak Brinkkemper
University of Twente
The Netherlands

Kalle Lyytinen
University of Jyvaskyla
Finland

and

Richard J. Welke
Georgia State University
Atlanta, USA

lunl SPRINGER-SCIENCE+BUSINESS MEDIA, BV

First edition 1996

© 1996 Springer Science+Business Media Dordrecht
Originally published by Chapman & Hall in 1996

ISBN 978-1-4757-5824-5 ISBN 978-0-387-35080-6 (eBook)
DOI 10.1007/978-0-387-35080-6

Apart from any fair dealing for the purposes of research or private study, or criticism or review,
as permitted under the UK Copyright Designs and Patents Act, 1988, this publication may not
be reproduced, stored, or transmitted, in any form or by any means, without the prior
permission in writing of the publishers, or in the case of repro graphic reproduction only in
accordance with the terms of the licences issued by the Copyright Licensing Agency in the
UK, or in accordance with the terms of licences issued by the appropriate Reproduction Rights
Organization outside the UK. Enquiries concerning reproduction outside the terms stated here
should be sent to the publishers at the London address printed on this page.

The publisher makes no representation, express or implied, with regard to the accuracy of the
information contained in this book and cannot accept any legal responsibility or liability for
any errors or omissions that may be made.

A catalogue record for this book is available from the British Library

Printed on permanent acid-free text paper, manufactured in accordance with
ANSIINISO Z39.48-1992 and ANSIINISO Z39.48-l984 (Permanence of Paper).

CONTENTS

Editors' Preface

Officers, Program Committee Members and Additional Referees

1 Keynote paper: a primer to method engineering
J.J. Odell

2 Structural artifacts in method engineering: the security imperative
R. Baskerville

3 Characterizing IS development projects
K. van Slooten and B. Hodes

4 Towards an integrated environment for method engineering
J.C Grundy and J.R. Venable

5 A functional framework for evaluating method engineering environments:
the case of Maestro II/Decamerone and MetaEdit+
P. Marttiin, F. Harmsen and M. Rossi

6 Method rationale in method engineering and use
H. Oinas-Kukkonen

7 How to compose an object-oriented business process model?
P. Kueng, P. Bichler, P. Kawalek and M. Schrefl

8 Human work as context for development of object-oriented modeling
techniques
J. Kaasb¢ll and o. Sm¢rdal

9 Translating OMT* to SDL, coupling object-oriented analysis and design
with formal description techniques
K. Verschaeve, B. Wydaeghe, V. Jonckers and L. Cuypers

10 Lazy functional meta-CASE programming
S. Joosten

11 A practical strategy for the evaluation of software tools
A. Powell, A. Vickers, E. Williams and B. Cooke

12 Core objects required for a generic CASE repository
G. Manson, S. North and A. Aighamdi

13 A proposal for context-specific method engineering
C Rolland and N. Prakash

14 Comparison of four method engineering languages
F. Harmsen and M. Saeki

vii

viii

8

29

45

63

87

94

III

126

142

165

186

191

209

vi Contents

15 Method engineering: who's the customer
L Mathiassen, A. Munk-Madsen, P.A. Nielsen and 1. Stage 232

16 Simulation-based method engineering in federated organizations
P. Peters, M. Mandelbaum and M. 1arke 246

17 Keynote paper: information systems development: a broader perspective
D. Avison 263

1 8 A classification of methodological framework for computerized
information systems support in organizations
J. Krogstie and A. S¢lvberg 278

1 9 Method engineering: current research directions and implications for
future research
1.-P. Tolvanen, M. Rossi and R. Liu

20 Panel: reengineering method engineering?
Chair: K. Siau

2 1 Panel: method engineering: experiences in practice
Chair: G.1. Ridding

Index of contributors

Keyword index

296

318

319

321

323

Editors' Preface

Research and development in the area of Method Engineering is concerned with the
design, construction and evaluation of methods, techniques, and support tools for
information systems development. Over the years, numerous development methods,
based on a variety of paradigms, have been proposed. Of these a substantial number
are currently applied in industry, with mixed success. Both generic and method
specific specification techniques have been designed for use within various
development approaches. These methods are constantly adapted and extended to meet
the changing needs of the practice and to reflect new technological and organizational
insights. The advent of Computer Aided Software Engineering (CASE) tools has
increased the turbulence in the field by making the underlying methods and
techniques more apparent to their users, while, at the same time, reducing their ability
to adapt to changing needs. Recent methods based on new paradigms, such as object
orientation, or new application types, as workflow management and client-server
architectures, reveal the trend towards modular methods with generic, interchangeable
components. The need for a new vision on methods and tools has manifested itself.

The conference organisers are very proud to be instrumental to producing the first
book in the area of Method Engineering. We gave this conference the subtitle:
Principles of Method Construction and Tool Support. The work in the area of Method
Engineering comprises many research topics, and is influenced by several reference
disciplines, such as organisation theory, software engineering, logic, and management
science. The proceedings of this first Method Engineering conference shows this
variety, as the following topics can be distinguished:
• Method representation formalisms, Meta-modelling
• Meta CASE, CASE adaptability and CAME tools
• Repositories, Tool integration
• Situational methods, Contingency approaches
• Terminology and reference models, Ontologies
• Organizational issues and impact
• Usability and experience reports
• Generation and evaluation of CASE tools
• Method construction paradigms
• Research methods and methodological frameworks

Method Engineering'96 would not have been possible without the assistance of many
people. We are indebted to the program committee members and additional reviewers
for preparing thorough reviews in a very tight schedule. The authors are thanked for
their efforts in making an excellent scientific contribution to this new and challenging
field. Finally, the organisers wish to thank all persons involved in making of the
Method Engineering'96 conference into a success.

May 1996

Sjaak Brinkkemper
Kalle Lyytinen
Richard J. Welke

Officers, Program Committee Members and
Additional Referees

General Conference Chair:

Kalle Lyytinen, University of Jyvaskyla, Finland

Program Committee Chair:

Sjaak Brinkkemper, University of Twente, the Netherlands

Organizing Chair:

Richard J. Welke, Georgia State University, USA

Program Committee:

David Avison, UK
Sue Conger, USA
Jurgen Ebert, Germany
Antony Finkelstein, UK
Alan Hevner, USA
Shuguang Hong, USA
Matthias Jarke, Germany
Peri Loucopoulos, UK
Leon Osterweil, USA
Naveen Prakash, India
Motoshi Saeki, Japan
Arne S~lvberg, Norway
John Venable, New Zealand
Tony Wasserman, USA
Stanislaw Wrycza, Poland

Program Assistance:

Janis Bubenko, Sweden
Alan Davis, USA
Gregor Engels, The Netherlands
Brian Henderson-Sellers, Australia
Gezinus Hidding, USA
Juhani !ivari, Finland
Heinz Klein, USA
Lars Mathiassen, Denmark
Barbara Pemici, Italy
Colette Rolland, France
Olivia Sheng, Hong Kong
Paul Sorenson, Canada
Yair Wand, Canada
Trevor Wood-Harper, UK

Rolf Engmann, University of Twente, the Netherlands
George Steenbekke, University of Twente, the Netherlands

Additional Referees:

C. Cauvet, France
G. Grosz, France
T.R. Henriksen, Norway
P. Kerola, Finland
J. Rekers, the Netherlands
H. R~nneberg, Norway
D. Turk, USA
C. Wei, Hong Kong
E. van der Winden, the Netherlands

L.P.J. Groenewegen, the Netherlands
B.A. Farshchian, Norway
J. Kajava, Norway
V. Plihon, France
H. Render, USA
I. Tervonen, Finland
S. Volkov, USA
J.R.G. Wood, UK
A. Zamperoni, the Netherlands

1

A PRIMER TO
METHOD ENGINEERING

J. J. Odell
James Odell Associates
1315 Hutchins Avenue
Ann Arbor, MI 48103 USA
Tel: +1 313 994-0844
email: 71051.1733@compuserve.com

INTRODUCTION

A methodology is a body of methods employed by a discipline.
A method is a procedure for attaining something.

Method engineering is the coordinated and systematic approach
to establishing work methods.

Traditional methodologies for information system (LS.) development are-by nature-general
purpose. As such, they contain an ideal set of methods, techniques, and guidelines that in
reality can never be followed literally. They must be tuned to the situation at hand. Steps are
sometimes omitted, added, or modified. Guidelines are often modified or ignored to fit special
circumstances, such as technology, development expertise, the application, and external
factors. [Harmsen, 1994]

To complicate things further, numerous methodologies exist for LS. development-each
with its own set of tools and techniques. Comparing and selecting an approach from a
multitude of methodologies is confusing and difficult. To aid in this selection, various
comparison standards have been proposed for object-oriented methodologies, such as those
documented by the OMG [Hutt, 1994a; 1994b]. Some approaches attempt to harmonize
several methodologies-forming yet another rigid methodology [Coleman, 1994]. Other
methodologies provide a choice of options, or paths, that the user can select depending on the
circumstances. In short, an I.S. project can choose from three basic methodologies, as
depicted in Fig. 1.

2

Flexibility
• ad hoc development
• few guidelines
• no uniform terminology
• project management and measurability
difficult

• flexible resource allocation
• no repository standards

Method Engineering

Controlled Ilexlblilly
• uniform buildillJ blocks selected

for project. situation
• guidance for each building block
• unifonn terminology
• unifonn. measurable project management
• flexible resource allocation
• integrated repository

Control
• one standard methodology
• rigid guidelines
• uniform terminology
• all projects comply to same measurable
approach

• standard resource allocation
• integrated repository

Figure 1 Methodological approaches fall into three categories (adapted from Harmsen
[Harmsen, 1994]).

METHOD ENGINEERING

Flexibility without control can hardly be considered a methodology, since any systematic and
coordinated approach to establishing work methods is absent For such an approach to be
systematic and coordinated requires method engineering.

Method engineering produces methodologies. For I.S., a methodology is a body of
methods employed to develop automated systems. In tum, a method defines the steps needed
to automate a system-along with the required techniques and tools and the anticipated
products. Adapting a methodology to the needs of a particular project is sometimes called
situational method engineering. For I.S., situational method engineering designs, constructs,
and adapts I.S. development methods.

Low High

Figure 2 Degrees of flexibility for I.S. situational method engineering (adapted from
Harmsen [Harmsen, 1994]).

As indicated in Fig. 2, method engineering has various degrees of flexibility. These are
as follows:

• Use of a rigid methodology. At one extreme, using a rigid methodology permits virtually no
flexibility. Such methodologies are based on a single development philosophy and thus
adopt fixed standards, procedures, and techniques. Project managers are typically not
permitted to modify the methodology .

• Selection from rigid methodologies. Instead of permitting only one rigid approach, this
option allows each project to choose its methodology from one of several rigid
methodologies. This makes possible the selection of an approach that might be more
appropriate for the project. However, this is a bit like buying a suit without having it
altered. You make the best of what is available, despite the fact that the chosen methodology
will probably not fit the project perfectly. Furthermore, each methodology involves
additional purchase and training costs.

A primer to method engineering 3

• Selection of paths within a methodology. Many methodologies permit more flexibility by
providing a choice of predefined paths within the methodology. Typical development paths
include traditional and rapid application development. Some methodologies now include
paths that support development aspects, such as package selection, pilot projects,
client/server, realtime, knowledge-based systems, and object orientation. A common
disadvantage, however, is that it may not be possible to combine some options. For
instance, realtime, knowledge-based projects may not be supported.

• Selection and tuning of a method outline. This option permits each project to both select
methods from different approaches and tune them to the project's needs. Typically, this
involves selecting a global method process and data model. These models, then, are further
adapted and refined by the project. This option is best supported by an automated tool.

• Modular method construction. One of the most flexible options is to generate a
methodology for a given project from predefined building blocks. Each building block is a
method fragment that is stored in a method base. Using rules, these building blocks are
assembled based on a project's profile. The result is an effective, efficient, complete, and
consistent methodology for the project.
An automated tool is recommended for this option. Here, a project's methodology can be
generated automatically and then adapted and further refined by the project manager.
Performing the entire activity manually would require much work and time. Such an option
is illustrated in Fig. 3.

Figure 3 An object-flow diagram specifying the process of modular method construction.

4 Metlwd Engineering

COMPUTER-AIDED METHOD ENGINEERING

Computer-Aided Software Engineering (CASE) automates automation. In contrast, Computer
Aided Method Engineering (CAME) automates the assembly of methods. A CAME tool should
support the following activities [Harmsen, 1994]:
• Definition and evaluation of contingency rules andfactors. In order to choose the right

method fragments for a project, rules and factors for selecting the proper method fragments
must be defined. Method engineers are responsible for these definitions. Given the project
profile and method base, the CAME tool selects and assembles the appropriate methodology.

• Storage ofmetlwdfragments. Selecting and assembling a methodology from method
fragments requires a method base. This method base is the repository from which method
engineers and the CAME tool can select various method fragments. As new methodologies
arise, they can also be incorporated into the method base.

• Retrieval and composition of method fragments. Certainly, for a CAME tool to generate a
methodology from a method base, retrieval operations must be available for method
fragments. However, total automation of methodology generation may never be completely
feasible. A more realistic scenario could involve both automatic generation and a method
engineer. The method engineer should be able to manipulate and modify method fragments
within a methodology.

• Validntion and verification of the generated methodology. The CAME tool should not only
support selecting and assembling a methodology, it should also check the results. The tool,
therefore, should incorporate guidelines to ensure that the correct set of method fragments
has been selected. Furthermore, the tool should ensure that the fragments are assembled in a
consistent manner. In other words, the CAME tool should ensure, or assist in ensuring, the
quality of the generated methodology. (After all, generated methodologies must meet the
same standards as standards methodologies.)

• Adaptation of the generated methodology. The method base should also accumulate the
experience of previous projects and their methodologies. This experience should be used to
improve method fragments, along with their contingency rules and factors. (Also illustrated
in Fig. 4.) In other words, practical experience should be used to adapt future
methodologies.

• Integration with a meta-CASE tool. CAME and CASE tools should eventually be integrated.
When a methodology is generated for a particular project, the appropriate supporting tools
should also be integrated. Adapting a CASE tool in this fashion would require configuring
the CASE tool to support the resulting methodology. In other words, a meta-CASE tool
would be required so that techniques and diagrammatic representations can be defined based
on the methodology. Such a tool would be similar in nature to the CAME tool. Within this
meta-CASE tool, CASE fragments would have to be defined. Additionally, it would require
the ability to retrieve and compose new conceptual fragments.

• Interface with a method base. This method base is the repository for the various method
fragments from which method engineers and the CAME tool can select.

To support CAME, the LS. organization requires two additional roles-the method
engineer and the method administrator. The method administrator is responsible for the
contents of the method base. The method engineer is responsible for generating the right
methodology for each project. Both support and are supported by the CAME tool-and are part
of a larger framework called process management.

CAME tools are being developed by many organizations around the world. They are
currently available from companies such as, James Martin & Co and Ernst & Young. While
still in their infancy, the CAME tools from these two companies support many of the properties
described above.

A primer to method engineering 5

PROCESS MANAGEMENT

To support applications systems, the repository must-of course---contain information about
the product of I.S. development. This includes information regarding analysis results, such as
structural and behavioral models, business rules, and so on. For design and implementation,
the repository would include information such as design templates, application data structures,
programs, and interfaces. Additionally, the development repository must also contain process
related information, such as intermediate results, human agents, tools involved, process plans,
design decisions, and steps taken to execute them.

engineer

Repository

Method models
Guidance models
Process traces

Analysis models
Design specifications

Implementations

Figure 4 An environment for process management.

SEI support

Project
guidance

(SEI level 3)

Collected
process traces
(SEI level 2)

engineer

The Software Engineering Institute (SEI) has been influential in the movement toward high
quality products. Its framework proposes five levels of process maturity: initial, repeatable,
defined, managed, and optimizing [Paulk, 1993]. This same framework can be applied to
process management.

Jarke recommends several kinds of SEI-related actions be performed that will ensure a
high-quality process management environment [Jarke, 1994]. These are illustrated in Fig. 4.
At the initial level, an organization does not provide a stable environment. Here, no repository
exists. At the repeatable level, policies for managing a project and procedures to implement
those policies are established. The planning and management of new projects is based on
experience with similar projects. This is aided by capturing process traces, as indicated in the
lower right of Fig. 4. At the defined level, an organization standardizes both its system
engineering and management processes. Such an organization exploits effective software
engineering practices when standardizing its processes. Furthermore, an organization's
process standards are tailored for each project to develop their own defined processes, as
indicated in the upper right of Fig. 4. Once this has been established, the organization can
introduce procedures for measuring the actual process execution. At this managed level, the
organization learns to predict trends in processes and product quality. This action is depicted in
the lower left of Fig. 4. Finally, at the optimizing level, the entire organization is focused on
continuous process improvement (upper left of Fig. 4).

CAME TOOLS

CAME tools are being developed by many organizations around the world. As discussed
above, CAME tools automate and control the application development processes, enabling the
method engineer to develop fast, fluid, and flexible processes. These tools should increase
planning, management, and development efficiency by providing tighter controls over each
development project as it evolves. Furthermore, CAME tools ensure that methods are designed

6 Method Engineering

to be reusable and can be continually revised and improved through integration of best practices
from previous projects.

A CAME tool is typically used for process management in four distinct modes-Defining
the process, planning the project, delivering the project, and improving the process.
• Defining the process-method components are created based on specific enterprise needs

and characteristics. This ensures a successful foundation for a project. New method
components can also be added to the library. The focus is on reusability and the intent that
the processes will be used by project teams.

!!.bjeclive~:

IT) Create ,,'tem~ drate!l'l +,
IT) Design and build a large 81'Stf-=
iTj Design and build a small 8j1sl

IT) DevelDp a stand-alone requil
IT) Select and implement a pack
IT) Understand the business ~

'-!iI',;JL", I;
o Plll' objective filter

Figure 5 A screen that offers a choice of project objectives. Based on these objectives, the
CAME tool can generate an appropriate methodology (Architect, James Martin & Co.).

the project sponsor playa highly active role in the project?
(commitment to proiect factor)

Low Ri.k = 0.1
The proiect sponsor will coordinate decision making and will
direct the project manager.
Monilor:
. Funding availability
- Equipment availability
- Resource (staffing) availability
- Speed of organizational and political iuue resolution
- Access to key users and executives

Figure 6 A screen that maintains and reports on various project metrics, such as duration
and risk (Architect, James Martin & Co.).

A primer to method engineering 7

• Planning the project-project managers are assisted in planning by assembling the necessary
methodology for a particular project. Since the method base repository is constantly being
improved from many different projects, project managers always have the most successful
method components available to them. The methodology is tailored according to constraints
ofthe individual project. Currently, both Ernst & Young and James Martin & Co offer such
a tool. For example, Fig. 5 depicts a "process filter" screen from James Martin &
Company's CAME tool called Architect. This screen helps Architect to select the appropriate
method segments based on the objectives selected in the right side of the window. Once the
methodology is generated, the project can be estimated and its risk assessed. Figure 6
depicts an Architect project metrics screen.

• Delivering the project-system development work assignments can be assigned to
individuals and to development tools. CAME tools can then guide the workflow of a project
by ensuring that the right task is being completed by the right person, using the right tools.

• Improving the process--<:ontinuous improvement is key to process management. Using
measurable quantitative feedback from each project, the method components used are re
evaluated to determine what worked and what did not. Here, method components are
modified, added, or deleted to reflect the best practices and lessons from SDLC projects.

REFERENCES

Coleman, Derek, Patrick Arnold, Stephanie Bodoff, Chris Dollin, Helena Gilchrist, Fiona
Hayes, and Paul Jeremaes, Object-Oriented Development: The Fusion Method, Prentice
Hall, Englewood Cliffs, NJ, 1994.

Harmsen, Frank, Sjaak Brinkkember, and Han Oei, "Situational Method Engineering for
Information System Project Approaches," Methods and Associated Tools for the
Information Systems Life Cycle, A. A. Verrijn-Stuart and T. William Olle, eds., Elsevier,
Amsterdam, 1994, pp. 169-194.

Hutt, Andrew T. F., ed., Object-Oriented Analysis and Design: Comparison of Methods,
Wiley-QED, New York, 1994a.

Hutt, Andrew T. F., ed.,Object-Oriented Analysis and Design: Description of Methods, Wiley
QED, New York, 1994b.

Jarke, Matthias, Klaus Pohl, Colette Roland, and Jean-Roch Schmitt, "Experience-Based
Method Evaluation and Improvement: A Process Modeling Approach," Methods and
Associated Tools for the Information Systems Life Cycle, A. A. Verrijn-Stuart and T.
William Olle, eds., Elsevier, Amsterdam, 1994, pp. 1-27.

Martin, James, and James J. Odell, Object-Oriented Methods: Pragmatic Considerations,
Prentice Hall, Englewood Cliffs, NJ, 1996.

Paulk, Mark C., Bill Curtis, Mary Beth Chrissis, and Charles V. Webber, "Capability Maturity
Model, Version 2.1," IEEE Software. 10:4, 1993, pp. 18-27.

2

Structural Artifacts in Method
Engineering: The Security Imperative

Richard Baskerville
Copenhagen Business School and
Binghamton University
Binghamton, New York 13902 USA
Tel + 1 607 7772337 Fax +1 607 7774422 Email baskerville@cbs.dk

Abstract
The organizational structure has to do with human relationships, and is distinguished from
the various artifacts (like information technology, systems development methods, and other
mechanical products) that reflect those relationships. Information technology represents a
first-level artifact and systems development methods represent a second-level artifact. This
paper explains and illustrates a theory in which method engineering introduces third-level
structural artifacts in organizations. A demonstration is included that uses security as one of
the system imperatives that must be captured by third-level structural artifacts such as method
engineering. This demonstration shows how method engineering may produce methods that
are more complete and more harmonized with the organizational situation.

Keywords
Information Systems Development, Systems Development Methods, Software Engineering,
Organizational Structure, Information Systems Security

1 INTRODUCTION

There are a large number of widely varied methods available for information systems
developers. These include structured approaches (e.g., Yourdon 1989), prototyping
approaches (e.g., Connell and Shafer 1989), information engineering (e.g. Finkelstein 1989),
soft systems (e.g., Checkland and Scholes 1990), sociotechnical (e.g., Mumford 1983),
object-oriented (e.g. Embley, Kurtz and Woodfield 1992), etc. Many of these methods have
been comparatively analyzed in books (e.g, Olle et al. 1988 or Avison and Fitzgerald), and
journal articles (e.g. Jackson and Keys 1984, Jayaratna 1988 or Hirschheim and Klein 1992).
Despite a fairly large body of work concerning the details of systems development methods,
there is still a very poor understanding of how such methods are actually used in practice
(Wynekoop and Russo 1993) or even whether these are ever used at all (Baskerville Travis
and Truex 1992).

Structural artifacts in method engineering 9

Method engineering (Kumar and Welke 1992) represents the effort to improve the
usefulness of systems development methods by creating an adaptation framework whereby
methods are created to match specific organizational situations. The goals of this adaptation
framework include at least two possible objectives. The first objective is the production of
contingency methods, that is, situation-specific methods for certain types of bounded
organizational settings. This objective represents method engineering as the creation of a
multiple choice setting. For example, in a systems consulting-firm situation, method
engineering might be used to create a number of alternative predetermined methods, and each
new client's situation might be analyzed to select one of the methods which would be most
appropriate for use. The second objective is one in which method engineering is used to
produce methods "on-the-fly". Each systems development project begins with a method
definition phase where the development method is invented on the spot. In this second
objective, method engineering is a mechanism for coping with the uniqueness of each
development setting. Organizational change is involved because it contributes to this
uniqueness. The mechanism operates by lifting the systems structures to a higher (third) level
of abstraction, such that the actual development structures become "selectable" (or definable),
and importantly, the determination of these selections itself becomes more highly structured.

The purpose of this paper is to explain and illustrate a theory of method engineering which
is oriented toward these third-level structural artifacts in organizations. Third-level artifacts
represent to the imperatives of the method engineer. This purpose is addressed by four major
sections. In the remainder of this first section, we will define several key terms. The second
section will analyze the relationship between information systems and organizational structures
in terms of structural artifacts. The third section extends this analysis to the new artifacts
demanded by the new level of abstraction introduced by method engineering. Following this,
the fourth section illustrates the rather positive nature of these new artifacts using information
systems security as an example. The final section summarizes the demonstration and
discusses some research issues that are opened by the analysis.

It is not the purpose of this paper to directly propose method engineering techniques and
structures like tool selection heuristics, notation inventories or analytical techniques directed
toward the target organizational situation. The paper will not attempt to survey the various
imperatives to which method engineers must respond. Rather, an analysis is presented which
can frame a better understanding of how such proposals will interact with human
organizations, information systems, and system development methods. However, the analysis
is illustrated using an outline of possible security notation and criteria which would be
appropriate in method engineering.

For the purposes of this paper, the term information technology (IT) will suggest a broader
view than "just computers", including telecommunications and office technologies like
photocopiers. Also IT is not bound to machinery, but includes conceptually-grouped
technologies (e. g., object-oriented or prototyping concepts). It is arguable whether definitions
of information systems and information technology may encompass each other. In this paper,
these are separate but closely related concepts, information systems (IS) refers to the
systematic development, operation and management of IT as well as the IT itself. We are
especially concerned with this "systematic development" component in IS, and we will use
the term information systems development (lSD) to refer to the analysis, design and
implementation components embedded in our definition of IS.

10 Method Engineering

Both Oxford and Webster's dictionaries primarily define the term "method" as meaning
"the procedure for obtaining an object." The secondary definitions fasten on such ideas as
"orderly," "systematic," "regularity," and "regimen." Method is clearly a concept of process
rather than representation. This paper will avoid the term methodology altogether, for in the
field ofIS, the original meaning of this term (the study of method) has become confused, and
is either used as a simple synonym for method (cf Olle et al. 1988, p. 1) or to create a
hierarchy of methods (cf Jayaratna 1993, Wynekoop and Russo 1993) which has been shown
to be rather strained when closely examined: It is a higher-order version of the same
construct: "a method of methods" (Oliga 1988, p. 90)

The concept of "artifact" is especially important in this work. An artifact is an object
made by people, usually with skill, for subsequent use. Its common archeological and
anthropological usage also implies that the object is from an earlier time or cultural stage.
This implies that an artifact has a physical persistence These connotations are important,
because these distinguish the making of the object from its use, imply that such objects are
cultural icons, and that their existence may endure through later periods of time and cultural
stages.

Information systems security is used to illu&trate the points below regarding IS
organizational artifacts. For this paper, "security" is defined broadly to include not only
features that prevent intentional losses, such as fraud and vandalism, but also unintentional
losses such as natural disasters and errors. Thus security encompasses system integrity and
reliability. Security is presented as one "imperative" of systems development methods. Such
imperatives are fundamental goals of the systems development that motivate the inclusion of
certain absolutely-necessary features into a method's design. For example, imperatives like
maintainability or reusability motivate features like encapsulation or inheritance in an object
oriented method.

2. STRUCTURAL ARTIFACTS OF ORGANIZATIONS

The information system has an important relationship with organizational structure. The
development methods are also directly or indirectly elements of this relationship. This
implies that there is also a relationship between method engineering and organizational
structure.

There is a clear distinction between the structure in a human organization and the artifacts
which reflect that structure. It is possible for the human organization to conflict with its
structural artifacts. For example, in many organizations the CEO's secretary wields real
power, like autonomously making decisions in assigning responsibilities further "down the
line". Every person in the organization will be aware of this line authority, yet it almost
never appears in the organizational chart or position descriptions. The human organization
differs in reality from the artifacts that supposedly define it.

This important distinction between the structure of the human organization and the artifacts
intended to reflect that structure requires a precise terminology. The terms "organization",
"structure" and "system" will appear below as icons for fairly strict dictionary concepts.
"Organizations" is a term that regards people who are dividing their work together for some
common purpose. "Organized" is a term that regards something formed into a whole

Structural artifacts in method engineering 11

consisting of interdependent or coordinated parts especially for united action. Organization
is defined recursively: A group of persons or smaller organizations organized for some end
or work. This paper will use the term organizational structure to regard the persistent
relationships between the people (or smaller organizations) in organizations. "Persistent"
regards repeated instances of relationships that occur with regularity. 1

2.1 IT And Other Structural Artifacts

There are widely varied viewpoints about the relationship between IT and organizational
structure. However, many of these seem to assume that the information technology is
somehow an elemental part of the organizational structure. (Five of these viewpoints are
surveyed in the appendix to illustrate how each relates to this assumption.) However,
organizational structure regards persistent relationships between people. While the IT might
enable or reflect this relationship, it does not embody the relationship itself. It is important
to carefully distinguish organizational structure (human relationships) from the IT artifacts
(mechanical products) that reflect those relationships. (In this point we are carefully
distinguishing between IT, which is artifactual in our definition, and IS which may be seen
as a "web" or "institution" that is inherently embedded in the social context which is using
the IT, and therefore may not be artifactual in our definition.)

Together with IT, there are many different artifacts that people create which reflect their
organizational structures. Table I lists some examples of these artifacts. These artifacts
reflect, or encode the organizational structure, but should not be construed to be the
organizational structure. These artifacts represent the different rules and protocols by which
the members of the organization may choose to behave. The accuracy of these
representations is, of course, variable. These rules and protocols have been likened to
grammars in languages (Wand and Weber 1995). The grammar metaphor is useful as an
analogy because linguistic grammars vary among communities, undergo change, naturally
conflict among versions and may be accurately or inaccurately represented by grammatical
texts. These organizational artifacts may vary among the organization's communities, undergo
change, naturally conflict among themselves and may be accurately or inaccurately
represented by structural artifacts.

I To a specific degree, these concepts are based on the roots of the terms, the original
Latin and Greek ideas. Organization comes from the same Greek and Latin root as
organism and organic (an individual life form) but most commonly meant "tool" or
"device", and in this sense was also applied to "living" body organs. Our sense of the
term is a natural, living device with a purpose. Structure arises from the Latin word
structure, meaning something put together, taken from the verb struere, to put together.
Structure implies the act of organizing, the assembling of the people, and the connections
made between the individuals in the organization.

12 Method Engineering

Table I. Examples of artifacts that people create which reflect their organizational
structures.

Organization charts, which graphically depict organizational members and their
different kinds of relationships

2 Personnel policies, which define reporting lines (who is whose boss), job
descriptions, rewards structures and payroll policies

3 Union agreements, which reflect the relationships between union members and
others in the organization

4 Standard Operating Procedures (SOPs), which are typically detailed functional
policies that define important coordinated actions in the organization.

5 Resource access policies, such as travel justification, modes of travel (private jet or
tourist-class), company cars, cellular phones, etc.

6 Workspace division, which includes the size of an individual or group workarea and
the collocation of organizational members (whose office is next to whose).

7 Workarea attributes and resources, such as decoration and furniture quality, quantity
or size; privacy (e.g., corner-office or open-plan cubical); and dining facilities.

8 Information Systems which determine access to information resources such as
computer accounts, LAN membership, automatic channelling of inputs and outputs,
and screen and paper form designs.

9 Methods for developing information systems, which determine who sets the goals,
who participates in the design, what issues are considered and how the system
elements are represented.

2.3 Conflicting Versions of Organizational Structure

The different structural artifacts overlap, and will sometimes encode the organization's
structure in conflicting ways. For example, the payroll policies, personnel policies and
organization chart (Table I) may encode an individual without influence in organizational
strategy; yet the workspace division, attributes and information system may encode a structure
in which that same individual bears essential responsibility for shaping organizational strategy.
Neither artifact is the organizational structure, that structure is defined by the relationships
between the individuals, not by any particular set of organizational artifacts. When the
artifacts suggest conflicting versions of the structures, the reflection of the real structure is
blurred and the determination of its shape is made more difficult.

The organizational artifacts may tell different stories about the organizational structures.
Conflicts between these stories seem to arise most often when the organizational structure
differs in reality from an "official" version of the organization. These "official"
organizational artifacts reflect the version of the organizational structure story as told by a
particularly privileged class of organizational members: usually relatively senior management.
Similarly to the priest-class in a theocracy, this class of individuals is widely accepted to own
the authority to determine organizational structure. Accordingly, this class controls a large
set of overt organizational artifacts.

Structural artifacts in method engineering 13

However, when the structural story suggested by these "official" artifacts conflicts with
the structural story suggested by many other organizational artifacts, then the reality of
organizational structure is indistinct. Artifacts that may be beyond the influence of the
"priesthood" in management may include those that are too menial for official control, such
as workspace collocation; those that can be replaced by alternative artifacts (such as a lower
authority policy taking effect even though it contradicts and countermands a higher-authority
policy); or those in which important functional artifacts ignore the specification artifacts, such
as when the real information flows violate operating policies.

2.4 Conflicting Realities of Organizational Structure

An important aspect of conflicting artifactual reflections of organizational structure is the
broad acceptance of "official" artifacts even when these conflict blatantly with the majority
of other artifactual representations. This aspect regards the important, almost priestly power
of the privileged organizational classes to interpret and pronounce organizational reality. As
a result, management itself and many organizational scientists will not look beyond such
privileged organizational artifacts, and sanction organizational structure to be, in reality, as
officially declared by a certain subset of organizational artifacts.

The process by which an imaginary belief becomes accepted as being real, is the well
known thesis of Berger and Luckmann (1967) in the social construction of reality. Their
thesis, applied here, suggests that the structural reality of organizations arises from routine
relationships that become habitualized and explained in a symbolic universe. This symbolic
universe in organizations may be strongly influenced by a powerful set of managers (the
priestly class), and which can justify the relationships symbolically even when these become
unnecessary or harmful (e.g., government clerks following patently absurd bureaucratic rules
because these justify some other part of the bureaucracy).

2.5 Emergent organizations

Organizational artifacts may also temporally reflect multiple versions of the reality of
organizational structures. Each of these versions must be seen as being dynamic to a certain
degree. That is, the relationships between organizational members (being social) are
continuously changing. Emergent organizations are always seeking, but never quite achieving
a regular pattern of behavior (Truex and Klein 1991). The most recent changes are less
likely to be reflected in the organizational artifacts, and this means that such artifacts will be
more-or-Iess out of sync with the reality of organizational structure. If the pace of change
is fast in an organization, usually in response to fast-paced changes in its environment, then
one should expect less fidelity and more conflict in its organizational artifacts with regard to
its structure.

From this perspective, the issue runs deeper than merely conflicting versions of the reality
of organizational structures, or indeed multiple organizational realities, and develops the
possibility that no matter which artifacts one chooses to believe, that reflection of
organizational structure is inevitably out of sync with the realities. This suggests that all
organizational artifacts should be viewed with a degree of suspicion, especially in a setting
with rapid change (a frequent characteristic in ISD). Each artifact tells a particular version

14 Method Engineering

of a particular set of organizational structures at a particular time. Indeed, such artifacts may
have been entirely invented to match a desired organizational structure that may, or may not,
have been realized at a later time. The relationship between these artifacts and current
organizational structures is always open to question. As a consequence, contingency theories
(e.g., Davis 1982) provide an overly confIning framework for ISD (Baskerville, Travis and
Truex 1992).

3. THE CHALLENGE TO METHOD ENGINEERING

The problems of conflict between structural artifacts and emergent organizations is found at
two levels of abstraction within the IS literature. At the fIrst level, the IS community must
deal with the potential conflict between the information technology, itself a structural artifact,
and the emergent organization. At this fundamental level, one discovers IT that is ineffective
in various ways, outdated, misplaced, or altogether unused because it conflicts with the
present organizational structure. This conflict is dealt with, although somewhat indirectly,
by the literature on IS failure, (e.g., Bostrom and Heinen 1977, Ginzberg 1981, Lyytinen
1988 or Lyytinen and Hirschheim 1987), end-user development (e.g., McLean 1979, Sumner
and Kleer 1987, Galletta and Heckman 1990, or Amoroso and Cheney 1992) and software
maintenance (e.g., Schneidewind 1987 or Schnebeger 1995).

At the second level of abstraction, the IS community must deal with the potential conflict
between the emergent organization and the development method (also itself a structural
artifact) used to determine the structural artifact of information technology. At this level, one
also discovers the IT development approaches are ineffective similarly to the IT itself,
outdated, misplaced or altogether unused. This conflict is dealt with, also a bit indirectly,
as a problem in need of solution by contingency approaches (e.g., Davis 1982), prototyping
approaches (e.g., Naumann and Jenkins 1982), participative approaches (e.g., Kyng 1991),
and object-oriented approaches (e.g., Coad and Yourdon, 1991). This conflict has been more
directly dealt with in research which has shown that methods may not be entirely succeeding
as a paradigm for the development of information technology (e.g., Baskerville, Travis and
Truex 1992, Wynekoop and Russo 1993, or Naur 1993).

Method engineering introduces a third level of abstraction, a method for creating methods.
Indeed, method engineering may be a reaction to the structural conflicts which have (perhaps
inevitably) accompanied the fIrst two levels. The inability to discover suitable structural
artifacts at the rITst level leads the search for suitable structures at the second level. That is,
consistent failures at structuring IT as a match to organizations has demanded a search for
successful structures for the structuring process. This idea is related to Giddens' (1984)
social structuration theory, and has been explored directly in the IT context (Orlikowski and
Robey 1991). Method engineering raises the problems of conflicts between structural artifacts
and organizations to a higher level. See Figure 1.

However, it may be possible that this third level of abstraction will enable IT researchers
to consider ever more essential structural artifacts regarding IT development and IT systems.
If the methodical (the predefIned, repetitive process) is abandoned to the second level, what
structural artifacts remain for method engineering? Among the most prominent are notation
and criteria.

Structural artifacts in method engineering

Artifacts used to create
developmental IS artifacts,
like criteria and notation
frameworks in method
engineering

The human organization:
regular relationships ~"
among people. 1 st Level)

/

C' r1 Ii

~9~
\" /(,)
\'; / ((

\

Artifacts used to create
organizational IS artifacts,
like methods and CASE

;:~~~
~~

2nd Level
LJ

Artifacts that more-or-Iess
reflect human relationships,
like organization charts and
computer networks

15

Figure 1. Three levels of information systems abstraction above the regular relationships
in human organization.

The notation used in ISD methods varies widely: examples include data flow diagrams,
data dictionaries, rich pictures, root definitions, and entity-relationship diagrams. The
selection of the set of notation to be used in a system development project is among the most
critical, since this decision will determine what concepts can (and what concepts cannot) be
represented in the formal specification and design (Gause and Weinberg 1989). Conflicting
representational schemes have also been explored in comparative methods studies, such as the
work arising from the CRIS working conferences using the so-called IFIP case as its
benchmark (Olle et al. 1988). Indeed, the empirical work by Bansler and B0dker (1993)
suggests that the notation may be the only durable component of a systems development
method.

The criteria regards the underlying rationale of the method, the details of its major aims,
purposes and scope. The authors of the various methods are usually quite clear in explaining
their criteria, but only in the context of each element of their method. As a whole, these
criteria indicate what the method's authors believed would characterize a successful ISD
project. But like philosophical assumptions, the discovery and general classification of these
abstract criteria are problematic because these are conflated with the features of the method
(cj Coad and Yourdon, 1991 with Checkland and Scholes, 1990). However, there are

16 Method Engineering

examples of comparative work that has focussed on the features of methods (e.g. Olle, et ai.
1983), and also work which has considered the underlying criteria (e.g. Olle et ai. 1982).

At the third level of abstraction, namely method engineering, it will be necessary to
introduce new structural artifacts. These new artifacts are likely include elements for
selection of notation and criteria at the second level (ISD methods). Comparative studies of
both notation and criteria will be prominent in formulating these new, third-level structural
artifacts. However, the analysis should move beyond the description of the present structural
artifacts of lSD, and also consider the real human organization and the way ISD unfolds in
these organizations. Clearly, studying "methods" is not adequate for studying the reality of
"ISD" (cf Parnas and Clements, 1986, Baskerville, Travis, & Truex, 1992, Bansler &
B0dker, 1993, Naur, 1993, Wynekoop & Russo, 1993). In other words, before building new
artifacts that reflect the old ones on a new level of abstraction, one should question the old
artifacts. In what ways do the structural artifacts of ISD conflict with the real organization?

There are a number of ways to prescriptively approach this issue. At one level, one can
ask what criteria and notation might be available to capture conflicts between organizational
structural artifacts (e.g., when customer service policies and trouble-call operational
procedures disagree), or to capture conflicts organizational structural artifacts and the
organization itself (e. g., when customer service policies and the actual social behavior of the
service representatives disagree).

At another level (the method engineering level), one may ask what criteria and notation
might be available to capture ever-present change in requirements. These elements would
regard the need to follow an emergent organization through the course of an ISD project,
especially considering the limited accuracy of all structural artifacts that purport to represent
the organization in such settings.

4. NOTATION AND CRITERIA EXEMPLAR: SYSTEMS SECURITY

Systems security is an example of the problematic issues that arise from these challenges.
Despite widespread agreement about the importance of privacy, reliability and integrity in
information systems, explicit security constructs are extremely rare in ISD methods
(Baskerville 1993a). Perhaps this is not so surprising considering that security features will
typically conflict with the functionality of the system (Baskerville 1992). Also, security
features are designed to prevent unpredicted organizational behavior, and will typically
embody an uncomfortable constraint on emergent organizations (Baskerville 1993b). Finally,
security features have been shown to create recursively security problems on their own
(Baskerville 1995).

Not surprisingly, there are many examples of security problems in information systems
(Neumann 1995). Perhaps it is more surprising that, despite the lack of consideration by ISD
methods, the majority of information systems have security safeguards in place (albeit
minimum), such as data backup and simple password schemes (if. Hitchings 1995, Wood
1995). While this does not mean that existing security is entirely adequate for most
information systems, it does mean that security features are being constructed into systems
despite the lack of explicit structures in most ISD methods.

Structural artifacts in method engineering 17

There are two implications that arise in this commonplace design of security features
outside of explicit method artifacts. First, this design activity suggests that the structures of
current ISD methods do not represent the reality of this aspect of ISD design. Second, this
design activity might be better enabled if the structures of the ISD methods agreed more
explicitly with the behavior of ISD analysts and designers.

These two implications comprise the security imperative for method engineering. This
imperative regards the demand for explicit structures for developing system security in most
ISD methods. On the one hand, this demand is founded on the unstructured design activity
that is ignored by the criteria and the notation within IS design. On the other hand, this
demand is founded on the need to reduce the substantial damage encountered by many
organizations due to the lack of adequate security safeguards properly designed into their
information systems.

The security imperative would entail, at a minimum, the inclusion of explicit security
criteria and notation at the third level of abstraction. That is, method engineering should
have structural artifacts that prescribe various criteria for security design and development,
and alternative sets of notation for explicitly capturing security risks and protective features
in the system.

These criteria and notation do not to be entirely invented. A survey of various security
analysis and design notation is described by Baskerville (1993a), and book-length security
methods exist (e.g., Fisher 1984, Lane 1985). There are also surveys of criteria (e.g.
Neugent 1982), and the European initiative on criteria for security of information technology
is a "harmonization" of several national policies on such criteria (Commission of European
Communities 1990). However, these resources provide only contrasting descriptions of
second-order notation and criteria. These must be further analyzed in order to draw out
frameworks for comparing and choosing among competing notations and criteria.

4.1 Notation

As a basis for one third-level notation framework, for example, the following security
literature regarding methods for security safeguards specification was reviewed and analyzed
using a limited inductive classification approach (c/ Sandman Klompus and Yarrison (1985).
The framework below provides one initial possible framework for structuring the selection
of security notation. The publications underlying this limited analysis are Browne (1979),
Krauss (1980), Fisher (1984), Lane (1985), Baskerville (1988), Hutt et al. (1988), Fitzgerald
and Fitzgerald (1990), Farquhar (1991), Ozier (1992), Forcht (1994) and Neumann (1995).
Because of the heterogeneous nature of this body of literature, many other competing
frameworks are possible. However, this example demonstrates the feasibility of such
frameworks. The framework consists of three types of notation that comprise security
features in ISD: Representation of security elements, security analysis and design, and
security maintenance and management. This framework is illustrated in Table II.

This framework of security notation exemplifies a third-level structural artifact for
organizational IS. Other related artifacts in method engineering might include heuristics for
selecting a complete notational set, perhaps matching characteristics of the IS setting
(captured in still another artifactual notation), or against the security criteria.

18 Method Engineering

Table II. Third-level security notation framework for method engineering.

Security element representation notation.
The three elements organized for analysis in security design methods are typically the risks
that threaten the system, the system assets requiring protection and the potential safeguards
that might be erected to protect the system assets. Representation tools must be capable of
representing inventories of these elements. Each of these inventories will need a classification
system and a notation framework to permit analysis if they are to be practical. Examples of
these classes and frameworks:

Risk
Categories:
Framework:

Assets
Categories:
Framework:

Safeguard
Categories:
Framework:

natural disasters, malfunctions, criminal acts, errors
probability, cost of damage, degrees of impact

computers, communications, storage, personnel
location, value, visibility, accessibility

operating integrity, backup, access control, error detection
implementation details, costs, second-order problems

Security Analysis and Design Notation
The notation must also capture the rationale leading to the implementation of safeguards. For
the purposes of both designing and maintaining the safeguards, the notation should capture the
risks against asset mapping process, and the safeguards selection process in the sense that one
should be able to implosively and explosively audit the design. For example, one should be
able to trace each safeguard to the risks it protects against and the assets it is protecting.
Likewise risks and assets should be mapped to the safeguards, or alternatively the notations
should demonstrate that the benefit of safeguards were trivial and unnecessary. Examples of
such notation:

Risk ranking notation
Asset ranking notation
Risk-asset-safeguard mapping
Safeguard ranking notation
Safeguard selection and design integration details

Security Maintenance and Management Notation
Under the assumption that organizations are emergent, and that system security is yet another
form of structural artifact in organizations, safeguards maintenance and maintenance of
security may imply additional necessary notation. Examples of such notation:

Security maintenance frameworks
Risks review and update process and routine
Safeguards validation process and routine
System maintenance security validation reviews

Disaster planning frameworks
Computer center loss plan
Communication loss plan
Cross-training plan

Structural artifacts in method engineering 19

4.2 Criteria

The security criteria is another third-level structural artifact that represents the security
characteristics which method engineering might instill in the ISD method. An example of
such third-level criteria was developed in a workshop sponsored by the INFOSEC Standards
and Initiatives group of the Communications Security Establishment for the purposes of
commenting on a federal guideline for risk management of computer information systems in
the Govermnent of Canada. The working group that regarded managerial considerations was
particularly concerned with adopting a risk management method that was equally relevant in
large, complex installations (e.g., an air base), as well as small, simple installations (e.g.,
a small, remote police post).

Rather than seek a single method, dictated from the central govermnent security
establishment, the working group concentrated on distributed security decision-making. That
is, instead of completely defining the risk assessment process to be universally applied
throughout the Govermnent of Canada, the exact decision would be deferred to the localized
agencies responsible for the computing elements. This deferral takes on some characteristics
of third-level method engineering. The summary of the recommendations appear in Verrett
and Hysert (1993).

The approach recommended by the working group was oriented toward centralized criteria
setting, rather than centralized control. The central authority would set the criteria for the
process of risk assessment, and defer the determination of the exact method to the local
agency. Even the specification of a range of techniques together with criteria for choosing
among these techniques was seen to exclude the use of ideal, unique approaches that might
occur to managers "on the scene". Instead, the recommendations suggested the criteria by
which a highly qualified manager in the field might determine whether the risk management
process was successful. While examples of risk assessment techniques were suggested, it was
not mandatory to choose one of the examples. The local manager would be free to innovate
in situations where such innovation, in the judgement of that local manager, seemed to be
required. The criteria are described in Table III.

The criteria in Table III represent another third-level structural artifact, and illustrates one
alternative set of criteria. A more complete set of security criteria at this method-engineering
level might offer alternative sets of criteria, perhaps for different levels of security, or
different kinds of organizations, (govermnent, manufacturing, retail, financial, etc.). The
chosen criteria might then be used as a measure of the performance of method engineering
in determining the security features (e.g. notation) of the second-level method.

4.3 Linking The Imperative Through The Levels

The imperative leads to the addition of notation and criteria to the method. The imperative
may take various forms or degrees. Contrast, for example, relatively stronger, highly
structured and inflexible security in military situations with relatively weaker, less structured
and more flexible security in consumer goods manufacturing situations. The third-level
artifacts must support the construction of second-level artifacts that respond to both of these
contrasting situations (as well as others). Third-level method engineering must be capable

20 Method Engineering

Table III. Criteria for risk management (adapted from Verrett and Hysert, 1993).

The process should be goal-directed.
The security goals of the government agency must be established at the beginning of the
project, must meet applicable policies and standards, must involve the system owner from the
start, must define resource constraints up-front, and must be as non-obstructive as possible.
These goals should be 'appropriate' for the government group as judged by the managers in
charge. The system's nature might take into account the criticality of failures (for example, a
police cruiser dispatch system is more critical than a campground firewood management
system), or the environment of the system (broad public access or highly restricted access to
the system). Examples of such goals include:

"trouble free operations"
"minimum events"
"highly private"

There must be a reasonably exhaustive threat analysis.
The process of risk analysis must include a threat analysis that considers a 'reasonable' range
of threats. For a highly critical system, such a 'reasonable' range would necessarily be more
exhaustive than non-critical systems. This will typically mean that the process will involve
the use of an analytic model (e.g., the US National Institute of Standards and Technology
Model) and a reasonable tool or guideline (such as the CCIT Risk Analysis Methodology,
CRAMM, a software-based approach).

The process must be updatable and reusable.
The process of risk management must result in the establishment of a pennanent maintenance
cycle for system security. This typically means that routine security reviews must be held
which consider changes in security needs as a result of continued operation of the system. In
many situations a security maintenance review plan will be needed that produces a periodic
report certifYing that the security is still intact. The cognizant manager must know what
action is necessary if the report fails to materialize, or appears inadequate.

The process must achieve closure in both certification and accreditation.
The risk management process must conclude with an event of some type that embodies the
instance at which the initial risk management project is successfully concluded. That is, such
a risk management process must lead to a certifiable result.

The results must be repeatable.
The risk management process must be "logically" repeatable. This does not necessarily mean
that anyone actually expects to repeat the process and compare results. Rather, it means that
the process must be thoroughly understood as it occurred, and it must be carefully
documented. In this way the decision-making process can be reconstructed such that higher
management might be able to review whether the decisions about risks were made in a
reasonable fashion in a given situation.

Structural artifacts in method engineering 21

of constructing the second-level artifacts (the method) such that they are capable of producing
first-level artifacts (information systems) which respond to the human organization. The
nature of that response depends of the particular view of the relationship between the
information system as a structural artifact and the human organizational structure. Five such
views are discussed in the appendix. This illustrates how the ideal set of structural artifacts
of method engineering would reflect the intersection of several dimensions: the set of
possible imperatives, the forms and degrees of those imperatives, an open set of possible
second-level structural artifacts, the set of viewpoints on the relationship between IS artifacts
and the organization, and the strength of the harmony among the organization's structural
artifacts and between those artifacts and the human organization.

This multi-dimensional nature of third-level structural artifacts introduces some complexity,
but this certainly is not imponderable. As an example of how this analysis can be applied to
the security imperative, assume the viewpoint (from the appendix) that IT can be used to
shape the organization, and strong security is the imperative. Under these conditions, then
the ISD method should be characterized by notation and criteria that will lead to prescriptive
structural artifacts. Such prescriptive security artifacts within the IS include enforced access
controls, which in turn require that the method's notation be characterized by extensiveness
in the details in its safeguard categories, safeguard frameworks, design integration and
validation routines. In addition, the third-level criteria suggests the need for a detailed goal
set, more rigorous forms of threat analysis, such as one that includes automated threat
databases (e.g., CRAMM). The criteria under this imperative also indicate artifacts like a
formal security maintenance review cycle, initial certification and routine recertification, and
closely detailed documentation about the design decisions. Further, the assumed
organizational viewpoint pins the achievement of strong security on a fair amount of harmony
between the organization's structural artifacts and the structure of the human organization.

As a second, contrasting example of how this analysis can be applied to the security
imperative, assume the emancipatory viewpoint (from the appendix), that IT involves ethical
decisions about structuring the workplace. This example will also assume the contrasting
position that security is fairly weak imperative. Under these conditions, then the ISD method
should be characterized by notation and criteria that will lead to the fewest and least
constraining, perhaps only implicit, structural artifacts. Such implicit security artifacts within
the IS might only include training, simple passwords and data backup routines. These in tum
imply that the method's notation be loosely structured, perhaps only free text in a few brief,
suggested sections (e.g, risk, asset and threat rankings). In addition, the third-level criteria
suggests only a few broad security goals will be involved and an informal, participative threat
analysis. The certification and routine reviews will probably be internal, informal, and
participative. Further, the assumed organizational viewpoint pins the achievement of
reasonable security on a fair amount of highly-motivated participation within the organization
itself, and that the structural artifacts related to security must be ethical with regard to the
workplace.

22 Method Engineering

5. SUMMARY AND FUTURE RESEARCH

The above discussion demonstrates how method engineering introduces a new level of
structural artifact into human organizations. By selecting security as the example for the
demonstration, this discussion also highlights the potential for method engineering not only
to "situationalize" methods, but to correct general oversights in many of the existing
published methods. That is, structural artifacts at the third level may respond to a general
set of system imperatives which must be adapted to the development situation. This general
set of system imperatives may be more complete, and therefore lead to more complete ISD.

Method engineering represents a third level of abstraction in ISD. This higher level of
abstraction increases the need to understand the relationship between human organizations,
organizational structure, and structural artifacts. Structural artifacts include IT, ISD methods
and method engineering. The resolution of conflict between such artifacts and the
organization, and between the artifacts themselves, motivates the introduction of the third
level artifacts of method engineering.

Further research is needed to understand the degree to which method engineering artifacts
might conflict with organizational structure, or with each other. The human organizations
in question not only include the target organization for the IT design, but also the
organizations involved in ISD and method engineering itself. Also the impact of this conflict
on the success of method engineering remains an open question until the application of
method engineering grows. Additional work is also needed to determine what other
imperatives should comprise the structural artifacts of method engineering. Examples might
include usability, availability, timeliness, etc. In addition, the security exemplar also reveals
the need for further research to determine the broad set of security criteria, notation, and
other third-level structural artifacts necessary to implement the security imperative in method
engineering.

APPENDIX A: VIEWPOINTS OF IT AND ORGANIZATION
STRUCTURE

At least five separate viewpoints of the relationship between IT and organizational structure
can be distinguished in the literature. Admittedly, each of these viewpoints is somewhat
abstract, like stereotypes or caricatures. These will not be found in pure form "in the wild"
of real organizational management. However, these theoretic viewpoints inhabit, and may
even dominate other theories, practical trends and models of IS and IT. The discussion of
each viewpoint will consider its central characteristic, the role of IT and IS under this
viewpoint and an example of recently published research that relates critically to this
viewpoint.

A.1 IT As A Medium for Organizational Communication

This viewpoint is characterized by the idea that information is a commodity in a similar sense
to electricity, water and gas. The function of IT and IS is similar to that of an information
utility providing an economical and sufficient supply of good quality information necessary

Structural artifacts in method engineering 23

to the organization. The IS parts of the organization act similarly to a sort of the utility
company that sets up the data repositories and flow lines as needed in the organization.

As an example of where this viewpoint currently holds a strong influence, consider
outsourcing. Practical and research publications on outsourcing often presume that the
information utility can be contracted out, like the telephone switchboard and housekeeping.
For example, Willcocks and Fitzgerald describe common problems discovered by
organizations in their attempts to contract out, in varying degrees, their information
technological support (Willcocks and Fitzgerald 1994).

A.2 Strategic Use of IT

This viewpoint is characterized by the assumption that information can be a central
organizational product, or an essential enabling factor in a central organizational product.
The role of IT and IS is tightly connected with the goals, strategies and purpose of the
organization itself. Under this viewpoint, the organization could not produce its products
competitively without IT.

The primary examples of this viewpoint include the American Airlines Sabre and American
Hospital Supply case studies. These are now also iconic representations of cases where a few
success stories dominate a management trend, followed by suspicions that a large number of
attempted emulations resulted in failure. Publication readership seems intensely interested
in the innovative successes and not in the emulation failures. For example, Kettinger et aZ.
(1991) survey the long-range impact of a number of strategic IT systems. For a further
example of this viewpoint, see Reich and Benbasat's (1990) study of customer-oriented
strategic IT.

A.3 IT As A Mechanism for Shaping Organizations

Other parts of the IT and IS literature are characterized by the instrumental idea that the
organization itself can be restructured by restructuring its IT. That is, the shape of the
organization will follow the form of its IT. If one reorganizes the IT, one thereby
reorganizes the human behavior. The role of IT and IS is therefore one of directing the
organizational resources, both enabling and constraining the organizations purposeful work
to the paths determined by management.

This view is typified by some of the current writings in Business Process Reengineering.
The organization is moved into a new form by destroying the old IT (Hammer 1990), which
embodied the old economic-specialization Taylorism, and rationally building a new process
centric organization that is effectively enabled by advanced IT (Davenport and Short 1990).
Here again one encounters a similar problem to that of strategic IS, in that the literature is
dominated by fairly limited set of success stories, while the practical community seems to be
encountering serious problems emulating these successes (Manganelli and Klein 1994).

24 Method Engineering

A.4 Matching IT To The Organization

This viewpoint is characterized by the assumption that the organizational structure is
detennined independently of its IT, and that successful IT will be shaped to match and
support the structure of the organization. The role of IT is that of a tool that makes
organizational processes easier under its preexisting structural constraints. The organizational
processes must occur with or without IT, and if the IT does not help these processes, then
the IT will be irrelevant, become ignored and fall into disuse. Successful IS is detennined
by its ability to shape itself to the needs of the organization.

This viewpoint is typical of the traditional IS development literature, with its focus on
requirements elicitation and specification. Such literature will typically argue that lengthy
systems analysis and data modelling is justified by the smooth conversion and enhanced
lifespan of the new system (c[Lyytinen 1987).

A.S IT For Emancipation

This viewpoint is characterized by its focus on the human and social implications of the use
of IT. It strongly shaped the socio-technical literature in systems development, with its
recognition that IT choices carried ethical detenninations in structuring the human workplace.
IT could make wotker's lives better, worse, or unnecessary. IS design and management was
both a social and a technical act.

This viewpoint is typical of the socio-technicalliterature in IS development, and the trade
union influence in North European IS research. These assumptions dominated some systems
development methods, like ETHICS (Mumford 1983) and cooperative prototyping (Er 1987),
and is currently found in some of the work in systems development that focusses on the
worklife of the developer (cf. Hirschheim and Klein 1994).

6. REFERENCES

Amoroso, D. and P. Cheney (1992) Quality end user developed applications: some essential
ingredients, Database 23 (1) (Winter) 1-12.

Avison, D. and G. Fitzgerald (1988) Information Systems Development: Methodologies,
Techniques and Tools. Oxford: Blackwell Scientific.

Bansler, J. and K. B0dker (1993) A reappraisal of structured analysis: Design in an
organizational context, ACM Transactions on Information Systems 11 (2) 165-193.

Baskerville, R. (1988) Designing Information Systems Security. Chichester: Wiley.
Baskerville, R. (1992) The developmental duality of infonnation systems security, Journal

of Management Systems 4 (1) 1-12.
Baskerville, R. (1993a) Information systems security design methods: Implications for

information systems development, Computing Surveys 25, (4) December 375-414.
Baskerville, R. (1993b) Infonnation systems security: Adapting to survive, Information

Systems Security 2 (1), 1993, 40-47. Reprinted, as New approaches to infonnation
systems security in Umbaugh, Robert (Ed.) Handbook of IS Management 1994-95
Yearbook. New York: Auerbach, 1994, pp S257-S265.

Structural artifacts in method engineering 25

Baskerville, R. (1995) The second order security dilemma, inOrlikowski, W., Walsham, G.,
Jones, M., and DeGross, J. (Eds.) Information Technology and Changes in Organizational
Work. London: Chapman & Hall, pp. 239-249.

Baskerville, R., J. Travis, and D. Truex (1992) Systems without method in Kendall, K.
Lyytinen, K. and DeGross, J. (Eds.) IFIP Transactions on The Impact of Computer
Supported Technologies on Information Systems Development. Amsterdam:
North-Holland, pp. 241-270.

Berger, P. and T. Luckmann (1967) The Social Construction of Reality, A Treatise in the
Sociology of Knowledge, Penguin Books.

Bostrom, R. and S. Heinen (1977) MIS problems and failures: A socio-technical perspective,
Part I: The causes, MIS Quarterly, (September), 17-32, and MIS problems and failures:
A socio-technical perspective, Part II: The application of socio-technical theory, MIS
Quarterly, (December 1977), 11-28.

Browne; P. (1979) Security: Checklist For Computer Center Self-Audits. AFIPS, Arlington,
Va.

Checkland, P. and I. Scholes (1990) Soft Systems Methodology in Practice. Chichester: J.
Wiley.

Coad, P. and E. Yourdon (1991) Object-Oriented Analysis 2nd Ed.. Englewood Cliffs:
Yourdon.

Commission of European Communities (1990) Information Technology Security Evaluation
Criteria (ITSEC), Provisional Harmanized Criteria, Version 1.2. Brussels, Belgium:
Commission of European Communities, Directorate--General XIII (June).

Connell, J. and L. Shafer (1989) Structured Rapid Prototyping: An EVQlutionary Approach
to Software Development. Englewood Cliffs: Yourdon Press.

Davenport, Thomas and James Short (1990) The new industrial engineering: Information
technology and business process redesign, Sloan Management Review (Summer) 11-27.

Davis, G. (1982) "Strategies for information requirements determination," IBM Systems
Journal 21 (1) 4-30.

Embley, D., B. Kurtz and S. Woodfield (1992) Object-Oriented Systems Analysis: A
Model-Driven Approach. Englewood Cliffs, N.J.: Yourdon Press.

Er, M. (1987) Prototyping, participative and phenomenological approaches to information
systems development, Journal of Systems Management (August) 12-15.

Farquhar, B. (1991) One approach to risk assessment, Computers & Security 10, 1,21-23.
Finkelstein, C. (1989) An Introduction to Information Engineering: From Strategic Planning

to Information Systems. Sydney: Addison-Wesley.
Fisher, R. (1984) Information Systems Security. Englewood Cliffs: Prentice-Hall.
Fitzgerald, J. and A. F. Fitzgerald (1990) Designing Controls Into Computerized Systems.

Jerry Fitzgerald & Associates, Redwood City, Ca.
Forcht, K.A. (1994) Computer Security Management, Danvers, Massachusetts: Boyd &

Fraser.
Galletta, D. and R. Heckman (1990) A role theory perspective on end-user development,

Information Systems Research 1, (2) (June) 168-187.
Gause, D. and G. Weinberg (1989) Exploring Requirements: Quality Before Design New

York: Dorset House.

26 Method Engineering

Giddens, A. (1984) The Constitution of Society: Outline of the Theory of Structure.
Berkeley, Calif: Univ. of California Press.

Ginzberg, M. J. (1981) Early Diagnosis of MIS Implementation Failure: Promising Results
and Unanswered Questions, Management Science 27, (4).

Hammer, M. (1990) Reengineering work: Don't automate, obliterate, Harvard Business
Review (July-August) 104-112.

Hirschheim, R. and H. K. Klein (1992) Paradigmatic influences on information systems
development methodologies: Evolution and conceptual advances. Advances in Computers
34, 294-381.

Hirschheim, R. and H. K. Klein, (1994) Realizing emancipatory principles in information
systems development: The case for ETHICS, MIS Quarterly 18 (March) 83-95.

Hitchings, J. (1995) Deficiencies of the traditional approach to information security and the
requirements for a new methodology. Computers & Security 14 (5), 377-383.

Hutt, A. E., S. Bosworth and D. B. Hoyt (eds.) (1988) Computer Security Handbook.
Macmillan Publishing Co., New York, NY.

Jackson, M. C. and P. Keys, (1984) Towards a system of systems methodologies. Journal
of The Operational Research Society 35, 473-486.

Jayaratna, N. (1988) Guide to methodology understanding in information systems practice.
International Journal of Information Management 8, 43-53.

Jayaratna, N. (1993) Methodology assistance in practice: A critical evaluation. Systemist 15,
(1) February, 5-16.

Kettinger, W., V. Grover, S. Guha, and A. Segars (1994) Strategic information systems
revisited: A study in sustainability and performance. MIS Quarterly 18 (1) (March) 31-
58.

Krauss, L. I. (1980) SAFE: Security Audit And Field Evaluation For Computer Facilities And
Information. AMACOM, New York, NY.

Kumar, K. and R. Welke (1992) Methodology engineering: A proposal for situation-specific
methodology construction, in W. Cotterman, and J. Senn (Eds.) Challenges and Strategies
for Research in Systems Development. New York: John Wiley & Sons, pp. 257-268.

Kyng, M. (1991) Designing for cooperation: Cooperating in design, Communications of the
ACM 34 (12) (December) 65-73.

Lane, V.P. (1985) Security of Computer Based Information Systems. London: Macmillan.
Lyytinen, K. (1987) Different perspectives on information systems: Problems and solutions,

ACM Computing Surveys (1) (March) 5-42.
Lyytinen, K. (1988) Expectation failure concept and systems analysts view of information

system failures: Results of an exploratory study, Information & Management 14, 45-56.
Lyytinen, K. and R. Hirschheim (1987) Information systems failures: A survey and

classification of the empirical literature, Oxford Surveys in Information Technology 4.
Manganelli, R. and M. Klein (1994) Should you start from scratch? Management Review 83

(7) (Jul) 45-47.
McLean, E. R. (1979) End users as application developers, MIS Quarterly 3 (4) (December)

37-46.
Mumford, E. (1983) Designing Human Systems For New Technology: The ETHICS Method.

Manchester: Manchester Business School.

Structural artifacts in method engineering 27

Naumann, J. and A. Jenkins (1982) Prototyping: The new paradigm for systems
development, MIS Quarterly (Sept) 29-44.

Naur, P. (1993) Understanding Turing's universal machine: Personal style in program
description. The Computer Journal 36 (4) 351-372.

Neugent, W. (1982) Acceptance criteria for computer security, NCC Conference Proceedings.
Arlington, Va: AFIPS Press.

Neumann, Peter G. (1995) Computer Related Risks. New York: ACM Press.
Oliga, J. (1988) Methodological foundations of systems methodologies. System Practice, 1

(1) (March), 87-112.
Olle, A., J. Hagelstein, I. Macdonald, C. Rolland, H. Sol, F. Van Assche, and A.

Verrijn-Stuart (1988) Information Systems Methodologies: A Framework for
Understanding. Wokingham: Addison Wesley.

Olle, T. W., H. G. Sol and A. A. Verrijn-Stuart, (1982) (eds) Information Systems Design
Methodologies: A Comparative Review, Amsterdam: North Holland.

Olle, T. W., H. G. Sol and C. J. Tully, (1983) (eds) , Information Systems Design
Methodologies: A Feature Analysis, Proceedings of the IFIP WG 8.1 Working Conference
on Feature Analysis of Information Systems Design Meeting, York, UK, 5-7 July, 1983,
Amsterdam: North-Holland.

Orlikowski, W. and D. Robey (1991) Information technology and the structuring of
organizations, Information Systems Research 2 (2) (June) 143-169.

Ozier, W. (1992) Risk Assessment and Management Data Security Management Report
85-01-20. New York: Auerbach.

Parnas, D. and P. Clements (1986) A rational design process: How and why to fake it.
IEEE Transactions on Software Engineering SE 12 (2), February, 251-257.

Reich, B. and I. Benbasat (1990) An empirical investigation offactors influencing the success
of customer-oriented strategic systems. Information Systems Research 1 (3) (September)
325-347.

Sandman, P., C. Klompus and B. Yarrison (1985) Scientific and Technical Writing. Ft.
Worth, Texas: Holt, Rhinehart and Winston.

Schnebeger, S. (1995) Distributed computer system complexity versus component simplicity.
Its effects on software maintenance. Georgia State University Manuscript, summarized in
J. DeGross, G. Ariav, C. Beath, R. Hoyer and C. Kemerer (eds.), Proceedings of the
Sixteenth International Conference on Information Systems. New York: ACM Pub!. p.
351.

Schneidewind, N. (1987) The state of software maintenance. IEEE Transactions on Software
Engineering SE-13 (3) March 303-310.

Sumner, M. and R. Kleer (1987) Information systems strategy and end-user application
development, Data Base 18 (4) (Summer) 19-30.

Truex, D. and H. K. Klein (1991) A rejection of structure as a basis for information systems
development. In R. Stamper, R. Lee, P. Kerola and K. Lyytinen (Eels.), Collaborative
Work, Social Communications and Information Systems. Amsterdam: North-Holland, pp.
213-236.

Verrett, R. and R. Hysert (1993) Summary of fmdings, working group 2, managerial and
structural issues in the draft risk management framework. in Proceedings 5th International

28 Method Engineering

Computer Security Risk Management Workshop. Ottawa: National Institute of Standards
and Technology and Communications Security Establishment, 7-9.

Wand, Y., and Ron Weber (1995) On the deep structure of information systems, Information
Systems Journal 5 (3) (July) 203-223.

Willcocks, L. and G. Fitzgerald (1994) Toward the residual is organization? Research on
it outsourcing experiences in the united kingdom. in Baskerville et al. (eds) Transforming
Organizations with Information Technology. Amsterdam: North-Holland, pp. 129-152.

Wood, C. C. (1995) Identity token usage at American commercial banks. Computer Fraud
and Security Bulletin (March) 14-16.

Wynekoop, J. and N. Russo (1993) System development methodologies: Unanswered
questions and the research-practice gap, in J. Degross, R. Bostrom, and D. Robey (Eds.),
Proceedings of the 14th International Conference Information Systems. New York: ACM
Publ. pp. 181-190.

Yourdon, E. (1989) Modem Structured Analysis. Englewood Cliffs, NJ: Yourdon Press.

7 BIOGRAPHY

Richard Baskerville is an associate professor in the School of Management at Binghamton
University. His research focusses on security and methods in information systems, their
interaction with organizations and research methods. He is an associate editor of MIS
Quarterly and The Information Systems Journal. Baskerville's practical and consulting
experience includes advanced information system designs for the U.S. Defense and Energy
Departments. He is vice chair of the IFIP Working Group 8.2, and a Chartered Engineer
under the British Engineering Council. Baskerville holds MSc and PhD degrees from the
London School of Economics.

3

Characterizing IS Development Projects

Kees van Slooten and Bert Hodes
School of Management Studies, University of Twente
P. O. Box 217, 7500 AE Enschede, The Netherlands
E-mail: cvs@sms.utwente.nl

Abstract
The relationship between project context and project situation is described by defining
a number of contingency factors and components of a project approach. The applied
contingency model is based on existing literature about situated method engineering.
Relationships between contingency factors and the components of the project approach
are analyzed for nine non-standard projects of the systems development department of
a bank organization. The conclusion is that the choices of project managers concerning
the project approach can be related to the project situation. The result of this research is
a starting point for a contingency approach of information systems development projects
in a bank.

Keywords
Systems development, situated methods, method engineering

1 INTRODUCTION

During a field-study, the organization of the information systems development process
of a major bank in the Netherlands was investigated. Up to now, centralization of
computer-based data processing was the main approach, including one standard approach
to information systems development. However, more specific requests from clients and
an increasing dynamic environment require more flexibility and variety from the applied
approaches to information systems development. New trends in technology like
client/server, relational database, fourth generation tools, end-user computing, object
orientation, office automation, groupware and multimedia will influence information
systems development. Consequently, one standard approach to information systems
development will not suffice and more situation-specific approaches will be necessary.
The need for situation-specific approaches has also been emphasized by: Kumar and
Welke (1992), Van Siooten and Brinkkemper (1993), Vessey and Glass (1994).

The concept of Methodology Engineering has been an attempt of Kumar and Welke
to define the next level of evolution of methodologies. They discuss the need to customize

30 Method Engineering

methodologies to meet the requirements of the development context. Van Slooten and
Brinkkemper prefer the term Method Engineering instead of Methodology Engineering.
Subsequently, we follow the terminology of Van Slooten and Brinkkemper, and especially
of Van Slooten (1995).

Method Engineering is performed by configuring a project approach or situated method
for systems development, utilizing existing method fragments to serve the project in
context. Figure 1 is a simplified representation of situated method engineering. Method
fragments are coherent components of existing methods. The project context includes the
existing systems development organization, the customer organization, the supplier
organization, the area of application, information and computerization policies, etc.
Contextual or contingency factors, derived from the project context, are important for
the entire method engineering process (arrow 1). However, it may sometimes be desirable
to change the project context as a result of the method engineering process (arrow 2).

The configuration process comprises characterizing the project and selecting or
constructing a situated method. The most important project contingency factors are
determined during project characterization as a result of interviewing, brain storming
sessions, questionnaires or other knowledge acquisition techniques. The prevalent
contingency factors are utilized for the selection or construction of a situated method
(arrow 5). This is supported by a method engineering information system, consisting of
formalized rules and a method base. The components of the method base are method
fragments and route maps. Route maps are plans associated with development strategies,
including the activities to be performed and the products to be delivered. The method
engineering information system can be considered as a knowledge-based information
system supporting the configuration process. It contains method fragments and route
maps for the construction of a situated method (arrow 6).

A systems development project is initially started, using the situated method determined
during the configuration process (arrow 3).

Project Context

1~
Configuration
Process

I t 4

3 ~ I

Project
Performance

2

Method Engineering Process

5 .-----
6

Method
Engineering
Information
System

Figure 1. Situated Method Engineering

Characterizing IS development projects 31

Unforeseen contingency factors may arise during project performance necessitating im
provements and/or clarifications of the project characterization and an adjustment of the
situated method (arrow 4). Evaluations during and after project performance may yield
new knowledge about situated systems development, which is stored by the method
engineering information system (included by arrow 4 and 5).

The bank organization is in the middle of a process of developing a new architecture
for information systems development in which the contingency approach takes a central
position. This means that various approaches must be available from which the best fitting
is chosen depending on the project context. Also Necco (1987) already said that
guidelines should be developed within the organization to provide direction for various
approaches, which the organization selects for its systems development process. However,
before formulating guidelines, it is necessary to know more about possible choice
alternatives, prevalent contingency factors, and the relationship between the contingency
factors (section 2) and the choice alternatives (section 3). The contingency model (section
2.1) is based on a situated method engineering approach (figure 1, after Van Slooten
1995). The choice alternatives have been made explicit after analyzing the existing
practice of information systems development projects within the bank organization. The
analysis of actual projects in practice also made some relationships between contingency
factors and project approaches available (section 4). Projects selected for this research,
are non-standard projects. We avoided standard projects, because standard approaches
are linked to standard projects, which will not reveal much information about the
relationship between contingency factors and choice alternatives. Furthermore, the
research was focused on choices that can be made by project managers, and not on
decision making by higher or lower levels of agents in the organization, which is outside
the scope of this research.

2 CONTINGENCIES AND CONSTRAINTS

2.1 The contingency model

The contingency model of this research is based on the situated method engineering
approach of figure 1. But the focus of this field study is on determining contingency
factors as components of the project context, eliciting route maps and method fragments
as components of possible project approaches, and relating contingency factors and project
approaches (figure 2). The components of approaches may consist of methods, techniques,
and tools for information systems development as well as for project management. This
means an extension of the definition of method fragments. Contingency factors are
variables from the project context with a certain value between Low (L) and High (H)
that affect the project approach. Constraints can be considered as a specific kind of
contingency factors causing limitations for the approach.

32 Method Engineering

PROJECT CONTEXT -- Configuration process -- COMPONENTS
-contingencies I - route map fragments
-constraints I - method fragments

PROJECT APPROACH
(Result of configuration process)

Figure 2 Contingency model

2.2 Contingency factors

The explicitation of contingency factors is based on the work of Van Der Hoef et al.
(1995). They composed a list of contingency factors and constraints, which is the product
of collecting and integrating existing lists from various sources. However, we removed
some inconsistencies from this list and selected the most important factors for the field
study according to experts of the bank. Some factors, which have the same value for each
project (e.g. the quality of information planning), are outside the scope of the field study.
Other factors are a generalization or a specialization of the factors of Van Der Hoef et
al. Finally, the list of contingency factors is:
• Management commitment. To what extent management supports the project.
• Importance. To what extent the project or information system is important for the

organization.
• Impact. To what extent the information system will change business operation after

implementation.
• Resistance and conflict. To what extent stakeholders have different or conflicting

interests.
• Time pressure. To what extent the available time for the project is experienced as in

sufficient.
• Shortage of human resources. To what extent the number of people available for the

project is experienced as insufficient.
• Shortage of means. To what extent the means available for the project are experienced

as insufficient.
• Formality. To what extent there are lasting rules, procedures, and standards for the

business processes and supporting information.
• Knowledge and experience. To what extent the users possess enough knowledge and

experience to develop the required information system.
• Skills. To what extent the members of the project-team possess enough knowledge and

experience to develop the required information system.
• Size. The number of people being a member of the project-team.
• Relationships. To what extent there are relationships between the new information

system and other information systems.
• Dependency. To what extent the project depends on activities and conditions outside

the project.
• Clarity. To what extent the goals, needs, and desires of the users are clear and coherent

enabling a sound specification of the functional requirements.
• Stability. To what extent the goals, needs, and desires of the users will not change over

Characterizing IS development projects 33

time enabling a stable specification of the functional requirements.
• Complexity. To what extent the functional components of the information system are

complex.
• Level of innovation. To what extent the applied technology and/or the applied methods,

techniques, and tools are new to the organization.

2.3 Constraints

Constraints are specific contingency factors without a relative value between Low (L) and
High (H), but they definitely affect the project approach. Constraints are specific
circumstances restricting the number of choice alternatives and affecting the relationships
between contingency factors and project approach. The influence of constraints on these
relationships is outside the scope of this field study. One may distinguish five kinds of
constraints: Contracts, Type of information system, Standards, Technical constraints, and
External factors. We do not want to go into detail, because it is not part of this research.

3 CHOICE ALTERNATIVES

3.1 Definitions

The situated method engineering approach contains two kinds of building blocks: route
maps and method fragments. To describe the situation of the bank more precisely, we
shall de.fine the concepts route map fragment and method fragment as follows.
A route map fragment is a coherent part of the complete route map of a systems
development project. A route map fragment may refer to strategies, activities, and
products concerning systems development as well as project management.
A method fragment is a coherent part of a method(ology) for systems development or
project management. Method fragments may be linked to a route map, which may
establish a complete project approach or a situated method.

3.2 Route map fragments

Tracing and dividing
One of the first activities of a project manager is to determine the scope of the project in
co-operation with the users. We distinguish two possibilities for tracing the business
functions for the project: tight (I) and wide (W). Tight tracing means that the functionality
required will partly be realized outside the project. Wide tracing means that the
functionality required will be completely realized during the project. Related to tracing
the functionality is dividing the functionality into subsystems, which will be developed
separately. We distinguish: one system (0) and subsystems (s).

Delivery strategy
The delivery strategy is the way of delivering and introducing the information system in
the organization. We distinguish three options: at once (0), incremental (i), and

34 Method Engineering

evolutionary (e).
• (0). Delivery at once means that the entire system is delivered at once.
• (i). Incremental delivery means that the system is delivered by a serial delivery of

subsystems, each containing a part of the functionality.
• (e). Evolutionary delivery means that the system is delivered by successive versions

of the entire system partly containing the entire functionality. Functional requirements
may change between two versions.

The delivery strategy deals with subsystems and not with subprojects. The distinction
between subsystems and subprojects is important throughout this paper. Different stages
of developing one (sub)system may be realized by different subprojects.

Realization strategy
The realization strategy is the way of realizing the various subsystems with respect to
sequence and concurrence. We distinguish four options: at once (a), concurrent (c),
overlapping (0), and incremental (i).
• (a). Realization at once means that the entire information system is developed at once.
• (c). Concurrent realization means that all subsystems are concurrently developed.
• (0). Overlapping realization means that some subsystems are concurrently developed

and other subsystems consecutively.
• (i). Incremental realization means that all subsystems are developed one after another.

Establishing subprojects
There are several ways to divide information systems development into subprojects. We
distinguish four options: one project (0), process-oriented (P), system-oriented (s), and
hybrid (h).
• (0). One project means no division into subprojects.
• (p). Process-oriented means division into subprojects based on information system

development subprocesses.
• (s). System-oriented means division into subprojects based on subsystems.
• (h). Hybrid means division into subprojects partly based on subprocesses and partly

on subsystems.

Project organization
Of course, one needs a project organization to run the project. Decisions have to be taken
about who is involved and who is responsible for what takes place. A communication
structure is provided describing on which levels communication is necessary and its
frequency. The project manager may choose a standard (s) or an adapted (a) structure
for the project organization.

Project management products and activities
Other activities of project management are for example: estimating risks, determining the
required means, investigating the consequences of the project. These activities, plans and
reports concern the performance of the project. These project management products may
be standard (s) or adapted (a). In the first case the format and the contents are well
defined. In the second case we have to deal with more informal project control.

Characterizing IS development projects 35

Development strategy
The development strategy is a generic strategy for the sequence and the selection of
activities supporting the development of a system (that is) not further divided into
subsystems. Also based on Van Siooten and Schoonhoven (1994) we distinguish five
options: phase-wise (P), tile-wise (t), prototyping (g), iterative (i), outsourcing (0).
• (p). Phase-wise is strict linear development without prototyping.
• (t). Tile-wise is linear development with partly overlapping phases.
• (g). Prototyping is linear development including prototyping, so-called throwaway

prototyping. During functional design a prototype is built to improve the functional
requirements or to show the feasibility of a certain technology.

• (i). Iterative or keep-it prototyping. The cycle of analysis, design, implementation and
evaluation is reiterated several times. After each iteration the system may be adapted
until there are no additional requirements.

• (0). Outsourcing or software package selection means that the system is not developed
by the bank organization. Before outsourcing the functional requirements are
determined by the bank organization. Required modifications of a software package
are realized by the supplier.

System development products and activities
Project management determines which system development products must be delivered.
There is a standard list of products, but the project manager may construct his own list
if he has good reasons to do so. The products may describe different aspects of the
business system and!or the information system. System development activities must be
determined to develop the products. Possible options are standard (s) and adapted (a).
• (s). Standard if the standard list is used.
• (a). Adapted if the standard list is not completely used.

3.3 Method fragments

Method fragments may come from methods, techniques, and tools for project management
as well as systems development. There is a standard way of working for project
management, which is described in a manual. The manual contains descriptions of
activities for project management and techniques and tools that should be applied. This
means that the project manager has two options: standard (s) and adapted (a).
• (s). Standard means that the project manager follows the manual to the letter.
• (a). Adapted means that he changes the standard.
Methods, techniques, and tools for systems development deal with the contents of the
information system that must be developed. The standard method for the bank
organization is Method!1 and a few other tools for specific tasks. This means that here
too there are two options: standard (s) and adapted (a).

36 Method Engineering

4 RESEARCH APPROACH AND RESULTS

4.1 Projects

The following nine projects, with deviations from the standard approach to systems
development within the bank organization, have been selected for this field study:

• Developing an information system establishing data administration to enter the
exchange market of shares for a major telecommunication organization in Holland.

• Realizing some changes in information systems supporting business in stocks, which
is necessary for maintaining a certain service-level and realizing some changes.

• Developing a new information system dealing with information supporting questions
and complaints concerning foreign promotion activities.

• Developing an information system for processing guaranteed means of payment such
as cheques, utilizing imaging technology.

• Enhancing a voice-response application with functionality for transactions by phone.
• Re-designing the back-office for business in stocks by developing an information

system based on a software package for storing stock transactions.
• Modifying a number of heavy applications to decrease the workload of the mainframe

computers.
• Developing an information system that is capable of collecting, enriching, storing, and

distributing data from various central databases, supporting various accounting
information systems.

• Developing a pilot information system in a client/server environment, supporting the
communication between advisers and clients.

Table 1 represents the contingency factors related to the fragments of approaches to
systems development for the nine projects. Deviations from the standard approach are
printed in bold type. The contingency factors may have the following values: I (low), n
(normal), or h (high). These values are determined by interviewing the project managers
and by sending them a questionnaire to respond. Some contingency factors did not cause
a deviation from the standard, e.g. the factor 'resistance and conflict'. Sometimes, the
standard approach may allow more than one value of a contingency factor or approach
fragment. The standard approach is defined as follows: (Tracing=tight, Dividing=one
system, Delivery Strategy=at once, Realization Strategy=at once, Establishing
Subprojects = one project, Project Organization = standard, Project Management Products
and Activities = standard, Development Strategy = phase-wise, Systems development
Products and Activities = standard, Project Management Method Fragments = standard,
Systems Development Method Fragments = standard).

Characterizing IS development projects 37

Table 1 Contingency factors and approaches for the nine projects

Contingency factors 1 2 3 4 5 6 7 8 9

Management commitment h h n n n h n n h

Importance h h h h h h h h h

Impact n h h h n h n h n

Resistance and Conflict I n n n n n n n n

Time pressure h h n n n n h n h

Shortage of human resources h h n n
Shortage of means I n n n n n n
Formality h h h h h h h
Knowledge and experience h h h h h h h h h

Skills h h n n n h n n

Size h h n n h n h h n
Relationships n h h h h h h h n
Dependency n h h h n

Clarity h n h h h h
Stability n n h
Complexity I h n n h h h h h
Level of innovation I h h h h h h

Approach

Tracing w w w w w
(t = tight, w=wide)
Dividing 0 0

(o=one system, s=subsystems)
Delivery Strategy 0 e 0 0 0 0

(o=at once, i=incremental, e=evolutionary)
Realization Strategy c 0 0 c c a 0 0 a
(a=at once, c=concurrent, o=overiapping, i=incrementaf)
Establishing Subprojects h h S 0 0 p h h 0

(o=one project, p=process-oriented, s=system-oriented, h=hybrid)
Project Organization a a a a a a a
(s=standard, a=adapted)
Project Management Products a a a
and Activities (s=standard, a=adapted)
Development Strategy to po po to 0 tgi
(p=phase-wise, t=tile-wise, g=prototyping, i=iterative, o=outsourcing)
Systems Development Products a a a a a
and Activities (s=standard, a=adapted)
Project Management Method s a
Fragments (s=standard, a=adapted)
Systems Development Method s a a a a a
Fragments (s=standard, a=adapted)

38 Method Engineering

4.2 Discussion of relationships

Management commitment and importance
The factors management commitment and importance are considered as one factor,
because it was difficult to deal with these factors separately. The importance of the project
and commitment of management affect the project a lot. Cooperation and flexibility of
groups of specialists in the organization will increase considerably if one can rely upon
strong interest of management, implying a project of high priority. However, the influence
on the actual approach is limited, only the project organization was adapted for three
projects that were of great importance.
Project organization. A first consequence was to involve senior employees as a kind of
sponsor of the projects, which means decisions will be taken at a higher level. During
one project, a board of managers of various business units was available to take important
decisions. A second consequence, if we have to deal with high time pressure as well, was
including people from the department for computer and network facilities responsible
for the technical operation of systems.

Impact
The influence of developing an information system on the users organization depends on
to what extent business operation will change because of implementing the system.
Important aspects are the number of people for whom work will change and to what extent
the work itself will change. The impact of the information system hardly affects the
approach to the project. Five of the nine projects had to deal with high impact, one of
which had to change the delivery strategy.
Delivery strategy. The delivery strategy for standard projects is delivery of the whole
system at once. It was already mentioned that for only one project, impact of the
information system was a reason for choosing another delivery strategy, namely an
evolutionary strategy. Changing the users organization at once should not be acceptable.

Time pressure
We have to deal with projects that have a deadline. Time pressure increases if the
available time becomes much less than the time needed. The high time pressure for four
of the nine projects affected a number of approach fragments: tracing, realization strategy,
project organization, project management products and activities, development strategy,
and systems development products and activities.
Tracing. High time pressure was a reason to limit the functionality of the information
system for the time being. A small and simple application with limited functionality can
be realized in a shorter time.
Realization Strategy. For three projects, high time pressure was a reason for choosing
a concurrent or overlapping realization. Concurrent development of all subsystems should
occur as much as possible to decrease the time elapsed for the whole project. Sometimes,
a concurrent realization strategy was not possible because of a lack of human resources.
In that case, an overlapping realization strategy was chosen.
Project Organization. High time pressure affected the project organization in different
ways:

Characterizing IS development projects 39

• To tune activities, oral communication was emphasized instead of written documents
saving a lot of time.

• Utilizing external workers if nobody else is available. Generally, external workers lack
knowledge about the existing systems. Consequently, projects were organized enabling
cooperation between internal and external workers.

• Keeping people from specific departments like quality assurance, system management,
or computer and network facilities (production management) outside the project
organization, if their contribution can be missed.

• Including people from the production management department (computer and network
facilities) into the project, if one may expect problems during the transfer of the
system, ready for actual operation, to the production management department.

Project Management Products and Activities. Due to time pressure it was decided for one
project to deliver only a limited number of project management products like plans for
quality assurance, risk management, approach to the project, documentation management,
etc.
Development Strategy. Due to time pressure the following development strategies were
selected:
• A tile-wise development strategy means that the next phase will start before the current

phase is finished. Formal approval of one or more phases was postponed, because this
takes time. Sometimes two or more phases were turned into one phase to save time.

• Because of time pressure or shortage of human resources an outsourcing strategy was
frequently chosen. The functional requirements were determined by the bank, after
which the remaining phases were established by an external organization. However,
accepting and introducing the system were again internal activities.

Systems Development Products and Activities. Because of time pressure sometimes only
systems development products and connected activities were selected which were
absolutely necessary. Sometimes other products were delivered instead of the products,
prescribed, if it speeded up the process. It is easier to obtain approval for delivering less
or other products if the importance of the project is high.

Shortage of human resources
In only two of the nine projects the shortage of human resources was high. This
contingency factor affected the project organization and the delivery strategy.
Project Organization. The shortage of human resources was resolved by hiring external
workers if the budget for the project was sufficient.
Delivery Strategy. In one project, shortage of resources was a reason for partly
outsourcing systems development. Because of time pressure it was not possible to
postpone systems development.

Formality
In seven out of nine projects the formality was high as in standard projects. This
contingency factor only affected the systems development products and activities.
Systems Development Products and Activities. In two projects with a high value for
formality less products were made, because some products to be made were similar to
already existing system documents, e.g. the data model, which means that in such cases
it was possible to use existing products.

40 Method Engineering

Size
The size of five projects was high (more than ten persons). The following approach
fragments were affected by the size of the project: tracing, dividing, realization strategy,
and establishing subprojects.
Tracing. Problems with the management of a project will arise if many people are
working for the project at the same time. Therefore, it was tried to trace the project as
tight as possible, which means postponing or deleting functionality, if not absolutely
necessary. Another way of limiting the size of a project is lengthening the time for the
project. However, this was not possible because of a fixed deadline.
Dividing. The size of the project was mentioned most often as the reason to divide the
system into subsystems. Therefore, the functionality was divided into coherent subsystems
enabling independent development of these subsystems.
Realization Strategy. In a number of projects was chosen for an overlapping strategy
instead of realization at once, because of the size of the project. Through realizing the
subsystems partly in sequence instead of all subsystems concurrently, it was possible to
limit the size of the project. Further decreasing the size of the project by using an
incremental realization strategy was often not possible because of high time pressure.
Establishing subprojects. Establishing subprojects was affected for some projects by the
size of the project. Generally, subprojects are established for recognized subsystems.
However, size was the reason for a number of projects to choose a hybrid approach for
establishing subprojects, which means that also for certain phases of the systems
development process different subprojects are established.

Dependency
Dependency was high for three projects, but the approach of these projects was hardly
affected, only dividing into subsystems.
Dividing. Dividing into subsystems was affected by the dependency of other activities in
only one project. There was a strong dependency of a system in the middle of a
development process. Therefore, it was decided to consider the functionality that was
dependent on another project as a separate subsystem. This subsystem was developed after
the other project had been finished.

Clarity and stability
The reason for joining clarity and stability of the functional requirements is that the
approach was only affected by instability of the functional requirements if, at the same
time, clarity of the functional requirements was low. There was also a relationship
between the formality of the business processes, and the clarity and stability of the
functional requirements. If the formality was low, then the clarity and stability of the
functional requirements were also low. Unclear functional requirements affected the
tracing of the functionality and the development strategy. Instability of the functional
requirements only affected the development strategy.
Tracing. Unclear requirements of users were the reason for one project to limit initially
the functionality of the system. A large number of interest groups put forward their own
specific and often conflicting ideas about the application. Consequently, functionality was
restricted to common requirements.
Development Strategy. An iterative development strategy was chosen for two projects

Characterizing IS development projects 41

instead of the usual phase-wise development strategy, because of unclear and unstable user
requirements. The requirements were determined and realized during a first development
cycle, after which the user could improve his requirements by using the application
developed. A precondition for choosing such a strategy is the availability of CASE-tools
that facilitate a rapid application development.

Complexity
For six projects complexity was high. The complexity of the functional components of
the system affected the way of tracing and dividing functionality, establishing subprojects,
project organization, the development strategy, and the systems development method
fragments.
Tracing. High complexity of the required functionality was for two projects the reason
for limiting functionality with consequently fewer problems during systems development.
Dividing. High complexity of the system was during one project one of the reasons for
dividing the functionality into subsystems. The functionality was divided into two
subsystems. Different kinds of expertise were required for developing these subsystems.
Establishing Subprojects. In a number of projects the complexity was a reason for
choosing a process-oriented or hybrid approach to establish subprojects for certain
processes or phases of systems development. In two cases it was decided to test the
application in a separate subproject. In another project with many modifications of
existing systems the analysis phase of these systems was established in a separate
subproject because of the complexity and the different kind of expertise that was needed
for the various systems. Finally, in one project complexity was the reason for realizing
a data model in a separate subproject, because specific knowledge was necessary, which
was not available in the project-team of the systems development department.
Project Organization. In one project, complexity was the reason for involving people with
specific expertise from various departments. One dealt with a technical migration project
including technical improvements of existing systems. Because of the complexity it was
decided to add experts in databases, hard systems software, etc. to the project-team.
Development Strategy. In one project the complexity was the reason for choosing a tile
wise development strategy. A badly documented system had to be modified. It was
decided to start a functional and technical design as partly overlapping phases enabling
a clear specification of what should be modified. In another project complexity was the
reason for choosing an outsourcing strategy, because an existing software package was
more appropriate than internal development of a new application.
Systems Development Method Fragments. In two projects, high complexity was the reason
for applying other tools than standardly available. In one project monitoring tools
supporting the analysis of complex systems were necessary. In another project a tool for
testing programs was necessary, because of the complexity of the interaction of many
interacting subsystems.

Level of innovation
In principle, the applied technology is part of the approach in correspondence with
functionality. However, during the nine projects the technology was mostly supplied by
the users organization. Up to now the central mainframe was the standard platform for
running the applications, which means that other environments like LAN, WAN, or PC

42 Method Engineering

are new. The level of innovation was high in non-mainframe environments (six projects).
The level of innovation affected the division of the system, the project organization, the
development strategy, the systems development products and activities, and the systems
development method fragments.
Dividing. In three projects the level of innovation was a reason to divide the system into
subsystems. The functionality was divided into two subsystems. One was realized on the
mainframe (communication with central systems and processing of central data) and the
other on the decentralized environment (the actual application).
Project Organization. In two projects the level of innovation was the reason to involve
external workers in the project organization. They participated in project- and working
groups with the intention of knowledge transfer from the external workers to the workers
of the bank. In other projects of a high level of innovation outsourcing the innovative part
of the application was preferred (see also effect on the development strategy). Mutual
adjustment of the functional specifications was necessary in this case, enabling the co
operation between the internal and external parts of the application.
Development Strategy. The high level of innovation did affect the development strategy
of various projects. It depends on the question whether the organization likes to acquire
more knowledge of the new technology or not. In two projects an innovative system was
developed in cooperation with an external supplier. For one of these systems, the high
level of innovation was the reason for choosing a prototyping strategy. A prototype was
constructed to estimate the feasibility of the new technology. An iterative development
strategy was used for the development of the prototype. The final specifications were
determined by evaluating and modifying the prototype. In the other project (pilot) the
prototype was experimental, which meant in this case that the desirability and feasibility
of a new kind of application was investigated. An iterative development strategy was
chosen again. In three other projects with no intention of transferring knowledge, an
outsourcing strategy was chosen for the development of the innovative part of the
application. Outsourcing of the development of a subsystem also affects the project
management products and activities. In this case, one has to deal with a contract with the
external supplier, but such activities are mostly the responsibility of the user's
organization with some assistance of a special department. The systems development
department is responsible for the control of the contents of the activities of the external
workers.
Systems Development Products and Activities. In one of the projects the high level of
innovation was the reason to perform other activities and deliver other products than
usual. The alternative environment and the tools available enabled another way of
developing information systems. The usual systems development products did not fit here,
because these usual products were based on the development of mainframe applications.
Systems Development Method Fragments. In one project the high level of innovation was
the reason for not applying the standard methodology Method/I. The systems development
activities and their sequence was determined by common sense. In two innovative projects
the presence of new technology was the reason for applying new tools like: fourth
generation environments, object-oriented programming languages, and tools for
developing graphical user interfaces. These kinds of tools have until now not been applied
in the mainframe environment of the bank, but only in client/server environments.

Cluzracterizing IS development projects 43

5 CONCLUSIONS AND FURTHER RESEARCH

This research shows that the project approach is affected by the project context, in spite
of the present standards, procedures, and unifonn way of working. Generally, a
contingency approach to systems development was not supported by the bank organiza
tion. A project manager may construct a project approach by choosing various
components of an approach as described by this paper. There are several options available
for each component of an approach. In the fonner section it was described how the
choices were affected by the contingency factors of the project situation. Some
contingency factors did not affect the project approach at all (table 1). It was possible to
explain the choices made by the project manager using the current set of contingency
factors. However, this does not mean that the current set is the ultimate set of contingency
factors for this organization. It is a starting point for further research. We have already
seen that sometimes two contingency factors can be handled as one factor, e.g.
management commitment and importance, clarity and stability. Of course, this research
has some limitations:
• The projects have not been evaluated.
• Too few projects have been analyzed in order to support this research with quantitative

results.
This means that the found relationships between contingency factors and project approach
do not necessarily guarantee a 'best' approach. The relationships found are based on
choices made by senior project managers.

This research aims to contribute to the development of a contingency model for systems
development projects. Further research must be focused on the detennination of successful
relationships between the project context and the project approach by evaluating chosen
project approaches depending on the situational factors, i.e. contingency factors including
constraints.

6 REFERENCES

Hoef, R van der, et al. (1995), Situatie, Scenario en Succes (Dutch), Memoranda
Informatica, Internal Technical Report, University of Twente.

Kumar, K., RJ.Welke (1992), Methodology Engineering: A Proposal for Situation
Specific Methodology Construction. In: Challenges and Strategies for Research in
Systems Development, Wiley and Sons Ltd.

Necco, C.R, et al. (1987), Systems Analysis and Design: Current Practices. In: MIS
Quarterly, 11,4.

Slooten, C. van, S. Brinkkemper (1993), A Method Engineering Approach to Information
Systems Development. In: Information Systems Development Process, Proceedings IFIP
WG 8.1, Elsevier Science Publishers (North-Holland).

Slooten, C. van (1995), Situated Methods for Systems Development, Thesis, University
of Twente.

Slooten, C. van, B. Schoonhoven (1994), Towards Contingent Infonnation Systems
Development Approaches, In: Methods and Tools, Theory and Practice, Proceedings
of ISD'94, Bled.

44 Method Engineering

Vessey, I., R.L. Glass (1994), Application-Based Methodologies: Development by
Application Domain. In: Information Systems Management, Fall 1994.

Towards an
for method

4

integrated environment
engineering

John C. Grundy and John R. Venable
Department of Computer Science, University ofWaikato
Private Bag 3105, Hamilton, New Zealand
email: jgrundy@cs.waikato.ac.nzorjvenable@cs.waikato.ac.nz

Abstract
In order to facilitate better Information Systems Development (ISD), Method Engineering
technqiues and tools are needed that support flexible creation, modification, and reuse of ISD
methods and tools for use on specific problem domains. A metamodelling notation is needed for
specifying and integrating different design notations. MetaCASE support is required for
building, reusing and evolving tools for these design notations. Process modelling tools for
both the coordination of these design notation tools and the evolution of software processes are
also needed. We describe our work on developing an integrated environment which supports
metamodelling, metaCASE and flexible software process modelling, and illustrate its use for
supporting Method Engineering.

Keywords
Method engineering, metamodelling, metaCASE, software process modelling

1 INTRODUCTION

Information Systems Development (ISD) methodologies are generally assumed to be situation
independent. However, there are a multitude of different development methods and techniques
that each have various advantages and disadvantages, some of which relate to the problem
domain or the development context. A stream of research has developed investigating the
possibility to choose, tailor, or engineer the development method accordingly. Kumar and
Welke (Kumar, 1992) coined the term methodology engineering and postulated this new field,
i.e. engineering a new ISD methodology by composing it from various techniques in order to
address problems in a particular domain. Vessey and Glass (Vessey, 1994) noted that, in any
case, system developers adapt and modify the methods that they use to the situation and their
preferences. Recently, Harmsen and Brinkkemper (1995) found that due to the increasing
complexity of Information Systems, development teams often require methods tailored to a
particular system development situation, which they term Situational Method Engineering.

46 Method Engineering

Developers may need to create a new method from scratch, modify (e.g. incrementally improve
or tailor) an existing method, or reuse parts of various methods and techniques and recombine
them into a new method, or any combination of the above. Developers may even need to
modify and adapt the development method while the development process is ongoing. Our goal
is to support this flexible sort of situational method engineering. In order to facilitate this,
developers need flexible support for:

Design notation metamodelling and notation integration. This allows developers to specify
data models for the design notations they wish to use for development of a system, and in
the case of multiple design notations, to specify common information that will be shared
between the notations. Developers should be able to reuse all or parts of existing notations,
and be able to integrate different notations when one notation best supports modelling part
of the problem domain, and another notation is better suited to another.
Tool construction facilities. These are used to build or modify CASE tools to support the
various design notations to be used. This includes the ability to keep information shared by
different design notations consistent i.e. to keep different notation repository information
consistent under change. Developers also need to specify the editors and rendering of
notation data models they desire.
Software process modelling and work coordination. Process modelling specifies which
notations and tools will be used for different aspects of the system under development.
Work coordination support is needed to coordinate tool usage. Evolution and reuse of
process models allows developers to improve their development processes from one
project to another. Modelling the Method Engineering process itself provides a meta
process level which helps to improve Method Engineering on subsequent projects.

Ideally a Method Engineering environment should support all of these activities in an integrated
fashion. Developers should be able to define and/or reuse software processes either for
developing a new system or for modifying an existing system and its existing descriptions.
They should be able to tailor existing design notations in either case. CASE tools supporting the
required notations should be built using the notation metamodels as repository specifications,
and common information in different tool repositories should be kept consistent. Developers
should be able to flexibly define and revise software processes during system development, and
be able to reuse these models on new projects.

Our approach is to combine techniques and tools from three distinct, yet related, areas of our
recent research. We have developed the CoCoA meta-modelling notation (Venable 1993,
Venable 1995) and have used this for design notation metamodelling and integration (Grundy,
1995a, Grundy, 1995b, Venable, 1995). We have developed the MViews framework for
constructing CASE tools and integrated Information Systems Engineering Environments
(ISEEs) (Grundy, 1993, Grundy, 1995a) and used this to develop ISEEs which support
multiple design notations [Grundy95a, Grundy95b]. Recently we have been developing a tool
for the coordination of work in CSCW systems (Grundy, 1995c), which also supports flexible
software process modelling. This paper describes our current work developing an integrated
environment for the definition, construction and coordination of ISEEs using these techniques.

2 RELATED RESEARCH

Current approaches to notation integration, CASE and metaCASE, and method engineering
support tools, go some way to addressing the Method Engineering aims from Section 1, but do
not completely satisfy them. Some work has been done on the static integration of notations.
Venable (1993) has performed detailed analyses and integrations of both data flow models and
conceptual data models. Campbell and Halpin (1994) have analysed levels of abstraction for
conceptual schemas. Falkenberg and Oei (1994) have proposed a metamodel hierarchy.

Integrated environment for method engineering 47

Wieringa (1995) has compared lSD, ER modelling and DFD modelling. Data modelling has
been used to compare different notations (Nuseibeh, 1992) and support methodology
engineering (Heym, 1992). Process-modelling has also been applied to compare and integrate
notations (Song, 1992).

Integrated ISEEs (or Integrated CASE tools and programming environments) allow designers
to analyse, design, and implement Information Systems from within one environment,
providing a consistent user interace and consistent repository (data dictionary). They help to
minimise inconsistencies that can arise when using several separate tools for information
systems development (Wasserman, 1987, Reiss, 1990). These ICASE environments allow
developers to analyse and design software using a variety of different notations, with limited
inter-notation consistency. Such tools do not generally support complex mappings between the
design notations, such as propagating an ER relationship addition to a corresponding OOAID or
NIAM diagram. As an example, Software thru Pictures™ (Wasserman, 1987) uses a single
metamodel repository for all notation diagrams, although it only supports basic forms of
intemotation consistency. The implementation of these environments is generally not sufficient
to allow different design notations to be effectively integrated, and consistency between design
and implementation code is often not maintained (Meyers, 1991). For example, MethodMaker
from Mark V Systems (Mark, 1995a) allows new notations and methods to be built, but
provides very limited inter-notation consistency management facilities. FIELD (Reiss, 1990)
and Dora (Ratcliffe, 1992) provide abstractions for keeping multiple tools and textual and
graphical views consistent under change. They do not, however, provide any mechanism for
propagating changes between views which can not be directly applied by the environment, such
as ER relationship changes to NIAM or OOAID relationship changes. Thus changes which can
not be automatically translated to another notation are not supported.

Process-centred environments utilise information about software processes to enforce or
guide development. Examples include Marvel (Barghouti, 1992), CPCE (Lonchamp, 1995),
and ConversationBuilder (Kaplan, 1992). These environments usually provide low-level text
based descriptions of work rationale, and often do not effectively handle restructuring of
development processes while in use (Swenson, 1993). ProcessMaker (Mark, 1995b) supports
the definition and use of multiple process diagrams, but only supports limited integration and no
event handling for I-CASE tools. Computer-Aided Method Engineering (CAME) tools, such as
Decamerone (Harmsen, 1995) and Method Base (Saeki, 1993), provide support for configuring
development processes and tools to a particular application, but often utilise complex textual
specifications, and don't facilitate coordination of different notation tools during development.

3 THE COCOA META-MODELLING LANGUAGE

3.1 CoCoA

We have been using the CoCoA conceptual data modeling language (Venable, 1993) as a meta
model for modelling Information System Modelling Languages (ISMLs). CoCoA is designed to
support modelling of complex problem domains and extends existing Entity Relationship (ER)
models. Figure 1 depicts the seven main CoCoA abstractions. Entities are the things in a
problem domain and attributes describe and/or identify them (Figure 1 (a)). Named
relationships have the semantics of ER relationships, and are composed of named roles, played
by entities. Cardinality constraints are indicated with each role (Figure 1 (b)). CoCoA supports
generalization and specialization, and where specialization is based on a partitioning attribute,
that attribute is shown (Figure 1 (c)). CoCoA extends other ER models by the implicit use of
categories, allowing the entity planing a role in a named elationship to be one of one or more
enity types, shown by connecting more than one entity (type) to the same role (Figure 1 (d)).
CoCoA derives its name from a fifth data modelling concept, that of Complex Covering

48 Method Engineering

Aggregation. Covering aggregation distinguishes the aggregation of entities into composite
entities from the aggregation of attributes into entities. Complex covering aggregation is
distinguished from simple covering aggregation in that aggregation of named relationships into
the composite entity is allowed (Figure 1 (e)). CoCoA supports aliases, which are useful for
model integration, showing old local names together with standardized names for synonyms
(Figure 1 (f)). Derived concepts (attributes, entities, named relationships, or covering
aggregation relationships) are annotated with a ,*, (Figure 1 (g)).

~
.

Person

Address

(a) EntHyandAUribu\es

Customer
'Cllenl'

(I) Alias

(d) Implied Calegory

(b) Named Relationship and Roles (c) Geoerallsatlonfspe<:lallsetlon

(g) Derived Concept

Figure 1 The CoCoA model notation.

3.2 MetaModelling with CoCoA

Figure 2 Metamodel of core ER concepts.

We have used CoCoA to derive conceptual data models for the ER, NIAM, DFD, STD and
OOAID design notations. As an example, the data model describing the fundamental
abstractions of ER models is shown in Figure 2. Enities are named and have zero or more
named attributes. Relationships are named and have two or more named roles. Roles link
entities and relationships and may include a maximum cardinality. Extensions to this basic ER
schema include provision for entity subtyping, optional and mandatory roles, and distinguished
key attributes of entities (Venable, 1993).

Integrated environment for method engineering 49

Figure 3 shows NIAM's main abstractions. A NIAM entity is named and may have a reference,
made by one or more named labels. Fact types are named and have one or more roles. The
"derived" attribute of the fact type entity is marked as derived (by the asterisk) because its value
is true if it is related to a derivation rule. Roles link entities to facts, and are named. Nested fact
types are both entities and facts, i.e. they have roles but also behave as entities, being linked to
zero or more facts via further roles. A CoCoA model of other NIAM constraints is omitted for
brevity, but can be found in (Venable, 1993). NIAM derivation rules are not specified further
because they are not fully specified by Nijssen and Halpin (1989). Other notation meta-models
can be found in (Venable, 1993, Grundy, 1995a).

Figure 3 Metamodel of core NIAM concepts.

3.3 Notation MetaModel Integration with CoCoA

Figure 4 An integrated conceptual data model.

50 Method Engineering

We have developed integrated data models which capture the overlaps between ER, EER,
OMT's object model, and NIAM. Figure 4 shows a partial metamodel integrating the entity and
attribute data modelling aspects of ER, EER, NIAM, and OMT. The ER and OMT models
differentiate between entities and attributes, whereas NIAM integrates these concepts into a
general entity type. The main difference between the OMT and ER conceptual data models is
OMT's support for class methods. The overlaps between the notations are indicated by covering
aggregation showing the composition of each data model from the integrated data model entities
and relationships. Further discussion of these and of relationship type classifications is in
(Venable, 1993).

4 THE MVIEWS FRAMEWORK

4.1 MViews

Our design notation environments are implemented as a collection of Snart classes, specialised
from the MViews framework (Grundy, 1993). MViews supports the construction of new
ISEEs by providing a general model for defining software system data structures and tool
views, with a flexible mechanism for propagating changes between software components,
views and distinct software development tools. Figure 5 shows an example of the structure of
SPE, an ISEE for object-oriented software development. ISEE data is described as components
with attributes, linked by a variety of relationships. Multiple views are supported by
representing each view as a graph linked to the base software system graph structure. Each
view is rendered and edited in either a graphical or textual form. Distinct environment tools can
be interfaced at the view level (as editors), via external view translators, or multiple base layers
may be connected via inter-view relationships, as described in (Grundy, 1994).

When a software or view component is updated, a change description is generated. This is of
the form UpdateKind(UpdatedCampanent, ... UpdateKind-specific Values ...). For example, an attribute
update on CampI of attribute Name is represented as: update(Compl, Name, OldValue, NewValue).
All basic graph editing operations generate change descriptions and pass them to the
propagation system. Change descriptions are propagated to all related components that are
dependent upon the updated component's state. Dependents interpret these change descriptions
and possibly modify their own state, producing further change descriptions. This change
description mechanism supports a diverse range of software development environment
facilities, including semantic attribute recalculation, multiple views of a component, flexible, bi
directional textual and graphical view consistency management, a generic undo/redo
mechanism, and component "modification history" information (Grundy, 1995d). New
environments are constructed by reusing abstractions provided by an object-oriented
framework, and ISEE developers specialise MViews classes to define software components,
views and editing tools. A persistent object store is used to store component and view data.

MViews environments support version control and collaborative facilities via the C-MViews
extensions to MViews (Grundy, 1995d). Version revision, alternates and merging are
supported by having change descriptions cached in a number of version records for components
and views. Merging of alternate versions is carried out by sucessively reapplying one alternate's
change descriptions to the other alternate component. Any merge conflicts (structural or
semantic) are presented to the merging user. Semi-synchronous and synchronous editors are
provided for views by propagating change descriptions on a view to other users' environments
as they occur. With semi-synchronous editing, these change descriptions are presented to
collaborating users, who may then choose to incorporate them into their own view alternatives.
For synchronous editing, a central server "owns" the shared view, and all edits must be sent to
this server for actioning and propagation to other users. Fine-grained view component locking

Integrated environment for method engineering 51

is maintained by the server to ensure no simultaneous component update is permitted by
multiple users.

wlndow-roQt tlou

Key: .
I comr~au.nhutc

~
Figure 5

..... ,-..
....... '1

;!§;\
~~~~\ 
-~.-., ~ '-.'."' "'...-.""-.,~.;~,--" 

The MViews Architecture. 

4.2 Notation Integration with MViews 

I Exremrul 
Tool 

.J!' 
Displayl 
Eklemal 
Layers 

View 
Layers 

B,,, 
Layer 

In addition to SPE, we have developed several other ISEEs using MViews. MViewsER 
provides integrated Entity-Relationship diagrams and textual relational schema. MViewsER has 
been integrated with SPE to produce OOEER, an integrated environment for OOAJD and EER 
modelling (Grundy, 1995a). MViewsNIAM provides NIAM modelling views, and has been 
inegrated with MViewsER to produce NIAMER (Venable, 1995). MViewsDP provides a 
graphical drag-and-drop interface builder for dialog boxes, with the dialog interface and 
validation rules being defined in textual views (Grundy, 1995d). EPE is an environment for 
constructing EXPRESS specifications and corresponding EXPRESS-G diagrams (Amor, 
1995a). C-SPE and C-MViews provide collaborative, integrated software development support 
via synchronous, semi-synchronous and asynchronous editing (Grundy, 1995e). 

Figure 6 shows a screen dump from OOEER. The OOAJD views are kept consistent with all 
changes to the EER views, and vice-versa, even when a direct translation is not possible by the 
environment. The dialog shown holds change descriptions (the "modification history") for the 
customer OOA class. The change descriptions highlighted by '~' were actually made to the EER 
view (diagram) and automatically translated into OOAJD view updates (where possible) by 
OOEER. Unhighlighted items were made by the designer to the OOA view to fully implement 
"indirect" translations that could only partially by implemented by OOEER. 



52 MetJwd Engineering 

I . renl~me class to customer 
2. rename feature name to ename 
3. add attribute credit: money 
~ chunge ottrlbute credit type to flollt 

,\3" 
ab~ 
cTCJ 
~l8! 

--i S. EER Updl!lte: Make eHclusil.le subtype of person 
--+ 6. generalise to person 
--+ 8. [ER Updete: Rdd relationship louol£e-of to inlloiee 
--4 9. add 8ssociation iDuoice-of to iHooice 

customer-root entity 

< .... f0"'" 

~"'''" • ...:.unt "" .. 

.. 1 .... ~ .. 

iftv.i" .. (O,N) 

10. association inuoice-of to inllolee : change kind to aggregation 
--+ 11 . EER Update: chonge inl1oice-of 8r1ty to l:N 

12. aggregate to inlloiee : ehBnge supplier type to list(inuoice) 
--+ 13. EER Up dote: add attribute prefered 
--+ 14. add attribute prefered : unknown 

16. change attribute prefered type to booleflD 

I[Uiew UPdote) [Add Updote] [Delete UPdote] [History Up dote ] [Concel] 

Figure 6 Integrated OOAID and EER views in OOEER with bi-directional consistency. 

The OOEER integration was achieved by adding an additional data dictionary graph level 
below the data dictionaries of the SPE and MViewsER tools, This layer is responsible for 
translating, where possible, between the different notations and notifying tools where automatic 
translations are not possible, Neither SPE nor MViewsER required any significant change to 
achieve this integration, Figure 7 shows an example of the structure of OOEER, Figure 7 
illustrates this integration process. When an SPE view is edited (1), the modification is 
translated into SPE repository updates (2), generating change descriptions. The inter-repository 
relationships are sent change descriptions, and respond to these by updating the integrated 
repository (3), When the integrated repository components change, the inter-repository 
relationships to MViewsER's repository components translate the integrated repository 
components change descriptions into updates on MViewsER repository components (4), 
Indirect mapping changes are defaulted where possible and change descriptions displayed in 
views, Both SPE and MViewsER keep their multiple views consistent (5 and 6), 

5 THE SERENDIPITY PROCESS MODELLING TOOL 

ISEEs should support the coordination of cooperative work activities that is inherent within ISD 
(Krant, 1995). Therefore, CSCW features are needed in ISEEs. An ISEE should support users 
in collaboratively planning and executing work activities, as well as in being informed about 



Integrated environment/or method engineering 53 

and maintaining their awareness of relevant work by others, the contexts in which those other 
users' work is carried out, and the rationale for the decisions they have made. In particular, 
support is needed for defining activities to be done (plans), coordinating the planning activity 
itself (meta-plans), and restructuring the history of work done to more effectively convey intent 
("rewriting history"). Unfortunately most existing workflow systems are inadequate for real
world applications due to many exceptions to the workflows and their inability to adapt to 
changing work processes (Swenson, 1993). Similarly, must existing process modelling tools 
utilise either complex, textual specifications which are inaccessible to many end-users, or do not 
support facilities for integration and event handling with existing tools. 

We have developed Serendipity, a process modelling, enactment and work planning 
environment, which also supports flexible event handling mechanisms, group communication, 
and group awareness facilities (Grundy, 1996). Fig. 8 shows a Serendipity process model for 
updating a software system ("ml:modify system-process"). The notation is an adaptation and 
extension of Swenson's Visual Planning Language (Swenson, 1993), which does not support 
artefact, tool or role modelling, nor arbitrary event handling mechanisms. 

'!'~/'" 1'0; 

"Ill . ~. Rendering 

H' 

L:i--~ _t.t.y can 

H· 

Data Dtctionary 

Figure 7 Integrating SPE and MViewsER using an integrated data model. 

Stages describe steps in the process of modifying a software system, with each stage containing 
a unique id, the role which will carry out the stage, and the name o,f the stage. Enactment event 
flows link stages. If labelled, the label is the finishing state of the stage the flow is from (e.g. 
"finished design"). The shadowing of the "m1.2:implement changes" stage indicates that 
multiple implementers can work on this stage (i.e. the stage has multiple subprocess 
enactments). Other items include start stages, finish stages, AND stages, and OR stages (empty 
round circle). Underlined stage IDs/roles mark presence of a subprocess model, for example 
"ml.l:plan changes-subprocess" is a subprocess for "ml.l:design changes". The italicised 
"check out design" stages in this subprocess model indicate stages reused from a template 
process model. 



54 

¢ 

Method Engineering 

ml:modifq sqstem-proce •• 

IIIIl .... :proj-.crt_.z .pp_ ahan,.. 

.. lftd 
~ 

m 1.3:done testina 
1IIl.3:te:nu 

ClM.k IIMn,_ 

I.~~.-' 
:, 

! : 

! ~ 
ill'¢ 

I 

m 1.1 :plon chanoes-s;ubprocess 

T 
trl lf·"" ... 

ahHk out .sign 

m 1 :modell-roles 

... ···t·~:J· ...... _ .. ign.1' 

uses (.f; l;'\" 
.. ' 1.f...t~. (00.,) 

_difies (If'I)!' 

': ... 

T 

'tlllllJls with 

··~·4i!i •• (If) 'I' 

I .... ~!.!;:-:: .. ·I 

•··• ......... 1 
1II1.3:tester 
test~s 

Figure 8 Software process model views and dialogs in Serendipity. 

Serendipity supports artefact, tool and role modelling for processes, as in "ml:modell-roles", 
which shows a different perspective of "m 1 :modell-process". Usage connections indicate how 
stages, artefacts, tools and roles are used. Optional annotations indicate: whether data is created 
(C), accessed (A), updated (U), or deleted (D); whether a stage must use only the tools, 
artefacts or roles defined C..J); and whether a stage cannot use a particular tool, artefact or role 
(..,). If a stage is linked to another stage by a usage flow, ""',, specifies the stage may be enacted 



Integrated environment/or method engineering 55 

when the other stage is enacted, while "-," specifies the stages can not be enacted at the same 
time. 
In addition to specifying the static usages and enactment event flows between process model 
stages, Serendipity supportsjilters and actions, which process arbitrary enactment and work 
artefact modification events. View "ml.3:done testing" shows an example of enactment event 
filtering. The filters "Made Current" and "finished testing" determine if "m1.3:check changes" 
has been made the current enacted stage or has been finished. If so, then if the "m 1.2:implement 
changes" process has not completed (determined by filter "Not Complete"), the role associated 
with this stage is notified of testing being started or completed. 

Stages are enacted for a project, highlighted by colour and shading, as shown in Figure 8. 
The shaded stage with a bold border ("ml.1.8:fix design") is the current enacted stage for the 
user i.e. their current work context. As a stage completes in a given finishing state, event flows 
with this state name (or no name) activate to enact linked stages. Enactments of stages are 
recorded, as are process model changes, and all enacted stages for a user can be shown in a "to
do" list dialog. 

6 AN INTEGRATED METHOD ENGINEERING APPROACH 

1. MelDmodei notations 
wilhC{JCoA 

existing meta-model 

2. DdlIlc Inlegratcd Models 
andlnrintemotationlinlcs 

individual 
meta

models 

extrllintemotationconsistency 
I11Ilnagement,ete. 

CJ --...... 
~= c:Jb 

generated 
classes 

6. Refine process mOOels, 
refme Method Engineering 

procc:ssmodelsover 
scquentdeve]opmcnts 

Figure 9 The method engineering process with our integrated tools. 

We are currently building an MViews-based environment for CoCoA modelling, which will 
form the basis of an integrated environment for Method Engineering with our tools. Figure 9 
shows how this tool will be used to generate MViews framework classes for specifying new or 



56 Metlwd Engineering 

modified tool repositories and views. Developers will augment these specifications with 
appropriate editor configurations and notation renderings, and any additional consistency 
management techniques not generated from the CoCoA metamodels. As our Serendipity work 
coordination tool can be used with any MViews environments, developers will then be able to 
specify appropriate plans (i.e. process models) for different systems under construction. This 
may include enabling usage of certain tools and artefacts for certain parts of the new system 
development or to particular groups of developers. Once these plans have been created, 
developers can later abstract these plans to form policies and reuse their policy process models 
for subsequent systems, and thus incrementally refine these process models. CoCoA models 
and MViews environments and tools can also be created and/or modified from one project to the 
next to build up appropriate tools for each system development. 

5.1 CoCoA Metamodelling of Notations 

The first step (#1 in Figure 9) is to build up CoCoA metamodels of the desired design notations 
to be used on a new system development. This might include the reuse of previous CoCoA 
models, the combination of parts of one metamodel with another, or the development of new 
metamodels which are problem-specific. In previous metamodelling with CoCoA, we have 
used a drawing editor to produce these metamodels (Grundy, 1995a, Venable, 1995). We are 
currently implementing an MViews tool for CoCoA modelling which will be used to construct 
new CoCoA models, and will include multiple views of CoCoA models and libraries of views 
and models to assist in model reuse. 

As an example, we have recently integrated our NIAMER (supporting NIAM and ER views) 
and OOEER (supporting OOA and EER views) environments with the MViewsDP form/report 
designer by hand. Using our CoCoA modelling tool instead, integration of these tools would 
initially begin using our integrated CoCoAIMViews environment to metamodel each notation 
that is to be used on a development project. 

5.2 Conceptual Notation Integration with CoCoA 

Integrating <Ufferent design notations with CoCoA involves either the definition of integrated 
models or specifying links between components of one model and related components in 
another model (Grundy, 1995a, Venable, 1995). In addition, dynamic mappings must be 
specified between these notation components i.e. what happens to related components when a 
component instance is changed. For example, in OOEER, if an ER relationship is added 
between two entities, a default association relationship is added between the corresponding two 
object/classes in the OOA model (Grundy, 1995a). Our MViews editor for CoCoA will support 
both the static integration and/or linking of notation components, and the specification of 
dynamic mappings between notation components. Static integration is a straightforward view 
integration, supported by aspects of the CoCoA data modelling language. We are currently 
adapting a view mapping language (Amor, 1995b) which will allow us to declaratively specify 
the dynamic notation mappings in this tool. In previous notation integration we have informally 
specified these dynamic mappings using English and informal diagrams, but this is not 
sufficient to generate intemotation relationships for MViews tool integration. 

In our integrated ISEE, integration of OOEER, NIAMER, and MViewsDP was implemented 
by adding inter-repository relationships between repositories, in addition to the hierarchial 
repository relationships used in NIAMER and OOEER. Appropriate links were specified 
between the components of the CoCoA metamodels for each notation and then dynamic 
mappings were defined between related components. In future environment integration, this 
will all be carried our within our CoCoA modelling tool. 



Integrated environment for method engineering 57 

5.3 MViews Tool Generation from CoCoA Models 

CoCoA models have been used as the specifications for MViews tool repositories in our 
previous notation integration work (Grundy, 1995a, Grundy, 1995b, Venable, 1995). 
However, MViews repository and view information has been hand-generated from these 
models. We are extending our CoCoA modelling tool to generate class interfaces and method 
code directly from different notation and integrated notation metamodels. Quite a large amount 
of MViews framework code can be generated in this way: previous development of MViews 
environments has shown over 60% of the code relates to defining class structures which 
represent repository and view data, and method code to link these data items in appropriate 
ways. All of this code can be generated from CoCoA metamodels by our modelling 
environment. Internotation relationships and a large amount of consistency management code 
can also be generated in this way, from the static integration and the specification of dynamic 
mappings in our CoCoA editor, even in some cases the user interface. 

For example, if two constructs in two notations are represented by the same entity type in the 
integrated CoCoA model, a change to one of them in one view results in the same change in the 
second view/notation. In this case, the user of the second view need only be notified of the 
change and the repositories updated. Similarly, if the construct changed in one view is a 
subtype of a construct in another view, changing an instance of the first construct will require 
the same change on the supertype construct (as long as it has the required attributes). In either 
of these cases, code for handling the propagation of these changes (including the receiving 
view's user interface) can be generated automatically. However, the reverse is not true (i.e. we 
cannot generate the code for propagation of a change to a construct that is the supertype of a 
construct in another view which needs to be updated). 

5.4 MViews Tool Refinement and Integration 

While repository and view structures (and some semantic values) can be generated directly from 
CoCoA metamodels, extra code needs to be written by developers to appropriately configure 
editors and specify some consistency management code which can not be automaticlly 
generated. We are allowing developers to further specialise classes generated from our CoCoA 
modelling tool to define editing mechanisms and internotation consistency management code 
which can not be specified in a declarative way. For example, developers will specify default 
techniques for keeping data in different notations consistent declaratively, but may then want to 
define complex consistency management techniques operationally (i.e. using MViews code). 
An example from NIAMER is when a NIAM entity is added. Since, in the integrated CoCoA 
model, a NIAM entity is a supertype of both the EER attribute and entity, it could be mapped to 
either. NIAMER defaults the automatic translation to adding an entity and allows users of the 
integrated environment to modify the ER entity to an attribute if desired. This default code could 
also be generated, but might be incorrect if the default should have been to add an attribute 
instead. In that case, a developer would need to rewrite a small amount of MViews code. 
Alternatively, other user interfaces might be desired, such as preseting the user with a menu to 
add either an entity or an attribute to the EER view, adding reconciliation of the change to a to
do list, or simply suggesting a change. We are currently looking at ways to declaratively specify 
the desired behaviour with annotations to the CoCoA models. Our approach allowing 
developers to make these alterations by further specialising the generated classes, which avoids 
the problem of when the CoCoA models are modified and classes regenerated. The further 
specialised classes are not lost when this regeneration occurs. 

Of course, we also need to code the rendering of the notation on the user's screen. This is 
currently done by hand, but within the MViews library framework. We are looking at how this 
might be done declaratively with annotations to the CoCoA metamodel, then generating the 
rendering code. 



58 Method Engineering 

5.5 Process Model Specification 

After building appropriately integrated tools, developers can then specify how these tools are to 
be used on the particular system under construction. Serendipity allows developers to specify 
which tools and work artefacts are used for different plan stages and hence which tools/artefacts 
can be used for a particular software process. Serendipity process models can guide developers 
i.e. suggest which tools are appropriate for different development tasks. They can also be used 
to suggest or to enforce the use of specific tools, so, for example, a project manager may 
specify one development group uses OOAJD modelling while another uses ERJDFD modelling. 
As these tools have integrated repositories (via OOEER), the designs produced by each group 
are still integrated and kept consistent. 

In a collaborative, integrated ISEE, users must be informed of changes to work and plan 
artefacts that are relevant to them and they are currently interested in (Grundy, 1995c). Some 
changes a developer makes are directly relevant to their collaborators, such as renaming or 
deleting entities and attributes, and collaborators should be informed of these immediately. 
Other changes, such as the addition of new entities, relationships, attributes or forms and 
reports can be sent for later perusal, as they have more limited effects on collaborators' work. 
Low-level changes, such as the implementation of procedures, forms or reports not affecting a 
collaborator's work need not be presented. Collaborators can see from plan histories and 
various active stages the kinds of activities another developer is doing, and may choose to view 
these changes or modified artefacts on-demand, using any of the informing mechanisms 
described above. 

In most CSCW environments, only artefact-level information about changes is presented to 
collaborators, either directly updating their work artefact views or using version control 
facilities to indicate changes made by other users. Serendipity provides collaborating users not 
only with change descriptions describing actual work (or plan) artefact changes, but also with 
extra information about the work context in which the changes were carried out. Examples of 
this work coordination can be found in (Grundy, 1995c, Grundy, 1996). 

5.6 Tool/Process Refinement and Reuse 

Serendipity views assist in Situational Method Engineering (Harmsen, 1994) by allowing 
developers to incrementally refine their development methodology, processes and work plans. 
As process stages record information about the tools to use, artefacts to modify/produce, 
subsequent stages, and also may be exploded into more detailed plans, they facilitate the 
engineering of software processes in a manner similar to Method Engineering tools. Our 
approach has some advantages over comparable notations, such as MEL (Harmsen, 1995), in 
that its visual nature is more accessible to developers for visualising and modifying plans than 
the textual notations of other approaches. As Serendipity models were designed for general 
work process modelling, its high-level nature allows developers to more readily understand and 
modify process descriptions than text-based process-centred environments or method
engineering tools. It also allows users to modify their process and work plans while a model is 
in use. Finally, Serendipity allows users to restructure copies of processes and plan histories 
after completion so that new, improved process model templates can be developed for later 
reuse. 

Our integrated, collaborative ISEE supports collaborative planning via collaborative editors for 
Serendipity views, and allowing other Serendipity views to act as meta-process views. 
Collaborating developers share software process views and can collaborate on modifying these 
models. The use of these shared models for work context capture and presentation, and 
specifying interest in changes, allows Serendipity to be used for work coordination, 
collaborative planning, recording development histories, and method engineering. Figure 10 
shows an example of process improvement with Serendipity. The process model is extended to 
include a "m1.5:check design" stage, to be carried out before coding starts. Coder "john'''s 



Integrated environment for method engineering 59 

work plan is also extended by adding 'm1.2.II:modify branch table'. This handles an 
exception to the work plan due to the addition of the "address" table. Such changes could be 
made before, during or after the model and plan are used. 

ml:modell-procen 

< "hllng .. .,PZOYH.) 

T 
lo","u ertO~" ~:.::~~ 

" ... ..,"~ 
.1211 jofln 

...:I~n"""tUl. 

fonalrepo~t on.,., .1.2.7::10,,", 

finished 

{fi}-ailWJ} 

Figure 10 Process and plan improvement example. 

Our integrated ISEE allows different tools to be used on the same problem domain, with tool 
data being kept consistent under change and the tools sharing a consistent user interface. 
Serendipity allows software processes to be reconfigured during development to better suit a 
particular development project. Software process models thus evolved can be reused in 
subsequent development by saving them as reusable templates. The specification of artefacts, 
roles, CASE tools and interest obligations for plan stages gives our integrated environment 
similar method engineering capabilities to method engineering tools. In addition, it supports 
work coordination. Our CoCoA/MViews environment can itself make use of Serendipity views 
to model, plan and coordinate the Method Engineering process itself. This allows the Method 
Engineering process to be refined over several projects, in addition to the refinement of the 
integrated design notation tools. 

7 SUMMARY AND FUTURE RESEARCH 

We have described our recent work on developing a metamodelling language, CoCoA, notation 
integration using CoCoA, the construction of integrated Information Systems Engineering 
Environments based on CoCoA metamodels using MViews, and the development of a work 
coordination and software process modelling tool, using an extended form of the Visual 
Planning Language. Used in conjunction, these tools allow system developers to model and 
integrated different design notations and to construct integrated tools and environments 
supporting these notations. Developers can plan and coordinate the use of different tools within 
this environment using our Serendipity tool. 



60 Metfwd Engineering 

We are currently implementing an MViews environment for CoCoA which will support 
notation metamodelling and notation integration. MViews classes to implement an integrated 
environment will be generated from these metamodels, together with internotation relationships 
and consistency management support. Serendipity will be used to coordinate the use of these 
integrated environments for different system developments, and will be used by the 
CoCoAlMViews environment itself to plan, coordinate and refine the Method Engineering 
process itself. We are also engaged in further research to enhance and add to the CSCW 
features of our environments and to consider ways to utilise declarative annotations to the 
CoCoA models to further improve the CoCoAlMViews environment's code generation 
capabilities. 

REFERENCES 

Amor, R., Augenbroe, G., Hosking, J.G., Rombouts, W., and Grundy, J.C. (1995) 
Directions in modelling environments, Automation in Construction, 4, 173-187. 

Amor, R.W. and Hosking, J.G. (1995) Mappings: the glue in an integrated system, in 1st 
European Conference on product and process modelling in the building 
industryindustry, A.A. Balkema Publishers, Rotterdam, The Netherlands. 

Barghouti, N.S. (1992) Supporting Cooperation in the Marvel Process-Centred SDE, in 
Proceedings of the 1992 ACM Symposium on Software Development Environments, 
ACM Press, pp. 21-31. 

Campbell, L. and Halpin, T. (1994) Abstraction Techniques for Conceptual Schemas, in 
Proceedings of the 5th Australasian Database Conference, Global Publications Services, 
Christchurch, New Zealand, 17-18 January 1994, pp. 374-388. 

Falkenberg, E.D. and Oei, J.L.H. (1994) Meta Model Hierarchies from an Object-Role 
Modelling Perspective, in First International Conference on Object-Role Modelling (ed. 
Halpin, T. and Meersman, R.), Key Centre for Software Technology, The University 
of Queensland, Brisbane, Australia, 4-6 July 1994, pp. 310-323. 

Grundy, J.C. and Hosking, J.G. (1993) A framework for building visusal programming 
environments, in Proceedings of the 1993 IEEE Symposium on Visual Languages, 
IEEE Computer Society Press, pp. 220-224. 

Grundy, J.e. and Hosking (1994) J.G., Constructing Integrated Software Development 
Environments with Dependency Graphs, Working Paper, Department of Computer 
Science, University ofWaikato. 

Grundy, J.e. and Venable, J.R. (1995a) Providing Integrated Support for Multiple 
Development Notations, in Proceedings of CAiSE'95, Finland, June 1995, Lecture 
Notes in Computer Science 932, Springer-Verlag, pp. 255-268. 

Grundy, J.e., and Venable, J.R. (1995b) Developing CASE tools that support integrated 
design notations, in Proceedings of the 6th European Workshop on Next Generation of 
CASE Tools, pp. 109-116. 

Grundy, J.e., Mugridge, W.B., Hosking, J.G., and Apperley, M.D. (1995c) Coordinating, 
capturing and presenting work contexts in CSCW systems, in Proceedings of 
OZCHJ'95, Wollongong, Australia, Nov 28-301995, pp. 146-151. 

Grundy, J.e., Hosking, J.G., and Mugridge, W.E. (1995d) Supporting flexible consistency 
management via discrete change description propagation, to appear in Software -
Practice and Experience. 

Grundy, J.C., Mugridge, W.B., Hosking, J.G., and Amor, R. (l995e) Support for 
Collaborative, Integrated Software Development, in Proceeding of the 7th Conference 
on Software Engineering Environments, IEEE CS Press, Netherlands, April 5-7 1995, 
pp.84-94. 



Integrated environment for method engineering 61 

Grundy, J .C. (1996) Serendipity: integrated environment support for process modelling, 
enactment and improvement, Working Paper, Department of Computer Science, 
University ofWaikato. 

Harmsen, F., Brinkkemper, S., and Oei, H. (1994) Situational Method Engineering for 
Information System Projects, in Proceedings of the IFlP WG8.I Working Conference 
CRIS'94 (ed. Olle, T.W. and Verrijn, A.A.E.), Maastricht, 1994, North-Holland, 
Amsterdam, pp. 169-194. 

Harmsen, F., and Brinkkemper, S. (1995) Design and Implementation of a Method Base 
Management System for a Situational CASE Environment, in Proceedings of the 2nd 
Asia-Pacific Software Engineering Conference (APSEC'95), IEEE CS Press, 
Brisbane, December 1995, pp. 430-438. 

Heym, M. and Osterle, H. (1992) A Semantic Data Model for Methodology Engineering, in 
Proceedings of the Fifth International Workshop on Computer-Aided Software 
Engineering, IEEE Computer Society Press, Washington, D.C., pp. 142-155. 

Kaplan, S.M., Tolone, W.J., Carroll, A.M., Bogia, D.P., and Bignoli, C. (1992) Supporting 
Collaborative Software Development with ConversationBuilder, in Proceedings of the 
1992 ACM Symposium on Software Development Environments, ACM Press, pp. 11-
20. 

Krant, R.E. and Streeter, L.A. (1995) Coordination in Software Development, CACM, 38 (3), 
69-81. 

Kumar, K. and Welke, R.J. (1992) A proposal for situation-specific methodology 
construction, Challenges and Strategies for Research in Systems Development. Wiley, 
New York. 

Lonchamp, J. (1995) CPCE: A Kernel for Building Flexible Collaborative Process-Centred 
Environments, in Proceedings of the 7th Conference on Software Engineering 
Environments, IEEE CS Press, Netherlands, April 5-7 1995, pp. 95-105. 

Mark V Systems Ltd (1995)MethodMaker, 16400 Ventura Boulevard, Encino, California 
91436. 

Mark V Systems Ltd (1995) ProcessMaker, 16400 Ventura Boulevard, Encino, California 
91436. 

Meyers, S. (1991) Difficulties in Integrating Multiview Editing Environments, IEEE Software, 
8 (1), 49-57. 

Nijssen, G.M. and Halpin, T.A. (1989) Conceptual Schema and Relational Database Design: 
A Fact Oriented Approach. Prentice-Hall, Englewood Cliffs, NJ. 

Nuseibeh, B. and Finkelstein, A. (1992) ViewPoints: A Vehicle for Method and Tool 
Integration, in Proceedings of the Fifth International Workshop on Computer-Aided 
Software Engineering, IEEE Computer Society Press, Washington, D.C., pp. 50-61. 

Ratcliffe, M., Wang, C., Gautier, R.J., and Whittle, B.R. (1992) Dora - a structure oriented 
environment generator, lEE Software Engineering Journal, 7 (3),184-190. 

Reiss, S.P. (1990) Connecting Tools Using Message Passing in the Field Environment, IEEE 
Software, 7 (7), 57-66. 

Saeki, M., Iguchi, K., and Wen-yin, K. (1993) A Meta-model for representing software 
specification and design methods, in Proceedings of the IFIP WG8.I Conference on 
Information Systems Development (ed. Prakash, N., Rolland, C., and Pernici, B.), 
Como, Italy. 

Song, X. and Osterweil, L.J. (1992) A Process-Modeling Based Approach to Comparing and 
Integrating Software Design Methodologies, in Proceedings of the Fifth International 
Workshop on Computer-Aided Software Engineering, IEEE Computer Society Press, 
Washingon, D.C., pp. 225-229. 

Swenson, K.D. (1993) A Visual Language to Describe Collaborative Work, in Proceedings of 
the 1993 IEEE Symposium on Visual Languages, IEEE CS Press, Bergen, Norway, 
pp. 298-303. 



62 Method Engineering 

Venable, J.R. (1993) CoCoA: A Conceptual Data Modelling Approach for Complex Problem 
Domains, Ph.D. dissertation, Thomas J. Watson School of Engineering and Applied 
Science, State University of New York at Binghampton, 1993. 

Venable, J.R. and Grundy, J.e. (1995) Integrating and Supporting Entity Relationship and 
Object Role Models, in Proceedings of the 14th Object-Oriented and Entity 
Relationship Modelling Conferece (OO-ER'95), , Gold Coast, Australia, Dec 13-16 
1995, Lecture Notes in Computer Science 1021, Springer-Verlag. 

Vessey, 1. and Glass, R.L. (1994) Applications-based Methodologies, Information Systems 
Management, 53-57, Fall 1994. 

Wasserman, A.I. and Pircher, P.A. (1987) A Graphical, Extensible, Integrated Environment 
for Software Development, SIGPLAN Notices, vol. 22, no. 1, 131-142. 

Wieringa, RJ. (1995) Combining static and dynamic modelling methods: a comparison of four 
methods, to appear in Computer Journal. 

BIOGRAPHY 

Dr John Grundy has been a Lecturer in Computer Science in the Department of Computer 
Science, University of Waikato since 1993. He holds the BSc(Hons), MSc and PhD degrees, 
all in Computer Science from the University of Auckland, New Zealand. His research interests 
include software engineering environments, software process technology, software engineering 
methodologies, visual programming, and object-oriented systems. He is currently developing 
the Serendipity process modelling and enactment environment, and using Serendipity to provide 
a process modelling and work coordination tool for large CSCW systems, such as collaborative 
software engineering environments. 

Dr John Venable has been a Lecturer in Information Systems in the Department of Computer 
Science, University ofWaikato, Hamilton, New Zealand since 1994. He obtained his PhD in 
Computer Science and Information Systems in 1994 from Binghamton University in 
Binghamton, New York, USA. He has lectured since 1983 at Binghamton University, Central 
Connecticut State 
University, and Aalborg University, Denmark. Dr Venable's main interests are in information 
systems development, particularly in its practice, methods, and appropriate tool-based support. 
Currently, he is researching the incorporation of CSCW features into CASE tools to better 
support and improve the systems development process. 



5 

A Functional Framework for Evaluating 
Method Engineering Environments: 
the case of Maestro IU Decamerone and 
MetaEdit+ 

P. Marttiin a, F. Harmsen b ,M. Rossi a 

a Department of Computer Science and Information Systems, 
University of Jyviiskylii, P.O.Box 35,40351 Jyviiskylii, Finland 
E-mail: {ptma.mor}@jyu.fi 
b Department of Computer Science, University ofTwente, 
P.O.Box 216, 7500 AE Enschede, The Netherlands, 
E-mail: harmsen@cs.utwente.nl 

Abstract 
CASE environments with method customisation capabilities and Computer Aided Method 
Engineering (CAME) environments have emerged during the last few years. While many 
research papers discuss the principles of method engineering and suggest requirements for new 
environments, we do not have critical evaluations of CAME environments using a wider 
method engineering framework. The aims of this study are twofold: I) to build a preliminary 
framework for comparative studies of CAME environments, and 2) to increase the knowledge 
of the 'state of the art' in CAME by evaluating two CAME environments. We adapt a 
functional framework - originally built for CASE technology - to examine the following two 
research questions: How well can a method be defined in a CAME environment?, and How 
well is the defined method supported in a customisable CASE environment? The environments 
chosen for evaluation are Maestro II IDecamerone, and MetaEdit+. As an outcome, we will 
describe what framework aspects these environments support, and discuss the aspects not 
supported. 

Keywords 
CASE evaluation, metaCASE, method engineering, systems development, co-ordination 



64 Method Engineering 

1 BACKGROUND AND MOTIVATION 

Despite extensive comparative research on infonnation system development methods I during 
the 1980's (Olle et al., 1982, 1983, 1986), research interest in assessing methods is still strong. 
According to Nonnan and Chen (1992), methods have evolved in parallel with changing 
application domains and to the need to improve method support through tools. Recently, the 
object-oriented paradigm has yielded numerous new methods and new contexts for applying 
methods (e.g., business engineering) have emerged. These have given rise to the continuing 
method evolution. Furthennore, we believe improved mechanisms for method customisation in 
CASE environments will increase organizations' willingness to adjust and to improve their 
method practices. 

To obtain a better understanding of the study domain and the environments compared, we 
need fIrst to discuss some basic concepts. Because various defInitions and views of CASE 
abound (e.g., Henderson and Cooprider, 1994), we do not try to suggest clear and exact 
defInitions for CASE and CASE environment. We consider CASE tq be a design aid 
technology for ISs, and a CASE environment a collection of design aid tools for ISs. While 
traditional CASE environments - based on the fIxed repository structure, and containing 
editors and other tools only for a fIxed method - support a few popular methods, a 
customisable CASE environment - having a flexible repository structure and technique specifIc 
editors and tools - is capable to support any method specifIed into it. We can defIne a 
customisable CASE environment more precisely: 

DefInition 1. A customisable CASE environment is a CASE environment having 
mechanisms to support any method specified into it. 

Brinkkemper (1995) has defIned method engineering as 'a discipline to design, construct and 
adapt methods, techniques and tools for the development of infonnation systems'. If the 
method engineering process is supported by specifIc computer aided tools, we call the 
engineering discipline Computer Aided Method Engineering (CAME), and the supporting tools 
CAME tools. According to Harmsen et al. (1994), we defIne a CAME environment as follows: 

DefInition 2. A CAME environment is a collection of CAME tools for 1) specifying 
methods to be used in CASE environments, 2) comparing, analysing, and selecting 
methods, and/or 3) storing the accumulated knowledge of methods and situation 
factors. 

Bubenko (1988) introduced a tenn CASE shell to denote a tool including mechanisms to 
defme CASE support for an arbitrary method, thus, corresponding to the fIrst part of CAME 
tool defInition. The most common tenn metaCASE environment is used to denote either a 
CASE shell, or an integrated CASE shell and a customisable CASE environment (Marttiin et 

I Wynekoop and Russo (1993) define a method as 'a systematic approach to conduct at least one complete 
phase (e.g. design, testing) of IS production, consisting a set of guidelines, activities, techniques and tools, 
based on a particular philosophy of system development and the target system' . 



Evaluating method engineering environments 65 

a!., 1993). To avoid misunderstandings, we have selected the terms 'a customisable CASE 
environment' and 'a CAME environment' to be used later in this study. 

Historically, in the late 1970's and in the 1980's, metaCASE environments were studied 
and designed mainly in academic research laboratories. Such environments include SEM 
(ISDOS, 1981), RAMATIC (Bergsten et aI., 1989), MetaPlex (Chen and Nunamaker, 1989), 
MetaEdit (Smolander et a!., 1991), MetaView (Sorenson, 1988), and ConceptBase (Hahn at 
aI., 1991). During the early 1990's commercial metaCASE environments have appeared in the 
market. Current metaCASE products include e.g. Graphical Designer by ASTI (Advanced 
Software Technologies, Toolbuilder by Lincoln Software/IPSYS, Paradigm Plus by Protosoft, 
ObjectMaker by Mark V Systems, Maestro II by Softlab, and MetaEdit+ by MetaCase 
Consulting. 

Each metaCASE environment takes a different view on methods, and they employ 
different mechanisms for defining the supported method. Furthermore, the supported method 
aspects vary considerably (see Marttiin et al., 1993; Vessey et al., 1992; Verhoef and ter 
Hofstede 1995). For example, some environments define integration just for techniques, 
whereas others tie techniques to the IS development process. This divergence of tools requires 
analysis and evaluation of metaCASE using a wider method engineering framework. 

To construct a framework for new research areas (we can consider method engineering as 
such one), we need to look at available research and research directions. Brinkkemper (1995) 
presents some research questions for method engineering: meta modelling techniques, tool 
coverage and interoperability, situational methods, and comparative review of methods and 
tools. We now discuss these questions closely. 

1.1 Meta-modelling techniques 

Meta-modelling techniques deal with issues related to both meta-modelling language and 
process. 

A meta-modelling language is a language for specifying techniques (e.g., OPRR 
[Smolander, 1992]), interrelations of techniques (e.g., PSM [Ter Hofstede and van der Weide, 
1993]), consistency rules and transformations (e.g., ETL [Boloix et a!., 1991]), development 
tasks (e.g., Task Structures [Wijers, 1991]), decisions (Jarke et aI., 1994), and tools (Sorenson 
et aI., 1988), as examples. Comprehensive criteria to evaluate meta-modelling languages, such 
as those proposed to conceptual modelling languages (see Venable, 1993), are lacking. The 
open research issues include, e.g., the richness, simplicity, or granularity of a meta-modelling 
language to define various aspects of a method, which are discussed by Verhoef and Ter 
Hofstede (1995). 

Second, meta-modelling process deals with the steps and actors needed in modelling 
method (Le. method engineering steps). The important questions include how to manage 
method evolution, how to use the method knowledge, and who are participating the method 
engineering process. Different scenarios on meta-modelling process are discussed in (Harmsen 
et al., 1994). 

1.2 Tool coverage and interoperability 

To provide support for various method aspects, a customisable CASE environment needs to 
operate with a large set of tools. The art of integrating all the tools - tools for CASE, software 
engineering, and project management - is called interoperability of tools (Brinkkemper, 1995). 



66 Method Engineering 

Another issue is the coverage of the design aid support for specific purposes. For example, 
matrix techniques require matrix tools, graphical techniques require graphic tools, and some 
techniques such as Petri nets are hardly useful without formal analysis or simulation 
mechanisms. Moreover, how do we manage techniques that do not focus on modelling, but 
rather on idea generation, communication or reasoning? The question of tool coverage can be 
formulated as: What design tasks need to be supported by specific design aid tools, and what 
tasks can be managed by general purpose tools (such as text editors and electronic mail), or 
without any tool support? 

1.3 Situational methods 

Methods are always of a generic nature and dependent on the contextual situations - calling 
for situational methods. For example, Wijers and van Dort (1990) observed that tools built 
around fixed handbook techniques and process models hindered projects to use their own 
dialects. Moreover, finding the best or appropriate method for a specific system may currently 
put a development project into a trial. For these reasons, approaches for situational method 
engineering have been introduced (Kumar and Welke, 1992; Harmsen and Brinkkemper, 1995) 
and related supporting CAME environments designed such as Decamerone (Harmsen and 
Brinkkemper, 1995), and Method Base (Saeki et al., 1993). 

1.4 Comparative review of methods and tools 

Several frameworks for methods have been constructed (e.g., Essink, 1986, Olle et al., 1991). 
Also, a number of frameworks and models for CASE and method support are available 
(Lyytinen et aI., 1989; Wijers, 1991; Heym and Osterle, 1992; Henderson and Cooprider, 
1994). However, only few studies tackle issues related to CAME. Comparisons (Vessey, 1992; 
Crozier et aI., 1989) have been made by focusing on CASE tool capabilitil?s. The comparison 
of three metaCASE environments (Marttiin et aI., 1993) examined the functionality to specify a 
new technique. Also, Verhoef and Ter Hofstede (1995) evaluated the feasibility of the 
conceptual basis of metaCASE environments. Notable is the lack of empirical evaluation of 
CAME tools: we found only Cronholm and Goldkuhl (1994), which describes five cases of 
method modification. 

This research issue (1.4.) motivated us to evaluate two environments, while the others guided 
us to focus on prominent method engineering aspects in the CAME framework. Aims of this 
study are to build a framework to study How well can a method be defined in a CAME 
environment?, and to increase knowledge of the 'state of the art' in CAME by evaluating two 
CAME environments. A cornerstone in CAME is its meta-modelling language, which raises 
another research question: How well is the defined method supported in a customisable CASE 
environment? The environments in comparison are: Maestro II (Merbeth, 1991) with 
Decamerone (Harmsen and Brinkkemper, 1995) and MetaEdiH (Kelly et aI., 1996). Analysis 
and comparison of these environments are carried out and reported based on the two questions 
above and a detailed framework presented in Section 2. 

The study is structured as follows. In Section 2 we introduce the framework and adapt it 
into CAME. Section 3 introduces the basic architecture and tools of the environments. Section 
4 evaluates the CAME part of these environments, and Section 5 discusses shortly customised 



Evaluating method engineering environments 67 

CASE by applying the framework. Finally, in Section 6 we draw conclusions and discuss our 
future work. 

2 FRAMEWORK FOR CUSTOMISABLE CASE AND CAME 

A number of CASE technology frameworks have been proposed (Lyytinen et a!., 1989; Misra, 
1990; Crozier et a!., 1989; Wijers, 1991; Heym and Osterle, 1992; Fuggetta, 1993; Henderson 
and Cooprider, 1994). We selected the 'functional model' for CASE (Henderson and 
Cooprider, 1994) to be applied for CAME technology. The selection is based on the following 
reasons: First, the framework takes a comprehensive view of CASE technology. Second, it can 
be easily adapted to any design aid domain including CAME. The rationale for adapting the 
framework as such into CAME is found in (Auramaki et a!., 1988; Nijssen, 1989). According 
to their architectural principles, CAME technology - a design aid technology for methods and 
CASE tools - can be similarly treated with CASE technology. Third, the model is based on 
empirical studies and contains several strictly fonnulated questions for CASE. This is the main 
limitation of other framework candidates. Furthennore, our earlier comparison (Marttiin et a!., 
1993) based on the framework of Lyytinen et a!. (1989) did not focus extensively on CAME 
aspects, and it concentrated on issues not relevant for this study (e.g. portability to use various 
operating systems, and DBMSs). 

Design aid 
enl<ironment 

Translor-~l mation 

Support 

Figure 1 A functional model of CASE technology (Henderson and Cooprider, 1994). 

Henderson and Cooprider (1994) conceptualise design aid technology as a combination of 
production, co-ordination, and organisational technology (Figure I). Each of these main 
functions divides into sub-functions. In the following we present the main issues of each sub
function, discuss shortly the functions for customisable CASE, and try to capture the basic 
functions a future CAME environment need to supply. 



68 Method Engineering 

2.1 Production technology 

Production technology (as an individual's point of view to analyse, design and generate 
products) is divided into components of representation, analysis and transformation (see 
Figure 1). Representation focuses on abstraction and conceptualisation of phenomena into 
models. Analysis reflects the problem solving and decision making aspects of development. 
Transformation calls for rules and mechanisms to transform models into another form. 

Customisable CASE 
Representation in customisable CASE calls for the possibility to model ISs using various 
techniques, and to support modelling using various notations (textual, diagram, matrix, tabular) 
by corresponding editors (Chen and Nunamaker, 1989). As a modelling support, 
representation function deals with issues on creating, editing, composing, integrating, 
retrieving, and viewing IS models and components of them. 

Analysis requires verification, validation and simulation support for IS models. Verification 
deals with issues such as consistency checking, rules, equivalencies and redundancies in IS 
models, change analysis, and querying IS models (Henderson and Cooprider, 1994). Validation 
can be achieved by using metrics, decision aids, requirements tracing, or supporting versions of 
models. Simulation is used for testing the completeness and performance of IS model by 
running it. 

Transformation considers, for instance, how to transform a logical model into a physical 
one. The other issues include reverse engineering, change propagation, generation of reports, 
documentation, and code, and the generation of screen mock-ups and executable code for 
prototyping. 

CAME 
While the representation function for customisable CASE focuses on how to model ISs, the 
representation function for CAME focuses on how to specify methods, and how to manage 
their use in CASE. This is related to meta-modelling techniques discussed in Section 1.1. We 
consider here meta-modelling languages, abstraction mechanisms and notations used in 
modelling methods . 

• According to earlier studies (Brinkkemper, 1990; Heym and Osterle, 1992; larke et al., 
1994, Marttiin et al., 1995), the suggested method fragments (Le. a method specification or 
part of it) contain some features of all the CASE framework functions. Thus, in practice the 
primary focus has been on the production: defining a method for representing, analysing, 
and transforming IS models. As noted in our earlier comparison (Marttiin et al., 1993), we 
need a richer meta-modelling language to be able to capture more details of any method 
aspect. This will lead to consider both the feasibility and the possible granularity of any 
supported method aspect (Verhoef and Ter Hofstede, 1995) . 

• In some cases the method fragments are produced from 'scratch', but the need to store 
them into a method base, and reuse and recompose them requires the use of abstraction 
principles. Basic abstraction principles used in conceptual modelling (Brodie, 1984): 
generalisation - specialisation and aggregation - decomposition are suitable for method 
fragments. Further, the research on meta-modelling hierarchies (Oei and Falkenberg, 1994) 
introduces also restriction and degeneration principles when discussing changes in the 
meta-modelling language and its effects on the power of a modelling language. 



Evaluating method engineering environments 69 

• CAME representation deals with editing and viewing method fragments in various 
notations: structured text, forms, matrices and graphics, as examples. CAME tools have 
basically supported textual notations (see Marttiin et al., 1993), although graphics are used 
in MetaEdit (Smolander et al., 1991), and GraphicaLDesigner. 

Analysis covers verification, validation and simulation of method fragments. 

• Verification for methods is mostly situation independent, and thus it can be better 
formalised and implemented than validation. Verification includes consistency requirements 
for methods including precedence, input/output, and granularity consistency or the checking 
of duplicate concepts and uncompleted relationships in methods. 

• Kumar and Welke (1992) pointed out that method engineering follows the incremental 
learning strategy: every time a project starts the experience and 'wisdom' from earlier 
successful and unsuccessful projects are accumulated and included into the method 
fragments. Validation of the method fragments can be done by comparing them with a 
number of project factors such as available domain knowledge, the technology used, the 
organisational size, and the amount of resources available (Slooten and Brinkkemper, 
1993). Some references (e.g., Euromethod, 1994; Harmsen et al., 1995) give high-level 
heuristics to match situations with suitable method fragments. 

• A specific simulation can be accomplished when following the 'method engineering by 
example' strategy, where method components are modelled in the same form as they will 
appear in CASE as in 'query-by example'. 

Transformations in method base can be divided into generations between various levels of 
method fragments, implementation transformations and document generatiQn. 

• Transformations between method fragments can be used to partly automate the production 
of situational methods or to transform a method fragment from the coarse-featured form 
into the detailed one. Situational methods may require a possibility to combine a set of rules 
for selecting elementary method fragments and composing them into a rough 'method 
template'. 

• Implementation transformation occurs when we transform a method fragment into an 
executable form for a customisable CASE environment, or into a form required by another 
CAME environment. An example of the former is the transformation from Decamerone to 
the Prolan language used in Maestro II (Harmsen and Brinkkemper, 1995). The bridge 
between MetaEdit and RAMATIC (Rossi et aI., 1992) serves as an example of the latter 
case. Transformations between CAME and CASE have mostly been uni-directional. 
However, to manage IS model updates when changing a method may require more seamless 
solutions to integrate the two levels. 

• Creation of method documentation belongs to CAME representation. However, its 
generation into a CASE tools' help is a specific transformation issue. 

2.2 Co-ordination technology 

Co-ordination technology includes functions of control and co-operation. Henderson and 
Cooprider discuss control in terms of resource management and access control. Resource 



70 Method Engineering 

management enables managers to utilise project resources consistently with project goals. 
Access control implies, e.g., ways to manage access rights to user groups that participate in the 
development. It is closely related to database technology and its mechanisms. 

Alternatively, co-operation enables to exchange information between developers (co
operative modelling) and users (user involvement) for the purpose of influencing the ISD 
process, or product. Design aid tools and methods themselves can be used for co-operative 
purposes: the use of graphical models in co-operation is a case in point. On the other hand, 
using a specific functionality can increase co-operative support for the design aid: both for 
CASE and CAME. 

Customisable CASE 
To establish control mechanisms for the customisable CASE environment, we need to deal 
with, for instance, the concepts of process, project and user roles (CI~rtis et aI., 1992). 
Development process is both project and method dependent. A process model constructs 
development tasks into precedence order, integrates techniques and tasks, and allocates users 
to participate in the tasks. Process models in customisable CASE are discussed in, among 
others, (Jarke et aI., 1994; Marttiin, 1994). The characterisation of project and user roles is 
discussed in (Hahn et al., 1991, Curtis et aI., 1992, Marttiin et al., 1995). Other control issues 
relate to project management such as schedules, deadlines, project complexity metrics, and 
quality assurance. 

Co-operation for customisable CASE calls for possibility to use co-operative tools, which 
support messages, notes, anonymous feedback, announcement of changes, and design rationale 
concerning models or development tasks. We can divide the support into asynchronous 
communication (electronic mail as an example) and synchronous modelling (several developers 
editing the same model simultaneously). Other more advanced group interaction mechanisms 
include brainstorming and other group development techniques that are currently managed 
using separate tools. The possibility to integrate these into CASE is a challenging future task. 

CAME 
Method engineering requires the co-ordination and organisational functions, though these do 
not have such a prominent position as in the production function. The current CAME literature 
does not tackle the co-ordination issues involving multiple method engineers or stakeholders. 

We can discuss, however, control and co-operation aspects of method engineering. 
Controlling method evolution is critical, in particular when the changes to a method take place 
during the IS development and create effects on CASE and IS models. Such effects arise for 
example when one deletes a concept in a technique or an attribute of a concept. Co-operation 
in CAME can be seen as an exchange of method engineering experiences and a use of the 
collected expertise (Kumar and Welke, 1992). As a note to user involvement aspects, method 
users may include system designers, software engineers, and project managers. 

2.3 Support and Infrastructure 

All production and co-ordination functions can be supported by using organisational 
technology: the infrastructure catching standard operating procedures and quality standards, 
and the support functionality dealing with organisational guidelines, on-line helps, learning aid, 
'user friendliness' and 'easiness', which can assist users to understand and use design aid 
effectively. 



Evaluating method engineering environments 71 

Table 1 A functional framework of customisab1e CASE and CAME 
Function Customisable CASE CAME 
Representation • Modelling of ISs using various • Modelling of methods using a meta-

methods: concepts, notations, and modelling language: concepts, 
abstraction mechanisms to notations and abstraction 
represent IS models mechanisms to represent methods 

Analysis • Verification ofIS models: • Verification of methods: consistency 
consistency checking for IS checking for methods 
models • Validation of methods: situationol 

• Validation ofIS models: methods, analysis on earlier 
traceability to requirements, methods, the use of method base, 
design rationale of IS models design rationale of methods 

• Simulation of IS models • Simulation of methods: 'method 
enRineerinR by example' 

Transformation • Transformations between IS • Transformation from situation 
models factors into methods 

• Code and report generation from • Generation of methods into CASE: 
IS models generation of method documentation 

• Generation of screen mock ups • Generation of CASE tools & 
and executable code for management of repository mappings 
prototyping 

Control • Resource management: resource • Resource management: resource 
capacities, organisational goals, capacities, organisational goals, 
deadlines, priorities, managerial deadlines, priorities, managerial 
control for CASE control for CAME 

• Access and change control for IS • Access and change control for 
models methods: change effects into CASE 

• ISD process models: • Method engineering process models: 
management of ISD tasks and management of ME tasks and 
deliverables, automation of deliverables, automation of CAME 
CASE 

Co-operation • CASE as co-operative aid: notes, • CAME as co-operative aid: notes, 
design rationale support for IS design rationale support for methods 
models • Technical support for co-operative 

• Technical support for co- CAME: group interaction 
operative CASE: group mechanisms, asynchronous/ 
interaction mechanisms, synchronous CAM.E 
asynchronous/synchronous 
CASE 

Support & • Help, learning aid and • Help, learning aid and organisational 
infrastructure organisational policies for the policies for the areas of CAME 

areas of customisable CASE representation, analysis, 
representation, analysis, transformation, control, and co-
transformation, control, and co- operation 
operation 



72 Method Engineering 

Customisable CASE and CAME 
Organisational support for CASE involves help, learning aid and organisational policies for any 
CASE framework functions: representation, analysis, transformation,' control, and co
operation. As we discussed earlier, method guidance can be modelled during the method 
engineering process and generated into customisable CASE. In this manner the maintenance of 
method guidance will be easier when methods evolve. 

Similarly to customisable CASE, organisational support for CAME means help, learning 
aid and organisational policies for the areas of CAME representation, analysis, transformation, 
control, and co-operation. 

The main issues (a bullet for each) and some illustrative examples (italics after colon) 
discussed in this Section are summarised into Table 1. 

3 OVERVIEW OF THE ANALYSED ENVIRONMENTS: MAESTRO III 
DECAMERONE AND METAEDIT + 

In this section we take an overview to the architecture and tools of Maestro 111 Decamerone 
and MetaEdit+ environments. 

3.1 Maestro II and Decamerone 

The analysis in respect to the tools and functions of environment is based on Maestro II 
product (Merbeth, 1991) and the design of Decamerone (Harmsen and Brinkkemper, 1995). 

Maestro II is a metaCASE environment offering experienced developers all possibilities to 
develop diagram editors, repository structures, process enactment mechanisms, etc. It is a 
multi-user environment based on a client/server architecture. It includes the following tools: 

• Repository tools: Object Management System (OMS), 
• Model editing tools: Text Developers System and Graphics Editor 
• Project and process management system: Project and Configuration Management System 

(PCMS) 
• Method management tools: Data Model Declaration Table (DMDT), Tool Customisation 

Interface (TCI) including Symbol Editor 

Figure 2 depicts the architecture of Decamerone, which is implemented in Maestro II, and 
consists of a CAME and a CASE component. 

The CAME component is built upon a method base management system (MBMS), and 
provides facilities for specifying, storing, and selecting method fragments, and for assembling 
method fragments into a situation method. The selected method fragments are stored in a 
Selected Method Fragments Repository (SMFR), from which they are retrieved by the 
assembly functions. . 

CASE component uses the situational method as a definition for its repository structure, 
its editors and report generators, and its process engine. Method fragments are specified and 
manipulated both by entering specifications and issuing commands in a textual method 
engineering language called MEL, and by a tool called MEL editor. Both of these translate 
commands to a MEL interpreter, which makes use of the MBMS facilities. Decamerone offers 



Evaluating method engineering environments 73 

also graphic tools. The Concept Structure Diagram (CSD) editor acts as a graphical user 
interface to the Maestro II's Data Model Declaration Table. The Process Structure Diagram 
(P SD) editor enables definition of task classes, deliverable classes and their relationships, 
yielding a task structure that is input to the Maestro II's PCMS. The CSD/PSD/MEL editors 
are currently being implemented. 

Figure 2 Architecture of Decamerone. 

3.2 MetaEdit+ 

Systems 
Development 
User Interface 

The analysis is based on MetaEdit+ product (MetaEdit+, 1995; Kelly et al., 1996), and two 
prototypes: hypertext sub-system (Oinas-Kukkonen, 1995a, 1995b), and process sub-system 
(Marttiin, 1994; Koskinen, 1996). 

MetaEdit+ is a multi-user and multi-tool environment developed in the MetaPHOR
project. It consists of tools for both CAME and CASE. MetaEdit+ can run either as a single
user workstation or simultaneously on many workstation clients connected by a network to a 
server. Each client contains a running instance of MetaEdit+, including MetaEngine and a set 
of tools. MetaEngine manages all operations on the underlying conceptual data model. Tools 
communicate with each other only through the MetaEngine, and thereby through the shared 
data in the repository. MetaEdit+ includes the following tools: 

• Environment management tools: tools for managing features of the environment, its main 
components, and for launching it. 

• Model editing tools: tools for creating, modifying, viewing and deleting models or their 
parts, and deriving new information from existing design information including Diagram 
Editor, Matrix Editor, and Table Editor. 



74 Method Engineering 

• Model retrieval tools: tools for retrieving design objects and their instances from the 
repository for reuse and review including Repository Browsers, Report Tool, and Query 
Editor. 

• Method management tools: a set of form based tools for defining methods and their 
components (see Figure 3). 

• Hypertext subsystem, which gives, for instance, the ability to link design objects for 
traceability, annotating model instances, and maintain conversations about design issues 
(Debate Browser). 

• Process subsystem containing a set of form based tools for defining a' process modelling 
language and Process Editor for modelling ISD process and using it for guidance and co
ordination purposes. 

Generators 

Assembly 

Help 
generator 

Metamodel 
editors 

. ""t-' ---=R I 

... _'. u 

MetaEdiH 
CASE tool 
tailored for 
the method 

MetaEdit+ 
CAME 
toolset 

Process Constistency Metrics & 
subsystem Checking Statictics 

Figure 3 Method management tools in M etaEdit+. 

Assembly in Figure 3 includes a set of editors for defining method fragments (method's 
conceptual structure including basic consistency rules, and method's process structure), 
method symbols, dialogues, and helps, and tools for producing method specific reports and 
code. These editors contain mechanisms to generate a method to be automatically used in 
CASE. 



Evaluating method engineering environments 75 

The MetaEdit+ server fonns the repository holding all the data contained in models, and 
also in the method fragments. The MetaEdit+ repository includes object specification base 
containing all the method fragments; symbol base containing all symbols needed to represent 
method concepts; and report specification base containing all report and other output 
specifications. The repository holds also tool related infonnation including spatial co-ordinates 
in a diagram, and user infonnation including passwords, access rights, and current locks. 

4 DEFINING A METHOD BY USING THE CAME ENVIRONMENTS 

In this section we analyse the CAME functions in both of the environments. Table 2 presents 
the supported CAME functions. 

T bl 2 S a e uppo rtedCAMEfi unctIOns 
CAME support in Maestro II!Decamerone in MetaEdit+ 
Representation • CSDIPSD editor • Fonn based meta-modelling tools: 

• MEL editor Graph tool, Object tool, Property 
tool, Relationship tool, Role tool, 
Binding tool, Symbol Editor 

• Other meta-modelling tools: 
Table Editor, Matrix Editor and 
Diagram Editor 

• Fonn based process meta-
modelling tools & Process Editor 

Analysis • MEL editor. consistency checking • Meta-modelling tools: consistency 
checking 

• Process Editor. task precedence 
Transformation • Transformations from CSDIPSD • Fonn based meta-modelling tools: 

to MEL, and from MEL to method generation into 
MBMS customisable CASE, method help 

• Repository generator generation 

• Process enf(ine f(enerator • Report Genera(or, Process Editor 
Control • • Access control for methods 
Co-operation • The use of various notations of • The use of various notations of 

method fragments method fragments 
• Co-operative information in MEL 

Support & • • Help for meta-modelling language 
infrastructure and tools 



76 Method Engineering 

4.1 Representation 

We evaluate here the meta-modelling language, abstraction mechanisms and notations used in 
CAME. 

Meta-modelling language 
Decamerone uses MEL (see Harmsen and Saeki, 1996) as a meta-modelling language. MEL is 
based on the basic type method fragment, the instances of which varies by attaching pre
defined or user-definable property types and property values. MEL allows for an integrated 
view on both the conceptual view of a method by providing process fragments and product 
fragments and the technical view (CASE tool part) by allowing to define technical method 
fragments. Process fragments can denote iteration, parallelism, non-determinism and decisions, 
whereas product fragments describe both 'high-level' method products (such as Functional 
Specification) and diagrams, concepts, and associations. Further, MEL offers facilities to 
anchor method descriptions in an ontology, and contains operations to administrate method 
fragments in the method base, to query them, and to assemble method fragments into a 
situational method. 

MetaEdit+ uses GOPRR (Kelly et aI., 1996) as a meta-modelling language. GOPRR 
contains a set of elementary types (object, role, and relationship), a concept for collecting the 
elementary types into model (graph), and mechanisms to decompose and structure elementary 
concepts (binding). GOPRR focuses on the modelling of the conceptual structure of 
techniques and various relations between these (explosions, polymorphic modelling concepts). 
A process modelling language can be defined using an extended GOPRR model called 
GOPRR-p (see Koskinen, 1996). The extensions contain information about the behavioural 
aspects of a process, e.g., states, precedence and parallelism of process elements. Moreover, 
related product (models or reports) and tool information can be attached to process elements. 

Abstraction mechanisms 
Decamerone supports aggregation and decomposition mechanisms: method fragments defined 
by MEL can be decomposed to detailed granularity level, and the detailed method fragments 
can be composed into various method fragments in general granularity level. Specialisation is 
supported by the IS_A keyword in MEL. 

MetaEdit+ supports aggregation and decomposition of methods by collecting reusable 
elementary method types using the concept Graph. Further, a set of graphs is collected into a 
project. Instances of each GOPRR element are modelled using specialisation hierarchies. 
Therefore, MetaEdit+ supports different ways of technique development: creation from 
scratch, where all the parts of the technique are defined as new concepts, component oriented, 
where techniques are constructed by using prefabricated parts, and reuse qriented, where the 
goal of technique development is to allow maximal generality of the concepts and then to 
specialise these general components for different techniques. 



Evaluating method engineering environments 77 

Notations 
Decamerone provides two ways to represent method fragments: graphically, by using the 
CSD/PSD editor, and textually, by using the MEL editor. The graphical representation format 
is intended for initial and global specification, whereas the MEL specification contains all 
details of the method fragment. Process Structure Diagrams support the notions of process, 
trigger, and product, of which the latter provides the link with the Concept Structure Diagram 
editor. 

In MetaEdit+ product the primary support for technique component definition and 
retrieval is available as a set of form based tools, where the attributes of the component are 
filled and checked for their internal validity. Also, tabular, graphics and matrix support have 
been designed. Process structure is defined graphically. 

4.2 Analysis 

Validation and simulation of method fragments are not currently supported in either of the 
CAME environments. Therefore, we only consider the verification capabilities. 

The design of Decamerone currently does not include a verification component. However, 
MEL is designed to attach information for checking consistency into its property types. Also, 
formalised consistency rules are available, and can be transferred to Prolan rules (Hoef and 
Harmsen, 1995). 

The method consistency is ensured in MetaEdit+ by implementing a GOPRR technique, 
which prevents the definition of syntactically incorrect methods. MetaEdit+ approach aims to 
give the method engineers a maximum degree of freedom, so the tools do not try to do any 
semantic checking for the models. Anything that can be defined with the meta-modelling tools, 
is a valid technique specification in this approach. Nevertheless, a number of checks and quality 
reports have been defined to inform the method engineer about the possible problems in his 
model. Analysis according to development process, e.g. task precedence, will be supported by 
using a process model. 

4.3 Transformation 

In the following we discuss both transformations between various forms of method fragments, 
and transformations into CASE including documentation generation. 

Transformations between method fragments 
In Decamerone graphics (CSD/PSD) are used to define method fragments in earlier phases of 
CAME. These forms are transferred into MEL specifications, in the form of which the detailed 
method fragment is constructed. 

MetaEdit+ can use table, matrix and graphics notation in the CAME process. Yet, form 
based meta-modelling tools can only attach symbols into method concepts and generate a 
method into CASE. 

Transformations into CASE 
MEL specifications in Decamerone are transformed into MBMS calls in Maestro II, enabling 
storage in the database. The finest granularity product fragments (concepts, their properties 
and associations) in the situational method are input to the repository generator. The process 
fragments in the situational method, along with the coarser granularity product fragments (e.g., 



78 Method Engineering 

a functional specification report) are transferred to the process engine generator, which creates 
an instance of Maestro II's PCMS. 

Diagram editors are specified in Maestro II. The method data model and the 
representational aspects of the technique to be supported are specified separately. The method 
data model and conceptual definitions of all diagram editors are specified in a Data Model 
Declaration Table (DMDT). The notational elements are specified by using the Tool 
Customising Interface (TCI). The DMDT defines the repository structure managed by the 
Object Management System (OMS). 

MetaEdiH directly translates the method fragments into parts of its design object 
repository. Thus, when the user has defined the techniques: concepts and their representations, 
the method can be tested immediately. The form based tools have a two-way connection to the 
repository, but the tools using other representation form can only define components, but not 
retrieve them from the repository. MetaEdiH will test the use of pre-defined process templates 
to be copied and specified for projects' use. 

Document creation 
In MetaEdiH, method specific helps can be generated as a by-product of a method, and 
method specific reports can be created by using a Report Generator. Learning material and 
examples of MetaEdiH are separated, but implementable as external documents using 
hypertext subsystem. 

4.4 Co-ordination: control and co-operation 

The CAME environments in comparison are focused on production. However, some support 
for control and co-operation is found. 

Control mechanism of MetaEdiH multi-user environment is designed also for CAME 
level. Co-operative aid is supported by the use of various representations of a method in each 
CAME environment Also, Decamerone's MEL language is designed to attach situation 
information not generated into CASE, but usable in co-ordination of method fragments. 
Anyway, specific CSCW tools are not integrated. 

4.5 Support 

MetaEdiH contains on-line help including descriptions of GOPRR concepts and gnidelines 
how to use them. Since the environments are still at the early stages, the ways of supporting 
will improve. 

5 SUPPORTING A METHOD BY USING THE CUSTOMISABLE CASE 
ENVIRONMENTS 

In this section we shortly discuss the differences of the customisable CASE environments in 
their method support. Table 3 represents the functions and tools (italics) of the customisable 
CASE environments. 



Evaluating method engineering environments 79 

5.1 Representation 

In contrast to drawing tools, both Maestro II and MetaEdit+ are concept-oriented 
environments. Concepts are implemented as classes, which store information into their 
properties. In Maestro II the integration between techniques is achieved by using the DMDT, 
which contains references to object classes, relationships and attributes. Attributes can be 
shared by referring to the defining template. The following integration mechanisms are used in 
MetaEdit+: concept reuse between models, property sharing between concepts (e.g., object 
appears as a relationship in another technique), and explosions from an element to a model of 
different type. 

Both CASE environments separate the conceptual and representational (notations) 
information. Representation forms for MetaEdit+ are structured graphics, matrices and tables 
and for Maestro II structured graphics and text. Both of the CASE environments handle the 
basic graphical semantics. However, they are limited to deal with, for instance, layered 
complex models in the same diagram, and specific graphical rules and constraints. 

T bl 3 S a e upporte dCASEf unctIOns 
CASE support in Maestro II in MetaEdit+ 
Representation • Tool Customisation Interface • Model editing tools: Diagram 

(TCl) including Diagram Editor, Matrix Editor, Table 
Editor Editor 

• OMS Interface • Repository Browser 

Analysis • Prolan language: user defined • Model editing tools: 
rules consistency checking 

• Query mechanism • Report Editor: reports for 
checking 

• Query Editor 

• Linking Ability: requirement 
tracing 

Transfonnation • Report generation • Report Editor: generation of 

• Code generation reports and code 

• Links to other CASE tools 
Control • Project Configuration and • Project tool 

Management System (PCMS) • Process Editor 

• Function Point Analysis -tool 
Co-operation • PCMS • Hypertext tools: Linking 

• E-mail facilities Ability, Debate Browser 

• Process Editor 
Support & • On-line help • Hypertext tools: Debate 
infrastructure Browser 

• Tool guidance 

• Context specific method 
guidance 



80 Method Engineering 

5.2 Analysis 

Maestro II allows to define a wide spectrum of method specific rules by using a Prolan rule 
language. In MetaEdit+ GOPRR manages a set of general rules (cardinality, connectivity and 
composition rules) and offers possibilities to define checking reports. 

Validation of IS models in MetaEdit+ means traceability to requirement documents. This 
functionality is provided by the Linking Ability. Maestro II offers no support for validation. 

Simulation is not used in conceptual modelling domains, but essential, if we want to 
support process and behaviour modelling by using, for instance, State Transition Diagrams or 
Petri nets. Both environments do not offer simulation mechanislI}8. 

5.3 Transformation 

Maestro II provides transformation facilities such as advanced report generation, code 
generation, screen mock-ups, and reverse engineering. It has facilities to generate reports of 
the database (OMS) and project (PCMS) contents. Besides, there exist tools that provide links 
with other CASE tools such as Knowledgeware's ADW (Bosua and Brinkkemper, 1995). 

MetaEdit+ contains a Report Tool to define report models and programming language 
structures. Therefore, transformations from a higher level model to a detailed one or a data 
structure of programming language can be specified. 

5.4 Control 

As noted before, Maestro I1 contains a Project Configuration and Management System 
(PCMS), which guides the user in applying a method by offering references to required tasks 
and deliverables. In addition, the state automaton of PCMS defines the dynamics of a project 
by keeping track of the various states of deliverables as well as their state transitions. Freeze 
and unfreeze of artefacts, and configuration and version management can be achieved. A 
project manager can keep track of the current state of all the activities performed by project 
members and compare their activities with the project plan by using the project scheduling tool 
incorporated in the PCMS. For estimating, a Function Point Analysis tool is developed as an 
extension to PCMS. 

MetaEdit+'s repository is an object base, which stores the objects as such. Repository 
provides the locking mechanism to avoid simultaneous editing of the same diagram. However, 
current implementation does not provide versioning of models. GOPRR provides the 
automatical change propagation between the model elements that share properties. Further, the 
Process Editor for the guidance and co-ordination of the project specific development process 
is currently being implemented. 

5.5 Co-operation 

The CASE environments contain minor differences in their co-operative support. Both are 
multi-user environments having locking mechanisms for asynchronous development (one 
developer at a time). Maestro II supports communication by its e-mail facility. MetaEdit+ co
operative functionality is found in its hypertext subsystem containing, e.g., annotations and 
debates attached to either modelling concepts or their representations. Moreover, by using a 
DebateBrowser, structured conversations can be managed. Still, specific group interaction 



Evaluating metfwd engineering environments 81 

mechanisms and functionality for synchronous modelling are lacking in these CASE 
environments. 

5.6 Support 

Dependent on the method or the tool used, Maestro II provides on-line help screens in various 
levels of detail. Help screens are laid out as hypertexts, enabling the user to cross-reference 
other topics. 

MetaEdit+ offers on-line help to its general CASE tool functions. Context specific aid, 
descriptions of concepts, techniques and tasks, are generated as a by-product of their creation 
in method engineering tools. Explanations and discussions according to project tasks, models, 
model elements, model versions can be attached by using the hypertext support discussed 
above. Furthermore, the joint menus and functions of various CASE tools are designed 
similarly. 

6 CONCLUSIONS AND FUTURE WORK 

In this study we developed a framework for evaluating CAME and customisable CASE 
properties of current 'state of the art' environments. We selected the framework for CASE 
functionality presented by Henderson and Cooprider (1994) and tailored it for customisable 
CASE and CAME. We used the comparison framework to evaluate the properties of two 
environments Maestro II with Decamerone, and MetaEdit+. 

The aim of this study was to answer the questions: How well can a method be defined in a 
CAME environment?, and How well is a defined method supported in a customisable CASE 
environment? As a result we presented the functionality and tools that are available in two 
environments, and functionality required after the framework. 

If we consider the framework used, we can conclude that current CAME technology 
focuses on production, but does not deal adequately with co-ordination and support. Further, 
in production technology there exists several issues that have not been sufficiently examined, 
such as specifying the methods in detailed granularity, reuse of method fragments, and change 
propagation to customisable CASE. 

If we look at the second question, we can conclude that in the evaluated environments 
method support can be achieved by representing and storing models and by checking their 
consistency. Also, the development process is either supported or under construction. 
Validation support is limited and behavioural semantics of modelling elements for, e.g., 
simulation of Petri-net diagrams is not available. Moreover, both environments are limited in 
their integration of tools for specific tasks, including co-operation, project management, and 
learning issues. 

The main purpose of the environments examined is to improve IS development support by 
tailoring a method specific CASE for project needs. The quality of such a tailorable 
environment means the support for the methods required by customers, the methods without 
any hard-coded CASE support, and the freedom to modify methods. Further, this study 
explained the framework functions supported. It did not focus on usability or integrity of the 
tools supporting these functions. Therefore, one should not draw a straightforward conclusion 
that an environment supporting all framework aspects is a good one. 



82 Method Engineering 

In the future we would need to use a more comprehensive approach to evaluate these 
environments. First, we will generate a set of exact questions for each CAME function. 
Second, we will select an example method to be modelled for the CASE environments. By 
using this comprehensive approach for evaluating the environments we will obtain a detailed 
view of the environments. The evaluation of other environments should also be performed. 

7 ACKNOWLEDGEMENTS 

We would like to thank the other members of the projects MetaPHOR (University of 
Jyviiskylii) and Method Engineering Group (University of Twente), and in particular Sjaak 
Brinkkemper for his assistance and co-operation, and Steven Kelly, Kalle Lyytinen, and Tuuli 
Rossi for the improvements on this paper. 

8 REFERENCES 

Auramiiki, E., Leppanen, M. and Savolainen, V. (1988) Universal framework for information 
systems. Data base, 19, 1, pp. 11-20. 

Bergsten, P., Bubenko, J., Dahl, R., Gustafsson, M. and Johansson, L.-A.. (1989) RAMATIC
a CASE shell for implementation of specific CASE tools. TEMPORA T6.1 report, SISU, 
Stockholm, Sweden. 

Boloix, G., Sorenson, P.G. and Tremblay, J.P. (1991) On Transformations Using A 
Metasystem Approach To Software Development. Technical report, The University of 
Alberta, Edmonton, Alberta, Canada. 

Bosua, R. and Brinkkemper, S. (1995) Realisation of an Integrated Software Engineering 
Environment through Heterogeneous CASE-Tool Integration. Software Engineering 
Environments (Ed. M.S. Verrall), IEEE Computer Science Press, pp. 152-159. 

Brinkkemper, S. (1990) Formalisation of Information Systems Modelling. Ph.D. Dissertation, 
University of Nijmegen, Thesis Publishers, Amsterdam. 

Brinkkemper, S. (1995) Method engineering: engineering of information systems development 
methods and tools. Infonnation and Software Technology, 37,11, pp. 1-6. 

Brodie, M. (1984) On the developments of data models. Perspectives from Artificial 
Intelligence, Databases and Programming Languages (Eds. M. Brodie, J. Mylopoulos and 
J. Schmidt), Springer-Verlag, pp. 19-47. 

Bubenko, J.A. jr. (1988) Selecting a strategy for computer-aided software engineering 
(CASE). SYSLAB Report No 59, SYSLAB, University of Stockholm, Sweden. 

Chen, M., Nunamaker, J.F. jr. (1989) MetaPlex: an integrated environment for organization 
and information systems development. Proceedings of the 10th ICIS (Eds. J.1. DeGross, 
J.e. Henderson and B.R. Konsynski), ACM Press, New York, NY, pp. 141-151. 

Cronholm, S. and Goldkuhl, G. (1994) Meanings and Motives of Method Customizations in 
CASE Environments. 5th Workshop on Next Generation of CASE Tools, June 6-7. 
Utrecht, The Netherlands. 

Crozier, M., Glass, D., Hughes, J., Johnston, W. and McChesney, I. (1989) Critical analysis of 
tools for computer-aided software engineering. Information and Software Technology. 31, 
9, pp. 486-496. 



Evaluating method engineering environments 83 

Curtis, B., Kellner, M.l. "and Over, J. (1992) Process modeling. Communications of the ACM, 
35,9, pp. 75-90. 

Essink, L. (1986) A modelling approach to information system development. Information 
Systems Design Methodologies: Improving the practise (Eds. T.W. Olle, H.G. Sol and A.A. 
Verrijn-Stuart), North-Holland, Amsterdam, pp. 55-86. 

Euromethod (1994) Euromethod Architecture. Euromethod project deliverable Work Package 
3,1994. 

Fuggetta, A. (1993) A classification of CASE Technology. IEEE Computer, 26, 12, pp. 25-38. 
Hahn, U., Jarke, M. and Rose, T. (1991) Teamwork Support in a Knowledge-Based 

Information Systems Environment. IEEE Transactions on Software Engineering, 17, May, 
pp.467-481. 

Harmsen, F. and Brinkkemper S. (1995) Design and Implementation of a Method Base 
Management System for a Situational CASE Environment. Proceedings of the 2nd Asian
Pacific Software Engineering Conference (APSEC'95), IEEE Computer Society Press, Los 
Alamitos, CA, pp. 430-438. 

Harmsen, F., Brinkkemper S. and Oei H. (1994) Situational Method Engineering for 
Information System Projects. Proceedings of the IFIP WG8.1 Working Conference 
CRIS'94 (Eds. T.W. Olle and A.A. Verrijn-Stuart), North-Holland Publishers, Amsterdam, 
pp. 169-194. 

Harmsen, F., Lubbers I. and Wijers G. (1995) Success-driven selection of Fragments for 
Situational Methods - The S cube model. Proceedings REFSQ'95 Workshop (Eds. P. Peters 
and K. Pohl), Aachener Berichte zur Informatik, pp. 104-115. 

Harmsen, F., and Saeki, M. (1996) Comparison of Four Method Engineering Languages. 
Proceedings IFIP WG8.1I8.2 Working Conference on Principles of Method Construction 
and Tool Support (ME'96), Atlanta, Georgia, USA. 

Henderson, J.C. and Cooprider, J.G. (1994) Dimensions of IS Planning and Design Aids: A 
Functional Model of CASE Technology. IT and the Corporation of the 1990's: Research 
studies (Eds. T. Allen and M. Scott-Morton), Oxford University Press, pp. 221-248. 

Heym, M. and Osterle, H. (1992) A reference model of information systems development. The 
Impact of Computer Supported Technologies on Information Systems Development (Eds. 
K.E. Kendall, K. Lyytinen and J.I. DeGross), Amsterdam, North-Holland, pp. 215-240. 

Hoef, R. van de and Harmsen F. (1995) Quality requirements for situational methods. 
Proceedings of the NGCT'95 Workshop, Jyviiskylii, Finland. 

ISDOS (1981) An introdution to the System Encyclopedia Manager, ISDOS Ref #81 SEM-
0338-1, ISDOS Project, Department of Industrial and Operations Engineering, The 
University of Michigan, Ann Arbor, Michigan. 

Jarke, M., Pohl, K., Rolland, C. and Schmitt, J.-R. (1994) Experience-Based Method 
Evaluation and Improvement: A process modeling approach. Proceedings of the IFIP 
WG8.1 Working Conference CRIS'94 (Eds. T.W. Olle and AA Verrijn-Stuart), North
Holland Publishers, Amsterdam, pp. 1-27. 

Kelly S., Lyytinen, K. and Rossi, M. (1996) MetaEdit+ A Fully Configurable Multi-User and 
multi-Tool CASE and CAME Environment. Proceedings of the CAiSE'96 conference, 20-
24 May, Heraklion, Crete, Greece. 

Koskinen, M. (1996) Designing Multiple Process Modelling Languages for Flexible, Enactable 
Process Models in a MetaCASE Environment, Proceedings of the 7th European Workshop 
on Next Generation CASE Tools (NGCT'96), Heraklion, Crete, Greece. 



84 Method Engineering 

Kumar, K. and Welke, R.J. (1992) Methodology Engineering: A proposal for Situation
specific Methodology Engineering. Challenges and Strategies for Research in Systems 
Development (Eds. W.W. Cotterman and J.A Senn), John Wiley and Sons Ltd., pp. 257-
269. 

Lyytinen, K., Smolander, K. and Tahvanainen, V.-P. (1989) Modelling CASE Environments in 
Systems Work. CASE' 89 conference papers, Kista, Sweden. 

Marttiin, P. (1994) Towards Flexible Process Support with a CASE Shell. Advanced 
Information Systems Engineering (Eds. G. Wijers, S. Brinkkemper and T. Wasserman), 
LNCS#811, Springer-Verlag, pp. 14-27. 

Marttiin, P., Lyytinen, K., Rossi, M., Tahvanainen, V.-P., Smolander, K. and Tolvanen, J.-P. 
(1995) Modeling Requirements for Future CASE: modeling issues and architectural 
considerations. Information Resource Management Journal, 8, I, pp. 15-25. 

Marttiin, P., Rossi, M., Tahvanainen, V.-P. and Lyytinen, K. (1993) A Comparative Review of 
CASE Shells: a preliminary framework and research outcomes. Information and 
Management, 25, pp. 11-31. 

Merbeth, G. (1991) Maestro II - das integrierte CASE-System von Softlab. CASE Systeme und 
Werlczeuge (Ed. H. Balzert), BI Wissenschaftsverlag, pp. 319-336. 

MetaEdit+ (1995) MetaEdit+: Method Workbench User's Guide (version 2.0). MetaCase 
Consulting, MicroWorks Finland. 

Misra, S.K. (1990) Analysing CASE system characteristics: evaluative framework. 
Information and Software Technology, 32, 6, pp. 415-422. 

Nijssen, G.M. (1989) An Axiom and Architecture for Information Systems. Information 
System as an In-Depth Analysis (Ed. E.D. Falkenberg), Elsevier Science Publishers B.V. 
(North-Holland), IFIP, pp. 157-175. 

Norman, R.J. and Chen, M. (1992) Working together to integrated CASE. IEEE Software, 
March, pp. 13-16. 

Oei, J.L.H. and E.D. Falkenberg (1994) Harmonisation of Information System Modelling and 
Specification Techniques. Proceedings of the IFIP WG8.I Working Conference CRIS'94 
(Eds. T.W. Olle and A.A. Verrijn-Stuart), North-Holland Publishers, Amsterdam, pp. 151-
168. 

Oinas-Kukkonen, H. (1995a) Linking Ability - a Model Linking Tool for MetaEdit+ 
Environment. Working paper series B39, Department of Information Processing Science, 
University of Ou1u, Finland. 

Oinas-Kukkonen, H. (1995b) Debate Browser - a Design Rationale Tool for MetaEdit+ 
Environment. Working paper series B40, Department of Information Processing Science, 
University of Oulu, Finland. 

Olle, T.W., Hagelstein, J., MacDonald, I.G., Rolland, C., Sol, H.G., Van Assche, F.J.M. and 
Verrijn-Stuart, A.A (1991) Information Systems Methodologies: A framework for 
understanding. Addison-Wesley Publishing Company, Wokingham, England. 

Olle, T.W., Sol, H.G. and Tully, C.J. (Eds.) (1983) Information Systems Design 
Methodologies: A Feature Analysis. Elsevier Science Publishers, North-Holland, 
Amsterdam. 

Olle, T.W., Sol, H.G. and Verrjin-Stuart, A.A. (Eds.) (1982) Information Systems Design 
Methodologies: A comparative review. Elsevier Science Publishers, North-Holland, 
Amsterdam. 



Evaluating method engineering environments 85 

Olle, T.W., Sol, H.G. and Verrijn-Stuart, A.A. (Eds.) (1986) Information Systems Design 
Methodologies: Improving the practise. Elsevier Science Publishers, North-Holland, 
Amsterdam. 

Rossi, M., Gustafsson, M., Smolander, K., Johansson, L.-A.. and Lyytinen, K. (1992) 
Metamodeling Editor as a Front End Tool for a CASE Shell. Advanced Information 
Systems Engineering (Ed. P. Loucopoulos), LNCS#593, Springer-Verlag, Berlin, Germany, 
pp. 546-567. 

Saeki, M., Iguchi, K., Wen-yin, K. and Shinohara, M. (1993) A meta-model for representing 
software specification & design methods. Proceedings of the IFIP WG8.1 Conference on 
Information Systems Development Process (Eds. N. Prakash, C. Rolland and P. Pemici), 
Como, pp. 149-166. 

Slooten, K. van, and Brinkkemper S. (1993) A Method Engineering Approach to Information 
Systems Development. Proceedings of the IFlP WG8.1 Conference on Information Systems 
Development Process (Eds. N. Prakash, C. Rolland and P. Pemici), Como, pp. 167-186. 

Smolander, K., Lyytinen, K., Tahvanainen, V.-P. and Marttiin P. (1991) MetaEdit - A flexible 
graphical environment for methodology modelling. Advanced Information Systems 
Engineering, (Eds. R. Andersen, J. Bubenko and A. SI/Jlvberg), LNCS #498, Springer
Verlag, pp. 168-193. 

Smolander, K. (1992) OPRR - A Model for Methodology Modeling. Next Generation of 
CASE Tools (Eds. K. Lyytinen and V.-P. Tahvanainen), Studies in Computer and 
Communication Systems, lOS press, pp. 224-239. 

Sorenson, P.G., Tremblay, J-P. and McAllister, A.J. (1988) The Metaview system for many 
specification environments. IEEE Software, 30, 3, March, pp. 30-38. 

Ter Hofstede, A. H. M. and Weide, Th. P. van der (1993) Expressiveness in data modeling. 
Data & Knowledge Engineering, 10, pp.65-100. 

Venable, J. (1993) CoCoA: A Conceptual Data Modelling Approach for Complex Problem 
Domains. Ph.D. dissertation, State University of New York, Binghampton. 

Verhoef, T.F. and Ter Hofstede, A.H.M. (1995) Feasibility of Flexible Information Modelling 
Support. Advanced Information Systems Engineering (Eds. J. !ivari, K. Lyytinen and M. 
Rossi), LNCS #932, Springer-Verlag, pp. 168-185. 

Vessey, I., Jarvenpaa, S. and Tractinsky, N., Evaluation of Vendor Product: CASE Tools as 
Methodology Companions. Communications of the ACM, 35, 4, pp. 90-105. 

Wijers, G. and Dort, H. van (1990) Experiences with the use of CASE tools in the 
Netherlands. Advanced Information Systems Engineering (Eds. B. Steinholz, A. SI/Jlvberg 
and L. Bergman), LNCS#436, Springer-Verlag, pp. 5-20. 

Wijers, G. (1991) Modelling Support in Information Systems Development. Ph.D. dissertation, 
Thesis publishers, Amsterdam. 

Wynekoop, J.D. and Russo, N.L. (1993) System development methodologies: unanswered 
questions and the research-practice gap. Proceedings of 14th ICIS (Eds. J.I DeGross, R.P 
Bostrom and D. Robey), Orlando, USA, pp. 181-190. 



86 Method Engineering 

9 BIOGRAPHY 

Pentti Marttiin is a researcher in the MetaPHOR project funded by the Academy of Finland. He 
received his M.Sc. (1991) and Econ.Lic. (1994) at the Department of Computer Science and 
Information Systems, University of Jyviiskyla, Finland. He has written articles on method 
engineering and metaCASE environments published in Information and Management, 
Information Resource Management Journal, and several conferences. He has participated 
ICIS'92 doctoral consortium, served as a program committee member in CAiSE'95, and 
involved in the development of metaCASE tools for Meta Case Conculting. His current 
research interest focuses on process and agent modelling aspects in metaCASE. 

Frank Harmsen is a researcher in the Information Systems Design Methodology Research 
Group at the Computer Science Department of the University of Twente in the Netherlands. 
He holds a B.Sc and M.Sc in Mathematics and Computer Science from the University of 
Nijmegen. His research interests are information system methodology, meta~modelling, method 
engineering, and CASE tools, about which he has published several papers. Current research 
activities focus on defining formalisms and tools for representation and assembly of method 
fragments for Situational Method Engineering. He was co-editor of the 1993 edition of the 
Workshop on Next Generation of CASE Tools (NGCT), and served on the organisation 
committee of CAiSE'94 (Conference on Advanced Information Systems Engineering). He is a 
member of the Netherlands Society for Informatics. 

Matti Rossi is a researcher in the MetaPHOR project funded by the Academy of Finland. He 
received his M.Sc. (1994) and Econ.Lic. (1996) at the Department of Computer Science and 
Information Systems, University of Jyviiskylii, Finland. He has published in Information and 
Management, Information Systems, and Information Resource Management Journal, and 
participated CAiSE, ECOOP, WITS and SERF conferences. He has served on the Workshop, 
Poster and Exhibition Chair of the CAISE'95 conference. He is also a member of the board in 
Meta Case Conculting, and has involved in implementing the report generation facility of 
MetaEdit and CAME tools of MetaEdit+. His research interests include database management, 
object-oriented data representation, metamodelling, transformations in metamodelling, and the 
applications of the previous items to software engineering. 



6 

Method rationale in method engineering 
and use 

H. Oinas-Kukkonen 
Department of Information Processing Science 
P.O. Box 400, FIN-90571 Oulu, Finland 
Tel. (358) 81 553 1900, Fax. (358) 81 553 1890 
Email: hok@rieska.oulu.fi 

Abstract 
While the major aspect in method engineering is method assembly, a second aspect is the 
argumentation behind the methods. This paper introduces the concept of method 
rationale in method engineering and use as a communication vehicle between method and 
software engineers, and describes tools that support the capture and management of 
method rationale in a computer-aided method engineering environment. 

Keywords 
Information systems development, method engineering, CASE, metaCASE, CAME, 
design rationale, method rationale, hypertext 

1 INTRODUCTION 

The emergence of metaCASE and Computer-Aided Method Engineering (CAME) 
technology has provided the field information system development (lSD) with new 
promises. One of them is the utilization of the same computerized environment to 
develop both ISD methods and target information systems. Still, even when methods can 
be assembled in a CAME environment, part of the important method-related knowledge 
normally remains implicit, e.g. experience accumulated about the methods in use (Jarke 
et aI., 1994). Computerized support for capturing this kind of semi-structured 
information is also needed. 

A simple means for modelling experience information in conjunction with metaCASE 
is to maintain a textual note for each method (Heym and Osterle 1993). The solution in 
this paper, however, provides a method and metamodelling independent, and a more 



88 Metlwd Engineering 

sophisticated and effective means for recording semi-structured information. This paper 
considers information systems development and method engineering as a special case of 
design, and bases its solution on the concept of design rationale (Fischer et a!., 1991, 
Ramesh and Dhar, 1992). Design rationale means basically the understanding of why an 
artifact has been designed the way it has, which may include information on e.g. 
requirements, assumptions, decisions, and alternative solutions. The benefits of design 
rationale capture include the achievement of increased rigor and clarity of thinking, 
augmentation of the designer's memory, better communication among team members 
and stakeholders, and improved meetings (Conklin and Yakemovic, 1991). The concept 
of design rationale in conjunction with method engineering and ISD (i.e. method use) is 
leveraged here in the following manner. Method rationale means method design and 
usage rationales and their linkages to design artifacts across various phases of 
method engineering and use. 

This paper introduces tools which can be utilized to support method rationale in a 
full-blown CAME environment, and describes an approach by which method rationale 
can be used as a communication vehicle between the stakeholders in this kind of 
environment. 

2 RESEARCH ENVIRONMENT 

MetaEdit+ is a fully configurable multiuser, multitool Computer-Aided Software and 
Method Engineering environment (Kelly et al., 1996). In addition to basic model editing 
and retrieval tools, MetaEdit+ also includes tools which enable the creation, modification 
and deletion of annotations and navigational hyperlinks between models or their parts. 
The model annotation and linking tools (Debate Browser and Linking Ability) are 
searnlessly integrated with the model editing tools (Diagram Editor, Matrix Editor and 
Table Editor), and they are used for commenting model instances, maintaining 
conversations about design issues, linking design objects for traceability and as a 
reminder, or finding specific locations in the design space. 

Debate Browser 
The Debate Browser is a hypertext-based toolset for supporting the capture and use 

of design rationale knowledge. It utilizes an argumentation method similar to IBIS 
(Conklin and Begeman, 1988), known as QAR (Question-Answer-aRgument). QAR has 
been abstracted from various design rationale methods for our purposes in MetaEdit+ 
environment, simplifying the explicit rhetorical structure of design rationale (Oinas
Kukkonen, 1996). The discussion is expressed using three kinds of nodes, questions, 
answers, and arguments. There is also a particular way of registering that a question has 
been resolved by agreement upon some answer by selecting and presenting one of the 
suggested answers as a decision. A node always belongs to a hyperdocument, a 
collection of discussions, consisting of nodes and links between the nodes. There can be 
various design rationale hyperdocuments for debates on different kinds of subjects, for 
example different organizational, research, product and other problem domains, as well 
as within a project for analysis, design, implementation and review concerns. 



Method rationale in method engineering and use 89 

Figure 1 Graphical and textual views in Debate Browser toolset. 

Debate Browser enables the investigation of design rationale hyperdocuments and 
their nodes and links with two browsers, a document browser and a graph browser. (See 
Figure 1.) The document browser gives text lists of all the question nodes of a 
hyperdocument, the answer nodes of an activated question, and the argument nodes of 
an activated answer, with the active node always visible at the bottom of the browser. 
The graph browser presents a graphical web view of the design rationale hyperdocument, 
supporting the investigation of a full hyperdocument as well as a single question and its 
associated answers and arguments. The zoom capability enables the investigation of the 
hyperdocument through map views (see lower left corner in Figure 1). The investigation 
of questions and their relationships is enabled from different perspectives in all views, i.e. 
as a plain collection of questions or from generalization-specialization, replacement
replacer, or parent-child perspectives. Nodes which have not yet been investigated by an 
individual reader can be highlighted, node marking is enabled, and summary reports of 
the design rationale hyperdocuments can be given among other features. 

Linking Ability 
Design rationale has to be integrated with construction environment to contextualize the 
rationale, and with the issues to concentrate more on design than merely philosophical 
discussions (Fischer et al., 1991). This can be achieved via attaching associative 



90 Method Engineering 

hyperlinks to design diagrams and design rationale nodes (which are different from the 
responds, supports etc. links within design rationale hyperdocuments) through the 
Linking Ability tool. All hyperlinks are created by hand at will, and they can lead to any 
other design rationale node or diagram. More semantics can be stored into a link through 
link attributes, e.g. type information or keywords. The hyperlink attribute query facility 
helps to find specific linkages. Other sophisticated hypertext browsing features include an 
interaction history, filtering mechanism, and landmark and bookmark lists. This kind of 
hypermedia functionality also gives good modelling transparency (Brinkkemper, 1993). 

Figure 2 Linkages between a diagram, a design rationale node and an annotation. 

Linking Ability also enables the attachment of annotations to diagrams or design 
rationale nodes. (See Figure 2.) There are two hyperlinks in an object-oriented diagram, 
represented by graphical symbols. The traversal of the hyperlinks takes the reader to 
corresponding nodes. The 'Definition' hyperlink leads to an annotation node 'Definition' 
commenting on the relationships between design rationale nodes. The annotation node 
includes three hyperlinks to other annotations. The 'Number of choices' hyperlink leads 
to a design rationale node (answer) '7+-2', which has been selected as a decision for a 
certain question. The design rationale node includes hyperlinks to another node and a 
diagram as well. Relationship representation and navigation and requirements tracing can 
be supported through this kind of linking capability. 



Method rationale in method engineering and use 

3 APPLICATION OF THE MODEL ANNOTATION AND 
LINKING TOOLS 

91 

Let us now imagine a software project, consisting of a group of software designers and a 
smaller group of method engineers. Methods for business processes, information system 
planning, analysis and design, e.g. value chain, work flow models, and OMT (all adapted 
to the situation at hand), have been defined by method engineers using the 
metamodelling language and its rationale. Both the method-specific and general design 
rationale behind this method assembly has been captured using the Debate Browser. 
Figure 3 describes the role of method rationale in ISD and ME activities (it is modified 
from the software process support of larke et al. (1994». 

method 
assembly 

~ . 

~ 
~ ('uses 

method 
improvement 

C repositOry::: 

metalanguage r-- __ _ 
metam. rationale 

method 
f----
method rationale 
sw descriptions r--- __ 
~sign ration~ 

method 

- - - _ _ software engineer 

-·.uses • 

~\' 
software 

development 

Figure 3 Method rationale in ISD and ME activities. 

The methods and their design rationale guide software designers in their work. When 
software engineers use the methods to develop software artifacts they parallelly evaluate 
the methods in a realistic context and capture debates on them into the corresponding 
hyperdocuments. Software engineers are also encouraged to record software design 
rationale. All this takes place through the Debate Browser. When design problems or 
method evaluation are not mature enough for explicating debates, software engineers can 
attach annotations to design diagrams instead of structured discussions. Software 
engineers may also represent dependencies between artifacts and rationale through 
hyperlinks in Linking Ability, in which they may also attach specific keywords, e.g. 
'method' to represent its perceived potential for method improvement. 

Method engineers are interested in investigating the debates, annotations and 
linkages, which relate to methods and have been recorded by software engineers during 
their normal working process. First, they investigate the method evaluation documents, 
consisting of debates between software engineers regarding various aspects of method 
usage. Second, method engineers investigate method-related annotations through 
Linking Ability. Third, they are able to find and traverse the dependencies between 



92 Method Engineering 

argumentation and the design artifacts. Method engineers especially benefit from link 
attribute queries, such as obtaining all hyperlinks, where keyword 'method' is attached, 
then backtracking or traversing to either of the link end-points. 

To summarize, the model annotation and linking tools can be utilized in method 
engineering and use in the following ways . 

• Method engineers use Debate Browser to capture the design rationale behind the 
method assembly, which then guides software engineers in their work. Later, during 
development projects software engineers and reviewers capture debates behind software 
design, relating this kind of project performance either directly or indirectly to methods 
used. 

• Software engineers use Linking Ability to represent the dependencies between 
models, rationale, and annotations through hyperlinks. A descriptive traceability process 
model or process trace (Jarke et aI., 1994) is established among the design diagrams 
through linkages. When the design problems are not mature enough for explicit design 
rationale, software engineers can built annotations instead. This helps in avoiding 
premature segmentation of knowledge. 

In the MetaEdit+ environment the process models and meta-models help to specify 
the occasions and events when method and design rationale is to be captured, e.g. 
phases, steps, decisions, milestones or reviews (Marttiin, 1994). Overall, the captured 
method rationale can be applied to method evaluation and improvement, to raise the level 
of consciousness and communication among the stakeholders, and to provide a help or 
learning system. Method rationale may play an especially important role in very large 
projects or in method engineering which takes place over time. 

4 DISCUSSION AND CONCLUSIONS 

This paper has described tools and principles for collecting and sharing experience and 
other information on the applicability of methods used. The proposed solution consists of 
capturing the method rationale in a CAME environment. Method rationale means 
method design and usage rationales and their linkages to design artifacts across various 
phases of method engineering and use. The tools described in this paper already exist in 
the MetaEdit+ environment, and even if they have been used so far to capture only 
software design rationale, we believe that they can be utilized in a similar manner to 
capture and share knowledge about methods. 

The computerized method rationale capture takes place as an active and integral part 
of the ISD and ME processes, lessening the need for e.g. after-project interviews or 
other manual tasks. In this manner method rationale and its support tools help to achieve 
an advanced CAME environment. Capturing method rationale also provides a means for 
analysing and comparing different methods through their existing or non-existing 
features, e.g. requirements and assumptions. The original design rationale concept also 
becomes especially interesting when it is enlargened to method, process, project and 
business knowledge, supporting the creation and use of organizational memory. 

Method rationale embeds a new conceptual structure and description language to a 
CAME environment, and it can be utilized on any level of abstraction or in any phase of 



Method rationale in method engineering and use 93 

the ISD or ME activities. In general, model annotation and linking tools in computer
aided design environments may enhance both target system quality and the quality of the 
process through which they are developed. One of the most important steps in future 
research is the development of principles for utilizing method rationale for method 
refinements, e.g. defining the connection between software process models and method 
rationale capture. 

5 ACKOWLEDGEMENTS 

I want to express my thanks to the other members of the MetaPHOR project, in 
particular Juha-Pekka Tolvanen, Steven Kelly, and Pentti Marttiin for our discussions on 
method engineering. 

6 REFERENCES 

Brinkkemper, S. (1993) Integrating Diagrams in CASE Tools Through Modelling 
Transparency. Information and Software Technology, 35, 2, 101-105. 

Conklin, J. and Begeman, M.L. (1988) gffilS: A Hypertext Tool for Exploratory Policy 
Discussion. ACM Transactions on Office Information Systems, 6, 4, 303-331. 

Conklin, E.J. and Yakemovic, KC Burgess (1991) A Process-Oriented Approach to 
Design Rationale. Human-Computer Interaction, 6, 3&4, 357-319. 

Fischer, G., Lemke, A.G., McCall, R. and Morch, A.1. (1991) Making Argumentation 
Serve Design. Human-Computer Interaction, 6, 3&4, 393-419. 

Heym, M. and bsterle, H. (1993) Computer-Aided Methodology Engineering. 
Information & Software Technology, 35, 6&7, 345-354. 

Jarke, M., Pohl, K., Rolland, C. and Schmitt, J.-R. (1994) Experience-Based Method 
Evaluation and Improvement: A Process Modeling Approach, in Methods and 
Associated Tools for the Information Systems Life Cycle (eds. A.A. Verrijn-Stuart 
and T.W. Olle), IFIP Transactions A-55, North-Holland, Amsterdam, 1-27. 

Kelly, S., Lyytinen, K., and Rossi, M. (1996) MetaEdit+: A Fully Configurable Multiuser 
and Multitool CASE Environment, in Proceedings of the Eigth International 
Conference on Advanced Information Systems Engineering (CAiSE '96), Crete, 
Greece, May 1996. 

Marttiin, P. (1994) Towards Flexible Process Support with a CASE Shell, in Advanced 
Information Systems Engineering (eds. G. Wijers, S. Brinkkemper and T. 
Wasserman), LGNS#811, Springer-Verlag, 1994, 14-27. 

Oinas-Kukkonen, H. (1996) Debate Browser - An Argumentation Tool for MetaEdit+ 
Environment, in Proceedings of the Seventh European Workshop on Next Generation 
of CASE Tools (NGCT '96), Crete, Greece, May 1996. 

Ramesh, B. and Dhar, V. (1992) Supporting Systems Development by Capturing 
Deliberations During Requirements Engineering. IEEE Transactions on Software 
Engineering, 18, 6, June, 498-510. 



7 

How to compose an Object-Oriented 
Business Process Model? 

P. Kueng 1 , P. Bichler 2, P. Kawalek 1 and M. Schrejl2 

1 lPG, Computer Science Department, University of Manchester, 
O:iford Road, Manchester M13 9PL, UK. Tel: +44161 2756183 
Fax: +44161 2756236 Email: {kueng, kawalek}@cs.man.ac.uk 

2 DKE, Department of Information Systems, University of Linz, 
Austria. Tel: +43 73224689479 Fax +4373224689471 Email: 
{bichler, schrejl}@uni-linz.ac.at 

Abstract 
Faced with the intensive business process reengineering activities in many companies, it is not 
surprising that the issue of process modelling has become a central concern. This paper shows 
that object-oriented system development methods can be applied to the field of business 
process modelling, but that certain steps are needed in advance. For example, it is necessary to 
compose a goal-means hierarchy, to establish necessary activities and roles, and to determine 
the input and output for each activity. In this paper, we examine step by step how business 
processes can be modelled, which data are needed for each step and which result would be 
produced during each step. 

Keywords 
Business process modelling, goal-means hierarchy, object-orientation 

1 INTRODUCTION 

Today, many organizations undertake fundamental change programmes with the aim of 
improving their market competitiveness. Typically, the main challenges they confront are the 
reduction of cycle time, decreasing overall costs, and the improvement of customer satis
faction. In pursuit of such benefits the organization may seek to adapt or design processes with 
the aim of simplification, better control or the ready availability of information relating to the 
state of extant business cases. These changes are often accompanied by increased dependency 
on complex and heterogeneous software systems. Against this background it is not surprising 



Object-oriented business process model 95 

that more and more enterprises establish new workflow systems for which they aim to prove 
coherent support of their business processes. Whilst the demand concerning business process 
related software and development methodologies has already reached a notable level, commer
cially available workflow management systems are only now evolving beyond a rather overly 
simple, Taylorist, production-line metaphor. Furthermore empirically proven methodologies 
for modelling and implementing business processes do not exist, cf. [Swenson/Irwin 95]. 

The rest of the paper is concerned with the presentation of a modelling approach. It focuses 
upon the notion of a goal. The hypothesis is that the modelling of behaviour (e.g. a business 
process) is best understood as purposeful, and can be described through goals. This work has 
been developed at the University of Linz and shall be progressed in collaboration with the 
University of Manchester. The paper is organized as follows: Section 2 gives an overview to 
today's business process modelling approaches. Section 3 gives a short introduction to a 
business process, showing how a system development life cycle could look like and how our 
goal-based modelling process is embedded. Section 4 shows how both enterprise-wide and 
business process-related goals can be modelled. In section 5, we use a case study to transfer 
goals into activities and explain how logical dependencies between activities can be visualised. 
Section 6 presents and applies the concept of roles. In section 7, our example will be trans
formed into an object-oriented model. Section 8 concludes with a summary and an outlook on 
additional issues to be addressed in our research. Overall, we believe the contribution to be the 
innovation of a methodological framework rather than the creation of new notations. 

The case study considers an insurance company with offices throughout Europe. The inves
tigators spoke to commercial underwriters and administrators in the London headquarters and 
local office. Compared to other insurance sectors (e.g. motor policies, home insurance), the 
commercial sector is low volume and highly labour intensive. Underwriters receive submis
sions from brokers which describe major risk proposals (e.g. all the factories of a multi
national manufacturer). To process a single submission can be time-consuming. It is likely to 
involve many interactions with the broker and within the insurance company itself (e.g. 
between underwriters and administrators). The case study took place with the company in a 
phase of expansion. 

2 THE STATE OF THE ART 

To date several methodologies have been proposed. They can be grouped into four broad 
categories: 

Activity-oriented approaches: As the name implies, activity-oriented approaches focus 
primarily upon activities (sometimes referred to as tasks). The flow of information, the 
involved organizational units, and data are either not considered or are understood in the 
context of the description of activities. Activity-oriented approaches are well suited to high 
level process description. At a lower level they are used for simulation, e.g. estimating of cycle 
time. There are many activity-oriented approaches, e.g. Information Control Nets [Ellis/Nutt 
80], Trigger Modelling [Joosten 94], Event-driven Process Chains [Scheer 94]. Taking into 
account that the mentioned methods differ from each other, criticism can be only fragmentary: 
• Activity-oriented approaches generally offer good support to the process of refinement. 

However this may encourage too much attention to be paid to the detailed process structure 
and too little to the main structure of the business process. 

• Activity-oriented approaches tend to define a business process as a specific ordering of 
activities. This mechanistic view may fail to represent the true complexity of work, and may 
lead to the failure of the implementation of a new business process. 



96 Method Engineering 

Object-oriented approaches: The principles which we associate with object orientation, for 
example encapsulation and specialization, may in various ways be a part of other approaches 
(e.g. activity-oriented approaches, role-oriented approaches). The well known object-oriented 
methods (e.g. [Booch 94], [Embley et al. 92]) are widely used for designing and implementing 
software systems. It seems obvious that the principles of object orientation be applied to 
business process modelling. Are the techniques, in their current form, adequate for business 
process modelling? Not fully, because: 
• If the focus is only upon objects - describing structures and methods - the objectives of the 

business process may not be considered. Starting with our hypothesis about the value of 
understanding business through purpose, it can be implied that whilst object orientation 
offers well understood benefits, it does not follow that a business needs to be considered as 
a set of objects at all levels of abstraction. An alternative is to recognise other semantic 
concepts such as purpose and to map them to an object structure at an appropriate level. In 
this way the approach differs from some others which also give a high level view of the 
business, e.g. [Graham 95]. 

• Business processes are not designed by information systems specialists but primarily by 
process owners or their team members. Empirical evidence of case studies suggests that if 
you ask these people how a certain business process operates, they will give a description of 
activities, e.g. [Kawalek 95]. In other words: process owners and team members describe 
their work through activities rather than objects. 

• Most object-oriented methodologies apply object interaction diagrams. In these diagrams 
we can identify the concept of roles. The weakness of this approach is that the assignment 
of roles is done normally as a minor matter. Ifroles are important to us then we need to give 
more attention to their assignment. 

Role-oriented approaches: Probably the best known role-oriented technique is the Role 
Activity Diagram (often called just RADs) [QuId 95]. The origin of the technique lies with the 
modelling of coordination by [Holt et al. 83]. The concept of 'role' is obviously central and yet 
is rather loosely defined. QuId suggests that a role" ... involves a set of activities which, taken 
together, carry out a particular responsibility or responsibilities" [QuId 95, p. 29]. To Hale a 
role is "The position played in a process by an individual, team or unit" [Hale 95, p. 237]. 
Given these broad definitions we can describe many things as roles, whether they be whole job 
descriptions (e.g. administrator), parts of work activity (e.g. make expense claim) or sub-parts 
of that activity (e.g. calculate expenses). It follows that roles are conceptually similar to 
modules. They allow a grouping of primitive activities which can then be assigned to a 
particular person or agent. [Kawalek 95] argues that the strengths of RADs lie with their ability 
to express this modularity of work through roles and the synchronisation between these roles. 
Essentially this means that through a role-oriented approach we are able to describe process 
behaviour at different levels. We can describe the co-ordination between roles and demarcate 
this from our concern for the co-ordination within roles. RADs are increasingly popular, 
especially within the UK. They seem to have many strengths but also some weaknesses, for 
example: 
• RADs are not very suitable if it is important to express an intricate sequencing logic. For 

example, it can be difficult to express behaviours where two activities can be carried out 
alternatively. It is still more difficult a behaviour where the sequence of two or more activ
ities is undefmed except for the fact that they cannot be carried out concurrently. 



Object-oriented business process J1U)del 97 

Speech-act oriented approaches: Speech act theory was mainly created by Austin and his 
student Searle, cf. [Winograd/Flores 86, p. 58]. Further development, under the label 
"Language/Action Perspective" were made by Winograd, Flores and Medina-Mora, cf. 
[Medina-Mora et al. 92]. The underlying concept behind Language/Action Perspective is the 
so called "ActionWorkflow Loop": In each communication process (workflow) we can distin
guish between a customer and a performer. The communication process itself consists of a 
four-phased loop: proposal, agreement, performance, and satisfaction. The speech-act 
approach is novel, interesting and potentially very significant. From various sources (e.g. 
[Agostini et al. 94]) empirical examples of its use are being assembled. What are the current 
limitations of speech-act oriented approaches? 
• Carrying out business cases is always seen as a communication between a customer and a 

performer. The model doesn't take into account several parties. Furthermore it is not always 
obvious which part is customer and which is performer. In different business cases they can 
have a different behaviour. 

• It is not clear whether speech-act oriented approaches are primarily dedicated for analysing 
existing processes or for creating new processes. In the former case, a speech-act oriented 
approach could help to analyse communication flow between process participants. In the 
case of creating new processes, this approach doesn't provide much help: neither does it 
help to find adequate roles nor does it help to identify activities for supporting given goals. 

As a broad conclusion concerning the aforementioned approaches, it seems that today's 
business process modelling approaches are still immature. There could well be a viable 
synthesis of approaches in the future. Such a synthesis would have to address three things: 
First, it would have to look broadly at business processes and appreciate the relationship 
between the operational behaviour and managerial co-ordination, control, development and 
policy [Beer 79]. Secondly, it would need to describe the process of modelling. Thirdly, devel
oping the previous point, they need to describe what kind of information has to be input to a 
methodology and is output from its application. In this way we would be able to select methods 
in an contingent way according to the circumstances of our modelling project. 

3 KEY ELEMENTS CONCERNING BUSINESS PROCESS MODELLING 

Generally speaking, a model highlights certain aspects of the real world and omits others. 
What does this mean with regard to the subject of business processes? According to 
[Davenport 93] and [Hammer/Champy 93] a business process can be characterised by five 
elements: (1) a business process has customers; (2) a business process consists of activities; (3) 
these activities create value for the customer; (4) activities within a business process are 
carried out by humans or machines; (5) business processes often involve several organizational 
units; that means more than one organizational units are responsible for a whole business 
process. 

How are these aspects interrelated? As a core element of a business process model we have 
business cases, which are instances of a business process. Business cases have to be carried 
out. That means fulfilling business goals and satisfying stakeholders. Business cases are 
composed of activities (sometimes referred to as functions or working steps or tasks) which 
can be further decomposed into subactivities. Activities within an office environment need 
information as input. That input has to be provided by an information producer. Activities also 
produce an output which will be delivered to the customer, probably the most important player 
within a business process. Activities have to be carried out by roles. 



98 Method Engineering 

Creating and implementing new business processes is a highly complex task. There are still 
few empirically established examples. Furthermore it is difficult to appreciate the most 
important requirements at the beginning of a project. It is effectively impossible to estimate if 
the proposed process model would lead to the desired state. 

Business Process Modelling 

~ Goal Modelling 

Activity Modelling 

Role Modelling 

- Object Modelling 

Figure 1 The system development life cycle. 

Project 

management 

In order to reduce these problems we propose to apply a cyclic stage model. Figure 1, which 
includes ideas from [Floyd et al. 89] and [Hammer/Champy 93], shows that the development 
and implementation of a business process is made up of several activities: First of all, an enter
prise-wide strategy - which describes the enterprise-wide as well as the future product and 



Object-oriented business process model 99 

service portfolio - has to be developed. After that, the business process(es) have to be 
modelled; an activity we describe in detail later. Subsequently the modelled business process 
has to be verified and validated. Whereas verification is usually done by formal methods, 
validation may efficiently be carried out by prototypes. Prototyping allows potential users to 
judge if the system is adequate or not. After several iterations the business process model has 
to be transformed into an executable system. This might be done using either a workflow 
management system or in a traditional way, e.g. coding a C++ application. If an executable 
program has been created it has to be implemented in a designated environment. Generally 
speaking, implementation means developing a plan that addresses the organization of change. 
On the organizational side this may include transformations concerning hierarchy of 
management, incentives, performance measurement, job description, job changes, skills, and 
training. After successful implementation the system goes into the operation. After an 
unknown duration in operation, process goals are likely to change and this eventually leads to 
a new development cycle. Furthermore customer needs, overall policies or profitability of 
certain activities may also change - and as a result, business processes or part of them may be 
outsourced. 

Figure 1 shows that the mentioned steps of a system development life cycle are surrounded 
by project management. It is a ongoing activity and defines some key elements which affects 
the success of a project much more than technical aspects. Project management includes, but is 
not limited to the following aspects: organizational structure of the project team, staff (quantity 
and qualification), maximum project duration, maximum project cost, methods and standards 
concerning each development step, monitoring and measurement of progress and risks, facil
ities and technical equipment. 

Before proceeding, three preliminary remarks have to be made: (1) During the modelling 
process (analysis and design), we do not look at a possible implementation strategy. That 
means, the subsequently modelled business processes would be technology-independent. (2) 
Business processes discussed in this paper concern the area of office systems, e.g. informa
tional processes. In other words, at present, manufacturing processes which have the objective 
to produce physical materials (tables, printers, cars, ... ) are beyond our discussion. (3) We do 
not take into account existing IT components. In contrast to the fountain life cycle model (cf. 
[Graham 95, p. 350]), aspects of reuse are beyond the scope of this paper. 

4 MODELLING OF GOALS 

In traditional system development life cycles, the first step is typically described as "require
ments analysis". Experience of several projects has showed that the process of eliciting 
requirements cannot be seen as an isolated step, cf. [Floyd et al. 89]. Furthermore, traditional 
requirements analysis may produce lists with a vast number of items. For this reason, we 
propose to model not traditional requirements, but the more abstract notion of goals which 
have to be fulfilled. Goal modelling can be applied on an enterprise-wide level as well as on 
business process level. After starting the first business process modelling project, we have to 
create a model on the enterprise-wide level. That means, the goals on the top-level has to be 
captured and subsequently broken down into subgoals until they can be assigned to business 
processes. 

Our work leads us to believe, that the following approach would be fruitful. To achieve a 
clear structure of our goal model, we divide goals into the following three categories: 



100 Method Engineering 

• Business process-related goals: If business processes have to be modified - and this should 
happen in every process modelling project - this kind of goals are of primary importance. In 
the case study that follows, business process-related goals include: "making profit by 
selling insurances" and "increasing turnover", cf. figure 2. How should process-related 
goals be modelled? The objective is to reduce or decompose process-related goals until they 
can be transformed into activities which have to be carried out within a business process. If 
a certain activity is a component of several business processes, this activity has to be placed 
- for reduction of redundancy - as part of a support process. It should be noted, that goals 
may not only be defined in the positive sense of "ensure that something happens" but also in 
the negative sense of "ensure that something does not happen". 

• In/ormation system-related goals: This kind of goals are sometimes referred to as require
ments concerning the product. The product would be, in our area of application, an infor
mation system, such as a workflow system. IS-related goals are usually not very process
specific and for this reason it would not be efficient to define them for each project. For the 
purpose of reuse, we can distinguish between enterprise-internal and enterprise-extemal IS
related goals; furthermore we can divide the two categories into enterprise-specific and 
process-specific goals. This means that IS-related goals can be defmed for the whole 
company and then just have to be specialized (by refinement or extension) for a certain 
business process. Furthermore, IS-related goals cannot often be translated into business 
process activities during the first stages of process modelling. Nevertheless, it is important 
to make clear at the beginning of a project, which IS-related goals have to be considered 
whilst a new business process is being created and probably implemented in several infor
mation system components. Examples of IS-related goals are availability, conformity with 
user expectations, confidentiality, consistency, controlability, error tolerance, modifiability, 
reliability, response time, self-descriptiviness, and suitability for learning. 

• Project management-related goals: These goals deal with the process of "information 
system development". As we can infer from figure 1, these goals cannot be addressed to a 
certain development step. In other words, it is not possible to generally defme on which 
modelling step what type of project management-related goal has to be used. What do we 
mean by project management-related goals? Some examples may make it clearer: standards 
and guidelines concerning modelling methods and implementation aspects, organizational 
structure of the project team, project duration, costs, monitoring and measurements of 
progress and risks, quantity and qualification of project staff, facilities and technical 
equipment. 

5 MODELLING OF ACTIVITIES 

As mentioned in section 2, many modelling approaches are activity-based. That means the first 
step would normally be "defining activities which have to be carried out whilst a business case 
progresses". These approaches raise the question "How can we identify the appropriate activ
ities?". This question is very important but until now relatively little attention has been paid on 
it. How do we identify activities of a business process? There are four sources: 
• Goals and subgoals: As [Hammer/Champy 93] mention, business processes should only 

include such activities which create value for the customer. In other words, activities have 
to make a contribution to the business process goals. Referring to our example, figure 2 
shows that the subgoal "minimum of losses" leads to the activity "refuse risky submis
sions". 



Object-oriented business process nwdel 101 

Measurement of goal achievement: As we have seen above, aCtivIties should make a 
contribution to the fulfilment of goals. This raises the question "How can we measure the 
extent to which a business goal is fulfilled?". The degree of fulfilment of goals has to be 
measured by activities. In other words, for each business process goal we not only have to 
define the criteria by which the achievement can be measured, we additionally have to 
define activities for measuring the degree of fulfilment. This is shown in the example. 
Figure 2 shows for example that the goal "making profit" leads to the activity "record cost 
and return for each business case". 

• Restrictions: The definition of business processes is not a fully boundless task. It is to be 
expected that we have to take into consideration certain restrictions. They may come from 
the enterprise itself or from third parties. Restrictions can be divided into three categories: 
legal restrictions, technical restrictions, and social restrictions. For example, in the case 
study we only consider commercial insurance, because it is perceived to be technically 
different from other kinds of insurance (e.g. life insurance, motor insurance). 

• Input delivery: Business processes may subsume activities, which do not produce value for 
the customer, which are not used for measuring goal fulfilment, and which are not derived 
from restrictions. What are they good for? Activities need - if they have to be carried out -
input. This input has to be delivered by an activity which is either located within or outside 
of the business process. As we will see in table 1, concerning our example, we have several 
activities whose "goal" is to deliver input for already identified (possibly value generating) 
activities. For example, the activity "record customer request" delivers the input for the 
subsequent activities. 

Figure 2 Goal/Activity Model for the business process "Insure customer objects". 

i 
::l 

"' 
'" c: .. 
"' Cii 
c3 



102 Method Engineering 

As we have seen above, in order to identify necessary activities of a business process, we 
have to define not only business goals, business restrictions, and general requirements, but also 
the input and output for each activity. It should be mentioned that we use input and output not 
only for identifying activities but also for describing the activities more precisely. In other 
words, we have to define what data must be available for activities to be carried out. Similarly 
we have to describe which data (output) has to be delivered to the process customer, to a third 
party, or to another business activity. 

With reference to the definition of Input/Output Models (cf. table 1), it is useful to note that 
activities are regarded as isolated modules. For this reason any input, which is needed for 
carrying out an activity has to be listed. In other words, an activity cannot make any reference 
to a data pool, even certain data has been defined as input for another activity. The advantage 
of this concept is threefold: (1) activities may be placed freely, because we do not take into 
account the dataflow between activities; (2) if we analyse the inputs concerning their 
frequency and volume, we get some indications of which data are candidates for an efficient 
management, e.g. by database management systems; (3) the concept of isolated modules does 
not pre-determine any technical realisation. 

What level of abstraction would be appropriate to define Input/Output Models? We take a 
very pragmatic position on this issue and raise the question "What kind of infonnation can we 
get from people who are participating in the modelling project"? If they are thinking in 
categories of attributes, we would use them. If they prefer to speak about types of documents, 
we would record them. Much more important than the level of abstraction is the consistency. 
We have to guarantee that each data item (attribute or document) which is used as an input of 
an activity, is produced by another activity. In other words, Input/Output Models may 
"generate" new activities. If we compare figure 2 with table 1, we may discern that the activity 
"record customer request" in table 1 does not take feature in figure 2. This is because this 
activity has not been derived from the goal hierarchy, but for carrying out the activity "make 
initial review" we would use the customer request as input. Another example shows that the 
input of certain activity must not be produced in the discussed business process: the activity 
"assess risk" needs a "risk/usage matrix" as input, but as we can recognize, this "risk/usage 
matrix" would not be produced within our business process. 

Table 1 Input/Output Model for the business process "Insure customer objects". 

Activity Input Output 

record customer request customer request (i.e. customer recorded customer request (i.e. a 
name, uninsured objects and their new business case) 
usage) 

make inttial review a) recorded customer request; b) submission 
different information about custom-
er and his objects 

assess risk a) submission; b) risk/usage matrix risk score for the subm iss ion 

accept submission a) submission; b) risk score for the acceptance letter at the customer 
submission 

refuse submission a) submission; b) risk score for the refusal letter at the customer 
submission 

update database a) submission; b) risk score for the updated database 
submission 

compose policy document a) submission; b) risk score for the policy document 
submission; c) terms&condttion list 

send policy document to customer policy document policy document at the customer 



Object-oriented business process rrwdel 103 

Furthermore, looking at figure 2, it can be seen that there are some activities which are not 
taken into account; for example "record cost and return", or "send information packages to 
customer". Why is this the case? In order to achieve a compact business process model, activ
ities which are either components of several business processes, or activities which are of a 
support character should be part of support processes. Furthermore, during the defining of the 
essential activities it is sometimes useful to break up an activity into two or more activities. An 
example is the activity "deliver well structured policy documents" which has been broken 
down into "compose policy document" and "send policy document to customer". To 
summarize, the Input/Output Models helps to find the essential activities. 

Figure 3 Dynamic Activity Model for the business process "Insure customer objects". 



104 Method Engineering 

Although the essential activities are defined (cf. figure 2 and table 1), we have not yet 
defined the logical dependencies between activities. In other words it is not yet clear which 
activities can be carried out sequentially, alternatively, or concurrently. To consider this aspect 
we apply Petri-nets; and within this category we use condition/event nets, cf. [Jensen 92]. 
Condition/event nets possess three strengths: (1) they facilitate a compact and precise 
description of the dynamic process aspects; (2) they support the concept of specialization, cf. 
[Kueng/Schrefl 95]; (3) they support process simulation as well. 

Figure 3 shows the Dynamic Activity Model for the business process "Insure customer 
objects". It should be recognized that the usage of symbols in condition/event nets may vary. 
In these diagrams, states are shown as circles, transitions as rectangles. To make the net more 
compact, states are shown as very small circles and a textual description is omitted. 
Furthermore, transitions which have only support character (e.g. AND forks) are drawn as 
small rectangles. We can see that the activities "record customer request" and "make initial 
review" proceed sequentially whereas the activities "accept submission" and "refuse 
submission" are carried out alternatively. The activities "update customer database" on one 
side, and "compose policy document" and "send policy document to customer" on the other 
hand are carried out concurrently. 

6 MODELLING OF ROLES 

What do we mean by the term role? The Workflow Management Coalition [WfMC 94] distin
guish between two kind of roles: Process Roles and Organizational Roles. The first term refers 
to a collection of activities. The second one refers to the functional requirements of an organi
zational or technical unit. Following Ellis and Wainer we use the term role in the following 
way: "A role is named a designator for an actor, or grouping of actors which conveniently acts 
as the basis for the partitioning of work skills, access control, execution control, and authority/ 
responsibility. ( ... ) A role may be associated with a group of actors rather than a single actor. 
( ... ) An actor is a person, program, or entity than can fulfil roles to execute, to be responsible 
for, or to be associated in some way with activities and procedures" [EllislWainer 94, pp. 78]. 

The strengths of the role-concept is twofold: (1) during the modelling stage we do not have 
to discuss skills, functionalities, competences, and responsibilities for each activity within our 
business process; (2) during the operational stage people and machines (programs) with the 
same role are potentially interchangeable. 

In some traditional approaches (e.g. Porter's value chain), activities have sometimes been 
misinterpreted as functions - in an organizational sense. "Experience from development and 
analyzes in the Norwegian TOPP study in mechanical and electrotechnical industries shows 
that activities are easily interpreted as functions. Misinterpretation of the term activities as 
functions will bring you back to the outdated organizational structure model" [Rolstadas 95, p. 
153]. Without careful role assignment we may unintentionally develop hierarchical depart
mentalized structures and have a negative impact on the motivation of the staff. This in tum 
may lengthen cycle time and may decrease customer satisfaction. In other words, the 
assignment of activities to roles is important and has to be done very carefully - and separately 
from activity modelling. 

Before activities can be allocated to roles it is necessary to decide which activities should be 
carried out by humans and which by machines. According to [Bailey 89, pp. 189] we can 
distinguish between five allocation strategies: 



Object-oriented business process model 105 

• comparison allocation: each activity has to be analysed and then compared with established 
human and machine perfonnance criteria; 

• leftover allocation: as many activities as possible are allocated to a machine and the activ
ities left over are done by humans. Bailey remarks, that this strategy would probably be the 
most popular; 

• economic strategy: the decision, man versus machine, based completely on financial 
assessment; 

• humanized task approach: the main goal of this approach is to design meaningful human 
jobs/ human roles; 

• flexible allocation: humans allocate activities in the system based on their values, needs, 
and interests. 

Due to space limitation we resist a further discussion of these allocation strategies. Never
theless, it seems reasonable to propose that the humanized task approach and the flexible 
allocation would be the two most appropriate strategies. 

How should activities be assigned to roles? Although this question has been considered by 
many researchers, it has not been answered properly. Here we make just a general remark: 
instead of many particular specialized workplaces we should create "self-contained units". We 
achieve this by adherence to the principles of decoupling and cohesion which govern good 
modular design. This helps to reduce the need for coordination and scheduling work. 
Furthennore, it would possibly improve lateral relations crossing the divisions' borders, cf. 
[Rolstadas 95, p. 156]. 

After this short theoretical background we tum to the roles in our case study. We show how 
we graphically assign them to activities. The roles we are dealing with are the following: 
"administrator", "assistant", "customer" (policy holder), and "underwriter", cf. figure 4. In our 
small example, every activity is assigned to humans. Of course, this does not always happen, 
but during modelling on a relatively high level this is the nonnal case. In other words: although 
we do not have any assignments to machines this doesn't imply humans wouldn't be supported 
by machines; it indicates that activities have to be split up into subactivities for their further 
assignment to machines. 

Assistant 

Administrator 

Underwriter 

Figure 4 Role Activity Model (partly) for the business process "Insure customer objects". 



106 Method Engineering 

7 OBJECf MODELLING 

In the previous part of the paper we showed how to model business processes on a conceptual 
level. This section explains how a conceptual model can be transformed into a pre-implemen
tation, object-oriented model. Object-oriented models are constructed out of - as the name 
makes clear - objects. The two core elements of objects are: (1) they have a structure, and (2) 
they have a behaviour. While the structure is normally described by attributes and relationships 
to other objects, the behaviour of objects is defined by the methods objects can carry out. In 
other words, objects can be described by Object Relationship Models and Object Behaviour 
Models. Furthermore, in our universe of discourse, we have to take into account that certain 
objects can interact (in a certain state) with other objects. To depict this information, we need a 
third type of model: an Object Interaction Model. 

In the phase Object Modelling (cf. figure 1) we have to answer the question "Which object 
classes should our model subsume and how do these objects interact?". To answer this we 
distinguish three object classes: 
• Business case classes: Objects of these class describe and control the sequence of events. 

Their attributes describe the actual states of the running business cases, and they define the 
relationships between a certain business case and the associated input-output classes. In 
other words, business case classes define the characteristics of business processes. 1 How do 
we identify business case classes? It is simple: each business process has one business case 
class. The name of this business case class would be identical to the name of the business 
process itself. In our case study, the business class would be called "Insuring objects", cf. 
figure 5. As instances we have business cases, e.g. "business case 29". 

• Input/output classes: Objects of these classes are passive, i.e. they can not initiate an action 
or a communication to other objects. Objects of input/output classes are identified by 
looking at the Input/Output Model, cf. table 1. It gives relevant information concerning data 
(objects) which has to be available for carrying out activities within the business process. 
Furthermore, the Input/Output Model shows which data has to be produced - for the 
process customer or a subsequent activity. In our case study, we can identify as input/output 
classes e.g. "Customer", "Customer Request", "Customer Objects", and "Submission", cf. 
figure 5. An instance of the class "Submission" could be "submission 84371 ". 

• Role classes: Objects of these classes are roles (cf. figure 4) - which carry out activities. 
These objects can send messages to every other object (to passive objects as well as to 
active objects). Therefore objects of role classes are referred to as active objects.2 In our 
example, we have four role classes: "Customer", "Administrator", "Assistant", and "Under
writer". For having a compact example of an Object Relationship Model (figure 5) we 
consider only the fIrSt two mentioned roles. An instance of the role-class "Administrator" is 
e.g. "Mrs. Smithfield". 

To show the interaction between the captured objects (figure 5) we use Object Interaction 
Models, cf. figure 6. Reading this diagram, in natural language, we would say: if a customer 
places a request for insuring his objects at the insurance company, the request has to be 

1. It has to be remarked, that the main characteristics of a business process could also be defined - as attributes 
and methods - in tbe "nonnal" classes. The advantage of creating a separate object class is twofold: (1) the 
structure of a business process would be easier to understand, and (2) the concept of inheritance would be 
applicable in a more extensive way, cf. [Miiller-Luschnat et al. 93]. 

2. The concept of roles - in the context of Office Systems - has been introduced by [Lyngbaek/McLeod 84]. 



Object-oriented business process model 107 

recorded. As an object-oriented expression, we would say: the object Customer sends a 
message to the object Customer Request. 

Figure 5 Object Relationship Model (partly); notation according to [Embley et al. 92]. 

What happens 

~ 
If customer places a request 
THEN DO 

record request 

If request is recorded 
THEN DO 

make initial review 
create submission 

If submission is accepted 
THEN DO 

inform customer 

Customer 

-
i sert Request) 

Customer 
Request 
;--

crea e(S bmission) 

informO 

'-- '--

Submission Administrator 

;-- ;--

get Request) 

- -

Figure 6 Object Interaction Model (partly); notation following to [Jacobson et al. 94]. 

It would be possible to develop this model further. For this example we have refrained from 
doing so as the reader will, in any case, be able to reference the huge volume of literature about 
object-oriented systems development. 

8 SUMMARY AND FUTURE WORK 

In an influential paper [Curtis et al. 92] suggested there are four important perspectives to 
process models. These are the functional, the behavioural, the organizational, and the informa
tional perspective. They provide a useful framework for considering the coverage of the 
approach presented in this paper. The functional perspective of a business process is given by 
Object Interaction Models, cf. figure 6. The behavioural perspective of a business process (e.g. 
activity sequencing) is represented on two levels: at the pre-object-oriented level it is repre
sented by Dynamic Activity Models (Petri-nets, cf. figure 3) whilst at the object-oriented level 



108 Method Engineering 

it is represented by Object Behaviour Diagrams. The organizational perspective of a business 
process (which shows by whom are activities carried out) is represented by Role Activity 
Models, cf. figure 4. The informational perspective of a business process (e.g. the entities 
produced) is represented by Object Relationship Models, cf. figure 5. 

What are the strengths of the goal-based modelling approach which is presented here? 
• The methods of the objects (activities) are derived from business goals. In other words, if 

business goals change, we can easily establish which methods have to be updated. 
• Activities are used as modules because all of them have their own input-output interfaces. 

The advantage of this is twofold. First, we can arrange our activities (at least in the first 
development cycle) within a business process in a way that is relatively free from 
restriction. Secondly, for every activity we can decide to perform it in-house or to buy it 
from a third party. 

Where are the limits of our approach? 
• The goal-oriented approach does not provide any help for appraising design alternatives. 
• In order to realise successful business processes, we not only have to have a mature 

business process model, we also have to implement it successfully. In other words, 
following the proposed steps cannot guarantee efficient business processes. 

This paper has given an overview of an approach to modelling business processes. We have 
showed which steps would be needed to create an object-oriented business process model, how 
these steps can be carried out, and how the main ideas are applied in a case study. Some 
answers have been given, others need further research investigation. 

A prominent issue is the development of the goal model. It is intended to extend the goal 
model in order to support the description of richer goal structures. It is intended to do this with 
more enhanced features, such as conjunctive, disjunctive, and conflicting subgoals. These will 
not only allow to identify the activities needed to achieve them, but will also allow to infer 
restrictions on their logical order. For example, if a goal is decomposed into two conjunctive 
subgoals, the activities associated with these subgoals must be either executed in sequence or 
in parallel, but may not be executed alternatively. 

To conclude, it is useful to list other questions which need further research. These include 
the following: What organizational and technical means do we have to depict individual/ 
social/personal/organizational goals? How could user participation, during business process 
modelling, be augmented? How can we support the process of finding the appropriate activ
ities? How can we establish the appropriate role for each activity? How would business 
process modelling be influenced by implementation aspects (WFMS versus conventional 
programming)? How can we measure the quality of a business process model in each 
modelling step? 

Acknowledgement 
The work of Peter Kueng has been supported by the Swiss National Science Foundation. 



Object-oriented business process /7/lJdel 109 

9 BmLIOGRAPHY 

[Agostini et al. 94] Agostini, A.; De Michelis, G.; Grasso, M.; Patriarca, S.: Re-engineering a business 
process with an innovative worldlow management system - a case study. In: Collaborative 
Computing, Vol. 1, No.3 (September 1994), pp. 163-190. 

[Bailey 89) Bailey, Robert: Human Performance Engineering - Using Human Factors/Ergonomics to 
Achieve Computer System Usabiliy. Prentice-Hall, 2nd ed., London 1989. 

[Beer 79] Beer, Stafford: The Heart of Enterprise. John Wiley & Sons, Chichester 1979. 

[Booch 94] Booch, Grady: Object-Oriented Analysis and Design with Applications. Benjamin/ 
Cummings, 2nd ed., Redwood City CA 1994. 

[Curtis et al. 92) Curtis, Bill; Kellner, Marc; Over, Jim: Process Modelling. In: Communication of the 
ACM, Vol. 35, No.9 (September 1992), pp. 75-90. 

[Davenport 93) Davenport, Thomas: Process Innovation - Reengineering Work through Information 
Technology. Harvard Business School Press, Boston 1993. 

[Ellis/Nutt 80) Ellis, Clarence; Nutt, Gary: Office Information Systems and Computer Science. In: 
ACM Computing Surveys, Vol. 12, No.1 (March 1980), pp. 27-60. 

[Ellis/Wainer 94) Ellis, Clarence; Wainer, Jacques: Goal-based models of collaboration. In: 
Collaborative Computing, Vol. 1, No.1 (March 1994), pp. 61-86. 

[Embley et al. 92) Embley, Davis; Kurtz, Barry; Woodfield, Scott: Object-Oriented Analysis - A 
Model-Driven Approach. Yourdon Press, Prentice Hall, Englewood Cliffs 1992. 

[Floyd et al. 89] Floyd, Christiane; Reisin, Fanny; Schmidt, Gerhard: STEPS to Software Development 
with Users. In: Ghezzi, C.; McDermid, J. (Eds.): Proceedings, 2nd European Software 
Engineering Conference, ESEC '89. LNCS 387, Springer-Verlag, Berlin 1989, pp. 48-64. 

[Graham 95] Graham, Ian: Migrating to Object Technology. Addison-Wesley, Wokingham, England 
1995. 

[Hal6 95) Hal6, Jacques: From Concepts to Capabilities - Understanding and Exploiting Change as a 
Competitive Advantage. John Wiley & Sons, Chichester 1995. 

[Hammer/Champy 93) Hammer, Michael; Champy, James: Reengineering the Corporation - A 
Manifesto for Business Revolution. Harper Business, New York 1993. 

[Holt et al. 83) Holt, Anatol; Ramsey, Rudy; Grimes, Jack: Coordinating System Technology as the 
Basis for a Programming Environment. In: Electrical Communication, Vol. 57, No.4 (1983), pp. 
307-314. 

[Jacobson et al. 94] Jacobson, Ivar; Christerson, Magnus; Constantine, Larry: The OOSE Method - A 
Use-Case-Driven Approach. In: Carmichael, Andy (Ed.): Object Development Methods. SIGS 
Books, New York 1994, pp. 247-270. 

[Jensen 92] Jensen, Kurt: Coloured Petri Nets - Basic Concepts, Analysis Methods and Practical Use; 
Volume 1. Springer-Verlag, Berlin 1992. 

[Joosten 94) Joosten, Stef: Trigger Modelling for Workflow Analysis. In: Chroust, Gerhard; Benczur, 
Andras (Eds.): Workflow Management - Challenges, Paradigms and Products; Conference 
Proceedings of CONnectivity '94, Linz, Oct. 19-21. Oldenburg Verlag, Miinchen 1994, pp. 236-
247. 

[Kawalek 95) Kawalek, Peter: An introduction to a process engineering approach and a case study 
illustration if its utility. In: Browne, J.; O'Sullivan, D. (Eds.): Re-engineering the Enterprise; 
Proceedings of the 1FIP TC5/WG5.7 Working Conference, Galway, April 1995. Chapman & 
Hall, London 1995, pp. 248-272. 



110 Metlwd Engineering 

[Kueng/Schrefl 95] Kueng, Peter; Schrefl, Michael: Spezialisierung von Geschaftsprozessen am 
Beispiel der Bearbeitung von Kreditantrllgen. In: HMD - Theorie und Praxis der 
Wirtschaftsinformatik, Jg. 32, Heft 185 (September 1995), S. 78-94. 

[Lyngbaek/McLeod 84] Lyngbaek, P.; McLeod, D.: Object Management in Distributed Office 
Information Systems. In: ACM Transactions on Office Information Systems, Vol. 2, No. 2 
(1984), pp. 96-122. 

[Medina-Mora et al. 92] Medina-Mora, Raul; Winograd, Terry; Aores, Rodrigo; Aores, Fernando: The 
Action Workflow Approach to Workflow Management Technology. In: Proceedings of the 
Conference on Computer-Supported Cooperative Work, CSCW '92, Toronto, Oct. 31-Nov. 4, pp. 
281-288. 

[Miiller-Luschnat et al. 93] Miiller-Luschnat, Gunther; Hesse, Wolfgang; Heydenreich, Norman: 
Objektorientierte Analyse und Geschliftsvorfallsmodellierung. In: Mayr, H.; Wagner, R. (Hrsg.): 
Objektorientierte Methoden flir Informationssysteme; Proceedings der der GI-Fachgruppe 
EMISA, Klagenfurt, 7.-9. Juni 1993. Springer-Verlag, Berlin 1993, S. 78-94. 

[Ould 95) Ould, Martyn: Business Processes - Modelling and Analysis for Re-engineering and 
Improvement John Wiley & Sons, Chichester 1995. 

[Rolstadas 95) Rolstadas, Asbjorn (Ed.): Performance Management - A business process 
benchmarking approach. Chapman & Hall, London 1995. 

[Scheer 94) Scheer, August: Business Process Engineering: Reference Models for Industrial 
Enterprises. Springer-Verlag, 2nd ed., Berlin 1994. 

[Swenson/lrwin 95) Swenson, Keith; Irwin, Kent: Workflow Technology - Tradeoffs for Business 
Process Re-engineering. In: Conference on Organizational Computing Systems, COOCS '95, 
Aug. 13-16, Milpitas, USA. ACM Press, New York 1995, pp. 22-29. 

[WtMC 94) Glossary: A Workflow Management Coalition Specification. Authored by Workflow 
Management Coalition Members, Brussels 1994. (Updated information may be found on http:// 
www.aiaLed.ac.uk/WtMC/). 

[Winograd/Flores 86) Winograd, Terry; Aores, Fernando: Understandig Computers and Cognition - A 
New Foundation for Design. Addison-Wesley, Readings 1986. 

10 BIOGRAPHY 

Peter Bichler received his Dipl.-Ing. degree in computer science from Johannes Kepler University of 
Linz, Austria, in 1993, where he currently works on his PhD thesis. His research interests are authori
zation in worldlow systems and active object-oriented database systems. 

Peter Kawalek is a Research Associate of the University of Manchester. His research considers the use 
of process models as integrating frameworks. He also works as a consultant for Manchester Informatics 
Limited and has undertaken many process modelling projects with industrial collaborators. 

Peter Kueng received his Doctorate from Fribourg University, Switzerland, in 1994. After finishing his 
studies in business-oriented computer science he worked at Fribourg University as well as for IBM 
Berne in the field of database systems. In 1995 he worked as Visiting Researcher within the Data & 
Knowledge Engineering research group at Linz University. Currently, he is Visiting Researcher at 
Manchester University. 

Michael Schrejl received his Dipl.-Ing. degree and his Doctorate from Vienna University of 
Technology, Vienna, Austria, in 1983 and 1988 respectively. Presently, he is Professor of Information 
Systems at Johannes Kepler University, Linz, Austria. His research interests are in the fields of object
oriented systems and worldlow management. 



8 

Human work as context for 
development of object oriented 
modelling techniques 

J. J. Kaasb¢ll and O. Sm¢rdal 
Department of informatics, University of Oslo 
P.O. Box 1080, Blindem, N-0316 OSLO, Norway 
Phone: + 4722 8524 29, Fax: + 4722 85 24 01 
E-mail: {Jens.Kaasboll.Ole.Smordal}@ifi.uio.no 

Abstract 

Computer systems are increasingly being used for communication and coordination of work, 
while object-oriented modelling techniques aim at modelling the problem domain of the 
computer system. Current techniques have been developed with respect to easy implementation, 
while we argue that further development of the modelling techniques should also be based on 
knowledge about human work in organisations. 

We outline a learning cycle of modelling technique and point to where such knowledge 
should be included. 

We have carried out two alternative approaches to development of object oriented 
techniques based on these ideas, and we outline these development processes. One approach is 
based on semiotic concepts, the other is based on activity theory. 

Keywords 

Research Method, Method Engineering, Learning Cycle, Activity Theory, Semiotics, 
Evaluation 

INTRODUCTION 

Object oriented modelling techniques should be developed according to knowledge about 
human work within organisations. This paper argues why and points to ways to change current 
development practice. 

The basic ingredients of object-oriented techniques for modelling are the mechanisms 
provided by Object-oriented programming languages. In short, these mechanisms consist of 
encapsulated objects with properties and behaviour, and specialisation of classes by means of 
inheritance. It is often claimed that object-oriented modelling of the domain of an information 
system is easy, because object-orientation corresponds to our natural conception of the world. 



112 Method Engineering 

Considering that the core concepts of object-oriented techniques consist of implementation 
restrictions, we doubt the correctness of this claim. 

Object oriented techniques are used within application areas that include human work 
within some organisation. Lately, the techniques have also been used to capture aspects beyond 
the domain of work, e.g., aspects relating to actors, communication, coordination of work, task 
flow, and work procedures. This is due to a shift of perspectives regarding the role of the 
computer in work settings; from a focus on the computer as means of control and administration 
of a problem domain, to a focus that also include the computer as a mediator in the work 
setting, e.g., as in CSCW applications. Carstensen et al (1995) point to inadequacies of object
oriented modelling in these respects. Others have reported problems related to modelling of 
different roles of actors (Richardson and Schwarz, 1991; Coad, 1992). These findings 
underpin our disbelief in the claim of the easiness of modelling. Research on the difficulties of 
learning object-oriented modelling (Vessey and Conger, 1994) also indicate that the claim is 
incorrect. 

We interpret these observations as symptoms of an underlying problem: that the 
development of object-oriented techniques for modelling has been too restrained by 
implementation considerations. The inadequacies that have been detected have been explained 
within the frame of the mechanisms of object-oriented programming languages, the theoretical 
contributions have been restricted to formal arguments within this frame and, consequently, the 
suggestions for improvements of the techniques have not extended these mechanisms. This 
paper aims at arguing that the way of developing techniques should open for a wider range of 
explanations, theories, and suggestions. In particular, we will show how we have included 
knowledge concerning actors in the process of developing object-oriented techniques for 
modelling. 

1.1 Suggestions in the literature 

A way to improve methods called "method engineering" has been defined as "the disciplined 
process of building, improving or modifying a method by means of specifying the method's 
components and their relations" (Heym and Osterle, 1993; Rossi and Brinkkemper, 1995). The 
concept is used to capture the development of a method and the adaptation of a method in a 
specific situation (Kumar and Welke, 1992; Harmsen et aI, 1994), and method engineering is 
compared with the development and modification of an information system in an organisation. 

Since the problems referred above concern object-oriented techniques for modelling in 
general, method engineering, which only deals with individual methods and compilation of 
methods from techniques, will fall short with respect to the generality of the problem. In 
addition, method engineering does not enrich the concepts and mechanisms for modelling, such 
that actors, roles, task flow, etc., are more easily modelled. 

1. 2 Seamlessness in modelling 

An argument for object-oriented development is the searnlessness from analysis to design and 
implementation: the same concepts are used in all phases, such that no magic transition is 
needed. When arguing for richer concepts for modelling, we may put the seamlessness 
principle in danger. 

To be precise in the further discussion, we first define areas that can be modelled during 
system development, based on similar concepts in Mathiassen et al (1993). 



Development of object-oriented modeling techniques 113 

The problem domain of a computer system is what the computer system is about; the part of 
the world that the computer system is supposed to handle, control or monitor. Examples 
(with basic components): a flight booking system (flights, seats, reservations, customers), 
a banking system (customers, transactions, accounts, loans, interests). 

The application domain of a computer system consist of the users, the organisational 
context, and the work in which the computer system is used, e.g., a travel agency, a bank. 
Elements of the application domain are employees, the coordination of work, 
communication, power structures, ad-hoc organised work, interruptions in work, etc. 

The computer system including its application program, data/object base, user interface 
module, and communication modules. 

When analysing functionality requirements of a system, one could make a model of the 
application domain. Since it is assumed that the problem domain is more stable than the 
functional requirement, making an object-oriented model of the application domain is often not 
considered worthwhile. 

Many object-oriented methods suggest that one should model the problem domain, because 
this is what the computer system shall represent. The model is supposed to describe how the 
system developers and users conceive the problem domain. For now we regard this model as 
based on consensus among users and developers. An advantage of a model of the problem 
domain is that the model is independent of the technology for implementing the system. The 
model can be used as a part of a specification, such that computer systems conforming to the 
specification can be implemented on several platforms or with different languages. 

A model of the future computer system will often be an extension of a model of the 
problem domain in order to include software modules and objects needed for implementation. 
Because the same concepts are used in all models and in the implementation, the model of the 
future computer system can be aligned with the model of the problem domain. This is referred 
to as the seamlessness of object-oriented system development. 

However, iterations are carried out during development, and implemented systems are 
changed during long periods of further development. Experience shows that changes are often 
carried out directly on the code, without updating the models. To keep the seamlessness, it must 
be possible to keep the models in alignment with the code. If other concepts are introduced in 
the model of the problem domain, more effort may be required to keep the models updated. 

We want to include in our models issues of work organisation, and this suggests an 
extension of the problem domain to include aspects of the application domain. The domain 
definitions given above represent useful distinctions. Hence we want to introduce an another 
concept, the model domain, which denotes the area of concem when modelling. As we identify 
in the next section, the most usual model domain for object-oriented modelling techniques is the 
problem domain, but we also identifies some approaches that have the future computer system 
as the model domain. 

In our work we define the modelling domain to be the problem domain plus the aspects 
of the application domain that is mediated by the computer system. We discuss the domain for 
object oriented modelling techniques in Section 2.3. 

1.3 Overview of the paper 

The paper is organised as follows: Section 2.2 presents a learning cycle for development of 
object-oriented techniques, based on the interplay between modelling in practice and theoretical 
contributions. We identify contributions from some current object-oriented techniques in respect 



114 Method Engineering 

to 1) their notions and concepts, 2) their embedded theory, and 3) the reported technique 
development. 

We conclude that most techniques have had a technology driven development. In 
Section 2.3 an extension of the domain of object-oriented techniques is suggested, also 
including issues of work organisation, roles, and communication between the users. 
Section 2.4 and 2.5 presents two development cycles that address this extended domain, one 
using semiotic concepts, the other using activity theory. 

2 THE DEVELOPMENT OF TECHNIQUES 

In order to discuss different approaches to development of techniques for modelling, we outline 
a learning cycle for identifying the stages and components of the development. 

Gaining new scientific knowledge can be regarded as a continuous cycle of formulation of 
hypotheses, evaluation in practice, explanation of results, contributions to theories, 
reformulation of hypotheses, etc. The learning cycle of development of techniques consists of 
four phases and transformations from one phase to the next, see Figure 1. 

Construction of refmed : Modelling in practice 
techniques 

derive 
____ ~ypg!h_e~i§ 

Theoretical 
contributions 

Figure 1 A model of technique development. 

I 

I 

: test 

find breakdows 
and anomalies 

E valuation and 
problem detection 

Modelling in practice is the area we learn from, and also the area we want to improve. 
Evaluation and problem detection is triggered by experiences when modelling is not 

straightforward. The main concern in this phase is to identify problems that stem from the 
use of this technique in a practical system development context. The problems may be 
identified due to 1) breakdown in the use of a technique, e.g., some property of the 
application domain could not be captured in the model, or the appearance of inconsistencies 
in the model, or 2) anomalies in the model or in the use of a technique, e.g. the resulting 
model seems strange compared to the application domain. 



Development of object-oriented modeling techniques 115 

Theoretical contributions. When explaining problems in a scientific way and considering 
ways to avoid them, one has to consult other scientific results and theories. One may try to 
explain the problems within the frame of the research or search for other theories. 

Construction of refined techniques. When the appropriate theoretical considerations have 
been made, one may have to adjust the technique and possibly include new mechanisms, 
metaphors and notation. Hypotheses conceming the techniques and the approach to 
evaluate the hypotheses are worked out. 

Modelling in practice. The cycle restarts with using the technique in modelling. Any kind of 
practice which contributes to learning about the technique and its place in system 
development is feasible. 

Galliers (1992) separates research goals into theory building, theory testing, and theory 
extension. He argues that case study, survey, forecasting, simulation, argumentation, 
interpretation, and action research are possible research approaches for theory building. 
According to his categorisation, these research methods are appropriate in the phases of 
evaluation and theoretical contribution. The theories are tested in the phases construction of 
refined techniques and modelling in practice. Theorem proof, laboratory experiment and field 
experiment are suited for theory testing, according to Galliers. In our learning cycle, theorem 
proving may take place in the theoretical contribution and during construction of techniques. 

Braa and Vidgen (1995) outline three types of knowledge interests in system development 
research: intervention, science, and interpretation. Intervention aims at change in the 
organisations where computer systems are used and developed, science aims at general 
knowledge that is useful for prediction, and interpretation aims at explaining and understanding 
information systems development in organisations from different viewpoints. Inspired by 
these three types of knowledge interests, we construct a taxonomy of three ways of developing 
techniques for modelling. We will use this taxonomy to discuss how the phases of the learning 
cycle are covered in the way techniques are developed. 
The consultant approach. A consultant is involved in development of systems, and gathers 

experience of her/his ways of working, and expresses this experience in general terms as 
techniques and methods. In this approach, the evaluation is carried out in an unscientific 
manner, and theoretical explanations and contributions are not included. The main goal of 
this approach is improvement of system development practice. 

Method engineering. Scientists measure use of methods in system development. After 
identifying problems, they calculate improved principles, formalise vague parts of the 
methods, and improve tools to support implementation. In this approach, all aspects of the 
cycle are included, but the theoretical considerations are limited to formal theories. The 
main goal of methods engineering is improved predictability of system development when 
it is carried out according to the method. 

System development research. Scientists study system development and the role of 
methods in practical projects. Problematic areas are identified. Relevant theories are called 
upon to understand and explain the problems. Improved knowledge of system development 
constitutes the basis for possibly suggesting improved guidelines and techniques. The main 
goal of the research is improved knowledge of system development from different 
viewpoints, and the role of techniques therein. 

Method engineering addresses methods and techniques in particular. System development 
research has a wider scope, and improvements of techniques is one of many possible outcomes. 
We nevertheless argue that development of methods and techniques should also be carried out 



116 Method Engineering 

in the perspective of system development research, because it opens for a richer variety of 
research methods and theories. When problems that lend themselves to formal methods are 
encountered, there is nothing that prevents an engineering approach to deal with these 
problems. However, if working within a method engineering perspective as outlined here, the 
perspective does not open for alternative interpretations or research methods. 

Main differences between method engineering and system development research are found 
in the theoretical and the constructive phases of the learning cycle. They are summarised in 
Table 1. 

Table 1 Differences between Method engineering and System development research 

Viewpoint 
Explanation 

Theoretical contribution 
Suggestions for 
improvements of 
techniques 

Method engineering 
Unified 
Within the frame of object
orientation 
Formal 
Constrained by straightforward 
implementation in object
oriented language 

System development research 
Diverse 
Within any scientific frame 

Any kind 
May require extensive 
implementation efforts or 
changes in the object-oriented 
languages 

In the following, we will see that development of object-oriented techniques for modelling 
so far has been mainly carried out according to the methods engineering approach. 

2.1 Explanations 

In order to illustrate how problems in modelling often are explained, we consider modelling of 
actors. 

When an actor can have roles that change over time, one encounters a problem in object
oriented modelling. The problem has been explained within the common concepts of object
orientation to be that the actor object has to change its class (e.g., Richardson and Schwartz, 
1991; Nerson, 1992; Gottlob et al, 1996). The suggestions for solutions have been minor 
extensions of the object concept along with guidelines for implementation. 

Coad (1992) refers to another discipline when diagnosing problems in object-oriented 
modelling. Inspired by the concept 'pattern' in architecture, he explains that some of the 
problems in modelling appear because the basic object-oriented concepts are too fine-grained to 
capture some frequently occurring structures in domains. This explanation is grounded outside 
the area of object-orientation, and Coad therefore transcends the method engineering approach. 
The conclusion he draws is to suggest patterns of objects connected by well-known relations. 
This suggestion is well inside current object oriented concepts. 

2.2 Theoretical contributions 

Essink and Erhart (1991) have suggested a theoretical framework for conceptual modelling 
during analysis. Their framework departs from an ontology that is close to the core of object
orientation. The only extension is that they claim that "objects are bound by (natural) laws" 
(p.91), and this claim does not penetrate the formalistic assumption of object-orientation. 



Development of object-oriented modeling techniques 117 

From their framework, they generate four kinds of abstraction relations: specialisation, 
containment (aggregation with parts depending on the whole), assembly (aggregation with 
independent parts), and grouping (set inclusion). These four relation types are specialised 
according to whether they are permanent or temporary, e.g., "roletype" is a temporary 
specialisation that may meet the need for modelling roles, which is an important aspect of actor 
concepts. The suggestions of Essink and Erhart have neither been used in recent methods for 
modelling (Henderson-Sellers and Edwards, 1994; Reenskaug et ai, 1996) nor been quoted in 
the solution presented in (Gottlob et ai, 1996), even if their roletype relation is similar to the 
solution that is elaborated by Gottlob et al. One reason may be that it may be hard to decide 
when and how to use the different types of relations suggested, based on the brief discussion in 
the conference paper. 

van de Weg and Engmann (1992) suggest another framework where they distinguish 
between interobject and intraobject structures, and static and dynamic properties. They also 
suggest a "role-of' relationship. Their framework does not support their suggestion of this 
relationship, instead they refer to an earlier suggestion by Pernici (1990), while ignoring Essink 
and Erhart (1991). van de Weg and Engmann's role-of relation is also ignored in recent 
methods (Henderson-Sellers and Edwards, 1994; Reenskaug et ai, 1996), even though roles 
are considered in these methods and other research is cited. 

The ignorance of these research suggestions shows that they have not succeeded in adding 
new issues to the core of object -orientation. In addition, the suggestions have been limited to 
formal theories. 

We have not been able to collect much information about development of modelling 
techniques from the literature, and we have not carried out a survey on our own. Nevertheless, 
the available information from the method designers support the observation that the theoretical 
contributions have not entered the methods properly. 

Rumbaugh tells how he collects knowledge for updating his Object Modelling Technique 
(OMT): 

Any method must grow or die, so I have used three drivers in guiding the 
evolutions of OMT: user experience and feedback, good ideas from other 
authors, and new insights of my own. (Rumbaugh, 1995, p.21) 

While his reference to user experience indicates a consultant approach, he also gets good ideas 
from others. The material he outlines includes research discussions, e.g., concerning 
constraints, so he is carrying out method engineering. His considerations do not go beyond the 
formal and implementation issues, however. E.g., a discussion about objects that are part of 
several aggregates does not go beyond defining relations. 

Other authors of modelling methods may draw upon a richer background of literature. 
However, since they to a limited extent refer to the research of formal or implementation 
character, it seems unlikely that they have brought wider focused theories into their 
considerations. 

The OOram method (Reenskaug et al, 1996) is one exception, in which Weber's 
bureaucratic theory is used as a template for how to provide structure to a system. This structure 
concerns design of the relations between objects and roles in the computer system, and it is not 
indicated that Weber's theory can be effective in modelling of the problem. 



118 Method Engineering 

2.3 Suggestions for change of techniques 

Based on a literature survey of object-orientation, Bjomestad (1994) summarises the core of 
object -orientation to consist of the following: 
• encapsulated objects with properties and behaviour, 
• classes of objects, and 
• inheritance of general properties and behaviour to specialised classes. 

Monarchi and Puhr (1992) have surveyed object-oriented methods, and the methods seem to 
conform to the general core of object-orientation, with one exception: communication between 
objects is found in a majority of the methods in the survey. Somewhat surprisingly is 
aggregation only found in 5 of 19 methods, and 7 of the methods include constraints on 
structure, e.g., cardinalities. 

Recently, the methods have adapted a larger number of concepts for modelling (e.g., 
Embley et aI, 1992; Martin and Odell, 1992; Henderson-Sellers and Edwards, 1994), and 
aggregation and constraints are included. However, no standard definition of aggregation has 
emerged (Motschnig-Pitrik, 1994), so even this minor extension of object-orientation has not 
yet succeeded, nearly twenty years after it was suggested in data modelling (Smith and Smith, 
1977). 

It is commonly assumed that the object-oriented model should represent the domain to be 
modelled. A step towards a more radical extension is found in the methods by Wirfs-Brock et 
al (1990), Jacobson et al (1992) and Reenskaug et al (1996). These methods suggest that the 
interaction between the user and the computer system should be the starting point for selection 
of objects rather than first achieving a model of the problem domain. Designing a system 
according to a desired human-computer interaction opens for modelling domains from different 
user viewpoints. However, the methods go for a unified model that is supposed to serve all 
interests, without separating between different viewpoints in the model. 

2.4 Current trend: Method engineering 

Conclusively, we have seen some explanations of modelling problems that extend object
oriented theories. However, neither these nor other theoretical contributions have extended the 
basis for deriving concepts for modelling. Consequently, the suggestions for improvements of 
techniques have been constrained by the implementation considerations. In addition, neither the 
theoretical considerations nor the techniques captures multiple perspectives on domains in the 
models. Taken together with Rumbaugh's story, this indicates that the way second generation 
object-oriented methods are developed conforms to method engineering rather than the system 
development research approach. 

3 THE DOMAIN OF TECHNIQUES 

As we mentioned in the introduction, we have noticed a shift in the perspective in respect to the 
roles the computer systems may play in human work within organisations. Earlier, a common 
view of the computer was that it was used for handling or controlling the problem domain, 
hence the models did not address elements in the application domain explicitly. Lately there has 
been an increasing attention in both system development practice and in the research community 
toward using the computer as a medium in the work organisation, thus enabling the use of 



Development of object-oriented modeling techniques 119 

computers as means of coordinating work and communication in and about work. (Simone and 
Schmidt, 1993; Carstensen et aI., 1995). 

We have in the previous section identified that the modelling domain of object oriented 
modelling techniques usually is the problem domain, and in some approaches the future 
computer system. Apart from the use-case technique (Jacobson, 1992), we have not identified 
any object oriented modelling technique that explicitly address the application domain. 
However, Carstensen et al (1995) have applied an object oriented analysis technique to capture 
aspects of the application domain, and have reported problems with modelling interactions 
between actors involved in coordinating their activities. Other have reported problems related to 
modelling of different roles of actors in respect to the computer system (Richardson and 
Schwarz, 1991; Coad, 1992). 

We want to apply 00 modelling techniques in a human work context, where the computer 
has a role in interhuman communication, coordination of work and cooperation. With the 
problems mentioned above in mind we claim: 
• that the notation and concepts for modelling either fails to or makes it difficult to model 

issues of work context, and 
• that the theoretical foundations for 00 techniques do not give clues as to what properties of 

the work context that should be modelled, and how this should be done. 

According to our learning cycle, the problems are both on a theoretical and on a modelling 
technique level. We argue that the perspective on human work is fundamental to the selection 
and development of theoretical foundations for modelling. 

3.1 Human work and modelling domains 

We have reached a position to not model human work itself, but rather model the roles the 
computer have in the work. There are both political and theoretical arguments for this position. 
One the political side, we fear a de-skill of workers if the computer systems control the 
execution of work, in terms of what activities should be done, and in what sequence. On the 
theoretical side, we regard work to be to complex to model. Several schools of theories of work 
exist, and we use some of their findings to support this claim: 
• Strauss (1988) reports that tasks and lines of work do not automatically arrange themselves 

in proper sequences or with proper scheduling, hence further work must be done in order to 
get the work done. This work, denoted articulation work, is driven by the situation at hand, 
and is often a result of contingencies. We regard it difficult to be explicit about articulation 
work itself, as would be necessary when trying to model it. 

• Suchman (1987) reports that work is not strictly governed by plans, rather it is driven by the 
possibilities and limitations of the situation at hand. We regard a model of e.g. a work task 
or a routine a plan in this respect, hence problems related to ad-hoc arrangements in a 
practical setting are expected. 

• Several persons are often involved in work, because several areas of competence are needed. 
This requires that they integrate and coordinate their individual activities in order to get the 
work done. When modelling the different actors of the application domain, and their roles 
should be made explicit in the model, to ease this coordination. 

To summarise, we have identified a need for representing the different actors in the 
application domain, and a need to model the role of the computer in a work context. The issue 
of actors and roles is covered by a theoretical approach based on semiotic concepts, presented in 



120 Method Engineering 

the next section. The role of the computer is covered by an approach based on activity theory, 
presented in Section 2.5. 

4 A LEARNING CYCLE BRINGING IN A SEMIOTIC RELATION 

Problems of object oriented modelling of actors with roles (Kvisli, 1993; Ressem, 1995) and 
entities that have both form and content (Fog, 1992) have been reported. Others have explained 
the problems of roles within the object-oriented perspective (e.g., Richardson and Schwartz, 
1991; Nerson, 1992; Gottlob et al, 1996). In order to explain both types of problems, we have 
searched for new ways to interpret the phenomena to be modelled. One approach has been to 
study the referential aspects of information systems. 

Information systems are referential systems, because the data in information systems is 
perceived by their users to refer to things and events that are separated from the information 
system. Roles also exists in information systems e.g., persons playing the roles of users, and 
computer hardware playing roles of data processing units. We have therefore regarded the 
referential aspects of information systems as a domain for modelling, and we have seen how 
theories relevant to this area can contribute to the leaming cycle of development of modelling 
techniques. 

The data of information systems are expressions that refer to extensions, e.g., the object 
'Diana Smith' in the airline reservation system refers to a specific passenger. In order to explain 
how the hardware of computers can play the role of data processing, one identifies layers of 
implementation, e.g., saying that an object is implemented in ASCII code, which is 
implemented in binary code, which is implemented in electronic circuits. During system 
design, one often has to construct programs at different layers. A similar separation into layers 
is also found in semiotics (Andersen, 1990), where the form of expressions is realised in 
substance. E.g., letters are realised in black curves on white background. In order to explain 
roles in a broader framework than object-orientation, we have therefore adopted this semiotic 
form-substance relation. 

In order to deal with other issues as well, e.g., entities that have both form and content, we 
have defined a more general relation. Since the substance has to exist for the form to exist, the 
relation is defined to capture this property, and it is called the "lifetime dependency" relation 
(Kaasb!2lll and Motschnig-Pitrik, 1996). We have demonstrated that this relation is more 
general than previous solutions to role modelling, including those of Essink and Erhart (1991) 
and van de Weg and Engmann (1992), because it allows an object to be a role of several 
objects. This is not possible in previous approaches. 

We have also started evaluating the lifetime dependency relation (Kaasb!/lll, 1996). The 
hypotheses were that the relation occurred in most domain models, and that the models became 
less complex when using the relation. In, the initial evaluation that we have carried out, we 
departed from object-oriented models of domains, and remodelled them using the lifetime 
dependency relation. This test showed a higher frequency of the relation than expected. We 
also achieved some reduction of complexity in the models through a decrease in the number of 
relations (Kaasb!/lll, 1996). 

The planned further evaluation includes modelling of systems that are going to be replaced. 
Also working out guidelines for implementation and suggestions for changes of programming 
tools and languages remain. 

Although this learning cycle is not fully completed, it illustrates that problems of modelling 
can be explained in another context than object-orientation, and that such a widening of scope 



Development of object-oriented modeling techniques 121 

can contribute to new suggestions for changes in techniques. This may require more extensive 
implementation efforts than previous suggestions, which is the problematic side of trying to 
carry out system development research instead of method engineering. 

5 A LEARNING CYCLE BRINGING IN ACTIVITY THEORY 

As we have mentioned, yarstensen et al (1995) have reported problems in modelling interaction 
between actors involved in coordinating their activities. We have not identified any theoretical 
foundation of object oriented modelling techniques that include issues of work coordination, 
communication or interaction among actors in the application domain. Therefore we have started 
the learning cycle with a search for a theory that address issues of work context and how 
computers are used in order to mediate communication, coordination and interaction. Activity 
theory was selected, and extended to explain the role of computers in human work. This work 
was done in a case study, in an organisation using Lotus Notes to communicate, share 
documents and coordinate work. 

Activity theory address human work within a social context (Engestrom, 1987). The theory 
accounts for the individuals' relations to the object of work, and to the fellow workers. The 
relationships are not dual, but mediated through instruments, e.g. computers. We use the 
relationships as a basis for understanding the role of computers in an activity. 
Production denotes the relationship between subject (a human) and object. The relationship is 

mediated through tools. The computer may be regarded a tool in this relation. See example 
in figure 2. 

Distribution denotes the relationship between community (e.g. the workgroup or the 
employees in the organisation) and object. This relation is mediated through the division of 
labour. The computer may be regarded a mediator of this division of labour, in the sense 
that coordination of work may be done by means of the computer. 

Exchange denotes the relationship between the a subject and the community. This relation is 
mediated through rules of social behaviour and communication. The computer may be 
regarded a communication channel in this relation. E-mail and conferencing software are 
examples ofthis role in the work context. 

Com(X1ter as a medium 
(e.g. e-mail) 

Computer as a tool 
(e .g. a worn processor) 

Community Computer as a mediator of 
cOOlrlination of wotk 
(e.g. a workflow application) 

Figure 2 The aspects of a human activity, and the corresponding roles of a computer system. 



122 Method Engineering 

According to Engestrom, the three relations constitutes an organic whole. Issues of 
integration of the roles of the computer in a human activity is an issue (Fjuk et aI, 1995), and 
therefore the interdependencies of the various roles should be made explicit in the model. 

The next step in this work is to do a systems development project, in order to derive 
hypothesis regarding how metaphors and notation in a object oriented modelling technique 
should be developed. This work will be carried out in a large Norwegian municipal 
organisation, see Smliirdal (1996). The learning cycle is restarted by testing the modelling 
technique in a practical setting. 

6 CONCLUSION 

New computer applications address issues of work context, in addition to representing the 
object of work. Object -oriented models of such systems therefore have to capture some aspects 
of work, e.g., actors and roles. Since human work is complex and governed by rules to a much 
lesser extent than computer processing is, the modelling techniques have to avoid making 
assumptions about regularities in work. Therefore object oriented modelling techniques should 
be developed according to knowledge about human work within organisations. 

In order to point to how to bring such knowledge into the process of developing 
techniques, we have outlined a learning cycle consisting of practice, evaluation, theoretical 
contribution, and suggestion of improved techniques. 

We have defined method engineering to be a way to develop methods, where formal 
theories and implementation considerations are used in evaluation, theoretical contribution, and 
as the basis for suggesting improvements in techniques. The literature indicates that most 
development of techniques for modelling has been carried out according to a method 
engineering approach. 

In order to develop the techniques such that they can model issues related to work properly, 
knowledge of work has to be included in the ways modelling problems are explained and new 
modelling mechanisms are suggested. Therefore, we have argued to widen the theoretical 
scope of development of techniques from the focus on formal and implementation 
considerations in method engineering to a system development research learning cycle that is 
open for any contribution to understanding the domain that is to be modelled. We have 
illustrated the system development research approach with two cases of our own research, and 
shown that new concepts for modelling may emerge. 

To develop these concepts into practical techniques, guidelines for implementation have to 
be worked out. For this part of the research, an engineering approach is probably well suited. 

Even if we argue for widening the scope during development of techniques, we are aware 
that widely focused research into the techniques may lead to new knowledge that provides no 
clues as to how to improve the techniques. Instead, the research may, e.g., point to needs for 
better training or project organisation. We have introduced our contributions with an eye to the 
possibility for also using the wider focus for constructive suggestions to solve modelling 
problems. This points to the fact that choosing research approach is only one condition for 
setting the direction for development of techniques. The background of the researchers and 
their knowledge may be more decisive. Being aware of where to place ones development effort 
in method engineering or system development research may help to see the limits and 
possibilities of the effort. 



Development of object-oriented modeling techniques 123 

7 ACKNOWLEDGEMENTS 

This article has benefited from discussions with Frieder Nake and Markku Nurminen. 

8 REFERENCES 

Andersen, P.B. (1990) A Theory of Computer Semiotics: Semiotic Approaches to Construction 
and Assessment of Computer Systems, Cambridge University Press. 

Bjomestad, S. (1994) A research programme for object-orientation European Journal of 
Information Systems 3, 1, 13-27 

Braa, K.; Vidgen, R. (1995) Action Case: Exploring The Middle Kingdom in IS Research 
Methods, to be published in Proceedings of Computers in Context: Joining Forces in 
Design, Aarhus, Denmark. 

Carstensen, P. H.; Krogh, B.; Sprensen, C. (1995) Object oriented Modelling of Coordination 
Mechanisms, in Dahlbom, B.; Kammerer, F; Ljungberg, F; Stage, J.; Sprensen, C. (Eds.) 
Proceedings of IRIS 18, Gothenburg Studies in Informatics, Report 7. 

Coad, P. (1992) Object-Oriented Patterns Communications of the ACM 35,9,152-159. 
Embley, D.W.; Kurtz, B.D.; Woodfield, S.c. (1992) Object-Oriented Systems Analysis: A 

Model-Driven Approach Prentice-Hall, NJ 
Engestrom, Y (1987) Learning by Expanding. An activity-theoretical approach to 

developmental research. Orienta-Konsultit Oy, Helsinki. 
Essink, L.J.B.; Erhart, W.J. (1991) Object Modeling and System Dynamics in the 

Conceptualization Stages of Information Systems Development. In van Assche, Moulin, 
and Rolland (eds.) Object Oriented Approaches to Information systems North-Holland, 
Amsterdam, 89-116 

Fjuk, A; Sandahl, T.; Smprdal, O. (1995) Toward Incorporating Computer Applications in 
Cooperative Work Arrangements -An activity theoretical approach, in Dahlbom, B.; 
Kammerer, F; Ljungberg, F; Stage, J.; Sprensen, C. (Eds.) Proceedings of IRIS 18, 
Gothenburg Studies in Informatics, Report 7. 

Fog, C. (1992) A comparison of flow- and object-oriented analysis of information processing: 
Iterations and intuition in interpretation of large quantities of information Master thesis in 
Norwegian, Department of Informatics, University of Oslo. 

Galliers R.D. (1992) Choosing Appropriate Information Systems Research Approaches: A 
Revised Taxonomy, in Galliers, R. (Ed.) Information Systems Research: issues, methods 
and practical guidelines. Blackwell Scientific, Oxford. 

Gottlob, G.; M. Schrefl; and B. Rock (1996) "Extending Object-Oriented Systems with Roles" 
ACM Transactions on Information Systems Volume 14, Number 3, July. 

Harmsen, F.; Brinkkemper, S.; Oei, H. (1994) A language and tool for the engineering of 
situational methods for information systems development. In Zupancic and Wrycza (eds.) 
Proceedings of The Fourth International Conference Information Systems Development
ISD'94 Methods & Tools. Theory & Practice Modema Organizacija, Kranj, 206-214 

Henderson-Sellers, B. and Edwards, J. (1994) BOOKTWO of Object-Oriented Knowledge: 
The Working Object. Object-Oriented Software Engineering: Methods and Management. 
Prentice-Hall, Sydney 

Heym, M. and Osterle, H. (1993) Computer-aided methodology engineering. Information and 
Software Technology 35, 6/7, 345-354 



124 Method Engineering 

Jacobson, I.; Christerson, M.; Johnson, P.; Overgaard, G. (1992) Object oriented Software 
Engeneering. A Use Case Driven Approach. Addison-Wesley. 

Kaasb~ll, J. J. (1996) Between controlled irrelevance and unrepeatable complexity: Initial 
evaluation of the concepts of domain modelling techniques. Accepted for publication at the 
Workshop on Evaluation of Modeling Methods in Systems Analysis and Design, The 8th 
Conference on Advanced Information Systems Engineering. Software engineering 
challenges in modern information systems. (CAiSE*96) (Heraklion, Greece, 20-24 May, 
1996) 

Kaasb~ll, J. J. and Motschnig-Pitrik, R. (1996) Lifetime dependency relationships and their 
application to modelling roles and relationship objects. In A.G. Sutcliffe, F. van Assche, 
and D. Benyon (eds.) Domain Knowledge for Interactive System Design. Chapman & 
Hall, London 

Kumar, K. and Welke, R. J. (1992) Methodology engineering: A proposal for situation
specific methodology construction. In Cotterman and Senn (eds.) Challenges and 
Strategies for Research in Systems Development. John Wiley and Sons, Chichester, 257-
269 

Kvisli, J. (1993) Object-oriented analysis and design of adminstrative computer applications 
Master thesis in Norwegian, Department of Informatics, University of Oslo 

Martin, J. and Odell, J.J. (1992) Object-Oriented Analysis and Design Prentice-Hall. 
Mathiassen, L.; Munk-Madsen, A.; Nielsen, P. A.; and Stage, J. (1993)Object Oriented 

Analysis (In Danish) Forlaget Marko, Aalborg 
Monarchi, D. E. and Puhr, G. 1. (1992) A Research Typology for Object-Oriented Analysis 

and Design Communications of the ACM 35,9,35-47 
Motschnig-Pitrik, R. (1994) Analyzing the notions of attribute, aggregate, part, and member in 

data/knowledge modelling. In Zupancic and Wrycza (eds.) Proceedings of The Fourth 
International Conference Information Systems Development -ISD '94 Methods & Tools. 
Theory & Practice Moderna Organizacija, Kranj, pp.31-42 

Nerson, J.-M. (1992) Applying Object-Oriented Analysis and Design. Communications of the 
ACM 35,9,63-74 

Pernici, B. (1990) Objects with Roles, SIGOIS Bulletin 11, 2/3, 205-215. 
Reenskaug, T., with Wold P.; Lehne O. A. (1996) Working With Objects: the OOram Software 

Engineering Method. Manning, Greenwich 
Ressem, J. E. (1995) Where do all the objects come from? A study of the approach of three 

object-oriented methods to the identification of objects Master thesis in Norwegian, 
Department of Informatics, University of Oslo 

Richardson, J. and Schwarz, P. (1991) Aspects: Extending objects to support multiple, 
independent roles, SIGMOD Record, 20, No.2, 298-307 

Rossi, M. and Brinkkemper, S. (1995) Metrics in Method Engineering. In Iivari, Lyytinen, and 
Rossi (eds.) Advanced Information Systems Engineering. CAiSE '95, LNCS 932, 
Springer 

Rumbaugh, J. (1995) "OMT: The object model" Journal of object-oriented programming 
January, 21-27 

Simone, C.; Schmidt, K. (eds.) (1993) Computational Mechanisms of Interaction for CSCW, 
COMIC, Esprit Basic Research Project 6225, Lancaster University, Lancaster. 

Smith, J.M. and Smith, D.C.P. (1977) Database Abstractions: Aggregation and Generalization 
ACM Transactions on Database Systems 2,2,105-133. 

Sm~rdal, O. (1996) Soft Objects Analysis - A modelling approach for analysis of 
interdependent work practices. Forthcomming. 



Development of object-oriented modeling techniques 125 

Strauss, A. (1988) The Articulation of Project Work: An Organizational Process, in The 
Sociological Quarterly, Vol. 29, (2), pp 163-178. 

Suchman, L. A. (1987) Plans and Situated Actions, Cambridge University Press. 
van de Weg, R. L.W. and Engmann, R. (1992) A framework and Method for Object-Oriented 

Information Systems Analysis and Design. In E.D. Falkenberg, C. Rolland, and E.N. EI
Sayed (eds.) Information System Concepts: Improving the Understanding ISCO 2, IFIP 
Transactions A-4, North-Holland, 123-146. 

Vessey, I. and Conger, S. A. (1994) Requirements Specification: Learning Object, Process, 
and Data Methodologies. Communications of the ACM 37, 5, 102-113 

Wirfs-Brock, R.; Wilkerson, B.; Wiener, L.(1990) Designing Object-Oriented Software 
Prentice-Hall, NJ 

9 BIOGRAPHY 

Jens Kaasbf/lll i assistent professor at the Department of Informatics, University of Oslo. He 
has published in Information Systems Journal, Journal of Object-Oriented Programming and in 
international conferences. He has served as a co-editor of Scandinavian Journal of Information 
Systems. His research interests are in object-oriented modelling and in ways of providing 
computer support in organizations such that the systems fit user tasks and seem integrated from 
users' points of view. 

Ole Smf/lrdal is a research associate in the Department of Informatics, University of Oslo. 
Current research interests include theoretical foundations for object oriented modelling in 
relation to information systems. 



9 

Translating OMT* to SDL, Coupling 
Object-Oriented Analysis and Design 
with Formal Description Techniques 

K. Verschaeve, B. Wydaeghe, V. Jonckers, L. Cuypers 
Vrije Universiteit Brussel 
Laboratory for System and Software Engineering, Vrije Universiteit Brussel, 
Pleinlaan 2, 1050 Brussel, Belgium. Telephone: +32-2-6292974. 
Fax: +32-2-6292870. email: kaversch@info.vub.ac.be 

Abstract 
This paper presents an automated transition from OMT* (a formal variant of OMT) towards SDL. 
This work is a partial result from a larger research effort proposing an integrated methodology 
and toolset based on the combination of Object-Orientation and Formal-Description Techniques. 
In this project OMT is used as the systems requirements analysis technique and OMT* for for 
System Design, while SDL (Specification Description Language) is targeted for the design phase. 
The transition from OMT to OMT* is manual process described by a set of guidelines (Holz et 
al. 1995) We developed a transformational semantic for OMT*, i.e. a set of transformation rules 
mapping OMT* constructs to SDL constructs. The translation from OMT* to SDL preserves the 
logical structure of the specification. This way it is possible to preserve the efforts done in the analysis 
phase and to make a smooth transition towards design. 

Keywords 
OMT*, SDL, Analysis, Design, Transformational Semantics, Software Engineering 

1 INTRODUCTION 

1.1 The INSYDE Project 

The INSYDE (INtegrated methods for evolving SYstem DEsign, INSYDE 1994) methodology is a 
set of techniques and tools to enable the evolving co-design of hybrid systems. A hybrid system 
is one which contains significant hardware and software components. As the complexity of such 
systems is constantly increasing, the development of large systems requires a consistent and integrated 
methodology for proceeding from analysis to implementation. The INSYDE project will produce a 
prototype methodology and toolset based on the combination of Object-Orientation and Formal
Description Techniques and covers the development lifecycle from Systems Requirements Analysis 
over System Design to Detailed Design and Validation in an integrated way. 



Translating OMT* to SDL 127 

The INSYDE project is an EU ESPRIT III funded project. The consortium consists of Alcatel Bell 
Telephone (Belgium), Dublin City University (Ireland), Humboldt Universitiit zu Berlin (Germany), 
Intracom S.A. (Greece), Verilog S.A. (France) and Vrije Universiteit Brussel (Belgium). 

The INSYDE methodology integrates the object-oriented analysis methodology OMT (Object 
Modeling Technique, Rumbaugh 1991) with two domain specific formal description techniques, 
namely SDL '88 (CCITT, 1988) and VHDL (Navabi, 1993). OMT is used as the system require
ments analysis technique and also as the technique for the initial design stages. This allows the 
methodology to provide mechanisms for combining the individual design techniques (OMT, SDL, 
VHDL), maintaining the consistency of partial models at the detailed design stage and co-simulating 
the formal description to validate the hybrid system against the system specification. The relative 
strengths of each design technique (SDL for asynchronous communication systems, VHDL for syn
chronous reactive systems) can thus be exploited in an optimal way. 

Our Lab for System and Software Engineering (LaSSE) does research in the field of telecommu
nication systems. Therefor we focus on the use of SDL in the INSYDE methodology, SDL being a 
widely used specification standard and very well suited for our purpose. 

In this paper we limit the scope to the translation of OMT to SDL. This transition happens 
partially manually and partially automatically as explained below. This transJation is important and 
interesting because there is a strong need for an automatic reuse of analysis information into software 
specification languages like SDL. An automatic translation encourages the developer to make a more 
thorough system design model. Moreover, the structure of the resulting SDL model will be like the 
structure of the OMT model, resulting in system that is easier to maintain. 

1.2 OMT* 

In our methodology the analysis is done in OMT, using the full richness of OMT as defined by 
Rumbaugh et al. (1991). Constructs such as classes or associations can have different semantics 
depending on their context, which is useful during the requirement analysis phase. 

While OMT is a good analysis methodology, the informal nature of OMT makes an automatic 
translation to SDL infeasible. In our methodology the analysis document is manually prepared for 
translation during system design. During this phase subsystems are identified, communication is 
formalized and information is ordered. To describe these aspects we developed a new language OMT* 
(formal definition in Wasowski, 1995), aimed to meet the requirements of system design. In our 
methodology OMT* is close to both OMT and SDL . 

• OMT* is close to OMT because they use the same syntactic structures and because the semantics 
of OMT* are compatible with Rumbaugh, i.e. the semantics of OMT* do not conflict with OMT. 
OMT* differs from OMT in that it contains a number of syntactical constraints and in that 
the possible interpretations of an OMT construct are reduced and clearly described. Detailed 
guidelines of how to make the transition from OMT to OMT* can be found in the INSYDE 
application guidelines (Holz et al. 1996). Also a brief overview of the methodology is available in 
(Sinclair et al., 1995) . 

• OMT* is close to SDL because there is automatic translation and because OMT* and SDL have 
corresponding structure and semantics. The generated SDL is readable and contains enough detail 
to be a good framework as a starting point for detailed design. 



128 MetluJd Engineering 

1.3 Quick Preview of the Translation from OMT* to SDL 

In this paper, we describe the transformation of OMT* to SDL by defining a transformational 
semantics for OMT*. These semantics consists of a set of translation rules for the object model and 
the dynamic model. We do not use the functional model of OMT, because this model does not give 
much additional information over the object and dynamic models to generate SDL. 

The translation rules for OMT* are based on the availability and the semantics of constructs in 
both OMT and SDL. Figure 1 shows how some of the OMT constructs are mapped on SDL constructs. 
For example the basic building blocks in OMT are classes while in SDL they are the system, blocks 
and processes. So it is a natural choice to map a class on either a system, block and/or process. In 
the same way the structuring mechanism of OMT is aggregation while in SDL this is done by nesting 
of blocks. Finally the expression of relationships between classes is done by associations in OMT and 
with communication paths in SDL. 

Semantics OMT* SDL 

Basic Building Block Class System, Block, Process 

Structuring (Subsystems) Aggregation Nested Blocks 

Relationship between classes Association Communication 

Figure 1 Mapping of object model of OMT* constructs on SDL 

We have a similar table for the translation of the dynamic model of OMT*, see figure 2. In OMT* 
the behaviour of a class is expressed by a state diagram. This state diagram is translated as a SDL 
process specification. It is straightforward to translate state and state transitions to the equivalent 
constructs in SDL. Entry and exit actions are translated as actions on the transition to and from 
that state respectively. Internal transitions are translated as transition with itself as destination. 

OMT* SDL 

Activity Process or Part of Process 

State State 

State transition State Transition 

Entry/Exit Actions Actions on State Transition 

Internal Transitions State Transition to Self 

Figure 2 Mapping of dynamic model of OMT* on SDL 

As some OMT constructs can take several possible translations, local translation of each construct 
in the OMT model by a corresponding construct in SDL is not possible. We need global information 
of the model to make the correct translation. In an extra phase before the translation (sections 3 
and 5) we gather this information. 



Translating OMT* to SDL 129 

1.4 Structure of the paper 

In the next section we will start with a short overview of OMT* to introduce the concepts used 
in the translation. In section three we will describe how we prepare the translation of the object 
model followed in section four by the translation rules for the object model. Section five describes 
the preparation of the translation for the dynamic model and section six gives the translation rules 
for the dynamic model. 

Within this paper we use only tiny OMT and SDL examples to clarify some concepts. The INSYDE 
methodology and the translation of OMT* to SDL has been successfully tested is an industrial case 
studies of a Video-on-Demand server system (Peeters et al. 1995). 

We assume that the reader is acquainted with both OMT and SDL. 

2 OVERVIEW OF OMT* 

This section gives a short overview of OMT*. This language is used as a system design language 
between the analysis in OMT and the detailed design in SDL. OMT* has a syntax which is very 
similar to OMT but it has well defined semantics defined by its translation towards SDL. 

2.1 Object model 

An OMT* specification is entered through the object model. The dynamic model is accessed through 
the object diagram. The classes in the object diagram contain pointers to the different state diagrams 
in the dynamic model. ' 

The syntax of OMT* contains a number of restrictions as opposed to OMT, because some con
structs in OMT have an ambiguous semantics or are very difficult to translate into SDL. More 
specifically, the object model is restricted to object diagrams that 

• do not contain multiple inheritance 
• contain only binary associations, 
• do not contain general constraint expressions, 
• do not contain discriminator or restrictor rules. 

These restrictions are only valid during system design. The analysis is done in full 
OMT, without these constraints. There are detailed guidelines available how to manually 
translate OMT into OMT* in (Holz et al. 1996), available at the World Wide Web at 
.. http://www.compapp.dcu.ie/gclynch/papers.html ... In general we could say that most changes 
needed to get OMT* are rather intuitive for somebody that is acquainted with the translation rules 
to SDL. 

Model definition. An OMT* model contains a list of classes and a list of associations. Figure 3 
shows the model of a Movie-Box containing three classes. The classes Control and Motor do have 
pointers to a state diagrams shown below. 

Class definition. An OMT* class is a six-tupple (id,V,O,sn,G,d) where id denotes the name of the 
class, V denotes the set of attributes, 0 denotes the possible input events and functions defined, 
sn is the name of the superclass, G is the set of components and d is the state diagram, describing 
the dynamic behavior of this class. In our example (figure 3) the six-tupple describing class motor is 



130 Method Engineering 

[ MovieBox 
,\ 

y 
I , 

PI~~~r~I'~l command ~i-spe~e-,<l-.-: -i-nte~~-:~-or-.. -,.-' 
stopO _J . SWit~h(fWd : boolean) 

Figure 3 Simplifi~d Model of a Movie-Box in OMT* 

(moior, {speed}, {switch}, f, 0, E), where speed and switch are references to the specific attribute and 
operation respectively. 

Attributes and operations. An attribute has a name, a type and, optionally, a default value, In 
OMT* types are only names. It is thus impossible to check whether a value is of a certain type or 
not, 

An operation either is an input event or a function. Apart from the fact that an operation can 
have a result type, input events and functions differ in the following: 

• An input event is used to initiate a state transition within the state diagram of its class. It cannot 
be used to change or retrieve the contents of an attribute. It is our intention that an input event 
can be described within the dynamic modeL The parameters passed to an input event can then 
be used by passing them to a function activation . 

• A function is used to do some calculations on the given parameters and on the attributes of an 
object. As a result, a value can be returned to the "caller" and the values of some attributes of 
the function's object can be changed. 

Aggregations and associations, Unlike in OMT, aggregations and associations in OMT* are de· 
scribed differently. This is because the semantic differences are strong enough to separate those two 
concepts, Aggregations are used to model the "part-whole" relationships within the real world or to 
model subsystem relations. Associations denote communication between objects. 

In OMT* an association is a unbounded construct, described as a seven·tupple (id,lc,rc,lm,rm,lr,rr) 
where id denotes the name of the association, lc and rc are the names of the classes that are con· 
nected by this association, 1m and rm denote the multiplicities and lr and rr denote the roles. 
In our example (figure 3) the seven·tupple of the association command could be described as 
(command, Control, Motor, 1, 1, f, f). 

In OMT* an aggregation is part of the specification of a class. An aggregate tupple contains a 
component id, the aggregate multiplicity and the component multiplicity. We limit the aggregate 
multiplicity to the values 1 and {O,l}, mainly because in SDL is strictly hierarchical, i.e., a process 
can never be in two disjunct blocks at the same time. The set of aggregates (G) of the MovieBox 
class is {(Control, 1, 1), (Motor, 1, 1)}. 

2.2 Dynalllic Model 

States Diagram. A state diagram in OMT* describes the control aspects of one specific class. 
It contains the possible states of an object, describes how input events are used to initiate state 
transitions and describes when and how functions are activated. 

A state diagram consists of a number of state definitions (in figure 4, the states idle and play) 



Translating OMT* to SDL 131 

and exactly one initial lambda transition (in figure 4, the transition going from. to idle). This 
initial lambda transition is fired on creation of the object. The state diagrams of OMT* are currently 
restricted to state diagrams that 

1. do not contain concurrent sub-state diagrams, 
2. do not contain any splitting/synchronization of control, 
3. contain exactly one initial lambda transition. 

Each of these restriction can be worked around: restriction 1 by using two classes, restriction 2 by 
using extra synchronization events and restriction 3 by introducing an extra state. All other features 
of OMT state diagrams, like nested state-diagrams, activities and entry and exit actions, are fully 
supported in OMT*. 

States. A state is defined by its state name, which must be unique within the state diagram. It 
optionally contains a number of entry actions, exit actions and an activity. 

I Mit~_J 
. incspeed 

e-'_A>( t--~' playing 

I, idle l~a~ldO: show 
'-.--- stpp 

~ .. cs.peed 
~or.1 

Figure 4 Dynamic Model of the Control class of figure 3. 

Actions in the states and on the transitions are used to compute values, assign values to attributes 
and generate output events. Entry and exit actions, like in OMT, are executed on entering and 
leaving the state respectively. 

While in OMT activities are poorly defined, in OMT* three kinds of activities are defined: substate
diagrams, continuous activities and time consuming activities. An activity of a state always starts 
when the state is entered and ends when the activity is finished or when a state is left. 

• A substate-diagram is a complete state diagram, with states and transitions, embedded in a 
state. There is no limitation in the nesting of substate-diagrams. During the translation to SDL, 
substate-diagrams are flattened. 

• A continuous activity is a simple activity that is automatically terminated when leaving the state. 
A continuous activity consists of a name from which a placeholder for an entry and exit action 
is generated. The entry action should start up the activity as a side effect, while the exit action 
should stop the activity. In figure 4, show is an continuous activity because show is not defined 
as an operation in the Control class. The translation of show is shown in figure 9. 

• A time consuming ending activity calls a function. Executing this function may take time and 
cannot be interrupted. After the activity has finished, the state is left by firing a lambda transition. 

State Transitions. State transitions allow performing actions or activities reacting on incoming 
events. Three kinds of transitions exists: external transitions, external lambda transitions and internal 
transitions. 



132 Method Engineering 

An external transition consists of the name of the destination state, a list of input events, a 
condition and an action list. 

An external lambda transition is exactly like a normal external transition except that the former 
does not have an input event nor a condition associated with it. If combined with an ending activity, 
the lambda transition is fired when the activity is finished. 

An internal transition differs from an external transition in that it has no destination state name, 
since both the source and destination state are the state in which the transition is defined. Firing an 
internal transition does not cause the state to be left, as a consequence, the entry and exit actions 
are not executed. 

Within the abstract syntax a terminal state is denoted by defining an empty destination state 
name in an external (lambda) transition. As a consequence the terminal state (graphically a dot 
within a circle) cannot have a name. 

Actions list. An action list consists of several actions. An action list may contain any combination 
of assignments, output events and function calls. 

A function is called or an event is sent by specifying the function name or the input event name and 
giving expressions for every formal parameter in the definition of the function or event. An output 
event optionally takes a receiver, with specifies to which class the event is sent. 

3 PREPARING THE OBJECT MODEL TRANSLATION 

A primary requirement for the transformation of the OMT* object model to SDL, is that the resulting 
SDL specifications should match the logical structure of the OMT* specification as much as possible. 
This is mainly because the generated specifications will be further refined by human developers. 
Therefore, they must be able to recognize the logical structure defined within the original OMT* 
specification. Concretely, this implies that in case of a trade off between completeness and readability, 
readability should be favored as much as possible. 

Before translating an OMT* object model we will first remove inheritance using some flattening 
functions. This is necessary because SDL'88 does not contain the notion of inheritance. Afterwards 
we build a kind of an annotated aggregation tree. This step facilitates the translation process con
siderably, because the aggregation structure is not available as such in the OMT* abstract syntax, 
where all classes are defined on the same level. As a last step before the translation all associations 
have to be rerouted because of the translation of aggregation into subblocks. 

3.1 Removing inheritance 

To flatten the inheritance structure we first have to introduce an auxiliary function Subtree. This 
function returns the set of classes that are in the aggregation tree for a given class. 

Definition 31 (Subtree(c)) Let c = (id, V, 0, S, G, d) E <class>. 
Then Subtree( c) = {c} U UgEAggregates(c) Subtree(g) 

Using this function we can flatten every OMT* class with the following flattening functions. 

Definition 32 (Flattening-functions) Let m = (id,C,A) E <model>,whereC C <class>. Let c = 
(id, V, 0, s, G, d) E C, and let E E <inputevent dcl> and F E <function del> such that ° = E U F 
Define then 



Translating OMT* to SDL 133 

• Attributes(c) = V U {v E Attributes(s) I v (j. V} 
• Events(c) = E U {e E Events(s) I e (j. E} 
• Functions(c) = F U {J E Functions(s) I f (j. F} 
• Operations(c) = Events(c) U Functions(c) 
• Components(c) = G U {g E Components(s) I 9 (j. G} 
• Associations(c) = {a E A lie E Subtree(c) or rc E Subtree(c)} 

3.2 Building the aggregation tree 

The aggregation tree is built by adding a path to every class. This path consists of an ordered list 
with the names of all classes which connect the given class with a top node. Therefore we will first 
introduce the function TopClasses. This function returns the set of all classes in a given model m 
that are on top of the aggregation trees (they are no part of the set of aggregations of any class in 
the model). 

Definition 33 (TopClasses(m)) Let m = (id, C, A) E <model> be an OMT* model such that 
C = {CI, ... ,cd, A = {al, ... ,al}, then 
TopClasses(m) = C \ UXEC Aggregates(x) 

If the model contains only one topclass, this class is translated into SDt as the system. Otherwise 
a new system class is added to the model, see figure 5. The system class for a model m is constructed 
by taking all TopClasses as components, but no attributes, operations or state diagram. Because of 
this definition there will always be only one topclass. 

Definition 34 (Paths) A path is a n-tuple (PI, . .. ,Pn) such that PI E TopClasses and Vi, 1 < i :S 
n : Pi+1 E Aggregates(pi). The set of all paths is called "Paths". 

Because of the construction of a system class, the paths of all classes in a model will start with 
the system class, since it is the only TopClass in the model. For example, in figure 5 Class C has as 
path (System, A, C). 

Definition 35 (ExpandedClasses(m)) Let m = (id,C,A) E <model> be an OMT* model 
then ExpandedClasses(m) = { (id, Attributes(c), Operations(c), superclass, Aggregations(c),Path) 
I Path = (PI,· .. ,Pn) E Paths such that Pn = c E C} 

In other words expanded classes is the set of all classes after flattening inheritance and extended 
with path information. This path is then used to reroute associations, see below. 

3.3 Annotate the associations 

Since we translate aggregation into sub blocks we have to reroute an association to the environment 
of the enclosing block before we are able to connect it. Therefore we define functions to split the 
associations into partial-associations and complete-associations, see figure 5. A partial-association 
denotes a connection between a block and its environment and a complete-association is a connection 
at the lowest level were we can connect the two parts of an association. 

The following rules define the partial associations and the complete associations. 



134 

: System: 
~::::::::: 
.----~.---' 

:--------------'---------------: 

Method Engineering 

system 

block A 

A-internal 
Complete 

Association 

blockD 

D·intemal 

NDI 
block B block C block E block F =- r:::-'-": . .-<--7'-~c./---<./ ..... /.,.;~ r-'----r~'i I r='j I Or-tO" . 
-

........ ..../ 
Complete Association Partial Association 

Figure 5 Translation of the OMT* structure and the associations towards SDL 

Definition 36 (Partial-association{c)) 
Let a = (id,lc,rc,im,rm,ir,rr) E Associations(c), 

let pic = (pic!, ... ,pic".) = path(lc),prc = (prc!, ... ,prCn) = path(rc), and 
let commonp = (Cl, ... ,cp),such that Vi ~ p : e; = pic; = prc; 

Then 
Partial-associations( c) = 

{a E Associations(c) ICE (plcp+l,'" ,plcm ) or 
c E (prcp+!, ... ,prcn )} 

A complete associations is added when a class is the "deepest" class in the common part of the 
paths of the left and right class of an association. In order to store which components must be 
connected, the functions return a set of 3-tuples. For example, in figure 5 the System gets two 
complete association because the paths for A and D and for C and E come together in System. The 
classes to be connected are A and D in both cases. 

Definition 37 (Complete-association(c)} 
Let a = (id,lc,rc,lm,rm,lr,rr) E Associations(c), 

let pic = (pic!, ... ,plcm ) = path(lc),prc = (prc!, ... ,prcn ) = path(rc), and 
let commonp = (Cl, ... , Cp), such that Vi(i ~ p)e; = pic; = prc; 

Then 
Complete-associations( c) = 

{(a, tic, trc) I a E Associations(c) and c = plcp = prcp and 
tic = plcp+l and trc = prcp+d 

In addition we use a function Local-Signals(c} to gather the necessary signal declarations in a 
given class. The gathering of declarations are defined by three rules. A signal is declared in a given 
class if 

• The class itself uses the signal. 
• Or two components of the class use the same signal. 
• And signal is not already declared in one of its aggregates (recursive definition). 



Translating OMT* to SDL 135 

4 TRANSLATION RULES FOR THE OBJECT MODEL 

An OMT* model is translated into an SDL system containing the SDL translations for the classes 
and associations defined within the model. 

Translation rule 41 (sdl-module) Let m (id, C, A) E < model> be an GMT* model. 
Let system (id, V, G,sc, G,sd,path) be the expanded-system-class of m as defined in 
section 3.2, and {toP_ecl,"" top_ecd the expanded classes of Components (system), and 
{ecI, ... , ecd = ExpandedClasses(m) \ Components(system), and{ sal, .. . , san} =Complete
Associations(m), and{ eVI!" ., evm} = Local-Signals(system) 

Then sdl-module( m) is constructed by 

system <id> ; 
signal sdl-event-declaration( eVI), ... , sdl-event-declaration( evm); 
<sdl-class (top_ecl»; /* system blocks*/ 

<sdl-class (top_eck»; 
<sdl-CompleteAssociation (sal»; /* channels */ 

<sdl-CompleteAssociation (san»; 
endsystem <id>; 
<sdl-class (ecI»; /* referenced blocks*/ 

<sdl-class (eCk) > ; 

Classes An OMT class definition c is translated to SOL as a block containing: 

• A subblock containing the behaviour and data of c. This includes the attributes, operations and 
state diagram of c. This is a leaf block. If c does not have any components, the surrounding 
subblock is skipped . 

• A sub block for every component class p in the aggregation tree of c, generated by calling 
sdl-class(p) recursively. 

Translation rule 42 (sdl-class(c) 
Let c = (id, V, G, sc, G, sd) be an GMT* class, such that attributes( c) {VI, ... , vd, 

operations( c) = {Ol, . .. ,od, PartialAssociations( c) = {pal, ... ,pam}, CompleteAssociations( c) = 
{cal, . .. ,can}, and Components( c) = {gl,' .. , gq} . Local-Signals( c) = {evI, . .. ,evp } 

Then sdl-class( c) is constructed by 

block <id> ; 
substructure 

/* Signals Definitions*/ 
signal sdl-event-declaration(evl,"" evp ); 

/* Components */ 



136 Method Engineering 

system Movie Box -

I signal play, stop, I)~ 
switch(fwd: boolean); 

block Motor 
block Control I del speed integer;~ 

process Control process Motor 

CJ 
command 

CJ [P""J stop 

Figure 6 Translation of the Object Model of the Movie-Box 

block <gl> referenced; 

block <gq> referenced; 

block <id>-intern ; /* skipped if q=O (no components) */ 
process <id>-process ; 

del <sdl-attribute(vI,' .. , Vk» 
<sdl-operation( 01, ... , oil> 
/* no signal routes */ 
<sdl-state-diagram(sd, attributes(c))> ; /* optional */ 

endprocess <id>-process ; 
end block <id>-intern /* skipped if q=O */ 

<sdl-PartiaIAssociations (c, pal, ... ,pam»; /* channels */ 
<sdl-CompleteAssociations (cal,"" can»; /* channels */ 

endsubstructure 
end block <id>; 

Associations. Associations are translated to channels connecting the blocks associated with its left 
and right classes. To calculate the events sent between two classes we use the function between. This 
is the intersection between the events sent by its first argument and the events declared within its 
second argument. 

Translation rule 43 (sdl-CompleteAssociation) 
If ca = (a, tic, trc) where a = (id, lc, rc, 1m, I'm, 11',1'1') E <Associations> and tic, trc E < class>. 
Then sdl-CompleteAssociation( ca) is constructed by 

channel <id> 
from <Ie> to <rc> 

with <between(lc,rc» 
from <re> to <lc> 

with <between(rc, Ie» ; 
endchannel <id> 



Translating OMT* to SDL 137 

PartialAssociations are translated in a similar way, it differs only in that a partial association goes 
to the environment (ENV) instead of to a class. 

Attributes and operations. An attribute is translated into an SDL declaration of the correct type 
and initial value, e.g. Speed in figure 6. A function is translated into a skeleton of an SDL procedure. 
Th return type of the function is translated as an in/out parameter of the procedure. 

5 PREPARING THE TRANSLATION FOR THE DYNAMIC MODEL 

An OMT* state diagram will be translated into an SDL state diagram. For each state within the 
OMT* state diagram one state within the SDL state diagram is introduced. As SDL, however, does 
not distinguish between internal and standard transitions, caution is needed in the translation of 
entry and exit actions. This is solved by executing an entry action only on external transitions, 
before the SDL state is entered. 

Figure 7 Example of a Nested Statediagram. 

The most difficult part is however the translation of substate diagrams. The substates need a copy 
of the transitions of their superstates, but these transitions need to be expanded with additional exit 
actions for the substate. Also, the destination of a transition should be changed to the initial state of 
the substate diagram of the destination state. Therefore we expand the states with path information 
which allows us to build all transitions. 

5.1 Building the Substate Tree. 

As with expanded classes, we expand all states with path information, so that each state exactly 
knows in which substates it is defined. In following definitions we use two functions: Substates(state) 
returns the substates of a given state and TreeSubStates(state) which is like Substates but include 
the substate of the substates and so on. 

Definition 51 (StatePaths) A statepath is an n-tuple (S1' ... , sn), such that for each i E {I, ... , n
I} holds Si+1 E Substates( Si) . 

Definition 52 (ExpandedState(sd) Let sd = (i,S) E <state-diagram>, where i ist the ini
tial state and S is the set of states of sd. Then ExpandedStates( sd) is the set of all tuples 
(id, entry, exit, activity, transitions, Path) where exists a Path = (S1, ... , sn) E StatePaths, such 
that 

- S1 E S 
- Sn = (id, entry, exit, activity, transitions) E TreeSubStates(S)} 



138 Method Engineering 

In other words, ExpandedStates gathers all the states in a statediagram, including substates, and 
appends path information to each state. In the example in figure 7, state A has path (A), state B 
has path (A,B), state C has path (A,C), etc. So Band C inherit all transitions from A. 

5.2 Copying and Rerouting Transitions. 

The function ExpandedTransitions calculates all the transitions for a specific (sub )state, given its 
path. The algorithm is based on the fact thanhe base-state is the last element in the path and the 
state from which the transitions are copied is the first element. In each recursive step all transitions 
from the top state are copied and extended with the exit actions of all states on the path and 
the initial actions for entering the destination state. The set of transitions is then extended by a 
recursive call with a shorter path, i.e. the first element is removed. In this way the target state gets 
the transitions of all its superstates. 

event3/acti0n6. 
actiorr3. action9, 

actiontO, action12 

flwml3/BCIionB. 
action3,acliM9. 

ac!ion10,action12 

Figure 8 Flattening in OMT* of the Nested Statediagram Example. 

The function Expanded Transitions calculates all transisitions of a state, given its path. But because 
of the complexity and size of the function definition, we only show here the result after applying the 
flattening functions to the example in figure 7. The flattened statediagram is shown in figure 8. 

Notice that the state transition with event3, previously going to state D, is now going to state E 
immediately because state E is the initial substate of D. For the same reason, state B is now the 
initial state of the statediagram. 

Notice also that event3 is now present in states A, Band C, but that the transition starting in 
state· A calls less exit actions than the transition starting from Band C. Therefor it is not possible, 
in general, to assign the same transition to a state and its substates. 

6 TRANSLATION RULES FOR THE DYNAMIC MODEL 

Given the expanded states and expanded transitions, the translation is straightforward. No environ
ment information is needed, because each OMT* construct can be translated in the same order as it 
appears in the syntax tree. Notice that the state-diagram is flattened, so all states are on the same 
level. Figure 9 shows the translation of the state diagram of the control class (figure 4). 

Translation rule 61 (sdl-state-diagram(sd)) Let sd = (i, S) E <state diagram>, where i = 
(dest,E,actions) E <initial lambda transition>, let dES: name(dest) = d, d is then the initial 
state of sd (al, . .. , ak) = initial- actions(sd) {Sl, ... , Sk} = expanded - states(TreeSubStates(S)). 



Translating OMT* to SDL 

Figure 9 Translation of the Dynamic Model of the Control 

Then sdl-state-diagmm( sd) is constructed by 

start; 
sdl-action-list( all ... sdl-action-list( ak) 
nextstate <name(sub - dest(d))> j* stop if d = t *j 

<sdl-state( SI) > 

<sdl-state( Sk» 

6.1 States 

139 

An OMT* state is simply translated as an SDL state containing all Expanded-Transition on the path 
of the state and all internal transitions of the state, see figure 8 and figure 9. 

Translation rule 62 (sdl-state(s)) 
Let s (id,e,x,activity,T,path) E <expanded-state>, where id E <name>, 

e E < entry action list>, x E < exit action list>, activity E < activity>, (t I, ... , tm ) 

ExpandedTransitions(path), (i I , ... , in) = I nternalTransitions(path - states(path)), and path is 
a statepath. 

Then sdl-state( s) is constructed by 

state <id> ,-
<sdl-external-tmnsition( tr) > ... < sdl-external-tmnsition( tm ) > 
< sdl-internal-tmnsition( ir) > ... < sdl-internal-tmnsition( in) > 

endstate <id> ; 

6.2 Thansitions 

When performing an external transitions, all the entry actions and exit actions that were calculated 
in the expanded transitions should be executed. The following rule also applies to lambda transitions. 

Translation rule 63 (sdl-external-tmnsition(t) Let t = (dest, event, cond, exit, action, entry) E 
< expanded-tmnsition> , where dest E t( < destination state name» event E t( < input event> ), 
cond E e( <boolean expression», and action = (aI, .. . , ak), al...k E <action-list>. 



140 Method Engineering 

Then sdl-external-tmnsition( t) is constructed by 

input <sdl-input-event(event»; /* Skipped if event = E */ 
provided <sdl-expression(cond»; /* Skipped if cond = E and event =f E */ 

/* provided true if event = cond = E * 
<sdl-action-list( ad> ; 

<sdl-action-list( ak» ; 
nextstate dest; 

Internal transitions are translated like external transitions, except that an internal transition only 
contains one action list and that nextstate is set to "-" to return to the same state at the end of the 
transition. Note also that for internal transitions there must always be an event, i.e. an empty event 
is not allowed, so the "input" line is never skipped. 

6.3 Actions 

An action-list is of course translated as a list of actions. There are three kind of actions: function-call, 
output event and assignment. For each kind there is a different translation rule, described below. 

• function-call, let f = (junc,arg) E <function call> 
call <func> «sdl-expression( argl », ... , <sdl-expression( argk»); 

• output-event, let e = (event, arg) E <output event> 
output <event> «sdl-expression( argl) >, ... , < sdl-expression( argk) > ); 

• assignment, let a = (attr,expr) E <assignment> 
attr:= sdl-expression(expr); 

7 CONCLUSION 

We present an automated transition from OMT* to SDL. OMT has been chosen for its wide spread 
use in system engineering and for its integration of static and dynamic information. SDL on the 
other hand, is very well suited for the design of highly interactive systems in a formal way. In the 
development of large complex systems which involves many people, it is important to have a smooth 
transition from analysis to design while preserving as much information as possible. In order to allow 
such a transition we developed OMT*. 

OMT* is used as a system design language. The transition from an OMT requirement analysis 
to an OMT* system design model requires manual design decisions. Detailed guidelines about this 
transition are available in (Holz et al. 1996). OMT* is a subset of OMT, but OMT* contains as many 
constructs of OMT as possible. The semantics of OMT* are well defined with a transformational 
semantics to SDL'88. 

OMT*, and the translation to SDL, should not be seen as a way to design and implement an 
arbitrary system modeled in OMT. Instead, OMT and OMT* should be seen as a front-end to the 
design of a system that is being designed in SDL anyway. We state that OMT provides the right 
abstraction level for requirements analysis and that OMT* successfully couples the object-oriented 
modeling technique (OMT) with the software description language (SDL). We do know of some 
companies (Alcatel Mobile and IskratTEL) that already use both OMT for analysis and SDL for 



Translating OMT* to SDL 141 

design in the development of very large telecommunication systems. Of course, those companies could 
get immediate benefit from our methodology. 

Future plans on OMT* include a translation towards SDL'92. This version of SDL has object 
capabilities and allows probably a better translation in that it preserves more information expressed 
by the system design model such as aggregation and inheritance. 

Apart from SDL, other languages can be generated starting from OMT. In the INSYDE project 
(INSYDE, 1994) SDL and VHDL are generated for hybrid systems co-design. A translation for the 
object model into Z is given in (Abowd, 1993). A formal semantics in terms of algebras has been 
defined for the object model in (Bourdeau, 1995). The programming techniques group at CERN 
(Aimar et aI., 1993) describe a configurable code generator for 00 methodologies. However, most of 
these proposals support only the translation of the object model of OMT, while we also integrated 
a thorough translation for the dynamic model. This aspect is very important in the domain of 
telecommunication. 

REFERENCES 

G. Abowd, R. Allen, and D. Garlan. Using style to understand descriptions of software architecture. 
Procs of the 1. A CM SIGSOFT, Symposium on the Foundations of Software Engineering, December 
1993. 

A. Aimar, A. Khodabandeh, P. Palazzi, and B. Rousseau. A configurable code generator for 00 
methodologies. Technical report, Programming Techniques Group, 1993. 

R. Bourdeau and B. Cheng. A formal semantics for object model diagrams. IEEE Transactions on 
Software Engineering, October 1995. 

CCITT, Geneva. ITU Specification and Description Language SDL, Recommendation Z.100 Blue 
Book., november 1988. 

E. Holz, M. Wasowski, D. Witaszek, S. Lau, J. Fischer, P. Roques, K. Verschaeve, E. Mariatos, and 
J.-P. Delpiroux. The insyde methodology. Deliverable INSYDE/WP1/HUB/400/v2, ESPRIT Ref: 
P8641, January 1996. 

INSYDE. Technical Annex: "Integrated Methods for Evolving System Design", ESPRIT-III Project 
P8641, restricted report edition, December 1994. 

Z. Navabi. VHDL Analysis and Modeling of Digital Systems. McGraw-Hill, Inc., 1993. 
J. Peeters, M. Jadoul, E. Holz, M. Wasowski, D. Witaszek, and J.P. Delpiroux. Hw/sw co-design 

and the simulation of a multimedia application. In 7th European Simulation Symposium, October 
1995. 

J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. Object-Oriented Modeling and 
Design. Prentice Hall, 1991. 

D. Sinclair, G. Clynch, and B. Stone. An object-oriented methodology from requirements to valida
tion. In 2nd International Conference on Object Oriented Systems, December 1995. 

M. Wasowski, D. Witaszek, K. Verschaeve, B. Wydaeghe, E. Holz, and V. Jonckers. The complete 
omt*. Deliverable INSYDE/WP1/HUB/300/v3, ESPRIT Ref: P8641, December 1995. 



10 

Lazy Functional 
Meta-CASE Programming 

S. Joosten 
Computer Information Systems department 
Georgia State University 
P.O. Box 4015, Atlanta, GA 30302-4015, USA 
tel. +1(404)651 4392, fax +1(404)651 3842 
e-mail s j oosten@gsu. edu 

Abstract 

This paper proposes the use of a lazy functional programming language, such as Miranda or 
H~kell, as embedded language in meta-CASE tools. Functional programming saves time and 
effort, because method engineers write programs on the appropriate level of abstraction, without 
any concern about the order of computations. As a consequence, method engineers build more 
reliable tools for application engineers to work with. The argument is exemplified by a meta
CASE program, which defines the well known Entity-Relationship modeling technique. Two 
different semantics are presented to demonstrate typical use: one is the transformation to a 
relational model and the other is SQL code generation. The full Haskell program to do this is 
presented, showing the conciseness and the simplicity of that program. This illustrates the type 
of programming that is done by a method engineer to specify customized modeling techniques. 

This paper is written for designers of CASE and meta-CASE tools. The work is also interesting 
for functional programmers who wish to see an appropriate application of lazy evaluation. 

1 INTRODUCTION 

This paper proposes the use of a lazy functional programming language, such as Mi
randa [Turner, 1985], or Haskell [Hudak et al., 1992, Hudak and Fasel, 1992] as an em
bedded programming language in meta-CASE tools. 

A meta-CASE tool is a software tool in which modeling techniques are specified in 
order to generate a CASE tool to support that technique. A modeling technique is a 
graphical notation (i.e. a picture containing nodes and arcs) with semantics attributed to 
it. Specifying a modeling technique means to define a class of graphs, to specify the visual 
appearance of each graph, to delimit the modeling technique by imposing restrictions on 
the class of graphs, to define operations that change the graph (edit operations) and to 



Lazy junctional meta-CASE programming 143 

define operations that interpret the graph (e.g. produce views, transform to other graphs, 
generate code, perform syntactic and semantic checking) 

A method engineer uses a meta-CASE tool, such as MAESTRO [Merberth, 1991] or 
Meta-Edit [Smolander et aI., 1991], for the purpose of creating new modeling techniques, 
adapting existing techniques to specific requirements, or integrating method fragments 
into a CASE tool that supports a larger part of a given method [Harmsen et aI., 1994, 
Kumar and Welke, 1992]. Method engineers write programs in order to generate a CASE 
tool for a particular, user defined modeling technique. Their users are application en
gineers, who construct application models using a CASE tool generated by a method 
engineer. An application model is any model used (by application engineers) to build 
end-user applications. 

The method model is the object which is manipulated by a method engineer using a meta
CASE tool. A meta-CASE tool contains a method base and CASE tool generators. The 
method base contains ready-to-use method fragments, from which the method engineer 
construct (assembles) a method model. These fragments represent modeling techniques 
(such as ER [Elmasri and Navathe, 1989] or data flow [Yourdon, 1989] modeling), project 
management techniques (e.g. PERT or GANTT charts), process modeling techniques, 
configuration management techniques, etc. The method base is enriched by a method 
engineer, in defining new method fragments. A CASE tool generator is used to generate 
a CASE tool once the method has been constructed. This generator performs a function 
similar to a code generator in a compiler. 

A meta-CASE programming language is the language embedded in a meta-CASE tool. 
Method engineers therefore have no choice but to use the language provided with the 
meta-CASE tool. The particular setting of method engineering yields a unique set of 
requirements for meta-CASE programming languages. Simplicity and correctness of code 
are important, because the application engineer does not accept a CASE-tool with errors 
in it. Although execution performance is important, application engineers do not typically 
engage in large scale computations. They do require, however that the code generated 
for their applications is efficient. An important requirement is that a method engineer 
spends little time programming. A method engineer is supposed to spend time supporting 
application engineers instead of programming his meta-CASE tool. A complete overview 
of meta-CASE tool requirements is given in [Harmsen et aI., 1994]. 

This paper starts with the motivation to choose a lazy functional programming lan
guage for meta-CASE programming. Next, the Entity-Relationship modeling technique 
is defined in a functional language (section 3), to exemplify defining a method model. 
Semantics (meaning) is attributed to the method model in the following section, using 
the same functional language. This is achieved by defining functions that operate on 
method fragments. So, form (syntax) and meaning (semantics) can be defined in the 
same formalism. The next section demonstrates these manipulations on an actual ER 
diagram (an application model). This model is an instance of the method model defined 
in section 3. It shows how transformations on models can be combined to achieve larger 
transformations. It also brings the reader back to the "real world" of actual information 
systems models. The last part, starting with section 6, contains a discussion, focusing 
on the role of the programming language in which method models are expressed. The 
functional language notation is explained in the appendix. 



144 Metlwd Engineering 

I want to thank Sjaak Brinkkemper, Frank Harmsen, Rolf Engmann Maarten Fokkinga, 
and four anonymous reviewers for their comments on this text. Thanks are also due to 
Bob Rockwell, who inspired me to write this paper. 

2 Motivation 

Two reasons motivate the choice for having a lazy functional meta-CASE programming 
language. First, it allows programmers to think on the graph level instead of the node 
level. Second, it annihilates the issue of control flow, i.e. thinking about a computational 
order to traverse a graph. Both reasons lead to time savings for the method engineer, and 
an improved quality of the generated CASE tools. This section explains why. 

Programming and thinking in entire graphs produces better code than working on the 
conceptual level of nodes and arcs does. The functional programming literature at large 
(e.g. [Harrison, 1993, Joosten, 1989]) shows concise and understandable examples of code 
which are intricate in terms of nodes and arcs. Kashiwagi and Wise study a general way for 
implementing graph algorithms in a lazy functional language [Kashiwagi and Wise, 1991]. 
King and Launchbury demonstrate the usefulness of lazy functional languages for graph 
algorithms with polynomial complexity [King and Launchbury, 1993]. Meta-CASE tools 
operate on graphs, which represent modeling techniques. Meta-CASE programming in
volves graph algorithms that edit graphs, define transformations on graphs, and provide 
interpretations of graphs. Typical algorithms transform one type of graph into another, 
which corresponds to deriving one method model from another. This is done on the basis 
of values, contained in both the nodes and arcs of a graph. Besides, modeling techniques 
have hierarchical decomposition, making the graph algorithms even more complicated. 
The structure of data type definitions leads directly to the computational structure of 
operations on those data types [Gibbons, 1995]. This is helpful to meta-CASE program
mers, because it allows them to think beyond the level of nodes and arcs, and work in 
the realm of graphs as a unit. So, it makes sense to try working in a programming lan
guage that supports mathematical abstractions [Harrison, 1993]. Following sections of 
this paper demonstrate how this works out in one particular example. 

Lazy evaluation obliterates the need to think about the order of computations when 
a graph is traversed. This is caused by the proven fact that a lazy evaluator minimizes 
the number of evaluation steps for any program. The proof [Abramsky,1990] consists 
of showing that a lazy evaluator (i.e. normal order with sharing) executes only essential 
steps in the computation. A consequence is that all non-essential steps are omitted, 
producing the minimal number of computation steps for the entire evaluation. This has 
important consequences for programmers. For example, an nonterminating computation 
means that no alternative computational order produces a result. This excludes a fair 
amount of possibilities in searching for errors. It equally well reduces the number of 
opportunities to make errors in the first place, which reduces programming effort. Graph 
algorithms are reknown for their intricacies, because graph traversal is often difficult 
to visualize and imagine. Some errors show up in rare circumstances, adding to the 
overall perception that graph algorithms are difficult. For this reason, researchers tend 
to accept only those algorithms that are proven to be correct. In view of this difficulty, a 
lazy evaluator offers important help to method engineers. If execution fails, the method 



Lazy functional meta-CASE programming 145 

engineer does not spend time to find an execution path that works, as is the case in 
procedural languages such as Prolan [Merberth, 1991]' or even in non-lazy functional 
languages such as ML [Milner et al., 1989] or Scheme [Rees and Clinger (editors.), 86]. 

The two reasons mentioned support the argument that meta-CASE programming in a 
lazy functional language is less time consuming and less error prone. In order to answer 
how much better it works, comparative research needs to be done using tools that differ 
only with respect to their embedded programming language. A meta-CASE tool in which 
the language is a variable and in which a lazy functional language is built, is (to the best 
of my knowledge) not available. Therefore, the argument has to be settled (for the time 
being) with the next best thing: examples of typical use. 

The choice of an example is guided by "typical use" and by the desire to cover appro
priate aspects of meta-CASE programming. In order to cover "typical use" within the 
limits of a paper, we decided to build a (partial) method model of the Entity-Relationship 
modeling technique [Elmasri and Navathe, 1989]. This choice was guided solely by the 
familiarity of the subject matter in the reader community. This choice is meant to keep 
the reader (as much as possible) on familiar ground with respect to the subject matter. 
In this way, attention is maximally focused to notation rather than to understanding the 
subject of ER-modeling. The following aspects were identified to be in the demonstration: 

1. representing a graph 
Since a model is a graph in all modeling techniques, yet one of a different kind 
in each different technique, the representation of a graph is an issue. The example 
given in the following section defines a data structure which represents ER diagrams. 

2. representing properties 
Properties, both of nodes and of arcs, need to be represented to demonstrate that 
graph semantics can be represented. The example contains entities and relationships 
that have attributes and links that have a name and cardinalities associated with 
them. 

3. representing semantics 
Semantics are represented by functions that operate on the entire graph, so this 
needs to be included. The demonstration shows a function which generates SQL 
code, by way of defining the semantics of the graph. 

4. representing transformations 
A transformation from the ER diagram to a relational model is defined in our 
example, to illustrate a transformation from one modeling technique to another, 
and to illustrate the transformation from a modeling technique to a realization in 
code. 

5. composition of operations 
A requirement for meta-CASE tools is that primitive operations on models can be 
combined in order to define more powerful interpretations and transformations. 

6. size of code 
The full Haskell code is presented to illustrate the amount of code needed and how 
it is understood. 



146 Method Engineering 

Since method models are essentially graphs that describe other graphs, programming in 
a meta-case tool consists mainly of graph transformations. The choice for modeling the 
Entity-Relationship modeling technique [Elmasri and Navathe, 1989] is arbitrary in that 
any modeling technique which is represented as a graph will illustrate the idea. Readers 
who prefer to see an example of a process modeling technique, rather than a (static) 
data modeling technique, are referred to [Joosten, 1994], which contains an example of 
transforming a business process model into Petri-Nets. 

3 A METHOD MODEL FOR ER DIAGRAMS 

In order to demonstrate the use of a functional programming language, it is inevitable 
to show some code. Since program code makes notoriously difficult reading, some sup
plemental documentation is provided in three different ways. First, code is explained 
elaborately where appropriate. Second, many small examples of the effect of using code 
have been added. Third, appendix A gives a brief introduction to functional program
ming. The intention is that readers with no knowledge of functional programming can 
still appreciate the observations and conclusions (sections 6 and 7). 

The method model of Entity-Relationship diagrams [Elmasri and N avathe, 1989] is built 
up by first introducing entities and relationships. Then, links are introduced and these 
definitions are assembled into ER diagrams. Operations on ER diagrams are not intro
duced until section 4. 

3.1 Entities and Relationships 

Entities and relationships are the main objects in an ER diagram. In Elmasri & Navathe's 
notation, they are the nodes in the graph. Each entity and every relationship carries 
a scheme with the name, attribute and key information in it. The following type is 
introduced: 

data ER = ENT Scheme I REL Scheme 

This definition introduces a type ER, together with the two alternative representations 
it has. An object with value ENT s is an entity with scheme s, and an object with value 
REL s is a relationship with scheme s. ENT and REL serve as labels to distinguish the two. 

The data declaration introduces a new type that is distinct from any other type in the 
language. The introduction of a new type, as opposed to using an already defined type, 
has the advantage that programming errors due to mixing representations are signalled 
by the type checker. 

A scheme is a data structure that contains information about the attributes and keys 
and also the name of the entity or relationship. The following lines are type synonym 
definitions, which are recognized by the reserved word type. 

type Scheme 
type Name 
type Attribute 

(Name, [(Attribute, Bool)]) 
[Char] 
Name 



Lazy functional meta-CASE programming 147 

Name is used as a synonym for a list of characters, which is a string. Square brackets mean 
"list of', so [Char] means a list of characters. Name is used for strings that represent 
names. Attribute is introduced as a synonym for Name, for the sake of readability. 

The type declaration introduces synonyms. Introducing a synonym provides a name for 
a (possibly more complex) construction of types, and retaining the option of using all the 
operations that are already defined on that type. The definitions of schemes is not very 
different from the type definition in procedural languages, where constructs like records 
and/or arrays would be used. Some languages require upper bounds for the number of 
characters in a name or the number of attributes in a scheme. 

The definition of Scheme involves a tuple (to be recognized by parentheses) that consists 
of a name (type Name) and a list of attribute/boolean pairs. Here is an example of an 
object (called testScheme) of the type \verbScheme": 

testScheme :: Scheme 
testScheme "test scheme" 

, [("NAME", True), ("ADDRESS" ,False), ("AGE" ,False)] 

This definition introduces the object testScheme. The double-colon in the first line says 
that testScheme has type Scheme. The equals-symbol in the second line defines the value 
of test Scheme. As expected, this value consists of a tuple, being a name and a list of 
attribute-boolean pairs. The boolean that comes with every attribute indicates whether 
the attribute is a key. 

The definition of test Scheme uses the property that every object has a direct denotation. 
If this function were implemented by means of a pointer chain, which is done in languages 
like Pascal or C, the definition of this example would involve some procedure calls as well, 
making the code larger and less accessible. 

The following auxiliary functions on schemes are defined: 

schemeName 
schemeName (name, as) 

schemeKeys 
schemeKeys (name, as) 

Scheme -> Name 
name 

Scheme -> [Attribute] 
[attl (att,key)<-as, key==True] 

The function schemeName reproduces the name of a scheme, and schemeKeys gives a list 
of the key attributes. The code of schemeKeys reads: the list of elements called att, in 
which the pair (att,key) is an element of as and field key equals True. 

These definitions illustrate two useful language issues: hiding representations and list 
comprehensions. Hiding of representations is known as encapsulation in the object
oriented world, aml as abstract data types in programming language theory. The func
tions schemeName and schemeKeys are defined to make the type Scheme independent of 
its representation. When a programmer decides to change representations, only a few 
definitions change. It is especially useful for meta-CASE programming, because data 
structure representations tend to become intricate once a number of different modeling 
techniques are involved. The list comprehension, used in the definition of schemeKeys, 



148 Method Engineering 

appears frequently in places where imperative languages have iteration. Especially termi
nation conditions and loop invariants are a source of errors, which are mostly avoided in 
the list comprehension. 

The following function, showScheme, prints a scheme in ASCII. We use it to demonstrate 
the dialogue between the user and the computer. The function showScheme shows the 
previously defined scheme test Scheme in a pretty layout. 

? showScheme test Scheme 
test scheme(NAME*, ADDRESS, AGE) 

The question mark is the prompt. It is followed (on the same line) by the expression 
typed in by the user. The result is printed directly underneath. 

The code of the function showScheme is presented only for the sake of making a complete 
presentation. 

showScheme :: Scheme -> [Char] 
showScheme (name, as) 

name ++ 
II (" ++ 

chain" "[att++cond key "*" '"'1 (att ,key)<-as] ++ 
")11 

This function prints the name and attributes on one line, Each attribute has affix * if it is 
a key. The attributes are separated by a comma and a space (", ", by using the function 
chain) and enclosed in parentheses. 

This completes the definition of entities and relationships (i.e. the nodes) in the ER 
modeling technique. 

3.2 Link 

Now let us observe links, which are represented by lines connecting relationships with 
entities. A link is the line in an ER diagram that is drawn between an entity and a 
relationship. Links have a name and a cardinality ratio. The name identifies the role of 
the link, which is left empty if the role is obvious. The cardinality ratio is also stored in 
the link. 

type Link 
data CardRat 

(Name, CardRat) 
R01 I ROn I R11 I R1n 

The cardinality ratio of a link is represented by a type CardRat, that can have only four 
different values: Each value represents a different meaning. Suppose c is the cardinality 
ratio (type CardRat) of a link between entity X and relationship Y. The meaning is given 
by this table: 

R01 Each x in X occurs only once or not at all in Y. 
ROn There are no restrictions. 
R11 Each x in X occurs precisely once in Y. 
R1n Each x in X occurs at least once in Y. 



Lazy functional meta-CASE programming 149 

The default value is ROn, which means that there are no restrictions. 
The definition of CardRat is an enumerated type, a feature available in many program

ming languages. Here, the notation is a special case of the data definition encountered in 
the previous section, so enumerated types do not require a special notation. As opposed 
to encoding the information (for example as integers) the use of enumerated types results 
in fewer mistakes, because the compiler signals errors that would otherwise show up at 
runtime. 

A link is shown as an English sentence which states the cardinality restriction imposed 
by the cardinality ratio. For that purpose the function showCR is defined. 

showCR (lName,R01) eName rName 
= "Each " ++ eName ++ "occurs at most once in " ++ 

rName ++ role lName ++ "." 
showCR (lName,ROn) eName rName 

= "" 

showCR (lName,Rll) eName rName 
= "Each " ++ eName ++ "occurs once in " ++ 

rName ++ role lName ++ "." 

showCR (lName,Rln) eName rName 
"Each " ++ eName ++ "must occur in " ++ 

rName ++ role lName ++ " " 

role 
role cs " as u++cs 

The function role is an auxiliary function, with the sole the purpose of defining showCR. 
Here is an example of how showCR works. 

? showCR ("supervisor", ROO "EMPLOYEE" "SUPERVISION" 
Each EMPLOYEE occurs at most once in SUPERVISION as supervisor. 

This function withdraws knowledge from links in a readable form. 
This completes the definition of links. The following definitions combine entities, rela

tionships and links to form ER diagrams. 

3.3 ER diagram 

An ER diagram is represented by a graph, with nodes of type ER and links of type Link. 
Graphically, an ENT node is represented by a rectangle and a REL node by a diamond. 
Links are represented by lines, connecting an entity and a relationship. 

In order to define the ER diagram, an existing type Graph is used. ER diagrams are 
represented by the type ERdiagram: 

type ERdiagram = Graph ER Link 

An ER diagram is defined as a graph, with objects of type ER as nodes and objects of type 
link as arcs (arrows). For ER diagrams, there is nothing else to define. The definition 



150 Method Engineering 

of Graph is given in a prelude, so it is not part of the code. Without that, some code 
defining graphs and operations on graphs would have to be developed. 

The definition of ERdiagram is an example of using a data structure (graph), the rep
resentation of which is hidden. This type of abstraction is necessary in meta-CASE pro
gramming, because graph structures in practice are intricate and therefore error-prone. 
If a language is used where graphs are defined in terms of pointers to cells, as is the case 
with a number of procedural programming languages, the definitions are more compli
cated. Pointer algorithms are notoriously error prone, so it makes sense to avoid their use 
in meta-CASE programming. 

So far, we have discussed new types, synonyms, direct denotation of data objects, ab
sence of pointers, hiding of representations, use of enumerated types, and data abstraction 
over graphs. The pieces of code presented are tiny illustrations of how these issues help 
programmers to keep the amount of code low, the level of abstraction high, and the 
number of mistakes small. 

We have introduced the data structure that represents the method model of ER dia
grams. Next, operations on ER diagrams are defined to define the meaning of the method 
model. This is the topic of the next section. 

4 MEANING 

Any method model is useful only if it has meaning, which is achieved by defining opera
tions. These operations provide interpretations of application models, changes to appli
cation models, and of course an algebra to create application models. In this section, we 
illustrate graph transformations that are typical of meta-CASE programming by defining 
an interpretation of ER diagrams, which is a relational database scheme with integrity 
constraints. Apart from being an interpretation of ER diagrams, this also demonstrates a 
transformation from one (well known, prototypical) modeling technique to another. This 
is an important aspect of meta-CASE programming. 

4.1 Generating attribute vectors 

A relational database scheme consists of a set of attribute vectors and a set of integrity 
constraints. Generation of the attribute vectors is treated in the first subsection. The next 
subsection shows how integrity constraints are derived and the third subsection integrates 
these into relational database schemes. 

Every entity or relationship carries its own attributes in a scheme. Semantically, all 
entities and relationships are mapped on relations in the relational model. Throughout 
this paper the word 'relation' refers to the relational model, while the word 'relationship' 
has its meaning within the Entity-Relationship modeling technique. 

The choice to map entities and relationships to schemes is typically made by the method 
engineer. Each entity and every relationship is associated with a scheme that contains 
all attributes relevant to its meaning. For this purpose the function schemeER is defined, 
whose effect is illustrated by this example: 

? showScheme (schemeER company employee) 
EMPLOYEE (Name , Sex, Address, Ssn*, Salary, Bdate) 



Lazy functional meta-CASE programming 151 

The expression "schemeER company employee" yields the scheme that belongs to the 
node employee within the ER diagram company. Both employee and company are defined 
in in section 5, which represent a particular ER diagram. This example showed the scheme 
associated with an entity (employee). Here is another example that shows the scheme 
associated with a relationship (controls): 

? showScheme(schemeER company controls) 
CONTROLS (DName*, PName*, DNumber*, PNumber*) 

The function showScheme was used to generate pretty output. Without the use of that 
function, the data structure is printed in full detail (layout added): 

? schemeER company controls 
("CONTROLS", [ (IDName", True) 

, (IDNumber", True) 
, (IPName", True) 
, (IPNumber", True)]) 

The function schemeER copes with ambiguous attribute names by means of prefixes. 
Depending on the situation, the attribute name is prefixed with an entity name or a role 
name. Therefore, an attribute can be renamed if (for every attribute) its name, the entity 
to which it belongs, and its link name (i.e. role) is known. Due to the disambiguation of 
names, the code of schemER is more complex than previous examples. 

schemeER :: ERdiagram -> ER -> Scheme 
schemeER dia (ENT scheme) = scheme 
schemeER (ers,links) (REL scheme) 

( schemeName scheme 
, snd scheme ++ 

renameAtts (att,name,lname) 
l<-linksGraph diagram 

, (lname,cr)=lbl(l), ENT (name,atts)=src(l) 
, REL scheme==dst(l) 
, (att,key)<-atts, key] 

In brief, the function schemeER interprets the graphical elements of ER diagrams and 
generates a list of attributes (the attribute vector) to be used in a relational database 
scheme. Entity schemes are copied, whereas the scheme of a relation object is "expanded" 
by the key-attributes of the adjacent entities. 

This is one example which benefits from the fact that control flow is not an issue in a 
lazily evaluating language implementation. The complexity of the disambiguation prob
lem leads to a complex list comprehension. If the code is written in terms of (imperative) 
statements, using iteration, selection, and sequence, it becomes even more complicated, 
because the control flow is no longer as obvious as in simple situations. The opportunities 
for making mistakes are therefore higher too. Definitions such as schemeER, which are 
not trivial, are common in meta-CASE programming. 



152 Method Engineering 

4.2 Integrity constraints 

Properties of the ER diagram affect the integrity constraints of the derived database. 
These constraints limit the possible database instances. The information in the ER dia
gram makes it possible to derive integrity constraints. A data structure is defined for this 
purpose. 

data IntegrityConstraint 
KEY Scheme 
CARDINALITY Link ER ER 

Two types of constraints are introduced. Key constraints specify the candidate keys of 
each relationship scheme. The cardinality constraint is derived from the cardinality ratio. 
Referential integrity constraint are not treated here, to keep the volume of the text limited. 

In order to print an integrity constraint, the function showIntegri tyConstraint is 
defined. This function is designed to give more or less understandable english sentences 
for each constraint. For example, the key-constraint associated with the entity employee 
is printed as: 

? showIntegrityConstraint (KEY (schemeER company employee)) 
["Ssn"] is the key of relation "EMPLOYEE" 

This is how the function showIntegri tyConstraint is defined: 

showIntegrityConstraint (KEY reI) 
"Err: "++show(schemeName rel)++" has no key attributes!", 

show (schemeKeys rel)++" is the key 
show (schemeName reI), 

showIntegrityConstraint (CARDINALITY I 
= showCR I (nameER e) (nameER r) 

if schemeKeys rel==[] 
of relation "++ 

otherwise 
e r) 

This code uses only language concepts that we used before. Adding concepts to the 
method model, whether integrity constraints or anything else, leads to a similar use of 
the language for every new concept introduced. This is the "routine" in which a meta
CASE programmer needs to be trained. 

Having introduced the concepts of attribute vectors and integrity constraints, we are 
set to define Relational Database Schemes. 

4.3 Relational Database Scheme 

The ER diagram can be used to derive a Relational Database Scheme (RDS), following the 
choices made by Elmasri & Navathe [Elmasri and Navathe, 1989]. A relational database 
scheme is represented by the type RelDBScheme. It consists of two components: a list 
of schemes (one for each entity and one for each relationship) and a list of integrity 
constraints. 

type RelDBScheme ([Scheme], [IntegrityConstraint]) 



Lazy functional meta-CASE programming 153 

A relational database scheme can be derived from the ER diagram by means of the 
function rScheme, which is defined by: 

rScheme :: ERdiagram -> RelDBScheme 
rScheme erDia = (rs, ics) 

where 
nodes 
links 
rs 
ics 

setToList (domGraph erDia) 
setToList (linksGraph erDia) 
[schemeER erDia node Inode<-nodes] 
[KEY schemel ENT scheme<-nodes] ++ 
[CARDINALITY (lname,cr) e rl 

((lname,cr),e,r)<-links, cr/=ROn] 

This definition introduces some auxiliaries. The nodes and links of the ER diagram 
are called nodes and links respectively. The list rs contains the database schemes that 
correspond to the nodes in the ER diagram. The list ics contains the restrictions. There is 
a key-restriction for every scheme in the ER diagram and a cardinality restriction for every 
link. A key restriction that corresponds to an entity contains the same information as the 
scheme of that entity, so each key restriction is represented by copying the corresponding 
entity scheme. A similar argument holds for links: the information in the link is used 
to represent the cardinality restriction of that link. However, links with cardinality ROn 
have no restriction, so they are filtered out. The database scheme implied by the entire 
ER diagram is the list of schemes rs together with the restrictions in list ics. 

A relational database scheme is a nontrivial interpretation of ER diagrams, especially 
since cardinalities and integrity constraints are included. Yet, the actual code of rScheme 
consists of 9 lines only. It is of roughly the same complexity as the code of schemeER, and 
also roughly as long. Although rScheme is on a higher level of abstraction (mentally) than 
schemeER, the former is still equally complex for a programmer to understand. The reason 
is that intelligent use has been made of data abstraction (i.e., hiding representations), and 
list comprehensions. This is made possible because control flow issues are absent. In an 
imperative language, or even in a non-lazy functional language, data abstractions can 
sometimes not be combined freely due to control flow problems, which means that these 
issues absorb time and energy. 

In this section we have seen more complex uses of language constructs and discussed 
how they help a programmer. We have also introduced the operations that constitute an 
interpretation of Entity-Relationship diagrams, yielding relational database schemes. This 
can be seen as the result of a method modeling activity, performed by a method engineer. 
To generate code, to compute metrics, and to define different views are all uses of a method 
model that are typically supported by meta-CASE tools. To make transformations from 
one application model to another and then transform onwards down to a realization 
requires the ability to cascade computations. A typical example is to transform an ER 
diagram to a relational database scheme first, and then to generate SQL code from the 
relational database scheme. The following section demonstrates this as an example of 
using the method model. 



154 Method Engineering 

5 USING THE METHOD MODEL 

This section shows the transformation to SQL code, as an example to illustrate two 
points. The first point is that the transformation of an application model to realization 
is done in a way which resembles the transformation between two application models, 
by making use of high level abstractions, avoiding control flow issues, and defining a 
functional transformation concisely. The second point is to illustrate how functional 
transformations are composed to describe cascaded computations. This composition will 
in the end be responsible for the practical use and the power of meta-CASE tools, because 
cascaded transformations create complicated operations that can be used "by pushing one 
button" in a meta-CASE tool. 

Figure 1 An ER diagram (example, from Elmasri & Navathe) 

To make the demonstration concrete, we show an instance of an ER diagram which is 
transformed in two subsequent steps. The ER diagram in figure 1 (from fig. 3.13, page 55 
in [Elmasri and Navathe, 1989]) is described in terms of the method model in section 3. 

Figure 1 has a represention inside the CASE tool (figure 2). This (or similar) code 
is generated by the CASE tool, derived from the diagram produced by an application 
engineer. It consists of tabular information representing graphs with attributes on the 
nodes and arcs. Constraints on the form of the diagram are enforced by the CASE tool. 
Therefore, syntactical constraints are not needed in the internal representation. 

In figure 2, the first definition (company) represents the actual graph. The graph is 
specified by giving each link together with the two nodes that connect the link. Each link 
contains a cardinality ratio, which gives restrictions to the number of times an entity may 
occur in a relation. The (optional) name of the link identifies the role of the entity in the 



Lazy functional meta-CASE programming 155 

relation. The nodes in the graph are either entities or relations, to be distinguished by 
the labels ENT or REL. Each one of them is defined separately. 

For the purpose of this paper the internal representation is written as source code, using 
the property that even complicated data objects such as an entity-relationship diagram 
can be denoted directly in the language. The operations defined in section 4 can be used 
to manipulate the application models. For example, the operation rScheme was defined to 
transform an entire ER diagram into a relational database scheme. It was used to generate 
the relational database scheme in figure 3 from the code in figure 2. We demonstrate how 
to generate SQL code by giving some definitions (figure 4). We make two assumptions 
in the code. First, since most SQL implementations have non-standard explicit integrity 
constraint definitions, or none at all, the code for constraints is omitted (leaving some 
information unused). Integrity constraints from the ER diagram are enforced in the 
SQL code by procedural constraints. If the ER diagram is adapted to contain attribute 
types, better SQL code can of course be generated. The second assumption is that every 
attribute has the type VARCHAR(20), because attribute type information is not available 
in the relational database scheme. 

The SQL code in figure 5 was generated by applying the function sqlDBScheme to the 
relational database scheme of company. 

So far, we have seen two transformations. The transformation from entity-relationship 
diagram to relational database scheme was done by the function rScheme. The transfor
mation from relational database scheme to SQL was done by the function sqlDBScheme. 
The composition of these functions is defined using the compose operator (the period 
symbol): 

er2sql :: ERdiagrarn -> [Char] 
er2sql = sqlDBScheme . rScheme 

This new function combines both transformations into one new transformations. Compo
sition is an associative operator, which means that an arbitrary number of functions can 
be cascaded. 

6 OBSERVATIONS 

The elaborated example of the ER modeling technique leads to the following observations: 

• Defining a method model of the Entity-Relationship modeling technique is a typical 
example of method engineering, to be supported by a meta-CASE tool. 

• Not treated in this article is the link with the graphics of the meta-CASE tool. 
Naturally, the embedded programming language contains the graphical primitives 
needed for the CASE tool. 

• The method model of the Entity-Relationship modeling technique is concise. Al
though ER modeling is not the simplest among modeling techniques, it is modeled 
within the scope of this single paper. 



156 Method Engineering 

• Both the application model (figure 2) and the method model (section 3) and the 
computations to generate database schemes are described in the same language. All 
aspects of method modeling can be defined in the same language. 

• In the example, data structures are treated 'as a whole'. For example, graphs 
are used without knowledge of their implementation. This eliminates the need for 
programming with pointers. As a result, definitions of complicated operations such 
as rScheme (fewer than 10 lines of code) remain understandable. 

• Transformations from one application model to another are within the scope of the 
language. The operation rScheme is an example of such a transformation. Since all is 
described in the same language, it is easy to imagine a cascade of transformations. 
This is useful: the RDB-scheme can be translated further to SQL or any other 
formalism for that matter. Or, one could decide to insert a normalization algorithm 
in the cascade of actions. 

• Strong typing, which is part of the language, catches type errors at an early stage. 
This is economical towards a programmer, because new errors that are a consequence 
of type errors cannot occur. Fundamental errors directly concerning the modeling 
activity remain. Of course, such errors cannot be detected by any programming 
system. 

7 CONCLUSIONS 

The observations made in the previous section are related to the requirements identified 
in the introduction. Let us walk through the list of requirements. 

• The level of abstraction in the method model is the level of graphs, schemes, at
tributes, links, entities and relationships. This is the proper level of abstraction for 
the method engineer. Since modeling concepts translate directly to types, the effort 
to reach the proper level of abstraction is minimal. 

• Opportunities for mistakes are minimized by: 

- defining a data structure as irredundantly as possible; Redundance in data 
structures is a potential source of errors, because it has consequences for every 
operator that makes use of the data structure. 

treating a data structure as a whole; For example, a graph is treated as a 
single object rather than an intricate network of pointers. This eliminates a 
large source of potential mistakes (with pointers) 

strong typing; A host of trivial checks are unneccessary, because the system is 
under a strong typing regime. 

absence of side-effects; A program consists of equations, which can safely be 
interpreted as mathematical equations. 

• The tool supports graphs as an abstract data type. 



Lazy junctional meta-CASE programming 157 

• Overspecification is avoided mainly because control flow is a non-issue in a (lazy) 
functional programming language. A program has the same meaning, irrespective 
of the control flow. This contributes to the conciseness and understandability, and 
eliminates another source of potential errors. 

Considering the use of a method model and the role of a method engineer, the require
ments of a programming language for meta-CASE tools match the properties of functional 
programming. That is: correctness, programmer performance, conciseness and expressive
ness are more important whereas requirments on computer performance and access to the 
hardware are less important. So I conclude that the language is suitable for use in a 
meta-CASE tool. 

The use of one language for the internal representation of both application models and 
method models offers opportunities for sophisticated functionality, such as the cascading 
of model transformations. 

The following appendix is a superficial introduction to functional programming, in
tended to assist the reader in understanding the presented code. It is not a short course 
in functional programming. For that purpose I recommend [Bird and Wadler, 1988] 

A A READER'S INTRODUCTION TO FUNCTIONAL PROGRAM
MING 

Functional programming is mainly used for the purpose of specification and prototyping, 
because it has a high level of abstraction. It is rarely used in cases where efficiency prevails, 
because low-level features (hardware access) are not available to the programmer. 

A.1 Evaluation 

A functional program consists of definitions, which can safely be interpreted as mathe
matical equations. For example, the definition 

f(x) = x*x - 2*x + 4 

introduces a function f, that maps an argument x to the number x*x - 2*x + 4. So, f (3) 
equals 3*3 - 2*3 + 4, which evaluates to 7. A definition (also called value definition) is 
recognized by the equals-symbol (=). 

The computer serves as a machine, that evaluates expressions. This corresponds to the 
idea of an ordinary pocket calculator, although the latter works with simpler expressions. 
The facility to write definitions makes the calculator programmable. 

A.2 Types and Values 

All objects in a functional programming language have two components: a type and a 
value. For example, a variable x may have type Int and value "3". Consequently, a 
definition consists of two parts: the type definition and the value definition. The type 
definition is denoted with a double colon (: :) Example: 

f Int -> Int 
f(x) = x*x - 2*x + 4 



158 Method Engineering 

The first line says that f is an object of type Int -> Int, that is, a function that maps 
an Int to an Int. The second line defines the value of object f, which means that f is the 
function that maps any x to x 2 - 2x + 4. The computer can often derive the type of an 
object. In that case it is not necessary to specify the type. If the type is specified anyway, 
the computer uses that information as a check on the derived type. Normal practice is to 
specify the type to make code more understandable. 

There are three forms of type definition. The double colon (: :) defines the type of an 
object in the language. The reserved word type introduces a type synonym, which is used 
for readability purposes. The reserved word data introduces a 'home-made' type. This is 
used to create data structures suited to particular needs. 

A value is given by an expression. A trivial expression, such as 3, obviously denotes the 
value 3. More complicated expressions, such as 3*3 - 2*3 + 4, require computation to 
determine the value. 

A.3 Notations 

The application of a function to its arguments deserves special attention. The principle 
is that superfluous parentheses are omitted. So, f (x) is conventionally written as f x by 
functional programmers. Both have the same meaning. 

When more than one argument is involved, the meaning is no longer equivalent. The 
expression f (x, y) represents the application of a function f to one argument (x, y), which 
is a tuple containing x and y. This is different from f x y which means the application 
of a function f to two arguments, x and y. 

Lists are an important data structure. Square brackets are used to denote lists. Exam
ples: 

[36,49,64,81] 
[361] 
[] 

[("Jack" ,0), ("and" ,332), ("Jill" ,-18)] 

The following notation is frequently used to traverse lists. Here are some examples: 
expression result 
[x*xl x<-[6 .. 9]] [36,49,64,81] 
[y*yl y<-[6 .. 9]] [36,49,64,81] 
[eleml elem<-[0 .. 100], odd(elem)] [1,3,5, ... 99] 
[a+bl a<-[3,30,300], b<-[0,1]] [3,4,30,31,300,301] 
[al a<-[3,30,300], a<3] [] 
The notation is best understood by pronouncing the square brackets as "the list of", 

the vertical bar as "in which", and the symbol <- as "traverses" or "is taken from". 
Lists can be concatenated by means of the operator ++. 
expression result 
[2,0] ++ [4,2 ,4] [2, 0,4,2,4] 
"Jack"++"ie" 
[] ++ [4,2,4] 

"Jackie" 
[4,2,4] 



Lazy junctional meta-CASE programming 159 

References 

[Abramsky,1990] Abramsky, S. (1990). The Lazy lambda-calculus, pages 65-117. Addison 
Wesley. 

[Bird and Wadler, 1988] Bird, R. and Wadler, P. (1988). Introduction to Functional Pro
gramming. International Series in Computer Science. Prentice Hall, New York. 

[Elmasri and Navathe, 1989] Elmasri, R. and Navathe, S. B. (1989). Fundamentals of 
Database Systems. Addison-Wesley World Student Series. Benjamin/Cummings, Red
wood City, CA 94065. 

[Gibbons, 1995] Gibbons, J. (1995). An initial-algebra approach to directed acyclic 
graphs. In Moller, B., editor, Mathematics of Program Construction, number 947 in 
Lecture Notes in Computer Science, pages 122-138, Berlin. Springer-Verlag. 

[Harmsen et al., 1994] Harmsen, F., Brinkkemper, S., and Oei, H. (1994). Situational 
method engineering for information system projects. In Olle, T. and Stuart, A. V., 
editors, Proceedings of the IFIP WG8.1 Working Conference CRIS'94, pages 169-194, 
Amsterdam. North-Holland. 

[Harrison, 1993] Harrison, R. (1993). Abstract data types in Standard ML. John Wiley & 
Sons, Chichester, England. 

[Hudak and Fasel, 1992] Hudak, P. and Fasel, J. H. (1992). A gentle introduction to 
haskell. ACM SIGPLAN Notices, 27(5). 

[Hudak et al., 1992] Hudak, P., Peyton Jones, S. L., and Wadler (editors), P. (1992). 
Report on the programming language haskell, a non-strict purely functional language 
(version l.2). SIGPLAN Notices, 27(3). 

[Joosten, 1989] Joosten, S. (1989). The use of functional programming in software devel
opment. PhD thesis, University of Twente, dept. of Compo Sc. 

[Joosten, 1994] Joosten, S. (1994) Trigger modelling for workflow analysis. In Proceedings 
CON '94: Workflow Management, Challenges, Paradigms and Products (Oct. 1994), 
G. Chroust and A. Benczur, Eds., Oldenbourg, Wien, Miinchen, pp. 236-247. 

[Kashiwagi and Wise, 1991] Kashiwagi, Y. and Wise, D. S. (1991). Graph algorithms 
in a lazy functional programming language. Technical Report 330, Compo Sci. Dept, 
Indiana Univ., Bloomington, Indiana. 

[King and Launchbury, 1993] King, D. J. and Launchbury, J. (1993). Functional graph 
algorithms with depth first searc. In Hammond, K. and O'Donnell, J. T., editors, 
Functional programming, volume II, pages II.l-II.12. Springer-Verlag, Berlin. 

[Kumar and Welke, 1992] Kumar, K. and Welke, R. J. (1992). Methodology Engineering: 
A Proposal for Situation-Specific Methodology Construction, chapter 15, pages 257-269. 
Series in Information Systems. John Wiley, Chichester. 



160 Metlwd Engineering 

[Merberth, 1991] Merberth, G. (1991). Maestro II - das integrierte CASE-System von 
Softlab. BI Wissenschafsverlag, 3 edition. 

[Milner et al., 1989] Milner, R., Tofte, M., and Harper, R. (1989). The Definition of 
Standard ML. MIT Press, Cambridge, MA. 

[Rees and Clinger (editors.), 86] Rees, J. and Clinger (editors.), W. (86). The revised 
report on the algorithmic language scheme. SIGPLAN Notices, 21(12):37-79. 

[Smolander et al., 1991] Smolander, K., Lyytinen, K., Tahvanainen, V.-P., and Marttiin, 
P. (1991). Metaedit - a flexible graphical environment for methodology modelling. 
In Andersen, R., Bubenko, J., and Solvberg, A., editors, Pmc. Third International 
Conference on Advanced Information Systems Engineering (CAiSE'91), number 498 in 
Lecture Notes in Computer Science, Berlin. Springer-Verlag. 

[Turner, 1985] Turner, D. A. (1985). Miranda: A non-strict functional language with 
polymorphic types. In Jouannaud, J.-P., editor, 2nd Functional programming languages 
and computer architecture, number 201 in Lecture Notes in Computer Science, pages 
1-16, Berlin. Springer-Verlag. 

[Yourdon, 1989] Yourdon, E. (1989). Modern Structured Analysis. Yourdon Press Com
puting Series. Yourdon Press, New Jersey. 



Lazy functional meta-CASE programming 161 

company .. ERdiagram 
company 

listToGraph 
[ (("supervisor". ROi). employee. supervision 

(("supervisee". ROn). employee. supervision 

· (("". RU) • department. works For 

· (("". Rin). employee. works For 

· (("". R11) • department. manages 

· ((1111. ROi). employee. manages 

· «1111, Rin). employee. works On 

· (("". Rin). project. works On 

· (("". ROi). employee. dependentsOf) 

· (("". Rin). dependent. dependentsOf) 

· (("". ROi). department. controls ) 

· (("". Rin). project. controls ) 

employee ENT ("EMPLOYEE". ("Name" • False) 

· (IISex", False) 

· ("Address". False) 

· ("Ssn". True) 

· ("Salary" • False) 

· ("Bdate" • False) 
]) 

dependent ENT ("DEPENDENT". [ (IlName ll , True) 

· (IISex", False) 

· ("BirthDate" • False) 

· ("Relationship" • False) 
] ) 

supervision REL ("SUPERVISION". [] ) 

manages REL ("MANAGES". [ ("StartDate". False)] ) 
worksFor REL ("WORKS]OR" • [] ) 

controls REL ("CONTROLS". [] ) 

dependents Of REL ("DEPENDENTS_OF". []) 
works On REL ("WORKS_ON". [ ("Hours". False)]) 
department ENT ("DEPARTMENT". [ ("Name ll , True) 

· ("Number" • True) 

· ("Locations" • False) 
]) 

project ENT ("PROJECT". [ (IiName", True) 

· ("Number". True) 

· ("Location" • False) 
]) 

Figure 2 internal representation of ER diagram 



162 Method Engineering 

Relations 
DEPARTMENT(Name*, Number*, Locations) 
DEPENDENT (Name*, Sex, BirthDate, Relationship) 
EMPLOYEE(Name, Sex, Address, Ssn*, Salary, Bdate) 
PROJECT(Name*, Number*, Location) 
CONTROLS (DName*, PName*, DNumber*, PNumber*) 
DEPENDENTS_OF (Ssn*, Name*) 
MANAGES (StartDate, Ssn*, Name*, Number*) 
SUPERVISION(supervisee_Ssn*, supervisor_Ssn*) 
WORKS_FOR(Name*, Number*, Ssn*) 
WORKS_ON(Hours, Ssn*, Name*, Number*) 

Constraints 
["Name", "Number"] is the key of relation "DEPARTMENT" 
["Name"] is the key of relation "DEPENDENT" 
["Ssn"] is the key of relation "EMPLOYEE" 
["Name", "Number"] is the key of relation "PROJECT" 
Each DEPARTMENT occurs at most once in CONTROLS. 
Each EMPLOYEE occurs at most once in DEPENDENTS_OF. 
Each EMPLOYEE occurs at most once in MANAGES. 
Each DEPARTMENT occurs once in MANAGES. 
Each DEPARTMENT occurs once in WORKS_FOR. 
Each DEPENDENT must occur in DEPENDENTS_OF. 
Each EMPLOYEE must occur in WORKS_FOR. 
Each EMPLOYEE must occur in WORKS_ON. 
Each PROJECT must occur in CONTROLS. 
Each PROJECT must occur in WORKS_ON. 
Each EMPLOYEE occurs at most once in SUPERVISION as supervisor. 

End Relation 

Figure 3 result of operation rScheme 



Lazy ftmctional meta-CASE programming 

sqlDBScheme :: RelDBScheme -) [Char] 
sqlDBScheme(rs,ics) 
= chain ";\n\n" [sqlScheme rl r<-rs] ++ ";\n" 

sqlScheme :: Scheme -) [Char] 
sqlScheme(name, as) 

"CREATE TABLE "++name++ 
"("++chain indent [sqlAttr al a<-as]++")" 
where indent = ", \n"++ [' 'I c<-"CREATE TABLE "++name++" ("] 

sqlAttr :: (Attribute,Bool)->[Char] 
sqlAttr(att,key) 

att++" VARCHAR(20) NOT NULL", if key 
= att++" VARCHAR(20)", otherwise 

Figure 4 SQL generator 

163 



164 Method Engineering 

? sqlDBScheme(rScheme company) 
CREATE TABLE DEPARTHENT(Name VARCHAR(20) NOT NULL, 

Number VARCHAR(20) NOT NULL, 
Locations VARCHAR(20)); 

CREATE TABLE DEPENDENT(Name VARCHAR(20) NOT NULL, 
Sex VARCHAR(20), 
BirthDate VARCHAR(20) , 
Relationship VARCHAR(20)); 

CREATE TABLE EHPLOYEE(Name VARCHAR(20) , 
Sex VARCHAR(20) , 
Address VARCHAR(20) , 
Ssn VARCHAR(20) NOT NULL, 
Salary VARCHAR(20) , 
Bdate VARCHAR(20)); 

CREATE TABLE PROJECT(Name VARCHAR(20) NOT NULL, 
Number VARCHAR(20) NOT NULL, 
Location VARCHAR(20)); 

CREATE TABLE CONTROLS(DName VARCHAR(20) NOT NULL, 
PName VARCHAR(20) NOT NULL, 
DNumber VARCHAR(20) NOT NULL, 
PNumber VARCHAR(20) NOT NULL); 

CREATE TABLE DEPENDENTS_OF(Ssn VARCHAR(20) NOT NULL, 
Name VARCHAR(20) NOT NULL); 

CREATE TABLE HANAGES(StartDate VARCHAR(20) , 
Sen VARCHAR(20) NOT NULL, 
Name VARCHAR(20) NOT NULL, 
Number VARCHAR(20) NOT NULL); 

CREATE TABLE SUPERVISION(eupervisee_Ssn VARCHAR(20) NOT NULL, 
supervisor_Ssn VARCHAR(20) NOT NULL); 

CREATE TABLE WORKS_FOReName VARCHAR(20) NOT NULL, 
Number VARCHAR(20) NOT NULL, 
Ssn VARCHAR(20) NOT NULL); 

CREATE TABLE WORKS_ON(Hours VARCHAR(20) , 
Sen VARCHAR(20) NOT NULL, 
Name VARCHAR(20) NOT NULL, 
Number VARCHAR(20) NOT NULL); 

Figure 5 generated SQL code 



11 

A practical strategy for the evaluation of 
software tools 

Antony Powell, Andrew Vickers 
Department of Computer Science, University of York 
Heslington, York, UK. 
Phone:+44 1904432722, fax: +441904432708 
Email: [alplandyvl@minster.york.ac. uk 

Eddie Williams, Brian Cooke 
Rolls-Royce pic 
PO Box 31, Derby, UK. 
Phone: +441332 771700, fax: +441332 770921 

Abstract 
This paper describes a working strategy for software tool evaluations that has resulted from 
work within Rolls-Royce pIc in response to the difficulty, and mixed successes, we have 
experienced in the selection of software tools. The lack of an acceptable methodology has 
meant that industrial evaluations are commonly time-consuming, fail to capture both tool and 
problem knowledge in a form suitable to aid future evaluations, and frequently give 
inconclusive results. Even where rigorous selection methods are used we raise the concern 
that tool evaluators are failing to address perhaps the most important factors in determining 
final success namely the non-technical or 'soft' factors. 

In an attempt to overcome some of these problems the proposed strategy provides a 
qualitative list of important issues distilled from many years experience of making tool 
selection decisions. This generic issue checklist is used to form domain specific criteria 
against which tools can be compared in a more quantitative manner. This process ensures 
traceability between issues, tool requirements criteria and supporting evidence in order to 
document decisions and provide assurance that all issues have been addressed. It also helps us 
to capture valuable corporate knowledge for future evaluations in order to become more 



166 Method Engineering 

efficient at evaluating tools, provide more consistent criteria and to limit the risk of expensive 
mistakes. 

This industrial perspective on tool selection will be of interest to managers and evaluators of 
organisations who purchase software tools. To a lesser degree the issue guidelines cover 
method evaluation and tool emplacement but further refinement and practical application is 
recognised. The strategy may also form the basis of a process for tool evaluations as required 
by higher levels of the SEI Capability Maturity Model (Humphrey, 1988; Humphrey, 1990). 
Finally, we hope that tool vendors will use it to provide better support for eliciting and 
meeting customer requirements during the evaluation process. 

Keywords 
Software tools, industrial practice, evaluation, experience 

1 INTRODUCTION 

For many years the software engineering community has argued (and vendors have claimed) 
that significant increases in software productivity can be achieved through the effective use of 
software tools. Unfortunately, the process of tool selection and emplacement is inherently 
difficult and expected tool benefits have often failed to materialise. Most organisations who 
employ software tools can testify to bad experiences of tools that did not meet expectations 
and legends of more 'spectacular' tool disasters are commonplace. Yet software tools are a 
necessary and integral part of the modem software development process and are key drivers 
of productivity and ultimately profitability. It is therefore quite surprising that few companies 
appear to have a rigorous process in place for the evaluation of software tools. 

This paper describes an attempt to address some of the difficulties we have experienced in 
tool evaluation. This experience comes from many years of selecting and introducing software 
tools and methods for the development of aeronautical control and monitoring systems. 
Despite long and very expensive evaluations for major tool purchases we still have, with the 
luxury of hindsight, made regrettable tool selection decisions. Here we have attempted to 
distill what distinguishes good from bad tool evaluations and form a more structured method 
to learn from these experiences and avoid costly mistakes. 

We start by explaining our experience of the reasons for the difficulty of the evaluation 
process, give practical advice in overcoming these problems and describe limitations in the 
'state of the art' in the evaluation domain (Section 2). Firstly, we address the problems of the 
tool selection decision itself including the problem of multiple and often conflicting criteria, 
the environment and nature of the decision, and the flawed decision making process. 
Secondly, we highlight the problem that evaluators tend to focus on technical capabilities of 
the tool at the expense of non-technical or 'soft' factors such as human and business issues. 
We also acknowledge the problems of successfully introducing the tool into the project 
domain - a process that we term 'tool emplacement' (as opposed to 'implementation' in order 



Evaluation of software tools 167 

to distinguish from actual tool usage). Tool emplacement can fail because of poor 
documentation, lack of compatibility with existing tools, and lack of flexibility. The 
interesting conclusion is that, despite basic reasons for mistakes in tool selections, decisions 
are still made with irrational neglect for even elementary issues. 

In response to these problems, a joint working party set out to form a strategy for tool 
evaluation based on the strong belief that we can capture and exploit past experience to 
improve the quality of decision making in tool selection and emplacement. Section 3 
describes the basic strategy that arose from this collaboration. It consists of a method to place 
'sanity' checks on decisions and a structured process to aid organisational learning. The result 
is a strategy that is simple to apply and generic across different problem domains but robust 
enough to help improve the quality of decision making. We illustrate our approach with a 
simple example and also contrast our approach with those of others with whom we are aware. 

We conclude by describing the more unexpected benefits ofthe strategy (such as the ability to 
develop repositories of criteria for different tool domains) and further work required (to 
address in more detail the problems of method evaluation and tool emplacement). The 
strategy is currently in use as a practical and evolving set of evaluation guidelines. Whilst the 
strategy may not necessarily reduce the cost and duration of evaluations (although benefits 
have been experienced) we believe it will help to avoid costly mistakes. 

The paper expresses our concerns about current practice in tool evaluation in particular that 
bad decisions are made on basic but recurrent mistakes, and hence a need for a more rigorous 
process. We hope it will act as a prompt for evaluators and decision makers to be 
introspective and as a result demand higher standards from, and add learning to, a critical 
corporate process. 

2. BACKGROUND 

2.1 The problem with tool evaluations 

From our practical experience we summarise the key problems of tool evaluation as follows: 

Decision criteria - The complexity of evaluating tools appears to rise exponentially with their 
functionality. Evaluators face the difficulty of weighting many nebulous product criteria (such 
as 'features', 'usability', 'robustness' and 'quality') often without reference points or 
benchmarks. This is made worse by limited understanding of the problem which the tool has 
to solve, imperfect tool information and also, due to cost, the need to evaluate tools outside of 
their operational environment. 

Decision risk and uncertainty - To add to this problem managers need quantification of the 
benefits of a new system against the risks of change. However, the difficulty of quantifying 
and comparing criteria leaves a high degree of uncertainty on the likelihood of success. 



168 Method Engineering 

Consequently an inherently complex multi-criteria decision (even with sound understanding 
of the problem environment and tool capability) can degrade into a best guess supported by a 
weak set of figures manipulated to meet the required decision outcome. 

Decision pressures - The search for a tool can be triggered by both intemal and extemal 
stimuli. Internal stimuli occur as current systems (gracefully) degrade under the greater 
demands of a changing operational environment. Tools outlive their cost-effective lifespan by 
surviving on patches, unofficial procedures or 'skunk-works' with users pushed to, and 
beyond, their patience threshold. Alternatively a decision can be forced by external stimuli 
such as advances in technology, contractual pressure, changing standards or an irrational need 
to keep up with competitors tool decisions. The cost and risk of introducing the new tools 
means the decision to search for a tool is typically made when the existing application is on 
the verge of collapse. The resulting urgency means that evaluation decision gets pressured and 
a difficult decision becomes even more risky. 

Decision horizon - Decision pressures can also influence the horizon on which a decision is 
based. Immediate budgetary demands may mean an unwillingness to pay the prima facie high 
price of a tool with disregard to the high through-life costs of apparently 'cheaper' 
alternatives. The result is a short term fix rather than a long term 'solution'. 

Decision making process and responsibility - A key problem is that due to the significant 
risk of tool failure responsibility for the change is naturally avoided (why risk a promising 
career?). As a result decisions go underground, are left undocumented or are dissipated by 
committee dissonance. Lack of documentation leads to loss of both accountability and 
valuable corporate knowledge. 

Post-decision myopia - There is a tendency for the process to end once the purchase decision 
is made. The tool is thrown 'over the wall' into the user area for them to cope the best they 
can; by which time the decision makers, evaluators (precisely those people who should 
understand the tool best) and any potential product 'champions' have long gone. Many tools 
which are technically sound fail because of inadequate consideration of this emplacement 
process. Inadequate management of the change process (such as lack of management support, 
cultural problems, poor training) can destroy any remaining chance of success. 

Inevitable or premature tool decline - The volatile environment of tools, tool markets, 
vendors, standards, upgrades etc. means there is a high likelihood of a premature and 
somewhat abrupt end to the tool's useful lifespan. Even in the best case scenario; despite the 
most thorough review of a tool's capabilities, a good decision, and well managed 
emplacement cannot stop the eventual changing environment that renders the current tool 
obsolete. 

These problems are considerable even when evaluating 'small-scale' tools that apply to well 
defined functional problems (such as Statemate for the behavioural specification of systems) 
but they are exacerbated when considering 'womb to tomb' tools such as Cradle-SEE, 
Teamwork, RDD-l00, etc. Under these circumstances the beaten and downtrodden evaluators 



Evaluation of software tools 169 

are left in a lose-lose situation. Little progress is made, much money is wasted and little is 
learnt. 

2.2 Conventional wisdom and 'state of the art' 

The deliberately cynical account described above is intended to highlight the inherent 
difficulties of the evaluation process. Few are surprising, all are basic, and certainly none are 
new but readers may nevertheless recognise some or all of the symptoms within their own 
organisations. Of course, it is not difficult to proclaim sound advice based on the above 
observations, both our experience and conventional wisdom (Heller, 1991; Kitchenham et al., 
1995; Mosley, 1992) reminds us ofthe importance of: 

• Managing the decision process - It is critical to document the decision and make people 
involved responsible and accountable for the decision outcome. Add checks on the 
decision process to recognise and reduce pressures on decision makers to help avoid 
foolish decisions. 

• Managing tool emplacement - Preferably the tool should be evaluated by the people who 
are going to use it or at the very least ensure their active participation. Careful change 
management should foster champions, fund appropriate training, and respond to problems 
as they arise. 

• Managing tool decline - Try to recognise earlier the degradation of current tools due to 
internal and external triggers. Planned toollifecycle management will allow more time for 
successful tool replacement. 

• Trying before buying - Experience suggests - and we maintain - that case studies are of 
greater benefit than stand-alone evaluations particularly for large and important 
evaluations. 

• Identifying when and what to change - At some point we need to recognise the hard 
truth that the tool is good and it is our process that needs change. 

How come bad decisions are still made? They are all simple common-sense points but all to 
frequently missed. What we need to know is how to do them effectively, or more importantly 
from our point of view, what issues should be considered when devising procedures to 
implement these policies. Hence our reasoning for a more formal and consistent approach to 
evaluation of both technical and non-technical issues in tool selection. 

There are polished accounts (Kitchenham et al., 1995; Shin and Lee, 1996) of mechanisms for 
the evaluation of tools which address many of the concerns outlined in Section 2.1 and 
espouse much of the wisdom listed in Section 2.2; however, from a 'functional' or technical 
point of view. It is our experience that the software issues concerned with how the tool 
may/will be used are the issues that are crucial to a successful evaluation, emplacement and 
use. It is these issues which we have concentrated on. 



170 Method Engineering 

3. AN INDUSTRIAL STRATEGY 

3.1 Strategy overview 

Clearly we need to pay more respect to the intricacies of both the selection decision and the 
emplacement process. To aid this we need more structured evaluation methods to give insight 
into the factors of tool assessment. Here we describe the approach adopted to improve the 
evaluation process based on the problems highlighted in Section 2. The strategy has two main 
characteristics: 

Defined process - We view evaluation process as consisting of two main activities: 
understanding the problem environment (which the tool is to address) and understanding the 
tool. It is important that we capture knowledge of both these activities for use in future 
evaluations. The mechanism we use is a defined basic process model with three phases: pre
evaluation (Section 3.2) evaluation (Section 3.3) and post-evaluation (Section 3.4). The 
phases help ensure consideration of decision impacts and allows decision checkpoints to be 
monitored. The chosen high level of abstraction allows us to introduce element of 
standardisation without loss of local flexibility. Throughout we stress the importance of 
having a managed and documented approach to the process. 

Issue checklist - Within the process model we introduce the technique of criteria generation 
from an issue checklist (Section 3.3.2). The benefits are two-fold; firstly it prompts 
consideration of non-technical factors and secondly it helps us to deduce our requirements 
more appropriately. 

The focus of this paper will be the evaluation process itself but we hope the reader will 
recognise how, by the use of a structured evaluation process the quality of, both pre- and post
evaluation phases can be strengthened. In Section 3.4 we conclude our description of the 
process with the current status of this strategy and results to date of its operation. 

3.2 The pre-evaluation process 

The pre-evaluation process is based on a first-pass through of the evaluation process 
described in Section 3.3. It should consist of the following events: 

1. Trigger recognition - Recognition of the need for the tool and documentation of the 
trigger stimulus (i.e. the perceived problems with old tools). 

2. Problem statement - Formation and documentation of a preliminary statement of the 
problem which the new tool is intended to address. 

3. Criteria assessment. Generation of a list of the most important criteria against which 
tool(s) will be evaluated (based on the problem statement and issue checklist or past 
evaluation template). 



Evaluation of software tools 171 

4. Tool search and shortlist - Conducting tool search (including finding if anyone within the 
organisation has prior experience of the tool) and shortlisting of tools against the initial 
criteria list. Of course this selection may be based on the 'lesser of evils'. 

5. Sourcing decisions - At some point a decision is made whether to buy a tool or develop an 
in-house solution. This may be a high-level policy decision. 

6. Evaluation proposal - A proposal is produced to describe and justify the selected 
evaluation strategy against a first pass at the evaluation process. 

7. Decision to evaluate - A formal decision to proceed with (or cease) evaluation of the 
tool(s) and trigger for full evaluation process. 

The relative importance of the tool decision will determine the need for, and extent of, each of 
these activities. 

3.3 The tool evaluation process 

3.3.1 Process and Mechanisms 
Figure I shows the basic process by which an evaluation takes place. The pre-evaluation 
process is likely to have already made one high-level pass at the evaluation phase in order to 
shortlist tools and produce the evaluation plan. The full evaluation process is based on the 
concept of phased evaluations to address the need for an evaluation process which is efficient 
and economical for the nature and risk of the tool selection decision. We describe the stages 
of our process as follows: 

Demonstration - Used as part of the initial search for tools but should only be used as a basis 
for the most minor tool purchases (where cost of mistakes is minimal in comparison to 
evaluation overhead) or where adequate information exists by which to make an informed 
purchase (evaluators must be confident that this meets all criteria). 

Assessment against criteria - Evaluation of tool against the list of issues described in 
Section 3.3.2 (in full in Appendices AI-A8) and preferably in comparison with another tool 
for benchmarking purposes. This should be the minimum evaluation level against which tool 
selection decision made. 

Pilot study - Significant tool selection decisions should not be made without recourse to 
some form of pilot study - either shadowing part of a project or applying it to a low risk part 
of a live project. 

On completion of each technique a decision is made whether to proceed to the next level. 
Each evaluation process decision is recorded with its reasoning and a final report is produced 
to record reasons for the tool selection or rejection decision. This process guides evaluators, 
aids resource allocation and can be used by other parties (managers, quality departments, 
other evaluators) to confirm reasoning and issue coverage. 



172 Method Engineering 

Determine and 
Record Criteria 

Yes 
(for each tool) 

Demo 

Figure 1: Basic evaluation process. 

o 

How to 
Evaluate? 

Evaluate Pilot 



Evaluation of software tools 173 

3.3.2 Issues in the selection of software tools 
At the core of our strategy is the issue checklist shown in Figure 2 (presented in full in 
Appendix AI-A8) is used to form an initial set of more quantitative criteria against which a 
tool is evaluated. It is suggested that each tool should be assessed against a particular 
requirement prepared for that tool linked to a particular issue category. The requirement itself 
should ensure that issues are addressed and indeed provide traceability to them. When 
forming a business case for tool purchase, evaluators should provide evidence that all relevant 
issues from the list have been addressed. 

The issues are listed in no particular order and may be addressed in sequence of perceived 
importance. 

Business issues reflect the top level business constraints against which the business case for 
the tool will be made. They represent the environment for the decision and may constrain the 
tool evaluation process such as limiting the cost of new tools, policies of sourcing and risk to 
current projects. It is important to accept that sometimes it is impossible to calculate 
quantitative indices such as return on investment with confidence, in which case qualitative 
alternatives should be made explicit. 

Evaluation issues are those which impact upon the evaluation process itself and represent the 
method by which evaluation must be justified. These issues form a self-check on evaluators 
including preconceptions, structuring to capture evaluation knowledge and selection of 
benchmarks. 

External reference issues concern how the tool evaluation and emplacement relates beyond 
the boundaries of the organisation. The intention is to ensure that evaluators take advantage of 
information repositories pertaining to the tool (including past evaluations). These can 
significantly reduce the amount of time and therefore cost needed to evaluate a tool. 

Vendor support issues represent concerns about futures in the uncertain tool market. These 
are frequently overlooked but critical particularly in high integrity and/or defence 
applications. 

Financial issues represent the importance that all the costs incurred in selecting a tool be 
taken into account and assessed as accurately as possible. Where figures are problematic the 
level of uncertainty should be emphasised and bounded. 

Tool issues represent the critical fitness for purpose of the tool and its method. These are the 
focus for traditional tool evaluation methods (including things assessment of how a tool 
affects the process and product integrity, compatibility, acceptability). It is recognised that the 
need to act to solve a technical problem may outweigh other problems such as vendor. And, 
once again we must recognise when the tool is good but our process needs changing. 



174 Method Engineering 

----r ~~:its Affordability 

A 1 Business Issues Political Issues 
Standardisation 
Sourcing 

{ f:~::llc and Independent Factors 

A2 Evaluation.Specific Issues Evaluation Technique 
Comparison with other Tools 
Decision Making 

A3 External Reference Issues 

A4 Vendor Support Issues 

Visibility and Accountability 

{

Gaining Experience 
Communicating Experience 
Market Awareness 
Future Standards 

Role of External Organisations 
User Networks and Contacts 
Vendor Assessment 

Quality and Cost of Support 
Vendor Interaction and Defence 
Vendor Independence, Access and Nationality 
Vendor Reputation, Maturity. Security 

Vendor Infrastructure 

Access to Internal Tool Information 
Access to the Tool's User Base 

Version Choice 

Version Control 

AS Financial Issues 
,Costs 

-----lL Payback 

Method (notations, maturity, theory) 
Integratibility and Compatibility 
Tailorability 
Platforms and Compatibility 

Domain of Tool 
Tool Integrity and Standards 
Skills Base and User Capability 
Data Configuration Control 
Tool Modularity 

AS Tool Specific Issues ----If--f'I'esponseTimes 
Acceptability 

A7 Emplacement Issues 

AB Tool Lifespan Issues 

User Interface 
Provision of Metrics 
Documentation Produced 
Access to Internal Data 
Maturity of Tool 
Data Portability 
User Access Control 
Integration into the Line 

{

Integration into Other Tools 
Training and Familiarisation 

Scale of Tool 
Ownership of Change 
Contingency 

.- Recognising the Decline Phase 
--L-- Managing Decline 

Figure 2: Issues in tool evaluation (Appendices Ai-AS). 



Evaluation of software tools 175 

Emplacement issues reflect the difficulty of successfully integrating a tool into the line and 
achieving business benefits. They should be addressed by evaluators before a tool selection 
decision is made. 

Tool lifespan issues reflect the need to recognise and manage the inevitable decline of a tool 
against the introduction of its replacement. This is frequently neglected but can impact highly 
on the quality of the next evaluation decision. 

The list may not be 100 percent complete but we have found it to be a useful starting point for 
addressing the key issues that affect success in tool selection and emplacement in our 
organisations. It is not very qualitative, but we are not alone in making use of subjective 
measures, see (Dick and Hunter, 1994) for example. By structuring and documenting tool 
selection criteria in relation to these issues we stand more chance of ensuring completeness 
and sensible decisions. In addition, we can construct templates for evaluation and comparison 
of certain types of tools (Section 3.3.4). 

3.3.3 Post-evaluation (emplacement and decline) process 
Development of the process for the emplacement and decline of tools has been identified as 
an issue for further enhancement of the evaluation process. Some of the issues of 
emplacement and decline have been discussed elsewhere in this document. We believe that 
more empirical research is necessary into the factors that affect successful emplacement of 
software tools. We also believe that there is a requirement for more advanced monitoring 
changes in the internal and external operating environment of a tool and to make replacement 
decisions earlier. These issues will be the subject of future work. 

3.3.4 Operation and results 
The described strategy has been incorporated into local quality guidelines for tool evaluations 
since mid-1995. Feedback forms have been used to communicate results of strategy 
application within operational areas. We have already observed considerable benefit in 
compiling knowledge from tool evaluation activities on two levels: 

Collection of domain criteria checklists - Different tool domains have varying criteria and 
weightings, which are capable of being recorded and reused. Such tool domains include 
general design, requirements management, systems engineering and requirements capture, 
configuration, testing, document managers, and control specification. There are also academic 
examples of domain criteria; for instance, Schamp (1995) records the criteria for 
configuration management tools. These internal (company generated) and external criteria are 
forming the basis of a tool requirement repository which will be of use in future evaluations. 

Collection and publication of tool evaluation results - Through use of organisation-wide 
process improvement teams we have stimulated cross-organisation communication about 
tools, toolsets, and tool experience. Tool evaluation intentions and results are published to all 
relevant parties - allowing us to make best use of organisational knowledge, track weaknesses 
in particular tools and ensure a proactive attitude in tool policy. 



176 Method Engineering 

Time will allow us to evaluate and refine the strategy whilst improving our knowledge 
repository. Initial feedback has indicated strong potential for cost savings and considerable 
support for valuable cooperation. 

4. AN EXAMPLE 

A real demonstration of the usefulness for our approach would require a number of 
experiments, involving the assessment of a number of different tools, using a variety of 
evaluation processes (e.g. (Misra, 1990)). Such a presentation would be a paper in itself, but it 
is useful to provide a sketched example of how our technique could be used to evaluate a 
software tool. We consider a mythical tool called the Requirements Management Tool 
(hereafter referred to as RMT) and its evaluation by company XYZ. The scenario is not 
derived from practices within Rolls-Royce. 

1. Members of XYZ have a need for some form of requirements management tool. 
2. Members of XYZ receive some technical literature on the RMT tool from the tool 

manufacturer. 
3. The tool looks promising and the XYZ members review their existing evaluation library 

and discover a review of a requirements specification tool (RST) that offers some similar 
features. The review for RST is retrieved and previous experience shows that it is the 
integration of such tools that is often the critical success factor. An RMT review check list 
is drawn up which includes the following issues: 

• Business issues - Is the RMT seat price less than £2000? 

• External reference - Is there an RMT user group? 

• Vendor assessment - Is the vendor a known supplier to XYZ? 

• Tool specific - Does the tool link to the existing DMT tool? 

4. A demonstration is arranged and the tool looks sufficiently appropriate that an evaluation 
copy is ordered. 

5. During evaluation the RMT tool scores well technically, but it cannot integrate with the 
DMT tool. As the DMT tool has been used successfully for many years it is decided not to 
pilot the RMT tool and the evaluation process is terminated. 

6. The RMT tool is rejected and the process and supporting arguments are logged in XYZ's 
tool evaluation library. 

7. XYZ management are pleased that an inappropriate tool has not been purchased and that 
the evidence for such a decision has been formally recorded. 

This is a deliberately artificial example but shows how a simple procedure can act as a means 
of protecting a company from an isolated evaluation performed purely on performance 
criteria. The process encouraged an orderly evaluation based on a variety of issues, making 



Evaluation of software tools 177 

use of previous knowledge where appropriate. Most importantly, the reasons for the rejection 
are recorded and placed within the corporate memory. 

5. RELATED WORK 

Whilst the process presented in this paper is primarily a description of our current practice, it 
is still appropriate to take some time to place our work in the context of that of others of 
which we are aware. The significance of software tools to the quality of an overall 
engineering capability has been documented (Pol via, 1992) and many have written of the 
importance of software tool evaluation (Heller, 1991; Kitchenham et al., 1995; Mosley, 
1992). Our ideas on creating a process for this evaluation (and subsequent emplacement) of 
tools is not uncommon to that of Rowley's (Rowley, 1993) goal of treating tool evaluation as 
a project in its own right. Such a view aids repeatability and encourages the recording of 
decisions and rationale, as well as introducing group accountability. This is a good thing and 
is not dissimilar to the work of Mosley for instance (Mosley, 1992). 

The inclusion of evaluation issues other than just functionality and performance is recognised 
elsewhere, in particular with regard to the role of different types of tool (Anderson, 1989; 
Cheng and Pane, 1991; DeSantis, 1994; Miller and Jeffries, 1992). Other organisations have 
recognised the wider scope of tool evaluations than just performance and functionality and 
have instigated their own corporate advice centres, see (Scheffler and Marshall, 1991). 

Other tool evaluation checklists do exist (Jeanrenaud and Romanazzi, 1994; Klopping and 
Bolgiano, 1994) but can be criticised (as indeed can ours) for being overly procedural and 
beaurocratic. McDougal (McDougal and Squires, 1995) discusses the problems of checklists, 
but we can only really draw on our own experiences. Checklists are laborious to fill in, but 
they do provide a focus or thought, and do draw the evaluators away from a technocentric 
approach to evaluation. 

6. FINAL COMMENTS 

This paper has presented a brief overview of a more detailed tool evaluation process currently 
in use within Rolls-Royce pIc. It is intended to be simple, generic and a working strategy that 
will evolve with use in order to capture and exploit valuable organisational knowledge 
generated during tool evaluations. The strategy addresses the weaknesses of the existing 
evaluation process by attempting to ensure that all issues are structured and addressed 
particularly soft factors overlooked by many formal evaluation techniques. The result is a 
quality evaluation process that we believe is more effective, more efficient, and less risky. 

We believe that the strategy improves our chances of ensuring that conventional wisdom 
about tool evaluation (Section 2.2) is addressed and against these goals it performs well (and 
considerably better than no process whatsoever!) However we emphasise the need for 
exposure of the strategy to generations of tool evaluations and its necessary evolution to 



178 Method Engineering 

capture more detailed evaluator knowledge. Further work on the strategy is required to 
capture experiences of tool emplacement (which is critical in determining the success of a 
tool) and enhance it to provide greater support for the more difficult area of method 
evaluation. These experiences will help us to define precisely how business cases for tool 
acquisition should be constructed, though we will need more qualitative measures, see 
Williams (Williams, 1992) for example. We hope to define a business case template which 
would use the results of our process to format a standard business case for tool selection. We 
see this as a significant step forward. Finally, we are in the process of assembling a 
knowledge repository on tool capabilities and application domain criteria. Taking this to the 
logical conclusion we could lay a foundation for a repository of this kind on the World Wide 
Web (WWW) thereby making a global tool information knowledge-base (clearly this has 
problems of regulation, evidence, objectivity, copyright etc. despite the attraction for tool 
purchasers). 

We have made (and perhaps laboured) the point that there are many issues in the use of tools 
of which only one is the technical capability. Experience has taught us that the subtleties of 
tool evaluation, selection and emplacement must not be underestimated. A more successful 
process will come from greater attention to the organisational and behavioural issues. Tools 
can provide business benefits but all too easily they can be eroded by unsuccessful 
introduction. In reality it is even harder than this as the introduction of a tool to an 
organisation will itself change the nature of the organisation. A tool may therefore contribute 
to its own lack of success because of the changes it introduces! Selecting tools is difficult 
(good from bad) and whilst we have not addressed all the issues, we believe the techniques 
presented in this paper are a step towards ameliorating the problems of tool selection. 

Finally, we believe that our experience is of benefit both to the users of tools, the developers, 
and vendors as a means of bringing the parties together for mutual benefit. We encourage use 
of checklist in Appendix AI-A8 to appraise the reader's organisation's process (if they have 
one) and we would welcome feedback. Whilst strategy may not necessarily prevent disasters 
occurring we at least have an opportunity to learn from them. 

7. ACKNOWLEDGMENTS 

Peter Jeffery and John Anderson for contributions to the ideas presented in earlier drafts of 
this paper. Peter Summers of Rolls-Royce who contributed to early versions of the evaluation 
strategy. Mike Burke at the British Aerospace Dependable Systems Computing Centre at the 
University of York. Rolls-Royce plc for permission to publish. The anonymous reviewers for 
providing sharply focused observations on improving the paper. 

Please note: This document represents the opinions of the authors and in no capacity does it 
indicate official policy for Rolls-Royce pic. 



Evaluation of software tools 179 

8. REFERENCES 

Anderson, E. E. (1989) A Heuristic for Software Evaluation and Selection. Software: Practice 
and Experience, 19(8),707-717. 

Cheng, D. Y., and Pane, D. M. "An Evaluation of Automatic and Interactive Parallel 
Programming Tools." Supercomputing '91, Albuquerque, USA, 412-423. 

DeSantis, J. (1994) Evaluating Multi-Platform Development Tools. Object Magazine, 4(4), 
41-44. 

Dick, R., and Hunter, R. "Subjective Software Evaluation." Software Quality Management II: 
Building Quality into Software, Edinburgh, UK, 321-334. 

Heller, R. S. (1991) Evaluating Software: A Review of the Options. Computers and 
Education, 17(4),285-291. 

Humphrey, W. A. (1988) Characterising the Software Process: A Maturity Framework. IEEE 
Software. 

Humphrey, W. S. (1990). Managing the Software Process, Addison-Wesley. 
Jeanrenaud, J., and Romanazzi, P. "Software Product Evaluation: A Methodological 

Approach." Software Quality Management II: Building Quality into Software, 
Edinburgh, UK, 59-69. 

Kitchenham, B., Pickard, L., and Pfleeger, S. L. (1995) Case Studies for Method and Tool 
Evaluation. IEEE Software, 12(4),55-62. 

Klopping, I. M., and Bolgiano, C. F. (1994) Effective Evaluation of off-the-shelf 
Microcomputer Software. Office Systems Research Journal, 9(1), 46-40. 

McDougal, A., and Squires, D. (1995) A Critical Examination of the Checklist Approach to 
Software Selection. Journal of Educational Computing Research, 12(3),263-274. 

Miller, J. R., and Jeffries, R. (1992) Interface-Usability Evaluation: Science of Trade-Offs. 
IEEE Software, 9(5), 97-102. 

Misra, S. K. (1990) Analysing CASE System Characteristics: Evaluative Framework. 
Information and Software Technology, 32(6),415-422. 

Mosley, v. (1992) How to Assess Tools Efficiently and Quantitatively. IEEE Software, 9(3), 
29-32. 

Polvia, P. (1992). "A Comprehensive Model and Evaluation of the Software Engineering 
Environment." Information Resources Management Association International 
Conference, Harrisburg, USA, 302-307. 

Rowley, J. E. (1993) Selection and Evaluation of Software. ASUB Proceedings, 45(3), 77-81. 
Schamp, A. (1995) CM-Tool Evaluation and Selection. IEEE Software, 12(4), 114-
118. 

Scheffler, F. L., and Marshall, R. R. ''The Software Technology Support Centre: Help for 
Acquiring Sofware Tools." National Aerospace and Electronics Conference, Dayton, 
OH, USA, 647-653. 

Shin, H., and Lee, J. (1996) A Process Model of Application Software Package Acquisition 
and Implementation. Journal of Systems and Software, 32, 57-64. 

Williams, F. (1992) Appraisal and Evaluation of Software Products. Journal of Information 
Science, Principles and Practice, 18(2), 121-125. 



180 Method Engineering 

APPENDICES AI-AS 

Al - Business issues 

These strategic issues reflect the top level business constraints against which the business case 
for the tool will be made. It is important to accept that sometimes it is impossible to calculate 
quantitative indices such as return on investment with confidence, in which case qualitative 
alternatives should be made explicit. 

• Costs - The total cost, from licences to attaining necessary competencies, should be 
calculated and depending on the level of confidence an upper bound be determined. 

• Benefits - The benefits should be estimated in as quantitative way as possible but where 
qualitative arguments from considerations such as thoSe in the rest of this section are used 
they must be made explicit. 

• Affordability - There should be adequate resources - human, financial and material to 
perform the assessment. Adequate evaluation time should be budgeted. 

• Political issues - The constraints arising from contractual commitment or the need to 
visibly conform to an industrial consensus should be addressed. 

• Standardisation - Evaluators should recognise policy decisions on preferred methods, 
notations, or platforms to which tools should conform. They should also try to be aware of 
any likely future directions for relevant standards. 

• Sourcing - The policy as to the selection of third party, in-house or commissioned tools 
should be identified and agreed. 

• Risk analysis - Risk analysis should be performed before any significant purchase decision 
is made. 

A2 Evaluation-specific issues 

Evaluation issues are those which impact upon the evaluation process itself. Evaluators 
should address these issues when planning an evaluation. These include: 

• Analysis of the purpose of the tool - The evaluator should have a clear understanding of 
the process and technical activity which the tool is intended to support. The evaluator 
should also understand the role which the tool is intended to fulfil and ensure that the 
means to meet this are addressed by the evaluation process. 

• Project specific and project independent factors - Evaluators should address both 
project specific (e.g. specific platform and network requirement) and non-project specific 
factors (e.g. quality of the method), which may require evaluation by different personnel. 

• Evaluation technique - Evaluators should consider the comparative value and cost of 
different evaluation mechanisms: 



Evaluation of software tools 181 

• demonstrations (by the supplier); 

• structured assessments using criteria checklists; 

• pilot studies. 

• Comparison with other tools - The evaluator should form a strategy for comparison of 
one tool against another including the baselining and use of scoring systems for 
prioritisation. 

• Decision making - Evaluators should clarify the basis upon which decisions will be made 
including who is responsible for the tool selection decision. 

• Visibility and accountability - Evaluators should provide visibility of the evaluation to all 
interested parties and ensure accountability and documentation of all decisions. 

A3 External reference issues 

External organisation issues concern how the tool evaluation and emplacement relates beyond 
the boundaries of the organisation. These include: 

• Gaining experience - The experience of other users, projects and/or companies should be 
identified and exploited where possible. 

• Communicating experience - The sharing of experience with other users, projects and/or 
companies should be an integral part of the evaluation process. 

• Market awareness - Line departments should keep abreast of the tool market to ensure 
that all potential solutions are considered and that the timing of tool evaluations and 
purchase is appropriate. 

• Future standards - Line departments should keep abreast of potential changes to methods 
and standards which may affect the lifespan of the tool. 

• Role of external organisations - Line departments should make active use of external 
organisations who can provide consultancy, tool information and contacts. 

• User networks and contacts - Line departments should establish and maintain links with 
other users to ensure that experience continues to shape the use of the tool once it is in 
operation in the line. 

A4 Vendor support issues 

Vendor support issues represent concerns about futures in the uncertain tool market. These 
include: 

• Vendor assessment - Evaluators should consider undertaking a formal vendor assessment 
exercise. 



182 Metlwd Engineering 

• Quality and cost of support - Evaluators should balance the level and quality of 
technical/product support provided and the cost of alternative support options against 
emplacement needs. 

• Vendor interaction and defence - Evaluators should appraise and define the nature of the 
relationship between the vendor and the organisation including quality and style of 
interaction (sales driven, technically capable and responsive) and form barriers as a 
defence from unnecessary interruption. 

• Vendor independence, access and nationality - Evaluators should establish the 
acceptability of the vendor in terms of their independence, ease of access and problems of 
nationality. 

• Vendor reputation, maturity and security - As far as possible evaluators should ensure 
the vendor's long-term commitment to the product, the standards to which they operate 
and their likely survival as a supplier. 

• Vendor infrastructure - Evaluators should ensure that the infrastructure of the vendor is 
suitable to effectively support such a product. 

• Access to internal tool information - Evaluators should test vendor openness about the 
tool's construction, quality of supporting documentation and tool certification evidence to 
ensure sufficient contingency. 

• Access to the tool's user base - Evaluators should seek to consult reference sites and 
attend user groups for mutual benefit and co-operation and to gain a feel for the vendor. 

• Version choice - Evaluators should ensure that they evaluate the right version of tool to 
used. A void evaluating beta versions. 

• Version control - Evaluators should establish the consequential risks of changes in the 
version of the tool on support software and interfaces with other tools. 

AS Financial issues 

It is important that all the costs incurred in selecting a tool be taken into account and assessed 
as accurately as possible. Where figures are problematic the level of uncertainty should be 
emphasised and bounded. 

• Costs - Evaluators should calculate the costs arising from (at least) tool licences and 
maintenance, hardware support, achieving and holding the necessary competence level of 
personnel, migrating from or integrating with the current toolset and administration. 

• Payback - Evaluators should estimate the amount potentially saved by automating process 
and/or lower cost of qUality. 



Evaluation of software tools 183 

A6 Tool specific issues 

Tool issues represent the critical fitness for purpose of the tool and its method. These include: 

• Method (notations, maturity, theory) - The underlying method should preferably be 
proven and accepted in the field and within the intended user community. The risk of 
method obsolescence should be minimised. 

• Integratibility and compatibility - The tool should be demonstrably compatible with 
existing and prospective tools and techniques. 

• Tailorability - Evaluators should consider the level of need and provision for tailorability 
and customisation, but this should be contrasted with potential lack of standardisation. 

• Platforms and compatibility - Evaluators should address the risks of platform 
dependence and version incompatibility. 

• Domain of tool - Evaluators must understand the purpose, functions and applicability of 
the tool against the problem domain. 

• Tool integrity and standards - Evaluators should consider tool integrity and standards 
and should ensure that the integrity of the tool meets its intended use. 

• Skills base and user capability - Evaluators should consider the level of skills required 
against currently available skills. 

• Data configuration control - The tools should allow the user to manage the input and 
output data in a configurable way. 

• Tool modularity - Evaluators should consider the benefits of buying tools in discrete 
functional units and should cost unused features. 

• Response times - Evaluators should ensure that the tool can withstand realistic usage and 
demand. 

• Acceptability - Evaluators should consider the tool's acceptability internally and 
externally, prejudices should be surfaced. 

• User interface - Evaluators should be sure that the user interface will be acceptable to the 
users (by understanding the tool and the user) . 

• Provision of metrics - The ability of the tool to support any required rnetrics programme 
should be considered e.g. such that the effectiveness of the data management (and other) 
facilities can be judged. 

• Documentation produced - The tool should enable documentation to be produced of 
sufficient quality to be easily introduced into existing company standards. This includes 
the ability to produce sections intended to merge with other documentation sources. 

• Access to internal data - The need for, and provision of, access to internal data structures 
should be examined. 



184 Method Engineering 

• Maturity of tool - Evaluators should be aware of the maturity of the tool in the market 
place, e.g. by examining the level of problems being solved by patches, upgrades etc. 

• Data portability - Evaluators should ensure that data from the new tools should be 
machine portable to other tools already in use (or planned to be brought into use). 

• User access control - Evaluators should consider if the tool has appropriate internal 
security mechanisms to ensure control of user access at appropriate levels. 

A 7 Emplacement issues 

Emplacement issues reflect the difficulty of successfully integrating a tool into the line and 
achieving business benefits. They should be addressed by evaluators before a tool selection 
decision is made. These include: 

• Integration into the line - The steps for introducing the tool including organisation of 
human resources, transfer of work and overcoming problems should be made explicit. 

• Integration into other tools - The practical aspects and cost of getting tools to 
communicate and operate effectively should be reviewed. 

• Training and familiarisation - Evaluators should explain and cost a strategy for training 
and familiarisation to support tool introduction including level and type required, internal 
or externally sourced, and provision of resources. The assumed pre-requisite skill of the 
trainee should be established. 

• Scale of tool - The introduction strategy should reflect the scaleability of the tool in terms 
of full-scale introduction on a project or selected (gradual) introduction. 

• Ownership of change - Change owners and tool owners must be identified, consulted and 
given responsibility to ensure success of the change process. 

• Contingency - Change owners should minimise the risk of introducing a tool via the use 
of contingency plans. 

AS Tool lifespan issues 

Tool lifespan issues reflect the need to recognise and manage the inevitable decline of a tool 
against the introduction of its replacement. 

• Recognising the decline phase - Tool owners and users should monitor tool usage to 
identify and make contingency for tool decline. 

• Managing decline - Phase-out and replacement of tools should be managed as part of the 
tool evaluation and emplacement process. 



Evaluation of software tools 185 

BIOGRAPHY 

Antony Powell is a researcher at the Rolls-Royce University Technology Centre at the 
University of York. Before this Antony worked for Rolls-Royce and Associates helping to 
introduce a number of measurement and process improvement activities across the Rolls
Royce group. His research interests include software measurement, process improvement, 
tool evaluation and software change. 

Dr Andrew Vickers is a Lecturer in the Department of Computer Science at the University 
of York. His research interests include Requirements Engineering, Software Architecture, 
Technology Transfer, and Safety-Critical Systems. Dr Vickers is a member of the High
Integrity Systems Engineering group at York. As part of this group, he is Assistant Director of 
the Rolls-Royce Systems and Software University Technology Centre, and Cotechnical 
Leader of the associated ASSET process improvement programme. He is a member of 
INCOSE, and the Industrial Liaison Officer for the British Computer Society's Requirements 
Engineering Specialist Group. 

Dr Eddie Williams works for Rolls-Royce and Associates in Derby leading the High 
Integrity Systems and Software Centre within Rolls-Royce pIc. 

Dr Brian Cooke works for Rolls-Royce and Associates in Derby leading a Systems and 
Software Metrics initiative throughout Rolls-Royce pIc. 



12 

Core objects required for a generic 
CASE repository 

Gordon Manson, Siobhan North and Abdullah AIghamdi 
Department of Computer Science, University of Sheffield, Regent Court, 
211 Portobello Street, Sheffield, UK. Tel. 0044-114-2825597 
EMail: A.Alghamdi@dcs.shef.ac.uk 

Abstract 
An extendible CASE tools environment is currently being researched at the Department of 
Computer Science, University of Sheffield. This environment is designed primarily for developing 
parallel system software but is configurable for other applications. It requires an underlying 
generic data repository to represent information about the system under development in a 
consistent and complete form. The representation must be independent of the source, and 
intended use, of its data. 

The paper starts by explaining the importance of a CASE data repository and the overall 
hierarchical structure of our repository data model. Then, it goes on to suggest a meta-meta data 
model for a generic CASE repository. 

Keywords 
CASE tools, MetaCASE Environment, Data Repository 

1. INTRODUCTION 

The software developer now expects a full CASE tools environment; not just a collection of 
unrelated CASE tools to support software development, but rather an assembly of integrated 
CASE tools that link together and provide automated support for all phases of the software life 
cycle. The data repository is a core technology in reaching high levels of software integration and 
automation because it provides the underlying framework upon which all the other structures 
depend (Chen, 1991) (Forte, 1989). 

The software engineering environments are perceived, in our system, as a collection of 
methodologies, each methodology consists of a number of tools (or techniques) and each tool 
comprises a number of graphical and non-graphical objects used for constructing part of the real 
life application. In view of this perspective, the overall structure of our CASE repository 
contents has been divided into a number of different layers of abstraction. 



Core objects requiredfor a generic CASE repository 187 

The first and most important step in developing a central CASE repository is to design its meta
meta data model. The abstract entities representing the real diagrammatic objects must be chosen 
very carefully if the repository is intended to be a generic one because whatever is chosen must be 
able to support all the currently popular methodologies and, hopefully a few that have not yet been 
invented (Alderson, 1991). To this end a number of methodologies, representing different 
paradigms and approaches to software engineering, as well as a number of configurable CASE 
tools have been reviewed. This allowed the development of an abstract meta-meta data model 
which could represent all of the diverse structures used in the different methodologies. 

2. REPOSITORY META DATA LAYERS 

To achieve the integration of various CASE tools and to make the environment open to multiple 
software engineering approaches, the repository data has been divided into a number of different 
levels of abstraction. 

The "Meta-Meta Data Model" is a highly conceptual layer describing what components and 
capabilities are available for creating meta models. It provides a sufficient degree of abstraction to 
deal effectively with many CASE environments. This layer provides another degree of freedom for 
extending the meta model and also simplifies the definition of design rules and integrity checking. 

The next level down is the "Methodology Generic Meta Data Model" layer. In our system a 
software engineering methodology is perceived as a process for the organised production of 
software using a collection of predefined tools and notational conventions. This layer is concerned 
with describing the rules required for building a new methodology, its tools and graphical objects. 

[ Meta Meta Data Model J Nodes, Links, Groupers, Diagrams, Properties. 
Phy 
repr 

sically (t 
esented by t t Physically 

represented by + Physically, + 
represented by 

• Rulest 
Diagra 

o control 
m objects 

r Application Methodology Specific Meta Model Methodology Generic 
Data Model Rules governing the interrelationship Meta Model 

Models that represent views between different tools and different Method, Tool, Node, Link, 
of real world application graphical objects of a specific Grouper. 

\.e. DFD of Inventory Syste'!J,l methodology(SSADM, OMT etc.) 

'" '" Rules to control apphcatlOn objects Rules to control tool objects 

Figure 1: Meta-Meta data model interaction to other meta models in the system 

The next layer down is the "Methodology Specific Meta Data Model" layer which describes the 
interrelationship between the tools and graphical objects of a specific. It contains descriptions of 
object types such as "process", "data flow" and "control flow", the types of modelling notations 
and the connectivity rules available to the developer in specifying an application. 

The lowest layer is the "Application Data Model" layer which contains the specific models of an 
application. This layer defines the data flow diagrams, Entity Relationship diagrams, action 
diagrams, state transition diagrams, etc. that describe the system of interest. 



188 Method Engineering 

3. THE REPOSITORY META-META DATA MODEL 

The meta-meta data model is the collection of primitives used to represent everything stored in a 
repository because it provides the overall conceptual view of the entire repository contents. 

The conceptual objects that have been defmed as common to most methodologies are nodes, links 
and groupers. A node represents any diagrammatic concept which can exist independently from 
any other objects in the diagram, a link represents a connection between two (and only two) nodes 
and cannot exist without both of these two nodes and a grouper represents a grouping of 
interrelated objects (nodes and links). 

A real diagram contains a number of diagrammatic objects connected together. These objects are 
not the basic CASE objects mentioned above but are rather, instances of them. The CASE 
instance objects store information about the shapes appearing in a diagram. That means that one 
instance object will be stored in the CASE data repository for each shape in the diagram. 
Therefore in one diagram there may be many instances of a basic CASE object and other instances 
of this object may occur in other diagrams. 

Sometimes the basic information stored about a CASE object is not sufficient, additional 
information is needed for a particular application (say code generation). This can be represented 
by what is called an "Object Property". It allows the analyst to add multi-level structured 
information to the object, thus making its definition extensible. 

Our repository meta-meta data model is represented using Entity-Relationship-Attribute (ERA) 
model. All the objects outlined above are defined in terms of entities participating in relationships. 

E: Exclusive relationship 

Figure 2: The Repository Meta-Meta Data Model 

Two main types of relationships are defmed; mandatory and optional. Diagrammatically a 
mandatory relationship is represented by an arrow with solid triangular arrow head and an optional 
one is represented by ordinary arrow head. A mandatory relationship implies that the destination 
entity is dependant on the relationship for its existence. 



Core objects required for a generic CASE repository 189 

As can be seen from figure 2, the model consists of a diagram entity, which is a collection of 
graphical instances, a number of basic objects (node, link and grouper) and their instances. Each 
one of these entities is known as a data model object. Each data model object can be further 
described by a number of multi-level properties as shown in the same figure ( right ). 

The model does not show all the entities represented in the repository. A number of entities were 
omitted for simplicity. Some of these entities support reusability, some of them are to support 
object versioning and configuration management and some are for query optimisation, object
symbol mapping and object security. 

Basic CASE objects 
Any concept used during the analysis and design stages and represented in a diagram will be stored 
as a CASE basic object in the CASE repository. The advantages gained from applying such an 
approach include data persistency, reusability and reduction of data redundancy. 

Data persistency is an important concept and, in the context of CASE systems, has two different, 
but related, aspects. Firstly, it allows information stored in the repository to outlive the process 
that created it, and secondly, it provides for the possibility of basic information surviving in the 
repository after the deletion of its instances. 

If an object is to be reused by another diagram it must not have any visual or relationship 
information tying it to a specific diagram and the only objects which have these characteristics are 
the basic ones. So we also need basic objects to achieve re-usability. 

In some applications, more than one instance of the same object might share a number of similar 
properties. If those properties are duplicated with a copy in each of the instances then the usual 
problems of data redundancy will occur. This difficulty can be overcome by having a central basic 
object containing properties common to all instances and allowing each instance to have its own 
extra properties. 

Object Instances 
Each basic object may have more than one instance object which represents it visually in a diagram; 
that means one instance object will be stored in the CASE data repository for each shape in a 
diagram. The idea behind this approach is to enable the CASE tools to perform consistency 
checking between diagrams, retrieve graphical information about the CASE objects and optimise 
the reusability of the basic objects. 

Object Property 
The object property provides additional, multi-level, explanatory information about an object in the 
repository data model. By applying this new technique, we have come up with a highly flexible 
hierarchy of properties. In this hierarchy, a property (or even a group of properties) can be 
moved around, copied, added to or deleted from any position in any level in the hierarchy without 
affecting the whole structure. 



190 Method Engineering 

These characteristics are not offered by most of the available commercial meta-CASE tools 
environments. The absence of these characteristics in a similar project (Manson, 1994) made 
automatic code generation very difficult because of the lack of detailed information about the data 
and programming constructs. It is for this reason we have adopted such a flexible structure. 

During the very early stages of designing our repository, the properties were exclusive to the basic 
objects, but after going through a number of real case studies (AJghamdi, 1994) we discovered 
that the instances need some extra visual and non-visual information which could only be stored as 
properties. For that reason we have decided that the instances should have their own properties in 
addition to those stored in their original basic objects. 

4. CONCLUSION 

The meta-meta data model described here is the overall conceptual view of the entire repository 
contents where the CASE objects are defined in terms of entities participating in binary 
relationships. The conceptual basic objects that have been defined as common in most 
methodologies are nodes, links and groupers. A diagram consists of a number of interrelated 
diagrammatic objects connected together. These objects are not the basic CASE objects but are 
rather instances of them. The CASE instances store information about the shapes appearing in a 
diagram. 

Sometimes the basic information stored about a CASE object is not enough, additional 
information is needed to further describe the object in order to be sufficient for some application 
purposes. In fact this can be done through what is called an "Object Property". The multi-level 
object property allows the analyst (or designer) to add more than one level of structured 
information to the object. This makes the object defmition extensible. 

The fundamental advantage of this approach to CASE system design is that it permits reusable 
basic data objects to be defined and instances of these objects to inherit their properties and 
methods. Moreover, it allows a flexible hierarchy of properties to be constructed for each data 
model object in the system. It is this flexibility that gives our approach an advantage over more 
traditional approaches. 

5. REFERENCES 

Alderson, A. Meta-CASE. (1991)Lecture notes in computer sciences 509, Springer-Verlag 
Alghamdi, A. (1994) An extendible MetaCASE repository. Transfer Report, Department of 

Computer Science, University of Sheffield 
Chen, Minder and Edgar Sibley, (1991)Using CASE Based Repository for Systems Integration. 

Proceedings of The Hawaii International Conference on Systems Sciences,. 
Forte, Gene, (1989) Inside the CASE Repository. CASE Outlook, No 4 Dec. 
Manson, G. A. Sahib, S. and Elamvazauthi, C.(1994) "Design and code derivation in the PCSC 

methodology" Information and Software Technology journal, July. 



13 

A Proposal For 
Method Engineering 

Colette Rolland 
Universite Paris 1-Sorbonne 
17, rue de la Sorbonne 
75231 Paris Cedex 5 
rolland@masi. ibp.jr 

Abstract 

Context-Specific 

Naveen Prakash 
Delhi Institute of Technology 
Kashmere Gate 
110006 Delhi, India 
np@dit.ernet.in 

The new emerging method engineering discipline acknowledges the need for the construction of 
methods tuned to specific situations of development projects. This raises at least three problems 
(1) the representation of method fragments in a method base, (2) the formalization of the notion 
of project situation and, (3) the retrieval of relevant fragments for the project situation at hand. 
Our contribution to the first two of these problems lies in the definition of a contextual approach 
which enables us to represent both method knowledge (Le. the method base contents) and 
method meta-knowledge (i.e. knowledge about the potential use of method fragments) as pairs 
of the form <situation, decision>. This emphasizes both engineering decisions and method 
engineering decisions, their rationale and situations of applicability. We contribute to the third 
problem by proposing a tight coupling of method knowledge and method meta-knowledge in 
the method base. This enables the formal description of the context of use of every method 
fragment and shall facilitate the retrieval of relevant fragments according to the situation of the 
project under development. The paper presents and exemplifies the method knowledge and 
method meta-knowledge levels. 

INTRODUCTION 

The area of method engineering has emerged in response to an increasing feeling that methods 
are not well-suited (Lyytinen , 1987) to the needs of their users, the application engineers. In 
particular, it is necessary to change methods from one business situation (Hidding, 1994) to 
another. Situational method engineering (Welke, 1991) is the construction of methods which 
are tuned to specific situations of development projects. The Situational Method Spectrum 
(Harmsen, 1994) organises approaches to situational method engineering according to the 
degree of flexibility in meeting situational needs and places them on a scale ranging from 'low' 
flexibility to 'high'. At the 'low' end of this spectrum are rigid methods whereas at the 'high' 
end is modular method construction (Harmsen, 1994). Rigid methods are completely pre
defined and leave little scope for adapting them to the situation at hand. On the other hand, 
modular methods can be modified and augmented to fit a given situation. 

One proposal (Harmsen, 1994) to situational method engineering looks at the situation of the 
project to engineer a project-specific method. A method is viewed as a collection of method 
fragments. A fragment can be either a product fragment or a process fragment. In the former 
case, it captures product related knowledge of methods whereas in the latter case, it captures 
activity related knowledge. Method fragments are available in a method base to be assembled 
together to form a method. 



192 Method Engineering 

In this approach, the project situation is at a very global level. We believe that even after 
discovering the project situation, the detailed engineering of a method shall still require 
knowledge of which fragment can be used in which method engineering situation to achieve 
which objective. We view the retrieval process of method fragments as being contextual: a 
method engineer is faced to situations at which he looks with some decision in mind. 
Supporting the retrieval process requires that knowledge should be provided about decisional 
contexts in which fragments can be used. 

Further, in this approach, the project situation is discovered during a separate step in the 
method engineering process and the method engineer has, thereafter, to find the applicable 
method fragments. The method base does not carry information about the situation in which 
method fragments are useful and so no support can be provided in this search task. Our view is 
that knowledge about the context of use of method fragments shall be formalized and stored in 
the method base together with the method fragments themselves. 

Our approach to method engineering proposes a shift from global and situation based method 
engineering to modular and context based method engineering. It has three salient features : 
- We recognise that method knowledge exists at different granularity levels and different levels 
of abstraction. Our approach explicitly captures both kinds of method knowledge. 
- Since many decisions can be made in a given situation, our approach explicitly recognises the 
importance of decisions, the value of decision rationale and, additionally, tightly couples 
situations, decisions and rationales together into the notion of context. 
- In order to provide support for retrieval from the method base, the situations and decisions for 
which a method fragment is applicable are explicitly available in the method base. 

We propose to organise the method base at two levels, the method knowledge level and the 
method meta-knowledge level respectively. Method knowledge is represented in the method 
base in the form of method chunks. These chunks are available at different levels of granularity 
and at different levels of abstraction. Different granularity levels are made possible by using the 
NATURE contextual approach (Rolland, 1994), (Rolland, 1995) which organises method 
knowledge as contexts, trees, and forests of trees. Chunks can be considered to be at different 
levels of abstraction, the component, method construction pattern, and framework levels. It is 
possible for a chunk at any level of abstraction to display different granUlarity. 

The application of the contextual approach to the representation of method knowledge has the 
important effect of making chunks modular. A context is defined as a pair, <situation, 
decision>. In other words, a method chunk is cohesive because it tells us the situation in which 
it is relevant and the decision that can be made in this situation. It is loosely coupled to other 
chunks because it can be used by the method engineer in the appropriate situation (created as a 
result of another method module) to satisfy his/her intention. Thus, the linear arrangement of 
method modules is replaced by a more dynamic one. 

The method meta-knowledge level seeks to capture, in the method base, the situational and 
intentional knowledge associated with a method chunk. The contextual model of NATURE is 
an elegant model for representing this meta-knowledge. Since a context is defined as a pair, 
<situation, decision>, the contextual representation of meta-knowledge naturally captures these 
two kinds of meta-knowledge. Thus, modularity is extended to the meta-knowledge 
representation and meta-knowledge modules are tightly coupled to their peer method modules. 

In the rest of this paper, we develop in detail the method knowledge and method meta
knowledge levels. Section 2 which deals with the former, presents and exemplifies the different 
levels of granularity and different abstraction levels which we believe, are relevant for method 
knowledge representation. Section 3 covers the meta-knowledge representation and illustrates 
through examples of queries, how method chunks can be retrieved from the method base. In 
section 4 we draw some conclusions and perspectives of work. 



Context-specific method engineering 193 

2 THE METHOD KNOWLEDGE LEVEL 

Method knowledge is contained in method chunks represented in a uniform way but related to 
different methods and expressed with different granularity, at various levels of abstraction. 
Examples of such method chunks are (1) the OMT methodology, (2) the ER modelling 
approach, (3) the rules to define the key of an Entity-Type, (4) a generic outline providing a 
stepwise organisation of system analysis and (5) a generic set of guidelines for any concept 
description. The granularity is larger in (1) and (2) than in (3) above. Further, the first three are 
expressed at a less abstract level than the fourth and fifth examples above. 

Notice that depending on its level of abstraction the method chunk will be reused as such 
(perhaps after some customisation) or will be instantiated before being assembled in the method 
under construction. Chunks of examples (1) to (3) above are directly reusable whereas each 
generic activity of the outline (example (4)) has to be instantiated according to the specific 
product of the method in hand before being used. Similarly the generic guidelines for concept 
description (example (5)) requires instantiation for each particular concept of the method under 
construction. 

The examples also show that method chunks come from various methods which can have 
different purposes. The guidelines for an ER approach and of the OMT methodology are 
system engineering methods whereas the generic guidelines for concept description are pat1 of a 
meta-method, i.e. a method to support the construction of methods. Our current method base 
which is implemented in the MENTOR environment (SiSaid, 1996) includes six traditional 
requirements engineering methods, namely OMT, EIR, OOA, SA/SD, 0* and OOD (Plihon . 
1994), the From Fuzzy to Formal method developed within the large ESPRIT project F3 
(Bubenko, 1994), one meta-method, the NATURE meta-method (plihon , 1995) and one 
method for method improvement, namely the learning based way-of-working to support 
NATURE method improvement (Prat, 1995). In short, we are concerned with engineering and 
re-engineering methods whose products are either computer based applications or methods 
themselves. 

Therefore, there are two key aspects: 
- a uniform representation of all types of chunks of the method base. For this, we use 

the NATURE modelling formalism which is based on the notions of context, tree andj(lrest. 
All chunks are represented following this formalism as hierarchies of contexts called trees. A 
method is represented as a collection of trees that we refer to as a/orest. 

- a chunk classification. Chunks are classified into component, pattern and/ramework 
depending on their level of abstraction. We deal with these two aspects in the following. 

2.1 Overview of method knowledge organisation 

Figure 1 shows the structure of method knowledge in the method base using some binary ER
like notations. A large box represents an Entity-Type (ET) and a small box represents a binary 
Relationship-Type (RT) between two entity-types. The arrow head indicates the direction in 
which the label of the relationship-type holds. Cardinalities are also shown. For example. 
"Tree" and "Forest" are entity-types and are related through the "composed of" reiationship
type. The direction of the RT says, "Forest composed of trees". 
The notations also include the notion of an "objectified relationship-type" (Tempora, 1994). 
This notion is an abstraction mechanism which allows a relationship-type to be viewed. at a 
higher level of abstraction, as an entity-type. This applies for example, to the RT between a 
"Situation" and a "Decision" which is viewed as the entity-type "Context" to enable it to enter 
into a RT with the ET "Tree". 



194 Method Engineering 

Figure 1 The Structure of Method Knowledge. 

According to their type, method chunks are classified into component, pattern or framework. 
The entire OMT method description is an example of component, a set of generic guidelines for 
concept identification is an example ofpattem, the NATURE meta-method (the method to guide 
the construction of any NATURE way-of-working) is an example of framework. This 
classification is borrowed from the Object Oriented area and shall be made precise in the next 
section. 

According to their granularity, method chunks are classified into forests, trees or COIl texts. 
Within the OMT method, a single piece of knowledge such as the description of a Class in the 
Dictionary is modelled as a context. This context couples the decision 
Describe_Class_into_Dictionary to the situation a Class_has_ been_created. The set of 
guidelines to Identify_ a_Class is a more complex chunk of knowledge which can be modelled 
as a tree to compose the context for Identifying_the_Class and the one for 
Validating_The_Class. The OMT methodology itself can be represented as a forest of trees. 
with a tree for each model, namely the Object Model, the Dynamic Model and the Functional 
Model. 

Figure I shows that these two classifications of method chunks are orthogonal. They constitute 
two ways of clustering the method base elements, each method chunk being represented in each 
of the two clusters. Besides, each cluster is a partition. Thus, a component is neither a pattern 
nor a framework; a forest is neither a tree nor a context. In the following, we consider the two 
orthogonal classifications in detail. We first consider the issue of uniform representation of 
chunks and thereafter their typology. 

2.2 Chunk representation 

The modelling formalism used to represent method knowledge has been designed with a 
certain view of engineering process support in mind. We believe that methods which aim at 
supporting engineering processes must be contextual. At any moment, each application or 
method engineer is in a subjectively perceived situation which is looked upon with some 



Context-specific method engineering 195 

specific intention of decision in mind. The NATURE modelling formalism (Rolland, 1994). 
(Rolland, 1995) makes the notions of situation, decision, as well as context explicit. 

As shown in Figure 1 the notion of context constitutes the basic building block of our 
method modelling approach. Contexts can be linked repeatedly in a hierarchical manner to 
define trees. A tree is composed of contexts and links. As shown in Figure 1, links are of two 
kinds: refinement links which allow the refinement of a large-grained context into finer ones 
and composition links for the decomposition of a context into component contexts. 

A method is represented as a collection of hierarchies of contexts that we refer to as a F,rest. 
This reflects our view of methodological support being based on disconnected prescriptions. 
i.e. context trees which are not linearly sequenced but which can be dynamically combined 
according to the situation at hand. 

Contexts, trees and forests are the three kinds of method chunks stored in the method 
base. They might be looked upon as structured modules of knowledge for supporting decision 
making in engineering processes. Figure 2 presents a partial method for defining an ER 
diagram made of a forest composed of four trees. Each tree is related to a specific issue: Entity
Type (ET) description (tree 1), Relationship-Type (RT) construction (tree 2), ET checking (tree 
3) and ET mapping (tree 4). They will be progressively explained in the remaining of this 
section. 

·,,·J:':,['~-i 
Affach_ValtJ.aoon> 

«Atlfl f'bS'1 
Affach_Dom..m> 

;,;,L",."~» I ."" 
Ch8cIt._C<>O$i'l<><>Cy 

~~~c".reclnesB~ 

«ETJbSI)
An~ch_K&y:>

Figure 2 Excerpt of an ER method.

Contexts are defined as couples <situation, decision>, where the decision part represents the
choice an engineer can make at a moment in the engineering process and the situation is defined
as the part of the product it makes sense to make a decision on. Notice that our notion of
method chunk strongly couples the process part to the product part. Details about this coupling
and the product meta-model can be found in (Schmitt, 1993) and (Schmitt, 1995). A decision
corresponds to an intention, a goal that the engineer wants to fulfil. Finally contexts can be of
three types, namely executable, choice or plan. Each type of context plays a specific role in a
tree. We now consider each of these types of contexts in turn.

Executable Context

An executable context corresponds to a decision which is directly applicable through actions
which induce a transformation of the product under development. In tree2 of Figure 2. the
context«Pb. St.), Create-RT> is an executable context, (Pb. St. is the abbreviation of Problem
Statement). The intention to Create a Relationship-Type is immediately applicable through the
performance of an action for creating a new Relationship-Type (RT) in the specification under
development. Executable contexts are the atomic blocks of our methods. They are often the
leaves of trees. Non atomic contexts are built over contexts using refinement or composition
links.

196 Method Engineering

Choice Context

When building a product, an engineer may have several alternative ways to solve an issue. For
this purpose we introduce the second type of context, namely the choice context. The execution
of such a context consists of choosing one of its alternatives, i.e. selecting a context
representing a particular strategy for the resolution of the issue raised by the context. For
example in Figure 2, the context «RT, ETs); Argue-on-RT-construction> is a Choice context
introducing two alternatives to a Relationship-Type construction, namely to confirm its creation
«(RT, ETs); Confirm-RT» or to withdraw it «(RT, ETs); Backtrack-on-RT-constructioll».
Arguments are defined to support or object to the various alternatives of a choice context. For
example, the hacktracking-on-RT-construction is the right decision to make either when the
relationship between entities is not sensible or when it is not relevant. Description arguments
play an important role in the process model. They help in capturing heuristics followed by the
application engineer in choosing the appropriate problem solving strategy.
Finally, it is important to notice that the alternatives of a choice context are contexts too. In the
previous example, the first alternative is an executable context and the second one is a plan
context. But they could be choice contexts introducing what is referred to as a refinement link
between contexts.
As illustrated in Figure 2, we use a graphical notation for contexts and trees. For the sake of
conciseness, we will also use a textual notation which, in the case of choice contexts, is based
on the OR logical connector (denoted ") between alternatives (denoted alti). Thus, the textual
notation for a choice context (CC) is : CC = altl "alt2 " ... "altn. For instance, the textual
notation for the «RT, ETs), Argue-on-RT-construction> context is «RT, ETs), Confirm-RT>
" < (RT, ETs), Backtrack-on-RT-construction>.

Plan Context

In order to represent situations requiring a set of decisions to be made for fulfilling a certain
intention (for instance to Construct a RT in the ER methodology) the modelling formalism
includes a third type of context called the plan context. A plan context can be looked upon as a
macro issue which is decomposed into sub-issues, each of which corresponds to a sub decision
associated to a component situation of the macro one. Components of a plan context are also
contexts but related through a composition link.
In Figure 2, the context «Ph. St.), Construct-RT> is a plan context composed of three
component contexts, namely «Ph. St.), ldentify-RT>, «Ph. St., RT), Couple-ET-to-RT>.
< (RT, ETs), Argue-on-RT-construction>. This means that, when constructing an RT, the
method engineer has first to identify the RT, then couple it to all the ETs participating in it. and
finally, argue on the construction of the RT. Component contexts of a plan context can be
organised in a sequential, iterative and/or parallel manner.
In the textual notation of plan contexts, the sequence is represented by an.", iteration is denoted
by n*n and parallelism by the shuffle symbol nA.,". Therefore, the textual representation of
the plan depicted in Figure 3 is «Ph. St.), Construct-RT> = «Ph. St.), ldentify-RT> • «Ph.
St., RT), Couple-ET-To-RT> * • «RT, ETs), Argue-on-RT-construction>.

It can be seen that the uniform representation looks upon chunks as modules. These modules
are cohesive: they are contextual and can be used in specific situations to carry out specific
intentions. This ensures a tight coupling between the product and process aspects of methods
and a chunk represents both these aspects in a unified way. Besides being cohesive, the
uniform representation provides loose coupling through the graft (Schwer, 1995) operation. By
a use of this operation it is possible to break away from the strict, artificial linearity of methods
and couple chunks together more dynamically.

Context-specific method engineering 197

2.3 Chunk typology

Looking to method chunks as reusable elements leads us to classify them into three categories
namely, components, patterns and frameworks.

Early method engineering approaches (Welke, 1991), (Harmsen, 1994) assume that method
construction is an assembly process of methods fragments. These method fragments are
method specific and can be product or process parts of existing methodologies. One can draw
an analogy between such method fragments and reusable classes in object oriented approaches.
We ref~r to these as method components or simply components.

However, our belief is in the existence of a corpus of both, generic method knowledge and
generic method construction knowledge which has not been looked after, identified and
described yet. Our proposal is to develop a domain analysis approach to identify objects, rules
and constraints which are

(a) common among different (but similar) methods
(b) common among different (but similar) ways of method construction

and to formalize them as method chunks.

In this way, method engineering can use the results of method domain analysis and save a
significant amount of time as demonstrated in other domains (Arango, 1989). If we assume that
the degree of similarity which exists in the construction of methods which belong to the same
area is similar to the equivalent degree in system requirements engineering, then method domain
analysis can result in significant overall productivity improvement in method construction.
Indeed, Jones (Jones, 1984) indicates that only 15% of the requirements for a new system are
unique to the system; the remaining 85% comes from the requirements of existing similar ones.

We introduce the notion offramework to model commonalties among methods and the notion
of a method construction pattern, pattern for short, to capture generic laws governing the
construction of different but similar methods. A framework is a method chunk which
formalizes, in a more abstract way than a component does, knowledge which is common
among several methods. A pattern models a common behaviour in method construction. It is
generic in the sense that it is used by a typical method engineer in every method construction
process. It is more abstract than a component or a framework. Both terms have been chosen by
analogy to reuse approaches in the object oriented area. Patterns are there defined as solutions
to generic problems which arise in many applications (Gamma, 1993), (Pree, 1995) whereas a
framework is application domain dependent (Wirfs-Brock, 1990), (Johnson, 1988).

All examples provided in the previous paragraph belong to the class of method components. In
the following, we exemplify the notions of framework and pattern within the NATURE meta
method.

Method Construction Pattern

There can be many different kinds of construction patterns, like the Identify, Describe.
Construct and Define patterns. A more detailed presentation of these patterns can be found in
(Rolland, 1996). These patterns already form a part of our method base. In addition, we are in
the process of defining additional patterns for checking and refinement. In this section, we
illustrate the notion of a pattern through the Describe pattern. Its genericity is brought out by
applying it to OMT and ER approaches.

We carried out a domain analysis and tried to identify common patterns of behaviour that
method engineers shall exhibit when instantiating the concepts of the NATURE modelling
formalism in order to construct methods. This leads us to two major conclusions:

198 Method Engineering

- there exist generic laws underlying method construction; these laws are generic in the
sense that they can be applied to the construction of many methods. Using these laws, we
generate for instance, six of the traditional analysis methodologies, OMT, OOA, SNSD, ER,
0* and OOD. These laws can be encapsulated in method construction patterns and made
available in a library, the method base. Patterns are method chunks and therefore, like any other
method chunk, can be expressed using the NATURE modelling formalism: patterns are trees
of contexts.

- the structure of the product generated by the method is a key constructional factor and,
therefore, the main parameter of the generic laws. We have calculated, for example, that
varying the typology of concepts used to represent the OM product structure of OMT can lead
to 13000 different ways of engineering it. This demonstrates, in some way, the genericity of
the patterns and partly provides a measure of their effectiveness.

Let us take for instance, the example of any description of a concept in a schema - whatever the
product under construction is (e.g. ER, OMT, etc.) - such a description follows the pattern
shown Figure 3. The pattern identifies discriminant criteria which are, in this case, types of
concepts. For instance, we make the distinction between constructional concepts - which
participate to the structuration of the product - and definitional concepts - which only contribute
to the definition of the constructional concepts (Prakash, 1994). For instance, in an ER model,
an Entity-Type (ET) is an example of a constructional concept whereas a Domain is a
definitional concept. Definitional concepts are further refined into Properties, Prop, Constraint,
Const, or Cd-Concept, Cd (concept for the definition of another concept). In an ER model, the
Valuation of an Attribute is a Property, the Key of an Entity-Type is a Constraint and the
Attribute could be regarded as a definitional concept participating in the description of the
constructional concept Entity-Type. Besides, from the point of view of their granularity,
concepts are classified into atomic concepts - they are stand-alone concepts and compound
concepts - they are built upon other concepts. In an ER model, a Relationship-Type will be a
compound concept while a Domain is an atomic concept.

It is important to notice that the classification of concepts of a given model (let say the ER
model) is not unique but specific to each method based on this model. For instance, a particular
ER based method can consider the concept Attribute as a Cd-concept participating in the
definition of Entity-types whereas it could be a constructional concept in another method.
Therefore, different topologies of concepts can be derived for the same model from the above
classification.

«C), Describe_C> - ,A. «(C, Pb.St.), Attach_Cd>* • «Cd), Describe_Cd>* ,
«C, Pb.St.), Attach_Prop>*) • «C, Pb.St.), Attach_Const>*)
«C, Pb.St.), Attach_Cd> = «Pb.St.), Identify_Cd> • «C, Cd), Argue_on_Cd_attachment>
U «Pb.St.), Identify_Cd>
«C, Cd), Argue_on_Cd_attachment> = «C, Cd), Confirm_Cd_attachment> U
«C, Cd), Backtrack_on_Cd_attachment>
,A. : shuffle • : sequence U : alternative

Figure 3 The Pattern for concept description.

The pattern in Figure 3 is a plan-context stating that the description of a concept C requires the
attachment of all its definitional concepts «(C, Pb.St.), Attach_Cd>*) followed by their
description «(Cd), Describe_Cd>*), the attachment of its properties «(C, Pb.St.),
Attach_Prop> *), and constraints «(C, Pb.St.), Attach_Const> *). The shuffle symbol
indicates that the attachment of properties and definitional concepts can be made in any order.

The generic method construction pattern is based on the recursive description of a concept
(since Cd "is-a" C, Describe_Cd "is_a" Describe_C). This allows us to deal with compound
definitional concepts which have themselves to be described. Attachment may be with

Context-specific method engineering 199

«(Pb.St.), Identify_Cd> • «C, Cd), Argue_on_ Cd_ attachment» or without argumentation
«(Pb.St.), Identify_Cd».

When applying the pattern to each concept of the model in use, the method engineer has first. to
instantiate Cd, Prop and Const for this concept and secondly to choose an order for the various
attachments or to leave open the option of their intertwining. This results in a plan-context
which is the methodological guideline for describing a concept. The previous actions must be
repeated for each component context of the plan referring to a compound definitional concept.
This will result in a tree structure as a methodological guideline. Figure 4 gives the tree
generated by the application of this pattern to the concept of Entity-Type.

«ET), Describe_ET> - «(ET, Pb.St.), Attach_Attribute> * • «Attribute),
Describe_Attribute>*) • «ET, Pb.St.), Attach_Key>
«ET, Pb.St.), Attach_Attribute> = «Pb. St.), Identify_Attribute> • «ET, Attribute),
Argue_on_Attribute_attachment>
«ET, Attribute), Argue_on_Attribute_attachment> = «ET, Attribute), Confirm_Attribute
_attachment> U «ET, Attribute), Backtrack_on_Attribute _attachment>
«Attribute), Describe_Attribute> = «Attribute, Pb.St.), Attach_Valuation> • «Attribute.
Pb.St.), Attach Domain>

Figure 4 Instantiating the Describe pattern on the concept of Entity-Type.

The corresponding graphical representation is shown in Figure 5. It corresponds also to tree I
in Figure2. The method engineer has chosen to sequentially order the attachment of Attributes
to Entity-types, their description and the Key constraint definition. This corresponds to the first
instantiation of the Describe pattern. He/she chose to argue on the attachment of Attributes to
Entity-Types but not on the one ofthe Key. Finally, since Attribute is a compound definitional
concept, the Describe pattern has to be applied a second time to decide in which way attributes
will be described. Assume, there are two properties describing the Attribute concept namely,
Valuation and Domain and no constraint. The «Attribute), Describe_Attribute> context is then
a plan-context with two executable component contexts, «Attribute, Pb. St.), Attach_
Valuation> and «Attribute, Pb.St.), Attach_Domain> .

«Pb. St.),
Identify_Attribute>

I
«ET, Pb. st.),

Attach_Attribute>

«ET, Attribute),
Confirm_Attribute_attachmenl>

«ET), Describe_ET>

I I
«Attribute),

DascribarAttribute>
«ET, Pb. St.),

I I «Attribute, Pb. St.),
Attach_ Valuation>

«Attribute, Pb. St.),
Attach_Domain>

«ET, Attribute),
Backtrack_on_Attribute_attachment>

Figure 5 The hierarchy of contexts for Entity-Type description.

For constructing an ER method, the Describe pattern will be applied to every constructional
concept of the model e.g. Entity-Type and Relationship-Type. But it can be applied in a similar

200 Method Engineering

way to generate description guidelines for any other concept in any other method. As an
illustration, Figure 6 shows, in a textual form, the tree generated for the description of the
concept Association of the OMT methodology.

«Association), Describe_Association> -
«Association, Pb.St, Attach_Attribute_to-Association>* • «Attribute),

Describe _Attribute>*,
• «Association, Pb.St), Attach_Multiplicity_to_Association> *

«Association, Pb.St), Attach_Attribute_to_Association> =
«(Pb.St),Identifiy_Attribute>

• «Association, Attribute),
Argue _on_AttachmencoLAttribute_to _Association»

«Attribute), Describe_Attribute> =
«(Attribute, Pb.St), Attach_Domain_to_Attribute>
• «Attribute, Pb.St), Attach_ Valuation_to_Attribute>

«Association, Attribute), Argue_on_AttachmencoLAttribute_to_Association> =
«Association, Attribute), Confim_AttachmencoLAttribute_to_Association>
" «Association, Attribute), Backtrack on Attribute Attachment>

Figure 6 Instantiating the Describe pattern on the concept of Association.

An association is a constructional concept with two definitional concepts: its attributes and its
multiplicity. Therefore, the description of an association is guided by a plan consisting of the
attachment of attributes to the association «(Association, Pb.St,
Attach_Attribute_to_Association>*), their description «(Attribute), Describe_ Attribute>*)
followed by the attachment of the multiplicity constraint related to each of its roles
«(Association, Pb.St), Attach_Multiplicity_to_Association>*). Notice that the shuffle has no
influence since an association does not have properties and has only one Cd-concept, attribute.
Consequently there is only one possible ordering of contexts in the plan.
The importance of patterns lies in their genericity, in their ability to be used systematically in
constructing a large number of methods. Chunks which are patterns make available this
genericity to method engineers.

Method framework

Frameworks have already proved their efficiency in software design (Johnson, 1991),
(Johnson, 1988), (Wirfs-Brock, 1990) and particularly in interface development (Krasner,
1988), (Wilson, 1991), (Weinand, 1989). The design and improvement of frameworks (Wirfs
Brock, 1990), (Johnson, 1991) have been studied and approaches developed. In information
systems design, a number of conceptual frameworks have been proposed (Olle , 1988), (Pohl ,
1993), (Krogstie , 1995a) and even merged (Krogstie , 1995b). We believe that method
frameworks can playa role in method construction and should be integrated in method bases.
The way we understand the concept of framework is close to the notion of outline in (Harmsen,
1994) and road map. Let us take, as an example, the NATURE meta-method.

In the NATURE project we initially addressed the problem of constructing methods by
providing a process meta-model (the NATURE formalism presented in the previous section),
under which methods can be generated by instantiating the meta-model. This provides a way by
which method engineers can define, in a systematic manner, the desired methods. However.
this does not obviate the need for a prescribed method for the method engineer, the meta
method, which could be followed for method construction.

Context-specific method engineering 201

When developing the meta-method, it was possible to develop yet another formalism for
representing it. However, by extending the NATURE contextual approach to the meta-method,
it was possible to represent it in contextual terms, apply the modelling formalism to the meta
method, and treat it as just any other method. The NATURE method, once prescribed, can be
used within the MENTOR environment which provides guidance to any process which is in
accordance with it. Therefore, since the meta-method is just another process, we can extend the
full guidance capability to it.

The meta-method is encapsulated in a framework depicted in Figure 7. We organise the
construction of a specific method as a plan composed of three components to respectively, find
the basic blocks of the method under construction «(Method Statements),
Find_Basic_Blocks» then, to assemble the basic blocks into trees «(Product Structure, Basic
Blocks), Build _Trees» and, finally, to describe each context of the forest in detail
«(Contexts), Specify_Forest».

The generation of basic blocks assumes the existence of the product structure for the method
under construction as well as of the relevant types of decision for decision making. Therefore.
the meta-method suggests a plan where the constructional factors are defined first «(Method
Statements), Build_Product_Structure», then the decision types are identified «Method
Statements), Identify_Types_ of-Decision> and finally, the basic blocks are generated
«(Product Structure), Generate_ Basic_Blocks».

The gathering of basic blocks in trees asks for a definition of the approaches. Therefore, the
context «Product Structure, Basic Blocks), Build_Trees> is further defined in the meta
method as a plan with two components, to choose the approaches «Product Structure),
Choose_Approaches>, and to achieve the gathering of basic blocks to generate the method trees
«Product Structure, Basic Blocks), Generate_Trees>.

The formal specification of the method consists of repeating the component «(Context),
Specify_Context>) to specify contexts.

«Method Statements), ConstrucLa_Method>

I
«Method Statements),

Find_Basi Blocks>

I
«Product StructJre, Basic Blocks),

Build_ tees>

«Product tructure), l
Choose_Approaches>

}r-,----'--J.r-----, «Product Structure, Basic Blocks),
«Method Statements), Generate_ Trees>

Build_ProducLStructure> L
«Method Statements), I

Identify_ Types_oLOecision> «Product Element),

I
«Contexts),

Specify_Forest>

~
«Context),

Specify_Context>

«Product Structure), Instantiate_ Tree_Pattern>
Generate_Basic_Blocks>

«prOdU~lement),
Instantiate_Basic_Block_Pattern>

Figure 7 The Meta-Method Framework.

Frameworks often use patterns (Krasner, 1988) (this justified the composed-of relationship
in Figure 1). As shown in Figure 7 our proposal is to support the generation of basic blocks by
method construction patterns. Therefore, the application of the framework calls for the
instantiation of the appropriate patterns. Generic patterns are classified into twO: those which
build basic blocks for each product element of the product structure «(Product Element),

202 Method Engineering

Instantiate_Basic_Block_Pattern» and those which relate these blocks together «(Product
Element), Instantiate_Tree _Pattern>).

3 THE METHOD META-KNOWLEDGE LEVEL

Assuming that method chunks for components, patterns and frameworks exist, the question
now is "how to deliver the relevant method chunks to the user?" We shall look at this question
in two ways: first, by describing the semantic contents of the method base in a manner which
eases the retrieval of chunks meeting the requirements of the user and, secondly, by providing
query facilities.

Description of method knowledge is knowledge about method knowledge i.e. method meta
knowledge. We use the notion of descriptor (De Antonellis, 1991) as a means to describe
method chunks. A descriptor plays for a method chunk the same role as a meta-class does for a
class. The concept of descriptor is similar to the one of faceted classification schema (Prieto
Diaz, 1987) developed in the context of software reuse.

The knowledge that should be provided by the descriptor aims at facilitating the use of the
method base. If we keep in mind that the knowledge base shall facilitate the construction of a
method suitable for a specific project, then the descriptor must help in categorizing the situation
in which a method chunk is relevant for a certain purpose. The method engineer, as a user of
the method base, is faced to a certain situation which he/she looks upon with a certain intentio/l
in mind. He/she is placed in a certain context that he/she should be able to formulate as a query
to the method base. Consequently, the descriptor shall also be organised in a contextual
fashion. This means that a descriptor must categorize the situation in which the chunk can be
used and describe the intention of its use.

Thus, we propose to extend our contextual approach to the representation of method meta
knowledge. A descriptor can be seen as a meta-context which links the situation in which a
method chunk is relevant to the intention the chunk allows to fulfil. The situation part refers to
the characteristics of the projects in the development of which the chunk can be used as part of
the project method. The intention part refers to the engineering intention(s) that could be
fulfilled when using the chunk.

A descriptor shall naturally be associated to every method chunk, irrespective of its granularity.
However gathering of chunks into other chunks such as forests might be justified because these
chunks have a unique context of use and, therefore, a unique descriptor. We consider it is the
role of the method base administrator to reorganize the initial method chunks in the light of their
description. This justifies a classification of forests (see 3.1) into methods (forests which
represent methods) and groups (forests which gather trees having the same use). Similarly. for
facilitating the use of the method base, the administrator can build hierarchies of descriptors
associated with hierarchies of forests. This shall permit a hierarchical search in the method base
by refining progressively the characterisation of the project situation and/or the method
engineering intention.

In the next section we consider the method meta-knowledge in detail. In the subsequent section
we shall illustrate its use by introducing the query language through examples.

3.1 Method meta-knowledge organisation

Figure 8 depicts the way the meta-knowledge is organized using the same ER like notations that
have been used for the knowledge part in Figure 1. For the sake of readability. the
representation of the knowledge part has been restricted to the elements required to understand
the links with the meta-knowledge part.

Context-specific method engineering 203

As introduced before, a method chunk is placed and described in the context of its potential use
in specific projects. A method chunk is said to be relevant for (relationship-type for in Figure 8)
a certain situation (entity-type situation) to (relationship-type to) achieve a certain intention
(entity-type intention). For example, Chunk c is applicable for high risk project
(characterization of the situation) to a reengineering purpose (intention).

The NATURE contextual modelling approach refines the concept of Decision into Intention and
Approach (Rolland, 1995). The intention is the goal to be achieved, the approach is the way to
reach the goal. Further a Decision has a Target which is expressed in terms of Product Parts.
As shown in Figure 8, all these aspects are relevant in a descriptor as they are discriminant
criteria for the selection of method chunks. The intentional part of the descriptor can then
express that a chunk is relevant to (relationship-type to in Figure 8) achieve a (relationship-type
a in Figure 8) targeted intention by a given approach. Therefore the previous example can be
refined in the following way: Chunk c is applicable for high risk project to reengineer
(intention) a business process (target) by domain based approach (approach).

Targets in descriptors are either abstract targets -which refer to type level i.e. to one of the types
of method chunks- or concrete targets -which refer to instances of method chunks. This is
modelled in Figure 8 by sub-typing Target into two, Concrete Target (Cnt) and Abstract Target
(Abst) A concrete target refers to a Product Part whereas an abstract target refers to a Method
Chunk (relationship-types refers to in Figure 8). For example, the descriptor of the forest (a
group) composed of the collection of constructional patterns such as Describe, Identify, Define
etc. has generate as intention and an abstract target which is a tree. On the other hand, the
descriptor of the OMT forest (a method) describes the intention of the forest as requirements
engineering and the concrete target as an analysis schema. This classification is helpful to

204 Method Engineering

formulate recursive queries whose outputs are abstract targets i.e. method chunks that can. in
tum, be subjects of embedded queries. This shall be exemplified in the following section.
The situation part of a descriptor aims at providing the means to evaluate the adequacy of the
method chunk to the situation of project at hand while the intention part tries to ensure that the
goal of the project matches the goal of the method chunk. As shown in Figure 8 we propose to
characterise the situation in two ways: (a) by the Area (entity-type Area) of the project and. (b)
by the complexity and risk (properties of the entity-type Problem Domain) as two situational
factors evaluated for both the Project Domain (entity-type Project Domain) and the Target
Domain (entity-type Target Domain).

Our characterisation of the Problem Domain is based on the results achieved by the
EUROMETHOD project (Franckson, 1994). The term Target Domain refers to the system to be
engineered or re-engineered and its evaluation comprises two parts, one for the information
system and another one for the computer system. Each of the two parts is further refined into
detailed factors such as size of target domain, heterogeneity of actors, complexity of data.
complexity of target technology etc. There are four aspects of the Project to evaluate: tasks,
structure, actors and technology. Complexity measure has three values, simple (S). moderate
(M) and complex (C); similarly the risk values are low (L), moderate (M) and high (H).

It is clear that all these situational factors cannot be evaluated for every descriptor; some of them
may not even be meaningful for some descriptor. Thus, in order to leave the required level of
flexibility and freedom to the method base administrator the Situation is specialized into Simple
Situation (entity-type Simple Situation in Figure 8) and Complex Situation (entity-type
Complex Situation in Figure 8) - a situation composed of situations. This allows us to describe
a Context for geopolitical game Area and C. complexity of Target Domain.size and C. complexity
of Target Domain.heterogeneity of actors and M risk of Project.actors.

A method chunk descriptor includes instances of elements introduced in Figure 8 as parts of the
situation and decision which form its context of use. As a brief summing up of this section. we
can point out that the NATURE contextual approach provides an elegant frame to model the
meta-knowledge supporting situational method engineering. The key notion of a context is used
here to describe the type of project, the problem domain situation, as well as the engineering
purpose for which a method chunk can be used. Besides the same frame is applicable to
concrete components (method fragments) and abstract patterns and frameworks. In the next
section we exemplify the query mechanism to access the method base.

3.2 Using meta-knowledge to retrieve method knowledge

Access to method knowledge is through the meta-knowledge i.e. the descriptors. Based on the
structure of the descriptor presented in the previous section, we propose a query language
which is exemplified in this section. Navigation in this language is through the structure of a
descriptor and is based on key words corresponding to entity-type names and relationship-type
names.

In order to query the method base, the user has access to dictionaries which contain the values
of the entity-types which are parts of the descriptor structure. He can access, for instance. the
intentions which have chunks corresponding to them in the method base. Similarly, access can
be obtained to chunks according to the known areas. Dictionaries are organized like thesaurus,
in a hierarchical manner in which, for instance, the intention engineering is refined into
requirements engineering, design and implementation, Requirements engineering could itself be
refined into requirements representation, specification and agreement. Dictionaries are
automatically updated in an interactive way at the time the method base administrator adds.
removes or changes descriptors.

Below are some examples of queries focusing on the decision part of the descriptor. Key words
are bold letters and comments are put into brackets in the query itself

Context-specific method engineering

Select forest with name (property of the ET) = 'OMT'

Select tree to specify(intention)
a schema (target) with name = 'OM'

Select method chunk
to requirements engineering-representation.(sub-intention)

by reuse (approach)
and to requirements engineering-agreement (sub-intention)

by cooperation (approach)

205

With is used to introduce a selection based on an Entity-Type (ET) property. To is the name of
the Relationship-Type (RT) which links the ET Method Chunk to the ET Decision (Figure 8). It
is used for expressing a selection based on decision values. By and a playa similar role. The
notation - is the dotted convention of query languages. In the last example it is used to
manipulate sub-intentions (representation is a sub-intention of requirements engineering).

Select framework
to engineer (intention)
a method (target)

Select pattern

to requirements engineering (target intention)
by domain reuse (target approach)

to generate (intention)
a tree (target)

to construct (target intention)
a schema (sub-target)

These two queries aim at selecting abstract method chunks; they have abstract targets (method
and tree) which are subjects of further selection just as any other method chunk can be. This
leads to queries with an embedded form where a to-a-by clause is embedded in another to-a
by selection clause.

The remaining examples focus on selections based on the situation part of a descriptor. The
queries could complement some of the previous ones.

Select method.
for real time (area)

Select framework
for business system (area)

with risk-of project domain-structure = H
and with risk-of project domain-actors = H

Select method
for information system (area)
with complexity-of target domain-size = C
and with complexity-of target domain-technology= C
and with risk-of project domain-tasks = H

The key word for is the name of the relationship-type which links the ET method Chunk to the
ET Situation. It introduces the selection part based on the project and domain situation. The
notation - allows the user to characterise the complexity and risk of both the project and domain
using the subdivisions proposed.

206 Method Engineering

The query language is currently under development in the MENTOR environment. It is being
implemented on top of the 02 (02, 1993) query language.

4 CONCLUSION

The essence of the contextual method engineering approach developed in this paper lies in the
emphasis on decision making in specific situations in a rational manner. At the centre of this
approach is the notion of a context, which is applied both to method knowledge and method
meta-knowledge.

The contextual approach advocates a move from method fragments to method modules. These
modules are both cohesive and loosely coupled. Cohesiveness results in modules which can be
used in specific situations in specific ways whereas loose coupling makes it possible to move
away from a rigid, linear modular sequence to more dynamic module interaction.

Method knowledge at different levels of abstraction and granularity is all expressed in the same
representation, that of a chunk modelled with the NATURE contextual formalism. This can
been gainfully exploited to enact any chunk, whatever its abstraction or granularity, thanks to
the enactment mechanism of the MENTOR environment which guides any process modelled in
the terms of this formalism.

Future work shall concentrate on the discovery of new patterns and the implementation of the
query language.

5 REFERENCES

Arango G (1989), "Domain analysis: from art to engineering discipline", Proc. 5th Int.
Workshop on Software Specification and Design, IEEE Computer Society Press, San Diego
Bubenko J., Rolland C., Loucopoulos P., DeAntonellis V. (1994), "Facilitating "Fu::::y to
Formal" Requirements Modelling", IEEE 1st Int. Conference on Requirements Engineering.
ICRE'94, pp 154-158
De Antonellis V., Pernici B., Samarati P. (1991) "F-ORM METHOD: A method%gv for
reusing specifications", in Object Oriented Approach in Information Systems, Van Assche F..
Moulin B., Rolland C. (eds), North Holland
Franckson M. (1994), "The Euromethod deliverable model and its contribution to the ohjectves
of Euromethod", Proc. IFIP-TC8 Int. Conf. on Methods and Tools for the Information
Systems Life Cycle, Verrijn-Stuart and Olle (eds), North-Holland, pp131-149
Gamma E., Helm R., Johnson R., Vlissides J. (1993), "Design patterns: Abstraction alld
Reuse of Object-Oriented Design", Proc. of the ECOOP'93 Conf., Sringer Verlag
Harmsen F et al (1994), "Situational method engineering for informational system project
approaches", in Method and Associated Tools for the Information Systems Life Cycle, Verrijn
Stuart and Olle (eds.), North Holland, pp169-194
Hidding G.J. (1994), "Methodology information: who uses it and why not?" Proc. WITS-94.
Vancouver, Canada
Jones T.e. (1984), "Reusability in programming: a survey of the state of the art". IEEE
Transactions on Software Engineering,SE VallO, Nol
Johnson R. E., Foote B. (1988), "Designing reusable classes", Journal of Object-Oriented
Programming, Vol 1, No3
Johnson R.E., Russo F. (1991), "Reusing object-oriented design ", Technical report
UIUCDCS 91-1696, May 1991, University of Illinois
Krasner G.E, Pope S.T (1988), "A cookbook for using the Model- View Controller lise I'
interface in Smalltalk-80", Journal of Object-Oriented Programming, Vol 1, No3
Krogstie J., Lindland OJ., Sindre G. (1995 a),"Defining quality aspects for cOllceptual
models", in E.D. Falkenberg et ai., editor, Information Systems Concepts, Proc. ISC03.
Marburg, Germany, North Holland

Context-specific method engineering 207

Krogstie J., Lindland 0.1., Sindre G, (1995 b), "Towards a Depeer Understanding o.f Quality
in Requirements Engineering" in Advanced Information Systems Engineering, CAISE'95,
Iivari J. and Lyytinen K. (eds), Springer Verlag
Lyytinen K. (1987), "Different perspectives on information systems: problems and solutions",
ACM Computing Surveys, Vol 19, Nol
02 (1993) "The 02 User Manual December",
Olle T. W., J. Hagelstein, I. MacDonald, C. Rolland, F. Van Assche, A. A. Verrijn-Stuart,
(1988), "Information Systems Methodologies: A Frameworkfor Understanding", Addison
Wesley
Plihon V. (1994), "The OMT, The OOA, The SA/SD, The EIR, The 0*, The OOD
Methodology" NATURE Deliverable DP2
Plihon V., Rolland C. (1995), "Modelling Ways-of- Working", Proc 7th Int. Conf. on
Advanced Information Systems Engineering, CAISE'95, Springer Verlag
Pohl K. (1993), "The Three Dimensions of Requirement Engineering", 5th Int. Conf. on
Advanced Information Systems Engineering, Paris, France, June 1993
Prakash N. (1994), "A Process View of Methodologies", 6th Int. Conf. on Advanced
Information Systems Engineering, CAISE'94, Springer Verlag
N. Prat (1995), "Using learning techniques for process model improvement", Internal report,
CR! (Centre de Recherche en Informatique), University of Paris-Sorbo nne
Pree W. (1995), "Design Patterns for Object-Oriented Software Development", Addison
Wesley
Prieto-Diaz R., Freeman (1987), P., "Classifying software for reusability", IEEE Software,
Vol. 4, No.1
Rolland C. (1994), "A Contextual Approach to modeling the Requirements Engineering
Process", SEKE'94, 6th International Conference on Software Engineering and Knowledge
Engineering, Vilnius, Lithuania
Rolland c., Souveyet C., Moreno M. (Rolland, 1995), "An Approach for Defining Ways-qr
Working", Information Systems, Vol 20, No4, pp337-359
Rolland C., Plihon V. (1996), "Using generic chunks to generate process models fragments"
in Proc.of 2nd IEEE Int. Conf. on Requirements Engineering", ICRE'96, Colorado Spring
Tempora (1994), Tempora ESPRIT project: final report
Schmitt J.R. (1993), "Product Modeling in Requirements Engineering Process Modeling".
IFIP TC8 Int. Conf. on Information Systems Development Process, Prakash., Pernici and
Rolland (eds) North Holland
Schmitt J.R. (1995), "Meta-modelisation des demarches d'analyse", Phd thesis, University of
Paris6 Jussieu
Schwer S., Rolland C. (1995), "Theoretical formalization of the process meta-model/illK
approach ", internal CR! report 95-08, University of Paris 1, France.
Si-Said S., Rolland C., Grosz G. (1996), "MENTOR: A Computer Aided Requiremellts
Engineering Environment", in Proc 8th Int. Conf. on Advanced Information Systems
Engineering (CAISE'96), Springer Verlag.
Weinand A., Gamma E., Marty R. (1989), "Design and implementation of ET ++, a seallliess
oject-oriented applcationframework", Journal of Structured Programming, Vol lO, No2, pp63-
87
Welke R, and Kumar K. (1991), "Method engineering: a proposal for situation-specific
methodology construction", in Systems Analysis and Design: A Research Agenda, Cotterman
and Senn(eds), Wiley
Wilson D.A, Rosenstein L.S., Shafer D. (1991), "Programming with MacApp" , Addison
Wesley
Wirfs-Brock J., Johnson R. (1990), "Surveying current research in Object-Oriented DesiKIl".
Communications of ACM, Vol 33, No9

6 BIOGRAPHY

Colette Rolland is currently Professor of Computer Science in the Department of Mathematics
and Informatics at the University of Paris-l Pantheon/Sorbonne. Her research interests lie in

208 Method Engineering

the areas of infonnation modelling, databases, temporal data modelling, object-oriented analysis
and design, requirements engineering, design methodologies, development process modelling
and CASE tools. She has extensive experience in participating to national and european
research projects under the ESPRIT programme (projects TODOS, BUSINESS CLASS, F3,
NATURE, TOOBIS, ELKD and CREWS) and conducting co-operative projects with industry.
She is the French representative in IFIP TCS on "Infonnation Systems" and chairperson of the
IFIP Working Group WGS.l.

Naveen Prakash is currently Professor of Computer Science and Dean of the Department of
Information Technology in the Delhi Institute of Technology. His research interests are in
object oriented analysis, methods, CASE and META-CASE tools and Method Engineering. He
had an extensive professional experience in research and development as the R&D Director of
CMC, one of the largest software houses in India. He is member of the IFIP Working Group
WGS.I and the co-ordinator of the group's activities in Asia.

14

Comparison of four Method Engineering
languages

F. Harmsenl, M. Saeki2

lUniversity ofTwente, Department of Computer Science
IS Design Methodology Group
P.O. Box 217,7500 AE Enschede, Netherlands

2Tokyo Institute of Technology
Department of Computer Science
2-12-1 O-okayama, Meguro-ku, Tokyo, 152, Japan

Abstract
Currently, several languages to represent and manipulate parts of IS engineering methods,
techniques and tools are being used. These so-called Method Engineering languages can be
classified into four categories: product-oriented, object-oriented, process- and decision
oriented, and hybrid. In this paper representatives of each of these categories are being
reviewed. Meta-models of the languages are given, and each description is illustrated by an
example specification. Focus of comparison is expressive power. The Method Engineering
languages are compared on the basis of a number of requirements, which are deduced from the
notions used in the Method Engineering domain.

Keywords
Method specification languages, Comparisons

INTRODUCTION

Method Engineering is the discipline to construct new methods from parts of existing methods.
In order to successfully apply Method Engineering principles (Kumar and Welke, 1992; van
Slooten and Brinkkemper, 1993), a specification language is needed with which method
fragments, i.e. components of IS development methods (Harmsen et a!., 1994), can be
described and manipulated. We define a Method Engineering language as a modelling
technique with the purposes:
• to represent IS development and management methods and fragments thereof, and
• to enable the assembly of information systems development methods by offering

constructs to manipulate method fragments.

210 Metlwd Engineering

If such a language is only able to represent method fragments, we call it a meta-modelling
language. Brinkkemper claims that every conceptual modelling language is suitable to serve as
a meta-modelling language (Brinkkemper, 1990), and therefore suitable to represent method
fragments. Various meta-modelling applications of languages originally intended for other
domains, such as LOTOS in software process modelling (Saeki et al., 1991), show the validity
of this claim. However, the expressive power with respect to Method Engineering of the
various conceptual modelling languages differ considerably, turning some modelling languages
more suitable for method specification and manipulation than others. Moreover, Method
Engineering projects have different goals and objectives, which, again, makes it hard to choose
a language superior in all cases.

As Method Engineering is becoming more mature, different schools of thought have been
established concerning representation and manipulation languages. One school adopts a data
oriented approach, stressing the representation of the product aspect of methods. Method
Engineering languages of this type include (G)OPRR (Smolander, 1992; Kelly et aI., 1996),
PSM-LISND (ter Hofstede, 1993), NIAM Concept Structure Diagrams (Brinkkemper, 1990;
Wijers, 1991), semantic data models (Sowa and Zachman, 1992), and ASDM (Heym and
Osterle, 1992). Others adopt an object-oriented approach, such as Telos (Mylopoulos et aI,
1990), Metaview (Sorenson et al., 1988), and Object Z (Saeki and Wen-Yin, 1994). The third
school consists of languages evolved from or direct towards software process modelling and
capturing design rationale. Among these languages are Task Structure Diagrams (Wijers,
1991; Verhoef and ter Hofstede, 1995), HFSP (Katayama, 1989; Song and Osterweil, 1992),
ALP (Benali et aI., 1989), and MERLIN (Emmerich et aI., 1991). A last category are the so
called hybrid languages, taking into account different aspects and offering often explicit
operations for Method Engineering. MEL (Harmsen and Brinkkemper, 1995ab) is an example
of this type of language.

In this work, we have taken from each category one representative. We compare Object-Z,
MEL, GOPRR, and HFSP. We also review the data models (meta-models) of these four
Method Engineering languages. For the comparison, we have listed a number of requirements,
some of which are quite generic, applying to all conceptual modelling languages, whereas
others only address Method Engineering.

Related research is performed in the area of comparison of methods and techniques and
CASE tools. Hong et aI. (1993) compare eight object-oriented methods by comparing their
data models. A "super method" acts as a reference model for the methods compared. Iivari
(1994) relies, in line with the "CRIS" approach (Olle et aI., 1983, 1991), on a normative
comparison of object oriented methods, as he draws up a number of requirements which are
compared with the methods' properties. In contrast to this, Oei and Falkenberg (1994) define a
set of basic transformations, called the Meta Model Hierarchy transformations, to transform
method fragments, via a sequence of basic steps, into each other. Operations are associated
with the quality attributes expressive power, genericity and liberality. Their main criticism on
an approach using a reference technique is, that it would be easy to create yet another
modelling technique, whose concepts are not or only partly covered by the framework. Song
and Osterweil (1992) take a similar approach as Hong's, comparing different methods on the
basis of their underlying models. However, Song and Osterweil concentrate on process
models, which are represented in the process modelling language HFSP. Other related research
focuses on normative comparison of conceptual data models (Venable, 1993), CASE tools
(Wijers and van Dort, 1990) or meta-CASE tools (Marttiin et al., 1993).

Four method engineering languages 211

We have adopted the traditional CRIS approach for comparing Method Engineering
languages. We claim that in limited application domains, such as Method Engineering,
normative comparisons are possible. Concepts and relationships are fairly stable, in contrast to
general application domains which are continually subject to additions. In this paper we have
investigated the Method Engineering domain, and translated the results of these investigations
to requirements for Method Engineering languages.

This paper is structured as follows. Section 2 deals with the requirements that are to be
imposed on Method Engineering languages. Section 3 reviews the four chosen languages,
whereas in section 4 a comparison between these languages based on the requirements is made.
The paper ends with conclusions and suggestions for further research.

2 REQUIREMENTS FOR METHOD ENGINEERING LANGUAGES

According to Oei and Falkenberg (1994), a conceptual modelling language should have the
expressive power to model the application domain in an effective manner, and should be
practical to apply with respect to convenience, efficiency, and learnability. The application
domain is Method Engineering, in particular representation of methods. In general, a Method
Engineering language should also enable the administration of method fragments in the method
base, the selection of method fragments, and their assembly into a situational method, but these
operational aspects will not be considered in this paper.

2.1 The Method Engineering domain

A Method Engineering Language should support representation and manipulation of all types
of method fragments. Not only should, for instance, a complete method like OMT be
represented, but also its elementary concepts, such as "Object", "Activity", and "State".
Moreover, specification of both products and processes should be supported. We have
developed a classification framework which clarifies the different types of method fragments.
We classify method fragments along the three dimensions perspective, abstraction, and
granularity layer.

The perspective dimension constitutes of the product perspective and the process
perspective. Product fragments are deliverables, milestone documents, models, diagrams, or
concepts. For instance, "Functional Specification" and "Data Flow Diagram" are product
fragments. Process fragments represent the stages, activities and tasks to be carried out.
Examples of process fragments are: "Create Data Flow Diagram", "Perform Requirements
Analysis", or "Make Data Model".

Furthermore, we distinguish between conceptual method fragments and technical method
fragments. Conceptual method fragments are objective descriptions of information systems
development methods or part thereof. For instance, a set of guidelines in the Information
Engineering book (Martin, 1990) to construct ERD's is a conceptual method fragment, as is
the description of ERD's concepts and relationships. Technical method fragments are the
operational parts of a method, i.e. the tool components. An Entity Relationship Diagram
editor is an example of a technical method fragment, as is its associated repository or the
hypertext ERD procedure in a CASE tool process manager. Some conceptual fragments are
to be supported by tools, and must therefore be accompanied by corresponding technical
fragments.

A method fragment can reside at one of five possible granularity layers:

212 Method Engineering

• Method, which addresses the entire object system. For instance, the Information
Engineering method resides at this granularity layer.

• Stage, which addresses an abstraction level of the object system. An example of a method
fragment at the Stage layer is a Technical Design Report.

• Model, which addresses an aspect of an abstraction level. Examples of method fragments
at this layer are the Data Model, and the User Interface Model.

• Diagram, addressing the representation of an aspect of an abstraction level. For instance,
the Entity Relationship Diagram or the State Transition Diagram are at this granularity
layer.

• Concept, which addresses the concepts and associations the method fragments on the
Diagram layer, as well as the manipulations defined on them. Examples are: "Entity",
"Entity is involved in Relationship", and "Identify entities".

2.2 Requirements

Based on the framework presented in section 2.1, the expressive power and practicality
requirements have been adapted for Method Engineering, resulting in a number of
requirements for Method Engineering languages. The requirements can be viewed from three
perspectives: importance, genericity, and Method Engineering domain. The perspective
importance is introduced because some requirements have more impact on modelling systems
development methods than others, or are a logical consequence of others. The genericity
perspective focuses on the extent to which requirements are generic, or Method Engineering
specific. The Method Engineering domain perspective encompasses the three dimensions
introduced in section 2.1.

Prerequisite
To our opinion the most important requirement, and therefore a prerequisite to all other

requirements, is suitability. This requirement implies that the Method Engineering language
should be leamable, efficient, and convenient for the method engineer. The language should
contain concepts and constructs corresponding with the method engineer's intuition and the
Method Engineering domain. The products and processes are to be modelled in an efficient
way.

Method Engineering Domain
A group of requirements of secondary priority, all of equal importance and addressing the
Method Engineering domain, are:
• Support of representation of both method processes and method products. The functional

and behavioural contents of each activity need to be represented. The components and
structure of products need to be specified. Also, support for hierarchical decomposition of
both process descriptions and product descriptions to enable specification of contents
should be provided. For instance, OMT's Object Design activity, a process description,
consists of activities like "Optimise access paths", "Adjust structures", and "Design attribute
details". OMT's Object Model, a product description, consists of concepts like "Object"
and "Class", their properties, and relationships between them. The Method Engineering
language should provide notations and means to represent these activities and products.

Four method engineering languages 213

• Support of representation of both operational (development) and project management
aspects of methods. These aspects should be distinguishable, but relationships between them
have to be identifiable. For instance, a "Plan Object modelling" activity is related to the
Object modelling activity (which is planned by it), its sub-activities, and its products,
although it addresses a different aspect of the method.

• Support of representation of the conceptual and the technical (Le., tools) side of methods.
As with the difference between development and project management, conceptual aspects
and technical aspects are related, but should also be distinguishable. A conceptual
description of Entity Relationship Diagrams, for instance, only contains the concepts
"Entity", "Relationship", "Attribute", and so forth. Properties are "name" and "definition".
An implementation of Entity Relationship Diagrams, for instance a diagram editor or part of
a CASE tool repository, needs additional concepts and properties, such as specifications of
the symbols with which concepts are represented (rectangle, diamond, circle), access paths
to internal storage, etc.

• The ability to formally express constraints and rules concerning method fragments. The
mere representation of process fragments and product fragments does not suffice.
Relationships among method fragments are subject to constraints, and method fragments
themselves behave according to rules. For instance, a rule is: each data flow in a DFD
should be specified by an Entity Relationship Diagram. Such rules cannot be expressed by
simple cardinality constraints, but are important for the consistent application of method
fragments. In particular for effective tool support, rules should be fonna1ly expressed. It is
necessary that a Method Engineering language provides support for such formalised
constraints and rules.

• Support for representation of actors and roles in the systems development process. In order
to assign responsibilities and duties to people (the key factor) involved in systems
development, it is necessary to provide mechanisms for representing so-called actors and
the roles they play. An actor is considered an actual person, such as Henk de Vries or
Haruhiko Suzuki, which play roles like project manager, analyst, programmer, and so forth.

• Distinction between instance level and meta-level, and support of both of them. The
instance level consists of the actual systems development processes, such as "Create
Inventory control object model", and products, such as "Inventory control object model".
The meta-level addresses the method to be used on the instance level. Method fragments,
such as "Create object model", belong to this level. Actual development processes,
including their products and tools, are therefore instances of method fragments. The
distinction is important, as developers generally only deal with the instance level, which is
the level where the actual job is done. The meta-level is prescriptive, and influenced by the
instance level, because experience gained in the actual development process has to be
captured by the method fragments.

• Support of non-determinism. Actual systems development generally takes not place
according to strict sequences of processes. Usually, a lot of non-deterministic activities take
place, for instance in joint application development or prototyping, for which no strict
sequencing can be provided. Non-determinism is also used to handle exceptional or
unforeseen cases, such as excessively running out of time.

• Support of parallel processes. Systems development is teamwork, which is reflected in the
parallel nature of many method processes. A Method Engineering language should be able
to support this parallelism, both on the meta-level, for instance the parallel execution of data
modelling and process modelling activities, and on the instance level, e.g., the parallel
execution of data modelling activities A and B.

214 Method Engineering

• Support for recording design rationale. As was already noted before, the instance level
constantly forces to make changes on the meta-level. Project experience should be
accumulated in the method fragments, which are relatively dynamic notions. One of the
main mechanisms to benefit from experiences made earlier, is to record design or decision
rationale. This implies that not only the decisions are described, but also the reasons why
decisions have been made, including their pro and con arguments, motivations, etc. Design
rationale can be viewed both on the instance level, for instance the pro and con's of
introducing an additional object class "Level" in an inventory control system specification,
and on the meta-level, for instance the reasons why State Transition Diagrams have been
chosen in a particular method.

Generic requirements
Besides the overall prerequisite of suitability, and requirements regarding the Method
Engineering domain, some requirements for Method Engineering languages are applicable to
any specification language. These generic requirements, which are of less priority than the
other two groups, are:
• Support of modularisation of method fragments. Effective re-use of method fragments

demands for a modularisation mechanism in the language. Method fragments are essentially
black boxes, which are to be selected and assembled based on their external specification;
internal details should be encapsulated as much as possible. Related to this is the need for
effective characterisation of method fragments. A language should supply the means to
valuate properties in such a way, that each method fragment is uniquely identifiable. For
instance, an Entity Relationship Diagram can be characterised by a goal (such as: "Data
modelling"), a maturity level, a description of the capabilities needed to apply the technique,
a set of application domain descriptions, and so forth. A method engineer does not need to
know which concepts and relationships playa role in ERO, but can select by investigating
its properties. The properties also provide a fine-grained classification of method fragments
to support modularisation, as opposed to the coarse-grained classification described in
section 2.1.

• Support for defining views. A method comprises everything needed for performing systems
development, be it for a general case or for a specific case, resulting in a huge amount of
activity descriptions, product descriptions, tools, etc. However, each actor in the systems
development process requires only a relatively small portion of the method, which is its
view on the method. For instance, a project manager has a different view, including project
management activities, products and tools, than a programmer, who needs other parts of the
method. The definition of views reduces complexity for a single actor, and increases
leamability.

• Unambiguity, implying that a Method Engineering language should be formally,
mathematically defined to avoid multiple interpretations and to be able to enact the method.

Venable (1993) uses a similar classification for evaluation of conceptual data models. He
distinguishes between criteria for semantic concepts, criteria for syntactic constructs, and
criteria for relationships to other areas. The first group contains criteria such as richness
(expressive power), minimality (suitability, in particular efficiency), and problem domain
correspondence (all the requirements concerning the Method Engineering domain). The criteria
for syntactic constructs relate to the graphical representation of concepts and the relationship
between syntax and semantics. The third group roughly corresponds to the generic
requirements described above.

Four method engineering languages 215

3 REVIEW OF METHOD ENGINEERING LANGUAGES

In this section four representative Method Engineering languages are reviewed. The concepts
and relationships of each language are described in a data model or meta model (Brinkkemper,
1990). Meta models are depicted in an Entity Relationship Diagram notation, consisting of
entities and relationships. This notation is used for the sake of presentation, to provide a quick
overview. To get a further impression of each language, a small example concerning Entity
Relationship Diagramming has been conceived.

3.1 Object-Z

The fonnal specification language Object-Z (Duke et aI., 1991; Saeki and Wen-Yin, 1994) is
an object oriented extension of the Z language semantically based on ZF set theory. In the
object oriented paradigm, the system to be specified is considered as a collection of individual
objects having internal states. Object-Z defines the objects by using class concepts where the
defmitions of their states (state variables), initial states, and the operations related to them are
encapsulated. The class schema for the specification of a class may contain schema's for
defining operations permitted on the objects. A class can inherit states and operations from
other classes.

Figure 1 depicts the meta-model of Object-Z. In this figure, method fragments are modelled
from the product and the process perspective. From the product perspective, the structures or
types of the produced products and constraints on the product components are specified. To
specify the processes, pennitted manipulations on the method products are defined as
operations. Behavioural constraints, such as execution ordering, are specifioo as pre- and post
conditions of the operations.

Method fragments are defined with the class schema of Object-Z. For defining product
structures, a method fragment has attributes as state variables and constraints as logical
fonnulas. Similarly, operation, defined by an operation schema of Object-Z for specifying
manipulations on the products, has variables as input and output parameters and predicates as
logical fonnulas which defme the effect of the operations. Pre-conditions and post-conditions
of the operation belong to predicate. Note that a method fragment has two relationships
inheritance and reference with other method fragments. In this respect, Object-Z is remarkably
different from other, non-object-oriented, Method Engineering languages.

The example in figure 2 depicts an Object-Z specification of a simple variant of Entity
Relationship Diagramming. The class schema ERD_in_ConceptualLevel starts with the
declaration of the conceptual structure of Entity Relationship Diagram. It contains a number of
state variables, whose values express an instance of Entity Relationship Diagram class. They
address the definition of the concepts of ERD, i.e. Entity, Relationship and Attribute. A
state variable is defined by its name and its type, for instance a powerset of the abstract basic
type entity. The associations between them can be defmed by maps, in the example of the
association between entities and attributes a finite map from attribute to entity
(EntityAttribute). The state variable declarations, i.e. attribute declarations are separated with a
horizontal line from the state invariants, which denote constraints with respect to the state
variables.

216 Method Engineering

u age

rete ence

con ents

Figure 1 Meta-model of Object-Z.

For each permitted operation on the ERD_in_ConceptuaILevel, such as IdentifyEntities, an
operation schema is defined. Such a schema consists of variable declarations called signatures
and predicates. The latter denote pre- and post-conditions for the operation. The t!.. symbol
indicates from which variables the values are changed by the operation. The ? symbol depicts
input variables, and the variables with the prime represent the state after the operation.
The operations IdentifyEntities and IdentifyRelationships are for constructing conceptual
ERDs and updating the state variables. For example, IdentifyEntities needs an input as a newly
identified entity and adds it to the state variable Entity after its execution. This operation
corresponds to the activity of identifying entities. The identified entities are stored in the state
variable Entity. The operation IdentifyRelationships has a newly identified relationship and two
entities participating in it as input parameters. The pre-condition, the first.formula below the
horizontal line of the operation schema, specifies that the two entities should be already
identified before its execution. Therefore, this formula specifies implicitly the execution order
of IdentifyEntities and IdetifyRelationships, IdentifyEntities should be executed before
IdentifyRelationships. EntityRelationship_l and EntityRelationship_2 stand for the association
between identified entities and relationships.

The class schema ERD_in_ConceptualLevel does not include sufficient information to
specify Entity Relationship Diagrams. For example, the schema did not have the information
that an entity can be represented with a rectangle. The class schema ERD _in_ TechnicalLevel ,
depicted in figure 3, specifies this notational information of ERD. It inherits state variables and
operations from ERD_in_ConceptuaILevel. The inheritance mechanism allows us to specify
various level descriptions of method fragments separately. We define new state variables which
include the information of graphical components standing for the ERD concepts. For example,
entities in this level are defined by a map from conceptual entities to rectangles. Each Entity is
represented with a rectangle. A graphical component such as a rectangle consists of x co
ordinate, y co-ordinate and a label, i.e. location information and its identifier. The operations,
e.g. CreateEntity and MoveEntity are editorial manupulations of these graphical components.
For example, MoveEntity moves the entity e? to x-axis-direction dx and y-axis direction dy.

Four method engineering languages 217

- ERD in ConceptualLevel .----- .. --------- -

Entity : JP> entity

Relationship: JP> relationship

Attribute : JP> attribute

EntityReiationship_l : relation.,hip entity

EntityRelationship..2 : relationship entity

EntityAttribute : attribute entity

RelationshipA ttribute : attributes relationship

Cardinality: Relationship (N x N)

dom EntityA ttribute <;; Attribute 1\ ran EntityA ttribute <;; Entity

dom RelationshipAttribute <;; Attribute 1\ ran RelationshipAttribute <;; Relationship

dom Cardinality <;; Relationship

status = "completion" =?

'Ve : Entity 3 r : RelationBhip • EntityReiationship_l(r, e) 1\ EntityRelationship_2(r. e

r- I dentifyEntities

A (Entities)

new_entity? : entity

Entity' = Entity U {new_entity?}

r- IdentifyRelationships

A(Relationship, EntityRelationship_l, EntityRelationship_2)

new]elation.,hip? : reiation.,hip

domain_entity?, range_entity? : entity

domain_entity? E entities 1\ range_entity? E entities

Relationship' = Relationship U {new_relationship?}

EntityRelationship_l' = EntityReiation .. hip_l U {new_relationship? domain_entity'?}

EntityRelationship..2' = EntityReiationship..2 U {new_relationship? range_entity?}

,.,

Figure 2 Description of conceptual ERD.

218 Method Engineering

r- ERD in TechnicalLevel - -
ERD_in_ConceptuaILevel

entity_symbols: Entity -iI+ Rectangle

attributLsymbols : Attribute -iI+ Circle

relatioship_symbols : Relationship Diamond
...

dom EntityGraphicalObject = Entity

"Ie: Entity 'Va: Attribute. EntityAttribute(a) = e =>
connected (entity _symbols (e), attribute _symbols (a))

'Vr: Relationship 'Va : Attribute. RelationshipAttribute(a) = r =>
connected (relationship_symbols (e), attribuk.symbols (a))

"leI, e 2 : Entity 'V rei : Relationship •

EntityRelationship_l(rel) = ell1 EntityRelationship.-2(rel) = e2 =>
connected (relationship..symbols (rei), entity..symbols (e1)) II

connected (relationship..symbols(rei), entity_symbols (e2))

, CreateEntity

II (entity ..symbol .•) x?, y? : Coordinate

label? : String

IdentifyEntities

entity_graphicaLoject' = entity_symbols U {new_object? < x?, y?, label? > }

,MoveEntity

ll(entity..symbols)

e?: Entity

dx?, dy? : Coordinate

'Vx,y: Coordinate, 'V label : String. entity_symbols(e?) =< x,y,label >=>
entity_symbols' = entity_symbol .• U {e? < x + dx?, y + dy?, label>}

...

...

Rectangle .. - Coordinate X Coordinate X String

Figure 3 Description of technical ERD.

3.2 MEL

MEL (Harmsen and Brinkkemper, 1995ab) is a language to describe and manipulate parts of
IS development methods, and designed to support Method Engineering. The language offers
representation mechanisms to describe methods on different levels of granularity. MEL
facilitates both representation of method processes and method product models, as well as the
tools that accompany a method. It is founded upon a definition in first order predicate logic.
The product models, called product fragments, can be related to the process representations

Four method engineering languages 219

(process fragments) through relationships, represented by MEL keywords. Such relationships
include: prerequisite, which relates the product fragments required by a process fragment, and
manipulation, relating the product fragments manipulated by a process fragment in a certain
role, such as update, production, or usage. Product fragments can be involved in an
association, or can precede each other. A product fragment can be associated to one or more
rules, specifying a static constraint, and can be, on a higher granularity level, represented by a
graphical symbol. Product fragments can be described in terms of ontology concepts and
associations which is especially useful when assembling product fragments from different
methods.

For process fragments, decision and iteration constructs are provided. Moreover, it is
possible to specify parallelism. Process and product fragments are characterised by a number of
predefined property types and values, the latter being taken from a number of pre-defined
methodology-related value domains. Process and product fragments can be specialised, and it
is possible to specify abstract, polymorphic product fragments (cf. templates) , which can be
parametrised in the specialisation. Such polymorphic method fragments are also used to define
role-specific views. Such a view is a specialisation which only contains the relevant parts for a
specific actor type. Tool aspects are handled by providing special constructs, such as SYMBOL,
and property types, such as colour and coordinates.

Figure 4 Meta model of MEL.

Figure 4 depicts a simplified meta model of the representational aspects of MEL. To improve
readability, properties of the concepts, and cardinalities and role names of the relationship
types are not shown. A method object can be a method fragment, an association, or a symbol.
There are two relationship types between method object and property type: the ternary
characterisation relationship, which is used to denote intrinsic properties of the method object

220 Method Engineering

along with their values, and the binary description relationship, used to indicate properties of
method object instances.

PRODUCT Simple EntityRelationshipDiagram:
IS A Product;
LAYER Diagram;
CREATOR TYPE Information Analyst;
NAME TEXT;
CREATION DATE DATE;
DEFINITION TEXT;
MANIPULATED BY {(Create ERD. Production), (Modify ERD, Update), (Create DFD, Usege)};
(
- Entity;
-Attribute;
- Relationship

RULE rl: lorell d In EntityRelationshipDiagram lorall e In Entity exists r In Relationship [status(d) = 'completion' Implies
domain_of(e,r) or range_of(e,r)]

all ent~ies are connected HERD is completed #
).

PRODUCT Entity:
LAYER Concept;
SYMBOL Rectangle;
MANIPULATED BY {(ldentHy provisional entities, Production), (Identity ent~ies, Update), (Identify relationships, Usage)};
ASSOCIATED WITH {(Entity Relationship_l , domain_oO,(EntityRelationship_2, range_oO, (EntityAttribute, has)}.

PRODUCT Attribute:
LAYER Concept;
SYMBOL Circle;
ASSOCIATED WITH {(EntityAttribute, is_oO,(RelationshipAttribute, is_oO}.

PRODUCT Relationship:
LAYER Concept;
SYMBOL Diamond;
ASSOCIATED WITH {(EntityRelationship_', has_domain), (EntityRelationship_2, has_range), (RelationshipAttribute, has)}.

ASSOCIA nON Entity Relationship_l :
ASSOCIATES(Entity, Relationship);
CARDINALITY(I,n; 1,1) # the example requires only binary relationships #.

ASSOCIATION EntityRelationship_2:
ASSOCIATES(Entity, Relationship);
CARDINAUTY(I,n; 1,1).

ASSOCIATION EntityAttribute:
ASSOCIATES(Entity, Attribute);
CARDINALITY(I,n; O,n).

ASSOCIATION RelationshipAttribute:
ASSOCIATES(Relationship, Attribute);
CARDINALITY(I,n; O,n).

Figure 5 Product representation in MEL.

Besides a representational part, which is the focus of this paper, MEL contains operations to
administrate method fragments in the method base, to query them, and to assemble method
fragments into a situational method, The examples below depict a product fragment and a
process fragment. The simple ERD inherits all properties from a product fragment called
"Product". Furthermore, it has the characterising properties layer and creator type. To enable
further specification of its instances, it also has a number of properties which are not known
until method application, such as name and creation date. It has some relationships with other
method fragments, and it consists of three concepts, which are, together with their
associations, specified further on.

Four method engineering 1000guages 221

The activities to produce the ERD are described in a process fragment specification. In
process fragments, hyphens before activity names indicate sequential activities. By means of
the REQUIRED and DELIVERABLES sections the input and output products, respectively, are
indicated. Constructs not shown in the examples include parallelism, DECISION, to denote
optionality and decisions, REPEAT ••• UNTIL, to denote iteration, and AT LEAST ONE OF, to denote
non-determinism with respect to the required products.

PROCESS Create ERD:
LAYER Diagram;
REQUIRED Interview results
(
- Identify EntHies;
- Identify Relationships

)
DEUVERABLES Simple EntityRelationshipDiagram.

Figure 6 Process representation in MEL.

3.3 GOPRR

GOPRR (Kelly et al., 1996) focuses on the modelling of the conceptual structure of techniques
and relationships between these, supporting:
• Decomposition and complex objects,
• Generalisation and specialisation of modelling concepts,
• Polymorphic modelling concepts,
• Representation independence, and
• Rules for checking the model integrity.

r p~;'" speCification I Graph

I
agg egation

I
olav

I Object I I Role

descr ption

des ription
des ription

invol ement

I Property iii I Relationship I III deRcrintion
III!II

Figure 6 Meta model of GOPRR.

222 Method Engineering

GOPRR-p (Koskinen, 1996) is used to model process structure of methods. It is an
extension of GOPRR that conceptualises also the behavioural aspects of processes, in
particular for automating the process model enaction. GOPRR-p is not taken into
consideration in this comparison.

GOPRR distinguishes between objects, properties, relationships, roles, and graphs An object
is used to model high granularity method products or concepts. A relationship is a connection
between a set of objects. A role specifies how an object is connected to a relationship. A set of
elements is collected using a graph, which enables the coupling of diagrams to diagrams, as
well as concepts to diagrams. The relationships between property and the. other concepts all
relate to the instance level, and are therefore similarly named as in the MEL meta-model.

In the example below, boxes represent objects. Circles represent roles, diamonds represent
relationships, and ellipses represent properties describing instances of objects. Properties
characterising an object (method fragment) are placed within a dotted rectangle. For instance,
the object Entity has three roles (domain_of, range_of, and has), which are associated with
relationships. The entire model, a graph, has three descriptive properties: Name, Creation Data
and Definition, which are used to characterise an instance of this graph. It has two
characterising properties: Layer, and Creator Type. These properties characterise the graph
itself. Something which is not shown in the example is, that properties can be shared by several
objects and relationships.

Simple EntllyAelationshlpDlagram

Figure 7 Product representation in GOPRR.

3.4 HFSP

HFSP (Katayama, 1989; Song and Osterweil, 1992) provides a language for describing
software process programs in a process-centred style. It is based on attribute grammars. The
descriptions, i.e. HFSP programs, consist of two parts - declarations of data types and the
definition of derivation rules that specify the activities and the computation of products in the

Four method engineering languages 223

processes. Data types are defined in a similar way as in well-known program languages, such
as record type, set type, enumeration type and so on.

The meta model of HFSP is shown in Figure 8. A type is a definition of a product type and
specifies the type of attribute values associated with activity. An activity corresponds to a non
terminal symbol or a terminal symbol in grammatical derivation rules. Typical derivation rules
have the following form:

A=> Bl B2 ... B.
when conditions
where computation rules

The activity A is decomposed to sub activities BJ, B2, ... and B •. A is a non-terminal symbol
and each Bi (1 :s; i:S; n) corresponds to non-terminal or terminal symbols. A and each Bi can
have inputs and outputs as their attributes. When A has several inputs and outputs, we write
A(inJ, in2, ... , inm I outJ, oUt2, ... , ou1:.t). Intuitively speaking, inJ, ... , inm are·inherited atributes,
while OUtl, ... , OUtk are synthesised attributes, because they are computed from the values
associated with BJ, ... , B. and inJ, ... ,inm•

We use the term decomposition rule to denote the right hand side of derivation rules that have
on the left hand side the activities in which an activity can be decomposed. Thus, a
decomposition rule consists of a sequence of activities, and the usage relationship expresses
which activities occur in the decomposition rule. Computation rule and condition are
associated with a derivation rule. The former is for computing an output attribute value
associated with the activity when it is decomposed. The latter specifies the condition which
should hold when the activity is decomposed, i.e. executed.

In the example depicted in figure 9, which is part of an ER diagram description in HFSP, we
defme the structure of ER diagram by using set type and record type constructions. For
example, EntityRelationship_l (association between Entity and Relationship) is defined as a
pair (record type) of entities and relationships. Conceptual ER diagrams consist of a set of
entities, a set of relationships, a set of attributes and their associations (named
EntityRelationship_l, EntityRelationship_2, EntityAttribute and RelationshipAttribute). To
attach graphical information to entity, relationship and attribute components on diagram
notation, we introduce the other types entity_symbols, relationship_symbols and
attribute_symbols using record type construction. They have graphical components such as a
rectangle, a diamond and a circle.

The activities for constructing ER diagrams are specified by derivation rules associated with
conditions and computation rules. As mentioned before, conditions specify the constraints for
application of the derivation rule. The input and output values are computed following the
computation rules. In the example of the second rule of IdentifyEntity, only if the value of
Entity.e is not included in entities.in, the rule is applied and then the value of entities. out is
computed as the union of entities.in and {Entity.e}. Note that we use the variables for denoting
the attribute values, i.e. the variables keep the referential transparency. Because of this
property, we often write many copy rules to propagate the attribute values that are globally
used. A variable name may be prefixed with its type. For example, entities.in stands for the
variable "in" whose type is entities.

224 Method Engineering

Type description

description

Activity Attribute

usc ge

u age

association

I I
usage

Decomposition
Condition Computation Rule Rule

Figure 8 Meta model of HFSP.

As the execution of activities proceeds, the derivation tree becomes larger. The derivation
tree records the execution history. The execution order of activities is the derivation order of
the rules and the derivation order is specified by the conditions and the computation rules.
When the conditions are satisfied and where the values necessary for the computation are
already determined, we can execute the derivation, i.e. the corresponding activity. Thus it
means that HFSP specifies the execution order of activities implicitly. Furthermore HFSP can
specify concurrency and non-determinism on activity execution. Suppose there is more than
one node the derivation rules can be applied in the derivation tree. They can be derived
concurrently, i.e. parallel parsing, or one or some of them can be selected and derived in a non
deterministic way.

As shown in the example, method-descriptions cannot be separated among different levels.
Therefore, notational information of ERD is scattered in its conceptual description.
Note that it is difficult in HFSP to specify constraints on products because its data type
definition part has no syntactic devices to specify them. If a constraint has to be specified on
the products, it has to be associated with derivation rules. This is also one of the reasons why
the method descriptions in HFSP are not so comprehensive.

type
entities: set of Entity
relationships: set of Relationship
attributes: set of Attribute

Four method engineering languages

EntityRelationship_I, EntityRelationship_2: (Entity, Relationship)
EntityAttribute: (Entity, Attribute)
RelationshipAttribute : (Relationship, Attribute)
entity_symbols: set of (Entity, Rectangle)
relationship_symbols: set of (Relationship, Diamond)
attribute_symbols: set of (Attribute, Circle)
Rectangle, Diamond, Circle: (Coordinate, Coordinate, Label)
ERDiagram: (entity_symbols, relationship_symbols, attribute_symbols,

activity

EntityRelationship_l, EntityRelationship_2,
EntityAttribute, RelationshipAttribute)

MakeERDiagram(I ERDiagram.out) =>
DrawEntity(I entity_symbols)
DrawRelationship(entity_symbols.out I relationship_symbols.out,

EntityRelationship_l.out, EntityRelationship_2.out)
Draw Attribute(entity _symbols.out, relationship_symbols.out I

attribute_symbols.out, Entity Attribute.out,
Relationship_attribute.out)

where
ERDiagram.out - (entity _symbols.out, relationship_symbols.out,

attribute_symbols.out, EntityRelationship_l.out,
EntityRelationship_2.out, EntityAttribute.out,
RelationshipAttribute.out)

DrawEntity(I entity_symbols.out) =>
IdentifyEntity(I entities.out)
CreateEntity(entities.out I entity_symbols.in)
MoveEntity(entity _symbols.in I entity _symbols.out)

ldentifyEntity(I entities.out) => £

where entities.out - { }

ldentifyEntity(I entities.out) => IdentifyEntity(I entities.in)
when Entity.e ~ entities.in
where entities.out - entities.in u {Entity.e}

CreateEntity(entities.in I entity_symbol.out) => £

when entities.in - { }
where entity _symbols.out - { }

CreateEntity(entities.in I entity_symbols.out) => CreateEntity(entities.out I entity_symbols.in)
when entities * { } A entity.e E entities.in
where entities.out - entities.in - {Entity.e}

entity_symbols.out - entity_symbols.in u {(Entity.e, (x,y,label)}

MoveEntity(entity_symbols.in I entity_symbols.out) => £

where entity _symbols.out - entity _symbols.in

MoveEntity(entity_symbols.in I entity_symbols.out) => MoveEntity(entity_symbols.in I entity_symbols.mid)
when (Entity.e, (x,y,label» E entity_symbols.mid
where entity_symbols.out - entity_symbols.mid - {(Entity.e, (x,y,label»}

u {(Entity.e, (x+dx,y+dy,label»}

Figure 9 Method fragment representation in HFSP.

225

226 Method Engineering

4 COMPARING THE METHOD ENGINEERING LANGUAGES

In table I the four languages are characterised on the basis of the following aspects:
• Basis, which is the underlying -mathematical- formalism or modelling language.
• Scope, which denotes the range of applications for which the language is being used.
• Paradigm, addressing the philosophy or "way of thinking" a Method Engineering

language adopts.
• Explicitness, which indicates whether method fragments are completely described, or that

part of the method fragment specification should be derived. For instance, the activity
sequence can be derived from pre- and post-conditions associated with process fragments.

• Focus, indicating which part or aspect of a method specification is particularly emphasised
by the language.

• Size, which gives an indication of the average size of a method specification in a language.

Table 1 Characterisation of Method Engineering languages

basis

scope

paradigm

explicitness

focus

size

Object-Z MEL
ZF set theory predicate logic

general-purpose Method
Engineering

object-oriented data/process-
oriented

process order explicit
implicit

GOPRR
extended
model

HFSP
ER attribute grammars

meta-modelling process modelling

data-oriented functional

explicit implicit

method products method products method
products

method processes

moderate large moderate large

Table 2 represents an comparison of the four languages by assessing the extent to which each
language meets the requirements stated in section two.

Object-Z does support process representation, but, due to its object-oriented roots, only in
combination with a product description. HFSP only supports record-like product descriptions,
and is therefore less suitable for representing products. All languages can support both the
development and the project management perspective, but none of them offers special
constructs to distinguish or relate the two. Only MEL offers support for representation of
technical method fragments by providing the SYMBOL object class and several property types
for technical method fragments. However, all other language are capable of representing them,

Four method engineering languages 227

as has been shown in some examples. Only GOPRR is not able to express formal rules; HFSP
offers conditions, MEL rules, and Object-Z formulas. Modularisation is a weak point of HFSP;
all other languages have constructs to support this feature: Object-Z by class schema's and
their instances, MEL by method objects, and GOPRR by graphs. The investigated Method

Table 2 Comparison of Method Engineering languages

Object-Z MEL GOPRR HFSP
suitability no methodology- many concepts for non-determinism,

specific concepts, methodology- modelling simulation, hard to
relatively hard to specific concepts, techniques, easy to learn
learn relatively hard to learn

learn

processes & both, but processes both products both, but products

products less well supported less well supported

development & mainly development mainly development mainly

proj. mgmt. development development

conceptual & both both, special both both

technical constructs and
property types

formal rules yes yes no yes

actors no, but can be user- as pre-defined no no
defined property types

type/instance yes no no no

non- yes no no yes

determinism
parallellism yes yes no yes

design no, but can be user- no no no

rationale defined

modularisation yes (objects, yes yes (composite no
classes) concepts)

views no yes no no

unambi8,ui!l. unambiguous unambiguous unambiguous unambiguous

Engineering languages do not provide explicit support for actors or roles. MEL features pre
defmed property types such as "creator" or "responsible" which serve as actor and role
representations. In Object-Z, actors and roles can be represented by object classes. Only in
Object-Z, the difference between types and instances is handled well. GOPRR and HFSP can
represent both types and instances, but not their relationships. MEL is not able at all to
represent method fragment instances. Non-determinism of operation sequence is supported in
Object-Z and HFSP. GOPRR does not operations at all, in MEL the sequence of operations is
explicitly defined. Parallelism is supported by all three languages that provide representation

228 Method Engineering

for process fragments. None of the investigated languages provides support for capturing
design rationale, although in Object-Z object class schemata to serve that purpose can be
defined. MEL supports the explicit definition of views by specialisation of generic method
fragments, the other languages do not. All of the languages are unambiguously and formally
defined by their authors, leaving no room for misinterpretations. Obj!!ct-Z provides no
methodology-specific concepts, which causes the language somewhat harder to learn for
methodologists. Due to the compact representation, the size of Object-Z specifications does
not suffer from this fact. MEL provides a lot of methodology-specific concepts and properties.
This huge number makes the language also harder to learn. GOPRR only addresses product
representation (GOPRR-p was not yet taken into consideration), but does this in an easy and
elegant fashion. GOPRR is in particular suited for modelling modelling techniques, and not
complete methods, although the graph concept enables to do so. HFSP is particularly suitable
for modelling non-deterministic processes. Due to the precise description of processes, HFSP
is executable and can be used for simulation purposes. This language is relatively difficult to
learn.

5 CONCLUSION

In this paper we proposed a number of requirements for Method Engineering languages. From
each of the four identified categories of Method Engineering languages we have taken one
example, which have been described with meta-models and illustrated with example
specifications. We have compared the four languages on the basis of the req\lirements.

A general conclusion that can be drawn is that there is no ultimate Method Engineering
language. Choice of the language depends on the desired purpose and goals one wants to
reach. Also in this respect, Method Engineering languages and their usage are very similar to
IS modelling techniques. Object-Z provides compact, elegant specifications underpinned by the
object-oriented paradigm. If only the process aspects of a method need to be represented,
Object-Z is less suitable. MEL tries to combine the product and process aspects and uses
methodology-specific terms, particularly in its pre-defined properties. Because MEL was
designed by looking at advantages of other Method Engineering languages, it is probably the
best all-round language around. However, the huge number of concepts and properties make
the language hard to learn, which counteracts the advantage of being methodology-specific for
a part. GOPRR is not so hard to learn, but addresses only the product aspect. This language is
best suited for modelling and representing modelling techniques and their interrelationships.
HFSP is particularly suited for modelling processes, the product representation support by
record types is quite rudimentary. HFSP is at its best if processes need to be simulated, for
instance to calculate various alternative project plans.

The conclusion that there is no ultimate Method Engineering language could lead to a
situation in which Method Engineering languages are composed of fragments originating from
several Method Engineering languages, to obtain a purpose-fit language. We call this Method
Engineering of Method Engineering languages.

Further research focuses on refining the various categories and comparing more languages.
Purposes of Method Engineering will be related to the various languages around. The
comparison techniques will be sophisticated and formalised. Currently a reference framework
and associated comparison metrics for Method Engineering languages is under development.
This framework is developed towards a Method Engineering ontology, i.e. a formal data model

Four method engineering languages 229

containing basic concepts of IS engineering methods, while taking into account earlier results
(described in (Olle et aI., 1991) and (Heym and Osterle, 1992» regarding such data models.

6 REFERENCES

Benali, K., Boudjlida, N., Charoy, F., Demiame, J.-C., Godart, c., Griffiths, Ph., Gruhn, V.,
Jamart, Ph., Oldfield, D. and Oquendo, F. (1989) Presentation of the ALF project.
Proceedings of the International Conference on System Development Environments and
Factories, Berlin.

Brinkkemper, S. (1991) Fonnalisation of Infonnation Systems Modelling, Dissertation
University of Nijmegen, Thesis Publishers, Amsterdam.

Duke, R., King, P., Rose, R. and Smith, G. (1991) The Object-Z Specification Language,
Technical Report 91-1, Software Verification Centre, University of Queensland.

Emmerich, W., Junkennann, G. and Schafer, W. (1991) MERLIN: knowledge based process
modelling. First European Workshop on Software Process Modelling, Milan.

Harmsen, F., Brinkkemper S. and Oei H. (1994) Situational Method Engineering for
Infonnation System Projects. Proceedings of the IFIP WG8.1 Working Conference
CRIS'94 (Eds. T.W. Olle and A.A. Verrijn-Stuart), North-Holland Publishers, Amsterdam,
pp. 169-194.

Harmsen, F., and Brinkkemper, S. (1995a) Description and Manipulation of Method
Fragments for Situational Method Assembly. Proceedings of the Workshop on Management
of Software Projects, Pergamon Press, London.

Harmsen, F. and Brinkkemper S. (1995b) Design and Implementation of a Method Base
Management System for a Situational CASE Environment. Proceedings of the 2nd Asian
Pacific Software Engineering Conference (APSEC'95), IEEE Computer Society Press, Los
Alamitos, CA, pp. 430-438.

Heym, M. and Osterle, H. (1992) A reference model of infonnation systems development. The
Impact of Computer Supported Technologies on Information Systems Development (Eds.
K.E. Kendall, K. Lyytinen and J.I. DeGross), Amsterdam, North-Holland, pp. 215-240.

Hofstede, A.H.M. ter (1993), Infonnation modelling in data intensive domains, dissertation
University of Nijmegen, the Netherlands.

Hong, S., van den Goor, G., and Brinkkemper, S. (1993), A Comparison of Object-Oriented
Analysis and Design Methodologies. Proceedings of the 26th Hawaiian Conference on
System Sciences (HICSS-26), IEEE Computer Science Press.

Iivari, J. (1994) Object-oriented infonnation systems analysis: A comparison of six object
oriented analysis methods. Proceedings of the IFIP WG8.1 Working Conference CRIS'94
(Eds. T.W. Olle and A.A. Verrijn-Stuart), North-Holland Publishers, Amsterdam, pp. 85-
110.

Katayama, T. (1989) A hierarchical and functional software process description and its
enaction. Proceedings of the 11th Int. Con! on Software Engineering. pp.-343-352.

Kelly S., Lyytinen, K. and Rossi, M. (1996) MetaEdit+ A Fully Configurable Multi-User and
multi-Tool CASE and CAME Environment. Proceedings of the CAiSE'96 conference, 20-
24 May, Heraklion, Crete, Greece.

Koskinen, M. (1996) Designing Multiple Process Modelling Languages for Flexible, Enactable
Process Models in a MetaCASE Environment, Proceedings of the 7th European Workshop
on Next Generation CASE Tools (NGCT'96), Heraklion, Crete, Greece.

230 Method Engineering

Kumar, K. and Welke, R.J. (1992) Methodology Engineering: A proposal for Situation
specific Methodology Engineering. Challenges and Strategies for Research in Systems
Development (Eds. W.W. Cotterman and J.A Senn), John Wiley and Sons Ltd., pp. 257-
269.

Martin, J. (1990) Information Engineering, Book II - Planning and Analysis, Prentice-Hall,
Englewood Cliffs.

Marttiin, P., Rossi, M., Tahvanainen, V.-P. and Lyytinen, K. (1993) A Comparative Review of
CASE Shells: a preliminary framework and research outcomes. Information and
Management, 25, pp. 11-3l.

Mylopoulos, J., Borgida, A., Jarke, M., Koubarakis, M. (1990) Telos: Representing
Knowledge About Information Systems. ACM Transactions on Information Systems, 8, 4,
pp. 325-362.

Oei, J.L.H. and E.D. Falkenberg (1994) Harmonisation of Information System Modelling and
Specification Techniques. Proceedings of the IFIP WG8.1 Working Conference CRIS'94
(Eds. T.W. Olle and A.A. Verrijn-Stuart), North-Holland Publishers, Amsterdam, pp. 151-
168.

Olle, T.W., Sol, H.G. and Tully, C.J. (Eds.) (1983) Information Systems Design
Methodologies: A Feature Analysis. Elsevier Science Publishers, North-Holland,
Amsterdam.

Olle, T.W., Hagelstein, J., MacDonald, I.G., Rolland, C., Sol, H.G., Van Assche, F.J.M. and
Verrijn-Stuart, A.A (1991) Information Systems Methodologies: A framework for
understanding. Addison-Wesley Publishing Company, Wokingham, England.

Saeki, M., Kaneko, T., and Sakamoto, M. (1991) A Method for Software Process Modeling
and Description using LOTOS. Proceedings of the 1st International Conference on the
Software Process (Ed. M. Dowson), IEEE Computer Society Press, Los Alamitos, CA, pp.
90-104.

Saeki, M., and Wen-yin, K. (1994) Specifying Software Specification and Design Methods.
Advanced Information Systems Engineering (Eds. G. Wijers, S. Brinkkemper and T.
Wasserman), LNCS#811, Springer-Verlag, pp. 353-366.

Smolander, K. (1992) OPRR - A Model for Methodology Modeling. Next Generation of
CASE Tools (Eds. K. Lyytinen and V.-P. Tahvanainen), Studies in Computer and
Communication Systems, lOS press, pp. 224-239.

Slooten, K. van, and Brinkkemper S. (1993) A Method Engineering Approach to Information
Systems Development. Proceedings of the IFIP WG8.I Conference on Information Systems
Development Process (Eds. N. Prakash, C. Rolland and P. Pemici), Como, pp. 167-186.

Song, X., and Osterweil, L.J. (1992), Towards objective, systematic design-method
comparison. IEEE Software, 34, 5, May, pp. 43-53.

Sorenson, P.G., Tremblay, J-P. and McAllister, A.J. (1988) The Metaview system for many
specification environments. IEEE Software, 30, 3, March, pp. 30-38.

Sowa, J.F., and Zachman, J.A. (1992) Extending and formalizing the framework for
information systems architecture. IBM Systems Journal, 31, 3, pp. 590-616.

Venable, J. (1993) CoCoA: A Conceptual Data Modelling Approach for Complex Problem
Domains. Ph.D. dissertation, State University of New York, Binghampton.

Verhoef, T.F. and Ter Hofstede, A.H.M. (1995) Feasibility of Flexible Information Modelling
Support. Advanced Information Systems Engineering (Eds. J. livari, K. Lyytinen and M.
Rossi), LNCS #932, Springer-Verlag, pp. 168-185.

Four method engineering languages 231

Wijers, G. and Dort, H. van (1990) Experiences with the use of CASE tools in the
Netherlands. Advanced Information Systems Engineering (Eds. B. Stei~olz, A. Sl1Jlvberg
and L. Bergman), LNCS#436, Springer-Verlag, pp. 5-20.

Wijers, G. (1991) Modelling Support in Information Systems Development. Ph.D. dissertation,
Thesis publishers, Amsterdam.

7 BIOGRAPHY

Frank Harmsen is a researcher in the Information Systems Design Methodology Research
Group at the Computer Science Department of the University of Twente in the Netherlands.
He holds a B.Sc and M.Sc in Mathematics and Computer Science from the University of
Nijmegen. His research interests are information system methodology, meta-modelling,
Method Engineering, and CASE tools, about which he has published several papers. Current
research activities focus on defining formalisms and tools for representation and assembly of
method fragments for Situational Method Engineering. He was co-editor of the 1993 edition of
the Workshop on Next Generation of CASE Tools (NGCT), and served on the organisation
committee of CAiSE'94 (Conference on Advanced Information Systems Engineering). He is a
member of the Netherlands Society for Informatics.

Motoshi Saeki is an associate professor of Tokyo Institute of Technology, Tokyo, Japan. He
received a Ph.D degree from Dept. of Computer Science, Tokyo Institute of Technology in
1983. He has worked for Dept. of Computer Science as a research associate and since 1988 as
an associate professor. His current interests include specification & design methods, formal
methods (in particular, application of formal methods), human factor in software development
and CSCW in software development.

15

Method Engineering: Who's the Customer?

L. Mathiassen, A. Munk-Madsen, P. A. Nielsen and J. Stage
Department of Computer Science, Aalborg University
Fredrik Bajers Vej 7, DK-9220 Aalborg ~, Denmark
{larsm, pan, jansJ@iesd.auc.dk

Metodica, Nyvej 19, DK-1851 Fredriksberg C, Denmark
metodica@post4.tele.dk

Abstract
This paper reports from a large Danish effort to engineer an object-oriented method for analysis
and design of computer systems. Over a period of six years a method was developed based on
new ideas on how to learn object-orientation supplemented with well-known ideas of how to
work object-oriented in systems development.

The experience from this method engineering effort is interpreted as an iterative process in
volving elements of theory, method and case records. These elements played different roles
when engineering the method. But, what is more important, they becarne key elements in struc
turing and presenting the method to practitioners and students of the field.

This particular method engineering effort has thus been governed by a paradigm for learning
methods rather than a paradigm for working with methods. We discuss this paradigm by explor
ing three issues involved in method engineering: (1) the relation between learning the method
and working with the method; (2) the role of principles, patterns, and guidelines in explaining
the method; and, finally, (3) the relation between concepts for reflection and modelling and con
crete representations used to create texts and diagrams.

We suggest that the primary customers of method engineering are those studying methods
eager to learn a class of new systems development practices. Those actually working with the
method should be thought of in a secondary role when structuring and presenting a new method
- even though they are the ultimate judges of the method's practical strengths and weaknesses.

Keywords
Method engineering, systems development, object-orientation, learning, working.

Method engineering 233

1 INTRODUCTION

One may take different approaches to method research and engineering: a comparative ap
proach with particular focus on the features of methods (e.g. Olle et al. 1982, 1983 and 1986,
Nielsen 1990a and 1990b), a tool-oriented approach with a particular focus on notation and
CASE (e.g. Steinholtz et al. 1990, Andersen et al. 1991), or a mixed approach (e.g. Tolvanen
and Lyytinen 1993, Verrijn-Stuart and Olle 1994). We have taken an experience-based approach
as outlined in the following.

It has been the authors' privilege to work with systems development and systems develop
ment methods for a number of years, teaching methods to computer science and engineering
students at the university and to practitioners in companies in the computing industry, experi
menting with methods in companies and laboratories, and researching into the qualities of meth
ods both in processes of learning them and working with them. This is reflected in our previous
work (Mathiassen 1981, Stage 1989, Nielsen 1990a and 1990b, Kensing and Munk-Madsen
1993).

We have taught both structured and object-oriented methods to computer science and engi
neering students for several years, and during the last six years we have taught object-oriented
methods to a large number of practitioners. In these efforts we have often experienced a gap be
tween the way a specific method is structured and presented and the requirements and needs we
experience when trying to convey the underlying new systems development practices to practi
tioners and students in the field. It is this dissatisfaction with the pedagogical weaknesses of
many systems development methods that initiated the research reported in this paper.

For more than six years we have been involved with our students, companies in the comput
ing industry and practitioners of systems development in engineering a new Danish method for
object-oriented analysis and design, called OOA&D. The method is documented in two books
(Mathiassen et al. 1993 and 1995). Evolving versions of the method have been taught to stu
dents and practitioners in different pedagogical contexts (university courses, open courses for
practitioners, and in-house courses for specific companies). From this stems the experience that
has driven the method engineering process: our method is based on new ideas on how to explain
and learn object-orientation supplemented with well-known ideas of how to work object-orient
ed in systems development (Jackson 1983, Coad and Yourdon 1991, Booch 1991, Rumbaugh et
al. 1991, Jacobson et al. 1992).

During the development of OOA&D two fundamental questions to method engineering have
been addressed:

• What are the key elements of the method?

• What are the basic principles for structuring and presenting the method?

These questions are intrinsically related and answering them in our own method engineering ef
fort required several iterations. Once the questions were answered the rest of the method fell in
place more easily. In the engineering of OOA&D we made a fundamental decision, which
helped us design the engineering process and answer the two questions:

• The underpinning paradigm of the method engineering process is that of learning and
teaching object-oriented ideas to practitioners and students.

234 Method Engineering

• The primary customers of the method engineering process are the practitioners and stu
dents that want to learn object-orientation.

This learning paradigm negates the conventional implicit assumption, that systems develop
ment methods should be structured and presented to reflect the way in which practitioners work
when using the method.

The learning paradigm has had considerable implications for the engineering of our method
and for the structure and documentation of the method. We suggest that this paradigm can help
other method engineers overcome some of the difficulties involved in successfully engineering
new methods. These difficulties include: hardship of teaching and learning the essentials of a
method, difficulty in distinguishing the important differences between alternative methods, re
luctance arnongst practitioners and students to adhere to the method, and last but not least a slow
adaptation of the method.

The structure of our discussion is as follows. The process through which we engineered
OOA&D is described in Section 2. Our experience is interpreted as an iterative process involv
ing elements of theory, method and case records as in (Checkland 1981). In Section 3, three ma
jor issues in designing OOA&D are then presented and discussed: learning and working with
methods; the role of principles, patterns, and guidelines; and, finally, the relation between con
cepts for reflection and modelling and concrete representations used to create texts and dia
grams. A summary of the learning paradigm and its implications for method engineering is giv
en in Section 4.

2 THE ENGINEERING PROCESS

2.1 A Specific Case

Background: We have taught systems development methods to computer science and engineer
ing students for a couple of decades. First, we taught a selection of state-of-the-art methods;
then we used Jackson System Development (Jackson 1983) for a few years; later Modem Struc
tured Analysis (Yourdon 1989) was used based on different course books; we have taught OOA
and OOD (Coad and Yourdon 1991a, 1991b); and for the last three years, we have used different
versions of our own method, OOA&D.

These methods are taught in a software engineering course introducing the students to soft
ware engineering in general and analysis and design of computer systems in particular. It is a
one-term course with 20 sessions of lectures and related exercises of which the method part
would cover more than half the sessions. The course runs in parallel to a programming course
and a one-term project (half of the students' time) in which the students in groups of 6-7 would
use the analysis and design method together with programming concepts and techniques to de
velop a computer system. Within the same term students are taught a method and required to
use it for practical purposes. During the method engineering process this educational environ
ment gave constant feed-back from the student projects.

In a different environment we have taught the same systems development methods to prac
titioners. Some of these activities have been general courses with participants from different
companies and others have been in-house courses tailored to the needs of specific projects and

Method engineering 235

companies. In particular, starting in 1991, we have taught OOA and ODD based on Coad and
Yourdon's method (1991a, 1991b). Typically the analysis part and the design part were taught
in two separate 3-day courses with a series of lectures in combination with a mini-project in
which the participants used the method on a small, but realistic case.

Experiences
We have different experiences teaching the various methods. Jackson System Development
(Jackson 1983) was fairly easy to explain because of its emphasis on clear concepts, the elabo
rate examples, and the combination of well-defined activities and fundamental principles (e.g.
model before function). The implementation part of the method was too elaborate with many
technical details, the notion of entity was too simple, and some of the graphical representations
of concepts were difficult for the students and practitioners to use.

Modem Structured Analysis (Yourdon 1989) is based on easy-to-understand concepts and in
tuitively appealing representations. The concepts and representations are, together with a few
heuristics, the key elements of the method. There are no, or very few, fundamental principles.
We found it easy to organize good lectures based on examples, but it was difficult for students
and practitioners to combine the various models into coherent practical cases.

OOA and ODD (Coad and Yourdon 1991) attempt to overcome this difficulty by introducing
object-orientation. The concepts are easy to understand, but the representations are less intui
tive. Moreover, it was difficult for the students and practitioners to see how this method could
cover all traditional aspects of systems analysis. The approach is heavily oriented towards data
models, it is not obvious how services (or methods) are used during analysis, and many practi
tioners were missing the traditional function-oriented approach to requirements specification.

Approach
On the basis ofthese experiences we decided to develop a new method for object-oriented anal
ysis and design in which we would combine the strengths and if possible avoid the weaknesses
of these methods.

Our approach to this method engineering effort consisted of a number of elements. First, the
process was designed to develop a series of versions of the method, to document each version
as a series of transparencies together with a still more elaborate text, to use each version in dif
ferent pedagogical environments, and to systematically collect feed-back from each of these
teaching experiences. This process helped us develop an answer to one of the fundamental
method engineering questions (What are the basic principles for structuring and presenting the
method?)

Second, to answer the other fundamental method engineering question (What are the key el
ements of the method?) our approach included detailed studies of published JIlethods on object
oriented analysis and design. Selected methods were studied in detail, their elements were crit
ically analysed, similarities and differences between methods were identified, and based on this
analysis, we chose principles, concepts and representations that we found potentially useful in
our method.

Third, we wanted to make sure, that the resulting method emerged as a coherent whole, not
as a mere collection of selected elements from other methods. To that end we designed our own
conceptual framework explicating a specific perspective (or theory, cf. Section 2.2) on the proc
esses and key products involved in object-oriented analysis and design: a model of a computer

236 Method Engineering

system, a model of the context of a computer system, the fundamental concepts of objects and
classes, the key activities involved in analysis and design, and, finally, an outline of the resulting
documentation.

Finally, we stressed the development of realistic examples (or case records, cf. Section 2.2)
of both the processes of analysis and design (i.e. chronological accounts and experiences) and
of the resulting products (i.e. models, specifications, and documentation). These examples were
typically developed through small experiments in which some authors were active while others
observed and took notes.

The primary test-bed for the method engineering process was the different educational activ
ities with students and practitioners, involving lectures, small exercises and large-scale student
projects. Each time a version was tested, new insights were generated, and these insights were
then accumulated as the key input to the development of the next version of the method.

Documenting each version of the method on transparencies allowed for relatively frequent
changes and modifications. The complementary text describing elements of the method in great
er detail were modified more seldom. In the end, the method was documented as two complete
text books.

The method is presently being used as the standard text on object-oriented analysis and de
sign in a number of Scandinavian universities and colleges. At the same time, the first large
scale industrial experiments have taken place.

2.2 A General Model

Stressing in method engineering, as we do, the context of learning the method at the expense of
the context of working with the method, we run the risk of ending up with a wrongly balanced
picture of the relation between methods and practices. To frame our discussion with a balanced
view we use a general model by Anderton and Checkland (see Checkland 1981, p. 7-8). They
argue convincingly that any development of a subject (in our case an object-oriented method
including case records and underlying theories) has to be circular and has to contain the ele
ments depicted in Figure l.

In developing our method, the related area of reality (containing concerns, issues, problems,
and aspirations) is object-oriented analysis and design practices. Together with other sources
(e.g. experience with other types of analysis and design methods, general theories about design)
these practices give rise to ideas about object-oriented analysis and design from which may be
formulated substantive theories (about object-oriented models and systems) and methodologi
cal theories (about development of object-oriented models and systems). Such theories present
problems (e.g. on how to understand the behaviour of objects) which may be analysed using
models and related techniques.

The theories yield methodologies (in the context of this paper: systems development meth
ods) which use the developed models and techniques. The methodologies are then used in action
in the related area of reality. These applications of the methodology are documented in case
records that support criticism of the theories.

This general model of development of a subject, or in this context, method engineering, em
phasises a number of important points:

An area of REALITY, containing
concerns
issues
problems
aspirations

A DEVELOPING SUBJECT

Method engineering

gives rise to

which support
criticism of

which
which ..
which may be
analysed using

::t~
manipulated using 'i,; ••

which maybe
used in

237

Figure 1 Anderton and Checkland's model of a developing subject (Checkland 1981, p. 8).

1. The ultimate source of inspiration and the ultimate test-bed for a systems development
method is the related area of reality, i.e. the practices related to the method (including
individual learning, organisational adaptation, and practical use in projects).

2. Systems development methods are based on (implicit or explicit) theories about the
products and processes involved in working within the related area of reality (in our case
object-oriented systems development).

3. Case records (documented practices of working with the method) play an important role
in evaluating the underlying theories and the related models and techniques.

These three characteristics of the iterative process are all expressions of fundamental relations
between methods and practices. In the development of our method they all played important
roles, cf. Section 2.1. The last two points correspond .quite directly to the approach taken in de
veloping our method. In the following, we will elaborate on the first point by concentrating on
the importance of learning a method (which is also an integral part of the concerns in the related
area of reality) as opposed to mainly focusing on working with the method.

238 Method Engineering

3 DESIGN ISSUES

Three major issues, all related to the learning paradigm, have played a significant role in the de
sign of the method. This section will discuss these and thus explicate the difference and the re
lationship between taking a learning and a working paradigm.

3.1 Learning and Working

Soft Systems Methodology (SSM) is a method" employing systems concepts and ideas to
change organisations. It is a very general method that has nothing in particular to do with the
development of computer-based information systems. SSM was engineered or rather it evolved
from the action research by Peter Checkland and his colleagues at the Systems Department at
Lancaster University from 1969 to the present. The evolution can be described as in Figure 2.

This cyclic process based on working with the method in projects where students and re
searchers engage in real problems in organisations has been very successful. SSM has by now
been used in hundreds of such projects, but it has also taken 25 years to bring SSM to its present
form. Engineeringt a method in this way makes the eliciting of experience from the practice of
working with the method the core activity. The engineering approach is thus characterised by:

hence

Elicit experience from the practice

hence
hence

Work with method

Figure 2 The evolution of a method through action research (Checkland 1981, p. 254)

o Experience is elicited from working with the method.

o There is a slow turn-around in the cyclic process as it is the real-world setting that forms
the problems and therefore also the time-span.

o The usefulness of the method is judged on its strength as a working device in processes
of development and change.

o It is difficult to evaluate 'working with a method' in real-world settings.

'Checkland actually makes a point of calling SSM a methodology (Checkland 1981, p. 162); but to avoid unnec
essary confusion in this paper we call it a 'method' though he undoubtedly is right in his phrasing of the construct
as something which is in between a philosophy and a technique.
lEngineering here to be understood in its broadest sense.

Method engineering 239

This model of method engineering is expanded in Figure 3 to embrace the method learning cy
cle. Figure 3 highlights the cyclic process where the learning of a method forms the practice
from which experience is elicited such that the method can be re-created to become a better de
vice for learning the method.

hence

Figure 3 The learning cycle and its relationship with the working cycle

This expanded engineering approach is characterised by:

o Experience is elicited from learning the method.

o There is a fast tum-around in the cyclic process as it is the class-room setting that forms
the problems and the time-span.

o The usefulness of the method is judged on its strengths as a learning device in processes
of teaching and acquiring knowledge on the relationship between the method and prac
tice.

o It is easier to evaluate 'learning a method' in a class-room setting.

To elaborate on this distinction between learning and working we take a 'method' to be an ab
stract account of possible ways in which activities in systems development may be performed.
Viewed from the perspective of learning, a method is a framework for learning a class of sys
tems development practices. Viewed from the perspective of working, a method is a set of
guidelines and underlying theories for working within a class of systems development practices.
Use of a method will in this sense encompass both the learning perspective and the working per
spective. To acquire eloquence in a method one needs to be involved in both. Working with a
method enables the learning of the method; and learning a method enables the work with the
method. In both cases, as part of the practical use of a method, it is adapted to the specifics of
the use situation and supplemented with other approaches.

In our engineering of OOA&D we have chosen a basic structure and presentation primarily
suited for learning. This is in part due to the fact we have to define the structure in which the
method is presented while working with the method may well follow various structures depend
ing on the specifics of the situation. A book has a fixed structure, a series of lectures and exer-

240 Metlwd Engineering

cises has a fixed structure and even a single lecture has a fixed structure. A pertinent question
for us as method engineers was therefore: In which sequence should the story of object-orien
tation be told? We chose a sequence which we followed in both the transparencies documenting
the courses and in the text-book. For example, from our learning perspective one has to leam
about objects and classes and how to take decisions on which classes to include in a model and
which to exclude before anything else. Then one can learn about object and class structures and
how to model such structures. Then one can learn about object dynamics and how to model that
in classes. We could, of course, have chosen another sequence based on other pedagogical ideas.

In taking these fundamental decisions on sequence the method engineer has to apply peda
gogical arguments rather than arguments of the type "this is how it works in practice". A pres
entation of a method is like a story with good explanations of the complexities of its subject (like
object-orientation in analysis and design) and with explanations that are understandable by nov
ices with respect to the subject (e.g. students and practitioners not mastering object-orientation).
Different pedagogies may be chosen, but it is still a pedagogical decision.

In the presentation of OOA&D we have made a particular point of giving such a sequence
that is good for learning our method; but we have also explained in more general terms and us
ing examples how that sequence differs from actually working with OOA&D in practice.

A method engineer should not forget the working perspective and neglect the experience
elicited from the practice of working with the method. Any presentation and good explanation
of a method will also have to encompass guidance on how to relate learning and working. The
crux of the matter is that the basic structure of a method should primarily be suitable for learning
and secondarily for working.

3.2 Principles, Patterns and Guidelines

A method contains descriptions of processes and products involved in the related class of sys
tems development practices. These descriptions can be given in reasonably abstract forms.
Guidelines are rather concrete expressions of ways of doing things. They typically include ways
of representing concepts combined with techniques or procedures for how to apply these repre
sentations to develop models. Principles and patterns are more abstract descriptions. Principles
are understood as abstract accounts of approaches to specific processes. Patterns are abstract de
scriptions of partial solutions to modelling the products.

In the engineering of OOA&D and most prominently in the presentation of OOA&D, guide
lines are, of course, used to illustrate and explain. But principles and patterns are at the very cen
tre. Each of the core chapters in the text-books and each of the core lectures in the courses ex
plains an activity in the method. Figure 4 shows part of the front-page of Chapter 5 in the text
book on analysis. This chapter explains the activity 'Dynamics' and it puts strong emphasis on
the purpose of the activity, the concepts to be explained in the chapter as well as being used dur
ing performing the activity, the principles giving abstract accounts of processes, and the product
of the activity.

Similarly, patterns are frequently used to explain solutions to modelling problems or product
development. The activities on architectural design are mainly explained in terms of different
patterns (e.g. layered architecture and client-server architecture). Another chapter gives a pat
tern (template) for the analysis and design documentation and these are complemented with spe
cific examples of full analysis and design documents. Basically, there are two ways of using pat
terns in a description of a method: as exemplars and masterpieces to be plagiarised, and as gen-

Method engineering 241

Dynalllics

Purpose • 'Ib describe the dynamics of the object system i terms of
behaviour of objects.

Concepts • Event lifecycle: A concrete sequence of events which an
object during a particular time-span is involved in.

• Behavioural pattern: An abstract pattern of events that
stipulates the possible and desirable event lifecycles for
all objects in a class.

• Attribute: The name of a data property for a class or an
event.

Principles • Describe the behaviour of objects by a behavioural pat-
tern for their class.

• Consider particularly events which are common for se-
veral objects.

• Deduce the attributes for a class from its behaioural
pattern.

Results • Behavioural pattern and attributes for each class.

Figure 4 Sample of a front-page from Chapter 5 in (Mathiassen et al. 1993)

erally applicable solutions that have been shown to solve partial problems. Principles and pat
terns supplement each other nicely as the principles provide abstract accounts to guide and
understand processes and the patterns provide abstract accounts of (partial) products without
any of the two over-emphasising particular ways of performance.

Principles and patterns are important means for learning a systems development method.
Guidelines are useful, of course, as they provide possible concrete ways to apply principles and
patterns. What matters, though, is often what is done, not precisely how it is done. Explanation
in terms of principles and patterns focuses on the important and the essential rather than on the
many and sometimes obscure details. Moreover, such explanations encourage the method engi
neer to explicate the ideas, theories, and problems underlying the method, cf. Figure 1. This in
sight will help practitioners and students trying to learn the method to understand and appreci
ate, not only what should be done, but also why it should be done. For practitioners working
with the method this level of appreciation is useful to understand how the method can be com
bined with other methods and tailored to different situations, maintaining the essentials and re
shaping the specifics.

242 Method Engineering

3.3 Concepts and Representations

A systems development method supports the modelling of computer-based systems through
concepts and means of representation. From a working perspective it is important to provide a
full notation and all that comes with a notation, e.g. symbols, semantics, rules for applying the
symbols, ways of manipulating texts or diagrams written with the notation. This embodies both
concepts and means of representation, but with a leaning towards the means of representation.

From a learning perspective concepts are more important elements of a method than the re
lated means of representation. Means of representation are not neglected, but they playa differ
ent role in learning the modelling techniques compared to the concepts. In particular, specific
means of representation are needed to explain and illustrate a method. This is done for various
reasons: exarnples of products are given in a representation, ways of modelling and modifying
models are given in a representation, etc. In presenting a method it is useful to adhere to a few,
preferably coherent representations.

In the engineering of OOA&D we put more emphasis on which concepts we chose to be part
of the method than on the representation of the concepts in models. Our means of representation
were taken from (Coad and Yourdon 1991a, Jackson 1983, Hare11987, Jacobson et al. 1992).
What we didn't find there we invented our own representations of. Having decided which con
cepts it should be possible to use in creating a model it was fairly easy to go through the avail
able notations used by others and find suitable representations.

After having written the two text-books we were asked by a company within telecommuni
cations and associated with major foreign companies all using Rumbaugh et al. 's method (1991)
to give a course on object-oriented analysis. They wanted to stick to Rumbaugh et al. 's means
of representation but wanted our method in the learning of object-oriented practices. Because
the key elements of OOA&D are independent of the chosen means of representation it was fairly
easy to change the means of representation in a whole 3-day course to those used by Rumbaugh
et al. It took 7 hours to change the transparencies and none of the concepts in OOA&D had to
be changed in the process.

All in all, concepts are more important elements of a method than the related means of rep
resentation.

4 SUMMARY

This paper has reported experiences from a method engineering effort that was governed by a
paradigm for learning methods rather than a paradigm for working with methods. We have dis
cussed this paradigm by exploring three issues involved in method engineering: (1) the relation
between learning the method and working with the method; (2) the role of principles, patterns,
and guidelines in explaining the method; and, finally, (3) the relation between concepts for re
flection and modelling and concrete representations used to create texts and diagrams. The main
points to consider for other method engineers are:

• When experience is elicited from learning the method there is a fast tum-around in the
cyclic process of development and it becomes easier to evaluate new versions of the
method.

Metlwd engineering 243

• Principles and patterns are important means for learning a systems development method.
Guidelines are useful, of course, as they provide possible concrete ways to apply princi
ples and patterns. But what matters is often what is done and why it is done, not precisely
how it is done.

• From a learning perspective concepts are more important elements of a method than the
related means of representation. In addition, when the key elements of a method are
independent of the chosen means of representation it was fairly easy to change the means
of representation when adapting the method to new situations.

In summary, we suggest that the primary customers of method engineering are those studying
methods eager to learn a class of new systems development practices. Those actually working
with the method should only playa secondary role in structuring and presenting a new method
- even though they, of course, are the ultimate judges of the method's practical strengths and
weaknesses.

5 REFERENCES

Andersen, R., J. A. Bubenko Jr. and A. Sl'Slvberg (1991). Advanced Information Systems Engi
neering. Proceedings from CAiSE '91. Springer-Verlag, Berlin.

Booch, G: (1991). Object-Oriented Design with Applications. Benjamin/Cummings, Redwood
City, California.

Checkland, P. B. (1981). Systems Thinking, Systems Practice. Wiley, Chichester.
Coad, P. and E. Yourdon (1991a). Object Oriented Analysis. Prentice-Hall, New York. 2nd edi

tion.
Coad, P. and E. Yourdon (1991b). Object Oriented Design. Prentice-Hall, New York.
Fichman, R. G. and C. F. Kemerer (1993). Adoption of Software Engineering Process Innova

tions: The Case of Object Orientation. Sloan Management Review, 34, 2, 7-22.
Harel, D. (1987). Statecharts: a visual formalism for complex systems. Science of Computer

Programming, 8, 231-274.
Jackson, M. (1983). System Development. Prentice-Hall, Englewood Cliffs, New Jersey.
Jacobson, I., M. Christerson, P. Jonsson and G. Overgaard (1992). Object-Oriented Software

Engineering. Addison-Wesley, Wokingham.
Kensing, F. and A. Munk-Madsen (1993). Participatory Design: Structure in the Toolbox.

Comm. ACM, 36, 6, 78-85.
Mathiassen, L. (1981). Systems Development and Systems Development Method. In Danish.

Dr.scient. Thesis, Oslo University.
Mathiassen, L., A. Munk-Madsen, P. A. Nielsen and J. Stage (1991). Soft Systems in Software

Design, in Systems Thinking in Europe (eds. M. C. Jackson et al.), 311-317, Plenum Press,
New York.

Mathiassen, L., A. Munk-Madsen, P. A. Nielsen and J. Stage (1993). Object-Oriented Analysis.
In Danish. Marko, Aalborg.

Mathiassen, L., A. Munk-Madsen, P. A. Nielsen and J. Stage (1995). Object-Oriented Design.
In Danish. Marko, Aalborg.

244 Method Engineering

Nielsen, P. A. (1990a). Approaches for Appreciating information systems methodologies: A soft
systems survey. Scandinavian Journal of Information Systems, 2.

Nielsen, P. A. (1990b).Using and Learning IS Development Methodologies. Ph.D. Thesis, Lan
caster University.

Olle, T. w., H. G. Sol and A. A. Verrijn-Stuart, editors (1982). Information Systems Design
Methodologies: A Comparative Review. North-Holland, Amsterdam.

Olle, T. w., H. G. Sol and C. J. Tully, editors (1983). Information Systems Design Methodolo
gies: A A Feature Analysis. North-Holland, Amsterdam.

Olle, T. w., H. G. Sol and A. A. Verrijn-Stuart, editors (1986). Information Systems Design
Methodologies: Improving the Practice. North-Holland, Amsterdam.

Rumbaugh, J., M. Blaha, W. Premerlani, S. Eddy and W. Lorensen (1991). Object-Oriented
Modelling and Design. Prentice-Hall, Englewood Cliffs, New Jersey.

Stage, J. (1989). Between Tradition and Transcendence: Analysis and design in systems devel
opment. In Danish. Dr.scient. Thesis, Oslo University.

Steinholtz, A. S!1llvberg and L. Bergman (1990). Advanced Information Systems Engineering.
Proceedings from CAiSE '90. Springer-Verlag, Berlin.

Tolvanen, J.-P. and K. Lyytinen (1993). Flexible Method Adaptation in CASE: The metamode
ling approach. Scandinavian Journal of Information Systems,S, 51-78.

Verrijn-Stuart, A. A. and T. W. Olle, editors (1994). Methods and Associated Tools for the Infor
mation Systems Life Cycle. North-Holland, Amsterdam.

Yourdon, E. (1989). Modern Structured Analysis. Prentice-Hall, New York.

6 BIOGRAPHY

Lars Mathiassen is currently professor in Information Systems at the Department of Computer
Science, Institute for Electronic Systems, at Aalborg University. For the last twenty years he has
done research in the intersection between software engineering and iInformation systems. His
reaearch interests include obejt-oriented software engineering, risk-based project management,
IT management and strategy, and the philosophy of computing. Lars Mathiassen has published
several scientific papers on these subjects and he has co-authored a number of books on soft
ware engineering and information systems, including two books in Danish on object-oriented
analysis and design.

Andreas Munk-Madsen is partner in Metodica, a Copenhagen-based company specialised
in software methods. He has a broad experience in research, education, and consultancy. He has
a PhD in computer science. He is co-author of several books on system development methods
and is currently completing a book on strategic project management. His current interests in
clude requirement management, project management, methods implementation, and object-ori
ented analysis and design.

Peter Axel Nielsen is currently associate professor in Information Systems at the Depart
ment of Computer Science, Institute for Electronic Systems, at Aalborg University. Over the
past years he has been engaged in understanding the use of information systems development
methodologies. His research interests include analysis and design techniques, object-orienta
tion, domain modelling, the modelling process with a particular focus on recurrent and reusable

Method engineering 245

patterns as well as IT management. He is currently the editor of Scandinavian Journal of Infor
mation Systems. Peter Axel Nielsen is co-author of two books in Danish on object-oriented
analysis and design.

Jan Stage is currently associate professor in Information Systems at the Department of Com
puter Science, Institute for Electronic Systems, at Aalborg University. His research interests in
clude theoretical and methodological aspects of information systems development, especially
development of new object-oriented methods and techniques for analysis and design. He is
teaching graduate and undergraduate students in computer science and information systems and
giving industry courses on analysis, design, and programming for software professionals. Jan
Stage is co-author of two books in Danish on object-oriented analysis and design.

16

Simulation-Based Method Engineering
in Federated Organizations

P. Peters, M. Mandelbaum, M. larke
Informatik V, RWTH Aachen,
Ahomstr. 55, 52056 Aachen, Germany
email: {peters.mandel.jarke}@informatik.rwth-aachen.de
Phone/Fax: +49241 8021512/ +49 241 8888321

Abstract
The decentralization of organizations influences method engineering in two ways: Firstly,
the distributed IS development process has to be supported by flexible, modular methods.
Secondly, the interaction among methods and their users in the organizational network must
be facilitated in order to ensure and improve process quality and efficiency. Our research starts
from the observation that recent research in method engineering focusses on flexible, process
oriented integration of methods than on the organizational coupling of information flows
between established methods that ensure high quality information exchange and continuous
process improvement along feedback cycles. In order to show how organizational feedback
cycles influence the efficiency and quality, we identified three kinds of information flows
which can be categorized as task information, corporate memory and strategy information.
Taking advantage of this categorization, we present a formal approach to method engineering
in-the-Iarge. This approach combines conceptual modeling of information flow models
between federated methods and quantitative analysis of their short-term and long-term impacts
on organizational performance by simulation. Technically, this is achieved by a two-fold
application of meta modeling: firstly, to make short-term and long-term simulation techniques
interoperate; and secondly, to link conceptual method models to the simulation models. These
two links have been implemented in the MultiSim environment on top of the ConceptBase
meta data manager. A case study that takes place in a setting of federated manufacturing
methods shows how a change of methods influences the behavior of the overall company and
how information flows along and across processes must be engineered to achieve a positive
net outcome.

Keywords
Information Quality, Conceptual Modeling, Simulation, System Analysis

This work was supported by the German Ministry of Research under contract 02PV71025, the DFG Graduate College 'Computer
Science and Technology' at RWTH Aachen. and by the European Community under Infonnation Systems Interoperability Project No
ECAUSOO3 and Basic Research Working Group No.8319 (ModeIAge)

Simulation-based method engineering 247

1 COOPERATION AMONG FEDERATED METHODS

No matter where you look in infonnation systems (IS) application areas (e.g. Computer
Integrated Manufacturing, financial markets, or scientific community) the evolution of systems
is taking the step from closely integrated, monolithic systems to modular, distributed systems.
One reason for this development is a change in focus: although business efficiency is still a
major driver for IS development, flexibility and changeability have been named as important
attributes of both business processes and IS [Heinzl and Srikanth, 1995; Scott-Morton, 1994].
The second reason is a change of IS usage: The infonnation system is no longer seen as
an extension of a calculator that stores and manipulates data but as an extension of the
telephone, by which autonomous agents communicate along and across business processes
[Jarke and Ellis, 1993].

IS development has to deal with the problems that result from this change [Brodie and Ceri,
1992; Klein and Lyytinen, 1992; Lyytinen, 1987] in two ways:

1. It has to provide methods for capturing and analysis of requirements in federated environ
ments and methods for designing appropriate IS solutions. Methods, and the supporting
tools, must focus specifically on the interaction of infonnation system and organization.

2. The IS development process itself should be organized and supported according to the
changing demands. While flexibility and changeability have been tackled by recent
research on process-centered engineering environments [Marttiin, 1994; Pohl, 1994] or
situational method modeling [Harmsen et ai., 1994], the distribution of IS design is
reduced to formal interfaces along processes that define the exchange of documents
between methods.

But system quality is not only determined at the process level where the execution of
processes is supported by more or less adapted methods and might be connected by fonnal
documents. At the organizational level, the implementation of infonnation feedback loops
that provide accumulated experiences across team borders ensure organizational learning
and thus continuous process improvement. Furthennore, at the communication level, the
way of presenting infonnation influences the degree of uncertainty and equivocality among
cooperating agents involved in the process [Daft and Lengel, 1986].

Our research starts from the assumption that information flows provide the glue that
combines methods on all three levels in order to perform business processes [Peters, 1996]
as well as organizational feedback loops. This paper presents an approach for the conceptual
description and impact analysis of three types of infonnation flows. It can be used by the
method engineer to capture and analyze infonnation flows in federated organizations as a
basis to analyze and engineer the cooperation among federated methods. It therefore does
not focus on analyzing the method structure itself but on suitable ways to combine methods
with respect to the three levels.

In the next section we describe the conceptual modeling approach that focuses on the
communication among methods by infonnation flows. A categorization of infonnation flows
is the foundation for a discussion of the impact of infonnation flows on organizational
performance. Starting from this discussion, Section 3 presents a multi-simulation approach to
evaluate infonnation flow design alternatives in their short-tenn and long-tenn effects. A case

248 Method Engineering

(a) WibQuS model (b) Information flow model

includes includes <_. knOWS~ge~J=:'

._1 //;....,
/L ~,------L-----,

(·.t Task ~

owns

includes .' produces '--------'

Figure 1 A language model for method interaction

study in a manufacturing company serves as an initial empirical validation of the approach
and shows how local changes of methods influence the performance behavior of the overall
method network. The results of the case study are finally related to the IS development
process with respect to the trade-off between flexibility and the quality of process results.

2 THE MODELING APPROACH: CAPTURING INFORMATION FLOWS

To better understand the main idea of this paper, it may be instructive to compare our
meta-modeling approach to its predecessor, a meta model developed in the project WibQuS
([Jarke et aI., 1993], cf. Figure la). This model was defined originally to describe processes
within and among industrial quality management methods and their interactions as a starting
point for distributed development of federated IS.

In the tradition of the CRIS methodology [Olle et al., 1991] the business process description
consists of tasks and objects consumed and produced by those tasks. Additionally, it refers
to the agent as the responsible performer of a specific task to whom a supporting IS should
be adapted. Finally, the concept of method was introduced, because the method provides the
way-of-working for a specific task and supports its execution. Methods and tasks form an
AND/OR decomposition structure in that a task can be supported by one or several methods
while a method consists of a partial order of tasks.

The resulting models of quality management methods were the starting point for the
detection and definition of interfaces among those methods. After an integration process,
the integrated method models were stored in a repository and served as the structural
and conceptual framework for a federated IS design controlled by a information trading
mechanism. On top of this repository/trader combination several tools were developed which
make use of the model in information management and access or communication processes
[Peters et al., 1995].

Simulation-based method engineering 249

A case study of the distributed modeling process in the WibQuS project [Pe
ters and Jeusfeld, 1994] identifies two major shortcomings of the modeling language:

1. While the contents of interfaces between methods were identified quite well, the com
munication channels that connect methods could not be specified explicitly within the
language. We changed the model by adding three attributes to every object that describe
the content of an information, its representation within the organization and the presen
tation types supported by the representation. This change allowed to model information
flows not only by data but also by explicitly describing the communication channel used.
Differing media and information understanding between communicating groups can now
be detected quite early in the IS development process.

2. Different qualities of information flows could not be distinguished within the model. The
modeling teams had the feeling that there were categories of information that had to be
handled differently with respect to representation, presentation and communication chan
nel. For instance, very formal and commonly used definitions like product structures were
specified well by ER-diagrams and, after being transferred into database tables, exchanged
directly between the involved databases. Other, quite specific knowledge on system fail
ures or product malfunctions needed richer representation and direct involvement of the
agents performing the tasks.

The second problem led to the reorganization of the language model based on results from
the literature on information management and organizational IS in industrial environments
[Peters, 1996]. The revisited meta-model distinguishes three major groups of information
flows within organizations, which are to be implemented and supported differently:

1. Task Information:
This kind of information is the one usually handled by "classical" method engineering. It
drives and controls the operational business processes in organizations [Hammer, 1992;
Olle et ai., 1991; Harmsen et al., 1994] . Like e.g., the structure of a product in manu
facturing industries, this information is commonly understood within an organization. Its
transfer between departments or tasks is based on standardized formats. The contents of
this kind of information is currently subject of international standardization approaches
(STEP [Shaw, 1991], ISO 9000 [ISO, 1987], or CMM [Paulk et al., 1993]). Its production
described by reference models for business processes [Osterle, 1995; Scheer, 1993].

2. Corporate Memory:
Important organizational knowledge about products and processes results from accumu
lated execution and analysis of business processes [Senge, 1990; Vennix et al., 1994;
Harmsen et al., 1994]. Other than with task information, the transfer of or communica
tion about corporate memory cannot be formalized easily. It can consist of very informal
documents like experience collections or stories and of formal ones like design rules or
process models. It needs rich communication support in order to reduce equivocality,
uncertainty and ambiguity between the communicating partners [Daft and Lengel, 1986].

3. Strategies:
The goal of a strategy2 is the definition of a common context according to which tasks are
The words philosophy or paradigm can be used equivalently. In a modeling context the idea of meta-modeling captures best what

can be fonnalized of a strategy.

250 Method Engineering

organized and information is interpreted [Hammer, 1992]. It consists of a set of visions,
policies and goals under which an organization or department operates. Examples are
TQM or DO-Design and Analysis

The identification of these categories led to a change of the modeling language as depicted
in Figure 1b: The categories are explicitly embedded into the language and related to the
producers or users of the information represented. This distinction supports explicit analysis
and management of information flows according to the attributes and the ways-of-usage of
the information categories. In this paper we focus on the analysis of information flows within
a distributed environment.3.

In the following, we present an integrated approach for analyzing the impact of corporate
memory and task information under the given strategy of TQM [Feigenbaum, 1991] which
advocates feedback loops as a major element of process quality and improvement. The effects
analyzed are the effectiveness and quality of method performance related to the information
flows existing among the methods.

3 ANALYSIS APPROACH: SIMULATION OF INFORMATION IMPACT

3.1 The Problem of Analyzing Information Flows

If you want to analyze the impact of information exchange on performance in federated
organizations, the differing contents and ways of processing of task information and corporate
memory have to be analyzed using different criteria. The impact of task information is
determined by short term effects like transaction costs, timeliness, and completeness. The
exchange of corporate memory influences performance by long term effects on process quality,
effectiveness, or personnel qualification.

Task information criteria are defined in recent approaches by discrete, quantitative mea
sures, because they describe short-term, local effects which relate directly to the business
process (and therefore monetary or time-related business criteria). The analysis of such cri
teria is usually performed by Petri-Net or Queuing System simulation [Deiters et aI., 1995;
Oberweis et at., 1994].

The analysis of corporate memory is much harder, because its effects are related to long
term feedback loops within an organization: information has to be accumulated, condensed
and then transferred to the organizational units where its effects are supposed to happen. The
impact of those processes is not related to the business workflows and cannot be measured
by hard business variables in time and money, but by the way they influence the variables
that produce those time-and-money effects, like task performance, error rate, or document
production rate.

Typically, these effects cannot be described by the exchange of discrete units of infor
mation. They are represented as a constant flow of influence, whose rate is determined by
the availability of corporate memory and its common understanding by the communicating
partners. A classical method for the analysis of such systems is System Dynamics (SO) [For
rester, 1961]. The philosophy of SO is that people can describe structure and local behavior

Implementation strategies and examples can be found in [Peters, 19%]

Simulation-based metlwd engineering 251

Figure 2 Software development subsystems (adopted from [Abdel-Hamid and Madnick, 1991))

of a system very well, but fail to predict global behavior, especially if feedback loops of
different length and complexity are part of the system. This is exactly the situation under
which we analyze the impact of information flows. SD describes a system by a flow of
resources between levels. The quantity of the flow is determined by flow rates, which in
turn are defined by information about levels from different areas of the system aggregated by
functions in the so-called auxiliaries (cf. Figure 2, right side).

In his work on software project dynamics, Abdel-Hamid [Abdel-Harnid and Madnick,
1991] showed that SD simulation is well-suited for the analysis of multiple cause-effect
feedback loops that describe the productivity behavior of a software development team
performing a specific project. Abdel-Hamid developed and validated a set of models for
the major factors related to software development productivity and established the feedback
loops within and among them (see Figure 2 for a overview of the model structure). As an
example, consider the simulation of an effect called Brooks Law: If schedule pressure is
detected in the Controlling submodel the Planning module is defining the workforce needed
to meet the schedule. This workforce needed determines the current workforce gap and
influences the hiring rate. Addition of new workforce to newly hired workforce leads to
additional workforce needed for training. This reduces the overall workforce available, since
newly hired workforce is considered being of significantly lower availability. The result is a
lower productivity and even more schedule pressure.

Abdel-Hamid's ideas were the starting point for our own simulation model. However,
while his approach deals with one team performing one project, our goal is to analyze
cooperating methods. Therefore, we had to widen the scope with respect to contents, focus
and scale:

1. Communication and cooperation was not an issue in the single team situation described
by Abdel-Hamid. We had to develop an additional model that describes the manpower
needed for information management, document creation, or communication and the effects
that result from the existence and quality of information flows. With this model we relate
the effort spent on information exchange to the effects that information flows can have
on the overall productivity in the development process.

252 Method Engineering

Figure 3 Mapping of the conceptual to the simulation model

2. We had to adapt to a multi-team-multi-project situation to describe the cooperation aspects
that define the context of the information flow analysis. This led to a system structure,
where

a. one sb model that describes the productivity of every unit in the organizational
network and

b. coupling mechanisms among the method SD models were defined. A Queueing
System was coupled to the SD model in order to simulate the flow of discrete tasks
that define the schedule and the amount of task information. SD variables were
defined to couple the models with respect to efforts on and effects of information
flows, the propagation of errors, and rework effort needed

These requirements led to an overall model structure where one SD performance model in
the sense of Abdel-Harnid exists for every method and those models are coupled by the flow
of tasks, information and errors through the modeled system. In the next subsections, we
discuss this structure and its representation in a conceptual meta modeling environment.

3.2 The Method Simulation Model

In order to relate the conceptual structure of the information flow model in Section 2 to the
simulation model one has to define a mapping between the described concepts and a formal
coupling between their representations (Section 3.2). The mapping of the information flow
model onto the simulation model that fulfills the requirements of Section 3.1 is realized as
shown in Figure 3.

1. Every agent is represented by a Human Resource Management model. This is based
on the idea that the role of the agent in method execution can be filled by the workforce
of this department. Cross-method teams cannot be modelled using this approach.

2. The tasks performed by the methods are represented by the Planning and Control
ling/Queue models. The task in the conceptual model describes what has to be done (the
workload) and the method describes how things are to be done (the performance of work).

Simulation-based method engineering 253

System Purpose of Analysis Resource Input Output

Human - integration of new hirees - workforce - workforce needed - workforce avail.
Resouce - structure of workforce - training info - manpower avail.
Management -training effort avail.

Planning and - definition and control of - tasks - workload - schedule
Controlling schedule - workforce needed

Queue - description of task flow -tasks - new tasks - workload
- state of schedule - performed tasks

Method - allocation of manpower -tasks - workforce - performed tasks
Performance - task productivity - schedule

- effects of schedule pressure - corporate memory

Error - error and rework rate with - errors - tasks performed - errors not found
Management respect to workforce. schedule - corporate memory - rework effort

pressure. available information - schedule pressure needed

Information - manpower needed for task -Corporate - tasks performed - Information
Management information production. Memory - manpower avail .•

- manpower needed for - Task available - manpower needed
information management. Information
- effects of reuse of
information

Table 1 The role of the models in the simulation approach

3. The method is mapped on the Method Performance model. This model describes how
manpower made available by the human resource management is spent on various parts
of a task. It consists of submodels concerning task productivity, manpower allocation
and the models under point 4. and 5.

4. The Error Management is a submodel of Method Performance. It provides the means
to analyze the rate by which errors are generated. detected and reworked within a method
and the resulting effort in needed manpower. The propagation of errors is described by a
variable that couples the Error Management models for every method along the business
process.

5. The Information Management model describes the amount of work necessary to access,
provide and manage the information flows defined in the conceptual model. It also
provides the corporate memory as a resource that influences the productivity of other
tasks in the model, e.g. training effort, task productivity, error generation, etc. The
information flows identified and the effort and impact connected to them are described by
input and output variables in every Information Management model along the business
process.

The complete structure of the SD model is explained in detail in [Peters, 1996]. Table 1
shows the roles and relations of the models.

A SD/Queueing model for a method consists of about 100 variables. The model is
typically underspecified, which means that even 'driving the wrong screws' could lead to
acceptable overall results with respect to the variables of interest. Careful calibration and
validation is necessary, before the models can be used as a testbed for analyzing organizational
information flows. Fortunately, a lot of validation work for the Human Resource Management,
Method Performance. and partially the Planning and Controlling submodel has been performed

254 Method Engineering

Figure 4 Repository-based integration of conceptual and simulation models

by Abdel-Hamid. Therefore, we could concentrate on validating the specific models and
connections added by our approach. Before we describe a first model validation and
experimentation case study, we give an overview of the modeling and execution environment
which we developed to define the simulation models and to connect them to the conceptual
models.

3.3 The MultiSim Environment

Our model demands a heterogeneous simulation that allows the coupling of discrete
(Queueing Systems) and continuous (SD) simulation techniques. The implementation idea
is based on the observation that every quasi-continuous simulation technique can be mapped
on a discrete-event technique if the time increment is sufficiently small. System modeling
concepts which lead to the coupling of different simulation techniques in one executable
model have been realized and tested recently by Fishwick in his work on multi-simulation
[Fishwick, 1995]. We enlarged his approach by developing a graphical system modeling
environment which interprets the developed models at runtime [Mandelbaum, 1995]. In order
to enable high usability and high model quality, the model editor is customized automatically
not only to the graphical symbols and modeling elements but also to the modeling constraints
defined for a specific simulation technique.

The kernel of this environment is an IRDS repository for simulation techniques which is,
like the method model repository, realized in the ConceptBase meta data manager [Jarke et al.,
1995]. We developed a definition language for simulation techniques by which simulation
languages like SD, Queueing Systems, or Petri-Nets can be modelled and connected. The
simulation model is defined on the third level of this repository.

While the simulation techniques specify the representation of the simulation model, the
method models between methods specify their contents. As mentioned before, the method
models form the second level of a repository for IS based on the information flow model. By
coupling the simulation and method model repositories we are in the position to relate the
simulation model directly to the conceptual model of information flows and the simulation

Simulation-based method engineering 255

(AcqUiS~iOn)

""\\,---
Control design) • (Soltwan!lElelClronics

Figure 5 Basic business process in the company of the case study

techniques by using the multiple instantiation principle (cf. Figure 4). This allows for the
direct relation of information flow changes to simulation experiments and, vice versa, from
simulation results to information flow structure.

In the following, we describe a first validation of the simulation model in an industrial
environment. After describing the validation process we give an example on how the models
and the simulation environment MultiSim were used for analyzing how information exchange
and overall performance are influenced by method changes.

4 ANALYZING THE PERFORMANCE IMPACT OF METHOD CHANGES

The case study was performed in a medium-sized manufacturing company, which provides
system solutions for packaging machines. Since those machines consist of mechanical parts
and of control software, there are two main business processes (cf. Figure 5). One consists of
the mechanical design and the manufacturing of components which then are assembled and
tested together with the developed control software that is developed in a parallel process. In
the case study we concentrated on the manufacturing process highlighted in gray.

The company was applying for ISO 9000 certification, and therefore needed to analyze
and reorganize their business processes. We were asked to support information management
organization. During the interviews we did to define the information flows and information
structure we were able to do a first validation of the simulation models. Afterwards we used
the model as a kind of process management flight simulation, by which the process manager
could experiment with possible impacts of changing methods or information flows on the
overall system performance.

The philosophy of our method modeling approach is that structure and local behavior of
processes can be defined with high quality by the involved agents. The emanating global
dynamics have to be simulated and compared with the company's reality. We therefore
initiated a three step validation process.

In the first step we validated the model structure by asking the engineers and workers about
the relevance and correctness of the variables, their relations, and the resources. Afterwards
a questionnaire about the value of the variables was filled in by other engineers who were
not involved in the interviews. Multiple statements per were collected about

1. the self estimation of workload and overwork rates, the allocation of time to their jobs,
their personal error management

2. assimilation time of new hirees and effort for training

256 Method Engineering

!11

, I .ii
- f-'" oct his "",of' i'ocom ~ny j J!! i 0

~ - i ,~ :ill
,

I I T-/ ! /' :

V.;: ~ P
I /i 1/, I

Ii' , /
.I

~ t/':/ f
l I V I

~ r..-:: /'
p /, I~

---+- ~ :/:
....

,
Ihooghputl
projec1s

30 60 90 '20 '50 180 210 240 270 300

Figure 6 Simulation of company performance (base case)

3. task spectrum, time per task, meeting of schedules
4. information access along business processes
5. IS structure and usage

time/days

In a second step, the dynamics of the resulting submodels were validated using black-box
and plausibility tests with example processes. Finally, the whole model for one business
process (design - manufacturing - assembly) was tested using real production data of the
previous year as a base case. At that time, the information flow situation in the company was
mainly a flow of task information along the business process.

The simulation model was initialized with planned production schedules and the infor
mation from the interviews. The simulated throughput at the Queue submodel (see Table
1) of the departments was then compared to the real throughput of the company. Figure 6
shows this comparison of project throughput. The simulation result resembles the original
throughput with respect to the structure and scale of the curves.4

For a general validation of the model structures and dynamics the case study was only
a first step. Nevertheless, the models are good enough to analyze effects of information
management and method changes within this specific company: Related to the ISO 9000
certification, the company wanted to solve problems with meeting their schedules in the
design department. The introduction of a CAD method was considered as a possible solution
(cf. Figure 7a). Together with the system, a faster distribution of drawings and support for
the collection of drawings that were changed throughout the process was planned. Those
drawings were often changed during manufacturing and assembly due to design errors. The
collection of corporate memory information about changes should lead to the reduction of
design errors by reuse of previously corrected designs.

An exception are some 'holes' (e.g., design around day 76. manufacturing around day 150, or assembly around day 210). At these
points one task passed another one in the company which could not be modeled in the queueing system. Therefore, the simulation is late
at first and then catches up after the next task.

1

0

1

Simulation-based method engineering

a)Planned
changes

b) ExperIment throughput

. 1M
-- _ I<ot;on ... !-os I ... 1>-)

A<P'
Ii

1/
j

-/
V

./ ---

New CAD system

~

!P

.!

...
1.8

1.6

1.4

1.'

0.8

0.6

0.4

D .•

c) Effects along the rework feedback loop

- _.
- r- .n -~ ... 1 -: ~\ '-, ,

I \ / ~
.J '-./

-
IT M ItF ~\ 1//'

Man actulrr~ "-, ~-

1"--./
Desl n

1...-- ' 11"\.- ---
r-- -

257

~--

J , ,

,

\
\

\> ----

--~

, -- ---
30

lhrooihJuU
projecls

60 90 120 150 180 210 240 270 300
time/days

rework!
man-day.

30 60 90 120 150 180 210 240 270 300
time/days

Figure 7 Prognosis on IS changes

We interviewed the engineers on the anticipated local effects that these changes might
produce with respect to information management and error production. With conservative
interviewees answers we performed a set of experiments. 1\vo sample results are depicted
in Figure 7b and c.

Figure 7b shows the simulated changes in throughput. The results indicate that the
implemented changes show no positive effects on design throughput in the first half year.
Afterwards the throughput is significantly better than in the base case and finally, the deadlines
defined for the tasks are met. A first analysis shows that these results stem from an overlay
of two effects: Better support of task information flow rapidly leads to better performance.
The additional effort needed to manage the collected design drawings might consume those
positive effects at first. But after some time of collecting corporate memory the reuse of
drawings and design error knowledge leads to an acceleration of the design process.

A closer look at the simulation results indicates that this description of the dynamics is
still too simple. There are various other global effects that influence the design throughput.
Additionally, there are positive effects resulting from outside the design department. Our
simulation approach allows for a deeper and more global analysis of the changes, as the
example in Figure 7c shows.

The figure depicts the manpower needed for rework in all three departments. The first
effect of the change is one across departments in the direction of the production process.
The reduction of errors in the design phase leads a reduction of manpower spent on rework

258 Method Engineering

in the late steps of the production process. Even if the manpower needed for managing the
corporate memory on errors would add to the overall manpower needed in design, the strong
positive effect on other steps of the process justifies the change.

The second observation is a feedback effect that influences the productivity of the design
department. If you take a closer look at the graph for rework in design, you see that a lot of
tasks are sent back to design. Otherwise the base case line would go down to the initial value
after day 240, the end of the planned design jobs (as indicated by the forking of the base
case graph). Even if the corporate memory could not show its full effect after nine projects,
it is clear that rework in the design department is reduced significantly. Avoiding past errors
led to less rework in the assembly and therefore in the design department, too. This in turn
leads to higher productivity and less errors per task. Therefore, there is a positive effect on
the design process because of the higher quality of the overall process.

There are two major results drawn from this case study:

1. The impact of changing methods on productivity should not be analyzed with respect to
the isolated task the method supports, but should be seen in the global context of the
network of methods in order to define the long term net effect of method introduction. In
our case the introduction of a method and new information flows led to a positive effect,
but it might also be that, although the method fits perfectly into the process, important
feedback loops are no longer support, either because information is no longer available
or because it is not exchanged properly anymore. Furthermore, it always takes time to
accumulate new experiences with a method and to spread them in the organization. This
time gap often leads to non acceptance of a new method if it becomes to large.

2. The simulation method itself allows the method engineer to gain better knowledge about
the dynamics of his environment and effects of changes. The tool was considered as fun to
play with by the engineers and motivated them to test hypotheses our fill knowledge gaps.

5 CONCLUSION

In this paper, we presented a formal approach to method engineering in-the-Iarge, integrat
ing conceptual modeling and simulation technology. The approach focuses on the modeling
of information flows among methods. The identification of three information categories led
to an analysis method based on conceptual models of information flows. It relates informa
tion exchange requirements defined in the information flow models to design decisions by
simulating the impact of those decisions on organizational performance. The conceptual and
simulation models are formally linked by a common repository concept. We demonstrated the
possibilities of the simulation approach by performing some experiments in a manufacturing
company.

Currently we are trying to generalize the applicability of the models by additional case
studies. We are aiming at an experimenting environment in the style of a 'management flight
simulator' for flexible information management in federated organizations, which can be used
in IS requirements definition, IS management education and the like. The link between the
analysis tool and system design will be supported by a tool that guides the developer according
to a methodology organized with respect to the three information flow categories.

Simulation-based method engineering 259

Even now, our findings seem to put in question some established wisdoms in Method
Engineering and Business Process Reengineering: It is definitely necessary to have a flexible,
configurable IS development process because of varying product requirements or steadily
changing IS development methods. But you have to be careful not to reduce the process to
a set of configurable methods with well-defined interfaces for two reasons. First, consider a
really new method, i.e. not only a varying notation or tool with the same semantics. Such a
method should not be embedded into the process by adapting the interfaces. The information
flows and methods along the whole process have to be analyzed with respect to the impact
of the new method. The case study is an example. Second, on-going radical change of
methods does not allow to establish a corporate memory about the way-of-working and the
experiences resulting from that. Higher quality of a specific method might be reduced or
totally consumed by the lack of knowledge about how the method works in the specific
context of an organization. In short, the introduction of a new method has to be analyzed
globally and not only according to its direct interfaces in the business process.

6 ACKNOWLEDGMENT

The authors would like to thank the people at the OSTMA company for answering all our
questions and being patient even if they had other important work to do. Furthermore, we
would like to thank the referees for their valuable remarks and suggestions. We hope that
we fixed the problems named.

7 REFERENCES

[Abdel-Hamid and Madnick, 1991]
T. Abdel-Hamid and S. Madnick. Software Project Dynamics. Prentice Hall, Englewood Cliffs, NJ, 1991.

[Brodie and Ceri, 1992]
M. Brodie and S. Ceri. On Intelligent and Cooperative Information Systems: A workshop summary. Int.
Jour. on Intelligent and Cooperative Information Systems I, 2 (1992), pp. 249-290.

[Daft and Lengel, 1986]
R. Daft and R. Lengel. Organizational Information Requirements, Media Richness and Structural Design.
Management Science 32, 5 (1986), pp. 554 - 571.

[Deiters et at., 1995]
W. Deiters, V. Gruhn and R. Striemer. The FUNS Off Approach to Business Process Management.
Wirtschaftsinformatik 37, 5 (1995), pp. 459 - 466.

[Feigenbaum, 1991]
A. Feigenbaum. Total Quality Control. McGraw-Hill Inc., 1991.

[Fishwick. 1995]
P. Fishwick. Simulation Model Design and Execution. Prentice Hall, Englewood Cliffs, N.J., 1995.

[Forrester, 1961]
J. Forrester. Industrial Dynamics. MIT Press, Cambridge, Mass., 1961.

260 Method Engineering

[Hammer. 1992)
D. K. Hammer. Lean Information Management: The Integrating Power of Information. In H. J. Pels and
J. C. Wortmann (Eds.). IFfP Transactions: Integration in Production Management Systems. pp. 147-163.
Elsevier Science Publishers B.V .• 1992.

[Harmsen et aI.. 1994)
F. Harmsen. S. Brinkkemper and H. Oei. Situational Method Engineering for Information System Project
Approaches. In Methods and Associated Tools for the Information Systems Life Cycle. pp. 169 - 194.
Elsevier Science B.V .• 1994.

[Heinzl and Srikanth. 1995)
A. Heinzl and R. Srikanth. Entwicklung der betrieblichen Informationsverarbeitung. Wirtschaftsinformatik
37. 1 (1995). pp. 10 - 17.

[ISO. 1987)
ISO. IS09000. Quality Systems - Model for Quality Assurance in design/development. production.
installation. and servicing. Technical report. International Organization for Standardization. Geneva.
Switzerland. 1987.

[Jarke and Ellis. 1993)
M. Jarke and C. Ellis. Distributed Cooperation in Integrated Information Systems. Int. Jour. of Intelligent
and Cooperative Information Systems 2. 1 (1993). pp. 85 - 103.

[Jarke et al.. 1993)
M. Jarke. M. Jeusfeld and P. Szczurko. Three Aspects of Intelligent Cooperation in the Quality Life Cycle.
Int. Jour. of Intelligent and Cooperative Information Systems 2. 4 (1993). pp. 355-374.

[Jarke et aI.. 1995)
M. Jarke. R. Gallersdorfer. M. Jeusfeld. M. Staudt and S. Eherer. ConceptBase - A Deductive Object Base
for Meta Data Management. Journal of Intelligent Information Systems 4. 2 (1995).

[Klein and Lyytinen. 1992)
H. Klein and K. Lyytinen. Towards a New Understanding of Data Modeling. In C. Floyd. H. Zullighoven.
R. Budde and R. Keil-Slawik (Eds.). Software Development and Reality Construction. pp. 203 - 219.
Springer-Verlag. 1992.

[Lyytinen. 1987)
K. Lyytinen. A Taxonomic Perspective on Information Systems Development: Theoretical Constructs
and Recommendations . In R. Boland and R. Hirschheim (Eds.). Critical Issues in Information Systems
Research. pp. 3 - 42. John Wiley and Sons. 1987.

[Mandelbaum. 1995)
M. Mandelbaum. Modellierung und Durchfiirung von Informationsftussimulationen auf der Basis eines
Simulationsrepositories. Master's thesis. Lehrstuhl fUr Informatik V. RWTH Aachen. 1995.

[Marttiin. 1994)
P. Marttiin. Towards Flexible Process Support with a CASE shell. In G. Wijers. S. Brinkkemper and
T. Wassermann (Eds.). Proc. of the 6th Int. Con! on Advanced Information Systems Engineering (CAiSE'94 J.
Springer-Verlag. Heidelberg, Germany. 1994.

[Oberweis et al .• 1994)
A. Oberweis. G. Scherrer and W. Stucky. INCOME/STAR: Methodology and Tools for the Development
of Distributed Information Systems. Information Systems 19, 8 (1994), pp. 643 - 660.

[Olle etal.. 1991)
T. Olle. J. Hagelstein. I. MacDonald. C. Rolland, H. Sol. F. van Assche and A. Verrijn-Stuart. Information
Systems Methodologies. A Frameworkfor Understanding. North-Holland. Amsterdam, 1991.

[Osterle. 1995)
H. Osterle. Prozess· und Systementwicklung (Band 1: Entwuifstechniken. Springer-Verlag. Berlin,
Heidelberg •...• 1995.

Sirrutlation-based method engineering 261

[Paulk et al., 1993]
M. Paulk, B. Curtis, M. Chrissis and C. Weber. Capability Maturity Model for Software, Version 1.1.
Technical Report SEI-93-TR-24, Software Engineering Institute, Carnegie Mellon University, Pittsburgh,
PA, February 1993.

[Peters and leusfeld, 1994]
P. Peters and M. leusfeld. Structuring Infonnation Flow in Quality Management. In Int. Con/. on Data and
Knowledge Systems for Manufacturing and Engineering, pp. 258 - 263, Hong Kong, 1994.

[Peters et al., 1995]
P. Peters, P. Szczurko, M. larke and M. Jeusfeld. A Federated Infonnation System for Quality Management
Processes. In IFIP WG8.1 Working Conference on Information Systems for Decentralized Organizations,
pp. 100 - 117, Trondheim, Norway, 1995.

[Peters, 1996]
P. Peters. Planning and Analysis of Information Flow in Quality Management. PhD thesis, RWTH Aachen,
1996.

[Pohl, 1994]
K. Pohl. A Process Centered Requirements Engineering Environment. PhD thesis, RWTH Aachen, 1994.

[Scheer, 1993]
A.-W. Scheer. Wirtschaftsinformatik (Reference Models for Industrial Business Processes (in German).
Springer Verlag, Berlin, Heidelberg, ... , 1993.

[Scott-Morton, 1994]
M. Scott-Morton. The 1990s research program: Implications for Management and the Emerging
Organization. Decision Support Systems /2, 2 (1994), pp. 251-256.

[Senge, 1990]
P. Senge. The Fifth Discipline: The Art and Practice of the Learning Organization. Currency, New York,
1990.

[Shaw, 1991]
N. Shaw. STEP Part 1 - overview and fundamental principles, ISO TC184/SC41Editing Document No.
N-l1. Technical report, 1991.

[Vennix et al., 1994]
J. Vennix, D. Andersen, G. Richardson and J. Rohrbaugh. Model Building for Group decision Support:
Issues and Alternatives fir Knowledge Elicitation. In J. Morecroft and J. Stennan (Eds.), Modeling for
Learning Organizations. Productivity Press, 1994.

8 BIOGRAPHY

Peter Peters studied computer science and medical informatics at the University of Dort
mund, Germany. He is currently a doctoral student at the 'Graduate College for Computer
Science and Engineering' and a member of the Information Systems group at the Technical
University of Aachen. In his research he investigates the modeling, enactment, and analy
sis of information flow and communication in distributed organizations and has just finished
his doctoral thesis on 'Planning and Analysis of Information Flows in Quality Management'.
During this work he has been participating in the interdisciplinary project WibQuS and FoQuS
funded by the German Ministry of Research.

Matthias Iarke is professor of Information Systems and chairman of the computer science
department at the Technical University of Aachen, Germany. After obtaining a doctorate
from the University of Hamburg, Germany, in 1980, he held faculty positions at New York

262 Method Engineering

University and the University of Passau prior to joining Aachen. His research interests lie
in the development and usage of meta information systems for design applications. He has
been coordinator of two European ESPRIT projects in this field, DAIDA (knowledge-based
information system environments) and NATURE (requirements engineering environments),
and was principal investigator in collaborative projects concerning IS applications in mechan
ical engineering (WibQuS) and medicine. He is editor-in-chief of the journal 'Information
Systems'

Markus Mandelbaum has been a student of the Technical University of Aachen. During
his diploma thesis he has co-designed and implemented the MultiSim system. After his
graduation he has founded a company that provides computer solutions for manufacturing
process and data management in small and medium sized enterprises.

17

Information systems development
methodologies: a broader perspective

DEAvison
Department of Management, University of Southampton
Southampton SOI7 1 Bi, UK, tel: "" 1703 592563,fax: "" 1703 5938""
e-mnil: dea@socsci.soton.ac.uk

Abstract
This paper first provides a historical perspective on approaches to developing infonnation
systems and argues that there are major weaknesses associated with the conventional
waterfall model and the methodologies which followed. The paper suggests that a
contingency approach to information systems development has much to offer and looks at
Multiview, which is described as an exploration in infom1ation systems development.
Some strengths and weaknesses of this contingency approach an~ highlighted and a new
version of Multi view offered. This description enahles a further discussion of infom1ation
systems development and suggests that human and organisational aspect are at least as
important as the technical ones which tend to he emphasised. Information systems
development is seen as first a social process, though it will contain technical aspects. This
social process is examined in more detail illustrating the arguments, for example, with
different views of the systems analyst and the problem situation in this process. Such a
broad approach also suggests that the area of which infom1ation systems development is a
part, is multi-disciplinary where technology and computing are hy no means dominant.

Keywords
Action research, contingency. Multiview. social process, soft systems, information
systems development

1 AN HISTORICAL PERSPECTIVE

1.1 Pre-methodology era

Early computer applications wen; implemented without an explicit inf<lrmation systems
development methouol<lgy. The emphasis of computer applicati<lns development was on
programming, with systems developers technically traincli hut rarely good communicators,

264 Method Engineering

nor were they systems analysts. The needs of the users were rarely well established with the
consequence that the design was frequently inappropriate to the application. The dominant
'methodology' was rule-of-thumb and experience. This led to poor control and management
of the project. Most emphasis was placed on maintaining present systems to get them right
rather than developing new ones. Management were not getting value for money, and there
was a growing appreciation of the potential role of the systems analyst and the need for a
methodology to develop information systems.

1.2 The waterfall model

The life cycle or waterfall model (for example, Daniels & Yeates, 1971) of feasibility study,
systems investigation, analysis, design, and implementation, followed by review and
maintenance, became that methodology. It was widely used in the 1970s and is the basis for
many methodologies that followed. It is well tried and tested. The feasibility study attempts
to assess the costs and benetits of alternative proposals enabling management to make
informed choices. The use of documentation standards helps to ensure that proposals are
complete and that they arc communicated to users and computing staff. The approach also
ensures that users are trained to use the system. There arc controls and these, along with the
division of the project into phases of manageable tasks, help to avoid missed cutover dates.
Unexpectedly high costs and lower henefit, are also less likely.

However, there are serious limitations to the approach along with limitations in the way
it is used. Some potential traps arc (Avison & Fitzgerald, 1995):

• Failure to meet the needs of management (due to the concentration on single
applications, particularly at the operational level of the organisation)

• Unambitious systems design (due to the emphasis on the existing system as a basis for
the new computer system)

• Instability (due to the modelling of processes which are unstable hecause businesses and
their environments change frequently)

• Inflexibility (due to the output-driven orientation of the design processes which makes
changes in design costly)

• User dissatisfaction (due to prohlems with the computer-orientated documentation and
the inability for users to 'see' the system before it is operational)

• Problems with documentation (due to its computer rather than user orientation and the
fact that it is rarely kept up-to-date)

• Application backlog (due to the maintenance workload as attempts are made to change
the system in order to retlect user needs).

As an answer to these criticisms. there have heen a numhcr of movements. The first is to
reject methodologies hy cither playing lip-serviCl~ to their usc or fail to do even that. The
second is to improve the traditional waterfall model hy the inclusion of techniques and tools
along with improved training so as to reduce the potcntial impact of thcse prohlems. A third
movement is the proposal of ncw methodology thcmcs and mcthodologies which are very
different to the traditional waterfall model. A fourth movement is to suggest a more flexible

Infor11Ultion systems development 265

contingency approach to information systems development retlecting the different problem
situations that occur. We will look at each of these in turn.

1.3 Rejecting the methodology approach

One reaction to the unsatisfactory use of methodologies is the overt decision not to use any
methodology when developing information systems (or the covert decision to pay only Jip
service to them). A chosen methodology may not have been appropriate for the organisation
and there has been a backlash against formalised methodologies. Their use has not always
led to productivity gains. Methodologies have also been criticised for being over complex,
for requiring significant people skills and expensive tools, and being inllexible and difficult
to adopt.

More fundamentally, it has frequently heen found that the existence of a methodology
standard in an organisation leads to its unthinking implementation and to a focus on
following its procedures to the exclusion of the real needs of the project heing developed. In
other words, the methodology ohscures the important issues. De Grace and Stahl (1993)
have temled this 'goal displacement' and talk ahout the severe prohlem of 'slavish
adherence to the methodology'.

Wastell (1996) talks about the 'fetish of technique' which inhibits creative thinking. He
takes this further and suggests that the application of a methodology in this way is the
functioning of methodology 'as a highly sophisticated social device for containing the acute
and potentially overwhelming pressures of systems development'. He is suggesting that
systems development is such a difficult and stressful process, that developers often take
refuge in the intense application of the methOdology in all its detail as a way of dealing with
these difficulties. Developers can he seen to he working hard and diligently, hut this is in
reality goal displacement activity hecause they are avoiding the real prohlems of effectively
developing the required system. Users, analysLs and managers thus lind that the great hopes
of some in the 1980s that methodologies would solve most of the problems of information
systems development have not come to pass and this has led some to reject methodologies
completely and others to use them as a social defence only.

1.4 Improvements to the waterfall model

Since the 1970s, there haw heen a numher or developments in techniques and tools and
many of these have heen incorporated in the methodologies exemplifying the modern
version of the waterfall model. Techniques incorporated include entity-relationship
modelling, normalisation, data now diagramming and entity life cycles. Tools include
project management software, data dictionary software, drawing tools and computer
assisted software engineering (CASE) tools. The incorporation of these developments
address some of the criticisms discussed in section 1.2, but give grounds to the potential
criticisms of Waste II (1996). The data modelling techniques suggest that the waterfall
models now are more halanced hetween process and data modelling rather than having a
purely process modelling emphasis. The documentation has improved, thanks to the use of
drawing and CASE tools, and it is Illore likely to he kept up to date and he more
understandable by non-coillputer people. Further, CASE tools can he used to develop

266 Method Engineering

prototypes which enable users to assess the proposed information system in a far more
tangible way and can speed up delivery of the operational system. The blended
methodologies SSADM (Eva, 1994) and Merise (Quang & Chartier-Kastler, 1991) could be
said to be updated versions of the waterfall model, and this updated waterfall model is the
basis of many modern student texts and courses in information systems. Although these
improvements have brought the hasic model up to date. many users have argued that the
inflexibility of the life cycle remains and inhihits most effective use of computer information
systems.

1.5 New methodology themes and methodologies

Over the last ten or fifteen years, there have been many methodologies, some of which are
as structured as the waterfall model, but reflect different movements in information systems
development. They include incorporating ideas from systems thinking, typified by soft
systems methodology (SSM) (Checkland, 1981 and Checkland & Scholes, 1990) which
addresses the needs of management and the organisation as a whole; considering strategic
issues, such as critical success factors (Bullen & Rockart. IlJX4). again. addressing the
needs of management; husiness process re-engineering (Hammer & Champy, 1993), looking
more fundamentally at the way the organisation docs things (traditional information systems
development is often accused of merely computerising present ways of doing things rather
than improving things more fundamentally); object-orientation (Booch, 1991 and Co ad &
Yourdon, 1991) which unifies many aspects of the infomlation systems development
process and thus avoids the dift1cult combination of process and data approaches in one
methodology; pmticipation, such as ETHICS (Mumford, 1995) and joint requirements
planning ORP) and joint applications design (1 AD) (Martin. 19lJ I), where major
consideration is given to the role of users and other stakeholders in the information systems
development process, indeed. where the users rather than the technologists drive the
process and therefore address the problem of user dissatisfaction that was inherent in
traditional systems analysis; and the related emancipatory approaches where systems are
developed which permit emancipation through rational discourse, typified by the UTOPIA
project (Bodker et al., 1987). All these approaches address some of the weaknesses of the
traditional waterfall model and have been adopted by organisations. However, many users
find some of them either unnecessarily complicated, expensive (in skills required and tools
used) and difficult to adopt or. if this is not the case, narrow in their applicability and scope.

1.6 Contingency approaches to information systems development

Many users of methodologies have found the waterfall model and the alternative
methodologies unsatisfactory. Most methodologies are designed for situations which follow
a stated or unstated 'ideal type'. The methodology provides a step-by-step prescription for
addressing this ideal type. However, situations are all different and there is no such thing as
an 'ideal type' in reality. Situations differ depending on, for example, their complexity and
structuredness, type and rate of change in the organisation, the numbers of users affected,
their skills, and those of the analysts. Further, most methodology lIsers expect to follow a
step-by-step, top-down approach to information systems development where they carry out
a series of iterations through to project implementation. In reality. in anyone project. this is

Information systems development 267

rarely the case, as some phases might he omitted, others carried out in a different sequence,
and yet others developed further than espoused hy the methodology authors. Similarly,
particular techniques and tools may he used differently or not used at all in different
circumstances.

A contingency approach is therefore suggested as a more realistic and useful
methodology. Multiview (Avison & Wood-Harper, 1990) is an example of such an
approach and this paper looks at this in more detail in the next section. It is a contingency
framework in that it will he adapted according to the particular situation in the
organisation. The authors arc concerned to show that information systems development
theories should be contingent rather than prescriptive, hecause the skills of different
analysts and the situations in which they arc constrained to work always has to be taken
into account in any project. Each application of Multi view forms a new and original
methodology. There are potential problems of the contingent approach and in examining
Multiview, these potential criticisms ought to he considered. First, some of the henefits of
standardisation might be lost. Second, there is a wide range of different skills that are
required to handle many approaches. Third, the selection of approach requires experience
and skills to make the hest judgements. Fourth, they implicitly or explicitly follow a
waterfall model and therefore they suffer the same criticisms of that approach. Finally,
authors have suggcstCtj that any com hi nation of approachcs is untenahle hccause each has
different philosophics and thercforc cannot hc hlended.

2 MULTIVIEW: A CONTINGENT FRAMEWORK

2.1 Background to Multiview

Multiview (Avison & Wood-Harpcr, 1990) was proposcd as a framework for information
systems developmcnt. Information systems dcvelopmcnt is pcrceivcd as a hyhlid process
involving computer specialists, who will build the system, and users, for whom the system is
being built, with the hclp of a mcthodology. The methodology looks at hoth the human and
technical aspects of information systems development. In this aspect and others, it has been
greatly influenced hy Sort Systems Methodology (Checkland, I <')X I) and ETHICS
(Mumford, 1995) but has fused these ideas with those found in 'hard' methodologies, such
as Yourdon Systems Modeling (Y ourdon, 1993) and Information Engineering (Martin,
1989).

The approach adopted has been used on a number of projects, and the methodology itself
has been refined using 'action research' methods (Checkland, 1981; Lcwin, 1946; Susman
& Evered, 197R; and Warmington, 1980), that is the application and testing of ideas
developed in an acadcmic environment into the 'real world'. It is a contingency approach in
that it will be adaptcd according to the particular situation in the organisation. The authors
are concerned to show that information systems development theories should he contingent
rather than prescriptive, hecause tile skills or dirrcrcnt analysts and the situations in which
they are constrained to work always has to he taken into account in any project. Avison and
Wood-Harper (19X()) descrihe Muitiview as an exploration in information systems
development. It thcrefore scts out to he t1exihlc: a particular technique or aspect of the
methodology will work in certain situations but is not advised for others.

268 Method Engineering

The methodology includes many of the techniques used in other methodologies. The
authors of Multiview claim, however, that it is not simply a hotchpotch of available
techniques and tools, but an approach which has been tested and works in practice. It is also
'multi-view' in the sense that it takes account of the fact that as an information systems
project develops, it takes on different perspectives or views: organisational, technical,
human-orientated, social, economic and so on.

2.2 The original Multiview framework

The five stages of Multiview arc as follows:

• Analysis of human activity
• Analysis of information
• Analysis and design of socio-technical aspects
• Design of the human-computer interface
• Design of technical aspects.

They incorporate five different views which are appropriate to the progressive
development of an analysis ami design project, covering all aspects required to answer the
vital questions of users. These five views are necessary to form a system which is complete
in both technical and human telms. The five stages move from the general to the specific,
from the conceptual to hard fact and from issue to task. Outputs of each stage either
become inputs to following stages or are major outputs of the methodology.

The authors argue that to be complete in human as well as in technical terms, the
methodology must provide help in answering the following questions:

1. How is the computer system supposed to further the aims of the organisation installing
it?

2. How can it be titted into the working lives of the people in the organisation that are
going to use it?

3. How can the individuals concerned best relate to the machine in tenns of operating it and
using the output from it?

4. What information system processing function is the system to perform?
5. What is the technical specitication of a system that will come close enough to doing the

things that have been written down in the answers to the other four questions'?

Multiview attempts to address all these questions and to involve all the role players or
stakeholders in answering these questions. The emphasis in infollllation systems, it is
argued, must move away from ·technical systems which have hehavioural and social
problems' to 'social systems which rely to an increasing extent on information technology'.

The distinction between issue and task is important because it is too easy to concentrate
on tasks when computerising, and to overlook important issues which need to be resolved.
Too often, issues are ignored in the nrsh to 'computerise'. Issue-related aspects, in
particular those OCCUlTing at stage 1 of Multiview, are concerned with debate on the
definition of system requirements in the broadest sense, that is 'what real world problems is
the system to solve?'. On the other hand, task-related aspects, in particular stages 2-5, work

Information systems development 269

towards forming the system that has been defined with appropriate emphasis on complete
technical and human views. The system, once created, is not just a computer system, it is
also composed of people performing jobs.

Q1- How is the information System
supposed to further the aims of the
organisation using it?

Q2 - How can it be fitted into the
working lives of the people in the
org:lnisation using it?

Q3 - How can the individuals
concerned best relate to the computer
in terms of operating it anci. using the
output from it?

Q4 - What information processing
function is the system to perform?

Q5 - What is the technical specification
of a system that will come close enough
to m~eting the inentified requirements?

Figure 1 The Multiview framework (version I)

One representation of the methodology is shown in figure 1. Working from the middle
outwards we see a widening of focus and an incre,L~e in understanding the problem situation
and its related technical and human characteristics and needs. Working from the outside in,
we see an increasing concentration or focus, an increase in structure and the progressive
development of an information system. This diagram also shows how the five questions
outlined above have been incorporated into the five stages of Mulliview.

The first stage looks at the organisation - its main purpose, prohlem themes, and the
creation of a statement ahout what the information system will be and what it will do. It is
based on SSM (mode I J, described in Checkland, 1981, using the techniques of rich picture
building, CA TWOE definition and the creation of root definitions, and conceptual models.
Possible changes are debated and agendas drawn up for change. The second stage is to
analyse the entities and functions of the problem situation described in stage one. This is
carried out independently of how the system will he developed. The functional modelling
and entity-relationship modelling round in most methodologies arc suggested as modelling
techniques.

The philosophy behind the third stage is that people have a hasic right to control their
own destinies and that if they arc allowed to participate in the analysis and design of the
systems that they will be using, then implementation, acceptance and operation of the
system will be enhanced. Human considerations, such as job satisfaction, task definition,
morale and so on are seen as just as important as technical considerations. This stage
emphasises the choice hetween alternative systems, according to important social and
technical considerations. Thc fourth stage is concerned with the technical requirements of
the user interface. ChoicL~s hctwecn hatch or on-line and menu, command or soft [ornl
interfaces are made. Thc design Dr specific conversations will depend on the hackground

270 Method Engineering

and experience of the people who are going to use the system, as well as their information
needs.

Finally, the design of the technical subsystem concerns the specific technical
requirements of the system to be designed, and therefore to such aspects as computers,
databases, application software, control and maintenance. Although the methodology is
concerned with the computer only in the latter stages, it is assumed that a computer system
will form at least part of the infnnmllion system. However, the authors do not argue that the
final system will necessarily run on a large mainframe computer. This is just one solution,
and many cases of Multiview in action show applications being implemented on a
microcomputer.

2.3 The strengths and weaknesses of Multiview

Conventional information systems development methodologies have a number of
weaknesses including:

• Narrow scope
• Rigidity in use
• Adherence to the waterfall model.

The authors argue that the first two aims are achieved in Multiview. The five parts of the
approach encompass the aims of the organisation and how the information system can be
fitted into the working lives of the people in the organisation that are going to use it, as well
as addressing the user-computer interface, the functional requirements and the technical
design. This is a much hroader framework than that provided hy more conventional
methodologies.

A main tenet of Multivicw is that it is a contingency approach. the techniques and tools
suggested are to be used where appropriate and the phases and suh-phases may also be
omitted or reduced in scope or executed in a different sequence than that shown in figure 1.
Multiview is, however, not unstructured. An unstructured approach is offered hy Benyon &
Skidmore (1987) who suggest that information systems development should be a process of
choosing techniques and tools as thought appropriate by the analysl~ at the time from a
'tool-kit'. Multiview provides a tlexihle framework and suggests (but does not put it
stronger) a choice of techniques and tools at each phase in the development of a system. It
allows the benefil~ of the experience and expertise emhodied in good methodologies to be
focused on the particular needs of the situation.

Although we have stated that phases might he omitted or reduced in scope or executed
in a different sequence, the description of Multiview is in ternlS of 'layers in an onion' (as in
figure 1) or as a series of live hroad steps. However, this is described as an 'ideal type'
which will guide the analyst who will redesign it for any practical situation. Nevertheless,
the description gives the impression of a waterfall model, despite denials from the
methodology authors using Multiview in practice. This led to difticulties where, for
example, users required further explanation on how to go from stage I (essentially a
description of the prohlem situation using SSM rich pictures, root delinitions and
conceptual models) to stage 2 (a cnmninatinn of data modelling used in IE and process
modelling used in STRADlS). A further refining of Multiview has led to another definition,

Information systems development 271

and this is described in the next section. It is more explicitly an antithesis of the waterfall
model.

2.4 The development of Multiview

Organisational Information

analysis analysis &
modelling

Information
systems
development

Socio·technical Technical design
analysis & design and construction

Figure 2 The Multiview framework (version 2)

In Multiview2 (Avison I:'f al.. 19l)(i), the five stages have heen reduced to a four-box
structure of organisational analysis, information analysis and modelling, sodo-technical
analysis and design, and technical design and construuion. The proposed new framework
for Multiview is given in figure 2 and it shows the four parts of the methodology mediated
through the actual process of information systems development. The four parts of human
activity systems analysis or organisational analysis (which examines organisational
behaviours), sodo-technical systems analysis and design (which examines work systems),
and technical design and construction (which examines technical artefacts) are integrated
through the information analysis and modelling stage which acts as a bridge between the
other three, communicating and enacting the outcomes in temlS of each other. In this way
Multiview offers a systematic guide to any information systems development intervention,
together with a rellexive, learning methodological process. Emphasis placed in each of the
four parts of Multiview will change as the information system is heing developed and
contingent on the particular situation.

There are also differences in detail hetween the two versions of Multiview which reflect
published research over the intervening years and more importantly experience in using
Multiview during this period. Thus, for example, stakeholder analysis strengthens the
conceptual analysis of SSM and ethical analysis in organisational analysis; there is a
migration from structured methods to Object-oriented analysis in information analysis and
modelling; ethnographic approaches supplement ETHICS in sodo-technical systems
analysis and design; and prototyping, CASE, evolutionary and rapid development
approaches are more strongly suggested in technical design and constrlll:tion.

However, although the authors recommend a contingent approach to ISO, Multiview2
should not be used to justify random or uncontrolled development. The terms
'methodology' and 'method' tend to he used interchangeahly, although they can be
distinguished insofar as a method is a concrete procedure for getting something done

272 Method Engineering

while a methodology is a higher-level construct which provides a rationale for choosing
between different methods (Oliga 1988). In this sense, an IS methodology, such as
Multiview2, provides a basis for constructing a situation-specific method (figure 3), which
arises from a genuine engagement of the analyst with the problem situation (Wastell
1996).

History

CULTURE

Analysis of:
1. Intervention
2. Social context
3. Political aspects

Reflecting and
modifying
(method must be
systemically desirable
and culturally feasible)

STREAM OF CULTURAL
ANALYSIS

Would·be
developers
of an IS

o 0

~hl~
Issues, needs
and expectations

Inform ation
modelling

design &
construction

Contingent socially·
constructed ISO method

LOGIC·BASED
STREAM OF ANALYSIS

Figure 3 Constructing the infon1Hltion systems development methodology (adapted from
Checkland & Scholes, 1990, Wood-Harper & Avison, 1992)

3 OBSERV A nONS AND CONCLUSIONS

3.1 Contingency

Strictly speaking, a distinction should he made in the criticisms of methodologies made
earlier between poor application and use of a mcthodology on the one hand and an
inadequate methodology itselL A defence made by a number of methodology vendors
implies that the methodology is not being cnnectly implemented by some organisations.
Whilst this may he true in some cases, it is not an argument that seems to hold much sway
with methodology users. They argue that the two issues are much the same and for
whatever reason they have expericnced disappointments in the use of methodologies

Information systems development 273

whether they represent improvements in the waterfall model (section 1.4) or new
methodologies (section 1.5).

However, to respond to this by developing information systems without any
methodology (section 1.3) is not the answer, as it will lead to the problems of poor control
of the project, and management not getting value for money which were discussed in
section 1.1 and, to some extent 1.2. Some authors (e.g. Benyon & Skidmore, 1987)
advocate a 'tool-kit' approach, but it is argued elsewhere (Avison, Fitzgerald & Wood
Harper, 1988) that a tool-kit without any supporting advice and structures is indeed 'not
enough' as it will lead to information systems that are likely to be idiosyncratic and difficult
to maintain and therefore be of variable value.

One potential solution, outlined in section 1.6 and exemplified by Multiview which is
described in section 2, is a mon: llexible approach, but within a framework, adaptable
according to the characteristics of the project or domain. These contingent factors include
the type of project, whether it is an operations-level system or a management infomlation
system, the size of the project, the importance of the project, the projected life of the
project, the characteristics of the prohlem domain, the availahle skills and so on. As Mitroff
& Linstone (1993) concluded, whilst any inquiring system can be used to generate evidence
for any problem, it does not follow that each such system is equally valid or appropriate as a
way of representing all kinds of problems.

A contingency approach to ISO is not new, indeed, was suggested in Davis (1982).
Contingency is often seen as applying to techniques and tools only, however, it also applies
to the general approach to information systems development, and that implies rejection of
the waterfall model (except as a special cast' of applying a contingency approach).
Multiview2 is more explicitly an antithesis of the watcrfallmodel.

A contingent approach needs to be tlexible enough to be appropriate for most
situations. This implics that a broader, as well as more numerous, set of tools and
techniques is available to the user of the contingency approach. But, it also implies that
the approach calTies within it the many 'philosophies' of the various approaches to
information systems dcvelopment suggested in section 1.4. Thus, such an overall approach
might be a blend of human, technical, organisational, and othcr approaches to information
systems development as found in thc many mcthodologies proposed. Again, Multiview
attempts to provide that broad-based framcwork. The method engineering movement also
suggests a contingent and hlended view of information systems development, but
frequently a mainly (or even uniqucly) technical view of the process. The authors of
Multiview see information systems development as a social process containing technical
aspects.

3.2 Information systems development as a social process

Dcfining an infonnation system can be regarded as a social process with three aspects.
These are the role of thc systcms analyst and the paradigm of assumpti()ns constructed in
practice; the political nature of the change process; and how methodologies arc interpreted.
These aspects are described in Wood-Harper & Avison (1992).

The theory about the role of thc systems analyst and the paradigm of assumptions
constructed in practice (Burrell & Morgan, 1979) can perhaps be explained bcst by giving
examples of systems analysL~ in different situations. Four different stereotypical views of

274 Method Engineering

the systems analyst may he given as functionalist, interpretive, ohjective and suhjective.
The last three, to a greater or lesser degree, suggest that ISO is more of a social than a
technical process. Roles, ideals and metaphors for each might he as follows:
• In the functionalist perspective, the infom1ation system consists of interactions which

function independently of outside manipulation. The analyst assumes that the situation
can be readily understood, indeed there is an assumption of rational behaviour by the
actors which makes understanding easier. The systems are well controlled, can be well
understood and can be fom1ally defined. The systems analyst might be seen as technical
expert, the ideals are objectivity, rigour and fom1ality and a metaphor of the analyst
might be a medical doctor. This is very much a technical and process view and one
where ISO is seen as a technical rather than as a social process.

• In the interpretive perspective, it is assumed that the analyst is suhjective and interprets
the problem situation. The analyst hopes to understand the intentions of the actors in
the situation. Pm·ticipation and involvement will he the hest way to ohtain detailed
information about the problem situation, and later to be able to predict and control it.
The systems analyst might be seen as facilitator, the ideal might emphasise the
importance of meaning and a metaphor of the analyst might be a liberal teacher.

• In the radical stmcturalist view, the situation will appear to have a formal existence but
require radical change due tn, for example, contradictory and contlicting clements. The
systems analyst is assumed to he an agent for change and social progress, emancipating
people from their socio-economic structures. The systems analyst might he seen as an
agent for social progress, the ideals lean towards change of the socio-economic class
stmctures and a metaphor of the analyst might he a warrior.

• Finally, in the radical humanist view, the situation is seen as extemal and complex.
There is an emphasis on pm·ticipation to enahle a rapport between the actors and leads
to emancipation at all levels, including the .'iocio-economic and psychological. The
systems analyst might be seen as change ,malyst, the ideals lean towards change of the
socio-economic stl1lctures and psychological barriers and a metaphor of the analyst
might be an emancipator.
Kling & Scacchi (I <)X2) identificd four perspectives within which prohlem solvers may

view the content of the prohlem situation in which infomHltion technology is emhedded.
The importance of these perspectives for the information systems definition is that
different strategies should be adopted based on the perspective emhraced. The first is the
formal rational perspective, which emphasises the formal organisational structure and
procedures. With this perspective, we see the extreme of reductionist thought. Again, this
is a traditional technical perspective. The second perspective, the structural perspective,
includes considerations of the situation's formal suhunits and recognises that
communication must occur hetween them. The third perspective is the interactionist
viewpoint which recognises that thc pieces of the infom1ation resource are not
independent nor formally defined. The social groups of interest cross intra-organisational
and inter-organisational houndaries and are possihly in a constant state of nux. The
process of change is founded on negotiation. The fourth perspective, organisational
politics, assumcs that interactions in the organisation are hased on the political
machinations and resulting manifestations of power. Again, as we progress through the
four perspectives, we sec less emphasis on the technical and structural and more emphasis
on the social and potentially emancipatory.

Information systems development 275

Defining an information system can be thought of as metaphorical activity with, for
example, the Multiview methodology as a non-prescIiptive descIiption of a real-world
process. The essence of a metaphor is in the understanding and experiencing of one kind
of thing in tenus of another and, in this context, the methodology is a useful,
epistemological device for the process of defining an information system (Lakoff &
Johnson, 1980). This means that there is support from fieldwork that the Multiview
methodology is a metaphor which is interpreted and developed in the situation.
Consequently, the Multiview mdhodology can he thought of as heing an 'open theory'
where people close the theory in action.

3.3 The inter-disciplinary nature of information systems

Avison & Nandhakumar (1995) argue that infonnation systems is a pluralist field and
evidence this view through information systems development. There is a wide variety of
approaches to information systems development and a large numher of methodologies
based on each of the general approaches. Longworth (I 9X5) identifies over 300
infonnation systems development methodologi(~s. Wood-Harper & Fitzgerald (1982)
discuss two basic differences of approaches as lying either within a systems paradigm or
scientific paradigm, illustrated hy soft systems method (Checkland, 19X I) and structured
analysis and design (DeMarco, 1979 and Gane & Sarson, 1979) respectively.

Avison & Fitzgerald (1995) widen the basis for compaIison and suggest that
infonnation systems development methodologies can be compared on the basis of
philosophy, model, techniques, tools, scope, outputs, practice and product, and they
classify approaches within a number of broad themes including:
• Systems
• Strategic
• Participative
• Prototyping
• Structured
• Data
• Object-oriented.

None of these approaches can be described as different !lavours to well accepted
approach. They represent radically different approaches to infonuation systems
development and ways to perceive the information systems development process. They
require different expertise: some emphasise people and stress the need for inter-personal
skills; others require engineering skills and stress skills in the use of techniques; and yet
others stress organisational isslies. They represent different 'philosophies'.

If we consider the themes idcntificd ahove as approaches to information systems
development, disciplines relevant would seem to include, for example, computer science
(prototyping tools and software engineering), mathematics (formal methods), sociology
(participation) and husiness and management (planning). We may add applied psychology,
economics, linguistics, politics, semiology, ethics, ergonomics, culture studies and
probably others to the list of foundation disciplines. Information systems development has
a multi-disciplinary nature, and technology and computing arc by no means dominant.
Unfortunately, it is clear that the majority of research into information systems

276 Method Engineering

development concentrates on the technical aspects, and this includes the languages and
formalisms of the method engineeIing movement.

Mitroff & Linstone's 'Fifth Way of Knowing', which they call Unbounded Systems
Thinking, subsumes all the other inquiring systems within it since cvery information
system or inquiry presupposes all the others. In this way, each information system is
mutually dependent upon the other and hence there is no sense in which they can be seen
as having a distinct and separate existence, one frum another. Unbounded systems
thinking argues that complex problem solving requires the application of as many
disciplines, professions, and branches of knowledge as possible, with each one
employing different paradigms of thought.

ACKNOWLEDGEMENTS

I am grateful to my friends and colleagues who have contributed greatly to discussions
which have led to this paper, in particular, Guy Fitzgerald, Rkhard Vidgen, Bob Wood
and Trevor Wood-Harper.

REFERENCES

Avison, D. E. & Fitzgerald, G. (1995) 1i1jinmaTiol1 SysTems DI:'I'elopmenr: Methodologies,
Techniques and Tools. 2nd edition, McGraw-Hili, Maidenhead.

Avison, D. E., Fitzgerald, G. & Wood-Harper, A. T. (1988) Information systems
development: a tool-kit is not enough. ComlJUter Journal, 31,4.

Avison, D. E. & Nandhakumar, J. (1995) The discipline of information systems: let many
flowers bloom', in /njimnation S.I'stems ConcepTS: Towards a ConsolidaTion of views
(eds. E. D. Falkenherg, W. Hesse, & O. Olive) Chapman and Hall.

Avison, D. E. & Wood-Harper, A. T. (1986) Multiview - an exploration in information
systems development. Australian CompUTer Journal, 18,4.

Avison, D. E. & Wood-Harper, A. T. (1990) Multiview: An ExploraTion in Information
Systems DeVelopment. McGraw-Hill, Maidenhead.

Avison, D. E., Wood-Harper, A. T., Vidgen, R. & Wood, R. (1996) Multiview: A Further
Exploration in /nfinmatiun Systems Developmenr, McGraw-Hill, Maidenhead.

Benyon, D. & Skidmore, S. (Il)S7) Towards a tool-kit for the systems analyst. CompUTer
Joumal. 30, I.

Bodker, S., Ehn., Kammersgaard, J., Kyng. M. & Sundhlad, Y. (ll)87) A UTOPIAN
experience: on design of powerful computer-hased tools for skilled graphic workers, in:
Bjerknes, G., Ehn. & Kyng. M. (cds.), CompUTers und Democracy: A Scandinavian
Challenge, Avehury, Aldershol.

Booch, G. (1991) ObjeCT Oriented Design wiTh Applications. Benjamin/Cummings,
Redwood City, California.

Bullen, C. V. & Rnckart, 1. F. (19)14) A Primer on CriTical Success Factors. CISR
Working Paper 69, Sloan Management School, MIT, Boston, Mass.

Burrell, G. & Morgan, G. (1979) Sociological Paradigms and Organisational Analysis.
Heinemann, London.

Checkland P. B. (19R I) SYSTems Thinking, SYSTems PrucTice. Wiley, Chichesler.

Information systems development 277

Checkland, P. & Scholes. 1. (1990) Soft SysTems Methodology in Action. Wiley,
Chichester.

Coad, P. & YOUl'don, E. (1991) Object Oriented Analysis. 2nd cd., Prentice Hall,
Englewood Cliffs, New Jcrscy.

Daniels, A. & Yeates, D. A. (1971) Basic Training in Svstell1s Analysis. 2nd ed., Pitman,
London.

Davis, G. B. (19R2) Strategies for information requiremcnts determination, IBM Systems
Journal, 21,2.

De Grace, P. & Stahl, L. ([9l)3) The Olduvai Il11peratil'l;': CASE and the State of Software
Engineering Practice. Prcntice Hall, Englewood Cliffs, Ncw Jersey.

Hammer, M. & Champy, J. (1993) Reengineering the COIporation: A Manifesto for
Business Revolution. Harper Business, New York.

Eva, M. (1994) SSADM Version </: A User's Guide. 2nd ed., McGraw-Hill, Maidenhead.
Kling, R. K. & Scacchi, W. (Il)X2) The web of computing: computing tcchnology as social

organization, Advances in COlllputers, 21.
Lakoff, G. & Johnson, M. (Il)XO) Mewphol's We Lil'f By, The University of Chicago

Press, Chicago.
Martin, J. (199 I) Rapid ApplicaTion Del'elopll1t:11T. Prentice Hall, Englewood Cliffs, New

Jersey.
Mitroff, I., & Linstonc, H. (1993). The Unbuunded Mind, breaking the chains of

traditional business thinking. Oxford University Press, New York.
Mumford, E. (1995) Effective Requirements Analysis and Systems Design: The ETHICS

Method. Macmillan, Basingstoke.
Quang, P. T. & Chartier-Kastler, C. (1991) Merise in Practice. Macmillan, Basingstoke

(translated by D. E. and M. A. Avison from the French Merise Appliquee. Eyrolles,
Paris, 1989).

Wastell, D. (1996) The Fetish of Technique: methodology as a social defence. Information
Systems Journal, 6, I.

Wood-Harper, A. T. & Avison, D. E. (1992) Reflections from the experiencc of using
Multiview: through the lens of soft systems methodology, Systemist, 14,3.

18

A Classification of Methodological Frame
works for Computerized Information Sys
tems Support in Organizations
John Krogstie
Andersen Consulting phone: +4722928200, fax: +4722928900,
email: John.Krogstie@ac.com

Arne S¢lvberg
Faculty of Electrical Engineering and Computer Science
The Norwegian Institute of Technology
University of Trondheim, Norway

Abstract

Although many conceptual frameworks for development and maintenance of information sys
tems in organizations have been proposed, we experience a lack of integrated support of the evo
lutionary nature, the interconnectedness, and the social processes for developing such systems.
This paper present a classification of methodological frameworks for evaluating important as
pects of methodologies having this in mind. Contrary to most classification frameworks pre
sented in literature which look solely upon ditferent ways of supporting development of new
information systems, we have in our framework a broader view, including larger parts of what
we term computerized information systems (CIS) support in organizations.

In the end of the paper, we present the result of classifying a set of approaches to CIS-support
in organizations described in academia and practice. No methodology is found to be sufficient
in all respects, although newer approaches take more aspects into account.

Keywords

Methodology, classification

1 INTRODUCTION

Several frameworks for the classification of methodological frameworks have been developed
through the years e.g. (Blum, 1994; Davis, 1988; Lyytinen, 1987). A weakness of these is in our
view their limited scope, basically looking upon the development of a single application system
in a comparatively stable environment. Organizations are continuously under the pressure of
change from both internal and external forces. Most organizations of some size are supported
by and depend upon a portfolio of application systems who likewise has to be changed, often

A classification of methodnlogical framework 279

in a comparatively stable environment. Organizations are continuously under the pressure of
change from both internal and external forces. Most organizations of some size are supported
by and depend upon a portfolio of application systems who likewise has to be changed, often
rapidly, for the organization to be able to keep up and extend their activities. The portfolio usu
ally consist of a set of individual, but often highly integrated application systems whose long
term evolution should be looked upon as a whole. Change is the norm, not the exception for
both portfolios and their individual information systems (Alagappan and Kozaczynski, 1991;
Williams et al., 1988). A first step towards facing this is to accept change as a way of life, rather
than as an untowarded and annoying exception.

Internalization
(Sons.maklng)

Externellzatlon
(Action)

Figure 1: Social construction in an organization.

According to (Gjersvik, 1993) organizations are realities socially constructed through the
joint actions of all the social actors in the organization. This process is illustrated in Figure 1.
An organization consists of individuals who see the world in a way specific to them. The local
reality is the way the individual perceives the world that he or she acts in. When the social actors
of an organization act, they externalize their local reality. The most important ways social actors
externalize their local reality, are to speak and to construct languages, artifacts, and institution.
What they do is to construct organizational reality: To make something that other actors have to
relate to in their work. This organizational reality may consist of different things, such as insti
tutions, language, knowledge, artifact5 and technology. Finally, internalization is the process of
making sense out the organizational reality and making this part of the individual local reality.

We claim that the evolutionary aspect~ of computerized information systems (CIS) support
are insufficiently covered by traditional approaches and tools. In addition, the process of social
construction of the organizational reality is neglected in most development methodologies.

On this background, we will in this paper present a classification of methodological frame
works that takes also these aspects into account. We will in the end of the paper present the main
results from an evaluation of a host of methodologies using the framework.

2 CLASSIFICATION OF METHODOLOGIES FOR COMPUTERIZED IN
FORMATION SYSTEMS SUPPORT

When deciding on relevant dimensions for a classification frameworks, we have tried to ask the
questions why, when, what, how, who, where and for how long in the context of CIS support and

280 Method Engineering

• Why do we attack the problem as we do? This is covered by the "Weltanschauung", Le.
underlying philosophical view of the methodology.

• When is the methodology applied? We have termed this aspect coverage in process indi
cating the main tasks that are covered by the methodology.

• What part of the portfolio is supported by the methodology? We have termed this aspect
coverage in product.

• How do it help achieving the goals of CIS support? Based on the discussion in the intro
duction, we have concentrated on reuse and representation of product and process in the
methodology with emphasis on conceptual modeling.

• Who is involved and where do changes take place? This is discussed under the area of
stakeholder participation.

• For how long has the methodology been used. We term this aspect maturity: Is the method
ology mature, being used for a long time in many organizations, with tool-support and
support for evolution of the methodology.

Below, we will define and discuss each area in more detail.

2.1 ''Weltanschauung'':

FRISCO (FRISCO, 1995) differentiate between three different views:

• Objectivistic: "Reality" exists independently of any observer and merely needs to be mapped
to an adequate description. For the objectivist, the relationship between reality and models
thereof is trivial or obvious.

• Constructivistic: "Reality" exists independently of any observer, but what each person
possess is a restricted mental model only. For the constructivist, the relationship between
"reality" and models of this reality are subject to negotiations among the community of
observers and may be adapted from time to time.

• Mentalistic: To talk about "reality" as such does not make sense because we can only form
mental constructions of our perceptions. For the mentalist, what people usually call "re
ality" as well as its relationship to any model of it is totally dependent on the observer.

The methodologies that is found in literature can be characterized as being objectivistic or con
structivistic. The "Weltanschauung" of a methodology is often not explicitly stated, but often
appears only indirectly. Since different underlying philosophies may lead to radically differ
ent approaches, it is important to establish this. The distinction into objectivistic and construc
tivistic is parallel to the distinction between objectivistic and subjectivistic in the overview of
Hirschheim and Klein (Hirschheim and Klein, 1989). Hirschheim and Klein also distinguish
along the order-conflict dimension. In this dimension, the order or integration view emphasizes
a social world characterized by order, stability, integration, consensus, and functional coordina
tion. The conflict or coercion view stresses change, conflict, disintegration, and coercion. These
two dimensions were originally identified by Burrel and Morgan (Burrel and Morgan, 1979) in
the context of organizational and social research.

Based on the discussion in the introduction, it should come as no surprise that we find it
beneficial to adapt a constructivistic world-view. Both the order and the conflict view combined
with constructivism acknowledges a situation of continuous change.

A classification of methodological framework 281

2.2 Coverage in process

Do the methodology address:
• Planning of CIS-support
• Development of application systems
• Use and operation of application systems
• Maintenance of application systems

One or more of the above areas can be covered, more or less completely and in varying degrees
of detail. More detailed specifications of dimensions of development methodologies are given
by Blum (Blum, 1994), Davis (Davis, 1988) and Lyytinen (Lyytinen, 1987). Whereas Davis
classifies a methodology according to the way it is able to address varying user-needs over time,
Blum classifies development methodologies in two dimensions; if they are product or problem
oriented, and if they are conceptual or formal. We will only look upon the use of conceptual
models and if these models are formal or not below. The product vs problem-oriented dimen
sion as discussed by Blum is in our view a distinction on the part of development that is covered.
Generally, every more detailed effort can be looked upon as a modeling task, where we differ
entiate based on the domain of modeling (Krogstie, 1995).

• The existing IS as it is perceived.
• The future IS as it is perceived.
• The future CIS as it is perceived.
• The (future) CIS in itself.

This correspond to what (Davis, 1995) term understand problem, specify external behavior, de
sign system, and implement system respectively.

Lyytinen includes aspect covered by "Weltanschauung" and representation of product and
process, in addition to linking technical, linguistic, and organizational aspects in a development
methodology.

We claim that a comprehensive methodology should cover both planning, development, use,
and maintenance in an integrated manner. The emphasis will be put on development and main
tenance, but also the usage aspect is important, enabling the different end-users to make sense
of the existing applications system in the organization, to both be able to use them more effi
ciently, and to be able to come up with constructive change-request and ideas for more revolu
tionary changes in the CIS support of the organization when the environment of the organization
is changing. Planning aspects are important to be able to link the CIS-support of the organiza
tion up to strategic planning efforts in the organization, both to be able to implement the strategic
plan, and to exploit information technology to the fullest in continuous development of the or
ganization.

We claim that it is beneficial to not differentiate between development and maintenance in
most cases, having a released based approach to CIS-support. This is partly based on figures
appearing in our survey-investigation and in accompanying work presented in (Krogstie, 1995).

Maintenance has traditionally been looked upon as a more boring and less challenging task
than development (Glass, 1992). Even if there are indications that this view might be changing
e.g. (Layzell and Macauley, 1994) this still appears to be the prominent view among practition
ers. According to our discussion in the introduction, it is both natural and desirable for CISs to
change. As shown both in our own and other surveys, approximately half of the work which is
normally termed maintenance is in fact further development of the information systems portfo-

282 Method Engineering

lio, and should be given credit as such. On the other side, almost half of the new systems being
developed are replacement systems, not extending what the users can do with the portfolio of
systems. Thus seen from the end-users point of view, a better assessment of information system
support efficiency seems to be found by blurring the old temporal distinction between mainte
nance and development. This is difficult to achieve when having a large mental and organiza
tional gap between development and maintenance, even though the actual tasks being done have
many similarities.

Swanson in (Swanson and Beath, 1989) recognizes the similarities of the tasks of develop
ment and maintenance, but still argues for keeping the old distinction based on the following
perceived differences:

• As also noted in (Glass, 1992), a large proportion of traditional maintenance work is to
perform un-design of existing systems, finding out what the system does. We will argue
that with modem development approaches where as much as possible of the work should
take place on a specification and design level, the difference will be smaller. Supporting
this is the results of a survey reported on in (Dekleva, 1992b) which gave no conclusive
evidence that organizations using modem development methods used less time on main
tenance activities. On the other hand, time spent on emergency error corrections as well
as the number of system failures decrease significantly with the use of modem develop
ment methods. Systems developed with modem methodologies seemed to facilitate mak
ing greater changes in functionality as the systems aged, and the request from users seemed
more reasonable, based on a more complete understanding of the system. We also note that
because of the large amount of replacement work of often poorly documented application
systems, code understanding problems are often just as important when developing "new"
systems as when maintaining old systems today. Code and design understanding will also
often be an issue when reusing the products from other projects, and during traditional de
velopment, when due to changing work load, developers have to work on other peoples
code for instance during system-test.

• It is generally believed that "Maintenance of systems is characterized by problems of un
predictable urgency and significant consequent fire-fighting. In difference to new systems
development, which is buffered from the day to day ta5ks of the users, the systems in pro
duction is much more visible" (Swanson and Beath, 1989). First of all, also development
projects with tight schedules has its share of fire-fighting. Traditionally, it has been found
that approximately 20% of the maintenance work is corrective maintenance (Lientz and
Swanson, 1980), and our result of 26% seems to build up on the importance of this. On the
other hand, if we look upon the percentage of work that is performed to do immediately
necessary corrective maintenance on the application level, we found in our own investiga
tion (Krogstie and SS1Ilvberg, 1994) a percentage of 6%, the similar figure in LientziSwanson
being 12%. The total amount on corrective maintenance on the individual systems in our
investigations was 15%. (JS1Irgensen, 1994) indicate that the assessed corrective percentage
of the work used on maintenance often might be exaggerated since these kind of problems
are more visible for management. They found in their investigation of individual main
tenance tasks that even if 38% of the changes were cOlTective, this took only up 9% of
the time used for maintenance. Management assessed the percentage of corrective main
tenance to be 19%. Those managers who based their answers on good data had a result of
9% corrective maintenance. Also in our investigation, we found a similar tendency, on the

A classification of methodiJlo gical framework 283

data of the maintenance task of the individual systems, those reporting to have good data,
reported that only 8% ofthe work effort was corrective maintenance, 4% being emergency
fixes. The same effect on over-assessing the amount of corrective maintenance has been
reported earlier in (Arnold and Parker, 1982).
The problem of many small maintenance tasks done more or less continuously seems to be
increased by how maintenance is often done, in an event-driven manner. In the Jl'lrgensen
investigation (Jl'lrgensen and Maus, 1993), where 38% of the tasks were of an corrective
nature, as much as 2/3 of the tasks where classified to have high importance by the main
tainers themselves. The problem of changing priorities as described by Dekleva (Dekleva,
1992a) is closely related to this.
Even if the problem of emergency fixes seems to be smallerthan earlier perceived, a method
ology uniting development and maintenance must take into account that one has to be able
to perform rapid changes to software artifacts.

2.3 Coverage in product

Is the method concerned with the development, use, and maintenance of
• One single application system.
• A family of application systems.
• The whole portfolio of application systems in an organization.

Also finer classifications can be perceived, i.e. methodologies that are specifically geared to
wards the use of specific technology, or to solve problems within specific domains, but we re
gard this as extensions of a general methodology rather than as independent methodologies. We
will argue that it is beneficial for a complete methodology to be able to consider the whole port
folio in an integrated manner and not only the single application system. For the end-users, it is
not important which application system that is changed. What is important is that their perceived
needs are supported by the complete portfolio. This do obviously not mean that one always need
to consider the whole portfolio when enhancing the CIS-support of the organization.

Application systems are not developed in a vacuum. They are related to old systems, by in
heriting data and functionality, and they are integrated to other systems by data, control, presen
tation philosophy, and process (Thomas and Nejmeh, 1992). As reported in our investigation,
the most important reason for replacements apart from systems being unmaintainable, was in
tegration of application systems. Often when doing this kind of integration, it can be useful to
collect the functionality of several existing application systems into a new application system,
something which is not well supported when having strict borders for what is regarded as inside
and outside of an application system.

As noted in (Swanson and Beath, 1989) the CISs of an organization tend to congregate and
develop as families. By original design or not, they come to rely upon each otherfortheir data. In
SwansonlBeath 56% of the systems where connected to other systems through data integration.
In our survey, we found that 73% of the main information systems in the organizations surveyed
were dependent on data produced by other systems. In 40% of the responses to this question all
the main system which the organization depended upon on a daily basis were dependant on data
produced by other systems.

Over time, newer application systems originate in niches provided by older ones, and iden
tifiable families of systems come to exist. Relationships among families are further established.

284 Method Engineering

In the long run, an organization is served more by its CISs as a whole than it is by the application
systems taken individually.

2.4 Reuse of product and process

Reusing experience is a key ingredient to progress in any discipline. Without reuse everything
must be re-learned and recreated; progress in an economical fashion is unlikely. The need to
utilize extensive reuse is based on the need for evolutionary and rapid changes in the CIS of an
organization as discussed in the introduction.

An comprehensive overview of dimensions of reuse is given y (Prieto-Diaz, 1993):

• By substance: The essence of what is reused:
- Idea reuse involves reusing formal notions, such as a general solution to a class of

problems.
- Artifacts reuse: Examples of artifacts are code, conceptual models, design, specifi

cations, objects, text, architectures, and test data.
- Procedures reuse: Formalizing and encapsulating software development procedure.

Procedures reuse also means reusing skills and know-how, i.e. having a development
and maintenance methodology can be looked upon as reuse in this sense.

• By scope: The form and extent of reuse:
- Vertical reuse is reuse within the same application area.
- Horizontal reuse is reuse across application areas.

• By mode: How reuse is conducted:
- Planned reuse: The systematic and formal practice of reuse. Guidelines and proce

dures for reuse have been defined, and metrics are being collected to assess reuse
performance.

- Ad-hoc reuse: An informal practice, in which components are selected from general
libraries.

• By technique: How reuse is implemented:
- Compositional reuse is the use of existing artifacts as building blocks for new sys

tems.
- Generative reuse is reuse at the specification level by means of design and code

generators.
• By intention: Defines how elements will be reused:

- As-is or black-box reuse is reuse without modifications.
- Modified or white-box reuse involves modifications of what is reused.

It is usual to differentiate between methodologies being for reuse and those being with reuse (Karls
son (ed.), 1995; Wilkie, 1993). Another distinction is between reuse-in-the-large and reuse-in
the-small, where reuse in the large refers to the use of packaged solutions and frameworks. We
will restrict the use of the term in the evaluations to include the planned reuse of artifacts, i.e.
not including that using a methodology is an example of reusing procedures.

2.5 Representation of product and process

Knowledge about the process and the product of CIS development and maintenance can be rep
resented using different kinds of languages. These languages can be informal, semi-formal, or

A classification of methodological framework 285

fonnal, having a logical and/or a executional semantics. These tenns are defined as follows:

Language: A set of symbols, the graphemes of the language being the smallest units in the
writing system capable of causing a contrast in meaning, a set of words being a set of re
lated symbols constituting the vocabulary of the language, rules to fonn sentences being
a set of related words (syntax), and some inter-subjectively agreed definitions of what the
different sentences mean (semantics).

A formalism is a fonnallanguage, i.e. a language with a precisely defined vocabulary,
syntax, and semantics. If the semantics is based on mathematical logic, we use the tenn
logical formalism. If it is possible to execute a set of sentences in the language on a com
puter, the language is said to have an operational semantics.

A semi-formal language is a language with a precisely defined vocabulary and syntax,
but without a precisely defined semantics.

We will in this paper concentrate on conceptual modeling languages. As will be illustrated,
conceptual modeling is believed to be an important technique for CIS support in organizations
when combining development and maintenance having support for not only a single application
systems, but the whole application system portfolio, being based around social construction the
ory and reuse. When discussing the benefit~ of using conceptual modeling below, we should
have in mind that we are primarily talking about partly graphical languages which are semi
fonnal or fonnal, have a limited vocabulary, and which can be used in many areas on varying
levels offonnality and completeness.

• A conceptual model has the possibility of being a problem-oriented description of the re
quirements for CIS support, without being restrained too early by technical constraints. In
this way we believe one can more easily support a process of social construction of infor
mation systems. A problem-oriented approach has been asked for by many researchers (Borgida
et al., 1985; Bubenko jr., 1983; Hagelstein, 1988; van Assche et al., 1988) and conceptual
modeling is looked upon as one way of achieving this.

• Due to the visual nature of many conceptual modeling languages they are believed to be
more helpful in the sense-making process of what is modeled than the model which is
implicit in the code of an application system. On the other hand, if we want to refine the
conceptual models into a fonn that is suitable for automatic code-generation, the essential
difficulty of complexity discussed by Brooks (Brooks Jr., 1986) will again appear.

• Since the separate conceptual modeling languages only include a limited set of phenom
ena, this enable a focusing of concerns, and it is possible to deduce properties that are
difficult if not impossible to perceive directly, by concentrating on only some aspect at
the time. This is obviously also problematic if this makes one blind for other concern, or
makes it impossible to externalize certain explicit knowledge. Based on this we will claim
that one need a set of interrelated semi-fonnal and fonnal modeling languages which can
cover different perspectives for conceptual modeling to be more generally useful.

• Conceptual models developed in early parts of development can be used as an outset for
further design and implementation, supporting generative reuse. Conceptual models are
also believed to be easier to maintain than textual documents that do not have any other
mission than to serve as documentation, since they can be constructed as part of the process
of developing and maintaining the application system in the first place, thus supporting

286 Method Engineering

change and an integration of development and maintenance techniques. It is also easier
to get an overview of the CIS-support of an organization if the languages for conceptual
modeling are known and sufficient tool support for handling them exist, thus potentially
supporting the long range planning and evolution of the whole portfolio.

According to our survey (Krogstie, 1995), most of the organizations having started to use CASE
tools for development and maintenance, use these for conceptual modeling.

2.6 Stakeholder participation

In general, stakeholders in CIS-support can be divided into the following groups (Macauley,
1993):

• Those who are responsible for its design, development, introduction and maintenance, for
example, the project manager, system developers, communications experts, technical au
thors, training and user support staff, and their managers.

• Those with financial interest, responsible for the application systems sale or purchase.
• Those who have an interest in its use, for example direct or indirect users and users man

agers.
We focus here specifically on end-user participation.

A user of a CIS is defined as a person who potentially increases his knowledge about some
phenomena other than the CIS with the help of the CIS. An end-user increases his and hers
knowledge in areas which are relevant to him by interacting with the CIS. Indirect users in
crease their knowledge by getting results from the CIS without interacting directly with the CIS.

This is somewhat different from how' user' is often defined, terming the system development
and maintenance personell as ' primary users' (Hirschheim, 1984) or technical users. Not includ
ing these persons as users in the following discussion do not mean that they are not important
stakeholders.

The term 'participation' means to take part in something. There exists different forms of
participation:

• Direct participation:
Every stakeholder has an opportunity to participate.

• Indirect participation:
Every stakeholder participate more or less through representatives that are supposed to
look after their interests. The representatives can either be:

- Selected: The representatives are picked out by somebody, e.g. management.
- Elected: The representatives are chosen from among their co-workers.

Many arguments for having participation have been given in the literature see e.g. (Greenberg,
1975; Mumford, 1983) for classifications. Here, user participation is basically motivated through
a cost-benefit-perspective on the long run. Since all stakeholders have their individual local re
ality, everyone have a potential useful view of how the current situation can be improved. In
cluding more people in the process will ideally increase the possibility of keeping up with the
ever more rapidly changing environment of the organization. Added to this is the general ar
gument of including those who is believed to have relevant knowledge in the area, and which
are influenced by the solution. As indicated in several surveys, general participation appears to
be a general indicator for (development) project success as perceived by all the different stake
holders. In Bergersen (Bergersen, 1990), the three most important factors for overall perceived

A classification of methodological framework 287

project success were found to be the goal-setting, management support, and user-participation.
In van Swede (van Swede and van Vliet, 1994) the main contributions of success in the sense of
satisfaction of all stakeholders were a cooperative environment, presence of a win-win starting
point by considering the interest of all stakeholder-group, quality of project staff, and quality of
project management.

According to Heller (Heller, 1991), participation is sharing power and influence. He has di
vided the degree of influence and power into six categories as illustrated in Figure 2.

Opportunity Advice Complete
Noor to taken Joint control
minimal give Into declslon- (autonomy or

Information Information advise consideration making delegation)

I t I I t I
1 3 4 6

Figure 2: Scale of influence and power

We would claim that participation when applied should be in categories 4, 5, or 6 on this
scale, and we will use this scale when classifying methodologies according to this aspect.

Due to the large number of potential stakeholders in a development effort, in most cases rep
resentative participation will be the only practical possibility. From the point of view of social
construction, it is doubtful that a user representative can truly represent anyone else than himself.
On the other hand, even if the internal reality of each individual will always differ to a certain
degree, the explicit knowledge concerning a constrained area might be more or less equal, es
pecially within groups of social actors (Gjersvik, 1993; Orlikowski and Gash, 1994). Another
factor is the scope of participation, i.e. when do participation take place. Usually one would
expect that user-participation would take place heavily in analysis and in acceptance testing,
more lightly in design, and very little in implementation, but this will often depend on the chosen
methodology. When it comes to suggesting improvements of the current information system of
the organization, direct participation should be possible. Also in planning leading up to project
establishment, a larger proportion of the stakeholders should be able to participate.

Another aspect related to this point, is where the changes of the portfolio takes place:
• In the user organization.
• In a data department, developing customized systems.
• Centrally, with one unit developing the core of the systems, which are then customized

locally.
• Externally developed packages with large local adaptions.
• Externally developed packages with small local adaptions.
• By a different organization all-together (out~ourcing)
Typically, one would expect a mix of these models within the support of a portfolio. We will

not investigate this in detail here.

2.7 Maturity

Whereas some of the methodologies being presented in literature have been used for many years
by many organizations, others are only described in theory, and never tried out in practice. When

288 Method Engineering

discussing the maturity of a methodology, we can differentiate between the following factors:
• Is the methodology properly described? (vs. representation of process)
• Is the methodology supported by mature, high quality tools?
• Is the methodology (re)used and updated through practical application? Is it used by many

organizations, supporting a large part of the portfolios in these organizations?
• Is the methodology undergoing a conscious evolution based on experience with the use of

the methodology, being "annotated" with information about what parts of the methodology
seems appropriate in a given situation?

Different parts of a methodology will typically be of varying maturity.

3 SUMMARY AND CONCLUSION

We have in (Krogstie, 1995) given an overview and classification of a host of existing method
ologies and frameworks using the above classification. The following methodologies and frame
works were classified primarily based on the cited works.

• The conventional waterfall model (Royce, 11}70).
• The structured life cycle (Yourdon, 1988).
• Iterative and throwaway prototyping (Carey, 1990).
• Incremental development (Davis et al., 1988).
• Transformational and operational development (Zave, 1982).
• Tempora (Loucopoulos et al., 1991).
• Methodll (METHOD1:89, 1989).
• The spiral model (Boehm, 1988).
• The hierarchical spiral model (Iivari, 1990a).
• The fountain model (Henderson-Sellers and Edwards, 1990).
• OMT (Rumbaugh et al., 1991).
• REBOOT (Karlsson (ed.), 1995).
• CONFORM (Capretz and Munro, 1994).
• Maintenance as reuse-oriented development (Basili, 1990).
• Multiview (Avison and Wood-Harper, 1990).
• STEPS (Hoyd et al., 1989).
• Systems devtenace (Krogstie, 1995).

Due to space limitation, we will here only summarize this work, noting that we have tried to
include examples such that all aspects are covered in full by at least one approach. A short sum
mary of our classifications is given in Table 3. It includes the first six aspects of the classification.
The first column indicate the "Weltanschauung" as judged by what we have read on the method
ologies. Process coverage indicates the areas that we judge the methodologies give comprehen
sive support in. Product coverage differentiate upon those methodologies which we regard as
being useful for the support of more than one CIS at the time. Reuse is not discussed explicitly
in many methodologies, which is indicated with - in the table. The 'conceptual modeling' col
umn indicate the use and kind of languages used. 'OOA' refers to the use of languages for object
oriented analysis, which are mostly semi-formal. Finally, the participation column indicates the
strength of participation as indicated in the descliptions of the methodology.

A classification of methodological framework 289

Table 1 Classifications of methodologies

Methodology Weltanschauung Process Product Reuse Conceptual Part.
coverage coverage modeling (range)

Waterfall Objecti vistic Development + one Little 2-4
Structured Objectivistic Development one Semi-formal 2-4
Proto typing Objecti vistic Development one with 4-5

(early)
Operational Objectivistic Development one Generative Formal 2-4
Tempora Objectivistic Development one Generative Formal 2-4
Method/l Objectivistic Planning/ one/ In the large Semi-formal 2-5

Development portfolio
Spiral Objectivistic Development! one with 3-5

maintenance
Hierarchical Objectivistic Development! one Yes 3-4
spiral maintenance
Fountain Objectivistic Development one for/with OOA

(mainly)
OMT Objectivistic Development one for OOA 2-4
REBOOT Objectivistic Development! one/ for/with OOA 2-3

maintenance portfolio
CONFORM Objecti vistic Maintenance one
Basili Objectivistic Development! one/ for/with

maintenance portfolio
Multiview Constructi vistic Development one Semi-formal 4-5
STEPS Constructivistic Development one 4-5

maintenance/use
Devtenance Constructivistic Development One/ Generative Formal 4-5

maintenance/useportfolio

290 Method Engineering

According to our classifications we conclude the following:

• Weltansscahuung: As also noted in (Hirschheim and Klein, 1989), most earlier and current
methodologies for application systems development and maintenance have an objectivis
tic outlook. Some exceptions illustrated are STEPS (Floyd et al., 1989), Multiview (Avi
son and Wood-Harper, 1990), and systems devtenance (Krogstie, 1995). Other examples
are methodologies based on SSM (Checkland, 1981) and some PD-methodologies (Schuler
and Namioka, 1993).

• Coverage in process: Most methodologies for CIS-support are focused on development,
with maintenance being looked upon as a separate end-phase if considered at all. Several
methodologies focused on maintenance also exist (e.g.CONFORM (Capretz and Munro,
1994), see also (Boldyref et al., 1994», even if this part of CIS-support is not shown the
same interest as development by researchers according to (Hale et al., 1990; l¢rgensen,
1994). Some methodologies covers both development and maintenance in the same frame
work in an integrated manner (e.g. The Spiral Model (Boehm, 1988), the Hierarchical
Spiral Model (livari, 1990a; Iivari, 1990b) and the framework presented by Basili (Basili,
1990) where also emergency error-correction is covered). STEPS (Floyd et al., 1989) and
systems devtenance (Krogstie, 1995) also includes the usage aspect. Methodll includes
IT-planning in an integrated manner.

• Coverage in product: We have found few methodologies apart from system devtenance
that cover traditional development or maintenance of the whole portfolio in a focused man
ner, even though maintenance can be said to often be performed in this way (Swanson
and Beath, 1989). Several methodologies include organization-wide CIS-planning (e.g.
METHODIl (METHOD1:95, 1995».

• Reuse: Some methodologies explicitly addressing reuse exist (e.g. REBOOT (Karlsson
(ed.), 1995», even if few development and maintenance methodologies are geared to
wards conscious component reuse. Operational and transformational approaches as de
scribed in (Zave, 1982) are highly geared towards generative reuse. This is also the case
with Tempora and systems devtenance.

• Use of conceptual models: Many methods use conceptual modeling to some extent, even if
most use only semi-formal modeling languages. On the other hand, the use of operational
conceptual models have received increasing interest as illustrated through Tempora and
systems devtenance.

• Stakeholder participation: Increasingly looked upon as important both in objectivistic and
especially constructivistic methodologies. This might be endangered by the current trend
of more and more use of packages and outsourcing, although this might have economic
advantages in the short run.

• Maturity: Most mature methodologies resembles traditional waterfall, but many of these
are taking newer aspects into account e.g. Method!1 and extensions of this. Most method
ological frameworks described in literature have a very low maturity. This especially ap
plies to system devtenance, which is the framework which otherwise are meant to best
cover the other six aspects.

A classification of methodological framework 291

4 CONCLUDING REMARKS

There seems to be an overall view that there are no right detailed methodology for all situa
tion (Avison and Wood-Harper, 1990; Floyd et al., 1989; Glasson, 1989; Iivari, 1990a) some
thing which are also recognized in more traditional methodologies like Method/I. The different
development and maintenance effort5 can vary according to several factors e.g.:

• The complexity of the application system (cf. (Brooks Jr., 1986».
• The current rate of change(cf. the discussion on evolution in the introduction).
• The size, perceived importance, and risks of performing the changes (cf. (Boehm, 1988».
• The number of stakeholders affected, skills needed and possessed.
• The number of different views of the situation (cf. social construction theory as described

in the introduction).
Thus there is a need for flexibility, but in our opinion one still need a methodological framework
of some sort to be able to deliver CIS-support in an organization. Taking into account the mul
titude of techniques, there is an obvious need for an integrative framework that can incorporate
existing more detailed approaches and support their flexible situation-dependant use. The work
presented in this paper is meant to give an indication of some of the main aspects that such a
framework should cover.

Taking a philosophical standpoint neither reuse nor conceptual modeling nor having a de
fined methodology can be optimal, since all situations are unique, and thus in principle can best
be attacked by using unique means. Reusing artifacts originally produced for some other pur
pose, in effect means to apply an externalization of the local reality of someone else than the
current stakeholders, which thus can not be optimal. On the other hand, reuse is performed all
the time. Using a commercial DBMS is for instance reuse, but it is not very wise to produce
your own database management system when you perceive a need for this kind of functionality
if you do not have very special needs. A balance between the different concerns brought up by
our philosophical outlook is thus necessary.

5 REFERENCES

Alagappan, V. and Kozaczynski, W. (1991). The evolution of very large systems. In Lowry,
M. R. and McCartney, R. D., editors, Automating Software Design, pages 1-24, California,
USA. The MIT Press.

Arnold, R. S. and Parker, D. A. (1982). The dimensions of healthy maintenance. In Proceedings
of the 6th International Conference on Software Engineering (ICSE), pages 10-17. IEEE
Computer Society Press.

Avison, D. E. and Wood-Harper, A. T. (1990). Multiview: An Exploration in Information Sys
tems Development. Blackwell, Oxford, England.

Basili, V. R. (1990). Viewing maintenance as reuse-oriented software development. IEEE Soft
ware, 7(1):19-25.

Bergersen, L. (1990). Prosjektadministrasjon i systemutvikling. Aktiviteter i planlegningsfasen
som pavirker suksess (In Norwegian). PhD thesis, ORAL, NTH, Trondheim, Norway.

292 Method Engineering

Blum, B. I. (1994). A taxonomy of software development methods. Communications of the
ACM,37(1l):82-94.

Boehm, B. W. (1988). A spiral model of software development and enhancement. IEEE Com
puter, pages 61-72.

Boldyref, C., Burd, E. L., and Hather, R. M. (1994). An evaluation of the state of the art for
application management. In (Milller and Georges, 1994), pages 161-169.

Borgida, A., Greenspan, S., and Mylopoulos, J. (1985). Knowledge representation as the basis
for requirements specification. IEEE Computer, 18(4): 82-91.

Brooks Jr., F. P. (1986). No silver bullet. Essence and accidents of software engineering. In
Kugler, H. J., editor, Information Processing '86, pages 1069-1076. North-Holland.

Bubenko jr., J. A. (1983). On concepts and strategies for requirements and information analysis.
In Information Modelling, pages 125-169. Chartwell-Bratt Ltd.

Burrel, G. and Morgan, G. (1979). Sociological Paradigms and Organizational Analysis. Heine
mann.

Capretz, M. A. M. and Munro, M. (1994). Software configuration management issues in the
maintenance of existing system. Journalqf Software Maintenance, 6: 1-14.

Carey, J. M. (1990). Prototyping: Alternative systems development methodology. Information
and Software Technology, 32(2): 119-126.

Checkland, P. B. (1981). Systems Thinking, Systems Practice. John Wiley & Sons.

Davis, A. M. (1988). A comparison of techniques for the specification of external system be
havior. Communications of the ACM, 31 (9): 1098-11l5.

Davis, A. M. (1995). Object-oriented requirements to object-oriented design: An easy transi
tion? Journal of Systems and Software, 30(l/2):151-159.

Davis, A. M., Bersoff, E. H., and Corner, E. R. (1988). A strategy for comparing alternative
software development life cycle models. IEEE Transactions on Software Engineering,
14(8):1453-1461.

Dekleva, S. M. (1992a). Delphi study of software maintenance problems. In Proceedings of the
Conference on Sofware Maintenance (CSM'I.)2), pages 10-17.

Dekleva, S. M. (l992b). The influence of the information systems development approach on
maintenance. MIS Quarterly, pages 355-372.

Floyd, C., Reisin, F.-M., and Schmidt, G. (1989). STEPS to software development with users. In
Ghezzi, C. and McDermid, J. A., editors, 2nd European Software Engineering Conference
(ESEC'89), pages 48-63, University of Warwick, Coventry, England.

FRISCO (March 1995). Personal communication with the FRISCO task group.

A classification of methodological framework 293

Gjersvik, R. (1993). The Construction of Information Systems in Organization: An Action Re
search Project on Technology, Organizational Closure, Reflection, and Change. PhD thesis,
ORAL, NTH, Trondheim, Norway.

Glass, R. L. (1992). We have lost our way. lournal of Systems and Software, 18(2):111-112.

Glasson, B. C. (1989). Model of system evolution. Information and Software Technology,
31(7):351-356.

Greenberg, E. S. (1975). The consequences of worker participation: A clarification ofthe theo
rethicallitterature. Social Science Quarterly, 56(2).

Hagelstein, J. (1988). A declarative approach to information systems requirements. Knowledge
Based Systems, 1(4):211-220.

Hale, D. P., Haworth, D. A., and Sharpe, S. (1990). Empirical software maintenance studies
during the 1980s. In Proceedings of the Conference on Software Maintenance (CSM'90),
pages 118-123. IEEE Computer Society Press.

Heller, F. (1991). Participation and competence: A necessary relationship. In Russel, R. and Rus,
Y., editors, International Handbook of Participation in Organizations, pages 265-281.

Henderson-Sellers, B. and Edwards, J. M. (1990). The object-oriented systems life cycle. Com
munications of the ACM, 33(9):142-159.

Hirschheim, R. A. (1984). A participative approach to implementing office automation. In Pro
ceedingsfrom the loint International Symposium on Information Systems, pages 306-329,
Sydney, Australia.

Hirschheim, R. A. and Klein, H. K. (1989). Four paradigms of information systems develop
ment. Communications of the ACM, 32(lO):pages 1199-1216.

Iivari, J. (1990a). Hierarchical spiral model for information system and software development.
Part 1: Theoretical background. Information and Software Technology, 32(6):386-399.

Iivari, J. (1990b). Hierarchical spiral model for information system and software development.
Part 2: Design process. Information and Software Technology, 32(7):450-458.

JfI!rgensen, M. (1994). Empirical studies of Software Maintenance. PhD thesis, Department of
Informatics, University of Oslo, Oslo, Norway.

JfI!rgensen, M. and Maus, A. (1993). A case study of software maintenance tasks. In Proceedings
of Norsk Informatikk Konferanse 1993 (NIK'93), pages 101-112, Halden, Norway.

Karlsson (ed.), E.-A. (1995). Software Reuse: A Holistic Approach. John Wiley & Sons.

Krogstie, I. (1995). Conceptual Modeling for Computerized Information Systems Support in
Organizations. PhD thesis, IDT, NTH, Trondheim, Norway.

Krogstie, J. and SfI!lvberg, A. (1994). Software maintenance in Norway: A survey investigation.
In (MUller and Georges, 1994), pages 304-313. Received "Best Paper Award".

294 Method Engineering

Layzell, P. J. and Macauley, L. (1994). An investigations into software maintenance - perception
and practices. Software Maintenace: Research and Practice, 6:105-119.

Lientz, B. P. and Swanson, E. B. (1980). Software Maintenance Management. Addison Wesley.

Loucopoulos, P., McBrien, P., Schumacker, F., Theodoulidis, B., Kopanas, Y., and Wangler, B.
(1991). Integrating database technology, rule-based systems and temporal reasoning for
effective information systems: The TEMPORA paradigm. Journal of In/ormation Systems,
1:129-152.

Lyytinen, K. (1987). A taxonomic perspective of information systems development: Theoretical
constructs and recommendations. In Boland Jr, R. J. and Hirschheim, R. A., editors, Critical
Issues in In/ormation Systems Research, chapter I, pages 3-41. John Wiley & Sons.

Macauley, L. (1993). Requirements capture as a cooperative activity. In Proceedings of the First
Symposium on Requirements Engineering (RE'93), pages 174-181.

METHOD1:89 (1989). FOUNDATION - Method/I, 1iwls Reference Manual, Version 2.1. An
dersen Consulting.

METHODI:95 (1995). Method/I, System Development Management. Andersen Consulting.

MUller, H. A. and Georges, M., editors (1994). Proceedings of the International Conference on
Software Maintenance (ICSM'94). IEEE COmputer Society Press.

Mumford, E. (1983). Participation - from Aristotle to today. In Bemelmans, T. M. A., editor,
Beyond Productivity: Information Systems Development for Organizational Effectiveness,
pages 95-104. North-Holland.

Orlikowski, J. W. and Gash, D. C. (1994). Technological ti·ames: Making sense of information
technology in organizations. ACM Transactions on Information Systems, 12(2):174-207.

Prieto-Diaz, R. (1993). Status report: Software reuseability. IEEE Software, pages 61-66.

Royce, W. W. (1970). Managing the development oflarge software systems: Concepts and tech
niques. In Proceedings WESCON.

Rumbaugh, J., Blaha, M., Premerlani, w., Eddy, F., and Lorensen, W. (1991). Object-Oriented
Modeling and Design. Prentice-Hall, Englewood Cliffs, NJ.

Schuler, D. and Namioka, A. (1993). Participatory design: Principles and Practices. Lawrence
Erlbaum.

Swanson, E. B. and Beath, C. M. (1989). Maintaining Information Systems in Organizations.
Wiley Series in Information Systems. John Wiley & Sons.

Thomas, I. and Nejmeh, B. A. (1992). Definitions of tool integration for environments. IEEE
Software, 9(2):29-35.

van Assche, F., Layzell, P., Loucopoulos, P., and Speltincx, G. (1988). Information systems
development: A rule-based approach. Knowledge Based Systems, 1(4):227-234.

A classification of methodological framework 295

van Swede, V. and van Vliet, H. (1994). Consistent development: Results of a first empirical
study of the relation between project scenario and success. In Wijers, G., Brinkkemper,
S., and Wasserman, T., editors, Proceeding~ of the 6th International Conference on Ad
vanced Information Systems EngineerinK (CAiSE'94), pages 80-93, Utrecth, Netherlands.
Springer Verlag.

Wilkie, G. (1993). Object-Oriented Software EnKineerinK - The Professional Developers's
Guide. Addison-Wesley.

Williams, G. B., Mui, C. K., Johnson, B. B., and Alagappan, V. (1988). Software design issues:
A very large information systems perspective. Technical report, CStar, Arthur Andersen,
Chicago.

Yourdon, E. (1988). ManaginK the System Lit!' Cycle. Prentice-Hall.

Zave, P. (1982). An operational approach to requirements specification for embedded systems.
IEEE Transactions on Software EnKineering, X(3):250-269.

6 BIOGRAPHY

• John Krogstie is a Senior Consultant with Andersen Consulting ANS in Norway. Krogstie
received a MSc and a PhD in computer science from the University of Trondheim .

• Arne Slflvberg is a professor of computer Science at the University of Trondheim, NTNU.
Ss;;lvberg received a MSc in applied physics and a PhD in computer science from the Uni
versity of Trondheim.

19

Method Engineering: Current research
directions and implications for future
research

Juha-Pekka Tolvanen, Matti Rossi and Hui Liu
Department of Computer Science and Information Systems
University of Jyviiskylii
P.D. Box. 35, 40351 Jyviiskylii, Finland
E-mail: {jpt.mor.huiliu}@ hyeenajyufi

Abstract
In this study we investigate method engineering research by classifying studies into three
contexts: technology, language and organization. Within each context we examine research
bias, research outcomes and use of alternative research methods. This survey reveals the
inherent bias of ME research towards tool and language development at the cost of empirical
studies. We lack investigations of why organizations develop their own "variants" of system
development methods, and how they manage their method engineering efforts. These
observations lead us to suggest some directions for future research, which relate both to actual
research questions and to the use of complementary research methods.

Keywords
Metamodeling, method engineering, system development methods, research methods

1. INTRODUCTION

From time to time every research domain should take a closer look at what kind of research
efforts have been carried out, what have been the results so far, and where research is
currently heading. This kind of survey reveals what kinds of research questions are
emphasized, and more importantly, what questions are being ignored, and what research
methods are used or should be used.

The starting point for this study is the obvious need to make a survey of past research in
method engineering (ME). By ME we mean a discipline of designing, constructing and
adopting methods and tools for information systems development (Kumar and Welke 1992,
Brinkkemper 1995). The area of ME has grown from two observations: First there has been a
need to describe different information system development (ISD) approaches by a common
language in order to compare them (e.g. OIle et a1. 1983). Second, there has been a need to

Method engineering 297

develop support environments for methods (Kottemann and Konsynski 1984, Bubenko 1988).
When the development of a CASE tool for a given method was observed to be too expensive,
the idea of generic CASE environments, or CASE toolkits, emerged (Kottemann and
Konsynski 1984, Kumar and Welke 1992).

The need of an investigation into ME research is motivated by some observations. First,
there exists a relatively large body of research on ME for the basis of the survey. For example,
significant research effort has recently been expended on developing new, or extending
available languages for method modeling (e.g. Smolander 1991, Hofstede 1993, etc.). Another
example is the emergence of several metaCASE tools (e.g. Sorenson et al. 1988, Smolander et
al. 1991, Heym and Osterle 1993 etc.). Second, research on ME has gathered growing interest
during this decade, and this trend will most likely continue. Consequently, we face the need to
solicit research questions that have remained unanswered, and to develop research methods
that can improve the research being done. Finally, a survey to ME literature is important
simply because such studies have not been made.

As the title of the paper indicates, the objective of the study is twofold. First, we will
analyze what aspects and questions of ME have been studied, how they have been studied (Le.
which research methods have been applied), and what have been the most remarkable
findings. The survey is conducted by analyzing ME literature within three different contexts:
technology, language and organization context. Each context is also analyzed by the use of
research methods. The results of the study clearly show a bias in current ME research, both
related to the contexts (Le. technology and language), and applied research (Le. language
construction and tool development) and basic research (Le. theory building for ME). The
second objective of our survey is to propose research topics that have remained unanswered.
Similarly, we should examine the weaknesses in the use of various research methods and
propose research approaches for future research on ME. We hope that the study will provide
insights into current research directions in ME research as well as highlight areas in need of
future research.

The paper is organized as follows. In the next section we shall discuss the foundations of
ME and describe the framework used in analyzing ME research. Section 3 presents the survey,
and Section 4 focuses on the use of research methods. Section 5 proposes future research
directions and topics. Finally, Section 6 summarizes the study.

2. METHOD ENGINEERING: A DEFINITION AND A FRAMEWORK FOR
THE STUDY

2.1 Foundation and definition

In its simplest form we can say that a metamodel is a conceptual model of a development
method (Brinkkemper 1990). Consequently, metamodeling can be defmed as a modeling
process, which takes place one level of abstraction and logic higher than the standard
modeling process (Gigch 1991). A metamodel captures information about the concepts,
representation forms (or signs, cf. Leppanen 1994), and uses of a method. For example, in
data-flow diagrams the concepts used to model systems are processes, data stores, external
entities and various relationships between them. Moreover, the metamodel of data flow

298 Method Engineering

analysis defines how each object (concept) is represented (e.g. the symbol definition for an
external entity is a square), and in what order the system model should be created (e.g. top
down structure). The relationships between modeling and metamodeling are illustrated in
Figure 1 (cf. Brinkkemper 1990).

Modeling

Model of a system

Figure 1. Metamodeling and modeling.

A system to be
modeled

Configurable CASE tools, or CASE shells (Bubenko 1988), or metasystems (Sorenson et al.
1988) use a set of primitives, which allow them to describe a given method quickly and
mechanisms to implement a tool to support the defmed method. The first configurable CASE
environments used complicated textual languages for method definition (e.g. see ISDOS
1985). It soon became evident that "Design of methodologies and applications systems are
very comparable exercises in human endeavor. In both cases one has to decide what data is
needed and what processes are to be supported. This recursivity (if that's the right word)
means that one should be able to specify a design methodology in itself - an assertion that
was made in earlier days about programming languages" (Olle et al. 1983 p.8). This
recursivity led to the foundation of the area of method engineering (Kumar and Welke 1992).

Brinkkemper (1995) has defined method engineering as "a discipline to design, construct
and adapt methods, techniques and tools for the development of information systems". If the
method engineering process is supported by specific computer aided tools we call the
engineering discipline Computer Aided Method Engineering (CAME), and the supportin~
tools CAME tools. A person responsible for developing and implementing method
specifications is called a method engineer.

2.2 A taxonomy for ME research

Throughout this paper we shall apply a framework in surveying and analyzing ME research.
The framework consist of two dimensions: the contexts of ME and research methods. The
context dimension includes a technology context, a language context and an organization
context (Lyytinen 1987), and they are used to classify the literature on ME. The technology
context refers to various tools needed for processing, storing and retrieving descriptions of
both ISD methods and system models. Thus, the technology provides a platform and

Method engineering 299

supporting mechanisms for ME. The language context refers to the method modeling
languages applied in ME. The languages are used for example in describing conceptual
structures, representations and use situations of methods. Finally, the organization context
connects method engineering with its purpose, goals, supporting organizational structures and
mechanisms.

Although some other frameworks could also suit our survey, we believe that the three
contexts selected are general and exhaustive enough to classifY ME into distinct domains. For
example the three contexts cover the domains of ME proposed by Kumar and Welke (1992),
Heym and Osterle (1993), Brinkkemper (1990), and Wijers (1991).

2.3 The nse of research methods

The second dimension of the framework consists of research methods and allows us to
examine the research in each context. The classification into research methods is important
since ME is a relatively new research field in which complementary research efforts are
needed to improve the quality of the research outcomes. In using this dimension of the
framework we shall investigate the current use and the possible bias of research method use
(Section 4), and later recommend topics for future research (Section 5).

The selected taxonomy of research methods includes the following types: survey, field
study, laboratory experiment, case study, action research, applied, basic and normative. In
principle other taxonomies could be applied but the selected one has been proven suitable for
surveying similar research fields, such as CASE (Wynekoop & Conger 1991) and ISD
methods (Wynekoop & Russo 1993). Each research method is briefly described below. A
more thorough discussion of characteristics, strengths and weaknesses of different research
methods can be found in Wynekoop and Conger 1991, Galliers 1991, Benbasat et a!. 1987,
Jenkins 1985, and WoodHarper 1985.

The first five research methods are empirical ones based on observation or interpretation.
Survey is based on gathering field data using sampling and typically questionnaires and
interviews. The data gathered focuses on a snapshot of practice, and independent variables are
not manipulated. Field study focuses on evaluating changes in selected organizational
systems. Here dependent variables are systematically measured, but not manipulated.
Laboratory experiments allow researchers to create settings in which precise relationships
between variables can be controlled and measured. By replicating experiments with multiple
samples generalizations can be obtained that are valid outside the sample population. Case
studies are evaluations of particular subjects, such as an organization, a group of people, or
systems, at a point of time. They attempt to capture the "reality" in greater detail than any of
the above research methods; typically no control of the phenomena is exercised. Action
research can be understood as a case study with the exception that the researcher, using
qualitative and "typical" representatives from the sample, participates in the area of study and
simultaneously evaluates its results. Thus, in action research there is a possibility to obtain a
deeper and first-hand understanding of the situation.

The last three research methods, i.e. applied, basic and normative, are based on researchers'
ideas as well as on comparing them with other perspectives or ideas. Applied research can be
characterized as goal-directed: a specific goal is known and the usefulness of the developed or
designed outcome can be evaluated and compared to similar ones. Basic research deals with
developing new theories based on the expertise and reasoning capabilities of the researcher.

300 Method Engineering

Normative writing include attempts to concept development, presentation of ideas and
applications, or ISD method descriptions. This paper clearly belongs to the normative
category.

3. SURVEY INTO ME RESEARCH

In this section we shall apply the proposed framework to survey the literature of ME.
Basically we tried to collect a representative set of papers for each category and, if possible,
papers that also address the use of various research methods. For each context the following
features are discussed: description of the context from the ME viewpoint, description of the
research done, results of the research efforts, and questions that have been left unanswered.

3.1 Technology context

Lyytinen (1987) uses the term technology context to refer to ''the view of how to efficiently
process and store signs (data) in some material carrier". In ME this can be interpreted as a
viewpoint of what kind of technical tool environments are used during method development,
and how effectively ISD method representations can be transformed into CASE environment
representations (Karrer and Scacchi 1993).

One major research stream in ME has traditionally focused on the development of tools for
capturing method knowledge (cf. Heym and Osterle 1993, Harmsen et al. 1994a, Verhoef et
al. 1991), as well as on building generic CASE toolkits which can be customized for different
methods (cf. Teichroew et al. 1980, Chen et al. 1989, Sorenson et al. 1988, Bergsten et al.
1989, Smolander et al. 1991, Rossi 1995, Grundy and Venable 1995).

The technology contexts can be further divided into two broad categories by how they
model the object systems (Lyytinen 1987). These categories are data oriented and process
oriented approaches. In ME a similar division can also be observed: there is a class of
metalanguages and meta systems that model the data models of methods and support the
storage of models made according to these definitions (Sorenson et al. 1988, Smolander 1991,
etc.). In the process camp - with fewer representatives than data oriented - the research has
focused on process representations and tools which support the enactment of these processes
(Hofstede, et al. 1993, Wijers 1991, Hidding et al. 1993, etc.).

As in CASE research (cf. Wynekoop and Conger 1991) there is a bias towards building
metaCASE and CAME environments rather than evaluating them. There are many articles
that describe either principles and requirements for such environments (cf. Marttiin et al.
1995, Harmsen and Brinkkemper 1993, Goldkuhl and Cronholm 1993, Heym and Osterle
1993), or represent how one particular metasystem has been implemented and how it works
(cf. Teichroew et al. 1980, Sorenson et al. 1988, Bergsten et al. 1989, Chen et al. 1989,
Smolander et al. 1991, Rossi 1995, Jarke et al. 1991). A number of articles describe individual
aspects of metaenvironments for different purposes. See for example transformations (cf.
Boloix et al. 1991a), metrics (cf. Boloix et al. 1991b), automatic diagram generation (cf.
Protsko et al. 1989).

There is, however, a paucity of research that describes the use of these tools in practice.
Only two empirical studies addressing the capabilities of adaptable environments were found:
Cronholm and Goldkuhl (1992) studied method adaptations done with four different tools and

Metlwd engineering 301

five methods. Marttiin et al. (1993) made laboratory experiments by adapting the same
method for three different CASE shells. These studies reveal that CAME tool developers have
concentrated so far on techniques that allow tool customization and method adaptation rather
than on developing techniques and principles for utilizing tool based knowledge about
methods, for example in method selection, method composition, construction, and reuse.
Hence, without proven ME principles on method construction and experience, the
development of tool support for ME will be slowed down, and thus will remain in its infancy.

3.2 Language context

An IS language provides a means and an environment for linguistic communication which
encompasses the use, nature, content, context and form of signs included in the IS (Lyytinen
1987). Seen in this light, the ME language context covers the language facilities for method
construction, use and evaluation. The current research on ME languages has mainly focused
on the following issues: (1) the metamodeling formalisms for data (i.e. product)-oriented
models, process-oriented models of methods, or both; (2) mechanisms for integrating
methods; (3) evaluation of the ISD methods; and (4) the effective representational paradigms
of ME languages. Note that rather than being orthogonal to one another, these issues are
internally related. Below we shall examine each category and summarize main topics of the
research.

Metamodeling formalisms
The research in metamodeling formalisms has been so far one of the most intensively studied
areas in ME. This is rational as it forms the basis for systematic ME. The general requirements
for ME language can be found: Kottemann and Konsynski (1984), Marttiin et al. (1995), and
Welke (1992) recognize the need of rich semantic constructs for modeling the conceptual
structure and constraints of methods. Rolland et al. (1995) present a set of characteristics of
process models which a meta-process model should cope with.

Starting from Teichroew et al. (1980), most of the meta-data modeling formalisms rely on
an existing semantic model (Hull and King 1987). Two types of semantic models, ER-based
models and NIAM-based models have been investigated in particular. Extensions to the ER
model (Sorenson et al. 1988, Welke 1992, Smolander 1991) seek to improve the expressive
power by directly enforcing certain integrity constraints (Welke 1992, Kelly and Tahvanainen
1994), or by representing complex objects (Welke 1992). The developed NIAM-based
conceptual metamodeling formalisms (Bommel et al. 1991, Hofstede, et al. 1993, Hofstede
and Weide 1993a) attain similar goals, but are founded on a more formal basis than the ER
based ones. The higher level degree of formality have made it easy to develop conceptual
manipulation languages, like Lisa-D (Hofstede et al. 1993), to manage model (schema)
evolution (Proper and Weide 1994), or to unify the object-role models (Bronts et al. 1995).
For other metamodeling formalisms, Saeki and Wenyin (1994) have adapted an object
oriented modeling language called Object-Z. Ahituv (1987) introduces a formal metamodel,
which views an information system as the data flow that moves from one state to another, and
by which some existing methods can be modeled. The work of (Oei et al. 1992, Oei and
Falkenberg 1994, Oei 1995) introduces a formal language for modeling methods and
transforming them into a method hierarchy. The functionality of a method engineering

302 Method Engineering

language called MEL is sketched by Harmsen et al. (1994a) and Brinkkemper (1995). MEL is
a specification and manipulation language for situational method construction.

Another aspect of ME, meta-process modeling, is less developed than the data aspect".
Nevertheless, the research can be classified into three categories of process modeling
(Dowson 1987): activity-oriented, product-oriented, and decision-oriented. The formal model
called "task structure" (Wijers 1991, Hofstede and Nieuwland 1993) has been developed to
specify the relationships among the modeling tasks targeted to achieve certain objectives. The
meta-process model of Tolvanen et al. (1993a) is able to specify activity models and agent
models which specify, respectively, activities performed and the agents involved in utilizing a
method. These two meta-process models are activity-oriented. The meta-process model
proposed by Marttiin (1994) supports essentially both the specification of modeling products
and the activities needed to make it evolve. It is, therefore, a product oriented model. The
proposal of Rolland et al. (1995) focuses on the specification of successive transformations of
the modeling product looked upon as consequences of decisions. Thus, this model falls in the
last category. The strategies of integrating a meta-data model and a meta-process model are
also addressed by Wijers and Dort (1990) and Tolvanen et al. (1993a).

Integration of methods
Integration of methods here refers to the capability of a ME language to associate multiple
meta (data) models and to administrate, to cross-check, to reuse, to transform, or to compare
them. To provide a comprehensive administrative functionality, the already mentioned
modeling language MEL includes a set of operations for specifying, updating, selecting and
assembling method fragments (Harmsen et al. 1994a). Kelly and Tahvanainen (l994a)
introduce an approach based on the mechanisms of "property sharing" and type reuse to
integrate methods that are used in parallel to model the same real-world domain. Motivated by
the same goal, the proposal of Saeki and Wenyin (1994) associates interrelated semantic
constructs (data types) to the same object (instances) domain. For reuse, two recent studies
have suggested a framework for organizing "reusable" method fragments (Rossi and Tolvanen
1995, Brinkkemper 1995).

An approach for transforming specifications between different methods is reported in
Boloix et al. (1991). Another approach for integrating methods, which is particularly well
suited for method comparison, is the aforementioned work of (Oei et al. 1992, Oei and
Falkenberg 1994, Oei 1995). One of its distinct features is its rationale of harmonizing
metamodels by transforming them into a common metamodel hierarchy (MMH) following
certain criteria, thus providing a platform for comparing them.

Evaluation of methods
One driving force for ME is the need for a systematic and objective meanst to compare or
evaluate methods, with the aim of reducing the "Y AMA (Yet Another Modeling Approach)
Syndrome" (Oei et al. 1992) or "chopping down the methodology jungle." (Hofstede and
Weide 1993b). Two types of research can be distinguished according to the aim of method

• Although nwnerous process models have been proposed for software engineering, some of which can be used in
principle as meta-process models, we restrict our attention here to those process models explicitly developed for
ME.
t We therefore focus on the formal systematic approaches for method evalution, excluding the nwnerous studies
using an ad hoc means for method comparison.

Method engineering 303

evaluation. One stream attempts to find prominent characteristics of methods by comparing a
set of methods based on their meta-data model or meta-process model, or both (Hong et al.
1993.-Song and Osterweil 1992, Song and Osterweil 1994, Oei 1995). These characteristics
include similarities and differences among a set of methods (Hong et al. 1993, Song and
Osterweil 1992), or even expressiveness, liability or generality (Oei 1995). Another type is
aimed at analyzing the complexity-based features of methods based on a standardized method
metrics standard, as proposed by Rossi and Brinkkemper (1995). An obvious benefit of this
approach over the former is that it could easily be automated because of its formal and strict
mathematical basis.

Representational paradigms of ME languages
Overall, metamodeling languages need a variety of representation forms. Research has shifted
from the early textual style expressions as adopted in Teichroew et al. (1980) and Wijers
(1991) to two-dimensional visual languages. The development of visual metamodeling
languages has been heavily focused on diagrammatic paradigms, motivated by the fact that a
large amount of methods are developed with diagrammatic representations. Hofstede and
Weide (1993b) emphasize the importance of diagrammatic formalization in instantiating a
method, and develop a general approach for such formalization. Sommerville et al. (1987),
Smolander et al. (1991), Protsko et al. (1989), and Hofstede et al. (1992a) have proposed
languages to represent graphical notations of a method, their connections, and/or graphical
constraints. In addition, Kelly (1994) and Kinnunen et al. (1994) investigate the utilization of
a matrix format as a visual representation form for metamodeling. A recent trend extends
these developments to several representational paradigms, establishing a multiparadigrnatic
representational metamodeling environment. As an example, the MetaEdit+ metaCASE
environment supports modeling of a method using a diagram, a matrix (Kelly 1994), or a
table, and also a diagrammatic mode of querying method repository information (Liu 1995).

3.3 Organization context

The organization context is essential for ME because the development and use of ISD
methods always involves organizational structures, processes and interactions between people.
Within the organization context methods can be seen as organizational knowledge of lSD,
which evolves and needs to be managed. Similarly, because ME is essentially the same kind
of process as ISD it involves human interactions, such as decision making on method
selection and assembly, training on methods, operative control on method use, collecting and
sharing experience of method applicability.

Within the organization context several survey based studies (e.g. Wijers and Dort 1990,
Aaen et al. 1992, Yourdon 1992, Russo et al. 1995) have revealed that ISD methods are
developed or adapted locally. For example, a survey of over 100 organizations' use of ISD
methods (Russo et al. 1995) shows that more than 2/3 of the companies have developed or
adapted their methods in-house. Also, 89% of respondents believed that methods should be
adapted on a project-by-project basis.

Although the surveys clearly reveal that local method engineering take place in practice
they do not explain in more detail why and how local methods are produced and how the ME
efforts are organized. If organizations make their own versions of methods, these issues must
somehow be managed within the organizations, and this too could be studied empirically. The

304 Method Engineering

only research available on these issues consists of two field studies: Smolander et al. (1990)
examined the adaptation of tools and methods in eight companies, and Cronholm and
Goldkuhl (1993) studied five CASE tool adaptation projects. One of the main results of these
studies showed the absence of general strategies in ME. In adaptation projects several factors,
such as the size and skills of the organization as well as technology, can shape ME strategies.
No systematic methods or use of metamodeling languages was encountered. Although these
studies identifY key organizational requirements (e.g. related to issues on management and
user support, and on sufficient method knowledge) and problems (e.g. time and resources
needed) related to ME they are still tool-focused. For example, most of the adaptation
problems are related to the technical features and capabilities of the tools, rather than to
organizational issues. Similarly, Bubenko (1988) inspected the situational factors that affect
the choice of metaCASE technology: from the viewpoint of organizational context the factors
claimed to favor metaCASE are experience of using a particular method, support for in-house
methods, and better acceptance of the adapted tools.

Some studies have also reported experiences of ME (cf. WoodHarper 1985, Aalto 1993,
van Slooten 1995, Tolvanen 1995, Vlasblom et al. 1995). They still tend to focus on
describing developed methods and tools, rather than arguing for or against organizational
support. Based on the experiences of ME efforts some studies have proposed frameworks
(Slooten and Brinkkemper 1993, Tolvanen 1995), or metamodeling guidelines (Tagg 1990,
Tolvanen and Lyytinen 1993b) for ME. These either follow a fairly narrow view of
organizational support (e.g. the only unit is a MEIISD project), or are limited to specific tasks
of ME (e.g. tool adaptation). Finally and most importantly, the proposed frameworks have not
been validated through the feasibility of metamodeling languages and tools.

To summarize, the research focus in the organizational context has been on tool-related
aspects dealing with metaCASE selection, and on the identification of problems and
requirements for tool customization. Accordingly, there is a paucity of research on tasks,
organizational structures and mechanisms, and types of managerial coordination needed to
carry out ME efforts. Researchers have so far focused mostly on proposing an organizational
role for method engineers responsible for method management and redevelopment (e.g.
Bubenko 1988, Kumar and Welke 1992).

4. USE OF RESEARCH METHODS

This section extends our survey by examining the use of research methods in ME research. In
the following the use of research methods is discussed including references on published
research. Table 1 summarizes the discussion. Some of the papers could not be classified into a
single category: They focus on more than one context and apply multiple research methods.
However, the aim of this survey is not to classifY single papers but rather to find any overall
bias in the use of research methods.

The maj ority of the surveys analyzed - although they have not focused specifically on ME
rather on method use in general- falls into the organization context. However, these studies
show only that organizations are developing methods in-house, rather than inspect how and
why they are developed. In the technology context one survey was found (Karrer and Scacchi
1993)which examined the applications of meta-technology. Also, both of the field studies
found (Smolander et al. 1990, Cronholm and Goldkuhl 1993) focus on tool and method

Method engineering 305

adaptation, and thus investigated the capabilities of the customizable tools and organizational
mechanism used during ME effort.

The role of the case studies is typically centered on describing the phenomena and their
evolution in detail. In the language context Wijers (1991) conducted a case study using a
knowledge acquisition approach to elicit method knowledge from three method engineers who
had expertise for three different methods, and later using his modeling formalism to model
each method. The fmding shows the adequacy of the modeling formalism in coping with the
three methods. We included also studies comparing ISD methods (cf. Song and Osterweil
1992, Song and Osterweil 1994) into case category, since they validate the framework through
several method modeling cases. In the organization context, both case and action research
studies have been carried out (cf. WoodHarper 1985, Slooten 1995, Tolvanen 1995). Many of
the papers found describing ME projects, however, did not follow any case or action research
method, and thus belong to the normative category.

Especially in the technology context, the dominant research approach has been applied
research, to the degree that Nunamaker and Chen (1991) have developed a research approach,
coined "software engineering research, which uses system building as a major research
vehicle". Ever since the days of SEM (ISDOS 1985) tool research has focused on building
environments (cf. reported environments: RAMATIC (Bergsten et al. 1989), MetaPlex (Chen
et al. 1989), MetaEdit (Smolander et al. 1991), MetaView (Sorenson et al. 1988), and
ConceptBase (Jarke et al. 1990)). Similarly in ME language development several papers seek
to apply and extend existing theory or approaches from other closely related disciplines
(databases, programming languages, software engineering, visual languages, and so on) to
build and improve the capability of ME languages (Bronts et al. 1995, Liu 1995, Tolvanen et
al. 1993a, Hong et al. 1993, Boloix et al. 1991a, Protsko et al. 1989, Saeki and Wenyin 1994).

Basic research has been densely concentrated in the language context (see table below).
Although from the point of view of database modeling, some of the studies can be argued to
be applied research (e.g. extensions to ER or NIAM), we believe that most of them (if not all)
contribute to shape the theoretical basis of metamodeling. The numerous basic studies, on the
other hand, reflect the fact that ME is still a young research area.

Normative writings can be found from each category. In the technology context some
comparative research has emerged to categorize and compare features of available
environments (e.g. see Marttiin et al. 1993) as well as to propose frameworks for designing
environments (Goldkuhl and Cronholm 1993, Harmsen et al. 1994a). Several works in the
language context make efforts either to generalize the requirements for ME languages, or to
standardize the functionality of a ME language based on mathematics or conceptual
framework (see table below). In the organization context some papers follow normative
research since they propose a task of a method engineer (Kumar and Welke 1992), explains
reasons for selecting customizable tools (Bubenko 1988), describe tool adaptation practices
(Tagg 1990), or normative frameworks for ME (Slooten and Brinkkemper 1993).

Finally, and as important as the current use of research methods, there exist several
research method and context combinations that have remained untouched (i.e. empty slots in
the Table 1). First, there are fewer empirical studies than other research approaches; especially
when compared to the use of applied research in tool development and basic research on
language context. Second, the variety of research methods in the organization context is not
being exploited to its full extent, since ME focused studies have used field studies and
normative research.

T
ec

h
no

lo
gy

 c
on

te
xt

L

an
gu

ag
e

co
nt

ex
t

O
rg

an
iz

at
io

n
co

nt
ex

t

S
u

rv
ey

K

ar
re

r
an

d
S

ca
cc

hi
 1

99
3

W
yn

ek
oo

p
an

d
R

us
so

 1
99

3,
 Y

ou
rd

on

19
92

, W
ij

er
s

an
d

D
or

t
19

90
, A

ae
n

et
 a

l.
19

92
, K

us
te

rs
 a

nd
 W

ij
er

s
19

93

F
ie

ld

S
m

ol
an

de
r

et
 a

l.
19

90
, C

ro
nh

ol
m

 a
nd

 G
ol

dk
uh

l
S

m
ol

an
de

r
et

 a
l.

19
90

, C
ro

nh
ol

m
 a

nd

19
92

G

ol
dk

uh
l

19
92

L
ab

or
at

or
y

C
as

e
W

ij
er

s
19

91
, S

on
g

an
d

O
st

er
w

ei
l

19
92

, S
on

g
an

d
S

lo
ot

en
 1

99
5

O
st

er
w

ei
l

19
94

A
ct

io
n

W

oo
dH

ar
pe

r
19

85
, T

ol
va

ne
n

19
95

A
pp

li
ed

B

ri
nk

ke
m

pe
r

19
90

, S
or

en
so

n
et

 a
l.

19
88

,
B

ro
nt

s
et

 a
l.

19
95

, L
iu

 1
99

5,
 T

ol
va

ne
n

et
 a

l.
19

93
a,

N

/A

T
ei

ch
ro

ew
et

 a
l.

19
80

, C
he

n
19

88
, C

he
n

et
 a

l.
19

89
,

H
on

g
et

 a
l.

19
93

, B
ol

oi
x

et
 a

l.
19

91
a,

 P
ro

ts
ko

 e
t

al
.

C
he

n
et

 a
l.

19
89

, B
er

gs
te

n
et

 a
l.

19
89

, S
m

ol
an

de
r

et

19
89

,
S

ae
ki

 a
nd

 W
en

yi
n

19
94

al

.
19

91
, R

os
si

 e
t

al
.

19
92

, R
os

si
 1

99
5,

 R
os

si
 a

nd

T
ol

va
ne

n
19

95
, H

ar
m

se
n

an
d

B
ri

nk
ke

m
pe

r
19

93
,

H
ar

m
se

n
et

 a
l.

19
94

b,
B

ol
oi

x
et

 a
l.

19
91

 b
, P

ro
ts

ko

et
 a

l.
19

89
,1

99
1

B
as

ic

K
ot

te
m

an
n

an
d

K
on

sy
ns

ki
 1

98
4

A
hi

tu
v

19
87

, B
om

m
el

 e
t

al
.

19
91

, H
ar

m
se

n
et

 a
l.

I 9
94

a,
 K

el
ly

 1
99

4,
 K

el
ly

 a
nd

 T
ah

va
na

in
en

 1
99

4,

P
ro

pe
r

an
d

W
ei

de
 1

99
4,

 R
ol

la
nd

 e
t

al
.

19
95

, R
os

si

an
d

B
ri

nk
ke

m
pe

r
19

95
, W

el
ke

 1
99

2,
 S

om
m

er
vi

ll
e

et

al
.

19
87

, S
or

en
so

n
et

 a
l.

19
88

, T
ei

ch
ro

ew
et

 a
l.

19
80

,
H

of
st

ed
e,

 e
t

al
.

19
93

, H
of

st
ed

e
an

d
W

ei
de

 1
99

3a
,

H
of

st
ed

e
an

d
W

ei
de

 1
99

3b

N
on

n
at

iv
e

M
ar

tt
ii

n
et

 a
l.

19
95

, M
ar

tt
ii

n
et

 a
l.

19
93

, K
el

ly
 a

nd

K
ot

te
m

an
n

an
d

K
on

sy
ns

ki
 1

98
4,

 S
m

ol
an

de
r

19
91

,
B

ub
en

ko
 1

98
8,

 K
um

ar
 a

nd
 W

el
ke

 1
99

2,

S
m

ol
an

de
r

19
96

, B
ub

en
ko

 1
98

8,
 G

ol
dk

uh
l

an
d

K
el

ly
 1

99
5,

 L
ep

pa
ne

n
19

94
, K

in
nu

ne
n

an
d

L
ep

pa
ne

n
S

lo
ot

en
 a

nd
 B

ri
nk

ke
m

pe
r

19
93

, T
ag

g
C

ro
nh

ol
m

 1
99

3,
 H

ar
m

se
n

an
d

B
ri

nk
ke

m
pe

r
19

93
,

19
94

, W
el

ke
 1

99
2

19
90

, V
la

sb
lo

m
 e

t
al

.
19

95

B
ri

nk
ke

m
pe

r
19

95
, l

ar
ke

 e
t

al
.

19
90

, H
ar

m
se

n
et

 a
l.

19
94

b,
 K

um
ar

 a
nd

 W
el

ke
 1

99
2,

 T
ag

g
19

90
,

T
ol

va
ne

n
an

d
L

yy
ti

ne
n

19
93

b,
 V

er
ho

ef
 e

t
al

.
19

91

T
ab

le
 l

,
T

he
 u

se
 o

f r
es

ea
rc

h
m

et
ho

ds
 in

 m
et

ho
d

en
gi

ne
er

in
g

re
se

ar
ch

.

Method engineering 307

5. DIRECTIONS FOR FUTURE RESEARCH

The goal of any researcher is to generate "infallible" knowledge in his research field. In
practice this means research collaboration, complementary research efforts, and use of a
variety of research methods. For example, before building new metamodeling tools we need to
have a good understanding of their current use and applicability. In the same vein, without
research efforts towards developing new solutions and systems, there would be little
opportunity for evaluative research (Nunamaker et al. 1991). In the following we shall
contribute ideas for future ME research by proposing concrete research topics based on our
survey: for each context and each research method some representative research questions will
be raised (Table 2).

5.1 Technical context

Because earlier research has been mainly geared towards systems building, there is room for
technical research that would verify the ideas put forth in the systems built. There is a huge
amount of normative writing about the feasibility of different metamodeling approaches and
environments, but no empirical (or even case based) research that could prove or refute these
claims. Therefore, field research in particular should be encouraged, even though there are
relatively few platforms that have so wide a user population that field research would be
feasible. In addition to field studies based on several tools (such as Cronholm and Goldkuhl
1992) we also need case studies with detailed descriptions of tool use.

Because researchers have mainly built prototype systems, there have been few usability
studies of the environments (e.g. Cronholm and Goldkuhl 1992). The usability of
implemented CASE tools, as well as the usability of the method engineering tools, should be
studied in practice.

5.2 Language context

For any modeling language, functionality and usability are always central issues, and ME
languages are no exception. Future research on ME languages should thus concentrate on
these aspects, either by extending existing research approaches or by creating new ones.

An obvious question concerning the functionality aspect is whether existing ME languages
are sufficient to model all methods (according to the 100% principle of conceptual data
modeling, see Griethuysen 1982). Although this question may never be answered with regard
to the increasing emergence of "situational methods" we nevertheless need to answer it at
some level. This necessitates the trial of ME languages using survey, field study, or case
research. Another problem is weaknesses in existing ME languages to express constraints.
Having evolved from general data modeling models or languages, existing ME languages are
mainly capable of expressing specific semantic constraints imposed by the business data
modeling domain. This constitutes a key deficiency in the functionality of ME languages, as
the constraints in the method domain are quite different. Future work is needed on systematic
study of ME-specific semantic constraints, and to develop a set of constraints for ME
languages to cope with, ideally, an arbitrary set of constraints.

308 Method Engineering

Reuse strategies form another research issue which needs further investigation. The central
problem is how to model and organize reusable method fragments, and how to develop
sufficient and effective means for retrieving promising reusable objects. Another important
research question is ME languages' support for systematic and unbiased method comparison
or characterization. Though the outcomes of the research in this problem area are encouraging,
they address only a partial characterization of methods. A natural problem arises over whether
it is feasible to standardize the quality of methods. Insofar as it is possible, such a standard
could no doubt improve the ME process by allowing at least partial automation of the
evaluation of a method supported by a ME language.

One (implicit) assumption for the shift from a textual ME language to a visual one lies in
the belief of the improved user friendliness. No studies in the ME area have been found to
support it, beyond a short comment in (Goldkuhl and Cronholm 1993). This necessitates
empirical research, for example laboratory experiments, to evaluate not only this belief, but
also investigate user preferences for different visual representational paradigms. The
implementation of visual paradigms should also be improved to address the wide spectrum of
the functionality ofthe ME languages support. This includes, for instance, the investigation of
the role of visual languages for the querying and retrieval of reusable method fragments.

5.3 Organization context

As stated above there is a paucity of ME research in the organization context. Although
several surveys of method use have been performed there is still a need for new ones. One
reason for this is that existing studies (e.g. Wijers and Dort 1990, Aaen et al. 1992, Yourdon
1992, Russo et al. 1995) obtain different results: for example the popularity of method
adaptation and thus in-house method development differs in the studies between 36% and
65%. Accordingly, it seems that there is no consensus on what method adaptation means (e.g.
modification of phases on a general level or modification of the details of a method's concepts
and notations). Similarly we do not know whether stakeholders are more satisfied with in
house methods than with methods taken as given.

The difficulty in survey studies is in the collection of detailed data. Field studies and case
studies are more suitable for investigating in detail questions such as why in-house methods
are developed, do in-house methods work and how ME efforts are organized. For the last
question we can already find several alternatives for ME projects on the organizational level:
ME can be done for a whole organization (cf. SDM by Turner et al.I988), for a single
development project (cf. Vlasblom et al. 1995), or for a developed product (cf. Aalto 1993).
Similarly the stakeholder's roles and tasks during ME efforts need to be studied: current
research merely proposes a role of 'method engineer', although in-house method development
also has other stakeholders. Field studies (Smolander et al. 1990, Cronholm and Goldkuhl
1992) have noted only a few ofthese stakeholders, and their roles have not been studied.

Finally, action research may be needed for examining what has caused success or failure in
in-house method development, what decisions are made during ME, how frequently methods
are changed, and how method evolution is controlled. These questions typically presuppose
longitudinal research efforts as well as close interaction in method use and method
development situations.

T
ec

h
n

ol
og

y
co

n
te

xt

L
an

gu
ag

e
co

n
te

xt

O
rg

an
iz

at
io

n
co

nt
ex

t

Su
rv

ey

H
ow

 c
om

m
on

ly
 a

re
 m

et
aC

A
S

E
 to

ol
s

us
ed

?
W

ha
t m

et
am

od
el

in
g

la
ng

ua
ge

s
ar

e
us

ed
 i

n
H

ow
 c

om
m

on
 a

re
 i

n-
ho

us
e

m
et

ho
ds

?
pr

ac
ti

ce
?

A
re

 s
ta

ke
ho

ld
er

s
sa

ti
sf

ie
d

w
it

h
in

-h
ou

se

m
et

ho
ds

?

F
ie

ld

H
ow

 d
o

m
et

ho
d

en
gi

ne
er

s
us

e
C

A
M

E
 to

ol
s?

W

ha
t a

re
 p

ro
pe

r
co

ns
tr

uc
ts

 f
or

 a
 m

et
am

od
el

in
g

W
hy

 a
re

 i
n-

ho
us

e
m

et
ho

ds
 d

ev
el

op
ed

?
la

ng
ua

ge
?

W
ha

t
st

ra
te

gi
es

 a
re

 a
pp

li
ed

 in
 M

E
 e

ff
or

ts
?

W
ha

t s
ta

ke
ho

ld
er

s
pa

rt
ic

ip
at

e
in

 M
E

 e
ff

or
ts

?
W

ha
t a

re
 th

e
ta

sk
s

an
d

po
si

ti
on

 o
f m

et
ho

d
en

gi
ne

er
s?

L
ab

or
at

or
y

H
ow

 w
el

l
do

 c
ur

re
nt

 m
et

aC
A

S
E

 to
ol

s
W

ha
t d

if
fe

re
nc

es
 d

o
m

et
am

od
el

in
g

la
ng

ua
ge

s
H

o
w

 d
o

di
ff

er
en

t m
et

ho
d

us
er

 g
ro

up
s

de
ve

lo
p

su
pp

or
t

ad
ap

ta
ti

on
?

ba
ve

?
an

d
m

od
if

y
th

ei
r

m
et

ho
ds

?
H

ow
 e

as
y

is
 t

he
 u

se
 o

f m
et

a C
A

S
E

 to
ol

s?

H
ow

 c
an

 w
e

co
m

pa
re

 m
et

am
od

el
in

g
la

ng
ua

ge
s?

E

va
lu

at
io

n
o

f t
he

 u
sa

bi
li

ty
 o

f v
is

ua
l

M
E

 l
an

gu
ag

es

C
as

e
S

tu
dy

 th
e

us
e

o
f C

A
M

E
 a

nd
 m

et
aC

A
S

E

W
ha

t a
re

 th
e

re
qu

ir
em

en
ts

 f
or

 i
n-

ho
us

e
to

ol
s,

 p
ar

ti
cu

la
rl

y
th

ei
r

us
ef

ul
ne

ss
 a

nd

m
et

ho
ds

?
qu

al
it

y
H

o
w

 is
 m

et
ho

d
ev

ol
ut

io
n

m
an

ag
ed

?

A
ct

io
n

U
se

 a
 c

us
to

m
iz

ab
le

 C
A

S
E

 to
ol

 to
 d

ev
el

op
 a

A

ss
es

s
a

m
et

am
od

el
in

g
la

ng
ua

ge
 i

n
a

M
E

 p
ro

je
ct

W

ha
t

ca
us

es
 s

uc
ce

ss
 o

r
fa

il
ur

e
in

 a
 M

E
 e

ff
or

t?

to
ol

 f
or

 a
 g

iv
en

 m
et

ho
d

in
 a

 u
se

r
W

ha
t k

in
d

o
ft

as
k

 a
nd

 d
ec

is
io

ns
 a

re
 m

ad
e

or
ga

ni
za

ti
on

du

ri
ng

 M
E

?
W

ha
t

ca
us

es
 c

ha
ng

es
 in

 m
et

ho
ds

 a
nd

 h
ow

 a
re

th

ey
 c

on
tr

ol
le

d?

A
pp

li
ed

N

/A

B
as

ic

D
ev

el
op

m
en

t
o

f a
 M

E
 c

on
st

ra
in

t l
an

gu
ag

e.

D
ev

el
op

m
en

t o
f a

 th
eo

ry
 o

f h
ow

 m
et

ho
d

W
ha

t k
in

d
o

f i
nh

er
it

an
ce

 s
tr

uc
tu

re
 is

 o
pt

im
al

 f
or

kn

ow
le

dg
e

is
 m

an
ag

ed

m
et

ho
d

fr
ag

m
en

ts
?

N
or

m
at

iv
e

A
 s

ys
te

m
at

ic
 c

la
ss

if
ic

at
io

n
o

f s
em

an
ti

c
co

ns
tr

ai
nt

s
as

 o
bs

er
ve

d
in

 m
et

am
od

el
in

g.

S
tu

dy
 o

f t
he

 p
os

si
bi

li
ty

 a
nd

 w
ay

s
o

f s
ta

nd
ar

di
zi

ng

th
e

qu
al

it
y

di
m

en
si

on
s

o
f m

et
ho

ds
.

W
ha

t c
on

st
it

ut
es

 a
 g

oo
d

M
E

 la
ng

ua
ge

 s
up

po
rt

in
g

"r
eu

se
"?

T
ab

le
 2

.
S

am
pl

e
re

se
ar

ch
 q

ue
st

io
ns

 o
n

fu
tu

re
 M

E
 r

es
ea

rc
h.

310 Method Engineering

6. SUMMARY

In this paper we conducted a survey of method engineering research approaches. Over 80
papers, found from journals and conference publications, were classified using Lyytinen's
(1987) three contexts: technology, language and organization. A second dimension of
classification was the chosen research paradigm(s) (i.e. survey, field study, laboratory
experiment, case study, action research, applied, basic or normative) according to the
framework ofWynekoop and Conger (1991).

Some interesting observations can be made from the amount of literature in each context
and research approach. A pattern of distribution similar to that ofWynekoop and Conger. can
be found: most papers appeared in the applied, basic and normative categories. In the same
vein the technical and language contexts predominate in the organizational context. Although
a new field is often dominated by applied or constructive research, the now numerous
available environments and languages call for evaluative research approaches. The lack of
empirical studies can be partially explained by the relatively short time that method
engineering tools have been used in ISD organizations.

For the field of method engineering to progress, we must widen the range of research
methods we use. Many more empirical studies are needed to investigate the applicability of
the tools and languages developed. Too often tools and languages are developed without
empirical justification or evaluation outside the research group. The absence of studies in the
organizational context must also be addressed, since organizational issues are essential for ME
to achieve its purpose. Again, empirical studies are needed for obtaining a comprehensive
view of ME practices. Alongside these empirical studies, new ideas and approaches are
needed for organizational issues such as method management, method evolution, and use of
method users' requirements to guide ME efforts.

Method engineering is an endeavor that takes place over time, extending over various
method versions, ISD projects, and even tools. Research in ME should therefore also be
directed towards longitudinal studies: research to date has mostly dealt with "snapshots" of
ME. Finally, ME research is only a part of the research activities in IS, and it should therefore
be tied in with research in other related disciplines in the field, such as IS development,
computer-aided environments, software process improvement and requirements engineering.

ACKNOWLEGEMENTS

The authors would like to thank Steven Kelly for proofreading and valuable additions to the
paper, and the anonymous referees for their constructive comments.

7. REFERENCES

Aaen, Ivan, Aila Siltanen, Carsten S0fensen and Veli-Pekka Tahvanainen (1992), "A Tale of
Two Countries: CASE Experiences and Expectations," in The Impact of Computer
Supported Technologies on Information Systems Development, K. E. Kendall, K. Lyytinen
and J. I. DeGross (Ed.), North-Holland, Amsterdam, pp. 61-93.

Method engineering 311

Aalto, J.-M. (1993), "Experiences on Applying OMT to Large Scale Systems," in Proceedings
of the Seminar on Conceptual Modelling and Object-Oriented Programming, A. Lehtola
and J. Jokiniemi (Ed.), Finnish Artificial Intelligence Society, pp. 39-47 .

Ahituv, Niv (1987), "A metamodel of information flow: a tool to support information systems
theory," Communications of the ACM 30(9), pp.781-791.

Benbasat, I., D. Goldstein and M. Mead (1987), "The Case Research Strategy in Studies of
Information Systems," MIS Quartely (September), pp.369-386.

Bergsten, Per, Janis Bubenko jr., Roland Dahl, Mats Gustafsson and Lars-Ake Johansson
(1989), "RAMATIC - A CASE Shell for Implementation of Specific CASE Tools," Tempora
T6.1 Report, first draft, SISU, Gothenburg.

Boloix, G., P. G. Sorenson and J. P. Tremblay (1991), "On Transformations Using A
Metasystem Approach To Software Development," TR 91-19, The University of Alberta,
Edmonton, Alberta, Canada (November).

Boloix, G., P. G. Sorenson and J. P. Tremblay (1991), "Software Metrics using a Metasystem
Approach to Software Specification," Technical Report, The University of Alberta,
Canada.

Bommel, P. van, A. H. M. ter Hofstede and Th.P. van der Weide (1991), "Semantics and
verification of object-role models," Information Systems 16(5) pp.471-495.

Brinkkemper, Sjaak (1990), "Formalisation of Information Systems Modelling," Ph.D. Thesis,
Univ. ofNijmegen, Thesis Publishers, Amsterdam.

Brinkkemper, Sjaak (1995), "Method engineering: engineering of information systems
development methods and tools," Information & Software Technology 37(11) pp.I-6.

Bronts, G.H.W.M., S.J. Brouwer, C.L.J. Martens and H.A. Proper (1995), "A unifying object
role modelling theory," Information Systems 20(3) pp.213-235.

Bubenko, J. A. (1988), "Selecting a Strategy for Computer-Aided Software Engineering
(CASE)," 59, SYSLAB, University of Stockholm, Sweden.

Chen, Minder (1988), "The Integration of Organization and Information Systems Modeling: A
Metasystem Approach to the Generation of Group Decision Support Systems and
Compute-aided Software Engineering," PhD Thesis, University of Arizona, Tuscon, USA.

Chen, M., J. F. Nunamaker Jr. and E. S. Weber (1989), "The Use of Integrated Organization
and Information Systems Models in Building and Delivering Business Application
Systems," IEEE Transactions on Knowledge and Data Engineering 1(3), pp.406-409.

Chen, Minder, Jr. Jay F. Nunamaker (1989), "METAPLEX: An integrated environment for
organization and information systems development," pp. 141--151 in Proceedings of the
Tenth International Conference on Information Systems, December 4--6, 1989, Boston,
Massachusetts, J. I. DeGross, J. C. Henderson, and B. R. Konsynski (Ed.), ACM Press.

Chen, M., J. F. Nunamaker Jr. and G. Mason (1991), "The Architecture And Design Of A
Collaborative Environment For Systems Definition," Database (Winter/Spring) pp. 22-28.

Cronholm, S., G. Goldkuhl (1992), "Meanings and motives of method customisation in CASE
environments - observations and categorizations from an empirical study," Proceeding of
the fifth workshop on the next generation of CASE tools, University of Twente, Twente.

Dowson, M. (1987), "Iteration in the software process," pp. 36-39 in Proc of 9th Int. Con!
Software Engineering, San Francisco.

312 Method Engineering

Galliers, R. D. (1991), "Choosing Appropriate Infonnation Systems Research Approaches: A
Revised Taxonomy," pp. 327-348 in Information Systems Research, H.-E. Nissen, H. K.
Klein and R. Hircheim (Ed.), North-Holland, Amsterdam.

Gigch, J. van (1991), "Systems design and modeling and metamodeling," Plenum Press, New
York.

Goldkuhl, Goran, Stefan Cronholm (1993), "Customizable CASE Environments: A
Frameworkfor Design and Evaluation," Accepted to COPE IT '93. LiTH-IDA-R-93-42,
Linkoping University, Sweden.

Griethuysen, J.J. van (1982), "Concepts and terminology for the conceptual schema and the
information base," ISO/TC97/SC5-N695, ISO.

Grundy, J. c., J. R. Venable (1995), "Providing Integrated Support for Multiple Development
Notations," pp. 255-268 in Proceedings of the 7th International Conference on Advanced
Information Systems Engineering, CAISE'95, J. Iivari, K. Lyytinen and M. Rossi (Ed.),
Springer-Verlag.

Hannsen, F., S. Brinkkemper (1993), "Computer Aided Method Engineering based on
existing Meta-CASE technology," pp. 125-140 in Proceedings of the Fourth Workshop on
The Next Generation of CASE Tools, Sjaak Brinkkemper, Frank Hannsen (Ed.) No. 93-32,
Univ. ofTwente, Enschede, the Netherlands.

Hannsen, F., S. Brinkkemper and H. Oei (1994), "A language and tool for the engineering of
situational methods for infonnation systems development," pp. 206--214 in Proceedings of
the Fourth International Conference on Iriformation Systems Development, J. Zupansis and
S. Wrycza (Ed.), Moderna Organizacija, Kranj, Slovenia.

Hannsen, Frank, Sjaak Brinkkemper and Han Oei (1994), "Situational Method Engineering
for Infonnation System Project Approaches," pp. 169--194 in Methods and Associated
Tools for the Information Systems Life Cycle (A-55), A. A. Verrijn-Stuart and T. W. Olle
(Ed.), Elsevier Science B.V. (North-Holland).

Heym, M., H. Osterle (1992), "A Semantic Data Model for Methodology Engineering," in
Proceedings of the Fifth CASE '92 Workshop, Montreal, G. Forte and N. Madhavji (Ed.),
IEEE Computer Society Press, Los Alamitos.

Heym, M., H. Osterle (1992), "A Reference Model of Infonnation Systems Development,"
pp. 215--240 in The Impact of Computer Supported Technologies on Information Systems
Development, K. E. Kendall, K. Lyytinen, J. L. DeGross (Ed.), North-Holland, Amsterdam.

Heym, M., H. Osterle (1993), "Computer-aided methodology engineering," INFORMATION
AND SOFTWARE TECHNOLOGY 35(617) pp.345--354.

Hidding, Gezinus J., Gwendolyn M. Freund and Johan K. Joseph (1993), "Modeling Large
Processes with Task Packages," Workshop on Modeling in the Large, AAAI Conference,
Washington, D. C ..

Hofstede, A. H. M. ter, T. F. Verhoef, E. R. Nieuwland and G. M. Wijers (1992), "Integrated
Specification of Method and Graphic Knowledge," Proceedings of the Fourth International
Conference on Software Engineering and Knowledge Engineering pp.307-316.

Hofstede, A. H. M. ter, T. F. Verhoef, E. R. Nieuwland and G. M. Wijers (1992),
"Specification of Graphic Conventions in Methods," pp. 185--215 in Proceedings of 3rd
Workshop on Next Generation of CASE Tools, B. Theodoulidis and A. Sutcliffe (Ed.),
UMIST, Manchester, UK.

Hofstede, A. H. M. ter (1993), "Iriformation Modelling in Data Intensive Domains," PhD
Thesis, University ofNijmegen, Nijmegen.

Method engineering 313

Hofstede, A. H. M. ter, Th. P. van der Weide (1993), "Expressiveness in data modeling," Data
& Knowledge Engineering (10) pp.65-100.

Hofstede, A. H. M. ter, Th. P. van der Weide (1993), "Formalisation of techniques: chopping
down the methodology jungle," Infonnation & Software Technology 34(1) pp.57-65.

Hofstede, A. H. M. ter, E. R. Nieuwland (1993), "Task structure semantics through process
algebra," Software Engineering Journal (8) pp.14-20.

Hofstede, A. H. M. ter, H. A. Proper and Th. P. van der Weide (1993), "Formal definition of
of a conceptual language for the description and manipulation of information models,"
Infonnation Systems 18 pp.489-523.

Hong, S., G. van den Goor and S. Brinkkemper (1993), "A Comparison of Six Object
Oriented Analysis and Design Methods," in Proceedings of the 26th Hawaiian Conference
on Systems Sciences, IEEE Computer Science Press.

Hull, Richard, Roger King (1987), "Semantic Database Modeling Survey, Applications, and
Research Issues," ACM COMPUTING SURVEYS 19(3) pp.201--260.

ISDOS, (1985), "System Encyclopedia Manager, Language Definition Manager: User
Manual (SEMlLDM}," Version 1.4 (June).

Jarke, Matthias, Manfred Jeusfeld and Thomas Rose (1990), "A Software Process Data Model
For Knowledge Engineering In Information Systems," Infonnation Systems 15(1) pp.85--
116. .

Jarke, M., J. Mylopoulos, J. Schmidt and Y. Vassiliou (1991), "DAIDA: An Environmentfor
Evolving Information Systems," RWTH Aachen, Aachen.

Jenkins, A. M. (1985), "Research Methodologies in MIS Research," pp. 103-118 in Research
Methods in Information Systems, E. Mumford, R. Hirschheim, G. Fitzgerald and A.T.
Wood-Harper (Ed.), Elsevier Science Publishers.

Karrer, A., W. Scacchi (1993), "Meta-Environments for software production," International
Journal of Software Engineering and Data Engineering 3(1) pp.139-162.

Kelly, Steven (1994), "A Matrix Editor for a MetaCASE Environment," Infonnation and
Software Technology 36(6) pp.361--371.

Kelly, Steven, Veli-Pekka Tahvanainen (1994), "Support for Incremental Method Engineering
and MetaCASE," in Proceedings of the 5th Workshop on the Next Generation of CASE
Tools, B. Theodoulidis (Ed.) No. Memoranda Infonnatica 94-25, Universiteit Twente,
Enschede, the Netherlands.

Kelly, Steven (1995), "What's in a Relationship: on distinguishing property holding and object
binding," in Proceedings of 3rd International Conference on Information Systems
Concepts, ISCO 3, W. Hesse and E. Falkenberg (Ed.), University of Marburg, Lahn,
Gennany.

Kelly, Steven, Karl Smolander (1996), "Evolution and Issues in MetaCASE," Infonnation and
Software Technology (to appear) .

Kinnunen, Kimmo, Mauri Leppanen (1994), "O/A Matrix and a Technique for Methodology
Engineering," in Proceedings of the Fourth International Conference on Information
Systems Development, J. Zupansis and S. Wrycza (Ed.), Moderna Organizacija, Kranj,
Slovenia.

Kottemann, J. E., B. R. Konsynski (1984), "Dynamic Metasystems for Infonnation Systems
Development," pp. 187--204 in Proceedings of the Fifth International Conference on
Information Systems.

314 Method Engineering

Kumar, Kuldeep, Richard J. Welke (1992), "Methodology Engineering: A Proposal for
Situation Specific Methodology Construction," pp. 257--269 in Challenges and Strategies
for Research in Systems Development, Kottermann W. W. and Senn J. A. (Ed.), John
Wiley & Sons, Washington.

Kusters, R. J., G. M. Wijers (1993), "On the Practical Use of CASE Tools: Results of a
survey," pp. 2--10 in Proceedings of the 6th International Workshop on Computer-Aided
Software Engineering, CASE93, Hing-Yan Lee, Thomas F. Reid and Stan Jarzabek (Ed.),
IEEE Computer Society.

Leppanen, Mauri (1994), "Metamodelling: Concept, Benefits and Pitfalls," pp. 126--137 in
Proceedings of the Fourth International Conference on Information Systems Development,
J. Zupansis and S. Wrycza (Ed.), Moderna Organizacija, Kranj, Slovenia.

Liu, H. (1995), "A Visual Interface for Querying a CASE Repository," in Proc. of the
Eleventh IEEE Symposium on Visual Languages (VL'95), Darmstadt.

Lyytinen, Kalle (1987), "A Taxonomic Perspective of Information Systems Development:
Theoretical Constructs and Recommendations," pp. 3--41 in Critical Issues in Iriformation
Systems Research, R. J. Boland Jr. and R. A. Hirschheim (Ed.), John Wiley & Sons Ltd ..

Lyytinen, Kalle, Kari Smolander and Veli-Pekka Tahvanainen (1989), "Modelling CASE
Environments in Systems Development," in Proceedings of the first Nordic Conference on
Advanced Systems, SISU, Stockholm.

Marttiin, Pentti, Matti Rossi, Veli-Pekka Tahvanainen and Kalle Lyytinen (1993), "A
Comparative review of CASE shells: A preliminary framework and research outcomes,"
Information & Management 25 pp.11-31.

Marttiin, P. (1994), "Towards Flexible Process Support with a CASE shell," pp. 14--27 in
Advanced Information Systems Engineering, Proceedings of the Third International
Conference CAiSE'94, Utrecht, The Netherlands, June 1994, G. Wijers, S. Brinkkemper
and T. Wasserman (Ed.), Springer-Verlag, Berlin.

Marttiin, Pentti, Kalle Lyytinen, Matti Rossi, Veli-Pekka Tahvanainen and Juha-Pekka
Tolvanen (1995), "Modeling requirements for future CASE: issues and implementation
considerations," Information Resources Management Journal 8(1) pp.15--25.

Norman, Ronald J., Minder Chen (1992), "Working Together to Integrate CASE," IEEE
Software (March) pp.12--17.

Nunamaker, Jay F., Minder Chen and Titus D. M. Purdin (1991), "Systems Development in
Information Systems Research." Management Information Systems 7(3) pp.89--1 06.

Oei, 1. L. H., L. 1. G. T. van Hemmen, E. D. Falkenberg and S. Brinkkemper (1992), "The
Meta Model Hierarchy: A Framework for Iriformation for Information Systems Concepts
and Techniques," University ofNijmegen, Nijmegen.

Oei, J. L. H., E. D. Falkenberg (1994), "Harmonisation of information systems modelling and
specification techniques," pp. 151--168 in Methods and Associated Tools for the
Information Systems Life Cycle, A. A. Verrijn-Stuart and T. W. Olle (Ed.) No. A-55,
Elsevier Science publishers.

Oei, 1.L.H. (1995), "A meta model transformation approach towards harmonisation in
information system modelling," pp. 106-127 in Iriformation System Concepts - Towards a
consolidation of views, E. D. Falkenberg, W. Hesse and A. Olive (Ed.), Chapman & Hall,
London.

Olle, T.W., H. Sol and A. Verrijn-Stuart (1983), "Informations systems design methodologies:
A feature analysis," North-Holland, Amsterdam.

Method engineering 315

Olle, T. W. (1992), "A Comparative Review of the ISO IRDS, the IBM Repository and the
ECMA PCTE as a Vehicle for CASE Tools," pp. 147--165 in CASE: Current Practice,
Future Prospects, Kathy Spurr and Paul Layzell (Ed.), Wiley.

Proper, H. A., Th. P. van der Weide (1994), "EVDRM: A conceptual modelling fechniquefor
evolving application domains," Data & Knowledge Engineering 10(12) pp.313-359.

Protsko, L. B., P. G. Sorenson and J. P. Tremblay (1989), "Mondrian: system for automatic
generation of dataflow diagrams," Information and Software Technology 31(9) pp.456-
471.

Protsko, L. B., P. G. Sorenson, J. P. Tremblay and D. A. Schaefer (1991), "Towards the
Automatic Generation of Software Diagrams," IEEE TRANSACTIONS ON SOFTWARE
ENGINEERING 17(1).

Rolland, C., C. Cauvet (1992), "Trends and Perspectives in Conceptual Modeling," pp. 27--48
in Conceptual Modelling, Databases and CASE: An Integrated View of Information
Systems Development, P. Loucopoulos and R. Zicari (Ed.), Wiley, New York.

Rolland, c., C. Souveyet and M. Moreno (1995), "An approach for defining ways-of
working," Information Systems 20(4) pp.337-359.

Rossi, M., M. Gustafsson, K. Smolander, L.-A. Johansson and K. Lyytinen (1992),
"Metamodeling editor as a front end tool for a case-shell," pp. 547--567 in Advanced
Information Systems Engineering, P. Loucopoulos (Ed.), Springer Verlag, Berlin,
Germany.

Rossi, M., I-P. Tolvanen (1995), "Using Reusable Frameworks in Development of a Method
Support Envionment," in Proceedings of The WITS 1995, Amsterdam, The Netherlands, M.
larke, S. Ram (Ed.), pp. 240-249.

Rossi, M., S. Brinkkemper (1995), "Metrics in Method Engineering," pp. 200-216 in
Advanced Information Systems Engineering, Proceedings of the 7th International
Conference CAiSE'95, J. Iivari, K. Lyytinen and M. Rossi (Ed.) No. 932, Springer-Verlag,
Berlin.

Rossi, M. (1995), "The MetaEdit CAME environment," Proceedings of the MetaCase 95,
University of Sunderland press, Sunderland.

Russo, Nancy L., Judy L. Wynekoop and Diane B. Walz (1995), "The Use and Adaptation of
System Development Methodologies," in Proceedings of the 1995 International Resources
Management Association Conference, Atlanta.

Saeki, Motoshi, Kuo Wenyin (1994), "Specifying Software Specification & Design Methods,"
pp. 353--366 in CAiSE '94 Proceedings, Gerard Wijers, Sjaak Brinkkemper and Tony
Wasserman (Ed.) Vol. Lecture Notes in Computer Science 811, Springer-Verlag, Berlin.

Slooten, Kees van, Sjaak Brinkkemper (1993), "A Method Engineering Approach to
Information Systems Development," in Procs. of the IFIP WG 8.1 Working Conference on
the Information Systems Development Process, N. Prakash, C. Rolland, B. Pemici (Ed.),
North-Holland, Amsterdam.

Slooten, Kees van (1995), "Situated Methods for Systems Development," PhD Thesis,
University of Twente, Twente.

Smolander, Kari, Veli-Pekka Tahvanainen and Kalle Lyytinen (1990), "How to Combine
Tools and Methods in Practice: a field study," pp. 195--214 in Advanced Information
Systems Engineering, proceedings of the Second Nordic, B. Steinholz, A. S51vberg, L.
Bergman (eds) (Ed.), Springer-Verlag, Berlin.

316 Method Engineering

Smolander, Kari, Kalle Lyytinen, Veli-Pekka Tahvanainen and Pentti Marttiin (1991),
"MetaEdit --- A Flexible Graphical Environment for Methodology Modelling," pp. 168--
193 in Advanced Information Systems Engineering, Proceedings of the Third International
Conference CAiSE'91. Trondheim, Norway, May 1991, R. Andersen, J. A. Bubenkojr. and
A. Solvberg (Ed.), Springer-Verlag, Berlin.

Smolander, Kari (1991), "OPRR: A Model for Modelling Systems Development Methods," in
Next Generation CASE Tools, K. Lyytinen and V.-P. Tahvanainen (Ed.), lOS Press,
Amsterdam, the Netherlands.

Sommerville, 1., R. Weiland and S. Beer (1987), "Describing software design methodologies,"
The Computer Journal 30(2) pp.128-133.

Song, X., L. Osterweil (1992), "Towards Objective and Systematic Comparisons of Software
Design Methodologies," IEEE Software 18(5) pp.43--53.

Song, X., L. J. Osterweil (1994), "Experience with an Approach to Comparing Software
Design Methodologies," IEEE Transactions on Software Engineering 20(5) pp.364--384.

Sorenson, Paul G., Jean-Paul Tremblay and Andrew J. McAllister (1988), "The Metaview
Systemfor Many Specification Environments," IEEE SOFTWARE (March) pp.30--38.

Tagg, B. S. (1990), "Implementing Tool Support for Box Structures," IDM Systems Journal
29(1).

Teichroew, D., P. Macasovic, III E. A. Hershey and Y. Yamamoto (1980), "Application of the
entity-relationship approach to information processing systems modeling," pp. 15--38 in
Entity-Relationship Approach to Systems Analysis and Design, P. P. Chen (Ed.), North
Holland.

Tolvanen, J.-P., P. Marttiin and K. Smolander (1993), "An integrated model for information
systems modeling," pp. 470-479 in Proceedings of 26th HICSS, J. Nunamaker and H.
Sprague (Ed.) Vol. 3, IEEE Computer Society Press, Los Alamitos.

Tolvanen, J.-P., K. Lyytinen (1993), "Flexible method adaptation in CASE environments -
The metamodeling approach," Scandinavian Journal of Information Systems 5(1) pp.51-
77.

Tolvanen, J.-P. (1995), "Incremental Method Development for Business Modelling: An
Action Research Case Study," pp. 79-98 in Proceedings of the 6th Workshop on the Next
Generation of CASE Tools, NGCT'95, G. Grosz (Ed.), University of Paris 1, Paris.

Turner, W. S., R. P. Langerhorst, G. F. Hice, H. B. Eilers and A. A. Uijttenbroek (1988),
"SDM: system development methodology," North-Holland.

Verhoef, T. F., A. H. M. ter Hofstede and G. M. Wijers (1991), "Structuring modelling
knowledge for CASE shells," pp. 502-524 in Advanced Information Systems Engineering,
Proceedings of the Third International Conference CAiSE'91, R. Andersen, J. A. Bubenko
and A. Solvberg (Ed.), Springer-Verlag.

Vlasblom, G., D. Rijsenbrij and M. Glastra (1995), "Flexibilization of the methodology of
system development," Information & Software Technology 37(11) pp.595-607.

Welke, R. J. (1988), "Metabase: A Platform for the Next Generation of Meta Systems
Products," in Proceedings of the Ninth Annual Conference on Applications of Computer
Aided Software Engineering Tools, May 23--27, 1988, Meta Systems Ltd., Ann Arbor, MI.

Welke, R. J. (1992), "The CASE Repository: More than another database application," in
Challenges and Strategies for Research in Systems Development, William W. Cotterman
and James A. Senn (Eds.) (Ed.), Wiley, Chichester UK.

Method engineering 317

Wijers, G. M., H. E. van Dort (1990), "Experiences with the use of CASE-tools in the
Netherlands," Advanced Information Systems Engineering pp.5--20.

Wijers, G. M. (1991), "Modelling Support in Information Systems Development," Ph.D.
Thesis, Delft University of Technology, Thesis Publishers, Amsterdam.

Wijers, G. M., A. H. M. ter Hofstede and N. E. van Oosterom (1992), "Representation of
Information Modelling Knowledge," in Next Generation CASE Tools, K. Lyytinen and V.
P. Tahvanainen (Ed.), lOS Press, Amsterdam, The Netherlands.

Wood-Harper, T. (1985), "Research Methods in Information Systems: Using Action
Research," pp. 169-191 in Research Methods in Information Systems, E. Mumford, R.
Hirschheim, G. Fitzgerald and A.T. Wood-Harper (Ed.), Elsevier Science Publishers.

Wynekoop, J. L., S. A. Conger (1991), "A review of computer aided software engineering
research methods," Information Systems Research, IFIP.

Wynekoop, J. D., N. L. Russo (1993), "System development methodologies: unanswered
questions and the research-practice gap," pp. 181--190 in Proceedings of the 14th ICIS, J. I.
DeGross, R. P. Bostrom and D. Robey (Ed.), ACM, Orlando, USA.

Yourdon, E. (1992), "The Decline and Fall of the American Programmer,," Prentice-Hall,
Englewood Cliffs, NJ.

8. BIOGRAPHY

The authors work as researchers in the MetaPHOR project at the Department of Computer
Science and Information Systems in the University of Jyvaskyla. Juha-Pekka Tolvanen
received his Master's degree in 1992 and licentiate degree in 1994. His licentiate thesis and
dissertation research focus on method engineering and especially on its organizational and
methodical aspects. His other research interests include CASE tools, business modeling and
business process re-engineering. Matti Rossi received his Master's degree in 1994 and
completed his licentiate thesis in 1994. His research interests include database management,
object-oriented data representation, metamodelling, transformations in metamodelling, and the
applications of these to software engineering. Hui Liu received his Master's degree in Beijing
and completed his licentiate thesis in 1996 in Jyvaskyla. His research interests include
metamodelling languages and query systems, in particular visual query languages in
metaCASE environments.

20

Panel: Reengineering Method
Engineering?

Panel Chair:
Keng Siau, University of Nebraska-Lincoln, USA

Panelists:
Lucas Introna, London School of Economics, UK
Graham McLeod, University of Cape Town, South Africa
Jeffrey Parsons, Memorial University, Canada
Yair Wand, University of British Columbia, Canada

PANEL DESCRIPTION

Is there a need for method engineering when only 20% of the developers perform
modeling work? Is there a future for method engineering when the majority of
practitioners subscribe to their "home-made" methods or methodologies during
information systems development? These are the issues that will be discussed and
argued during the panel.

Panelist Lucas Introna advocates the abandonment of the notion of method and all of
its rationalistic baggage. He argues that it is not possible to train designers in
particular ways of developing systems. Designers have to become apprentices to
existing system developers and learn their skill by socialization. Panelist Graham
McLeod maintains that methods can never be fully prescriptive, since they operate in
a social environment and the behavior of a complex system is not predictable, but
emergent from the complex interaction of many autonomous agents.

Panelists Jeffrey Parsons, Keng Siau, and Yair Wand, on the other hand, believe that
the unfortunate state of affairs in systems development method can be attributed partly
to the lack of strong theoretical foundation and empirical work in the area. In this
panel, Jeff Parsons will discuss the use of classification theory (i.e., how humans
organize information in terms of categories or concepts) as a theoretical foundation
for method engineering. Panelist Yair Wand will discuss method engineering from
the ontological point of view and show how ontological concepts can be used in
method engineering. Keng Siau will address the role of empirical research in method
engineering.

21

Panel: Method Engineering:
Experiences in Practice

Panel Chair:
Gezinus J. Bidding, Andersen Consulting, USA

Panelists:
James J. Odell, James Odell Associates, USA
John Parkinson, Ernst & Young, USA
Gerard M. Wijers, ID Research, the Netherlands

PANEL DESCRIPTION

Method Engineering is a topic of much research activity witness, for example, this
conference. Much of the research focuses on contrasting and comparing various
approaches, on repository design, or on design of Computer Aided Method
Engineering (CAME) tools. Very little of the research focuses on whether methods
are used or useful, let alone whether method engineering is used or valuable.

Some research, for example, by the Software Engineering Institute, suggests that
much systems development work is being done without any formalized procedures for
doing or managing the work (Masters and Kitson, 1992). Other researchers, e.g., Orr
(1993), even argue that methodologies are not very useful. Ciborra (1993) argues that
the a-conflictual and mechanistic nature of structured system development approaches
does not even fit the current, and complex reality.

However, as Wynekoop and Russo (1993) argued, empirical results or research into
experiences with methods (engineering) in practice are rare. Are practitioners using
methods, let alone method engineering? Are there different practitioner segments,
with different information needs? What are their experiences? What does it even
mean to "use" methods? Research by the panel chair indicates that practitioners who
use methods do so subconsciously. Their work reveals the method(s) they apply, but
they don't read those methods actively anymore. How does methods use or non-use
impact an organization's operations? How does it impact an organization's business
results (e.g., better quality, faster turn around time, less cost, more productive)?
Clearly, such questions are important, as investments in the development and training
in such methods are substantial. The panelists, all close to practical applications of
Method Engineering, will address these types of questions in their position statements.

REFERENCES

Ciborra, C., Teams, Markets and Systems: Business Innovation and Information
Technology. Cambridge, Great Britain: Cambridge University Press, 1993.

320 Method Engineering

Masters, S., and Kitson, D.H., An Analysis of SEI Software Process Assessment
Results: 1987 - 1991. Technical Report CMU/SEI-92-TR-24. Software Engineering
Institute, Carnegie Mellon University. Pittsburgh, PA. 1992.

Orr, J.E., Ethnography and Organizational Learning: In Pursuit of Learning at Work.
In: Organizational Learning and Technological Change. Eds. Bagnara, S., C.
Zucchermaglio and S. Stucky, New York and Berlin: Springer-Verlag, 1993.

Wynekoop, J.L., and Russo, N.L., System Development Methodologies: Unanswered
Questions and the Research-Practice Gap. Proceedings of the Fourteenth
International Conference on Information Systems. Orlando. Eds. J.I. DeGross, R.P.
Bostrom and D. Robey, pp. 181 - 190, 1993.

Alghamdi, A. 186
Avison, D. 263

Baskerville, R. 8
Bichler, P. 94

Cooke, B. 165
Cuypers, L. 126

Grundy, J.C. 45

Harmsen, F. 63, 209
Hidding, G.J. 319
Hodes, B. 29

Jarke, M. 246
Jonekers, V. 126
Joosten, S. 142

Kaasb~ll, J. 111
Kawalek, P. 94

INDEX OF CONTRIBUTORS

Krogstie, J. 278
Kueng, P. 94

Liu, H. 296

Mandelbaum, M. 246
Manson, G. 186
Marttiin, P. 63
Mathiassen, L. 232
Munk-Madsen, A. 232

Nielsen, P.A. 232
North, S. 186

Odell, J.J.
Oinas-Kukkonen, H. 87

Peters, P. 246
Powell, A. 165
Prakash, N. 191

Rolland, C. 191
Rossi, M. 63, 296

Saeki, M. 209
Sehrefl, M. 94
Siau, K. 318
Sm~rdal, O. 111
S~lvberg, A. 278
Stage, J. 232

Tolvanen, J.-P. 296

van Slooten, K. 29
Venable, J.R. 45
Versehaeve, K. 126
Vickers, A. 165

Williams, E. 165
Wydaeghe,B. 126

KEYWORD INDEX

Action research 263
Activity theory 111
Analysis 126

Business process modelling 94

CAME (Computer Aided method
Engineering) 87, 191

CASE 87
evaluation 63
tools 186

Classification 278
Comparisons 209
Conceptual modeling 246
Contingency 263
Co-ordination 63

Data repository 186
Design 126
Design rationale 87

Embedded programming language 142
Evaluation Ill, 165
Experience 165

Functional programming 142

Goal-means hierarchy 94

Hypertext 87

Industrial practice 165

Information systems
development 8, 87, 263
quality 246
security 8

Learning 232
cycle 111

MetaCASE 45, 63, 87,
environment 186
tools 142

Metal-model 142
Metamodelling 45, 296
Method engineering 29,45,63,87, Ill,

232, 296
Method modelling 191
Method rationale 87
Method specification languages 209
Methodology 278
Methods base 191
Multiview 263

Object-orientation 94, 232
OMT* 126
Organizational structure 8

Research methods 296, 111

SDL 126
Semiotics III

324

Simulation 246
Situated methods 29
Social process 263
Soft systems 263
Software engineering 8, 126
Software process modelling 45
Software tools 165

Keyword iruiex

System analysis 246
Systems development 29, 63, 232

methods 8, 296

Transformational semantics 126

Working 232

